DESIGN AND FABRICATE REAL-TIME INTERNET OF THINGS (loT)
MONITORING SYSTEM FOR FLOATING SOLAR PHOTOVOLTAIC (PV)
SYSTEM

TING KAI ZIN

A project report submitted in partial fulfilment of the
requirements for the award of the degree of

Bachelor of Engineering (Honours) Industrial Engineering

Faculty of Engineering and Green Technology
Universiti Tunku Abdul Rahman

May 2023

DECLARATION

| hereby declare that this project report is based on my original work except for
citations and quotations which have been duly acknowledged. I also declare that it has
not been previously and concurrently submitted for any other degree or award at
UTAR or other institutions.

_ Hi—
Signature :
Name : Ting Kai Zin
IDNo. : 18AGB01864

Date 30 April 2023

APPROVAL FOR SUBMISSION

| certify that this project report entitled “DESIGN AND FABRICATE REAL-TIME
INTERNET OF THINGS (IoT) MONITORING SYSTEM FOR FLOATING
SOLAR PHOTOVOLTAIC (PV) SYSTEM” was prepared by TING KAI ZIN has
met the required standard for submission in partial fulfilment of the requirements for
the award of Bachelor of Engineering (Hons) Industrial Engineering at Universiti
Tunku Abdul Rahman.

Signature : Wichotas

Supervisor Ts. Dr. Tan Ming Hui
Date ; 1%t May 2023
Signature : Lin Boon Ban
Co-Supervisor : Ir. Dr. Lim Boon Han

Date : 15 May 2023

The copyright of this report belongs to the author under the terms of the
copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku
Abdul Rahman. Due acknowledgement shall always be made of the use of any material

contained in, or derived from, this report.

© 2023, Ting Kai Zin. All right reserved.

ACKNOWLEDGEMENTS

I would like to thank my lecturers and my friends who contributed to the successful
accomplishment of this project. | would like to express my gratitude to my supervisor,
Ts. Dr. Tan Ming Hui for his invaluable advice, guidance and patience throughout the

progression of this project.

In addition, | would like to extend my gratitude to the personnel and authorities of
Universiti Tunku Abdul Rahman for providing me with a great facilities and

environment that enable me to conduct and complete my research.

Just as importantly, | would like to thank my parents who have given me
encouragement and mental support to face every challenge and come out better and

wiser than before.

Vi

DESIGN AND FABRICATE REAL-TIME INTERNET OF THINGS (loT)
MONITORING SYSTEM FOR FLOATING SOLAR PHOTOVOLTAIC (PV)
SYSTEM

ABSTRACT

Due to increasing global need for renewable energy, photovoltaic systems have grown
in popularity. Solar photovoltaic panel is one of the power generator that emits zero
greenhouse gases in the process of energy conversion from sunlight to electricity.
While there are different solar panel mounting methods, several studies show that
floating type photovoltaic systems have improved energy conversion efficiency and
power output. This is because conventional photovoltaic systems that are mounted on
ground and roof-top can absorb a lot of heat from sunlight. The maximum power
generated and efficiency of solar panels decrease as the temperature of the panels rises.
Meanwhile, floating type photovoltaic system is one of the alternatives for limited land
space for solar panel system installation. To evaluate and analyse the performance of
floating type photovoltaic system, and compare the performance with ground mounted
photovoltaic system, an 10T data monitoring system is designed and fabricated in this
project. The purpose of using an 0T data monitoring system is to obtain real time data.
In other words, to acquire the most recent information about the status of the solar
panels immediately following data collection. The major function of the loT data
monitoring system includes gathering data from the solar panel and its surroundings,
and sending it to a cloud server. In this project, Google Spreadsheet was configured as
the cloud server using Google Apps Script. To obtain accurate data readings, the
measurement system has been calibrated and validated. As a result, an 10T data
collection and data monitoring system with percentage error around 1.5 % was
developed and implemented.

DECLARATION

TABLE OF CONTENTS

APPROVAL FOR SUBMISSION
ACKNOWLEDEMENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES
LIST OF SYMBOLS / ABBREVIATION
LIST OF APPENDICES

CHAPTER

1 INTRODUCTION

11
1.2
1.3
1.4

Background
Problem Statements
Aims and Objectives
Outline of Report

2 LITERATURE REVIEW

2.1

External Factors Affecting Performance of PV Panels
211 Temperature

2.1.2 Humidity

2.1.3 Shading

vii

Vi
vii
Xi
Xiil
XiX

XXi

g b~ W k-

~N N OO o O

viii

2.1.4 Wind Velocity 9
2.2 Floating PV Panels 9
2.2.1 Advantages of Floating PV Panels 9
2.2.2 Challenges of Floating PV Panels 11
2.3 Floating PV Designs 12
231 Floating PV Panels With Pontoon 12
2.3.2 Flexible Floating PV Panels 13
2.3.3 Submerged PV Panels 14
METHODOLOGY 16
3.1 Project Management 16
3.2 Project Flowchart 19
3.3 Hardware Configuration 20
331 Arduino Mega 2560 20
3.3.2 ESP8266 NodeMCU V3 22

3.3.3 Serial Communication Between NodeMCU
and Arduino Mega 2560 23
3.34 Voltage Sensor 24
3.35 Current Sensor 26
3.3.6 Relay 27
3.3.7 Temperature Sensor 30
3.3.8 Humidity Sensor 31
3.3.9 OLED Display 32
3.3.10 RTC Module 33
3.3.11 SD Card Module 34
3.3.12 Complete Hardware System 35

3.3.13 Soldering Electrical Components on PCB
Board 36
34 Coding for Arduino Mega Microcontroller 38
35 Installation of Required Libraries on Arduino IDE 40
3.6 Calibration Process 45

3.6.1 Voltage and Current Calibration and
Validation 45

3.7
3.8

3.9

3.6.2 Temperature Sensors Reading Calibration
and Verification

Installation of Hardware System on FPV and GPV

Configuration of 10T Data Collection System

3.8.1 Google Spreadsheet as 10T platform

3.8.2 Configuration of Google Spreadsheet With
Apps Script

3.8.3 Setting Up Dashboard on Spreadsheet

3.84 Configuration of NodeMCU

Conversion of Data Collected on Micro SD card to

Excel

RESULTS AND DISCUSSION

4.1
4.2

4.3
4.4

Introduction

Result Analysis

4.2.1 Voltage and Current Calibration Results

4.2.2 DHT11 and DS18B20 Sensors Calibration
Results

4.2.3 Data Monitoring and Data Collection System

4.2.4 Data Analysis and Comparison Between FPV
and GPV

4.2.5 Comparison Between Data Collected on loT
System and Micro SD Card

Challenge Encountered

Cost Analysis

CONCLUSION AND RECOMMENDATIONS

5.1
5.2

Conclusion

Recommendations and Improvements

521 Arduino Mega Data Collection Time Interval
522 Solar PV Panel as the Power Source

5.2.3 Alternatives of 10T Data Monitoring System

48
49
o1
52

52
56
84

85

89
89
89
89

99
100

103

109
114
117

121
121
121
122
122
123

REFERENCES 124

APPENDICES 127

TABLE

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

4.1

4.2

LIST OF TABLES

TITLE
Final Year Project 1’s Gantt Chart
Final Year Project 2’s Gantt Chart
List of hardware components
General specification of Arduino Mega 2560
General specifications of ESP8266 NodeMCU
Pin wiring of RTC module with Arduino Mega
Pin wiring of SD card module with Arduino Mega
Required libraries to be installed on Arduino IDE
Function of the tabs in FPV data sheet and GPV data sheet
Data type and their column location
Formulae to configure the Dashboard tab
Function of the tabs in “FPV vs GPV” sheet
Formulae to configure the Real Time Data tab for GPV

Formulae to configure the Real Time Data tab for FPV

Formulae for importing data from FPV data sheet and GPV

data sheet
Voltage and current percentage errors

Voltage and current root mean square errors

Xi

PAGE

16

17

20

21

22

34

34

44

56

57

59

67

72

74

78

90

90

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

411

Corrective formulae for calibrating the voltage and current
values

Temperature sensor accuracy analysis result
Highest data reading of FPV system and GPV system
0T system percentage of data loss

Problems, possible root causes and solution on data logging in
loT system

Challenges faced in this project and their solutions
Cost of Components and Consumables
Internet Charges (not inclusive of hardware device)

Total cost spent

Xii

90

99

108

110

111

114

117

120

120

Xiil

LIST OF FIGURES

FIGURE TITLE PAGE
2.1 Examples of delamination on PV panels 7
2.2 Partially shaded PV module 8
2.3 Bypass diodes installed parallelly in each PV panel 8
2.4 Floating PV panel designed by MIRARCO 10
2.5 Modular structure of pontoon 12
2.6 Floating solar panel assembly structure 13
2.7 Flexible thin film PV 14
2.8 Design of floating PV from SCINTEC that is submergible in

different water depth 15

3.1 Project flow chart 19

3.2 Arduino Mega 2560 20

3.3 NodeMCU V3 22

3.4 Connection between Arduino Mega and NodeMCU 23

35 Schematic diagram of voltage divider 24
3.6 Connection between voltage divider and Arduino Mega

25

3.7 ACS712 current sensor 26

3.8 Connection between current sensor and Arduino Mega 26

3.9 5V relay 27

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

3.33

Relay circuit when coil is supplied with power or not

Switch circuit of relay with transistor

Schematic diagram of relay, voltage divider and current sensor

connections

DS18B20 temperature sensor

Connection between DS18B20 temperature sensor with

Arduino Mega

DHT11 sensor module

Connection between DHT11 sensor and Arduino Mega

OLED display module

Connection between OLED display module and Arduino Mega

RTC module

SD card module

Schematic diagram of complete hardware system

Complete hardware system for FPV
Complete hardware system for GPV
Main code for Arduino Mega

Arduino Mega working flowchart
Location to open “Preferences” window
Adding ESP8266 NodeMCU'’s board URL
Boards selection under “Tools” tab
Location of “Manage Libraries...”
Installation of DHT sensor library

IV plotter device

Voltage and current calibration flowchart

Fluke’s 54 II B Data Logging Thermometer

Xiv

28

29

29

30

31

31

32

32

33

34

35

37

37

38

39

40

41

42

43

44

45

47

48

3.34

3.35

3.36

3.37

3.38

3.39

3.40

341

3.42

3.43

3.44

3.45

3.46

3.47

3.48

3.49

3.50

3.51

3.52

3.53

3.54

3.55

3.56

3.57

Position of temperature sensors on FPV system
Position of temperature sensors on GPV system
Side view of GPV and FPV setup

Flow of 10T data collection system

Location of Apps Script

Apps Script code editor

Location of Spreadsheet ID

Location where Spreadsheet ID is entered
Deployment ID of the web app

All Data Record tab

Screenshot of layout of Dashboard tab for FPV (1 of 2)
Screenshot of layout of Dashboard tab for FPV (2 of 2)
Chart editor sidebar

Selecting Gauge chart

Screenshot of layout of Real Time Data tab (1 of 3)
Screenshot of layout of Real Time Data tab (2 of 3)
Screenshot of layout of Real Time Data tab (3 of 3)
Data of “today” extracted from All Data Record tab
Layout of Data on specific date tab

Date dropdown list

Data validation

Choosing Dropdown (from a range)

Screenshot of layout of Dashboard tab for GPV vs FPV sheet
(1 of 4)

Screenshot of layout of Dashboard tab for GPV vs FPV sheet
(2 of 4)

49

50

50

51

52

53

54

54

55

56

57

58

58

59

62

62

63

64

64

65

65

66

68

69

XV

3.58

3.59

3.60

3.61

3.62

3.63

3.64

3.65

3.66

3.67

3.68

3.69

3.70

3.71

3.72

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Screenshot of layout of Real Time Data tab for GPV vs FPV
sheet (3 of 4)

Screenshot of layout of Real Time Data tab for GPV vs FPV
sheet (4 of 4)

Importing data from GPV and FPV spreadsheet

Screenshot of line charts in Data Comparison tab (1 of 4)
Screenshot of line charts in Data Comparison tab (2 of 4)
Screenshot of line charts in Data Comparison tab (3 of 4)
Screenshot of line charts in Data Comparison tab (4 of 4)

Locations where WI-FI name, WI-FI password and Apps Script
deployment ID are entered

Copying data from text file
Pasting data in Excel sheet
Selecting Text to Columns
Selecting Delimited file type

Selecting Other and insert

66|”

symbol

Finishing the Text to Columns setting

Data in text file converted into columns

IV plotter voltage vs Arduino voltage before calibration (FPV)

37 sets of IV plotter voltage and Arduino voltage readings
comparison before calibration (FPV)

IV plotter voltage vs Arduino voltage after calibration (FPV)

33 sets of IV plotter voltage and Arduino voltage readings
comparison (FPV)

IV plotter current vs Arduino current before calibration (FPV)

37 sets of IV plotter current and Arduino current readings
comparison before calibration (FPV)

IV plotter current vs Arduino current after calibration (FPV)

XVi

70

71

79

80

81

82

83

84

85

85

86

87

87

88

88

91

91

92

92

93

93

94

4.8

4.9

4.10

411

412

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

27 sets of IV plotter current and Arduino current readings
comparison after calibration (FPV)

IV plotter voltage vs Arduino voltage before calibration (GPV)

22 sets of IV plotter voltage and Arduino voltage readings
comparison before calibration (GPV)

IV plotter voltage vs Arduino voltage after calibration (GPV)

31 sets of IV plotter voltage and Arduino voltage readings
comparison after calibration (GPV)

IV plotter current vs Arduino current before calibration (GPV)

27 sets of IV plotter current and Arduino current readings
comparison before calibration (GPV)

IV plotter current vs Arduino current after calibration (GPV)

29 sets of IV plotter current and Arduino current readings
comparison after calibration (GPV)

Screenshot of FPV data and GPV data on Google Spreadsheet
(1 of 3)

Screenshot of FPV data and GPV data on Google Spreadsheet
(2 of 3)

Screenshot of FPV data and GPV data on Google Spreadsheet
(30f 3)

Graph of voltage and graph of current against time
Graph of humidity and ambient temperature against time
Graph of temperature 1 and graph temperature 2 against Time

Graph of temperature 3 and graph of water temperature against
Time

Graph of Open Circuit VVoltage against Time
Graph of Short Circuit Current against Time
Graph of Maximum Obtainable Power against Time

Graph of Humidity against Time

XVii

94

95

95

96

96

97

97

98

98

100

101

101

101

102

102

103

104

104

105

105

4.28

4.29

4.30

431

4.32

4.33

4.34

4.35

Graph of Ambient Temperature against Time
Graph of Temperature 1 against Time

Graph of Temperature 2 against Time

Graph of Temperature 3 against Time

Graph of Water Temperature against Time
Multiple rows of data being shifted in Google sheet
Burnt and broken crocodile clip cable from GPV

Rusted Crocodile Clip on GPV after one week

XVili

106

106

107

107

108

113

116

116

PV

FPV

GPV

loT

HDPE

GRP

uv

NodeMCU

OLED

RTC

SD

SPDT

NPN

1/0

IDE

PWM

SRAM

EEPROM

uUSB

LIST OF SYMBOLS / ABBREVIATION

Photovoltaic

Floating photovoltaics

Ground mounted photovoltaics
Internet of Things

High Density Polyethylene
Glass Fibre Reinforced Plastic
Ultraviolet

Node Microcontroller Unit
Organic Light-Emitting Diodes
Real Time Clock

Secure Digital

Single Pole Double Throw
Negative-Positive-Negative
Input/Output

Integrated Development Environment
Pulse Width Modulation

Static Random-Access Memory

Electrically Erasable Programmable Read-Only Memory

Universal Serial Bus

Xix

GPIO General Purpose Input Output

UART Universal Asynchronous Receiver Transmitter
RX Receive

TX Transmit

ADC Analogue to Digital Converter
NC Normally Close

NO Normally Open

COM Common

12C Inter-Integrated Circuit

VCC Common Collector Voltage
GND Ground

SCL Serial Clock Line

SDA Serial Data Line

MISO Master In Slave Out

MOSI Master Out Slave In

SCK Serial Clock

CS Chip Select

URL Uniform Resource Locator
HTTP Hypertext Transfer Protocol
XML Extensible Markup Language

JSON JavaScript Object Notation

XXI

LIST OF APPENDICES

APPENDIX TITLE PAGE
A ESP8266 NodeMCU V3 Pinout 127
B Arduino Mega Pinout 128
C SOLARLAND 80W Solar Panel 129
D FPV Schematic Circuit Diagram 130
E GPV Schematic Circuit Diagram 131
F FPV and GPV PCB layout diagram 132
G Coding for Arduino Mega for GPV 133
H Coding for Arduino Mega for FPV 139
I Coding for ESP8266 NodeMCU for GPV 145
J Coding for ESP8266 NodeMCU for FPV 149
K Coding for Google Apps Script for GPV 153

L Coding for Google Apps Script for FPV 155

CHAPTER 1

INTRODUCTION

1.1 Background

Harvesting energy from the sun has high potential in Malaysia due to its geographical
location close to the equatorial line. Around 4000 to 5000 Wh/m? of solar radiations
can be received in Malaysia daily (Azhari et al., 2008). There are several ways to
harvest solar energy, including solar thermal system and solar photovoltaic (PV)
system. Solar energy is one of the renewable energies that can be converted into
electricity in a green, low-environmental-impact way, as it emits zero Green Houses

Gases in the energy conversion process.

Solar PV system, is the technology of generating flow of electricity with the
application of compound semiconductor material. The panel is usually structured with
layers of crystalline cells made from silicon. Then, the layers of PV cells are covered
by transparent glass on the layer facing to the sunlight, a piece of polymer plastic at
the bottom, and aluminium frame (Svarc, 2020).

There are several factors affecting the energy conversion efficiency of the solar
PV panel, including temperature, installation method, shadings by foreign objects,
difference in spectral irradiance and etc. The efficiency of solar PV panel plays an
important role as the higher the efficiency of the PV panel is, the higher the energy
output generated.

The installation of conventional PV system is typically done on land. This type
of installation usually involves larger scale to generate enough electricity. However,
the availability of land limits further development of land type PV system. The main
reason to this is reservation of land for more important purposes especially food related
one. For example, land for agriculture purposes. Once land is used for PV system
implementation, the land is occupied and became solely for PV system. The system is
often not able to be integrated with any other usage. Therefore, exploration on PV

system installation method other than land type is gaining more concerns.

Floating PV system is the design of PV system in a floatable way and is
implemented on water bodies. Speaking of large scale PV system, floating PV has the
potential to replace land type PV system as water bodies are readily available in
Malaysia. Depending on the design, the structure of floating PV system can be as
simple as fixing normal PV panel on floating platform, or redesigning PV panel that
is waterproof and can directly contact with water. In either way, research shows
improvement of performance due to lower PV panel temperature compared to land
type one. Other benefits of floating PV system include availability of water for
cleaning the surface of PV panel, reduction of water losses from evaporation, and

improvement of water quality.

A study of floating PV panel done by Majid et. al. (2013) under Malaysia
climate condition shows improvement of floating PV performance. The result shows
under different solar irradiance level, the temperature of floating PV is always lower
than normal PV, while the power output of floating PV is always higher than that of
normal PV. The experiment has been conducted in two hours, with 15.5 % increase of
energy gain by the floating PV compared to normal PV.

Data collection and monitoring for floating PV system is more challenging than
the conventional PV system. This is because floating PV panel could be located at the
middle of water body and is unreachable by human if no walkway is built on the
platform. Therefore, floating PV monitoring system integrated with Internet of Things

(1oT) is designed in this project to solve the aforementioned problem.

1.2 Problem Statements

Solar PV panels were traditionally built on land. Nowadays, with reduction of land
availability and the need for conservation of land for natural reserves, more solutions
emerged such as PV panels mounted on rooftop, canal top, and floater. Each method
has its own advantages and disadvantages. Ground mounted PV panels allow the
power system to be constructed in a larger scale. In contrast, rooftop mounted PV
panels usually could only be built on the space of rooftop. Hence, it is only capable to

generate electricity for household usage.

Both ground mounted and rooftop PV panels has the common downside, which
is reduction of efficiency due to high temperature as a result of long exposure under
sunlight. This is caused by temperature coefficient when the temperature of solar panel
rises above 25 degrees Celsius. Temperature coefficient is the decrease on the
efficiency of solar panel with 1 degree Celsius increase of temperature. PV panels
usually have the temperature coefficient ranging from —0.3 %/°Cto —0.5 %/°C (Ost,
2020). Therefore, floating PV panel is one of the solutions to the problem of limited
land, while it can also be built into larger scale depending on the size of water body.
Hence, floating PV panel could be more competitive than rooftop PV panel when
larger surface area is possible. At the same time, the effect of water evaporation at the
water body could help cool down heated PV panel, enhancing the energy conversion

efficiency.

Investigation on how temperature can be reduced with floating PV panel, and
how much energy output can be yield from this method was carried out in this project.
Floating PV performance monitoring could be done by storing the data in hardware
storage such as SD card. However, the data stored offline could be difficult to be
retrieved by human if no walkway is built on the water body. Furthermore, the offline
data needs to be post-processed in order to be converted into tables and charts in an
Excel spreadsheet. Thus, to improve the safety and productivity of the data collection
process, another solution which integrates the data collection system with 10T is

applied in this project to obtain data remotely and allow real time monitoring.

1.3 Aims and Objectives

The main purposes of conducting this project entitled DESIGN AND FABRICATE
REAL-TIME INTERNET OF THINGS (IoT) MONITORING SYSTEM FOR
FLOATING SOLAR PHOTOVOLTAIC (PV) SYSTEM are as shown below:

1) To design and construct an 10T data collection and data monitoring system for
floating PV panel

2) To calibrate and validate the measurement values of the 10T data collection and
data monitoring system for floating PV panel

3) To test the functionality and stability of the IoT data collection and data

monitoring system for floating PV panel

1.4 Outline of Report

Chapter 1: Introduction
A brief description on the background, problem statement and purpose of performance

evaluation of floating PV panel in Malaysia.

Chapter 2: Literature Review
A general review on the results and discussion obtained from several journals and

resources.

Chapter 3: Methodology
Explanation of tasks performed in this project. A summary of tasks concluded in two

Gantt Charts with the timelines stated respectively.

Chapter 4: Results and Discussion
Analysis and discussion made based on the results obtained. A summary of problems

encountered and solutions implemented were concluded in a table.

Chapter 5: Conclusion and Recommendation
Conclusion made based on the entire report and achievement of the project. A few

recommendations were suggested for future improvement of any similar project.

CHAPTER 2

LITERATURE REVIEW

2.1 External Factors Affecting Performance of PV Panels

2.1.1 Temperature

Temperature has negative effect to the efficiency and performance of PV panels. The
temperature of a PV panels under operation rises due to only partial number of photons
striking on the PV panels being converted into electricity, while the rest of the energy
is converted into heat (Pradhan and Panda, 2017). PV panel absorbs this heat energy
and thus the temperature of the panel increase. The study done by Pradhan and Panda
(2017) shows that when the temperature increase, the negative effects to the module
include reduction in maximum power generated, fill factor and efficiency.
Furthermore, when temperature of the PV panel exceeded the upper limit point
mentioned by the manufacturer, it can result long term damage to the panel (Mathur et
al., 1984). Other than increasing temperature, Pradhan and Panda mentioned that

ununiform temperature distribution could also reduce the efficiency of PV panel.

2.1.2 Humidity

Pradhan and Panda (2017) conducted an indoor experiment and created humid
condition to measure the effect of humidity to PV modules. Reduction of maximum
power, fill factor, and efficiency is observed with the rise of humidity percentage. Solar
module degradation occurs when water vapor penetrates into the cells. Pradhan and
Panda mentioned that PV modules is subjected to delamination damage in moisture
condition, as the moisture erode the interfacial adhesion of the cells. During rain

periods, the output of the PV module falls as the humidity increases.

Figure 2.1: Examples of delamination on PV panels (Xia, 2021)

2.1.3 Shading

Shading is blockage of sunlight from striking on PV panels. It can be categorised into
hard shading or soft shading. The former refers to complete blockage of sunlight by
solid object while the latter refers to partial blockage such as shading by smog
(Maghami et al., 2016). Many external objects can cause shading on PV module,
whether they are from nature or man-made. For examples, bird droppings, dry leaves,
buildings etc. Ununiform shading on solar module causes mismatch of solar cell,
which happens when power generated by unshaded cell is dissipated by shaded cell.

This can cause over heating on the module, resulting irreversible damage

(PVEducation, n.d.). Pradhan and Panda (2017) conducted the research on the effect
of different degrees of shading on PV panels. The result shows that as shading
percentage increase, the fill factor and efficiency decrease. To avoid mismatch losses

due to shading, bypass diode can be installed in the PV module.

Figure 2.2: Partially shaded PV module (Dwivedi, Yadav and Saket, 2016)

Ia It=1Ia+ Ig
' »—0 +
Blocking
/Diodes\ I

/ e] -

Bypass
Diodes

\

Figure 2.3: Bypass diodes installed parallelly in each PV panel (Electronics
Tutorial, n.d.)

2.1.4 Wind Velocity

In the experiment on the effect of wind speed to the performance of PV panel, Pradhan
and Panda (2017) found that the combined effect of cooling and dust removal from
wind boost the efficiency of PV panels. Adequate amount of air flow helps cooling
down PV modules. Furthermore, wind can also help to remove dust accumulated on
PV panels. However, wind speed that is too high or too low will not improve the
performance of PV panels. The result from Pradhan and Panda shows that the
maximum output, fill factor and efficiency are the highest at wind speed of 10 m/s
amongst other lower wind speeds. The performance was also lower at wind speed of
18 m/s.

2.2 Floating PV panels

2.2.1 Advantages of Floating PV panels

There are several advantages of implementing Floating PV panel. However, the main
reason of implementing floating PV panels is due to its advantage of not utilizing
precious land for PV system. Only small amount of land is required for devices such
as inverter and electric meter. Depending on the size of water surface, floating PV
panels has potential to provide equivalent scale of power generation as ground
mounted PV panels. Water bodies that generally not utilized by other activities, is

abundantly available such as lakes, ponds, man-made water reservoirs and off-shores.

The next main purpose of implementing floating PV panels is due to the
improved efficiency of the energy conversion from sunlight to electricity. The
efficiency of floating PV panels can be 11 % higher than ground mounted PV panels
(Choi, 2014). Research done by Liu et al., (2017) concluded that floating PV panels
has temperature around 3.5 °C lower than the ground mounted one. There are some
theories supporting this efficiency improvement. Firstly, the evaporation effect of
water body makes the surrounding temperature of floating solar panels cooler (Sahu,

Yadav and Sudhakar, 2016). Secondly, the ambient temperature of water body is lower

10

due to the reflectivity of water surface (Sahu, Yadav and Sudhakar, 2016). As a result,
more sunlight can be reflected by water surface as compared to ground. Soil absorbs
most of the heat from sunlight than reflecting them, resulting higher ambient
temperature. Thirdly, water has higher specific heat capacity, which means it can hold
more heat energy to raise its temperature by one degree Celsius. Moreover, PV panels
floating on water body will experience less dust accumulation (Sahu, Yadav and
Sudhakar, 2016). Therefore, performance of floating PV panels is better with their

cleaner surface.

In terms of cleaning and maintenance job, water is readily available for
cleaning the surface of solar panels. This makes cleaning solar panels more cost saving
as water do not have to be pumped from other water sources that might be far away.
A floating PV panels project designed by MIRARCO does not even have a floating
platform to place their solar panels. The solar panels contact with water surface directly
so the cooling effect by water can be boosted, and the surface of PV panels remains

clean due to the self-cleaning effect (Trapani and Redon Santafé, 2014).

Figure 2.4: Floating PV panel designed by MIRARCO (Trapani and Reddn
Santafé, 2014)

Other advantages of FPV include reduced water losses from evaporation and
improved water quality. These two advantages are due to shading of PV panels on the
water surface preventing sunlight from traveling into the water. As water surface being
covered by PV panels, less heat from sunlight is absorbed by the water body. Hence,

11

this could result lower water evaporation rate, preventing water from escaping in the
form of vapor. Water loses from evaporation can be reduced up to 33 % and 50 % for
natural water bodies such as lakes and ponds, and man-made facility respectively
(Choi, 2014). Furthermore, less sunlight penetration also reduces photosynthesis

process of algae, preventing them from overgrowing.

2.2.2 Challenges of Floating PV Panels

Due to the external factors in natural water bodies, the structure of floating PV panels
needs to be carefully designed to handle different conditions. Durability of PV panels
may be an issue. Most importantly, the PV panel system needs to be stable enough to
float on water most of the time, and strong enough to withstand external forces such
as wind load and water tides (Sahu, Yadav and Sudhakar, 2016).

The first challenge is the strength of the system. Well-designed structure of
floating PV system is required to withstand external forces caused by strong wind and
waves. Due to these external forces, solar panels may experience more stress and
vibration then those ground mounted one. This could result formation of cracks on the
rigid PV panels, reducing its electricity output and durability (Cazzaniga et al., 2018).
Furthermore, right material for the floating structure should be chosen depending on
the type of water body. Due to the effect of electrochemical corrosion, corrosion of
metal frame could be severe and this reduce the strength of the floating structure. The
material may need to be highly anti-corrosion if the system is to be installed in sea
water. Secondly, electricity cables used in the system are always contact with water.
Hence, they need to be well insulated and durable enough to reduce risk of shocking
and other safety issues. Thirdly, the operation of floating PV panels may get
interrupted by wildlife such as birds, fish and other local animals. For instance, bird
droppings may accumulate on the surface of PV panels if the installation location is
near to the habitat of birds. This could result reduced PV efficiency due to the shading
on the panel.

12

2.3 Floating PV designs

2.3.1 Floating PV Panels with Pontoon

Pontoon is a giant floating structure that is made up by smaller sized floats. The
modular design allows suitable sizing of the floating platform for PV panels to be built
according to the requirement. The materials for the floats could be made up of High
Density Polyethylene (HDPE) or Glass Fibre Reinforced Plastic (GRP) (Sahu, Yadav
and Sudhakar, 2016). HDPE is characterised by its strength, lightweight, UV and
corrosion resistance. Research shows HDPE does not have any sign of degradation
after UV exposure (Sahu, Sudhakar and Sarviya, 2019). GRP has similar properties
with HDPE and is highly impact resistant (Engineered Composites, n.d.).

O 15

Flosting Dock Pontoon

Figure 2.5: Modular structure of pontoon (Sahu, Yadav and Sudhakar, 2016)

The characteristic of this type of floating PV panels is that the panels do not
get contacted with water directly. It is a safer way to directly utilize conventional PV
panels in floating PV projects, as water resistance of the PV panel is often unsure. An
example of large-scale PV power plant done by Kyocera Corporation and Century
Tokyo Leasing Corporation is as shown in Figure 2.6. The design of the floater is

strong enough to resist typhoon (Sahu, Yadav and Sudhakar, 2016).

13

FLOATING STRUCTURE

Figure 2.6: Floating solar panel assembly structure (Sahu, Yadav and
Sudhakar, 2016)

2.3.2 Flexible Floating PV Panels

The idea behind flexible floating PV is to solve the durability issue of rigid floating
PV mentioned beforehand. Flexible PV is able to follow the motion of waves rather
than withstanding them (Trapani and Reddn Santafé, 2014). Therefore, they encounter
less impact from wind loads and waves as compared to the conventional rigid one.
This novel design opens the opportunity of implementing floating PV panels in off-
shore areas, which are subjected to greater wave movements and wind load. What
makes this flexible thin film PV panel differ from conventional PV panel is that they
are very lightweight. The design from MIRARCO allows buoyancy force to be
integrated with the PV panels, by trapping air within the laminated thin film (Trapani
and Reddn Santafé, 2014).

14

\m

Flexible Thin
Film PV

Figure 2.7: Flexible thin film PV (Trapani and Reddn Santafé, 2014)

2.3.3 Submerged PV Panels

Submerged PV panels have several advantages. Firstly, due to the entire PV panels
being completely submerged in water, the cooling effect of the panels will be enhanced.
Secondly, this idea eliminates the need for cleaning PV panels (Ranjbarann et al.,
2019). The design for submerged PV panels is not limited for flexible one. For example,
the design from SCINTEC applies conventional rigid PV panels, while completely
submerging it under water surface (Trapani and Redon Santafé, 2014). Since rigid PV
panels cannot withstand strong wave movement, the module is designed to be
submerged under water up to 2 m to avoid the waves. When the water surface is calm,
the module can be lifted very close to the water surface (0 to 2 mm under water) to

receive effective solar radiation without any deter from water (Rosa-Clot et al., 2010).

15

Figure 2.8: Design of floating PV from SCINTEC that is submergible in
different water depth (Trapani and Redon Santafé, 2014)

CHAPTER 3

METHODOLOGY

3.1 Project Management

Table 3.1: Final Year Project 1’s Gantt Chart

16

Activity

Week

12 (3 (4|56 |7 (89

10

11

12

13

14

Project title

selection

Literature

review

Conceptual
design of
hardware

system

Selection of
hardware

components

Building and
testing the

circuit and

the Arduino

program

Exploration
of loT
platforms

Code writing

Testing and
trouble-
shooting the
loT data
sending

process

Report

writing

17

Table 3.2: Final Year Project 2°s Gantt Chart

Activity

Week

Finalizing
the hardware

system

8 19

10

11

12

13

14

Soldering the
hardware
components
on PCB

Calibration
and
validation of

sensor data

18

Installation
of data
monitoring
system on
FPV and
GPV

Data
collection of
FPV and
GPV

Data analysis

Report

writing

3.2

Design of hardware
for data monitoring
system

Selection of hardware
components

Build and test the
circuit using
breadboard

4

Develop coding to
programme Arduino
Mega

Project Flowchart

v

Design of loT
data monitoring
system

Selection of loT
platform

I

Develop coding
for Google
Spreadsheet

4

19

Finalize the hardware
system and solder the
components on PCB

Develop coding to
configure NodeMCU to
send data to 10T platform

Testing and trouble
shooting data collection
and data transmission from
Arduino Mega to
NodeMCU

Testing and trouble

;

Calibration and
validation of
sensor data

4

Installation of data

monitoring system

on FPV and ground
mounted PV

y
Data collection of

FPV and ground
mounted PV

4

shooting the 10T data
sending process

Figure 3.1: Project flow chart

Data analysis between

data collected on loT

system and micro SD
card

End

3.3 Hardware Configuration

20

Table 3.3: List of hardware components

Category

Component

Microcontrollers

Arduino Mega 2560

ESP8266 NodeMCU

Sensors

Voltage sensor (A voltage divider that
consists of 30 kQ and 7.5 kQ resistors)

ACS712 current sensor

DS18B20 temperature sensor

DHT11 humidity sensor module

Display

OLED display

Time and date remembering system

RTC module

Offline data recording device

SD card module

Other components

SPDT Relay

2N2222 NPN transistor

Diode

4.7 kQ resistor

3.3.1 Arduino Mega 2560

Figure 3.2: Arduino Mega 2560 (Arduino Mega 2560 Rev3, n.d.)

21

In this project, microcontroller is required to control other hardware components and
process the collected sensor data. Arduino Mega 2560 was chosen due to several
reasons. Firstly, Arduino Mega has more digital input and output (I/O) pins. This
allows more sensors and components to be connected to the microcontroller. Secondly,
comparing to its smaller counterparts, Arduino UNO, Arduino Mega has larger flash
memory, which allows a larger sketch or code to be uploaded and stored into it (Gudino,
2021). Thirdly, the microcontroller can be easily programmed with the Arduino IDE
software, which is an open-sourced platform created by Arduino company. Moreover,
Arduino Mega has bigger Static Random-Access Memory (SRAM) space, allowing
more variables to be created and manipulated from the code (Gudino, 2021). Table 3.4

below shows the specification of Arduino Mega 2560.

Table 3.4: General specification of Arduino Mega 2560 (Arduino Mega 2560

Rev3, n.d.)
Microcontroller Arduino Mega 2560
Operating voltage 5V
Input voltage (Recommended) 7-12V
Input voltage (Limit) 6-20 V

Digital 1/0 pins 54 (including 15 PWM output pin)
Analog input pins 16

DC current per 1/0 pin 20 mA

DC current for 3.3 V pin 50 mA

Flash memory

256 KB of which 8 KB used by bootloader

SRAM 8 KB
EEPROM 4 KB
Clock speed 16 MHz

22

3.3.2 ESP8266 NodeMCU V3

Figure 3.3: NodeMCU V3 (NodeMCU ESP8266, 2020)

This NodeMCU (Node Micro Controller Unit) is a microcontroller that has a built-
in WI-FI microchip named ESP8266. Since Arduino Mega cannot send data to the
Internet due to absence of WI-FI chip, NodeMCU comes in handy to receive the
data from Arduino and send them to 10T platform. It is very similar to Arduino
board as it is programmable via the micro-USB port with Arduino IDE software
or Lua programming language. In order for PC to successfully detect the
NodeMCU board, CH340G driver may need to be installed in the PC.

Table 3.5: General specifications of ESP8266 NodeMCU (NodeMCU
ESP8266, 2020)

Microcontroller NodeMCU V3
Processor ESP8266 32 hit
Clock speed 80 MHz

USB to Serial CH340G
Operating voltage 3.3V

Input voltage 45V -10V
Flash memory 4 MB

SRAM 64 KB

GPIO (General Purpose Input Output) pins | 16

Analog input pins 1

23

3.3.3 Serial Communication Between NodeMCU and Arduino Mega 2560

The serial communication is required as sensor data from Arduino Mega need to be
sent to NodeMCU, then to the loT platform. The UART (Universal Asynchronous
Receiver Transmitter) pins on NodeMCU labelled as RX (receive pin) and TX
(transmit pin) on are used in serial communication. However, for both NodeMCU and
Arduino Mega, user can define any digital pin as RX and TX pins for serial
communication. This is done by defining the selected pins in the codes and upload the
code to the microcontroller. Besides, the baud rate of the Arduino Mega and the
NodeMCU is required to be the same for the data to be able to transmit. The baud rate
of 115200 is used.

As shown in Figure 3.4, the digital pin 10 and 11 is used for serial
communication, with pin 10 representing RX pin while pin 11 as TX pin. The
connection of the pins is reciprocal, with RX pin corresponding to TX pin and TX pin
corresponding to RX pin. This is because RX pin of NodeMCU will receive data from
TX pin of Arduino board, while TX pin of NodeMCU will transmit data to RX pin of
Arduino board.

MADE IN

Figure 3.4: Connection between Arduino Mega and NodeMCU

24

3.3.4 Voltage Sensor

Usually, voltage can be directly measured by Arduino if the input voltage is lower than
5 V. To measure voltage higher than 5 V, voltage divider is required to lower the input
voltage so that the board will not be damaged. According to the specification of the
solar panel, the open circuit voltage is 21.6 V. Hence, a 5 to 1 ratio of voltage divider
was constructed using 30 kQ and 7.5 kQ resistors. The construction of voltage divider

is based on the formula below.

Vout = Vin X L
out n Rl + RZ
Where
V,ut = Voltage across Rz (Q)
Vi, = Voltage across R1 and Rz (Q)
R; = Resistor 1 voltage (V)
R, = Resistor 2 voltage (V)
GND VCC

(‘)< Vin >O

FAMATAMA—

R2=7.5kQ R1=30k02

C) Vout C)

- S

Figure 3.5: Schematic diagram of voltage divider

Referring to Figure 3.5, V;,, terminals will be connected to solar panel, while

V,.+ terminals will be connected to analogue pin and ground pin of Arduino Mega

25

board. Since the voltage value received is in analogue form, the value needs to be

processed with the formula below to convert it into digital form.

ADC value
Vour = W X Vref

Where

V.t = Output voltage of voltage sensor (mV)

ADC value = Analog to Digital Converter value obtained from analogue pin that the
voltage divider is connected to

Vs = Reference voltage (mV) (In this case it is 5000mV)

V,.¢ 1S the value that represents the final reading of the voltage of the solar
panel. ADC value is actually the V;,, from the voltage divider formula. The number
“1024” is the number of discrete analogue levels the analogue value can be detected.
Since Arduino Mega’s analogue pin has built-in ADC (Analog to Digital Converter)
of 10 bits, the value 1024 is obtained from 2 to the power of 10. V,..; is referred from
the voltage supplied to Arduino board, which is usually 5 V. However this value is not
always constant. The accuracy of the data is influenced by the number of bits of ADC
pin and the reference voltage (Measure DC Voltage and Current with an Arduino,
2021).

POWER ANALOG IN
aa =z

Figure 3.6: Connection between voltage divider and Arduino Mega

26

3.3.,5 Current Sensor

Figure 3.7: ACS712 current sensor (Current Sensor Module ACS712 (30A),
n.d.)

The ACS712 is a type of non-invasive current sensor, which means the sensor has no
direct connection with the load circuit. This type of sensors works on the principle of
Hall-effect. The sensor measures the magnetic field generated by the built-in conductor
and converts the value into corresponding analogue output. The ACS712 current
sensor has 5 A, 20 A and 30 A variations with sensitivity of 185 mV/A, 100 mV/A
and 66 mV/A respectively. Based on the specification of the solar panel, it will
generate maximum current of 4.65 A. Hence, a 5 A current sensor is selected due to

the in range current measurement and the highest sensitivity among all variations.

MADE IN

Figure 3.8: Connection between current sensor and Arduino Mega

27

The value received from the analogue pin on Arduino Mega is an output
voltage corresponding to the current it is measuring. According to the datasheet of
ACS712, the zero current voltage output is 2.5 V. This means that when it is not
connected to any circuit, the sensor will still output 2.5 V. Hence, the calculation of

current value is as follow.

ADC value
Vour =004 " Vrer

I = Vout — Vjof'fset
Sensitivity

Where

ADC value = Value obtained from analogue pin the sensor is connected to

Vrer = Reference voltage (mV) (In this case it is 5000mV)

V,.: = Output voltage of current sensor (mV)

Vorrser = Offset voltage (V) (in this case is 2500mV)

Sensitivity = 185mV/A

3.3.6 Relay

Figure 3.9: 5V relay (5V Relay, n.d.)

Short circuit could happen when voltage and current are measured at the same time.
Therefore, relay is required in this project to automatically switch between measuring

28

voltage and measuring current. A Single Pole Double Throw (SPDT) relay is used.
Relay operates electromagnetically. The armature in relay is originally in the position
of connecting Normally Close (NC) pin to Common (COM) pin. When there is current
flow through the coil of the relay, electromagnetic field is generated. The force
generated by the electromagnetic field pulls the armature to connect to Normally Open
(NO) pin. When no current flow through the coil, the armature reverts back to
connecting the Normally Close pin. Figure 3.10 below shows the circuit of relay in

different condition.

NC—-O\O_ NC —to Q
—COM —COM
NO —1-©0 Nn—-o//’o_
YY\ YY)
| | ol | s

Mo Vol i
oVol%e® | SpDT Relay Working| /o't=ee 2PPlied

Figure 3.10: Relay circuit when coil is supplied with power or not (Arduino
Relay Control Tutorial, 2017)

For this project’s application, the voltage of solar panel will be measured first then
followed by the current. Hence, the negative terminal of voltage sensor was connected
to Normally Closed pin of the relay, while the negative terminal of current sensor was
connected to the Normally Open pin. In the code, the relay was controlled to be turned

OFF when measuring voltage, and turned ON when measuring current.

An NPN (Negative-Positive-Negative) transistor is required because the output
signal pin from Arduino Mega cannot generate current that is high enough to energize
the relay coil. The 2N2222 transistor is used in this project. There are three terminals
on the transistor, namely Collector (C), Base (B) and Emitter (E). The Collector pin
was connected to one of the coil pin of relay. The Base pin was connected to output
pin of Arduino Mega. The Emitter pin was connected to ground. A diode is added

between the coil pins to avoid large reverse current damaging other components on the

29

circuit when the coil de-energizes. The construction of the switch circuit is as shown

in Figure 3.11.

Signal

Figure 3.11: Switch circuit of relay with transistor

Figure 3.12: Schematic diagram of relay, voltage divider and current sensor

connections

30

3.3.7 Temperature Sensor

\‘\
—

Figure 3.13: DS18B20 temperature sensor (DS18B20 Temperature Sensor,
2018)

The DS18B20 sensor comes with two types-probe type and another one with
appearance similar to transistor. The sensor is capable to measure temperature in the
range of -55 °C to +125 °C. The accuracy of the sensor is £0.5 °C when the temperature
ranges from -10 °C to +85 °C. Multiple DS18B20 sensors can be controlled by and
communicate to one microcontroller with only one data line. This is known as
communication over 1-wire bus. The DS18B20 temperature sensor with appearance
similar to transistor are used to measure the temperature of the solar panel, to observe
the effect of temperature change on the performance of solar panel. To monitor the
temperature on different positions of solar panel, three sensors with their pins extended

with cables are attached at the back of the solar panel.

Referring to Figure 3.14 below, a 4.7 kQ resistor is included in the circuit to
act as a pull-up resistor. This way it can enhance stability of data transmission between

the sensors and Arduino Mega.

31

MADE IN

mmmmmmmmmmmmmmmm
AAAAAA

T e —

mmmmmm
mmmmmmmmmmmmmmmmmmmmmm
<<<<<<<<<<<<<<<<<<<<<<<<

o

Figure 3.14: Connection between DS18B20 temperature sensor with Arduino

Mega

3.3.8 Humidity Sensor

Figure 3.15: DHT11 sensor module (DHT11 sensor module, n.d.)

DHT11 sensor module is used in this project to obtain humidity readings. It measures
humidity using capacitive humidity sensor, and also temperature with its thermistor.
For this project’s purpose, only humidity data of the surrounding air of the PV panel

are read. The sensor is able to measure humidity in the range of 20-90 % relative

32

humidity, with accuracy of + 5 %. The DHT11 sensor can be powered from 3-5.5V,
with 2.5 mA maximum current. The sensor data is slow as it will take 2 seconds to
provide a single reading.

nadE IN @

Figure 3.16: Connection between DHT11 sensor and Arduino Mega

3.3.9 OLED Display

Figure 3.17: OLED display module (12C 0.96" OLED 128x64, n.d.)

OLED stands for Organic Light-Emitting Diode. A display is required to show the

values detected by the sensors. To display all six sensor values and also the date and

33

time, an OLED display that has 128 x 64 blue pixels is used. The OLED display

module communicates with Arduino Mega via 12C (Inter-Integrated Circuit).

POWER ANALOG IN
aa =z

Figure 3.18: Connection between OLED display module and Arduino Mega

3.3.10 RTC Module

Figure 3.19: RTC module (DS3231 Real Time Clock (RTC) Module, 12C, n.d.)

RTC stands for Real Time Clock. RTC module is a date and time remembering device
that is powered by a battery to keep the date and time updated. The RTC module can
also be powered by connecting its power pin to external power supply. It is required
in this project because Arduino Mega could not obtain real time by itself. Furthermore,

recording data offline with timestamps is more helpful for data analysis.

34

Table 3.6: Pin wiring of RTC module with Arduino Mega

Pin on RTC module Arduino Mega
VCC 5V
GND GND
SCL Pin 21
SDA Pin 20

3.3.11 SD Card Module

Figure 3.20: SD card module (5V Compatible Micro SD Card Adapter, n.d.)

An SD card module is necessary to save data offline and serve as a backup in the event
of an internet service disruption. It allows user to plug in SD card on the module, and
read or write data on the card via communication with microcontroller. The SD card
that is going to be used in this module needs to formatted to FAT16 or FAT32 format

before using it with Arduino board, or else Arduino Mega will not be able to detect it.

Table 3.7: Pin wiring of SD card module with Arduino Mega

Pin on SD card module | Arduino Mega
VCC S5V
GND GND
MISO Pin 50
MOSI Pin 51
SCK Pin 52
CS Pin 53

35

3.3.12 Complete Hardware System

Input (-)

Figure 3.21: Schematic diagram of complete hardware system

The Arduino Mega microcontroller is powered by power bank. The wire labelled as
“Input (+)” and “Input (-)” are connected to the positive and negative pole of solar
panel respectively. The sensors collect data readings and the reading values are shown
on the OLED display. At the same time, the sensor data are saved offline into the SD
card. While for online data sending and saving, NodeMCU acts as a communicator to
receive sensors data from Arduino Mega microcontroller and send them to loT
platform. The complete schematic diagrams of the hardware system of FPV and GPV
are attached in Appendix D and E.

36

3.3.13 Soldering Electrical Components on PCB Board

Bad electrical contact is a common issue when using breadboard since the small
sockets on breadboard can get loose depending on the built quality. Furthermore, the
wires and components plugged onto the small sockets can be easily shaken out when
there is external force applied on them. For instance, in the case of vibration of PV
panel floater due to movement of water waves. To prevent the issue of loose contact,
the wires and the electronic components were soldered on Printed Circuit Board (PCB).
The layout of PCB was designed using EAGLE PCB drawing software. The finalized
PCB layout design for FPV and GPV hardware circuit is attached in Appendix F.

After done soldering the components, the PCB, Arduino board and NodeMCU
were placed inside a plastic container with lid to prevent water from damaging the
hardware. Some holes were made on the side of the container to allow sensor wires to
be taken out. The holes were then sealed with Tack-it elastic clay. Figures 3.22 and
3.23 below show the complete hardware systems for FPV and GPV. Moreover, power
banks were used to supply power for both system. The power banks were put in zip

bags to make them water-proof.

37

Figure 3.22: Complete hardware system for FPV

ol

Figure 3.23: Complete hardware system for GPV

3.4 Coding for Arduino Mega Microcontroller

The Arduino IDE sketch or code for Arduino Mega microcontroller can be separated
into several sections, which is as shown in the Figure 3.24 below. The flow chart in

Figure 3.25 shows actions executed by Arduino Mega in sequence. The detail

explanations for the code are written as comments included in the sketch.

Include required
libraries

Define 1/0 pins to
receive data from the
sensors

Main sections of
code on Arduino
Mega

Define constants and
variables for data
processing

Create different
functions for different
sensors to execute their
action

Initialize the sensors,
relay, OLED display,
NodeMCU, RTC
module and SD card
module in setup()
function

Run the sensor
functions and send data
to NodeMCU
repeatedly in loop()
function

Figure 3.24: Main code for Arduino Mega

39

Start

4

Initialize the
components

Delay 2 seconds

Sensors read and send data to
Arduino Mega following the
sequence of voltage sensor, current
sensor, humidity sensor and
temperature sensor

4

Data are stored in a
String type variable
named “data”

4

Data readings are
displayed on OLED
screen

Data are recorded
into micro SD card

4

The String type
variable “data” is
sent to Node MCU

A 4

End

Figure 3.25: Arduino Mega working flowchart

40

35 Installation of Required Libraries on Arduino IDE

In order for successful detection of ESP8266 NodeMCU board by the Arduino IDE
software, the ESP8266 board manager is required to be added. Firstly, user need to
open Arduino IDE software, then under the “File” tab, select “Preferences”. User then

needs to enter the following URL at the blank space of Additional Board URLS:

http://arduino.esp8266.com/stable/package_esp8266com_index.json

&) sketch_aug22a | Arduino 1.8.19 - O *
File Edit Sketch Tecls Help

MNew Ctrl+MN

Open... Ctrl+0

Open Recent *

Sketchbook > -

Examples *| code here, to run once:

Close Ctrl+W

Save Ctrl+5

Save As.. Ctrl+Shift+5

Page Setup Ctrl+5Shift+P

code here, to run repeatedl
Print Ctrl+P ’ P

Preferences Ctrl+Comma

Chuit Ctrl+ Q)

Figure 3.26: Location to open “Preferences” window

41

Preferences

Settings Metwork

Sketchbook location:

C:\Users\zinzi\Documents Wrduino

Editor language: System Default «w | (requires restart of Arduino)
Editor font size: 16

Interface scale: Automatic | 100 - % (requires restart of Arduino)

Theme: Default theme .« | (requires restart of Arduino)

Show verbose output during: [_] compilation [upload

Compiler warnings: Mone «~

[] pisplay line numbers [] Enable Code Folding

Verify code after upload [] Use external editor

Check for updates on startup Save when verifying or uploading

[[] Use accessibility features

Additional Boards Manager URLs: | http:/farduino.esp8266. com stable fpackage _esp&266com_index.json i

Maore preferences can be edited directly in the file

C:\Jsers\zinzi'\AppData'Local\Arduino 15 preferences. txt

(edit only when Arduino is not running

0K

Browse

Cancel

Figure 3.27: Adding ESP8266 NodeMCU’s board URL

User will be able to select ESP8266 NodeMCU board under “Tools” tab after
adding the board URL. “NodeMCU 1.0 (ESP-12E module)” is selected. The detail is
as shown in Figure 3.28. With the NodeMCU board added to board manager, user can
now write codes that are understandable by the software. When connecting NodeMCU
with PC, the Arduino IDE software will be able to detect it.

42

@ sketch_aug2?a | Arduino 1.8.19
File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch
sketch_aug22; Fix Enceding & Reload
vold setu Manage Libraries... Ctrl+Shift+
' put Senal Monitor Ctrl+Shift+ M
Serial Plotter Ctrl+Shift+L
} WIFI101 / WiFiNINA Firrware Updater -
ESPing (ESP-12 Module)
void loop Board: "Arduino Mega or Mega 2560" ; Boards Manager... ESPresso Lite 1.0
// put Processor: "ATmega2360 (Mega 2560)" . Arduino AVR Boards ESPresso Lite 2.0
Port ESPA266 Boards (3.0.2) ¢ ITEAD Senoff
} Get Board Info Invent One

LOLIN{WEMOS) D1 R2 & mini
LOLIN{WEMOS) D1 mini (clone)
LOLIN{WEMOS) D1 mini Lite
LOLIN{WEMOS) D1 mini Pro
LOLIN{WeMos) D1 R1
Lifely Agrumine Lemon v4
NodeMCU 0.9 (ESP-12 Module

I NodeMCU 1.0 (ESP-12E ModulJe]_I
Olimex MOD-WIFI-ESP8266(-DEV)
Phoenix 1.0
Phoenix 2.0
Schirmilabs Eduino WiFi
Seeed Wio Link
SparkFun Blynk Board
SparkFun ESP8266 Thing
SparkFun E5P8266 Thing Dev
SweetPea ESP-210
ThaikasyElec's ESPino
WiFi Kit 8
WiFiduino

Programmer: "ArduinolSP.org” >

Burn Boctloader

L Type here to search

Figure 3.28: Boards selection under “Tools” tab

43

To include the libraries for the other hardware components, the similar steps
were done for DHT11 humidity sensor, DS18B20 temperature sensors, and RTC
module. User needs to go to “Tools” tab and click on “Manage Libraries...” as shown
in Figure 3.29 below. After a few seconds, a window named as “Library Manager”
should pop out.

) sketch_aug?5a | Arduino 1.8.19
File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch
sketch_aug25; Fix Encoding & Reload
void sety Manage Libraries.. Ctrl+Shift+ |
// put Serial Monitor Ctrl+ Shift+M
Serial Plotter Ctrl+Shift+L
} WiFi101 / WiFiNINA Firmware Updater
volid loop Board: "ModeMCU 1.0 (ESP-12E Module)" >
v *:-ut- Builtin Led: "2" >
_ Upload Speed: "115200" >
} CPU Frequency: "80 MHz" >
Flash Size: "4MB (F5:2MB OTA:~1019KE)" >
Debug port: "Disabled" >
Debug Level: "None” *
wlP Variant: "v2 Lower Memory" >
VTables: "Flash" >
C++ Exceptions: "Disabled (new aborts on com)” *
Stack Protection: "Disabled" >
Erase Flash: "Only Sketch" >
S5L Support: "All S5L ciphers (most compatible)” >
MM “32KB cache + 32KB IRAM (balanced)” b
Mon-32-Bit Access: "Use pgrn_read macros for [RAM/PROGMEM" >
Port

Get Board Info

Programmer >

Burn Bootloader

Figure 3.29: Location of “Manage Libraries...”

User then need to type the name of the required library on the search bar. The
related library should show up. An example is shown in Figure 3.30 to install the DHT
sensor library. An install button should appear if user have not installed the library

before. Table 3.8 below shows the required libraires to be installed on Arduino IDE.

44

Table 3.8: Required libraries to be installed on Arduino IDE

Hardware components Name of the required library
DHT11 humidity sensor DHT sensor library
DS18B20 temperature sensor | DallasTemperature
OneWire
OLED display Adafruit GFX Library
Adafruit SSD1306
RTC module RTClib

& Library Manager

Type |All ~ | Topic | Al w DHTI

More info

DHT sensor library

by Adafruit Version 1.4.4 INSTALLED
Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors Arduino library for DHT11, DHT22, etc Temp & Humidity

Sensors

Select version Install

DHT sensor library for ESPx

by beegee_tokyo

Arduino ESP library for DHT11, DHT22, etc Temp & Humidity Sensors Optimized libray to match ESP22 requirements. Last
changes: Fix negative temperature problem (credits @helijunky)

Mare infa

DHT12
by Rob Tillaart

Close

Figure 3.30: Installation of DHT sensor library

45

3.6 Calibration Process

3.6.1 Voltage and Current Calibration Process

The calibration process is important to obtain accurate voltage and current reading for
comparison and analysis between ground type solar PV panels and floating type solar
PV panels. The IV plotter device as shown in Figure 3.31 below was used as the
reference for open circuit voltage, V. and short circuit current, Isc. The V- and Igc
readings obtained from Arduino were compared with the readings obtained from the
IV plotter device. The calibration process was performed while the sky was clear and
sunny. Good weather condition is important in obtaining more consistent voltage and
current readings. Since IV plotter device and Arduino system cannot be measuring the
voltage and current of PV panel at the same time, the readings from IV plotter device
were obtained first, then followed by the Arduino system immediately to avoid change

of actual reading values due to change of weather condition.

S NI)

Figure 3.31: IV plotter device

46

In order to obtain the offset error of the Arduino system, PV panel voltage and
current values ranging from the lowest to the highest were obtained. This was done by
adjusting the orientation of PV panel, which in another word, by altering the intensity
of light hitting on PV panel. For instance, to obtain the highest possible I, value, the
PV panel was positioned directly facing towards the sun. In the other hand, to obtain
the lowest possible I value, the PV panel was positioned facing down towards
ground.

The I5- and V, values obtained from IV plotter device and Arduino were
compared. Firstly, the readings were plotted on scattered graph. Then, linear line and
linear line equation were obtained from the graph. The linear line equations are the
corrective coefficient for calibrating Arduino reading. Meanwhile, the percentage
errors before calibration were calculated. Next, the corrective coefficients were
inserted into the Arduino Mega sketch/coding. To verify the calibration, the V. and
Is¢ readings from 1V plotter device and Arduino were obtained again with different
PV panel orientation. The values between the two devices were compared and the
percentage errors after calibration were calculated. The overall calibration process is

as shown in Figure 3.32 below.

Start

A

Step 1: PV panel was
positioned in a way that
reading for short circuit
current was the highest.

A

Step 2: At least 5 sets of

readings from IV plotter

device and Arduino were
taken.

A

Step 6: Graphs were
plotted using readings
obtained from IV plotter
and Arduino.
X-axis: Arudino readings

A

Step 3: The orientation of

PV panel was adjusted to

obtain lower reading
values.

A

Y-axis: 1V plotter readings

Step 7: Linear line and
equation of the line were
obtained for each graph.

Step 8: Percentage errors
were calculated.

A

Step 4: At least 5 sets of
readings from IV plotter
device and Arduino were
taken for each PV panel
orientation.

Step 9: The coefficients were
inserted into the Arduino Mega
sketch/coding. The coding was

then uploaded to Arduino
Mega.

A

Step 5: Steps 3 and 4
were repeated until
obtaining zero short

circuit current reading.

A

Step 10: Steps 1 to 5 were
repeated to verify the

47

A

calibration process and
obtain the percentage error
after calibration.

No

Percentage

Troubleshoot and
repeat step 1-9

A

error is less
than 5%?

Figure 3.32: Voltage and current calibration flowchart

48

3.6.2 Temperature Sensors Reading Calibration and Verification

To make sure that the DHT11 and DS18B20 sensors are providing accurate readings,
they were verified using Fluke’s Data Logging Thermometer as shown in Figure 3.33
below.

Figure 3.33: Fluke’s 54 11 B Data Logging Thermometer (FLUKE, n.d.)

About 5 sets of data were taken with readings ranging from room temperature
to higher temperature. The sensors readings were taken and compared with Fluke’s
thermometer at room temperature first. Since the DHT11 sensor and DS18B20 sensors
with transistor appearance are not water-proof, they cannot be immersed in water.
Therefore, these sensors cannot be used in hot water to obtain higher temperature.
Instead, they were held in hand tightly so the readings will increase, since room
temperature is lower than human palm temperature. For consistency, the same method
was applied on water-proof-type DS18B20 sensor. The readings were taken after both
sensor reading and thermometer reading were consistently showing the same value

after 5 seconds.

49

3.7 Installation of Hardware System on FPV and GPV

To measure the temperature of PV panel, the DS18B20 Dallas sensors were attached
on three different position of the back of the PV panel. The first sensor was attached
on the top right corner of PV panel and the sensor value was named as Temperature 1
or T1. The second sensor was attached on the middle of PV panel and the sensor value
was named as Temperature 2 or T2. The last sensor was attached on the bottom left
corner of PV panel and the sensor value was named as Temperature 3 or T3. The

position of the temperature sensors is as shown in Figure 3.34 and 3.35 below.

50

Figure 3.35: Position of temperature sensors on GPV system

To measure the Open Circuit Voltage and Short Circuit Current of PV panel, the
positive and negative pole of PV panel were connected to the circuit of Arduino system
using cables with crocodile clips. To prevent the crocodile clips from corrosion, the
exposed part of the clips was wrapped with electrical insulation tape. Figure 3.36
below shows the side view of the GPV and FPV system. A phone was used to provide
internet connection by sharing hotspot. The phone was placed between the GPV and
FPV system.

Figure 3.36: Side view of GPV and FPV setup

51

3.8 Configuration of loT Data Collection System

The working principle of this loT data collection system is based on the
communication between a client and a server. A client could be any type of web
browser, such as Chrome, Safari and Edge. It also can be any program or device. While

a server is usually any hardware that has web server software that stores web content.

In this case, NodeMCU connects to the Internet, and acts as the client to send
the HTTP (Hypertext Transfer Protocol) request to the Internet. At the same time,
Google acts as the web server to receive the request. Since the data transferred to the
server is in the form of XHR (XMLHttpRequest) object, the object is transformed into
JSON (JavaScript Object Notation) String data type, which is done in the programme
written in Apps Script. Figure 3.37 below shows how sensor data are sent and stored
in 1oT cloud.

Start

Sensors data from Google’s server
.) processes the
Arduino Mega is request
sent to NodeMCU a
v A
NodeMCU Data is
converts data into processed by
URL App Script
' '
N_OdeMCU acts as Data is recorded in
Client and sends an Google Spreadsheet
HTTP request to
the web
A 4
End

Figure 3.37: Flow of 10T data collection system

52

3.8.1 Google Spreadsheet as 10T Platform

There are several benefits of using Google Spreadsheet as 10T platform. One of them
is that the data are not just displayed on the screen of laptop or smartphone, but directly
stored in Google Drive. In this way the data can be easily viewed by the user or other
users that the file is shared to. Both user and shared file user can view the data on their
personal computer, smartphone or tablet since Google Spreadsheet app is available on
these platforms. Furthermore, the data from NodeMCU is directly sent to Google
Spreadsheet without needing any third party. To use Google Spreadsheet, user is only
required to own or create a Google account, which creating one is completely free.

3.8.2 Configuration of Google Spreadsheet With Apps Script
To enable data receiving and saving feature in Google Spreadsheet, user needs to

create an empty spreadsheet, and proceed to the Apps Script extension to programme
the spreadsheet. Figure 3.38 below shows the location of Apps Script.

a FPVdata v &)

File Edit View Insert Format Data Tools Extensions Help Lastedit was 10 minutes ago
~ o~ @ T O00% - § % .0 .00 123+ B Add-ons » » H
M - (*) Macros >
- . g I =W Apps Script I
Last data logging

[o~]

Date 8/21/2022

7 AppSheet o
3 Time 14:16:55
5 Real time data
7 Voltage (V) Current (A)
8 0.63 0.37 29.69 2

Figure 3.38: Location of Apps Script

53

A new page will pop out. The page is an Apps Script code editor which allows user to
programme their app for automated task execution across Google products. Figure

3.39 shows the Apps Script editor page.

oW AppsScript Untitled project ®

@ Files + Execution log Use classic editor

Code.gs
<> g function myFunction()

MC)
+

{E:’ [

Figure 3.39: App Script code editor

The script attached in Appendix K is entered. To let the Apps Script programme
recognises the desired spreadsheet that is used to store the data, user needs to copy the
Spreadsheet ID from the Spreadsheet URL as shown in Figure 3.40, then enter it into
the script as shown in Figure 3.41. The bolded part in the example shown below is the
Spreadsheet ID. Spreadsheet ID is a unique code for each Spreadsheet file.

Example of a Spreadsheet ID in the Spreadsheet URL.:
https://docs.google.com/spreadsheets/d/1qgKn2gY ADXMVUAtuShwHSQmFZ30
VL6GGmEco3ea4-2ql/edit#gid=1683798591

54

& c 0O (EI https://docs.google.com/spreadsheets/d/1gKn2gYADXMVUAtuShwHSOmFZ3oVL6GGmEco3ead-2ql/ edit#gid=1683758591

— —
@ Universiti Tunku Ab... @ U Mobile - Unlimite... Ting_bookmark @ AEVIT - Taiko W... E Duclingo - The wor... ﬁ Cambridge Diction.. 4 (Slang)

FPVdata ¥ B &
File Edit View Insert Format Data Tools Extensions Help Lastedit was yesterday at 10:21 PM

~ o~ P 100% v $ % .0 .00 123+ Robolo -~ 10 v~ B I S A & HBEE~- E-Li-|vr -
ATB1 - Last data logging
A B ® D E F G H] J
1 Last data logging |

]

Date 8/21/2022
Time 14:16:55

Real time data

Voltage (V) Current (A)
8 0.63 0.37 29.69 29.06 30

GGG

Figure 3.40: Location of Spreadsheet ID

o | e w

)

PR [T [- =
otk 0| =S

1

1 function doGet(e) {

2 Logger.log(JSON.stringify(e)).

3 var result = "0k’

4 if (e.parameter == 'undefined') {

5 result = "No Parameters':

}

7 else d

8 var sheet_id = 1qKnZgYﬁDXMvUAtuSthSQmFZ30VLGGGmEc03934—2qﬂ . [/ Spreadsheet IDI
9 var sheet = Spreadsheethpp.openByfd(sheet_id).getSheetEyName('Real Time Data”);
18 var newRow = sheet.getlastRow() + 1;
11 var rowData = [];
12 var Curr_Date = new Date();
13 rowData[@] = Curr_Date: // Date in column A
14 var Curr_Time = Utilities.formatDate(Curr_Date, "Asia/Kuala_Lumpur”, 'HH:mm:ss');

o

rowData[1] = Curr_Time: // Time in column B

for (var param in e.parameter) {
Logger.log('In for loop, param=' + param};
var value = stripQuotes(e.parameter[param]);
Logger.log(param + ':' + e.parameter[param]);

[=)]

(== TN |

=}

Figure 3.41: Location where Spreadsheet ID is entered

55

Then the programme is deployed as web app. User needs to allow the authorization for
the deployment if this is their first time to deploy a web app. Then, user needs to record
the web app deployment ID as shown in Figure 3.42. This ID is important for
generating HTTP request from NodeMCU.

New deployment
Deployment successfully updated.

Version 1 on Aug 25, 11:00 PM

Deployment ID

AKfycbwgJGm_vBRIBXCW1ZGI5-hGPrkbkNAvv2019m5crEWnPotf61oxuzaRaSoTFxgs4posg

IO Copy

Web app

URL
https://script.google.com/macros/s/AKfycbwgJGm_vBRIBXCW1ZG15-hGPrkbkNAvw2019m5crEWnPotf61 oxuzaRaSoTFx...

I Copy
Figure 3.42: Deployment ID of the web app
The above mentioned steps in this section are for GPV system. The steps were

repeated for FPV system and the script was replaced with the one attached in Appendix
L.

3.8.3 Setting Up Dashboard on Spreadsheet

56

On the IoT platform, which is Google Spreadsheet, two spreadsheet file named “FPV

data” and “GPV data” was created to record and show the real time data collected from

the floating PV and ground PV. There are four tabs on each spreadsheet file, namely
“Dashboard”, “Real Time Data”, “Data on specific date”, and “All Data Record”. The

function of each tabs is explained in Table 3.9 below.

Table 3.9: Function of the tabs in FPV data sheet and GPV data sheet

Tab

Function

Dashboard

To show the latest data log. The latest data log is

extracted from the last row of “All Data Record” tab.

Real Time Data

To show the line charts of the day for each data type.

The line charts are automatically refreshed every day.

Data on specific date

To view past data record and charts by selecting a date

All Data Record

all data from past to present.

Data from NodeMCU are recorded in this tab. Contains

The data received from the NodeMCU were recorded in “All Data Record” tab.

Newest data were automatically recorded in the last row of the tab. Table 3.10 below

shows the column which the data of FPV were recorded in. As for GPV, the columns

for the data were from column A to column | as water temperature is not required.

A

B

1 Date (dd/m |w‘yy). Time

5128
5130
5131
5132
5133
5134
5135
5138
5137
5138
5138
5140
5141
5142
5143
5144

+

31-Mar-2023
31-Mar-2023
31-Mar-2023
31-Mar-2023
31-Mar-2023
31-Mar-2023
31-Mar-2023
31-Mar-2023
31-Mar-2023
31-Mar-2023
31-Mar-2023
31-Mar-2023
31-Mar-2023
31-Mar-2023
31-Mar-2023
31-Mar-2023

9:31:10
9:33:12
9:35:11
9371
9:39.09
9:41:11
9:4313
9:45:10
9:47:10
9:49:.09
9:51:10
9:53:10
9:55:09
9:57:10
9:59.09
10:01:10

Dashboard ~

c
Voltage (V)
19.97
15.95
199
19.86
19.81
19.88
19.88
19.86
1977
19.86
19.81
19.79
18.79
197
19.77
19.77

Real Time Data ~

D
Current (A)
219
213
224
229
224
243
251
256
256
267
267
272
269
261
283
283

E

Humidity (%) Ambient Temp (°C)

Il

Data on specific date ~

Figure 3.43: All Data Record tab

F

273
273
276
279
283
287
289
290
292
293
294
295
295
295
296
296

All Data Record ~

G

31.06
31.06
31.06
3113
31.06
3113
3113
3119
3119
3119
3119
3119
3125
3125
3125
3119

H

‘Water Temp (°C) Temperature 1 (°C)

3383
34.44
3469
34.88
3556
36
36.13
37.25
3713
3763
38.44
39.31
395
4069
4069
4

1
Temperature 2 (°C)
38.88
40.06
40.69
4
42.31
4275
4213
43 56
42.81
43.56
4413
44 31
4525
465
45.69
45.31

dJ
Temperature 3 (°C)
3638
36.94
3756
38
39
40.06
4063
4138
4181
4263
4325
435
4375
43
43.06
43.44

ALB1

1

2

4
5
6

Table 3.10: Data type and their column location

57

Data type

Column

Date (dd/mm/yy)

Time

Voltage (V)

Current (A)

Humidity (%)

Ambient Temp (°C)

Water Temp (°C)

Temperature 1 (°C)

Il o T m gl O W >»

Temperature 2 (°C)

Temperature 3 (°C)

FPVdata % m &
File Edit View Insert Format Data Tools Extensions Help

6 ¢ & § 100% ~ $ % O .00 123 Roboto - | —[10]+

v | fic Lastdatalog

A B c D E

Last data log]

Date 08-Apr-2023
Time 14:09:58

Real time data - FPV

O &8 o-

A % @ - E-i-R-A- oo @@ YL

Voltage (V) Current (A) Humidity (%)
20.17 5.12 46

Ambient
Temp (°C)
359

Water Temp
(c)
34.19

Voltage (V)

+ = Dashboard ~ Real Time Data ~ Data on specific date ~

All Data Record ~

Figure 3.44: Screenshot of layout of Dashboard tab for FPV (1 of 2)

&\ Share

E FPVdata ¥ B &

File Edit View Insert Format Data Tools Extensions Help

A20

o e & § 100% -

$

%

0
-

- | &
A 8 c D E F
)
| 55.38 55.63 47

00 23| Defaul. ~ |- (10)+ | B I & A% @

G — Dashboard ~

m

55.38

= 0O 7

Measuring V and | on PV 51B
Position of temperature sensor:

58

(e &, Share

A

Real Time Data ~ Data on specific date ~ All Data Record ~

Figure 3.45: Screenshot of layout of Dashboard tab for FPV (2 of 2)

The layout of the FPV dashboard was created as shown in Figure 3.44 and 3.45 above.

To insert a gauge chart, user can go to Insert tab on top of the sheet, then click on

“Chart type” at the sidebar and select “Gauge chart” as shown in Figure 3.46 and 3.47

below. To let user know the position of temperature sensors, a picture with label was

inserted on the Dashboard. Similar layout was created for “GPV data” sheet but with

water temperature removed. To show the last data log on the Dashboard, the formulas

on the Table 3.11 below were entered into the designated cells. The numbers on the

dashboard will be automatically refreshed when there is new data coming in.

Al

@~ m e W A

10
1
12
13
14
15
16
17
18
19

Untitled spreadsheet

* B &

File Edit View Insert Format Data Tools Extensions Help

5 e & T§ 100% -

v | A&
A 8

$

%

.0
-

99 23| Defaul. - —[0]+|B I &= A% @

[

No data

Figure 3.46: Chart editor sidebar

O =

(k- & Share

L) Chart editor

1 Setup

Chart type

all column chart

Stacking

None
Data range
Al
X-axis
Add X-axis

Series

Add Series

Customize

(] Chart editor X
Setup Customize
Chart type
4 Column chart -
Other
mm \ o
I TR
g
Total
$1,024 **-.
) =) —

A B C D
4 54
7 &l

=
BB
=45
@ o
)

T T TR

Figure 3.47: Selecting Gauge chart

Table 3.11: Formulae to configure the Dashboard tab

59

Data to be | Formula Location
shown on of the cell
dashboard to insert
the
formula
Date =IF(OFFSET(,CountA('All | B2
Data Record'!'$A:$A)-1,0,1,1)="Date
(dd/mm/yy)","-", OFFSET(
,CountA(AIl Data Record'!$A:$A)-
1,0,1,1))
Time =IF(OFFSET(,CountA('All | B3
Data Record'!$B:$B)-1,0,1,1)="Time","-",
OFFSET(,CountA(All Data

Record''$B:$B)-1,0,1,1))

60

Voltage (V) =IF(INDEX(B8
ARRAYFORMULA(MAX((row(
))*=(
<>""))))="Voltage (v)","-"
INDEX(
ARRAYFORMULA(MAX((row(
)l
<>")))
Current (A) =IF(INDEX(D8
ARRAYFORMULA(MAX((row(
N*--(All Data
Record'!C1:D<>""))))="Current (A)","-"
INDEX(
ARRAYFORMULA(MAX((row(
)*-~(
<>"))))
Humidity (%) | =IF(INDEX(F8
,ARRAYFORMULA(MAX((row(
))*=(
<>"))="Humidity o),
INDEX(
,ARRAYFORMULA(MAX((row(
))*=(
<"M)
Ambient =IF(INDEX(H8
Temperature ,ARRAYFORMULA(MAX((row(
(°C)))*=~(
<>""))))="Ambient Temp (°C)","-",
INDEX(

ARRAYFORMULA(MAX((row(
))*=(
<>"")))

61

Water =IF(INDEX(J8
temperature ,ARRAYFORMULA(MAX((row(
(°C)))*-~(
<>"1)))="Water Temp (°C)","-"
INDEX(
,ARRAYFORMULA(MAX((row(
))*=(
<"M)
Temperature 1 | =IF(INDEX(B21
(°C) ,ARRAYFORMULA(MAX((row(
))*=(
<>"")))="Temperature 1 (°C)","-",
INDEX(
,ARRAYFORMULA(MAX((row(
))*=(
<"M)
Temperature 2 | =IF(INDEX(D21
(°C) ,ARRAYFORMULA(MAX((row(
))*=(
<>""))))="Temperature 2 (°C)","-"
INDEX(
,ARRAYFORMULA(MAX((row(
))*=(
<"M)
Temperature 3 | =IF(INDEX(F21
(°C) ,ARRAYFORMULA(MAX((row(
))*~(
<>""))))="Temperature 3 (°C)","-"
INDEX(

ARRAYFORMULA(MAX((row(
))*-(
<>"")))))

62

The layout of “Real Time Data” tab was created as shown in Figure 3.48 to 3.50 below.

Line charts were used to display the change of the data readings throughout the day.

N3

Wi e e e
8 BB N 8w EE wn -

wlw
Boe

33

FPVdata & BB &

S N 8§ - 2, Share
File Edit View Insert Format Data Tools Extensions Help
© ¢ B F 100% - |$ % o 0 | pefal. - |—[0]+ B I & A % @ =+ L plv A~ N
~ | fi =query(."select * where A >= dote '"&TEXT(TODAY(), “yyyy-mm-dd")&"'",1)
A B c D E F G H 1 J L
Real time chart on today: 10-Apr-2023
Temperature 1 (°C)
100
20
75
15
50 M
10
25 5
10:00:00 11:00:00 120000 13:00:00 1400:00 15:00:00 " om0 moser 20000 130000 140000 150000
Time (hr:min:sec) Time (hr:min:sec)
Temperature 2 (°C)
100 8
* B Dashboard ~ Real Time Data ~ Data on specific date ~ All Data Record ~ n Explore
Figure 3.48: Screenshot of layout of Real Time Data tab (1 of 3)
A B c D E F G H 1 J L
Real time chart on today: 21-Apr-2023
25 2
10:00:00 11:00:00 12:00:00 13:00:00 ¢ 10:00:00 11:00:00 12:00:00 13:00:00
Time (hrminzsec) Time (hrmin:sec)
Temperature 3 (°C) Humidity (%)
100 100.00
75 75.00

= W 50.00 M

25 25.00

0.00
10:00:00 11:00:00 12:00:00 13:00:00 10:00:00 11:00:00 12:00:00

Time (hrmin:sec) Time (hrmin:sec)

13:00:00

> B

Dashboard ~ Real Time Data ~ Data on specific date ~ All Data Record ~

Figure 3.49: Screenshot of layout of Real Time Data tab (2 of 3)

63

A B c D E F G H 1 J K
1
2 Real time chart on today: 21-Apr-2023
3
36
5 0.00
10:00:00 11:00:00 12:00:00 13:00:00 10:00:00 11:00:00 12:00:00 13:00:00
39 Time (hrmin:sec) Time (hrmin:sec)
40
41
P Water Temp (°C) Ambient Temp (°C)
43 40 50.00
44 I R R e I
0 40.00 ,—’,—//—\’N
45
30.00
48 20
47 20.00
E n 1000
49
0 0.00
50 10:00:00 11:00:00 12:00:00 13:00:00 10:00:00 11:00:00 12:00:00 13:00:00
o Time (hrmin:sec) Time (hrmin:sec)
52
53
54
+ = Dashboard ~ Real Time Data ~ Dataon specificdate ~ All Data Record ~

Figure 3.50: Screenshot of layout of Real Time Data tab (3 of 3)

To make the line charts refresh automatically every day, data of “today” need to be
extracted out from the tab named “All Data Record”. Then, the data to be displayed on
the line chart is selected from the range of cells which contains data of “today”. The
formula used to extract the data is as shown below. This formula is inserted in N3 cell
as shown in Figure 3.51.

Formula for extracting data of “today” from All Data tab:

=query(,"select * where A >= date
"&TEXT(TODAY(),"yyyy-mm-dd")&"",1)

64

FPVdata & = & 2 0D B - &, Share
File Edit View Insert Format Data Tools Extensions Help
6 e & F 100% - $§ % O 9 23| pefal. ~ —[10]+ B I = A % H =l plv A i N
N3 - =query(,'select * where A >= date '"&TEXT(TODAY(),"yyyy-mm-dd")&"'",1)
L M N o P Q R 5 T u v
1 Real time data on today: 10-Apr-2023
2
3 Date (ddfmmﬂny. Time Voltage (V) Current (A) Humidity (%) Ambient Temp (*C) Water Temp (*C) Temperature 1 (°C) Temperature 2 (°C) Tempera
4 10-Apr-2023 9:31:07 20.27 155 71.00 28.70 3131 38.75 4194
5 10-Apr-2023 9:33:06 2036 155 71.00 28.70 3131 40 4238
8 10-Apr-2023 9:35:14 20.04 1.55 71.00 28.90 31.38 40.38 42.88
7 10-Apr-2023 9:37:12 2011 1863 70.00 2910 31.44 40.25 4325
8 10-Apr-2023 9:39:07 20.27 18 69.00 29.50 3138 39.69 4281
9 10-Apr-2023 9:41:08 20.47 165 67.00 29.80 31.38 38.88 42.69
10 10-Apr-2023 9:43:09 2063 171 67.00 3010 31.44 383 435
i 10-Apr-2023 9:45:07 20.45 1.71 66.00 30.20 315 40.56 44.69
iz 10-Apr-2023 9:47.06 20.54 1.79 65.00 30.30 31.56 41.89 45.94
13 10-Apr-2023 9:49:05 20.54 1.76 64.00 30.30 31.56 42.06 45.81
14 10-Apr-2023 9:51:09 2058 181 64.00 30.30 31.56 4175 45 56
15 10-Apr-2023 9:53:08 20.47 192 63.00 30.40 3163 4219 46.63
18 10-Apr-2023 9:55:10 2035 197 63.00 30.40 3156 423 46.75
7 10-Apr-2023 9:57:07 20.36 203 62.00 30.50 3163 42.56 46.75
18 10-Apr-2023 9:59:05 20.42 2,05 62.00 30.50 3183 4319 475
18 10-Apr-2023 10:01:08 204 21 £1.00 30.60 3183 44.06 438.94
» B Dashboard ~ Real Time Data ~ Data onspecific date ~ All Data Record ~ Explore

Figure 3.51: Data of “today” extracted from All Data Record tab

On the tab named “Data on specific date”, user can view back the data history
by selecting from a list of dates. The layout of the tab is as shown in Figure 3.52 below.
The dropdown list feature on cell B1 in Figure 3.53 was created using Data Validation
function as shown in Figure 3.54. Next, user needs to click on add rule, then select
dropdown from a range. The range to be selected is the range of cells that record the
all the dates in All Data Record tab. The range for this case is ='All Data
Record'!A2:$A

FPVdata % B & & T B (k- 2 Share
File Edit View Insert Format Data Tools Extensions Help
6 2 @ § 100% | § % O 09 123 Robote ~ - [n|+|B I = A% @ E- L plv Ar A
Al - Select a date
A B c D E F [H J K L
1 Select a date| 7-Apr-2023 ~
.

2
3 Dataon 7-Apr-2023 Date (ddimmiyy) Time Voltage (V) Current (A) Humidity (%) Ambient Temp (°C} Water Temp
4 07-Apr-2023 9311 20,56 1.41 69.00 26.70
5 Voltage (V) 07-Apr-2023 9:33:10 2015 152 69.00 26.70
6 25 07-Apr-2023 9351 20.15 1.55 66.00 27.90
7 20 07-Apr-2023 93711 20.13 1.76 63.00 29.10
8 :g 07-Apr-2023 9:39:09 2022 1.73 60.00 30.30
9 5 07-Apr-2023 9:41:04 2017 1.84 56.00 31.50
10 0 — — 07-Apr-2023 9:43:04 19.95 1.55 56.00 31.70
" 10:00:00 12:00:00 14:00:00 16:00:00 07 Apr-2023 4501 20 31 5 5500 3180
12 Time 07-Apr-2023 9:47.04 20.02 2.03 54.00 31.90
3 07-Apr-2023 9:49:04 19.97 2.08 54.00 31.90
14 - -

Current (A) 07-Apr-2023 9:51:03 199 213 54.00 31.90
15 200 07-Apr-2023 9:53:03 199 219 53.00 31.90
16 500 07-Apr-2023 9:55:04 199 2.24 53.00 31.90
7 00 07-Apr-2023 9:57.04 19.92 227 53.00 31.80
18 200 07-Apr-2023 9:59:05 19.86 229 53.00 31.80
19 P 07-Apr-2023 10:01:04 2017 232 54.00 31.70

+ = Dashboard * RealTimeData ~ Data on specificdate ~ All Data Record ~

Figure 3.52: Layout of Data on specific date tab

Bl

-

W oga | | @t g

1
12
13
14
15
16
17
18
19

A3

\=]

v | fir T-Apr-2023

A

B

Selecta datel ?-Apr-zuzaﬂ

27-Feb-2023
Data on
28-Feb-2023
Voltage (| o1-marz023
25
20 02-Mar-2023
15
10 03-Mar-2023
5
0 04-Mar-2023
10:00:00
05-Mar-2023
06-Mar-2023
Current (‘ 07-Mar-2023
8.00 08-Mar-2023
6.00
4.00 17-Mar-2023
200 18-Mar-2023
non
19-Mar-2023
+ = b}

Figure 3.53: Date dropdown list

Untitled spreadsheet

File Edit View Insert

e 8 5 100% -

T

A B

1

+
1l

Sheet1 ~

W B &
Format Data
$ % IF
4

=]

&

Bs

z

14:00:00

me

16:00:00

K

ata -

Tools Extensions Help
Sort sheet

Sort range

Create a filter
Filter views

Add a slicer

Protect sheets and ranges
Named ranges
Named functions

Randomize range

Column stats

Data on specific date ~

p—
3 =

Data validation

N

1.
£a

Data cleanup

Split text to columns

Data connectors

Figure 3.54: Data validation

65

66

Data validation rules *

Apply to range

Sheet1!A3 H

Criteria

Dropdown a

I Dropdown (from a range) I

Text contains

Text does not contain 0]
Text is exactly

Text is valid email

Text is valid URL

Is valid date

Date is before

Figure 3.55: Choosing Dropdown (from a range)

Then, the formula below is inserted in F3 cell. The data to be displayed on the line

chart is selected from the range of cells from N3 to column O.

Formula for extracting data based on date selected by user:

=query(,"select * where A = date
"&TEXT(DATEVALUE(B3),"yyyy-mm-dd")&"",1)

67

To view and compare the real time data of both FPV and GPV in a single
dashboard, another spreadsheet file was created. The spreadsheet file was named as
“GPV vs FPV”. Three tabs were created in this spreadsheet, namely “Real Time Data”,
“Data Comparison” and “Data log on Today”. The function of each tab on this sheet
file is explained in Table 3.12 below. The layout of the “Real Time Data” tab is as
shown in Figure 3.56 to 3.59 below.

Table 3.12: Function of the tabs in “FPV vs GPV?” sheet

Tab Function

Real Time Data To show the latest data log. The latest data log is
extracted from the last row of “Data Log on Today”
tab.

Data Comparison To visualize the data change throughout the day with
line charts in bigger size. The graphs are automatically

refreshed every day.

Data Log on Today Data from FPV and GPV sheet files are imported to
this tab. Contains only data on today, and the data are

automatically refreshed every day.

-

W W N s WM

A A Y T S Y
W N e N e W NSO

19

A B c D E F G H 1 J
| Real Time Data
- GPV FPV
Last data log Last data log
Date 20-Apr-2023 Date 20-Apr-2023
Time 16:32:43 Time 16:33:11
Position of temperature sensor: Position of temperature sensor:

Real Time Data ~ Data Comparison ~ DatalogonToday ~

Figure 3.56: Screenshot of layout of Dashboard tab for GPV vs FPV sheet (1 of 4)

68

B c D E F G H I 4

VandIis VandIis

- PV1 N PV 51B
medsuring on: measuring on:

Voltage (V) Current (1) Voltage (V) Current (A)
18.92 1.93 19.29 1.68
L M] k -'”'Jmu‘"
g LWV W e /™ MY w‘“ﬂ"‘r"fm.‘ __,"“';L R

|
Voltage (V)

Current (A)

Ambient Temp (°C) Humidity (%) Ambient Temp (°C)
38.6 53 36.3
e ~ P
as ~ e

I m m
m I \
Real Time Data -~ Data Comparison ~ DatalogonToday ~

Figure 3.57: Screenshot of layout of Dashboard tab for GPV vs FPV sheet (2 of 4)

69

Temp 1 (°C)
42.69
_//m,ux“\wh

Temp 3 (°C) Water Temp (°C)

Real Time Data ~ Data Comparison ~ Data Log on Today ~

Figure 3.58: Screenshot of layout of Real Time Data tab for GPV vs FPV sheet (3 of 4)

70

Temp 3 (°C)

47.25 44.88

P N "
/‘ ' A

Real Time Data ~ Data Comparison ~ Data Log on Today ~

Figure 3.59: Screenshot of layout of Real Time Data tab for GPV vs FPV sheet (4 of 4)

71

72

The gauge charts were created using the steps aforementioned. Miniature charts below the data reading were created to visualize the change of the

data throughout the day. The formula to create the layout of “Real Time Data” tab is as shown in Table 3.13 and 3.14 below.

Table 3.13: Formulae to configure the Real Time Data tab for GPV

Data to be shown on Real | Formula Location of the cell to
Time Data tab (GPV) insert the formula
Date =IF(INDEX(,ARRAYFORMULA(MAX((row(C4
))*--(<>""1)))="Date (dd/mml/yy)","-",
INDEX(,ARRAYFORMULA(MAX((row(
))*=(<>")))))
Time =IF(INDEX(,ARRAYFORMULA(MAX((row(C5
))*--(<>"")))="Time","-", INDEX(
ARRAYFORMULA(MAX((row(
))*-~(<>"M))
Voltage (V) =IF(INDEX(,ARRAYFORMULA(MAX((row(B26
DA <>")))="Voltage (V)","",
INDEX(ARRAYFORMULA(MAX((row(
))*-~(<>"M))
Voltage miniature chart =SPARKLINE() B27

73

Current (A) =IF(INDEX(LARRAYFORMULA(MAX ((row(D26
))*=(<>"))))="Current (A)","-",
INDEX(ARRAYFORMULA(MAX((row(
))*-~(<>"M))
Current miniature chart =SPARKLINE() D27
Humidity (%) =IF(INDEX(,ARRAYFORMULA(MAX((row(B38
))*-~(<>""))))="Humidity (%)","-",
INDEX(LARRAYFORMULA(MAX ((row(
))*=(<>"M))
Humidity miniature chart =SPARKLINE() B39
Ambient Temperature (°C) =IF(INDEX(,ARRAYFORMULA(MAX((row(D38
))*-(<>""))))="Ambient Temp (°C)","-",
INDEX(ARRAYFORMULA(MAX((row(
))*-~(<>"M))
Ambient Temperature | =SPARKLINE() D39
miniature chart
Temperature 1 (°C) =IF(INDEX(,ARRAYFORMULA(MAX((row(B50
)*-(<>""))))="Temperature 1 (°C)","-",

74

INDEX(LARRAYFORMULA(MAX ((row(
))*=(<>"))))
Temperature 1 miniature chart | =SPARKLINE() B51
Temperature 2 (°C) =IF(INDEX(,ARRAYFORMULA(MAX((row(D50
)*-(<>""))))="Temperature 2 (°C)","-",
INDEX(ARRAYFORMULA(MAX((row(
))*=(<>"))
Temperature 2 miniature chart | =SPARKLINE() D51
Temperature 3 (°C) =IF(INDEX(,ARRAYFORMULA(MAX((row(B62
))*--(<>""))))="Temperature 3 (°C)","-",
INDEX(LARRAYFORMULA(MAX ((row(
))*=(<" M)
Temperature 3 miniature chart | =SPARKLINE() B63

Table 3.14: Formulae to configure the Real Time Data tab for FPV

Data to be shown on Real | Formula Location of the cell to
Time Data tab (FPV) insert the formula
Date =IF(INDEX(,ARRAYFORMULA(MAX((row(14

))*=(

<>"))="Date

75

(dd/mml/yy)","-", INDEX(
,ARRAYFORMULA(MAX((row())*--
(<>"))))
Time =IF(INDEX(ARRAYFORMULA(MAX((row(15
)*~<(<>"))="Time","-",
INDEX(,ARRAYFORMULA(MAX((row(
))*-(<>")))))
Voltage (V) =IF(INDEX(ARRAYFORMULA(MAX((row(H26
DA <>"))="Voltage (V)","-
", INDEX(,ARRAYFORMULA(MAX((row(
))*=(<" M)
Voltage miniature chart =SPARKLINE() H27
Current (A) =IF(INDEX(,ARRAYFORMULA(MAX((row(J26
) =(<>""))))="Current (A)","-",
INDEX(ARRAYFORMULA(MAX((row(
))*=(<>"M)
Current miniature chart =SPARKLINE() J27
Humidity (%) =IF(INDEX(,ARRAYFORMULA(MAX((row(H38

))*(

<>"))))="Humidity (%)","-

76

" INDEX(,ARRAYFORMULA(MAX ((row(
))*=(<>"M)
Humidity miniature chart =SPARKLINE() H39
Ambient Temperature (°C) =IF(INDEX(,ARRAYFORMULA(MAX((row(J38
))*-~(<>"")))="Ambient Temp
ccy","-", INDEX(
,ARRAYFORMULA(MAX ((row())*--
(<>"))))
Ambient Temperature | =SPARKLINE() J39
miniature chart
Temperature 1 (°C) =IF(INDEX(,ARRAYFORMULA(MAX((row(H50
))*-(<>""))))="Temperature 1
o, INDEX(
,ARRAYFORMULA(MAX((row())*--
(<>"M)
Temperature 1 miniature chart | =SPARKLINE() H51
Temperature 2 (°C) =IF(INDEX(,ARRAYFORMULA(MAX((row(J50
))*-(<>"")))="Temperature 2

e INDEX(

77

,ARRAYFORMULA(MAX ((row())*--
(<>"M))
Temperature 2 miniature chart | =SPARKLINE() J51
Temperature 3 (°C) =IF(INDEX(,ARRAYFORMULA(MAX ((row(H62
))*-~(<>""))))="Temperature 3
o, INDEX(
LARRAYFORMULA(MAX ((row())*--
(<>"M)
Temperature 3 miniature chart | =SPARKLINE() H63
Water Temperature (°C) =IF(INDEX(,ARRAYFORMULA(MAX((row(J62
))*-(<>""))))="Water Temp
(°C)","-", INDEX(
ARRAYFORMULA(MAX((row())*--
(<>"M))
Water Temperature miniature | =SPARKLINE() J63

chart

78

The information on this spreadsheet is linked from the previous spreadsheet files-“GPV data” and “FPV data”. This was achieved using the

IMPORTRANGE formula as shown in the Table 3.15 below. The text in green colour is the URL link of the “GPV data” and “FPV data”

spreadsheet file, and the text in orange is the range of the cells to be copied. This formula was entered in “Data Log on Today” tab. With this

formula, the data from the “Real Time Data” tab of “FPV data” and “GPV data” sheet can then be imported to this spreadsheet.

Table 3.15: Formulae for importing data from FPV data sheet and GPV data sheet

sheet

Function | Formula Location of
the cell to
insert the
formula

Import =IMPORTRANGE("https://docs.google.com/spreadsheets/d/1gKn2gY ADXMVUAtuShwHSQmFZ30VL6GGmEco3ead- | K2

data from 2ql/edit#gid=1673341961",)

GPV

sheet

Import =IMPORTRANGE("https://docs.google.com/spreadsheets/d/1P2alakEACvnCPuFFa0lgN8z- A2

data from | CcwsgbvxoWirtJgYuOw/edit#gid=1673341961",)

FPV

@ g L

o | -

A

GPV data |
L]

Real time data on teday:

Date (dd/mmlyy Time

20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023

9:30:53
9:32:52
9:34:53
9:36:54
9:38:54
9:40:54
9:42:54
9:44:54
9:46:54
9:48:54
9:50:53
9:52:53
9:54:54
9:56:53
9:58:57
10:00:57
10:02:54
10:04:56

Real Time Data

20-Apr-2023

Voltage (V)

19.09
15.09
19.09
19.09
19.16
19.18
19.16
19.23
15.28
19.37
19.42
19.42
19.42
15.44
19.46
19.44
19.39
19.56

Current (A}

0.35
0.38

0.4
0.43
0.43
0.46
0.48
0.51
0.53
0.61
0.64
0.71
0.74
0.77
0.82
0.79
0.79
0.79

Data Comparison ~

Figure 3.60: Importing data from GPV and FPV spreadsheet

Humidity (%) Ambient Temp | Temperature 1 | Temperature 2 | Temperature 3 (°C)

95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95
95

Data Log on Today ~

249
256
256
256
256
256
256
26
26
26
26
26
26
25
26
263
26.4
26.4

28.44
285
2875
28.81
28.69
28.81
26.94
29
29.19
29.44
29.69
30.06
30.38
30.69
31.06
31.25
31.44
31.69

29.56
29.81
3013
30.31
305
30.63
30.81
30.94
33
315
31.88
32.38
32.69
33.19
33.69
34
3413
3431

28.75
28.63
28.75
28.88
28.94
29.13
29.31
29.44
29.63
29.88
30.19
3031
30.63
30.75
3113
31.44
31.75
31.94

K
FPV data

Real time data on teday:

Date (dd/mmlyy Time

20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023
20-Apr-2023

9:31:05
9:33:04
9:35:05
9:37:06
9:39:06
9:41:05
9:43:05
9:45:07
9:47:05
9:49:06
9:51:06
9:53:06
9:55:06
9:57:06
9:59:09
10:01:08
10:03:06
10:05:06

20-Apr-

Voltage (V!

R U S G Y

R S S P Sy

79

80

On the “Data Comparison” tab, the line charts were created with data range from “Data Log on Today” tab. The layout of the line chart is as shown
in Figure 3.61 to 3.64 below.

A B C D E F G I J
| Data comparison
GPV FPV
Voltage (V) Voltage (V)
25 25
20 20
15 15
10 10
5 5
10:00:00 11:00:00 12:00:00 13:00:00 10:00:00 11:00:00 12:00:00 13:00:00
Time Time
Current (A) Current (A)
g 8.00
] 6.00
4 4.00
2 2.00
0 0.00
10:00:00 11:00:00 12:00:00 13:00:00 10:00:00 11:00:00 12:00:00 13:00:00
Time Time

Real Time Data ~

Data Comparison ~

Data Log on Today ~

Figure 3.61: Screenshot of line charts in Data Comparison tab (1 of 4)

22
23
24
25
26
27
28
29
30
31
a2
33
34
35
£
a7
38
kL]
40
41

1

A B Cc D E F

G H 1 J K L

Data compadrison

GPV FPV
Humidity (%) Humidity (%)
100 100
75 m 75
%0 30 M
25 25
10:00:00 11:00:00 12:00:00 13:00:00 10:00:00 11:00:00 12:00:00 13:00:00
Time Time
Ambient Temperature (°C) Ambient Temperature (°C)
50 50.0
40 ’_’_»’_f_//___w 400 S —— e I S
30 30.0
20 20.0
10 10.0
0.0
10:00:00 11:00:00 12:00:00 13:00:00 10:00:00 11:00:00 12:00:00 13:00:00
Time Time

Real Time Data ~ Data Comparison =~ Datalogon Today ~

Figure 3.62: Screenshot of line charts in Data Comparison tab (2 of 4)

81

42
43
44
45
146
47
48
49
50
51
52
53
54
55
56
57
58
59
&0
81

A

1

B c D E F

G H I J K L

Data comparison

GPV FPV
Temperature 1 (°C) Temperature 1 (°C)
80 80
60 /—_/W‘ 60
40 40
20 20
10:00:00 11:00:00 12:00:00 13:00:00 10:00:00 11:00:00 12:00:00 13:00:00
Time Time
Temperature 2 (°C) Temperature 2 (°C)
a0 a0
80 m 80
40 40
20 20
10:00:00 11:00:00 12:00:00 13:00:00 10:00:00 11:00:00 12:00:00 13:00:00
Time Time

Real Time Data ~ Data Comparison * Data Log on Today ~

Figure 3.63: Screenshot of line charts in Data Comparison tab (3 of 4)

82

&1
62
&3
&4
85
86
&7
&8
&9
70
i3]
72
73
74
75
76
77
78
79
80

A B

1

c D E F

G H | J K L

Data comparison

Real Time Data ~

Data Comparison ~ Data Log on Today -

GPV FPV
Temperature 3 (°C) Temperature 3 (°C)
80 80
60 —ffw\/—— 60
; 10 W
20 20
0 0
10:00:00 11:00:00 12:00:00 13:00:00 10:00:00 11:00:00 12:00:00 13:00:00
Time Time
Water Temperature (°C)
40
30
20
10
10:00:00 11:00:00 12:00:00 13:00:00
Time

Figure 3.64: Screenshot of line charts in Data Comparison tab (4 of 4)

83

84

3.8.4 Configuration of NodeMCU

NodeMCU has to be programmed in Arduino IDE software to connect to the desired
WI-FI or Internet. Figure 3.65 below shows how WI-FI name and password added in
the code. Next, user needs to add the deployment ID obtained from the Apps script
web app deployment. For GPV system, the complete coding for NodeMCU is attached
in Appendix I, which user needs to use it to programme NodeMCU in Arduino IDE

software. Whereas for FPV system, the complete coding is attached in Appendix J.

#include <ESP8266WiFi.h>
#include <wWiFicClientSecure.h:

#define OM _Board LED 2

ffmmema=as customise these values ---———-————-
const char* ssid = "myInternet”; // ID of your internet or Wi-Fi name
const char* password = "12345"; // Password of your internet

const char® host = "script.google.com”;
const int httpsPort = 443;

//--> Create a WiFiClientSecure object.
WiFiClientSecure client;

//--> App script deployment ID
String GAS_ID =
" AKTycbx1qoWvw4DPYURFLAQPY0JG8h1q2DbGTUSPVVbbZ 1y jQezdwUZMpE3bpvsy2Cx76vm™ ;

Figure 3.65: Locations where WI-FI name, WI-FI password and Apps Script
deployment ID are entered

85

3.9 Conversion of Data Collected on Micro SD Card to Excel

The data collected in micro SD card is in the text file format as shown in Figure 3.66
below. To convert the file to excel format, the data is copied and pasted into an Excel
sheet.

) FPV_DATA.txt - Notepad -
File Edit Format View Help

Date | ﬁmp \ Voitage(V) | Vult']gPADC\ Currpnl(A) | Current ADC | Humidif
b8 23 119.95|878 | 1.79|579|82.00 | 25.
|877] 213|592 |

Paste

Delete
Select All

Right to left Reading order

Show Unicode control characters

|1u47| 5?\ 277\mu|
59|19.42|855| 277|616
938|853 | 275|615]50.00| 31. 20

43

Insert Unicode control character >

Open IME

Reconversion

Search with Bing...

4094 [OU.0Y[40.20 [1. 19

28-03-2023 | 10 59|115|843\317\631|5900\3120\5188\5800|5313|3113
28-03-2023110°38:00119 1118411 3201632159001314015300158811531913119

Ln 7969, Col 98 100% Windows (CRLF) UTF-8

Figure 3.66: Copying data from text file

A | 8 | ¢ | o | E | FE | & | v | v | 2| xk |t | m | N | o |

:Date | Time | Voltage(Vv) | voltage ADC | Current(A) | Current ADC | Humidity(%) | Ambient Temp(C}| Temp 1(C}| Temp 2(C}| Temp 3(C) | Water Temp(C)
|28-03-2023 | 09:30:00 | 19.95 | 878 | 1.79 | 579 | 82.00 | 25.30 | 35.00 | 37.44 | 35.19 | 30.50
|28-03-2023 | 09:32:00 | 19.92 | 877 | 2.13 | 592 | 82.00 | 25.30 | 36.19 | 39.25 | 36.38 | 30.50
28-03-202: Paste Options: 549 | 79.00 | 26.20 | 36.56 | 39.81 | 36.63 | 30.50
28-03-202: AA 569 | 75.00 | 27.20 | 36.69 | 39.69 | 36.06 | 30.56
28-03-2025 | uz:3/:09 | 17.30 | ao< | L.uv | 553 | 71.00 | 28.20 | 37.25 | 40.44 | 36.63 | 30.56
28-03-2023 Keep Text Only (1) 0 | 845 | 0.91 | 546 | 67.00 | 29.20 | 37.44 | 40.69 | 36.63 | 30.56
28-03-2023 | 09:41:59 | 19.49 | 858 | 1.20 | 557 | 65.00 | 29.30 | 37.50 | 40.88 | 36.44 | 30.56
|28-03-2023 | 09:43:59 | 19.95 | 878 | 2.03 | 588 | 64.00 | 29.40 | 37.69 | 40.94 | 37.00 | 30.56
) |28-03-2023 | 09:45:59 | 19.13 | 842 | 0.88 | 545 | 64.00 | 29.40 | 38.50 | 41.69 | 37.94 | 30.63
1128-03-2023 | 09:47:59 | 19.52 | 859 | 1.23 | 558 | 64.00 | 29.40 | 38.44 | 41.63 | 37.69 | 30.56
12 28-03-2023 | 09:49:59 | 19.38 | 853 | 1.20 | 557 | 63.00 | 29.60 | 38.19 | 41.13 | 37.94 | 30.56
13 |28-03-2023 | 09:51:59 | 19.13 | 842 | 0.88 | 545 | 62.00 | 29.70 | 38.00 | 40.88 | 38.31 | 30.56
1428-03-2023 | 09:53:59 | 19.33 | 851 | 1.09 | 553 | 63.00 | 29.80 | 37.44 | 39.88 | 38.19 | 30.63
15 28-03-2023 | 09:55:59 | 19.56 | 861 | 1.47 | 567 | 63.00 | 29.90 | 37.06 | 29.94 | 38.19 | 30.56
16 28-03-2023 | 09:57:59 | 19.20 | 845 | 0.36 | 548 | 63.00 | 29.90 | 38.38 | 41.63 | 39.25 | 30.56
1728-03-2023 | 09:59:59 | 19.63 | 864 | 1.68 | 575 | 62.00 | 29.90 | 39.06 | 42.50 | 29.69 | 20.56
18 |28-03-2023 | 10:01:59 | 19.83 | 873 | 2.35 | 600 | 63.00 | 29.80 | 40.25 | 43.88 | 40.56 | 30.63
1928-03-2023 | 10:03:59 | 19.65 | 865 | 2.11 | 591 | 62.00 | 29.20 | 41.38 | 44.94 | 41.19 | 30.56
20 |28-03-2023 | 10:05:59 | 19.72 | 868 | 2.48 | 605 | 63.00 | 29.80 | 42.69 | 46.56 | 42.63 | 30.56

_21128-03-2023 | 10:07:58 1 19,95 1 878 | 2,611 610 | 62,00 | 29,90 | 44,13 | 48,25 | 44.25 | 30.63

woo--tcﬁlml-h-wm_.

-
=]

Sheet1 ® [«]

Ready (J';«Accesslblllty: Good to go

Figure 3.67: Pasting data in Excel sheet

86

The data copied are all contained in a single column. To separate the data into different

columns, user needs to go to Data tab and select Text to Columns.

H &- s Bookl - Excel Ting Kaizin (#) &

File Home Inset Draw Pagelayout Formulas View Developer Help Acrobat Q@ Tell me what you want to do

= [BFromText/CSV [Recent Sources FT\ [T Queries & Connections Y E’% E @ @ Group ~
a -
[% From Web [Existing Connections - BE @8 Ungroup ~
Refresh | Sort Filter Tedtto What-ff Forecast | _
Data ~ - From Table/Range All~ Yo advanced | Columns 56 * @ | Analysis~ Sheet | i Subtotal
Get & Transform Data ‘Queries & Connections Sort & Filter Data Tools Forecast Outline = ~

AL - % | Date | Time | Voltage(V) | Voltage ADC | Current(A) | Current ADC | Humidity({ = @ Coumns Temp 2(C)| Temp 3(C) | Water Temp(C) -

Split a single column of text into
multiple columns

For example, you can separate a —

A B c D E F G H ! J K column of full names into separate i Q R s T Ul
Date | Tifne | Voltage(V) | Voltage ADC | Current{A) | Current ADC | Humidity(%)| Ambient Temp(C)| Temp 1(C}| Tei first and last name columns, L)
28-03-202} | 09:30:00 | 19.95 | 878 | 1.79 | 579 | 82.00 | 25.30 | 35.00 | 37.44 | 35.19 | 30.50

You can choose how to split it up:
28-03-202f | 09:32:00 | 19.92 | 877 | 2.13 | 592 | 82.00 | 25.30 | 36.19 | 39.25 | 36.38 | 30.50 fixed width or split at each comms,

1

z

3

4 (28-03-202 | 09:33:59 | 19.31 | 850 | 0.99 | 549 | 79.00 | 26.20 | 36.56 | 39.81 | 36.63 | 30.50 period, or other character.
5 |28-03-202} | 09:35:59 | 19.86 | 874 | 1.52 | 569 | 75.00 | 27.20 | 36.69 | 39.69 | 36.06 | 30.56 @ Tellme more

6 |28-03-202} | 09:37:59 | 19.36 | 852 | 1.09 | 553 | 71.00 | 28.20 | 37.25 | 40.44 | 36.63 | 30.56

7 |28-03-202} | 09:39:59 | 19.20 | 845 | 0.91 | 546 | 67.00 | 29.20 | 37.44 | 40.69 | 36.63 | 30.56

8 (28-03-202} | 09:41:59 | 19.49 | 858 | 1.20 | 557 | 65.00 | 29.30 | 37.50 | 40.88 | 36.44 | 30.56

9 |28-03-202f | 09:43:59 | 19.95 | 878 | 2.03 | 588 | 64.00 | 29.40 | 37.69 | 40.94 | 37.00 | 30.56

10 (28-03-202 | 09:45:59 | 19.13 | 842 | 0.88 | 545 | 64.00 | 29.40 | 38.50 | 41.69 | 37.94 | 30.63

11(28-03-202} | 09:47:59 | 19.52 | 859 | 1.23 | 558 | 64.00 | 29.40 | 38.44 | 41.63 | 37.69 | 30.56

12 28-03-202} | 09:49:59 | 19.38 | 853 | 1.20| 557 | 63.00 | 29.60 | 38.19 | 41.13 | 37.94 | 30.56 LI
13 28-03-202} | 09:51:59 | 19.13 | 842 | 0.88 | 585 | 63.00 | 29.70 | 28.00 | 40.88 | 38.31 | 30.56
14 28-03-202} | 09:53:59 | 19.33 | 851 | 1.09 | 553 | 63.00 | 29.80 | 37.44 | 39.88 | 38.19 | 30.63
15 [28-03-202} | 09:55:59 | 19.56 | 861 | 1.47 | 567 | 63.00 | 29.90 | 37.06 | 39.94 | 38.19 | 30.56
16 [28-03-202 | 09:57:59 | 19.20 | 845 | 0.96 | 548 | 63.00 | 29.90 | 38.38 | 41.63 | 39.25 | 30.56
17 [28-03-202} | 09:59:59 | 19.63 | 864 | 1.68 | 575 | 63.00 | 29.90 | 29.06 | 42.50 | 39.69 | 30.56
18 [28-03-202} | 10:01:59 | 19.83 | 873 | 2.35 | 600 | 63.00 | 29.80 | 40.25 | 43.88 | 40.56 | 30.63
19 (28-03-202} | 10:03:59 | 19.65 | 865 | 2.11 | 591 | 63.00 | 29.80 | 41.38 | 44.94 | 41.19 | 30.56
20 28-03-202; L 10°ns-59 | 19.72 | 868 | 2.48 | 605 | 63.00 | 29.80 | 42.69 | 46.56 | 42.63 | 30.56

1128-03-202k ‘T "3 | 19.95 | 578 | 2.611 610 | 62.00 1 29.90 1 44.13 | 48.25 1 44.25 | 30.63 [=]
Sheet1 ® [A] |
Readv ¥ % Accessibilitv: Good to a0 Count: 34 B m M -— 8§+ 100

Figure 3.68: Selecting Text to Columns

Then, select Delimited from the pop-out box. Click Next and select Other for

Delimiters. Type “” symbol beside the box of Other.

Convert Text to Columns Wizard - Step 1 of 3

The Text Wizard has determined that your data is Fixed Width,

If this is correct, choose Next, or choose the data type that best describes your data.

Original data type

Choose the file

Preview of selected data:

e that best describes your data:

1l Date | Time |
2 bs-03-2023 | 0s-
s bs-03-2023 | 0s:

b5-03-2023 | 09:
s bs-03-2023 | 09:

Voltage (V)

30:00
32:00
33:55
35:58

| 15.55 | &78
| 1%.52 |
| 15.31 | &850
| 1%.8g |

I 1.7% |
1 2.13 |
| 0.85 |
| 1.52 |

57% |
592 |
545 |
569 |

| Voltage ADC | Current (&)

Current| ™

82_00 | 25.

22.00 | 25.

TS5_00 | 26.

T5.00 | 273w
>

Cancel < Back Finish
Figure 3.69: Selecting Delimited file type
Convert Text to Columns Wizard - Step 2 of 3 ? >

This screen lets you set the delimiters your data contains. You can see how your text is affected
in the preview below.

Drelimiters

[]Tab

|:| Semicolon |:| Treat consecutive delimiters as one

(] comma .

Text gualifier: e

[|Space

[«] Other: ||
Data preview

ate Time Toltage (W) Voltage ADC Current (&)
28-03-2023 05:30:-00 1%.55 278 1.75
28-03-2023 05:32:-00 15.52 a77 2.13
28-03-2023 05:33:5%5 15.31 250 0.559
28-03-2023 05:35:5% 15._.8¢ 274 1.52

£ >

Cancel < Back Finish

Figure 3.70: Selecting Other and insert “|” symbol

87

Column data format
(® General
(O Text
() Date:

Convert Text to Columns Wizard - Step 3 of 3

‘General’ converts numeric values to numbers, date values

This screen lets you select each column and set the Data Format.

to dates, and all remaining values to text.

DY Al Advanced..,
O Do not import column (skip)
Destination: | SA%1

Data preview

cpelrs Ceperal Ceperal Ceperal
Time Voltage (V) Voltage ADC Current (&)
0%:-30:00 15%._%85 878 1.7%
0%:-32:00 15.52 877 2.13
059:33:589 1%.31 250 0.595
0%:-35:55 15._.8¢ 874 1.52
>
Cancel < Back MNext =

|*

Figure 3.71: Finishing the Text to Columns setting

88

Click Next and Finished. The data can now be separated into different columns as

shown in Figure 3.72.

L

30.5

30.5

30.5
30.56
30.56
30.56
30.56
30.56
30.63
30.56
30.56
30.56
30.63
30.56
30.56
30.56
30.63
30.56
30.56
30,63

M

A B T D E [F G H | J K
1 |Date Time Voltage(\ Voltage A Current(£ Current A Humidity Ambient’ Temp 1{C Temp 2{C Temp 3{C Water Temp(C}
2 | 28/3/2023 09:30:00 19.95 878 1.79 579 82 25.3 35 37.44 35.19
3 | 28/3/2023 09:32:00 19.92 877 2.13 592 82 25.3 36.19 39.25 36.38
4 | 28/3/2023| 09:33:59 19.31 850 0.99 549 79 26.2 36.56 39.81 36.63
5 | 28/3/2023 09:35:59 19.86 874 1.52 569 75 27.2 36.69 39.69 36.06
6 | 28/3/2023 09:37:59 19.36 852 1.09 553 71 28.2 37.25 40.44 36.63
7 | 28/3/2023 09:39:59 19.2 845 0.91 546 67 29.2 37.44 40.69 36.63
8 | 28/3/2023 09:41:59 19.49 858 1.2 557 65 29.3 37.5 40.88 36.44
9 | 28/3/2023 09:43:59 19.95 878 2.03 588 64 234 37.69 40.94 37
10 | 28/3/2023 09:45:59 19.13 842 0.88 545 64 29.4 38.5 41.69 37.94
11| 28/3/2023 09:47:59 19.52 859 1.23 558 64 29.4 38.44 41.63 37.69
12 | 28/3/2023 09:49:59 19.38 853 1.2 557 63 29.6 38.19 41.13 37.94
13 | 28/3/2023 09:51:59 19.13 842 0.88 545 63 29.7 38 40.88 38.31
14 | 28/3/2023 09:53:59 19.33 851 1.09 553 63 29.8 37.44 39.88 38.19
15| 28/3/2023 09:55:59 19.56 861 1.47 567 63 29.9 37.06 39.94 38.19
16 | 28/3/2023 09:57:59 19.2 845 0.96 548 63 29.9 38.38 41.63 39.25
17 | 28/3/2023 09:59:59 19.63 864 1.68 575 63 29.9 39.06 42.5 39.69
18 | 28/3/2023 10:01:59 19.83 873 2.35 600 63 29.83 40.25 43.88 40.56
19| 28/3/2023 10:03:59 19.65 865 211 591 63 29.8 41.38 44,94 41.19
20 | 28/3/2023 10:05:59 19.72 868 2.48 605 63 29.8 42.69 46.56 42,63
21| 28/3/2023 10:07:59 19,95 878 2,61 610 62 29.9 44,13 48,25 44,25
Sheetl ®

Ready ‘IJ G&Accesslblht}r:Goodtogo

Figure 3.72: Data in text file converted into columns

89

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction
In this chapter, the data obtained from the data monitoring system were analysed. The

problems encountered and possible root causes leading to the problems were also

discussed in the following section.

4.2 Result Analysis

4.2.1 Voltage and Current Calibration Results

The formula for calculating Average Percentage Error is

Average Percentage Error

N {|Arduin0 reading — Actual Reading|
i=1 Actual Reading

N
Whereas the formula for calculating Root Mean Square value is

X 100%}

N (Arduino reading — Actual Reading)2
N

Root Mean Square Error = \/

where Actual Readings were obtained from IV plotter device.

The analysis result is as shown in Table 4.1 and 4.2 and Figure 4.1 to 4.16 below.

90

Table 4.1: Voltage and current percentage errors

Arduino Voltage measurement Current measurement
system Average Average Average Average
percentage percentage percentage percentage
error before | error after error before error after
calibration calibration calibration calibration
(%) (%) (%) (%)
For Floating 8.98 1.06 2.21 1.46
PV
For Ground 5.84 0.70 6.18 1.26
PV
Table 4.2: Voltage and current root mean square errors
Arduino Voltage measurement Current measurement
system Root Mean Root Mean Root Mean Root Mean
Square Error Square Square Error | Square Error
before Error after before after
calibration calibration calibration calibration
V) V) (A) (A)
For Floating 1.70 0.21 0.08 0.06
PV
For Ground 1.08 0.13 0.21 0.05
PV

The formulae for calibrating the voltage and current values are as shown below. These

formulas are added into the coding attached in Appendix G and Appendix H.

Table 4.3: Corrective formulae for calibrating the voltage and current values

Arduino Coefficient for Coefficient for calibrating current value
calibrating
voltage value

For Floating PV | vIN = 0.9176*VvIN; | currentValue = 1.0107*currentValue;

For Ground PV | vIN =0.9448*vIN; | currentValue = 0.9771*currentValue - 0.0946;

91

IV plotter voltage measurement vs Arduino voltage measurement before calibration
(FPV):

IV Plotter Voltage VS Arduino Voltage Before
Calibration (FPV)

19.6
S 194 ._.
P y=09176x o 8.®
g 19.2 .‘.‘__o--.
2 ®e o o
Z 19 Sy B
2 M °
5 18.8 R — o
= @ ®
2 186 i ¥

.’j o °
18.4
20 20.2 20.4 20.6 20.8 21 21.2

FPV Arduino voltage (V)

Figure 4.1: IV plotter voltage vs Arduino voltage before calibration (FPV)

FPV Voltage Readings Before Calibration

215

21

20.5 W eV Plotter
s ArdUino

e ‘_/\-\’_AJ\\

18.5

18

17.5
17

]
[=]

Voltage (V)
=
o

1 3 5 7 9 11131517 1921232527 293133 35 37
Data set number (1 to 37)

Figure 4.2: 37 sets of 1V plotter voltage and Arduino voltage readings
comparison before calibration (FPV)

92

IV plotter voltage measurement vs Arduino voltage measurement after calibration
(FPV):

IV Plotter Voltage VS Arduino Voltage After
Calibration (FPV)

20

@
: -

17
16
15
14
13
- ¢
11
10
10 11 12 13 14 15 16 17 18 19 20

FPV Arduino voltage (V)

IV plotter voltage (V)

Figure 4.3: IV plotter voltage vs Arduino voltage after calibration (FPV)

FPV Voltage Readings After Calibration

25

20

TS e |\ plotter

15 Arduino

10

Voltage (V)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Data set number (1 to 33)

Figure 4.4: 33 sets of 1V plotter voltage and Arduino voltage readings
comparison (FPV)

93

IV plotter current measurement vs FPV current measurement before calibration (FPV):

IV Plotter Current VS Arduino Current Before
Calibration (FPV)

45
y=1.0107x
35
25

15

IV plotter current (A)
[¥5]

0.5

0 1 2 3 4 5

Arduino current (A)

Figure 4.5: 1V plotter current vs Arduino current before calibration (FPV)

FPV Current Readings Before Calibration

45 —

4 /
35 e |\/ Plotter
3 Arduino
25 !

15 =

Current {A)

0.5

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37
Data set number (1 to 37)

Figure 4.6: 37 sets of 1V plotter current and Arduino current readings
comparison before calibration (FPV)

94

IV plotter current measurement vs FPV current measurement after calibration (FPV):

IV Plotter Current VS Arduino Current After
Calibration (FPV)

IV plotter current (A)

-1 0 1 2 3 4 5 6

Arduino current (A)

Figure 4.7: IV plotter current vs Arduino current after calibration (FPV)

FPV Current Readings After Calibration

s |\/ plotter

Arduino

Current {A)
ey

1234567 8 9101112131415161718192021222324252627
Data set number (1 to 27)

Figure 4.8: 27 sets of 1V plotter current and Arduino current readings
comparison after calibration (FPV)

95

IV plotter voltage measurement vs Arduino voltage measurement before calibration
(GPV):

IV Plotter Voltage VS Arduino Voltage Before
Calibration (GPV)

19.4

19.2 y =0.9448x
19

18.8

18.6 ._,-‘-"'

18.4 o o

18.2 L

IV Plotter voltage (V)
[
oo

17.8 o ..
17.6 !
17.4
186 188 19 192 194 196 198 20 202 204

Arduino voltage (V)

Figure 4.9: IV plotter voltage vs Arduino voltage before calibration (GPV)

GPV Voltage Readings Before Calibration

20.5
20

195 e |\/ Plotter

=
o

s Arduino

-
o0
w

Voltage (V)
[
oo

17.5
17
16.5

16
12345678 910111213141516171819202122

Data set number (1 to 22)

Figure 4.10: 22 sets of 1V plotter voltage and Arduino voltage readings

comparison before calibration (GPV)

96

IV plotter voltage measurement vs Arduino voltage measurement after calibration
(GPV):

IV Plotter Voltage VS Arduino Voltage After
Calibration (GPV)

20
19
18 '
17
16
15
14
13
12 e
11
10
10 11 12 13 14 15 16 17 18 19 20

Arduino voltage (V)

IV plotter voltage (V)

Figure 4.11: 1V plotter voltage vs Arduino voltage after calibration (GPV)

GPV Voltage Readings After Calibration

]
[=]

|

=
=)

e |\/ Plotter

[
=y

W Arduino

[y
o]

Voltage (V)
=
(]

o N R

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Data set number (1 to 31)

Figure 4.12: 31 sets of 1V plotter voltage and Arduino voltage readings

comparison after calibration (GPV)

97
IV plotter current measurement vs Arduino current measurement before calibration

(GPV):

IV Plotter Current VS Arduino Current Before
Calibration (GPV)

;
<6 y=0.9771x-0.0946 »
=5
3 *°y
5 4 e
o RS)
— LM]
=2 N A
; ot
=9

0

0 1 2 3 4 5 6 7

Arduino current (A)

Figure 4.13: 1V plotter current vs Arduino current before calibration (GPV)

GPV Current Readings Before Calibration

5 e |\/ Plotter

a s Arduino

Current {A)

1 3 5 7 9 11 13 15 17 19 21 23 25 27
Data set number (1 to 28)

Figure 4.14: 27 sets of 1V plotter current and Arduino current readings

comparison before calibration (GPV)

98
IV plotter current measurement vs Arduino current measurement after calibration

(GPV):

IV Plotter Current VS Arduino Current After
Calibration (GPV)

IV plotter current (A)

-1 0 1 2 3 4 5

Arduino current (A)

Figure 4.15: 1V plotter current vs Arduino current after calibration (GPV)

GPV Current Readings After Calibration

3 e |\ Plotter
—""'“_—W Arduino

Current {A)
¥

0 —

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Data set number (1 to 30)

Figure 4.16: 29 sets of 1V plotter current and Arduino current readings

comparison after calibration (GPV)

4.2.2 DHT11 and DS18B20 Sensors Calibration Results

99

Table 4.4 below shows the error in degree Celsius of the DS18B20 sensors, with the

readings from Fluke’s thermometer as reference readings.

Table 4.4: Temperature sensor accuracy analysis result

Sensor From FPV From Ground PV

Average Percentage | Average error | Percentage
error (°C) error (%) (°C) error (%)

DHT11 sensor 0.95 3.08 1.36 4.15

DS18B20 sensor 0.07 0.22 0.04 0.13

1

DS18B20 sensor 0.11 0.32 0.24 0.69

2

DS18B20 sensor 0.16 0.46 0.09 0.29

3

DS18B20 water- 0.02 0.07 Not applicable | Not applicable

proof sensor

In general, the DS18B20 sensors are having average error less than 1 °C and

percentage error of less than 1 %. Therefore, no calibration was done on these sensors.

However, both DHT11 sensors were having larger percentage error. The DHT11

sensors were then replaced with new one and the average errors were lowered to less

than 1 °C.

100

4.2.3 Data Monitoring and Data Collection System

Figure 4.17 to 4.23 below show the data collected from FPV system on Google
Spreadsheet on 19 April 2023, from 9.30 am to 5.22 pm.

8 c D £ F G H | K] K
1 | Real Time Data
2 GPV FPV
3 Last data log Last data log
4 Date 19-Apr-2023 Date 19-Apr-2023
5 Time 17:22:36 Time 17:23:08
[
7 Position of temperature sensor: Position of temperature sensor:
8
a PV1
9
12
EE]

15
16
: -
19

20
2
2 MO pv 1 Vandlis o g5
measuring on: measuring on:
] Voltage (V) Current (1) Voltage (V) Current (A)
17.94 0.04 18.08 -0.08

VY U o W
+

Figure 4.17: Screenshot of FPV data and GPV data on Google Spreadsheet (1 of
3)

Real Time Data v Data Comparison v Data Log on Today ~

B c o E F G H I J K

VandIis Vand1is

= PVl measuring on:

measuring on: PVl

2 Voltage (V) Current (1) Voltage (V) Current (A)
e 17.94 0.04 18.08 -0.08

7 7\‘fM"L.A.-Hli.Jﬂ‘ﬂ""ﬁ'l'ﬁl ‘MﬁW"", - ﬂrﬂm

I
Volage (V)
) /

Voltage (V)

%

Current (A)

2
n
35
-
7 Humidity (%) Ambient Temp (°C) Humidity (%) Ambient Temp (*C)
& 75 29.6 65 30.3
) — /_\ /\M\\ \.
Pl M_,A\JJJ\I
40
41
42
43
44
45
46

+ = Real Time Data v Data Comparison v Data Log on Today ~

101

Figure 4.18: Screenshot of FPV data and GPV data on Google Spreadsheet (2 of

3)

B c D E
“ {75 > {_ 206 >
47
48
49 Temp 1 (°C) Temp 2 (°C)
B 31.38 28.5
51 /._J/”r‘ﬂ"nl‘ﬂwm\-__L //__/’{ ‘\M"_\
52
53
54
&5
&8
&7
&8
]
(1]
&1 Temp 3 (°C)
2 28.69

[N
POV A A’

Q:(‘cl

S . N

Temp 2 (°C)
28.56

/\.-/'»-\"“”“'W‘\Qk

G H
s N
o

Temp 1 (°C)
28.81

ATV

Temp 3 (°C) Water Temp (*C)
28.31 34.94
AN e

1
Temp 3 (*C)
-

e

Figure 4.19: Screenshot of FPV data and GPV data on Google Spreadsheet (3 of

1

3)

Data comparison

GPV FPV
Voltage (V) Voltage (V)
25 25
20 2 e A AT,
15 15
10 10
5 5
0 0
10:00:00 12:00:00 14:00:00 16:00:00 10:00:00 12:00:00 14:00:00 16:00:00
Time Time
Current (A) Current (A)
& 2.00
5 6.00
4 4.00
2.00
2 0.00
0 0
10:00:00 12:00:00 14:00:00 16:00:00 10:00:00 12:00:00 14:00:00 16:00:00
Time Time

+ =

Real Time Data ~

Data Comparison * Data Log on Today ~

Figure 4.20: Graph of voltage and graph of current against time

102

1

Data comparison
GPV FPV

Humidity (%) Humidity (%)

100 100

™ W ™

50 50

25 25

0
10:00:00 12:00:00 14:00:00 16:00:00 10:00:00 12:00:00 14:00:00 16:00:00
Time Time

Ambient Temperature (°C) Ambient Temperature (°C)

50 50.0

40 40.0 m
30 30.0

20 20.0

10 10.0

.0
10:00:00 12:00:00 14:00:00 16:00:00 10:00:00 12:00:00 14:00:00 16:00:00
Time Time
+ B Real Time Data ¥ Data Comparison ~ Data Log on Today ~

Figure 4.21: Graph of humidity and ambient temperature against time

1

Data comparison
GPV FPV
Temperature 1 (°C) Temperature 1 (°C)
20 20
60 60
0 " m
20 20
0
10:00:00 12:00:00 14:00:00 16:00:00 10:00:00 12:00:00 14:00:00 16:00:00
Time Time
Temperature 2 (°C) Temperature 2 (°C)
30 30
60 60
40 40
20 20
0
10:00-00 12:00:00 14:00:00 16:00-00 10:00:00 12:00:00 14:00:00 16:00:00
Time Time
I 1 I 1
+ B Real Time Data ~ Data Comparison - DataLog on Today ~

Figure 4.22: Graph of temperature 1 and graph temperature 2 against Time

1

Data comparison
GPV FPV
Temperature 3 (°C) Temperature 3 (°C)
80 0
80 80
40 w /M
20 20
10:00:00 12:00:00 14:00:00 16:00:00 10:00:00 12:00:00 14:00:00 16:00:00
Time Time
Water Temperature (°C)
40
30
20
10
10:00:00 12:00:00 14:00:00 16:00:00
Time
+ = Real Time Data ~ Data Comparison > Data Log on Today ~

103

Figure 4.23: Graph of temperature 3 and graph of water temperature against

Time

Figure 4.20 to 4.23 above proved that the data monitoring systems for FPV and GPV
were able to transmit data to the Internet and then to the Google Spreadsheet. The data
were received consistently between interval of 2 minutes for around 8 hours. There
were no stoppages shown on the graphs, which proved that the sensors were working

fine and do not have malfunction issue.

Throughout the days of the operation of the data monitoring systems, it was
estimated that at fully charged condition, the 10 000 mAh power bank can last for more
than 8 hours, while the phone used for sharing hotspot can last for around 8 hours. At

the same time, network data usage was averagely 0.37 GB per day.

4.2.4 Data Analysis and Comparison Between FPV and GPV

To analyse the performance of the FPV and GPV system, maximum obtainable power,
P, is calculated. However, the information of Fill Factor is required. Fill factor is the
ratio of Actual Maximum Obtainable Power, B, to the product of Open Circuit
Voltage, V,. and Short Circuit Current, I,.. Fill Factor was obtained using 1V plotter
device. The average fill factor, FF is 0.673. With the information of fill factor obtained,

the maximum obtainable power is calculated with the formula below.

Py = FF X Vo X I,

Where

V,. = Open Circuit Voltage,V
Isc = Short Circuit Current, A
FF = Average Fill Factor

Bnp = Maximum Obtainable Power, W

104

The daily energy yield is then calculated using the formula below.

Daily energy yield = Average Py, X Duration of data collection

Figure 4.27 below shows Open Circuit Voltage for FPV and GPV system on 17 March
2023 tabulated in graph.

95 Graph of Open Circuit Voltage over Time
e GPV Voltage (V) FPV Voltage (V)
20
- - —--4_'\-___‘/_,/‘
2. 15
a
[=T+]
(1]
=
S 10
=
5
0
=2 T - o ¥ B+« R o [e T T T e T o O e T e e 3 e e T+ = e T S S T S T Ve T R T L S N B T BT = T = L o
S INCONOO TN NARYTI LTSI ILITITIITTITTIIISIT NN O 4 o
] e e e e e e - OO OO0 000 00000000000 0000 e e e e e
NMYTNSCimMINEdAdMINSCANMINOSAMINOANDITI NG oo
[o 3 T o TR e T e T e T e T e T e T O T I T T Y O Y I o O o A o I T O O O O T ol ol L o o T O T U I VR €}
L= I I I I I I I I I I I I I I I I I |
Time (hh:mm:ss)

Figure 4.24: Graph of Open Circuit Voltage against Time

Figure 4.25 below shows Short Circuit Current for FPV and GPV system on 17 April
2023 tabulated in graph.

Graph of Short Circuit Current over Time

s 5PV Current (A) FPV Current (A)
5
f\\,l,-- ey
4 a | f ‘
r/ |
<3 '- h
< J \
= S Py
22 I.\ﬁ | \ /\;wvw\mv_: 1
S o~ Al pd Vo adl
o 1 NS A
LN
O \\.-_r_
[T e o = o T Y e O T Y s T o o ey e T T T o T T O o T S R T BT I o o B IR IR o T R
ee¥deeadeedunnnu I I T IITIITIIEITISISEI SIS T
lamad-ddddd 48 00 000000800000 000O0CO08806 d odd -
nTnedadntnodadmtnoedodmtTnodomTnodomTE Fn oo
[=y = SR = S == = T e T e e T e B T I Y I o A o VI o VI o VI o VI Y I T R s T o = o o~ S T IR IR V= Y =
4T 4 4 4 4 4 4 4 4 4 4 44 A4 444 A A A A A A" A A A A
Time (hh:mm:ss)

Figure 4.25: Graph of Short Circuit Current against Time

16:21:24

105

Figure 4.26 below shows Maximum Obtainable Power for FPV and GPV system on
Graph of Maximum Obtainable Power over Time

17 March 2023 tabulated in graph.

rCTC9T vTT9T

YTTTOT YTITOT
YTT09T YTT09T
9T:TSST 9T IS'ST
STTHST STIFGT
o TrovT
9.3.3 e EFOETT
EVOEWT £ ErocT
3”3”3 = 0z
PREOTHT 4 YrOTHT
SP00wT k= Si00wT
SPO0SET o] STOSET
9M0vET 2 s ViOVET
_ SH0EET = v > SPiOEET
S LYOTET = E 3 LViOTET
g 6VIOTET % = £ 6V0T:ET
S LFO0ET £ @ 5 = LVi00ET
B 05T E o > & LV0STT
6viopeT = i o 6¥:01TT
= > (-
_ 8r0ETT g 'S f= 8r0ETT
S Tara = B © 6V:0T'TT
—_ [—_ . 5 s
2 670TZT O e 3 3”3”3
a 61:00:2T = HM z mvuooumﬁ
m 61:05TT -] . .m mﬁomﬁa
o | £ |2 2 e
:0€: X L 0€:
om.om.ﬂ s s = pobdi
05:0TTT S T O o
IS0TTT Y—) Hm“oﬁﬂ
TUTOTT M TTIOTT
s 5 e
Z0:TYi0T © muuﬁm”oﬁ
8T:TE0T o mo_ﬂ”oﬁ
SO:TTOT & oTToT
YOITTOT N oToOT
$2:10:0T M o
wme i
60:EV:6 > ot
LO'TE6
F (=] m o o o O o
R33IFAEC os @ <N
(M) 19mod 3|qeulelqO Wnwixe (%6) Aupiuny

Time (hh:mm:ss)

Figure 4.27: Graph of Humidity against Time

106

Graph of Ambient Temperature over Time

FPV Ambient Temperature

GPV Ambient Temperature

Q
L

rCTT9T
rCTT9T
PCT09T
9T 19T
STIST
rorvT
EFO0EYT
roTrT
rOTvT
S 00vT
St0sel
IoeT
StioEET
LP0TET
6 0T'ET
LVO0ET
JATrAN
6701 CT
80ECT
6 0TCT
67 0T-CT
67:00:CT
67:05'TT
0501 TT
05:0€'TT
050211
IS0TTT
TTTOTT
00:TS:0T
Z0:T0T
8T TE0T
SOTZ0T
rOTTOT
T T00T
4 grats

60:EF'6

L0:CED

o o o o O
= mMm o~

{2,) @Inyesadwa] waiquy

Time (hh:mm:ss)

Figure 4.28: Graph of Ambient Temperature against Time

Graph of Temperature 1 over Time

FPV Temperature 1

GPV Temperature 1

(=]
M~

o o o o o O
oo Mmoo~

(2.) T aunjesadway

o

vYTTT9T
rCTIT9T
rZT09T
9 15'ST
STTraT
o T
EVOETT
ProTrT
ProTrT
St00¥T
SP0SET
IroteT
SrOEET
LPOTET
67 0T'ET
LVO0ET
LP0SCT
6701 CT
8r0ECT
670T:CT
67 0TCT
67:00:CT
6705 TT
0501 TT
05:0E'TT
05:02°TT
TS0TTIT
TTTOTT
00:TS5:0T
20 T0T
8Z:TE0T
SOTZ0T
rOTT:0T
rCT00T
4 Ara S

60:EF:6

L0:TE6

Time (hh:mm:ss)

Figure 4.29: Graph of Temperature 1 against Time

107

Graph of Temperature 2 over Time

FPV Temperature 2

GPV Temperature 2

=]
=]

=] o o o o

=] =]
~wwms=smo —

(

J,) T ainmesadwa]

o

Y19t
YCTIT9T
Y1091
9¢T9aT
SCTraT
ot
EVOEYT
troTrT
trOoTrT
SFOo0vT
SP0gET
I orET
StoeeT
LPOTET
6V 0TET
LP00ET
LP0SCT
6v: 01 CT
8r0elT
6¥0T:CT
6V 0T:CT
6¥:00:CT
6705 TT
0501 TT
05:0€'TT
0502T°TT
T1S0TTT
TTT0 Tt
001501
0 Tr0T
8¢ 1eE 0T
SOTZ0T
rO:TT:0T
T T00T
4 gra S

60:€¥6

L0'TE6

Time (hh:mm:ss)

Figure 4.30: Graph of Temperature 2 against Time

Graph of Temperature 3 over Time

FPV Temperature 3

GPV Temperature 3

o
~

o o o o oo
= I Lt I |

(Do) € Raniesadwa]

o

FTTT9T
FCTIT9T
FCTO9T
9T TI5'ST
SISt
[Aduna
eroEYT
roTrT
roT+T
SP00vT
SP0gET
aroreT
StoEET
LP0TET
6V 0T'ET
LVO00ET
LV0STT
60t ZT
8¥0ECT
6¥:0T:CT
6V 0TCT
6¥:00:CT
6705 TT
050111
05:0ETT
0502T°TT
T1S0TTT
TTT0:TT
001501
<0 Tr0T
8¢ IE0T
SO0TC0T
FOTT:0T
¥TT00T
4 grats

60:€F'6

LOTEB

Time (hh:mm:ss)

Figure 4.31: Graph of Temperature 3 against Time

LIl W W w
OO MNWEREO O -0

Water Temperature (°C)
MM LD LD LI LY

9:32:07

9:43:09

9:52:42
10:01:24
10:11:04
10:21:05
10:31:28
10:41:02

Graph of Water Temperature over Time

10:51:00
11:01:11
11:10:51
11:20:50
11:30:50
11:40:50

FPV Water Temperature

11:50:49
12:00:49
12:10:49
12:20:49
12:30:48
12:40:49
12:50:47
13:00:47
13:10:49
13:20:47
13:30:45
13:40:46
13:50:45
14:00:45
14:10:44
14:20:44
14:30:43
14:40:42

Time (hh:mm:

w
15
—_—

108

15:41:25
15:51:26
16:01:24
16:11:24
16:21:24

Figure 4.32: Graph of Water Temperature against Time

On 17 April 2023, the Open Circuit Voltage of FPV was slightly higher than
that of GPV. The highest I/, value from FPV was 19.67 V, whereas for GPV the value
was 19.39 V. Furthermore, the Short Circuit Current of FPV was slightly higher than
that of GPV one. The highest I, value from FPV was 4.64. A, whereas for GPV the

value was 4.61 A. For Maximum Obtainable Power, the value from FPV was higher

than GPV. The highest B,,,, value from FPV was 58.46 W, whereas for GPV the value

was 57.49 W. Moreover, the daily energy yield for FPV is 199.83 Wh, and 197.38 Wh
for GPV. Figure 4.25 shows that before 9.52 am, the GPV Short Circuit Current
readings were way lower than that of FPV. This was due to blockage of sunlight by

lamp pole at the road side.

Table 4.5 below summarize the highest data reading of Humidity, Ambient

Temperature, Temperature 1, Temperature 2, and Temperature 3 on 17 March 2023.

Table 4.5: Highest data reading of FPV system and GPV system

Type of | Highest Highest Highest Highest Highest
PV Humidity | Ambient Temperature | Temperature | Temperature
system (%) Temperature | 1 (°C) 2 (°C) 3 (°C)

(°C)
FPV 97 42.9 65.38 69.06 62.31
GPV 95 45.9 66.13 73.50 65.50

109

Generally, it can be observed that Temperature 2 on both FPV and GPV was
higher than Temperature 1 and Temperature 3. This indicates that the centre of PV
panel is hotter than the corners of PV panel. This could be due to heat dissipated by
the aluminium frame of PV panel. Meanwhile, the highest reading of Temperature 1
was higher than Temperature 3 on FPV. This could mean that heat dissipates better at
the bottom of floating PV since it is closer to water surface. In the other hand, the
average reading of Temperature 1 was only slightly higher than Temperature 3 on GPV.
This could mean worse heat dissipation at the bottom of ground type PV as there is
limited space for air flow as compared to FPV. Although the highest humidity of FPV
reached 97 %, the humidity level on GPV throughout the day was still higher than FPV
as observed in Figure 4.27. The ambient temperature of GPV was also higher than that
of FPV throughout the day.

According to the datasheet of the PV panel in Appendix C, the rated Short
Circuit Current is 5.17 A. However, the highest Short Circuit Current value on both
FPV and GPV sometimes exceeded 5.17 A. Since the I, values from both FPV and
GPV were during noon time, one possible reason could result this high I, value. The
rated I, value stated in datasheet may be based on solar irradiance of 1000 W/m?, but
the actual solar irradiance on certain period of the day exceeded this value. Therefore

resulting higher I, value.

4.2.,5 Comparison Between Data Collected on 10T System and Micro SD Card

To analyse the amount of variation between the data recorded in SD card and data
recorded in the 10T system, which is Google Spreadsheet, percentage of data loss for
each day was calculated. When percentage of data loss is greater than zero, there might

be some issue in the data recording in the 10T system. The formula is as shown below:

Percentage of data loss (%)

amount of data lost in [oT
x 100%

~ total amount of data(from SD card)

110

Table 4.6 below summarize the percentage of data loss of the 10T system and problems
leading to percentage of data lost greater than zero for a total of seven days from 18
March 2023 to 24 March 2023. Table 4.7 summarizes the problems, their possible root

causes and solutions.

Table 4.6: 10T system percentage of data loss

Date FPV Problem GPV Problem
percentage of percentage of
data lost (%) data lost (%)

18 March | 0.41 -1 row of data | 1.24 -3 rows of data

2023 was skipped in were skipped
0T system in 10T system

19 March | 6.44 -7 rows of data | 43.32 -Data

2023 were skipped suddenly stop
in loT system updated on
-Multiple rows IoT system at
of data were 2.06 pm
shifted;

20 March | 0.90 -2 rows of data | 0.45 -1 row of data

2023 were skipped was skipped in
in 10T system 10T system

21 March | 3.12 - 3rows of data | O -

2023 were skipped
in 10T system;
-Multiple rows
of data were
shifted;

22 March | O - 0.44 -1 row of data

2023 was skipped in

10T system

23 March | 3.69 -1 row of data | 0.42 -1 row of data

2023 was skipped in was skipped in
0T system; 10T system

111

-Multiple rows
of data were
shifted

24
2023

March | 0.49

-1 row of data | 0.49
was skipped in

10T system

-1 row of data
was skipped in

10T system

Table 4.7: Problems, possible root causes and solution on data logging in 10T

system
Problem Possible Root Cause(s) | Solution
Time delay of 1 minute | Slow processing time for | Replace Arduino and

for data to appear in loT

data sent from Arduino to
NodeMCU then to the loT

platform

NodeMCU to a single
microcontroller that has
decent processing
capability and WI-FI chip

to save the processing time

Data lost due to data sent

from NodeMCU to
Google sheet being
skipped

Google sheet API service | Not available

outage or Google server is

temporarily unavailable

Network connectivity | Improve network
issue connectivity of NodeMCU

by placing NodeMCU to a
spot with better network
coverage.

internet

Choose better

service provider.

Both NodeMCU devices

Use high speed internet

competing for the hotspot | service

signal
Data lost due to multiple | Network connectivity | Improve network
rows of data being shifted | issue connectivity with

solutions mentioned above

112

Both NodeMCU devices

Use high speed internet

competing for the hotspot | service
signal
Data lost due to sudden | Goggle sheet API service | Not available
stop of data updating in | outage or Google server is
Google sheet temporarily unavailable
Network connectivity | Improve network
issue connectivity with

solutions mentioned above

Both NodeMCU devices
competing for the hotspot

signal

Use high speed internet

service

Loose wire connection on
VCC, GND, TX and RX

Replace jumper wire with

male pin heads soldered on

pin on NodeMCU board | the PCB, then directly
plug-in the
NodeMCU board’s I/0 pin

onto those pin heads for

entire

more secure connection

Several reasons could lead to data sent from NodeMCU to Google sheet being skipped.
The first reason is service outages, where either the Goggle sheet API or internet
service used by NodeMCU is facing disruptions, data may not be sent or recorded
properly. The next reason is network connectivity issue where NodeMCU is not
properly connected to the internet. One possible reason to this is PV panel causing
blockage of network signal. This is likely to happen because the whole hardware
system was placed under the solar PV panel to prevent direct sunlight. However the
consequence could be network signal being blocked from transmitting from the phone
to the NodeMCU. Furthermore, both NodeMCU devices may be competing for the

hotspot signal, resulting slower network connection.

When NodeMCU fails to send data to Google sheet after a long while, the issue
elevates to multiple rows of data being shifted as shown in Figure 4.33 below. This is

due to large amount of data sent from Arduino accumulated in NodeMCU memory

113

storage and NodeMCU fails to decode the data properly. The issue resolved itself once

the network connectivity gets back to normal.

~ Date (dd/mm/yy) Time Veltage (V) Current (A) Humidity (%) Ambient Temp (*C} Water Temp (*C} Temperature 1 (°C) Temperature 2 (°C} Temperature 3 (°C)
09-Apr-2023 14:36:46 19.02 4.03 43.00 37.90 35.81 61.19 65.31 55.44
09-Apr-2023 14:45:39 18.92 3.73 42.00 3.13 52.19 56.19 3.81 54.62
09—Apr—2023| 14:46:46 19.27 373 38.00 60.85 0 5155 35.88 0
09-Apr-2023 14:49:09 19.31 36 37.00 39.71 0 60.25 50.69 35.88
09-Apr-2023 14:50:55 19.02 N 37.00 19.00 0 61.44 51.94 35.94
09-Apr-2023 14:53:28 18.92 347 37.00 39.40 35.94 63.81 64.63 54
09-Apr-2023 14:55:27 18.99 66.31 56.13 3581 0 0 0 0
09-Apr-2023 14:69:27 18.83 3.61 64.19 57.25 0 35.88 35.88 0
09-Apr-2023 15:00:45 18.99 313 35.88 0.00 0 0 0 0
09-Apr-2023 15:02:47 19.08 348 37.00 39.90 0 625 36 0
09-Apr-2023 15:04:51 19.08 347 35.00 40.00 0 61.65 36 0
09-Apr-2023 15:06:35 19.27 3.81 38.00 40.00 36 650.38 0 50.88
09-Apr-2023 15:08:22 19.17 2.51 38.00 39.80 36.06 61.88 61.66 51.44
09-Apr-2023 15:10:16 18.1 0.51 37.00 39.50 36.06 5519 58.81 4519
09-Apr-2023 15:12:32 18.72 0.75 37.00 39.20 36.06 54.81 54.25 45.56
09-Apr-2023 15:13:53 19.9 3.49 38.00 39.00 36.06 53.19 5413 45.94

Figure 4.33: Multiple rows of data being shifted in Google sheet

As for the issue of sudden stop of data updates from NodeMCU to Google
sheet, the above-mentioned factors can contribute to this problem. However, it can also
be due to loosen wire connection on VCC, GND, TX and RX pin on NodeMCU. Loose
connection on VCC or GND results unstable power supply. Insufficient or unstable
power supply could NodeMCU to shut down and stop working. While loose
connection on TX and RX pin results data sent from Arduino being disrupted. The root
cause to loosen wire connection can be due to strong wave movement of the lake
during windy weather. Since the connection of the pins on NodeMCU board are not

soldered, when the floater wiggles the wire connection can become loose.

4.3

Challenge Encountered

114

Table 4.8 below summarizes the challenges faced in this project and how they were

solved.

Table 4.8: Challenges faced in this project and their solutions

initialize and record data
into SD card

NodeMCU failed to turn on

and function

Challenges Possible Root Solution/Suggestion
Cause(s)
SD card module failed to | -Too may sensors | Finalized hardware

connected to the
circuit.

-Sensors were extended
with wires that are too

long

configuration to three
DS18B20 sensors extended
with wire length not more

than 1.5 metres.

Change of accuracy of

voltage and current reading

Happens when there is
change of hardware

configuration

Do

voltage and current reading

calibration on the
after finalizing the hardware

configuration

Burn out of crocodile clip
cable used for measuring
open circuit voltage and

short circuit current of PV

Bad

connection

electrical
due to
iron

rusting on

crocodile clip

Use better connectors that
are water-proof and rust-
MC4

copper

proof such as

connectors and

current reading

panel crocodile clips
High current flow from | Use copper wire with higher
PV panel to crocodile | copper diameter or higher
clip cable American Wire Gauge
(AWG) size according to
the current rating of PV
panel
Inaccurate voltage and | Change of power bank | Use high quality and same

model resulting change
of VCC value

power bank model for both
FPV and GPV

115

Power bank deterioration | Power bank operating | Look for power bank

under high temperature | placement spot that has

and humidity | good ventilation and
environment optimal operating
temperature

The hardware system was initially equipped with six DS18B20 temperature sensors
that were extended with wires of 1.5 metres long. When there are many extended
temperature sensor in the system, the other components may not be working properly.
This can be due to too much current drawn by the long wires, resulting insufficient
current flow to the components. For example, SD card module would fail to initialize
and record data into SD card. Even if it successfully initialized, the data recording
would still fail when relay is switched on. Once relay is switched on it will draw some
current from the circuit. The ESP8266 NodeMCU could also be affected by this issue
and would fail to turn on. After some trial and error, the hardware configuration was
finalized with three DS18B20 temperature sensors with extended wires of around 1.5

metres. This finalized version was able to work without issue for most of the time.

When changes are made on the hardware configuration, the voltage drop across
the components on the circuit can be affected. While most of the components are still
workable if the voltage supplied is within the rated VCC range, the change of voltage
drop can affect the accuracy of voltage and current reading. The calculation of voltage
and current value in Arduino requires the input of VCC value. If the actual VCC value
changed, it can directly affect the accuracy of these two readings. Therefore, the
voltage and current reading may need to be calibrated again if there are any changes

made on the hardware configuration that resulted change of voltage drop.

The next issue is crocodile clip cable burn out after around one month of data
collection. The crocodile clip cable that burnt out was the one connecting to the
positive pole of ground PV panel. Figure 4.34 below shows the burnt out cable that
was broken into two pieces. Bad electrical connection due to rusting on iron metal, and
high current flow can cause short circuit and burn out the wire. Copper is a type of
noble metal and therefore does not get corroded. It was observed that the crocodile clip

was corroded as it is made from iron metal and it can absorb moisture from the air.

116

Furthermore, it was noticed that the positive crocodile clip cable from GPV experience
corrosion quicker than FPV one. It could be due to higher humidity environment since

the system was installed on grass land instead of concrete land.

Figure 4.34: Burnt and broken crocodile clip cable from GPV

r

Figure 4.35: Rusted Crocodile Clip on GPV after one week

117

Moreover, the accuracy of voltage and current reading can be affected by the
model or type of power bank. It is suspected due to difference in voltage supply to the

Arduino Mega microcontroller when using different power bank model.

The last issue is power bank deterioration. The issue was noticed when the 10T
platform stopped updating GPV data. When checked, the power bank’s LED battery
indicator light shows only one light and was discharged quicker than usual even though
it has been fully charged. The power bank was replaced with another one and the same
iIssue was encountered. This could be due to power bank operating under high
temperature and humidity environment. According to the datasheet of the power bank,
the operating temperature is 0 — 40 °C for discharge. This indicates that temperature
out of this range can damage the power bank, or it may not work according to the
specifications. The power bank was placed under the solar panel to avoid expose to
direct sunlight. However, since the location has bad ventilation, the temperature of the
bottom of PV panel could also be higher than the operating temperature. Furthermore,
to avoid water damage, the power bank was put in a zip bag. This may further worsen
the issue as heat would trap in the zip bag. Power bank placement spot that has good

ventilation and optimal operating temperature.

4.4 Cost Analysis

Table 4.9: Cost of Components and Consumables

Components and Quantity | Cost Total Vendor
consumables per Cost
unit (RM)
(RM)
Arduino Mega 2560 R3 |2 69.50 | 139.00 Techmakers (Shopee)
with cable
ESP8266 NodeMCU V3 | 2 18.20 | 36.40 SGROBOT (Shopee)
CH340

https://shopee.com.my/Arduino-Mega-2560-Compatible-with-CH340G-ATMega-ATMega2560-ATMEL-Development-TechMakers-i.55645224.1831318618?sp_atk=798be2a1-3637-4ba1-930e-9cf3a0f7f93d&xptdk=798be2a1-3637-4ba1-930e-9cf3a0f7f93d
https://shopee.com.my/NodeMCU-Lua-V3-ESP8266-IoT-Lua-LoLin-WIFI-Development-Board-CH340-i.33287405.815152961?sp_atk=3094120c-74ac-4947-a1f6-41f2cc56ce46&xptdk=3094120c-74ac-4947-a1f6-41f2cc56ce46

118

Micro USB cable 5.00 |5.00 iConTech
Component

ACS712 hall effect 6.50 | 13.00 Sainapse (Shopee)

current sensor 5A

DS18B20 temperature 3.30 |19.80 TGElectronic.

sensor (Shopee)

DS18B20 temperature 10.90 | 10.90 SGROBOT (Shopee)

sensor module

(waterproof)

DHT11 humidity sensor 480 |9.60 littlecraft (Shopee)

module with LED

OLED display module 12.50 | 25.00 Techmakers (Shopee)

(128x64)

DS3231 AT24C32 RTC 15.90 | 31.80 SGROBOT (Shopee)

module with battery

Micro SD Card Adapter 430 |8.60 SGROBOT (Shopee)

Reader Module

SanDisk Ultra Micro SD 17.90 | 35.80 PCByte (Shopee)

card 16 GB

Resistors 30k ohm (10psc) 1.00 |1.00 Techmakers (Shopee)

Resistors 7.5k ohm 1.00 |1.00 Techmakers (Shopee)

(10psc)

Resistors 4.7k ohm 1.00 |1.00 Techmakers (Shopee)

(10psc)

Resistors 2.2k ohm 1.00 |1.00 Techmakers (Shopee)

(10psc)

5V SPDT Relay 1.20 |2.40 Techmakers (Shopee)

1N4142 Diode 0.20 |0.40 Techmakers (Shopee)

2N2222 NPN Transistor 0.30 |0.60 SYNACORP

@STELECTRONIC
S (Shopee)

https://shopee.com.my/Micro-USB-Cable-Max-3A-Current-0.3MM-Thickness-cover-Compatible-for-ESP32-CABLE-ESP8266-CABLE-MicroUSB-Cable-i.187266709.12526216760
https://shopee.com.my/Micro-USB-Cable-Max-3A-Current-0.3MM-Thickness-cover-Compatible-for-ESP32-CABLE-ESP8266-CABLE-MicroUSB-Cable-i.187266709.12526216760
https://shopee.com.my/ACS712-Hall-Current-Sensing-Sensor-Module-5A-20A-30A-i.8822702.1307930145
https://shopee.com.my/DS18B20-Digital-Temperature-Sensor-55%C2%B0C~125%C2%B0C-Programmable-Resolution-1-Wire-Digital-Thermometer-i.288248630.4948549637
https://shopee.com.my/DS18B20-Digital-Temperature-Sensor-55%C2%B0C~125%C2%B0C-Programmable-Resolution-1-Wire-Digital-Thermometer-i.288248630.4948549637
https://shopee.com.my/Waterproof-Temperature-Probe-Sensor-DS18b20-Module-Kit-For-Arduino-i.33287405.2454366076?sp_atk=bed6a83c-b195-4596-9802-27bee206cc47&xptdk=bed6a83c-b195-4596-9802-27bee206cc47
https://shopee.com.my/DHT11-DHT22-Temperature-Humidity-Sensor-For-Arduino-Robotics-Raspberry-i.6674515.177063999
https://shopee.com.my/4-Pin-0.96-1.3-White-Blue-Yellow-blue-0.96-1.3-inch-128X64-OLED-Display-Module-0.96-IIC-I2C-Communicate-for-Arduino-i.55645224.1972947676?sp_atk=593a9ddd-d39e-4170-be04-a7b75c85df58&xptdk=593a9ddd-d39e-4170-be04-a7b75c85df58
https://shopee.com.my/Arduino-DS3231-AT24C32-IIC-I2C-RTC-Real-Time-Clock-Module-With-Battery-i.33287405.462077764?sp_atk=8d447363-13bc-4f4e-b794-1bac81b7b3d7&xptdk=8d447363-13bc-4f4e-b794-1bac81b7b3d7
https://shopee.com.my/Arduino-SPI-ICSP-interface-Micro-SD-Card-Adapter-Reader-Module-i.33287405.2002769531?sp_atk=f5cf3222-dcdd-4802-995c-1bda51e7bcc5&xptdk=f5cf3222-dcdd-4802-995c-1bda51e7bcc5
https://shopee.com.my/SanDisk-Ultra-MicroSDHC-XC-UHS-I-Memory-Card-(16GB-32GB-64GB-128GB)-i.65736936.2455376355?sp_atk=e42fcdd5-8cdf-4d84-aa88-62c3950786e1&xptdk=e42fcdd5-8cdf-4d84-aa88-62c3950786e1
https://shopee.com.my/10-pcs-of-Resistor-1-0.25W-3-30-300-3K-30K-300K-3M-ohm-1-4-0.25-Watt-Metal-Film-Resistance-Perintang-i.55645224.14414367235?sp_atk=a0574bf6-4082-41f1-9c32-35272c05e3d1&xptdk=a0574bf6-4082-41f1-9c32-35272c05e3d1
https://shopee.com.my/10-pcs-of-Resistor-1-0.25W-7.5-75-750-7.5K-75K-750K-ohm-1-4-0.25-Watt-Metal-Film-Resistance-Perintang-i.55645224.7415060922?sp_atk=c3ffd236-f5e3-4f4f-98e3-d497e8438e53&xptdk=c3ffd236-f5e3-4f4f-98e3-d497e8438e53
https://shopee.com.my/10-pcs-of-Resistor-1-0.25W-4.7-47-470-4.7K-47K-470K-ohm-1-4-0.25-Watt-Metal-Film-Resistance-Perintang-i.55645224.5214957893?sp_atk=8c8d66e9-9441-42ee-90b0-dd9d90f3c721&xptdk=8c8d66e9-9441-42ee-90b0-dd9d90f3c721
https://shopee.com.my/10-pcs-of-Resistor-1-0.25W-2.2-22-220-2.2K-22K-220K-ohm-1-4-0.25-Watt-Metal-Film-Resistance-Perintang-i.55645224.5114934948?sp_atk=45a7e331-00cb-47f7-a6ad-b07051daad5d&xptdk=45a7e331-00cb-47f7-a6ad-b07051daad5d
https://shopee.com.my/5-PINS-Single-SPDT-Relay-SRD-5V-9V-12V-24V-DC-10A-TechMakers-i.55645224.1841911425?sp_atk=a5222a0f-ffc9-4f86-8880-184c5c71c566&xptdk=a5222a0f-ffc9-4f86-8880-184c5c71c566
https://shopee.com.my/1N4148-Signal-Switching-Diode-i.55645224.1834011280
https://shopee.com.my/2N2222-Transistor-NPN-TO92-i.23949362.864949505?sp_atk=218e9f6d-e312-40e3-98d9-3b356397e6d0&xptdk=218e9f6d-e312-40e3-98d9-3b356397e6d0
https://shopee.com.my/2N2222-Transistor-NPN-TO92-i.23949362.864949505?sp_atk=218e9f6d-e312-40e3-98d9-3b356397e6d0&xptdk=218e9f6d-e312-40e3-98d9-3b356397e6d0
https://shopee.com.my/2N2222-Transistor-NPN-TO92-i.23949362.864949505?sp_atk=218e9f6d-e312-40e3-98d9-3b356397e6d0&xptdk=218e9f6d-e312-40e3-98d9-3b356397e6d0

119

Dupont Jumper wires | 1 2.70 | 2.70 littlecraft (Shopee)

20cm male to female

(40pcs)

Dupont Jumper wires | 1 2.80 |2.80 Autobotics (Shopee)

20cm male to male

(40pcs)

Soft silicon wire AWG 20 | 1 3.00 |3.00 idroNation (Shopee)

Black (3 mteres)

Soft silicon wire AWG 20 | 1 3.00 |3.00 idroNation (Shopee)

Red (3 mteres)

Multicore copper wires | 3 1.70 |5.10 HITECTRONS SDN

AWG 20 Black (1 metre) BHD

Multicore copper wires | 3 1.70 |5.10 HITECTRONS SDN

AWG 20 Red (1 metre) BHD

Multicore wires AWG 28 | 15 0.80 |12.00 Techmakers (Shopee)

Red (1 metre)

Multicore wires AWG 28 | 15 0.80 12.00 Techmakers (Shopee)

Blue (1 metre)

Multicore wires AWG 28 | 15 0.80 |12.00 Techmakers (Shopee)

Black (1 metre)

Single core wire AWG 26 | 3 0.50 1.50 Techmakers (Shopee)

(1 metre)

40 pin single row female | 1 0.50 |0.50 Autobotics (Shopee)

pin header

2 pin screw terminal block | 2 0.20 |0.40 Autobotics (Shopee)

Crocodile clip (10psc) 1 8.50 |8.50 HITECTRONS SDN
BHD

830-hole Breadboard 2 3.75 |7.50 iConTech
Component (Shopee)

PCB board (FOC) 2 0.00 |0.00 UTAR Kampar EE
Lab

Cable tie 3x100mm |1 150 |1.50 Mr. DIY

(100pcs)

https://shopee.com.my/Arduino-Dupont-Jumper-Wire-40-Way-2.54mm-10cm-20cm-30cm-Male-to-Male-Male-to-Female-Female-to-Female-i.6674515.16877193984
https://shopee.com.my/Male-to-Male-Arduino-Breadboard-Dupont-Jumper-Wires-(40p-20cm)-i.6641351.859469251
https://shopee.com.my/Soft-Silicone-Flexi-Flexible-Multicore-Wire-Cable-Black-Red-Drone-DIY-Electric-Electronic-AWG-8-10-12-14-16-20-24-26-28-i.61111659.1218380977
https://shopee.com.my/Soft-Silicone-Flexi-Flexible-Multicore-Wire-Cable-Black-Red-Drone-DIY-Electric-Electronic-AWG-8-10-12-14-16-20-24-26-28-i.61111659.1218380977
https://shopee.com.my/1-meter-1007-Electronic-Wire-28-AWG-Polyethylene-Environmental-Protection-Wire-Tinned-Copper-Wire-i.55645224.17237077386
https://shopee.com.my/1-meter-1007-Electronic-Wire-28-AWG-Polyethylene-Environmental-Protection-Wire-Tinned-Copper-Wire-i.55645224.17237077386
https://shopee.com.my/1-meter-1007-Electronic-Wire-28-AWG-Polyethylene-Environmental-Protection-Wire-Tinned-Copper-Wire-i.55645224.17237077386
https://shopee.com.my/Wire-1-to-100-Meter-Single-Core-1.5-0.5mm-(26AWG)-or-1-0.3-(28AWG)-for-Project-Bread-Board-Copper-Hook-up-Jumper-Cable-i.55645224.14548948061
https://shopee.com.my/40-Pin-Single-Row-Female-Straight-Pin-Header-i.6641351.1255734002
https://shopee.com.my/2-Pin-Screw-Terminal-Block-Connector-5mm-Pitch-For-Arduino-i.6641351.1717570213
https://shopee.com.my/Breadboard-MB-102-Full-Size-Half-Size-Small-Size-Breadboard-Bread-board-Arduino-Accessories-i.187266709.9114191529?xptdk=62fa3e33-a9bb-4d42-9bf8-78c604d15020
https://shopee.com.my/Breadboard-MB-102-Full-Size-Half-Size-Small-Size-Breadboard-Bread-board-Arduino-Accessories-i.187266709.9114191529?xptdk=62fa3e33-a9bb-4d42-9bf8-78c604d15020

120

Heatshrink tube 3mm (5|1 4.00 |4.00 Autobotics (Shopee)
metres)

Kapton tape (10mm) 1 5,60 |5.60 Techmakers (Shopee)
Electrical insulating tape | 1 2.00 |2.00 Mr. DIY

Thermal paste GD460 (7 | 1 6.9 6.90 Techmakers (Shopee)
grams)

Pineng power bank |2 42.70 |85.40 138 Phone
10000mAh PN936 Accessories (Shopee)

Total | 523.80

Table 4.10: Internet Charges (not inclusive of hardware device)

Description Quantity | Price per | Total price | Vendors

unit (RM) | (RM)
Celcom 30 GB data plan | 1 45.00 45.00 D talk
(30days) + sim card (Econsave)
Celcom 30 GB data plan | 1 35.00 35.00 D talk
(30days) (Econsave)
Celcom 20 GB data plan | 1 20 20.00 Celcom Life
(30days) App

Total | 100.00

Table 4.11: Total cost spent

Description Amount (RM)

Cost of Components and Consumables 523.80
Internet Charges 100.00
Total | 623.80

https://shopee.com.my/3mm-Heat-Shrink-Tube-(1-Meter)-i.6641351.1149867888
https://shopee.com.my/Kapton-Tape-High-temperature-resistant-tape-for-3D-printer-platform-i.55645224.10882774107
https://shopee.com.my/GD460-GD220-0.5G-1G-7G-Heatsink-Cooling-Compound-Thermal-Conductive-Grease-Paste-i.55645224.13268712763
https://shopee.com.my/-ORIGINAL-PINENG-PowerBank-PN-939-PN939-20000mAh-PN936-PN-936-10000mAh-3-Input-Power-Bank-Type-C-Micro-IOS-i.183676497.4715088281
https://shopee.com.my/-ORIGINAL-PINENG-PowerBank-PN-939-PN939-20000mAh-PN936-PN-936-10000mAh-3-Input-Power-Bank-Type-C-Micro-IOS-i.183676497.4715088281

121

CHAPTER 5

CONCLUSION AND RECOMMENDATION

51 Conclusion

To conclude, the project’s aim and objectives were met with success. An loT data
monitoring system with percentage error around 1.5 % was successfully developed
and implemented. The system has been operated for more than one month. The
Arduino Mega microcontroller is able to collect data from the solar PV panels and
record them into SD card. Data transmission from Arduino Mega to the loT platform
is successfully achieved. With Google Spreadsheet as the 10T platform, the received
data can be visualized on a customizable dashboard, and recorded for future reference
and analysis. Even though challenges were faced, but the project was still conducted

successfully.

52 Recommendations and Improvements

Throughout the project implementation, he limitations and problems of this project
were identified. The section that follows discusses some suggestions for improving the

project.

122

5.2.1 Arduino Mega Data Collection Time Interval

In this project, the time interval for data collection was set using the delay() function
in the Arduino coding. The downside of using this function is that the time interval
can become inconsistent after operating for several hours. This is because the
processing time required for Arduino board to perform the tasks can be increasingly
long or short by a few hundreds of milliseconds. The consequence to this is
unsynchronized data between GPV and FPV. To overcome this issue, the delay()
function should be replaced with another method which is by comparing the program
start time and program end time. The former is obtained before Arduino run the tasks
in loop() function, whereas the latter is obtained after Arduino finishes running the
tasks in loop() function. If the program end time is greater than program start time by
a pre-set interval of time, the tasks in loop() function will be executed. Both program
start time and program end time are obtained from RTC module. Therefore, RTC

module with high accuracy is required to tell the time accurately.

5.2.2 Solar PV Panel as the Power Source

The downside of using power bank to supply power to the data monitoring system is
their limited battery capacity. Power bank usually needs to be recharged after 1 to 2
days. To improve this, solar PV panel can be used as the power source for powering
the data monitoring system. A solar charge controller and a battery are required. Solar
PV panel converts sunlight into DC electrical power and feed in to charge controller.
The voltage and current supply from PV panel are regulated at optimal ratings by solar
charge controller before being delivered to the battery and the load, which is the data
monitoring system. Meanwhile, the battery act as a buffer to receive excess energy

from the solar PV panel.

123

5.2.3 Alternatives of loT Data Monitoring System

The Google spreadsheet may be an imperfect 10T platform due to the problems
mentioned beforehand. Furthermore, setting up the dashboard on Google Spreadsheet
require quite a lot of coding and formulae, which may be less user-friendly and
difficult for people who are not familiar to them. Therefore, user may try out other 10T
platform such as Blynk and Arduino IoT Cloud. Both platforms have mobile app that
allows user to build user interface and monitor data from connected devices remotely.
Furthermore, user can obtain time via Blynk, which eliminates the use of RTC module
provided the network connectivity is stable. Depending on the level of usage, user may
need to subscribe to their plan to access more feature. For example, some of the
limitations of the free plan on Blynk include limited datastreams (in this case the
number of sensor data), limited period of historical data storage etc. Therefore one
must allocate their budget wisely.

124

REFERENCES

Arduino Official Store. n.d. Arduino Mega 2560 Rev3. [online] Available at:
<https://store.arduino.cc/products/arduino-mega-2560-rev3> [Accessed 22
August 2022].

Arduino Relay Control Tutorial. 2017. [image] Available at:
<https://circuitdigest.com/microcontroller-projects/arduino-relay-control>
[Accessed 23 August 2022].

Autobotic.com.my. n.d. Current Sensor Module ACS712 (30A). [online] Available
at: <https://www.autobotic.com.my/current-sensor-module-acs712-30a>
[Accessed 22 August 2022].

Azhari, A., Sopian, K., Zaharim, A. and Al Ghoul, M., 2008. Solar Radiation Maps
from Satellite Data for a Tropical Environment — Case Study of Malaysia.
In: 3rd IASME/WSEAS Int. Conf. on Energy & Environment. pp.528-533.

Cazzaniga, R., Cicu, M., Rosa-Clot, M., Rosa-Clot, P., Tina, G. and Ventura, C., 2018.
Floating photovoltaic plants: Performance analysis and design
solutions. Renewable and Sustainable Energy Reviews, 81, pp.1730-1741.

Choi, Y., 2014. A Study on Power Generation Analysis of Floating PV System
Considering Environmental Impact. International Journal of Software
Engineering and Its Applications, 8(1), pp.75-84.

Components101. 2020. NodeMCU ESP8266. [online] Awvailable at:
<https://components101.com/development-boards/nodemcu-esp8266-pinout-
features-and-datasheet> [Accessed 22 August 2022].

DHT11 sensor module. n.d. [image] Available at: <https://nettigo.eu/products/dht11-
sensor-module> [Accessed 23 August 2022].

DroneBot Workshop. 2021. Measure DC Voltage and Current with an Arduino.
[online] Available at: <https://dronebotworkshop.com/dc-volt-current/>
[Accessed 22 August 2022].

DS18B20 Temperature Sensor. 2018. [image] Available at:
<https://components101.com/sensors/ds18b20-temperature-sensor>
[Accessed 23 August 2022].

125

DS3231 Real Time Clock (RTC) Module, 12C. n.d.[image] Available at:
<https://m.ubitap.com/DS3231-Real-Time-Clock-RTC-Module-12C-
p53018124> [Accessed 24 August 2022].

Dwivedi, L., Yadav, P. and Saket, R. K., 2016. Partially shaded solar panels. [image]
Available at: <https://www.researchgate.net/figure/Partially-shaded-Solar-
panels_figl 308929021> [Accessed 13 August 2022].

Electronics Tutorials, n.d. Bypass Diodes in Photovoltaic Arrays. [image] Available
at: <https://www.electronics-tutorials.ws/diode/bypass-diodes.html>
[Accessed 13 August 2022].

Engineered Composites, n.d. Properties & Uses of GRP Products. [online] Available
at: <https://engineered-composites.co.uk/why-grp/> [Accessed 12 August
2022].

FLUKE, n.d. [image] Available at: <https://www.fluke.com/en-
my/product/temperature-measurement/ir-thermometers/fluke-54-ii>
[Accessed 23 April 2023]

Gudino, M., 2021. Arduino Uno vs. Mega vs. Micro. [online] Arrow. Available at:
<https://www.arrow.com/en/research-and-events/articles/arduino-uno-vs-
mega-vs-micro> [Accessed 22 August 2022].

12C 0.96" OLED 128x64. n.d. [image] Available at: <https://www.elecrow.com/i2c-
096-oled-128x64-blueyellow-p-1086.htmI> [Accessed 24 August 2022].

Liu, L., Wang, Q., Lin, H., Li, H., Sun, Q. and Wennersten, R., 2017. Power
Generation Efficiency and Prospects of Floating Photovoltaic Systems. Energy
Procedia, 105, pp.1136-1142.

Maghami, M., Hizam, H., Gomes, C., Radzi, M., Rezadad, M. and Hajighorbani, S.,
2016. Power Loss Due to Soiling on Solar Panel: A Review. Renewable and
Sustainable Energy Reviews, 59, pp.1307-1316.

Majid, Z., Ruslan, M., Sopian, K., Othman, M. and Azmi, M., 2014. Study on
Performance of 80 Watt Floating Photovoltaic Panel. JOURNAL OF
MECHANICAL ENGINEERING AND SCIENCES, 7, pp.1150-1156.

Mathur, R., Mehrotra, D., Mittal, S. and Dhariwal, S., 1984. Thermal non-uniformities
in concentrator solar cells. Solar Cells, 11(2), pp.175-188.

Ranjbaran, P., Yousefi, H., Gharehpetian, G. and Astaraei, F., 2019. A review on
floating photovoltaic (FPV) power generation units. Renewable and
Sustainable Energy Reviews, 110, pp.332-347.

Rosa-Clot, M., Rosa-Clot, P., Tina, G. and Scandura, P., 2010. Submerged
photovoltaic solar panel: SP2. Renewable Energy, 35(8), pp.1862-1865.

126

Ost, 1., 2020. Does Solar Panel Temperature Coefficient Matter? | Solar.com. [online]
Solar.com. Available at: <https://www.solar.com/learn/does-solar-panel-
temperature-coefficient-
matter/#:~:text=A%?20solar%20panel's%20temperature%20coefficient%20is
%20n0t%20the%200nly%20factor,production%20for%20your%20specific%
20setup.> [Accessed 13 August 2022].

Pradhan, A. and Panda, B., 2017. Analysis of Ten External Factors Affecting the
Performance of PV System. 2017 International Conference on Energy,
Communication, Data Analytics and Soft Computing (ICECDS).

Pveducation.org. n.d. Mismatch Effects | PVEducation. [online] Available at:
<https://www.pveducation.org/pvcdrom/modules-and-arrays/mismatch-
effects> [Accessed 13 August 2022].

Sahu, A., Sudhakar, K. and Sarviya, R., 2019. Influence of U.V light on the thermal
properties of HDPE/Carbon black composites. Case Studies in Thermal
Engineering, 15, p.100534.

Sahu, A., Yadav, N. and Sudhakar, K., 2016. Floating photovoltaic power plant: A
review. Renewable and Sustainable Energy Reviews, 66, pp.815-824.

Svarc, J., 2020. Solar Panel Construction. [online] CLEAN ENERGY REVIEWS.
Available at: <https://www.cleanenergyreviews.info/blog/solar-panel-
components-construction> [Accessed 13 August 2022].

Trapani, K. and Reddn Santafé, M., 2014. A review of floating photovoltaic
installations: 2007-2013. Progress in Photovoltaics: Research and
Applications, 23(4), pp.524-532.

Xia, S., 2021. 19 Defects of Solar Panels and How to Avoid Them. [image] Available
at: <https://www.linkedin.com/pulse/19-defects-solar-panels-how-avoid-
them-solar-panel-products> [Accessed 13 August 2022].

5V Compatible Micro SD Card Adapter. n.d.[image] Available at:
<https://my.cytron.io/p-5v-compatible-micro-sd-card-
adapter?r=1&gclid=CjwKCAjwmJeYBhAwWEiwAXIgOAXva-
DsJdkUutlE_KIDJ-TBLJpZXVLLrKcNgsyCNdX_ApHj-
qVOWIxoC6x0QAvVD_BWE> [Accessed 24 August 2022].

5V Relay. n.d.[image] Available at: <https://www.mgsuperlabs.com/featured-
brands/mgsl/5932/5v-relay> [Accessed 23 August 2022].

127

APPENDIXES

APPENDIX A: ESP8266 NodeMCU V3 Pinout

p0Y - M{GP1016-{ USER }{ WAKE)
oY 3 GPI0S |
D2 @ =t
k] - }{GP100 |-{FLASH)

G200, @ 53 Y{ . GP102 |- TXD1 | ~PWM
GP109 H' ., T9) 3v@ g 33V

iy O s1 G @ GND

TADco = @ A0
. Xel
ReserveD HL - VAV

[oflejlofofofofojo]

®sc D5 @ (2D =3
© 50 D6 @ (D) (FMISO]
Osk | Y4 - }{cp1013}{ RxD2 }-{HMos1)

¢ = g %Y Hcrro15}{Txp2 }{ HCS)
O3v 3 . }{ GP103 }{RXDO)
:EN R e 194 - }{ 6p101 }-{ TxDO0)

RST
oG BEREERE G° —

; 3VO] 3av

°V|N RN EE]

' LoLin

[
&
x

The input voltage to the board when . -

it is running from external power.

65411,

EEEEEEREEER
1 S N & g Y 1 i g S

G

9,

=

))
S g)
] &

53

I

47 |
Ex

39

128

APPENDIX B: Arduino Mega Pinout

o 7-12V Depending
on current drawn

2. 1mm

©

Not USB bus power.

O I

VI 57,
(ADeT)| PF1 T3
Apez)| Pr2 |65
ADc3)| P32
(ADCA| TcK || PF4 EE]
(ADCS]/ 115 | PF5 CA
(ADCe]/ TD0 || PF6 T
(ADc7)| To1 | PF7 ET)

(ADCE] rcvrzs] PR B
BDETG jcovrzs|| PK2 (7
=T Ed) 56,
fecnre) KA (35

5

PB [ecivr1 || SCK |

E—l r@f PB3) pcvrs | MISO)
888
L@ PB2)V

ICSP Pinout

e [HOST]

ATMEGA 16U2 ICSP

| peove [T1

T

00000000

< dinmnunnnnm

OIOIOIOIOIOIOIOMNOIOIOIOIOIOIOIO

I PBI | pcav1 |(SCLK]
Il PDO | ecavrs [MISO)

pam—

pcar2 |[MOST]

ZE]/ PD& |/ INTE)/ SCL |
£Z]/ PD1 |/ INT1) SDA |
£77 [AREE)

A r3 only

£l PB7 || P [f0CiC) — IFER— [0CoA T

=

[JPin function
[JInterrupt Pin
=S\-pPwM Pin

@@ rort Power @

INT3]TXD1]
F5/ PD2 |/ INT2/IRXD1]

KN
§%4| PH5 Joc4c)
|/ PH5 j0c4C] | 8} B :
§T3/ PH4 Jl0C4B] B rower
£l \0caa)
5/ PH3 | ocm‘ f ¢} o
(AN //0C34]
§9/ PG5 jocos) [/Serial Pin
[INTS]/0C3C) [0 Analog Pin
[/ PE4 |/ INT4)/0C38]
25 [Jcontrol
EJ/ PE1 [TXDE) entro
ecavTs [|RXDE) n [E—r
B Physical Pin
!
/ JPort Pin

ZPci | Ag]

IWONEoY52;
(P77

locscilPLs /ER)
[0C5A/[PL3 ||
[ICP5/[PL1 |EF3

SS |/ pcmnme |

(MOST)| pcovr2 | PBL

(OC5B/| PL4

T4,

£3/PC3 /(A1)

[PC7]/ AL5]
47 PA6 [AD6 |
| PA4 [AD4]
3/ PAZ][AD2]
[ADe |

N |

=5
=5

N
LN}

[Ap3]
'PAS |/ ADS |
2]/ PA7[AD7 |
'PCs] A14]
B[PC4[A12]

LR Paa |G

[ALE |[PGZ

£F(PC2][Ale]

£(Pca) 48]

129

APPENDIX C: SOLARLAND 80W Solar Panel

SLP080-12

High Efficiency Multicrystalline PV Module
Electrical Characteristics { SLP0O-12
Produc code 0800112068
Maximum power (Pmax) ' 80W
Voltage at Pmax (Vmp) [17.2v

I Cum:nl at Pmax (Imp) [4.65A
Open-circuit voltage (Voc) ‘ 216V
Short-circuit current (Isc) [517A
Temperature coefficient of Voc A -(80£10)mV/°C
Temperature coefficient of Isc (0.06540.015)%/ °C
Temperature coefficient of power -(0.50.05)%/ “C
NOCT (Air 20°C; Sun 0.8kW/m? wind 1m/s) | 47:2°C |
Operating temperature -40°C 10 85°C
Maximum system voltage | 1000V DC
Power tolerance +5%
*STC: Irradiance 1000W/m?, AM1,5 spectrum, module lémpevalme 25°C

*NOCT:Nominal operating cell temperature (the data is only for reference)

Module Diagram

Dimensions in brackets are in inches. Features
z:ack;leld dimensions are in millimeters. + Nominal 12V DC for standard
. mm{in., " .
51451[20.24] gm‘:‘fx?f:;”mm'
480+118.90) ; g é
* High transparent low-iron tempered glass.
e + Rugged design to withstand high wind pressure,
@ \ hail and snow load.
ﬁ * Aesthetic appearance.
N . o
\ T1028120047) e
Mount
h DBW \/
4places
Junction Box
Top View(Lid Open) Characteristics
05[0.20]
Grounding
1209:1[47.60] AM1S,
ik head/‘4 Zx:‘ k| 809(31.85) g A — = Irradiance:AM1.5, Tkw/m?
1204 E L N
O a4 A
AL__!A T_ M n u'c'*cl‘\
Back il e
View l ‘-’fiﬂ s \ \
LJ (73 \ \
| r Lt il
25098) 0 5 10 5 2 25
LTI] o e
View Section A-A SLP080-12 |-V Curves

Specifications SLP080-12

Cells Polycrystalline silicon solar cell
No. of cells and connections 36(3X12)
Module dimension 1209mm{47.60in.Jx514mm{20.24in)X30mm(1.18in.]
Weight 7.95kg]17.53lbs)
Packing information(Carton) 1250mm{49.21in.Jx720mm{21.85in. X80mm(3.15in.J(2pcs/ctn)

*Limited warranty: 5-year limited warranty of materials and workmanship; 10-year limited warranty of 90% power output; 25-year limited warranty of 80% power output. For detail, please contact us.
*Specifications are subject to change without notice at any time.

130

APPENDIX D: FPV Schematic Circuit Diagram

Solar panel

Voltage .~

L 4 ? sensor |

Nl

GND) vee GND Vo GND VCC GND vCC
GND vcc
TDSWBZD DS18820 DS18820 Ds18820 DHT11 Humidity
emperature
and Current sensor
sensor (water
sensor sensor sensor sensor
temp sensor)
GND

T T T T
Data Data Data GND| Vout VCC

T T
Data Data
. L l | GND
47k0Q NC NO
GND
Relay
cOoM
A3 A2 A1
vee SDA
OLED DA 20 c
display
o L21 5
GND SCL GND
E£5P8268 NodeMCU @ 47k 0 >
GND
GND :w Adruine Mega 2560
GND
T
3 4
5
D 10
" —‘

GND GND GND GND

APPENDIX E: GPV Schematic Circuit Diagram

131

Solar panel

Voltage ;
sensor |

Current sensor

T T
GND| Vout VCC

GND vee GND VCC GND VCC
GND vee
0518820 DS18820 DS18820 DHT41 Humidity
Temperaturs and ¢ &
sensor sensor sensor sensor
T T T T GO
Data Data Data pata | e
J. J. l GND GND
47k Q NG NO
Relay -
cOoM
- A3 A2 Al
vee SDA
OLED DA 20 ¢
displa
e L21 B
GND scL GND
ESPE266 NodelCU @ e .
o JGND
Ve
GND Adruino Mega 2560

GND)|

T

EE 4
RX|
D 10
" —‘

GND

GND

GND GND

132

APPENDIX F: FPV and GPV PCB layout diagram

ACST1Z

=1
o
(\!D:
ol

2222

=)=)=)

133

APPENDIX G: Coding for Arduino Mega for GPV

#include <SoftwareSerial.h> //Software Library (required for serial
communication)

#include <DHT.h> //DHT Library (required for DHT11 sensor)

#include <OneWire.h> //OneWire Library (required for accessing Dallas 1
wired device)

#include <DallasTemperature.h> //TEMP library (required for DS18B26
sensor)

#include <Adafruit_GFX.h> //TEXT Llibrary (required for fonts styles 1in
OLED)

#tinclude <Adafruit SSD1306.h> //OLED Llibrary (required for the OLED)
#include <SPI.h> //SPI Library (required for the SD card)

#include <SD.h> //SD Library (required for the SD card)

#include <RTClib.h> //RTC Llibrary (required for DS3231 RTC module)

#tdefine DHTPIN A3 //Define the analog pin A3 as the data pin of DHT11
#define DHTTYPE DHT11 //Define the version of DHT sensor used
#tdefine ONE_WIRE_BUS 4 //Define the digital pin 4 as the data pin of
DS18B26

#define SCREEN_WIDTH 128 //Define the OLED display width in pixels
#tdefine SCREEN_HEIGHT 32 //Define the OLED display height in pixels
#define OLED_RESET 4 //Adafruit Llibrary requires this element to be
defined but it is not involved in I2C

DeviceAddress thermometerAddress; //Custom array type to hold 64 bit
device address

OneWire oneWire(ONE_WIRE_BUS); //Setup a oneWire instance to communicate
with temperature IC

DallasTemperature tempsensor(&oneWire);//Point oneWire as reference to
DallasTemperature Library

DHT dht(DHTPIN, DHTTYPE);

File myFile; // Create a file in the SD card

RTC_DS3231 rtc; // RTC

Adafruit_SSD1306 display(SCREEN_WIDTH,SCREEN_HEIGHT,&Wire,OLED_RESET);
SoftwareSerial espSerial(1e, 11);

const int chipSelect = 53; // Define pin 53 as the data pin of SD card
const int relaylPin = 5; //Define pin 5 as the data pin of relay

//Variables for function of current sensor
int adcValue I = 0;
float adcVoltage = 0.0;
float currentValue = 0.0;

float sensitivity = 0.185; //Sensitivity of current sensor
float vRef = 5.00;

float offsetVoltage = 2.469; //Arduino mega offset voltage

//Variables for function of voltage sensor

int adcValue V = 0;

float vOUT = 0.0;

float VIN = 0.0;

float R1 = 30550.0; //First resistor value of the voltage divider
float R2 = 7505.0; //Second resistor value of the voltage divider

134

// Addresses of 3 DS18B20s

// Every DS18B20 sensor has its unique address

// Replace the following addresses with those of your DS18B260 sensors
uint8_t sensorl[8] = { 0x28, Ox3E, Ox2F, 0x26, 0x01l, Ox00, Ox00, OxAS5 };
uint8 t sensor2[8] { ox28, 0x01, Ox9A, Ox25, 0x01l, Ox00, Ox00O, OXx79 };
uint8_t sensor3[8] { ox28, oOxC6, 0Ox07, Ox26, Ox01l, Ox00, Ox00, OxBO },

// Store sensor data into str

char stri[6];

char str2[6];

char str3[6];

char str4[6];

char str5[6];

char str6[6];

char str7[6];

String data; //contains all sensor data to be
sent to nodemcu

void setup() {

Serial.begin(115200); //Initialize Serial monitor with 115200 baud
rate

espSerial.begin(115200);

dht.begin(); //Initialize the DHT humidity
sensor

tempsensor.begin(); //Initialize the DS18B20
temperature sensor

rtc.begin(); //Initialize the RTC module

pinMode(relaylPin, OUTPUT); //Initialize the relay

// setup for the SD card------------------—-----—-——----
Serial.print("Initializing SD card...");

if(!SD.begin(chipSelect)) {
Serial.println("initialization failed!");
return;

}

Serial.println("initialization done.");

//0pent fl e -loimis o o o o o s i s s s sl s s
myFile=SD.open("GPV_DATA.txt", FILE_WRITE);

// 1f the file opened ok, write to 1it:
if (myFile) {
Serial.println("File opened ok");
// print the headings for our data
myFile.println();
myFile.println("Date | Time | Voltage(V) | Voltage ADC |
Current(A) | Current ADC | Humidity(%)| Ambient Temp(C)| Temp 1(C)| Temp
2(C)| Temp 3(C)");
}

myFile.close();

//Display these titles on the serial monitor
Serial.println("Date | Time | Voltage(V) | Voltage ADC | Current(A)
| Current ADC | Humidity(%)| Ambient Temp(C)| Temp 1(C)| Temp 2(C)| Temp

3(0)");

135

//Initialize the I2C with address 0x3C (for the 128x32)
display.begin(SSD1306_ SWITCHCAPVCC,0x3C);
display.clearDisplay();

display.setTextColor(WHITE, BLACK);

display.display(); //Used to display all the data

which is in buffer

delay(2000); //To allow some time for nodemcu

to be ready, 1ie:connect to wifi

}

void loop() {
DateTime now = rtc.now(); //get time now
int hh = now.hour();
int mm = now.minute();

int time_in_minutes = hh*6@ + mm; //convert time now to minutes

if (time_in_minutes >= 570) //if time now is after/equals to 9:30am

9*%60+30 = 570 min
{
loggingTime();
loggingVoltage();
loggingCurrent();
loggingHumidity();
loggingTemperature();
recordData();
delay(113000); //data collection time interval
}
}

void loggingTime(){
DateTime timeNow = rtc.now();

char dateBuffer[]="DD-MM-YYYY";
char timeBuffer[]="hh:mm:ss";

Serial.print(timeNow.toString(dateBuffer));
Serial.print(" | ");
Serial.print(timeNow.toString(timeBuffer));
Serial.print(" | ");

//record date and time in SD card
myFile=SD.open("GPV_DATA.txt", FILE_WRITE);
// if the file opened ok, write to it:
if (myFile) {

myFile.print(dateBuffer);

myFile.print(" | ");
myFile.print(timeBuffer);
myFile.print(" | ");

}

myFile.close();

}

void loggingVoltage(){
digitalWrite(relaylPin,LOW); //turn relay 1 off

delay(2000); //Set the relay off for 2 second

136

//adcValue_V = ((float)suml/(fLloat)samples);

adcValue V = analogRead(A2);

vOUT = (adcValue V*vRef)/1024.0; //formula for arduino to interpret
the data

vIN = (vOUT/(R2/(R1+R2))); //formula for voltage calculation

VIN = 0.9448*VIN;

dtostrf(vIN,5,2,strl);

Serial.print(vIN);

Serial.print(" | ");
Serial.print(adcValue V);
Serial.print(" | ");

//Display the voltage on the OLED display
display.setTextSize(2);
display.setCursor(0,0);
display.print("v=");
display.print(vIN);
display.print(" V");
display.display();

}

void loggingCurrent(){
digitalWrite(relaylPin,HIGH); //Turn relay on

delay(2000); //Set relay on for 2 second
e e take a number of analog samples and sum them up
#tdefine samples 10 //Define number of analog samples to be

taken per reading

int suml = 9;

unsigned char count = 0;

while (count<samples)

{
suml += analogRead(Al);
count++;
delay(190);

//Formula to calculate current

adcValue I = ((float)suml/(float)samples);

adcVoltage = (adcValue_I*vRef)/1024;

currentValue = ((adcVoltage - offsetVoltage)/sensitivity);
currentValue = 0.9771*currentValue - 0.0946;
dtostrf(currentValue,5,2,str2);
Serial.print(currentValue);

Serial.print(" | ");
Serial.print(adcValue I);
Serial.print(" | ");

// Display the current on OLED display
display.setCursor(0,17);
display.print("I= ");
display.print(currentValue);
display.print(" A");
display.display();

137

void loggingHumidity(){ //function for humidity sensor
float h = dht.readHumidity();
float t = dht.readTemperature();
// Read temperature as Celsius (the default)

delay(2000);
dtostrf(h,4,2,str3);
dtostrf(t,4,2,strd);
Serial.print(h);
Serial.print(" | ");
Serial.print(t);

}

void loggingTemperature(){ //function for temperature sensor
//temperature comes in as a float with 1 decimal place
tempsensor.requestTemperatures(); //request temperature sample from
the sensors through the one wire bus

//Getting temperatures--------------

//The circuit have ten DS18B26 on the same bus thus the data are
requested by their addresses

//example: sensorl holds the address for the first DS18B20 sensor on
the wire

//getting temp reading with sensorl address

float templ=tempsensor.getTempC(sensorl);

//result is string with 5 position + \@ at the end

//convert float to fprintf type string

//format 4 positions with 2 decimal places

//str contains the result

dtostrf(templ,4,2,str5);

float temp2=tempsensor.getTempC(sensor2);
dtostrf(temp2,4,2,str6);

float temp3=tempsensor.getTempC(sensor3);
dtostrf(temp3,4,2,str7);

//Show temperature values on serial monitor
Serial.print(" | ");

Serial.print(templ);

Serial.print(" | ");

Serial.print(temp2);

Serial.print(" | ");

Serial.println(temp3);

}

void recordData(){
//record sensor data in SD card
myFile=SD.open("GPV_DATA.txt", FILE_WRITE);
//1if file open ok, write to 1it:
if (myFile){
myFile.print(strl);
myFile.print(" | ");
myFile.print(adcValue V); //Voltage adc value
myFile.print(" | ");

138

myFile.
myFile.
myFile.
myFile.
myFile.
myFile.
myFile.
.print(" | ");
myFile.
myFile.
myFile.
myFile.
myFile.
myFile.

myFile

} else

Serial.

print(str2);
print(" | ");

print(adcvalue _I); //Current adc value

print(" | ");
print(str3);
print(" | ");
print(str4);

print(str5);
print(" [");
print(str6);
print(" | ");
println(str7);
close();

println("File cannot be opened!");

//record sensor data into "data"
//send "data" to nodemcu

data=dat

a+strl+", "+str2+", "+str3+", "+str4+", "+str5+", "+stre+", "+str7;

espSerial.println(data);
data=""; //clear data

139

APPENDIX H: Coding for Arduino Mega for FPV

#include <SoftwareSerial.h> //Software Library (required for serial
communication)

#include <DHT.h> //DHT Library (required for DHT11 sensor)

#include <OneWire.h> //OneWire Library (required for accessing Dallas 1
wired device)

#include <DallasTemperature.h> //TEMP library (required for DS18B26
sensor)

#include <Adafruit_GFX.h> //TEXT Llibrary (required for fonts styles 1in
OLED)

#include <Adafruit SSD1306.h> //OLED Llibrary (required for the OLED)
#include <SPI.h> //SPI Library (required for the SD card)

#include <SD.h> //SD Library (required for the SD card)

#include <RTClib.h> //RTC Llibrary (required for DS3231 RTC module)

#tdefine DHTPIN A3 //Define the analog pin A3 as the data pin of DHT11
#define DHTTYPE DHT11 //Define the version of DHT sensor used
#tdefine ONE_WIRE_BUS 4 //Define the digital pin 4 as the data pin of
DS18B26

#define SCREEN_WIDTH 128 //Define the OLED display width in pixels
#tdefine SCREEN_HEIGHT 32 //Define the OLED display height in pixels
#define OLED_RESET 4 //Adafruit Llibrary requires this element to be
defined but it is not involved in I2C

DeviceAddress thermometerAddress; //Custom array type to hold 64 bit
device address

OneWire oneWire(ONE_WIRE_BUS); //Setup a oneWire instance to communicate
with temperature IC

DallasTemperature tempsensor(&oneWire);//Point oneWire as reference to
DallasTemperature Library

DHT dht(DHTPIN, DHTTYPE);

File myFile; // Create a file in the SD card

RTC_DS3231 rtc; // RTC

Adafruit_SSD1306 display(SCREEN_WIDTH,SCREEN_HEIGHT,&Wire,OLED_RESET);
SoftwareSerial espSerial(1e, 11);

const int chipSelect = 53; // Define pin 53 as the data pin of SD card
const int relaylPin = 5; //Define pin 5 as the data pin of relay

//Variables for function of current sensor
int adcValue I = 0;
float adcVoltage = 0.0;
float currentValue = 0.0;

float sensitivity = 0.185; //Sensitivity of current sensor
float vRef = 5.00;

float offsetVoltage = vRef/2.0; //ACS712 offset voltage

//Variables for function of voltage sensor

int adcValue V = @; //Voltage value read from analog pin

float vOUT = 0.0;

float VIN = 0.0;

float R1 = 30550.0; //First resistor value of the voltage divider
float R2 = 7505.0; //Second resistor value of the voltage divider

140

// Addresses of 4 DS18B20s

// Every DS18B20 sensor has its unique address

// Replace the following addresses with those of your DS18B260 sensors
uint8_t sensorl[8] = { 0x28, 0x53, 0x43, 0x26, 0x01l, Ox00, 0x00, Ox1C };
uint8_t sensor2[8] = { 0x28, Ox6E, 0x9B, Ox25, Ox01l, Ox00, Ox00, Ox53 };
uint8_t sensor3[8] = { 0x28, 0xD7, Ox47, Ox26, Ox01l, 0x00, 0x00, Ox35 };
uint8_t sensor4[8] { ox28, oxD4, Ox2F, 0x79, OxA2, 0x16, 0x03, OxB7 };

// Store sensor data into str
char stri[6];

char str2[6];

char str3[6];

char str4[6];

char str5[6];

char str6[6];

char str7[6];

char str8[6];

String data; //contains all sensor data to be
sent to nodemcu

void setup() {

Serial.begin(115200); //Initialize Serial monitor with 115200 baud
rate

espSerial.begin(115200);

dht.begin(); //Initialize the DHT humidity
sensor

tempsensor.begin(); //Initialize the DS18B20
temperature sensor

rtc.begin(); //Initialize the RTC module

pinMode(relaylPin, OUTPUT); //Initialize the relay

//0 setups forithes SPRcard == --=mi= oo oo inio ol s sis o s s s
Serial.print("Initializing SD card...");

if(!SD.begin(chipSelect)) {
Serial.println("initialization failed!");
return;

¥

Serial.println("initialization done.");

J/@pEn Fil@===s==ss=ssscssssscscsscossssssossosssoossos
myFile=SD.open("FPV_DATA.txt", FILE_WRITE);

// if the file opened ok, write to it:
if (myFile) {
Serial.println("File opened ok");
// print the headings for our data
myFile.println();
myFile.println("Date | Time | Voltage(V) | Voltage ADC |
Current(A) | Current ADC | Humidity(%)| Ambient Temp(C)| Temp 1(C)| Temp
2(C)| Temp 3(C)| Water Temp(C)");
}

myFile.close();

//Display these titles on the serial monitor

Serial.println("Date | Time | Voltage(V) | Voltage ADC | Current(A)
| Current ADC | Humidity(%)| Ambient Temp(C)| Temp 1(C)| Temp 2(C)| Temp
3(C)| Water Temp(C)");

141

//Initialize the I2C with address 0x3C (for the 128x32)

display.begin(SSD1306_ SWITCHCAPVCC,0x3C);

display.clearDisplay();

display.setTextColor(WHITE, BLACK);

display.display(); //Used to display all the data
which is 1in buffer

delay(2000);
}

void loop() {
DateTime now = rtc.now(); //get time now
int hh = now.hour();
int mm = now.minute();
int time_in_minutes = hh*6@ + mm; //convert time now to minutes

if (time_in_minutes >= 570) //start taking data if time now 1is
after/equals to 9:30am = 9*60+30 = 570 min
{
loggingTime();
loggingVoltage();
loggingCurrent();
loggingHumidity();
loggingTemperature();
recordData();
delay(113000); //data collection time interval

}

void loggingTime(){
DateTime timeNow = rtc.now();

char dateBuffer[]="DD-MM-YYYY";
char timeBuffer[]="hh:mm:ss";

Serial.print(timeNow.toString(dateBuffer));

Serial.print(" | ");
Serial.print(timeNow.toString(timeBuffer));
Serial.print(" | ");

//record date and time in SD card
myFile=SD.open("FPV_DATA.txt", FILE_WRITE);
// if the file opened ok, write to it:
if (myFile) {

myFile.print(dateBuffer);

myFile.print(" | ");
myFile.print(timeBuffer);
myFile.print(" | ");

}
myFile.close();

}

void loggingVoltage(){
digitalWrite(relaylPin,LOW); //turn relay 1 off
delay(2000); //Set the relay off for 2 second

142

adcValue V = analogRead(A2);

vOUT = (adcValue V*vRef)/1024.0; //formula for arduino to 1interpret
the data

vIN = (vOUT/(R2/(R1+R2))); //formula for voltage calculation

VIN = 0.9176*VIN; //----- - mm oo e e e e e e Error
adjusting formula

dtostrf(vIN,5,2,strl);

Serial.print(vIN);

Serial.print(" | ");
Serial.print(adcValue V);
Serial.print(" | ");

//Display the voltage on the OLED display
display.setTextSize(2);
display.setCursor(0,0);
display.print("v=");
display.print(vIN);
display.print(" V");
display.display();

}

void loggingCurrent(){
digitalWrite(relaylPin,HIGH); //Turn relay on

delay(2000); //Set relay on for 2 second
e take a number of analog samples and sum them up
Hdefine samples 10 //Define number of analog samples to be

taken per reading

int suml = 0;

unsigned char count = 0;

while (count<samples)

{
suml += analogRead(Al);
count++;

delay(190);

//Formula to calculate current

adcValue I = ((float)suml/(float)samples);

adcVoltage = (adcValue I*vRef)/1024;

currentValue = ((adcVoltage - offsetVoltage)/sensitivity);

currentValue = 1.0107*currentValue; //-----------“----ccm-
-Error adjusting formula

dtostrf(currentValue,5,2,str2);

Serial.print(currentValue);

Serial.print(" | ");
Serial.print(adcValue I);
Serial.print(" | ");

// Display the current on OLED display
display.setCursor(0,17);
display.print("I= ");
display.print(currentValue);
display.print(" A");
display.display();

143

void loggingHumidity(){ //function for humidity sensor
float h = dht.readHumidity();
float t = dht.readTemperature();
// Read temperature as Celsius (the default)

delay(2000);
dtostrf(h,4,2,str3);
dtostrf(t,4,2,str4d);
Serial.print(h);
Serial.print(" | ");
Serial.print(t);

}

void loggingTemperature(){ //function for temperature sensor
//temperature comes in as a float with 1 decimal place
tempsensor.requestTemperatures(); //request temperature sample from
the sensors through the one wire bus

//Getting temperatures--------------

//The circuit have ten DS18B20 on the same bus thus the data are
requested by their addresses

//example: sensorl holds the address for the first DS18B20 sensor on
the wire

//getting temp reading with sensorl address

float templ=tempsensor.getTempC(sensorl);

//result is string with 5 position + \@ at the end

//convert float to fprintf type string

//format 4 positions with 2 decimal places

//str contains the result

dtostrf(templ,4,2,str5);

float temp2=tempsensor.getTempC(sensor2);
dtostrf(temp2,4,2,str6);

float temp3=tempsensor.getTempC(sensor3);
dtostrf(temp3,4,2,str7);

float waterTemp=tempsensor.getTempC(sensor4);
dtostrf(waterTemp,4,2,str8);

//Show temperature values on serial monitor
Serial.print(" | ");

Serial.print(templ);

Serial.print(" | ");

Serial.print(temp2);

Serial.print(" | ");

Serial.print(temp3);

Serial.print(" | ");
Serial.println(waterTemp);

}

void recordData(){
//record sensor data into SD card
myFile=SD.open("FPV_DATA.txt", FILE_WRITE);
//1f file open ok, write to 1it:

144

if (myFile){

myFile.
myFile.
myFile.
myFile.
myFile.
myFile.
.print(adcvalue_I); //Current adc value
myFile.
myFile.
myFile.
myFile.
.print(" | ");
myFile.
myFile.
myFile.
myFile.
myFile.
myFile.
myFile.
myFile.

myFile

myFile

} else

Serial.

print(strl);
print(" | ");

print(adcvValue_V); //Voltage adc value

print(" | ");
print(str2);
print(" [");

print(" | ");
print(str3);
print(" | ");
print(str4d);

print(str5);
print(" | ");
print(str6);
print(" | ");
print(str7);
print(" | ");
println(str8);
close();

println("File cannot be opened!");

//record sensor data into "data"
//send "data" to nodemcu

+str8;
espSerial.println(data);
data=""; //clear data

}

data=data+strl+", "+str2+", "+str3+", "+strd+", "+str5+", "+stre+", "+str7+",

APPENDIX I: Coding for ESP8266 NodeMCU for GPV

145

#tinclude <ESP8266WiFi.h>
#tinclude <WiFiClientSecure.h>

#define ON_Board LED 2

/s Customise these values -----------

const char* ssid = "myInternet"; // ID of your internet or wifi name
const char* password = "kaizin1234"; // Password of your 1internet
[/--------- Host & httpsPort------------------

const char* host = "script.google.com";

const int httpsPort = 443;

//--> Create a WiFiClientSecure object.
WiFiClientSecure client;

//--> spreadsheet script ID

String GAS_ID =

"AKFfycbw8L5qCsUDKqIdKBRHeaPTQjxnmHgOzjnuSef xy8ISYePtQQ8GOROBCPK5hFiIjTd

2";

//ID is required to be changed if changes have made in the App Script

//0btain new deployment ID from the App script

//define variables for the received data, total variable is 13

float Val_1, Val_2, Vval 3, Val 4, val 5, Val_ 6, Val_7;

String myString;// complete message from arduino, which consists of
sensors data

char rdata; // received characters byte per byte from arduino

// Space to store values to send
char str_val 1[6];
char str_val_2[6];
char str_val 3[6];
char str_val 4[6];
char str_val 5[6];
char str_val 6[6];
char str_val 7[6];

unsigned long startMillis;

unsigned long currentMillis;

const unsigned long period = 500; //the value is a number of
milliseconds

void setup() {
// put your setup code here, to run once:
//open serial communications and wait for port to open:
Serial.begin(115200);
delay(500);
while (!Serial){

;//wait for serial port to connect. Needed for native USB port only

}

wifiConnect();

146

startMillis = millis(); //record the program start time

}

void loop() {

// put your main code here, to run repeatedly:

// get the current "time" (actually the number of milliseconds since
the program started)

currentMillis = millis();

if(WiFi.status() == WL_CONNECTED)

! if (currentMillis - startMillis >= period)
{ sendData(); //send the data to Google spreadsheet
startMillis = currentMillis;
}
} else
{

WiFi.disconnect();
wifiConnect(); //reconnect to wifi if disconnected

}
}

void wifiConnect(){
WiFi.begin(ssid, password); //--> Connect to your WiFi router
Serial.println("");
pinMode (LED_BUILTIN, OUTPUT);
digitalWrite(ON_Board_LED, HIGH); //--> Turn off Led On Board

//Wait for connection

Serial.print("Connecting");

while (WiFi.status() != WL_CONNECTED) {

Serial.print(".");

//Make the On Board Flashing LED on the process of connecting to the
wifi router.

digitalWrite(ON_Board LED, LOW);

delay(250);

digitalWrite(ON_Board LED, HIGH);

delay(250);

}

//--> Turn off the On Board LED when it is connected to the wifti
router.

digitalWrite(ON_Board_LED, HIGH);

//If successfully connected to the wifi router,

//the IP Address that will be visited is displayed in the serial
monitor

Serial.println("");

Serial.print("Successfully connected to : ");

Serial.println(ssid);

Serial.print("IP address: ");

Serial.println(WiFi.localIP());

Serial.println();

147

client.setInsecure();

}

void sendData() {

// Subroutine for sending data to Google Sheets
Serial.println("==========");
Serial.print("connecting to ");
Serial.println(host);

//Connect to Google host

if (!client.connect(host, httpsPort)) {
Serial.println("connection failed");
return;

}

if (Serial.available()>0) {
rdata=Serial.read(); //read data from arduino
myString = myString + rdata; //change data from char to string

if (rdata == '"\n") {
A e L T T Processing data
String 1 = getValue(myString, ',', 0);
String m = getValue(myString, ',"', 1);
String n = getValue(myString, ',"', 2);
String o = getValue(myString, ',"', 3);
String p = getValue(myString, ',"', 4);
String q = getValue(myString, ',', 5);
String r = getValue(myString, ',', 6);
Val 1 = 1.toFloat();
Val 2 = m.toFloat();
Val 3 = n.toFloat();
Val 4 = o.toFloat();
Val 5 = p.toFloat();
Val 6 = g.toFloat();
Val 7 = r.toFloat();

// float value is copied onto str_val
// 4 1s mininum width, 2 is precision
dtostrf(Val 1, 4, 2, str_val 1);
dtostrf(Vval_2, 4, 2, str_val_2);
dtostrf(Val_3, , str_val 3);
dtostrf(Val_4, , str_val_4);
dtostrf(Val_5, , str_val 5);
dtostrf(Val_6, , str_val 6);
dtostrf(Val_7, , str_val 7);

)

)

)

I

Bl e i i
NNMNNMNDNMDN

I

myString=""; //refresh to clear the old data
e end of data
processing

//Sending data

String url = "/macros/s/" + GAS_ID + "/exec?vIN=" + str_val 1+
"¤tVal=" + str_val_2

+ "&humidity=" + str_val_3 + "&ambTemp='
str_val 5 + "&temp2=" + str_val 6

+ "&temp3=" + str_val 7 ;

Serial.print("requesting URL: ");

+ str_val 4 + "&templ=" +

148

Serial.println(url);

client.print(String("GET ") + url + " HTTP/1.1\r\n" +
"Host: " + host + "\r\n" +
"User-Agent: BuildFailureDetectorESP8266\r\n" +
"Connection: close\r\n\r\n");

Serial.println("request sent");

Y e et Checking whether the

data was sent successfully or not
while (client.connected()) {
String line = client.readStringUntil('\n");
if (line == "\r") {
Serial.println("headers received");
break;
}
}

String line = client.readStringUntil('\n');
if (line.startsWith("{\"state\":\"success\"")) {
Serial.println("esp8266/Arduino CI successfulll!");

} else {

Serial.println("esp8266/Arduino CI has failed");
}
Serial.print("reply was : ");

Serial.println(line);
Serial.println("closing connection");
Serial.println("==========");
Serial.println();
}
}
}

//Subroutine to separate sensor values received from arduino
String getValue(String data, char separator, int index)

{

int found = 0;

int strIndex[] = { 0, -1 };

int maxIndex = data.length() - 1;

for (int i = 0; i <= maxIndex && found <= index; i++) {

if (data.charAt(i) == separator || i == maxIndex) {
found++;

strIndex[0] = strIndex[1] + 1;

strIndex[1] = (i == maxIndex) ? i + 1 : i,

}

}

return found > index ? data.substring(strIndex[0], strIndex[1])

149

APPENDIX J: Coding for ESP8266 NodeMCU for FPV

#tinclude <ESP8266WiFi.h>
#tinclude <WiFiClientSecure.h>

#define ON_Board LED 2

/s Customise these values -----------

const char* ssid = "myInternet"; // ID of your internet or wifi name
const char* password = "kaizin1234"; // Password of your 1internet
[/--------- Host & httpsPort------------------

const char* host = "script.google.com";

const int httpsPort = 443;

//--> Create a WiFiClientSecure object.

WiFiClientSecure client;

//--> spreadsheet script ID

String GAS_ID =
"AKfycbybNFWEMtR8_ZZWe@qoeSOqvpPci9vLRod_6z_eK_5V04cS6WntQ0zaC@Idu2CkROKM
QsSw";

//ID is required to be changed if changes have made in the App Script
//0btain new deployment ID from the App script

//define variables for the received data, total variable is 13

float Val_1, Val_ 2, Vval 3, Val 4, val_ 5, Val_6, Val_7, Val_8;
String myString;// complete message from arduino, which consists of
sensors data

char rdata; // received characters byte per byte from arduino

// Space to store values to send
char str_val 1[6];
char str_val_2[6];
char str_val 3[6];
char str_val 4[6];
char str_val 5[6];
char str_val 6[6];
char str_val 7[6];
char str_val 8[6];

unsigned long startMillis;

unsigned long currentMillis;

const unsigned long period = 500; //the value is a number of
milliseconds

void setup() {
// put your setup code here, to run once:
//open serial communications and wait for port to open:
Serial.begin(115200);
delay(500);
while (!Serial){
;//wait for serial port to connect. Needed for native USB port only

}

150

wifiConnect();
startMillis = millis(); //record the program start time

}

void loop() {

// put your main code here, to run repeatedly:

// get the current "time" (actually the number of milliseconds since
the program started)

currentMillis = millis();

if(WiFi.status() == WL_CONNECTED)

! if (currentMillis - startMillis >= period)
{ sendData(); //send the data to Google spreadsheet
startMillis = currentMillis;
}
} else
{

WiFi.disconnect();
wifiConnect(); //reconnect to wifi if disconnected

}
}

void wifiConnect(){
WiFi.begin(ssid, password); //--> Connect to your WiFi router
Serial.println("");
pinMode(LED_BUILTIN, OUTPUT);
digitalWrite(ON_Board_LED, HIGH); //--> Turn off Led On Board

//Wait for connection

Serial.print("Connecting");

while (WiFi.status() != WL_CONNECTED) {

Serial.print(".");

//Make the On Board Flashing LED on the process of connecting to the
wifi router.

digitalWrite(ON_Board LED, LOW);

delay(250);

digitalWrite(ON_Board_LED, HIGH);

delay(250);

}

//--> Turn off the On Board LED when it is connected to the wifti
router.

digitalWrite(ON_Board_LED, HIGH);

//If successfully connected to the wifi router,

//the IP Address that will be visited is displayed in the serial
monitor

Serial.println("");

Serial.print("Successfully connected to : ");

Serial.println(ssid);

Serial.print("IP address: ");

Serial.println(WiFi.localIP());

Serial.println();

151

client.setInsecure();

}

void sendData() {

// Subroutine for sending data to Google Sheets
Serial.println("==========");
Serial.print("connecting to ");
Serial.println(host);

//Connect to Google host

if (!client.connect(host, httpsPort)) {
Serial.println("connection failed");
return;

}

if (Serial.available()>0) {
rdata=Serial.read(); //read data from arduino
myString = myString + rdata; //change data from char to string

if (rdata == '"\n") {
A e L T T Processing data
String 1 = getValue(myString, ',', 0);
String m = getValue(myString, ',"', 1);
String n = getValue(myString, ',"', 2);
String o = getValue(myString, ',"', 3);
String p = getValue(myString, ',"', 4);
String q = getValue(myString, ',', 5);
String r = getValue(myString, ',', 6);
String s = getValue(myString, ',"', 7);
Val 1 = 1.toFloat();
Val 2 = m.toFloat();
Val 3 = n.toFloat();
Val 4 = o.toFloat();
Val 5 = p.toFloat();
Val 6 = g.toFloat();
Val 7 = r.toFloat();
Val 8 = s.toFloat();

// float value is copied onto str_val
// 4 is mininum width, 2 is precision

dtostrf(Vval_1, 4, 2, str_val_1);
dtostrf(Vval_2, 4, 2, str_val_2);
dtostrf(Vval 3, 4, 2, str_val 3);
dtostrf(Val 4, 4, 2, str_val 4);
dtostrf(Val 5, 4, 2, str_val 5);
dtostrf(Val 6, 4, 2, str_val 6);
dtostrf(Val_7, 4, 2, str_val_7);
dtostrf(Val_8, 4, 2, str_val 8);

myString=""; //refresh to clear the old data
/) m oo ooooooooooo end of data
processing

//Sending data
String url = "/macros/s/" + GAS_ID + "/exec?vIN=" + str_val 1+
"¤tVal=" + str_val 2

152

+ "&humidity=" + str_val 3 + "&ambTemp='
str_val 5

+ "&temp2=" + str_val_6 + "&temp3=" + str_val_7 + "&waterTemp=" +
str_val_8;

Serial.print("requesting URL: ");

Serial.println(url);

+ str_val 4 + "&templ=" +

client.print(String("GET ") + url + " HTTP/1.1\r\n" +
"Host: " + host + "\r\n" +
"User-Agent: BuildFailureDetectorESP8266\r\n" +
"Connection: close\r\n\r\n");

Serial.println("request sent");

Jf=====mcesscsscssssossssssssossosssossoos Checking whether the
data was sent successfully or not
while (client.connected()) {
String line = client.readStringUntil('\n");
if (line == "\r") {
Serial.println("headers received");
break;
}
}

String line = client.readStringUntil('\n');

if (line.startsWith("{\"state\":\"success\"")) {
Serial.println("esp8266/Arduino CI successfull!");

} else {
Serial.println("esp8266/Arduino CI has failed");

¥

Serial.print("reply was : ");

Serial.println(line);

Serial.println("closing connection");

Serial.println("==========");

Serial.println();

¥
}
}

//Subroutine to separate sensor values received from arduino
String getValue(String data, char separator, int index)

{

int found = 0;

int strIndex[] = { 9, -1 };

int maxIndex = data.length() - 1;

for (int i = 0; i <= maxIndex && found <= index; i++) {

if (data.charAt(i) == separator || i == maxIndex) {

found++;

strIndex[0] = strIndex[1] + 1;

strIndex[1] = (i == maxIndex) ? i + 1 : i;

}

}

return found > index ? data.substring(strIndex[@], strIndex[1]) : "";

153

APPENDIX K: Coding for Google App Script for GPV

function doGet(e) {
Logger.log(JSON.stringify(e));

var result = 'Ok’';

if (e.parameter == 'undefined') {
result = 'No Parameters';

¥

else {

var sheet_id = '1gKn2gYADXMVUAtuShwHSQmFZ30VL6GGmEco3ea4-2ql’;
// Spreadsheet ID
var sheet = SpreadsheetApp.openById(sheet id).getSheetByName("All
Data Record");
var newRow = sheet.getlLastRow() + 1;

var rowData = [];
var date = new Date();
var Curr_Date = Utilities.formatDate(date, "Asia/Kuala_Lumpur", 'MM-

dd-yyyy');

rowData[@] = Curr_Date; // Date in column A

sheet.getRange(sheet.getLastRow(),1).setNumberFormat("dd-MMM-yyyy");

var Curr_Time = Utilities.formatDate(date, "Asia/Kuala_Lumpur",
"HH:mm:ss');

rowData[1] = Curr_Time; // Time in column B

for (var param in e.parameter) {
Logger.log('In for loop, param=' + param);
var value = stripQuotes(e.parameter[param]);
Logger.log(param + ':' + e.parameter[param]);
switch (param) {
case 'VIN'
rowData[2] = value; // Vin in column C
result += 'Vin written on column C. ';
break;
case 'currentVal'
rowData[3] = value; // Current in column D;
result += 'Current written on column D. ';
break;
case 'humidity"':
rowData[4] = value; // Humidity in column E
result = 'Humidity written on column E. ';
break;
case 'ambTemp':
rowData[5] = value; // Ambient temp in column F
result = 'Ambient temperature written on column F. ';
break;
case 'templ’:
rowData[6] = value; // Temperature 1 in column G
result += 'Temperature 1 written on column G. ';
break;
case 'temp2':
rowData[7] = value; // Temperature 2 in column H

result += 'Temperature 2 written on column H. ';
break;

154

case 'temp3':
rowData[8] = value; // Temperature 3 in column I
result += 'Temperature 3 written on column I. ';
break;

default:

result = "unsupported parameter";

}

}
Logger.log(JSON.stringify(rowData));

var newRange = sheet.getRange(newRow, 1, 1, rowData.length);
newRange.setValues([rowData]);

}

return ContentService.createTextOutput(result);

}

function stripQuotes(value) {
return value.replace(/~["'1|['"1%/g, "");

}

155

APPENDIX L: Coding for Google App Script for FPV

function doGet(e) {
Logger.log(JSON.stringify(e));

var result = 'Ok’';

if (e.parameter == 'undefined') {
result = 'No Parameters';

¥

else {

var sheet_id = '1P2alakEACvnCPuFFa@lgN8z-CcwsgbvxoWirtigYuew';
// Spreadsheet ID
var sheet = SpreadsheetApp.openById(sheet id).getSheetByName("All
Data Record");
var newRow = sheet.getlLastRow() + 1;

var rowData = [];
var date = new Date();
var Curr_Date = Utilities.formatDate(date, "Asia/Kuala_Lumpur", 'MM-

dd-yyyy');

rowData[@] = Curr_Date; // Date in column A

sheet.getRange(sheet.getLastRow(),1).setNumberFormat("dd-MMM-yyyy");

var Curr_Time = Utilities.formatDate(date, "Asia/Kuala_Lumpur",
"HH:mm:ss');

rowData[1] = Curr_Time; // Time in column B

for (var param in e.parameter) {
Logger.log('In for loop, param=' + param);
var value = stripQuotes(e.parameter[param]);
Logger.log(param + ':' + e.parameter[param]);
switch (param) {
case 'VIN'
rowData[2] = value; // Vin in column C
result += 'Vin written on column C. ';
break;
case 'currentVal'
rowData[3] = value; // Current in column D;
result += 'Current written on column D. ';
break;
case 'humidity"':
rowData[4] = value; // Humidity in column E
result = 'Humidity written on column E. ';
break;
case 'ambTemp':
rowData[5] = value; // Ambient Temp in column F
result = 'Ambient temperature written on column F. ';
break;
case 'waterTemp':
rowData[6] = value; // Water temperature in column G
result = 'Water temperature written on column G. ';
break;
case 'templ':
rowData[7] = value; // Temperature 1 in column H

result += 'Temperature 1 written on column H. ';
break;

156

case 'temp2':
rowData[8] = value; // Temperature 2 in column I
result += 'Temperature 2 written on column I. ';
break;

case 'temp3':
rowData[9] = value; // Temperature 3 in column J
result += 'Temperature 3 written on column J. ';
break;

default:

result = "unsupported parameter";

}

}
Logger.log(JSON.stringify(rowData));

var newRange = sheet.getRange(newRow, 1, 1, rowData.length);
newRange.setValues([rowData]);

}

return ContentService.createTextOutput(result);

}

function stripQuotes(value) {
return value.replace(/~["'1|['"1%/g, "");

}

