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CHAPTER 1 

1 INTRODUCTION 

1.1 General Introduction 

Inventory or stocks refer to the goods and materials that a company holds and 

plans to sell in the near future (Ahmed and Sultana, 2013). To manage 

inventory, businesses use a mathematical model known as an inventory model, 

which determines the optimal level of inventory to maintain in a production 

system and regulates the supply flow to ensure uninterrupted service to 

customers. The main objective of inventory management is to maximize the 

benefits of inventory while minimizing costs. There are different types of 

inventory models that cater to the specific needs of businesses. The two most 

commonly used models are the Economic Order Quantity (EOQ) and 

Economic Production Quantity (EPQ). 

 In a classical logistics system, the flow of the inventory starting with 

raw materials and ending with the finished goods delivered to the client. This 

denotes a forward flow. Conversely, the reverse logistics system contains a 

backward flow that manages the return of recyclable discarded items from 

customers to manufacturers. Recently, companies are compelled to implement 

such item recovery systems by environmental conscience. In such manner, 

natural resources can be preserved for future generations, allowing firms to 

support initiatives for sustainable development. 

 The reverse logistics system is strongly related to circular economy 

(CE). In circular economy, waste being produced in the first place is avoided 

by extending the life cycle of items. The model emphasises reusing, repairing, 

and recycling existing and discarded goods to minimise waste (Arruda, et al., 

2021). 

 The objective of this project is to conduct a comprehensive analysis 

of various conventional inventory models and reverse logistics inventory 

models. Each model will be evaluated with the aim of developing a function 

that calculates the total cost per unit time. The ultimate aim is to determine the 

most cost-effective approach for each model. 
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1.2 Importance of the Study 

The implication of this research is the addition of new knowledge to the field 

of inventory theory. The provision of novel managerial insights on the 

organisation of closed-loop inventory systems that include reusable goods with 

a circular economy indicator is what makes this research significant. 

 

1.3 Problem Statement 

It is widely accepted that human activities, such as extracting resources and 

generating waste, are causing harm to the environment. To promote economic 

development while positively impacting the environment, the circular 

economy has emerged as a promising approach for more efficient resource 

utilization. It is gaining popularity as an alternative to the current economic 

model. The reverse logistics inventory model is a key strategy that aligns with 

the circular economy. Both the circular economy and the reverse logistics 

model involve redirecting products from their typical endpoint to create value 

or ensure proper disposal. This has garnered significant attention and interest. 

 To retain environmental sustainability, many firms are facing 

challenges to recycle their goods to the greatest extent possible while 

maximising the profit. Hence, the primary research challenge is: “How to 

direct inventory management decisions such that the product can be 

manufactured and remanufactured with a variable level of circularity while 

profits are maximised, and costs are minimised?”. 

 

1.4 Aim and Objectives 

The goal of the research includes: 

1. To research some of the classical inventory models. 

2. To research some of the classical reverse logistics inventory models. 

3. To extend the (1, 1) reverse logistics inventory model from Objective 2 

to the case of incorporating emission costs and a circularity indicator as 

a decision variable. 
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1.5 Scope and Limitation of the Study 

The classical inventory models indicated in the first objective of the project are 

limited to the basic Economic Order Quantity (EOQ) model, the basic 

Economic Production Quantity (EPQ) model, and the extension of the EPQ 

model to the case of fully back-logged shortages and to the case of constant 

deterioration. The study of these models is limited to the formulation of the 

total cost per unit time (TCUT) function, the formulation of the method to find 

the ideal TCUT, and the demonstration of the method to find the optimal 

TCUT through a numerical example. 

 The classical reverse logistics inventory models indicated in the 

second objective of the project are limited to several basic extensions of the 

EPQ model to incorporate the reuse of used items that are collected at a rate 

that is proportional to the demand rate. Two models will be considered, which 

are the (1, 1) model and the (1, n) model, where n stands for n production 

setups per inventory cycle. The study of these models is also limited to the 

formulation of the total cost per unit time (TCUT) function, the formulation of 

the method to find the ideal TCUT, and the demonstration of the method to 

find the optimal TCUT through a numerical example. 

For the final portion of the project, the (1, 1) reverse logistics 

inventory model from Objective 2 will be extended to include carbon emission 

costs which are incurred from all stages of keeping the relevant inventories, 

and a circularity indicator as a second decision variable. The circularity 

indicator is assumed to affect the demand rate logarithmically and profit rate 

exponentially (as assumed in Rabta, 2020).
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CHAPTER 2 

2 LITERATURE REVIEW 

2.1 First EOQ Model and EPQ Model 

Undoubtedly, the Economic Order Quantity (EOQ) model is one of the earliest 

inventory analysis models documented in literature. The EOQ model, initially 

introduced by Ford Whitman Harris in 1913, was the first mathematical model 

to address inventory or production-related challenges in production systems. 

The model determines the optimal batch size by balancing the hidden 

inventory costs and the visible ordering costs, under the assumption of a 

consistently constant demand rate. 

The classical Economic Production Quantity (EPQ) model was 

developed by E.W. Taft in 1918 and incorporated a finite replenishment rate. 

Unlike the EOQ model, the EPQ model features an inventory level that 

increases continuously until it reaches the maximum level, after which it 

begins to decline at a constant demand rate. 

Table 2.1: Comparison Between the EOQ Model and EPQ Model. 

EOQ Model EPQ Model 

The demand is independent. The demand is dependent. 

It computes the order quantity. It computes the production lot size. 

Nowadays, the simplicity and efficiency of the EOQ and EPQ 

inventory control models caused them to be widely used by numerous 

businesses (Andriolo, et al., 2014). However, there are several modifications 

and extensions of the fundamental EOQ/EPQ models that aim to alter their 

unsophisticated considerations in order to better reflect the real system. 
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2.2 First Reverse Logistics Inventory Model 

Over the past few years, scholars have shown considerable interest in reverse 

logistics inventory models. Numerous studies and investigations have been 

conducted in this field. It is not surprising that the Economic Order Quantity 

(EOQ) technique has been widely used by researchers in the past to explore 

recovery systems. This is due to the fact that simple EOQ models typically 

yield closed-form solutions. The first reverse logistics model was studied by 

Schrady in 1967. He explored the issue of the EOQ model for repairable items, 

which assumes that production and repair rates are instantaneous and free from 

disposal costs (Alamri, 2020). 

 

Figure 2.1: Basic Flow of Reverse Logistics. 

 

2.3 EOQ Extensions Incorporate Circular Economy 

Although not explicitly mentioning the strategy, some extensions of the 

Economic Order Quantity (EOQ) model incorporate one or more fundamental 

concepts of the Circular Economy (CE), such as repair, remanufacturing, and 

recycling. Richter (1996) presents an EOQ model with repair and waste 

disposal, including changeable setup numbers, which was further analysed 

with integer setup numbers in 1999. Dobos and Richter (2000) examine a 

repair and waste disposal model for integer EOQ. Dobos and Richter (2004) 
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introduce an integrated production/recycling model that incorporates linear 

costs for waste disposal, recycling, manufacture, and buyback. The study 

demonstrates that a pure strategy (either production or recycling) is optimal. In 

Dobos and Richter (2006), the model is extended further to consider quality 

control. The study demonstrates that outsourcing quality control and only 

acquiring reusable products is preferable to reduce overall EOQ and non-EOQ 

related expenses. 

 

2.4 Circularity of a Product in Circular Economy 

Circularity of a product refers to its ability to be reused, repurposed, or 

recycled at the end of its life cycle, rather than being disposed of as waste. In 

other words, a circular product is one that contributes to a circular economy by 

being part of a closed-loop system, where waste is minimized and resources 

are conserved. Circularity indicators are metrics used to measure the 

circularity of products, processes, or systems. These indicators can help 

companies and organizations track their progress towards more sustainable 

practices and identify areas for improvement. 

A valuable case study of the implementation of circularity indicators 

in a real-world manufacturing company has been provided by Bracquené, 

Lindemann and Duflou in 2022. They conclude that the implementation of 

circularity indicators can help companies identify areas for improvement and 

guide the transition towards a circular economy. However, they also 

acknowledge that the implementation of circularity indicators can be 

challenging and requires a significant investment of time and resources. In the 

recent paper, Oliveira and Oliveira (2023) argued that many of the indicators 

proposed in the literature are too simplistic and fail to capture the complexity 

of circularity. They proposed a set of criteria for evaluating circularity 

indicators and applied them to a sample of existing indicators. Overall, both 

articles emphasised the need for more rigorous and comprehensive circularity 

indicators to support the transition to a circular economy. 
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2.5 Sustainable EOQ Model 

Several sustainable versions of the EOQ inventory model have been proposed. 

Hua, Cheng, and Wang (2011) presented a carbon-emission aware EOQ model 

that considers carbon emissions from shipping and warehousing operations. 

The model explores the impact of carbon emissions, overall costs, and the 

effect of carbon trade, carbon price, and carbon cap on the order decisions. 

Similarly, Chen, Benjaafar, and Elomri (2013) and Hovelaque and Bironneau 

(2015) both proposed carbon-constrained EOQ models. These models 

demonstrate that adjusting order quantities can reduce carbon emissions 

without affecting the company's profitability. Liao and Deng (2018) 

demonstrated how modifying the carbon tax would affect the best purchasing 

decisions in their EOQ model for the carbon cap and trade system. Although 

EOQ-like models are simple, they can effectively reveal possibilities. Dobos, 

Pishchulov, and Gössinger (2018) studied the reverse logistics system, where 

products are returned with deteriorating quality after a period of usage and can 

be either rebuilt or discarded. 

 

2.6 Summary 

The authors mentioned above have shown that incorporating circularity 

measures into inventory decision-making is feasible. This not only provides 

environmental and social benefits but can also be economically viable and 

financially justifiable. Adjusting order quantities may allow for a switch to 

circular products without significant profit loss, and determining the optimal 

circularity level can lead to substantial earnings growth. Mathematical 

decision models demonstrate the potential of the circular economy, giving 

businesses a strong incentive to adopt circular practices and accelerate the 

transition. Further research is needed to develop quantitative models of 

circular economy that complement the extensive body of qualitative and 

empirical research in this and related areas. Expanding the proposed concepts 

to various inventory, manufacturing, and supply chain models is clearly a goal 

for future research. 
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CHAPTER 3 

3 METHODOLOGY AND WORK PLAN 

3.1 Methodology 

The following figure  illustrated the flow of this research project. 

 

Figure 3.1: Basic Flow of the Project. 
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After conducting a preliminary literature review, the inventory model 

will be mathematically formulated based on several assumptions. Before 

presenting the mathematical formulation, a graphical representation of the 

inventory status will be provided. The relevant cost components will be 

calculated, and the equations governing the inventory models will be stated. 

Additionally, the total inventory costs will be defined. 

Subsequently, a function for the total inventory cost will be 

established, and solution procedures to determine the optimal total cost will be 

proposed. The solution procedures will be tested by substituting the values of 

all the parameters into the total cost function using Python's data science 

libraries. To gain managerial insights, sensitivity analysis will be performed to 

examine the relationship between the parameters. Finally, the results of the 

sensitivity analysis will be used to provide managerial insights. 

 

3.2 Work Plan 

The following tables are the proposed work plan for Project I and Project II. 

Table 3.1: Work Plan of Project I 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Oral presentation for Project I

Work on interin report

Mock presentation for interin report

Submission of interin report and 

turnItIn report

Week

Collecting and reading research 

materials

Building classical inventory models

Work on proposal

Mock presentation for proposal

Project Task

Submission of proposal
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Table 3.2: Work Plan of Project II 

  

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Oral presentation for Project II

Submission of final report draft 

Preparation of project poster

Submission of project poster

Submission of final report and 

turnItIn report

Week

Collecting and reading research 

materials

Building (1,1) reverse logistics 

inventory model

Numerical process on the built model

Sensitivity analysis on the built model

Project Task

Preparation of final report
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CHAPTER 4 

4 CLASSICAL INVENTORY MODELS 

4.1 Formulation of Basic EOQ Model 

Assumptions and Notations: 

1. 𝐼(𝑡): Inventory level at time 𝑡. 

2. 𝐷: Constant demand rate. 

3. 𝑄: Ordered size. 

4. 𝐾: Fixed ordering cost per order. 

5. ℎ: Unit holding cost per unit time. 

6. Shortages are not allowed. 

7. The planning horizon is infinite in length. 

8. The inventory policy is cyclic. 

 

 

Figure 4.1: Overview of Inventory Status of Basic EOQ Model Over Time. 

 

The total cost for the inventory cycle is the sum of fixed ordering cost and the 

unit holding cost per time from 𝑇0 to 𝑇. Hence, the total cost per unit time 
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(𝑇𝐶𝑈𝑇) is the total inventory cost divided by 𝑇  and it is governed by the 

following equation: 

 𝑇𝐶𝑈𝑇 =  
1

𝑇
{𝐾 + ℎ ∫ 𝐼(𝑡) 𝑑𝑡

𝑇

𝑇0
} (4.1) 

From the graph above, we notice that the area under graph is an area of 

triangle. Without loss of generality, set 𝑇0 = 0. Then, we obtain: 

 𝑇𝐶𝑈𝑇 =  
1

𝑇
{𝐾 + ℎ

𝑄𝑇

2
}  =  

𝐾

𝑇
+

ℎ𝑄

2
 (4.2) 

Since the ordered size must be equal to the demand of the cycle. We have: 

 𝑄 = 𝐷𝑇 →  𝑇 =
𝑄

𝐷
 (4.3) 

 𝑇𝐶𝑈𝑇 =
𝐾𝐷

𝑄
+

ℎ𝑄

2
 (4.4) 

Our goal is to determine 𝑄 that minimizes 𝑇𝐶𝑈𝑇. Thus, we differentiate 𝑇𝐶𝑈𝑇 

with respect to 𝑄 and let the equation equals to 0: 

 
𝑑(𝑇𝐶𝑈𝑇)

𝑑𝑄
 =  −

𝐾𝐷

𝑄2 +
ℎ

2
 = 0 (4.5) 

This gives us the EOQ formula: 

 𝑄∗  =  √
2𝐾𝐷

ℎ
 (4.6) 

The square root formula for 𝑇 that minimizes 𝑇𝐶𝑈𝑇 is easily found as 

 𝑇∗ =
𝑄∗

𝐷
= √

2𝐾

ℎ𝐷
 (4.7) 

Also, if there are 𝑁 orders per unit time, we have 

 1 = 𝑁𝑇  →   𝑁 =
1

𝑇∗
 (4.8) 
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4.1.1 Numerical Example 

Let 𝑁 = 1, 𝐷 = 100, 𝐾 = 100, and ℎ = 10. Next, we verify the optimality of 

the TCUT function by demonstrating that it can be optimized with respect to 

the variable Q. We use Python to perform the calculations and plot the TCUT 

function, as defined in equation (4.4), over the range of Q values between 40 

and 50. 

 

Figure 4.2: Graph of TCUT vs. Q for Basic EOQ Model. 

 

The plot in Figure 4.2 displays a smooth, U-shaped curve with a 

minimum point. This minimum point confirms that the TCUT function 

formulated can be optimized by the variable Q. The results indicate that the 

minimum TCUT for this model is 447.2136, which corresponds to an order 

size of Q = 44.7214.  
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4.2 Formulation of Basic EPQ Model 

Assumptions and notations: 

1. 𝐼(𝑡): Inventory level at time 𝑡. 

2. 𝐷: Constant demand rate. 

3. 𝑃: Finite replenishment rate, where 𝑃 > 𝐷. 

4. 𝐾: Fixed ordering cost per order. 

5. ℎ: Unit holding cost per unit time. 

6. Shortages are not allowed. 

7. The planning horizon is infinite in length. 

8. The inventory policy is cyclic. 

 

 

Figure 4.3: Overview of Inventory Status of Basic EPQ Model Over Time. 

 

The total cost per unit time (𝑇𝐶𝑈𝑇) is governed by the following equation: 

 𝑇𝐶𝑈𝑇 =  
1

𝑇
{𝐾 + ℎ ∫ 𝐼(𝑡) 𝑑𝑡

𝑇

𝑇0
} (4.9) 

From the graph above, we notice that the area under graph is an area of 

triangle. Without loss of generality, set 𝑇0 = 0. Then, we obtain: 

 𝑇𝐶𝑈𝑇 =  
1

𝑇
{𝐾 + ℎ

(𝑃−𝐷)𝑇1𝑇

2
} =  

𝐾

𝑇
+

ℎ(𝑃−𝐷)𝑇1

2
 (4.10) 

Since the ordered size must be equal to the demand of the cycle. We have: 
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 𝑃𝑇1 = 𝐷𝑇 →  𝑇1 =
𝐷𝑇

𝑃
 (4.11) 

 𝑇𝐶𝑈𝑇 =
𝐾

𝑇
+

ℎ(𝑃−𝐷)𝐷𝑇

2𝑃
 (4.12) 

Substitute the 𝑇 obtained from the EOQ model into the equation: 

 𝑇𝐶𝑈𝑇 =
𝐾𝐷

𝑄
+

ℎ(𝑃−𝐷)𝑄

2𝑃
 (4.13) 

Our goal is to determine 𝑄 that minimizes 𝑇𝐶𝑈𝑇. Thus, we differentiate 𝑇𝐶𝑈𝑇 

with respect to 𝑄 and let the equation equals to 0: 

 
𝑑(𝑇𝐶𝑈𝑇)

𝑑𝑄
 =  −

𝐾𝐷

𝑄2
+

ℎ(𝑃−𝐷)

2𝑃
 = 0 (4.14) 

This gives us the EPQ formula: 

 𝑄∗  =  √
2𝐾𝐷

ℎ
(

𝑃

𝑃−𝐷
) = 𝐸𝑂𝑄√

𝑃

𝑃−𝐷
 (4.15) 

 

4.3 Formulation of EPQ Model with Fully Back-logged Shortages 

Assumptions and notations: 

1. 𝐼(𝑡): Inventory level at time 𝑡. 

2. 𝐷: Constant demand rate. 

3. 𝑃: Finite replenishment rate, where 𝑃 > 𝐷. 

4. 𝐾: Fixed ordering cost per order. 

5. ℎ: Unit holding cost per unit time. 

6. 𝑠: Unit shortage cost per unit time. 

7. Shortages are allowed and are completely backordered. 

8. The planning horizon is infinite in length. 

9. The inventory policy is cyclic. 
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Figure 4.4: Overview of Inventory Status of EPQ Model with Fully Back-

logged Shortages Over Time. 

 

The total cost per unit time (𝑇𝐶𝑈𝑇) is governed by the following equation: 

 𝑇𝐶𝑈𝑇 =  
1

𝑇
{𝐾 + ℎ𝐴 + 𝑠𝐵} (4.16) 

 𝑇𝐶𝑈𝑇 =
1

𝑇
{𝐾 + ℎ

𝐼𝑚𝑎𝑥(𝑇2−𝑇0)

2
+ 𝑠

|𝑆𝑚𝑎𝑥|(𝑇−𝑇2)

2
} (4.17) 

Note that: 

𝐼𝑚𝑎𝑥 = (𝑃 − 𝐷)𝑇1     and    |𝑆𝑚𝑎𝑥| = (𝑃 − 𝐷)(𝑇 − 𝑇3) 

Without loss of generality, set 𝑇0 = 0. Since the ordered size must be equal to 

the demand of the cycle. We have: 

 𝑃𝑇1 = 𝐷𝑇2   →   𝑇1 =
𝐷𝑇2

𝑃
 (4.18) 

 𝑃(𝑇 − 𝑇3) = 𝐷(𝑇 − 𝑇2)  →  (𝑇 − 𝑇3) =
𝐷(𝑇−𝑇2)

𝑃
 (4.19) 

Substitute the above equation into 𝑇𝐶𝑈𝑇 and obtain: 
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 𝑇𝐶𝑈𝑇 =
𝐾

𝑇
+

ℎ𝐷(𝑃−𝐷)𝑇2
2

2𝑃𝑇
+

𝑠𝐷(𝑃−𝐷)(𝑇−𝑇2)2

2𝑃𝑇
 (4.20) 

To optimize the 𝑇𝐶𝑈𝑇 function, 𝑇 and 𝑇2 is derived from the following partial 

differential equations: 

 
𝜕(𝑇𝐶𝑈𝑇)

𝜕𝑇
=  −

𝐾

𝑇2
−

ℎ𝐷(𝑃−𝐷)𝑇2
2

2𝑃𝑇2
+

𝑠𝐷(𝑃−𝐷)(𝑇−𝑇2)(𝑇+𝑇2)

2𝑃𝑇2
= 0 (4.21) 

 
𝜕(𝑇𝐶𝑈𝑇)

𝜕𝑇2
=  

ℎ𝐷(𝑃−𝐷)𝑇2

𝑃𝑇
 –  

𝑠𝐷(𝑃−𝐷)(𝑇−𝑇2)

𝑃𝑇
= 0 (4.22) 

By solving equation (4.21), we obtain 𝑇∗ in terms of  𝑇2
∗ as 

 𝑇∗ = √
2𝑃𝐾+𝐷(𝑃−𝐷)(ℎ+𝑠)(𝑇2

∗)2

𝑠𝐷(𝑃−𝐷)
 (4.23) 

By solving equation (4.22), we obtain 𝑇2
∗ in terms of 𝑇∗ as 

 𝑇2
∗ =

𝑠𝑇∗

ℎ+𝑠
 (4.24) 

Then, substitute 𝑇2
∗  into the 𝑇∗ function, we get: 

 𝑇∗ = √
2𝑃𝐾(ℎ+𝑠)

ℎ𝑠𝐷(𝑃−𝐷)
 (4.25) 

This gives us the EPQ formula: 

 𝑄∗  = 𝐷𝑇∗ =  √
2𝐾𝐷

ℎ
(

𝑃

𝑃−𝐷
) (

ℎ+𝑠

𝑠
) (4.26) 

 

4.3.1 Numerical Example 

Let 𝑁 = 1 , 𝐷 = 100 , 𝑃 = 120 , 𝐾 = 100 , ℎ = 10 , and 𝑠 = 8 . Then, we 

conduct a test to verify the optimality of the TCUT function by demonstrating 

its optimality with respect to the variable Q. Using Python for computation, we 

plot the TCUT function (4.20) against a range of values of Q from 100 to 300. 
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Figure 4.5: Graph of TCUT vs. Q for EPQ Model with Fully Back-logged 

Shortages. 

 

After computing the TCUT function with Python, we plotted the 

function against Q ranging from 100 to 300 to demonstrate that it can be 

optimized by the variable Q. As shown in Figure 4.5, the plot takes the form of 

a U-shaped curve with a smooth turn at the minimum point. This minimum 

point indicates that the TCUT function can be optimized by Q. We found that 

the minimum TCUT of this model is 121.7161, which corresponds to an order 

size Q of 164.3168. 

 

4.4 Formulation of EPQ Model with Constant Deterioration Rate 

Assumptions and notations: 

1. 𝐼(𝑡): Inventory level at time 𝑡. 

2. 𝐷: Constant demand rate. 

3. 𝜃: Constant deterioration rate. 

4. 𝑃: Finite replenishment rate, where 𝑃 > 𝐷. 

5. 𝐾: Fixed ordering cost per order. 
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6. ℎ: Unit holding cost per unit time. 

7. 𝑑: Unit deterioration cost per unit time. 

8. Shortages are not allowed. 

9. The planning horizon is infinite in length. 

10. The inventory policy is cyclic. 

 

 

Figure 4.6: Overview of Inventory Status of EPQ Model with Constant 

Deterioration Rate Over Time. 

 

In Figure 4.6, it is shown that deterioration occurs at a constant rate 𝜃. This 

indicated that a fraction 𝜃  of the inventory level at any time 𝑡 , 𝐼(𝑡) , is 

destroyed by deterioration. The changes in the inventory level can be 

described by the following differential equations: 

 
𝑑[𝐼(𝑡)]

𝑑𝑡
= 𝑃 − 𝐷 − 𝜃𝐼(𝑡),      𝑇0 ≤ 𝑡 ≤ 𝑇1 (4.27) 

with the initial condition 𝐼(𝑇0) = 0, and 

 
𝑑[𝐼(𝑡)]

𝑑𝑡
= −𝐷 − 𝜃𝐼(𝑡),      𝑇1 ≤ 𝑡 ≤ 𝑇 (4.28) 

with the ending condition 𝐼(𝑇) = 0. 
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Without loss of generality, set 𝑇0 = 0. The solutions of the above differential 

equations are represented by: 

     𝐼(𝑡) = 𝑒−𝜃𝑡 ∫ (𝑃 − 𝐷)𝑒𝜃𝑢 𝑑𝑢
𝑇1

𝑇0
=

𝑃−𝐷

𝜃
(1 − 𝑒−𝜃𝑡),      0 ≤ 𝑡 ≤ 𝑇1 (4.29) 

               𝐼(𝑡) = 𝑒−𝜃𝑡 ∫ 𝐷𝑒𝜃𝑢 𝑑𝑢
𝑇

𝑇1
=

𝐷

𝜃
[𝑒𝜃(𝑇−𝑡) − 1],      𝑇1 ≤ 𝑡 ≤ 𝑇 (4.30) 

respectively, with the integrating factor 𝜇(𝑡) = 𝑒∫ 𝜃 𝑑𝑡 = 𝑒𝜃𝑡. 

Hence, the area under the graph is governed by: 

                 ∫ 𝐼(𝑡)𝑑𝑡
𝑇

0
= ∫

𝑃−𝐷

𝜃
(1 − 𝑒−𝜃𝑡)𝑑𝑡

𝑇1

0
+ ∫

𝐷

𝜃
[𝑒𝜃(𝑇−𝑡) − 1] 𝑑𝑡

𝑇

𝑇1
 (4.31) 

This leads to 

   ∫ 𝐼(𝑡)𝑑𝑡
𝑇

0
=

𝑃−𝐷

𝜃2 (𝜃𝑇1 + 𝑒−𝜃𝑇1 − 1) +
𝐷

𝜃2 [𝜃(𝑇1 − 𝑇) + 𝑒𝜃(𝑇−𝑇1) − 1] (4.32) 

Since the ordered size must be equal to the demand of the cycle. We have: 

 (𝑃 − 𝐷)(1 − 𝑒−𝜃𝑇1 ) = 𝐷[𝑒𝜃(𝑇−𝑇1) − 1] (4.33) 

 𝑇1 =
1

𝜃
𝑙𝑛 |

𝐷𝑒𝜃𝑇+ 𝑃 – 𝐷

𝑃
| (4.34) 

For the moment, the total cost per unit time (𝑇𝐶𝑈𝑇)  is governed by the 

following equations: 

 𝑇𝐶𝑈𝑇 =
𝐾+ℎ ∫ 𝐼(𝑡)𝑑𝑡+𝑑 ∫ 𝜃𝐼(𝑡)𝑑𝑡

𝑇
0

𝑇
0

𝑇
 (4.35) 

 𝑇𝐶𝑈𝑇 =
𝐾

𝑇
+

ℎ+𝜃𝑑

𝑇
∫ 𝐼(𝑡)𝑑𝑡

𝑇

0
 (4.36) 

The 𝑇𝐶𝑈𝑇 function can be further derived as: 

 𝑇𝐶𝑈𝑇 =
𝐾

𝑇
+

ℎ+𝜃𝑑

𝜃2𝑇
{(𝑃 − 𝐷)[𝜃𝑇1 + 𝑒−𝜃𝑇1 − 1] + 

 𝐷[𝜃(𝑇1 − 𝑇) + 𝑒𝜃(𝑇−𝑇1) − 1]} (4.37) 
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4.4.1 Numerical Example 

Since the TCUT function obtained in (4.37) contains 𝑇1, a logarithm function 

that is in terms of  𝑇, it is difficult to derive the optimal 𝑇∗ in a square root 

formula directly from the function using differentiation. Thus, we test the 

optimality of the TCUT function through a numerical example. 

In the numerical example, let 𝐷 = 100, 𝑃 = 120, 𝜃 = 0.1, 𝐾 = 100, 

ℎ = 10 , and 𝑑 = 15 . Then, we test the optimality of the TCUT function 

constructed to illustrate that the function can be optimized by the variable 𝑇. 

By handling the computation with Python, the TCUT function in (4.37) is 

plotted against 𝑇 ranging from 0.5 to 1.5. 

 

Figure 4.7: Graph of TCUT vs. T for EPQ Model with Constant Deterioration 

Rate. 

 

The U-shaped plot in Figure 4.7 shows a smooth turn at the minimum 

point, indicating that the variable T can be optimized in the formulated TCUT 

function. To determine the minimum value, we used the fmin function from 

the Scipy library. The result reveals that the minimum TCUT value in this 

model is 193.5300 at time T of 1.0459.  
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CHAPTER 5 

5 CLASSICAL REVERSE LOGISTICS INVENTORY MODELS 

5.1 Formulation of (1, 1) Reverse Logistics Inventory Model 

Assumptions and notations: 

1. Constant demand rate 𝐷. 

2. Constant repairing rate 𝑅 and production rate 𝑃, where 𝑅, 𝑃 > 𝐷. 

3. All repaired used items are considered as good as new. 

4. Used items are collected at a constant rate 𝛼𝐷, where 0 < 𝛼 < 1. 

5. Shortages are not allowed. 

6. In each period, there is 1 repairing cycle and 1 production cycle where 

we call this (1, 1) policy. 

7. The planning horizon is infinite in length. 

8. The last point of time in the complete cycle is denoted as 𝑇. 

9. The quantity parameters for the service and used items are as follows: 

𝑄𝑝 =  Economic production quantity. 

𝑄𝑟 =  Economic repairing quantity. 

10. The cost parameters for the service items are as follows: 

𝐾𝑝 =  Production set-up cost. 

ℎ𝑝 =  Unit holding cost per unit time. 

𝑐𝑝 =  Unit production cost. 

11. The cost parameters for the used items are as follows: 

𝐾𝑟 =  Repairing set-up cost. 

ℎ𝑟 =  Unit holding cost per unit time. 

𝑐𝑟 =  Unit repairing cost. 
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Figure 5.1: Overview of Inventory Status of a Reverse Logistics Inventory 

Model with (1,1) Policy Over Time. 

 

Since all used items are repaired, we have 

 𝛼𝐷𝑇 = 𝑅𝑇1   →   𝑇1 =
𝛼𝐷𝑇

𝑅
 (5.1) 

During the period [0, 𝑇2], the demand is satisfied by repairing. Thus, we obtain 

 𝐷𝑇2 = 𝑅𝑇1   →   𝑇2 =
𝑅𝑇1

𝐷
= 𝛼𝑇 (5.2) 

During the period [𝑇2, 𝑇], the demand is satisfied by production. Thus, we 

have 

 𝐷(𝑇 − 𝑇2) = 𝑃(𝑇3 − 𝑇2) (5.3) 

From equation (5.2) and (5.3), we obtain 𝑇3 as follow: 

 𝑇3 =
𝛼𝑃+𝐷(1−𝛼)

𝑃
𝑇 (5.4) 
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The total cost per unit time (𝑇𝐶𝑈𝑇) is governed by the following equation: 

 𝑇𝐶𝑈𝑇 =
𝐾𝑝+𝐾𝑟+ℎ𝑝(𝐴2+𝐴3)+ℎ𝑟𝐴1+𝑄𝑝𝑐𝑝+𝑄𝑟𝑐𝑟

𝑇
 (5.5) 

where  

𝐴1, 𝐴2 and 𝐴3 are the areas of triangles (areas under the graphs of inventory 

levels – see Figure 5.1). 

𝑄𝑟 = 𝛼𝐷𝑇 

𝑄𝑝 = 𝐷𝑇 − 𝑄𝑟 

By solving the area of triangles, we obtain the following areas: 

 𝐴1 =
𝑇(𝑅−𝛼𝐷)𝑇1

2
 (5.6) 

 𝐴2 =
𝑇2(𝑅−𝐷)𝑇1

2
 (5.7) 

 𝐴3 =
(𝑇−𝑇2)(𝑃−𝐷)(𝑇3−𝑇2)

2
 (5.8) 

Substituting (5.1) into (5.6) gives 

 𝐴1 =
(𝑅−𝛼𝐷)𝛼𝐷

2𝑅
𝑇2 (5.9) 

Substituting (5.1) and (5.2) into (5.7) gives 

 𝐴2 =
(𝑅−𝐷)𝛼2𝐷

2𝑅
𝑇2 (5.10) 

Substituting (5.2) and (5.4) into (5.8) gives 

 𝐴3 =
(𝑃−𝐷)(1−𝛼)2𝐷

2𝑃
𝑇2 (5.11) 

Eventually, we can obtain the 𝑇𝐶𝑈𝑇 function in the following form: 

 𝑇𝐶𝑈𝑇 =
𝛽

𝑇
+ 𝛾𝑇 + (1 − 𝛼)𝐷𝑐𝑝 + 𝛼𝐷𝑐𝑟 (5.12) 

where 

𝛽 = 𝐾𝑝 + 𝐾𝑟 
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𝛾 = ℎ𝑝 [
(𝑅 − 𝐷)𝛼2𝐷

2𝑅
+

(𝑃 − 𝐷)(1 − 𝛼)2𝐷

2𝑃
] + ℎ𝑟

(𝑅 − 𝛼𝐷)𝛼𝐷

2𝑅
. 

Our goal is to determine 𝑇 that minimizes 𝑇𝐶𝑈𝑇. Thus, we differentiate 𝑇𝐶𝑈𝑇 

with respect to 𝑇 and let the equation equals to 0: 

 
𝑑(𝑇𝐶𝑈𝑇)

𝑑𝑇
= −

𝛽

𝑇2
+ 𝛾 = 0 (5.13) 

By rearranging the above equation, the square root formula to find the optimal 

𝑇∗ is easily found as follow: 

 𝑇∗ = √
𝛽

𝛾
 (5.14) 

 

5.1.1 Numerical Example 

The following parameters are assigned based on the constraints as mentioned 

in the assumptions: 

𝐷 = 10, 𝑅 = 13, 𝑃 = 12, 𝛼 = 0.6, 

𝐾𝑝 = 160, 𝐾𝑟 = 150, ℎ𝑝 = 5, ℎ𝑟 = 0.6 × ℎ𝑝, 

𝑐𝑝 = 50, 𝑐𝑟 = 0.6 × 𝑐𝑝.   

In the numerical example, we assume that the repairing rate is higher 

than the production rate. We also assume that repairing of used items are 

easier than production. Hence, lower repairing set-up cost are set for used 

items. 

Then, we test the optimality of the TCUT function constructed to 

illustrate that the function can be optimized by the variable 𝑇. By handling the 

computation with Python, the TCUT function in (5.12) is plotted against 𝑇 

ranging from 6.2 to 6.8 as the figure beow. 
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Figure 5.2: Graph of TCUT vs. T for (1,1) Reverse Logistics Inventory Model. 

 

By observing the minimum point in the U-shaped curve plotted in 

Figure 5.2, it can be inferred that the TCUT function can be optimized by 

varying T. The existence of a minimum point suggests that the model is 

capable of finding the optimal value of T. The computed results reveal that the 

minimum TCUT value of the model is 477.0118, which corresponds to the 

value of T equal to 6.3910.  
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5.2 Formulation of (1, n) Reverse Logistics Inventory Model 

All assumptions and notations are exactly the same as the formulation of (1, 1) 

reverse logistics inventory model in section 5.1, except that there is only 1 

repairing cycle with a number n of production cycle where we call this (1, n) 

policy. Additionally, the following notations are used for the elapsed time: 

1. 𝑇𝑅, the elapsed time until the end of the repairing cycle 

2. 𝑇𝑖,1, the elapsed time until the start of the 𝑖𝑡ℎ production cycle where 

𝑖 = 1, 2, … , 𝑛. 

3. 𝑇𝑖,2, the elapsed time until the end of the 𝑖𝑡ℎ production cycle where 

𝑖 = 1, 2, … , 𝑛.  

 

Figure 5.3: Overview of Inventory Status of a Reverse Logistics Inventory 

Model with (1, n=2) Policy Over Time. 

 

The total cost per unit time (𝑇𝐶𝑈𝑇) is governed by the following equation: 

 𝑇𝐶𝑈𝑇 =
𝑛𝐾𝑝+𝐾𝑟+ℎ𝑝(𝐴2+𝑛𝐴3)+ℎ𝑟𝐴1+𝑄𝑝𝑐𝑝+𝑄𝑟𝑐𝑟

𝑇
 (5.15) 
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where 

𝐴1, 𝐴2 and 𝐴3 are the areas of triangles (areas under the graphs of inventory 

levels – see Figure 5.4). 

𝑄𝑟 = 𝛼𝐷𝑇 

𝑄𝑝 = 𝐷𝑇 − 𝑄𝑟 

Since there is only one repairing cycle per period, the elapsed time 𝑇𝑅 and 𝑇1,1 

are equal to the time 𝑇1 and 𝑇2 in the (1, 1) model. Thus, we have 

 𝑇𝑅 =
𝛼𝐷𝑇

𝑅
 (5.16) 

 𝑇1,1 = 𝛼𝑇 (5.17) 

In Figure 5.3, we assume that each production cycle produces the same batch 

size of service items. Since the total production quantity, 𝑄𝑝 = (1 − 𝛼)𝐷𝑇, 

then each production cycle will produce 
(1−𝛼)𝐷𝑇

𝑛
 items. Then, we consider the 

first production cycle that starts at time 𝑇1,1 and ends at time 𝑇1,2. We have 

 𝑃(𝑇1,2 − 𝑇1,1) =
(1−𝛼)𝐷𝑇

𝑛
 (5.18) 

which gives 

 𝑇1,2 = 𝑇1,1 +
(1−𝛼)𝐷𝑇

𝑛𝑃
= 𝛼𝑇 +

(1−𝛼)𝐷𝑇

𝑛𝑃
 (5.19) 

During the period [𝑇1,1, 𝑇2,1], all the demand is satisfied by the first production 

cycle. Thus, we have 

 𝐷(𝑇2,1 − 𝑇1,1) = 𝑃(𝑇1,2 − 𝑇1,1) (5.20) 

which gives 

 𝑇2,1 = 𝑇1,1 +
(1−𝛼)𝑇

𝑛
= 𝛼𝑇 +

(1−𝛼)𝑇

𝑛
 (5.21) 

We know that each subsequent production cycle will have the same production 

duration and depletion duration as the first production cycle. Thus, we have 
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 production duration, 𝑝𝑑 = 𝑇1,2 − 𝑇1,1 =
(1−𝛼)𝐷𝑇

𝑛𝑃
 (5.22) 

 depletion duration, 𝑑𝑑 = 𝑇2,1 − 𝑇1,2 =
(𝑃−𝐷)(1−𝛼)𝑇

𝑛𝑃
 (5.23) 

Hence, we have recursive equations to compute 𝑇𝑖,1 and 𝑇𝑖,2 for 𝑖 = 1, 2, … , 𝑛. 

 𝑇𝑖,1 = 𝑇𝑖−1,2 + 𝑑𝑑 (5.24) 

 𝑇𝑖,2 = 𝑇𝑖,1 + 𝑝𝑑 (5.25) 

Since the area of 𝐴1 and 𝐴2 are the same as in (1, 1) model, we can obtain the 

areas from (5.9) and (5.10) 

 𝐴1 =
(𝑅−𝛼𝐷)𝛼𝐷

2𝑅
𝑇2 (5.26) 

 𝐴2 =
(𝑅−𝐷)𝛼2𝐷

2𝑅
𝑇2 (5.27) 

The area of 𝐴3 can be solved using geometry and we have 

 𝐴3 =
(𝑝𝑑+𝑑𝑑)(𝑃−𝐷)𝑝𝑑

2
 (5.28) 

Substituting (5.22) and (5.23) into (5.28) gives 

 𝐴3 =
(𝑃−𝐷)𝐷

2𝑃
(

1−𝛼

𝑛
)

2

𝑇2 (5.29) 

By substituting the area of 𝐴1, 𝐴2, and 𝐴3 obtained from equation (5.26), (5.27) 

and (5.29), we can obtain the 𝑇𝐶𝑈𝑇 function in the following form: 

 𝑇𝐶𝑈𝑇(𝑛, 𝑇) =
𝛽

𝑇
+ 𝛾𝑇 + (1 − 𝛼)𝐷𝑐𝑝 + 𝛼𝐷𝑐𝑟 (5.30) 

where 

𝛽 = 𝑛𝐾𝑝 + 𝐾𝑟  

𝛾 = ℎ𝑝 [
(𝑅−𝐷)𝛼2𝐷

2𝑅
+

(𝑃−𝐷)(1−𝛼)2𝐷

2𝑛𝑃
] + ℎ𝑟

(𝑅−𝛼𝐷)𝛼𝐷

2𝑅
  

Our goal is to determine 𝑇 that minimizes 𝑇𝐶𝑈𝑇. Thus, we differentiate 𝑇𝐶𝑈𝑇 

with respect to 𝑇 and let the equation equals to 0: 
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𝑑(𝑇𝐶𝑈𝑇)

𝑑𝑇
= −

𝛽

𝑇2 + 𝛾 = 0 (5.31) 

By rearranging the above equation, the square root formula to find the optimal 

𝑇∗ is easily found as follow: 

 𝑇∗ = √
𝛽

𝛾
 (5.32) 

Futhermore, we concerned to determine the optimal 𝑛∗ that minimizes 𝑇𝐶𝑈𝑇 

while satisfying the constraints 𝑇∗ > 𝐿𝐵  and 𝑛∗ > 0 . 𝐿𝐵  represents a 

minimum threshold for the inventory period such that operating below this 

limit is infeasible. In case we establish a 𝐿𝐵 for 𝑇∗, then we must set 𝑇∗ = 𝐿𝐵 

as 𝑇𝐶𝑈𝑇 exhibits convexity with respect to 𝑇 for a particular 𝑛. Therefore, to 

obtain the optimal 𝑇∗ and 𝑛∗, we suggest the following numerical approach: 

1. Initialize 𝑛 = 1. 

2. Find 𝑇∗ for 𝑛 = 1 using (5.32) and let this 𝑇∗ = 𝑇𝑎. 

3. If 𝑇𝑎 < 𝐿𝐵, set 𝑇𝑎 = 𝐿𝐵. 

4. Find 𝑇𝐶𝑈𝑇(1, 𝑇𝑎) using (5.30) and let this 𝑇𝐶𝑈𝑇 = 𝑇𝐶𝑈𝑇𝑎. 

5. Increase 𝑛 by 1. 

6. Repeat step 2 for the current 𝑛 and let this 𝑇∗ = 𝑇𝑏. 

7. If 𝑇𝑏 < 𝐿𝐵, set 𝑇𝑏 = 𝐿𝐵. 

8. Repeat step 4 to find 𝑇𝐶𝑈𝑇(2, 𝑇𝑏) and let this 𝑇𝐶𝑈𝑇 = 𝑇𝐶𝑈𝑇𝑏. 

9. If  𝑇𝐶𝑈𝑇𝑏 > 𝑇𝐶𝑈𝑇𝑎, stop the procedure. Return the current 𝑛 − 1 as 

𝑛∗, 𝑇𝐶𝑈𝑇𝑎 as 𝑇∗, and 𝑇𝐶𝑈𝑇𝑎 as the minimum 𝑇𝐶𝑈𝑇. 

10. Otherwise, let 𝑇𝑏 = 𝑇𝑎 and 𝑇𝐶𝑈𝑇𝑏 = 𝑇𝐶𝑈𝑇𝑎. Repeat step 5. 

 

5.2.1 Numerical Example 

The following parameters are assigned based on the constraints as mentioned 

in the assumptions: 

𝐷 = 10, 𝑅 = 13, 𝑃 = 12, 𝛼 = 0.6, 
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𝐾𝑝 = 160, 𝐾𝑟 = 150, ℎ𝑝 = 5, ℎ𝑟 = 0.6 × ℎ𝑝, 

𝑐𝑝 = 50, 𝑐𝑟 = 0.6 × 𝑐𝑝.   

All parameter values and the assumptions are exactly the same as in 

the numerical example in section 5.1.1. The only difference is that we have 2 

production cycle run in this numerical example. Note that the lower bound 

value 𝐿𝐵 mentioned in the solution procedure is not included in this numerical 

example. This is because we would like to compare the (1, 1) model and (1, 2) 

model with the same parameter values. 

We test the optimality of the TCUT function constructed to illustrate 

that the function can be optimized by the variable 𝑇 . By handling the 

computation with Python, the TCUT function in (5.30) is plotted against 𝑇 

ranging from 7 to 9 as the figure below. 

 

Figure 5.4: Graph of TCUT vs. T for (1,2) Reverse Logistics Inventory Model. 

 

In Figure 5.4, the plot is a U-shapped curve with a smooth turn at the 

minimum point. By looking at the existance of the minimum point, we 

conclude that the TCUT function formulated can be optimized by the variable 
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T. It is shown that the minimum TCUT of this model is 496.7992 

corresponding to the time T of 8.0480. From here, we compare the TCUT 

value and T value of this (1,2) policy to the one of (1,1) policy. It is obvious 

that the TCUT and time T increases when the number of production cycle 

increases. In this numerical example, we can emphasise that the TCUT and 

time T inceases when number of production cycle n increases subject to all 

other parameter values remain the same. However, this is not necessary true 

for all (1, n) model because an extra low set-up costs will not impact much on 

the TCUT even if the n is large.  
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CHAPTER 6 

6 AN INVENTORY MODEL OF CIRCULAR ECONOMY 

6.1 Formulation of Model 

In this chapter, we will extend the (1, 1) reverse logistics inventory model 

from section 5.1 to incorporate emission costs and a circularity indicator as a 

decision variable. Let us consider the following assumptions and notations: 

1. Constant circularity index of the produxt 𝜔. 

2. Deterministic demand rate 𝜆(𝜔) where 𝜆(𝜔) > 0. 

3. Constant repairing rate 𝑅 and production rate 𝑃, where 𝑅, 𝑃 > 𝜆(𝜔). 

4. All repaired used items are considered as good as new. 

5. Used items are collected at a constant rate 𝑘𝜔𝜆(𝜔), where 0 ≤ 𝑘𝜔 ≤ 1 

and 𝑘 is a known constant. 

6. Since the demand is deterministic, excess inventory and shortages are 

not allowed. 

7. Carbon emission is the result of warehousing only. 

8. There is only one repairing cycle and one production cycle per period. 

9. The planning horizon is infinite in length. 

10. The last point of time in the complete cycle is denoted as 𝑇. 

11. The quantity parameters for the service and used items are as follows: 

𝑄𝑝 =  Economic production quantity. 

𝑄𝑟 =  Economic repairing quantity. 

12. The cost parameters for the service items and used items are as follows: 

𝐾 =  Total set-up cost. 

ℎ𝑝 =  Unit holding cost per unit time for the service items. 

ℎ𝑟 =  Unit holding cost per unit time for the used items. 

𝑤𝑒 =  Unit carbon emission cost per unit time for the holding items in 

  warehouse. 

13. The above costs are positive and are independent of 𝜔. 

14. Unit production cost, unit repairing cost, and unit selling price (thus 

unit gross profits) are functions of 𝜔. 

15. The unit gross profit functions are as follows: 
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𝑝(𝜔) = Unit gross profit function for repairing. 

𝑞(𝜔) = Unit gross profit function for production. 

 

Figure 6.1: Overview of Inventory Status of Inventory Model with Circularity 

Indicator and Carbon Emission Cost. 

The cost of making a circular product, either by repairing or by production, 

increases with circularity level. Hence, the unit gross profits decrease with 

circularity level. We propose to express this phenomenon by using exponential 

functions for the unit gross profits, which we may write as 

 𝑝(𝜔) = 𝑝0 − 𝑎𝑒𝛼(𝜔−1) (6.1) 

 𝑞(𝜔) = 𝑝0 − 𝑏𝑒𝛽(𝜔−1) (6.2) 

where 𝑝0, 𝑎, 𝑏, 𝛼, and 𝛽 are positive parameters. 

Similarly, the demand function could be expressed in a nonlinear form. We 

propose a logarithmic demand function as follows: 
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 𝜆(𝜔) = 𝜆0 + 𝑐ln(1 + 𝛾𝜔) (6.3) 

where 𝜆0, 𝑐, and 𝛾 are positive parameters. 

Since all used items are repaired, we have 

 𝑘𝜔𝜆(𝜔)𝑇 = 𝑅𝑇1    →    𝑇1 =
𝑘𝜔𝜆(𝜔)𝑇

𝑅
 (6.4) 

During the period [0, 𝑇2], the demand is satisfied by repairing cycle. Thus, we 

obtain 

 𝜆(𝜔)𝑇2 = 𝑅𝑇1    →    𝑇2 =
𝑅𝑇1

𝜆(𝜔)
= 𝑘𝜔𝑇 (6.5) 

During the period [𝑇2, 𝑇], the demand is satisfied by production cycle. Thus 

we have 

 𝜆(𝜔)(𝑇 − 𝑇2) = 𝑃(𝑇3 − 𝑇2) (6.6) 

From equation (6.5) and (6.6), we obtain 𝑇3 as 

 𝑇3 =
𝑘𝜔𝑃+𝜆(𝜔)(1−𝑘𝜔)

𝑃
𝑇 (6.7) 

The total inventory cost per unit time (𝑇𝐶𝑈𝑇) is governed by the unit time 

sum of the set-up costs, holding costs, and carbon emission cost as the 

following equation: 

 𝑇𝐶𝑈𝑇 =
𝐾+(ℎ𝑝+𝑤𝑒)(𝐴2+𝐴3)+(ℎ𝑟+𝑤𝑒)𝐴1

𝑇
 (6.8) 

where 𝐴1, 𝐴2, and 𝐴3 are area of triangles under the graph of inventory levels 

(see Figure 6.1). 

By implementing the area of triangles obtained from the previous section 5.1 

with the current parameters, we have: 

 𝐴1 =
[𝑅−𝑘𝜔𝜆(𝜔)]𝑘𝜔𝜆(𝜔)

2𝑅
𝑇2 (6.9) 

 𝐴2 =
[𝑅−𝜆(𝜔)](𝑘𝜔)2𝜆(𝜔)

2𝑅
𝑇2 (6.10) 
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 𝐴3 =
[𝑃−𝜆(𝜔)](1−𝑘𝜔)2𝜆(𝜔)

2𝑃
𝑇2 (6.11) 

Eventually, we can obtain the 𝑇𝐶𝑈𝑇 function in the following form: 

𝑇𝐶𝑈𝑇 =
𝐾

𝑇
+ {(ℎ𝑝 + 𝑤𝑒)

𝑃[𝑅−𝜆(𝜔)](𝑘𝜔)2𝜆(𝜔) + 𝑅[𝑃−𝜆(𝜔)](1−𝑘𝜔)2𝜆(𝜔)

2𝑅𝑃
+

                           (ℎ𝑟 + 𝑤𝑒)
[𝑅−𝑘𝜔𝜆(𝜔)]𝑘𝜔𝜆(𝜔)

2𝑅
} 𝑇 (6.12) 

For a particular 𝜔, it can be shown that the optimal  𝑇∗ is easily found as 

𝑇∗ = √
2𝑅𝑃𝐾

(ℎ𝑝+𝑤𝑒){𝑃[𝑅−𝜆(𝜔)]𝑔(𝜔)𝑘(𝜔)+𝑅[𝑃−𝜆(𝜔)]𝜆(𝜔)(1−𝑘𝜔)2} +(ℎ𝑟+𝑤𝑒)𝑔(𝜔)𝑃[𝑅−𝑔(𝜔)]
 

  (6.13) 

where 𝑔(𝜔) = 𝑘𝜔𝜆(𝜔). 

As the 𝑇𝐶𝑈𝑇 function does not consider the unit production cost and 

the unit repairing cost, we will focus on  profit maximization instead of cost 

minimization, which is typically done in the classical EOQ model. Therefore, 

our goal is to identify the ideal period 𝑇∗in (0, ∞) that maximises the profit at 

a given circularity level 𝜔 in the range of [0, 1]. The function for total profit 

per unit time (average profit) is expressed as follows: 

 ∏(𝑇, 𝜔) =
𝑝(𝜔)𝑄𝑟 + 𝑞(𝜔)𝑄𝑝

𝑇
− 𝑇𝐶𝑈𝑇(𝑇, 𝜔) (6.14) 

              ∏(𝑇, 𝜔) = 𝜆(𝜔)[𝑝(𝜔)𝑘𝜔 + 𝑞(𝜔)(1 − 𝑘𝜔)] − 𝑇𝐶𝑈𝑇(𝑇, 𝜔) (6.15) 

 

6.2 Numerical Example 

The following parameters are assigned based on the constraints as mentioned 

in the assumptions: 

𝑝0 = 100, 𝜔 = 0.5, 𝑎 = 1, 𝛼 = 5, 

𝑏 = 4, 𝛽 = 3, 𝑐 = 1, 𝛾 = 5, 
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𝑘 = 1, 𝑃 = 1500, 𝑅 = 1200, 𝐷0 = 1000, 

𝐾 = 200, ℎ𝑝 = 5, ℎ𝑟 = 0.6 × ℎ𝑝, 𝑤𝑒 = 0.8. 

Then, we test the optimality of the Average Profit function 

constructed to illustrate that the function can be maximized by the variable 𝑇. 

By handling the computation with Python, the Average Profit function in (6.15) 

is plotted against 𝑇 ranging from 0.3 to 0.7 as the figure below. 

 

Figure 6.2: Graph of Average Profit vs. T for Inventory Model with 

Circularity Indicator and Carbon Emission Cost. 

 

In Figure 6.2, the plot is an inverse U-shapped curve with a smooth 

turn at the maximum point. By looking at the existance of the maximum point, 

we conclude that the average profit function formulated can be maximized by 

the variable T. It is shown that the maximum average profit of this model is 

98781.3469 corresponding to the time T of 0.4673. 
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CHAPTER 7 

7 CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusion 

In chapter 4 of our research, we have delved into the fundamentals of the 

Economic Order Quantity (EOQ) model, Economic Production Quantity (EPQ) 

model, and their extensions, which incorporate fully back-logged shortages 

and constant deterioration. We have formulated the Total Cost per Unit Time 

(TCUT) function and explained the method to obtain the optimal TCUT. 

Additionally, we have provided a numerical example to test each model. 

Furthermore, we have explored the classical reverse logistics 

inventory models and their basic extensions to incorporate the reuse of used 

items that are collected proportionally to the demand rate. The (1, 1) model 

has been extended to the (1, n) model, where n denotes n production setups per 

inventory cycle. We have also formulated the TCUT function and provided a 

numerical example to obtain the optimal TCUT for each model. 

Based on our research on the classical inventory models, we have 

developed a circular economy (1, 1) inventory model, which includes carbon 

emission costs incurred from holding items in the warehouse and a circularity 

indicator as the second decision variable. Ultimately, we have built a 

sustainable inventory management system that aims to maximize profit in a 

sustainable manner as a rough idea, suitable for real-world business 

applications in circular economy. 

 

7.2 Recommendations of Future Work 

As we move towards a more sustainable business landscape, future research 

may explore the possibilities of extending the circular economy (1, 1) 

inventory model by integrating carbon emission costs and circularity 

indicators. Furthermore, researchers can seek to optimize the (1, n) policy by 

determining the ideal values of 𝑛∗ , 𝜔∗ , and 𝑇∗  to achieve maximum 

profitability for products in a sustainable manner. To make the model more 
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comprehensive, additional parameters can be incorporated, considering the 

countless factors that affect inventory management. For instance, the carbon 

emission cost coverage can be expanded to include all inventory stages, such 

as transportation and disposal management. Additionally, the model can be 

extended to account for uncertainties, such as demand fluctuations and supply 

chain disruptions, by incorporating stochastic modeling techniques. 

Overall, the potential for further development and refinement of the 

circular economy inventory model is vast, offering exciting opportunities for 

researchers to explore the intersection of sustainability and inventory 

management.
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