DESIGN AND DEVELOPMENT OF LINE TRACKING
AND PATH RECOGNITION SYSTEM FOR
VISION GUIDED AUTONOMOUS VEHICLE

YAP CHOON KIAT

A project report submitted in partial fulfilment of the
requirements for the award of Bachelor of Engineemg

(Hons.) Mechatronics Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2012

DECLARATION

| hereby declare that this project report is basedmy original work except for
citations and quotations which have been duly ackewged. | also declare that it
has not been previously and concurrently submitteény other degree or award at

UTAR or other institutions.

Signature :
Name : Yap Choon Kiat
ID No. : 08UEB04837

Date 1Y May 2012

APPROVAL FOR SUBMISSION

| certify that this project report entitletDESIGN AND DEVELOPMENT OF
LINE TRACKING AND PATH RECOGNITION SYSTEM FOR VISIO N
GUIDED AUTONOMOUS VEHICLE” was prepared bYAP CHOON KIAT
has met the required standard for submission itigb&ulfilment of the requirements
for the award of Bachelor of Engineering (Hons.) cli&ronics Engineering at

Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor: Dr. Tan Yong Chai

Date

The copyright of this report belongs to the authader the terms of the
copyright Act 1987 as qualified by Intellectual Pesty Policy of University Tunku
Abdul Rahman. Due acknowledgement shall alwaysnbee of the use of any

material contained in, or derived from, this report

© 2012, Yap Choon Kiat. All right reserved.

DESIGN AND DEVELOPMENT OF LINE TRACKING
AND PATH RECOGNITION SYSTEM FOR
VISION GUIDED AUTONOMOUS VEHICLE

ABSTRACT

This report presents the design and developmena dihe tracking and path

recognition system for vision guided autonomousatehn two competitions.

The first part of the project aim was to buildraast car to participate in the
Freescale Cup 2011 competition. The smart car wals to navigate and travel
according to the black line on race track with ¢juedance of the CMUcam3 image
sensor module. Infrared sensors were used to eatlithadine tracking capability of
the smart car. A PD-controller was designed an@éduto control the servo motor
which was used to control the steering of the smart The smart car was equipped
with a Bluetooth serial port plug to establish wess communication with the
computer and the data was transmitted and recewadthe Hyper Terminal
Software. The constructed smart car was able teltsawiftly on the race track with

excellent implementation of the line detection #émelsteering control modules.

As for the second part, the goal was to designPAatonomous Demand
Responsive Transit (ADRT) system for the Innovatddyisia 2012 competition. The
path recognition system consisted of road trackind route identification functions
as the core component of this ADRT system. The radking function was
achieved by using the CMUcam3 and the route ideatibn was accomplished by
using a RFID reader to detect and read the Uni§uefithe RFID tags that were
placed on every junction on the road. With thdéiaaiion of National Instruments
(NI) Single Board RIO (sbRIO) and LabVIEW, the autenous vehicle was partially

completed and recommendations were given to impttoysystem.

DECLARATION
APPROVAL FOR SUBMISSION iii

ABSTRACT

\Y

TABLE OF CONTENTS

TABLE OF CONTENTS vi

LIST OF TABLES
LIST OF FIGURES

LIST OF SYMBOLS / ABBREVIATIONS Xili
LIST OF APPENDICES Xiv
CHAPTER
1 INTRODUCTION 1
1.1 Background 1
1.1.1 The Freescale Cup 2011 1
1.1.2 Innovate Malaysia 2012 2
1.2 Problem Statements 2
1.2.1 Line Following Smart Car 2
1.2.2 Autonomous Demand Responsive Transit (ADRT)
System 3
1.3 Aims and Objectives 5
1.3.1 Line Tracking System
1.3.2 Path Recognition System for ADRT 5
14 Report Outline 6

LITERATURE REVIEW 7

2.1 Application of Line Following Robot 7
2.2 Existing Line Following Systems 9
2.3 Sensors 10
2.3.1 Infrared Sensor 10
2.3.2 Image Sensor 11
2.4 Serial Communication 16
2.4.1 Universal Asynchronous Receiver Transmitter
(UART) 17
2.4.2 Serial Peripheral Interface (SPI) 18
2.5 Bluetooth Serial Port Plug 19
2.6 Radio-Frequency Ildentification (RFID) Module 20
2.7 LED Driver 21
2.8 Proportional Integral Derivative (PID) Control 22

Vi

LINE TRACKING SYSTEM FOR THE FREESCALE CUP 2011

3.1 Overall System Architecture

3.1.1 Interface of Sub-Systems
3.2 Line Detection Module

3.2.1 CMUcam3

3.2.2 Infrared Sensors Array

3.3 Steering Control Module
3.3.1 PD Controller

3.4 Wireless Monitoring Module

3.5 Mechanical Design
3.5.1 Camera Mounting
3.5.2 Wheel Adjustment

PATH RECOGNITION SYSTEM FOR
DEMAND RESPONSIVE TRANSIT SYSTEM
4.1 Overall System Architecture

4.2 Path Recognition System

4.2.1 UART Communication

23
23
24
25
26
28
29
30
31
32
32
33

AUTOMATED
36
36
37
37

viii

4.2.2 Road Tracking 39

4.2.3 Route Identification 40
4.3 Servo Motor Control 43
4.4 Wireless Communication 45
4.5 Map Design 45
5 RESULTS AND DISCUSSIONS FOR LINE TRACKING
SYSTEM 47
5.1 Line Tracking a7
5.2 Steering Control 50
5.3 Wireless Communication 52
5.4 Outcome in The Freescale Cup 2011 53
6 RESULTS AND DISCUSSION FOR PATH RECOGNITION
SYSTEM 54
6.1 Road Tracking 54
6.2 RFID Tags Detection 56
6.3 Servo Motor Control 57
6.4 UART Emulation in FPGA 59
6.4.1 Conflict of Multiple UART 59
6.5 Outcome 60
7 CONCLUSIONS AND RECOMMENDATIONS 61
7.1 Line Tracking System 61
7.1.1 Conclusion 61
7.1.2 Recommendation 62
7.2 Path Recognition System 63
7.2.1 Conclusion 63
7.2.2 Recommendation 64
REFERENCES 65
APPENDICES 66

TABLE

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

LIST OF TABLES

TITLE

CMUcam3 Commands and Description
Tracking Parameters

T-packet Data

Tracking Parameters

Communication Format from Host to Reader
Communication Format from Reader to Host
Status overview

Command Overview

PAGE

26

26

27

39

41

41

42

42

FIGURE

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

LIST OF FIGURES

TITLE

OzTug Mobile Robots

Prototype of the Line Following Robot

Book Searching and Arranging Operation of Line

Following Robot

Placement of Infrared Sensors
Webcam-based Mobile Robot
Connection of Infrared Sensor

Block Diagram of CCD Image Sensor
Block Diagram of CMOS Image Sensor
CMUcam3

CMUcam3 Hardware Block Diagram
Serial Communication with PC

UART Module Block Diagram

Single Slave Device

Multiple Slave Devices

Bluetooth Serial Port Plug

RFID Module

LED Driver Block Diagram

PID Controller Block Diagram

PAGE

10

11

12

13

14

14

16

17

18

18

19

20

21

22

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

411

412

5.1

Overall System

Interfacing of MCU and Hardware
Line Detection Module

CMUcama3 Initialization

Schematic of Infrared Sensor Circuit
Steering Control Module

PD Control System Block Diagram

Wireless Monitoring Module

Design of Image Sensor Mounting in SolidWorks

Positive Camber and Negative Camber
Positive Caster and Negative Caster
Toe In and Toe Out

Overall System Architecture for ADRT
UART Emulation in LabVIEW

Set Tracking Parameters in LabVIEW
Get Tracking Data in LabVIEW

Route Identification with RFID Tags
Servo Control Main Function

Angle to Pulse Width Conversion Function
Digital Output Function in FPGA

Digital Pulse Generation in FPGA
VISA Functions in LabVIEW

Map (Top View)

Map (Isometric View)

Front View Distance of CMUcam3

xi

23

24

25

28

29

29

30

31

2 3

33

34

35

36

38

39

40

40

43

43

44

44

45

46

46

a7

5.2

5.3

5.4

5.5

5.6

5.7

5.8

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7.1

Line Tracking Result of Straight Line
Line Tracking Result of Curved Line

Line Tracking Result of Curved Line with
Segmented Image

Control Signal When Straight Line Detected
Control Signal When Rightmost Line Detected
Control Signal When Leftmost Line Detected
Smart Car in The Freescale Cup 2011

Road Tracking Result (Middle)

Road Tracking Result (Right)

Road Tracking Result (Left)

Reading of RFID Tag

Control Signal (1.5 ms Pulse)

Control Signal (0.5 ms Pulse)

Control Signal (2.5 ms Pulse)

Reading of RFID Tag

Experimental Setup of Autonomous Vehicle

NI 9870

Xii

48

48

50

51

51

52

53

54

55

55

56

57

58

58

59

60

64

ASCII
bps
CCD
CMOS
DC
DRT
FPGA
FRT
GPIO
GUI

LED
LRT
PID
PLL
PWM
RFID
RGB
SCI
SPI
UART
Vi
VISA

Xiii

LIST OF SYMBOLS / ABBREVIATIONS

Proportional Constant

Derivative Constant

American Standard Code for Information Inteange
bits per second

Charged-Coupled Device

Complementary Metal Oxide Semiconductor
Direct Current

Demand Responsive Transit

Field Programmable Gate Array
Fixed-Route Transit

General Purpose Input Output

Graphical User Interface

Integrated Circuit

Light Emitting Diode

Light Railway Transit

Proportional Integral Derivative
Phase-Locked Loop

Pulse Width Modulation

Radio-Frequency Identification

Red Green Blue

Serial Communication Interface

Serial Peripheral Interface

Universal Asynchronous Receivers Transmitter
Virtual Instrument

Virtual Instrument Software Architecture

APPENDIX

O @) W

m

LIST OF APPENDICES

TITLE

Main Program

CMUcam3 Program
Bluetooth Serial Port Program
Servo Control Program
LabVIEW Project Explorer

LabVIEW UART Functions

Xiv

PAGE

66

75

81

83

84

85

CHAPTER 1

INTRODUCTION

1.1 Background
1.1.1 The Freescale Cup 2011

The Freescale Cup (previously known as Smart Canpg@tition) is a high speed,
autonomous, race of RC scale cars competition. fBlce is part of Freescale’'s
University Programs to promote engineering in tlassroom. It is open to all local
and private universities in Malaysia. Each teamtbame up with a maximum of 3

students plus 1 lecturer as advisor.

In 2008, Freescale Semiconductor Malaysia had tise $mart Car
Competition which was successfully held on 12 aBdDecember at SIRIM Hall,
Shah Alam, Selangor. Due to economic crisis in 2@9Smart Car Competition
was postponed to 2010. The competition was orgdnizeollaboration with IEEE
Malaysia Section, Universiti Teknologi MARA (UiTMgnd Universiti Kebangsaan
Malaysia (UKM). The event was successfully helddand 5 December 2010 at
DECTAR Hall, UKM Bangi, Selangor.

In 2011, Smart Car Competition was renamed as Teesgale Cup. The
competition has caught the attention of MOHE henes invited to be part of
PECIPTA 2011. The 2011 competition was held inatmration with MOHE, UiTM
and IEEE on 14 and 15 September 2011 at KL Commei@entre (KLCC).

1.1.2 Innovate Malaysia 2012

Innovate Malaysia Design Competition is a multiefpine engineering design
competition open to all undergraduate engineeringomputer science students in
Malaysia. The goal of the contest is to promoteovation culture and mindsets
among university graduates, to enhance knowledge shill set in practical

engineering and promote greater interest in engimgelesign, and to promote more

industry and university collaboration.

Agilent, Altera, Intel, National Instruments, aBdterra as the leaders in the
electronic instrument, programmable logic, micra@ssor, and IC fabrication
respectively, creates an environment of learninguh innovation and positive

competition by holding a multi-discipline engine®yidesign contest.

1.2 Problem Statements

1.2.1 Line Following Smart Car

The Freescale Cup competition requires studengsaduce an intelligent racing car
that can recognize the track automatically to rarihe designed race track. The race
track consists of a 3cm wide black line on the 6Quithe raised white background.
To elevate the challenge, combinations of hillanels, and sharp turn are included.
The race track is unknown to the contestants tigicompetition day.

A model car chassis with motors is provided by tirganizer; limited
numbers of sensors are to be installed with freettodevelop additional electronics
with the given microcontroller unit. The smart tas to be fully autonomous and the

use of remote control is prohibited in the com patit

Speed of the smart car or the time taken to camplee race track is an
essential judging criterion of the competition. Rbis reason, the conventional
method adopted to build a line-following robot whigicks up the reflected light by
using light sensor such as infrared sensor or caensor is no longer capable. This
IS because in order to obtain a reliable line detraesult, the sensors have to be
placed perpendicularly to the surface of the raaekt As a consequence, the path
ahead of the smart car is unknown thus the speeeéstsicted else the smart car

might run out of track which will lead to disquadition.

An image sensor is compulsory for the smart cahabthe path in front can
be seen. The speed limit of the smart car can bstéd to a higher range with the
path ahead known because it can react beforehhisdistespecially crucial when

come to a sharp turn.

1.2.2 Autonomous Demand Responsive Transit (ADRT) System

Public transport remains inadequate was listednasad the main challenges in the
Greater KL report. Despite various Fixed-Route $ma(FRT) services such as light
rail transit system, train commuter system and maiheystem were provided to the
public, the usage between public and private trarafpon is still low at 16% - 84%.
The government aims to improve the situation b{irggthe target mode split to 25%
- 75% in 2012. The problem recognized in the curtemsport system is due to the
poor connectivity in the Demand Responsive Trad¥RT) or Paratransit system.

FRT systems provide predetermined route and schedugh passenger
capacity and consolidation of many passenger infjasa single vehicle. The general
public considers them to be inconvenient becauséheit lack of flexibility. In
contrast with the FRT systems, the DRT system pes/imuch of the desired
flexibility with door-to-door type of service witlhub following a fixed route or
schedules (Quadrifoglio & Li, 2009). DRT systemuiser-oriented with generally
higher cost. For instance, taxi is one of the DR&duto reach a desired destination

where a regular bus service or LRT may not be ablei The dependency on the
DRT system has been increasing over the last fevad#s especially within
residential communities due the steady increaséhamr population density as a

consequence of urban sprawl.

The demand on taxi services is increasing sigaifiy in the urban area. In

Malaysia, the requirements to be a taxi driveraaréollow:

A driving license and many good years of experignadiving.

Possess a Public Service Vehicle (PSV) license.

Must be in possession of good character and nok lilsted with the police.
Must have the ability to own a vehicle.

Knowledge of local and popular place in towns aitids

A S A

Able to provide a fair calculation of distances/gled and usage of meters.

These stringent requirements may cause the supidytdb meet the demand
in the future. Autonomous DRT system can be usexhadternative for taxi services

and to cope with the continuously increasing den@nthe DRT system.

1.3 Aims and Objectives

1.3.1 Line Tracking System

The first aim of this project is to build a visignided smart car to compete in The
Freescale Cup 2011. An image sensor is to be awtedf with the microcontroller
unit and served as the “eye” of the smart car susnthat the path can be followed

smoothly at high speed.

The main objective is to enable the smart carddopm line following by
using an image sensor. Apart from line detectiorgdsign a precise steering control
system for the smart car is an equally importafeaitve as the steering of the smart
car plays an important role in following the pathaothly. Other than that, the third
objective is to build a wireless monitoring systéan the smart car so that its
important parameters like speed and sensors dataecsmart car can be obtained

when it is running on the race track for testing &uming purpose.

1.3.2 Path Recognition System for ADRT

The second aim of this project is to design andeligyyan Autonomous Demand
Responsive Transit (ADRT) System for Innovate Maiay2012 design competition.

A small scale prototype will be built to demonstrahd evaluate the ADRT system.

The main objective is to build a path recognitiystem for the ADRT
system. The proposed path recognition system dsnsigwo main functions which
are road tracking and route identification. Thege tunctions are to be embedded to
an autonomous vehicle which will be used as thatageADRT.

Besides, a wireless communication has to be est&ol in between a
computer and the autonomous vehicle. This is twigeoa linkage for the computer-
hosted Graphical User Interface (GUI) to commumieaith the vehicle.

1.4 Report Outline

Literature review on existing line-following meth®@nd various types of sensors
will be presented in Chapter 2. Apart from thag thfferent technologies of serial
communication and several control method that adelyw adopted in line following

control will be part of the review as well.

The methodologies in term of building a line foliogy system for the smart
car to compete in The Freescale Cup 2011 and dauwgl@a path recognition system
which is part of the proposed ADRT system for theovate Malaysia 2012 design

competition are discussed in the third and fouhifwpter respectively.

As for Chapter 5 and Chapter 6, it is the resutid discussions of both the
line following system for smart car and path regogn system for ADRT system.
Various diagram and graph will be shown to illusdrehe result. At the same time,

the result will be discussed.

Chapter 7 which is the conclusion wraps up the mute of this project for
both systems. The result of the project will be paned to the objectives. Other than
that, the limitations of this project will be disgsed and some recommendations will

be given for future improvements.

CHAPTER 2

LITERATURE REVIEW

2.1 Application of Line Following Robot

Line following system has been incorporated in rehobots so that the robots can
travel according to the line autonomously. Ben,afofTim, Saeid and Philip (2011)
introduced the OzTug mobile robot developed to mo@ously manoeuvre large
loads within a manufacturing environment. The robotconfigured to follow a
predefined trajectory. Figure 2.1 shows the OzTugpile robots during initial

experimentation.

Rear-facing

mergency stop camera

Figure 2.1: OzTug Mobile Robots

Besides manufacturing environment, line followimgbile robots also can be
deployed as a commercial product. llinur and D€B309) proposed the design of a
line following robot which is commonly used to garhildren through shopping
mall entertainment place. Figure 2.2 shows thegpype of the line following robot.

Figure 2.2: Prototype of the Line Following Robot

Other than that, Thirumurugan, Vinoth, Kartheesmaand Vishwanathan
(2010) demonstrated the application of line follegvirobot for library inventory
management system. In their design, a line follgwiwbot is designed using sensor
operated motor to keep track the line path predeted for library book shelf

arrangements.

Figure 2.3: Book Searching and Arranging Operatiorof Line Following Robot

2.2 Existing Line Following Systems

Line following capability can be achieved by a favethods; the most basic

method is using the light sensor such as infraesd@ or colour sensor. Figure 2.4

illustrates the application and placement of irddhsensors in the design proposed

by lllnur and Deniz (2009).

Sensors

AT

~ %\ \] I LJ ;, ’l
LY A I 4 s
R T T T
)) -
shovgy s,
R P
-

DC Motor DC Motor
Traction _‘ : I_ Traction
Wheel ' Wheel
= ! —| |
' I ! 1 !
' Motor Control and '
! Battery Management '
' System '
] T I
(L | i
L] LT — — [T L
Power Stage
Battery Battery
Support | | Support
Wheel] | Wheel

7 =
AN 7

Figure 2.4: Placement of Infrared Sensors

Jean and Marc (2006) presented a webcam-basefblio@ing mobile robot

equipped with a miniature Linux-based single-boeodthputer as shown in Figure

2.5.

10

Figure 2.5: Webcam-based Mobile Robot

2.3 Sensors

2.3.1 Infrared Sensor

The infrared sensor consists of an emitter andtectbe which must be worked in
pair. The emitter will emit an invisible infraredht and the detector will pick up the
reflected infrared light. The infrared detectoribally acts as a phototransistor with
the base voltage determined by the amount of hgtihg the transistor.

Greater amount of infrared light will cause morerent to flow through the

phototransistor to cause a certain amount of veltdgpp. By setting the correct

11

threshold, black or white surfaces can be deterthimethe output voltage. White
surfaces generally reflect well, while black sudgsaeflect poorly. The common

connection of the infrared sensor is shown in Fegub.

LED ar 4+
E E
b IELED signal
4 2 IR
phototrans.
An TE emitter An TR phototransistor

Figure 2.6: Connection of Infrared Sensor

2.3.2 Image Sensor

An image sensor, as known as a camera sensor carsdak for line following
purpose as well. It captures the image ahead iokadllowing robot and extract the

line information hence line following can be donighwadvance algorithms.

Charged-coupled device (CCD) and complementary Imetaide
semiconductor (CMOS) image sensors are two diftet@chnologies for capturing
images digitally. Each has unique strengths andkmesses giving advantages in

different applications.

Beside these two types of image sensor, there are sophisticated image
sensor modules specially developed for roboticdiegtpn. A very famous example

of this mind of image sensor is CMUcam3.

12

2.3.2.1 Charge-Coupled Device (CCD) Image Sensor

Camera Charge-Coupled Device
(Printed Circuit Board) Image Sensor
r— === 1T T 1
I Bi Clock& |! 1 B :
I e |usr Timing I n I
| | =enerdiion Generation | | | |
I | I B N I
| Clock | ! | I '
| | Oscillator Drivers — u I
I (I I
: Line 1 Gain : | — :
i | L INFTVF
| Driver A —|—|—<‘|—I \ |

ToF Analog-to-Digital Photon-to-Electron
Ll Conversion Conversion
Grabber
Electron-to-Voltage
Conversion

Figure 2.7: Block Diagram of CCD Image Sensor
(Source: Litwiller, 2001)

A CCD is an analogue device. When light strikes ¢he it is held as a small
electrical charge in each photo sensor. The changesonverted to voltage one pixel
at a time as they are read from the chip. Addaianrcuitry in the camera converts
the voltage into digital information. The block diam of CCD image sensor is

illustrated in Figure 2.7.

On a CCD image sensor, most functions take placth@rcamera’s printed
circuit board. If the application’s demands changedesigner can change the

electronics without redesigning the image sensor.

In a CCD sensor, every pixel's charge is transtetleough a very limited
number of output nodes (often just one) to be cdeddo voltage, buffered, and sent
off-chip as an analogue signal. All of the pixehdae devoted to light capture, and

the output’s uniformity which is a key factor inage quality is high.

13

2.3.2.2 Complementary Metal-Oxide-Semiconductor (CMOS) Imag Sensor

Row Drivers
I
Row Access

il
i
i I

Camera Complementary Metal Oxide Semiconductor
(Printed Circuit Board) Image Sensor
e e
B = i 5
[
Clock & 1 PR g
o Timing | 2 g
_ £ = Generation l_r_j- I;‘!. | 2z
o o o H £ o
3|3 5% I 3°
£ 3 @l I £
S || % é '
= |
|
|

2

LN
Oscillator EI{ mt
|
_I

Electron-to-Voltage
Conversion

To Frame Analog-to-Digital
Grabber Conversion

Figure 2.8: Block Diagram of CMOS Image Sensor
(Source: Litwiller, 2001)

A CMOS chip is a type of active pixel sensor madmg the CMOS semiconductor
process. Extra circuitry next to each photo sercsmverts the light energy to a
voltage. Additional circuitry on the chip may becluded to convert the voltage to
digital data. The block diagram of a CMOS imagesselis shown in Figure 2.8.

A CMOS image sensor converts charge to voltagehatpixel, and most
functions are integrated into the chip. This mattesimage sensor functions less
flexible but, for applications in rugged environntgera CMOS camera can be more

reliable.

14

2.3.2.3 CMUcam3

Figure 2.9: CMUcam3
(Source: CMUcam3 Datasheet)

The CMUcam3 which shown in the Figure 2.9 is an ARMI based fully
programmable embedded computer vision sensor. Tie pnocessor is the Philips
LPC2106 connected to an Omnivision CMOS cameracsem®dule. The block

diagram of the CMUcam3 is shown in Figure 2.10.

Debug
Serial Port {B02.15.4) GPID

| SOVMMC Slot
2 2 4

uar_0 uart_1 GRID

Buttan (ISP} ————————m Servos (PWM)
e ——
LEDs

4

start_of_frama LPC2106
ARM7TDMI camera config

writa_anable

read_pixal

trus

_“D—> read_snable Averlogic write_enabia ¢_| Zscca
[AL4VEM440

read_clock FIFO write_clock
£8
pixel_clk -
Omnivision
href CMOos camera_config
Sensor

vraf

Figure 2.10: CMUcam3 Hardware Block Diagram
(Source: CMUcam3 Datasheet)

15

Custom C code can be developed for the CMUcam3guairset of open
source libraries and example programs, Executatdasbe flashed onto the board

using the serial port with no external downloadmagdware required.

The CMUcam3 is a hardware platform couples with @men source
development environment. It is targeted toward susleat are already familiar with

basic image processing and who are comfortable mitihocontroller programming.

The CMUcam2 emulation firmware is available foersswho want basic
image processing accessible through a simple setaiface and do not wish to

implement their own algorithms.

The CMUcam2 provides a simple human readable ASGihmunication
protocol allowing for interactive control of the mara form a serial terminal
program or a microcontroller. For line following @igation, the colour tracking

function can be used to detect the black colow. lin

16

2.4 Serial Communication

Serial communication is a device communicationguok that is standard on almost
every computer. The serial port sends and recdyess of data one bit at a time.
Although this is slower than parallel communicatiarich allows the transmission

of an entire byte at once, it is simpler and yow gse it over longer distances.

Typically, serial communication is used to transrASCIlI data. They
complete communication by using three transmiss$ioes: transmit, receive, and
ground. Because serial is asynchronous, the partraasmit data on one line while
receiving data on another. Other lines are avaldbl handshaking but are not
required. The important serial characteristicstmed rate, data bits, stop bits, and
parity. For two ports to communicate, these paramsemust match. The typical
serial communication connection from a microcom&oto a personal computer is

shown in Figure 2.11.

SUB-D 8p

Fy -
CONNECT Receive

MCU TO PC data (Rx)

—

CONNECT
Send
FC TOMCU
A Data (Tx)

RS-232

SUB-D 9p
CON

— — wn
vEE _U
10 T
vCco 11 vee o
[= 12 -
|| 16 T = a s [=]
ot weef] = osc1
qult] L2 . = oS 4 oscz 1]
] e1- niourf]-14) RF 28
o 1] = ; nin{}-13— = ReF3f-20]
U, P micurf 12— {0
I v M ap 1
T i <~ Rt T
B e ™ mounf] 2 =
100iF [| Rx
T
PRI

Figure 2.11: Serial Communication with PC

(Source: http://www.mikroe.com)

17

2.4.1 Universal Asynchronous Receiver Transmitter (UART)

The Universal Asynchronous Receivers TransmitteART) module is the basic
serial 1/0O module available in most of the microcohers. The UART is a full-
duplex asynchronous system that can communicate peitipheral devices, such as
personal computer, RS-232, and RS-485 interfaces.

Figure 2.12 shows a simplified block diagram oé tHART module. The
UART module consists of the three key hardware elgs Baud-rate generator,

asynchronous transmitter, and asynchronous receiver

- Pin Receive
UxRX
UART e
N " RECEIVER [* ! NN
BAUD-RATE | UULL -
GENERATOR | FAN
> UART Sl= -
TRANSMITTER ’r N
Transmit

Figure 2.12: UART Module Block Diagram

(Source: http://www.mikroe.com)

A UART is usually an individual or part of an intated circuit used for
serial communications over a computer or periphdealice serial port. UART is
now commonly included in microcontrollers. The UARdkes byte of data and
transmits the individual bits in a sequential fashiAt the destination, a second
UART re-assembles the bits into complete byteshE&RT contains shift register,
which is the fundamental method of conversion betwserial and parallel forms.
Serial transmission of digital information (bitdfyréugh a single wire or other
medium is much more cost effective than parallahgmission through multiple

wires.

18

2.4.2 Serial Peripheral Interface (SPI)

The SPI bus is a synchronous serial data link stahdhamed by Motorola, whic
operates in full duplex mode. Devices communicatmaster/slave mode where
master device initiates the data frame. Multiplavel devices are allowed wi

individual slave select (SS) lines. Sometimes SPllisdta «wire serial bu

The SPI bus can operate with a single master deandewith one or mor
salve devices. If a single slave device is usesl S8 pin may be fixed to logic low
the slave pernts it. With multiple slave devices, an independ&8 signal it

required form the master for each slave dev

Figure 2.13 shows the connection diagram of Skirfate with single slav
device while Figure 2.1demonstrates ghconnection of a mastdevice with three

independent slave devic

SCLE B SCLE
SPI MOS] [————» MOS]| SPI
Master MISO |¢ MISO Slave
58 » S5

Figure 2.13: Single Slave Device

(Source: http://www.byteparadigm.com)

SCLK | SCLK
MOSI » MOSI SPI
=PI MISO MISO Slave
Master 551 » 55
552
553
—| SCLEK
w MOSI SPI
MISO Slave
m 55
| SCLE
w MOSI SPI
MISO Slave
——#| S5

Figure 2.14: Multiple Slave Devices

(Source: http://www.byteparadigm.com)

19

2.5 Bluetooth Serial Port Plug

Figure 2.15: Bluetooth Serial Port Plug

The Free2Move Bluetooth Serial Port Plug F2M01Cdwshin Figure 2.15 offers a
replacement of the serial cable by a wireless baked on the Bluetooth wireless

technology.

The F2MO1C1 Serial Port Plug is a Class 1 Bluétaddvice with a very
dense packing. The unit gives a nominal range pfagmately 100m. No external
drivers are needed, A user-friendly Windows appiocais included that can be used

to configure the plug to suite the application iegments.

The F2M01C1 can be used together with other Bathtanits that support
the Serial Port Profile e.g. laptops and mobile n@so Examples of possible
applications include embedded systems, stand aensors, computer peripherals,

and domestic and industrial appliances.

20

2.6 Radio-Frequency ldentification (RFID) Module

Being developed based on NXP’s transponder IC, H#DRModule SLO15M-3
shown in Figure 2.16 is a 13.56MHz reader/writeickhcomplies with 1SO15693
and supports I.CODE SLI and Tag_it HFI. It doesoaetl-time detecting tag which

moves into or out of detective range and reportsuiih one output pin’s logic level.

T
El"'

ﬂ U T o

FARUANANERAR A =

. L0156 Wer2: 1 (]

Figure 2.16: RFID Module

In addition, it integrates all necessary composieandid antenna into one
printed circuit board. The external microcontrollean work with SLO15M-3 to

read/write 1ISO15693 cards and labels by simpleseommunication commands.

21

2.7 LED Driver

3.0V to 5.5V
VLED T
E E | |E
sDI SDI VDD
CLK TLC5917
P CLK 300 To Controller if Error
I LE Detection Used
£ [] [] o
R — (=]
GND

Single Driver
26 mA Application

Figure 2.17: LED Driver Block Diagram
(Source: TLD5916 Datasheet)

The TLD5916 is designed for LED displays and LEDBhting applications with
constant-current control and open-load, short-l@ad] over temperature detection.
The TLC5916 contains an 8-bit shift register anthdatches, which convert serial

input data into parallel output format. The blak&gram is shown in Figure 2.17.

At the output stage, eight regulated current parts designed to provide
uniform and constant current for driving LEDs witta wide range of LED forward
voltage variations. Used in system design for LEEplkhy applications, e.g. LED
panels, it provides great flexibility and devicefpemance.

Users can adjust the output current from 3 mA t@ H2A per channel
through an external resistor, which give flexilyilib controlling the light intensity of
LEDs. The devices are designed for up to 20 V ataitput port. The higher clock
frequency, 30 MHz, also satisfies the system reguént of high-volume data

transmission.

22

2.8 Proportional Integral Derivative (PID) Control

A PID controller is the most commonly used feedbeaftroller, it is widely used in
industrial control systems. A PID controller caltgls an “error” value as the
difference between a measured process variabla dedired setpoint. The controller

attempts to minimize the error by adjusting thecpss control inputs.

The PID controller algorithm involves three sepa@nstant parameters: the
proportional, the integral, and the derivative esludenoted P, |, and D. P depends
on the present error, | on the accumulations of pasrs, and D is a prediction of
future error, based on current rate of change. lbek diagram is shown in Figure
2.18. The weighted sum of these three actions esl s adjust the process via a
control element such as the position of a contedvey, or the power supplied to a

heating element.

—> P Ke(t)

u(t) O) | [T K etmar] Plant | y(t) o
+ -

- -

de
— D Ka%ﬂ

Figure 2.18: PID Controller Block Diagram
(Source: Araki)

Some applications may require using only one ar &stions to provide the
appropriate system control. This is achieved btirggthe other parameters to zero.
A PID controller will be called a PI, PD, P or Inteller in the absence of the
respective control actions. PI controllers ardyaommon, since derivative action is
sensitive to measurement noise, whereas the abeéaceintegral term may prevent

the system from reaching its target value dueeactintrol action.

CHAPTER 3

LINE TRACKING SYSTEM FOR THE FREESCALE CUP 2011

3.1 Overall System Architecture

Power
Management
v
: Line Detection Steering Control
BT — P
Module Microcontroller Module
Unit
Speed Measurement MC9S12XS128 Motor Driver
> Module > Module «

v

Wireless
Monitoring

Figure 3.1: Overall System

The design of the overall system of the smart cadehis shown in Figure 3.1. The
Freescale MC9S12XS128 microcontroller was usehagptocessor of the system.
The line detection and speed measurement modubeglprinput to the system and

the steering control and motor driver modules hesgutput.

An image sensor and an array of infrared sensore weed in the line

detection module to acquire the racing track infation. As for speed measurement

24

module, two pairs of infrared sensor were attadioebloth rear wheels respectively

to quantify the speed of each wheel independently.

Steering control module was used to determine iteettbn of travelling by
controlling the servo based on the racing tracrmition. Motor driver module was
used to control the two Direct Current (DC) drivimgtors.

The power management module was designed to proshffierent and

appropriate voltage level for all the devices ia flystem and the wireless monitoring

module was used as an aid for debugging process.

3.1.1 Interface of Sub-Systems

]
! i
| MCU
! Control Algorithms !
i : !
[& |
| i
I l l Fy 'y :
| v L I
»]
| . Dutput Input g "
: ‘ HRGM ‘ Compiari Caplure SPI 1O Port ST Time: !
-]
L & Fy & i
1 |
’]
iy a s ol e ainen e e e o o e il o el e s anie e e i e e il S e e e |
R i I e e e e e e it it i
! Huardware !
i ¥
1] 1
) Blite LED Driver :
] Drivers 1
| l I i
] 1
| ¥ ¥ 1
i " 1
Servn Speed i [Bluetooth
] - >]
: DC Motors ‘ Motor Encoder Line Sensors ‘ CMUcam} Serial Port ;
1] 1
I 1
1] I
i 1
i ‘ Car Maodel ‘ Racetrack P! 1|
i 1
I]
| 5

Figure 3.2: Interfacing of MCU and Hardware

25

The usage of the microcontroller peripherals teriiaice with the hardware is shown
in Figure 3.2. The peripherals used were PulseWhodulation (PWM), Output
Compare, Input Capture, Serial Peripheral Interfgg@Rl), General Purpose Input
Output (GPIO) port, Serial Communication Interf48€I) and Timer.

Besides, the Phase-Locked Loop (PLL) was used ésthibe bus frequency
to the maximum which is 40 MHz to increase the pssing speed; in another word,
to increase the number of instructions per secBedler to Appendix A for the main

function that was run in the microcontroller.

3.2 Line Detection Module

Camera Scmfﬂ .
_., Communication
CMUcam3 Interface
{SCI) ;

MCU

Infrared Sensors Comparator

Figure 3.3: Line Detection Module

The line detection module as shown in Figure 3.8 w@nsisted of an image sensor
and an array of infrared sensors. The camera uasddMUcam3 that communicates
with the MCU through the SCI. The infrared sensoay consisted of 7 pairs of
sensors and the arrangement of the sensors waswmta detect the current position

of the smart car.

26
3.2.1 CMUcam3
The CMUcam3 was controlled by serial commands &eddata was transmitted to
MCU at the baud rate of 115200 bits per second)(l&slata bits, 1 stop bit, no

parity bit and no flow control. All the commandsdgo control the CMUcam3 were

summarized in the Table 3.1.

Table 3.1: CMUcam3 Commands and Description

Command Description
iy Get the version of the firmware, to detect the @nes of the
CMUcam3
PM Change the CMUcam3 to poll mode
ST Set the tracking parameter for RGB channel
VW Resize the frame being captured and processed
oM Mask out the undesired output
TC Track colour in the defined range

The thresholds for each Red, Green, and Blue chamms be set correctly in
order to track a specified colour. Table 3.2 listieel thresholds set for each channel

to track the black colour line.

Table 3.2: Tracking Parameters

Channel Minimum Maximum
Red 16 30
Green 16 30
Blue 16 30

Any colour detected by the CMUcama3 fall within trenge of preset RGB
threshold values will be tracked and the informratad that tracked region will be
processed. A T-packet data will be output from@iUcam3 to the microcontroller
as a result of colour tracking. The illustrationTepacket data is shown in Table 3.3.

27

Table 3.3: T-packet Data

T mx my x1 yl x2 y2 pixels confidence

mx The middle of mass x value

my The middle of mass y value

x1 The left most corner’s x value

yl The left most corner’'s y value

X2 The right most corner’s x value

y2 The right most corner’s y value

pixels Number of pixels in the tracked region
confidence The confidence level of the data

For line following application, the mx data wasffeient as it was the
centroid location of the black line, the black lwhkich was curved to the left or right
will cause the mx data output shifted to smallebigger value. For example, the mx
returned 44 when the line is at the centre andilltreturn smaller or bigger data
when the line is detected at left side or righesidt the end, the output data was
masked but left the mx data. Refer to Appendix Btfe functions developed to

communicate with the CMUcam3.

Figure 3.4 shows the initialization sequence oé @BMUcam3. These
commands were used to configure the CMUcam3 readthe line following task.
An “ACK” will be replied by the CMUcam3 as the aakmledge flag to indicate the
command was executed successfully. If “ACK” was rexteived after a command

was sent, then the command will be sent again.

28

Send Get Version Send Virtual

=,
command Window command

Send Poll Mode Send Output Mask
Command command

Send Set Tracking Send Track Color
command command

Figure 3.4: CMUcama3 Initialization

3.2.2 Infrared Sensors Array

The infrared sensors were arranged in a straiglet to detect the location of the
black line with respect to the smart car positibhe output of the receiver was fed

into comparator ICs LM339 to pre-process the sigmefore it was fed into the
microcontroller.

29

FMCODER COMPARATOR

by ey’
ED01 « | 4 12__ED "l‘“:l_ ED01 « | v | 13 F[&
OUTEr | | o QLT i AT T | | o 0T N
OuTi= | |-= DT U711 = | | = OUT —] AN
—
B
——
i L —_—
3 _———
—— f L
—— L
——
‘ JLCzaa ‘ JLCE39
—lll
== Em——
=
S + e $ S — + —_— ——
| IR ——UTS
| | IR i —
JHE-17T | | IS —UTE
——
JB SEME0R COMPARATOR —UT1
—l
—e
) T
| %) ——
il 3
——
— T
| Ll ——
Lhiz -v': . T E PR C For
—
M2
[
—-—
-l
- L
—-—ll

|°°°°TTTT°"°°°??OW? |
e ks ti]

Figure 3.5: Schematic of Infrared Sensor Circuit

For the sake of stable performance, the inframedters were powered up
using a LED driver IC TLC5916 to ensure that thereat supplied was always
consistent regardless of the voltage level of thdeby. The LED driver IC was
controlled by the microcontroller through the SPigure 3.5 shows the schematic

diagram of the infrared sensor circuit.

3.3 Steering Control Module

Output General
P
G # I;l(l)‘pl:)iie Servo Motor

Figure 3.6: Steering Control Module

30

The steering control of the smart car was achidwedontrolling the servo motor
which was the Futaba S3010. Servomotor reacts diogpto the duty cycle of the 50
Hz signal which was fed as the signal.

However, in our system, all the PWM channels wesed up for DC motors
control so the alternative solution was to useQput Compare feature to generate
a desired signal for the servo motor as shownguaréi 3.6. Refer to Appendix D for

the servo control program.

3.3.1 PD Controller

Set point =>®=b PD controller — Servo —B= Actual position

Camera —i

Figure 3.7: PD Control System Block Diagram

The position control of the smart car was achievedising Proportional-Derivative
(PD) controller. The output from the camera will bged to calculate the error in
position as the input to the PD controller. Theveaewvas controlled accordingly to
react toward the desired set point. The PD comirdllock diagram was shown in

Figure 3.7 and the controller equation was showequmation 3.1.

31

e—e;
2

So=Sr + K, xet Ky X (3.1)
where

S = Servo angle output

Sr = Set point

Ky = Proportional constant

Kq = Derivative constant

e = error

g = last error

Larger value oK, will provide greater response in turning but exoesg,
will cause the system to be unstable and oscillete. constankKy helps in respond
to the rate of change of error and it can redueeadtrillation but it is sensitive to
noise so excessiv€y will cause the system to be unstable. The optinkgrandKgy
value were found out through trial and error mettaodi different values were

applied for different path condition.

3.4 Wireless Monitoring Module

J Serial
ot Bluetooth PC
Communication
Re(]])l;i:‘ted # Interface l# Serial Port Terminal
(SCI) Plug Software

Figure 3.8: Wireless Monitoring Module

By using a Bluetooth serial port plug, any desidada can be requested from the
microcontroller and transmit to the computer thioug terminal software like
HyperTerminal wirelessly. For example, the usefidbimation like the speed and

camera line tracking output can be transmittedh® computer for monitoring or

32
debugging purpose. Figure 3.8 shows the block dragof the wireless monitoring

module. Refer to Appendix C for the functions depeld for wireless monitoring by

using the Bluetooth serial port plug.

3.5 Mechanical Design

3.5.1 Camera Mounting

Figure 3.9: Design of Image Sensor Mounting in SaliWorks

The camera stand was designed for the height lawitstated in the rules and
regulations which was 25cm. The materials used \@kmninium and polyethylene
(PE) which are very light weight. The structure wigsigned and models by using
SolidWorks 2010 as shown in Figure 3.9.

This design provides 3 degrees of freedom whiehpéich, yaw and height

for greater flexibility. These 3 degrees of freedaas needed for the adjustment of

33

the image sensor’s position and angle during tgesaimd tuning. The weight of this

mounting stand with the image sensor was aboutkyy16

The location of the mounting stand was at thetfpant of the chassis which
was right behind the servo motor to enable the carteehave adequate front view
distance.

3.5.2 Wheel Adjustment
The three major front wheels alignment parametara gar are camber, caster, and
toe. The purpose of these adjustments is to retilgceear, to ease the turning of the

steering wheels, and to ensure that car travedgaight line.

In the design of smart car, positive camber, pasicaster and toe-in
configuration were chosen.

3.5.2.1 Camber

0° 0° 0°
I — -
=z i|* : «‘é% ?”F :
Fositive E' : ?-' Negitive {ﬂ’ i
Camber e | £ C.amb-er
W 7 |
— = —
ﬁ":.. = Tj' ﬁ"'_':--— -

Figure 3.10: Positive Camber and Negative Camber

34

Camber is the angle of the wheel as shown in thar€i3.10. If the top of the wheel
is tilted out then the camber is positive; if itiked in, then the camber is negative.
Positive camber can be used to offset vehicle t@pdb ease the turning of front
wheels, whereas negative camber can be used easestability

By default, the camber angle was zero degreetiFosiamber was selected
due to the need to increase the response of the fubheels. However, this
configuration will reduce the straight line statyllibut it can be compensated with

toe-in configuration.

3.5.2.2 Caster

Figure 3.11: Positive Caster and Negative Caster

Caster is the tilt of the steering axis as showFRigure 3.11. When the wheel is in
front of the load then the caster is positive; elsés negative. Positive caster
improves straight line stability because the stepexis intersects the ground ahead
of the contact patch of the tire. As the car mdeeward, the steering axis pulls the
wheel along, and since the wheel drag along thergtoit fall directly in line behind

the steering axis.

35

By default, the caster angle was zero degreetiAdsiaster was chosen to

enhance straight line stability and to have a readbrce that help to steer back the

front wheels after cornering.

3.5.2.3 Toe

r===Ta ===}

TOE QUT

Juoi4

T
3| ToEm

L! W=}

Figure 3.12: Toe In and Toe Out

Toe is the tilt of the wheels toward or away frone@nother when viewed from the
front as shown in Figure 3.12. Tires that “toe-pwint toward each other whereas

tires that “toe-out” point away from each other.

By default, the front wheels were neither toe-ar toe-out. Positive camber

configuration which will reduce the straight lin@lsility so toe-in was applied in the
design to compensate the effect of positive camBesides, increased toe-in will

reduce over-steer, steady the car and enhanceshagd stability.

CHAPTER 4

PATH RECOGNITION SYSTEM FOR AUTOMATED DEMAND
RESPONSIVE TRANSIT SYSTEM

4.1 Overall System Architecture

Map Information

Path Recognition System ‘ Navigation Control System
_____________________ 1

Single-Board
RFID Module | il lR%o 9632

Motor Driver

v

| DC Motors

I

I Real-Time |

CMUcam3 # e T ﬂl Servo Motor

I
I
I '
I
I
I
I

I
I
I
I
I
I
H-Bridge I
I
I
I
I
I
I
I

Port Plug |

I
: Bluetooth Serial ||
I
I

Computer-Hosted GUI

Figure 4.1: Overall System Architecture for ADRT

The overall system architecture for the ADRT waevah in Figure 4.1. The path
recognition system for ADRT system consisted ofMUZam3 and a RFID module

which were used for road tracking and route ideratifon respectively. Both of the

37

CMUcam3 and RFID module used serial communicatioimtierface with the Real-
Time controller Single-Board RIO (sb-RIO) 9632 frivational Instruments.

The sb-RIO 9632 contains a 400 MHz Real-Time msgeand a 2-million
gates Field Programmable Gate Array (FPGA). LabVIEX¥Nich is a graphical
programming language from National Instrument wssduto program the sb-RIO.
Besides, the additional modules such as LabVIEW-Ri&ae module and LabVIEW
FPGA module were utilized to make use of the RealeTprocessor and the FPGA
on the sb-RIO. Refer to Appendix E for the projegplorer in LabVIEW which
listed all the Virtual Instrument (VI) generated lmpth Real-Time and FPGA

modules

A computer-hosted Graphical User Interface (GUdswleveloped to acquire
the destination input from the passenger. The coenpuas communicated with the
sb-RIO wirelessly via a Bluetooth serial port plUdpe pre-known map information
was stored in the non-volatile memory of the sb-RIGth both the destination and
map were known, path finding function was executefind the shortest or the most

cost-effective path to the destination.

The movement of the autonomous vehicle was cdetfdly the navigation
control system which was consisted of a servo matat a pairs of DC motors

driven by H-bridge motor driver.

4.2 Path Recognition System

421 UART Communication

First and foremost, the CMUcam3 and RFID modulaludse path recognition were
required to communicate serially with the sb-RIO.lekel-shifted RS-232 serial
interface was available on the sb-RIO but it wasapplicable for both CMUcam3
and RFID module.

38

The establishment of the serial communication @f1Ucam3 and RFID
module were achieved by emulating the UART funciiorthe FPGA contained in
the sb-RIO. This required the usage of FIFO menbtogks and any digital 10 pins
to serve as transmit and receive pins.

Figure 4.2 shows the main virtual instruments (Mlpck diagram to
implement UART in LabVIEW. The VI requires many ethsub-VIs such as read
and write function to run simultaneously so tha hART function can be emulated.
Refer Appendix F for the others UART functions sashinitialize, write and close
functions.

[Porm/Dioi]

Port0/DIO0
= fRead: New Datar|-

baud rate (9600) & b Read FIFQ 4B 5 B
Read
Element K

> Timeout

Timed Qut? H

% i False Vt

data bits (8)
(1324

parity (0:none)

[4}
stop bits (10: 1 bit)
. stop ...
Invert Polarity? ;

‘Write: Data Written % 1 True Vt

1000000000000 000000000000000000000¢C

Bt Write FIFO 4Ib ©
Write: Char Write
Cua » Element

b Timeout

Timed Qut? H

r A Write: Data Written

OO00000000000000000000000000000000

(i [r=op} .731

Figure 4.2: UART Emulation in LabVIEW

39

4.2.2 Road Tracking

The CMUcam3 was used to track the black road tarenthat the vehicle can travel
accordingly on the black road. Therefore, the ib@htommands in previous chapter
such as Track Colour were used and the T-Packatvekg examined.

The object to be tracked is a 60 cm wide blackwotoad, as compared to
the 3 cm wide black line in previous chapter. As thad is wide, the area exposed to
light was increased too, so a different set ofkirag parameters shown in Table 4.1

were used. These higher tolerance parameters dprtheeCMUcama3 to track the
road with minimal error.

Table 4.1: Tracking Parameters

Channel Minimum Maximum
Red 16 50
Green 16 50
Blue 16 50

With the emulated UART in FPGA, the CMUcam3 cancbatrolled by the
sb-RIO. Figure 4.3 illustrates the setting of tiagkparameters for CMUcam3 done

in LabVIEW while Figure 4.4 shows the reading ofppdeket data as a result of
tracking.

cluster RED min
(R RED max

g GREEN min
@_’7 GREEN max
BLUE min
BLUE max

g
n)

stop T
3

-8

Figure 4.3: Set Tracking Parameters in LabVIEW

40

Figure 4.4: Get Tracking Data in LabVIEW

4.2.3 Route ldentification

The RFID module was attached at the front of theraamous vehicle to search for
the desired route. RFID tags were placed at ewangtion so that the vehicle can
know once it reached the junction where it needddrin in. Figure 4.5 illustrates the
placement of RFID Tags at the junctions for theoaaimous vehicle to identify the
route.

[A
A alies

Figure 4.5: Route Identification with RFID Tags

41

The RFID module was communicated serially with $heRIO with a baud
rate of 115200 bits per second, 8 data bits, 1 btgpno parity bit, and no flow

control.
The communication in between the RFID module ardstirRI10 follows the
formats stated in Table 4.2 and Table 4.3. Thaistahd command overview were

shown in Table 4.4 and Table 4.5.

Table 4.2: Communication Format from Host to Reader

<Preamble><Len><Command><Data><Checksum>

Preamble | 1 byte equal to OXBA

Len 1 byte indicating the number of bytes from Comman@hecksum

Command | 1 byte Command code

Data Variable length depends on the command type

Checksum| 1 byte XOR of all the bytes from Preamble to Data

Table 4.3: Communication Format from Reader to Host

<Preamble><Len><Command><Status><Data><Checksum>

Preamble | 1 byte equal to OxBD

Len 1 byte indicating the number of bytes from Comman@hecksum

Command | 1 byte Command code

Status 1 byte Command status

Data Variable length depends on the command type

Checksum| 1 byte XOR of all the bytes from Preamble to Data

Table 4.4: Status overview

42

Status Description

0x00 Operation success

0x01 No Tag

0x04 Read Fail

0x05 Write Fail

0x06 Unable to read after write

0x07 Read after write error

O0xFO Checksum error

OxF1 Command code error
Table 4.5: Command Overview

Command | Description

0x31 Get tag information

0x32 Get block security status

0x33 Read blocks

0x34 Write a data block

0x35 Write AFI

0x36 Write DSFID

0x37 Lock Block

0x38 Lock AFI

0x39 LOCK DSFID

0x40 Control Red Led

OxFF

Reset

43

4.3 Servo Motor Control

The servo motor control signal was generated hyguie FPGA digital I/O pin; any
pins can be used to produce the 50 Hz pulse wéhdthy cycle varied from 0.5 ms

to 2.5 ms.

PEEY

CCW Servo Angle (radians)

(o= gk
to P

©

Figure 4.6: Servo Control Main Function

Tz

1500

cow servo angle (radians) I@ k ' m P P } :lpulsewidth (us)
> 500

|coerce to -pii2 to pif2|

Figure 4.7: Angle to Pulse Width Conversion Functio

Figure 4.6 shows the LabVIEW block diagram usedyeénerate the pulse
with the desired pulse width. Figure 4.7 showsfthection that limits the range of

input from -=/2 tox /2 and then converts the input from angle to pulsith.

44

Digital Qutput

Generate Digital Pulsewvi
T. Port0/DIO3 |7 ; .

i

pulse width (uSec) |7LI5EC -

20000} | Y

[

Figure 4.8: Digital Output Function in FPGA

1000000000000 000000000000000000000 L]

Wait ‘uSec)

[Tt o = e | B= /0 ltem

invert pulse (F) |LTEHR-

pulse width {uSec) [ET

FPGA digital cutput

Figure 4.9: Digital Pulse Generation in FPGA

The digital 10 pin of the FPGA was selected toegate the pulse, the block
diagram is shown in Figure 4.8 and it was runnimghe FPGA together with the

sub-function shown in Figure 4.9 to generate tigéalipulse.

45

4.4 Wireless Communication

The wireless communication in between the computasted GUI and the sb-RIO
was established by using the Bluetooth serial ptug. This required the level-
shifted RS-232 serial interface so the serial cotoreon sb-RIO can be used for this

purpose.

A communication protocol driver called Virtual tnsment Software
Architecture (VISA) was provided in LabVIEW. It elved the direct access to the
serial device attached to the sb-RIO and the readribe from the serial device.
Figure 4.10 shows the application of VISA functigasnitialize the Bluetooth serial

device, read data from the device, and then closeammunication.

VISA resource name

VIZA
T/0

read buffer
Fabc]

|1152(]Gi a =
Fone e —— —— K.
Mone | abi v
E R
return count
stop

Figure 4.10: VISA Functions in LabVIEW

4.5 Map Design

The prototype of the residential area was desigoetlave four rows of terrace

houses and a row of shop lots which were servéseadestinations of the passenger.

The dimension of this small scale residential aseabout 4.8 meters long
and 2.4 meters wide. This size of residential avaa sufficient for the autonomous

vehicle to demonstrate and verify the concept efADRT system.

46

The passenger will be picked up by the autonomalscle at the Light
Railway Transit (LRT) station. Figure 4.11 showe ttop view of the map and
Figure 4.12 demonstrates the isometric view.

Figure 4.11: Map (Top View)

Figure 4.12: Map (Isometric View)

CHAPTER 5

RESULTS AND DISCUSSIONS FOR LINE TRACKING SYSTEM

5.1 Line Tracking

The CMUcam3 was successfully implemented to perftnm task of black line
tracking with the thresholds set correctly. The mam front view distance attained
with optimal performance is 50 cm measured from ftent wheel, which is

illustrated in Figure 5.1.

Figure 5.1: Front View Distance of CMUcam3

48

By using the CMUcam Frame Grabber software, thegemaseen by the
CMUcam3 can be displayed on the computer screes.iFtessentially important to

adjust the camera lens focal length so that a sheage can be obtained.

As shown in Figure 5.2, the tracking output datpatket was displayed as
well. The result was handy as the mx was 44 whenbiack line is right at the
centre. Whereas in Figure 5.3, the black line wased to the left side so the mx is
27.

s CMUcam

= -

Main

Available COM Ports Baud Rate Timeout {ms) I_(:,onnect -!

ComM4 - 115200 ~ 5000 E'ed.

Terminal Console

T 44 83 40 0 49 142 255 255 £
T 44 83 40 0 49 142 255 255
T 44 82 40 0 49 142 255 255
T 44 83 40 0 49 142 255 255
T 44 82 40 0 49 142 255 255
T 44 82 40 D 49 142 255 255
T 44 82 40 0 49 142 255 255
T 44 82 40 0 49 142 255 255
T 44 82 40 0 49 142 255 255
T 44 82 40 0 49 142 255 255
T 44 82 40 0 49 142 255 255
T 44 82 40 0 49 142 255 255
T 44 83 40 0 49 142 255 255

2

I Send I @ CIF @ QCIF [l locp [bilmase
COM4 connected. | 1000 Refresh Interval (ms)

Figure 5.2: Line Tracking Result of Straight Line

5 CMUcam Frame Grabber

Awvailable COM Ports Baud Rate Timeout {ms) I_(:,onnect -!

Com4 - 115200 + 5000 E'ed.

Terminal Console

ACK
T 41
fc

® CIF @ QCIF

COM4 connected. 1000 Refresh Interval jms)

Figure 5.3: Line Tracking Result of Curved Line

49

One of the problems with the CMUcam3 was the respdime taken to output the
T-packet was too long. It was above 60 ms for destking data to be received and

this is unacceptable for a high-speed smart car.

This problem had caused the smart car to run ouhefracing track as a
consequence of incapable to acquire the racingk tiaformation and react
accordingly when it was travelling with high speedpecially when the smart car

encountered a sharp turn.

The proposed solution to this problem was to redbneesize of the image
being taken to be processed. This is different freshucing the resolution so the
sharpness of the images would be remained. Theesggthimages were taken from
pixel 68 to pixel 88 which was 20 pixels verticaify contrast with 144 previously;
whereas its horizontal pixel number was remaine88agixels because it is a crucial
parameter to detect the position of vertical bldide, so higher resolution was

allocated.

With the smaller image size, the response timedradtly reduced to about
20 ms per cycle. This had enabled the speed oftstaarto be increased and the

tracking performance was improved drastically.

Figure 5.4 shows the segmented image of a curmedathich was same with
Figure 5.3. Apparently the tracking performances wat affected as the mx value

was still 27 which was same with the mx value shawRigure 5.3.

50

= CMUcam Frame Grabber
Main |Selt-hgs|.
Awailable TOM Ports Baud Rate Timeout {ms) _ Connect .i

coMa ~ 115200 5000

Terminal Console

ww 1187 144 -
ACK

Ao

ACK

T 65

b (]

ACK

T 27

-vw 1 68 87 BB |25,
ACK
b (]
ACK
T27

m

\

Send @ @

[COM conmected. | 00 Refresh Interval fms)

Figure 5.4: Line Tracking Result of Curved Line with Segmented Image

5.2 Steering Control

With the Output Compare feature of the microcomerolthe control signal required
for a servo motor was successfully generated. Tdreabwas fixed at 50 Hz which
was necessary by the servo motor, and the duty @ar be varied according to the

desired value.

However, the steering angle limits had been setvimd structural damage
due to overturn so the duty cycle can only rangenfd.18 ms to 1.84 ms with the

1.5 ms as the neutral position.

Figure 5.5 shows the control signal pulse of tieye motor when a straight
line was detected. On the other hand, Figure 5 Fagure 5.7 demonstrate the
signal sent to servo motor when a rightmost oniefit line was found respectively.

Tek gl Trig'd P Pos: 20,0005 SAVESREC
+*

Action

Save Image

File
Farmat
+ Ahout

B T T e T SRS R RO e Ea'-.-'iI'I'SI

Images

aelect
Falder

SaAvE
TEKOODO.JPG

CH1 2.00% b S00 U5 CH1 &7 1,16
12-4pr=12 1510 46,7034Hz

Figure 5.5: Control Signal When Straight Line Deteted

Telk J @ Stop M Pos: —20,00 0% SAVESREC

Action

save Image

File
Farmat

+ Ashout

Thsp—m s B e Bl e e SRy Sa'-.-'il'l';l

Irnages

select
Falder

Sane
TEROOO4.JPG

CH1 2.00Y P S00 s CH1 &7 1.16Y
12-Apr-12 1313 45,7873Hz

Figure 5.6: Control Signal When Rightmost Line Deteted

51

52

Tek J i Stop b Pos: —20.00,us SOVESREC
Actio

+ gbout

1-h.d-l-ﬂ—l-hu-—-u"-n——+1-'\-w-|——u--h-l—+- Ry B W ke e Ea'.lu'ing

Images

select
Falder

Save
TEKOQOG,JPG

CH1 2.00% P 200 s CH1 .7 1.16Y
12-Apr-12 15114 47, 2588Hz

Figure 5.7: Control Signal When Leftmost Line Deteted

Previously the servo motor was powered up by 5 & erentually the response was
found out to be slow. After the power supply hadrayed to 6 V, the response of the

servo motor and the torque generated were obvionmyoved.

53 Wireless Communication

The wireless communication was established suadbsdiy using the Bluetooth
Serial Port Plug. It was essentially useful duriihg test run of the smart car so that
the smart car can be stopped immediately oncenibtd of racing track to prevent

any collision and cause any damages to the smart ca

53

5.4 Outcome in The Freescale Cup 2011

The Freescale Cup 2011 competition was held dhattl 18 of September 2011
successfully. Figure 5.8 shows the smart car in plaeking area during the

competition.

The smart car had completed qualifying round amutgeded to the final
round successfully. Subsequently the smart wasdttméigher speed to compete in
the final round.

Unfortunately, the smart car ran out of the radnagk before it can complete
the full race. This was due to some dark areas @xasted outside of the racing track
and the camera had misinterpreted the image arskdahe smart car to run out of
the track.

~

Figure 5.8: Smart Car in The Freescale Cup 2011

CHAPTER 6

RESULTS AND DISCUSSION FOR PATH RECOGNITION SYSTEM

6.1 Road Tracking

The CMUcam3 was successfully setup to track thekbl@olour road and travel

accordingly until it reached the junction.

Figure 6.1 shows that the vehicle was in the neidoll the road and the
tracking result output a mx value of 46. Whereagufé 6.2 and Figure 6.3 show a
mx value of 34 and 55 respectively when the vehi@s slanted to the right side and

to the left side of the road.

i =
o) CMUcam Frame Grabber = | =

Msin | Settings |

Awailable COM Ports Baud Rate Timeout {ms) Connect

COM& - 115200 - 5000 |m

Terminal Console

| [T 46 78 0 0 87 142 255 255
il |T46 78 00 87 142 255 255
|| |T 477900 87 142 255 255
| |T4678 00 87 142 255 255
| |T47 79 0 0 87 142 255 255
T 4779 00 87 142 255 255
| |T467900 87 142 255 255
T 46 79 0 0 87 142 255 255
il |T 46 78 00 87 142 255 255
|| [T 46780087 142 255 255
|| [T477900 87 142 255 255
| |T 46 79 0 0 87 142 255 255

Send | @ CIF @ aclF] Loop |mmage

COW4 connected. | 1000 Refresh Interval ms)

Stop

Figure 6.1: Road Tracking Result (Middle)

55

- i
a5l CMUcam Frame Grabber |£|M

Main l-ééﬂings !

HAvailable COM Ports Baud Rate Timeout {ms) Connect

= ~| [5000
Com4 115200 000 @J

Terminal Console

T34860073 142 255 255 o
T34 870073 142 255 255
il |T 34860073 142 255 255
il |[T34870073 142255 255
|| |T34 8500 73 142 255 255
| T34 860073 142 255 255
T34 870073 142 255 255
T34 870073 142 255 255
T34 880073 142 255 255
Il |T34860073 142 255 255
J |T34860073 142 255 255
T34 860073 142 255 255
| |T 34 860073 142 255 255

Send @ CF O acIF [Loop | Grab Image

COM4 connected. | 1000 Refresh Interval {ms) | Stop

Figure 6.2: Road Tracking Result (Right)

F = T b
o5 CMUcam Frame Grabber, =TNE &'
=
Main | Settings |
Awvailzble COM Ports Baud Rate Timeout {ms) Connect

4 - - AT EET|
COM 115200 5000 | Saaa

Terminal Conscle

T 558012087 142 255 255 A
i| [T 5581 120 87 142 255 255
|-| T 5581 120 87 142 255 255
T 55 80 12 0 87 142 255 255
T 55 80 12 0 87 142 255 255
T 55 B0 12 0 87 142 255 2565
T 55 80 12 0 87 142 255 2565
T 5581 12 0 87 142 255 2565
T 5580 12 0 87 142 255 255
T 55 80 12 0 87 142 255 255
T 55 80 12 0 87 142 255 255
T 558012087 142 255 255
T 5581 12 0 87 142 255 255

Send | @ CIF & QCIF

[Loop I Grab Image]
COM4 connected. | 1000 Refresh Interval ms) [s |

Figure 6.3: Road Tracking Result (Left)

The mx value from the CMUcam3 was useful to repné the orientation of
the vehicle with respect to the road. Therefore,nix value was essential to keep the

vehicle travels in the middle of the road throughtcolling the servo motor.

56

6.2 RFID Tags Detection

Figure 6.4 illustrates the usage of a terminalveafé called Docklight to test the
RFID module’s reading function. The RFID tags weetected by the RFID module
when the tags were in the vicinity of the detecttange which was up to 80 mm.
The status pin of the RFID module can be read bysthtRIO to determine when a
tag was detected.

The GET INFO command was sent and various respafddifferent
conditions such as no tag detected, read failedl r@ad success with the RFID Tag

unique ID following at the back were shown in thgufe 6.4.

f T
< Docklight V1.9 (Eval) | \E]

File Edit Run Tools Help Stop Communication (F6)

e[RE AR Ea s

L}l——= Commmunication port open Colors&Fonts Maode | COm4 115200, None, 8.1
Send Sequences Communication
Send MHame Sequence ASCIL HEX 1 Decimal] Binary]

12-4-2012 22:37:57.182 [TX] — B& 02 31 89

122472012 22:37. 67,2510 [RE] — BDI0D3 31 01 BE

12-4-2012 22:38:01.611 [TX] — BA 02 31 89

|| : 12-4-2012 22:38:01.641 [RX] — BD 03 31 04 8B

Rieceive Sequences 12742012 22:38:10.265 [TX] — B4 02 31 &9

Active Nards Sequence ‘s 12-4-2012 22:38:10,296 [RX] — BD OE 31 00 54 B3 86 13 00 00 07 EO0O 00 00 31 26

_—— e v e = —

Figure 6.4: Reading of RFID Tag

57
6.3 Servo Motor Control

The servo motor control signal generated with tlGK digital 1O pin had a
amplitude of 3.3 V, which was lesser than the neqnent of 5 V. However, 3.3 V
was detected as “high” as well and the servo mats tested to be able to control
by the signal generated by the FPGA.

Figure 6.5 shows the signal with 1.5 ms pulse &ntain the servo motor at
the middle position. On the other hand, Figureah@ Figure 6.7 illustrate the signal
with 0.5 ms and 2.5 ms which were used to steeséimeo motor to the leftmost and

rightmost position respectively.

Tek i Trig*d M Pos: 00005 SAVESREC
+*

Action

File
e Farrnat
+ JPEG

about

1+-:-r-r-|ﬂu+-—m+.+-.—mﬁq+|--h|-wa- Bl e e T Sa'.lu'ml;

Irnages

Lelect
Falder

SavE
TEKOO20.JPG

CH1 2.00% M 1.00ms CH1 .7 213
12-4pr-12 2200 a0.0004Hz

Figure 6.5: Control Signal (1.5 ms Pulse)

Telk JL Trig’d kA Pos: 0,000 ~aWESREC
+
Bction
About
1+ - e o, g e g el ok e B Sa'.lu'"'p;
Images
Lelect
Falder
ave
TEEDD2.JPG
CH1 2.00% kM 1.00ms CH1 /&~ 213V
12=Apr=12 2200 LO.0004Hz
Figure 6.6: Control Signal (0.5 ms Pulse)
Tek JL. Trig'd M Pos: 0,000 SAMESREC
+
File
e e—— Farmat
+ JPEG
about
7 s ok] e B LI e e By e ke 5-3"."II'I'§|
Images
Select
Falder
Save
TEKOOT13.JPG
CH1 2.00% M 1.00rns CH1 .7 213y
12=8pr=12 21:53 S0.0004Hz
Figure 6.7: Control Signal (2.5 ms Pulse)

58

59
6.4 UART Emulation in FPGA

The UART function was successfully emulated in #@GA, a Graphical User
Interface shown in Figure 6.8 was created to settthcking parameters of the
CMUcam3 and to show the tracking result.

Mode

'J initialize Tracking Data
Tracking Pa\rameter e Iu—
RED min .}|16
v, »
) Y position IU
RED max .}|50
W
Left corner X IU

_
GREEN min ﬂllﬁ Left corner ¥ IU
‘\||
GREEMN max vjlr Right corner X IU—

BLUE min ;:Ilﬁ Right corner ¥ IU
BLUE max ;:Im # of pixels IU
IU

stop Confidence

Figure 6.8: Reading of RFID Tag

6.4.1 Conflict of Multiple UART

Two UART functions were required in order to have tCMUcam3 and RFID
Module communicated. Although single UART was ssstully implemented but
when the UART functions were duplicated to creatgeeond UART interface, an

error was shown due to some internal conflicts.

The problem was unsolved hence the communicatidRFdD module with

the sb-RIO was not established.

60

6.5 Outcome

Figure 6.9 demonstrate the experimental setup @fatltonomous vehicle for the
ADRT system. The NI sb-RIO 9632 was mounted oncthessis and two Lithium-
Polymer (Li-Po) batteries were placed underneatioteer up the whole system.

The CMUcam3 was installed on the car body togettién the mounting
stand. The height and angle of the CMUcam3 werastelj to obtain an optimal
view of the road to be tracked. The CMUcam3 waseoted to the sb-RIO to have

serial communication.

Lastly, the RFID module was attached at the frasimposition of the
vehicle. This was proven to aid the autonomousclelio detect the juntion earlier
and identify the route effectively hence the autonas vehicle can prepare to turn in
advance.

Figure 6.9: Experimental Setup of Autonomous Vehid

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

This project involves different aspects, rangingnirmechanical design, electronic
embedded system design, programming of microcdetrahd FPGA, motor control,

computer to microcontroller interface, wireless ocoumication, and sensors and
instrumentations. Every aspects were well studiedl inderstood so that all things

can be put together to form a system.

In a nutshell, the objectives of this project hbeen achieved and it is a very

rewarding learning process.

7.1 Line Tracking System

7.1.1 Conclusion

The main objective which is to build a vision guddiéne following smart car was
accomplished by using the CMUcama3to detect thekldiae on the racing track. The
CMUcam3 must be controlled and configured corregiityr appropriate parameters

in order to perform the line tracking task.

Subsequently, a sophisticated control system maéemented to control the
steering of the smart car. The control system wesigted based on the PD

controller and the parameters were determined ¢irdwal and error.

62

Lastly, a wireless communication was establisimelletween a computer and
the smart car. This had enabled the smart car spaveed or stopped remotely during
the testing stage, which can help to avoid fromlisioh when the smart car was
running out of the track.

7.1.2 Recommendation

There are a lot of improvements that can be doni@éntracking system. Firstly, the
CMUcam3 is an open-source programmable vision sensmlule, so a custom
source code can be developed to perform a spéasfic This provides higher degree
of flexibility from developer’'s point of view in der to improve the tracking

performance.

Other than that, computer-based software can e tbuestablish wireless
communication with the smart car instead of ushwgytext-based terminal software.
This offers a user-friendly interface and more fiows such as Real-Time

monitoring can be included.

Last but not least, the control system for stegpdontrol module can be more
robust and more intelligent by using Fuzzy Logiatcoller or combine it to form a

Fuzzy-PID controller to have superior control.

63

7.2 Path Recognition System

7.2.1 Conclusion

The road tracking function of the ADRT was achieugd using the CMUcam3
colour tracking function. By setting the correctetshold, the black colour road can

be tracked successfully.

With the tracking output of the CMUcam3, the semvotor can be controlled
so that the vehicle can be steered autonomoushatotain its position in the middle
of the road. The servo motor requires 5 V signaltbe 3.3 V signal generated by the
FPGA was tested compatible too.

Other than that, the route identification functawas accomplished with the
RFID module mounted at the front of the autonomeeisicle to detect the RFID
tags placed on each junction. As every RFID tagesan unique ID, therefore each
junction can be distinguished. This feature elirtesathe reliance on the vision

system to identify the junctions.

However, a conflict arose when the UART was dgtéd to have the second
serial communication interface for the RFID modulais problem had caused the

communication in between the RFID module and sb-8dfnot be established.

64

7.2.2 Recommendation

Multiple UART were required in this ADRT system bomly one UART can be
emulated in the FPGA. The proposed solution to phablem is to use the NI 9870
module which is shown in Figure 7.1. This NI 9880ai serial module that can be
attached to the sb-RIO directly to add four sepi@its to the system. The four serial
ports are directly accessible from the FPGA to roffexibility in communicating

serial devices.

Figure 7.1: NI 9870

65

REFERENCES

Araki, M., PID Control. Control Systems, Robotieasd Automation — Vol Il

Ben, H., Zoran, N., Tim, B., Saeid, N., Philip, @011). OzTug Mobile Robot for
Manufacturing TransportatiolEEE. 978-1-4577-0653-0

Chapter10: UART Module. (n. d.). Retrieved March , 12012. from
http://www.mikroe.com/eng/chapters/view/58/chaft@ruart-module/

Colak, 1., & Yildirim, D. (2009). Evolving a Line d¢flowing Robot to Use in
Shopping Centers for EntertainmeliEE 978-1-4244-4649-0

Introduction to 12C and SPI Protocols. (2010, J80y. Retrieved March 15, 2012.
from http://www.byteparadigm.com/kb/article/AA-00&22/Introduction-to-SPI-
and-IC-protocols.html

Ismail, A. H., Ramli, H. R., Ahmad, M. H., Marhahadvl. H. (2009). Vision-based
System for Line Following Mobile RobotEEE. 978-1-4244-4683-4.

Jean, D., & Marc, P. (2006). Evolving a Vision-Baskine-Following Robot
Controller.Proceedings of the™3Canadian Conference on Computer and Robot
Vision (CRV'06)

Litwiller, D. (2001, January). CCD vs CMOS: Factgdaiction.Issue of Photonics
Spectra Laurin Publishing Co. Inc.

Quadrifoglio, L., & Li, X. (2009). A Methodology t®erive the Critical Demand
Density for Designing and Operating Feeder TraB&tvices.Transportation
Research Part B (43922-935.

Thirumurugan, J., Vinoth, M., Kartheeswaran, G.shwanathan, M., (2010). Line
Following Robot for Library Inventory ManagementsS&sm. IEEE. 978-1-4244-
9005-9

66

APPENDICES

APPENDIX A: Main Program

/* header files */

#include <hidef.h> /* common defines and macros */
#include <MC9S12XS128.h>/* derivative-specific definitions */

#include "math.h"
#include "stdlib.h"
#include "System.h"
#include "PWM.h"
#include "timer_2.h"
#include "timer_3.h"
#include "CMU.h"
#include "SPI.h"
#include "test.h"
#include “"parameter.h"

#pragma LINK_INFO DERIVATIVE
#pragma CODE_SEG DEFAULT

/* global variables */
unsigned char startgo=0;
int ViewError, View;

int SpeedRef =0;

long ServoOut = 15000;

int CurrView = 44;

int Curr__ View = 44;

long LastView = 44;

long LastViewError = 0;
long LastLastViewError = 0;
int SetView = 44;

int path =0;
int Brake =0;
int Brakel=5;

int lastpath = 0;

int ViewStore_Num;

int Store_View[5] = {44};

int StoreView_Accum = 0;

int PassStore_Num;

char Store_Pass[7] = {STRAIGHT};
int ViewPass[5] = {44};

int Kp_Servo =0;

int Kd_Servo =0;

unsigned int MainCount=0;

"MC9S12XS128"

int PathError=0;

int LastPathError=0;

int PathErrorRecord=0;

int ViewPass_Num;

int ViewPassTotal=0;

int Kp_IR=0;

int Kp_IR1=80;

int CounterL=0, CounterR=0;
unsigned int count=0;

[* external variables */

extern int PosError;

extern int Position;

extern long angle;

extern int Sp_Factor;

extern unsigned char mx;

extern unsigned char cTPacket[8];
extern CMU_Complete;

void main(void)

{

/* Initialization */
MCU_init();
Enablelnterrupts;
CRGFLG = OxES6;
_DISABLE_COP(); //disable watchdog timer
encoder_init();
SPL_Init();
SPL_Init();
TIMER_START;
servo_init();
PWM_init();
Timer3_init();

BT _init();

while (SW1==1&&startgo==0); /lwait for the start button
CMU_init();

Start_ CMU();

Timer2_init();

/* main control loop */
while (1)

CMU_Complete = 0;
Start CMU(); /I call line tracking function
CurrView = (int)(mx);

if (CurrView == 0)
{
CurrView = LastView;
MainCount++;

}

else MainCount = 0;

[* error calculation */
LastView = CurrView;
LastPathError=PathError;
PathError=CurrView-SetView;

68

if (PathError>LastPathError)
PathErrorRecord+=1;

else if (PathError<LastPathError)
PathErrorRecord-=1;

if (PathErrorRecord>10)
PathErrorRecord = 10;

else if (PathErrorRecord<-10)
PathErrorRecord = -10;

ViewPassTotal=0;

for (ViewPass_Num=0;ViewPass_Num<4;ViewPass_Num++)
{
ViewPass[ViewPass_Num]=ViewPass[ViewPass_Num-+1];
ViewPassTotal += ViewPass[ViewPass_Num];

}

ViewPass[4] = CurrView;
ViewPassTotal += ViewPass[4];
ViewPassTotal /= 5;

if (ViewPassTotal >= 70 && PathErrorRecord >=7)
path = BIG_R_TURN;
else if (ViewPassTotal <= 18 && PathErrorRecord <= -7)
path = BIG_L_TURN;
else if (ViewPassTotal >= 60 && PathErrorRecord < 7 &&
PathErrorRecord >=4)
path = SMALL_R_TURN;
else if (ViewPassTotal <= 28 && PathErrorRecord > -7 &&
PathErrorRecord <=-4)
path = SMALL_L_TURN;
else
path = STRAIGHT;

lastpath = path;

[* path classification */
switch (path)

case STRAIGHT:

LED1 = LED2 = LED3 = LED4 = 0;
switch (lastpath)
{

case STRAIGHT:

SetView = CENTER_SET;
SpeedRef = TOP_SPEED;
Kp_Servo = 2;
Kd_Servo = 0;
Kp_IR= 30;

Brake = 0;

break ;

case SMALL_L TURN:
{
SetView = CENTER_SET;
SpeedRef = NORMAL_SPEED;
Kp_Servo = 2;

69

Kd_Servo = 0;

Kp_IR= 30;

Brake = 0;
break ;

case SMALL R_TURN:

SetView = CENTER_SET;
SpeedRef = NORMAL_SPEED;
Kp_Servo = 2;
Kd_Servo = 0;
Kp_IR= 30;
Brake = 0;

break ;

case BIG_L_TURN:

SetView = CENTER_SET;
SpeedRef = SLOW_SPEED;
Kp_Servo = 2;
Kd_Servo = -80;
Kp_IR= 30;
Brake = 5;

break ;

case BIG_R_TURN:

SetView = CENTER_SET;
SpeedRef = SLOW_SPEED;
Kp_Servo = 2;
Kd_Servo = -80;
Kp_IR= 30;
Brake = 5;

break ;

}

break ;

case SMALL_L TURN:

{
LED2_LIGHTUP_ONLY;

switch (lastpath)

{
case STRAIGHT:
{
SetView = RIGHT_LESS_SET;
SpeedRef = SLOW_SPEED;
Kp_Servo = 2;
Kd_Servo = 80;
Kp_IR=40;
Brake = 5;
break ;
}
case SMALL_L TURN:
{

SetView = RIGHT_LESS_SET;

SpeedRef = FAST_SPEED;
Kp_Servo = 2;
Kd_Servo = 80;
Kp_IR= 40;
Brake = 0;
break ;

case BIG_L_TURN:

SetView = RIGHT_LESS_SET;
SpeedRef = NORMAL_SPEED;

Kp_Servo = 2;
Kd_Servo = 0;
Kp_IR=40;
Brake = 0;
break ;

case SMALL_R_TURN:

SetView = CENTER_SET;

SpeedRef = NORMAL_SPEED;

Kp_Servo = 2;
Kd_Servo = 80;
Kp_IR= 40;
Brake = 7;
break ;

case BIG_R_TURN:

SetView = CENTER_SET;
SpeedRef = SLOW_SPEED,;
Kp_Servo = 2;
Kd_Servo = 80;
Kp_IR= 40;
Brake = 7;

break ;

}

break ;

}

case SMALL_R_TURN:

LED3_LIGHTUP_ONLY;
switch (lastpath)
{

case STRAIGHT:

SetView = LEFT_LESS_SET;
SpeedRef = SLOW_SPEED,;
Kp_Servo = 2;
Kd_Servo = 80;
Kp_IR= 40;
Brake = 5;

break ;

case SMALL R_TURN:

70

71

SetView = LEFT_LESS_SET;
SpeedRef = FAST_SPEED,;
Kp_Servo = 2;
Kd_Servo = 80;
Kp_IR= 40;
Brake = 0;

break ;

case BIG_R_TURN:

SetView = LEFT_LESS_SET;
SpeedRef = NORMAL_SPEED;
Kp_Servo = 2;
Kd_Servo = 0;
Kp_IR= 40;
Brake = 0;

break ;

case SMALL L _TURN:

SetView = CENTER_SET;
SpeedRef = NORMAL_SPEED;
Kp_Servo = 2;
Kd_Servo = 80;
Kp_IR= 40;
Brake = 7;

break ;

case BIG_L_TURN:

SetView = CENTER_SET;
SpeedRef = SLOW_SPEED;
Kp_Servo = 2;
Kd_Servo = 80;
Kp_IR= 40;
Brake = 7;

break ;

}

break ;

case BIG_L TURN:
{
LED1_LIGHTUP_ONLY;
switch (lastpath)
{

case STRAIGHT:

SetView = RIGHT_MORE_SET;
SpeedRef = SLOW_SPEED,;
Kp_Servo = 3;
Kd_Servo = 160;
Kp_IR= 40;
Brake = 7;

break ;

72

case SMALL _L_TURN:

{
SetView = RIGHT_MORE_SET;
SpeedRef = NORMAL_SPEED;
Kp_Servo = 2;
Kd_Servo = 160;
Kp_IR= 40;
Brake = 6;
break ;
}
case BIG_L_TURN:
{
SetView = RIGHT_MORE_SET;
SpeedRef = FAST_SPEED,;
Kp_Servo = 2;
Kd_Servo = 160;
Kp_IR= 40;
Brake = 5;
break ;
}
case SMALL_R_TURN:
{
SetView = RIGHT_LESS_SET;
SpeedRef = SLOW_SPEED;
Kp_Servo = 3;
Kd_Servo = 160;
Kp_IR= 40;
Brake = 7;
break ;
}
case BIG_R_TURN:
{
SetView = RIGHT_LESS_SET;
SpeedRef = SLOW_SPEED,;
Kp_Servo = 2;
Kd_Servo = 160;
Kp_IR= 40;
Brake = 7;
break ;
}
}
break ;

case BIG_R_TURN:

LED4_LIGHTUP_ONLY;
switch (lastpath)
{

case STRAIGHT:

SetView = LEFT_MORE_SET;
SpeedRef = SLOW_SPEED;
Kp_Servo = 3;

Kd_Servo = 160;

Kp_IR= 40;

Brake = 7;

73

break ;

case SMALL_R_TURN:

SetView = LEFT_MORE_SET,
SpeedRef = NORMAL_SPEED;
Kp_Servo = 2;
Kd_Servo = 160;
Kp_IR=40;
Brake = 6;

break ;

case BIG_R_TURN:

SetView = LEFT_MORE_SET;
SpeedRef = FAST_SPEED;
Kp_Servo = 2;
Kd_Servo = 160;
Kp_IR= 40;
Brake = 5;

break ;

case SMALL _L_TURN:

SetView = LEFT_LESS_SET;
SpeedRef = SLOW_SPEED,;
Kp_Servo = 3;
Kd_Servo = 160;
Kp_IR= 40;
Brake = 7;

break ;

case BIG_L TURN:

SetView = LEFT_LESS_SET;
SpeedRef = SLOW_SPEED,;
Kp_Servo = 2;
Kd_Servo = 160;
Kp_IR= 40;
Brake = 7;

break ;

break ;

}

[* servo control */
LastLastViewError = LastViewError;
LastViewError = ViewError;
ViewError = CurrView-SetView;

if (ViewError > 0)
ServoOut = ServoPos_2 + (Kp_Servo * (ViewError *
ViewError))+ Kd_Servo * (ViewError-
LastLastViewError)/2;

else if (ViewError <0)

ServoOut = ServoPos_2 - (Kp_Servo * (ViewError *
ViewError))+ Kd_Servo * (ViewError-
LastLastViewError)/2;
else
ServoOut = ServoPos_2;

if (ServoOut > HighServoLimit)
ServoOut = HighServoLimit;
else if (ServoOut < LowServoLimit)
ServoOut = LowServoLimit;
if (PosError>=5)
if (CounterL<400)
CounterL++;
ServoOut -= (Kp_IR1*CounterL);
else if (PosError<=-5)

if (CounterR<400)CounterR++;
ServoOut += (Kp_IR1*CounterR);

else
CounterL=CounterR=0;
if (ServoOut > HighServoLimit)
ServoOut = HighServoLimit;
else if (ServoOut < LowServoLimit)

ServoOut = LowServoLimit;

angle = ServoOut;

74

#include

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

/[Functions

APPENDIX B: CMUcam3 Program

"CMU.h"

char cState;

char cMode =1;

char cRead[30];

char cSend[30];

char *cTxPtr;

char *cRxPtr;

char cTPacket[8];

char mx;

char CMU_Complete = 0;

char cmdGV[]= "GV\r" ;

char cmdPM[]= "PMOW" ;

char cmdST[]= "ST 16 30 16 30 16 30\r" ;
char cmdTC[]= "TC 16 30 16 30 16 30\r" ;
char cmdLM[]= "LM O 2\r" ;

char cmdOM[]= "OMO 1\r" ; /I show mx only
char cmdvW[]= "VW 140 87 60\r" ;

char cmdDS[]= "DS 13\ ;

char cCheck=0;

void CMU _init (

{

void)

SCI1BDL = 0x16; /I baud rate = 115200
SCI1BDH = 0x00;

SCI1CR1 = 0x00;

SCI1CR2 = 0x2C;

cRxPtr = &cRead][0];

cState = cldle;

}

unsigned

{

char

CMU_check (void)

if (cState == cRxed)

{

cState = cldle;
cRxPtr = &cRead[0];
switch (cRead[0])

{

case 'A' :
if (cRead[4] == T)

cDecodeT();

mx = cTPacket[0];

CMU_Complete = 1;
return cTP;

else
return cACK;

75

case 'N' :
return cNCK;

case T :
cDecodeT();
mx = cTPacket[0];
CMU_Complete = 1;

return cTP;
default
return ‘N’
}
}
else
return 0;
}
void cDecodeT()
{
unsigned char dS =6;
unsigned char dE =6;
unsigned char mul,
unsigned char i=0;
unsigned char j=0;
while (i <8)
{
mul = 1;
cTPacket[i] = 0;
while (cRead[dE] >)
dE++;
for (j =dE-1; j>=dS; j--)
{
cTPacket[i] += (cRead[j] & 0x0F) * mul;
mul *= 10;
}
dE++;;
dS = dE;
i++;
}
}
void cGV (void)
{
cTxPtr = &ecmdGV[0];
cState = cBusy;
SCI1DRL = *cTxPtr;
SCI1ICR2_TIE = 1;
}
void cST (void)
{
CcTxPtr = &mdST[0];
cState = cBusy;
SCI1DRL = *cTxPtr;
SCI1ICR2_TIE = 1;
}
void cTC (void)
{

cTxPtr = &cmdTCJO0];

cState = cBusy;
SCI1DRL = *cTxPtr;
SCI1ICR2_TIE = 1,

}

void cPM (unsigned char mode)

{
cTxPtr = &cmdPMJ0];

if (mode)

cmdPM[3] = 1
else

cmdPM([3] = 0

cState = cBusy;
SCI1DRL = *cTxPtr;
SCI1ICR2_TIE = 1;

}

void cLM (void)

{
CcTxPtr = &cmdLM][0];
cState = cBusy;
SCI1DRL = *cTxPtr;
SCIICR2_TIE = 1;

}

void cOM (void)

{
cTxPtr = &cmdOMI]O];
cState = cBusy;
SCI1DRL = *cTxPtr;
SCI1ICR2_TIE =1;

}

void cVW (void)

{
cTxPtr = &cmdVWIO];
cState = cBusy;
SCI1DRL = *cTxPtr;
SCIICR2_TIE = 1;

}

void cDS (void)

{
CcTxPtr = &cmdDS|0];
cState = cBusy;
SCI1DRL = *cTxPtr;
SCI1ICR2_TIE =1;

}

void CMU_write (void)

{

unsigned char temp;
temp = SCILSR1,;
SCI1SR1_TDRE =1;
temp = SCILSR1,;
SCI1ISR1 TC =1;
if (cState == cBusy)
{
CTXPtr++;
if (*cTxPtr)
SCI1DRL=*cTxPtr;

else

{
cState = cldle;
SCI1CR2_TIE =0;
}
}
}
void CMU read (void)
{
unsigned char data;
SCI1SR1 _RDRF=1;
data = SCI1DRL;
if (cMode)
{
if (data!=)
{
*cRxPtr = data;
if (*cRxPtr ==13 && cMode !=1)
cMode = 0;
if (cMode ==1)
{
if (*cRxPtr == 13)
cMode = 2;
}
else
CRxPtr++;
}
else
cState = cRxed;
else if (data!=)
*cRxPtr = data;
CRXxPtr++;
}
else
cState = cRxed,;
}
void Start CMU()
{
cCheck = 0;
cGV();
while (cCheck==0)
{

cCheck = CMU_check();
if (cCheck == cNCK)

cGV();
cCheck = 0;
}

}

cCheck=0;

cPM(2);

while (cCheck == 0)

{

cCheck = CMU_check();
if (cCheck == cNCK)
{

}

cPM(1);
cCheck = 0;
}
}
cST();
while (cCheck==0)
{
cCheck = CMU_check();
if (cCheck == cNCK)
cST();
cCheck =0;
}
}
cCheck=0;
cVW();
while (cCheck==0)
{
cCheck = CMU_check();
if (cCheck == cNCK)
{
cVW();
cCheck =0;
}
}
cCheck=0;
cOM();
while (cCheck==0)
{
cCheck = CMU_check();
if (cCheck == cNCK)
{
cOM();
cCheck = 0;
}
}
cCheck=0;
cTC();
while (cCheck==0)
{
cCheck = CMU_check();
if (cCheck == cNCK)
cTC();
cCheck = 0;
}
}
cCheck=0;

void End_CMU()

cTC();
while (cCheck==0)

cCheck = CMU_check();
if (cCheck == cNCK)
{

79

cTC();
cCheck = 0;

}
cCheck=0;
}

[* SCI1 interrupt */

#pragma CODE_SEG __SHORT_SEG NON_BANKED
#pragma TRAP_PROC

void interrupt 21 UART_ISR(void)

{
{ __asm SEl;} //disable interrupts

if (SCI1SR1&0X80)
CMU_write();

if (SCI1ISR1_RDRF==1)
CMU_read();

{ _asmCLI;} //enable interrupts

}
#pragma CODE_SEG DEFAULT

80

APPENDIX C: Bluetooth Serial Port Program

#include "BT.h"
#include "System.h"
#include "PWM.h"
#include "timer_3.h"

unsigned char bRead[10];

unsigned char bSend[10];

unsigned char *bTxPtr;

unsigned char *bRxPtr;

extern unsigned char mx,startgo;

extern int RightMPS;

extern long speedrecordL[10],speedrecordR[10];
char temp123[50];

char tempmx[]= "00\r" ;

long tempspeed,temp;

unsigned char testString[] = "HelloN\r" ;

void BT_init (void)

{
SCIOBDL = 0x16; /Il baud rate = 115200
SCIOBDH = 0x00;
SCIOCR1 = 0x00;
SCIOCR2 = 0x2C;
bRxPtr = &bRead][0];
}

void test(void)

bTxPtr = &testString[O];
SCIODRL = *bTxPtr;
SCIOCR2_TIE =1,

}

void send_mx (void)

{
temp=(int)mx;
tempmx[0] = temp/10;
tempmx[1] = temp-10*tempmx][0];
bTxPtr = &tempmx][0];
SCIODRL = *bTxPtr;
SCIOCR2_TIE =1,

}

void BT_write (void)

{

bTxPtr++;
if (*bTxPtr)
SCIODRL=*bTxPtr;

81

else
SCIOCR2_TIE =0;

}

void BT_read (void)
{ .
int i
unsigned char data;
SCIOSR1_RDRF=1;
data = SCIODRL;
switch (data)
{
case 'a'’ : [/ Startrunning
startgo=1,
break ;
case 'c' : [/l camera output
send_mx();
break ;
case 'p' : //'IR position
IR_value();
break ;
case 's' : // emergency stop
LEFTF=0;
RIGHTF=0;
while (1);
break ;
case V' : // speed measured
tempspeed=0;
tempspeed=RightMPS;
temp123[0] = tempspeed/1000 + 48;

tempspeed-=((temp123[0]-48)*1000);

temp123[1] = tempspeed/100 + 48;
tempspeed-=((temp123[1]-48)*100);
temp123[2] = tempspeed/10 + 48;
tempspeed-=((temp123[2]-48)*10);
temp123[3] = tempspeed + 48;
bTxPtr = &temp123J[0];
SCIODRL = *bTxPtr;
SCIOCR2_TIE = 1;

break ;

default

break ;

}

[* SCIO interrupt */
#pragma CODE_SEG _ SHORT_SEG NON_BANKED
#pragma TRAP_PROC
void interrupt 20 UARTO_ISR(void)
{
{ __asm SEI;} //Disablelnterrupts;
if (SCIOSR1&0X80)
BT write();
if (SCIOSR1_RDRF==1)
BT _read();
{ __asm CLI;} /[Enablelnterrupts

}
#pragma CODE_SEG DEFAULT

82

APPENDIX D: Servo Control Program

#include <hidef.h> /I common defines and macros
#include <MC9S12XS128.h>// derivative-specific definitions
#include "servo.h"

#include "System.h"

#pragma LINK_INFO DERIVATIVE "MC9S12XS128"
#pragma CODE_SEG DEFAULT

int t=0;

long angle;

void servo_init(void)

{
angle = 15000; /linitial angle become center
SERVO = 0;
TIOS 10S0 =1; /[Enable the 1 to OC mode
TFLG1 |= 0x01; IIreset interrupt flags of CH1
TIE |= 0x01; /lenable interrupt CH1

}

#pragma CODE_SEG NON_BANKED

interrupt 8 void timerO(void)

CLEAR_TO_INTFLAG:
if (SERVO == 1)

{

SERVO =0;

TCO = TCNT + 50000;
}
else

SERVO =1,

TCO = TCNT + angle/4;
}

83

APPENDIX E: LabVIEW Project Explorer

= IEQ, Project: FPGA R5232.vproj
= B My Computer
H = e |

: +% Build Specifications
- i, MI-sbRIO9632-015772EE (192.168.40.2)
= [Real-Time Vs

&
= G
& G
=
o=

-l
o o

£y

-

i [ld FPGA Main VI Reference Typedef.ctl
|gi1, LabVIEW Real-Time Senal Closewi
|§il, LabVIEW Real-Time Serial Initializewvi
|;i1, LabVIEW Real-Time Senal Read.ai
|;i1, LabVIEW Real-Time Sernal Writeawi

|;ﬂ, cam_test.vi

=+ E& Chassis (sbRIO-9632)

= % FPGA Target 2 (FI00, sbRIO-9632)

Moda

ModB

Onboard I/O

R5232 SubVIs

R5-232 FPGA Main.vi
40 MHz Onbeoard Clock
Moda (NI 9205)
ModB [MI9253)
Read FIFO

Read FIFO 2

Write FIFO

Write FIFO 2
Dependencies

Build Specifications

- ml CMUcam3.wvi

|;i1, FPGA R5232 Write Read Examplewvi
G- "' Dependencies

:--_ Build Specifications

84

APPENDIX F: LabVIEW UART Functions

error in (no error)

Eb

]

FPGA Target 2
RICO

baud rate (9600)

B

data bits (8]
(016 §

parity (0:none)

[0 o I!:.: b 12 "+ u
v baud rate (9600) Run
3 data bits (8) r Wait Until Done (F)

fir

parity ([0:nonej

v stop bits (10: 1 bit)

-|*

Invert Polarity?

o —

stop bits (10: 1 bit)

g

Ol —

g

Invert Polarity?
TE

UART Initialization Function

FPGA Main VI Reference

| S D

5]
L)

G o o

(==

;.Write: Char“ |

Write: Data Written

85

FPGA VI Reference Cut

error out
&

b bEa s |

FPGA Main VI Reference Out
(I

error out

UART Write Function

FPGA Main Ref

error out

[E=ck

B Eed p

error out
== b

E

.......... b stop

UART Close Function

