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ABSTRACT 

 

Mobile robots, especially service robots nowadays are equipped with LiDAR 

or RGBD cameras for 2D Simultaneous Localisation and Mapping (SLAM) 

and navigation purposes. However, the state-of-the-art 2D SLAM packages 

that are available in Robot Operating System (ROS) are prone to 

environmental factors, such as the presence of noise, the presence of repetitive 

structures, and the lack of features in an environment. The types of sensors 

used for mapping would affect the scan matching and loop closure abilities of 

the 2D SLAM packages. Therefore, this project aims to provide an in-depth 

understanding of the capabilities, performances, and limitations of the 2D 

SLAM packages, so that more insights could be provided for successful 

SLAM implementations. In this project, mapping procedures will be carried 

out on a service robot in the different scenarios of venues, sensors, and 2D 

SLAM packages, and the results will be compared for further evaluation. From 

the quality of mapping, this project would provide insights into the choice of 

SLAM package, the tuning of SLAM parameters, and the choice of different 

sensors, based on the nature of the surroundings, to obtain the best 

configuration that results in the best mapping quality.  
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Robots are machines that could perceive the environment and make decisions 

to manipulate the physical world. Over the years, industrial robots have been 

successful in various domains, such as the manufacturing sectors and medical 

sectors, as they are being programmed to move within a controlled 

environment, replacing humans in completing dangerous, dirty, and dull jobs. 

Mobile robots, on the other hand, have been implemented in different areas 

such as indoor service robots, autonomous flight vehicles and robots for sea 

exploration. These applications are more challenging, as the robots are 

required to move around an area without any prior knowledge. 

 To deploy robots in various fields, an open-sourced framework, 

Robot Operating System (ROS), is applied to provide the necessary tools, 

libraries, and packages that could suit the software developments. As the scope 

of robotics domains is expanding continually, ROS has been developed to 

handle the software complexity, by offering communications between 

different processes and algorithms (Quigley, et al., 2009). ROS also allows 

different researchers to collaborate by compiling their codes into packages 

which further facilitate the development of robotics programmes. 

 Differs from industrial robots, a mobile robot is required to map the 

unknown environment while keeping track of its location, which brings up the 

Simultaneous Localisation and Mapping (SLAM) problem (Durrant-Whyte & 

Bailey, 2006). Currently, there are three main paradigms to solve the SLAM 

problem: Kalman filter-based, particle filter-based, and optimisation-based 

methods, which will be further discussed in Chapter 2. Although there are a 

wide variety of ROS packages for easy implementation of SLAM, however, 

they are prone to dynamic changes in the environment, which may cause the 

systems to fail. To understand the underlying problems of these conditions, the 

limitations of the state-of-the-art SLAM algorithms must be well-studied, so 

that better solutions could be developed for the successful implementation of 

SLAM in the real-world situations.
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1.2 Importance of the Study 

This study may provide insights towards the architecture and theory behind 

different 2D SLAM approaches, the features and performance of 2D SLAM 

packages available in ROS, the limitations of the state-of-the-art SLAM 

algorithms in real-world situations, as well as the knowledge of the current 

trend of research for improving the capabilities of SLAM algorithms. 

 

1.3 Problem Statement 

With the availability of various ROS packages that are based on different 

SLAM approaches, it is not easy to select the most suitable package for a 

specific mobile robotic application. An in-depth understanding of the features 

and working principles of some main SLAM packages are therefore necessary 

to aid in the decision making. 

 Even though current SLAM algorithms have implemented 

probabilistic approaches that deal with uncertainties, however, the 

functionality of the algorithm may be affected if the surroundings are highly 

dynamic. Therefore, the limitations of SLAM in practical scenarios must be 

identified, so that a better solution could be proposed to improve the 

capabilities of SLAM algorithms in real-world situations. 

 

1.4 Aim and Objectives 

This study aimed to implement SLAM for a mobile robot to map an 

environment. The specific objectives of this research were to: 

i) Review and evaluate the capabilities of current SLAM methods, 

ii) Implement SLAM for a mobile robot in different scenarios, and 

iii) Identify the limitations that affect SLAM usage in practical conditions. 

 

1.5 Scope and Limitation of the Study 

The scope of this project focus on the software components, including the 

implementation of ROS and 2D SLAM methods, as well as the 

implementation of LiDAR and Realsense D435 Camera. In this study, only 

four state-of-the-art 2D SLAM methods available in ROS will be implemented 

and evaluated, including the in-depth review of three main paradigms of 

SLAM solutions, their comparisons, and the identification of the limitations of 
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SLAM. A few possible improvements to the 2D SLAM algorithm to overcome 

their limitations in the real-world application will be mentioned in this study, 

however, the details will not be included as they will be another area of 

research, which may require knowledge in computer vision. 

 

1.6 Contribution of the Study 

This project reviews the existing 2D SLAM methods and provides insights to 

ease the future implementation of these methods. Each 2D SLAM package is 

tuned and evaluated based on its performance and quality of mapping. The 2D 

SLAM packages will then be compared to identify their capabilities and 

limitations. 

 

1.7 Outline of the Report 

This report is divided into five chapters. Chapter 1 provides the general 

introduction to robotics and the SLAM problem, as well as the problem 

statement and the aim and objectives. Next, Chapter 2 provides the literature 

review of the three main paradigms of SLAM solutions, the comparison of a 

few 2D SLAM packages, and the identification of the limitations of 2D SLAM 

in practical situations. In Chapter 3, the methodology for the implementation 

of different 2D SLAM packages, the tuning the parameters, and the evaluation 

of the mapping results are provided. Then, Chapter 4 provides the evaluation 

of results and discussion for sensors and SLAM packages in different 

scenarios. Finally, Chapter 5 concludes the project and provides some 

recommendations for future project development. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction to the SLAM Problem 

The SLAM problem is the problem of mapping the environment while 

determining the robot’s pose, given the robot’s observations of the 

environment and the controls sent to the robot. To formulate the SLAM 

problem, consider a robot that is traversing through the world, as shown in 

Figure 2.1 below, which is observing the landmarks through the sensor 

mounted on its body. 

 

 

Figure 2.1: True and Estimated Locations of Robot and Landmarks. 

 

Since the sensors are prone to cumulative errors and the motion of the 

robot increases the uncertainty of the system (Thrun, Burgard and Fox, 2005), 

a probabilistic approach is used to formulate the SLAM problem: 

 

 𝑝𝑝(𝑥𝑥0:𝑇𝑇 ,𝑚𝑚 |𝑧𝑧1:𝑇𝑇 ,𝑢𝑢1:𝑇𝑇) (2.1)  

 

where 

x0:T = poses of the robot from period 0 to T 

m = locations of all the landmarks {m1, m2, … mn} 

z1:T = observations on the landmarks from period 1 to T 

u1:T = control inputs to drive the robot from period 1 to T 
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The full SLAM formulation in (2.1) addresses the probability of a 

robot pose and the locations of the landmarks, given all the observations and 

all the input controls, where the entire path taken by the robot is estimated. In 

an online SLAM formulation, the previous poses of the robot are marginalised 

out, thus the probability distribution to describe the online SLAM is:  

 

 𝑝𝑝(𝑥𝑥𝑡𝑡,𝑚𝑚 |𝑧𝑧1:𝑡𝑡,𝑢𝑢1:𝑡𝑡) (2.2) 

 

There are a variety of solutions to the SLAM problems formulated 

above, which could be classified into filter-based approaches such as Kalman 

filters and particle filters or optimisation-based approaches. In this chapter, 

Section 2.2 reviews the general solutions to the SLAM problem, as well as 

their capabilities and limitations. In Section 2.3, the comparisons between a 

few 2D SLAM packages will be discussed. In Section 2.4, the limitations of 

SLAM in practical implementations will be studied, and a brief review of 

possible improvements will be provided. 

 

2.2 Solutions to the SLAM Problem 

2.2.1 Overview of the Filtering-Based Approach 

Through the implementations of Bayes’ rule and Markov assumption, the 

solution to the online SLAM problem in (2.2) could be achieved by estimating 

the state x through a two-step Bayes filter, which are the prediction step (2.3) 

and the correction step (2.4):

 

 𝑏𝑏𝑏𝑏𝑏𝑏����(𝑥𝑥𝑡𝑡) = ∫𝑝𝑝(𝑥𝑥𝑡𝑡 | 𝑢𝑢𝑡𝑡 , 𝑥𝑥𝑡𝑡−1) 𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑡𝑡−1) 𝑑𝑑𝑥𝑥𝑡𝑡−1 (2.3) 

 

 𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑡𝑡) =  𝜂𝜂 𝑝𝑝(𝑧𝑧𝑡𝑡 |𝑥𝑥𝑡𝑡) 𝑏𝑏𝑏𝑏𝑏𝑏����(𝑥𝑥𝑡𝑡) (2.4) 

 

The prediction step considers the executed command ut that moves 

the robot from its original state xt-1 to the predicted current belief of the robot 

pose xt, whereas the correction step considers the sensor observations zt to 

update the current belief of the pose of the robot xt. The realisation of different 

recursive Bayes filters could be achieved using the Kalman filter and particle 

filter, which will be discussed in the next two subsections.
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2.2.2 Kalman Filter-Based Approach 

2.2.2.1 Extended Kalman Filter 

The Extended Kalman Filter (EKF) is developed based on the recursive Bayes 

filters, replacing Kalman Filter (KF) which only assumes the linear motion 

model and linear observation model (Thrun, Burgard and Fox, 2005). The 

ability of EKF to describe these two models as non-linear functions:

 

 𝑥𝑥𝑡𝑡 = 𝑔𝑔(𝑢𝑢𝑡𝑡, 𝑥𝑥𝑡𝑡−1) +  𝜖𝜖𝑡𝑡  (2.5) 

 

 𝑧𝑧𝑡𝑡 = ℎ(𝑥𝑥𝑡𝑡) + 𝛿𝛿𝑡𝑡 (2.6) 

 

allows it to be applied in non-Gaussian situations. In the prediction step, local 

linearisation is applied through the First Order Taylor expansion to estimate 

the robot’s current state: 

 

 𝑔𝑔(𝑢𝑢𝑡𝑡, 𝑥𝑥𝑡𝑡−1)  ≈ 𝑔𝑔(𝑢𝑢𝑡𝑡, 𝜇𝜇𝑡𝑡−1) +
𝜕𝜕𝜕𝜕(𝑢𝑢𝑡𝑡,𝜇𝜇𝑡𝑡−1)

𝜕𝜕𝑥𝑥𝑡𝑡−1
(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇𝑡𝑡−1) (2.7) 

 

The correction step then updates the estimated robot’s state based on the 

current sensory data in which the result is known as the posterior: 

 

 ℎ(𝑥𝑥𝑡𝑡)  ≈ ℎ(𝑢𝑢�𝑡𝑡) +
𝜕𝜕ℎ(𝑢𝑢�𝑡𝑡)

𝜕𝜕𝑥𝑥𝑡𝑡
(𝑥𝑥𝑡𝑡 − 𝜇̅𝜇𝑡𝑡) (2.8) 

 

2.2.2.2 EKF-SLAM 

The application of EKF to SLAM estimates the state, µ and the covariance 

matrix Σ. The state represents the robot’s pose, x, and the locations of the 

landmarks in an environment, m. The covariance matrix, on the other hand, 

updates the correlations between each pose and landmark.  

 

 μ = �
𝑥𝑥
𝑚𝑚
� (2.9) 

 

 Σ = �
Σ𝑥𝑥𝑥𝑥 Σ𝑥𝑥𝑥𝑥
Σ𝑥𝑥𝑥𝑥 Σ𝑥𝑥𝑥𝑥

� (2.10) 
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In EKF-SLAM, the prediction step predicts the new state 𝜇𝜇 and the 

covariance matrix Σ . Then, the correction step updates both terms by 

considering the uncertainties that are present in the sensors. 

 

2.2.2.3 The Capabilities and Limitations of EKF-SLAM 

Although EKF can maintain the Gaussian assumptions to solve the SLAM 

problem in non-linear situations, when compared to other SLAM solutions, it

is relatively less robust in handling conditions where the non-linearity is large, 

especially in outdoor SLAM implementations. This is because the error in 

maintaining the Gaussian assumption made by EKF in its prediction step 

grows larger with the greater non-linear conditions, which is due to the 

increasing uncertainty. This, in turn, will cause the EKF solutions to diverge. 

In EKF-SLAM, when the robot moves through an environment, the 

covariance matrix will be constantly updated, making the landmarks to be 

more correlated, thus allowing the algorithm to obtain a much more accurate 

relative map of the environment. However, due to this nature, the EKF-SLAM 

is not applicable for large-scale applications. This is because all the correlated

robot’s pose and landmarks saved in the huge covariance matrix need to be 

updated whenever another new observation is obtained, causing a quadratic 

increase in memory consumption. 

 

2.2.3 Particle Filter-Based Approach 

2.2.3.1 Particle Filter

The particle filter is a type of recursive Bayes filter that utilises a non-

parametric approach. Differing from the KF which only models Gaussian 

distributions, the particle filters could deal with arbitrary distributions by 

representing the posterior probability with multiple weighted samples. 

 The particle filter algorithm could be summarised into three steps. 

First, since an arbitrary distribution is hard to model, a set of particles is 

sampled from a proposal distribution representing a set of state hypotheses. 

Second, the samples are individually weighted using the importance sampling 

principle, taking care of the differences between the target (arbitrary) 

distribution and the proposal distribution, obtaining a set of weighted particles 

as below: 
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 𝑤𝑤𝑏𝑏𝑤𝑤𝑔𝑔ℎ𝑡𝑡𝑏𝑏𝑑𝑑 𝑠𝑠𝑠𝑠𝑚𝑚𝑝𝑝𝑏𝑏𝑏𝑏𝑠𝑠:𝒳𝒳 = �〈𝑥𝑥[𝑗𝑗],𝑤𝑤[𝑗𝑗]〉�
𝑗𝑗=1,…,𝐽𝐽

  (2.11) 

 

Third, in the resampling step, the samples with lower weights are replaced by 

samples with high likeliness to reduce the representation of unlikely states, 

using the Roulette wheel or stochastic universal sampling methods. 

 The particle filter, however, only works well for low-dimensional 

applications. This is because a huge number of samples are required for it to 

cover a high dimensional region, making it to be computationally inefficient. 

 

2.2.3.2 Rao-Blackwellisation 

The implementation of the particle filter in SLAM directly is infeasible 

because of the high dimensionality problem: 

 

 𝑥𝑥 = �𝑥𝑥1:𝑡𝑡,𝑚𝑚1,𝑥𝑥,𝑚𝑚1,𝑦𝑦, … ,𝑚𝑚𝑀𝑀,𝑥𝑥,𝑚𝑚𝑀𝑀,𝑦𝑦�
𝑇𝑇

  (2.12) 

 

As the number of landmarks becomes higher, it would be 

computationally inefficient to implement the particle filter in SLAM. To solve 

the problem, Rao-Blackwellisation is applied to reduce the sample space, 

factorising the SLAM posterior into a path posterior and a map posterior: 

 

 𝑝𝑝(𝑥𝑥0:𝑡𝑡,𝑚𝑚1:𝑀𝑀|𝑧𝑧1:𝑡𝑡,𝑢𝑢1:𝑡𝑡) = 𝑝𝑝(𝑥𝑥0:𝑡𝑡|𝑧𝑧1:𝑡𝑡,𝑢𝑢1:𝑡𝑡) 𝑝𝑝(𝑚𝑚1:𝑀𝑀|𝑥𝑥0:𝑡𝑡, 𝑧𝑧1:𝑡𝑡) (2.13) 

 

The factorisation allows the particle filter to only represent the path posterior 

using weighted particles, which has lower dimension. The map posterior will

then be analytically calculated from the set of particles. 

Given the trajectory of the robot is known and each observation made 

is independent, the landmarks will also be independent of each other. 

Therefore, the map posterior for each particle in (2.13) could be represented as 

independent Gaussian distributions: 

 

 𝑝𝑝(𝑚𝑚1:𝑀𝑀|𝑥𝑥0:𝑡𝑡, 𝑧𝑧1:𝑡𝑡) =  ∏ 𝑝𝑝(𝑚𝑚𝑖𝑖|𝑥𝑥0:𝑡𝑡, 𝑧𝑧1:𝑡𝑡)
𝑀𝑀
𝑖𝑖=1  (2.14) 
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This shows that the map posterior could be represented by multiple 2-

dimensional EKFs, which are less complex than a single high-dimensional 

EKF used in EKF-SLAM. Therefore, a recursive estimation could be 

performed effectively by 1) calculating the path posterior using particle 

filtering, and then 2) calculating the map posterior from the weighted particles 

using the 2-dimensional EKFs.  

Equation (2.14) is the key property of Rao-Blackwellised particle 

filter-based SLAM because all the landmarks could be represented 

independently using Gaussian distributions, reducing the complexity into 

linear form, as a contrast to the quadratic complexity in EKF-SLAM which 

uses a covariance matrix to represent all the landmarks. 

 

2.2.3.3 The Capabilities and Limitations of FastSLAM 

Proposed by Montemerlo, et al. (2002), the FastSLAM algorithm uses the 

Rao-Blackwellised particle filter (RBPF) method to model the posterior. This 

is achieved by sampling and computing the weighted particles, followed by the 

update of belief as in EKF. The implementation of FastSLAM is greatly 

influenced by the sample size and the number of particles sampled, which will 

impact the mapping accuracy and the computational complexity. 

In conditions where the number of landmarks is high (big sample 

size), the FastSLAM algorithm has lower computational complexity as 

compared to EKF-SLAM. This is because the particles in FastSLAM represent 

each landmark with multiple low-dimensional EKFs, in contrast to the EKF-

SLAM which uses a single high-dimensional covariance matrix. On the other 

hand, in cases where the sample size is small, the FastSLAM is less preferable 

than EKF-SLAM because the decreased sample size reduces the number of 

particles that can be sampled, thus reducing its accuracy. 

Even though FastSLAM is more efficient than EKF-SLAM in high 

dimensional spaces, if the number of particles sampled by the RBPF is high, a 

high computational effort is still required. Besides, the RBPF also suffers from 

the particle-depletion problem, due to the implementation of the resampling 

step (Grisetti, Stachniss and Burgard, 2007). These two issues could be 

minimised while implementing the GMapping package, which will be further 

discussed in Section 2.3. 
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2.2.4 Optimisation-Based Approach 

2.2.4.1 Pose-graph 

In the graph-based SLAM, a graph consisting of nodes connected by edges is 

constructed to represent the SLAM problem, where the nodes represent the full 

trajectory of robot poses or landmarks, and the edges represent the spatial 

constraints between nodes, as illustrated in Figure 2.2. These edges are either 

created from the odometry data between sequential robot poses, or through the 

alignment of observations of the same environment, i.e., during loop closure.  

 

 

Figure 2.2: Pose Graph Example. 

 

Due to the noise in the sensor, there are uncertainties in the created 

constraints. Therefore, upon building the graph, the graph-based SLAM finds 

the nodes’ configurations that best fit the constraints (Grisetti, et al., 2010) 

thus optimising the graph and the map. 

 

2.2.4.2 Graph-based SLAM 

The graph-based SLAM is implemented in two parts. The front end builds the 

graph using the raw sensor measurements (graph construction), creating the 

nodes and constraints through data associations. Using the given edges, the 

back end maximises the consistency between the node’s configurations and the 

measurements (graph optimisation), through the minimisation of errors 

between the predicted and real observations.

Figure 2.3 below shows the expected and the real measurement of 

pose xj as seen from pose xi, represented in homogeneous coordinates. Let the 

vector of parameters representing the pose of nodes in Figure 2.2 above be: 

𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑇𝑇)𝑇𝑇, when the robot is at position xi observing a previously seen 

environment when it was at position xj, a virtual measurement 𝑧𝑧𝑖𝑖𝑗𝑗  is created 

about the position of xj as seen from position xi.  
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Figure 2.3: Expected Pose and Real Pose of xj. 

The predicted virtual measurement, 𝑧̂𝑧𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) is a transformation that

predicts the virtual measurement given the configurations of the nodes xi and xj 

respectively, whereas the error function 𝑏𝑏𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) is a function that calculates 

the errors between the predicted observation 𝑧̂𝑧𝑖𝑖𝑗𝑗  and the real observation 𝑧𝑧𝑖𝑖𝑗𝑗. 

The optimisation of the graph is performed when the least-squares approach is 

applied to find the new state x* that best represents the optimised graph: 

 

 𝑥𝑥∗ = argmin
𝑥𝑥

∑ 𝑏𝑏𝑘𝑘
𝑇𝑇(𝑥𝑥)Ω𝑘𝑘𝑏𝑏𝑘𝑘(𝑥𝑥)𝑘𝑘   (2.15) 

where 

𝑏𝑏𝑘𝑘(𝑥𝑥) = error function 𝑏𝑏𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) 

Ω𝑘𝑘 = information matrix representing the uncertainties of the constraints 

 

The equation (2.15) could be solved iteratively using the Gauss-

Newton algorithm to find the state x* which represents the most likely nodes 

configurations that have the minimum squared error (Grisetti, et al., 2010). 

 

2.2.4.3 The Capabilities and Limitations of Graph-Based SLAM 

Since the error term 𝑏𝑏𝑖𝑖𝑗𝑗(𝑥𝑥)  depends only on the variables xi and xj, the 

resulting Jacobian in the linearised error function is a sparse matrix. This 

sparse matrix structure allows the graph-based SLAM to solve a huge linear 

system efficiently, making it suitable to map a large area efficiently. 

However, according to Takleh, et al. (2018), since the graph-based 

SLAM must consider all the poses and landmarks information, it consumes a 

high computational cost, making it expensive to be implemented in a large 
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area. This issue, however, is not critical, because the graph-based SLAM, 

according to Santos, Portugal and Rocha (2013), is usually more efficient as 

compared to other approaches in mapping a large area. 

 

2.2.5 Summary - SLAM Approaches 

In summary, there are three main paradigms for solving the SLAM problem, 

which are the Kalman-filtering methods, particle-filtering methods, and graph-

based-optimisation methods. The comparison of strengths and weaknesses of 

each approach could be summarised in Table 2.1 below. 

 
Table 2.1: The Comparisons of Different SLAM Approaches. 

Approaches Strengths Weaknesses 

EKF-SLAM Deal with moderate non-

linearities. 

Diverge if non-linearity is 

large. 

Accurate relative map. 

 

Computationally difficult for

large maps. 

FastSLAM 

(RBPF) 

Deal with the arbitrary 

distribution. 

Particle depletion issues. 

 

Less memory is required.

 

Computationally inefficient in 

high-dimension applications. 

More computationally 

efficient than EKF in large 

maps. 

Much more inaccurate than 

EKF-SLAM in the case of the 

small sample size. 

Graph-based 

SLAM 

Ability to process large 

maps. 

High computational cost in 

large maps (but still much 

more efficient than other 

approaches). 
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2.3 2D SLAM Packages 

Although most of the 2D SLAM packages are based on the three general 

SLAM approaches reviewed in the previous section, the number of SLAM 

packages can be overwhelming. In this section, a few ROS SLAM packages 

are discussed and compared, to ease the choice of SLAM package for a 

specific robotics application. 

 

2.3.1 Hector SLAM 

The Hector SLAM is a package that fuses the 2D SLAM and 3D navigation 

system, which are based on the LiDAR scan data and the Inertial Measurement 

Unit (IMU) data respectively (Kohlbrecher, et al, 2011). The high update rate 

of LiDAR sensors is used in this system to achieve the real-time estimation of 

the robot’s movement. Since the Hector SLAM does not utilise odometric 

information, it can be implemented in 6 DOF applications such as aerial robots. 

The Hector SLAM is implemented in two stages: Fast scan matching 

for 2D pose estimation in the front end; and slow 3D state estimation in the 

back end. In the front end, the 2D pose estimation is obtained using the scan 

matching of the beam endpoints within a range of z-coordinates, which could 

be solved by using the Gauss-Newton equation. In the back end, the 2D pose is 

updated to 3D state estimation using the navigation filter based on EKF, by 

incorporating the inertial measurements available in aerial robots.

However, according to Santos, Portugal and Rocha (2013), the Hector 

SLAM might exhibit problems when the scan rates are low, as it depends on 

the high update rate of LiDAR sensors to perform the real-time estimation. 

This is because the Hector SLAM could not make use of the odometry 

information in wheeled robots even though they are accurate.

 

2.3.2 GMapping 

GMapping is a SLAM package that is based on the improvised RBPF 

approach proposed by Grisetti, Stachniss and Burgard (2007). This approach 

solved the particle-depletion issue and high computational complexity issue in 

conditions where the number of particles sampled is high. 

To solve the particle-depletion issue, GMapping deploys an adaptive 

resampling technique, which allows the algorithm to do resampling only when 
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necessary, keeping the diversity while minimising the depletion problem. On 

the other hand, to solve the computational complexity issue, the GMapping 

package uses a proposal distribution that instead of considering only odometry 

information, it fuses that information with the current sensory observations 

through the scan matching procedure. This increases the mapping accuracy, 

decreases the estimation error, and therefore, requires fewer particles to 

represent the posterior, which in turn lowers the computational effort. 

 

2.3.3 Cartographer 

The Cartographer is a package that is based on the graph-based SLAM 

approach, proposed by Hess, et al (2016). The overview of the Cartographer 

system is shown in Figure 2.4 below. 

 

 

Figure 2.4: Overview of Cartographer (Cartographer ROS, 2019). 

 

 In Cartographer, the extracted sensory data is first downsampled by 

the voxel filter to decrease the computational resource required. Then, the pose 

estimator ensures that each of the scan data is matched with odometry data 

before they are fed into the Local SLAM for scan matching.
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In the Local SLAM, the current pose is estimated by matching the 

scan data with the sub-maps, using the Google Ceres scan matcher which is 

based on a non-linear optimisation method. These scans are then placed into 

the current submap; however, they contain an accumulation of drifting errors, 

which will be minimised in the Global SLAM through pose optimisation. 

After that, the Global SLAM creates intra sub-maps constraints, which are 

obtained from the scan matching between collected scans with the completed 

sub-maps. As a result, all sub-maps could be linked to obtain an overall map.  

 

2.3.4 SLAM Toolbox 

The SLAM Toolbox is a ROS SLAM package introduced by Macenski in 

ROSCon 2019. It is built upon the Open Karto (Konolige et al., 2010), which 

is a pose-graph optimisation-based SLAM, thus it can handle the robot’s 

resources effectively while mapping a large environment. According to 

Luknanto (2020), the SLAM Toolbox uses local and global approaches, 

similar to Cartographer. In the local approach, consistent pose estimation is 

performed to match the new scan with a few recent scans. In the global 

approach, the most recent scan is matched against the map to perform loop 

closure. 

According to Macenski and Jambrecic (2021), the SLAM Toolbox 

can store (serialise) and retrieve (deserialise) the raw pose-graph data, 

therefore allowing the users to modify them or to assist a loop closure. The 

users are also allowed to choose the different modes of operations, which are: 

the synchronous mode which focuses on the quality of mapping, or the 

asynchronous mode which focuses on the quality of real-time localisation. 

Besides, since the Sparse Pose Adjustment (SPA) in KartoSLAM is replaced 

with Google Ceres for scan matching and loop closures procedures in SLAM 

Toolbox, much adaptable optimisation settings could be provided. 

 

2.3.5 Summary - ROS SLAM Packages 

In summary, the SLAM packages reviewed in this section are based on 

different approaches. The strengths and weaknesses of these packages are 

generally affected by the underlying approaches used. A simple comparison 

between the ROS SLAM packages reviewed in this section could be 



16 

summarised in Table 2.2 below, however, this table does not summarise the 

real performances of these packages, as they will be reviewed again later in 

this study. Included in the table are also some of the weaknesses of the SLAM 

packages pointed out by Macenski and Jambrecic (2021). 

 

Table 2.2: The Comparisons of Different ROS SLAM Packages. 

Package Strengths Weaknesses 

Hector SLAM

(EKF for 3D 

estimation) 

Real-time estimation. Inaccurate pose and map

estimation at low scan 

frequency. 

Applicable for 6 DOF 

applications. 

Do not utilise odometry 

information. 

GMapping 

(RBPF) 

An improvised RBPF 

method. 

Loop closure problem in 

large space. 

Cartographer 

(Optimisation-

based SLAM) 

Can build an accurate map 

in real-time. 

Challenging to modify the 

complex software. 

Provide data serialisation. 

SLAM Toolbox 

(Optimisation-

based SLAM) 

Can build an accurate map 

in real-time  

Newly developed 

package. 

Provide multiple modes of 

mapping. 

Provide data serialisation. 

 

2.4 Factors Affecting SLAM in Practical Scenarios 

The current SLAM methods have generally solved the SLAM problem and 

have been successfully applied using LiDAR-based SLAM such as LOAM, 

and Visual SLAM such as ORB-SLAM. However, these approaches assume a 

static environment, which is not the case for most real-life applications, such 

as search-and-rescue operations, sea exploration, and lunar exploration that 

require the robot to function long-termly in a dynamic and unstructured 

environment.  
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The implementation of the state-of-the-art SLAM in practical 

situations is prone to 1) the limitation of the current SLAM algorithm in 

handling the dynamic environments, 2) the sensor’s limitations and inaccuracy 

in observing harsh environments, as well as 3) the actuator’s imprecision 

caused by the actuator degradation and the influences of unstructured 

environments. These limitations will be discussed in the next two subsections.

 

2.4.1 Limitations of current SLAM Algorithms

As the SLAM applications are transitioning into the large-scale environment, 

much of the recent research is focusing on graph-based SLAM because of its 

efficiency in mapping a large area. The summary of a typical SLAM system, 

which consists of the front end and back end, is shown in Figure 2.5 below. 

 

 

Figure 2.5: Typical SLAM System. 

 

The front end uses the sensory data to represent the environment into 

models applicable for estimations, while the back end processes the data to 

provide the localisation and mapping as output. In this subsection, the 

robustness and the scalability of the SLAM algorithm will be reviewed, which 

are: 1) how the SLAM front end (feature extraction and data association) could 

be influenced by a high dynamics environment, and 2) how SLAM back end 

(graph optimisation process) could be influenced by the increasing complexity. 
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2.4.1.1 Limitations of Feature Extraction 

The feature extraction algorithm in the front end provides the data for the 

feature matching and pose estimation of the SLAM algorithm. These features 

are represented by planes, lines, or points, which could work well in static 

environments. In real-world conditions, however, the presence of moving 

objects could reduce the reliability of the mapping process of Visual SLAM, 

as many erroneous features extracted from dynamic objects would lead to 

wrong data associations, incorrect camera ego-motion estimation and drifting 

of pose estimations (Liu and Miura, 2021). 

With the advancements in deep learning and image recognition, many 

recent works have proposed semantic-based methods to detect the presence of 

dynamic objects, making Visual SLAM more robust to be deployed in real-

world situations. Among them is the RDS-SLAM by Liu and Miura (2021) 

based on ORB-SLAM3 which uses semantic information to optimise camera 

pose, and SaD-SLAM by Yuan and Chen (2020) based on ORB-SLAM2 

which detects static and dynamic feature points to improvise camera pose 

estimation. 

 

2.4.1.2 Limitations of Data Association

The data association in the SLAM front end performs feature tracking and 

loop closure detection. The feature tracking algorithm associates the pixel 

measurements within two consecutive frames as the same point, whereas the 

loop closure detection associates a new observation to an old feature, 

minimising the reliability towards dead reckoning. 

 In a practical situation such as when the robot is traversing through a 

long corridor or a parking lot, since there are a lot of similar features, the data 

association algorithm is prone to the perceptual aliasing phenomenon (Cadena, 

et al., 2016), whereby the algorithm would wrongly perceive different features 

of the environment as the same. On the other hand, when the robot is required 

to function long-termly in a dynamic environment, the feature tracking and 

loop closure detection algorithm might fail to associate the new observation of 

a previously visited area as the same feature, due to the change in viewpoint, 

the difference in illumination of a scene, and the shifting of objects during the 

deployment period (Shi, et al., 2020). 
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 According to Cadena, et al. (2016), the robustness of the feature 

tracking algorithm could be improved if the framerate of the sensor is 

significantly higher than the robot’s dynamics, as the sensor’s position does 

not vary much as the time increases from t to t+1. The loop closure, on the 

other hand, could potentially be detected using the FLIRT features jointly with 

Random sample consensus (RANSAC), proposed by Tipaldi and Arras (2010). 

Cadena, et al. (2016) also mentioned that loop closure quality could be made 

certain through loop closure validation, which could be achieved using 

RANSAC in vision-based applications, and scan matching process in laser-

based applications. 

 

2.4.1.3 Limitations of Graph Optimisation Process 

For the SLAM back end that uses the graph-based optimisation method, as 

previously mentioned in Section 2.2.4, the computational complexity will 

increase with the increasing map, which is the case for outdoor practical 

applications that requires the robot to operate over a long time. As the pose-

graph increase indefinitely with the increasing size of the explored map, the 

resource of the robot will no longer be able to support the execution of the 

system. 

 To reduce the complexity of the system, a sparsification method 

could be implemented by decreasing the addition of new nodes or by removing 

the current nodes that contain less information, such as through the node 

removal method using generic linear constraint (GLC) proposed by Carlevaris-

Bianco (2015). Besides, the complexity issue could also be solved through the 

implementation of sub-mapping algorithms by dividing the computational load 

of the system into multiple processors, or the utilisation of multiple robots to 

map a large environment (Cadena, et al., 2016) 

 

2.4.2 Limitations of Sensors and Actuators 

Other factors that will impact the implementation of the SLAM system include 

the limitations of sensors and actuators in harsh environments. In a survey 

conducted by Wang, Zhang and An (2017), the presence of a large number of 

dust particles and the lack of feature points in the surroundings could reduce 
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the certainty of the information perceived, leading to a non-convergence 

problem that affects the robustness of SLAM.  

 Besides, in conditions where the robot is required to move through 

uneven terrain, the wheel odometry information becomes unreliable because 

the wheel could sink, skid, and slip. To tackle the problem, Marks, et al (2009) 

proposed the use of visual odometry (VO) in estimating the vehicle motion, 

replacing the wheel odometry which is shown unreliable through their 

experiment.  

 

2.4.3 Summary - Limitations of SLAM

An understanding of the limitations of the state-of-the-art SLAM algorithms is 

important for the successful implementations of future robotics applications in 

an outdoor environment. 

In summary, the SLAM front end could be influenced by the highly 

dynamic and unstructured environments, such as the incorrect feature 

extractions caused by the moving objects, the perceptual aliasing phenomenon 

in repetitive environments, and the failure in detecting loop closure due to 

changes in the environment during the long deployment period, which in turns 

impacts the robustness of the SLAM algorithm. While deploying the robot for 

an extended period on a large map, the complexity of the system could be 

increased unboundedly, which affects the scalability of the SLAM algorithms. 

On the other hand, the sensors and actuators of the robotic applications could 

be influenced by the harsh conditions of the environment, resulting in high 

uncertainties of perceived information. Nevertheless, successful 

implementations of SLAM would be eased by increasing the robustness and 

scalability, such as the use of deep learning and computer vision techniques. 

 

2.5 Overall Summary 

In summary, the three main paradigms to solve the SLAM problem are the 

Kalman filter-based, particle filter-based, and optimisation-based approaches. 

The KF and RBPF are developed based on Bayesian filters, whereas the 

graph-based SLAM uses the least-square method to optimise the SLAM 

estimation model. Using SLAM packages available in ROS such as Hector 

SLAM, GMapping, Cartographer, and SLAM Toolbox, these SLAM 
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algorithms could be easily adapted to different applications by tweaking the 

parameters offered in the packages. 

However, as the mobile robotics applications had been transitioning 

into a wider and more dynamic environment, the robustness and scalability of 

the state-of-the-art SLAM are challenged. The failure of feature extraction 

algorithms and loop closure algorithms in a dynamic environment, the 

unbounded complexities of the SLAM system in large environments, and the 

performance issues of sensors and actuators in harsh environments are 

affecting the implementation of state-of-the-art SLAM. These issues are 

currently being attempted to be solved through the implementation of 

Computer Vision techniques, which is another area of research. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Overview of Project Work Plan 

In this chapter, the methodology used to evaluate the capabilities and 

limitations of the state-of-the-art 2D SLAM during implementations will be 

explained. In general, a robot equipped with a LiDAR and an RGBD camera 

would be teleoperated in different real-world environments, where the data 

from these sensors were recorded and fed into different 2D SLAM packages 

for mapping. The tuning of parameters and the quality of mapping of each 

package will be further evaluated to compare their capabilities and limitations. 

The project flow chart is shown in Figure 3.1 below and will be discussed in 

detail in the next few subsections. 

 

 

Figure 3.1: Project Flow Chart. 

 

3.2 Hardware Details 

The project was carried out using a differential drive robot, equipped with a 

LiDAR sensor, a depth camera, and a tracking camera. The robot was 

controlled using a computer with ROS Melodic installed. The specifications of 

the robot are listed in Table 3.1 below: 
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Table 3.1: Robot Specifications. 

Sensors Hokuyo 4-metre LiDAR (URG-04LX-UG01)

Realsense RGBD Camera (D435) 

Realsense Tracking Camera (T265) 

Operating System Ubuntu 18.04 LTS (ROS Melodic installed) 

CPU Intel i7-8550U @ 1.80 GHz 

RAM 12.0 GB 

Graphics Card NVIDIA GeForce MX150 

 

3.3 Data Acquisition 

3.3.1 Venue Setup 

The 2D SLAM nodes were run based on the data collected from KB613 Lab 

and the 6th Floor Corridor, as shown in Figure 3.2 below. 

 

  

(a) (b) 

Figure 3.2: Venues for Mapping: (a) KB613 Lab, and (b) 6th Floor Corridor. 

 

The KB613 Lab contained repetitive structures of tables in the middle 

area, and it contained cluttered scenes such as stools and treadmills. The 6th 

Floor Corridor was 27.88 metres long and it was featureless. The performance 

of 2D SLAM packages would be studied through their mapping results, based 

on these characteristics of the scenes, as summarised in Table 3.2 below. 

 

Table 3.2: Characteristics of Different Venues

Venue Lab Corridor 

Characteristics 
Repetitive structures Long (27.88 metres) 

Cluttered scenes Featureless 



24 

3.3.2 Sensor Setup 

The input scan data for 2D SLAM were based on two sources: the scan data 

from Hokuyo LiDAR, and the scan data extracted from the depth image of the 

Realsense D435 camera, by applying the depthimage_to_laserscan ROS 

package. The odometry data was provided by the Realsense T265 Tracking 

Camera. The specifications of the sensors that provide the scan data were 

tabulated in Table 3.3 below. 

 

Table 3.3: Specifications of Sensors. 

 Hokuyo 4-metre LiDAR D435 Realsense Camera 

Field of View 240 ̊ 87 ̊ 

Range 4 metres 10 metres 

Accuracy 3% Varies 

 

The Hokuyo URG LiDAR had a scan area of 240 ̊ with a maximum 

distance of 4 metres and had 3% of guaranteed accuracy. The results were 

accurate thus no further processing was required. The Realsense D435 Camera, 

on the other hand, had a Field of View (FOV) of 87 ̊ with a maximum distance 

of 10 metres, but the accuracy was greatly affected by the environmental 

conditions such as lighting noise. The scan result on a flat surface was wavy, 

where its amplitude increased with an increasing distance. Therefore, the point 

cloud was filtered using a combination of spatial, temporal, disparity, and 

decimation filters. Referring to Figure 3.3 below, the filtered results of the 

point cloud provided a good representation of flat surfaces. 

 

  

(a) (b) 

Figure 3.3: Point Clouds: (a) before Filtering, and (b) after Filtering. 
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3.3.3 Teleoperation and Recording 

Figure 3.4 and Figure 3.5 below show the simplified floor plan of KB613 Lab 

and 6th Floor Corridor, respectively. The robot was teleoperated in KB613 Lab 

with the trajectory of A, B, C, D, A, E, F, G, H, A, whereas it was teleoperated 

in the 6th Floor Corridor with the trajectory of A, B, A. All the rostopics were 

recorded into the rosbag files.

 

 

Figure 3.4: Simplified Floor Plan of KB613 Lab. 

 

 

Figure 3.5: Simplified Floor Plan of 6th Floor Corridor. 

 

3.4 Mapping and Evaluation 

3.4.1 SLAM and Parameters 

In this project, the four SLAM packages: Hector SLAM, GMapping, 

Cartographer, and SLAM Toolbox would be analysed for their performance, 

capabilities, and limitations, in the different scenarios described in the 

previous subsections. All the SLAM packages would be run based on the same 

rosbag file, but with different configurations of parameters specific to each 

package and scenario. The tuning aimed to obtain the best configuration that 

would result in the best mapping quality for evaluation. 
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  In this section, the effect and process of tuning the SLAM packages 

will be discussed. The general parameters that were similar to all four 

packages were: 1-second map update interval, 4-metre-long maximum usable 

scan data for mapping, and 0.05 map resolution. To obtain the best mapping 

result, the tuning of important parameters that were specific to the GMapping, 

Cartographer, and SLAM Toolbox were listed and described in Table 3.4, 

Table 3.5, and Table 3.6 below. There were no specific parameters to be tuned 

for Hector SLAM. 

 

Table 3.4: Specific Parameters for GMapping. 

Specific Parameters Description 

particles The number of particles for state estimation. 

lstep, astep Linear and angular optimization steps. 

 

Table 3.5: Specific Parameters for Cartographer.

Specific Parameters Description 

submaps_num_range_data Size of the submaps. 

translation_weight, 

rotation_weight 

Greater value means scan matching had to 

generate greater value for its result to be 

accepted. 

optimize_every_n_nodes Optimize the graph after several n batches of 

nodes were inserted. 

 

Table 3.6: Specific Parameters for SLAM Toolbox. 

Specific Parameters Description 

loop_search_space_dimension Size of search grid for loop closure 

detection. 

loop_match_minimum_chain_size Minimum chain length required to detect 

loop closure. 

minimum_travel_distance, 

minimum_travel_heading 

Linear and angular update steps. 

distance_variance_penalty, 

angle_variance_penalty 

Penalty to apply as the matched scan 

differs from an odometry pose. 
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 The parameters specific to each SLAM package had to be tuned 

according to different scenarios and conditions. The wrong settings of 

parameters would adversely affect the performance of SLAM. For instance, 

one of the most frequent errors was the perceptual aliasing phenomenon. 

Given an environment, a lower linear update step would allow the scan 

matching to be performed more frequently, however, this would also allow the 

SLAM to be more easily associated two consecutive scans as similar, thus 

causing a section of the map to appear shorter. Besides, a lower minimum 

number of nodes required for loop closure optimization allowed a frequent 

loop closure detection, however, this would also allow the SLAM to be more 

easily matched two different areas as similar, thus causing the map to be 

distorted as two different areas were merged. 

 

3.4.2 Tunings and Observations 

Based on the different sensors and venues, trials and errors methods would be 

performed for the tuning of SLAM parameters through visual inspection, 

whereby the quality of loop closure detection and scan matching were 

observed for tuning purposes. The best configuration, as tabulated in Table 3.7, 

Table 3.8, and Table 3.9 below, that results in the best mapping result would 

be used for evaluation and analysis of the SLAM packages in the next step. 

 

Table 3.7: Best Specific Parameters for GMapping. 

 Default Lab Corridor 

LiDAR D435 LiDAR D435 

lstep (m) 0.05 0.01 0.01 0.01 0.01 

astep (m) 0.05 0.01 0.01 0.01 0.02 

particles 30 100 100 100 100 
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Table 3.8: Best Specific Parameters for Cartographer. 

 Default Lab Corridor 

LiDAR D435 LiDAR D435 

submaps_num_range_data 90 150 50 200 50 

translation_weight 10 10 50 10 50 

rotation_weight 1 1 10 1 10 

optimize_every_n_nodes 90 20 20 20 20 

 

Table 3.9: Best Specific Parameters for SLAM Toolbox. 

 Default Lab Corridor 

LiDAR D435 LiDAR D435

loop_search_space_dimension 8 15 8 20 20 

loop_match_minimum_chain

size 

10 7 10 3 5 

minimum_travel_distance 0.5 0.5 0.5 0.5 0.5 

minimum_travel_heading 0.5 0.5 0.5 0.5 0.5

distance_variance_penalty 0.5 0.5 0.005 0.5 0.5 

angle_variance_penalty 1.0 1.0 0.001 1.0 10 

 

3.4.3 Evaluations 

3.4.3.1 Evaluation of Lab Mapping Results

To evaluate the accuracy of the map at KB613 Lab, the ground truth and the 

resulting maps were binarized and then aligned using the Image Processing 

Toolbox in MATLAB. The evaluation was then carried out using the K-

Nearest Based Normalised Error (k=1) metric, introduced by Santos, Portugal 

and Rocha (2013). This normalised error was calculated by averaging the sum 

of distances among each occupied cell on the resulting map, 𝐾𝐾(𝑘𝑘, 𝑏𝑏), and the 

corresponding cell on the ground-truth map, 𝐼𝐼(𝑤𝑤, 𝑗𝑗) , where 𝐾𝐾𝑘𝑘,𝑙𝑙 =

𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖,𝑗𝑗
𝑘𝑘=1(𝐼𝐼,𝐾𝐾).  

 

𝑁𝑁𝑁𝑁 =
∑ ∑ �(𝑘𝑘 − 1)2 + (𝑏𝑏 − 𝑗𝑗)2[𝐼𝐼(𝑤𝑤, 𝑗𝑗) = 0]𝑛𝑛−1

𝑗𝑗=0
𝑥𝑥−1
𝑖𝑖=0

∑ ∑ [𝐼𝐼(𝑤𝑤, 𝑗𝑗) = 0]𝑛𝑛−1
𝑗𝑗=0

𝑥𝑥−1
𝑖𝑖=0

 (3.1) 
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 The normalised error, NE in Equation (3.1) is always greater than or 

equal to 0, where 0 indicates that both maps of size 𝑘𝑘 × 𝑚𝑚 are the same. The 

sample output image was shown in Figure 3.6 below, where the green pixels 

indicated the resulting map, pink pixels indicated the ground truth map, and 

black pixels indicated the overlapping pixels of both maps. The value of NE 

was the value of normalized error between both maps after the registration

process. 

 

 

Figure 3.6: Result of Image Registration in MATLAB.

 

3.4.3.2 Evaluation of Corridor 

To evaluate the resulting map of the 6th Floor Corridor, two aspects of the 

resulting map were observed and calculated: first, the angular deviation of the 

map of the corridor from its horizontal position, and second, the linear 

deviation of the map from the true length of the corridor.  

 To find the angular deviation, linear regression was performed to find 

the best fit line that suits the image data, using MATLAB. Then, the degree of 

deviation was calculated from its gradient, which would be in the clockwise or 

anticlockwise direction. 

 To find the linear deviation, first, the two points that were intersecting 

both the map and the best fit line were found by taking the mean of the points 

that had a low squared error value. Their distance was multiplied by 

0.05(m/pixel) to obtain the length in metres. The sample output image was 

shown in Figure 3.7 below, where the black pixels indicated the corridor, the 

red line indicated the best fit line, and the blue and black dots each indicated 

the mean point that intersects the best fit line. 
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Figure 3.7: Result of Linear Regression in MATLAB. 

 

3.5 Resource Allocations and Project Planning 

The project was carried out using the service robot available in UTAR, and 

utilized packages available in ROS, therefore no extra cost or budget was

required to carry out the project. All the planned tasks were achieved 

successfully for FYP Part 2 in this trimester. 

 
3.6 Summary

In summary, the project could be carried out in two stages: the Data 

acquisition stage, and the mapping and evaluation stage. In the data acquisition 

stage, when the UTAR service robot was teleoperated in both KB613 Lab and

6th Floor Corridor, the scan data from the Hokuyo 4-metre LiDAR and the 

filtered scan data from Realsense D435 Camera were captured and recorded 

into rosbag files. In the mapping and evaluation stage, the rosbag files were 

replayed for four 2D SLAM methods: Hector SLAM, GMapping, 

Cartographer, and SLAM Toolbox. Then the output maps from each SLAM in 

each scenario were evaluated using image registration and K-Nearest Method 

for the map of Lab, and linear regression for the map of the Corridor. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

In this chapter, the results obtained from the different sensors and SLAM 

packages will be compared and discussed. The first section evaluates the scan 

results obtained from LiDAR and D435 camera, as they influence the 

performance of SLAM. The second section evaluates the performance of 

different SLAM packages using different sensors and at different venues. 

Finally, the results will be compared to evaluate the capabilities and 

limitations of the SLAM packages.

 

4.2 Evaluations of Sensors 

4.2.1 Change of Viewpoint 

Figure 4.1 below shows the scan data from LiDAR (red-coloured) and D435 

camera (white-coloured) as the robot rotated and changed its viewpoint 

towards the treadmills in Figure 4.2 located at the corner around point B in the 

KB613 Lab. 

 

   

(a) (b) (c) 

Figure 4.1: The Effect of Change of Viewpoint towards LiDAR Data and 

D435 Data as the Robot Rotated. 
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Figure 4.2: Treadmills at Point G. 

 

 The scan data from LiDAR remained constant as the robot moved, 

which was an accurate representation of the scene. On the other hand, the 

filtered scan data from the D435 camera contained fillets that joined the 

treadmills and their background together, where the scan data would be varied 

as the robot was rotated and changed its viewpoint. This effect was due to the 

noise and filtering effect on the point cloud data explained in Section 3.3.2. 

This effect was undesirable as the change in scan data would affect the scan 

matching capabilities of the SLAM packages.  

 

4.2.2 Field of View (FOV) 

Figure 4.3 shows the scan data from LiDAR (colourful) and D435 camera 

(white) when mapping the corner around Point G circled in Figure 4.4 below. 

 

  

(a) (b) 

Figure 4.3: Scan Data of the Corner Near Point G from: (a) D435 (white), and 

(b) LiDAR (colourful). 
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Figure 4.4: Map of the KB613 Lab. 

The LiDAR had a wider FOV, thus it was able to scan the corner 

correctly (Figure 4.3(b)). On the other hand, the D435 camera had a smaller 

FOV, thus there was missing of information as it did not observe the corner. 

Additionally, the filtering of point cloud data input from the D435 camera had 

joined the corners of the two non-consecutive walls together, resulting in a 

misrepresentation of the corner (Figure 4.3(a)). 

 

4.2.3 Features Captured 

Figure 4.5 shows the scan data from LiDAR (colourful) and D435 camera 

(white) of the compartments of cabinets at 6th Floor Corridor, as in Figure 4.6.

 

  

(a) (b) 

Figure 4.5: Scan Data of the Cabinet Compartments: (a) LiDAR (colourful), 

and (b) D435 (white). 

 

 

Figure 4.6: Cabinets at 6th Floor Corridor. 
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When using D435 camera, since the point cloud was filtered, the 

walls of the corridor were smoothened, therefore some features were filtered 

out. Figure 4.5(a) above shows that the features of the cabinets compartment, 

which were captured by the LiDAR as small protruding edges, were filtered 

out for the case of D435 camera, which represented them as a curvy line 

(Figure 4.5(b)). This would affect the performance of SLAM as the number of 

features in the corridor that was available for scan matching was reduced. 

 

4.3 Evaluations of Lab Mapping 

4.3.1 Hector SLAM 

Figure 4.7 below shows the maps generated by Hector SLAM in Lab using 

LiDAR and D435 Camera, and Figure 4.8 shows the normalized error value. 

The normalized error was not calculated for the case of D435 camera as input 

because the map was not significant for comparison. 

 

 
 

(a) (b) 

Figure 4.7: Hector SLAM Result at Lab: (a) using LiDAR as Sensor, and (b) 

using D435 camera as Sensor. 

 

 

Figure 4.8: Normalized Error Results after Image Registration (LiDAR). 
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 Based on Figure 4.7(a), using LiDAR, the walls and tables in the 

resulting map were well-aligned between each consecutive scan, with minor 

misalignment on the left side, between points G and H. The low normalized 

error of 0.4783 showed that Hector SLAM was able to do scan matching for 

mapping correctly without relying on odometry data or loop closure detection 

capabilities, given that an accurate input scan data was available. 

 Based on Figure 4.7(b), using D435 camera, the resulting map was 

highly distorted, where several duplicated representations of walls and tables 

were present on the map. The Hector SLAM was able to map correctly when it 

was travelling in a straight line, however, errors appeared when the robot was 

rotating, for instance, as the robot travelled from point A to B, rotated while 

observing the treadmills, and travelled to point C, the map get distorted. 

The main reason for this distorted map was due to the change in the 

viewpoint of the robot as it was rotating, which greatly affect the 

representation of point cloud data from D435 camera, as explained in Section 

4.2.1. This caused the failure of the scan matching function, as the data from 

the consecutive frames were different. Additionally, since Hector SLAM did 

not utilise the odometry data to optimise its scan matching result, the errors 

from the scan matching were not corrected. 

 

4.3.2 GMapping 

Figure 4.9 and Figure 4.10 show the maps generated by GMapping in Lab 

using LiDAR and D435 Camera, and their calculated normalized error value. 

 

  

(a) (b) 

Figure 4.9: GMapping SLAM Result at Lab: (a) using LiDAR as Sensor, and 

(b) using D435 as Sensor. 
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(a) (b) 

Figure 4.10: Image Registration and Normalized Error Results: (a) with 

LiDAR as Sensor, and (b) with D435 as Sensor. 

 

 Based on Figure 4.9(a), using LiDAR, the walls in the map were 

well-aligned between each consecutive scan, with minor misalignment on the 

bottom side, between points A and B. For the mapping of the tables in the 

middle section, there are some misalignments, as both sides of the tables were 

matched as a single line during the scan matching process. Even though, the 

low normalized error of 0.43322 showed that GMapping was able to represent 

the map correctly. 

 Based on Figure 4.9(b), the map was slightly deviated, which 

increases the normalized error of the map to 1.5751. The main reason was due 

to the noisy scan data from D435 camera, which were still slightly wavy even 

though they were filtered. When travelling in straight lines, although the scan 

matching algorithms functioned properly to align the scan data, the wavy data 

causes them to slightly deviate as they were being aligned. 

When rotating at the corners, in contrast to the behaviour shown by 

Hector SLAM, GMapping utilized odometry data to correct the predictions, 

thus the map did not have large distortion. This was shown when the robot 

observed the cluttered area at point B (treadmills). Although the scan data was 

not significant for scan matching, GMapping was able to do loop closing and 

utilized the odometry information to track the location of the robot, resulting 

in a correct representation of the corner.
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4.3.3 Cartographer 

Figure 4.11 and Figure 4.13 show the maps by Cartographer in Lab using 

LiDAR and D435 Camera, and their normalized error value. Figure 4.12 

shows the effect of final loop closure on the resulting map when using D435. 

 

  

(a) (b) 

Figure 4.11: Cartographer Result at Lab: (a) using LiDAR as Sensor, and (b) 

using D435 as Sensor. 

 

  

(a) (b) 

Figure 4.12: Effect of Final Loop Closure on Cartographer when using D435: 

(a) before Loop Closure, and (b) after Loop Closure. 

 

  

(a) (b) 

Figure 4.13: Image Registration and Normalized Error Results: (a) with 

LiDAR as Sensor, and (b) with D435 as Sensor. 
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 Based on Figure 4.11(a), using LiDAR, the walls and tables were well 

aligned. The low normalized error of 0.3473 shows that Cartographer could 

perform scan matching accurately within the submaps themselves, and 

between each of the submaps throughout the whole operation using both 

inputs. 

 Based on Figure 4.11(b), using D435 camera, there was slight 

distortion, especially in the middle area of the tables. This was caused by the 

final loop closure when the robot travelled from point H to point A. Referring 

to Figure 4.12, although Cartographer could perform scan matching and local 

optimizations correctly, the map representation (Figure 4.12(a)) had become 

inaccurate after the final loop closure (Figure 4.12(b)). The reason was the 

misrepresentation at Point G, due to the smaller FOV of D435 camera, as 

explained in Section 4.2.2, which had caused Cartographer to localize the 

robot further to the negative x-direction. Although the loop closure could close 

the loop and align the wall between Point H and point A, all the submaps were 

optimized to an inaccurate position, causing the whole map to be distorted. 

On the other hand, when the robot observed the cluttered scene at 

point B (treadmills), even though the scan data from D435 Camera was noisy, 

Cartographer was still able to map the section correctly when travelling from 

point A to B, and C, because it utilized the odometry data for optimization.  

 

4.3.4 SLAM Toolbox 

Figure 4.14 and Figure 4.15 below show the maps by SLAM Toolbox in Lab 

using LiDAR and D435 Camera, and their normalized error value. 

 

  

(a) (b) 

Figure 4.14: SLAM Toolbox Result at KB613 Lab: (a) using LiDAR as 

Sensor, and (b) using D435 as Sensor. 
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(a) (b) 

Figure 4.15: Image Registration and Normalized Error Results: (a) with 

LiDAR as Sensor, and (b) with D435 as Sensor. 

 

 Based on Figure 4.14(a), using LiDAR, the walls and tables were well 

aligned. The low normalized error of 0.34539 shows that SLAM Toolbox was 

able to perform scan matching accurately. Based on Figure 4.14(b), using 

D435 camera, similar to Cartographer, SLAM Toolbox could perform scan 

matching and local optimizations correctly, but the corner at Point G was not 

being mapped correctly due to the smaller FOV of the D435 camera. This in

turn caused the walls around Point A to misalign. In contrast to Cartographer, 

SLAM Toolbox did not perform the loop closure optimization for this section. 

Overall, the mapping using D435 camera had a normalized error of 1.5366. 

 

4.4 Evaluation of Corridor Mapping 

4.4.1 Hector SLAM 

Figure 4.16 below shows the maps generated by Hector SLAM at Corridor 

using LiDAR and D435, with their angular and linear deviation. The graphical 

result for the deviation calculations were in Appendix A. 

 

(a) 
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(b) 

Figure 4.16: Maps Generated by Hector SLAM: (a) using LiDAR as Sensor, 

and (b) using D435 Camera as Sensor. 

 

 Based on Figure 4.16(a), using LiDAR, the map had a low angular 

deviation of -1.95 degrees and a low linear deviation of -0.43 metres. The map 

of the corridor was generally straight, while the compartments of the cabinets 

was clearly mapped as small protruding lines. This shows that the Hector 

SLAM was able to fully utilise the features captured by LiDAR to perform 

scan matching properly as it travels along a straight line. 

Based on Figure 4.16(b), using D435 camera, however, the map was 

duplicated at a different angle as the robot travelled along the corridor for the 

second time. This was due to the combined effect of noisy scan data from 

D435 camera, the lack of features captured in the scan data from D435 camera, 

and the nature of Hector SLAM which did not utilise the odometry data for 

optimization. Therefore, when the robot turned 180 degrees at the end of the 

corridor, due to the change of viewpoint and the change in scan data provided 

by D435 camera, the scan matching result was affected, therefore contributing 

to the error in mapping. 
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4.4.2 GMapping 

Figure 4.17 below shows the maps generated by GMapping at Corridor using 

LiDAR and D435 Camera, with their angular and linear deviation. The 

graphical results for the deviation calculations were in Appendix A. 

 

 

(a) 

 

(b) 

Figure 4.17: Maps Generated by GMapping: (a) using LiDAR as Sensor, and 

(b) using D435 Camera as Sensor. 

 

Based on Figure 4.17(a), using LiDAR, the map had a small angular 

deviation of -2.98 degrees and a small linear deviation of -0.78 metres. 

Although GMapping performed scan matching and loop closure detection as it 

travelled along, the map of the long corridor was still slightly curved. 

Based on Figure 4.17(b), using D435, the map had a large angular 

deviation of -8.53 degrees and a large linear deviation of -3.83 metres. This 

was due to the lesser features that were captured by the D435 camera, as 

explained in Section 4.2.3, which in turn caused the perceptual aliasing 

phenomenon. Besides, the noisy scan data from D435 camera also affected the 

scan matching process which caused the resulting map to curve at the end of 

the corridor. Although odometry data was used for optimization, the result was 

still greatly affected by the noisy scan data. 
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4.4.3 Cartographer 

Figure 4.18 below shows the maps generated by Cartographer at Corridor 

using LiDAR and D435 Camera, with their angular and linear deviation. The 

graphical results for the deviation calculations were in Appendix A. 

 

 

(a) 

 

(b) 

Figure 4.18: Maps Generated by Cartographer: (a) using LiDAR as Sensor, 

and (b) using D435 Camera as Sensor. 

 

Based on Figure 4.18(a), using LiDAR, the map had a small angular 

deviation of 0.86 degrees and a small linear deviation of 1.02 metres. The map 

was slightly curved as the robot travelled along the corridor. During the 

returning trip from Point B to Point A, Cartographer was able to do loop 

closure optimization as it travelled, thus minimising the translational error in 

the y-direction. However, a minor translational error towards the negative x-

direction was observed, which due to the perceptual aliasing phenomenon. 

Based on Figure 4.18(b), using D435, the map had a large angular 

deviation of –3.32 degrees and a linear deviation of -1.68 metres. Since the 

scan data from D435 was noisy, scan matching errors were performed thus 

contributing to the deviation of the corridor as the error accumulates. Besides, 

the effect of the perceptual aliasing phenomenon was much greater in this case 

because the D435 captured much less scan information as compared to LiDAR, 
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as explained in Section 4.2.3. Thus, lesser useful features were able to be used 

for scan matching purposes. However, Cartographer was still able to utilize its 

odometry data for optimization, thus the result was still favourable as 

compared to GMapping. 

 

4.4.4 SLAM Toolbox 

Figure 4.19 below shows the maps generated by SLAM Toolbox at Corridor 

using LiDAR and D435 Camera, with their angular and linear deviation. The 

graphical results for the deviation calculations were in Appendix A. 

 

 

(a) 

 

(b) 

Figure 4.19: Maps Generated by SLAM Toolbox: (a) using LiDAR as Sensor, 

and (b) using D435 Camera as Sensor. 

 

Based on Figure 4.19(a), when using LiDAR as input, the map had an 

angular deviation of –3.32 degrees and a small linear deviation of -0.48 metres. 

Similar to GMapping and Cartographer, the resulting map was slightly curved 

as the robot travelled along the corridor. 

Based on Figure 4.19(b), when using D435 as input, the map had a 

small deviation of –0.0055, however, with a large linear deviation of -3.33 

metres. SLAM Toolbox was able to utilise the odometry data for optimization, 

thus the noise from D435 camera did not affect the angular deviation much. 
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However, the resulting map was not good as it suffered from the perceptual 

aliasing phenomenon, which contributed to the high linear deviation due to the 

lack of features in D435 camera’s scan data, as explained in Section 4.2.3.  

 
4.5 Comparisons and Summary 

Figure 4.20 and Figure 4.21 below show the evaluated results for the mapping 

in Lab and Corridor respectively using LiDAR and D435 Camera.  

 

 

Figure 4.20: Normalised Error Value for Lab Mapping. 

 

 

Figure 4.21: Deviation for Corridor Mapping. 
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 For the mapping of Lab using LiDAR, the best-performing methods 

were the Cartographer and SLAM Toolbox, both recording a low normalised 

error result of 0.35. Both packages contain a similar architecture, where they 

utilised the odometry data and loop closure to optimise their result. In contrast 

to GMapping which mapped both sides of the table as a single line, both 

Cartographer and SLAM Toolbox were able to represent the mapping of tables 

correctly. The worst performing method in this scenario was the Hector SLAM, 

as it did not utilise the odometry data and loop closure for optimisation, which 

caused the error as the robot rotated. 

 For the mapping of Lab using D435, the best performing method was 

SLAM Toolbox, which obtained the lowest normalised error of 1.54, which 

was just slightly better than GMapping at 1.58. Both SLAM Toolbox and 

GMapping differed in their approaches to performing loop closure 

optimization, whereby the prior optimizes the graph of submaps, and the latter 

updates its state estimation through resampling. Despite having a similar 

architecture as SLAM Toolbox, Cartographer had a higher normalised error 

value due to the distortion caused by the final loop closure optimisation. 

Hector SLAM performed the worst as it did not utilise the odometry data for 

optimization, which caused the error as the robot rotated. 

 For the mapping of Corridor using LiDAR, the best performing 

methods were the Hector SLAM and SLAM Toolbox, with a low linear 

deviation of -0.43 metres and -0.48 metres respectively, but the latter had the 

highest angular deviation. This shows that Hector SLAM had a robust scan 

matching algorithm, as compared to other methods which utilised the 

odometry data for optimization. Although Cartographer had a low angular 

deviation, it had the highest linear deviation, thus it was considered the worst-

performing SLAM in this scenario. 

 For the mapping of Corridor using D435, all the methods performed 

badly, with Cartographer getting the best result at -3.32 metres of linear 

deviation. This shows that the lack of feature in both the D435 filtered scan 

data and the corridor had affected the performance of all state-of-the-art 2D 

SLAM methods. The Hector SLAM performed the worst in this scenario as it 

depended solely on scan matching for its operation. 
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In summary, the quality of the scan matching was the main factor that 

affects the performance of the state-of-the-art 2D SLAM. The scan matching 

process could be affected by the lack of features in the corridor, the lack of 

features in D435 filtered scan result, and the noisy scan data, as observed in 

this study. On other hand, the ability of 2D SLAM methods in performing loop 

closure detection and odometry data optimisation had greatly improved the 

performance of 2D SLAM, which could be observed through the comparison 

of the result of Hector SLAM with other methods.  
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

The state-of-the-art 2D SLAM packages are based on the three main 

paradigms of SLAM, which are the EKF-based SLAM, RBPF-based SLAM, 

and graph-based SLAM. In this project, even though the SLAM packages are 

based on different architectures, they are capable of mapping KB613 Lab and 

6th Floor Corridor, with a different performance and mapping quality for 

different scenarios. From the evaluated results, it is observed that the main 

feature of the state-of-the-art 2D SLAM is its scan matching capability, for 

instance, the external factors such as the noise in the sensors impacts and 

causes failure to the SLAM packages that mainly rely on the scan matching 

capability, which is the Hector SLAM. Other SLAM packages such as 

GMapping, Cartographer, and Hector SLAM are capable of using odometry 

data and loop closure detection to optimise their mapping result. On the other 

hand, the 2D SLAM packages have limitations in certain scenarios. For 

instance, when mapping a cluttered area such as the treadmills in the lab, the 

change of scan data from the Realsense Camera due to the change of 

viewpoints impacts the scan matching capability. When mapping the long and 

featureless corridor, together with the reduction of feature due to data captured 

using the Realsense Camera, the phenomenon of perceptual aliasing effect is 

much more obvious, therefore impacting the accuracy of mapping. In 

conclusion, the 2D SLAM packages could be implemented successfully with 

the use of accurate sensors and the correct tuning of SLAM parameters, based 

on a given scenario.  

 

5.2 Recommendations for future work 

Mobile robots, as they are getting commercialised nowadays for home service 

robot applications, require a much more stable development for their use in 

different kinds of scenarios. While the state-of-the-art 2D SLAM packages 

available in ROS are capable of mapping, they are not stable enough for the 
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applications in different kind of indoor scenarios, not to mention the presence 

of unstructured conditions and dynamic objects in the scene. While this project 

offers an insight into the implementations of 2D SLAM, it does not cover the 

implementations of 3D SLAM, computer vision, and AI.  

 To extend the scope of this project for future development, further 

analysis towards the architecture of customised SLAM frameworks such as 

ORB-SLAM and LOAM, as well as frameworks which have integrated the use 

of machine learning, as mentioned earlier in Section 2.4.1, could be carried out 

to provide more insights into their usage. In terms of the scalability and the 

robustness of the SLAM frameworks, the project could be carried out in a 

much more challenging environments, such as the presence of dynamically 

moving objects, change of objects in the scene, and the change of 

environmental lightings at the different time of day. The result of mapping 

could then be evaluated by analysing their capabilities and accuracy in 

representing the scenes, such as the alignment of the surfaces of objects, and 

the presence of noise in the point cloud data. 
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APPENDICES

 

Appendix A: Graphs 

 

 

GraphA-1: Deviation Calculation Result for Hector SLAM using LiDAR. 

 

 

GraphA-2: Deviation Calculation Result for GMapping using LiDAR. 

 

 

GraphA-3: Deviation Calculation Result for GMapping using D435. 

 

 

GraphA-4: Deviation Calculation Result for Cartographer using LiDAR. 
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GraphA-5: Deviation Calculation Result for Cartographer using D435. 

 

 

GraphA-6: Deviation Calculation Result for SLAM Toolbox using LiDAR. 

 

 

GraphA-7: Deviation Calculation Result for SLAM Toolbox using D435. 
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