

IMPLEMENTING SLAM FOR

PRACTICAL SCENARIOS

LIM ZHI JIAN

UNIVERSITI TUNKU ABDUL RAHMAN

IMPLEMENTING SLAM FOR

PRACTICAL SCENARIOS

LIM ZHI JIAN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Mechatronics Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2021

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Signature :

Name : LIM ZHI JIAN

ID No. : 17UEB01932

Date : 22 APRIL 2022

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “IMPLEMENTING SLAM FOR

PRACTICAL SCENARIOS” was prepared by LIM ZHI JIAN has met the

required standard for submission in partial fulfilment of the requirements for

the award of Bachelor of Engineering (Honours) Mechatronics Engineering at

Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Dr Ng Oon-Ee

Date :

Signature :

Co-Supervisor : Ir. Dr Danny Ng Wee Kiat

Date :

25 April 2022

25/4/22

iii

The copyright of this report belongs to the author under the terms of

the Copyright Act 1987 as qualified by Intellectual Property Policy of

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made

of the use of any material contained in, or derived from, this report.

© 2022, Lim Zhi Jian. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful

completion of this project. I would like to express my gratitude to my research

supervisors, Dr Ng Oon-Ee and Ir. Dr Danny Ng Wee Kiat for their invaluable

advice, guidance, and their enormous patience throughout the development of

the research.

In addition, I would also like to express my gratitude to my academic

advisor, Dr Hau Lee Cheun, as well as my loving parents and siblings who had

helped and encouraged me during the conduct of this research.

v

ABSTRACT

Mobile robots, especially service robots nowadays are equipped with LiDAR

or RGBD cameras for 2D Simultaneous Localisation and Mapping (SLAM)

and navigation purposes. However, the state-of-the-art 2D SLAM packages

that are available in Robot Operating System (ROS) are prone to

environmental factors, such as the presence of noise, the presence of repetitive

structures, and the lack of features in an environment. The types of sensors

used for mapping would affect the scan matching and loop closure abilities of

the 2D SLAM packages. Therefore, this project aims to provide an in-depth

understanding of the capabilities, performances, and limitations of the 2D

SLAM packages, so that more insights could be provided for successful

SLAM implementations. In this project, mapping procedures will be carried

out on a service robot in the different scenarios of venues, sensors, and 2D

SLAM packages, and the results will be compared for further evaluation. From

the quality of mapping, this project would provide insights into the choice of

SLAM package, the tuning of SLAM parameters, and the choice of different

sensors, based on the nature of the surroundings, to obtain the best

configuration that results in the best mapping quality.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 2

1.4 Aim and Objectives 2

1.5 Scope and Limitation of the Study 2

1.6 Contribution of the Study 3

1.7 Outline of the Report 3

2 LITERATURE REVIEW 4

2.1 Introduction to the SLAM Problem 4

2.2 Solutions to the SLAM Problem 5

2.2.1 Overview of the Filtering-Based Approach 5

2.2.2 Kalman Filter-Based Approach 6

2.2.3 Particle Filter-Based Approach 7

2.2.4 Optimisation-Based Approach 10

2.2.5 Summary - SLAM Approaches 12

2.3 2D SLAM Packages 13

vii

2.3.1 Hector SLAM 13

2.3.2 GMapping 13

2.3.3 Cartographer 14

2.3.4 SLAM Toolbox 15

2.3.5 Summary - ROS SLAM Packages 15

2.4 Factors Affecting SLAM in Practical Scenarios 16

2.4.1 Limitations of current SLAM Algorithms 17

2.4.2 Limitations of Sensors and Actuators 19

2.4.3 Summary - Limitations of SLAM 20

2.5 Overall Summary 20

3 METHODOLOGY AND WORK PLAN 22

3.1 Overview of Project Work Plan 22

3.2 Hardware Details 22

3.3 Data Acquisition 23

3.3.1 Venue Setup 23

3.3.2 Sensor Setup 24

3.3.3 Teleoperation and Recording 25

3.4 Mapping and Evaluation 25

3.4.1 SLAM and Parameters 25

3.4.2 Tunings and Observations 27

3.4.3 Evaluations 28

3.5 Resource Allocations and Project Planning 30

3.6 Summary 30

4 RESULTS AND DISCUSSION 31

4.1 Introduction 31

4.2 Evaluations of Sensors 31

4.2.1 Change of Viewpoint 31

4.2.2 Field of View (FOV) 32

4.2.3 Features Captured 33

4.3 Evaluations of Lab Mapping 34

4.3.1 Hector SLAM 34

4.3.2 GMapping 35

viii

4.3.3 Cartographer 37

4.3.4 SLAM Toolbox 38

4.4 Evaluation of Corridor Mapping 39

4.4.1 Hector SLAM 39

4.4.2 GMapping 41

4.4.3 Cartographer 42

4.4.4 SLAM Toolbox 43

4.5 Comparisons and Summary 44

5 CONCLUSIONS AND RECOMMENDATIONS 47

5.1 Conclusions 47

5.2 Recommendations for future work 47

REFERENCES 49

APPENDICES 51

ix

LIST OF TABLES

Table 2.1: The Comparisons of Different SLAM Approaches. 12

Table 2.2: The Comparisons of Different ROS SLAM Packages. 16

Table 3.1: Robot Specifications. 23

Table 3.2: Characteristics of Different Venues 23

Table 3.3: Specifications of Sensors. 24

Table 3.4: Specific Parameters for GMapping. 26

Table 3.5: Specific Parameters for Cartographer. 26

Table 3.6: Specific Parameters for SLAM Toolbox. 26

Table 3.7: Best Specific Parameters for GMapping. 27

Table 3.8: Best Specific Parameters for Cartographer. 28

Table 3.9: Best Specific Parameters for SLAM Toolbox. 28

x

LIST OF FIGURES

Figure 2.1: True and Estimated Locations of Robot and Landmarks. 4

Figure 2.2: Pose Graph Example. 10

Figure 2.3: Expected Pose and Real Pose of xj. 11

Figure 2.4: Overview of Cartographer (Cartographer ROS, 2019). 14

Figure 2.5: Typical SLAM System. 17

Figure 3.1: Project Flow Chart. 22

Figure 3.2: Venues for Mapping: (a) KB613 Lab, and (b) 6th Floor
Corridor. 23

Figure 3.3: Point Clouds: (a) before Filtering, and (b) after Filtering. 24

Figure 3.4: Simplified Floor Plan of KB613 Lab. 25

Figure 3.5: Simplified Floor Plan of 6th Floor Corridor. 25

Figure 3.6: Result of Image Registration in MATLAB. 29

Figure 3.7: Result of Linear Regression in MATLAB. 30

Figure 4.1: The Effect of Change of Viewpoint towards LiDAR Data
and D435 Data as the Robot Rotated. 31

Figure 4.2: Treadmills at Point G. 32

Figure 4.3: Scan Data of the Corner Near Point G from: (a) D435
(white), and (b) LiDAR (colourful). 32

Figure 4.4: Map of the KB613 Lab. 33

Figure 4.5: Scan Data of the Cabinet Compartments: (a) LiDAR
(colourful), and (b) D435 (white). 33

Figure 4.6: Cabinets at 6th Floor Corridor. 33

Figure 4.7: Hector SLAM Result at Lab: (a) using LiDAR as Sensor,
and (b) using D435 camera as Sensor. 34

Figure 4.8: Normalized Error Results after Image Registration
(LiDAR). 34

xi

Figure 4.9: GMapping SLAM Result at Lab: (a) using LiDAR as
Sensor, and (b) using D435 as Sensor. 35

Figure 4.10: Image Registration and Normalized Error Results: (a)
with LiDAR as Sensor, and (b) with D435 as Sensor. 36

Figure 4.11: Cartographer Result at Lab: (a) using LiDAR as Sensor,
and (b) using D435 as Sensor. 37

Figure 4.12: Effect of Final Loop Closure on Cartographer when
using D435: (a) before Loop Closure, and (b) after Loop
Closure. 37

Figure 4.13: Image Registration and Normalized Error Results: (a)
with LiDAR as Sensor, and (b) with D435 as Sensor. 37

Figure 4.14: SLAM Toolbox Result at KB613 Lab: (a) using LiDAR
as Sensor, and (b) using D435 as Sensor. 38

Figure 4.15: Image Registration and Normalized Error Results: (a)
with LiDAR as Sensor, and (b) with D435 as Sensor. 39

Figure 4.16: Maps Generated by Hector SLAM: (a) using LiDAR as
Sensor, and (b) using D435 Camera as Sensor. 40

Figure 4.17: Maps Generated by GMapping: (a) using LiDAR as
Sensor, and (b) using D435 Camera as Sensor. 41

Figure 4.18: Maps Generated by Cartographer: (a) using LiDAR as
Sensor, and (b) using D435 Camera as Sensor. 42

Figure 4.19: Maps Generated by SLAM Toolbox: (a) using LiDAR as
Sensor, and (b) using D435 Camera as Sensor. 43

Figure 4.20: Normalised Error Value for Lab Mapping. 44

Figure 4.21: Deviation for Corridor Mapping. 44

xii

LIST OF SYMBOLS / ABBREVIATIONS

CAD Computer-Aided Design

DOF Dimension of Freedom

EKF Extended Kalman Filter

FLIRT Fast Laser Interest Region Transform

FOV Field of view

GLC Generic Linear Constraint

IMU Inertial Measurement Unit

KF Kalman Filter

LTS Long Term Support

ORB Oriented FAST and rotated BRIEF

RANSAC Random Sample Consensus

RBPF Rao-Blackwellised particle filter

ROS Robot Operating System

SDF Simulation Description Format

SLAM Simultaneous Localisation and Mapping

SPA Sparse Pose Adjustment

URDF Unified Robotic Description Format

VO Visual Odometry

xiii

LIST OF APPENDICES

Appendix A: Graphs 51

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Robots are machines that could perceive the environment and make decisions

to manipulate the physical world. Over the years, industrial robots have been

successful in various domains, such as the manufacturing sectors and medical

sectors, as they are being programmed to move within a controlled

environment, replacing humans in completing dangerous, dirty, and dull jobs.

Mobile robots, on the other hand, have been implemented in different areas

such as indoor service robots, autonomous flight vehicles and robots for sea

exploration. These applications are more challenging, as the robots are

required to move around an area without any prior knowledge.

 To deploy robots in various fields, an open-sourced framework,

Robot Operating System (ROS), is applied to provide the necessary tools,

libraries, and packages that could suit the software developments. As the scope

of robotics domains is expanding continually, ROS has been developed to

handle the software complexity, by offering communications between

different processes and algorithms (Quigley, et al., 2009). ROS also allows

different researchers to collaborate by compiling their codes into packages

which further facilitate the development of robotics programmes.

 Differs from industrial robots, a mobile robot is required to map the

unknown environment while keeping track of its location, which brings up the

Simultaneous Localisation and Mapping (SLAM) problem (Durrant-Whyte &

Bailey, 2006). Currently, there are three main paradigms to solve the SLAM

problem: Kalman filter-based, particle filter-based, and optimisation-based

methods, which will be further discussed in Chapter 2. Although there are a

wide variety of ROS packages for easy implementation of SLAM, however,

they are prone to dynamic changes in the environment, which may cause the

systems to fail. To understand the underlying problems of these conditions, the

limitations of the state-of-the-art SLAM algorithms must be well-studied, so

that better solutions could be developed for the successful implementation of

SLAM in the real-world situations.

2

1.2 Importance of the Study

This study may provide insights towards the architecture and theory behind

different 2D SLAM approaches, the features and performance of 2D SLAM

packages available in ROS, the limitations of the state-of-the-art SLAM

algorithms in real-world situations, as well as the knowledge of the current

trend of research for improving the capabilities of SLAM algorithms.

1.3 Problem Statement

With the availability of various ROS packages that are based on different

SLAM approaches, it is not easy to select the most suitable package for a

specific mobile robotic application. An in-depth understanding of the features

and working principles of some main SLAM packages are therefore necessary

to aid in the decision making.

 Even though current SLAM algorithms have implemented

probabilistic approaches that deal with uncertainties, however, the

functionality of the algorithm may be affected if the surroundings are highly

dynamic. Therefore, the limitations of SLAM in practical scenarios must be

identified, so that a better solution could be proposed to improve the

capabilities of SLAM algorithms in real-world situations.

1.4 Aim and Objectives

This study aimed to implement SLAM for a mobile robot to map an

environment. The specific objectives of this research were to:

i) Review and evaluate the capabilities of current SLAM methods,

ii) Implement SLAM for a mobile robot in different scenarios, and

iii) Identify the limitations that affect SLAM usage in practical conditions.

1.5 Scope and Limitation of the Study

The scope of this project focus on the software components, including the

implementation of ROS and 2D SLAM methods, as well as the

implementation of LiDAR and Realsense D435 Camera. In this study, only

four state-of-the-art 2D SLAM methods available in ROS will be implemented

and evaluated, including the in-depth review of three main paradigms of

SLAM solutions, their comparisons, and the identification of the limitations of

3

SLAM. A few possible improvements to the 2D SLAM algorithm to overcome

their limitations in the real-world application will be mentioned in this study,

however, the details will not be included as they will be another area of

research, which may require knowledge in computer vision.

1.6 Contribution of the Study

This project reviews the existing 2D SLAM methods and provides insights to

ease the future implementation of these methods. Each 2D SLAM package is

tuned and evaluated based on its performance and quality of mapping. The 2D

SLAM packages will then be compared to identify their capabilities and

limitations.

1.7 Outline of the Report

This report is divided into five chapters. Chapter 1 provides the general

introduction to robotics and the SLAM problem, as well as the problem

statement and the aim and objectives. Next, Chapter 2 provides the literature

review of the three main paradigms of SLAM solutions, the comparison of a

few 2D SLAM packages, and the identification of the limitations of 2D SLAM

in practical situations. In Chapter 3, the methodology for the implementation

of different 2D SLAM packages, the tuning the parameters, and the evaluation

of the mapping results are provided. Then, Chapter 4 provides the evaluation

of results and discussion for sensors and SLAM packages in different

scenarios. Finally, Chapter 5 concludes the project and provides some

recommendations for future project development.

4

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction to the SLAM Problem

The SLAM problem is the problem of mapping the environment while

determining the robot’s pose, given the robot’s observations of the

environment and the controls sent to the robot. To formulate the SLAM

problem, consider a robot that is traversing through the world, as shown in

Figure 2.1 below, which is observing the landmarks through the sensor

mounted on its body.

Figure 2.1: True and Estimated Locations of Robot and Landmarks.

Since the sensors are prone to cumulative errors and the motion of the

robot increases the uncertainty of the system (Thrun, Burgard and Fox, 2005),

a probabilistic approach is used to formulate the SLAM problem:

 𝑝𝑝(𝑥𝑥0:𝑇𝑇 ,𝑚𝑚 |𝑧𝑧1:𝑇𝑇 ,𝑢𝑢1:𝑇𝑇) (2.1)

where

x0:T = poses of the robot from period 0 to T

m = locations of all the landmarks {m1, m2, … mn}

z1:T = observations on the landmarks from period 1 to T

u1:T = control inputs to drive the robot from period 1 to T

5

The full SLAM formulation in (2.1) addresses the probability of a

robot pose and the locations of the landmarks, given all the observations and

all the input controls, where the entire path taken by the robot is estimated. In

an online SLAM formulation, the previous poses of the robot are marginalised

out, thus the probability distribution to describe the online SLAM is:

 𝑝𝑝(𝑥𝑥𝑡𝑡,𝑚𝑚 |𝑧𝑧1:𝑡𝑡,𝑢𝑢1:𝑡𝑡) (2.2)

There are a variety of solutions to the SLAM problems formulated

above, which could be classified into filter-based approaches such as Kalman

filters and particle filters or optimisation-based approaches. In this chapter,

Section 2.2 reviews the general solutions to the SLAM problem, as well as

their capabilities and limitations. In Section 2.3, the comparisons between a

few 2D SLAM packages will be discussed. In Section 2.4, the limitations of

SLAM in practical implementations will be studied, and a brief review of

possible improvements will be provided.

2.2 Solutions to the SLAM Problem

2.2.1 Overview of the Filtering-Based Approach

Through the implementations of Bayes’ rule and Markov assumption, the

solution to the online SLAM problem in (2.2) could be achieved by estimating

the state x through a two-step Bayes filter, which are the prediction step (2.3)

and the correction step (2.4):

 𝑏𝑏𝑏𝑏𝑏𝑏����(𝑥𝑥𝑡𝑡) = ∫𝑝𝑝(𝑥𝑥𝑡𝑡 | 𝑢𝑢𝑡𝑡 , 𝑥𝑥𝑡𝑡−1) 𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑡𝑡−1) 𝑑𝑑𝑥𝑥𝑡𝑡−1 (2.3)

 𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑡𝑡) = 𝜂𝜂 𝑝𝑝(𝑧𝑧𝑡𝑡 |𝑥𝑥𝑡𝑡) 𝑏𝑏𝑏𝑏𝑏𝑏����(𝑥𝑥𝑡𝑡) (2.4)

The prediction step considers the executed command ut that moves

the robot from its original state xt-1 to the predicted current belief of the robot

pose xt, whereas the correction step considers the sensor observations zt to

update the current belief of the pose of the robot xt. The realisation of different

recursive Bayes filters could be achieved using the Kalman filter and particle

filter, which will be discussed in the next two subsections.

6

2.2.2 Kalman Filter-Based Approach

2.2.2.1 Extended Kalman Filter

The Extended Kalman Filter (EKF) is developed based on the recursive Bayes

filters, replacing Kalman Filter (KF) which only assumes the linear motion

model and linear observation model (Thrun, Burgard and Fox, 2005). The

ability of EKF to describe these two models as non-linear functions:

 𝑥𝑥𝑡𝑡 = 𝑔𝑔(𝑢𝑢𝑡𝑡, 𝑥𝑥𝑡𝑡−1) + 𝜖𝜖𝑡𝑡 (2.5)

 𝑧𝑧𝑡𝑡 = ℎ(𝑥𝑥𝑡𝑡) + 𝛿𝛿𝑡𝑡 (2.6)

allows it to be applied in non-Gaussian situations. In the prediction step, local

linearisation is applied through the First Order Taylor expansion to estimate

the robot’s current state:

 𝑔𝑔(𝑢𝑢𝑡𝑡, 𝑥𝑥𝑡𝑡−1) ≈ 𝑔𝑔(𝑢𝑢𝑡𝑡, 𝜇𝜇𝑡𝑡−1) +
𝜕𝜕𝜕𝜕(𝑢𝑢𝑡𝑡,𝜇𝜇𝑡𝑡−1)

𝜕𝜕𝑥𝑥𝑡𝑡−1
(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇𝑡𝑡−1) (2.7)

The correction step then updates the estimated robot’s state based on the

current sensory data in which the result is known as the posterior:

 ℎ(𝑥𝑥𝑡𝑡) ≈ ℎ(𝑢𝑢�𝑡𝑡) +
𝜕𝜕ℎ(𝑢𝑢�𝑡𝑡)

𝜕𝜕𝑥𝑥𝑡𝑡
(𝑥𝑥𝑡𝑡 − 𝜇̅𝜇𝑡𝑡) (2.8)

2.2.2.2 EKF-SLAM

The application of EKF to SLAM estimates the state, µ and the covariance

matrix Σ. The state represents the robot’s pose, x, and the locations of the

landmarks in an environment, m. The covariance matrix, on the other hand,

updates the correlations between each pose and landmark.

 μ = �
𝑥𝑥
𝑚𝑚
� (2.9)

 Σ = �
Σ𝑥𝑥𝑥𝑥 Σ𝑥𝑥𝑥𝑥
Σ𝑥𝑥𝑥𝑥 Σ𝑥𝑥𝑥𝑥

� (2.10)

7

In EKF-SLAM, the prediction step predicts the new state 𝜇𝜇 and the

covariance matrix Σ . Then, the correction step updates both terms by

considering the uncertainties that are present in the sensors.

2.2.2.3 The Capabilities and Limitations of EKF-SLAM

Although EKF can maintain the Gaussian assumptions to solve the SLAM

problem in non-linear situations, when compared to other SLAM solutions, it

is relatively less robust in handling conditions where the non-linearity is large,

especially in outdoor SLAM implementations. This is because the error in

maintaining the Gaussian assumption made by EKF in its prediction step

grows larger with the greater non-linear conditions, which is due to the

increasing uncertainty. This, in turn, will cause the EKF solutions to diverge.

In EKF-SLAM, when the robot moves through an environment, the

covariance matrix will be constantly updated, making the landmarks to be

more correlated, thus allowing the algorithm to obtain a much more accurate

relative map of the environment. However, due to this nature, the EKF-SLAM

is not applicable for large-scale applications. This is because all the correlated

robot’s pose and landmarks saved in the huge covariance matrix need to be

updated whenever another new observation is obtained, causing a quadratic

increase in memory consumption.

2.2.3 Particle Filter-Based Approach

2.2.3.1 Particle Filter

The particle filter is a type of recursive Bayes filter that utilises a non-

parametric approach. Differing from the KF which only models Gaussian

distributions, the particle filters could deal with arbitrary distributions by

representing the posterior probability with multiple weighted samples.

 The particle filter algorithm could be summarised into three steps.

First, since an arbitrary distribution is hard to model, a set of particles is

sampled from a proposal distribution representing a set of state hypotheses.

Second, the samples are individually weighted using the importance sampling

principle, taking care of the differences between the target (arbitrary)

distribution and the proposal distribution, obtaining a set of weighted particles

as below:

8

 𝑤𝑤𝑏𝑏𝑤𝑤𝑔𝑔ℎ𝑡𝑡𝑏𝑏𝑑𝑑 𝑠𝑠𝑠𝑠𝑚𝑚𝑝𝑝𝑏𝑏𝑏𝑏𝑠𝑠:𝒳𝒳 = �〈𝑥𝑥[𝑗𝑗],𝑤𝑤[𝑗𝑗]〉�
𝑗𝑗=1,…,𝐽𝐽

 (2.11)

Third, in the resampling step, the samples with lower weights are replaced by

samples with high likeliness to reduce the representation of unlikely states,

using the Roulette wheel or stochastic universal sampling methods.

 The particle filter, however, only works well for low-dimensional

applications. This is because a huge number of samples are required for it to

cover a high dimensional region, making it to be computationally inefficient.

2.2.3.2 Rao-Blackwellisation

The implementation of the particle filter in SLAM directly is infeasible

because of the high dimensionality problem:

 𝑥𝑥 = �𝑥𝑥1:𝑡𝑡,𝑚𝑚1,𝑥𝑥,𝑚𝑚1,𝑦𝑦, … ,𝑚𝑚𝑀𝑀,𝑥𝑥,𝑚𝑚𝑀𝑀,𝑦𝑦�
𝑇𝑇

 (2.12)

As the number of landmarks becomes higher, it would be

computationally inefficient to implement the particle filter in SLAM. To solve

the problem, Rao-Blackwellisation is applied to reduce the sample space,

factorising the SLAM posterior into a path posterior and a map posterior:

 𝑝𝑝(𝑥𝑥0:𝑡𝑡,𝑚𝑚1:𝑀𝑀|𝑧𝑧1:𝑡𝑡,𝑢𝑢1:𝑡𝑡) = 𝑝𝑝(𝑥𝑥0:𝑡𝑡|𝑧𝑧1:𝑡𝑡,𝑢𝑢1:𝑡𝑡) 𝑝𝑝(𝑚𝑚1:𝑀𝑀|𝑥𝑥0:𝑡𝑡, 𝑧𝑧1:𝑡𝑡) (2.13)

The factorisation allows the particle filter to only represent the path posterior

using weighted particles, which has lower dimension. The map posterior will

then be analytically calculated from the set of particles.

Given the trajectory of the robot is known and each observation made

is independent, the landmarks will also be independent of each other.

Therefore, the map posterior for each particle in (2.13) could be represented as

independent Gaussian distributions:

 𝑝𝑝(𝑚𝑚1:𝑀𝑀|𝑥𝑥0:𝑡𝑡, 𝑧𝑧1:𝑡𝑡) = ∏ 𝑝𝑝(𝑚𝑚𝑖𝑖|𝑥𝑥0:𝑡𝑡, 𝑧𝑧1:𝑡𝑡)
𝑀𝑀
𝑖𝑖=1 (2.14)

9

This shows that the map posterior could be represented by multiple 2-

dimensional EKFs, which are less complex than a single high-dimensional

EKF used in EKF-SLAM. Therefore, a recursive estimation could be

performed effectively by 1) calculating the path posterior using particle

filtering, and then 2) calculating the map posterior from the weighted particles

using the 2-dimensional EKFs.

Equation (2.14) is the key property of Rao-Blackwellised particle

filter-based SLAM because all the landmarks could be represented

independently using Gaussian distributions, reducing the complexity into

linear form, as a contrast to the quadratic complexity in EKF-SLAM which

uses a covariance matrix to represent all the landmarks.

2.2.3.3 The Capabilities and Limitations of FastSLAM

Proposed by Montemerlo, et al. (2002), the FastSLAM algorithm uses the

Rao-Blackwellised particle filter (RBPF) method to model the posterior. This

is achieved by sampling and computing the weighted particles, followed by the

update of belief as in EKF. The implementation of FastSLAM is greatly

influenced by the sample size and the number of particles sampled, which will

impact the mapping accuracy and the computational complexity.

In conditions where the number of landmarks is high (big sample

size), the FastSLAM algorithm has lower computational complexity as

compared to EKF-SLAM. This is because the particles in FastSLAM represent

each landmark with multiple low-dimensional EKFs, in contrast to the EKF-

SLAM which uses a single high-dimensional covariance matrix. On the other

hand, in cases where the sample size is small, the FastSLAM is less preferable

than EKF-SLAM because the decreased sample size reduces the number of

particles that can be sampled, thus reducing its accuracy.

Even though FastSLAM is more efficient than EKF-SLAM in high

dimensional spaces, if the number of particles sampled by the RBPF is high, a

high computational effort is still required. Besides, the RBPF also suffers from

the particle-depletion problem, due to the implementation of the resampling

step (Grisetti, Stachniss and Burgard, 2007). These two issues could be

minimised while implementing the GMapping package, which will be further

discussed in Section 2.3.

10

2.2.4 Optimisation-Based Approach

2.2.4.1 Pose-graph

In the graph-based SLAM, a graph consisting of nodes connected by edges is

constructed to represent the SLAM problem, where the nodes represent the full

trajectory of robot poses or landmarks, and the edges represent the spatial

constraints between nodes, as illustrated in Figure 2.2. These edges are either

created from the odometry data between sequential robot poses, or through the

alignment of observations of the same environment, i.e., during loop closure.

Figure 2.2: Pose Graph Example.

Due to the noise in the sensor, there are uncertainties in the created

constraints. Therefore, upon building the graph, the graph-based SLAM finds

the nodes’ configurations that best fit the constraints (Grisetti, et al., 2010)

thus optimising the graph and the map.

2.2.4.2 Graph-based SLAM

The graph-based SLAM is implemented in two parts. The front end builds the

graph using the raw sensor measurements (graph construction), creating the

nodes and constraints through data associations. Using the given edges, the

back end maximises the consistency between the node’s configurations and the

measurements (graph optimisation), through the minimisation of errors

between the predicted and real observations.

Figure 2.3 below shows the expected and the real measurement of

pose xj as seen from pose xi, represented in homogeneous coordinates. Let the

vector of parameters representing the pose of nodes in Figure 2.2 above be:

𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑇𝑇)𝑇𝑇, when the robot is at position xi observing a previously seen

environment when it was at position xj, a virtual measurement 𝑧𝑧𝑖𝑖𝑗𝑗 is created

about the position of xj as seen from position xi.

11

Figure 2.3: Expected Pose and Real Pose of xj.

The predicted virtual measurement, 𝑧̂𝑧𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) is a transformation that

predicts the virtual measurement given the configurations of the nodes xi and xj

respectively, whereas the error function 𝑏𝑏𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) is a function that calculates

the errors between the predicted observation 𝑧̂𝑧𝑖𝑖𝑗𝑗 and the real observation 𝑧𝑧𝑖𝑖𝑗𝑗.

The optimisation of the graph is performed when the least-squares approach is

applied to find the new state x* that best represents the optimised graph:

 𝑥𝑥∗ = argmin
𝑥𝑥

∑ 𝑏𝑏𝑘𝑘
𝑇𝑇(𝑥𝑥)Ω𝑘𝑘𝑏𝑏𝑘𝑘(𝑥𝑥)𝑘𝑘 (2.15)

where

𝑏𝑏𝑘𝑘(𝑥𝑥) = error function 𝑏𝑏𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗)

Ω𝑘𝑘 = information matrix representing the uncertainties of the constraints

The equation (2.15) could be solved iteratively using the Gauss-

Newton algorithm to find the state x* which represents the most likely nodes

configurations that have the minimum squared error (Grisetti, et al., 2010).

2.2.4.3 The Capabilities and Limitations of Graph-Based SLAM

Since the error term 𝑏𝑏𝑖𝑖𝑗𝑗(𝑥𝑥) depends only on the variables xi and xj, the

resulting Jacobian in the linearised error function is a sparse matrix. This

sparse matrix structure allows the graph-based SLAM to solve a huge linear

system efficiently, making it suitable to map a large area efficiently.

However, according to Takleh, et al. (2018), since the graph-based

SLAM must consider all the poses and landmarks information, it consumes a

high computational cost, making it expensive to be implemented in a large

12

area. This issue, however, is not critical, because the graph-based SLAM,

according to Santos, Portugal and Rocha (2013), is usually more efficient as

compared to other approaches in mapping a large area.

2.2.5 Summary - SLAM Approaches

In summary, there are three main paradigms for solving the SLAM problem,

which are the Kalman-filtering methods, particle-filtering methods, and graph-

based-optimisation methods. The comparison of strengths and weaknesses of

each approach could be summarised in Table 2.1 below.

Table 2.1: The Comparisons of Different SLAM Approaches.

Approaches Strengths Weaknesses

EKF-SLAM Deal with moderate non-

linearities.

Diverge if non-linearity is

large.

Accurate relative map.

Computationally difficult for

large maps.

FastSLAM

(RBPF)

Deal with the arbitrary

distribution.

Particle depletion issues.

Less memory is required.

Computationally inefficient in

high-dimension applications.

More computationally

efficient than EKF in large

maps.

Much more inaccurate than

EKF-SLAM in the case of the

small sample size.

Graph-based

SLAM

Ability to process large

maps.

High computational cost in

large maps (but still much

more efficient than other

approaches).

13

2.3 2D SLAM Packages

Although most of the 2D SLAM packages are based on the three general

SLAM approaches reviewed in the previous section, the number of SLAM

packages can be overwhelming. In this section, a few ROS SLAM packages

are discussed and compared, to ease the choice of SLAM package for a

specific robotics application.

2.3.1 Hector SLAM

The Hector SLAM is a package that fuses the 2D SLAM and 3D navigation

system, which are based on the LiDAR scan data and the Inertial Measurement

Unit (IMU) data respectively (Kohlbrecher, et al, 2011). The high update rate

of LiDAR sensors is used in this system to achieve the real-time estimation of

the robot’s movement. Since the Hector SLAM does not utilise odometric

information, it can be implemented in 6 DOF applications such as aerial robots.

The Hector SLAM is implemented in two stages: Fast scan matching

for 2D pose estimation in the front end; and slow 3D state estimation in the

back end. In the front end, the 2D pose estimation is obtained using the scan

matching of the beam endpoints within a range of z-coordinates, which could

be solved by using the Gauss-Newton equation. In the back end, the 2D pose is

updated to 3D state estimation using the navigation filter based on EKF, by

incorporating the inertial measurements available in aerial robots.

However, according to Santos, Portugal and Rocha (2013), the Hector

SLAM might exhibit problems when the scan rates are low, as it depends on

the high update rate of LiDAR sensors to perform the real-time estimation.

This is because the Hector SLAM could not make use of the odometry

information in wheeled robots even though they are accurate.

2.3.2 GMapping

GMapping is a SLAM package that is based on the improvised RBPF

approach proposed by Grisetti, Stachniss and Burgard (2007). This approach

solved the particle-depletion issue and high computational complexity issue in

conditions where the number of particles sampled is high.

To solve the particle-depletion issue, GMapping deploys an adaptive

resampling technique, which allows the algorithm to do resampling only when

14

necessary, keeping the diversity while minimising the depletion problem. On

the other hand, to solve the computational complexity issue, the GMapping

package uses a proposal distribution that instead of considering only odometry

information, it fuses that information with the current sensory observations

through the scan matching procedure. This increases the mapping accuracy,

decreases the estimation error, and therefore, requires fewer particles to

represent the posterior, which in turn lowers the computational effort.

2.3.3 Cartographer

The Cartographer is a package that is based on the graph-based SLAM

approach, proposed by Hess, et al (2016). The overview of the Cartographer

system is shown in Figure 2.4 below.

Figure 2.4: Overview of Cartographer (Cartographer ROS, 2019).

 In Cartographer, the extracted sensory data is first downsampled by

the voxel filter to decrease the computational resource required. Then, the pose

estimator ensures that each of the scan data is matched with odometry data

before they are fed into the Local SLAM for scan matching.

15

In the Local SLAM, the current pose is estimated by matching the

scan data with the sub-maps, using the Google Ceres scan matcher which is

based on a non-linear optimisation method. These scans are then placed into

the current submap; however, they contain an accumulation of drifting errors,

which will be minimised in the Global SLAM through pose optimisation.

After that, the Global SLAM creates intra sub-maps constraints, which are

obtained from the scan matching between collected scans with the completed

sub-maps. As a result, all sub-maps could be linked to obtain an overall map.

2.3.4 SLAM Toolbox

The SLAM Toolbox is a ROS SLAM package introduced by Macenski in

ROSCon 2019. It is built upon the Open Karto (Konolige et al., 2010), which

is a pose-graph optimisation-based SLAM, thus it can handle the robot’s

resources effectively while mapping a large environment. According to

Luknanto (2020), the SLAM Toolbox uses local and global approaches,

similar to Cartographer. In the local approach, consistent pose estimation is

performed to match the new scan with a few recent scans. In the global

approach, the most recent scan is matched against the map to perform loop

closure.

According to Macenski and Jambrecic (2021), the SLAM Toolbox

can store (serialise) and retrieve (deserialise) the raw pose-graph data,

therefore allowing the users to modify them or to assist a loop closure. The

users are also allowed to choose the different modes of operations, which are:

the synchronous mode which focuses on the quality of mapping, or the

asynchronous mode which focuses on the quality of real-time localisation.

Besides, since the Sparse Pose Adjustment (SPA) in KartoSLAM is replaced

with Google Ceres for scan matching and loop closures procedures in SLAM

Toolbox, much adaptable optimisation settings could be provided.

2.3.5 Summary - ROS SLAM Packages

In summary, the SLAM packages reviewed in this section are based on

different approaches. The strengths and weaknesses of these packages are

generally affected by the underlying approaches used. A simple comparison

between the ROS SLAM packages reviewed in this section could be

16

summarised in Table 2.2 below, however, this table does not summarise the

real performances of these packages, as they will be reviewed again later in

this study. Included in the table are also some of the weaknesses of the SLAM

packages pointed out by Macenski and Jambrecic (2021).

Table 2.2: The Comparisons of Different ROS SLAM Packages.

Package Strengths Weaknesses

Hector SLAM

(EKF for 3D

estimation)

Real-time estimation. Inaccurate pose and map

estimation at low scan

frequency.

Applicable for 6 DOF

applications.

Do not utilise odometry

information.

GMapping

(RBPF)

An improvised RBPF

method.

Loop closure problem in

large space.

Cartographer

(Optimisation-

based SLAM)

Can build an accurate map

in real-time.

Challenging to modify the

complex software.

Provide data serialisation.

SLAM Toolbox

(Optimisation-

based SLAM)

Can build an accurate map

in real-time

Newly developed

package.

Provide multiple modes of

mapping.

Provide data serialisation.

2.4 Factors Affecting SLAM in Practical Scenarios

The current SLAM methods have generally solved the SLAM problem and

have been successfully applied using LiDAR-based SLAM such as LOAM,

and Visual SLAM such as ORB-SLAM. However, these approaches assume a

static environment, which is not the case for most real-life applications, such

as search-and-rescue operations, sea exploration, and lunar exploration that

require the robot to function long-termly in a dynamic and unstructured

environment.

17

The implementation of the state-of-the-art SLAM in practical

situations is prone to 1) the limitation of the current SLAM algorithm in

handling the dynamic environments, 2) the sensor’s limitations and inaccuracy

in observing harsh environments, as well as 3) the actuator’s imprecision

caused by the actuator degradation and the influences of unstructured

environments. These limitations will be discussed in the next two subsections.

2.4.1 Limitations of current SLAM Algorithms

As the SLAM applications are transitioning into the large-scale environment,

much of the recent research is focusing on graph-based SLAM because of its

efficiency in mapping a large area. The summary of a typical SLAM system,

which consists of the front end and back end, is shown in Figure 2.5 below.

Figure 2.5: Typical SLAM System.

The front end uses the sensory data to represent the environment into

models applicable for estimations, while the back end processes the data to

provide the localisation and mapping as output. In this subsection, the

robustness and the scalability of the SLAM algorithm will be reviewed, which

are: 1) how the SLAM front end (feature extraction and data association) could

be influenced by a high dynamics environment, and 2) how SLAM back end

(graph optimisation process) could be influenced by the increasing complexity.

18

2.4.1.1 Limitations of Feature Extraction

The feature extraction algorithm in the front end provides the data for the

feature matching and pose estimation of the SLAM algorithm. These features

are represented by planes, lines, or points, which could work well in static

environments. In real-world conditions, however, the presence of moving

objects could reduce the reliability of the mapping process of Visual SLAM,

as many erroneous features extracted from dynamic objects would lead to

wrong data associations, incorrect camera ego-motion estimation and drifting

of pose estimations (Liu and Miura, 2021).

With the advancements in deep learning and image recognition, many

recent works have proposed semantic-based methods to detect the presence of

dynamic objects, making Visual SLAM more robust to be deployed in real-

world situations. Among them is the RDS-SLAM by Liu and Miura (2021)

based on ORB-SLAM3 which uses semantic information to optimise camera

pose, and SaD-SLAM by Yuan and Chen (2020) based on ORB-SLAM2

which detects static and dynamic feature points to improvise camera pose

estimation.

2.4.1.2 Limitations of Data Association

The data association in the SLAM front end performs feature tracking and

loop closure detection. The feature tracking algorithm associates the pixel

measurements within two consecutive frames as the same point, whereas the

loop closure detection associates a new observation to an old feature,

minimising the reliability towards dead reckoning.

 In a practical situation such as when the robot is traversing through a

long corridor or a parking lot, since there are a lot of similar features, the data

association algorithm is prone to the perceptual aliasing phenomenon (Cadena,

et al., 2016), whereby the algorithm would wrongly perceive different features

of the environment as the same. On the other hand, when the robot is required

to function long-termly in a dynamic environment, the feature tracking and

loop closure detection algorithm might fail to associate the new observation of

a previously visited area as the same feature, due to the change in viewpoint,

the difference in illumination of a scene, and the shifting of objects during the

deployment period (Shi, et al., 2020).

19

 According to Cadena, et al. (2016), the robustness of the feature

tracking algorithm could be improved if the framerate of the sensor is

significantly higher than the robot’s dynamics, as the sensor’s position does

not vary much as the time increases from t to t+1. The loop closure, on the

other hand, could potentially be detected using the FLIRT features jointly with

Random sample consensus (RANSAC), proposed by Tipaldi and Arras (2010).

Cadena, et al. (2016) also mentioned that loop closure quality could be made

certain through loop closure validation, which could be achieved using

RANSAC in vision-based applications, and scan matching process in laser-

based applications.

2.4.1.3 Limitations of Graph Optimisation Process

For the SLAM back end that uses the graph-based optimisation method, as

previously mentioned in Section 2.2.4, the computational complexity will

increase with the increasing map, which is the case for outdoor practical

applications that requires the robot to operate over a long time. As the pose-

graph increase indefinitely with the increasing size of the explored map, the

resource of the robot will no longer be able to support the execution of the

system.

 To reduce the complexity of the system, a sparsification method

could be implemented by decreasing the addition of new nodes or by removing

the current nodes that contain less information, such as through the node

removal method using generic linear constraint (GLC) proposed by Carlevaris-

Bianco (2015). Besides, the complexity issue could also be solved through the

implementation of sub-mapping algorithms by dividing the computational load

of the system into multiple processors, or the utilisation of multiple robots to

map a large environment (Cadena, et al., 2016)

2.4.2 Limitations of Sensors and Actuators

Other factors that will impact the implementation of the SLAM system include

the limitations of sensors and actuators in harsh environments. In a survey

conducted by Wang, Zhang and An (2017), the presence of a large number of

dust particles and the lack of feature points in the surroundings could reduce

20

the certainty of the information perceived, leading to a non-convergence

problem that affects the robustness of SLAM.

 Besides, in conditions where the robot is required to move through

uneven terrain, the wheel odometry information becomes unreliable because

the wheel could sink, skid, and slip. To tackle the problem, Marks, et al (2009)

proposed the use of visual odometry (VO) in estimating the vehicle motion,

replacing the wheel odometry which is shown unreliable through their

experiment.

2.4.3 Summary - Limitations of SLAM

An understanding of the limitations of the state-of-the-art SLAM algorithms is

important for the successful implementations of future robotics applications in

an outdoor environment.

In summary, the SLAM front end could be influenced by the highly

dynamic and unstructured environments, such as the incorrect feature

extractions caused by the moving objects, the perceptual aliasing phenomenon

in repetitive environments, and the failure in detecting loop closure due to

changes in the environment during the long deployment period, which in turns

impacts the robustness of the SLAM algorithm. While deploying the robot for

an extended period on a large map, the complexity of the system could be

increased unboundedly, which affects the scalability of the SLAM algorithms.

On the other hand, the sensors and actuators of the robotic applications could

be influenced by the harsh conditions of the environment, resulting in high

uncertainties of perceived information. Nevertheless, successful

implementations of SLAM would be eased by increasing the robustness and

scalability, such as the use of deep learning and computer vision techniques.

2.5 Overall Summary

In summary, the three main paradigms to solve the SLAM problem are the

Kalman filter-based, particle filter-based, and optimisation-based approaches.

The KF and RBPF are developed based on Bayesian filters, whereas the

graph-based SLAM uses the least-square method to optimise the SLAM

estimation model. Using SLAM packages available in ROS such as Hector

SLAM, GMapping, Cartographer, and SLAM Toolbox, these SLAM

21

algorithms could be easily adapted to different applications by tweaking the

parameters offered in the packages.

However, as the mobile robotics applications had been transitioning

into a wider and more dynamic environment, the robustness and scalability of

the state-of-the-art SLAM are challenged. The failure of feature extraction

algorithms and loop closure algorithms in a dynamic environment, the

unbounded complexities of the SLAM system in large environments, and the

performance issues of sensors and actuators in harsh environments are

affecting the implementation of state-of-the-art SLAM. These issues are

currently being attempted to be solved through the implementation of

Computer Vision techniques, which is another area of research.

22

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Overview of Project Work Plan

In this chapter, the methodology used to evaluate the capabilities and

limitations of the state-of-the-art 2D SLAM during implementations will be

explained. In general, a robot equipped with a LiDAR and an RGBD camera

would be teleoperated in different real-world environments, where the data

from these sensors were recorded and fed into different 2D SLAM packages

for mapping. The tuning of parameters and the quality of mapping of each

package will be further evaluated to compare their capabilities and limitations.

The project flow chart is shown in Figure 3.1 below and will be discussed in

detail in the next few subsections.

Figure 3.1: Project Flow Chart.

3.2 Hardware Details

The project was carried out using a differential drive robot, equipped with a

LiDAR sensor, a depth camera, and a tracking camera. The robot was

controlled using a computer with ROS Melodic installed. The specifications of

the robot are listed in Table 3.1 below:

23

Table 3.1: Robot Specifications.

Sensors Hokuyo 4-metre LiDAR (URG-04LX-UG01)

Realsense RGBD Camera (D435)

Realsense Tracking Camera (T265)

Operating System Ubuntu 18.04 LTS (ROS Melodic installed)

CPU Intel i7-8550U @ 1.80 GHz

RAM 12.0 GB

Graphics Card NVIDIA GeForce MX150

3.3 Data Acquisition

3.3.1 Venue Setup

The 2D SLAM nodes were run based on the data collected from KB613 Lab

and the 6th Floor Corridor, as shown in Figure 3.2 below.

(a) (b)

Figure 3.2: Venues for Mapping: (a) KB613 Lab, and (b) 6th Floor Corridor.

The KB613 Lab contained repetitive structures of tables in the middle

area, and it contained cluttered scenes such as stools and treadmills. The 6th

Floor Corridor was 27.88 metres long and it was featureless. The performance

of 2D SLAM packages would be studied through their mapping results, based

on these characteristics of the scenes, as summarised in Table 3.2 below.

Table 3.2: Characteristics of Different Venues

Venue Lab Corridor

Characteristics
Repetitive structures Long (27.88 metres)

Cluttered scenes Featureless

24

3.3.2 Sensor Setup

The input scan data for 2D SLAM were based on two sources: the scan data

from Hokuyo LiDAR, and the scan data extracted from the depth image of the

Realsense D435 camera, by applying the depthimage_to_laserscan ROS

package. The odometry data was provided by the Realsense T265 Tracking

Camera. The specifications of the sensors that provide the scan data were

tabulated in Table 3.3 below.

Table 3.3: Specifications of Sensors.

 Hokuyo 4-metre LiDAR D435 Realsense Camera

Field of View 240 ̊ 87 ̊

Range 4 metres 10 metres

Accuracy 3% Varies

The Hokuyo URG LiDAR had a scan area of 240 ̊ with a maximum

distance of 4 metres and had 3% of guaranteed accuracy. The results were

accurate thus no further processing was required. The Realsense D435 Camera,

on the other hand, had a Field of View (FOV) of 87 ̊ with a maximum distance

of 10 metres, but the accuracy was greatly affected by the environmental

conditions such as lighting noise. The scan result on a flat surface was wavy,

where its amplitude increased with an increasing distance. Therefore, the point

cloud was filtered using a combination of spatial, temporal, disparity, and

decimation filters. Referring to Figure 3.3 below, the filtered results of the

point cloud provided a good representation of flat surfaces.

(a) (b)

Figure 3.3: Point Clouds: (a) before Filtering, and (b) after Filtering.

25

3.3.3 Teleoperation and Recording

Figure 3.4 and Figure 3.5 below show the simplified floor plan of KB613 Lab

and 6th Floor Corridor, respectively. The robot was teleoperated in KB613 Lab

with the trajectory of A, B, C, D, A, E, F, G, H, A, whereas it was teleoperated

in the 6th Floor Corridor with the trajectory of A, B, A. All the rostopics were

recorded into the rosbag files.

Figure 3.4: Simplified Floor Plan of KB613 Lab.

Figure 3.5: Simplified Floor Plan of 6th Floor Corridor.

3.4 Mapping and Evaluation

3.4.1 SLAM and Parameters

In this project, the four SLAM packages: Hector SLAM, GMapping,

Cartographer, and SLAM Toolbox would be analysed for their performance,

capabilities, and limitations, in the different scenarios described in the

previous subsections. All the SLAM packages would be run based on the same

rosbag file, but with different configurations of parameters specific to each

package and scenario. The tuning aimed to obtain the best configuration that

would result in the best mapping quality for evaluation.

26

 In this section, the effect and process of tuning the SLAM packages

will be discussed. The general parameters that were similar to all four

packages were: 1-second map update interval, 4-metre-long maximum usable

scan data for mapping, and 0.05 map resolution. To obtain the best mapping

result, the tuning of important parameters that were specific to the GMapping,

Cartographer, and SLAM Toolbox were listed and described in Table 3.4,

Table 3.5, and Table 3.6 below. There were no specific parameters to be tuned

for Hector SLAM.

Table 3.4: Specific Parameters for GMapping.

Specific Parameters Description

particles The number of particles for state estimation.

lstep, astep Linear and angular optimization steps.

Table 3.5: Specific Parameters for Cartographer.

Specific Parameters Description

submaps_num_range_data Size of the submaps.

translation_weight,

rotation_weight

Greater value means scan matching had to

generate greater value for its result to be

accepted.

optimize_every_n_nodes Optimize the graph after several n batches of

nodes were inserted.

Table 3.6: Specific Parameters for SLAM Toolbox.

Specific Parameters Description

loop_search_space_dimension Size of search grid for loop closure

detection.

loop_match_minimum_chain_size Minimum chain length required to detect

loop closure.

minimum_travel_distance,

minimum_travel_heading

Linear and angular update steps.

distance_variance_penalty,

angle_variance_penalty

Penalty to apply as the matched scan

differs from an odometry pose.

27

 The parameters specific to each SLAM package had to be tuned

according to different scenarios and conditions. The wrong settings of

parameters would adversely affect the performance of SLAM. For instance,

one of the most frequent errors was the perceptual aliasing phenomenon.

Given an environment, a lower linear update step would allow the scan

matching to be performed more frequently, however, this would also allow the

SLAM to be more easily associated two consecutive scans as similar, thus

causing a section of the map to appear shorter. Besides, a lower minimum

number of nodes required for loop closure optimization allowed a frequent

loop closure detection, however, this would also allow the SLAM to be more

easily matched two different areas as similar, thus causing the map to be

distorted as two different areas were merged.

3.4.2 Tunings and Observations

Based on the different sensors and venues, trials and errors methods would be

performed for the tuning of SLAM parameters through visual inspection,

whereby the quality of loop closure detection and scan matching were

observed for tuning purposes. The best configuration, as tabulated in Table 3.7,

Table 3.8, and Table 3.9 below, that results in the best mapping result would

be used for evaluation and analysis of the SLAM packages in the next step.

Table 3.7: Best Specific Parameters for GMapping.

 Default Lab Corridor

LiDAR D435 LiDAR D435

lstep (m) 0.05 0.01 0.01 0.01 0.01

astep (m) 0.05 0.01 0.01 0.01 0.02

particles 30 100 100 100 100

28

Table 3.8: Best Specific Parameters for Cartographer.

 Default Lab Corridor

LiDAR D435 LiDAR D435

submaps_num_range_data 90 150 50 200 50

translation_weight 10 10 50 10 50

rotation_weight 1 1 10 1 10

optimize_every_n_nodes 90 20 20 20 20

Table 3.9: Best Specific Parameters for SLAM Toolbox.

 Default Lab Corridor

LiDAR D435 LiDAR D435

loop_search_space_dimension 8 15 8 20 20

loop_match_minimum_chain

size

10 7 10 3 5

minimum_travel_distance 0.5 0.5 0.5 0.5 0.5

minimum_travel_heading 0.5 0.5 0.5 0.5 0.5

distance_variance_penalty 0.5 0.5 0.005 0.5 0.5

angle_variance_penalty 1.0 1.0 0.001 1.0 10

3.4.3 Evaluations

3.4.3.1 Evaluation of Lab Mapping Results

To evaluate the accuracy of the map at KB613 Lab, the ground truth and the

resulting maps were binarized and then aligned using the Image Processing

Toolbox in MATLAB. The evaluation was then carried out using the K-

Nearest Based Normalised Error (k=1) metric, introduced by Santos, Portugal

and Rocha (2013). This normalised error was calculated by averaging the sum

of distances among each occupied cell on the resulting map, 𝐾𝐾(𝑘𝑘, 𝑏𝑏), and the

corresponding cell on the ground-truth map, 𝐼𝐼(𝑤𝑤, 𝑗𝑗) , where 𝐾𝐾𝑘𝑘,𝑙𝑙 =

𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖,𝑗𝑗
𝑘𝑘=1(𝐼𝐼,𝐾𝐾).

𝑁𝑁𝑁𝑁 =
∑ ∑ �(𝑘𝑘 − 1)2 + (𝑏𝑏 − 𝑗𝑗)2[𝐼𝐼(𝑤𝑤, 𝑗𝑗) = 0]𝑛𝑛−1

𝑗𝑗=0
𝑥𝑥−1
𝑖𝑖=0

∑ ∑ [𝐼𝐼(𝑤𝑤, 𝑗𝑗) = 0]𝑛𝑛−1
𝑗𝑗=0

𝑥𝑥−1
𝑖𝑖=0

 (3.1)

29

 The normalised error, NE in Equation (3.1) is always greater than or

equal to 0, where 0 indicates that both maps of size 𝑘𝑘 × 𝑚𝑚 are the same. The

sample output image was shown in Figure 3.6 below, where the green pixels

indicated the resulting map, pink pixels indicated the ground truth map, and

black pixels indicated the overlapping pixels of both maps. The value of NE

was the value of normalized error between both maps after the registration

process.

Figure 3.6: Result of Image Registration in MATLAB.

3.4.3.2 Evaluation of Corridor

To evaluate the resulting map of the 6th Floor Corridor, two aspects of the

resulting map were observed and calculated: first, the angular deviation of the

map of the corridor from its horizontal position, and second, the linear

deviation of the map from the true length of the corridor.

 To find the angular deviation, linear regression was performed to find

the best fit line that suits the image data, using MATLAB. Then, the degree of

deviation was calculated from its gradient, which would be in the clockwise or

anticlockwise direction.

 To find the linear deviation, first, the two points that were intersecting

both the map and the best fit line were found by taking the mean of the points

that had a low squared error value. Their distance was multiplied by

0.05(m/pixel) to obtain the length in metres. The sample output image was

shown in Figure 3.7 below, where the black pixels indicated the corridor, the

red line indicated the best fit line, and the blue and black dots each indicated

the mean point that intersects the best fit line.

30

Figure 3.7: Result of Linear Regression in MATLAB.

3.5 Resource Allocations and Project Planning

The project was carried out using the service robot available in UTAR, and

utilized packages available in ROS, therefore no extra cost or budget was

required to carry out the project. All the planned tasks were achieved

successfully for FYP Part 2 in this trimester.

3.6 Summary

In summary, the project could be carried out in two stages: the Data

acquisition stage, and the mapping and evaluation stage. In the data acquisition

stage, when the UTAR service robot was teleoperated in both KB613 Lab and

6th Floor Corridor, the scan data from the Hokuyo 4-metre LiDAR and the

filtered scan data from Realsense D435 Camera were captured and recorded

into rosbag files. In the mapping and evaluation stage, the rosbag files were

replayed for four 2D SLAM methods: Hector SLAM, GMapping,

Cartographer, and SLAM Toolbox. Then the output maps from each SLAM in

each scenario were evaluated using image registration and K-Nearest Method

for the map of Lab, and linear regression for the map of the Corridor.

31

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, the results obtained from the different sensors and SLAM

packages will be compared and discussed. The first section evaluates the scan

results obtained from LiDAR and D435 camera, as they influence the

performance of SLAM. The second section evaluates the performance of

different SLAM packages using different sensors and at different venues.

Finally, the results will be compared to evaluate the capabilities and

limitations of the SLAM packages.

4.2 Evaluations of Sensors

4.2.1 Change of Viewpoint

Figure 4.1 below shows the scan data from LiDAR (red-coloured) and D435

camera (white-coloured) as the robot rotated and changed its viewpoint

towards the treadmills in Figure 4.2 located at the corner around point B in the

KB613 Lab.

(a) (b) (c)

Figure 4.1: The Effect of Change of Viewpoint towards LiDAR Data and

D435 Data as the Robot Rotated.

32

Figure 4.2: Treadmills at Point G.

 The scan data from LiDAR remained constant as the robot moved,

which was an accurate representation of the scene. On the other hand, the

filtered scan data from the D435 camera contained fillets that joined the

treadmills and their background together, where the scan data would be varied

as the robot was rotated and changed its viewpoint. This effect was due to the

noise and filtering effect on the point cloud data explained in Section 3.3.2.

This effect was undesirable as the change in scan data would affect the scan

matching capabilities of the SLAM packages.

4.2.2 Field of View (FOV)

Figure 4.3 shows the scan data from LiDAR (colourful) and D435 camera

(white) when mapping the corner around Point G circled in Figure 4.4 below.

(a) (b)

Figure 4.3: Scan Data of the Corner Near Point G from: (a) D435 (white), and

(b) LiDAR (colourful).

33

Figure 4.4: Map of the KB613 Lab.

The LiDAR had a wider FOV, thus it was able to scan the corner

correctly (Figure 4.3(b)). On the other hand, the D435 camera had a smaller

FOV, thus there was missing of information as it did not observe the corner.

Additionally, the filtering of point cloud data input from the D435 camera had

joined the corners of the two non-consecutive walls together, resulting in a

misrepresentation of the corner (Figure 4.3(a)).

4.2.3 Features Captured

Figure 4.5 shows the scan data from LiDAR (colourful) and D435 camera

(white) of the compartments of cabinets at 6th Floor Corridor, as in Figure 4.6.

(a) (b)

Figure 4.5: Scan Data of the Cabinet Compartments: (a) LiDAR (colourful),

and (b) D435 (white).

Figure 4.6: Cabinets at 6th Floor Corridor.

34

When using D435 camera, since the point cloud was filtered, the

walls of the corridor were smoothened, therefore some features were filtered

out. Figure 4.5(a) above shows that the features of the cabinets compartment,

which were captured by the LiDAR as small protruding edges, were filtered

out for the case of D435 camera, which represented them as a curvy line

(Figure 4.5(b)). This would affect the performance of SLAM as the number of

features in the corridor that was available for scan matching was reduced.

4.3 Evaluations of Lab Mapping

4.3.1 Hector SLAM

Figure 4.7 below shows the maps generated by Hector SLAM in Lab using

LiDAR and D435 Camera, and Figure 4.8 shows the normalized error value.

The normalized error was not calculated for the case of D435 camera as input

because the map was not significant for comparison.

(a) (b)

Figure 4.7: Hector SLAM Result at Lab: (a) using LiDAR as Sensor, and (b)

using D435 camera as Sensor.

Figure 4.8: Normalized Error Results after Image Registration (LiDAR).

35

 Based on Figure 4.7(a), using LiDAR, the walls and tables in the

resulting map were well-aligned between each consecutive scan, with minor

misalignment on the left side, between points G and H. The low normalized

error of 0.4783 showed that Hector SLAM was able to do scan matching for

mapping correctly without relying on odometry data or loop closure detection

capabilities, given that an accurate input scan data was available.

 Based on Figure 4.7(b), using D435 camera, the resulting map was

highly distorted, where several duplicated representations of walls and tables

were present on the map. The Hector SLAM was able to map correctly when it

was travelling in a straight line, however, errors appeared when the robot was

rotating, for instance, as the robot travelled from point A to B, rotated while

observing the treadmills, and travelled to point C, the map get distorted.

The main reason for this distorted map was due to the change in the

viewpoint of the robot as it was rotating, which greatly affect the

representation of point cloud data from D435 camera, as explained in Section

4.2.1. This caused the failure of the scan matching function, as the data from

the consecutive frames were different. Additionally, since Hector SLAM did

not utilise the odometry data to optimise its scan matching result, the errors

from the scan matching were not corrected.

4.3.2 GMapping

Figure 4.9 and Figure 4.10 show the maps generated by GMapping in Lab

using LiDAR and D435 Camera, and their calculated normalized error value.

(a) (b)

Figure 4.9: GMapping SLAM Result at Lab: (a) using LiDAR as Sensor, and

(b) using D435 as Sensor.

36

(a) (b)

Figure 4.10: Image Registration and Normalized Error Results: (a) with

LiDAR as Sensor, and (b) with D435 as Sensor.

 Based on Figure 4.9(a), using LiDAR, the walls in the map were

well-aligned between each consecutive scan, with minor misalignment on the

bottom side, between points A and B. For the mapping of the tables in the

middle section, there are some misalignments, as both sides of the tables were

matched as a single line during the scan matching process. Even though, the

low normalized error of 0.43322 showed that GMapping was able to represent

the map correctly.

 Based on Figure 4.9(b), the map was slightly deviated, which

increases the normalized error of the map to 1.5751. The main reason was due

to the noisy scan data from D435 camera, which were still slightly wavy even

though they were filtered. When travelling in straight lines, although the scan

matching algorithms functioned properly to align the scan data, the wavy data

causes them to slightly deviate as they were being aligned.

When rotating at the corners, in contrast to the behaviour shown by

Hector SLAM, GMapping utilized odometry data to correct the predictions,

thus the map did not have large distortion. This was shown when the robot

observed the cluttered area at point B (treadmills). Although the scan data was

not significant for scan matching, GMapping was able to do loop closing and

utilized the odometry information to track the location of the robot, resulting

in a correct representation of the corner.

37

4.3.3 Cartographer

Figure 4.11 and Figure 4.13 show the maps by Cartographer in Lab using

LiDAR and D435 Camera, and their normalized error value. Figure 4.12

shows the effect of final loop closure on the resulting map when using D435.

(a) (b)

Figure 4.11: Cartographer Result at Lab: (a) using LiDAR as Sensor, and (b)

using D435 as Sensor.

(a) (b)

Figure 4.12: Effect of Final Loop Closure on Cartographer when using D435:

(a) before Loop Closure, and (b) after Loop Closure.

(a) (b)

Figure 4.13: Image Registration and Normalized Error Results: (a) with

LiDAR as Sensor, and (b) with D435 as Sensor.

38

 Based on Figure 4.11(a), using LiDAR, the walls and tables were well

aligned. The low normalized error of 0.3473 shows that Cartographer could

perform scan matching accurately within the submaps themselves, and

between each of the submaps throughout the whole operation using both

inputs.

 Based on Figure 4.11(b), using D435 camera, there was slight

distortion, especially in the middle area of the tables. This was caused by the

final loop closure when the robot travelled from point H to point A. Referring

to Figure 4.12, although Cartographer could perform scan matching and local

optimizations correctly, the map representation (Figure 4.12(a)) had become

inaccurate after the final loop closure (Figure 4.12(b)). The reason was the

misrepresentation at Point G, due to the smaller FOV of D435 camera, as

explained in Section 4.2.2, which had caused Cartographer to localize the

robot further to the negative x-direction. Although the loop closure could close

the loop and align the wall between Point H and point A, all the submaps were

optimized to an inaccurate position, causing the whole map to be distorted.

On the other hand, when the robot observed the cluttered scene at

point B (treadmills), even though the scan data from D435 Camera was noisy,

Cartographer was still able to map the section correctly when travelling from

point A to B, and C, because it utilized the odometry data for optimization.

4.3.4 SLAM Toolbox

Figure 4.14 and Figure 4.15 below show the maps by SLAM Toolbox in Lab

using LiDAR and D435 Camera, and their normalized error value.

(a) (b)

Figure 4.14: SLAM Toolbox Result at KB613 Lab: (a) using LiDAR as

Sensor, and (b) using D435 as Sensor.

39

(a) (b)

Figure 4.15: Image Registration and Normalized Error Results: (a) with

LiDAR as Sensor, and (b) with D435 as Sensor.

 Based on Figure 4.14(a), using LiDAR, the walls and tables were well

aligned. The low normalized error of 0.34539 shows that SLAM Toolbox was

able to perform scan matching accurately. Based on Figure 4.14(b), using

D435 camera, similar to Cartographer, SLAM Toolbox could perform scan

matching and local optimizations correctly, but the corner at Point G was not

being mapped correctly due to the smaller FOV of the D435 camera. This in

turn caused the walls around Point A to misalign. In contrast to Cartographer,

SLAM Toolbox did not perform the loop closure optimization for this section.

Overall, the mapping using D435 camera had a normalized error of 1.5366.

4.4 Evaluation of Corridor Mapping

4.4.1 Hector SLAM

Figure 4.16 below shows the maps generated by Hector SLAM at Corridor

using LiDAR and D435, with their angular and linear deviation. The graphical

result for the deviation calculations were in Appendix A.

(a)

40

(b)

Figure 4.16: Maps Generated by Hector SLAM: (a) using LiDAR as Sensor,

and (b) using D435 Camera as Sensor.

 Based on Figure 4.16(a), using LiDAR, the map had a low angular

deviation of -1.95 degrees and a low linear deviation of -0.43 metres. The map

of the corridor was generally straight, while the compartments of the cabinets

was clearly mapped as small protruding lines. This shows that the Hector

SLAM was able to fully utilise the features captured by LiDAR to perform

scan matching properly as it travels along a straight line.

Based on Figure 4.16(b), using D435 camera, however, the map was

duplicated at a different angle as the robot travelled along the corridor for the

second time. This was due to the combined effect of noisy scan data from

D435 camera, the lack of features captured in the scan data from D435 camera,

and the nature of Hector SLAM which did not utilise the odometry data for

optimization. Therefore, when the robot turned 180 degrees at the end of the

corridor, due to the change of viewpoint and the change in scan data provided

by D435 camera, the scan matching result was affected, therefore contributing

to the error in mapping.

41

4.4.2 GMapping

Figure 4.17 below shows the maps generated by GMapping at Corridor using

LiDAR and D435 Camera, with their angular and linear deviation. The

graphical results for the deviation calculations were in Appendix A.

(a)

(b)

Figure 4.17: Maps Generated by GMapping: (a) using LiDAR as Sensor, and

(b) using D435 Camera as Sensor.

Based on Figure 4.17(a), using LiDAR, the map had a small angular

deviation of -2.98 degrees and a small linear deviation of -0.78 metres.

Although GMapping performed scan matching and loop closure detection as it

travelled along, the map of the long corridor was still slightly curved.

Based on Figure 4.17(b), using D435, the map had a large angular

deviation of -8.53 degrees and a large linear deviation of -3.83 metres. This

was due to the lesser features that were captured by the D435 camera, as

explained in Section 4.2.3, which in turn caused the perceptual aliasing

phenomenon. Besides, the noisy scan data from D435 camera also affected the

scan matching process which caused the resulting map to curve at the end of

the corridor. Although odometry data was used for optimization, the result was

still greatly affected by the noisy scan data.

42

4.4.3 Cartographer

Figure 4.18 below shows the maps generated by Cartographer at Corridor

using LiDAR and D435 Camera, with their angular and linear deviation. The

graphical results for the deviation calculations were in Appendix A.

(a)

(b)

Figure 4.18: Maps Generated by Cartographer: (a) using LiDAR as Sensor,

and (b) using D435 Camera as Sensor.

Based on Figure 4.18(a), using LiDAR, the map had a small angular

deviation of 0.86 degrees and a small linear deviation of 1.02 metres. The map

was slightly curved as the robot travelled along the corridor. During the

returning trip from Point B to Point A, Cartographer was able to do loop

closure optimization as it travelled, thus minimising the translational error in

the y-direction. However, a minor translational error towards the negative x-

direction was observed, which due to the perceptual aliasing phenomenon.

Based on Figure 4.18(b), using D435, the map had a large angular

deviation of –3.32 degrees and a linear deviation of -1.68 metres. Since the

scan data from D435 was noisy, scan matching errors were performed thus

contributing to the deviation of the corridor as the error accumulates. Besides,

the effect of the perceptual aliasing phenomenon was much greater in this case

because the D435 captured much less scan information as compared to LiDAR,

43

as explained in Section 4.2.3. Thus, lesser useful features were able to be used

for scan matching purposes. However, Cartographer was still able to utilize its

odometry data for optimization, thus the result was still favourable as

compared to GMapping.

4.4.4 SLAM Toolbox

Figure 4.19 below shows the maps generated by SLAM Toolbox at Corridor

using LiDAR and D435 Camera, with their angular and linear deviation. The

graphical results for the deviation calculations were in Appendix A.

(a)

(b)

Figure 4.19: Maps Generated by SLAM Toolbox: (a) using LiDAR as Sensor,

and (b) using D435 Camera as Sensor.

Based on Figure 4.19(a), when using LiDAR as input, the map had an

angular deviation of –3.32 degrees and a small linear deviation of -0.48 metres.

Similar to GMapping and Cartographer, the resulting map was slightly curved

as the robot travelled along the corridor.

Based on Figure 4.19(b), when using D435 as input, the map had a

small deviation of –0.0055, however, with a large linear deviation of -3.33

metres. SLAM Toolbox was able to utilise the odometry data for optimization,

thus the noise from D435 camera did not affect the angular deviation much.

44

However, the resulting map was not good as it suffered from the perceptual

aliasing phenomenon, which contributed to the high linear deviation due to the

lack of features in D435 camera’s scan data, as explained in Section 4.2.3.

4.5 Comparisons and Summary

Figure 4.20 and Figure 4.21 below show the evaluated results for the mapping

in Lab and Corridor respectively using LiDAR and D435 Camera.

Figure 4.20: Normalised Error Value for Lab Mapping.

Figure 4.21: Deviation for Corridor Mapping.

0

0.5

1

1.5

2

2.5

N
or

m
al

is
ed

 E
rr

or

Hector SLAM GMapping Cartographer SLAM Toolbox

LiDAR D435

0

1

2

3

4

5

0

2

4

6

8

10

LiDAR D435

L
in

ea
r

D
ev

ia
ti

on
 (

m
)

A
ng

ul
ar

 D
E

vi
at

io
n

(
̊)

Deviation for Corridor Mapping

Hector SLAM GMapping Cartographer SLAM Toolbox

Angular Deviation Linear Deviation

NaN

Normalised Error Value for Lab Mapping

NaN

45

 For the mapping of Lab using LiDAR, the best-performing methods

were the Cartographer and SLAM Toolbox, both recording a low normalised

error result of 0.35. Both packages contain a similar architecture, where they

utilised the odometry data and loop closure to optimise their result. In contrast

to GMapping which mapped both sides of the table as a single line, both

Cartographer and SLAM Toolbox were able to represent the mapping of tables

correctly. The worst performing method in this scenario was the Hector SLAM,

as it did not utilise the odometry data and loop closure for optimisation, which

caused the error as the robot rotated.

 For the mapping of Lab using D435, the best performing method was

SLAM Toolbox, which obtained the lowest normalised error of 1.54, which

was just slightly better than GMapping at 1.58. Both SLAM Toolbox and

GMapping differed in their approaches to performing loop closure

optimization, whereby the prior optimizes the graph of submaps, and the latter

updates its state estimation through resampling. Despite having a similar

architecture as SLAM Toolbox, Cartographer had a higher normalised error

value due to the distortion caused by the final loop closure optimisation.

Hector SLAM performed the worst as it did not utilise the odometry data for

optimization, which caused the error as the robot rotated.

 For the mapping of Corridor using LiDAR, the best performing

methods were the Hector SLAM and SLAM Toolbox, with a low linear

deviation of -0.43 metres and -0.48 metres respectively, but the latter had the

highest angular deviation. This shows that Hector SLAM had a robust scan

matching algorithm, as compared to other methods which utilised the

odometry data for optimization. Although Cartographer had a low angular

deviation, it had the highest linear deviation, thus it was considered the worst-

performing SLAM in this scenario.

 For the mapping of Corridor using D435, all the methods performed

badly, with Cartographer getting the best result at -3.32 metres of linear

deviation. This shows that the lack of feature in both the D435 filtered scan

data and the corridor had affected the performance of all state-of-the-art 2D

SLAM methods. The Hector SLAM performed the worst in this scenario as it

depended solely on scan matching for its operation.

46

In summary, the quality of the scan matching was the main factor that

affects the performance of the state-of-the-art 2D SLAM. The scan matching

process could be affected by the lack of features in the corridor, the lack of

features in D435 filtered scan result, and the noisy scan data, as observed in

this study. On other hand, the ability of 2D SLAM methods in performing loop

closure detection and odometry data optimisation had greatly improved the

performance of 2D SLAM, which could be observed through the comparison

of the result of Hector SLAM with other methods.

47

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The state-of-the-art 2D SLAM packages are based on the three main

paradigms of SLAM, which are the EKF-based SLAM, RBPF-based SLAM,

and graph-based SLAM. In this project, even though the SLAM packages are

based on different architectures, they are capable of mapping KB613 Lab and

6th Floor Corridor, with a different performance and mapping quality for

different scenarios. From the evaluated results, it is observed that the main

feature of the state-of-the-art 2D SLAM is its scan matching capability, for

instance, the external factors such as the noise in the sensors impacts and

causes failure to the SLAM packages that mainly rely on the scan matching

capability, which is the Hector SLAM. Other SLAM packages such as

GMapping, Cartographer, and Hector SLAM are capable of using odometry

data and loop closure detection to optimise their mapping result. On the other

hand, the 2D SLAM packages have limitations in certain scenarios. For

instance, when mapping a cluttered area such as the treadmills in the lab, the

change of scan data from the Realsense Camera due to the change of

viewpoints impacts the scan matching capability. When mapping the long and

featureless corridor, together with the reduction of feature due to data captured

using the Realsense Camera, the phenomenon of perceptual aliasing effect is

much more obvious, therefore impacting the accuracy of mapping. In

conclusion, the 2D SLAM packages could be implemented successfully with

the use of accurate sensors and the correct tuning of SLAM parameters, based

on a given scenario.

5.2 Recommendations for future work

Mobile robots, as they are getting commercialised nowadays for home service

robot applications, require a much more stable development for their use in

different kinds of scenarios. While the state-of-the-art 2D SLAM packages

available in ROS are capable of mapping, they are not stable enough for the

48

applications in different kind of indoor scenarios, not to mention the presence

of unstructured conditions and dynamic objects in the scene. While this project

offers an insight into the implementations of 2D SLAM, it does not cover the

implementations of 3D SLAM, computer vision, and AI.

 To extend the scope of this project for future development, further

analysis towards the architecture of customised SLAM frameworks such as

ORB-SLAM and LOAM, as well as frameworks which have integrated the use

of machine learning, as mentioned earlier in Section 2.4.1, could be carried out

to provide more insights into their usage. In terms of the scalability and the

robustness of the SLAM frameworks, the project could be carried out in a

much more challenging environments, such as the presence of dynamically

moving objects, change of objects in the scene, and the change of

environmental lightings at the different time of day. The result of mapping

could then be evaluated by analysing their capabilities and accuracy in

representing the scenes, such as the alignment of the surfaces of objects, and

the presence of noise in the point cloud data.

49

REFERENCES

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid,
I. and Leonard, J.J., 2016. Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age. IEEE
Transactions on robotics, 32(6), pp.1309-1332.

Carlevaris-Bianco, N.D., 2015. Long-term simultaneous localization and
mapping in dynamic environments. PhD. University of Michigan.

Cartographer, 2019. Running Cartographer ROS on a demo bag. [Online]
Available at: <https://google-cartographer.readthedocs.io/en/latest/>
[Accessed 14 August 2021].

Durrant-Whyte, H. and Bailey, T., 2006. Simultaneous localization and
mapping: part I. IEEE robotics & automation magazine, 13(2), pp.99-110.

Grisetti, G., Kümmerle, R., Stachniss, C. and Burgard, W., 2010. A tutorial on
graph-based SLAM. IEEE Intelligent Transportation Systems Magazine, 2(4),
pp.31-43.

Grisetti, G., Stachniss, C. and Burgard, W., 2007. Improved techniques for
grid mapping with rao-blackwellized particle filters. IEEE transactions on
Robotics, 23(1), pp.34-46.

Hess, W., Kohler, D., Rapp, H. and Andor, D., 2016, May. Real-time loop
closure in 2D LIDAR SLAM. In 2016 IEEE International Conference on
Robotics and Automation (ICRA) (pp. 1271-1278). IEEE.

Kohlbrecher, S., Von Stryk, O., Meyer, J. and Klingauf, U., 2011, November.
A flexible and scalable SLAM system with full 3D motion estimation. In 2011
IEEE international symposium on safety, security, and rescue robotics (pp.
155-160). IEEE.

Konolige, K., Grisetti, G., Kümmerle, R., Burgard, W., Limketkai, B. and
Vincent, R., 2010, October. Efficient sparse pose adjustment for 2D mapping.
In 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems (pp. 22-29). IEEE.

Liu, Y. and Miura, J., 2021. RDS-SLAM: real-time dynamic SLAM using
semantic segmentation methods. IEEE Access, 9, pp.23772-23785.

Luknanto, B.K., 2020. A review of 2D SLAM algorithms on ROS. Master.
Politecnico di Milano. Available at: <http://hdl.handle.net/10589/164687>
[Accessed 14 August 2021].

Marks, T.K., Howard, A., Bajracharya, M., Cottrell, G.W. and Matthies, L.H.,
2009. Gamma‐SLAM: Visual SLAM in unstructured environments using
variance grid maps. Journal of Field Robotics, 26(1), pp.26-51.

50

Montemerlo, M., Thrun, S., Koller, D. and Wegbreit, B., 2002. FastSLAM: A
factored solution to the simultaneous localization and mapping
problem. Aaai/iaai, 593598.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.
and Ng, A.Y., 2009, May. ROS: an open-source Robot Operating System. In
ICRA workshop on open source software (Vol. 3, No. 3.2, p. 5).

ROBOTIS, 2021. ROBOTIS e-Manual. [Online] Available at:
<https://emanual.robotis.com/docs/en/platform/turtlebot3/features/> [Accessed
2 September 2021].

Santos, J.M., Portugal, D. and Rocha, R.P., 2013, October. An evaluation of
2D SLAM techniques available in robot operating system. In 2013 IEEE
International Symposium on Safety, Security, and Rescue Robotics (SSRR) (pp.
1-6). IEEE.

Shi, X., Li, D., Zhao, P., Tian, Q., Tian, Y., Long, Q., Zhu, C., Song, J., Qiao,
F., Song, L. and Guo, Y., 2020, May. Are we ready for service robots? The
OpenLORIS-scene datasets for lifelong SLAM. In 2020 IEEE International
Conference on Robotics and Automation (ICRA) (pp. 3139-3145). IEEE.

Takleh, T.T.O., Bakar, N.A., Rahman, S.A., Hamzah, R. and Aziz, Z.A., 2018.
A brief survey on SLAM methods in autonomous vehicle. International
Journal of Engineering & Technology, 7(4), pp.38-43.

Thrun, S., Burgard, W. and Fox, D., 2005. Probabilistic Robotics. Cambridge:
The MIT Press.

Tipaldi, G.D. and Arras, K.O., 2010, May. Flirt-interest regions for 2d range
data. In 2010 IEEE International Conference on Robotics and Automation (pp.
3616-3622). IEEE.

Wang, Y., Zhang, W. and An, P., 2017, October. A survey of simultaneous
localization and mapping on unstructured lunar complex environment. In AIP
Conference Proceedings (Vol. 1890, No. 1, p. 030010). AIP Publishing LLC.

Yuan, X. and Chen, S., 2020. SaD-SLAM: A Visual SLAM Based on
Semantic and Depth Information. In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (pp. 4930-4935). IEEE.

51

APPENDICES

Appendix A: Graphs

GraphA-1: Deviation Calculation Result for Hector SLAM using LiDAR.

GraphA-2: Deviation Calculation Result for GMapping using LiDAR.

GraphA-3: Deviation Calculation Result for GMapping using D435.

GraphA-4: Deviation Calculation Result for Cartographer using LiDAR.

52

GraphA-5: Deviation Calculation Result for Cartographer using D435.

GraphA-6: Deviation Calculation Result for SLAM Toolbox using LiDAR.

GraphA-7: Deviation Calculation Result for SLAM Toolbox using D435.

	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 General Introduction
	1.2 Importance of the Study
	1.3 Problem Statement
	1.4 Aim and Objectives
	1.5 Scope and Limitation of the Study
	1.6 Contribution of the Study
	1.7 Outline of the Report

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Introduction to the SLAM Problem
	2.2 Solutions to the SLAM Problem
	2.2.1 Overview of the Filtering-Based Approach
	2.2.2 Kalman Filter-Based Approach
	2.2.2.1 Extended Kalman Filter
	2.2.2.2 EKF-SLAM
	2.2.2.3 The Capabilities and Limitations of EKF-SLAM

	2.2.3 Particle Filter-Based Approach
	2.2.3.1 Particle Filter
	2.2.3.2 Rao-Blackwellisation
	2.2.3.3 The Capabilities and Limitations of FastSLAM

	2.2.4 Optimisation-Based Approach
	2.2.4.1 Pose-graph
	2.2.4.2 Graph-based SLAM
	2.2.4.3 The Capabilities and Limitations of Graph-Based SLAM

	2.2.5 Summary - SLAM Approaches

	2.3 2D SLAM Packages
	2.3.1 Hector SLAM
	2.3.2 GMapping
	2.3.3 Cartographer
	2.3.4 SLAM Toolbox
	2.3.5 Summary - ROS SLAM Packages

	2.4 Factors Affecting SLAM in Practical Scenarios
	2.4.1 Limitations of current SLAM Algorithms
	2.4.1.1 Limitations of Feature Extraction
	2.4.1.2 Limitations of Data Association
	2.4.1.3 Limitations of Graph Optimisation Process

	2.4.2 Limitations of Sensors and Actuators
	2.4.3 Summary - Limitations of SLAM

	2.5 Overall Summary

	CHAPTER 3
	3 METHODOLOGY AND WORK PLAN
	3.1 Overview of Project Work Plan
	3.2 Hardware Details
	3.3 Data Acquisition
	3.3.1 Venue Setup
	3.3.2 Sensor Setup
	3.3.3 Teleoperation and Recording

	3.4 Mapping and Evaluation
	3.4.1 SLAM and Parameters
	3.4.2 Tunings and Observations
	3.4.3 Evaluations
	3.4.3.1 Evaluation of Lab Mapping Results
	3.4.3.2 Evaluation of Corridor

	3.5 Resource Allocations and Project Planning
	3.6 Summary

	CHAPTER 4
	4 RESULTS AND DISCUSSION
	4.1 Introduction
	4.2 Evaluations of Sensors
	4.2.1 Change of Viewpoint
	4.2.2 Field of View (FOV)
	4.2.3 Features Captured

	4.3 Evaluations of Lab Mapping
	4.3.1 Hector SLAM
	4.3.2 GMapping
	4.3.3 Cartographer
	4.3.4 SLAM Toolbox

	4.4 Evaluation of Corridor Mapping
	4.4.1 Hector SLAM
	4.4.2 GMapping
	4.4.3 Cartographer
	4.4.4 SLAM Toolbox

	4.5 Comparisons and Summary

	CHAPTER 5
	5 CONCLUSIONS AND RECOMMENDATIONS
	5.1 Conclusions
	5.2 Recommendations for future work

	REFERENCES
	APPENDICES

