

DESIGN AND FABRICATE REAL-TIME INTERNET OF THINGS (IoT)

MONITORING SYSTEM FOR FLOATING SOLAR PHOTOVOLTAIC (PV)

SYSTEM

TING KAI ZIN

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor of Engineering (Honours) Industrial Engineering

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

May 2023

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : Ting Kai Zin

ID No. : 18AGB01864

Date : 30 April 2023

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “DESIGN AND FABRICATE REAL-TIME

INTERNET OF THINGS (IoT) MONITORING SYSTEM FOR FLOATING

SOLAR PHOTOVOLTAIC (PV) SYSTEM” was prepared by TING KAI ZIN has

met the required standard for submission in partial fulfilment of the requirements for

the award of Bachelor of Engineering (Hons) Industrial Engineering at Universiti

Tunku Abdul Rahman.

Signature : _____Nicholas_____________________

Supervisor : ____Ts. Dr. Tan Ming Hui____

Date : ____1st May 2023______________________

Signature : ____Lim Boon Han______________________

Co-Supervisor : _____Ir. Dr. Lim Boon Han____

Date : _____1st May 2023_____________________

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any material

contained in, or derived from, this report.

© 2023, Ting Kai Zin. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank my lecturers and my friends who contributed to the successful

accomplishment of this project. I would like to express my gratitude to my supervisor,

Ts. Dr. Tan Ming Hui for his invaluable advice, guidance and patience throughout the

progression of this project.

In addition, I would like to extend my gratitude to the personnel and authorities of

Universiti Tunku Abdul Rahman for providing me with a great facilities and

environment that enable me to conduct and complete my research.

Just as importantly, I would like to thank my parents who have given me

encouragement and mental support to face every challenge and come out better and

wiser than before.

vi

DESIGN AND FABRICATE REAL-TIME INTERNET OF THINGS (IoT)

MONITORING SYSTEM FOR FLOATING SOLAR PHOTOVOLTAIC (PV)

SYSTEM

ABSTRACT

Due to increasing global need for renewable energy, photovoltaic systems have grown

in popularity. Solar photovoltaic panel is one of the power generator that emits zero

greenhouse gases in the process of energy conversion from sunlight to electricity.

While there are different solar panel mounting methods, several studies show that

floating type photovoltaic systems have improved energy conversion efficiency and

power output. This is because conventional photovoltaic systems that are mounted on

ground and roof-top can absorb a lot of heat from sunlight. The maximum power

generated and efficiency of solar panels decrease as the temperature of the panels rises.

Meanwhile, floating type photovoltaic system is one of the alternatives for limited land

space for solar panel system installation. To evaluate and analyse the performance of

floating type photovoltaic system, and compare the performance with ground mounted

photovoltaic system, an IoT data monitoring system is designed and fabricated in this

project. The purpose of using an IoT data monitoring system is to obtain real time data.

In other words, to acquire the most recent information about the status of the solar

panels immediately following data collection. The major function of the IoT data

monitoring system includes gathering data from the solar panel and its surroundings,

and sending it to a cloud server. In this project, Google Spreadsheet was configured as

the cloud server using Google Apps Script. To obtain accurate data readings, the

measurement system has been calibrated and validated. As a result, an IoT data

collection and data monitoring system with percentage error around 1.5 % was

developed and implemented.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF SYMBOLS / ABBREVIATION xix

LIST OF APPENDICES xxi

CHAPTER

1 INTRODUCTION 1

 1.1 Background 1

 1.2 Problem Statements 3

 1.3 Aims and Objectives 4

 1.4 Outline of Report 5

2 LITERATURE REVIEW 6

 2.1 External Factors Affecting Performance of PV Panels 6

 2.1.1 Temperature 6

 2.1.2 Humidity 7

 2.1.3 Shading 7

viii

 2.1.4 Wind Velocity 9

 2.2 Floating PV Panels 9

 2.2.1 Advantages of Floating PV Panels 9

 2.2.2 Challenges of Floating PV Panels 11

 2.3 Floating PV Designs 12

 2.3.1 Floating PV Panels With Pontoon 12

 2.3.2 Flexible Floating PV Panels 13

 2.3.3 Submerged PV Panels 14

3 METHODOLOGY 16

 3.1 Project Management 16

 3.2 Project Flowchart 19

 3.3 Hardware Configuration 20

 3.3.1 Arduino Mega 2560 20

 3.3.2 ESP8266 NodeMCU V3 22

 3.3.3 Serial Communication Between NodeMCU

and Arduino Mega 2560 23

 3.3.4 Voltage Sensor 24

 3.3.5 Current Sensor 26

 3.3.6 Relay 27

 3.3.7 Temperature Sensor 30

 3.3.8 Humidity Sensor 31

 3.3.9 OLED Display 32

 3.3.10 RTC Module 33

 3.3.11 SD Card Module 34

 3.3.12 Complete Hardware System 35

 3.3.13 Soldering Electrical Components on PCB

Board 36

 3.4 Coding for Arduino Mega Microcontroller 38

 3.5 Installation of Required Libraries on Arduino IDE 40

 3.6 Calibration Process 45

 3.6.1 Voltage and Current Calibration and

Validation 45

ix

 3.6.2 Temperature Sensors Reading Calibration

and Verification 48

 3.7 Installation of Hardware System on FPV and GPV 49

 3.8 Configuration of IoT Data Collection System 51

 3.8.1 Google Spreadsheet as IoT platform 52

 3.8.2 Configuration of Google Spreadsheet With

Apps Script 52

 3.8.3 Setting Up Dashboard on Spreadsheet 56

 3.8.4 Configuration of NodeMCU 84

 3.9 Conversion of Data Collected on Micro SD card to

Excel 85

4 RESULTS AND DISCUSSION 89

 4.1 Introduction 89

 4.2 Result Analysis 89

 4.2.1 Voltage and Current Calibration Results 89

 4.2.2 DHT11 and DS18B20 Sensors Calibration

Results 99

 4.2.3 Data Monitoring and Data Collection System 100

 4.2.4 Data Analysis and Comparison Between FPV

and GPV 103

 4.2.5 Comparison Between Data Collected on IoT

System and Micro SD Card 109

 4.3 Challenge Encountered 114

 4.4 Cost Analysis 117

5 CONCLUSION AND RECOMMENDATIONS 121

 5.1 Conclusion 121

 5.2 Recommendations and Improvements 121

 5.2.1 Arduino Mega Data Collection Time Interval 122

 5.2.2 Solar PV Panel as the Power Source 122

 5.2.3 Alternatives of IoT Data Monitoring System 123

x

REFERENCES 124

APPENDICES 127

xi

LIST OF TABLES

TABLE TITLE PAGE

3.1 Final Year Project 1’s Gantt Chart 16

3.2 Final Year Project 2’s Gantt Chart 17

3.3 List of hardware components 20

3.4 General specification of Arduino Mega 2560 21

3.5 General specifications of ESP8266 NodeMCU 22

3.6 Pin wiring of RTC module with Arduino Mega 34

3.7 Pin wiring of SD card module with Arduino Mega 34

3.8 Required libraries to be installed on Arduino IDE 44

3.9 Function of the tabs in FPV data sheet and GPV data sheet 56

3.10 Data type and their column location 57

3.11 Formulae to configure the Dashboard tab 59

3.12 Function of the tabs in “FPV vs GPV” sheet 67

3.13 Formulae to configure the Real Time Data tab for GPV 72

3.14 Formulae to configure the Real Time Data tab for FPV 74

3.15 Formulae for importing data from FPV data sheet and GPV

data sheet

78

4.1 Voltage and current percentage errors 90

4.2 Voltage and current root mean square errors 90

xii

4.3 Corrective formulae for calibrating the voltage and current

values 90

4.4 Temperature sensor accuracy analysis result 99

4.5 Highest data reading of FPV system and GPV system 108

4.6 IoT system percentage of data loss 110

4.7 Problems, possible root causes and solution on data logging in

IoT system

111

4.8 Challenges faced in this project and their solutions 114

4.9 Cost of Components and Consumables 117

4.10 Internet Charges (not inclusive of hardware device) 120

4.11 Total cost spent 120

xiii

LIST OF FIGURES

FIGURE TITLE PAGE

2.1 Examples of delamination on PV panels 7

2.2 Partially shaded PV module 8

2.3 Bypass diodes installed parallelly in each PV panel 8

2.4 Floating PV panel designed by MIRARCO 10

2.5 Modular structure of pontoon 12

2.6 Floating solar panel assembly structure 13

2.7 Flexible thin film PV 14

2.8 Design of floating PV from SCINTEC that is submergible in

different water depth

15

3.1 Project flow chart 19

3.2 Arduino Mega 2560 20

3.3 NodeMCU V3 22

3.4 Connection between Arduino Mega and NodeMCU 23

3.5 Schematic diagram of voltage divider 24

3.6 Connection between voltage divider and Arduino Mega

25

3.7 ACS712 current sensor 26

3.8 Connection between current sensor and Arduino Mega 26

3.9 5 V relay 27

xiv

3.10 Relay circuit when coil is supplied with power or not 28

3.11 Switch circuit of relay with transistor 29

3.12 Schematic diagram of relay, voltage divider and current sensor

connections

29

3.13 DS18B20 temperature sensor 30

3.14 Connection between DS18B20 temperature sensor with

Arduino Mega

31

3.15 DHT11 sensor module 31

3.16 Connection between DHT11 sensor and Arduino Mega

32

3.17 OLED display module 32

3.18 Connection between OLED display module and Arduino Mega 33

3.19 RTC module 33

3.20 SD card module 34

3.21 Schematic diagram of complete hardware system 35

3.22 Complete hardware system for FPV 37

3.23 Complete hardware system for GPV 37

3.24 Main code for Arduino Mega 38

3.25 Arduino Mega working flowchart 39

3.26 Location to open “Preferences” window 40

3.27 Adding ESP8266 NodeMCU’s board URL 41

3.28 Boards selection under “Tools” tab 42

3.29 Location of “Manage Libraries…” 43

3.30 Installation of DHT sensor library 44

3.31 IV plotter device 45

3.32 Voltage and current calibration flowchart 47

3.33 Fluke’s 54 II B Data Logging Thermometer 48

xv

3.34 Position of temperature sensors on FPV system 49

3.35 Position of temperature sensors on GPV system 50

3.36 Side view of GPV and FPV setup 50

3.37 Flow of IoT data collection system 51

3.38 Location of Apps Script 52

3.39 Apps Script code editor 53

3.40 Location of Spreadsheet ID 54

3.41 Location where Spreadsheet ID is entered 54

3.42 Deployment ID of the web app 55

3.43 All Data Record tab 56

3.44 Screenshot of layout of Dashboard tab for FPV (1 of 2) 57

3.45 Screenshot of layout of Dashboard tab for FPV (2 of 2) 58

3.46 Chart editor sidebar 58

3.47 Selecting Gauge chart 59

3.48 Screenshot of layout of Real Time Data tab (1 of 3) 62

3.49 Screenshot of layout of Real Time Data tab (2 of 3) 62

3.50 Screenshot of layout of Real Time Data tab (3 of 3) 63

3.51 Data of “today” extracted from All Data Record tab 64

3.52 Layout of Data on specific date tab 64

3.53 Date dropdown list 65

3.54 Data validation 65

3.55 Choosing Dropdown (from a range) 66

3.56 Screenshot of layout of Dashboard tab for GPV vs FPV sheet

(1 of 4) 68

3.57 Screenshot of layout of Dashboard tab for GPV vs FPV sheet

(2 of 4) 69

xvi

3.58 Screenshot of layout of Real Time Data tab for GPV vs FPV

sheet (3 of 4) 70

3.59 Screenshot of layout of Real Time Data tab for GPV vs FPV

sheet (4 of 4) 71

3.60 Importing data from GPV and FPV spreadsheet 79

3.61 Screenshot of line charts in Data Comparison tab (1 of 4) 80

3.62 Screenshot of line charts in Data Comparison tab (2 of 4) 81

3.63 Screenshot of line charts in Data Comparison tab (3 of 4) 82

3.64 Screenshot of line charts in Data Comparison tab (4 of 4) 83

3.65 Locations where WI-FI name, WI-FI password and Apps Script

deployment ID are entered 84

3.66 Copying data from text file 85

3.67 Pasting data in Excel sheet 85

3.68 Selecting Text to Columns 86

3.69 Selecting Delimited file type 87

3.70 Selecting Other and insert “|” symbol 87

3.71 Finishing the Text to Columns setting 88

3.72 Data in text file converted into columns 88

4.1 IV plotter voltage vs Arduino voltage before calibration (FPV) 91

4.2 37 sets of IV plotter voltage and Arduino voltage readings

comparison before calibration (FPV) 91

4.3 IV plotter voltage vs Arduino voltage after calibration (FPV) 92

4.4 33 sets of IV plotter voltage and Arduino voltage readings

comparison (FPV) 92

4.5 IV plotter current vs Arduino current before calibration (FPV) 93

4.6 37 sets of IV plotter current and Arduino current readings

comparison before calibration (FPV) 93

4.7 IV plotter current vs Arduino current after calibration (FPV) 94

xvii

4.8 27 sets of IV plotter current and Arduino current readings

comparison after calibration (FPV) 94

4.9 IV plotter voltage vs Arduino voltage before calibration (GPV) 95

4.10 22 sets of IV plotter voltage and Arduino voltage readings

comparison before calibration (GPV) 95

4.11 IV plotter voltage vs Arduino voltage after calibration (GPV) 96

4.12 31 sets of IV plotter voltage and Arduino voltage readings

comparison after calibration (GPV) 96

4.13 IV plotter current vs Arduino current before calibration (GPV) 97

4.14 27 sets of IV plotter current and Arduino current readings

comparison before calibration (GPV) 97

4.15 IV plotter current vs Arduino current after calibration (GPV) 98

4.16 29 sets of IV plotter current and Arduino current readings

comparison after calibration (GPV) 98

4.17 Screenshot of FPV data and GPV data on Google Spreadsheet

(1 of 3) 100

4.18 Screenshot of FPV data and GPV data on Google Spreadsheet

(2 of 3) 101

4.19 Screenshot of FPV data and GPV data on Google Spreadsheet

(3 of 3) 101

4.20 Graph of voltage and graph of current against time 101

4.21 Graph of humidity and ambient temperature against time 102

4.22 Graph of temperature 1 and graph temperature 2 against Time 102

4.23 Graph of temperature 3 and graph of water temperature against

Time 103

4.24 Graph of Open Circuit Voltage against Time 104

4.25 Graph of Short Circuit Current against Time 104

4.26 Graph of Maximum Obtainable Power against Time 105

4.27 Graph of Humidity against Time 105

xviii

4.28 Graph of Ambient Temperature against Time 106

4.29 Graph of Temperature 1 against Time 106

4.30 Graph of Temperature 2 against Time 107

4.31 Graph of Temperature 3 against Time 107

4.32 Graph of Water Temperature against Time 108

4.33 Multiple rows of data being shifted in Google sheet 113

4.34 Burnt and broken crocodile clip cable from GPV 116

4.35 Rusted Crocodile Clip on GPV after one week 116

xix

LIST OF SYMBOLS / ABBREVIATION

PV Photovoltaic

FPV Floating photovoltaics

GPV Ground mounted photovoltaics

IoT Internet of Things

HDPE High Density Polyethylene

GRP Glass Fibre Reinforced Plastic

UV Ultraviolet

NodeMCU Node Microcontroller Unit

OLED Organic Light-Emitting Diodes

RTC Real Time Clock

SD Secure Digital

SPDT Single Pole Double Throw

NPN Negative-Positive-Negative

I/O Input/Output

IDE Integrated Development Environment

PWM Pulse Width Modulation

SRAM Static Random-Access Memory

EEPROM Electrically Erasable Programmable Read-Only Memory

USB Universal Serial Bus

xx

GPIO General Purpose Input Output

UART Universal Asynchronous Receiver Transmitter

RX Receive

TX Transmit

ADC Analogue to Digital Converter

NC Normally Close

NO Normally Open

COM Common

I2C Inter-Integrated Circuit

VCC Common Collector Voltage

GND Ground

SCL Serial Clock Line

SDA Serial Data Line

MISO Master In Slave Out

MOSI Master Out Slave In

SCK Serial Clock

CS Chip Select

URL Uniform Resource Locator

HTTP Hypertext Transfer Protocol

XML Extensible Markup Language

JSON JavaScript Object Notation

xxi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A ESP8266 NodeMCU V3 Pinout 127

B Arduino Mega Pinout 128

C SOLARLAND 80W Solar Panel 129

D FPV Schematic Circuit Diagram 130

E GPV Schematic Circuit Diagram 131

F FPV and GPV PCB layout diagram 132

G Coding for Arduino Mega for GPV 133

H Coding for Arduino Mega for FPV 139

I Coding for ESP8266 NodeMCU for GPV 145

J Coding for ESP8266 NodeMCU for FPV 149

K Coding for Google Apps Script for GPV 153

L Coding for Google Apps Script for FPV 155

1

CHAPTER 1

INTRODUCTION

1.1 Background

Harvesting energy from the sun has high potential in Malaysia due to its geographical

location close to the equatorial line. Around 4000 to 5000 Wh/m2 of solar radiations

can be received in Malaysia daily (Azhari et al., 2008). There are several ways to

harvest solar energy, including solar thermal system and solar photovoltaic (PV)

system. Solar energy is one of the renewable energies that can be converted into

electricity in a green, low-environmental-impact way, as it emits zero Green Houses

Gases in the energy conversion process.

Solar PV system, is the technology of generating flow of electricity with the

application of compound semiconductor material. The panel is usually structured with

layers of crystalline cells made from silicon. Then, the layers of PV cells are covered

by transparent glass on the layer facing to the sunlight, a piece of polymer plastic at

the bottom, and aluminium frame (Svarc, 2020).

There are several factors affecting the energy conversion efficiency of the solar

PV panel, including temperature, installation method, shadings by foreign objects,

difference in spectral irradiance and etc. The efficiency of solar PV panel plays an

important role as the higher the efficiency of the PV panel is, the higher the energy

output generated.

2

The installation of conventional PV system is typically done on land. This type

of installation usually involves larger scale to generate enough electricity. However,

the availability of land limits further development of land type PV system. The main

reason to this is reservation of land for more important purposes especially food related

one. For example, land for agriculture purposes. Once land is used for PV system

implementation, the land is occupied and became solely for PV system. The system is

often not able to be integrated with any other usage. Therefore, exploration on PV

system installation method other than land type is gaining more concerns.

Floating PV system is the design of PV system in a floatable way and is

implemented on water bodies. Speaking of large scale PV system, floating PV has the

potential to replace land type PV system as water bodies are readily available in

Malaysia. Depending on the design, the structure of floating PV system can be as

simple as fixing normal PV panel on floating platform, or redesigning PV panel that

is waterproof and can directly contact with water. In either way, research shows

improvement of performance due to lower PV panel temperature compared to land

type one. Other benefits of floating PV system include availability of water for

cleaning the surface of PV panel, reduction of water losses from evaporation, and

improvement of water quality.

A study of floating PV panel done by Majid et. al. (2013) under Malaysia

climate condition shows improvement of floating PV performance. The result shows

under different solar irradiance level, the temperature of floating PV is always lower

than normal PV, while the power output of floating PV is always higher than that of

normal PV. The experiment has been conducted in two hours, with 15.5 % increase of

energy gain by the floating PV compared to normal PV.

Data collection and monitoring for floating PV system is more challenging than

the conventional PV system. This is because floating PV panel could be located at the

middle of water body and is unreachable by human if no walkway is built on the

platform. Therefore, floating PV monitoring system integrated with Internet of Things

(IoT) is designed in this project to solve the aforementioned problem.

3

1.2 Problem Statements

Solar PV panels were traditionally built on land. Nowadays, with reduction of land

availability and the need for conservation of land for natural reserves, more solutions

emerged such as PV panels mounted on rooftop, canal top, and floater. Each method

has its own advantages and disadvantages. Ground mounted PV panels allow the

power system to be constructed in a larger scale. In contrast, rooftop mounted PV

panels usually could only be built on the space of rooftop. Hence, it is only capable to

generate electricity for household usage.

 Both ground mounted and rooftop PV panels has the common downside, which

is reduction of efficiency due to high temperature as a result of long exposure under

sunlight. This is caused by temperature coefficient when the temperature of solar panel

rises above 25 degrees Celsius. Temperature coefficient is the decrease on the

efficiency of solar panel with 1 degree Celsius increase of temperature. PV panels

usually have the temperature coefficient ranging from −0.3 %/℃ to −0.5 %/℃ (Ost,

2020). Therefore, floating PV panel is one of the solutions to the problem of limited

land, while it can also be built into larger scale depending on the size of water body.

Hence, floating PV panel could be more competitive than rooftop PV panel when

larger surface area is possible. At the same time, the effect of water evaporation at the

water body could help cool down heated PV panel, enhancing the energy conversion

efficiency.

 Investigation on how temperature can be reduced with floating PV panel, and

how much energy output can be yield from this method was carried out in this project.

Floating PV performance monitoring could be done by storing the data in hardware

storage such as SD card. However, the data stored offline could be difficult to be

retrieved by human if no walkway is built on the water body. Furthermore, the offline

data needs to be post-processed in order to be converted into tables and charts in an

Excel spreadsheet. Thus, to improve the safety and productivity of the data collection

process, another solution which integrates the data collection system with IoT is

applied in this project to obtain data remotely and allow real time monitoring.

4

1.3 Aims and Objectives

The main purposes of conducting this project entitled DESIGN AND FABRICATE

REAL-TIME INTERNET OF THINGS (IoT) MONITORING SYSTEM FOR

FLOATING SOLAR PHOTOVOLTAIC (PV) SYSTEM are as shown below:

1) To design and construct an IoT data collection and data monitoring system for

floating PV panel

2) To calibrate and validate the measurement values of the IoT data collection and

data monitoring system for floating PV panel

3) To test the functionality and stability of the IoT data collection and data

monitoring system for floating PV panel

5

1.4 Outline of Report

Chapter 1: Introduction

A brief description on the background, problem statement and purpose of performance

evaluation of floating PV panel in Malaysia.

Chapter 2: Literature Review

A general review on the results and discussion obtained from several journals and

resources.

Chapter 3: Methodology

Explanation of tasks performed in this project. A summary of tasks concluded in two

Gantt Charts with the timelines stated respectively.

Chapter 4: Results and Discussion

Analysis and discussion made based on the results obtained. A summary of problems

encountered and solutions implemented were concluded in a table.

Chapter 5: Conclusion and Recommendation

Conclusion made based on the entire report and achievement of the project. A few

recommendations were suggested for future improvement of any similar project.

6

CHAPTER 2

LITERATURE REVIEW

2.1 External Factors Affecting Performance of PV Panels

2.1.1 Temperature

Temperature has negative effect to the efficiency and performance of PV panels. The

temperature of a PV panels under operation rises due to only partial number of photons

striking on the PV panels being converted into electricity, while the rest of the energy

is converted into heat (Pradhan and Panda, 2017). PV panel absorbs this heat energy

and thus the temperature of the panel increase. The study done by Pradhan and Panda

(2017) shows that when the temperature increase, the negative effects to the module

include reduction in maximum power generated, fill factor and efficiency.

Furthermore, when temperature of the PV panel exceeded the upper limit point

mentioned by the manufacturer, it can result long term damage to the panel (Mathur et

al., 1984). Other than increasing temperature, Pradhan and Panda mentioned that

ununiform temperature distribution could also reduce the efficiency of PV panel.

7

2.1.2 Humidity

Pradhan and Panda (2017) conducted an indoor experiment and created humid

condition to measure the effect of humidity to PV modules. Reduction of maximum

power, fill factor, and efficiency is observed with the rise of humidity percentage. Solar

module degradation occurs when water vapor penetrates into the cells. Pradhan and

Panda mentioned that PV modules is subjected to delamination damage in moisture

condition, as the moisture erode the interfacial adhesion of the cells. During rain

periods, the output of the PV module falls as the humidity increases.

Figure 2.1: Examples of delamination on PV panels (Xia, 2021)

2.1.3 Shading

Shading is blockage of sunlight from striking on PV panels. It can be categorised into

hard shading or soft shading. The former refers to complete blockage of sunlight by

solid object while the latter refers to partial blockage such as shading by smog

(Maghami et al., 2016). Many external objects can cause shading on PV module,

whether they are from nature or man-made. For examples, bird droppings, dry leaves,

buildings etc. Ununiform shading on solar module causes mismatch of solar cell,

which happens when power generated by unshaded cell is dissipated by shaded cell.

This can cause over heating on the module, resulting irreversible damage

8

(PVEducation, n.d.). Pradhan and Panda (2017) conducted the research on the effect

of different degrees of shading on PV panels. The result shows that as shading

percentage increase, the fill factor and efficiency decrease. To avoid mismatch losses

due to shading, bypass diode can be installed in the PV module.

Figure 2.2: Partially shaded PV module (Dwivedi, Yadav and Saket, 2016)

Figure 2.3: Bypass diodes installed parallelly in each PV panel (Electronics

Tutorial, n.d.)

9

2.1.4 Wind Velocity

In the experiment on the effect of wind speed to the performance of PV panel, Pradhan

and Panda (2017) found that the combined effect of cooling and dust removal from

wind boost the efficiency of PV panels. Adequate amount of air flow helps cooling

down PV modules. Furthermore, wind can also help to remove dust accumulated on

PV panels. However, wind speed that is too high or too low will not improve the

performance of PV panels. The result from Pradhan and Panda shows that the

maximum output, fill factor and efficiency are the highest at wind speed of 10 m/s

amongst other lower wind speeds. The performance was also lower at wind speed of

18 m/s.

2.2 Floating PV panels

2.2.1 Advantages of Floating PV panels

There are several advantages of implementing Floating PV panel. However, the main

reason of implementing floating PV panels is due to its advantage of not utilizing

precious land for PV system. Only small amount of land is required for devices such

as inverter and electric meter. Depending on the size of water surface, floating PV

panels has potential to provide equivalent scale of power generation as ground

mounted PV panels. Water bodies that generally not utilized by other activities, is

abundantly available such as lakes, ponds, man-made water reservoirs and off-shores.

The next main purpose of implementing floating PV panels is due to the

improved efficiency of the energy conversion from sunlight to electricity. The

efficiency of floating PV panels can be 11 % higher than ground mounted PV panels

(Choi, 2014). Research done by Liu et al., (2017) concluded that floating PV panels

has temperature around 3.5 ℃ lower than the ground mounted one. There are some

theories supporting this efficiency improvement. Firstly, the evaporation effect of

water body makes the surrounding temperature of floating solar panels cooler (Sahu,

Yadav and Sudhakar, 2016). Secondly, the ambient temperature of water body is lower

10

due to the reflectivity of water surface (Sahu, Yadav and Sudhakar, 2016). As a result,

more sunlight can be reflected by water surface as compared to ground. Soil absorbs

most of the heat from sunlight than reflecting them, resulting higher ambient

temperature. Thirdly, water has higher specific heat capacity, which means it can hold

more heat energy to raise its temperature by one degree Celsius. Moreover, PV panels

floating on water body will experience less dust accumulation (Sahu, Yadav and

Sudhakar, 2016). Therefore, performance of floating PV panels is better with their

cleaner surface.

In terms of cleaning and maintenance job, water is readily available for

cleaning the surface of solar panels. This makes cleaning solar panels more cost saving

as water do not have to be pumped from other water sources that might be far away.

A floating PV panels project designed by MIRARCO does not even have a floating

platform to place their solar panels. The solar panels contact with water surface directly

so the cooling effect by water can be boosted, and the surface of PV panels remains

clean due to the self-cleaning effect (Trapani and Redón Santafé, 2014).

Figure 2.4: Floating PV panel designed by MIRARCO (Trapani and Redón

Santafé, 2014)

 Other advantages of FPV include reduced water losses from evaporation and

improved water quality. These two advantages are due to shading of PV panels on the

water surface preventing sunlight from traveling into the water. As water surface being

covered by PV panels, less heat from sunlight is absorbed by the water body. Hence,

11

this could result lower water evaporation rate, preventing water from escaping in the

form of vapor. Water loses from evaporation can be reduced up to 33 % and 50 % for

natural water bodies such as lakes and ponds, and man-made facility respectively

(Choi, 2014). Furthermore, less sunlight penetration also reduces photosynthesis

process of algae, preventing them from overgrowing.

2.2.2 Challenges of Floating PV Panels

Due to the external factors in natural water bodies, the structure of floating PV panels

needs to be carefully designed to handle different conditions. Durability of PV panels

may be an issue. Most importantly, the PV panel system needs to be stable enough to

float on water most of the time, and strong enough to withstand external forces such

as wind load and water tides (Sahu, Yadav and Sudhakar, 2016).

 The first challenge is the strength of the system. Well-designed structure of

floating PV system is required to withstand external forces caused by strong wind and

waves. Due to these external forces, solar panels may experience more stress and

vibration then those ground mounted one. This could result formation of cracks on the

rigid PV panels, reducing its electricity output and durability (Cazzaniga et al., 2018).

Furthermore, right material for the floating structure should be chosen depending on

the type of water body. Due to the effect of electrochemical corrosion, corrosion of

metal frame could be severe and this reduce the strength of the floating structure. The

material may need to be highly anti-corrosion if the system is to be installed in sea

water. Secondly, electricity cables used in the system are always contact with water.

Hence, they need to be well insulated and durable enough to reduce risk of shocking

and other safety issues. Thirdly, the operation of floating PV panels may get

interrupted by wildlife such as birds, fish and other local animals. For instance, bird

droppings may accumulate on the surface of PV panels if the installation location is

near to the habitat of birds. This could result reduced PV efficiency due to the shading

on the panel.

12

2.3 Floating PV designs

2.3.1 Floating PV Panels with Pontoon

Pontoon is a giant floating structure that is made up by smaller sized floats. The

modular design allows suitable sizing of the floating platform for PV panels to be built

according to the requirement. The materials for the floats could be made up of High

Density Polyethylene (HDPE) or Glass Fibre Reinforced Plastic (GRP) (Sahu, Yadav

and Sudhakar, 2016). HDPE is characterised by its strength, lightweight, UV and

corrosion resistance. Research shows HDPE does not have any sign of degradation

after UV exposure (Sahu, Sudhakar and Sarviya, 2019). GRP has similar properties

with HDPE and is highly impact resistant (Engineered Composites, n.d.).

Figure 2.5: Modular structure of pontoon (Sahu, Yadav and Sudhakar, 2016)

The characteristic of this type of floating PV panels is that the panels do not

get contacted with water directly. It is a safer way to directly utilize conventional PV

panels in floating PV projects, as water resistance of the PV panel is often unsure. An

example of large-scale PV power plant done by Kyocera Corporation and Century

Tokyo Leasing Corporation is as shown in Figure 2.6. The design of the floater is

strong enough to resist typhoon (Sahu, Yadav and Sudhakar, 2016).

13

Figure 2.6: Floating solar panel assembly structure (Sahu, Yadav and

Sudhakar, 2016)

2.3.2 Flexible Floating PV Panels

The idea behind flexible floating PV is to solve the durability issue of rigid floating

PV mentioned beforehand. Flexible PV is able to follow the motion of waves rather

than withstanding them (Trapani and Redón Santafé, 2014). Therefore, they encounter

less impact from wind loads and waves as compared to the conventional rigid one.

This novel design opens the opportunity of implementing floating PV panels in off-

shore areas, which are subjected to greater wave movements and wind load. What

makes this flexible thin film PV panel differ from conventional PV panel is that they

are very lightweight. The design from MIRARCO allows buoyancy force to be

integrated with the PV panels, by trapping air within the laminated thin film (Trapani

and Redón Santafé, 2014).

14

Figure 2.7: Flexible thin film PV (Trapani and Redón Santafé, 2014)

2.3.3 Submerged PV Panels

Submerged PV panels have several advantages. Firstly, due to the entire PV panels

being completely submerged in water, the cooling effect of the panels will be enhanced.

Secondly, this idea eliminates the need for cleaning PV panels (Ranjbarann et al.,

2019). The design for submerged PV panels is not limited for flexible one. For example,

the design from SCINTEC applies conventional rigid PV panels, while completely

submerging it under water surface (Trapani and Redón Santafé, 2014). Since rigid PV

panels cannot withstand strong wave movement, the module is designed to be

submerged under water up to 2 m to avoid the waves. When the water surface is calm,

the module can be lifted very close to the water surface (0 to 2 mm under water) to

receive effective solar radiation without any deter from water (Rosa-Clot et al., 2010).

15

Figure 2.8: Design of floating PV from SCINTEC that is submergible in

different water depth (Trapani and Redón Santafé, 2014)

16

CHAPTER 3

METHODOLOGY

3.1 Project Management

Table 3.1: Final Year Project 1’s Gantt Chart

Activity Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Project title

selection

Literature

review

Conceptual

design of

hardware

system

Selection of

hardware

components

Building and

testing the

circuit and

17

the Arduino

program

Exploration

of IoT

platforms

Code writing

Testing and

trouble-

shooting the

IoT data

sending

process

Report

writing

Table 3.2: Final Year Project 2’s Gantt Chart

Activity Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Finalizing

the hardware

system

Soldering the

hardware

components

on PCB

18

Calibration

and

validation of

sensor data

Installation

of data

monitoring

system on

FPV and

GPV

Data

collection of

FPV and

GPV

Data analysis

Report

writing

19

3.2 Project Flowchart

Start

Design of hardware

for data monitoring

system

Selection of hardware

components

Design of IoT

data monitoring

system

Selection of IoT

platform

Develop coding

for Google

Spreadsheet

Testing and trouble

shooting the IoT data

sending process

End

Build and test the

circuit using

breadboard

Develop coding to

programme Arduino

Mega

Testing and trouble

shooting data collection

and data transmission from

Arduino Mega to

NodeMCU

Develop coding to

configure NodeMCU to

send data to IoT platform

Installation of data

monitoring system

on FPV and ground

mounted PV

Data collection of

FPV and ground

mounted PV

Calibration and

validation of

sensor data

Finalize the hardware

system and solder the

components on PCB

Data analysis between

data collected on IoT

system and micro SD

card

Figure 3.1: Project flow chart

20

3.3 Hardware Configuration

Table 3.3: List of hardware components

Category Component

Microcontrollers Arduino Mega 2560

ESP8266 NodeMCU

Sensors Voltage sensor (A voltage divider that

consists of 30 kΩ and 7.5 kΩ resistors)

ACS712 current sensor

DS18B20 temperature sensor

DHT11 humidity sensor module

Display OLED display

Time and date remembering system RTC module

Offline data recording device SD card module

Other components SPDT Relay

2N2222 NPN transistor

Diode

4.7 kΩ resistor

3.3.1 Arduino Mega 2560

Figure 3.2: Arduino Mega 2560 (Arduino Mega 2560 Rev3, n.d.)

21

In this project, microcontroller is required to control other hardware components and

process the collected sensor data. Arduino Mega 2560 was chosen due to several

reasons. Firstly, Arduino Mega has more digital input and output (I/O) pins. This

allows more sensors and components to be connected to the microcontroller. Secondly,

comparing to its smaller counterparts, Arduino UNO, Arduino Mega has larger flash

memory, which allows a larger sketch or code to be uploaded and stored into it (Gudino,

2021). Thirdly, the microcontroller can be easily programmed with the Arduino IDE

software, which is an open-sourced platform created by Arduino company. Moreover,

Arduino Mega has bigger Static Random-Access Memory (SRAM) space, allowing

more variables to be created and manipulated from the code (Gudino, 2021). Table 3.4

below shows the specification of Arduino Mega 2560.

Table 3.4: General specification of Arduino Mega 2560 (Arduino Mega 2560

Rev3, n.d.)

Microcontroller Arduino Mega 2560

Operating voltage 5 V

Input voltage (Recommended) 7-12 V

Input voltage (Limit) 6-20 V

Digital I/O pins 54 (including 15 PWM output pin)

Analog input pins 16

DC current per I/O pin 20 mA

DC current for 3.3 V pin 50 mA

Flash memory 256 KB of which 8 KB used by bootloader

SRAM 8 KB

EEPROM 4 KB

Clock speed 16 MHz

22

3.3.2 ESP8266 NodeMCU V3

Figure 3.3: NodeMCU V3 (NodeMCU ESP8266, 2020)

This NodeMCU (Node Micro Controller Unit) is a microcontroller that has a built-

in WI-FI microchip named ESP8266. Since Arduino Mega cannot send data to the

Internet due to absence of WI-FI chip, NodeMCU comes in handy to receive the

data from Arduino and send them to IoT platform. It is very similar to Arduino

board as it is programmable via the micro-USB port with Arduino IDE software

or Lua programming language. In order for PC to successfully detect the

NodeMCU board, CH340G driver may need to be installed in the PC.

Table 3.5: General specifications of ESP8266 NodeMCU (NodeMCU

ESP8266, 2020)

Microcontroller NodeMCU V3

Processor ESP8266 32 bit

Clock speed 80 MHz

USB to Serial CH340G

Operating voltage 3.3 V

Input voltage 4.5 V – 10 V

Flash memory 4 MB

SRAM 64 KB

GPIO (General Purpose Input Output) pins 16

Analog input pins 1

23

3.3.3 Serial Communication Between NodeMCU and Arduino Mega 2560

The serial communication is required as sensor data from Arduino Mega need to be

sent to NodeMCU, then to the IoT platform. The UART (Universal Asynchronous

Receiver Transmitter) pins on NodeMCU labelled as RX (receive pin) and TX

(transmit pin) on are used in serial communication. However, for both NodeMCU and

Arduino Mega, user can define any digital pin as RX and TX pins for serial

communication. This is done by defining the selected pins in the codes and upload the

code to the microcontroller. Besides, the baud rate of the Arduino Mega and the

NodeMCU is required to be the same for the data to be able to transmit. The baud rate

of 115200 is used.

As shown in Figure 3.4, the digital pin 10 and 11 is used for serial

communication, with pin 10 representing RX pin while pin 11 as TX pin. The

connection of the pins is reciprocal, with RX pin corresponding to TX pin and TX pin

corresponding to RX pin. This is because RX pin of NodeMCU will receive data from

TX pin of Arduino board, while TX pin of NodeMCU will transmit data to RX pin of

Arduino board.

Figure 3.4: Connection between Arduino Mega and NodeMCU

24

3.3.4 Voltage Sensor

Usually, voltage can be directly measured by Arduino if the input voltage is lower than

5 V. To measure voltage higher than 5 V, voltage divider is required to lower the input

voltage so that the board will not be damaged. According to the specification of the

solar panel, the open circuit voltage is 21.6 V. Hence, a 5 to 1 ratio of voltage divider

was constructed using 30 kΩ and 7.5 kΩ resistors. The construction of voltage divider

is based on the formula below.

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 ×
𝑅2

𝑅1 + 𝑅2

Where

𝑉𝑜𝑢𝑡 = Voltage across R2 (Ω)

𝑉𝑖𝑛 = Voltage across R1 and R2 (Ω)

𝑅1 = Resistor 1 voltage (V)

𝑅2 = Resistor 2 voltage (V)

Figure 3.5: Schematic diagram of voltage divider

Referring to Figure 3.5, 𝑉𝑖𝑛 terminals will be connected to solar panel, while

𝑉𝑜𝑢𝑡 terminals will be connected to analogue pin and ground pin of Arduino Mega

25

board. Since the voltage value received is in analogue form, the value needs to be

processed with the formula below to convert it into digital form.

𝑉𝑜𝑢𝑡 =
𝐴𝐷𝐶 𝑣𝑎𝑙𝑢𝑒

1024
× 𝑉𝑟𝑒𝑓

Where

𝑉𝑜𝑢𝑡 = Output voltage of voltage sensor (mV)

𝐴𝐷𝐶 𝑣𝑎𝑙𝑢𝑒 = Analog to Digital Converter value obtained from analogue pin that the

voltage divider is connected to

𝑉𝑟𝑒𝑓 = Reference voltage (mV) (In this case it is 5000mV)

𝑉𝑜𝑢𝑡 is the value that represents the final reading of the voltage of the solar

panel. ADC value is actually the 𝑉𝑖𝑛 from the voltage divider formula. The number

“1024” is the number of discrete analogue levels the analogue value can be detected.

Since Arduino Mega’s analogue pin has built-in ADC (Analog to Digital Converter)

of 10 bits, the value 1024 is obtained from 2 to the power of 10. 𝑉𝑟𝑒𝑓 is referred from

the voltage supplied to Arduino board, which is usually 5 V. However this value is not

always constant. The accuracy of the data is influenced by the number of bits of ADC

pin and the reference voltage (Measure DC Voltage and Current with an Arduino,

2021).

Figure 3.6: Connection between voltage divider and Arduino Mega

26

3.3.5 Current Sensor

Figure 3.7: ACS712 current sensor (Current Sensor Module ACS712 (30A),

n.d.)

The ACS712 is a type of non-invasive current sensor, which means the sensor has no

direct connection with the load circuit. This type of sensors works on the principle of

Hall-effect. The sensor measures the magnetic field generated by the built-in conductor

and converts the value into corresponding analogue output. The ACS712 current

sensor has 5 A, 20 A and 30 A variations with sensitivity of 185 mV/A, 100 mV/A

and 66 mV/A respectively. Based on the specification of the solar panel, it will

generate maximum current of 4.65 A. Hence, a 5 A current sensor is selected due to

the in range current measurement and the highest sensitivity among all variations.

Figure 3.8: Connection between current sensor and Arduino Mega

27

The value received from the analogue pin on Arduino Mega is an output

voltage corresponding to the current it is measuring. According to the datasheet of

ACS712, the zero current voltage output is 2.5 V. This means that when it is not

connected to any circuit, the sensor will still output 2.5 V. Hence, the calculation of

current value is as follow.

𝑉𝑜𝑢𝑡 =
𝐴𝐷𝐶 𝑣𝑎𝑙𝑢𝑒

1024
× 𝑉𝑟𝑒𝑓

𝐼𝑜𝑢𝑡 =
𝑉𝑜𝑢𝑡 − 𝑉𝑜𝑓𝑓𝑠𝑒𝑡

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

Where

ADC value = Value obtained from analogue pin the sensor is connected to

𝑉𝑟𝑒𝑓 = Reference voltage (mV) (In this case it is 5000mV)

𝑉𝑜𝑢𝑡 = Output voltage of current sensor (mV)

𝑉𝑜𝑓𝑓𝑠𝑒𝑡 = Offset voltage (V) (in this case is 2500mV)

Sensitivity = 185mV/A

3.3.6 Relay

Figure 3.9: 5 V relay (5V Relay, n.d.)

Short circuit could happen when voltage and current are measured at the same time.

Therefore, relay is required in this project to automatically switch between measuring

28

voltage and measuring current. A Single Pole Double Throw (SPDT) relay is used.

Relay operates electromagnetically. The armature in relay is originally in the position

of connecting Normally Close (NC) pin to Common (COM) pin. When there is current

flow through the coil of the relay, electromagnetic field is generated. The force

generated by the electromagnetic field pulls the armature to connect to Normally Open

(NO) pin. When no current flow through the coil, the armature reverts back to

connecting the Normally Close pin. Figure 3.10 below shows the circuit of relay in

different condition.

Figure 3.10: Relay circuit when coil is supplied with power or not (Arduino

Relay Control Tutorial, 2017)

For this project’s application, the voltage of solar panel will be measured first then

followed by the current. Hence, the negative terminal of voltage sensor was connected

to Normally Closed pin of the relay, while the negative terminal of current sensor was

connected to the Normally Open pin. In the code, the relay was controlled to be turned

OFF when measuring voltage, and turned ON when measuring current.

An NPN (Negative-Positive-Negative) transistor is required because the output

signal pin from Arduino Mega cannot generate current that is high enough to energize

the relay coil. The 2N2222 transistor is used in this project. There are three terminals

on the transistor, namely Collector (C), Base (B) and Emitter (E). The Collector pin

was connected to one of the coil pin of relay. The Base pin was connected to output

pin of Arduino Mega. The Emitter pin was connected to ground. A diode is added

between the coil pins to avoid large reverse current damaging other components on the

29

circuit when the coil de-energizes. The construction of the switch circuit is as shown

in Figure 3.11.

Figure 3.11: Switch circuit of relay with transistor

Figure 3.12: Schematic diagram of relay, voltage divider and current sensor

connections

Coil pins

NO NC

COM

30

3.3.7 Temperature Sensor

Figure 3.13: DS18B20 temperature sensor (DS18B20 Temperature Sensor,

2018)

The DS18B20 sensor comes with two types-probe type and another one with

appearance similar to transistor. The sensor is capable to measure temperature in the

range of -55 °C to +125 °C. The accuracy of the sensor is ±0.5 °C when the temperature

ranges from -10 °C to +85 °C. Multiple DS18B20 sensors can be controlled by and

communicate to one microcontroller with only one data line. This is known as

communication over 1-wire bus. The DS18B20 temperature sensor with appearance

similar to transistor are used to measure the temperature of the solar panel, to observe

the effect of temperature change on the performance of solar panel. To monitor the

temperature on different positions of solar panel, three sensors with their pins extended

with cables are attached at the back of the solar panel.

Referring to Figure 3.14 below, a 4.7 kΩ resistor is included in the circuit to

act as a pull-up resistor. This way it can enhance stability of data transmission between

the sensors and Arduino Mega.

31

Figure 3.14: Connection between DS18B20 temperature sensor with Arduino

Mega

3.3.8 Humidity Sensor

Figure 3.15: DHT11 sensor module (DHT11 sensor module, n.d.)

DHT11 sensor module is used in this project to obtain humidity readings. It measures

humidity using capacitive humidity sensor, and also temperature with its thermistor.

For this project’s purpose, only humidity data of the surrounding air of the PV panel

are read. The sensor is able to measure humidity in the range of 20-90 % relative

32

humidity, with accuracy of ± 5 %. The DHT11 sensor can be powered from 3-5.5 V,

with 2.5 mA maximum current. The sensor data is slow as it will take 2 seconds to

provide a single reading.

Figure 3.16: Connection between DHT11 sensor and Arduino Mega

3.3.9 OLED Display

Figure 3.17: OLED display module (I2C 0.96" OLED 128x64, n.d.)

OLED stands for Organic Light-Emitting Diode. A display is required to show the

values detected by the sensors. To display all six sensor values and also the date and

33

time, an OLED display that has 128 x 64 blue pixels is used. The OLED display

module communicates with Arduino Mega via I2C (Inter-Integrated Circuit).

Figure 3.18: Connection between OLED display module and Arduino Mega

3.3.10 RTC Module

Figure 3.19: RTC module (DS3231 Real Time Clock (RTC) Module, I2C, n.d.)

RTC stands for Real Time Clock. RTC module is a date and time remembering device

that is powered by a battery to keep the date and time updated. The RTC module can

also be powered by connecting its power pin to external power supply. It is required

in this project because Arduino Mega could not obtain real time by itself. Furthermore,

recording data offline with timestamps is more helpful for data analysis.

34

Table 3.6: Pin wiring of RTC module with Arduino Mega

Pin on RTC module Arduino Mega

VCC 5 V

GND GND

SCL Pin 21

SDA Pin 20

3.3.11 SD Card Module

Figure 3.20: SD card module (5V Compatible Micro SD Card Adapter, n.d.)

An SD card module is necessary to save data offline and serve as a backup in the event

of an internet service disruption. It allows user to plug in SD card on the module, and

read or write data on the card via communication with microcontroller. The SD card

that is going to be used in this module needs to formatted to FAT16 or FAT32 format

before using it with Arduino board, or else Arduino Mega will not be able to detect it.

Table 3.7: Pin wiring of SD card module with Arduino Mega

Pin on SD card module Arduino Mega

VCC 5 V

GND GND

MISO Pin 50

MOSI Pin 51

SCK Pin 52

CS Pin 53

35

3.3.12 Complete Hardware System

Figure 3.21: Schematic diagram of complete hardware system

The Arduino Mega microcontroller is powered by power bank. The wire labelled as

“Input (+)” and “Input (-)” are connected to the positive and negative pole of solar

panel respectively. The sensors collect data readings and the reading values are shown

on the OLED display. At the same time, the sensor data are saved offline into the SD

card. While for online data sending and saving, NodeMCU acts as a communicator to

receive sensors data from Arduino Mega microcontroller and send them to IoT

platform. The complete schematic diagrams of the hardware system of FPV and GPV

are attached in Appendix D and E.

Input (+) Input (-)

36

3.3.13 Soldering Electrical Components on PCB Board

Bad electrical contact is a common issue when using breadboard since the small

sockets on breadboard can get loose depending on the built quality. Furthermore, the

wires and components plugged onto the small sockets can be easily shaken out when

there is external force applied on them. For instance, in the case of vibration of PV

panel floater due to movement of water waves. To prevent the issue of loose contact,

the wires and the electronic components were soldered on Printed Circuit Board (PCB).

The layout of PCB was designed using EAGLE PCB drawing software. The finalized

PCB layout design for FPV and GPV hardware circuit is attached in Appendix F.

 After done soldering the components, the PCB, Arduino board and NodeMCU

were placed inside a plastic container with lid to prevent water from damaging the

hardware. Some holes were made on the side of the container to allow sensor wires to

be taken out. The holes were then sealed with Tack-it elastic clay. Figures 3.22 and

3.23 below show the complete hardware systems for FPV and GPV. Moreover, power

banks were used to supply power for both system. The power banks were put in zip

bags to make them water-proof.

37

Figure 3.22: Complete hardware system for FPV

Figure 3.23: Complete hardware system for GPV

38

3.4 Coding for Arduino Mega Microcontroller

The Arduino IDE sketch or code for Arduino Mega microcontroller can be separated

into several sections, which is as shown in the Figure 3.24 below. The flow chart in

Figure 3.25 shows actions executed by Arduino Mega in sequence. The detail

explanations for the code are written as comments included in the sketch.

Main sections of

code on Arduino

Mega

Include required

libraries

Define I/O pins to

receive data from the

sensors

Define constants and

variables for data

processing

Create different

functions for different

sensors to execute their

action

Initialize the sensors,

relay, OLED display,

NodeMCU, RTC

module and SD card

module in setup()

function

Run the sensor

functions and send data

to NodeMCU

repeatedly in loop()

function

Figure 3.24: Main code for Arduino Mega

39

Start

Initialize the

components

Delay 2 seconds

Sensors read and send data to

Arduino Mega following the

sequence of voltage sensor, current

sensor, humidity sensor and

temperature sensor

Data readings are

displayed on OLED

screen

Data are stored in a

String type variable

named “data”

The String type

variable “data” is

sent to Node MCU

End

Data are recorded

into micro SD card

Figure 3.25: Arduino Mega working flowchart

40

3.5 Installation of Required Libraries on Arduino IDE

In order for successful detection of ESP8266 NodeMCU board by the Arduino IDE

software, the ESP8266 board manager is required to be added. Firstly, user need to

open Arduino IDE software, then under the “File” tab, select “Preferences”. User then

needs to enter the following URL at the blank space of Additional Board URLs:

http://arduino.esp8266.com/stable/package_esp8266com_index.json

Figure 3.26: Location to open “Preferences” window

41

Figure 3.27: Adding ESP8266 NodeMCU’s board URL

User will be able to select ESP8266 NodeMCU board under “Tools” tab after

adding the board URL. “NodeMCU 1.0 (ESP-12E module)” is selected. The detail is

as shown in Figure 3.28. With the NodeMCU board added to board manager, user can

now write codes that are understandable by the software. When connecting NodeMCU

with PC, the Arduino IDE software will be able to detect it.

42

Figure 3.28: Boards selection under “Tools” tab

43

To include the libraries for the other hardware components, the similar steps

were done for DHT11 humidity sensor, DS18B20 temperature sensors, and RTC

module. User needs to go to “Tools” tab and click on “Manage Libraries…” as shown

in Figure 3.29 below. After a few seconds, a window named as “Library Manager”

should pop out.

Figure 3.29: Location of “Manage Libraries…”

User then need to type the name of the required library on the search bar. The

related library should show up. An example is shown in Figure 3.30 to install the DHT

sensor library. An install button should appear if user have not installed the library

before. Table 3.8 below shows the required libraires to be installed on Arduino IDE.

44

Table 3.8: Required libraries to be installed on Arduino IDE

Hardware components Name of the required library

DHT11 humidity sensor DHT sensor library

DS18B20 temperature sensor DallasTemperature

OneWire

OLED display Adafruit GFX Library

Adafruit SSD1306

RTC module RTClib

Figure 3.30: Installation of DHT sensor library

45

3.6 Calibration Process

3.6.1 Voltage and Current Calibration Process

The calibration process is important to obtain accurate voltage and current reading for

comparison and analysis between ground type solar PV panels and floating type solar

PV panels. The IV plotter device as shown in Figure 3.31 below was used as the

reference for open circuit voltage, 𝑉𝑂𝐶 and short circuit current, 𝐼𝑆𝐶. The 𝑉𝑂𝐶 and 𝐼𝑆𝐶

readings obtained from Arduino were compared with the readings obtained from the

IV plotter device. The calibration process was performed while the sky was clear and

sunny. Good weather condition is important in obtaining more consistent voltage and

current readings. Since IV plotter device and Arduino system cannot be measuring the

voltage and current of PV panel at the same time, the readings from IV plotter device

were obtained first, then followed by the Arduino system immediately to avoid change

of actual reading values due to change of weather condition.

Figure 3.31: IV plotter device

46

In order to obtain the offset error of the Arduino system, PV panel voltage and

current values ranging from the lowest to the highest were obtained. This was done by

adjusting the orientation of PV panel, which in another word, by altering the intensity

of light hitting on PV panel. For instance, to obtain the highest possible 𝐼𝑆𝐶 value, the

PV panel was positioned directly facing towards the sun. In the other hand, to obtain

the lowest possible 𝐼𝑆𝐶 value, the PV panel was positioned facing down towards

ground.

The 𝐼𝑆𝐶 and 𝑉𝑂𝐶 values obtained from IV plotter device and Arduino were

compared. Firstly, the readings were plotted on scattered graph. Then, linear line and

linear line equation were obtained from the graph. The linear line equations are the

corrective coefficient for calibrating Arduino reading. Meanwhile, the percentage

errors before calibration were calculated. Next, the corrective coefficients were

inserted into the Arduino Mega sketch/coding. To verify the calibration, the 𝑉𝑂𝐶 and

𝐼𝑆𝐶 readings from IV plotter device and Arduino were obtained again with different

PV panel orientation. The values between the two devices were compared and the

percentage errors after calibration were calculated. The overall calibration process is

as shown in Figure 3.32 below.

47

Start

Step 2: At least 5 sets of

readings from IV plotter

device and Arduino were

taken.

Step 3: The orientation of

PV panel was adjusted to

obtain lower reading

values.

Step 4: At least 5 sets of

readings from IV plotter

device and Arduino were

taken for each PV panel

orientation.

Step 1: PV panel was

positioned in a way that

reading for short circuit

current was the highest.

Step 5: Steps 3 and 4

were repeated until

obtaining zero short

circuit current reading.

Step 6: Graphs were

plotted using readings

obtained from IV plotter

and Arduino.

X-axis: Arudino readings

Y-axis: IV plotter readings

Step 7: Linear line and

equation of the line were

obtained for each graph.

Step 9: The coefficients were

inserted into the Arduino Mega

sketch/coding. The coding was

then uploaded to Arduino

Mega.

Step 10: Steps 1 to 5 were

repeated to verify the

calibration process and

obtain the percentage error

after calibration.

Step 8: Percentage errors

were calculated.

End

Percentage

error is less

than 5%?

Yes

No

Troubleshoot and

repeat step 1-9

Figure 3.32: Voltage and current calibration flowchart

48

3.6.2 Temperature Sensors Reading Calibration and Verification

To make sure that the DHT11 and DS18B20 sensors are providing accurate readings,

they were verified using Fluke’s Data Logging Thermometer as shown in Figure 3.33

below.

Figure 3.33: Fluke’s 54 II B Data Logging Thermometer (FLUKE, n.d.)

 About 5 sets of data were taken with readings ranging from room temperature

to higher temperature. The sensors readings were taken and compared with Fluke’s

thermometer at room temperature first. Since the DHT11 sensor and DS18B20 sensors

with transistor appearance are not water-proof, they cannot be immersed in water.

Therefore, these sensors cannot be used in hot water to obtain higher temperature.

Instead, they were held in hand tightly so the readings will increase, since room

temperature is lower than human palm temperature. For consistency, the same method

was applied on water-proof-type DS18B20 sensor. The readings were taken after both

sensor reading and thermometer reading were consistently showing the same value

after 5 seconds.

49

3.7 Installation of Hardware System on FPV and GPV

To measure the temperature of PV panel, the DS18B20 Dallas sensors were attached

on three different position of the back of the PV panel. The first sensor was attached

on the top right corner of PV panel and the sensor value was named as Temperature 1

or T1. The second sensor was attached on the middle of PV panel and the sensor value

was named as Temperature 2 or T2. The last sensor was attached on the bottom left

corner of PV panel and the sensor value was named as Temperature 3 or T3. The

position of the temperature sensors is as shown in Figure 3.34 and 3.35 below.

Figure 3.34: Position of temperature sensors on FPV system

50

Figure 3.35: Position of temperature sensors on GPV system

To measure the Open Circuit Voltage and Short Circuit Current of PV panel, the

positive and negative pole of PV panel were connected to the circuit of Arduino system

using cables with crocodile clips. To prevent the crocodile clips from corrosion, the

exposed part of the clips was wrapped with electrical insulation tape. Figure 3.36

below shows the side view of the GPV and FPV system. A phone was used to provide

internet connection by sharing hotspot. The phone was placed between the GPV and

FPV system.

Figure 3.36: Side view of GPV and FPV setup

51

3.8 Configuration of IoT Data Collection System

The working principle of this IoT data collection system is based on the

communication between a client and a server. A client could be any type of web

browser, such as Chrome, Safari and Edge. It also can be any program or device. While

a server is usually any hardware that has web server software that stores web content.

In this case, NodeMCU connects to the Internet, and acts as the client to send

the HTTP (Hypertext Transfer Protocol) request to the Internet. At the same time,

Google acts as the web server to receive the request. Since the data transferred to the

server is in the form of XHR (XMLHttpRequest) object, the object is transformed into

JSON (JavaScript Object Notation) String data type, which is done in the programme

written in Apps Script. Figure 3.37 below shows how sensor data are sent and stored

in IoT cloud.

Sensors data from

Arduino Mega is

sent to NodeMCU

NodeMCU

converts data into

URL

Data is

processed by

App Script

Data is recorded in

Google Spreadsheet

NodeMCU acts as

Client and sends an

HTTP request to

the web

Google’s server

processes the

request

Start

End

Figure 3.37: Flow of IoT data collection system

52

3.8.1 Google Spreadsheet as IoT Platform

There are several benefits of using Google Spreadsheet as IoT platform. One of them

is that the data are not just displayed on the screen of laptop or smartphone, but directly

stored in Google Drive. In this way the data can be easily viewed by the user or other

users that the file is shared to. Both user and shared file user can view the data on their

personal computer, smartphone or tablet since Google Spreadsheet app is available on

these platforms. Furthermore, the data from NodeMCU is directly sent to Google

Spreadsheet without needing any third party. To use Google Spreadsheet, user is only

required to own or create a Google account, which creating one is completely free.

3.8.2 Configuration of Google Spreadsheet With Apps Script

To enable data receiving and saving feature in Google Spreadsheet, user needs to

create an empty spreadsheet, and proceed to the Apps Script extension to programme

the spreadsheet. Figure 3.38 below shows the location of Apps Script.

Figure 3.38: Location of Apps Script

53

A new page will pop out. The page is an Apps Script code editor which allows user to

programme their app for automated task execution across Google products. Figure

3.39 shows the Apps Script editor page.

Figure 3.39: App Script code editor

The script attached in Appendix K is entered. To let the Apps Script programme

recognises the desired spreadsheet that is used to store the data, user needs to copy the

Spreadsheet ID from the Spreadsheet URL as shown in Figure 3.40, then enter it into

the script as shown in Figure 3.41. The bolded part in the example shown below is the

Spreadsheet ID. Spreadsheet ID is a unique code for each Spreadsheet file.

Example of a Spreadsheet ID in the Spreadsheet URL:

https://docs.google.com/spreadsheets/d/1qKn2gYADXMVUAtuShwHSQmFZ3o

VL6GGmEco3ea4-2qI/edit#gid=1683798591

54

Figure 3.40: Location of Spreadsheet ID

Figure 3.41: Location where Spreadsheet ID is entered

55

Then the programme is deployed as web app. User needs to allow the authorization for

the deployment if this is their first time to deploy a web app. Then, user needs to record

the web app deployment ID as shown in Figure 3.42. This ID is important for

generating HTTP request from NodeMCU.

Figure 3.42: Deployment ID of the web app

 The above mentioned steps in this section are for GPV system. The steps were

repeated for FPV system and the script was replaced with the one attached in Appendix

L.

56

3.8.3 Setting Up Dashboard on Spreadsheet

On the IoT platform, which is Google Spreadsheet, two spreadsheet file named “FPV

data” and “GPV data” was created to record and show the real time data collected from

the floating PV and ground PV. There are four tabs on each spreadsheet file, namely

“Dashboard”, “Real Time Data”, “Data on specific date”, and “All Data Record”. The

function of each tabs is explained in Table 3.9 below.

Table 3.9: Function of the tabs in FPV data sheet and GPV data sheet

Tab Function

Dashboard To show the latest data log. The latest data log is

extracted from the last row of “All Data Record” tab.

Real Time Data To show the line charts of the day for each data type.

The line charts are automatically refreshed every day.

Data on specific date To view past data record and charts by selecting a date

All Data Record Data from NodeMCU are recorded in this tab. Contains

all data from past to present.

 The data received from the NodeMCU were recorded in “All Data Record” tab.

Newest data were automatically recorded in the last row of the tab. Table 3.10 below

shows the column which the data of FPV were recorded in. As for GPV, the columns

for the data were from column A to column I as water temperature is not required.

Figure 3.43: All Data Record tab

57

Table 3.10: Data type and their column location

Data type Column

Date (dd/mm/yy) A

Time B

Voltage (V) C

Current (A) D

Humidity (%) E

Ambient Temp (ºC) F

Water Temp (ºC) G

Temperature 1 (ºC) H

Temperature 2 (ºC) I

Temperature 3 (ºC) J

Figure 3.44: Screenshot of layout of Dashboard tab for FPV (1 of 2)

58

Figure 3.45: Screenshot of layout of Dashboard tab for FPV (2 of 2)

The layout of the FPV dashboard was created as shown in Figure 3.44 and 3.45 above.

To insert a gauge chart, user can go to Insert tab on top of the sheet, then click on

“Chart type” at the sidebar and select “Gauge chart” as shown in Figure 3.46 and 3.47

below. To let user know the position of temperature sensors, a picture with label was

inserted on the Dashboard. Similar layout was created for “GPV data” sheet but with

water temperature removed. To show the last data log on the Dashboard, the formulas

on the Table 3.11 below were entered into the designated cells. The numbers on the

dashboard will be automatically refreshed when there is new data coming in.

Figure 3.46: Chart editor sidebar

59

Figure 3.47: Selecting Gauge chart

Table 3.11: Formulae to configure the Dashboard tab

Data to be

shown on

dashboard

Formula Location

of the cell

to insert

the

formula

Date =IF(OFFSET('All Data Record'!A1,CountA('All

Data Record'!$A:$A)-1,0,1,1)="Date

(dd/mm/yy)","-", OFFSET('All Data

Record'!A1,CountA('All Data Record'!$A:$A)-

1,0,1,1))

B2

Time =IF(OFFSET('All Data Record'!B1,CountA('All

Data Record'!$B:$B)-1,0,1,1)="Time","-",

OFFSET('All Data Record'!B1,CountA('All Data

Record'!$B:$B)-1,0,1,1))

B3

60

Voltage (V) =IF(INDEX('All Data

Record'!C1:C,ARRAYFORMULA(MAX((row('All

Data Record'!C1:C))*--('All Data

Record'!C1:C<>""))))="Voltage (V)","-",

INDEX('All Data

Record'!C1:C,ARRAYFORMULA(MAX((row('All

Data Record'!C1:C))*--('All Data

Record'!C1:C<>"")))))

B8

Current (A) =IF(INDEX('All Data

Record'!D1:D,ARRAYFORMULA(MAX((row('All

Data Record'!D1:D))*--('All Data

Record'!C1:D<>""))))="Current (A)","-",

INDEX('All Data

Record'!D1:D,ARRAYFORMULA(MAX((row('All

Data Record'!D1:D))*--('All Data

Record'!D1:D<>"")))))

D8

Humidity (%) =IF(INDEX('All Data

Record'!E1:E,ARRAYFORMULA(MAX((row('All

Data Record'!E1:E))*--('All Data

Record'!E1:E<>""))))="Humidity (%)","-",

INDEX('All Data

Record'!E1:E,ARRAYFORMULA(MAX((row('All

Data Record'!E1:E))*--('All Data

Record'!E1:E<>"")))))

F8

Ambient

Temperature

(ºC)

=IF(INDEX('All Data

Record'!F1:F,ARRAYFORMULA(MAX((row('All

Data Record'!F1:F))*--('All Data

Record'!F1:F<>""))))="Ambient Temp (°C)","-",

INDEX('All Data

Record'!F1:F,ARRAYFORMULA(MAX((row('All

Data Record'!F1:F))*--('All Data

Record'!F1:F<>"")))))

H8

61

Water

temperature

(ºC)

=IF(INDEX('All Data

Record'!G1:G,ARRAYFORMULA(MAX((row('All

Data Record'!G1:G))*--('All Data

Record'!G1:G<>""))))="Water Temp (°C)","-",

INDEX('All Data

Record'!G1:G,ARRAYFORMULA(MAX((row('All

Data Record'!G1:G))*--('All Data

Record'!G1:G<>"")))))

J8

Temperature 1

(ºC)

=IF(INDEX('All Data

Record'!H1:H,ARRAYFORMULA(MAX((row('All

Data Record'!H1:H))*--('All Data

Record'!H1:H<>""))))="Temperature 1 (°C)","-",

INDEX('All Data

Record'!H1:H,ARRAYFORMULA(MAX((row('All

Data Record'!H1:H))*--('All Data

Record'!H1:H<>"")))))

B21

Temperature 2

(ºC)

=IF(INDEX('All Data

Record'!I1:I,ARRAYFORMULA(MAX((row('All

Data Record'!I1:I))*--('All Data

Record'!I1:I<>""))))="Temperature 2 (°C)","-",

INDEX('All Data

Record'!I1:I,ARRAYFORMULA(MAX((row('All

Data Record'!I1:I))*--('All Data

Record'!I1:I<>"")))))

D21

Temperature 3

(ºC)

=IF(INDEX('All Data

Record'!J1:J,ARRAYFORMULA(MAX((row('All

Data Record'!J1:J))*--('All Data

Record'!J1:J<>""))))="Temperature 3 (°C)","-",

INDEX('All Data

Record'!J1:J,ARRAYFORMULA(MAX((row('All

Data Record'!J1:J))*--('All Data

Record'!J1:J<>"")))))

F21

62

The layout of “Real Time Data” tab was created as shown in Figure 3.48 to 3.50 below.

Line charts were used to display the change of the data readings throughout the day.

Figure 3.48: Screenshot of layout of Real Time Data tab (1 of 3)

Figure 3.49: Screenshot of layout of Real Time Data tab (2 of 3)

63

Figure 3.50: Screenshot of layout of Real Time Data tab (3 of 3)

To make the line charts refresh automatically every day, data of “today” need to be

extracted out from the tab named “All Data Record”. Then, the data to be displayed on

the line chart is selected from the range of cells which contains data of “today”. The

formula used to extract the data is as shown below. This formula is inserted in N3 cell

as shown in Figure 3.51.

Formula for extracting data of “today” from All Data tab:

=query('All Data Record'!A1:$J,"select * where A >= date

'"&TEXT(TODAY(),"yyyy-mm-dd")&"'",1)

64

Figure 3.51: Data of “today” extracted from All Data Record tab

On the tab named “Data on specific date”, user can view back the data history

by selecting from a list of dates. The layout of the tab is as shown in Figure 3.52 below.

The dropdown list feature on cell B1 in Figure 3.53 was created using Data Validation

function as shown in Figure 3.54. Next, user needs to click on add rule, then select

dropdown from a range. The range to be selected is the range of cells that record the

all the dates in All Data Record tab. The range for this case is ='All Data

Record'!A2:$A

Figure 3.52: Layout of Data on specific date tab

65

Figure 3.53: Date dropdown list

Figure 3.54: Data validation

66

Figure 3.55: Choosing Dropdown (from a range)

Then, the formula below is inserted in F3 cell. The data to be displayed on the line

chart is selected from the range of cells from N3 to column O.

Formula for extracting data based on date selected by user:

=query('All Data Record'!A1:$J,"select * where A = date

'"&TEXT(DATEVALUE(B3),"yyyy-mm-dd")&"'",1)

67

To view and compare the real time data of both FPV and GPV in a single

dashboard, another spreadsheet file was created. The spreadsheet file was named as

“GPV vs FPV”. Three tabs were created in this spreadsheet, namely “Real Time Data”,

“Data Comparison” and “Data log on Today”. The function of each tab on this sheet

file is explained in Table 3.12 below. The layout of the “Real Time Data” tab is as

shown in Figure 3.56 to 3.59 below.

Table 3.12: Function of the tabs in “FPV vs GPV” sheet

Tab Function

Real Time Data To show the latest data log. The latest data log is

extracted from the last row of “Data Log on Today”

tab.

Data Comparison To visualize the data change throughout the day with

line charts in bigger size. The graphs are automatically

refreshed every day.

Data Log on Today Data from FPV and GPV sheet files are imported to

this tab. Contains only data on today, and the data are

automatically refreshed every day.

68

Figure 3.56: Screenshot of layout of Dashboard tab for GPV vs FPV sheet (1 of 4)

69

Figure 3.57: Screenshot of layout of Dashboard tab for GPV vs FPV sheet (2 of 4)

70

Figure 3.58: Screenshot of layout of Real Time Data tab for GPV vs FPV sheet (3 of 4)

71

Figure 3.59: Screenshot of layout of Real Time Data tab for GPV vs FPV sheet (4 of 4)

72

The gauge charts were created using the steps aforementioned. Miniature charts below the data reading were created to visualize the change of the

data throughout the day. The formula to create the layout of “Real Time Data” tab is as shown in Table 3.13 and 3.14 below.

Table 3.13: Formulae to configure the Real Time Data tab for GPV

Data to be shown on Real

Time Data tab (GPV)

Formula Location of the cell to

insert the formula

Date =IF(INDEX('Data Log on Today'!A1:A,ARRAYFORMULA(MAX((row('Data Log

on Today'!A1:A))*--('Data Log on Today'!A1:A<>""))))="Date (dd/mm/yy)","-",

INDEX('Data Log on Today'!A1:A,ARRAYFORMULA(MAX((row('Data Log on

Today'!A1:A))*--('Data Log on Today'!A1:A<>"")))))

C4

Time =IF(INDEX('Data Log on Today'!B1:B,ARRAYFORMULA(MAX((row('Data Log

on Today'!B1:B))*--('Data Log on Today'!B1:B<>""))))="Time","-", INDEX('Data

Log on Today'!B1:B,ARRAYFORMULA(MAX((row('Data Log on

Today'!B1:B))*--('Data Log on Today'!B1:B<>"")))))

C5

Voltage (V) =IF(INDEX('Data Log on Today'!C1:C,ARRAYFORMULA(MAX((row('Data Log

on Today'!C1:C))*--('Data Log on Today'!C1:C<>""))))="Voltage (V)","-",

INDEX('Data Log on Today'!C1:C,ARRAYFORMULA(MAX((row('Data Log on

Today'!C1:C))*--('Data Log on Today'!C1:C<>"")))))

B26

Voltage miniature chart =SPARKLINE('Data Log on Today'!C5:C) B27

73

Current (A) =IF(INDEX('Data Log on Today'!D1:D,ARRAYFORMULA(MAX((row('Data Log

on Today'!D1:D))*--('Data Log on Today'!D1:D<>""))))="Current (A)","-",

INDEX('Data Log on Today'!D1:D,ARRAYFORMULA(MAX((row('Data Log on

Today'!D1:D))*--('Data Log on Today'!D1:D<>"")))))

D26

Current miniature chart =SPARKLINE('Data Log on Today'!D5:D) D27

Humidity (%) =IF(INDEX('Data Log on Today'!E1:E,ARRAYFORMULA(MAX((row('Data Log

on Today'!E1:E))*--('Data Log on Today'!E1:E<>""))))="Humidity (%)","-",

INDEX('Data Log on Today'!E1:E,ARRAYFORMULA(MAX((row('Data Log on

Today'!E1:E))*--('Data Log on Today'!E1:E<>"")))))

B38

Humidity miniature chart =SPARKLINE('Data Log on Today'!E5:E) B39

Ambient Temperature (ºC) =IF(INDEX('Data Log on Today'!F1:F,ARRAYFORMULA(MAX((row('Data Log

on Today'!F1:F))*--('Data Log on Today'!F1:F<>""))))="Ambient Temp (°C)","-",

INDEX('Data Log on Today'!F1:F,ARRAYFORMULA(MAX((row('Data Log on

Today'!F1:F))*--('Data Log on Today'!F1:F<>"")))))

D38

Ambient Temperature

miniature chart

=SPARKLINE('Data Log on Today'!F5:F) D39

Temperature 1 (ºC) =IF(INDEX('Data Log on Today'!G1:G,ARRAYFORMULA(MAX((row('Data Log

on Today'!G1:G))*--('Data Log on Today'!G1:G<>""))))="Temperature 1 (°C)","-",

B50

74

INDEX('Data Log on Today'!G1:G,ARRAYFORMULA(MAX((row('Data Log on

Today'!G1:G))*--('Data Log on Today'!G1:G<>"")))))

Temperature 1 miniature chart =SPARKLINE('Data Log on Today'!G5:G) B51

Temperature 2 (ºC) =IF(INDEX('Data Log on Today'!H1:H,ARRAYFORMULA(MAX((row('Data Log

on Today'!H1:H))*--('Data Log on Today'!H1:H<>""))))="Temperature 2 (°C)","-",

INDEX('Data Log on Today'!H1:H,ARRAYFORMULA(MAX((row('Data Log on

Today'!H1:H))*--('Data Log on Today'!H1:H<>"")))))

D50

Temperature 2 miniature chart =SPARKLINE('Data Log on Today'!H5:H) D51

Temperature 3 (ºC) =IF(INDEX('Data Log on Today'!I1:I,ARRAYFORMULA(MAX((row('Data Log on

Today'!I1:I))*--('Data Log on Today'!I1:I<>""))))="Temperature 3 (°C)","-",

INDEX('Data Log on Today'!I1:I,ARRAYFORMULA(MAX((row('Data Log on

Today'!I1:I))*--('Data Log on Today'!I1:I<>"")))))

B62

Temperature 3 miniature chart =SPARKLINE('Data Log on Today'!I5:I) B63

Table 3.14: Formulae to configure the Real Time Data tab for FPV

Data to be shown on Real

Time Data tab (FPV)

Formula Location of the cell to

insert the formula

Date =IF(INDEX('Data Log on Today'!K1:K,ARRAYFORMULA(MAX((row('Data

Log on Today'!K1:K))*--('Data Log on Today'!K1:K<>""))))="Date

I4

75

(dd/mm/yy)","-", INDEX('Data Log on

Today'!K1:K,ARRAYFORMULA(MAX((row('Data Log on Today'!K1:K))*--

('Data Log on Today'!K1:K<>"")))))

Time =IF(INDEX('Data Log on Today'!L1:L,ARRAYFORMULA(MAX((row('Data

Log on Today'!L1:L))*--('Data Log on Today'!L1:L<>""))))="Time","-",

INDEX('Data Log on Today'!L1:L,ARRAYFORMULA(MAX((row('Data Log

on Today'!L1:L))*--('Data Log on Today'!L1:L<>"")))))

I5

Voltage (V) =IF(INDEX('Data Log on Today'!M1:M,ARRAYFORMULA(MAX((row('Data

Log on Today'!M1:M))*--('Data Log on Today'!M1:M<>""))))="Voltage (V)","-

", INDEX('Data Log on Today'!M1:M,ARRAYFORMULA(MAX((row('Data

Log on Today'!M1:M))*--('Data Log on Today'!M1:M<>"")))))

H26

Voltage miniature chart =SPARKLINE('Data Log on Today'!M5:M) H27

Current (A) =IF(INDEX('Data Log on Today'!N1:N,ARRAYFORMULA(MAX((row('Data

Log on Today'!N1:N))*--('Data Log on Today'!N1:N<>""))))="Current (A)","-",

INDEX('Data Log on Today'!N1:N,ARRAYFORMULA(MAX((row('Data Log

on Today'!N1:N))*--('Data Log on Today'!N1:N<>"")))))

J26

Current miniature chart =SPARKLINE('Data Log on Today'!N5:N) J27

Humidity (%) =IF(INDEX('Data Log on Today'!O1:O,ARRAYFORMULA(MAX((row('Data

Log on Today'!O1:O))*--('Data Log on Today'!O1:O<>""))))="Humidity (%)","-

H38

76

", INDEX('Data Log on Today'!O1:O,ARRAYFORMULA(MAX((row('Data

Log on Today'!O1:O))*--('Data Log on Today'!O1:O<>"")))))

Humidity miniature chart =SPARKLINE('Data Log on Today'!O5:O) H39

Ambient Temperature (ºC) =IF(INDEX('Data Log on Today'!P1:P,ARRAYFORMULA(MAX((row('Data

Log on Today'!P1:P))*--('Data Log on Today'!P1:P<>""))))="Ambient Temp

(°C)","-", INDEX('Data Log on

Today'!P1:P,ARRAYFORMULA(MAX((row('Data Log on Today'!P1:P))*--

('Data Log on Today'!P1:P<>"")))))

J38

Ambient Temperature

miniature chart

=SPARKLINE('Data Log on Today'!P5:P) J39

Temperature 1 (ºC) =IF(INDEX('Data Log on Today'!R1:R,ARRAYFORMULA(MAX((row('Data

Log on Today'!R1:R))*--('Data Log on Today'!R1:R<>""))))="Temperature 1

(°C)","-", INDEX('Data Log on

Today'!R1:R,ARRAYFORMULA(MAX((row('Data Log on Today'!R1:R))*--

('Data Log on Today'!R1:R<>"")))))

H50

Temperature 1 miniature chart =SPARKLINE('Data Log on Today'!R5:R) H51

Temperature 2 (ºC) =IF(INDEX('Data Log on Today'!S1:S,ARRAYFORMULA(MAX((row('Data

Log on Today'!S1:S))*--('Data Log on Today'!S1:S<>""))))="Temperature 2

(°C)","-", INDEX('Data Log on

J50

77

Today'!S1:S,ARRAYFORMULA(MAX((row('Data Log on Today'!S1:S))*--

('Data Log on Today'!S1:S<>"")))))

Temperature 2 miniature chart =SPARKLINE('Data Log on Today'!S5:S) J51

Temperature 3 (ºC) =IF(INDEX('Data Log on Today'!T1:T,ARRAYFORMULA(MAX((row('Data

Log on Today'!T1:T))*--('Data Log on Today'!T1:T<>""))))="Temperature 3

(°C)","-", INDEX('Data Log on

Today'!T1:T,ARRAYFORMULA(MAX((row('Data Log on Today'!T1:T))*--

('Data Log on Today'!T1:T<>"")))))

H62

Temperature 3 miniature chart =SPARKLINE('Data Log on Today'!T5:T) H63

Water Temperature (ºC) =IF(INDEX('Data Log on Today'!Q1:Q,ARRAYFORMULA(MAX((row('Data

Log on Today'!Q1:Q))*--('Data Log on Today'!Q1:Q<>""))))="Water Temp

(°C)","-", INDEX('Data Log on

Today'!Q1:Q,ARRAYFORMULA(MAX((row('Data Log on Today'!Q1:Q))*--

('Data Log on Today'!Q1:Q<>"")))))

J62

Water Temperature miniature

chart

=SPARKLINE('Data Log on Today'!Q5:Q) J63

78

The information on this spreadsheet is linked from the previous spreadsheet files-“GPV data” and “FPV data”. This was achieved using the

IMPORTRANGE formula as shown in the Table 3.15 below. The text in green colour is the URL link of the “GPV data” and “FPV data”

spreadsheet file, and the text in orange is the range of the cells to be copied. This formula was entered in “Data Log on Today” tab. With this

formula, the data from the “Real Time Data” tab of “FPV data” and “GPV data” sheet can then be imported to this spreadsheet.

Table 3.15: Formulae for importing data from FPV data sheet and GPV data sheet

Function Formula Location of

the cell to

insert the

formula

Import

data from

GPV

sheet

=IMPORTRANGE("https://docs.google.com/spreadsheets/d/1qKn2gYADXMVUAtuShwHSQmFZ3oVL6GGmEco3ea4-

2qI/edit#gid=1673341961", "Real Time Data!O1:W")

K2

Import

data from

FPV

sheet

=IMPORTRANGE("https://docs.google.com/spreadsheets/d/1P2aIakEACvnCPuFFa0lgN8z-

CcwsqbvxoWirtJgYu0w/edit#gid=1673341961","Real Time Data!N1:W")

A2

79

Figure 3.60: Importing data from GPV and FPV spreadsheet

80

On the “Data Comparison” tab, the line charts were created with data range from “Data Log on Today” tab. The layout of the line chart is as shown

in Figure 3.61 to 3.64 below.

Figure 3.61: Screenshot of line charts in Data Comparison tab (1 of 4)

81

Figure 3.62: Screenshot of line charts in Data Comparison tab (2 of 4)

82

Figure 3.63: Screenshot of line charts in Data Comparison tab (3 of 4)

83

Figure 3.64: Screenshot of line charts in Data Comparison tab (4 of 4)

84

3.8.4 Configuration of NodeMCU

NodeMCU has to be programmed in Arduino IDE software to connect to the desired

WI-FI or Internet. Figure 3.65 below shows how WI-FI name and password added in

the code. Next, user needs to add the deployment ID obtained from the Apps script

web app deployment. For GPV system, the complete coding for NodeMCU is attached

in Appendix I, which user needs to use it to programme NodeMCU in Arduino IDE

software. Whereas for FPV system, the complete coding is attached in Appendix J.

Figure 3.65: Locations where WI-FI name, WI-FI password and Apps Script

deployment ID are entered

85

3.9 Conversion of Data Collected on Micro SD Card to Excel

The data collected in micro SD card is in the text file format as shown in Figure 3.66

below. To convert the file to excel format, the data is copied and pasted into an Excel

sheet.

Figure 3.66: Copying data from text file

Figure 3.67: Pasting data in Excel sheet

86

The data copied are all contained in a single column. To separate the data into different

columns, user needs to go to Data tab and select Text to Columns.

Figure 3.68: Selecting Text to Columns

Then, select Delimited from the pop-out box. Click Next and select Other for

Delimiters. Type “|” symbol beside the box of Other.

87

Figure 3.69: Selecting Delimited file type

Figure 3.70: Selecting Other and insert “|” symbol

88

Figure 3.71: Finishing the Text to Columns setting

Click Next and Finished. The data can now be separated into different columns as

shown in Figure 3.72.

Figure 3.72: Data in text file converted into columns

89

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, the data obtained from the data monitoring system were analysed. The

problems encountered and possible root causes leading to the problems were also

discussed in the following section.

4.2 Result Analysis

4.2.1 Voltage and Current Calibration Results

The formula for calculating Average Percentage Error is

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟

=
∑ {

|𝐴𝑟𝑑𝑢𝑖𝑛𝑜 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑒𝑎𝑑𝑖𝑛𝑔|
𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑒𝑎𝑑𝑖𝑛𝑔

× 100%}𝑁
𝑖=1

𝑁

Whereas the formula for calculating Root Mean Square value is

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 = √∑ (𝐴𝑟𝑑𝑢𝑖𝑛𝑜 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑒𝑎𝑑𝑖𝑛𝑔)𝑁
𝑖=1

2

𝑁

where Actual Readings were obtained from IV plotter device.

The analysis result is as shown in Table 4.1 and 4.2 and Figure 4.1 to 4.16 below.

90

Table 4.1: Voltage and current percentage errors

Arduino

system

Voltage measurement Current measurement

Average

percentage

error before

calibration

(%)

Average

percentage

error after

calibration

(%)

Average

percentage

error before

calibration

(%)

Average

percentage

error after

calibration

(%)

For Floating

PV

8.98 1.06 2.21 1.46

For Ground

PV

5.84 0.70 6.18 1.26

Table 4.2: Voltage and current root mean square errors

Arduino

system

Voltage measurement Current measurement

Root Mean

Square Error

before

calibration

(V)

Root Mean

Square

Error after

calibration

(V)

Root Mean

Square Error

before

calibration

(A)

Root Mean

Square Error

after

calibration

(A)

For Floating

PV

1.70 0.21 0.08 0.06

For Ground

PV

1.08 0.13 0.21 0.05

The formulae for calibrating the voltage and current values are as shown below. These

formulas are added into the coding attached in Appendix G and Appendix H.

Table 4.3: Corrective formulae for calibrating the voltage and current values

Arduino Coefficient for

calibrating

voltage value

Coefficient for calibrating current value

For Floating PV vIN = 0.9176*vIN; currentValue = 1.0107*currentValue;

For Ground PV vIN = 0.9448*vIN; currentValue = 0.9771*currentValue - 0.0946;

91

IV plotter voltage measurement vs Arduino voltage measurement before calibration

(FPV):

Figure 4.1: IV plotter voltage vs Arduino voltage before calibration (FPV)

Figure 4.2: 37 sets of IV plotter voltage and Arduino voltage readings

comparison before calibration (FPV)

92

IV plotter voltage measurement vs Arduino voltage measurement after calibration

(FPV):

Figure 4.3: IV plotter voltage vs Arduino voltage after calibration (FPV)

Figure 4.4: 33 sets of IV plotter voltage and Arduino voltage readings

comparison (FPV)

93

IV plotter current measurement vs FPV current measurement before calibration (FPV):

Figure 4.5: IV plotter current vs Arduino current before calibration (FPV)

Figure 4.6: 37 sets of IV plotter current and Arduino current readings

comparison before calibration (FPV)

94

IV plotter current measurement vs FPV current measurement after calibration (FPV):

Figure 4.7: IV plotter current vs Arduino current after calibration (FPV)

Figure 4.8: 27 sets of IV plotter current and Arduino current readings

comparison after calibration (FPV)

95

IV plotter voltage measurement vs Arduino voltage measurement before calibration

(GPV):

Figure 4.9: IV plotter voltage vs Arduino voltage before calibration (GPV)

Figure 4.10: 22 sets of IV plotter voltage and Arduino voltage readings

comparison before calibration (GPV)

96

IV plotter voltage measurement vs Arduino voltage measurement after calibration

(GPV):

Figure 4.11: IV plotter voltage vs Arduino voltage after calibration (GPV)

Figure 4.12: 31 sets of IV plotter voltage and Arduino voltage readings

comparison after calibration (GPV)

97

IV plotter current measurement vs Arduino current measurement before calibration

(GPV):

Figure 4.13: IV plotter current vs Arduino current before calibration (GPV)

Figure 4.14: 27 sets of IV plotter current and Arduino current readings

comparison before calibration (GPV)

98

IV plotter current measurement vs Arduino current measurement after calibration

(GPV):

Figure 4.15: IV plotter current vs Arduino current after calibration (GPV)

Figure 4.16: 29 sets of IV plotter current and Arduino current readings

comparison after calibration (GPV)

99

4.2.2 DHT11 and DS18B20 Sensors Calibration Results

Table 4.4 below shows the error in degree Celsius of the DS18B20 sensors, with the

readings from Fluke’s thermometer as reference readings.

Table 4.4: Temperature sensor accuracy analysis result

Sensor From FPV From Ground PV

Average

error (℃)

Percentage

error (%)

Average error

(℃)

Percentage

error (%)

DHT11 sensor 0.95 3.08 1.36 4.15

DS18B20 sensor

1

0.07 0.22 0.04 0.13

DS18B20 sensor

2

0.11 0.32 0.24 0.69

DS18B20 sensor

3

0.16 0.46 0.09 0.29

DS18B20 water-

proof sensor

0.02 0.07 Not applicable Not applicable

In general, the DS18B20 sensors are having average error less than 1 ℃ and

percentage error of less than 1 %. Therefore, no calibration was done on these sensors.

However, both DHT11 sensors were having larger percentage error. The DHT11

sensors were then replaced with new one and the average errors were lowered to less

than 1 ℃.

100

4.2.3 Data Monitoring and Data Collection System

Figure 4.17 to 4.23 below show the data collected from FPV system on Google

Spreadsheet on 19 April 2023, from 9.30 am to 5.22 pm.

Figure 4.17: Screenshot of FPV data and GPV data on Google Spreadsheet (1 of

3)

101

Figure 4.18: Screenshot of FPV data and GPV data on Google Spreadsheet (2 of

3)

Figure 4.19: Screenshot of FPV data and GPV data on Google Spreadsheet (3 of

3)

Figure 4.20: Graph of voltage and graph of current against time

102

Figure 4.21: Graph of humidity and ambient temperature against time

Figure 4.22: Graph of temperature 1 and graph temperature 2 against Time

103

Figure 4.23: Graph of temperature 3 and graph of water temperature against

Time

Figure 4.20 to 4.23 above proved that the data monitoring systems for FPV and GPV

were able to transmit data to the Internet and then to the Google Spreadsheet. The data

were received consistently between interval of 2 minutes for around 8 hours. There

were no stoppages shown on the graphs, which proved that the sensors were working

fine and do not have malfunction issue.

 Throughout the days of the operation of the data monitoring systems, it was

estimated that at fully charged condition, the 10 000 mAh power bank can last for more

than 8 hours, while the phone used for sharing hotspot can last for around 8 hours. At

the same time, network data usage was averagely 0.37 GB per day.

4.2.4 Data Analysis and Comparison Between FPV and GPV

To analyse the performance of the FPV and GPV system, maximum obtainable power,

𝑃𝑚𝑝 is calculated. However, the information of Fill Factor is required. Fill factor is the

ratio of Actual Maximum Obtainable Power, 𝑃𝑚𝑝 to the product of Open Circuit

Voltage, 𝑉𝑜𝑐 and Short Circuit Current, 𝐼𝑠𝑐. Fill Factor was obtained using IV plotter

device. The average fill factor, FF is 0.673. With the information of fill factor obtained,

the maximum obtainable power is calculated with the formula below.

𝑃𝑚𝑝 = 𝐹𝐹 × 𝑉𝑜𝑐 × 𝐼𝑠𝑐

Where

𝑉𝑜𝑐 = 𝑂𝑝𝑒𝑛 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 𝑉𝑜𝑙𝑡𝑎𝑔𝑒, 𝑉

𝐼𝑠𝑐 = 𝑆ℎ𝑜𝑟𝑡 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 𝐶𝑢𝑟𝑟𝑒𝑛𝑡, 𝐴

𝐹𝐹 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹𝑖𝑙𝑙 𝐹𝑎𝑐𝑡𝑜𝑟

𝑃𝑚𝑝 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑂𝑏𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑃𝑜𝑤𝑒𝑟, 𝑊

104

The daily energy yield is then calculated using the formula below.

𝐷𝑎𝑖𝑙𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 𝑦𝑖𝑒𝑙𝑑 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑚𝑝 × 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛

Figure 4.27 below shows Open Circuit Voltage for FPV and GPV system on 17 March

2023 tabulated in graph.

Figure 4.24: Graph of Open Circuit Voltage against Time

Figure 4.25 below shows Short Circuit Current for FPV and GPV system on 17 April

2023 tabulated in graph.

Figure 4.25: Graph of Short Circuit Current against Time

105

Figure 4.26 below shows Maximum Obtainable Power for FPV and GPV system on

17 March 2023 tabulated in graph.

Figure 4.26: Graph of Maximum Obtainable Power against Time

Figure 4.27: Graph of Humidity against Time

106

Figure 4.28: Graph of Ambient Temperature against Time

Figure 4.29: Graph of Temperature 1 against Time

107

Figure 4.30: Graph of Temperature 2 against Time

Figure 4.31: Graph of Temperature 3 against Time

108

Figure 4.32: Graph of Water Temperature against Time

On 17 April 2023, the Open Circuit Voltage of FPV was slightly higher than

that of GPV. The highest 𝑉𝑜𝑐 value from FPV was 19.67 V, whereas for GPV the value

was 19.39 V. Furthermore, the Short Circuit Current of FPV was slightly higher than

that of GPV one. The highest 𝐼𝑠𝑐 value from FPV was 4.64. A, whereas for GPV the

value was 4.61 A. For Maximum Obtainable Power, the value from FPV was higher

than GPV. The highest 𝑃𝑚𝑝 value from FPV was 58.46 W, whereas for GPV the value

was 57.49 W. Moreover, the daily energy yield for FPV is 199.83 Wh, and 197.38 Wh

for GPV. Figure 4.25 shows that before 9.52 am, the GPV Short Circuit Current

readings were way lower than that of FPV. This was due to blockage of sunlight by

lamp pole at the road side.

Table 4.5 below summarize the highest data reading of Humidity, Ambient

Temperature, Temperature 1, Temperature 2, and Temperature 3 on 17 March 2023.

Table 4.5: Highest data reading of FPV system and GPV system

Type of

PV

system

Highest

Humidity

(%)

Highest

Ambient

Temperature

(ºC)

Highest

Temperature

1 (ºC)

Highest

Temperature

2 (ºC)

Highest

Temperature

3 (ºC)

FPV 97 42.9 65.38 69.06 62.31

GPV 95 45.9 66.13 73.50 65.50

109

Generally, it can be observed that Temperature 2 on both FPV and GPV was

higher than Temperature 1 and Temperature 3. This indicates that the centre of PV

panel is hotter than the corners of PV panel. This could be due to heat dissipated by

the aluminium frame of PV panel. Meanwhile, the highest reading of Temperature 1

was higher than Temperature 3 on FPV. This could mean that heat dissipates better at

the bottom of floating PV since it is closer to water surface. In the other hand, the

average reading of Temperature 1 was only slightly higher than Temperature 3 on GPV.

This could mean worse heat dissipation at the bottom of ground type PV as there is

limited space for air flow as compared to FPV. Although the highest humidity of FPV

reached 97 %, the humidity level on GPV throughout the day was still higher than FPV

as observed in Figure 4.27. The ambient temperature of GPV was also higher than that

of FPV throughout the day.

 According to the datasheet of the PV panel in Appendix C, the rated Short

Circuit Current is 5.17 A. However, the highest Short Circuit Current value on both

FPV and GPV sometimes exceeded 5.17 A. Since the 𝐼𝑠𝑐 values from both FPV and

GPV were during noon time, one possible reason could result this high 𝐼𝑠𝑐 value. The

rated 𝐼𝑠𝑐 value stated in datasheet may be based on solar irradiance of 1000 W/m2, but

the actual solar irradiance on certain period of the day exceeded this value. Therefore

resulting higher 𝐼𝑠𝑐 value.

4.2.5 Comparison Between Data Collected on IoT System and Micro SD Card

To analyse the amount of variation between the data recorded in SD card and data

recorded in the IoT system, which is Google Spreadsheet, percentage of data loss for

each day was calculated. When percentage of data loss is greater than zero, there might

be some issue in the data recording in the IoT system. The formula is as shown below:

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑙𝑜𝑠𝑠 (%)

=
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑙𝑜𝑠𝑡 𝑖𝑛 𝐼𝑜𝑇

𝑡𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑎𝑡𝑎(𝑓𝑟𝑜𝑚 𝑆𝐷 𝑐𝑎𝑟𝑑)
× 100%

110

Table 4.6 below summarize the percentage of data loss of the IoT system and problems

leading to percentage of data lost greater than zero for a total of seven days from 18

March 2023 to 24 March 2023. Table 4.7 summarizes the problems, their possible root

causes and solutions.

Table 4.6: IoT system percentage of data loss

Date FPV

percentage of

data lost (%)

Problem GPV

percentage of

data lost (%)

Problem

18 March

2023

0.41 -1 row of data

was skipped in

IoT system

1.24 -3 rows of data

were skipped

in IoT system

19 March

2023

6.44 -7 rows of data

were skipped

in IoT system

-Multiple rows

of data were

shifted;

43.32 -Data

suddenly stop

updated on

IoT system at

2.06 pm

20 March

2023

0.90 -2 rows of data

were skipped

in IoT system

0.45 -1 row of data

was skipped in

IoT system

21 March

2023

3.12 - 3 rows of data

were skipped

in IoT system;

-Multiple rows

of data were

shifted;

0 -

22 March

2023

0 - 0.44 -1 row of data

was skipped in

IoT system

23 March

2023

3.69 -1 row of data

was skipped in

IoT system;

0.42 -1 row of data

was skipped in

IoT system

111

-Multiple rows

of data were

shifted

24 March

2023

0.49 -1 row of data

was skipped in

IoT system

0.49 -1 row of data

was skipped in

IoT system

Table 4.7: Problems, possible root causes and solution on data logging in IoT

system

Problem Possible Root Cause(s) Solution

Time delay of 1 minute

for data to appear in IoT

Slow processing time for

data sent from Arduino to

NodeMCU then to the IoT

platform

Replace Arduino and

NodeMCU to a single

microcontroller that has

decent processing

capability and WI-FI chip

to save the processing time

Data lost due to data sent

from NodeMCU to

Google sheet being

skipped

Google sheet API service

outage or Google server is

temporarily unavailable

Not available

Network connectivity

issue

Improve network

connectivity of NodeMCU

by placing NodeMCU to a

spot with better network

coverage.

Choose better internet

service provider.

Both NodeMCU devices

competing for the hotspot

signal

Use high speed internet

service

Data lost due to multiple

rows of data being shifted

Network connectivity

issue

Improve network

connectivity with

solutions mentioned above

112

Both NodeMCU devices

competing for the hotspot

signal

Use high speed internet

service

Data lost due to sudden

stop of data updating in

Google sheet

Goggle sheet API service

outage or Google server is

temporarily unavailable

Not available

Network connectivity

issue

Improve network

connectivity with

solutions mentioned above

Both NodeMCU devices

competing for the hotspot

signal

Use high speed internet

service

Loose wire connection on

VCC, GND, TX and RX

pin on NodeMCU board

Replace jumper wire with

male pin heads soldered on

the PCB, then directly

plug-in the entire

NodeMCU board’s I/O pin

onto those pin heads for

more secure connection

Several reasons could lead to data sent from NodeMCU to Google sheet being skipped.

The first reason is service outages, where either the Goggle sheet API or internet

service used by NodeMCU is facing disruptions, data may not be sent or recorded

properly. The next reason is network connectivity issue where NodeMCU is not

properly connected to the internet. One possible reason to this is PV panel causing

blockage of network signal. This is likely to happen because the whole hardware

system was placed under the solar PV panel to prevent direct sunlight. However the

consequence could be network signal being blocked from transmitting from the phone

to the NodeMCU. Furthermore, both NodeMCU devices may be competing for the

hotspot signal, resulting slower network connection.

When NodeMCU fails to send data to Google sheet after a long while, the issue

elevates to multiple rows of data being shifted as shown in Figure 4.33 below. This is

due to large amount of data sent from Arduino accumulated in NodeMCU memory

113

storage and NodeMCU fails to decode the data properly. The issue resolved itself once

the network connectivity gets back to normal.

Figure 4.33: Multiple rows of data being shifted in Google sheet

 As for the issue of sudden stop of data updates from NodeMCU to Google

sheet, the above-mentioned factors can contribute to this problem. However, it can also

be due to loosen wire connection on VCC, GND, TX and RX pin on NodeMCU. Loose

connection on VCC or GND results unstable power supply. Insufficient or unstable

power supply could NodeMCU to shut down and stop working. While loose

connection on TX and RX pin results data sent from Arduino being disrupted. The root

cause to loosen wire connection can be due to strong wave movement of the lake

during windy weather. Since the connection of the pins on NodeMCU board are not

soldered, when the floater wiggles the wire connection can become loose.

114

4.3 Challenge Encountered

Table 4.8 below summarizes the challenges faced in this project and how they were

solved.

Table 4.8: Challenges faced in this project and their solutions

Challenges Possible Root

Cause(s)

Solution/Suggestion

SD card module failed to

initialize and record data

into SD card

-Too may sensors

connected to the

circuit.

-Sensors were extended

with wires that are too

long

Finalized hardware

configuration to three

DS18B20 sensors extended

with wire length not more

than 1.5 metres.

NodeMCU failed to turn on

and function

Change of accuracy of

voltage and current reading

Happens when there is

change of hardware

configuration

Do calibration on the

voltage and current reading

after finalizing the hardware

configuration

Burn out of crocodile clip

cable used for measuring

open circuit voltage and

short circuit current of PV

panel

Bad electrical

connection due to

rusting on iron

crocodile clip

Use better connectors that

are water-proof and rust-

proof such as MC4

connectors and copper

crocodile clips

High current flow from

PV panel to crocodile

clip cable

Use copper wire with higher

copper diameter or higher

American Wire Gauge

(AWG) size according to

the current rating of PV

panel

Inaccurate voltage and

current reading

Change of power bank

model resulting change

of VCC value

Use high quality and same

power bank model for both

FPV and GPV

115

Power bank deterioration Power bank operating

under high temperature

and humidity

environment

Look for power bank

placement spot that has

good ventilation and

optimal operating

temperature

The hardware system was initially equipped with six DS18B20 temperature sensors

that were extended with wires of 1.5 metres long. When there are many extended

temperature sensor in the system, the other components may not be working properly.

This can be due to too much current drawn by the long wires, resulting insufficient

current flow to the components. For example, SD card module would fail to initialize

and record data into SD card. Even if it successfully initialized, the data recording

would still fail when relay is switched on. Once relay is switched on it will draw some

current from the circuit. The ESP8266 NodeMCU could also be affected by this issue

and would fail to turn on. After some trial and error, the hardware configuration was

finalized with three DS18B20 temperature sensors with extended wires of around 1.5

metres. This finalized version was able to work without issue for most of the time.

 When changes are made on the hardware configuration, the voltage drop across

the components on the circuit can be affected. While most of the components are still

workable if the voltage supplied is within the rated VCC range, the change of voltage

drop can affect the accuracy of voltage and current reading. The calculation of voltage

and current value in Arduino requires the input of VCC value. If the actual VCC value

changed, it can directly affect the accuracy of these two readings. Therefore, the

voltage and current reading may need to be calibrated again if there are any changes

made on the hardware configuration that resulted change of voltage drop.

 The next issue is crocodile clip cable burn out after around one month of data

collection. The crocodile clip cable that burnt out was the one connecting to the

positive pole of ground PV panel. Figure 4.34 below shows the burnt out cable that

was broken into two pieces. Bad electrical connection due to rusting on iron metal, and

high current flow can cause short circuit and burn out the wire. Copper is a type of

noble metal and therefore does not get corroded. It was observed that the crocodile clip

was corroded as it is made from iron metal and it can absorb moisture from the air.

116

Furthermore, it was noticed that the positive crocodile clip cable from GPV experience

corrosion quicker than FPV one. It could be due to higher humidity environment since

the system was installed on grass land instead of concrete land.

Figure 4.34: Burnt and broken crocodile clip cable from GPV

Figure 4.35: Rusted Crocodile Clip on GPV after one week

117

Moreover, the accuracy of voltage and current reading can be affected by the

model or type of power bank. It is suspected due to difference in voltage supply to the

Arduino Mega microcontroller when using different power bank model.

 The last issue is power bank deterioration. The issue was noticed when the IoT

platform stopped updating GPV data. When checked, the power bank’s LED battery

indicator light shows only one light and was discharged quicker than usual even though

it has been fully charged. The power bank was replaced with another one and the same

issue was encountered. This could be due to power bank operating under high

temperature and humidity environment. According to the datasheet of the power bank,

the operating temperature is 0 – 40 ºC for discharge. This indicates that temperature

out of this range can damage the power bank, or it may not work according to the

specifications. The power bank was placed under the solar panel to avoid expose to

direct sunlight. However, since the location has bad ventilation, the temperature of the

bottom of PV panel could also be higher than the operating temperature. Furthermore,

to avoid water damage, the power bank was put in a zip bag. This may further worsen

the issue as heat would trap in the zip bag. Power bank placement spot that has good

ventilation and optimal operating temperature.

4.4 Cost Analysis

Table 4.9: Cost of Components and Consumables

Components and

consumables

Quantity Cost

per

unit

(RM)

Total

Cost

(RM)

Vendor

Arduino Mega 2560 R3

with cable

2 69.50 139.00 Techmakers (Shopee)

ESP8266 NodeMCU V3

CH340

2 18.20 36.40 SGROBOT (Shopee)

https://shopee.com.my/Arduino-Mega-2560-Compatible-with-CH340G-ATMega-ATMega2560-ATMEL-Development-TechMakers-i.55645224.1831318618?sp_atk=798be2a1-3637-4ba1-930e-9cf3a0f7f93d&xptdk=798be2a1-3637-4ba1-930e-9cf3a0f7f93d
https://shopee.com.my/NodeMCU-Lua-V3-ESP8266-IoT-Lua-LoLin-WIFI-Development-Board-CH340-i.33287405.815152961?sp_atk=3094120c-74ac-4947-a1f6-41f2cc56ce46&xptdk=3094120c-74ac-4947-a1f6-41f2cc56ce46

118

Micro USB cable 1 5.00 5.00 iConTech

Component

ACS712 hall effect

current sensor 5A

2 6.50 13.00 Sainapse (Shopee)

DS18B20 temperature

sensor

6 3.30 19.80 TGElectronic.

(Shopee)

DS18B20 temperature

sensor module

(waterproof)

1 10.90 10.90 SGROBOT (Shopee)

DHT11 humidity sensor

module with LED

2 4.80 9.60 littlecraft (Shopee)

OLED display module

(128x64)

2 12.50 25.00 Techmakers (Shopee)

DS3231 AT24C32 RTC

module with battery

2 15.90 31.80 SGROBOT (Shopee)

Micro SD Card Adapter

Reader Module

2 4.30 8.60 SGROBOT (Shopee)

SanDisk Ultra Micro SD

card 16 GB

2 17.90 35.80 PCByte (Shopee)

Resistors 30k ohm (10psc) 1 1.00 1.00 Techmakers (Shopee)

Resistors 7.5k ohm

(10psc)

1 1.00 1.00 Techmakers (Shopee)

Resistors 4.7k ohm

(10psc)

1 1.00 1.00 Techmakers (Shopee)

Resistors 2.2k ohm

(10psc)

1 1.00 1.00 Techmakers (Shopee)

5V SPDT Relay 2 1.20 2.40 Techmakers (Shopee)

1N4142 Diode 2 0.20 0.40 Techmakers (Shopee)

2N2222 NPN Transistor 2 0.30 0.60 SYNACORP

@STELECTRONIC

S (Shopee)

https://shopee.com.my/Micro-USB-Cable-Max-3A-Current-0.3MM-Thickness-cover-Compatible-for-ESP32-CABLE-ESP8266-CABLE-MicroUSB-Cable-i.187266709.12526216760
https://shopee.com.my/Micro-USB-Cable-Max-3A-Current-0.3MM-Thickness-cover-Compatible-for-ESP32-CABLE-ESP8266-CABLE-MicroUSB-Cable-i.187266709.12526216760
https://shopee.com.my/ACS712-Hall-Current-Sensing-Sensor-Module-5A-20A-30A-i.8822702.1307930145
https://shopee.com.my/DS18B20-Digital-Temperature-Sensor-55%C2%B0C~125%C2%B0C-Programmable-Resolution-1-Wire-Digital-Thermometer-i.288248630.4948549637
https://shopee.com.my/DS18B20-Digital-Temperature-Sensor-55%C2%B0C~125%C2%B0C-Programmable-Resolution-1-Wire-Digital-Thermometer-i.288248630.4948549637
https://shopee.com.my/Waterproof-Temperature-Probe-Sensor-DS18b20-Module-Kit-For-Arduino-i.33287405.2454366076?sp_atk=bed6a83c-b195-4596-9802-27bee206cc47&xptdk=bed6a83c-b195-4596-9802-27bee206cc47
https://shopee.com.my/DHT11-DHT22-Temperature-Humidity-Sensor-For-Arduino-Robotics-Raspberry-i.6674515.177063999
https://shopee.com.my/4-Pin-0.96-1.3-White-Blue-Yellow-blue-0.96-1.3-inch-128X64-OLED-Display-Module-0.96-IIC-I2C-Communicate-for-Arduino-i.55645224.1972947676?sp_atk=593a9ddd-d39e-4170-be04-a7b75c85df58&xptdk=593a9ddd-d39e-4170-be04-a7b75c85df58
https://shopee.com.my/Arduino-DS3231-AT24C32-IIC-I2C-RTC-Real-Time-Clock-Module-With-Battery-i.33287405.462077764?sp_atk=8d447363-13bc-4f4e-b794-1bac81b7b3d7&xptdk=8d447363-13bc-4f4e-b794-1bac81b7b3d7
https://shopee.com.my/Arduino-SPI-ICSP-interface-Micro-SD-Card-Adapter-Reader-Module-i.33287405.2002769531?sp_atk=f5cf3222-dcdd-4802-995c-1bda51e7bcc5&xptdk=f5cf3222-dcdd-4802-995c-1bda51e7bcc5
https://shopee.com.my/SanDisk-Ultra-MicroSDHC-XC-UHS-I-Memory-Card-(16GB-32GB-64GB-128GB)-i.65736936.2455376355?sp_atk=e42fcdd5-8cdf-4d84-aa88-62c3950786e1&xptdk=e42fcdd5-8cdf-4d84-aa88-62c3950786e1
https://shopee.com.my/10-pcs-of-Resistor-1-0.25W-3-30-300-3K-30K-300K-3M-ohm-1-4-0.25-Watt-Metal-Film-Resistance-Perintang-i.55645224.14414367235?sp_atk=a0574bf6-4082-41f1-9c32-35272c05e3d1&xptdk=a0574bf6-4082-41f1-9c32-35272c05e3d1
https://shopee.com.my/10-pcs-of-Resistor-1-0.25W-7.5-75-750-7.5K-75K-750K-ohm-1-4-0.25-Watt-Metal-Film-Resistance-Perintang-i.55645224.7415060922?sp_atk=c3ffd236-f5e3-4f4f-98e3-d497e8438e53&xptdk=c3ffd236-f5e3-4f4f-98e3-d497e8438e53
https://shopee.com.my/10-pcs-of-Resistor-1-0.25W-4.7-47-470-4.7K-47K-470K-ohm-1-4-0.25-Watt-Metal-Film-Resistance-Perintang-i.55645224.5214957893?sp_atk=8c8d66e9-9441-42ee-90b0-dd9d90f3c721&xptdk=8c8d66e9-9441-42ee-90b0-dd9d90f3c721
https://shopee.com.my/10-pcs-of-Resistor-1-0.25W-2.2-22-220-2.2K-22K-220K-ohm-1-4-0.25-Watt-Metal-Film-Resistance-Perintang-i.55645224.5114934948?sp_atk=45a7e331-00cb-47f7-a6ad-b07051daad5d&xptdk=45a7e331-00cb-47f7-a6ad-b07051daad5d
https://shopee.com.my/5-PINS-Single-SPDT-Relay-SRD-5V-9V-12V-24V-DC-10A-TechMakers-i.55645224.1841911425?sp_atk=a5222a0f-ffc9-4f86-8880-184c5c71c566&xptdk=a5222a0f-ffc9-4f86-8880-184c5c71c566
https://shopee.com.my/1N4148-Signal-Switching-Diode-i.55645224.1834011280
https://shopee.com.my/2N2222-Transistor-NPN-TO92-i.23949362.864949505?sp_atk=218e9f6d-e312-40e3-98d9-3b356397e6d0&xptdk=218e9f6d-e312-40e3-98d9-3b356397e6d0
https://shopee.com.my/2N2222-Transistor-NPN-TO92-i.23949362.864949505?sp_atk=218e9f6d-e312-40e3-98d9-3b356397e6d0&xptdk=218e9f6d-e312-40e3-98d9-3b356397e6d0
https://shopee.com.my/2N2222-Transistor-NPN-TO92-i.23949362.864949505?sp_atk=218e9f6d-e312-40e3-98d9-3b356397e6d0&xptdk=218e9f6d-e312-40e3-98d9-3b356397e6d0

119

Dupont Jumper wires

20cm male to female

(40pcs)

1 2.70 2.70 littlecraft (Shopee)

Dupont Jumper wires

20cm male to male

(40pcs)

1 2.80 2.80 Autobotics (Shopee)

Soft silicon wire AWG 20

Black (3 mteres)

1 3.00 3.00 idroNation (Shopee)

Soft silicon wire AWG 20

Red (3 mteres)

1 3.00 3.00 idroNation (Shopee)

Multicore copper wires

AWG 20 Black (1 metre)

3 1.70 5.10 HITECTRONS SDN

BHD

Multicore copper wires

AWG 20 Red (1 metre)

3 1.70 5.10 HITECTRONS SDN

BHD

Multicore wires AWG 28

Red (1 metre)

15 0.80 12.00 Techmakers (Shopee)

Multicore wires AWG 28

Blue (1 metre)

15 0.80 12.00 Techmakers (Shopee)

Multicore wires AWG 28

Black (1 metre)

15 0.80 12.00 Techmakers (Shopee)

Single core wire AWG 26

(1 metre)

3 0.50 1.50 Techmakers (Shopee)

40 pin single row female

pin header

1 0.50 0.50 Autobotics (Shopee)

2 pin screw terminal block 2 0.20 0.40 Autobotics (Shopee)

Crocodile clip (10psc) 1 8.50 8.50 HITECTRONS SDN

BHD

830-hole Breadboard 2 3.75 7.50 iConTech

Component (Shopee)

PCB board (FOC) 2 0.00 0.00 UTAR Kampar EE

Lab

Cable tie 3x100mm

(100pcs)

1 1.50 1.50 Mr. DIY

https://shopee.com.my/Arduino-Dupont-Jumper-Wire-40-Way-2.54mm-10cm-20cm-30cm-Male-to-Male-Male-to-Female-Female-to-Female-i.6674515.16877193984
https://shopee.com.my/Male-to-Male-Arduino-Breadboard-Dupont-Jumper-Wires-(40p-20cm)-i.6641351.859469251
https://shopee.com.my/Soft-Silicone-Flexi-Flexible-Multicore-Wire-Cable-Black-Red-Drone-DIY-Electric-Electronic-AWG-8-10-12-14-16-20-24-26-28-i.61111659.1218380977
https://shopee.com.my/Soft-Silicone-Flexi-Flexible-Multicore-Wire-Cable-Black-Red-Drone-DIY-Electric-Electronic-AWG-8-10-12-14-16-20-24-26-28-i.61111659.1218380977
https://shopee.com.my/1-meter-1007-Electronic-Wire-28-AWG-Polyethylene-Environmental-Protection-Wire-Tinned-Copper-Wire-i.55645224.17237077386
https://shopee.com.my/1-meter-1007-Electronic-Wire-28-AWG-Polyethylene-Environmental-Protection-Wire-Tinned-Copper-Wire-i.55645224.17237077386
https://shopee.com.my/1-meter-1007-Electronic-Wire-28-AWG-Polyethylene-Environmental-Protection-Wire-Tinned-Copper-Wire-i.55645224.17237077386
https://shopee.com.my/Wire-1-to-100-Meter-Single-Core-1.5-0.5mm-(26AWG)-or-1-0.3-(28AWG)-for-Project-Bread-Board-Copper-Hook-up-Jumper-Cable-i.55645224.14548948061
https://shopee.com.my/40-Pin-Single-Row-Female-Straight-Pin-Header-i.6641351.1255734002
https://shopee.com.my/2-Pin-Screw-Terminal-Block-Connector-5mm-Pitch-For-Arduino-i.6641351.1717570213
https://shopee.com.my/Breadboard-MB-102-Full-Size-Half-Size-Small-Size-Breadboard-Bread-board-Arduino-Accessories-i.187266709.9114191529?xptdk=62fa3e33-a9bb-4d42-9bf8-78c604d15020
https://shopee.com.my/Breadboard-MB-102-Full-Size-Half-Size-Small-Size-Breadboard-Bread-board-Arduino-Accessories-i.187266709.9114191529?xptdk=62fa3e33-a9bb-4d42-9bf8-78c604d15020

120

Heatshrink tube 3mm (5

metres)

1 4.00 4.00 Autobotics (Shopee)

Kapton tape (10mm) 1 5.60 5.60 Techmakers (Shopee)

Electrical insulating tape 1 2.00 2.00 Mr. DIY

Thermal paste GD460 (7

grams)

1 6.9 6.90 Techmakers (Shopee)

Pineng power bank

10000mAh PN936

2 42.70 85.40 138 Phone

Accessories (Shopee)

Total 523.80

Table 4.10: Internet Charges (not inclusive of hardware device)

Description Quantity Price per

unit (RM)

Total price

(RM)

Vendors

Celcom 30 GB data plan

(30days) + sim card

1 45.00 45.00 D talk

(Econsave)

Celcom 30 GB data plan

(30days)

1 35.00 35.00 D talk

(Econsave)

Celcom 20 GB data plan

(30days)

1 20 20.00 Celcom Life

App

Total 100.00

Table 4.11: Total cost spent

Description Amount (RM)

Cost of Components and Consumables 523.80

Internet Charges 100.00

Total 623.80

https://shopee.com.my/3mm-Heat-Shrink-Tube-(1-Meter)-i.6641351.1149867888
https://shopee.com.my/Kapton-Tape-High-temperature-resistant-tape-for-3D-printer-platform-i.55645224.10882774107
https://shopee.com.my/GD460-GD220-0.5G-1G-7G-Heatsink-Cooling-Compound-Thermal-Conductive-Grease-Paste-i.55645224.13268712763
https://shopee.com.my/-ORIGINAL-PINENG-PowerBank-PN-939-PN939-20000mAh-PN936-PN-936-10000mAh-3-Input-Power-Bank-Type-C-Micro-IOS-i.183676497.4715088281
https://shopee.com.my/-ORIGINAL-PINENG-PowerBank-PN-939-PN939-20000mAh-PN936-PN-936-10000mAh-3-Input-Power-Bank-Type-C-Micro-IOS-i.183676497.4715088281

121

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

To conclude, the project’s aim and objectives were met with success. An IoT data

monitoring system with percentage error around 1.5 % was successfully developed

and implemented. The system has been operated for more than one month. The

Arduino Mega microcontroller is able to collect data from the solar PV panels and

record them into SD card. Data transmission from Arduino Mega to the IoT platform

is successfully achieved. With Google Spreadsheet as the IoT platform, the received

data can be visualized on a customizable dashboard, and recorded for future reference

and analysis. Even though challenges were faced, but the project was still conducted

successfully.

5.2 Recommendations and Improvements

Throughout the project implementation, he limitations and problems of this project

were identified. The section that follows discusses some suggestions for improving the

project.

122

5.2.1 Arduino Mega Data Collection Time Interval

In this project, the time interval for data collection was set using the delay() function

in the Arduino coding. The downside of using this function is that the time interval

can become inconsistent after operating for several hours. This is because the

processing time required for Arduino board to perform the tasks can be increasingly

long or short by a few hundreds of milliseconds. The consequence to this is

unsynchronized data between GPV and FPV. To overcome this issue, the delay()

function should be replaced with another method which is by comparing the program

start time and program end time. The former is obtained before Arduino run the tasks

in loop() function, whereas the latter is obtained after Arduino finishes running the

tasks in loop() function. If the program end time is greater than program start time by

a pre-set interval of time, the tasks in loop() function will be executed. Both program

start time and program end time are obtained from RTC module. Therefore, RTC

module with high accuracy is required to tell the time accurately.

5.2.2 Solar PV Panel as the Power Source

The downside of using power bank to supply power to the data monitoring system is

their limited battery capacity. Power bank usually needs to be recharged after 1 to 2

days. To improve this, solar PV panel can be used as the power source for powering

the data monitoring system. A solar charge controller and a battery are required. Solar

PV panel converts sunlight into DC electrical power and feed in to charge controller.

The voltage and current supply from PV panel are regulated at optimal ratings by solar

charge controller before being delivered to the battery and the load, which is the data

monitoring system. Meanwhile, the battery act as a buffer to receive excess energy

from the solar PV panel.

123

5.2.3 Alternatives of IoT Data Monitoring System

The Google spreadsheet may be an imperfect IoT platform due to the problems

mentioned beforehand. Furthermore, setting up the dashboard on Google Spreadsheet

require quite a lot of coding and formulae, which may be less user-friendly and

difficult for people who are not familiar to them. Therefore, user may try out other IoT

platform such as Blynk and Arduino IoT Cloud. Both platforms have mobile app that

allows user to build user interface and monitor data from connected devices remotely.

Furthermore, user can obtain time via Blynk, which eliminates the use of RTC module

provided the network connectivity is stable. Depending on the level of usage, user may

need to subscribe to their plan to access more feature. For example, some of the

limitations of the free plan on Blynk include limited datastreams (in this case the

number of sensor data), limited period of historical data storage etc. Therefore one

must allocate their budget wisely.

124

REFERENCES

Arduino Official Store. n.d. Arduino Mega 2560 Rev3. [online] Available at:

<https://store.arduino.cc/products/arduino-mega-2560-rev3> [Accessed 22

August 2022].

Arduino Relay Control Tutorial. 2017. [image] Available at:

<https://circuitdigest.com/microcontroller-projects/arduino-relay-control>

[Accessed 23 August 2022].

Autobotic.com.my. n.d. Current Sensor Module ACS712 (30A). [online] Available

at: <https://www.autobotic.com.my/current-sensor-module-acs712-30a>

[Accessed 22 August 2022].

Azhari, A., Sopian, K., Zaharim, A. and Al Ghoul, M., 2008. Solar Radiation Maps

from Satellite Data for a Tropical Environment – Case Study of Malaysia.

In: 3rd IASME/WSEAS Int. Conf. on Energy & Environment. pp.528-533.

Cazzaniga, R., Cicu, M., Rosa-Clot, M., Rosa-Clot, P., Tina, G. and Ventura, C., 2018.

Floating photovoltaic plants: Performance analysis and design

solutions. Renewable and Sustainable Energy Reviews, 81, pp.1730-1741.

Choi, Y., 2014. A Study on Power Generation Analysis of Floating PV System

Considering Environmental Impact. International Journal of Software

Engineering and Its Applications, 8(1), pp.75-84.

Components101. 2020. NodeMCU ESP8266. [online] Available at:

<https://components101.com/development-boards/nodemcu-esp8266-pinout-

features-and-datasheet> [Accessed 22 August 2022].

DHT11 sensor module. n.d. [image] Available at: <https://nettigo.eu/products/dht11-

sensor-module> [Accessed 23 August 2022].

DroneBot Workshop. 2021. Measure DC Voltage and Current with an Arduino.

[online] Available at: <https://dronebotworkshop.com/dc-volt-current/>

[Accessed 22 August 2022].

DS18B20 Temperature Sensor. 2018. [image] Available at:

<https://components101.com/sensors/ds18b20-temperature-sensor>

[Accessed 23 August 2022].

125

DS3231 Real Time Clock (RTC) Module, I2C. n.d. [image] Available at:

<https://m.ubitap.com/DS3231-Real-Time-Clock-RTC-Module-I2C-

p53018124> [Accessed 24 August 2022].

Dwivedi, L., Yadav, P. and Saket, R. K., 2016. Partially shaded solar panels. [image]

Available at: <https://www.researchgate.net/figure/Partially-shaded-Solar-

panels_fig1_308929021> [Accessed 13 August 2022].

Electronics Tutorials, n.d. Bypass Diodes in Photovoltaic Arrays. [image] Available

at: <https://www.electronics-tutorials.ws/diode/bypass-diodes.html>

[Accessed 13 August 2022].

Engineered Composites, n.d. Properties & Uses of GRP Products. [online] Available

at: <https://engineered-composites.co.uk/why-grp/> [Accessed 12 August

2022].

FLUKE, n.d. [image] Available at: <https://www.fluke.com/en-

my/product/temperature-measurement/ir-thermometers/fluke-54-ii>

[Accessed 23 April 2023]

Gudino, M., 2021. Arduino Uno vs. Mega vs. Micro. [online] Arrow. Available at:

<https://www.arrow.com/en/research-and-events/articles/arduino-uno-vs-

mega-vs-micro> [Accessed 22 August 2022].

I2C 0.96" OLED 128x64. n.d. [image] Available at: <https://www.elecrow.com/i2c-

096-oled-128x64-blueyellow-p-1086.html> [Accessed 24 August 2022].

Liu, L., Wang, Q., Lin, H., Li, H., Sun, Q. and Wennersten, R., 2017. Power

Generation Efficiency and Prospects of Floating Photovoltaic Systems. Energy

Procedia, 105, pp.1136-1142.

Maghami, M., Hizam, H., Gomes, C., Radzi, M., Rezadad, M. and Hajighorbani, S.,

2016. Power Loss Due to Soiling on Solar Panel: A Review. Renewable and

Sustainable Energy Reviews, 59, pp.1307-1316.

Majid, Z., Ruslan, M., Sopian, K., Othman, M. and Azmi, M., 2014. Study on

Performance of 80 Watt Floating Photovoltaic Panel. JOURNAL OF

MECHANICAL ENGINEERING AND SCIENCES, 7, pp.1150-1156.

Mathur, R., Mehrotra, D., Mittal, S. and Dhariwal, S., 1984. Thermal non-uniformities

in concentrator solar cells. Solar Cells, 11(2), pp.175-188.

Ranjbaran, P., Yousefi, H., Gharehpetian, G. and Astaraei, F., 2019. A review on

floating photovoltaic (FPV) power generation units. Renewable and

Sustainable Energy Reviews, 110, pp.332-347.

Rosa-Clot, M., Rosa-Clot, P., Tina, G. and Scandura, P., 2010. Submerged

photovoltaic solar panel: SP2. Renewable Energy, 35(8), pp.1862-1865.

126

Ost, I., 2020. Does Solar Panel Temperature Coefficient Matter? | Solar.com. [online]

Solar.com. Available at: <https://www.solar.com/learn/does-solar-panel-

temperature-coefficient-

matter/#:~:text=A%20solar%20panel's%20temperature%20coefficient%20is

%20not%20the%20only%20factor,production%20for%20your%20specific%

20setup.> [Accessed 13 August 2022].

Pradhan, A. and Panda, B., 2017. Analysis of Ten External Factors Affecting the

Performance of PV System. 2017 International Conference on Energy,

Communication, Data Analytics and Soft Computing (ICECDS).

Pveducation.org. n.d. Mismatch Effects | PVEducation. [online] Available at:

<https://www.pveducation.org/pvcdrom/modules-and-arrays/mismatch-

effects> [Accessed 13 August 2022].

Sahu, A., Sudhakar, K. and Sarviya, R., 2019. Influence of U.V light on the thermal

properties of HDPE/Carbon black composites. Case Studies in Thermal

Engineering, 15, p.100534.

Sahu, A., Yadav, N. and Sudhakar, K., 2016. Floating photovoltaic power plant: A

review. Renewable and Sustainable Energy Reviews, 66, pp.815-824.

Svarc, J., 2020. Solar Panel Construction. [online] CLEAN ENERGY REVIEWS.

Available at: <https://www.cleanenergyreviews.info/blog/solar-panel-

components-construction> [Accessed 13 August 2022].

Trapani, K. and Redón Santafé, M., 2014. A review of floating photovoltaic

installations: 2007-2013. Progress in Photovoltaics: Research and

Applications, 23(4), pp.524-532.

Xia, S., 2021. 19 Defects of Solar Panels and How to Avoid Them. [image] Available

at: <https://www.linkedin.com/pulse/19-defects-solar-panels-how-avoid-

them-solar-panel-products> [Accessed 13 August 2022].

5V Compatible Micro SD Card Adapter. n.d. [image] Available at:

<https://my.cytron.io/p-5v-compatible-micro-sd-card-

adapter?r=1&gclid=CjwKCAjwmJeYBhAwEiwAXlg0AXva-

DsJdkUutlE_KlDJ-TBLJpZxVLLrKcNqsyCNdX_ApHj-

qV0WlxoC6x0QAvD_BwE> [Accessed 24 August 2022].

5V Relay. n.d. [image] Available at: <https://www.mgsuperlabs.com/featured-

brands/mgsl/5932/5v-relay> [Accessed 23 August 2022].

127

APPENDIXES

APPENDIX A: ESP8266 NodeMCU V3 Pinout

128

APPENDIX B: Arduino Mega Pinout

129

APPENDIX C: SOLARLAND 80W Solar Panel

130

APPENDIX D: FPV Schematic Circuit Diagram

131

APPENDIX E: GPV Schematic Circuit Diagram

132

APPENDIX F: FPV and GPV PCB layout diagram

133

APPENDIX G: Coding for Arduino Mega for GPV

#include <SoftwareSerial.h> //Software library (required for serial
communication)
#include <DHT.h> //DHT library (required for DHT11 sensor)
#include <OneWire.h> //OneWire library (required for accessing Dallas 1
wired device)
#include <DallasTemperature.h> //TEMP library (required for DS18B20
sensor)
#include <Adafruit_GFX.h> //TEXT library (required for fonts styles in
OLED)
#include <Adafruit_SSD1306.h> //OLED library (required for the OLED)
#include <SPI.h> //SPI library (required for the SD card)
#include <SD.h> //SD library (required for the SD card)
#include <RTClib.h> //RTC library (required for DS3231 RTC module)

#define DHTPIN A3 //Define the analog pin A3 as the data pin of DHT11
#define DHTTYPE DHT11 //Define the version of DHT sensor used
#define ONE_WIRE_BUS 4 //Define the digital pin 4 as the data pin of
DS18B20
#define SCREEN_WIDTH 128 //Define the OLED display width in pixels
#define SCREEN_HEIGHT 32 //Define the OLED display height in pixels
#define OLED_RESET 4 //Adafruit library requires this element to be
defined but it is not involved in I2C

DeviceAddress thermometerAddress; //Custom array type to hold 64 bit
device address
OneWire oneWire(ONE_WIRE_BUS); //Setup a oneWire instance to communicate
with temperature IC
DallasTemperature tempsensor(&oneWire);//Point oneWire as reference to
DallasTemperature library
DHT dht(DHTPIN, DHTTYPE);
File myFile; // Create a file in the SD card
RTC_DS3231 rtc; // RTC
Adafruit_SSD1306 display(SCREEN_WIDTH,SCREEN_HEIGHT,&Wire,OLED_RESET);
SoftwareSerial espSerial(10, 11);

const int chipSelect = 53; // Define pin 53 as the data pin of SD card
const int relay1Pin = 5; //Define pin 5 as the data pin of relay

//Variables for function of current sensor
int adcValue_I = 0;
float adcVoltage = 0.0;
float currentValue = 0.0;
float sensitivity = 0.185; //Sensitivity of current sensor
float vRef = 5.00;
float offsetVoltage = 2.469; //Arduino mega offset voltage

//Variables for function of voltage sensor
int adcValue_V = 0;
float vOUT = 0.0;
float vIN = 0.0;
float R1 = 30550.0; //First resistor value of the voltage divider
float R2 = 7505.0; //Second resistor value of the voltage divider

134

// Addresses of 3 DS18B20s
// Every DS18B20 sensor has its unique address
// Replace the following addresses with those of your DS18B20 sensors
uint8_t sensor1[8] = { 0x28, 0x3E, 0x2F, 0x26, 0x01, 0x00, 0x00, 0xA5 };
uint8_t sensor2[8] = { 0x28, 0x01, 0x9A, 0x25, 0x01, 0x00, 0x00, 0x79 };
uint8_t sensor3[8] = { 0x28, 0xC6, 0x07, 0x26, 0x01, 0x00, 0x00, 0xB0 };

// Store sensor data into str
char str1[6];
char str2[6];
char str3[6];
char str4[6];
char str5[6];
char str6[6];
char str7[6];
String data; //contains all sensor data to be
sent to nodemcu

void setup() {
 Serial.begin(115200); //Initialize Serial monitor with 115200 baud
rate
 espSerial.begin(115200);
 dht.begin(); //Initialize the DHT humidity
sensor
 tempsensor.begin(); //Initialize the DS18B20
temperature sensor
 rtc.begin(); //Initialize the RTC module
 pinMode(relay1Pin, OUTPUT); //Initialize the relay

 // setup for the SD card-------------------------------
 Serial.print("Initializing SD card...");

 if(!SD.begin(chipSelect)) {
 Serial.println("initialization failed!");
 return;
 }
 Serial.println("initialization done.");
 //open file--
 myFile=SD.open("GPV_DATA.txt", FILE_WRITE);

 // if the file opened ok, write to it:
 if (myFile) {
 Serial.println("File opened ok");
 // print the headings for our data
 myFile.println();
 myFile.println("Date | Time | Voltage(V) | Voltage ADC |
Current(A) | Current ADC | Humidity(%)| Ambient Temp(C)| Temp 1(C)| Temp
2(C)| Temp 3(C)");
 }
 myFile.close();

 //Display these titles on the serial monitor
 Serial.println("Date | Time | Voltage(V) | Voltage ADC | Current(A)
| Current ADC | Humidity(%)| Ambient Temp(C)| Temp 1(C)| Temp 2(C)| Temp
3(C)");

135

 //Initialize the I2C with address 0x3C (for the 128x32)
 display.begin(SSD1306_SWITCHCAPVCC,0x3C);
 display.clearDisplay();
 display.setTextColor(WHITE, BLACK);
 display.display(); //Used to display all the data
which is in buffer

 delay(2000); //To allow some time for nodemcu
to be ready, ie:connect to wifi
}

void loop() {
 DateTime now = rtc.now(); //get time now
 int hh = now.hour();
 int mm = now.minute();
 int time_in_minutes = hh*60 + mm; //convert time now to minutes

 if (time_in_minutes >= 570) //if time now is after/equals to 9:30am =
9*60+30 = 570 min
 {
 loggingTime();
 loggingVoltage();
 loggingCurrent();
 loggingHumidity();
 loggingTemperature();
 recordData();
 delay(113000); //data collection time interval
 }
}

void loggingTime(){
 DateTime timeNow = rtc.now();

 char dateBuffer[]="DD-MM-YYYY";
 char timeBuffer[]="hh:mm:ss";

 Serial.print(timeNow.toString(dateBuffer));
 Serial.print(" | ");
 Serial.print(timeNow.toString(timeBuffer));
 Serial.print(" | ");

 //record date and time in SD card
 myFile=SD.open("GPV_DATA.txt", FILE_WRITE);
 // if the file opened ok, write to it:
 if (myFile) {
 myFile.print(dateBuffer);
 myFile.print(" | ");
 myFile.print(timeBuffer);
 myFile.print(" | ");
 }
 myFile.close();
}

void loggingVoltage(){
 digitalWrite(relay1Pin,LOW); //turn relay 1 off
 delay(2000); //Set the relay off for 2 second

136

 //adcValue_V = ((float)sum1/(float)samples);
 adcValue_V = analogRead(A2);
 vOUT = (adcValue_V*vRef)/1024.0; //formula for arduino to interpret
the data
 vIN = (vOUT/(R2/(R1+R2))); //formula for voltage calculation
 vIN = 0.9448*vIN;
 dtostrf(vIN,5,2,str1);
 Serial.print(vIN);
 Serial.print(" | ");
 Serial.print(adcValue_V);
 Serial.print(" | ");

 //Display the voltage on the OLED display
 display.setTextSize(2);
 display.setCursor(0,0);
 display.print("V= ");
 display.print(vIN);
 display.print(" V");
 display.display();
}

void loggingCurrent(){
 digitalWrite(relay1Pin,HIGH); //Turn relay on
 delay(2000); //Set relay on for 2 second

 //--------------------take a number of analog samples and sum them up
 #define samples 10 //Define number of analog samples to be
taken per reading
 int sum1 = 0;
 unsigned char count = 0;
 while (count<samples)
 {
 sum1 += analogRead(A1);
 count++;
 delay(10);
 }
 //---

 //Formula to calculate current
 adcValue_I = ((float)sum1/(float)samples);
 adcVoltage = (adcValue_I*vRef)/1024;
 currentValue = ((adcVoltage - offsetVoltage)/sensitivity);
 currentValue = 0.9771*currentValue - 0.0946;
 dtostrf(currentValue,5,2,str2);
 Serial.print(currentValue);
 Serial.print(" | ");
 Serial.print(adcValue_I);
 Serial.print(" | ");

 // Display the current on OLED display
 display.setCursor(0,17);
 display.print("I= ");
 display.print(currentValue);
 display.print(" A");
 display.display();
}

137

void loggingHumidity(){ //function for humidity sensor
 float h = dht.readHumidity();
 float t = dht.readTemperature();
 // Read temperature as Celsius (the default)
 delay(2000);
 dtostrf(h,4,2,str3);
 dtostrf(t,4,2,str4);
 Serial.print(h);
 Serial.print(" | ");
 Serial.print(t);
}

void loggingTemperature(){ //function for temperature sensor
 //temperature comes in as a float with 1 decimal place
 tempsensor.requestTemperatures(); //request temperature sample from
the sensors through the one wire bus

 //Getting temperatures--------------
 //The circuit have ten DS18B20 on the same bus thus the data are
requested by their addresses
 //example: sensor1 holds the address for the first DS18B20 sensor on
the wire
 //getting temp reading with sensor1 address
 float temp1=tempsensor.getTempC(sensor1);
 //result is string with 5 position + \0 at the end
 //convert float to fprintf type string
 //format 4 positions with 2 decimal places
 //str contains the result
 dtostrf(temp1,4,2,str5);

 float temp2=tempsensor.getTempC(sensor2);
 dtostrf(temp2,4,2,str6);

 float temp3=tempsensor.getTempC(sensor3);
 dtostrf(temp3,4,2,str7);

 //--

 //Show temperature values on serial monitor
 Serial.print(" | ");
 Serial.print(temp1);
 Serial.print(" | ");
 Serial.print(temp2);
 Serial.print(" | ");
 Serial.println(temp3);
}

void recordData(){
 //record sensor data in SD card
 myFile=SD.open("GPV_DATA.txt", FILE_WRITE);
 //if file open ok, write to it:
 if (myFile){
 myFile.print(str1);
 myFile.print(" | ");
 myFile.print(adcValue_V); //Voltage adc value
 myFile.print(" | ");

138

 myFile.print(str2);
 myFile.print(" | ");
 myFile.print(adcValue_I); //Current adc value
 myFile.print(" | ");
 myFile.print(str3);
 myFile.print(" | ");
 myFile.print(str4);
 myFile.print(" | ");
 myFile.print(str5);
 myFile.print(" | ");
 myFile.print(str6);
 myFile.print(" | ");
 myFile.println(str7);
 myFile.close();
 } else
 {
 Serial.println("File cannot be opened!");
 }

 //record sensor data into "data"
 //send "data" to nodemcu
 data=data+str1+","+str2+","+str3+","+str4+","+str5+","+str6+","+str7;
 espSerial.println(data);
 data=""; //clear data
}

139

APPENDIX H: Coding for Arduino Mega for FPV

#include <SoftwareSerial.h> //Software library (required for serial
communication)
#include <DHT.h> //DHT library (required for DHT11 sensor)
#include <OneWire.h> //OneWire library (required for accessing Dallas 1
wired device)
#include <DallasTemperature.h> //TEMP library (required for DS18B20
sensor)
#include <Adafruit_GFX.h> //TEXT library (required for fonts styles in
OLED)
#include <Adafruit_SSD1306.h> //OLED library (required for the OLED)
#include <SPI.h> //SPI library (required for the SD card)
#include <SD.h> //SD library (required for the SD card)
#include <RTClib.h> //RTC library (required for DS3231 RTC module)

#define DHTPIN A3 //Define the analog pin A3 as the data pin of DHT11
#define DHTTYPE DHT11 //Define the version of DHT sensor used
#define ONE_WIRE_BUS 4 //Define the digital pin 4 as the data pin of
DS18B20
#define SCREEN_WIDTH 128 //Define the OLED display width in pixels
#define SCREEN_HEIGHT 32 //Define the OLED display height in pixels
#define OLED_RESET 4 //Adafruit library requires this element to be
defined but it is not involved in I2C

DeviceAddress thermometerAddress; //Custom array type to hold 64 bit
device address
OneWire oneWire(ONE_WIRE_BUS); //Setup a oneWire instance to communicate
with temperature IC
DallasTemperature tempsensor(&oneWire);//Point oneWire as reference to
DallasTemperature library
DHT dht(DHTPIN, DHTTYPE);
File myFile; // Create a file in the SD card
RTC_DS3231 rtc; // RTC
Adafruit_SSD1306 display(SCREEN_WIDTH,SCREEN_HEIGHT,&Wire,OLED_RESET);
SoftwareSerial espSerial(10, 11);

const int chipSelect = 53; // Define pin 53 as the data pin of SD card
const int relay1Pin = 5; //Define pin 5 as the data pin of relay

//Variables for function of current sensor
int adcValue_I = 0;
float adcVoltage = 0.0;
float currentValue = 0.0;
float sensitivity = 0.185; //Sensitivity of current sensor
float vRef = 5.00;
float offsetVoltage = vRef/2.0; //ACS712 offset voltage

//Variables for function of voltage sensor
int adcValue_V = 0; //Voltage value read from analog pin
float vOUT = 0.0;
float vIN = 0.0;
float R1 = 30550.0; //First resistor value of the voltage divider
float R2 = 7505.0; //Second resistor value of the voltage divider

140

// Addresses of 4 DS18B20s
// Every DS18B20 sensor has its unique address
// Replace the following addresses with those of your DS18B20 sensors
uint8_t sensor1[8] = { 0x28, 0x53, 0x43, 0x26, 0x01, 0x00, 0x00, 0x1C };
uint8_t sensor2[8] = { 0x28, 0x6E, 0x9B, 0x25, 0x01, 0x00, 0x00, 0x53 };
uint8_t sensor3[8] = { 0x28, 0xD7, 0x47, 0x26, 0x01, 0x00, 0x00, 0x35 };
uint8_t sensor4[8] = { 0x28, 0xD4, 0x2F, 0x79, 0xA2, 0x16, 0x03, 0xB7 };

// Store sensor data into str
char str1[6];
char str2[6];
char str3[6];
char str4[6];
char str5[6];
char str6[6];
char str7[6];
char str8[6];
String data; //contains all sensor data to be
sent to nodemcu

void setup() {
 Serial.begin(115200); //Initialize Serial monitor with 115200 baud
rate
 espSerial.begin(115200);
 dht.begin(); //Initialize the DHT humidity
sensor
 tempsensor.begin(); //Initialize the DS18B20
temperature sensor
 rtc.begin(); //Initialize the RTC module
 pinMode(relay1Pin, OUTPUT); //Initialize the relay

 // setup for the SD card-------------------------------
 Serial.print("Initializing SD card...");

 if(!SD.begin(chipSelect)) {
 Serial.println("initialization failed!");
 return;
 }
 Serial.println("initialization done.");
 //open file--
 myFile=SD.open("FPV_DATA.txt", FILE_WRITE);

 // if the file opened ok, write to it:
 if (myFile) {
 Serial.println("File opened ok");
 // print the headings for our data
 myFile.println();
 myFile.println("Date | Time | Voltage(V) | Voltage ADC |
Current(A) | Current ADC | Humidity(%)| Ambient Temp(C)| Temp 1(C)| Temp
2(C)| Temp 3(C)| Water Temp(C)");
 }
 myFile.close();

 //Display these titles on the serial monitor
 Serial.println("Date | Time | Voltage(V) | Voltage ADC | Current(A)
| Current ADC | Humidity(%)| Ambient Temp(C)| Temp 1(C)| Temp 2(C)| Temp
3(C)| Water Temp(C)");

141

 //Initialize the I2C with address 0x3C (for the 128x32)
 display.begin(SSD1306_SWITCHCAPVCC,0x3C);
 display.clearDisplay();
 display.setTextColor(WHITE, BLACK);
 display.display(); //Used to display all the data
which is in buffer

 delay(2000);
}

void loop() {
 DateTime now = rtc.now(); //get time now
 int hh = now.hour();
 int mm = now.minute();
 int time_in_minutes = hh*60 + mm; //convert time now to minutes

 if (time_in_minutes >= 570) //start taking data if time now is
after/equals to 9:30am = 9*60+30 = 570 min
 {
 loggingTime();
 loggingVoltage();
 loggingCurrent();
 loggingHumidity();
 loggingTemperature();
 recordData();
 delay(113000); //data collection time interval
 }
}

void loggingTime(){
 DateTime timeNow = rtc.now();

 char dateBuffer[]="DD-MM-YYYY";
 char timeBuffer[]="hh:mm:ss";

 Serial.print(timeNow.toString(dateBuffer));
 Serial.print(" | ");
 Serial.print(timeNow.toString(timeBuffer));
 Serial.print(" | ");

 //record date and time in SD card
 myFile=SD.open("FPV_DATA.txt", FILE_WRITE);
 // if the file opened ok, write to it:
 if (myFile) {
 myFile.print(dateBuffer);
 myFile.print(" | ");
 myFile.print(timeBuffer);
 myFile.print(" | ");
 }
 myFile.close();
}

void loggingVoltage(){
 digitalWrite(relay1Pin,LOW); //turn relay 1 off
 delay(2000); //Set the relay off for 2 second

142

 adcValue_V = analogRead(A2);
 vOUT = (adcValue_V*vRef)/1024.0; //formula for arduino to interpret
the data
 vIN = (vOUT/(R2/(R1+R2))); //formula for voltage calculation
 vIN = 0.9176*vIN; //--Error
adjusting formula
 dtostrf(vIN,5,2,str1);
 Serial.print(vIN);
 Serial.print(" | ");
 Serial.print(adcValue_V);
 Serial.print(" | ");

 //Display the voltage on the OLED display
 display.setTextSize(2);
 display.setCursor(0,0);
 display.print("V= ");
 display.print(vIN);
 display.print(" V");
 display.display();
}

void loggingCurrent(){
 digitalWrite(relay1Pin,HIGH); //Turn relay on
 delay(2000); //Set relay on for 2 second

 //--------------------take a number of analog samples and sum them up

 #define samples 10 //Define number of analog samples to be

taken per reading
 int sum1 = 0;
 unsigned char count = 0;
 while (count<samples)
 {
 sum1 += analogRead(A1);
 count++;
 delay(10);
 }
 //---

 //Formula to calculate current
 adcValue_I = ((float)sum1/(float)samples);
 adcVoltage = (adcValue_I*vRef)/1024;
 currentValue = ((adcVoltage - offsetVoltage)/sensitivity);
 currentValue = 1.0107*currentValue; //-------------------------------
-Error adjusting formula
 dtostrf(currentValue,5,2,str2);
 Serial.print(currentValue);
 Serial.print(" | ");
 Serial.print(adcValue_I);
 Serial.print(" | ");

 // Display the current on OLED display
 display.setCursor(0,17);
 display.print("I= ");
 display.print(currentValue);
 display.print(" A");
 display.display();
}

143

void loggingHumidity(){ //function for humidity sensor
 float h = dht.readHumidity();
 float t = dht.readTemperature();
 // Read temperature as Celsius (the default)
 delay(2000);
 dtostrf(h,4,2,str3);
 dtostrf(t,4,2,str4);
 Serial.print(h);
 Serial.print(" | ");
 Serial.print(t);
}

void loggingTemperature(){ //function for temperature sensor
 //temperature comes in as a float with 1 decimal place
 tempsensor.requestTemperatures(); //request temperature sample from
the sensors through the one wire bus

 //Getting temperatures--------------
 //The circuit have ten DS18B20 on the same bus thus the data are
requested by their addresses
 //example: sensor1 holds the address for the first DS18B20 sensor on
the wire
 //getting temp reading with sensor1 address
 float temp1=tempsensor.getTempC(sensor1);
 //result is string with 5 position + \0 at the end
 //convert float to fprintf type string
 //format 4 positions with 2 decimal places
 //str contains the result
 dtostrf(temp1,4,2,str5);

 float temp2=tempsensor.getTempC(sensor2);
 dtostrf(temp2,4,2,str6);

 float temp3=tempsensor.getTempC(sensor3);
 dtostrf(temp3,4,2,str7);

 float waterTemp=tempsensor.getTempC(sensor4);
 dtostrf(waterTemp,4,2,str8);
 //--

 //Show temperature values on serial monitor
 Serial.print(" | ");
 Serial.print(temp1);
 Serial.print(" | ");
 Serial.print(temp2);
 Serial.print(" | ");
 Serial.print(temp3);
 Serial.print(" | ");
 Serial.println(waterTemp);
}

void recordData(){
 //record sensor data into SD card
 myFile=SD.open("FPV_DATA.txt", FILE_WRITE);
 //if file open ok, write to it:

144

 if (myFile){
 myFile.print(str1);
 myFile.print(" | ");
 myFile.print(adcValue_V); //Voltage adc value
 myFile.print(" | ");
 myFile.print(str2);
 myFile.print(" | ");
 myFile.print(adcValue_I); //Current adc value
 myFile.print(" | ");
 myFile.print(str3);
 myFile.print(" | ");
 myFile.print(str4);
 myFile.print(" | ");
 myFile.print(str5);
 myFile.print(" | ");
 myFile.print(str6);
 myFile.print(" | ");
 myFile.print(str7);
 myFile.print(" | ");
 myFile.println(str8);
 myFile.close();
 } else
 {
 Serial.println("File cannot be opened!");
 }

 //record sensor data into "data"
 //send "data" to nodemcu

data=data+str1+","+str2+","+str3+","+str4+","+str5+","+str6+","+str7+","
+str8;
 espSerial.println(data);
 data=""; //clear data
}

145

APPENDIX I: Coding for ESP8266 NodeMCU for GPV

#include <ESP8266WiFi.h>
#include <WiFiClientSecure.h>

#define ON_Board_LED 2

//-------- Customise these values -----------
const char* ssid = "myInternet"; // ID of your internet or wifi name
const char* password = "kaizin1234"; // Password of your internet

//---------Host & httpsPort------------------
const char* host = "script.google.com";
const int httpsPort = 443;

//--> Create a WiFiClientSecure object.
WiFiClientSecure client;
//--> spreadsheet script ID
String GAS_ID =
"AKfycbw8L5qCsUDKqJdKBRHeaPTQjxnmHq0zjnuS0f_xy8ISYePtQQ8G0R0BCPK5hfiIjTd
2";
//ID is required to be changed if changes have made in the App Script
//Obtain new deployment ID from the App script

//define variables for the received data,total variable is 13
float Val_1, Val_2, Val_3, Val_4, Val_5, Val_6, Val_7;
String myString;// complete message from arduino, which consists of
sensors data
char rdata; // received characters byte per byte from arduino

// Space to store values to send
char str_val_1[6];
char str_val_2[6];
char str_val_3[6];
char str_val_4[6];
char str_val_5[6];
char str_val_6[6];
char str_val_7[6];

unsigned long startMillis;
unsigned long currentMillis;
const unsigned long period = 500; //the value is a number of
milliseconds

void setup() {
 // put your setup code here, to run once:
 //open serial communications and wait for port to open:
 Serial.begin(115200);
 delay(500);
 while (!Serial){
 ;//wait for serial port to connect. Needed for native USB port only
 }
 wifiConnect();

146

 startMillis = millis(); //record the program start time
}

void loop() {
 // put your main code here, to run repeatedly:
 // get the current "time" (actually the number of milliseconds since
the program started)
 currentMillis = millis();

 if(WiFi.status() == WL_CONNECTED)
 {
 if (currentMillis - startMillis >= period)
 {
 sendData(); //send the data to Google spreadsheet
 startMillis = currentMillis;
 }
 } else
 {
 WiFi.disconnect();
 wifiConnect(); //reconnect to wifi if disconnected
 }

}

void wifiConnect(){
 WiFi.begin(ssid, password); //--> Connect to your WiFi router
 Serial.println("");
 pinMode(LED_BUILTIN, OUTPUT);
 digitalWrite(ON_Board_LED, HIGH); //--> Turn off Led On Board

 //Wait for connection
 Serial.print("Connecting");
 while (WiFi.status() != WL_CONNECTED) {
 Serial.print(".");
 //Make the On Board Flashing LED on the process of connecting to the
wifi router.
 digitalWrite(ON_Board_LED, LOW);
 delay(250);
 digitalWrite(ON_Board_LED, HIGH);
 delay(250);

 }

 //--> Turn off the On Board LED when it is connected to the wifi
router.
 digitalWrite(ON_Board_LED, HIGH);
 //If successfully connected to the wifi router,
 //the IP Address that will be visited is displayed in the serial
monitor
 Serial.println("");
 Serial.print("Successfully connected to : ");
 Serial.println(ssid);
 Serial.print("IP address: ");
 Serial.println(WiFi.localIP());
 Serial.println();
 //--

147

 client.setInsecure();
}

void sendData() {
// Subroutine for sending data to Google Sheets
 Serial.println("==========");
 Serial.print("connecting to ");
 Serial.println(host);

 //Connect to Google host
 if (!client.connect(host, httpsPort)) {
 Serial.println("connection failed");
 return;
 }

 if (Serial.available()>0) {
 rdata=Serial.read(); //read data from arduino
 myString = myString + rdata; //change data from char to string
 if (rdata == '\n') {
 //--Processing data
 String l = getValue(myString, ',', 0);
 String m = getValue(myString, ',', 1);
 String n = getValue(myString, ',', 2);
 String o = getValue(myString, ',', 3);
 String p = getValue(myString, ',', 4);
 String q = getValue(myString, ',', 5);
 String r = getValue(myString, ',', 6);

 Val_1 = l.toFloat();
 Val_2 = m.toFloat();
 Val_3 = n.toFloat();
 Val_4 = o.toFloat();
 Val_5 = p.toFloat();
 Val_6 = q.toFloat();
 Val_7 = r.toFloat();

 // float value is copied onto str_val
 // 4 is mininum width, 2 is precision
 dtostrf(Val_1, 4, 2, str_val_1);
 dtostrf(Val_2, 4, 2, str_val_2);
 dtostrf(Val_3, 4, 2, str_val_3);
 dtostrf(Val_4, 4, 2, str_val_4);
 dtostrf(Val_5, 4, 2, str_val_5);
 dtostrf(Val_6, 4, 2, str_val_6);
 dtostrf(Val_7, 4, 2, str_val_7);

 myString=""; //refresh to clear the old data
 //---end of data
processing

 //Sending data
 String url = "/macros/s/" + GAS_ID + "/exec?vIN=" + str_val_1+
"¤tVal=" + str_val_2
 + "&humidity=" + str_val_3 + "&ambTemp=" + str_val_4 + "&temp1=" +
str_val_5 + "&temp2=" + str_val_6
 + "&temp3=" + str_val_7 ;
 Serial.print("requesting URL: ");

148

 Serial.println(url);

 client.print(String("GET ") + url + " HTTP/1.1\r\n" +
 "Host: " + host + "\r\n" +
 "User-Agent: BuildFailureDetectorESP8266\r\n" +
 "Connection: close\r\n\r\n");

 Serial.println("request sent");
 //--

 //--Checking whether the
data was sent successfully or not
 while (client.connected()) {
 String line = client.readStringUntil('\n');
 if (line == "\r") {
 Serial.println("headers received");
 break;
 }
 }

 String line = client.readStringUntil('\n');
 if (line.startsWith("{\"state\":\"success\"")) {
 Serial.println("esp8266/Arduino CI successfull!");
 } else {
 Serial.println("esp8266/Arduino CI has failed");
 }
 Serial.print("reply was : ");
 Serial.println(line);
 Serial.println("closing connection");
 Serial.println("==========");
 Serial.println();
 }
 }
}

//Subroutine to separate sensor values received from arduino
String getValue(String data, char separator, int index)
{
 int found = 0;
 int strIndex[] = { 0, -1 };
 int maxIndex = data.length() - 1;
 for (int i = 0; i <= maxIndex && found <= index; i++) {
 if (data.charAt(i) == separator || i == maxIndex) {
 found++;
 strIndex[0] = strIndex[1] + 1;
 strIndex[1] = (i == maxIndex) ? i + 1 : i;
 }
 }
 return found > index ? data.substring(strIndex[0], strIndex[1]) : "";
}

149

APPENDIX J: Coding for ESP8266 NodeMCU for FPV

#include <ESP8266WiFi.h>
#include <WiFiClientSecure.h>

#define ON_Board_LED 2

//-------- Customise these values -----------
const char* ssid = "myInternet"; // ID of your internet or wifi name
const char* password = "kaizin1234"; // Password of your internet

//---------Host & httpsPort------------------
const char* host = "script.google.com";
const int httpsPort = 443;

//--> Create a WiFiClientSecure object.
WiFiClientSecure client;
//--> spreadsheet script ID
String GAS_ID =
"AKfycbybNFWEMtR8_ZZW0qoeSOqvpPci9vLRod_6z_eK_5V04cS6WntQ0zaC0Jdu2CkROkM
QSw";
//ID is required to be changed if changes have made in the App Script
//Obtain new deployment ID from the App script

//define variables for the received data,total variable is 13
float Val_1, Val_2, Val_3, Val_4, Val_5, Val_6, Val_7, Val_8;
String myString;// complete message from arduino, which consists of
sensors data
char rdata; // received characters byte per byte from arduino

// Space to store values to send
char str_val_1[6];
char str_val_2[6];
char str_val_3[6];
char str_val_4[6];
char str_val_5[6];
char str_val_6[6];
char str_val_7[6];
char str_val_8[6];

unsigned long startMillis;
unsigned long currentMillis;
const unsigned long period = 500; //the value is a number of
milliseconds

void setup() {
 // put your setup code here, to run once:
 //open serial communications and wait for port to open:
 Serial.begin(115200);
 delay(500);
 while (!Serial){
 ;//wait for serial port to connect. Needed for native USB port only
 }

150

 wifiConnect();
 startMillis = millis(); //record the program start time
}

void loop() {
 // put your main code here, to run repeatedly:
 // get the current "time" (actually the number of milliseconds since
the program started)
 currentMillis = millis();

 if(WiFi.status() == WL_CONNECTED)
 {
 if (currentMillis - startMillis >= period)
 {
 sendData(); //send the data to Google spreadsheet
 startMillis = currentMillis;
 }
 } else
 {
 WiFi.disconnect();
 wifiConnect(); //reconnect to wifi if disconnected
 }

}

void wifiConnect(){
 WiFi.begin(ssid, password); //--> Connect to your WiFi router
 Serial.println("");
 pinMode(LED_BUILTIN, OUTPUT);
 digitalWrite(ON_Board_LED, HIGH); //--> Turn off Led On Board

 //Wait for connection
 Serial.print("Connecting");
 while (WiFi.status() != WL_CONNECTED) {
 Serial.print(".");
 //Make the On Board Flashing LED on the process of connecting to the
wifi router.
 digitalWrite(ON_Board_LED, LOW);
 delay(250);
 digitalWrite(ON_Board_LED, HIGH);
 delay(250);
 }

 //--> Turn off the On Board LED when it is connected to the wifi
router.
 digitalWrite(ON_Board_LED, HIGH);
 //If successfully connected to the wifi router,
 //the IP Address that will be visited is displayed in the serial
monitor
 Serial.println("");
 Serial.print("Successfully connected to : ");
 Serial.println(ssid);
 Serial.print("IP address: ");
 Serial.println(WiFi.localIP());
 Serial.println();
 //--

151

 client.setInsecure();
}

void sendData() {
// Subroutine for sending data to Google Sheets
 Serial.println("==========");
 Serial.print("connecting to ");
 Serial.println(host);

 //Connect to Google host
 if (!client.connect(host, httpsPort)) {
 Serial.println("connection failed");
 return;
 }

 if (Serial.available()>0) {
 rdata=Serial.read(); //read data from arduino
 myString = myString + rdata; //change data from char to string
 if (rdata == '\n') {
 //--Processing data
 String l = getValue(myString, ',', 0);
 String m = getValue(myString, ',', 1);
 String n = getValue(myString, ',', 2);
 String o = getValue(myString, ',', 3);
 String p = getValue(myString, ',', 4);
 String q = getValue(myString, ',', 5);
 String r = getValue(myString, ',', 6);
 String s = getValue(myString, ',', 7);

 Val_1 = l.toFloat();
 Val_2 = m.toFloat();
 Val_3 = n.toFloat();
 Val_4 = o.toFloat();
 Val_5 = p.toFloat();
 Val_6 = q.toFloat();
 Val_7 = r.toFloat();
 Val_8 = s.toFloat();

 // float value is copied onto str_val
 // 4 is mininum width, 2 is precision
 dtostrf(Val_1, 4, 2, str_val_1);
 dtostrf(Val_2, 4, 2, str_val_2);
 dtostrf(Val_3, 4, 2, str_val_3);
 dtostrf(Val_4, 4, 2, str_val_4);
 dtostrf(Val_5, 4, 2, str_val_5);
 dtostrf(Val_6, 4, 2, str_val_6);
 dtostrf(Val_7, 4, 2, str_val_7);
 dtostrf(Val_8, 4, 2, str_val_8);

 myString=""; //refresh to clear the old data
 //---end of data
processing

 //Sending data
 String url = "/macros/s/" + GAS_ID + "/exec?vIN=" + str_val_1+
"¤tVal=" + str_val_2

152

 + "&humidity=" + str_val_3 + "&ambTemp=" + str_val_4 + "&temp1=" +
str_val_5
 + "&temp2=" + str_val_6 + "&temp3=" + str_val_7 + "&waterTemp=" +
str_val_8;
 Serial.print("requesting URL: ");
 Serial.println(url);

 client.print(String("GET ") + url + " HTTP/1.1\r\n" +
 "Host: " + host + "\r\n" +
 "User-Agent: BuildFailureDetectorESP8266\r\n" +
 "Connection: close\r\n\r\n");

 Serial.println("request sent");
 //--

 //--Checking whether the
data was sent successfully or not
 while (client.connected()) {
 String line = client.readStringUntil('\n');
 if (line == "\r") {
 Serial.println("headers received");
 break;
 }
 }

 String line = client.readStringUntil('\n');
 if (line.startsWith("{\"state\":\"success\"")) {
 Serial.println("esp8266/Arduino CI successfull!");
 } else {
 Serial.println("esp8266/Arduino CI has failed");
 }
 Serial.print("reply was : ");
 Serial.println(line);
 Serial.println("closing connection");
 Serial.println("==========");
 Serial.println();
 }
 }
}

//Subroutine to separate sensor values received from arduino
String getValue(String data, char separator, int index)
{
 int found = 0;
 int strIndex[] = { 0, -1 };
 int maxIndex = data.length() - 1;
 for (int i = 0; i <= maxIndex && found <= index; i++) {
 if (data.charAt(i) == separator || i == maxIndex) {
 found++;
 strIndex[0] = strIndex[1] + 1;
 strIndex[1] = (i == maxIndex) ? i + 1 : i;
 }
 }
 return found > index ? data.substring(strIndex[0], strIndex[1]) : "";
}

153

APPENDIX K: Coding for Google App Script for GPV

function doGet(e) {
 Logger.log(JSON.stringify(e));
 var result = 'Ok';
 if (e.parameter == 'undefined') {
 result = 'No Parameters';
 }
 else {
 var sheet_id = '1qKn2gYADXMVUAtuShwHSQmFZ3oVL6GGmEco3ea4-2qI';
 // Spreadsheet ID
 var sheet = SpreadsheetApp.openById(sheet_id).getSheetByName("All
Data Record");
 var newRow = sheet.getLastRow() + 1;

 var rowData = [];
 var date = new Date();
 var Curr_Date = Utilities.formatDate(date, "Asia/Kuala_Lumpur", 'MM-
dd-yyyy');

 rowData[0] = Curr_Date; // Date in column A
 sheet.getRange(sheet.getLastRow(),1).setNumberFormat("dd-MMM-yyyy");
 var Curr_Time = Utilities.formatDate(date, "Asia/Kuala_Lumpur",
'HH:mm:ss');
 rowData[1] = Curr_Time; // Time in column B

 for (var param in e.parameter) {
 Logger.log('In for loop, param=' + param);
 var value = stripQuotes(e.parameter[param]);
 Logger.log(param + ':' + e.parameter[param]);
 switch (param) {
 case 'vIN' :
 rowData[2] = value; // Vin in column C
 result += 'Vin written on column C. ';
 break;
 case 'currentVal' :
 rowData[3] = value; // Current in column D;
 result += 'Current written on column D. ';
 break;
 case 'humidity':
 rowData[4] = value; // Humidity in column E
 result = 'Humidity written on column E. ';
 break;
 case 'ambTemp':
 rowData[5] = value; // Ambient temp in column F
 result = 'Ambient temperature written on column F. ';
 break;
 case 'temp1':
 rowData[6] = value; // Temperature 1 in column G
 result += 'Temperature 1 written on column G. ';
 break;
 case 'temp2':
 rowData[7] = value; // Temperature 2 in column H
 result += 'Temperature 2 written on column H. ';
 break;

154

 case 'temp3':
 rowData[8] = value; // Temperature 3 in column I
 result += 'Temperature 3 written on column I. ';
 break;
 default:
 result = "unsupported parameter";
 }
 }
 Logger.log(JSON.stringify(rowData));
 var newRange = sheet.getRange(newRow, 1, 1, rowData.length);
 newRange.setValues([rowData]);
 }
 return ContentService.createTextOutput(result);
}
function stripQuotes(value) {
 return value.replace(/^["']|['"]$/g, "");
}

155

APPENDIX L: Coding for Google App Script for FPV

function doGet(e) {
 Logger.log(JSON.stringify(e));
 var result = 'Ok';
 if (e.parameter == 'undefined') {
 result = 'No Parameters';
 }
 else {
 var sheet_id = '1P2aIakEACvnCPuFFa0lgN8z-CcwsqbvxoWirtJgYu0w';
 // Spreadsheet ID
 var sheet = SpreadsheetApp.openById(sheet_id).getSheetByName("All
Data Record");
 var newRow = sheet.getLastRow() + 1;

 var rowData = [];
 var date = new Date();
 var Curr_Date = Utilities.formatDate(date, "Asia/Kuala_Lumpur",'MM-
dd-yyyy');

 rowData[0] = Curr_Date; // Date in column A
 sheet.getRange(sheet.getLastRow(),1).setNumberFormat("dd-MMM-yyyy");
 var Curr_Time = Utilities.formatDate(date, "Asia/Kuala_Lumpur",
'HH:mm:ss');
 rowData[1] = Curr_Time; // Time in column B

 for (var param in e.parameter) {
 Logger.log('In for loop, param=' + param);
 var value = stripQuotes(e.parameter[param]);
 Logger.log(param + ':' + e.parameter[param]);
 switch (param) {
 case 'vIN' :
 rowData[2] = value; // Vin in column C
 result += 'Vin written on column C. ';
 break;
 case 'currentVal' :
 rowData[3] = value; // Current in column D;
 result += 'Current written on column D. ';
 break;
 case 'humidity':
 rowData[4] = value; // Humidity in column E
 result = 'Humidity written on column E. ';
 break;
 case 'ambTemp':
 rowData[5] = value; // Ambient Temp in column F
 result = 'Ambient temperature written on column F. ';
 break;
 case 'waterTemp':
 rowData[6] = value; // Water temperature in column G
 result = 'Water temperature written on column G. ';
 break;
 case 'temp1':
 rowData[7] = value; // Temperature 1 in column H
 result += 'Temperature 1 written on column H. ';
 break;

156

 case 'temp2':
 rowData[8] = value; // Temperature 2 in column I
 result += 'Temperature 2 written on column I. ';
 break;
 case 'temp3':
 rowData[9] = value; // Temperature 3 in column J
 result += 'Temperature 3 written on column J. ';
 break;
 default:
 result = "unsupported parameter";
 }
 }
 Logger.log(JSON.stringify(rowData));
 var newRange = sheet.getRange(newRow, 1, 1, rowData.length);
 newRange.setValues([rowData]);
 }
 return ContentService.createTextOutput(result);
}
function stripQuotes(value) {
 return value.replace(/^["']|['"]$/g, "");
}

