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ABSTRACT 

 
 

ANTI-MAGIC  LABELING  ON  A  CLASS  OF  SPARSE  GRAPHS 

 
 

 Tai Yu Bin  

 
 

 

 

 

 

 In 1990, Hartsfield and Ringel first introduced the anti-magic labeling 

and conjectured that every graph other than the complete graph with 2 vertices 

has an anti-magic labeling. This conjecture has been verified for regular graphs 

and some classes of trees. In this dissertation we shall prove the anti-magicness 

of a class of sparse graphs. 

 

 The thesis begins with a survey on some graph labelings, including anti-

magic labeling. The thesis continues by introducing graph decompositions and 

some applications of graph labelings. In the next chapter, we proved that multi-

bridge graphs are anti-magic. 

 

 The thesis is concluded with a discussion on the anti-magicness of 

families of sparse graphs obtained by overlapping the multi-bridge graph with 

itself or with some extended friendship graph. The proof of the anti-magicness 

of these families of sparse graphs is left as an open problem for future research.  
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The study of graph theory originated fromEuler’s work on the Königsberg Bridge

Problem in 1735. Nowadays graph theory is a topic of mathematics which is

quite popular. Graphs are capable of representing models of relations. Therefore,

graph theory has a huge range of applications in other topics of mathematics such

as geometry, number theory, linear algebra and topology.

1.2 Overview on this Dissertation

As a subtopic in graph theory, graph labeling is capable of modeling numerous

kinds of relations in real-life situations. Anti-magic labeling is among the most

famous graph labelings. Since 1990, much efforts have been made to find the

anti-magic labeling of graphs. We focus on finding anti-magic labelings of a

class of sparse graphs in this dissertation.

This dissertation consists of five chapters. In Chapter 1, we give the gen-

eral introduction, some basic definitions and notations that will be used in the

subsequent chapters.

A survey on graph labelings and the 1-2-3Conjecture are provided in Chap-
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ter 2. In Chapter 3, a brief introduction on graph decomposition is presented

together with some applications of graph labelings.

In Chapter 4, we prove that all multi-bridge graphs admit anti-magic label-

ing. In Chapter 5, we investigate the anti-magicness of another class of sparse

graph, denotedG(r, s)which is obtained from the multi-bridge graph and the ex-

tended friendship graph. We conjecture that G(r, s) is anti-magic for all natural

numbers r and s.

1.3 Preliminaries and Definitions

Some definitions and notations which will be used frequently all over this disser-

tation are presented in this section. We shall refer to West (2001) for all notations

and terminologies not explained in this dissertation.

A graph G is made up of a finite collection of vertex set V (G) and a finite

edge set E(G), where V (G) ̸= ∅. Note that the elements in V (G) and E(G) are

vertices and edges respectively. The order of G, denoted |V (G)|, is the number

of vertices of G. The size of G, denoted |E(G)|, is the number of edges of G.

Two vertices s and t of a graph G(V,E) are said to be adjacent if there is

an edge e connecting them, and the vertices s and t are then said to be incident to

e. An edge joining a vertex to itself is called a loop. Meanwhile, multiple edges

are edges connected to the same pair of endpoints. A graph that contains neither

loops nor multiple edges is called a simple graph.
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For any vertex t in a graph G(V,E), the neighborhood of t, denoted by

N(t), is the set of all vertices of G(V,E) adjacent to t. The degree of a vertex

t in a graph G, written as dG(t) or deg(t), is the number of edges incident to t.

The maximum of all dG(t) in a graph G, denoted ∆(G), is the maximum degree

of G.

A graphG(V,E) is edge-labeled if every edge inE(G) is labeled with one

positive real number. For any edge-labeled graph G(V,E), the vertex sum of a

vertex t ∈ V , denoted w(t), is the sum of labels of all edges incident to t.

A graph G is r-regular if dG(t) = r for any vertex t in G. Note that a

3-regular graph is also known as a cubic graph.

In a graph G, a walk of length m is a list of k edges of G arranged in the

form u0u1, u1u2, u2u3, ..., um−1 um. The walk is known as a trail if all the edges

of a walk are different. The walk is called the path withm vertices, denoted Pm,

if all the vertices and edges are different. Anm-cycle, denoted Cm, is a path with

m vertices and u1 = um.

An acyclic graph is a graph which does not contain any cycles. A graphH

where every pair of vertices are linked by a path in H is known as a connected

graph. Otherwise, we say H is disconnected.

A tree on m vertices is a connected acyclic graph. A tree with only one

vertex u having dG(u) ≥ 2 is called a spider.

A complete graph with m vertices, denoted Km is a simple graph where

any pair of vertices is exactly connected by one edge. A bipartite graph G is a
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graph where V(G) is decomposable into two disjoint subsets C and D in such a

way that each edge of the graph connects a vertex in C to a vertex inD. That is,

(i) V (G) = C
∪

D, C
∩
D = ∅

(ii) for all cd ∈ E(G), c ∈ C, d ∈ D or c ∈ D, d ∈ C

A bipartite graph with bipartition C and D is denoted by G(C,D). A bi-

partite graph in which each vertex in C is joined to each vertex in D by exactly

one edge is called a complete bipartite graph. If |C| = m and |D| = n, the

complete bipartite graph is denoted by Km,n. A star Sn is the graph K1,n. The

graph shown in Figure 1.1 is the Petersen graph. It was originated from a paper

written by J. Petersen in 1898.

Figure 1.1: The Petersen graph

Let n and m be two integers such that 1 ≤ m ≤ n − 1. The general-

ized Petersen graph, denoted by P (n,m) is a graph having vertex set {si, ti :

i = 0, 1, . . . , n − 1} and edge-set {sisi+1, siti, titi+n : i = 0, 1, . . . , n − 1 with

subscripts reduced modulo n}. P (5, 2) is the classical Petersen graph. Another

example of the generalized Petersen graph P (8, 3) is shown in Figure 1.2.

SupposeG(C,D) is a bipartite graph. A matching from C toD is a setM
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u0

u1

u2

u3

u4

u5

u6

u7

v0
v1

v2

v3
v4

v5

v6

v7

Figure 1.2: P (8, 3)

of independent edges. We call this particular matching M a complete matching

from C to D if every vertex in C is incident with an edge inM .

Suppose H is a graph. A graph J(V ′, E ′) is known as a subgraph of H

if V ′ ⊆ V and E ′ ⊆ E. We say that J is an induced subgraph of H if for two

vertices s, t ∈ V ′, (s, t) ∈ E ′ if and only if (s, t) ∈ E. Two graphs H and J

are isomorphic, written as H ∼= J , if there occurs a one-to-one correspondence

between V (H) and V (J) which preserves adjacency.

The join of two graphs H1 and H2, denoted by H1 + H2, is the graph

obtained from the disjoint union of H1 and H2 by connecting all vertices of H1

to all vertices of H2.

Let G J denote the Cartesian product of the graphs G and J which is

the graph having the vertex set V (G J) = V (G) × V (J), and the edge set

E(G J) = {(xp, yq)(xr, ys) | xp = xr and yqys ∈ E(G)

or yq = ys and xpxr ∈ E(J)}.

The Cartesian product of P3 with C4 is shown in Figure 1.3.
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P3:

C4:

P3 C4:

Figure 1.3: P3 C4

A graph J is the subdivision of a graph G if J is constructed from G by

performing a series of subdivisions on the edges of G.

The wheel with m vertices Wm is obtained by connecting all vertices of

Cm−1 where m ≥ 4 to a single vertex K1. That particular vertex K1 is known

as the hub of the wheel. The edges that are incident to the hub are known as the

spokes of the wheel, while the remaining edges are the rims of the wheel. A fan

graphK1 + Pm−1 can be composed from a wheelWn by deleting a rim edge.
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CHAPTER 2

GRAPH LABELINGS

2.1 Introduction

In this chapter, we briefly discuss about graph labelings and the 1-2-3Conjecture.

Unless otherwise stated, we suppose that the graphs mentioned throughout the

dissertation are connected and simple.

For graph labelings, we outline some important graph labelings such as

graceful labeling, magic labeling and anti-magic labeling. We shall also present

a brief survey on the 1-2-3 Conjecture, a conjecture which is popular and having

a relatively short history.

Suppose there is a graphG(V,E). A graph labeling is a process of assign-

ing numbers, most likely integers to V (G) or E(G), or both with certain con-

straints. We may trace back the origin of most of the graph labelings to Rosa’s

paper (1967), in which he introduced four valuations or labelings. The ρ-labeling,

σ-labeling, β-labeling and α-labeling.

First of all, the definition of ρ-labeling is given as follows.

Definition 2.1. Suppose |E(L)| = m. Let l be a one-to-one function that maps

V (L) to {0, 1, 2, . . . , 2m}. Suppose the edge labeling function l′ induced from l

satisfies the following conditions.

l′(st) =

 |l(s)− l(t)|, if |l(s)− l(t)| ≤ m

2m+ 1− |l(s)− l(t)|, if |l(s)− l(t)| > m

7



where st is an edge of L. Then l is called a ρ-labeling of L.

An example ofK5 which admits a ρ-labeling is shown in Figure 2.1.

13

1

1918

11

1

2

34

5 6

7 8

9

10

Figure 2.1: A ρ-labeling on K5

Next, we define σ-labeling which is a stronger version of ρ-labeling.

Definition 2.2. Suppose |E(L)| = m. Let l be a one-to-one function that maps

V (L) to {0, 1, 2, . . . , 2m}. Suppose the edge labeling function l′ induced from l

satisfies the following conditions.

l′(st) = |l(s)− l(t)|

where st is an edge of L and the edge values range over {1, 2, 3, . . . ,m}. Then

l is called a σ-labeling of L.

A σ-labeling on the complete graphK4 is shown in Figure 2.2.

4 7

3 9

1 2

3

45

6

Figure 2.2: A σ-labeling on K4

Next, we introduce β-labeling, a stronger version of σ-labeling.
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Definition 2.3. Suppose |E(L)| = m. A σ-labeling l of L is said to be a β-

labeling if the codomain of l changes into {0, 1, 2, . . . ,m}.

Figure 2.3 depicts an example of a tree with a β-labeling.

10

0 2 4 6 8

9 7 5 3 1

10
8 6 4

2

9 5 1 3 7

Figure 2.3: A β-labeling of a tree with 11 vertices

Finally, we have α-labeling, a stronger version of β-labeling.

Definition 2.4. Suppose |E(L)| = m. A beta-labeling l of G is also known as

an α-labeling of L, if there occurs a number ν ∈ N so that either

l(s) ≤ ν < l(t) or l(s) > ν ≥ l(t) for every edge st ∈ E(L).

Figure 2.4 depicts an example of a tree with an α-labeling.

6 5 4

0 1 2 3

6 5 4

3 2 1

Figure 2.4: An α-labeling of a tree with 7 vertices
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2.2 Graceful Labeling

Note that Golomb (1972) used the term graceful labeling to represent β-labeling.

The study of graceful labeling originated from the Graceful Tree Conjecture,

which is a conjecture proposed by Rosa in 1967.

Conjecture 2.1. (Rosa, 1967) All trees are graceful.

For example, Figure 2.5 illustrates a gracefully labeled complete graph

with 4 verticesK4.

0 6

1 4

6

1

4 5

3

2

Figure 2.5: An example of a gracefully labeledK4

Many mathematicians are interested in finding the graceful labeling of

other graphs. Golomb (1972) and Simmons (1974) proved the following the-

orem which is related to the gracefulness of complete graphs.

Theorem 2.1. The complete graph Km admits a graceful labeling if and only if

m ≤ 4.

For the gracefulness of complete bipartite graphs, both Rosa (1967) and

Golomb (1972) proved the theorem below.
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Theorem 2.2. The complete bipartite graph Kn,m admits a graceful labeling.

For example, Figure 2.6 depicts a gracefully labeled complete bipartite

graphK3,3.

1

2
3

4

5

6
7

8

9

3

6

9

2

1

0

Figure 2.6: An example of a gracefully labeledK3,3

In the same paper, Rosa (1967) determined a necessary and sufficient con-

dition for the cycle to have a graceful labeling.

Theorem 2.3. (Rosa, 1967) The i-cycle admits a graceful labeling if and only if

i ≡ 0 or 3 (mod 4).

Figure 2.7 illustrates a gracefully labeled cycle with 8 vertices.

Recall that wheels are one of the cycle-related graphs. Frucht (1979),

Hoede and Kuiper (1987) have studied the gracefulness of wheels.

Theorem 2.4. All wheels are graceful.

Figure 2.8 depicts a gracefully labeled wheel with 6 vertices.
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0

4

3

5

2

7

1

8

4 8

1 7

2 6

3 5

Figure 2.7: An example of a gracefully labeled C8

9

6

4

7

2

5
8

1 10

3

0

3

7

2

10

9

Figure 2.8: An example of a gracefully labeledW6

In the same paper, Frucht (1979) proved the following theorem.

Theorem 2.5. (Frucht, 1979) The Petersen graph is graceful.

Note that Conjecture 2.1 is also known as the Rosa-Kotzig-Ringel Conjec-

ture. In the last 50 years, many researchers in graph theory have put a lot of effort

in proving Conjecture 2.1 and some special classes of trees have been proved to

have graceful labeling. A leaf is a vertex u in a tree with dG(u) = 1. A caterpil-

lar is a subclass of tree where the deletion of all leaves yields a path. Note that a

path is also a subclass of caterpillars. Rosa (1967) proved the theorem below.

Theorem 2.6. (Rosa, 1967) Every caterpillar is graceful.

Figure 2.9 illustrates a gracefully labeled path with 7 vertices while Figure

12



2.10 shows a gracefully labeled caterpillar with 12 vertices.

6 0 5 1 4 2 3
6 5 4 3 2 1

Figure 2.9: An example of a gracefully labeled P7

11 2 8 4 5

0 1 9

10

3 7

6

11 10

9

7

8

6

5

4

3

2

1

Figure 2.10: An example of a gracefully labeled caterpillar with 12 vertices

Recall that a spider is a connected tree which contains only one vertex u

satisfying dG(u) ≥ 2. We shall denote that particular vertex having degree ex-

ceeding 2 by u∗. Bahls et al. (2010) proved that for any spider S, if the difference

in lengths of any path from u∗ to a leaf is not more than two for S, then S admits

a graceful labeling.

A banana tree is a tree constructed by connecting a new vertex u to one

leaf of each star from a collection of stars. Note that u is not in any of the stars.

Sethuraman and Jesintha (2009) proved the result below on banana trees.

Theorem 2.7. (Sethuraman and Jesintha, 2009) All banana trees admit graceful

labelings.
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Figure 2.11 illustrates an example of a gracefully labeled banana trees.

Recently, Gnang posted two manuscripts with a proof of Conjecture 2.1

(Gnang, 2018, 2022). However, we are uncertain of the correctness of the proofs

provided in these two manuscripts.

v

3

8 12 4

1 0 2

7 9 11 10 6 5

95 1

127 2

6 8 11 10 4 3

Figure 2.11: An example of a gracefully labeled banana tree with 13 vertices

For more references on graceful graphs, we refer the reader to Gallian

(2021). For some recent progresses on graceful graphs, we refer the reader to

Kotul’ová and Haviar (2020).

2.3 Magic Labeling

A magic square is an array of different positive integers arranged in the form of

a square grid in such a way that the sum of entries in each row, each column and

each diagonal equals to a constant. Sedláček (1963) introduced magic labeling

based on the concept of magic squares in number theory.

Now we have the definition of magic labeling.

14



Definition 2.5. Suppose G(V,E) is a graph. G is a magic graph if E(G) can

be labeled using different positive integers from N such that for any vertex u ∈

V (G), the vertex sum w(u) is the same.

Figure 2.12 illustrates an example on how to construct the magic labeling

of K3,3 based on a 3 × 3 magic square.

2 9 4
7 5 3
6 1 8

r3

r2

r1

c3c2c1 6

1
8

7

5

3
2

9

4
r3

r2

r1

c3

c2

c1

15

15

15

15

15

15

(i) (ii)

Figure 2.12: A 3 × 3 magic square and a magic labeling ofK3,3

Stewart (1966) have proved the magicness of complete graphs and com-

plete bipartite graphs in the following theorems.

Theorem 2.8. Kn is magic when n = 2 or n ≥ 5.

Theorem 2.9. Kn,n is magic when n ≥ 3.

For example, Figure 2.13 illustrates a magic labeling ofK5.

In the same paper, Stewart (1966) also proved the theorems below.

Theorem 2.10. A fan graph Pj−1 + K1 admits a magic labeling if and only if

j ≥ 3 and j is odd.
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27 3

20 40

1

24 8

2

17 13

62

62

62 62

62

Figure 2.13: An example of a magic labeling ofK5

Theorem 2.11. Wn is magic when n ≥ 4.

Figure 2.14 shows a magic labeling of a wheel which has 6 verticesW6 and

Figure 2.15 depicts an example of magic labeling of a fan which has 5 vertices

P4 + K1.

4 7

10 11

6

8

5 1

3 2

19

19

19

19 19

19

Figure 2.14: An example of a magic labeling ofW6

Meanwhile, Doob (1978) discovered a condition for regular graphs of large

degree to have a magic labeling in the theorem below.

Theorem 2.12. (Doob, 1978) Let H be a regular graph with degree c ≥ 5 and

m vertices. Then H admits a magic labeling if c > m/2.
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5
2

7

1
3

4
8

12

12

12

12

12

Figure 2.15: An example of a magic labeling of P4 + K1

LetH be a connected graph which has c vertices and d edges excluding P2.

Trenklér (2000) proved that the necessary and sufficient condition forH to admit

a magic labeling is 5c
4
< d ≤ c(c−1)

2
. For more references on magic graphs, we

refer the reader to Gallian (2021).

2.4 Anti-Magic Labeling

The definition of anti-magic labeling is given as follows.

Definition 2.6. Suppose G = (V,E) is a graph with p edges. G admits an anti-

magic labeling ifE(G) can be labeled with different integers from {1, 2, 3, . . . , p}

so that the vertex sums of all vertices are different.

An anti-magic labeling onK3,3 is shown in Figure 2.16.

The concept of anti-magic graphs is introduced in the book written by

Hartsfield and Ringel (1994). In the same book, they proposed the following

conjectures.
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Figure 2.16: An anti-magic labeling onK3,3

Conjecture 2.2. (Hartsfield and Ringel 1994)

Every connected graphs excludingK2 is anti-magic.

Conjecture 2.3. (Hartsfield and Ringel 1994)

Every tree excluding K2 admits an anti-magic labeling.

Subsequently, many researchers in graph theory focus on solving the prob-

lem of deciding which graphs are anti-magic. However, the conjectures remain

unsettled.

A connected graph H is dense if |E(H)| = Θ(n2). The following result

of Alon et al. (2004) is the most important progress of Conjecture 2.2.

Theorem 2.13. All dense graphs are anti-magic.

Precisely, they proved that there exists an absolute constant d such that

all graphs on m vertices with minimum degree at least d log m are anti-magic.

Besides that, they also proved the theorem below.

Theorem 2.14. Complete partite graphs but K2 admit anti-magic labelings.
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Hartsfield and Ringel (1994) proved the anti-magicness of two general

classes of graphs in the following theorems.

Theorem 2.15. (Hartsfield and Ringel, 1994) All paths are anti-magic.

Theorem 2.16. (Hartsfield and Ringel, 1994) All wheels are anti-magic.

For example, Figure 2.17 shows an anti-magic labeling of P7 and Figure

2.18 shows an anti-magic labeling ofW6.

6 11 9 7 5 3 1
6 5 4 3 2 1

Figure 2.17: An example of P7 which admits an anti-magic labeling

1 3

2 5

4

7

6 8

9 10

40

11

9

17 19

16

Figure 2.18: An example of an anti-magic labeling onW6

By confining the attention on regular graphs, the situation turns out to be a

lot more delightful. Recall that cycles are 2-regular. Hartsfield and Ringel (1994)

proved the following theorem.
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Theorem 2.17. Cycles are anti-magic.

For example, Figure 2.19 shows an anti-magic labeling of C6.

1

2

4

3

5

6

4

3

6

10

11

8

Figure 2.19: An example of a cycle which has 6 vertices C6 which admits an
anti-magic labeling

A graph J is regular bipartite if J is both regular and bipartite.

Lemma 2.1. (Kőnig-Hall Theorem)

SupposeG(S, T ) is a bipartite graph, and for each subsetC of S, letN(C)

be the set of vertices of T that are adjacent to at least one vertex of C. A complete

matching from S to T exists if and only if |C| ≤ |N(C)| for subset C of S.

Using Lemma 2.1, it is not difficult to derive that every r-regular bipar-

tite graph G(S, T ) can be decomposed into r complete matchings from S to T .

By altering the way to combine these complete matchings in G(S, T ), Cranston

(2009) proved the theorem below.

Theorem 2.18. (Cranston, 2009) Every regular bipartite graph where its degree

≥ 2 admits an anti-magic labeling.

For k-regular graphs, Liang and Zhu (2014) proved the following theorem

for the case k = 3.
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Theorem 2.19. (Liang and Zhu, 2014) All cubic graphs are anti-magic.

Figure 2.20 depicts an example of an anti-magic labeling of a 3-regular

graph which has 6 vertices.

71

2

3

4

6

5

8

9

12 24

9 19

8 18

Figure 2.20: An anti-magic labeling of 3-regular graph which has 6 vertices

Cranston et al. (2015) proved the theorem below.

Theorem 2.20. (Cranston et al., 2015) All regular graphs which have odd degree

admit anti-magic labelings.

Chang et al. (2016) extended the result using the same general idea to

verify the anti-magicness of regular graphs with even degree. Meanwhile, Bérczi

et al. (2015) also proved the following theorem by changing the argument used

in Cranston et al. (2015) .

Theorem 2.21. All regular graphs with even degree are anti-magic.

Figure 2.21 depicts an example of an anti-magic labeling of a 4-regular

graph which has 6 vertices.

For more details on the definition of rooted tree, we refer the reader to An-

ick (2016). In an attempt to solve Conjecture 2.3, Kaplan et al. (2009) introduced

21
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5 7
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26

18 38

27

33

Figure 2.21: An anti-magic labeling of a 4-regular graph which has 6 vertices

a subclass of trees.

Definition 2.7. In any tree, if a vertex b instantly precedes vertex c on the path

from the root to c, then b is a parent of c and c is a child of b.

Definition 2.8. A vertex b is called a descendant of another vertex c (and c is

called an ancestor of b), if c is on the unique path from the root to b.

Recall that a leaf is a vertex u in a tree with dG(u) = 1. In a rooted tree, a

leaf is any vertex without any children. Figure 2.22 shows an example of a rooted

tree with 8 vertices.

a

s tu v

e f g

Figure 2.22: An example of a rooted tree with 8 vertices

In Figure 2.22, if the vertex a is the root of the tree, then the vertices u,

s, t and v are the children of a. Besides that, the vertices e, f and g are the

descendants of a. Note that s, t, e, f and g are the leaves of the tree.
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Definition 2.9. A 2-tree T is a rooted tree, where every vertex u ∈ V (T ) which

is not a leaf is connected to at least two leaves in T .

After defining 2-tree, Kaplan et al. (2009) proved the theorem below.

Theorem 2.22. Every 2-tree T (V,E) which satisfies |V | = n and n ≥ 2 is

anti-magic.

Liang et al. (2014) corrected an error in the proof of the above result.

Figure 2.23 illustrates an example of a 2-treewhich admits an anti-magic labeling.

4
6 3

1

2 5 7

14

6 311 8

2 5 7

Figure 2.23: An example of a 2-tree with 8 vertices which admits an anti-magic
labeling

Define Vi(T ) as the set of vertices of T with dT (v) = i for any tree T . In

the same paper, Liang et al. (2014) introduced another subclass of trees T ∗ and

determined a condition for T ∗ to be anti-magic.

Definition 2.10. For any tree T , a tree T ∗ is constructed from T by subdividing

every edge of T only once.

Theorem 2.23. Suppose T is a tree with V2(T ) = ∅ and T admits an anti-magic

labeling. Then T ∗ also admits an anti-magic labeling.
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For example, Figure 2.24 depicts two anti-magic labelings of T ∗ and its

corresponding T .

1
2 3

4

5 6

10

2 31 15

5 6

T

8
9 10

11

1 7 3 4

12 6

5 2

38

16 139 15

7 31 22

17 8

5 6

T ∗

Figure 2.24: Anti-magic labelings on T ∗ and its corresponding T

Besides that, Liang et al. (2014) also proved the theorem below.

Theorem 2.24. Let T be a tree. If V2(T ) induces a path and the vertex degrees

of all other vertices of T are odd. Then T admits an anti-magic labeling.

Recently, Lozano et al. (2022) extended Theorem 2.24 in Liang et al.

(2014) by showing that trees whose V2i(T ) induce a path are anti-magic.

Recall that a spider is a subclass of tree. Shang (2015) proved the following

theorem.

Theorem 2.25. Every spider is anti-magic.

Recall that a star is the graph K1,n. A star forest, denoted by ∪r
i=1K1,ki is

a graph containing r number of disjoint stars. Note that ki represents the number
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of vertices of each star. Shang et al. (2015) investigated the anti-magicness of

star forests.

Theorem 2.26. A star forest∪r
i=1K1,ki with k1 ≥ 2 and ki ≥ 3 for i = 2, 3, . . . , r

where r ≥ 2 is anti-magic.

A double spider is a tree which has exactly two vertices s and t, where

deg(s) ≥ 2 and deg(t) ≥ 2. Chang et al. (2020) proved the theorem below.

Theorem 2.27. Every double spider is anti-magic.

Recall that a caterpillar is a subclass of tree where the deletion of all leaves

yields a path. Deng and Li (2019) proved the theorem below.

Theorem 2.28. (Deng and Li, 2019) All caterpillars with maximum degree 3 are

anti-magic.

Lozano et al. (2019) determined sufficient conditions for a caterpillar to

admit an anti-magic labeling. Recently, Lozano et al. (2021) extended the pre-

vious results on the anti-magicness of caterpillars.

Theorem 2.29. Caterpillars are anti-magic.

Recall thatH J represents the Cartesian product of two graphsH and J .

Some research has been carried out on the anti-magicness of Cartesian products.

The Cartesian products of two cycles is known as a toroidal graph, written as Cm

Cn. Wang (2005) proved the following theorem related to torodial graphs.
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Theorem 2.30. (Wang, 2005) Toroidal graphs admit anti-magic labelings.

The Cartesian products of two paths are called lattice grids and the Carte-

sian products of a cycle and a path are called the prisms. Cheng (2007) studied

the anti-magicness of lattice grids and prisms and proved the following theorems.

Theorem 2.31. (Cheng, 2007) Lattice grids Pm+1 Pn+1 admit anti-magic la-

belings for all integers m,n ≥ 1.

Theorem 2.32. (Cheng, 2007) Prism graphs Cm Pn+1 admit anti-magic la-

belings for all integers m ≥ 3 and n ≥ 1.

Figure 2.25 illustrates an example of an anti-magic labeling on P3 P3.

1 11 3

2 12 4

5 7

6 8

10

9

6 23 10

13 42 16

8 26 12

Figure 2.25: An example of an anti-magic labeling admitted on P3 P3

Wang and Hsiao (2008) defined a generalized prism grid graph as the

Cartesian product of a k-regular graph and a path and a generalized toroidal grid

graph as the Cartesian product of a cycle and a k-regular graph. They proved the

theorem below.

Theorem 2.33. (Wang and Hsiao, 2008)Generalized prism grid graphs and gen-

eralized toroidal grid graphs admit anti-magic labelings.
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Based on Theorem 2.30, Cheng (2008) proved that the Cartesian products

of two or more regular graphs admit anti-magic labelings.

Theorem 2.34. All Cartesian products of two or more regular graphs admit anti-

magic labelings.

By combining the results in Wang and Hsiao (2008) and Cheng (2008),

Zhang and Sun (2009) have proved the anti-magicness of the Cartesian products

of a connected graph and an anti-magic k-regular graph.

Theorem 2.35. Suppose H is an anti-magic k-regular graph and G is a con-

nected graph. The Cartesian product of H G is anti-magic.

Moreover, Liang and Zhu (2013) extended the above result to the follow-

ing.

Theorem 2.36. Let J be a k-regular graph and G be a connected graph. The

Cartesian product of J G admits an anti-magic labeling.

Wang and Zhang (2012) investigated the anti-magicness of the generalized

Petersen graphs.

Theorem 2.37. All generalized Petersen graphs are anti-magic.

For a bipartite graph G(S, T ), G is said to be (k, k′)-biregular, if each

vertex in S has the degree k, while each vertex in T has the degree k′. Deng and

Li (2020) have proved the anti-magicness of some biregular bipartite graphs.
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Theorem 2.38. Each (k, k2 + y)-biregular bipartite graph is anti-magic for all

integers k ≥ 3 and y ≥ 1.

For more references on anti-magic graphs, we refer the reader to Gallian

(2021). For some recent progresses on anti-magic graphs, we refer the reader to

Simanjuntak et al. (2021).

2.5 The 1-2-3 Conjecture

In 2004, Karoński, Łuczak and Thomason proposed a well-known conjecture

which is called the 1-2-3 Conjecture (Karoński et al., 2004).

Conjecture 2.4. (1-2-3 Conjecture)

For any connected graph G which is not isomorphic to K2, there exists a

way to label the edges of G using the numbers from {1, 2, 3} in such a way that

for any two adjacent vertices s and t, w(s) ̸= w(t).

The figure below illustrates the 1-2-3 Conjecture for the cycle C6.

1

2

3

1

2

3

2

3

5

6

5

3

Figure 2.26: The 1-2-3 Conjecture is true for C6

The following are some definitions for rewriting the 1-2-3 Conjecture in a

more concise way.

28



Definition 2.11. SupposeG(V,E) is a simple graph. A l-edge-weighting ofG is

a mapping h : E(G) → 1, 2, . . . , l.

Definition 2.12. An edge-weighting h of a graph H induces a vertex coloring

fw : V (H) → N defined by fw(v) =
∑

v∈e w(e). If fw(s) ̸= fw(t) for any edge

st, then this coloring is a proper vertex-coloring.

Denote by µ(H) the minimum value of l so that a graphH obtains a proper

vertex-coloring l-edge-weighting. For any graphH , if there is no connected com-

ponent isomorphic to K2 in H , then H is nice. Thus, the 1-2-3 Conjecture can

be rewritten as follows.

Conjecture 2.4. (1-2-3 Conjecture)

µ(H) ≤ 3, where H is any nice graph.

µ(H) ≤ 3 is the best possible in general. For example, if H is a cycle

having length not divisble by 4, then µ(H) ̸= 2. Therefore, researchers tend to

improve the general upper bounds onµ(H). Addario-Berry et al. (2007) obtained

the first general upper bound in the theorem below.

Theorem 2.39. µ(H) ≤ 30.

Next, the result was improved to µ(H) ≤ 16 by Addario-Berry, Dalal and

Reed (2008) and then to µ(H) ≤ 13 by Wang and Yu (2008). A significant

improvement is made by Kalkowski, Karoński and Pfender (2010) which greatly

decreases µ(H).

Theorem 2.40. µ(H) ≤ 5.
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Recently, Keusch (2022) improved the general upper bound again in the

theorem below.

Theorem 2.41. (Keusch, 2022) µ(H) ≤ 4.

Chang et al. (2011) proved thatµ(H) ≤ 2 ifH is a bipartite r-regular graph

for r ≥ 3. Lu et al. (2011) proved that for any nice graph H which is bipartite

and 3-connected, µ(H) ≤ 2. Then, Davoodi and Omooni (2015) proved that

if Conjecture 2.4 holds for two graphs H and G, then it also holds for H G.

Khatirinejad et al. (2012) proved that µ(H) ≤ 2 for any graphH containing only

cycles of length divisible by 4.

Przybyło (2021) studied on the µ(H) of r-regular graphs and proved the

following theorems.

Theorem 2.42. (Przybyło, 2021) For every k-regular graphs H , µ(H) ≤ 4.

Theorem 2.43. For every k-regular graphs H , µ(H) ≤ 3 if k ≥ 108.

Meanwhile, Bensmail et al. (2017) related Conjecture 2.4 to the anti-magic

labeling of graphs. To get further details on Conjecture 2.4 and its related prob-

lems, we suggest the reader to refer the paper written by Seamone (2012).
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CHAPTER 3

APPLICATIONS OF GRAPH LABELINGS

3.1 Introduction

The study of graph decompositions can be traced back from Euler’s work on

Latin squaresmore than two hundred years ago. A Latin square of orderm is an

m ×m array ofm unique symbols such that each symbol appears once in every

row and column. A transversal of an m × m Latin square is a set of m distinct

entries no two of which occur in same row or column. Euler initiated the study of

transversals in Latin squares. In fact, the study of transversals equals to a graph

decomposition problem. For a graph H = (V,E), can we partition E(H) into

disjoint copies of another graph J?

3.2 Graph decomposition

A decomposition of a graph L = (V,E) is a set of subgraphs {G1, G2, . . . , Gs}

whose edge sets (E1, E2, . . . , Es) is a partition of E(L). For example, the figure

below shows a decomposition ofK6 into three different subgraphs.
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v6
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v2

v3

v4

v5

G3

v2

v3

v4

Figure 3.1: Decomposition ofK6 into G1, G2 and G3

We say that a graphL contains aG-decomposition ifL has a decomposition

{G1, G2, . . . , Gs} and each graphGj is isomorphic toG, for any 1 ≤ j ≤ s. The

G-decomposition of L is called a cycle-decomposition of L if G is a cycle. For

example, the figure below shows a cycle-decomposition ofK5.

The G-decomposition of L is called a tree-decomposition (respectively

path-decomposition) of L if G is a tree (respectively path). In 1847, Krikman

investigated the decompositions of the complete graphs Ks and proved that Ks

contains a G-decomposition {G1, G2, . . . , G2s−1} where each subgraph is iso-

morphic to a triangle if and only if s ≡ 1 or 3 (mod 6). Since then, the decom-

position of Ks gathered the main interest of mathematicians. Tarsi (1983) has

completely solved the path-decomposition of Ks. For cycle-decomposition of

Ks, Alspach and Gavlas (2001) has solved it for the odd values of s and Sajna
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K5

G1 G2

Figure 3.2: Cycle-decomposition ofK5

(2002) has solved it for the even values of s. Meanwhile for star-decomposition

of Ks, Yamamoto et al. (1975) and Tarsi (1979) have completely solved the

problem independently. However, the tree-decomposition ofKs is still open.

Concerning the tree-decomposition ofKs, Ringel (1963) proposed the fol-

lowing famous conjecture in the Smolenice symposium.

Conjecture 3.1. (Ringel’s Conjecture 1963)

The complete graph K2s−1 is decomposable into 2s − 1 copies of trees T

which has s vertices.

The figure below shows an example of Ringel’s Conjecture with s = 4.

Given the complete graph Ks, we label V (Ks) using the non-negative in-
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0 3 1 2

1 4 2 3

2 5 3 4

3 6 4 5

4 0 5 6

5 1 6 0

6 2 0 1

Figure 3.3: T -decomposition of K7

tegers {0, 1, 2, . . . , s − 1}. Let ij ∈ E(Ks). A turning of the edge ij happens

when both labels of ij increase by one, i.e. the edge (i + 1)(j + 1), where the

addition is taken modulo s. A turning of a subgraphH ofKs is the simultaneous

turning of all the edges in H . We say that a decomposition of Ks is cyclic when

the following condition satisfies.

If the decomposition consists of a graphG, then it also consists of the graph

G′ constructed by turning G.

Based on the concept of cyclic decomposition, Kotzig (1965) proposed

another conjecture which is considered a stronger version of Ringel’s conjecture.

Conjecture 3.2. (Kotzig’s Conjecture 1965)

If S is any tree which has s vertices, then the complete graph K2s−1 is

cyclically decomposable into 2s− 1 copies of S.
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Clearly Conjecture 3.2 is the stronger version of Conjecture 3.1. Recall

that Rosa (1967) introduced four types of valuations and proposed the Graceful

Tree Conjecture. In fact, the notion of graceful labeling is an approach used to

tackle both Conjecture 3.2 and Conjecture 3.1. In the same paper (Rosa, 1967),

Rosa proved the important theorem below.

Theorem 3.1. (Rosa 1967)

If a tree S admits a graceful labeling, thenK2s−1 is cyclically decomposed

into 2s− 1 copies of S.

The significance of Theorem 3.1 is that wemay perform the tree-decompos-

ition for complete graphs if we can find the graceful labelings of all trees. In other

words, Ringel’s Conjecture, Kotzig’s Conjecture and the Graceful Tree Conjec-

ture are highly related. Montgomery et al. (2021) proved Ringel’s conjecture

when the size of the graph is sufficiently large. Meanwhile, Barrientos and Min-

ion (2016) found a way to decrease the number of trees that needed for the in-

vestigation on proving Kotzig’s Conjecture. Barrientos andMinion (2019) found

the method to perform cyclic decomposition for a few subfamilies of trees.

Using an example, we wish to elaborate the relationship between the grace-

ful labeling of a tree and the cyclic decomposition of complete graphs. Suppose

T is a tree which contains 4 vertices with a graceful labeling as shown in Figure

3.4.

T

0 3 1 2

Figure 3.4: T with graceful labeling
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We wish to pack T in Figure 3.4 into a complete graphK7 cyclically. Take

7 vertices 0, 1, 2, ..., 6 and place them in the form of a cyele. Then place T as

shown in Figure 3.4 according to the labels on its vertices to get Figure 3.5 (a).

By rotating T cyclically once, we obtain the second copy of T as illustrated in

Figure 3.5 (b). Continue the cyclic rotation in this way until all vertices have

been covered by rotation and we obtain the tree decomposition of T depicted in

Figure 3.3.

(a)

0

1

2

34

5

6

(b)

0

1

2

34

5

6

Figure 3.5: Cyclic T -decomposition of K7

3.3 Application in graph decomposition

In this section, we show that graph labeling can also be applied in (H, J)- de-

composition, whenH is a tree. The definition of (H, J)- decomposition is given

below followed by an example of a (P4, C3)-decomposition.

Definition 3.1. We say that a graph L contains a (H, J)-decomposition if L has

a decomposition {H1, H2, . . . , Hs} and for each k, 1 ≤ k ≤ s,Hk is isomorphic
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to either a graphH or a graph J in such a way that there exist at least one i and

at least one j in such a way that 1 ≤ i < j ≤ s with Hi isomorphic to H and Jj

isomorphic to J .

K6

P4

C3

Figure 3.6: (P4, C3)-decomposition ofK6

Sethuraman and Murugan (2021) proved the following theorem.

Theorem 3.2. (Sethuraman and Murugan 2021)

Suppose L is a path or a star with n vertices. The complete graph K4n−3

is decomposable into 4n − 3 copies of a random tree which has n vertices and

4n− 3 copies of graph L.

In order to achieve the result, they introduced δ-labeling.

Definition 3.2. Suppose |E(L)| = m. Let l be a one-to-one function that maps

V (L) to {0, 1, 2, . . . , 4m}. Suppose the edge labeling function l′ induced from l

satisfies the following condition.
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l′(st) = min{|l(s)− l(t)|, 4m+ 1− |l(s)− l(t)|},

where st is an edge of L and the edge values range over {1, 2, 3, . . . , 2m}. Then

l is known as a δ-labeling of L.

Figure 3.7 depicts a δ-labeling of a cycle with 6 vertices C6 and Figure 3.8

depicts an example of a δ-labeling of a tree with 7 vertices.

2

3

4

5

10

1

1 3

6

1015

0

Figure 3.7: A δ-labeling of C6

0

19 18 17

10 7 5

76 8

119 12

Figure 3.8: A δ-labeling of a tree with 7 vertices

Recall that in a ρ-labeling of a graph H , the numbers used to label the

vertex set V (H) range over {0, 1, 2, . . . , 2m} and the edge values range over

{1, 2, 3, . . . ,m}. Therefore, δ-labeling is also a weaker version of ρ-labeling.

Based on Definition 3.2, Sethuraman and Murugan (2021) introduced two graph

ρ−-labeling pair. For more information on this concept, we refer the reader to

Sethuraman and Murugan (2021).
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Suppose H and J are graphs where both of them admit δ-labeling. Using

the concept of two graph ρ−-labeling pair, Sethuraman and Murugan has shown

a way to joinH and J into a graphH ∪ J which admits ρ-labeling. LetH be C6

and J be a tree with 7 vertices. Figure 3.9 shows an example of H ∪ J .

0

19

10

18 7

17 515

1

3

6

1

2
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6

9

10

5

7 11

8

12

G H

Figure 3.9: A ρ-labeling of H ∪ J

SinceH ∪ J admits ρ-labeling, by Theorem 3.1, Sethuraman andMurugan

found that the complete graph K4m+1 is cyclically decomposable into 4m + 1

copies ofH ∪ J . As H ∪ J can be naturally decomposed into the graphsH and

J , they proved the theorem below.

Theorem 3.3. (Sethuraman and Murugan 2021)

Suppose H and J are two graphs which contain n edges respectively and

both of them admit two graph ρ−-labeling pair. The complete graph K4n+1 is

decomposable into 4n+ 1 copies of H and 4n+ 1 copies of J .

Based on Theorem 3.3, they proved another theorem.

Theorem 3.4. (Sethuraman and Murugan 2021)

LetH be a graph which has n edges andH admits a δ-labeling. Suppose J

is either the star Sn or the path Pn. The complete graphK4n+1 is decomposable

into 4n+ 1 copies of H and 4n+ 1 copies of J .
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Theorem 3.4 is a special case of Theorem 3.3 by restricting the graph J to

be a path or star. For example, Figure 3.10 shows a δ-labeling of a path with 7

vertices P7. Let H be C6 and J be P7. Figure 3.11 shows an example of H ∪ J .

0 6 24 7 23 9 22
6 7 8 9 11 12

Figure 3.10: A δ-labeling of P7

10

1

2

3

4

5

6 7 8 9 11 12

15

0

1 3

6

10

24 7 23 9 22

Figure 3.11: A ρ-labeling of C6 ∪ P7

In order to apply Theorem 3.3 by restricting the graphH to be a tree, they

proved the theorem below.

Theorem 3.5. (Sethuraman and Murugan 2021)

Every tree admits a δ-labeling.

For example, the figure below shows a δ-labeling of a tree graph with 14

vertices.
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Figure 3.12: δ-labeling of a graph with 14 vertices

Based on Theorems 3.3, 3.4 and 3.5, they have successfully proved Theo-

rem 3.2.
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CHAPTER 4

ANTI-MAGICNESS OF MULTI-BRIDGE GRAPHS

4.1 Introduction

Recall that a regular graph of degree r is a graph G, where every vertex in G has

the same vertex degree r. In this chapter, we focus on studying the anti-magicness

of multi-bridge graphs, a class of graphs which are close to being regular. The

definition of multi-bridge graph is given as follows.

Definition 4.1. Consider a graph with only two vertices and having r multiple

edges joining them, r ≥ 3. Subdivide the edges of this graph arbitrarily so that

at most one edge is not subdivided. Call the result graph an r-bridge graph and

denote it by θ(m1,m2, . . . ,mr) if the lengths of the paths are m1,m2, . . . ,mr

respectively.

The main purpose of this chapter is to prove the following result.

Theorem 4.1. Every r-bridge graph is anti-magic.

4.2 The proof of Theorem 4.1

Throughout this section, we shall assume that in the graph θ(m1,m2, . . . ,mr),

the path lengths satisfy the condition m1 ≥ m2 ≥ · · · ≥ mr. Also, we shall call

the paths in θ(m1,m2, . . . ,mr) the mi-path, i = 1, 2, . . . , r.
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Let x and y denote the two vertices of degree r in θ(m1,m2, . . . ,mr) and

let w(x), w(y) denote the vertex sums of x, y respectively.

The proof is divided into three cases.

Case I: r = 3k.

Suppose k = 1.

The labelings depicted in Figure 4.1 show that if m1 ≤ 2, the 3-bridge

graph is anti-magic. Hence we assume that m1 ≥ 3.

1

2

3

4

5

6

1

3

2

5

4

x y x y

Figure 4.1: Anti-magic labelings where m1 = 2.

Subcase I.1: m1 +m2 +m3 is odd.

Let φ0 denote the following edge labeling on the 3-bridge graph.

(i) Label the edges of the m1-path with 1, 2, . . . ,m1 successively starting

from the vertex x.

(ii) Label the edges of the m3-path with m1 + 1,m1 + 2, . . . ,m1 + m3

successively starting from the vertex y.

(iii) Label the edges of them2-pathwithm1+m3+1,m1+m3+2, . . . ,m1+

m3 +m2 successively starting from the vertex x.

Figure 4.2(i) illustrates the case (m1,m2,m3) = (5, 4, 2).

Note that the vertex sums of the degree-2 vertices include distinct odd nat-

ural numbers and that the vertex sums of x and y are both even and are given by

w(x) = 2(m1 +m3 + 1) and w(y) = 2m1 +m1 +m2 +m3 + 1 respectively.

This shows that φ0 is an anti-magic labeling of the 3-bridge graph.

Subcase I.2: m1 +m2 +m3 is even.

In this case, an anti-magic labeling is acquired by swapping the labelsm1−
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(i) (ii)

x y x y

1 5

2 3 4

8 9 10 11

7 6

1 4

2 3 5

7

68

9 10 11 12

Figure 4.2: Two anti-magic labelings on 3-bridges.

1,m1 (on the last two edges of them1-path) from the anti-magic labelingφ0 given

in Case I. Note that there are only three vertices whose vertex-sums are even,

namely x, y and the second last vertex on them1-path. Since the vertex-sums are

2(m1+m3+1), 2m1+m1+m2+m3 and 2m1−2 respectively, they are distinct

natural numbers.

The vertex-sums of the rest of the vertices are distinct odd natural numbers.

Figure 4.2(ii) illustrates the case (m1,m2,m3) = (5, 4, 3).

Now suppose k ≥ 2.

For each i = 1, 2, . . . , k, let Hi denote the 3-bridge subgraph induced by

the m3i−2-path, m3i−1-path and the m3i-path.

Define p0 = 0 and pi = pi−1 +m3i−2 +m3i−1 +m3i for i ≥ 1.

For each i = 1, 2, . . . , k, label the edges of Hi so that

(i) the edges of them3i−2-path receive the labels pi−1+1, pi−1+2, . . . , pi−1+

m3i−2 successively staring from the vertex x,

(ii) and then label the edges of them3i-path with pi−1 +m3i−2 + 1, pi−1 +

m3i−2 + 2, . . . , pi−1 +m3i−2 +m3i successively starting from the vertex y.

(iii) Finally, label the edges of the m3i−1-path with pi−1 +m3i−2 +m3i +

1, pi−1 + m3i−2 + m3i + 2, . . . , pi−1 + m3i−2 + m3i + m3i−1 starting from the

vertex x.

Figure 4.3 illustrates the cases (m1,m2, . . . ,m6) = (6, 6, 5, 4, 3, 2) and

(m1,m2, . . . ,m6) = (2, 2, . . . , 2).

It is routine to check that the vertex sums of x and y are given by
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x y x y
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Figure 4.3: Two anti-magic labelings on 6-bridges.

w(x) = 2k + 2pk − 2
∑k

i=1
m3i−1 + 3

∑k−1

i=1
pi

and

w(y) = k + pk + 2
∑k

i=1
m3i−2 + 3

∑k−1

i=1
pi.

respectively.

Also, note that the vertex sums of degree-2 vertices consist of odd distinct

natural numbers and are less than either of w(x) and w(y).

This completes the proof for Case I.

Case II: r = 3k + 1.

Suppose k = 1.

Subcase II.1: Not all paths have the same length.

Let φ1 denote the following edge labeling on the 4-bridge graph.

(i) Label the edges of the m1-path with 1, 2, . . . ,m1 successively starting

from the vertex x.

(ii) Label the edges of the m2-path with m1 + 1,m1 + 2, . . . ,m1 + m2

successively starting from the vertex x.

(iii) Label the edges of them3-pathwithm1+m2+1,m1+m2+2, . . . ,m1+

m2 +m3 successively starting from the vertex y.

(iv) Label the edges of the m4-path with m1 +m2 +m3 + 1,m1 +m2 +

m3 + 2, . . . ,m1 +m2 +m3 +m4 successively starting from the vertex y.

Figure 4.4(i) illustrates the case (m1,m2,m3,m4) = (5, 4, 3, 2).
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Figure 4.4: Two anti-magic labelings on 4-bridges.

Note that the vertex sums w(x) and w(y) of x and y are given by 3m1 +

2m2+2m3+m4+2 and 4m1+3m2+m3+2 respectively. Note that the vertex

sums of the degree-2 vertices include distinct natural odd numbers and they are

all less than either of w(x) and w(y).

This means that φ1 is an anti-magic labeling of the 4-bridge.

Subcase II.2: All paths have the same length m.

In this case, an anti-magic labeling is obtained by labeling the edges of the

i-th path with the labels (i − 1)m + 1, (i − 1)m + 2, . . . , im successively all

starting from x to y. In this case w(x) = 6m + 4 and w(y) = 10m. The rest of

the vertex sums consist of distinct odd natural numbers.

Figure 4.4(ii) illustrates the case m = 3.
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4
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10
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14

Figure 4.5: Two anti-magic labelings on 7-bridges.

Now suppose k ≥ 2.
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LetH1 denote the 4-bridge subgraph induced by themj-path, j = 1, 2, 3, 4.

Also, for each i = 2, . . . , k, let Hi denote the 3-bridge subgraph induced by the

m3i−1-path, m3i-path and the m3i+1-path.

Define p0 = 0 , p1 = m1+m2+m3+m4 and pi = pi−1+m3i−1+m3i+

m3i+1 for i ≥ 2.

Label H1 using φ1 first. Then for each i = 2, . . . , k, label the edges of Hi

so that

(i) the edges of them3i−1-path receive the labels pi−1+1, pi−1+2, . . . , pi−1+

m3i−1 successively starting from the vertex x, and

(ii) label the edges of them3i+1-path with pi−1+m3i−1+1, pi−1+m3i−1+

2, . . . , pi−1 +m3i−1 +m3i+1 successively starting from the vertex y.

(iii) Finally, label the edges of the m3i-path with pi−1 +m3i−1 +m3i+1 +

1, pi−1 +m3i−1 +m3i+1 + 2, . . . , pi−1 +m3i−1 +m3i+1 +m3i starting from the

vertex x.

Figure 4.5 illustrates the cases (m1,m2, . . . ,m7) = (6, 5, 4, 3, 3, 3, 2) and

(m1,m2, . . . ,m7) = (2, 2, . . . , 2).

It is routine to check that the vertex sums of x and y are given by

w(x) = 2pk + 2k +m1 −m4 +
∑k

i=2
(3pi−1 − 2m3i)

and

w(y) = k + 1 + 4m1 + 3m2 +m3 + 2(p1 − pk) +
∑k

i=2
(3pi + 2m3i−1)

respectively.

Also, note that the vertex sums of the degree-2 vertices consist of distinct

odd natural numbers each of which is less than either of w(x) and w(y).

This completes the proof for Case II.

Case III: r = 3k + 2.

Suppose k = 1.

Let φ2 denote the following edge labeling on the 5-bridge graph.

(i) Label the edges of the m1-path with 1, 2, . . . ,m1 successively starting

47



from the vertex x.

(ii) Label the edges of the m2-path with m1 + 1,m1 + 2, . . . ,m1 + m2

successively starting from the vertex y.

(iii) For each i ∈ {3, 4, 5}, label the edges of themi-path with qi + 1, qi +

2, . . . , qi + mi successively all starting from x to y. Here q3 = m1 + m2 and

qj = qj−1 +mj−1 for j ∈ {4, 5}.

Figure 4.6 illustrates the case (m1,m2,m3,m4,m5) = (6, 5, 4, 3, 2).

Note that the vertex sums of x and y are given by w(x) = 4(m1 +m2) +

2m3 +m4 + 4 and w(y) = 5m1 + 3(m2 +m3) + 2m4 +m5 + 1 respectively.

Clearly the vertex sums of the degree-2 vertices inφ2 consist of odd distinct

natural numbers and each is less than either of w(x) and w(y).

Hence φ2 is an anti-magic labeling of the 5-bridge.

x y

1

2 3 4 5

67
8910

11

12 13 14 15

16 17 18

19 20

Figure 4.6: Anti-magic labeling of a 5-bridge.

Now suppose k ≥ 2.

LetH1 denote the 5-bridge induced by themj-path, j = 1, 2, . . . , 5. Also,

for each i = 2, . . . , k, let Hi denote the 3-bridge subgraph induced by the m3i-

path, m3i+1-path and the m3i+2-path.

Define p0 = 0 , p1 = m1 +m2 + · · ·+m5 and pi = pi−1 +m3i +m3i+1 +

m3i+2 for i ≥ 2.

Label H1 using φ2 first. Then for each i = 2, . . . , k, label the edges of Hi

so that

(i) the edges of them3i-path receive the labels pi−1+1, pi−1+2, . . . , pi−1+

m3i successively starting from the vertex x, and
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(ii) label the edges of the m3i+2-path with pi−1 + m3i + 1, pi−1 + m3i +

2, . . . , pi−1 +m3i +m3i+2 successively starting from the vertex y.

(iii) Finally, label the edges of the m3i+1-path with pi−1 +m3i +m3i+2 +

1, pi−1 + m3i + m3i+2 + 2, . . . , pi−1 + m3i + m3i+2 + m3i+1 starting from the

vertex x.

Figure 4.7 illustrates the case (m1,m2, . . . ,m8) = (6, 5, 4, 3, 3, 3, 2, 2).

x y

1

2 3 4 5

6

11

10 9 8

7

12

13 14

15

16
17

18

19
20

21

22
23

24

27 28

26 25

Figure 4.7: Anti-magic labeling of an 8-bridge.

It is routine to check that the vertex sums of x and y are given by

w(x) = 2(pk + k + 1 +m1 +m2 −m5)−m4 +
∑k

i=2
(3pi−1 − 2m3i+1)

and

w(y) = 2(2m1 +m2 +m3) +m4 + k + pk +
∑k

i=2
(3pi−1 + 2m3i)

respectively.

Also, note that the vertex sums of the degree-2 vertices consist of distinct

odd natural numbers each of which is less than either of w(x) and w(y).

This completes the proof for Case III and so is the proof for Theorem 4.1.
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CHAPTER 5

FUTUREWORK AND DISCUSSION

5.1 Introduction

A friendship graph, denoted by fn is constructed by overlapping a vertex from

n copies of cycles with 3 vertices C3. Figure 5.1 illustrates an example of a

friendship graph f4.

f4

Figure 5.1: f4.

In this chapter, we study the anti-magicness of extended friendship graphs,

a class of graphs derived from friendship graphs. Then, we investigate the anti-

magicness of G(r, s), a class of sparse graphs constructed by joining an r-bridge

graph with an extended friendship graph. Lastly, we introduceH(r, s), a class of

sparse graphs constructed by joining two r-bridge graphs and present a proposi-

tion to show that H(r, s) is anti-magic for some values of r and s.
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5.2 G(r,s)

Definition 5.1. Consider the friendship with s cycles, where s ≥ 2. Subdivide

the edges of the s cycles arbitrarily resulting in a graph with s cycles having

lengths n1, n2, . . . , ns. Call such a graph an extended friendship graph. Let Fs

denote any extended friendship graph with s cycles.

Remark 5.1. We know that when s = 1, F1 is a cycle with n1 verticesCn1 , where

n1 ≥ 3. We will include the case s = 1 in Fs in the following discussions.

We prove the following proposition.

Proposition 5.1. Fs is anti-magic for every natural number s ≥ 1.

Proof: Recall that in Theorem 2.19, cycles are anti-magic. Therefore, we only

need to consider the case s ≥ 2.

Throughout this section, we shall assume that in the graph Fs, the lengths

of the cycles in Fs satisfy the condition n1 ≥ n2 ≥ · · · ≥ ns. Also, we shall call

the cycles in Fs the nj-cycle, j = 1, 2, . . . , s.

Let z denote the vertex of degree 2s in theFs and letw(z) denote the vertex

sum of z.

Let φ3 denote the following edge labeling on the Fs.

For each j = 1, 2, . . . , s, label the edge of the nj-cycle with pj−1+1, pj−1+

2, . . . , pj , all successively starting from the vertex z. Here p0 = 0 and pk =

pk−1 + nk for k ∈ {1, 2, . . . , s}.

Figure 5.2 illustrates the case F3 with (n1, n2, n3) = (6, 5, 3).

The vertex sum w(z) of z is
∑s

i=1
[2(s− i)+ 1]ni+ s. Note that the vertex

sums of the degree-2 vertices consist of distinct natural odd numbers and they are

all less than w(z).

This means that φ3 is an anti-magic labeling of the Fs.
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Figure 5.2: The anti-magic labeling of a F3.

Based on Definition 5.1, the definition of G(r, s) is given as follows.

Definition 5.2. Let G(r, s) denote any graph obtained by overlapping a ver-

tex of degree r in an r-bridge graph with the vertex of degree 2s in Fs. Let

(m1,m2, · · · ,mr) be the lengths of the paths in the r-bridge graph. Also, let

(n1, n2, · · · , ns) be the lengths of the cycles in the Fs.

Throughout this chapter, we shall assume that in the graphG(r, s), the path

lengths in the r-bridge graph satisfy the condition m1 ≥ m2 ≥ · · · ≥ mr. Also,

we shall call the paths in G(r, s) the mi-path, i = 1, 2, . . . , r and the cycles in

G(r, s) the nj-cycle, j = 1, 2, . . . , s.

Let x denote the vertex of degree r and y denote the vertex of degree r+2s

in G(r, s). Then, let w(x), w(y) denote the vertex-sums of x and y respectively.

SupposeM =
∑r

i=1 mi and N =
∑s

j=1 nj .

Remark 5.2. In Chapter 4, we assume that r ≥ 3 when we studied the anti-

magicness of r-bridge graphs. For G(r, s), we may include the cases r = 1, 2.

If r = 1, an r-bridge graph is just a path whereas if r = 2, an r-bridge graph is

just a cycle.

We are interested in studying the problem below.
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Problem 5.1. Is G(r, s) anti-magic for all natural numbers r and s ?

We believe that Problem 5.1 is true for all natural numbers r and s.

In what follows, we shall provide some supporting evidence to the above

claim by showing that Problem 5.1 is true for several values of r and s.

Proposition 5.2. G(1, s) is anti-magic.

Proof: Assume s = 1.

Case (I):WhenM ̸= N − 2i, for any i = 1, 2, . . . , n−1
2
.

Let φ4 represent the following edge labeling on G(1, 1).

(i) First, label the edges of the path with 1, 2, . . . ,M successively starting

from the vertex x.

(ii) Next, label the edges of the cycle with M + 1,M + 2, . . . ,M + N

successively starting from the vertex y.

Figure 5.3(i) illustrates the case (m1, n1) = (4, 5) while Figure 5.3(ii) il-

lustrates the case (m1, n1) = (4, 4).

1 2 3 4

5

6

7

8

9

1 2 3 4

5 6

78

(i) (ii)

x y x y

Figure 5.3: Two anti-magic labelings on G(1, 1)

Note that the vertex sums w(x) and w(y) of x and y are given by 1 and

3M + N + 1 respectively. Note that the vertex sums of the degree-2 vertices

consist of distinct natural odd numbers. Note that w(y) is even. Therefore, they

are greater than w(x), but lesser than w(y) .
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This means that φ4 is an anti-magic labeling of G(1, 1).

Case (II): WhenM = N − 2i, for some i ∈ 1, 2, . . . , n−1
2

Let φ5 represent the following edge labeling on G(1, 1) graph.

(i) First, label the edges of the cycle with 1, 2, . . . , N successively starting

from the vertex y.

(ii) Next, label the edges of the path with N + 1, N + 2, . . . , N +M suc-

cessively starting from the vertex y.

The steps of the case (m1, n1) = (4, 6) are shown in Figure 5.4. Note

that the vertex sums w(x) and w(y) of x and y are both even, and are given by

M + N and 2N + 2 respectively. Note that the vertex sums of the degree-2

vertices include distinct natural odd numbers. Therefore, they are not equal to

w(x) and w(y).

This indicates that φ5 is an anti-magic labeling of G(1, 1).

1

2

3

4

5

6

10 9 8 7x y

Figure 5.4: Another anti-magic labeling of G(1, 1).

Now assume s ≥ 2.

We may modify φ4 to label G(1, s).

(i) First, label the edges of the path with 1, 2, . . . ,M successively starting

from the vertex x.
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(ii) For each j = 1, 2, . . . , s, label the edges of the nj-cycle with M +

pi−1 + 1,M + pi−1 + 2, . . . ,M + pj , all successively starting from the vertex y.

Here p0 = 0 and pk = pk−1 + nk for k ∈ {1, 2, . . . , s}.

Figure 5.5 illustrates the case (m1, n1, n2) = (3, 6, 3).
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x y

Figure 5.5: The anti-magic labeling of a G(1, 2).

To verify the anti-magicness of the labeling, we need to calculate the vertex-

sums of x and y :

i) w(x) = 1 ;

ii) w(y) = (2s+ 1)M +
∑s

i=1
[2(s− i) + 1]ni + s.

Besides, note that the vertex sums of degree-2 vertices include odd distinct

natural numbers. By comparison, we observe that they are greater thanw(x), but

lesser than w(y).

This completes the proof for Proposition 5.2.

Proposition 5.3. G(2, s) is anti-magic for any natural number s.

Proof: Since 2-bridge graph is just a cycle, G(2, s) is isomorphic to Fs+1 and

the proof follows from Proposition 5.1.
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Proposition 5.4. G(3, 1) is anti-magic.

Proof: We divide the proof into two cases.

Case (I):WhenM ≥ N .

Let φ6 represent the following edge labeling on G(3, 1) graph.

(i) First, label the edges of the 3-bridge part with 1, 2, . . . ,M using φ0.

(ii) Next, label the edges of the cycle with M + 1,M + 2, . . . ,M + N

successively starting from the vertex y.

Figure 5.6 illustrates an example of an anti-magic labeling of a G(3, 1)

where the lengths of the paths (m1,m2,m3) = (5, 4, 2) and the length of the

cycle n1 = 5.

Note that the vertex sums w(x) and w(y) of x and y are given by 2(m1 +

m3 + 1) and 3M + 2m1 + N + 2 respectively. Note that the vertex sums of

the degree-2 vertices include distinct odd natural numbers. By comparison, we

observe that they are lesser than w(y). Note that w(x) is even and w(x) < w(y).

This indicates that φ6 is an anti-magic labeling of G(3, 1).

(ii)

x y

1 5

2 3 4

8 9 10 11

7 6

12
13

14

15
16

Figure 5.6: The anti-magic labeling of a G(3, 1).

Case (II): WhenM < N .

Let φ7 represent the following edge labeling on G(3, 1) graph.
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(i) First, label the edges of the cycle with 1, 2, . . . , N successively starting

from the vertex y.

(ii) Next, label the edges of the 3-bridge part withN+1, N+2, . . . ,M+N

using φ0.

Figure 5.7 illustrates the case (m1,m2,m3, n1) = (3, 2, 2, 8).

Note that the vertex sums w(x) and w(y) of x and y are given by 2(m1 +

m3+1)+3N andM +2m1+4N +2 respectively. Note that the vertex sums of

the degree-2 vertices include distinct odd natural numbers. By comparison, we

observe that they are lesser than either of w(x) and w(y) and w(x) ̸= w(y).

This indicates that φ7 is an anti-magic labeling of G(3, 1).
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Figure 5.7: The anti-magic labeling of another G(3, 1).
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5.3 Conclusion and Future Work

In Chapter 4, we proved that multi-bridge graphs are anti-magic. In Chapter 5,

we showed that Problem 5.1 is true for some natural numbers r and s. One of

our future research direction is to prove that this is true.

Another future research direction is related to another class of graphsH(r, s),

which is defined as follows.

Definition 5.3. Let H(r, s) denote any graph obtained from an r-bridge graph

G(r) and an s-bridge graph G(s) by overlapping a vertex of degree r of G(r)

with a vertex of degree s of G(s).

Let x and y denote the vertex of degree r and the vertex of degree s in

H(r, s) respectively. Also, let z denote the vertex of degree r + s in H(r, s).

Figure 5.8 illustrates an example ofH(3, 3) using two 3-bridge graphs shown in

Figure 4.2.

x y
z

Figure 5.8: An example of H(3, 3).

Remark 5.3. We extend the definiton ofG(r, s) to include the cases r, s ∈ {1, 2}.

We are also interested in studying the following problem.

Problem 5.2. Is H(r, s) anti-magic for all natural numbers r and s ?
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We believe that Problem 5.2 is true for all natural numbers r and s. In

support of this claim, we have the following.

Proposition 5.5. H(3, 1) is anti-magic.

Proof: AsH(3, 1) is isomorphic to G(3, 1), this follows from Proposition 5.4.
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