
Developing Extended ISA on RISC Based Processor

By

Lee Ang

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in Partial Fulfilment of the Requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMPUTER

ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2023

i
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Developing Extended ISA on RISC Based Processor

By

Lee Ang

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in Partial Fulfilment of the Requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMPUTER

ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2023

ii
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: DEVELOPING EXTENDED ISA ON RISC BASED
 PROCESSOR__

__

Academic Session: ___MAY 2023___

I LEE ANG___

(CAPITAL LETTER)

declare that I allow this Final Year Project Report to be kept in

Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

Verified by,

_________________________ _________________________

(Author’s signature) (Supervisor’s signature)

Address:

50, Jalan Harmoni 5/5,________

Taman Desa Harmoni,________ Ts. Ooi Joo On__________

81100 Johot Bahru, Johor_____ Supervisor’s name

Date: 20/4/2023________ Date: 20/4/2023________

Thomas_Ooi
Stamp

 iii
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Universiti Tunku Abdul Rahman

Form Title : Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY
UNIVERSITI TUNKU ABDUL RAHMAN

 Date: 20/4/2034___________

SUBMISSION OF FINAL YEAR PROJECT/DISSERTATION/THESIS

 It is hereby certified that ___Lee Ang_____ (ID No: ___20ACB04056__) has completed
this final year project entitled “__Developing Extended Isa On RISC Based Processor___”
under the supervision of ____Ts. Ooi Joo On_______ from the Department ____Digital
Economy Technology____, Faulty of ___Information and Communication
Technology_______.

 I understand that Univeristy will ipload softcopy of my final year project in pdf format into
UTAR Institutional Repository, which may be made accessible to UTAR community and
public.

 Your truly,

 (Student Name)

 iv
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

DECLARATION OF ORIGINALITY

I declare that this report entitled “DEVELOPING EXTENDED ISA ON RISC BASED

PROCESSOR” is my own work except as cited in the references. The report has not been

accepted for any degree and is not being submitted concurrently in candidature for any

degree or other award.

Signature : _________________________

Name : _________________________

Date : _________________________

 v
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

ACKNOWLEDGEMENTS

 First and foremost, I would like to appreciate my lecturer, Ts Dr Liew Soung Yue

who is the Dean of Faculty of Information and Communication Technology, and my tutor,

Mr Tou Jing Yi, for teaching me in subject which named Introduction to Inventive Problem

Solving and Proposal Writing. They showed their profession of proposal writing to provide

a guidance for this proposal.

 Furthermore, I would like to thank my supervisor of this proposal, Ts Ooi Joo On

who is an expert in computer organisation and architecture. He gave me various of topic

that about RSIC-V processor for me to choose for this proposal and the following final year

project, and also provided a lot of related to this topic documents for me refer to understand

in this area. I also would like to appreciate my lecturer, Mr. Mok Kai Ming who teaching

me in Digital System Design and Computer Organisation and Architecture, he has provided

a lot of related knowledge to help me on processor design.

 Lastly, I would like to show sincere appreciation to my family and friends. Their

encourage and supporting help me to complete my proposal.

Thanks for all your supporting.

 vi
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

ABSTRACT

 In this model era, the digital market is grown rapidly and great quantities of

product required processor for their applications. Therefore, the demand of processor is

continuously increased, especially RISC-V processors which are durable and adaptable in

its instruction set architectures. RISC-V processors are gaining traction in a variety of

applications and research fields.

This work aims to develop extended ISA on RISC-V based processor. Those ISA

can help the application to accelerate progress during execution and improve the

performance. Therefore, it is a useful product since it preserves software compatibility

while also allowing for differentiation and innovation. This project will show how it

develops a RISC-V RV32I processor and its extension by logic gates and simulates by

using Verilog code in ModelSim.

 vii
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

TABLE OF CONTENTS

Title Page …………………...…………………………………………………………….. i

Report Status Declaration Form …………………………………………………….…. ii

FYP Thesis Submission From ……………………………………………………….… iii

Declaration of Originality ……………………………………………………………… iv

Acknowledgements ……………………………………………………………………… v

Abstract …………………………………………………………………………………. vi

Table of Contents ………………………………………………………………….. vii - ix

List of Figures …………………………………………………………………………… x

List of Tables ………………………………………………………………….…… xi - xii

List of Abbreviations ………………………………………………………………….. xiii

Chapter 1 Introduction ………………………………………………………….. 1 - 7

1.1 Problem Statement ………….………………………………………… 1 - 2

1.2 Project Scope ……………………………………………………………... 2

1.3 Project Objective …………………………………………………………. 3

1.5 Contributions ……………………………………………………………... 4

1.6 Background …………………………………………………………… 5 - 7

Chapter 2 Literature Review …………………………………………………... 8 - 12

 2.1 Design of the RISC-V ISA ……………………………………………. 8 - 9

 2.2 Superscalar RISC-V Processor with SIMD Vector Extension ...……. 9 - 10

2.3 Symmetric Cryptography on RISC-V: Performance Evaluation of
Standardized Algorithms …………………………………………… 11 - 12

Chapter 3 Proposed Methods ………………………………………………… 13 - 22

 3.1 Design Specifications ………………………………………………. 13 - 20

 3.2 Software ……………………………………………………………......... 21

 3.3 Timeline …………………………………………………………………. 22

Chapter 4 System Design ……………………………………………………... 23 - 90

 4.1 Macro System Design ……………………………………………… 23 - 29

 4.2 Instruction Fetch Unit ……………………………………………… 30 - 35

 viii
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 4.2.1 Functionality and Feature ……………………………………….. 30

 4.2.2 Interface and I/O Pin Description …………………………... 30 -31

 4.2.3 Internal Operation ……………………………………………….. 32

 4.2.4 Schematic Design ……………………………………………….. 33

 4.2.5 Verilog Model ……………………………………………… 34 - 35

 4.3 Registers File ……………………………………………………….. 36 - 40

 4.3.1 Functionality and Feature ……………………………………….. 36

 4.3.2 Interface and I/O Pin Description ………………………….. 36 - 37

 4.3.3 Internal Operation ……………………………………………….. 38

 4.3.4 Schematic Design ……………………………………………….. 39

 4.3.5 Verilog Model …………………………………………………... 40

 4.4 ALU ………………………………………………………………… 41 - 53

 4.4.1 Functionality and Feature ……………………………………….. 41

 4.4.2 Interface and I/O Pin Description ………………………….. 41 - 44

 4.4.3 Internal Operation ……………………………………………….. 45

 4.4.4 Schematic Design ……………………………………………….. 46

 4.4.5 Verilog Model ……………………………………………… 47 - 53

 4.5 Data Memory ………………………………………………………. 54 - 60

 4.5.1 Functionality and Feature ……………………………………….. 54

 4.5.2 Interface and I/O Pin Description ………………………….. 54 - 55

 4.5.3 Internal Operation ………………………………………………. 56

 4.5.4 Schematic Design ……………………………………………….. 57

 4.5.5 Verilog Model ……………………………………………… 58 - 60

 4.6 Main Control ……………………………………………………….. 61 - 68

 4.6.1 Functionality and Feature ……………………………………….. 61

 4.6.2 Interface and I/O Pin Description ………………………….. 61 - 63

 4.6.3 Internal Operation ……………………………………………….. 64

 4.6.4 Schematic Design ……………………………………………….. 65

4.6.5 Verilog Model ……………………………………………… 66 - 68

 ix
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 4.7 ALU Control ……………………………………………………….. 69 – 79

 4.7.1 Functionality and Feature ……………………………………….. 69

 4.7.2 Interface and I/O Pin Description ………………………….. 69 - 71

 4.7.3 Internal Operation ……………………………………………….. 72

 4.7.4 Schematic Design ……………………………………………….. 73

4.7.5 Verilog Model ……………………………………………… 74 - 79

 4.8 M Extension ………………………………………………………... 80 – 90

 4.8.1 Functionality and Feature ………………………………………. .80

 4.8.2 Interface and I/O Pin Description ………………………….. 80 - 81

 4.8.3 Internal Operation ……………………………………………….. 82

 4.8.4 Schematic Design ……………………………………………….. 83

 4.8.5 Verilog Model ……………………………………………… 84 - 90

Chapter 5 Result and Discussion …………………………………………….. 91 - 52

 5.1 Testbench …………………………………………………………. 91 - 106

 5.2 Result of M Extension …………………………………………… 107 - 112

5.3 Implementation Issues and Challenges ………………………………... 112

Chapter 6 Conclusion ………………………………………………………. 113 - 114

References ………………………………………………………………………. 115 - 116

Appendix A ……………………………………………………………………... A-1 - A-4

A.1 Final Year Project Weekly Report ………………………………. A-1 - A-3

A.2 Poster …………………………………………………………………. A - 4

Plagiarism Check Result

FYP2 Report Checklist

 x
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

LIST OF FIGURES

Figure Number Title Page

Figure 1.1.1 Scenario of without the complier for extension 2

Figure 1.5.1 Layers of Abstractions 5

Figure 2.3.1 Acceleration vs. hardware cost of implementation of

crypto implementations
12

Figure 3.1.1 RV32 Base Instruction Formats 13

Figure 3.1.2 RV32I Base Instruction List 17

Figure 3.1.3 Memory map of RV32 Processor 19

Figure 3.1.4 RV32 M Extension Instruction. 20

Figure 3.3.1 Gannt Chart of FYP Timeline 22

Figure 4.1.1 Top Level of Structural RISC Instructions Execution
Datapath Overview 23

Figure 4.1.2 Simple Instruction Operation of R-format in Datapath 24

Figure 4.1.3 Simple Instruction Operation of I-format in Datapath 25

Figure 4.1.4 Simple Instruction Operation of S-format in Datapath 26

Figure 4.1.5 Simple Instruction Operation of B-format in Datapath 27

Figure 4.1.6 Simple Instruction Operation of LUI (B-format) in
Datapath 28

Figure 4.1.5 Simple Instruction Operation of J-format in Datapath 29

Figure 4.2.2 Instruction Fetch Unit Interface 30

Figure 4.2.3 Flowchart of Instruction Fetch Unit Operation 32

Figure 4.2.4 Schematic Design of instruction fetch unit 33

Figure 4.3.2 Register File Interface 36

Figure 4.3.3 Flowchart of Register File operation 38

Figure 4.3.4 Schematic Design of Register File 39

Figure 4.4.2 ALU Interface 41

Figure 4.4.3 Flowchart of ALU operation 45

Figure 4.4.4 Schematic Design of ALU 46

Figure 4.5.2 Data Memory Interface 54

 xi
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Figure 4.5.3 Flowchart of Data Memory operation 56

Figure 4.5.4 Schematic Design of Data Memory 57

Figure 4.6.2 Main Control Interface 61

Figure 4.6.4 Schematic Design of Main Control 65

Figure 4.7.2 ALU Control Interface 69

Figure 4.7.4 Schematic Design of ALU Control 73

Figure 4.8.2 M Extension Control Interface 80

Figure 4.8.3 Flowchart of M Extension operation 82

Figure 4.8.4 Schematic Design of M Extension Control 83

Figure 5.2.1 Test Case 1 Wave form 107

Figure 5.2.2 Test Case 5 Wave form 107

Figure 5.2.3 Test Case 11 Wave form 108

Figure 5.2.4 Test Case 15 Wave form 109

Figure 5.2.5 Test Case 17 Wave form 109

 xii
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

LIST OF TABLES

Table Number Title Page

Table 1.5.1 Differences between CISC and RISC 6

Table 1.5.2 Main RISC-V ISA extension 7

Table 2.1.1 Summary of Several ISAs' Support for Desirable
Architectural features

8

Table 3.1.1 32 General-purpose Registers of RISC-V Processor 18

Table 4.1.2 Block Hierarchy 29

Table 4.2.2 Instruction Fetch Unit Pin Description 30

Table 4.3.2 Register File Pin Description 37

Table 4.4.2 ALU Pin Description 42

Table 4.5.2 Data Memory Pin Description 55

Table 4.6.2 Main Control Pin Description 62

Table 4.6.3 Function Table of Main Control 64

Table 4.7.2 ALU Control Pin Description 70

Table 4.7.3 Function Table of ALU Control 72

Table 4.8.2 M Extension Pin Description 81

Table 5.1 Test Plan of M Extension 91

 xiii
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

LIST OF ABBREVIATIONS

ALU Arithmetic Logic Unit

CISC Complex Instruction Set Computer

CPU Central Processing Unit

CNN Convolution Neural Network

CSR Control and Status Register

FPGA Field-Programmable Gate Array

HDL Hardware Description Language

IEEE Institute of Electrical and Electronics Engineers

ISA Instruction Set Architecture

IT Information Technology

LTSM Long Short-Tern Memory

OS Operating System

PC Program Counter

RISC Reduced Instruction Set Computer

RNN Recurrent Neural Network

RTL Register-Transfer Level

SIMD Single-Instruction Multiple-Data

CHAPTER 1

 1
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

CHAPTER 1

Introduction

1.1 Problem Statement and Motivation

With configurable extensions and different basic elements, RISC-V offers a

modular design. Industry, the research community, and academic institutions

collaborated to build the ISA basis and its expansions. The base defines logic (i.e.,

integer) manipulation, control flow, registers (and their sizes), memory, and addressing,

and also specifies ancillaries. A general-purpose computer with complete software

support, including a general-purpose compiler, can be implemented using only the base.

Despite the fact that, the basic extensions already provided a useful to some general

applications, there still have a situation that ISA extension may develop where no

appropriate ready-made Isa extension exists to meet the design requirements. The Base

Integer Instruction Set are required more memory usage, higher power consumption

and more instruction code to execute some specific function like multiplication and

division, floating data calculation, etc. Furthermore, some of the function cannot

perform by using only base instructions. Hence, designing and come out extensions for

only perform base instruction is necessarily.

 Let have an example for the problem, [1] shows Figure 1.2.1 depicts the

placement of a custom ISA extension in a software stack. A RISC-V-compliant

processor with a bespoke ISA extension is present at the lowest level. It runs an OS

either simple or well design. Any complier that is compatible with a normal RISC-V

processor can be used to compile it. There are three apps are installed on top of OS.

App1 is a simple application that does not need to be accelerated, especially can be

complied with a freely available off-the-self complier or a pre-complied application and

able to be run by the RISC-V processor. Apps2 and App3 are the most crucial and must

be executed as quickly as possible. Nevertheless, these must be built with a complier

that understands the special ISA extension. The complier can make use of the new

instructions to speed up App2 and App3 Thus, the RISC-V specification allows for the

addition of a bespoke ISA extension in this instance.

CHAPTER 1

 2
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Figure 1.1.1 - Scenario of without the complier for extension

1.2 Project Scope

 The scopes of this project are helping the RISC-V based processor to improve

performance or add new functionality. This means that RISC-V can be customized for

specific use cases, making it more versatile than other ISAs. By adding custom

instructions, it can significantly help to improve the performance of their applications,

making them run faster and more efficiently. This is particularly important for complex

tasks such as machine learning algorithms or encryption and decryption operations,

which can benefit greatly from custom instructions.

 Another scope is Custom instructions can also help reduce the power

consumption of the processor by allowing it to perform certain tasks more efficiently.

By tailoring the processor to specific use cases, developers can optimize it for low-

power consumption, making it more energy-efficient than other processors.

Encourages innovation of developer also one of the project scopes. Its open-

source nature allows developers to freely create and share custom instructions, which

can lead to new and exciting advancements in processor design. This fosters an

environment of cooperation and creativity, which can ultimately benefit the entire

industry.

CHAPTER 1

 3
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

1.3 Project Objective

 The main objective of this project is to develop an extended ISA on RISC-V

based processor. It can be divided into several objectives. The first of it is design a five-

stage data path RISC-V RV32I processor which its components are instruction fetch

unit, registers file, ALU, data memory and control unit. These group of components

can perform all 47 of instruction of Base Integer Instruction Set (I).

 Besides that, the approaching objectives are identifying instruction of extension

and design extended ISA based on instruction. As in this project, it aims to design

extended ISA which are Standard Extension for Integer Multiplication and Division

(M), These extensions is flexible to integrate with RV32 processor, when the extended

instructions are called, then it only be call out to perform the instructions. In other words,

it will not be active when the extended instructions are not occurred thereby achieve

reducing power consumption of the entire processor.

Furthermore, the M extension must be able to perform calculate multiplication,

division and remainder of division with signed or unsigned integer. It aims to increase

performance of the calculation, which substituted with using addition or subtraction to

perform M extension to reducing instruction line.

CHAPTER 1

 4
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

1.4 Contributions

 This work presents developing extended ISA on RISC-V based processor. First,

the processor with extended ISA provides to the potential customer like chipset

manufacturers, IoT devices company etc. required powerful, high performance or

needed various of different kind of functionality for specific purpose. Extension can

help those customers who required a multifunctional or higher performance processor

get the processor that achieve fulfilment of processor specification that they needed.

They also have optional to customize the specification of processor, which mean choose

the designed extension they needed. Hence, the flexibility of customizing ISA helps

different types of IT area to be more satisfied to get the processor.

One of the contributions is the growth of RISC-V ISA is potential to disrupt the

dominance of proprietary architectures on the market, such as ARM and x86. RISC-V

offers a free and open alternative that can be customized for specific use cases, which

is particularly attractive for companies that want to reduce their reliance on a single

vendor. This has led to increased interest in RISC-V from both large corporations and

startups, with companies like Google, NVIDIA, and Western Digital all investing in

the technology.

In addition, RISC-V and its extensions are the potential to lower the cost of

designing and manufacturing chips, making it more accessible for smaller companies

and startups. This could lead to a wave of innovation and new products that would not

have been possible before. RISC-V could also enable new applications and use cases,

such as low-power IoT devices and specialized machine learning hardware.

CHAPTER 1

 5
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

1.5 Background Information

First of all, the instruction set architecture defines the functionality of

microprocessors (ISA). The instruction set specifies which instructions the CPU is

capable of executing. An ISA is a bridge between software and hardware, and it is the

specification of microprocessor architecture, according to the layers of abstraction in

computers shown in Figure 1.5.1.

Figure 1.5.1 – Layers of Abstractions

The complex instruction set computer (CISC) and the reduced instruction set

computer (RISC) are two types of ISA (RISC). The key differences between CISC and

RISC architecture are shown in Table 1.1.1. X86 is a standard CISC ISA, with

complicated instructions that may operate directly on memory addresses. RISC

instructions, on the other hand, are viewed as an advance over CISC since they simplify

the format and operation of each instruction. RISC microprocessors typically execute

one instruction per machine cycle so that the design can be pipelined to achieve a higher

clock frequency. The simplicity of RISC instructions, on the other hand, adds

complexity to software compilers.

CHAPTER 1

 6
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Table 1.5.1 – Differences between CISC and RISC

The efficiency of CISC architecture is measured in instructions per programme,

whereas the efficiency of RISC architecture is measured in cycles per instruction. In

terms of performance, there is a trade-off. The growing market for smartphones and

embedded projects, on the other hand, has raised concerns about power usage. RISC

ISA is currently dominating the mobile device market due to complicated CISC

commands requiring more logic and transistors to delay with higher power

consumption.

Furthermore, RISC-V ISA is categorised by few sets of instructions that can be

combined in any way as design needs. For example, the bare minimum or all ISA

extensions can be implemented by a RISC-V processor. Hence, it also can be enabled

or disabled as the application needs, without having to consume power when it does not

be used. Every group of the instructions is unique and does not be predefined. In the

below, table 1.5.2 shows some main ISA extensions that are currently are authorized

by RISC-V Foundation and be developing. Besides, it will be extended more ISA

extensions in the future as mentioned earlier [1].

CHAPTER 1

 7
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

SA
Extension Authorized Notes

I/E Yes Instructions for basic Integer operations. This is the only extension
that is mandatory. It requires 32 registers, E requires only 16.

M Yes Instructions for multiplication and division

C Yes Compact instructions that have only 16bit encoding. This extension
is very important for applications requiring low memory footprint.

F Yes Single-precision floating-point instructions
D Yes Double-precision floating-point instructions
A Yes Atomic memory instructions

B No
Bit manipulation instructions. The extension contains instructions
used for bit manipulations, such as rotations or bit set/clear
instructions.

V No Vector instructions that can be used for HPC.

P No DSP and packed SIMD instructions needed for embedded DSP
processors.

Table 1.5.2 – Main RISC ISA extension

CHAPTER 2

 8
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

CHAPTER 2

LITERATURE REVIEW

2.1 Design of the RISC ISA

 In the beginning, [2] has outlined the support for key aspects we think essential

for a modern general-purpose ISA in these instruction sets and show in below Table

2.1.1. At least two key technological features are missing from all of the architectures.

The nearest standard, ARMv8 [2, 3] is a proprietary standard. SPARC [2, 4] and

OpenRISC [2, 5], the two open ISAs are missing some crucial architectural features.

Except for the DEC Alpha [2, 6], all of the ISAs include extra characteristics that

significantly increase implementation complexity, especially for high-performance

implementations.

 MIPS SPARC Alpha ARMv7 ARMv8 OpenRISC 80x86
Free and Open 🗸🗸 🗸🗸
64-bit Address 🗸🗸 🗸🗸 🗸🗸 🗸🗸 🗸🗸 🗸🗸
Compressed
Instructions 🗸🗸 🗸🗸 Partial

Separate Privileged
ISA 🗸🗸

Position-Indep.
Code Partial 🗸🗸 🗸🗸 🗸🗸

IEEE 754-2008 🗸🗸 🗸🗸
Classically
Virtualizable 🗸🗸 🗸🗸 🗸🗸 🗸🗸

Table 2.1.1 - Summary of several ISAs' support for desirable architectural features.

Given these constraints, the customizable set of instructions are required to be

developed. Building a free and open ISA for RISC-V that avoids these technological

issues and is simple to implement in a variety of microarchitectural styles, with the

benefit of hindsight.

[2] has given some RICS-v\V base ISA examples such as RV32I Base ISA [2,

7], RV32E Base ISA [2, 7], RV64I Base ISA [2, 7] and RV128I [2,7] Base ISA, these

RISC-V fundamental ISAs are simple to implement and maintain, yet they are

comprehensive enough to handle a modern software stack. Architectural characteristics

that bring undue complexity costs to both basic and aggressive microarchitectures are

CHAPTER 2

 9
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

avoided in the based ISA design. However, there are many application domains for

which a simple integer ISA is insufficient, such as workloads requiring floating-point

computing.

2.2 Superscalar RISC-V Processor with SIMD Vector Extension

 [8] demonstrates the hardware implementations of a dual-issue superscalar

RISC-V processor with out-of-order execution and a SIMD vector [8, 9] co-processor

with tailored vector instructions are presented in this thesis work. The suggested

superscalar processor is designed to achieve high performance in general-purpose

activities, whereas the proposed vector co-processor, which includes expanded vector

instructions, is designed to improve performance in the machine learning field.

 To enable out-of-order execution, the Tomasulo algorithm [8, 10] is

incorporated in the hardware design. In the instruction fetch step, the Gshare branch

prediction [8, 11] approach is used. The CPU can speculatively execute instructions

with 5 backups of the renaming register file to reduce the waste cycles caused by branch

operations. In comparison to the traditional one-bit busy status, the busy counters in the

renaming register file improve instruction throughput. With the busy counters in the

renaming file, the processor can constantly dispatch instructions that alter the same

destination register in order to fully utilise each pipeline stage. The hardware

complexity is decreased by relocating the latest value column in the typical register

renaming file to the result column in the commit buffer, which saves space and power.

In addition, the simplified prediction recovery system reduces critical paths, allowing

for a higher operational clock frequency, as mentioned by [8]. The suggested RISC-V

processor enhances average instruction throughput by 18.9% and average prediction hit

rate by 4.92 percent when compared to a similar architecture. With the addition of

machine-level exception and integer multiplication/division capability, the suggested

CPU achieves a 16.9% higher operating frequency.

 [8] states that The SIMD architecture is used in the suggested vector co-

processor to improve the performance of computation and data-intensive operations.

Based on the Cambricon ISA, a customised SIMD instruction set is presented, which is

mapped to the standard 32-bit RISC-V instruction format. The suggested vector

extension, in comparison to the Cambricon ISA, unifies the internal address mapping

to stress the flexibility of the instruction set. The co-processor is made up of the vector

CHAPTER 2

 10
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

instruction board, wrapped internal memory banks, and processing units that follow the

specification of the proposed vector instruction set. The instruction board combines the

functions of the reservation station and commit buffer, allowing the processing units to

solve data dependencies and enable instruction-level parallelism. To simplify

sequencers and maximise memory use, the wrapped memory bank of the true-dual-port

memory block provides one-cycle misaligned memory access in hardware. When

compared to the basic C programme, the normal vector programme obtains a small

amount of throughput improvement and the delicate vector programme with software

optimizations achieves around 10 percent throughput improvement in the case study of

the LeNet-5 model. When compared to the RISC-V processor alone, the vector co-

processor with the superscalar processor can handle more pictures per second,

providing 10.18 percent real-time throughput and gains advantage in energy efficiency.

 Nevertheless, [8] state that the processor only allows bare-metal processing with

no rmware overlay. To improve usability, a number of features need be added to the

current processor. The supervisor-level and user-level privileged CSRs for hardware

design are also included in the RISC-V privileged specification. In supervisor mode,

the rmware kernel should be running. On the other hand, RISC-V programmes should

run in user mode, with supervisor mode controlling entry addresses and heap pointers.

For those two privileged modes, memory virtualization with ordered peripherals is

required to provide the memory hierarchy. At the same time, other common RISC-V

standard extensions, including as the compressed "C" extension, the floating-point "F"

extension, and the atomic "A" extension, can be de tuned in the processor to increase

compatibility.

 Only a basic CNN model is used to test the performance of the proposed vector

co-processor. The instruction-based accelerator, on the other hand, is adaptable to a

wide range of neural network models and layer types. The architecture can also analyse

other popular layers including squeeze-and-excite, inception, depth-wise convolution,

RNN, and LTSM. In the vector co-processor, the element format is an 8-bit integer.

Fixed point values, on the other hand, are insufficient for real-world machine learning

applications with a limited data range. The data formats of Minifloat and Posit can be

studied on the processing units to create an accurate result with a true set of neural

network parameters by keeping the width of each element to 8 bit.

CHAPTER 2

 11
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

2.3 Cryptography on RISC-V: Performance Evaluation of Standardized

Algorithms

 In this study, [14] used the RISC-V RV32I ISA to create software-only

implementations of eleven important cryptographic algorithms and evaluated their

performance against that of a RISC-V processor equipped with additional hardware

modules that implement specialised instructions for the single-cycle execution of

cryptographic primitives. They have balanced execution speed and code size in our

software solutions, with a focus on execution speed. In order to do this, we used loop

unrolling where it was most useful while only slightly increasing the programme

memory. In addition, unless there is a specific instruction that calculates the SBOX

value, all SBOX tables were pre-computed and stored in memory as opposed to being

calculated on the fly.

The cryptography instructions were divided into groups based on their

organisational structure for the RISC-V processor enhanced with cryptographic

hardware, and each group was created as a hardware module. Any subset of modules

can be integrated with the CPU thanks to the modular approach. Since only a portion

of the 32-bit scalar cryptographic instructions are used by each method, they determined

the module utilisation for each algorithm and assessed the implementation costs in

accordance in order to ensure a valid performance comparison.

The authors found that for five of the eleven algorithms, implementations with

the cryptography set extension offer execution speeds of 1.5 to 8.6 times quicker and

programme memory requirements of 1.2 to 5.8 times lower than those utilising only the

basic RV32I instruction set. Less than 6% less programme memory is needed and

execution speed has increased for the remaining six methods. When compared to

software solutions using the RV32I ISA, the hardware crypto implementations have an

additional hardware complexity of 0.3% to 7.7%. Figure 31's benefit-cost analysis,

which summarises the benefits in execution time as a function of the expenses

associated with hardware complexity for each algorithm, depicts the acceleration of

execution time as a function of the relative hardware cost graphically. We can see that

for the SHA algorithms, we gain an acceleration of roughly 1.7 at a hardware cost

increase of less than 7.5% as an example of the benefit vs. cost trade-off. We proposed

a new instruction to speed up memory address calculation operations for the 8-bit input

SBOX table, which dominates the execution time for four of the eleven algorithms,

CHAPTER 2

 12
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

based on our research of execution durations. With only a 1.1% increase in hardware

cost, this new instruction gave the four algorithms execution times that were 1.2 to 1.6

times faster.

Figure 2.3.1 - Acceleration vs. hardware cost of implementation of crypto implementations.

Besides that, [14] added support for permutation instructions in addition to

cryptographic algorithms, as opposed to just cryptographic algorithms as in [15],

offering a more comprehensive solution for the implementation of any cryptographic

algorithm. This method enables asymmetric algorithms as well as all current and future

symmetric cryptographic methods to be supported by software and accelerated by

hardware. Only 4K gate equivalent are needed to implement permutation instructions,

which is only an 8% increase above the 3.7K gate equivalent needed for cryptographic

instruction support. A synthesis of the method suggested in [15], in contrast, would

need nearly gate equivalent just for cryptographic instructions.

CHAPTER 3

 13
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

CHAPTER 3

Proposed Method

3.1 Design Specifications

 For specification of RV32I processor, it will be design based on RISC-V base

instruction set architecture and few extended ISA (M, F, A, C extension) compatible

with pipeline processor. The design and implementation of front-end will be use

Verilog to verify the correctness and functionality of the processor built. Below shown

the basic feature of processor that implemented based on the functionality of instruction:

• Arithmetic Instructions: ADD, SUB, ADDI.

• Logical Instructions: AND, OR, XOR, SLL, SRL, SRA, etc

• Data Transfer Instructions: LW, SW, etc.

• Branch Instructions: BEQ, BNE, BLT, BGE, etc.

• Jump Instructions: JAL, JALR

• Data Comparison Instructions: SLT, SLTIU.

 For specification of RV32I processor, it supports few types of instructions

format. Figure 3.1.1 illustrates the six main instruction formats (R, I, S, B, U, J) in the

base ISA. Each one must be aligned on a four-byte boundary in memory and have a set

length of 32 bits. If the target address is not four-byte aligned, an instruction address

misaligned exception is raised on a taken branch or unconditional jump. If a conditional

branch is not taken, no instruction fetch misaligned exception is raised.

Figure 3.1.1 – RV32 Base Instruction Formats

• R-format

CHAPTER 3

 14
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

- Normally compute the function with value rs1 and rs2 and store back to

destination register.

- The 6-bit of operation code (opcode), 3-bit and 7-bit of function code

(funct3 / funct7) is to identify the type of instructions.

- Source register (rs1) [5-bit] is specifically for first source register.

- Target register (rs2) [5-bit] is specifically for second source register.

- Destination register (rd) [5-bit] is specifically for destination register

which commonly store the compute result.

• I-format

- Normally compute the function with value rs1 and the immediate data and

store back to destination register.

- The 6-bit of operation code (opcode) and 3-bit of function code (funct3) is

to identify the type of instructions.

- Source register (rs1) [5-bit] is specifically for first source register.

- The most 12 significant bits (which the position is R-type format of rs2

and funct7) is specifically for an immediate value for substitute the value

of rs2.

- Destination register (rd) [5-bit] is specifically for destination register

which commonly store the compute result.

- Immediates are always sign-extended, often packed in the instruction's

leftmost available bits, and allocated to save hardware complexity. In order

to speed up the sign-extension circuitry, the instruction's bit 31 always

contains the sign bit for all immediates.

• S-format

- Normally store the value in rs2 at address of value rs1 with offset of rs1

value.

- The 6-bit of operation code (opcode) and 3-bit of function code (funct3) is

to identify the type of instructions.

- Source register (rs1) [5-bit] is specifically for first source register.

- Target register (rs2) [5-bit] is specifically for second source register.

CHAPTER 3

 15
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

- The separate immediate bits (which the position is R-type format of rd and

funct7) is specifically for an immediate value for substitute the value of rd.

It needs to combine them together to become a complete immediate value.

- Immediates are always sign-extended, often packed in the instruction's

leftmost available bits, and allocated to save hardware complexity. In order

to speed up the sign-extension circuitry, the instruction's bit 31 always

contains the sign bit for all immediates.

• B-format

- Normally branch a target address by comparing the values of rs1 and rs2,

if the condition is true, the current instruction address will plus with the

immediate offset to jump to the target address.

- The 6-bit of operation code (opcode) and 3-bit of function code (funct3) is

to identify the type of instructions.

- Source register (rs1) [5-bit] is specifically for first source register.

- Target register (rs2) [5-bit] is specifically for second source register.

- The separate immediate bits (which same with S-type) is specifically for

an immediate value for substitute the value of rd. It needs to combine them

together to become a complete immediate value.

- Immediates are always sign-extended, often packed in the instruction's

leftmost available bits, and allocated to save hardware complexity. In order

to speed up the sign-extension circuitry, the instruction's bit 31 always

contains the sign bit for all immediates.

• U-format

- Normally compute with an immediate, but zero-extend to the left.

- The 6-bit of operation code (opcode) is to identify the type of instructions.

- Immediates are always zero-extended, the immediate values wil be 20

most significant bit and combine 12 zero least significant bit to become a

32-bit immediate value.

- Only two instructions involved which are load upper immediate (LUI) and

add upper immediate with pc address (AUIPC).

CHAPTER 3

 16
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

• J-format

- Normally jump to an address to compute a string of instructions and return

back to address of value of rd.

- The 6-bit of operation code (opcode) is to identify the type of instructions

which is only jump and link (JAL).

- Immediates are always sign-extended, often packed in the instruction's

leftmost available bits, and allocated to save hardware complexity. In order

to speed up the sign-extension circuitry, the instruction's bit 31 always

contains the sign bit for all immediates.

- It stores the next instruction address (pc + 4) into rd which normally is

return address (ra, x1) and combine the current instruction address value

with immediate offset value, and the result will be the destination of jump

target address.

CHAPTER 3

 17
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

In the figure 3.1.2 shows the 47 instructions of base integer instruction formats

that support in this project.

Figure 3.1.2 – RV32I Base Instruction Format

CHAPTER 3

 18
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 Furthermore, the 32 general-purpose registers x1-x31 in the RISC-V base ISA

store integer values. The constant 0 is hardwired into the register x0. The address of the

current instruction is stored in a separate user-visible programme counter pc register.

The normal programme calling convention should use register x1 to hold the return

address on a call, even though RISC-V does not define a special subroutine return

address link register. Below table 3.1.1 show the description of 32 general-purpose

registers file.

Table 3.1.1 - 32 General-purpose Registers of RICS-V Processor

CHAPTER 3

 19
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 In addition, before data are diverted to a data route for operations, memory is a

crucial component that stores instructions, stacks, and static data inside. The memory

map for the volatile memory used in this project is illustrated in Figure 3.1.3. The

memory depicted is a virtual memory and will be built using RTL modelling on a

"FPGA," which will use Verilog code to verify that the virtual memory is valid (SD-

ram). Because more testing must be done before the real memory is built, physical

memory is typically significantly smaller than virtual memory. Memory will employ a

lower bit address due to cost and affordability, for example, a smaller flip-flop is used

to save the bit value. In this processor is designed in total instructions memory location:

210000000 (268 435 456) location each location holds 8-bit value.

Figure 3.1.3 – Memory map of RV32 Processor

RV32 memory allocation is divided into 3 segments:

1. Stack segment: Hold or store the register values which used by procedure during

the execution.

2. Data segment: Hold the object value whose lifetime is the program’s execution

and cease during the program exit.

3. Text segment: Store the program instructions which flashes assembly code

compiled to machine code.

CHAPTER 3

 20
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Besides that, the "M" standard integer multiplication and division instruction

extension, which comprises instructions to multiply or divide values stored in two

integer registers. MUL writes the lower XLEN bits to the destination register after

multiplying rs1 by rs2 by XLEN bits. For signed-signed, unsigned-unsigned, and signed

rs1-unsigned rs2 multiplication, MULH, MULHU, and MULHSU do the identical

multiplication but return the upper XLEN bits of the complete 2XLEN-bit product,

respectively. DIV and DIVU divide rs1 by rs2 into XLEN bits by XLEN bits signed

and unsigned integers, rounding to zero. The remainder operations of the respective

division are handled by REM and REMU. The dividend's sign and the result's sign are

identical for REM. In the figure 3.1.4 shows the multiplication and division instruction

formats.

Figure 3.1.4 – RV32 M Extension Instruction

CHAPTER 3

 21
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

3.2 Software

The entire project will use ModelSim [12] which are a software to design and

verification of digital circuits by using HDL such as Verilog [13] code will be selected

as coding language for designing the RISC-V RV32I Processor. This software provides

a great capability for uncover design flaws and show data for analysis and debug with

an intelligently constructed debug platform. It is great for FPGA design because it has

a wide range of intuitive feature for Verilog.

 The Verilog is an HDL for modelling electronic systems that is specified as

IEEE Standard. At the RTL of abstraction, it is widely employed in the design and

verification of digital circuits. It is also applied in the design of genetic circuits as well

as the verification of analogue and mixed-signal circuits. The syntax of language is

similar to C programming language which is famous in software development

according to [13]. Hence, it is easy to get started on coding with HDL.

CHAPTER 3

 22
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

3.3 Timeline

In this project, there are two semester to develop a RV32I and M extension. At the

first of the half project time, it starts to study about the RISC-V knowledge. After have

a roughly understanding about RISC-V architecture, then start developing and

debugging a RV32I processor as a general functional processor and also multiplier.

During around the end of semester, the FYP1 report required to generate and hand on.

The later semester which are the short semester suspended due to industry training.

After the industry training period end, this project plan to finish up the development of

multiplier and start study on division. Lastly, complete all the things including FYP2

report at the end of project timeline. Below shown the whole year project timeline.

Figure 3.3.1 – Gannt Chart of FYP Timeline

CHAPTER 4

 23
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

CHAPTER 4

System Design

4.1 Macro System Design

 First of all, Figure 3.2.1 shows data path of instructions execution in this RISC-

V processor that required 5 stages to complete. In the beginning, fetching out the

instruction from instruction memory that program counter (PC) point to the address of

instruction. At the same time, PC always plus 4 to prepare to output the next instruction

address to execute the following instruction. Then, instructions will be decoded into

several part such as operation code that determine which function is called and register

address that output the value of register which the register address point to. After that,

the values execute in ALU like doing arithmetic, comparison, logical or calculating

target address operation, and send the result to data memory to store the data, if the

result is required store back to registers, it will skip access data memory part and write

back to register.

Figure 4.1.1 – Top Level of Structural RISC Instructions Execution Datapath Overview

CHAPTER 4

 24
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 Addressing modes referring how an operand or instruction are being design

and specified in memory by the architecture itself. Before the operand is actually

performed, the addressing mode defines a rule for interpreting or changing the address

field of the instruction. In this project, there are 6 type of address mode that same as

instruction types mentioned before:

• Register Addressing (R-format)

- The operation basically predefined as compute with two registers value

(rs1, rs2) within ALU and mostly used by arithmetic (ADD, SUB), logical

(AND, OR, XOR), bit-shifting (SLL, SRL) and program control

instructions (SLT, SLTU)

- The two register data will be fetched according to its address and compute

in ALU then store back to the register that address location from rd.

Figure 4.1.2 – Simple Instruction Operation of R-format in Datapath

CHAPTER 4

 25
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

• Immediate Addressing (I-format)

- The operation basically predefined as compute with registers value (rs1)

and an immediate value from instruction within ALU and mostly used by

arithmetic (ADDI), logical (ANDI, ORI, XORI), bit-shifting (SLLI, SRLI)

and program control instructions (SLTI, SLTIU) with an immediate.

- The register data and immediate value with signed or unsigned extend will

be fetched according to its address and compute in ALU then store back to

the register that address location from rd.

Figure 4.1.3 – Simple Instruction Operation of I-format in Datapath

CHAPTER 4

 26
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

• Store Addressing (S-format)

- The operation basically predefined as compute data memory address with

registers value (rs1) that contain an address value and an immediate value

that are offset of address within ALU and storing the value of rs2 in data

memory (SB, SH, SW).

- The address and immediate value with signed or unsigned extend that is

offset of address will be fetched and compute addition in ALU to get the

target address then send to data memory to reach the target address and

store value of rs2.

Figure 4.1.4 – Simple Instruction Operation of S-format in Datapath

CHAPTER 4

 27
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

• Branch Addressing (B-format)

- The operation basically predefined as compare with two registers value

(rs1, rs2) within ALU to checking comparison condition is true or not and

it is mostly used by branching to a target address (BEQ, BNE, etc).

- The two registers data will be fetched compute in ALU by using

subtraction to check comparison condition. If the condition is true, it will

branch to the target address that is the combination of the current

instruction address and the offset which is a separated immediate in

instruction with signed or unsigned extend.

Figure 4.1.5 – Simple Instruction Operation of B-format in Datapath

CHAPTER 4

 28
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

• Upper Addressing (U-format)

- The operation basically predefined as compute a data that an immediate is

zero extend to right to make the immediate becomes most significant bit

within ALU and it has two instructions which are LUI and AUIPC

- The LUI instruction predefined as storing an immediate that with zero

extend into the register and the AUIPC instruction predefined as storing

the value of combination of current instruction address and an immediate

with zero-extend in register.

Figure 4.1.6 – Simple Instruction Operation of LUI (B-format) in Datapath

CHAPTER 4

 29
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

• Jump Addressing (J-format)

- The operation basically predefined as store the next instruction address

into a register for after jump back to next instruction and jump to target

address (JAL).

- The immediate data with signed extend that offset to jumop and current

instruction address compute addition then go to instruction memory to

branch to the target address.

Figure 4.1.7 – Simple Instruction Operation of J-format in Datapath

In RV32 Processor, the chip (Top Level) has been partitioned in several unit

level at system level and unit level also will be partitioned in few blocks as shown in

table 3.2.1.

Chip Partitioning at (Top
Level) at System Level

Unit and Block Partitioning (Micro-Architecture Level)
Unit-level Partitioning Block-level Partitioning

Processor Chip
(c_processor)

Instruction Fetch Unit
(u_instr_fecth) -

Datapath (u_datapath)

Register File (b_reg_file)
ALU Block (b_ALU)
Data Memory Blovk

(b_data_mem)
M Extension Block

(m_m_ext)

Control Unit (u_ctrl)

Main Control Block
(b_main_ctrl)

ALU Control Block
(b_ALU_ctrl)

Table 4.1.2 – Block Hierarchy

CHAPTER 4

 30
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.2 Instruction Fetch Unit

4.2.1 Functionality and Feature

 Instruction fetch unit is an IF stages where fetch and generate new address value

for next instructions. Instructions code to be save in instruction memory where, instruction

fetch unit generate the new address value to fetch the instruction and ask instruction

memory to send instruction code based on the address generated for processing and

operations.

4.2.2 Interface and I/O Pin Description

- Interface

Figure 4.2.2 – Instruction fetch unit interface

- I/O Pin Description

Pin name: ip_wr_data[31:0]
Pin class: data
Pin function: A 32 bits data for flash into instruction
memory.

Source: Datapath
Destination: Instruction
Fetch Unit

Pin name: ip_wr_addr[31:0]
Pin class: address
Pin function: A 32 bits address of instruction
memory for flash data.

Source: Datapath
Destination: Instruction
Fetch Unit

Pin name: ip_wr_en
Pin class: control
Pin function: A pin to control for enable write data
into instruction memory.

Source: Datapath
Destination: Instruction
Fetch Unit

CHAPTER 4

 31
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Pin name: ip_rst
Pin class: global
Pin function: A pin to reset program counter and
instruction fetch unit

Source: Datapath
Destination: Instruction
Fetch Unit

Pin name: ip_clk
Pin class: global
Pin function: A clock signal for the system running

Source: Datapath
Destination: Instruction
Fetch Unit

Pin name: ip_br_addr[31:0]
Pin class: address
Pin function: A 32 bits address of instruction
memory for branch or jump the target address.

Source: ALU
Destination: Instruction
Fetch Unit

Pin name: ip_br_ctrl
Pin class: control
Pin function: A pin to control for enable branch to a
target address.

Source: ALU
Destination: Instruction
Fetch Unit

Pin name: ip_j_ctrl
Pin class: control
Pin function: A pin to control for enable jump to a
target address.

Source: Control Unit
Destination: Instruction
Fetch Unit

Pin name: ip_nop_ctrl
Pin class: control
Pin function: A pin to control for stalling when an
instruction required multi clock cycle to operate

Source: M Extension
Destination: Instruction
Fetch Unit

Pin name: op_addr[31:0]
Pin class: address
Pin function: A 32 bits address of instruction
memory for output to address calculation.

Source: Instruction Fetch
Unit
Destination: ALU

Pin name: op_instr[31:0]
Pin class: data
Pin function: A 32 bits data of instruction

Source: Instruction Fetch
Unit
Destination: Datapath

Table 4.2.2 – Instruction fetch unit pin description

CHAPTER 4

 32
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.2.3 Internal Operation

Figure 4.2.3 – Flowchart of instruction fetch unit operation

CHAPTER 4

 33
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.2.4 Schematic Design

Figure 4.2.4 – Schematic design of instruction fetch unit

CHAPTER 4

 34
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.2.5 Verilog Model
/**
Project: Develop Extended ISA on RISC-V Based Processor
Module: b_instr_fetch.v
Version: 1
Date Created: 4/8/2022
Created By: Lee Ang
Code Type: Verilog
Description: Instruction Fetch Unit
**/

`default_nettype none // to catch typing errors due to typo of signal names

module u_instr_fetch
#(// declare all the parameter needed
parameter initial_addr = 32'h00008000, // initial pc address
parameter last_addr = 32'h01FFFFFF, // last pc address
parameter SIZE = 6'b100000 // 32
)
(// declare all the input and output pin needed
 input wire [31:0] ip_wr_data, ip_wr_addr, ip_br_addr, ip_j_addr,
 input wire ip_clk, ip_rst, ip_en, ip_wr_en, ip_br_ctrl, ip_j_ctrl, ip_nop_ctrl,
 output reg [31:0] op_addr, op_instr
);

reg [31:0] pc; // program counter
reg [8:0] instr_mem [initial_addr:last_addr]; // instruction memory
reg [31:0] offset_pc; // offset of next address (4 byte)
reg [32:0] carry_pc; // carry bit of pc + 4 adder
integer i; // for loop

assign pc[31:0] = initial_addr; // set pc to first address
assign offset_pc[31:0] = 32'h4; // offset of next address = 4 byte
assign carry_pc[0] = 1'b0; // no negetive in pc + 4 adder

// program counter
always @(posedge ip_clk) begin
 if(ip_rst == 1'b1) begin // if reset
 // reset to default value
 pc[31:0] <= initial_addr;
 end

 else if (ip_rst == 1'b0) begin // if no reset
 if(ip_en == 1'b1)begin // if enable to run pc
 op_addr[31:0] <= pc[31:0]; // output current pc

 if (ip_nop_ctrl == 1'b0) begin // if not stalling
 if((ip_br_ctrl == 1'b1) || (ip_j_ctrl == 1'b1)) begin // if branch or
jump to target instruction address
 pc[31:0] <= ip_br_addr[31:0]; // pc branch to target address
 end

 else if((ip_br_ctrl == 1'b0) && (ip_j_ctrl == 1'b0)) begin // if branch
to next instruction address
 // instruction address + 4 in 32-bit Adder
 for(i = 0; i < SIZE; i = i + 1) begin
 // calculation of add result
 pc[i] <= pc[i] ^ offset_pc[i] ^ carry_pc[i];
 // calculation of carry bit

CHAPTER 4

 35
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 carry_pc[i + 1'b1] = (pc[i] & offset_pc[i]) | (pc[i]
& carry_pc[i]) | (offset_pc[i] & carry_pc[i]);
 end
 end
 end

 else if (ip_nop_ctrl == 1'b1) begin // if stalling
 pc[31:0] <= pc[31:0];
 end
 end
 end
end

// instruction memory
always @(posedge ip_clk) begin
 if(ip_rst == 1'b1) begin // if reset
 // reset to default value
 for(pc[31:0] = initial_addr; pc[31:0] <= last_addr; pc[31:0] = pc[31:0] + 32'h1) begin
 instr_mem[pc[31:0]][7:0] <= 8'b0;
 end
 end

 else if(ip_rst == 1'b0) begin // if no reset
 if(ip_en == 1'b1)begin // if enable to run instruction memory
 // output the instruction from program counter
 op_instr[7:0] <= instr_mem[pc[31:0]][7:0];
 op_instr[15:8] <= instr_mem[pc[31:0] + 32'h1][7:0];
 op_instr[23:16] <= instr_mem[pc[31:0] + 32'h2][7:0];
 op_instr[31:24] <= instr_mem[pc[31:0] + 32'h3][7:0];
 end

 if(ip_wr_en == 1'b1) begin // // if enable to flash data in instruction memory
 // flash data into instruction memory
 instr_mem[ip_wr_addr[31:0]][7:0] <= ip_wr_data[7:0];
 instr_mem[ip_wr_addr[31:0] + 32'h1][7:0] <= ip_wr_data[15:8];
 instr_mem[ip_wr_addr[31:0] + 32'h2][7:0] <= ip_wr_data[23:16];
 instr_mem[ip_wr_addr[31:0] + 32'h3][7:0] <= ip_wr_data[31:24];
 end
 end
end
endmodule

CHAPTER 4

 36
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.3 Register File

4.3.1 Functionality and Feature

 Register is the fastest and most powerful temporary storage available inside

central processing unit (CPU) that receive, hold, and transfer data (instruction). It also

used to stage data between memory and the functional units on the chip. The register

file contains all the general-purpose registers which are used for data transfer such as

read and write data.

4.3.2 Interface and I/O Pin Description

- Interface

Figure 4.3.2 – Register file interface

CHAPTER 4

 37
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

- I/O Pin Description

Pin name: ip_rs1_addr[31:0]
Pin class: address
Pin function: A 32 bits address of register 1 for
output the register data.

Source: Instruction Fetch
Unit
Destination: Register File

Pin name: ip_rs2_addr[31:0]
Pin class: address
Pin function: A 32 bits address of register 2 for
output the register data.

Source: Instruction Fetch
Unit
Destination: Register File

Pin name: ip_wr_data[31:0]
Pin class: data
Pin function: A 32 bits data for write back into
register file.

Source: Datapath
Destination: Register File

Pin name: ip_wr_addr[31:0]
Pin class: address
Pin function: A 32 bits address of register file for
write back data.

Source: Datapath
Destination: Register File

Pin name: ip_wr_en
Pin class: control
Pin function: A pin to control for enable write back
data into register file.

Source: Datapath
Destination: Register File

Pin name: ip_rst
Pin class: global
Pin function: A pin to reset register file

Source: Datapath
Destination: Instruction
Fetch Unit

Pin name: ip_clk
Pin class: global
Pin function: A clock signal for the system running

Source: Datapath
Destination: Instruction
Fetch Unit

Pin name: op_rs1[31:0]
Pin class: data
Pin function: A 32 bits data of register 1 for output
to calculation in ALU.

Source: Instruction Fetch
Unit
Destination: ALU

Pin name: op_rs2[31:0]
Pin class: data
Pin function: A 32 bits data of register 2 for output
to calculation in ALU.

Source: Instruction Fetch
Unit
Destination: ALU

Table 4.3.2 – Register file pin description

CHAPTER 4

 38
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.3.3 Internal Operation

Figure 4.3.3 – Flowchart of register file operation

CHAPTER 4

 39
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.3.4 Schematic Design

Figure 4.3.4 – Schematic design of register file

CHAPTER 4

 40
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.2.5 Verilog Model
/**
Project: Develop Extended ISA on RISC-V Based Processor
Module: b_reg_file.v
Version: 1
Date Created: 4/8/2022
Created By: Lee Ang
Code Type: Verilog
Description: 32 of 32-bits General Regsiters
**/

`default_nettype none // to catch typing errors due to typo of signal names

module b_reg_file
#(parameter SIZE = 6'b100000) // declare all the parameter needed
(// declare all the input and output pin needed
 input wire [31:0] ip_wr_data,
 input wire [4:0] ip_rs1_addr, ip_rs2_addr, ip_wr_addr,
 input wire ip_clk, ip_rst, ip_wr_en,
 output reg [31:0] op_rs1, op_rs2
);

reg [31:0] reg_file [0:4]; // 32 of 32-bit general registers

integer i; // for loop to reset

//register zero (x0) always be 0
always @(*) begin
 reg_file[5'b0][31:0] <= 32'b0;
end

always @(posedge ip_clk) begin
 if(ip_rst == 1'b1) begin // if reset
 // reset to default value
 for(i = 1; i < SIZE; i = i + 1) begin
 reg_file[i[4:0]][31:0] <= 32'b0;
 end
 end

 else if(ip_rst == 1'b0) begin // if no reset
 // output rs1 and rs2
 op_rs1[31:0] <= reg_file[ip_rs1_addr[4:0]][31:0];
 op_rs2[31:0] <= reg_file[ip_rs2_addr[4:0]][31:0];

 if (ip_wr_en == 1'b1) begin // if enable write data
 // write data into register according to address
 reg_file[ip_wr_addr][31:0] <= ip_wr_data[31:0];
 end
 end
end
endmodule

CHAPTER 4

 41
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.4 ALU

4.4.1 Functionality and Feature

 Receives decoded instructions and data from register or an immediate with the

help from control signal from control unit to ALU block which then perform arithmetic,

logical and bit shifting operations. ALU block do the signed extend if needed and

calculate the output from the input from the instructions set. The result is later than send

back to the selected register address for others computation or send to data memory to

store or load data. It also has ability to calculate target address for jump and branch an

address.

4.4.2 Interface and I/O Pin Description

- Interface

Figure 4.4.2 – ALU interface

CHAPTER 4

 42
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

- I/O Pin Description

Pin name: ip_rs1[31:0]
Pin class: data
Pin function: A 32 bits data of register 1 for
computing.

Source: Register File
Destination: ALU

Pin name: ip_rs2[31:0]
Pin class: data
Pin function: A 32 bits data of register 2 for
computing.

Source: Register File
Destination: ALU

Pin name: ip_instr_imm[24:0]
Pin class: data
Pin function: A 25 bits immediate data for
computing.

Source: Instruction Fetch
Unit
Destination: Register File

Pin name: ip_ALU_ctrl[2:0]
Pin class: control
Pin function: A 3 bits control pin to determine using

AND, OR, XOR, ADD or SUB for arithmetic and

logical computing.

Source: ALU Control
Destination: ALU

Pin name: ip_result_ctrl[1:0]
Pin class: control
Pin function: A 2 bits control pin to determine output
from ALU, barrel shifter or result of set instruction.

Source: ALU Control
Destination: ALU

Pin name: ip_br_ctrl[1:0]
Pin class: control
Pin function: A 2 bits control pin to determine which
branch instruction is used for comparing two data

Source: ALU Control
Destination: ALU

Pin name: ip_uns_ctrl
Pin class: control
Pin function: A control pin to determine the
instruction is involved unsigned data.

Source: ALU Control
Destination: ALU

Pin name: ip_imm_ctrl
Pin class: control
Pin function: A control pin to determine the
instruction is involved immediate data.

Source: ALU Control
Destination: ALU

Pin name: ip_SLT_ctrl
Pin class: control
Pin function: A control pin to determine the
instruction is involved set instruction.

Source: ALU Control
Destination: ALU

Pin name: ip_sh_ctrl
Pin class: control
Pin function: A control pin to determine the barrel
shifter shifting direction.

Source: ALU Control
Destination: ALU

CHAPTER 4

 43
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Pin name: ip_imm_en
Pin class: control
Pin function: A control pin to determine the
instruction is involved I-type instruction.

Source: ALU Control
Destination: ALU

Pin name: ip_LUI_en
Pin class: control
Pin function: A control pin to determine the
instruction is LUI Instruction.

Source: ALU Control
Destination: ALU

Pin name: ip_AUIPC_en
Pin class: control
Pin function: A control pin to determine the
instruction is AUIPC Instruction.

Source: ALU Control
Destination: ALU

Pin name: ip_JAL_en
Pin class: control
Pin function: A control pin to determine the
instruction is JAL Instruction.

Source: ALU Control
Destination: ALU

Pin name: ip_JALR_en
Pin class: control
Pin function: A control pin to determine the
instruction is JALR Instruction.

Source: ALU Control
Destination: ALU

Pin name: ip_br_en
Pin class: control
Pin function: A control pin to determine the
instruction is involved branch instruction.

Source: ALU Control
Destination: ALU

Pin name: ip_ld_en
Pin class: control
Pin function: A control pin to determine the
instruction is involved load data instruction from data
memory.

Source: ALU Control
Destination: ALU

Pin name: ip_st_en
Pin class: control
Pin function: A control pin to determine the
instruction is involved store data instruction from
data memory.

Source: ALU Control
Destination: ALU

Pin name: ip_clk
Pin class: global
Pin function: A clock signal for the system running

Source: Datapath
Destination: ALU

Pin name: op_result[31:0]
Pin class: data
Pin function: A 32 bits data of result after computing
in ALU.

Source: ALU
Destination: Data Memory /
Register File

Pin name: op_imm[31:0]
Pin class: data

Source: ALU
Destination: Data Memory

CHAPTER 4

 44
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Pin function: A 32 bits immediate data for storing
into data memory

Pin name: op_overflow
Pin class: control
Pin function: A pin for determine the computing
result is overflow or error, it only occurred when over
adding or subtract or shifting

Source: ALU
Destination: Data Memory

Pin name: op_br_addr[31:0]
Pin class: address
Pin function: A 32 bits of address for branch target
address after calculate offset with an address

Source: ALU
Destination: Instruction
Fetch Unit

Pin name: op_br_ctrl
Pin class: ctrl
Pin function: A control pin to determine the control
output branch pin is 0 or 1 by comparing result of
trueness.

Source: ALU
Destination: Instruction
Fetch Unit

Table 4.4.2 – ALU pin description

CHAPTER 4

 45
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.4.3 Internal Operation

Figure 4.4.3 – Flowchart of ALU operation

CHAPTER 4

 46
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.4.4 Schematic Design

Figure 4.4.4 – Schematic design of ALU

CHAPTER 4

 47
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.4.5 Verilog Model
/**
Project: Develop Extended ISA on RISC-V Based Processor
Module: b_ALU.v
Version: 1
Date Created: 4/8/2022
Created By: Lee Ang
Code Type: Verilog
Description: ALU
**/

`default_nettype none//to catch typing errors due to typo of signal names

module b_ALU
#()
(// declare all the input and output pin needed
 input wire [31:0] ip_rs1, ip_rs2, ip_pc,
 input wire [24:0] ip_instr_imm,
 input wire [2:0] ip_ALU_ctrl,
 input wire [1:0] ip_result_ctrl, ip_br_ctrl,
 input wire ip_clk, ip_uns_ctrl, ip_imm_ctrl, ip_SLT_ctrl, ip_sh_ctrl, ip_imm_en, ip_LUI_en,
ip_AUIPC_en, ip_JAL_en, ip_JALR_en, ip_br_en, ip_ld_ctrl, ip_st_ctrl,
 output reg [31:0] op_result, op_imm, op_br_addr,
 output reg op_overflow, op_br_ctrl
);

reg [31:0] operand_a; // operand a of ALU
reg [31:0] operand_b; // operand b of ALU
reg [31:0] imm_ext; // immediate data extand
reg [31:0] result_ALU; // result of ALU
reg [31:0] result_sh; // result of barrel shifter
reg result_SLT; // result of SLT
reg [32:0] carry_bit_ALU; // adder carry bit
reg [31:0] pc; // address for adding offset
reg [31:0] br_addr; // branch address shift left 2 bit
reg [32:0] carry_bit_br_adder; // branch adder carry bit

integer i; // for loop

// zero/sign extand if immediate data
always @(posedge ip_clk) begin
 if(ip_JAL_en == 1'b1) begin // if is J-type instruction (jump instruction, JAL)
 if(ip_instr_imm[24] == 1'b0) begin
 br_addr[31:0] = {12'b0, ip_instr_imm[24:5]};
 end

 else if(ip_instr_imm[24] == 1'b1) begin
 br_addr[31:0] = {12'b111111111111, ip_instr_imm[24:5]};
 end
 end

 else if (ip_JALR_en == 1'b1) begin
 if(ip_instr_imm[24] == 1'b0) begin
 br_addr[31:0] = {20'b0, ip_instr_imm[24:13]};
 end

 else if(ip_instr_imm[24] == 1'b1) begin
 br_addr[31:0] = {20'b11111111111111111111, ip_instr_imm[24:13]};

CHAPTER 4

 48
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 end
 end

 else if(ip_br_en == 1'b1) begin // if is B-type instruction (branch instruction)
 if(ip_uns_ctrl == 1'b0) begin
 if(ip_instr_imm[24] == 1'b0) begin
 br_addr[31:0] = {20'b0, ip_instr_imm[24:18], ip_instr_imm[4:0]};
 end

 else if(ip_instr_imm[24] == 1'b1) begin
 br_addr[31:0] = {20'b11111111111111111111,
ip_instr_imm[24:18], ip_instr_imm[4:0]};
 end
 end

 else if(ip_uns_ctrl == 1'b1) begin
 br_addr[31:0] = {20'b0, ip_instr_imm[24:18], ip_instr_imm[4:0]};
 end
 end

 else if((ip_imm_en == 1'b1) || (ip_ld_ctrl == 1'b1)) begin // if is I-type instruction (instruction
with immediate)
 if(ip_uns_ctrl == 1'b0) begin
 if(ip_instr_imm[24] == 1'b0) begin
 imm_ext[31:0] = {20'b0, ip_instr_imm[24:13]};
 end

 else if(ip_instr_imm[24] == 1'b1) begin
 imm_ext[31:0] = {20'b11111111111111111111,
ip_instr_imm[24:13]};
 end
 end

 else if(ip_uns_ctrl == 1'b1) begin
 imm_ext[31:0] = {20'b0, ip_instr_imm[24:13]};
 end
 end

 else if(ip_st_ctrl == 1'b1) begin
 if(ip_instr_imm[24] == 1'b0) begin
 imm_ext[31:0] = {20'b0, ip_instr_imm[24:18], ip_instr_imm[4:0]};
 end

 else if(ip_instr_imm[24] == 1'b1) begin
 imm_ext[31:0] = {20'b11111111111111111111, ip_instr_imm[24:18],
ip_instr_imm[4:0]};
 end
 end

 else if((ip_AUIPC_en == 1'b1) || (ip_LUI_en == 1'b1)) begin // if is U-type instruction (upper
instrcution AUIPC, LUI)
 imm_ext[31:0] = {ip_instr_imm[24:5], 12'b0};
 end

 // a operand for calculate in ALU
 if((ip_AUIPC_en == 1'b0) && (ip_LUI_en == 1'b0) && (ip_JAL_en == 1'b0) || (ip_JALR_en
== 1'b1)) begin // normal case or JALR
 operand_a[31:0] = ip_rs1[31:0];
 end

CHAPTER 4

 49
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 else if((ip_AUIPC_en == 1'b1) || (ip_JAL_en == 1'b1)) begin // if AUIPC or JAL
 operand_a[31:0] = ip_pc[31:0];
 end

 else if(ip_LUI_en == 1'b1) begin // if LUI
 operand_a[31:0] = 32'b0;
 end

 // b operand for calculate in ALU
 if((ip_JAL_en == 1'b1) || (ip_JALR_en == 1'b1)) begin // if jump, then +4 to store the next
address
 operand_b[31:0] = 32'h00000004;
 end

 else if((ip_JAL_en == 1'b0) && (ip_JALR_en == 1'b0)) begin // if not jump, store the signed
extended or rs2 data
 if(ip_imm_ctrl == 1'b0) begin
 operand_b[31:0] = ip_rs2[31:0];
 end

 else if(ip_imm_ctrl == 1'b1) begin
 operand_b[31:0] = imm_ext[31:0];
 end
 end
end

// ALU
always @(posedge ip_clk) begin
 if(ip_ALU_ctrl[2] == 1'b1) begin // if subtration selected
 // convert operand b
 for(i = 0; i < 32; i = i + 1) begin
 operand_b[i] = operand_b[i] ^ ip_ALU_ctrl[2];
 end
 end

 if(ip_ALU_ctrl[1:0] == 2'b00) begin
 result_ALU[31:0] = operand_a[31:0] & operand_b[31:0];
 end

 else if(ip_ALU_ctrl[1:0] == 2'b01) begin
 result_ALU[31:0] = operand_a[31:0] | operand_b[31:0];
 end

 else if(ip_ALU_ctrl[1:0] == 2'b10) begin
 result_ALU[31:0] = operand_a[31:0] ^ operand_b[31:0];
 end

 else if(ip_ALU_ctrl[1:0] == 2'b11) begin
 // 32-bit Adder
 carry_bit_ALU[0] = ip_ALU_ctrl[2]; // subtraction gate
 for(i = 0; i < 32; i = i + 1) begin
 // calculation of add result
 result_ALU[i] = operand_a[i] ^ operand_b[i] ^ carry_bit_ALU[i];
 // calculation of carry bit
 carry_bit_ALU[i + 1'b1] = (operand_a[i] & operand_b[i]) | (operand_a[i] &
carry_bit_ALU[i]) | (operand_b[i] & carry_bit_ALU[i]);
 end

 // signed addition overflow

CHAPTER 4

 50
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 op_overflow = (carry_bit_ALU[32] ^ carry_bit_ALU[31]) & (~ip_uns_ctrl);
 // set if SLT/SLTU is true
 result_SLT = ((op_overflow ^ result_ALU[31]) & ip_SLT_ctrl & (~ip_uns_ctrl)) |
(~(carry_bit_ALU[32]) & ip_SLT_ctrl & ip_uns_ctrl);
 end

 // jump condition
 if(ip_br_en == 1'b1) begin
 if(ip_br_ctrl[1:0] == 2'b00) begin // if BEQ
 if(result_ALU[31:0] == 32'b0) begin
 op_br_ctrl = 1'b1;
 end

 else if(result_ALU[31:0] != 32'b0) begin
 op_br_ctrl = 1'b0;
 end
 end

 else if(ip_br_ctrl[1:0] == 2'b01) begin // if BNE
 if(result_ALU[31:0] != 32'b0) begin
 op_br_ctrl = 1'b1;
 end

 else if(result_ALU[31:0] == 32'b0) begin
 op_br_ctrl = 1'b0;
 end
 end

 else if(ip_br_ctrl[1:0] == 2'b10) begin // BLT
 if(result_ALU[31] == 1'b1) begin
 op_br_ctrl = 1'b1;
 end

 else if(result_ALU[31] == 1'b0) begin
 op_br_ctrl = 1'b0;
 end
 end

 else if(ip_br_ctrl[1:0] == 2'b11) begin // BGE
 if(result_ALU[31] == 1'b0) begin
 op_br_ctrl = 1'b1;
 end

 else if(result_ALU[31] == 1'b1) begin
 op_br_ctrl = 1'b0;
 end
 end
 end

 else if (ip_br_en == 1'b0) begin
 op_br_ctrl = 1'b0;
 end

 // control the output result
 if(ip_result_ctrl[1:0] == 2'b00) begin
 op_result[31:0] = result_ALU[31:0];
 end

 else if(ip_result_ctrl[1:0] == 2'b01) begin
 op_result[31:0] = {31'b000000000000000000000000000000, result_SLT};

CHAPTER 4

 51
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 end

 if(ip_st_ctrl == 1'b1) begin
 op_imm[31:0] = ip_rs2[31:0];
 end

 else if(ip_st_ctrl == 1'b0) begin
 op_imm[31:0] = 32'b0;
 end
end

// barrel shifter
always @(posedge ip_clk) begin
 if(ip_sh_ctrl == 1'b0) begin // shift left logical and arithmetic
 if(operand_b[0] == 1'b1) begin
 result_sh[31:0] = {ip_rs1[31:1], 1'b0};
 end

 if(operand_b[1] == 1'b1) begin
 result_sh[31:0] = {ip_rs1[31:2], 2'b00};
 end

 if(operand_b[2] == 1'b1) begin
 result_sh[31:0] = {ip_rs1[31:4], 4'b0000};
 end

 if(operand_b[3] == 1'b1) begin
 result_sh[31:0] = {ip_rs1[31:8], 8'b00000000};
 end

 if(operand_b[4] == 1'b1) begin
 result_sh[31:0] = {ip_rs1[31:16], 16'b0000000000000000};
 end
 end

 else if(ip_sh_ctrl == 1'b1) begin // shift right
 if(ip_uns_ctrl == 1'b1) begin // shift right logical
 if(operand_b[0] == 1'b1) begin
 result_sh[31:0] = {1'b0, ip_rs1[31:1]};
 end

 else if(operand_b[1] == 1'b1) begin
 result_sh[31:0] = {2'b00, ip_rs1[31:2]};
 end

 else if(operand_b[2] == 1'b1) begin
 result_sh[31:0] = {4'b0000, ip_rs1[31:4]};
 end

 else if(operand_b[3] == 1'b1) begin
 result_sh[31:0] = {8'b00000000, ip_rs1[31:8]};
 end

 else if(operand_b[4] == 1'b1) begin
 result_sh[31:0] = {16'b000000000000000, ip_rs1[31:16]};
 end
 end

 else if(ip_uns_ctrl == 1'b0) begin // shift right arithmetic
 if(operand_b[0] == 1'b1) begin

CHAPTER 4

 52
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 if(ip_rs1[31] == 1'b0) begin
 result_sh[31:0] = {1'b0, ip_rs1[31:1]};
 end

 else if(ip_rs1[31] == 1'b1) begin
 result_sh[31:0] = {1'b1, ip_rs1[31:1]};
 end
 end

 else if(operand_b[1] == 1'b1) begin
 if(ip_rs1[31] == 1'b0) begin
 result_sh[31:0] = {2'b00, ip_rs1[31:2]};
 end

 else if(ip_rs1[31] == 1'b1) begin
 result_sh[31:0] = {2'b11, ip_rs1[31:2]};
 end
 end

 else if(operand_b[2] == 1'b1) begin
 if(ip_rs1[31] == 1'b0) begin
 result_sh[31:0] = {4'b0000, ip_rs1[31:4]};
 end

 else if(ip_rs1[31] == 1'b1) begin
 result_sh[31:0] = {4'b1111, ip_rs1[31:4]};
 end
 end

 else if(operand_b[3] == 1'b1) begin
 if(ip_rs1[31] == 1'b0) begin
 result_sh[31:0] = {8'b00000000, ip_rs1[31:8]};
 end

 else if(ip_rs1[31] == 1'b1) begin
 result_sh[31:0] = {8'b11111111, ip_rs1[31:8]};
 end
 end

 else if(operand_b[4] == 1'b1) begin
 if(ip_rs1[31] == 1'b0) begin
 result_sh[31:0] = {16'b0000000000000000, ip_rs1[31:16]};
 end

 else if(ip_rs1[31] == 1'b1) begin
 result_sh[31:0] = {16'b1111111111111111, ip_rs1[31:16]};
 end
 end
 end
 end

 if((ip_result_ctrl[1:0] == 2'b10) && (operand_b[31:6] != 27'b0)) begin
 op_overflow = 1'b1;
 end

 else begin
 op_overflow = 1'b0;
 end

 if(ip_result_ctrl == 2'b10) begin

CHAPTER 4

 53
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 op_result[31:0] = result_sh[31:0];
 end
end

// branch or jump address adder
always @(posedge ip_clk) begin
 br_addr[31:0] = {br_addr[30:0], 1'b0};
 if(ip_JALR_en == 1'b1) begin
 pc[31:0] = ip_rs1[31:0];
 end

 else if((ip_JAL_en == 1'b1) || (ip_br_en == 1'b1)) begin
 pc[31:0] = ip_pc[31:0];
 end

 // 32-bit Adder
 carry_bit_br_adder[0] = 1'b0;
 for(i = 0; i < 32; i = i + 1) begin
 // calculation of add result
 op_br_addr[i] = pc[i] ^ br_addr[i] ^ carry_bit_br_adder[i];
 // calculation of carry bit
 carry_bit_br_adder[i + 1'b1] = (pc[i] & br_addr[i]) | (pc[i] & carry_bit_br_adder[i]) |
(br_addr[i] & carry_bit_br_adder[i]);
 end
end
endmodule

CHAPTER 4

 54
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.5 Data Memory

4.5.1 Functionality and Feature

 Data Memory used to store or load data, and stack for supply additional places

despite register are smallest memory unit. Static data, dynamic data and stack data all

are defined in the data memory. It can load or store different length of data such as byte,

half and word. The data will be according to the address given by instruction which is

calculated by ALU to store or load relatively in data memory.

4.5.2 Interface and I/O Pin Description

- Interface

Figure 4.5.2 – Data memory interface

CHAPTER 4

 55
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

- I/O Pin Description

Pin name: ip_addr[31:0]
Pin class: address
Pin function: A 32 bits address of data memory for
load or store a data.

Source: ALU
Destination: Data Memory

Pin name: ip_st_data[31:0]
Pin class: data
Pin function: A 32 bits data for storing data.

Source: ALU
Destination: Data Memory

Pin name: ip_st_ctrl
Pin class: control
Pin function: A control pin to enable for storing data.

Source: Control Unit
Destination: Data Memory

Pin name: ip_ld_ctrl
Pin class: control
Pin function: A control pin to enable for load a data.

Source: Control Unit
Destination: Data Memory

Pin name: ip_byte_ctrl
Pin class: control
Pin function: A control pin to allow for load or store
a byte of data.

Source: Control Unit
Destination: Data Memory

Pin name: ip_half_ctrl
Pin class: control
Pin function: A control pin to allow for load a half
of data.

Source: Control Unit
Destination: Data Memory

Pin name: ip_word_ctrl
Pin class: control
Pin function: A control pin to allow for load a word
of data.

Source: Control Unit
Destination: Data Memory

Pin name: ip_uns_ctrl
Pin class: control
Pin function: A control pin to control extension of
signed or unsigned when load out a data

Source: Control Unit
Destination: Data Memory

Pin name: ip_rst
Pin class: global
Pin function: A pin to data memory

Source: Datapath
Destination: Data Memory

Pin name: ip_clk
Pin class: global
Pin function: A clock signal for the system running

Source: Datapath
Destination: Data Memory

Pin name: op_rd_data[31:0]
Pin class: data
Pin function: A 32 bits data that load out from data
memory according to the address

Source: Data Memory
Destination: Register

Table 4.5.2 – Data memory pin description

CHAPTER 4

 56
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.5.3 Internal Operation

Figure 4.5.3 – Flowchart of data memory operation

CHAPTER 4

 57
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 4.5.4 Schematic Design

Figure 4.5.4 – Schematic design of data memory

CHAPTER 4

 58
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.5.5 Verilog Model
/**
Project: Develop Extended ISA on RISC-V Based Processor
Module: b_data_mem.v
Version: 1
Date Created: 4/8/2022
Created By: Lee Ang
Code Type: Verilog
Description: Data Memory Block
**/

`default_nettype none // to catch typing errors due to typo of signal names

module b_data_mem
#(// declare all the parameter needed
parameter initial_static_data_addr = 32'h02000000, // initial static data address
parameter last_static_data_addr = 32'h02003FFF, // last static data address
parameter initial_dynamic_data_addr = 32'h02004000, // initial dynamic data address
parameter initial_stack_data_addr = 32'h0FFFFFFC, // initial stack_data address
parameter last_data_mem_addr = 32'h0FFFFFFF // last data memory address
)
(// declare all the input and output pin needed
 input wire [31:0] ip_addr, ip_st_data,
 input wire ip_clk, ip_rst, ip_ld_en, ip_st_en, ip_byte_ctrl, ip_half_ctrl, ip_word_ctrl,
ip_uns_ctrl,
 output reg [31:0] op_rd_data
);

reg [8:0] data_mem [initial_static_data_addr:last_data_mem_addr]; // data memory (static + dynamic +
stack)
reg [31:0] data_mem_addr;

// data memory
always @(posedge ip_clk) begin
 if(ip_rst == 1'b1) begin // if reset
 // reset to default value
 for(data_mem_addr[31:0] = initial_static_data_addr; data_mem_addr[31:0] <=
last_data_mem_addr; data_mem_addr[31:0] = data_mem_addr[31:0] + 32'h1) begin
 data_mem[data_mem_addr[31:0]][7:0] <= 8'b0;
 end
 data_mem_addr[31:0] <= initial_static_data_addr;
 end

 else if(ip_rst == 1'b0) begin // if no reset
 if(ip_ld_en == 1'b1) begin
 if(ip_byte_ctrl == 1'b1) begin // if LB/LBU
 if(ip_uns_ctrl == 1'b0) begin
 if(data_mem[ip_addr[31:0]][7] == 1'b0) begin
 op_rd_data[7:0] <=
data_mem[ip_addr[31:0]][7:0];
 op_rd_data[31:8] <= 24'b0;
 end

 else if(data_mem[ip_addr[31:0]][7] == 1'b1) begin
 op_rd_data[7:0] <=
data_mem[ip_addr[31:0]][7:0];
 op_rd_data[31:8] <=
24'b111111111111111111111111;
 end

CHAPTER 4

 59
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 end

 else if(ip_uns_ctrl == 1'b1) begin
 op_rd_data[7:0] <= data_mem[ip_addr[31:0]][7:0];
 op_rd_data[31:8] <= 24'b0;
 end
 end

 if(ip_half_ctrl == 1'b1) begin // if LH/LHU
 if(ip_uns_ctrl == 1'b0) begin
 if(data_mem[ip_addr[31:0] + 32'h1][7] == 1'b0) begin
 op_rd_data[7:0] <=
data_mem[ip_addr[31:0]][7:0];
 op_rd_data[15:8] <= data_mem[ip_addr[31:0 +
32'h1]][7:0];
 op_rd_data[31:16] <= 16'b0;
 end

 else if(data_mem[ip_addr[31:0] + 32'h1][7] == 1'b1)
begin
 op_rd_data[7:0] <=
data_mem[ip_addr[31:0]][7:0];
 op_rd_data[15:8] <= data_mem[ip_addr[31:0 +
32'h1]][7:0];
 op_rd_data[31:16] <= 16'b1111111111111111;
 end
 end

 else if(ip_uns_ctrl == 1'b1) begin
 op_rd_data[7:0] <= data_mem[ip_addr[31:0]][7:0];
 op_rd_data[15:8] <= data_mem[ip_addr[31:0 +
32'h1]][7:0];
 op_rd_data[31:16] <= 16'b0;
 end
 end

 if(ip_word_ctrl == 1'b1) begin // if LW
 op_rd_data[7:0] <= data_mem[ip_addr[31:0]][7:0];
 op_rd_data[15:8] <= data_mem[ip_addr[31:0] + 32'h1][7:0];
 op_rd_data[23:16] <= data_mem[ip_addr[31:0] + 32'h2][7:0];
 op_rd_data[31:24] <= data_mem[ip_addr[31:0] + 32'h3][7:0];
 end
 end

 else if (ip_ld_ctrl == 1'b0) begin
 op_rd_data[31:0] <= 32'b0;
 end

 if(ip_st_en == 1'b1)begin // if store data
 if(ip_byte_ctrl == 1'b1) begin // if SB
 data_mem[ip_addr[31:0]][7:0] <= ip_st_data[7:0];
 end

 if(ip_half_ctrl == 1'b1) begin // if SH
 data_mem[ip_addr[31:0]][7:0] <= ip_st_data[7:0];
 data_mem[ip_addr[31:0] + 32'h1][7:0] <= ip_st_data[15:8];
 end

 if(ip_word_ctrl == 1'b1) begin // if SW
 // write data in to data memory

CHAPTER 4

 60
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 data_mem[ip_addr[31:0]][7:0] <= ip_st_data[7:0];
 data_mem[ip_addr[31:0] + 32'h1][7:0] <= ip_st_data[15:8];
 data_mem[ip_addr[31:0] + 32'h2][7:0] <= ip_st_data[23:16];
 data_mem[ip_addr[31:0] + 32'h3][7:0] <= ip_st_data[31:24];
 end
 end
 end
end
endmodule

CHAPTER 4

 61
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.6 Main Control

4.6.1 Functionality and Feature

 Main control unit is a component which decoded instructions set and get the

certain bits value and generate control signal. Main control block decodes the

instructions and get certain bits value and indicate the value for certain control signal

which needed to control the execution, operation of the CPU and enables read or write

to or from memory nor register.

4.6.2 Interface and I/O Pin Description

- Interface

Figure 4.6.2 – Main Control interface

CHAPTER 4

 62
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

- I/O Pin Description

Pin name: ip_opcode[6:0]
Pin class: control
Pin function: A 7 bits of instruction ID.

Source: Instruction Fetch
Unit
Destination: Main Control

Pin name: ip_funct_7[6:0]
Pin class: control
Pin function: A 7 bits function signal for define other
types of control.

Source: Instruction Fetch
Unit
Destination: Main Control

Pin name: ip_funct_3[3:0]
Pin class: control
Pin function: A 3 bits function signal for defined the
arithmetic and logical used by instruction.

Source: Instruction Fetch
Unit
Destination: Main Control

Pin name: ip_clk
Pin class: global
Pin function: A clock signal for the system running

Source: Datapath
Destination: Main Control

Pin name: op_opcode[6:0]
Pin class: control
Pin function: Output the same 7 bits of instruction
ID from input for other control unit.

Source: Main Control
Destination: ALU Control

Pin name: op_funct_7[6:0]
Pin class: control
Pin function: Output the same 7 bits of function
signal from input for other control unit.

Source: Main Control
Destination: ALU Control

Pin name: op_funct_3[2:0]
Pin class: control
Pin function: Output the same 3 bits of function
signal from input for other control unit.

Source: Main Control
Destination: ALU Control

Pin name: op_reg_wr_en
Pin class: control
Pin function: A control pin to enable write back the
data in register file

Source: Main Control
Destination: Datapath

Pin name: op_wb_ctrl
Pin class: control
Pin function: A control pin to determine data from
ALU or data memory for write back into register file

Source: Main Control
Destination: Datapath

Pin name: op_j_ctrl
Pin class: control
Pin function: A control pin to determine jump
instruction is occurred

Source: Main Control
Destination: Instruction
Fetch Unit

Pin name: op_ld_ctrl
Pin class: control

Source: Main Control
Destination: Data Memory

CHAPTER 4

 63
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Pin function: A control pin to determine load
instruction is occurred

Pin name: op_st_ctrl
Pin class: control
Pin function: A control pin to determine store
instruction is occurred

Source: Main Control
Destination: Data Memory

Pin name: op_byte_ctrl
Pin class: control
Pin function: A control pin to determine load 8 bit
wide data

Source: Main Control
Destination: Data Memory

Pin name: op_half_ctrl
Pin class: control
Pin function: A control pin to determine load 16 bit
wide data

Source: Main Control
Destination: Data Memory

Pin name: op_word_ctrl
Pin class: control
Pin function: A control pin to determine load 32 bit
wide data

Source: Main Control
Destination: Data Memory

Pin name: op_uns_ctrl
Pin class: control
Pin function: A control pin to determine loaded data
is an unsigned extend or signed extend

Source: Main Control
Destination: Data Memory

Pin name: op_m_ext_en
Pin class: control
Pin function: A control pin to determine is M
extension is required to use

Source: Main Control
Destination: M Extension

Pin name: op_m_ext_wb_ctrl
Pin class: control
Pin function: A control pin to determine is data from
M extension for write back into register file

Source: Main Control
Destination: Datapath

Table 4.6.2 – Main control pin description

CHAPTER 4

 64
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.6.3 Internal Operation
Input Output

ip_funct_7[0]

ip_funct_3

ip_opcode

op_reg_w
r_en

op_w
b_ctrl

op_j_ctrl

op_ld_en

op_st_en

op_byte_ctrl

op_half_ctrl

op_w
ord_ctrl

op_uns_ctrl

op_m
_ext_en

op_m
_ext_w

b_ctrl

x x 0110111 1 0 0 0 0 x x x x 0 0
x x 0010111 1 0 0 0 0 x x x x 0 0
x x 1101111 1 0 1 0 0 x x x x 0 0
x x 1100111 1 0 1 0 0 x x x x 0 0
x x 1100011 1 0 0 0 0 x x x x 0 0
x 000

0000011

1 1 0 1 0 1 0 0 0 0 0
x 001 1 1 0 1 0 0 1 0 0 0 0
x 010 1 1 0 1 0 0 0 1 0 0 0
x 100 1 1 0 1 0 1 0 0 1 0 0
x 101 1 1 0 1 0 0 1 0 1 0 0
x 000

0100011
1 1 0 0 1 1 0 0 x 0 0

x 001 1 1 0 0 1 0 1 0 x 0 0
x 010 1 1 0 0 1 0 0 1 x 0 0
x x 0010011 1 0 0 0 0 x x x x 0 0
0 x 0110011 1 0 0 0 0 x x x x 0 0
1 x 0110011 1 0 0 0 0 x x x x 1 1

Table 4.6.3 – Function table of main control

CHAPTER 4

 65
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.6.4 Schematic Design

Figure 4.6.4 – Schematic design of main control

CHAPTER 4

 66
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.6.5 Verilog Model
/**
Project: Project: Develop Extended ISA on RISC-V Based Processor
Module: b_main_ctrl.v
Version: 1
Date Created: 4/8/2022
Created By: Lee Ang
Code Type: Verilog
Description: Main Control Block
**/

`default_nettype none // to catch typing errors due to typo of signal names

module b_main_ctrl
#(// declare all the parameter needed
parameter initial_addr = 32'h00008000, // initial pc address
parameter last_addr = 32'h01FFFFFF // last pc address
)
(// declare all the input and output pin needed
 input wire [6:0] ip_opcode, ip_funct_7,
 input wire [2:0] ip_funct_3,
 input wire ip_clk,
 output reg [6:0] op_opcode, op_funct_7,
 output reg [2:0] op_funct_3,
 output reg op_reg_wr_en, op_wb_ctrl, op_j_ctrl, op_ld_en, op_st_en, op_byte_ctrl,
op_half_ctrl, op_word_ctrl, op_uns_ctrl, op_mul_div_en, op_m_ext_wb_ctrl
);

// main control block
always @(posedge ip_clk) begin
 op_opcode[6:0] = ip_opcode[6:0];
 op_funct_7[6:0] = ip_funct_7[6:0];
 op_funct_3[2:0] = ip_funct_3[2:0];

 // upper instruction, LUI / AUIPC or branch instuction or ALU operation instruction
 if((ip_opcode[6:0] == 7'b0110111) || (ip_opcode[6:0] == 7'b0010111) || (ip_opcode[6:0] ==
7'b1100011) || (ip_opcode[6:0] == 7'b0010011) || ((ip_opcode[6:0] == 7'b0110011) && (ip_funct_7[0]
== 1'b0))) begin
 op_reg_wr_en = 1'b1;
 op_wb_ctrl = 1'b0;
 op_j_ctrl = 1'b0;
 op_ld_en = 1'b0;
 op_st_en = 1'b0;
 op_uns_ctrl = 1'b0;
 op_mul_div_en = 1'b0;
 op_m_ext_wb_ctrl = 1'b0;
 end

 // jump instruction, JAL / JALR
 else if((ip_opcode[6:0] == 7'b1101111) || (ip_opcode[6:0] == 7'b1100111)) begin
 op_reg_wr_en = 1'b1;
 op_wb_ctrl = 1'b0;
 op_j_ctrl = 1'b1;
 op_ld_en = 1'b0;
 op_st_en = 1'b0;
 op_uns_ctrl = 1'b0;
 op_mul_div_en = 1'b0;
 op_m_ext_wb_ctrl = 1'b0;
 end

CHAPTER 4

 67
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 // load instruction
 else if(ip_opcode[6:0] == 7'b0000011) begin
 op_reg_wr_en = 1'b1;
 op_wb_ctrl = 1'b1;
 op_j_ctrl = 1'b0;
 op_ld_en = 1'b1;
 op_st_en = 1'b0;
 op_uns_ctrl = ip_funct_3[2];
 op_mul_div_en = 1'b0;
 op_m_ext_wb_ctrl = 1'b0;

 if(ip_funct_3[1:0] == 2'b00) begin
 op_byte_ctrl = 1'b1;
 op_half_ctrl = 1'b0;
 op_word_ctrl = 1'b0;
 end

 else if(ip_funct_3[1:0] == 2'b01) begin
 op_byte_ctrl = 1'b0;
 op_half_ctrl = 1'b1;
 op_word_ctrl = 1'b0;
 end

 else if(ip_funct_3[1:0] == 2'b10) begin
 op_byte_ctrl = 1'b0;
 op_half_ctrl = 1'b0;
 op_word_ctrl = 1'b1;
 end
 end

 // store instruction
 else if(ip_opcode[6:0] == 7'b0100011) begin
 op_reg_wr_en = 1'b0;
 op_wb_ctrl = 1'b0;
 op_j_ctrl = 1'b0;
 op_ld_en = 1'b0;
 op_st_en = 1'b1;
 op_uns_ctrl = 1'b0;
 op_mul_div_en = 1'b0;
 op_m_ext_wb_ctrl = 1'b0;

 if(ip_funct_3[1:0] == 2'b00) begin
 op_byte_ctrl = 1'b1;
 op_half_ctrl = 1'b0;
 op_word_ctrl = 1'b0;
 end

 else if(ip_funct_3[1:0] == 2'b01) begin
 op_byte_ctrl = 1'b0;
 op_half_ctrl = 1'b1;
 op_word_ctrl = 1'b0;
 end

 else if(ip_funct_3[1:0] == 2'b10) begin
 op_byte_ctrl = 1'b0;
 op_half_ctrl = 1'b0;
 op_word_ctrl = 1'b1;
 end
 end

CHAPTER 4

 68
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 // M Extension
 else if((ip_opcode[6:0] == 7'b0110011) && (ip_funct_7[0] == 1'b1)) begin
 op_reg_wr_en = 1'b1;
 op_wb_ctrl = 1'b0;
 op_j_ctrl = 1'b0;
 op_ld_en = 1'b0;
 op_st_en = 1'b0;
 op_uns_ctrl = 1'b0;
 op_mul_div_en = 1'b1;
 op_m_ext_wb_ctrl = 1'b1;
 end
end
endmodule

CHAPTER 4

 69
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.7 ALU Control

4.7.1 Functionality and Feature

 ALU control block which decide which operations are being process in ALU

and generate control signal which feed into the ALU for computation process and

executions of the R-type instructions such as arithmetic and logical operations included

addition for load and store or subtraction for branches. ALU control unit received

decoded 7-bit opcode and 7-bit and 3-bit funct from main control block. After decoded

the control signals are being fetch from ALU control block and ask ALU to perform

certain operation and executions based on the instructions.

4.7.2 Interface and I/O Pin Description

- Interface

Figure 4.7.2 – ALU Control interface

CHAPTER 4

 70
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

- I/O Pin Description

Pin name: ip_opcode[6:0]
Pin class: control
Pin function: A 7 bits of instruction ID.

Source: Main Control
Destination: ALU Control

Pin name: ip_funct_7[6:0]
Pin class: control
Pin function: A 7 bits function signal for define other
types of control.

Source: Main Control
Destination: ALU Control

Pin name: ip_funct_3[2:0]
Pin class: control
Pin function: A 3 bits function signal for defined the
arithmetic and logical used by instruction.

Source: Main Control
Destination: ALU Control

Pin name: ip_clk
Pin class: global
Pin function: A clock signal for the system running

Source: Datapath
Destination: ALU Control

Pin name: op_ALU_ctrl[2:0]
Pin class: control
Pin function: A 3-bit of control pin to determine
which arithmetic or logical are required to use.

Source: ALU Control
Destination: ALU

Pin name: op_result_ctrl[1:0]
Pin class: control
Pin function: A 2-bit of control pin to determine
computing result from ALU or barrel shifter.

Source: ALU Control
Destination: ALU

Pin name: op_br_ctrl[1:0]
Pin class: control
Pin function: A 2-bit of control pin to determine
which branch instruction is used.

Source: ALU Control
Destination: ALU

Pin name: op_uns_ctrl
Pin class: control
Pin function: A control pin to determine computing
is involved unsigned or signed data.

Source: ALU Control
Destination: ALU

Pin name: op_imm_ctrl
Pin class: control
Pin function: A control pin to determine is
immediate data involved.

Source: ALU Control
Destination: ALU

Pin name: op_SLT_ctrl
Pin class: control
Pin function: A control pin to determine is set
instruction involved.

Source: ALU Control
Destination: ALU

Pin name: op_sh_ctrl
Pin class: control

Source: ALU Control
Destination: ALU

CHAPTER 4

 71
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Pin function: A control pin to determine the shifting
direction
Pin name: op_imm_en
Pin class: control
Pin function: A control pin to determine is I-type
instruction involved

Source: ALU Control
Destination: ALU

Pin name: op_LUI_en
Pin class: control
Pin function: A control pin to determine is LUI
instruction

Source: ALU Control
Destination: ALU

Pin name: op_AUIPC_en
Pin class: control
Pin function: A control pin to determine is AUIPC
instruction

Source: ALU Control
Destination: ALU

Pin name: op_JAL_en
Pin class: control
Pin function: A control pin to determine is JAL
instruction

Source: ALU Control
Destination: ALU

Pin name: op_JALR_en
Pin class: control
Pin function: A control pin to determine is JALR
instruction

Source: ALU Control
Destination: ALU

Pin name: op_br_en
Pin class: control
Pin function: A control pin to determine is branch
instruction involved

Source: ALU Control
Destination: ALU

Pin name: op_ld_ctrl
Pin class: control
Pin function: A control pin to determine load
instruction is occurred

Source: ALU Control
Destination: ALU

Pin name: op_st_ctrl
Pin class: control
Pin function: A control pin to determine store
instruction is occurred

Source: ALU Control
Destination: ALU

Table 4.7.2 – ALU control pin description

CHAPTER 4

 72
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.6.3 Internal Operation
Input Output

ip_funct_7[5]

ip_funct_3

ip_opcode

op_A
L

U
_ctrl

op_result_ctrl

op_jm
m

_ctrl

op_uns_ctrl

op_im
m

_en

op_L
U

I_en

op_A
U

IPC
_en

op_JA
L

_en

op_JA
L

R
_en

op_br_en

O
p_br_ctrl

op_ld_ctrl

op_st_ctrl

op_SL
T

_ctrl

x x 0110111 OR 00 1 0 0 1 0 0 0 0 x 0 0 0
x x 0010111 ADD 00 1 0 0 0 1 0 0 0 x 0 0 0
x x 1101111 ADD 00 1 0 0 0 0 1 0 0 x 0 0 0
x x 1100111 ADD 00 1 0 0 0 0 0 1 0 x 0 0 0
x 000

1100011

SUB 00 1 0 0 0 0 0 0 1 00 0 0 0
x 001 SUB 00 1 0 0 0 0 0 0 1 01 0 0 0
x 100 SUB 00 1 0 0 0 0 0 0 1 10 0 0 0
x 101 SUB 00 1 0 0 0 0 0 0 1 11 0 0 0
x 110 SUB 00 1 1 0 0 0 0 0 1 10 0 0 0
x 111 SUB 00 1 1 0 0 0 0 0 1 11 0 0 0

x
000

0000011
ADD 00 1 0 0 0 0 0 0 0 x 1 0 0 001

010

x 101 ADD 00 1 1 0 0 0 0 0 0 x 1 0 0 110
x x 0100011 ADD 00 1 x 0 0 0 0 0 0 x 0 1 0
x 000

0010011

ADD 00 1 0 1 x x x x 0 x 0 0 0
x 001 x 10 1 0 1 x x x x 0 x 0 0 0
x 010 SUB 01 1 0 1 x x x x 0 x 0 0 1
x 011 SUB 01 1 1 1 x x x x 0 x 0 0 1
x 100 XOR 00 1 0 1 x x x x 0 x 0 0 0
0 101 x 10 1 0 1 x x x x 0 x 0 0 0
1 x 10 1 1 1 x x x x 0 x 0 0 0
x 110 OR 00 1 0 1 x x x x 0 x 0 0 0
x 111 AND 00 1 0 1 x x x x 0 x 0 0 0
0 000

0110011

ADD 00 0 0 0 x x x x 0 x 0 0 0
1 SUB 00 0 0 0 x x x x 0 x 0 0 0
x 001 x 10 0 0 0 x x x x 0 x 0 0 0
x 010 SUB 01 0 0 0 x x x x 0 x 0 0 1
x 011 SUB 01 0 1 0 x x x x 0 x 0 0 1
x 100 XOR 00 0 0 0 x x x x 0 x 0 0 0
0 101 x 10 0 1 0 x x x x 0 x 0 0 0
1 101 x 10 0 0 0 x x x x 0 x 0 0 0
x 110 OR 00 0 0 0 x x x x 0 x 0 0 0
x 111 AND 00 0 0 0 x x x x 0 x 0 0 0

Table 4.7.3 – Function table of ALU control

CHAPTER 4

 73
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.6.4 Schematic Design

Figure 4.7.4 – Schematic design of ALU control

CHAPTER 4

 74
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.7.5 Verilog Model
/**
Project: Project: Develop Extended ISA on RISC-V Based Processor
Module: b_ALU_ctrl.v
Version: 1
Date Created: 4/8/2022
Created By: Lee Ang
Code Type: Verilog
Description: ALU Control Block
**/

`default_nettype none // to catch typing errors due to typo of signal names

module b_main_ctrl
#(// declare all the parameter needed
parameter AND = 3'b000,
parameter OR = 3'b001,
parameter XOR = 3'b010,
parameter ADD = 3'b011,
parameter SUB = 3'b111
)
(// declare all the input and output pin needed
 input wire [6:0] ip_opcode, ip_funct_7,
 input wire [2:0] ip_funct_3,
 input wire ip_clk,
 output reg [2:0] op_ALU_ctrl,
 output reg [1:0] op_result_ctrl, op_br_ctrl,
 output reg op_uns_ctrl, op_imm_ctrl, op_SLT_ctrl, op_sh_ctrl, op_imm_en, op_LUI_en,
op_AUIPC_en, op_JAL_en, op_JALR_en, op_br_en, op_ld_ctrl, op_st_ctrl
);

// ALU control block
always @(posedge ip_clk) begin
 // load upper immediate, LUI
 if(ip_opcode[6:0] == 7'b0110111) begin
 op_ALU_ctrl[2:0] = OR;
 op_result_ctrl = 2'b00; // output result from ALU control signal
 op_imm_ctrl = 1'b1; // immediate data involved
 op_uns_ctrl = 1'b0; // unsigned data not involved
 op_imm_en = 1'b0; // immediate instruction not involved
 op_AUIPC_en = 1'b0; // AUIPC not involved
 op_LUI_en = 1'b1; // LUI involved
 op_JAL_en = 1'b0; // JAL not involved
 op_JALR_en = 1'b0; // JALR not involved
 op_br_en = 1'b0; // branch instrcution involved
 op_ld_ctrl = 1'b0; // load data not involved
 op_st_ctrl = 1'b0; // store data not involved
 op_SLT_ctrl = 1'b0; // SLT not invloved
 end

 // add upper immediate with pc, AUIPC
 if(ip_opcode[6:0] == 7'b0010111) begin
 op_ALU_ctrl[2:0] = ADD; // addition involved
 op_result_ctrl = 2'b00; // output result from ALU control signal
 op_imm_ctrl = 1'b1; // immediate data involved
 op_uns_ctrl = 1'b0; // unsigned data not involved
 op_imm_en = 1'b0; // immediate instruction not involved
 op_AUIPC_en = 1'b1; // AUIPC involved
 op_JAL_en = 1'b0; // JAL not involved

CHAPTER 4

 75
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 op_JALR_en = 1'b0; // JALR not involved
 op_br_en = 1'b0; // branch instrcution involved
 op_ld_ctrl = 1'b0; // load data not involved
 op_st_ctrl = 1'b0; // store data not involved
 op_SLT_ctrl = 1'b0; // SLT not invloved
 end

 // jump address, JAL
 if(ip_opcode[6:0] == 7'b1101111) begin
 op_ALU_ctrl[2:0] = ADD; // addition involved
 op_result_ctrl = 2'b00; // output result from ALU control signal
 op_imm_ctrl = 1'b1; // immediate data involved
 op_uns_ctrl = 1'b0; // unsigned data not involved
 op_imm_en = 1'b0; // immediate instruction not involved
 op_AUIPC_en = 1'b0; // AUIPC not involved
 op_JAL_en = 1'b1; // JAL involved
 op_JALR_en = 1'b0; // JALR not involved
 op_br_en = 1'b0; // branch instrcution not involved
 op_ld_ctrl = 1'b0; // load data not involved
 op_st_ctrl = 1'b0; // store data not involved
 op_SLT_ctrl = 1'b0; // SLT not invloved
 end

 // jump address, JALR
 else if(ip_opcode[6:0] == 7'b1100111) begin
 op_ALU_ctrl[2:0] = ADD; // addition involved
 op_result_ctrl = 2'b00; // output result from ALU control signal
 op_imm_ctrl = 1'b1; // immediate data involved
 op_uns_ctrl = 1'b0; // unsigned data not involved
 op_imm_en = 1'b0; // immediate idtruction not involved
 op_AUIPC_en = 1'b0; // AUIPC not involved
 op_JAL_en = 1'b0; // JAL not involved
 op_JALR_en = 1'b1; // JALR involved
 op_br_en = 1'b0; // branch instrcution not involved
 op_ld_ctrl = 1'b0; // load data not involved
 op_st_ctrl = 1'b0; // store data not involved
 op_SLT_ctrl = 1'b0; // SLT not invloved
 end

 // branch address
 else if(ip_opcode[6:0] == 7'b0110011) begin
 op_ALU_ctrl[2:0] = SUB; // subtraction involved
 op_result_ctrl = 2'b00; // output result from ALU control signal
 op_imm_ctrl = 1'b1; // immediate data involved
 op_uns_ctrl = ip_funct_3[1]; // unsigned data involved/not
 op_imm_en = 1'b0; // immediate idtruction not involved
 op_AUIPC_en = 1'b0; // AUIPC not involved
 op_JAL_en = 1'b0; // JAL not involved
 op_JALR_en = 1'b0; // JALR not involved
 op_br_en = 1'b1; // branch instrcution involved
 op_ld_ctrl = 1'b0; // load data not involved
 op_st_ctrl = 1'b0; // store data not involved
 op_SLT_ctrl = 1'b0; // SLT not invloved

 if(ip_funct_3[2:0] == 3'b000) begin // BEQ is selected
 op_br_ctrl[1:0] = 2'b00; // output BEQ control signal
 end

 else if(ip_funct_3[2:0] == 3'b001) begin // BNE is selected
 op_br_ctrl[1:0] = 2'b01; // output BNE control signal

CHAPTER 4

 76
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 end

 else if(ip_funct_3[2:0] == 3'b100) begin // BLT is selected
 op_br_ctrl[1:0] = 2'b10; // output BLT control signal
 end

 else if(ip_funct_3[2:0] == 3'b101) begin // BGE is selected
 op_br_ctrl[1:0] = 2'b11; // output BGE control signal
 end

 else if(ip_funct_3[2:0] == 3'b110) begin // BLTU is selected
 op_br_ctrl[1:0] = 2'b10; // output BLT control signal
 end

 else if(ip_funct_3[2:0] == 3'b111) begin // BGEU is selected
 op_br_ctrl[1:0] = 2'b11; // output BGE control signal
 end
 end

 // load instruction
 else if(ip_opcode[6:0] == 7'b0000011) begin
 op_ALU_ctrl[2:0] = ADD; // addition involved
 op_result_ctrl = 2'b00; // output result from ALU control signal
 op_imm_ctrl = 1'b1; // immediate data involved
 op_uns_ctrl = ip_funct_3[2]; // unsigned data involved/not
 op_imm_en = 1'b0; // immediate idtruction not involved
 op_AUIPC_en = 1'b0; // AUIPC not involved
 op_JAL_en = 1'b0; // JAL not involved
 op_JALR_en = 1'b0; // JALR not involved
 op_br_en = 1'b0; // branch instrcution not involved
 op_SLT_ctrl = 1'b0; // SLT not invloved
 op_ld_ctrl = 1'b1; // load data involved
 op_st_ctrl = 1'b0; // store data not involved
 end

 // store instruction
 else if(ip_opcode[6:0] == 7'b0100011) begin
 op_ALU_ctrl[2:0] = ADD; // addition involved
 op_result_ctrl = 2'b00; // output result from ALU control signal
 op_imm_ctrl = 1'b1; // immediate data involved
 op_uns_ctrl = 1'b0; // unsigned data not involved
 op_imm_en = 1'b0; // immediate idtruction not involved
 op_AUIPC_en = 1'b0; // AUIPC not involved
 op_JAL_en = 1'b0; // JAL not involved
 op_JALR_en = 1'b0; // JALR not involved
 op_br_en = 1'b0; // branch instrcution not involved
 op_SLT_ctrl = 1'b0; // SLT not invloved
 op_ld_ctrl = 1'b0; // load data not involved
 op_st_ctrl = 1'b1; // store data involved
 end

 // ALU operation with immediate
 else if(ip_opcode[6:0] == 7'b0010011) begin
 op_imm_ctrl = 1'b1; // immediate data involved
 op_imm_en = 1'b1; // immediate idtruction involved
 op_AUIPC_en = 1'b0; // AUIPC not involved
 op_JAL_en = 1'b0; // JAL not involved
 op_JALR_en = 1'b0; // JALR not involved
 op_br_en = 1'b0; // branch instrcution not involved
 op_ld_ctrl = 1'b0; // load data not involved

CHAPTER 4

 77
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 op_st_ctrl = 1'b0; // store data not involved

 if(ip_funct_3[2:0] == 3'b000) begin // ADDI is selected
 op_ALU_ctrl[2:0] = ADD; // output ADD control signal
 op_result_ctrl = 2'b00; // output result from ALU control signal
 op_uns_ctrl = 1'b0; // unsigned data not involved
 op_SLT_ctrl = 1'b0; // SLT not invloved
 end

 else if(ip_funct_3[2:0] == 3'b001) begin // SLLI is selected
 op_sh_ctrl = 1'b1; // output shift left control signal
 op_result_ctrl = 2'b10; // output result from barrel shifter control signal
 op_uns_ctrl = 1'b0; // unsigned data not involved
 op_SLT_ctrl = 1'b0; // SLT not invloved
 end

 else if(ip_funct_3[2:0] == 3'b010) begin // SLTI is selected
 op_ALU_ctrl[2:0] = SUB; // output SUB control signal
 op_result_ctrl = 2'b01; // output result from ALU control signal
 op_uns_ctrl = 1'b0; // unsigned data not involved
 op_SLT_ctrl = 1'b1; // SLT involved
 end

 else if(ip_funct_3[2:0] == 3'b011) begin // SLTIU is selected
 op_ALU_ctrl[2:0] = SUB; // output SUB control signal
 op_result_ctrl = 2'b01; // output result from SLT control signal
 op_uns_ctrl = 1'b1; // usigned data involved
 op_SLT_ctrl = 1'b1; // SLT involved
 end

 else if(ip_funct_3[2:0] == 3'b100) begin // XORI is selected
 op_ALU_ctrl[2:0] = XOR; // output XOR control signal
 op_result_ctrl = 2'b00; // output result from ALU control signal
 op_uns_ctrl = 1'b0; // unsigned data not involved
 op_SLT_ctrl = 1'b0; // SLT not invloved
 end

 else if(ip_funct_3[2:0] == 3'b101) begin // SRLI/SRAI is selected
 op_sh_ctrl = 1'b1; // output shift right control signal
 op_result_ctrl = 2'b10; // output result from barrel shifter control signal
 op_SLT_ctrl = 1'b0; // SLT not invloved
 op_uns_ctrl = ~ip_funct_7[5]; // SRLI is selected {1}, SRAI is selected {0}
 end

 else if(ip_funct_3[2:0] == 3'b110) begin // ORI is selected
 op_ALU_ctrl[2:0] = OR; // output OR control signal
 op_result_ctrl = 2'b00; // output result from ALU control signal
 op_uns_ctrl = 1'b0; // unsigned data not involved
 op_SLT_ctrl = 1'b0; // SLT not invloved
 end

 else if(ip_funct_3[2:0] == 3'b111) begin // ANDI is selected
 op_ALU_ctrl[2:0] = AND; // output AND control signal
 op_result_ctrl = 2'b00; // output result from ALU control signal
 op_uns_ctrl = 1'b0; // unsigned data not involved
 op_SLT_ctrl = 1'b0; // SLT not invloved
 end
 end

 // ALU operation with register data

CHAPTER 4

 78
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 else if(ip_opcode[6:0] == 7'b0110011) begin
 op_imm_ctrl = 1'b0; // immediate data not involved
 op_imm_en = 1'b0; // immediate idtruction not involved
 op_AUIPC_en = 1'b0; // AUIPC not involved
 op_JAL_en = 1'b0; // JAL not involved
 op_JALR_en = 1'b0; // JALR not involved
 op_br_en = 1'b0; // branch instrcution not involved
 op_ld_ctrl = 1'b0; // load data not involved
 op_st_ctrl = 1'b0; // store data not involved

 if(ip_funct_3[2:0] == 3'b000) begin // ADD/SUB is selected
 op_result_ctrl = 2'b00; // output result from ALU control signal
 op_uns_ctrl = 1'b0; // unsigned data not involved
 op_SLT_ctrl = 1'b0; // SLT not invloved

 if(ip_funct_7[5] == 1'b0) begin // ADD is selected
 op_ALU_ctrl[2:0] = ADD; // output ADD control signal
 end

 else if(ip_funct_7[5] == 1'b1) begin // SUB is selected
 op_ALU_ctrl[2:0] = SUB; // output SUB control signal
 end
 end

 else if(ip_funct_3[2:0] == 3'b001) begin // SLL is selected
 op_sh_ctrl = 1'b0; // output shift left control signal
 op_result_ctrl = 2'b10; // output result from barrel shifter control signal
 op_uns_ctrl = 1'b0; // unsigned data not involved
 op_SLT_ctrl = 1'b0; // SLT not invloved
 end

 else if(ip_funct_3[2:0] == 3'b010) begin // SLT is selected
 op_ALU_ctrl[2:0] = SUB; // output SUB control signal
 op_result_ctrl = 2'b01; // output result from SLT control signall
 op_uns_ctrl = 1'b0; // unsigned data not involved
 op_SLT_ctrl = 1'b1; // output SLT control signal
 end

 else if(ip_funct_3[2:0] == 3'b011) begin // SLTU is selected
 op_ALU_ctrl[2:0] = SUB; // output SUB control signal
 op_result_ctrl = 2'b01; // output result from SLT control signal
 op_SLT_ctrl = 1'b1; // output SLT control signal
 op_uns_ctrl = 1'b1; // usigned data involved
 end

 else if(ip_funct_3[2:0] == 3'b100) begin // XOR is selected
 op_ALU_ctrl[2:0] = XOR; // output XOR control signal
 op_result_ctrl = 2'b00; // output result from ALU control signal
 op_uns_ctrl = 1'b0; // unsigned data not involved
 op_SLT_ctrl = 1'b0; // SLT not invloved
 end

 else if(ip_funct_3[2:0] == 3'b101) begin // SRL/SRA is selected
 op_sh_ctrl = 1'b1; // output shift right control signal
 op_result_ctrl = 2'b10; // output result from barrel shifter control signal
 op_SLT_ctrl = 1'b0; // SLT not invloved
 op_uns_ctrl = ~ip_funct_7[5]; // SRL is selected {1}, SRA is selected {0}
 end

 else if(ip_funct_3[2:0] == 3'b110) begin // OR is selected

CHAPTER 4

 79
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 op_ALU_ctrl[2:0] = OR; // output OR control signal
 op_result_ctrl = 2'b00; // output result from ALU control signal
 op_uns_ctrl = 1'b0; // unsigned data not involved
 op_SLT_ctrl = 1'b0; // SLT not invloved
 end

 else if(ip_funct_3[2:0] == 3'b111) begin // AND is selected
 op_ALU_ctrl[2:0] = AND; // output AND control signal
 op_result_ctrl = 2'b00; // output result from ALU control signal
 op_uns_ctrl = 1'b0; // unsigned data not involved
 op_SLT_ctrl = 1'b0; // SLT not invloved
 end
 end
end
endmodule

CHAPTER 4

 80
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.8 M Extension

4.8.1 Functionality and Feature

 The M extension performs multiplication and division operation and stores the

result back to the register file. The common multiplication is to multiply a set range of

digit where from unsigned bit to signed bit multiplication, same as well as division. All

the data for computing all will be transfer to positive if it is signed data. Multiplication

using methods of “add and shift” algorithm to do multiplication. There will be separate

into several parts to assist on doing including addition, shift register and a counter for

computing result of two operands. It needs 32 clock cycles to compute the result. The

result will write back to target registers. The upper 32-bits result will be output when

called by MULH, MULHSU or MULHU and the lower 32-bits result will be output

when called by MUL. Besides that, division is using method of “Subtract and compare”

algorithm to perform a division. There will be separate into several parts to assist on

doing including subtraction, comparing and a switch for stalling the data path for

computing result of two operands. The division has ability to come quotient, and

remainder after complete computing. Since, the M Extension is required more than 1

cycle to compute, the extension will stop the data path to prevent data crashing

4.8.2 Interface and I/O Pin Description

- Interface

Figure 4.8.2 – M extension interface

CHAPTER 4

 81
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

- I/O Pin Description

Pin name: ip_operand_a[31:0]
Pin class: data
Pin function: A 32 bits data for computing, it will be
multiplicand if multiplication, and be dividend if
division.

Source: Register File
Destination: M Extension

Pin name: ip_operand_b[31:0]
Pin class: data
Pin function: A 32 bits data for computing, it will be
multiplier if multiplication, and be dividend if divisor

Source: Register File
Destination: M Extension

Pin name: ip_funct_3[2:0]
Pin class: control
Pin function: A 3 bits function signal for defined the
multiplication or division used by instruction and
determine output result from which register.

Source: Control Unit
Destination: M Extension

Pin name: ip_rst
Pin class: global
Pin function: A pin to reset the register of M
extension.

Source: Datapath
Destination: M Extension

Pin name: ip_clk
Pin class: global
Pin function: A clock signal for the system running

Source: Datapath
Destination: M Extension

Pin name: op_result[31:0]
Pin class: data
Pin function: A 32 bits data of result after computing
in extension

Source: M Extension
Destination: Register File

Pin name: op_overflow
Pin class: control
Pin function: A pin to determine the calculation is
overflow or error. The division is possible happen
overflow when largest negative number divided by -
1, or occurred error when divide zero.

Source: M Extension
Destination: Datapath

Table 4.8.2 – M extension pin description

CHAPTER 4

 82
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.3.3 Internal Operation

Figure 4.8.3 – Flowchart of M extension operation

CHAPTER 4

 83
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.8.4 Schematic Design

Figure 4.8.4 – Schematic design of M extension

CHAPTER 4

 84
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

4.2.5 Verilog Model
/**
Project: Develop Extended ISA on RISC-V Based Processor
Module: b_m_ext.v
Version: 1
Date Created: 4/8/2022
Created By: Lee Ang
`Code Type: Verilog
Description: M Extension
**/

`default_nettype none // to catch typing errors due to typo of signal names

module b_m_ext
#(// declare all the parameter needed
parameter ONE32 = 32'b11111111111111111111111111111111, // 32 of one bits
ONE64 = 64'b11 // 64 of
one bits
)
(// declare all the input and output pin needed
 input wire [31:0] ip_operand_a, ip_operand_b,
 input wire [2:0] ip_funct_3,
 input wire ip_rst, ip_clk, ip_m_ext_en,
 output reg [31:0] op_result,
 output reg op_nop_ctrl, op_overflow
);

reg [64:0] carry_bit_reg_mul_div; // carry bit of reg_mul_div converter
reg [63:0] reg_mul_div; // 64-bits register
reg [32:0] carry_bit_operand_a, carry_bit_operand_b; // carry bit of operand converter
reg [32:0] carry_bit_quotient, carry_bit_remainder; // carry bit of quotient and remainder converter
reg [31:0] operand_a, operand_b; // operand a and b
reg [31:0] quotient, remainder; // quotient and remainder of division
reg [2:0] funct_3; // selection of function
reg sign_operand_a, sign_operand_b; // signed bit of operand
reg [5:0] carry_bit_counter; // carry bit of counter
reg [4:0] counter; // 5-bits counter
reg switch; // a switch to control operation
reg ready_div_op; // control to output divsion

integer i; // for loop

// operand a, operand b, quotient, remainder, sign_operand_a, sign_operand_a and funct_3 registers
always @(posedge ip_clk) begin
 if (ip_rst == 1'b1) begin // if reset
 // reset to default value
 operand_a[31:0] = 32'b0;
 operand_b[31:0] = 32'b0;
 carry_bit_operand_a[32:0] = 33'b0;
 carry_bit_operand_b[32:0] = 33'b0;
 quotient[31:0] = 32'b0;
 remainder[31:0] = 32'b0;
 sign_operand_a = 1'b0;
 sign_operand_b = 1'b0;
 carry_bit_quotient[32:0] = 33'b0;
 carry_bit_remainder[32:0] = 33'b0;
 funct_3[2:0] = 3'b0;
 end

CHAPTER 4

 85
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 else if (ip_rst == 1'b0) begin // if no reset
 if ((ip_m_ext_en == 1'b1) && (switch == 1'b0)) begin // if m extension is selected,
then store all the nessary values
 // store original signed bit
 sign_operand_a <= ip_operand_a[31];
 sign_operand_b <= ip_operand_b[31];

 // store input a
 // if instruction of rs1 is a negetive sign value
 if ((((ip_funct_3[2] == 1'b0) && (ip_funct_3[1:0] != 2'b11)) || ((ip_funct_3[2]
== 1'b1) && (ip_funct_3[0] == 1'b0))) && (ip_operand_a[31] == 1'b1)) begin
 // 32-bit negative to positive converter
 operand_a[31:0] = ip_operand_a[31:0] ^ ONE32; // invert the value
 // add 1 by using adder
 carry_bit_operand_a[0] = 1'b1;
 for (i = 0; i < 32; i = i + 1) begin
 carry_bit_operand_a[i + 1'b1] = operand_a[i] &
carry_bit_operand_a[i]; // calculation of carry bit
 operand_a[i] <= operand_a[i] ^ carry_bit_operand_a[i]; //
store result affter convert

 // store the remainder for division from operand a
 if ((ip_funct_3[2] == 1'b1) && (switch == 1'b0)) begin // if
division
 remainder[i] <= operand_a[i] ^
carry_bit_operand_a[i];
 end
 end
 end

 else begin // if instruction of rs1 is unsigned value
 operand_a[31:0] <= ip_operand_a[31:0]; // store positive input a

 // store the remainder for division from operand a
 if ((ip_funct_3[2] == 1'b1) && (switch == 1'b0)) begin // if division
 remainder[31:0] <= ip_operand_a[31:0];
 end
 end

 // store input b
 if (((ip_funct_3[2:1] == 2'b00) || ((ip_funct_3[2] == 1'b1) && (ip_funct_3[0]
== 1'b0))) && (ip_operand_b[31] == 1'b1)) begin // if instruction of rs2 is a negetive sign value
 // 32-bit negative to positive converter
 operand_b[31:0] = ip_operand_b[31:0] ^ ONE32; // invert the value
 // add 1 by using adder
 carry_bit_operand_b[0] = 1'b1;
 for (i = 0; i < 32; i = i + 1) begin
 carry_bit_operand_b[i + 1'b1] = operand_b[i] &
carry_bit_operand_b[i]; // calculation of carry bit
 operand_b[i] <= operand_b[i] ^ carry_bit_operand_b[i]; //
store result affter convert
 end
 end

 else begin
 operand_b[31:0] <= ip_operand_b[31:0]; // store positive input b
 end

 quotient[31:0] <= 32'b0; // empty the quotient for calculation
 funct_3[2:0] <= ip_funct_3[2:0]; // store the selected function

CHAPTER 4

 86
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 end
 end
end

// multiplication adder and shifter, division adder
always @(posedge ip_clk) begin
 if (switch == 1'b1) begin // if m extension is used
 if (funct_3[2] == 1'b0) begin // if multiplication is selected
 if (operand_b[counter] == 1'b1) begin // if number of operand_b bit = 1
 // 32-bit Adder
 carry_bit_reg_mul_div[32] = 0;
 for (i = 0; i < 32; i = i + 1) begin
 // calculation of carry bit
 carry_bit_reg_mul_div[i + 33] = (reg_mul_div[i + 32] &
operand_a[i]) | (reg_mul_div[i + 32] & carry_bit_reg_mul_div[i + 32]) | (operand_a[i] &
carry_bit_reg_mul_div[i + 32]);
 // calculation of add result
 reg_mul_div[i + 32] = reg_mul_div[i + 32] ^ operand_a[i]
^ carry_bit_reg_mul_div[i + 32];
 end

 reg_mul_div[63:0] = {carry_bit_reg_mul_div[64],
reg_mul_div[63:1]}; // shift 1 bit with last carry bit extend after addition
 end

 else if (operand_b[counter] == 1'b0) begin // if number of operand_b bit = 0
 reg_mul_div[63:0] = {1'b0, reg_mul_div[63:1]}; // shift 1 bit with 0
extend after addition
 end

 end

 else if (funct_3[2] == 1'b1) begin // if division is selected
 if (ready_div_op == 1'b0) begin
 // if divisor = 0 or the largest negative number divide by -1 (special
case)
 if (operand_b[31:0] == 32'b0 || ((operand_a[31] == 1'b1) &&
(operand_a[30:0] == 31'b0) && (sign_operand_a == 1'b1) && (operand_b[31:0] == 32'b1) &&
(sign_operand_b == 1'b1))) begin
 ready_div_op <= 1'b1;
 remainder[31:0] <= 32'b0;
 end

 else begin
 // compare remainder with divisor
 reg_mul_div[31:0] = operand_b[31:0] ^ ONE32; // invert
the value
 // add 1 by using adder
 carry_bit_reg_mul_div[0] = 1'b1;
 for (i = 0; i < 32; i = i + 1) begin
 // calculation of carry bit
 carry_bit_reg_mul_div[i + 1'b1] = (remainder[i]
& reg_mul_div[i]) | (remainder[i] & carry_bit_reg_mul_div[i]) | (reg_mul_div[i] &
carry_bit_reg_mul_div[i]);
 // calculation of add result
 reg_mul_div[i] = remainder[i] ^ reg_mul_div[i] ^
carry_bit_reg_mul_div[i];
 end

CHAPTER 4

 87
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 if (reg_mul_div[31] == 1'b1) begin // if remainder less than
divisor
 ready_div_op <= 1'b1;
 end

 else if (reg_mul_div[31] == 1'b0) begin // if remainder >=
divisor
 remainder[31:0] = reg_mul_div[31:0];

 // quotient add 1 by using adder
 carry_bit_quotient[0] = 1'b1;
 for (i = 0; i < 32; i = i + 1) begin
 // calculation of carry bit
 carry_bit_quotient[i + 1'b1] = quotient[i]
& carry_bit_quotient[i];
 // calculation of add result
 quotient[i] <= quotient[i] ^
carry_bit_quotient[i];
 end
 end
 end
 end
 end
 end
end

// multiplication / division register
always @(posedge ip_clk) begin
 if (ip_rst == 1'b1) begin // if reset
 // reset to default value
 reg_mul_div[63:0] = 64'b0;
 carry_bit_reg_mul_div[64:0] = 65'b0;
 op_result[31:0] = 32'b0;
 op_overflow = 1'b0;
 end

 else if (ip_rst == 1'b0) begin // if no reset
 if (switch == 1'b1) begin // if the start calculate
 if (funct_3[2] == 1'b0) begin // if multiplication selected
 if (counter[4:0] == 5'b11111) begin // if done calculate (counter
counts to 31)
 // convert answer of result should be negative
 if (((funct_3[1] == 1'b0) && (sign_operand_a ^
sign_operand_b)) || (funct_3[1:0] == 2'b10) && (sign_operand_a == 1'b1)) begin
 // 64-bit positive to negetive converter
 reg_mul_div[63:0] = reg_mul_div[63:0] ^
ONE64; // invert the value
 // add 1 by using adder
 carry_bit_reg_mul_div[0] = 1'b1;
 for (i = 0; i < 64; i = i + 1) begin
 carry_bit_reg_mul_div[i + 1'b1] =
reg_mul_div[i] & carry_bit_reg_mul_div[i]; // calculation of carry bit
 reg_mul_div[i] = reg_mul_div[i] ^
carry_bit_reg_mul_div[i]; // store result affter convert
 end
 end

 // output result
 if(funct_3[1:0] == 2'b00) begin // if MUL

CHAPTER 4

 88
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 op_result[31:0] <= reg_mul_div[31:0]; // output
lower 32-bit of result
 end

 else if (funct_3[1:0] != 2'b00) begin // if MULH, MULHU,
MULHSU
 op_result[31:0] <= reg_mul_div[63:32]; // output
higher 32-bit of result
 end

 op_overflow <= 1'b0; // no overflow occured
 end
 end

 if (funct_3[2] == 1'b1) begin // if division is selected
 if (ready_div_op == 1'b1) begin // if division is ready to output
 if (funct_3[1:0] == 2'b00) begin // if DIV
 if ((sign_operand_a ^ sign_operand_b) == 1'b1)
begin // if signed bit of inputs are different (one positive and one negative)
 // convert quotient from positive to
negative
 quotient[31:0] = quotient[31:0] ̂ ONE32;
 // quotient add 1 by using adder
 carry_bit_quotient[0] = 1'b1;
 for (i = 0; i < 32; i = i + 1) begin
 // calculation of carry bit
 carry_bit_quotient[i + 1'b1] =
quotient[i] & carry_bit_quotient[i];
 // calculation of add result
 quotient[i] = quotient[i] ^
carry_bit_quotient[i];
 end

 op_result[31:0] <= quotient[31:0]; //
output quotient
 end

 else if ((sign_operand_a ^ sign_operand_b) ==
1'b0) begin // if signed bit of inputs are same (two positive or negative)
 op_result[31:0] <= quotient[31:0]; //
output quotient
 end
 end

 else if (funct_3[1:0] == 2'b01) begin // if DIVU
 op_result[31:0] <= quotient[31:0]; // output
quotient
 end

 else if (funct_3[1:0] == 2'b10) begin // if REM
 if (sign_operand_a == 1'b1) begin // if signed bit
of dividend is negative
 // convert remainder from positive to
negative
 remainder[31:0] = remainder[31:0] ^
ONE32;
 // remainder add 1 by using adder
 carry_bit_remainder[0] = 1'b1;
 for (i = 0; i < 32; i = i + 1) begin
 // calculation of carry bit

CHAPTER 4

 89
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 carry_bit_remainder[i + 1'b1] =
remainder[i] & carry_bit_remainder[i];
 // calculation of add result
 remainder[i] = remainder[i] ^
carry_bit_remainder[i];
 end

 op_result[31:0] <= remainder[31:0]; //
output remainder
 end

 else if (sign_operand_a == 1'b0) begin // if signed
bit of dividend is positve
 op_result[31:0] <= remainder[31:0]; //
output remainder
 end
 end

 else if(funct_3[1:0] == 2'b11) begin // if REMU
 op_result[31:0] <= remainder[31:0]; // output
remainder
 end

 // output control sign of overflow
 // if divisor = 0 or the largest negative number divide by -1
(special case)
 if (operand_b[31:0] == 32'b0 || ((operand_a[31] == 1'b1)
&& (operand_a[30:0] == 31'b0) && (sign_operand_a == 1'b1) && (operand_b[31:0] == 32'b1) &&
(sign_operand_b == 1'b1))) begin
 op_overflow <= 1'b1; // error occured
 end

 else begin
 op_overflow <= 1'b0; // error occured
 end
 end
 end
 end

 else if (switch == 1'b0) begin // if not calculate then reset value
 reg_mul_div[63:0] <= 64'b0;
 carry_bit_reg_mul_div[64:0] <= 65'b0;
 op_result[31:0] <= 32'b0;
 op_overflow <= 1'b0;
 end
 end
end

// counter and switch
always @(posedge ip_clk) begin
 if (ip_rst == 1'b1) begin // if reset
 // reset to default value
 op_nop_ctrl = 1'b0;
 counter[4:0] = 5'b0;
 carry_bit_counter[5:0] = 6'b0;
 switch = 1'b0;
 ready_div_op = 1'b0;
 end

 else if (ip_rst == 1'b0) begin // if no reset

CHAPTER 4

 90
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 if (ip_m_ext_en == 1'b1) begin // m extandtion is selected
 switch <= 1'b1; // to start calculation
 counter[4:0] <= 5'b0; // reset counter for multiplication
 op_nop_ctrl <= 1'b1; // enable stalling
 end

 if (switch == 1'b1) begin // if calculation is running
 if (funct_3[2] == 1'b0) begin // if multiplication is selected
 // counter + 1 by using adder
 carry_bit_counter[0] = 1'b1;
 for (i = 0; i < 5; i = i + 1) begin
 // calculation of carry bit
 carry_bit_counter[i + 1'b1] = counter[i] &
carry_bit_counter[i];
 // calculation of add result
 counter[i] <= counter[i] ^ carry_bit_counter[i];
 end

 // if multiplication done calculate
 if (counter[4:0] == 5'b11111) begin // if counter counts to 31
 counter[4:0] <= 5'b0; // set back to default value
 switch <= 1'b0; // to stop calculation
 op_nop_ctrl <= 1'b0; // disable stalling
 end
 end

 else if (funct_3[2] == 1'b1) begin // if division is selected
 // if division done calculate
 if (ready_div_op == 1'b1) begin
 switch <= 1'b0; // to stop calculation
 op_nop_ctrl <= 1'b0; // disable stalling
 ready_div_op <= 1'b0; // only output one clock cycle
 end
 end
 end
 end
end
endmodule

CHAPTER 5

 91
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

CHAPTER 5

Result and Discussion

5.1 Testbench

 In this project only focus on the M extension of functionality and testing result.

This test has fully test out all the scenario case that might occurred error.

- Test Plan

No Description Status

1. Test Case: MUL with two positive signed value

• Instruction MUL will be performed with two positive data

when ip_m_ext_en is asserted and start compute

multiplication of the result with 33 clock cycles.

Input Requirement:

• ip_operand_a = 32’h00015C7B (89211)

• ip_operand_b = 32’h0000058A (1418)

• ip_funct_3 = 3b’000

• ip_m_ext_en = 1’b1

• Hold for 1 clock cycles.

Expected Output:

• op_result = 32’h078A414E (126501198)

• op_overflow = 1’b0

• the result only output for 1 clock cycle when reach 34th

clock cycle.

• op_nop_ctrl will be high start from 2nd until 33th clock

cycle and be low at 34th clock cycle.

P

2. Test Case: MUL with one positive and one negative signed

value

• Instruction MUL will be performed with one positive and

one negative data when ip_m_ext_en is asserted and start

compute multiplication of the result with 33 clock cycles

Input Requirement:

P

CHAPTER 5

 92
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

• ip_operand_a = 32’hFFFEA385 (-89211)

• ip_operand_b = 32’h0000058A (1418)

• ip_funct_3 = 3b’000

• ip_m_ext_en = 1’b1

• Hold for 1 clock cycles.

Expected Output:

• op_result = 32’hF875BEB2 (-126501198)

• op_overflow = 1’b0

• the result only output for 1 clock cycle when reach 34th

clock cycle.

• op_nop_ctrl will be high start from 2nd until 33th clock

cycle and be low at 34th clock cycle.

3. Test Case: MUL with two negative signed value

• Instruction MUL will be performed with two negative data

when ip_m_ext_en is asserted and start compute

multiplication of the result with 33 clock cycles

Input Requirement:

• ip_operand_a = 32’hFFFEA385 (-89211)

• ip_operand_b = 32’hFFFFFA76 (-1418)

• ip_funct_3 = 3b’000

• ip_m_ext_en = 1’b1

• Hold for 1 clock cycles.

Expected Output:

• op_result = 32’h078A414E (126501198)

• op_overflow = 1’b0

• the result only output for 1 clock cycle when reach 34th

clock cycle.

• op_nop_ctrl will be high start from 2nd until 3th clock

cycle and be low at 34th clock cycle.

P

4. Test Case: MULH with two positive signed value

• Instruction MULH will be performed with two positive

data when ip_m_ext_en is asserted and start compute

P

CHAPTER 5

 93
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

multiplication of the upper 32-bit of 64-bit result with 33

clock cycles.

Input Requirement:

• ip_operand_a = 32’h00015C7B (89211)

• ip_operand_b = 32’h000426C4 (272068)

• ip_funct_3 = 3b’001

• ip_m_ext_en = 1’b1

• Hold for 1 clock cycles.

Expected Output:

• op_result = 32’h00000005 (5)

• op_overflow = 1’b0

• the result only output for 1 clock cycle when reach 33th

clock cycle

• op_nop_ctrl will be high start from 2nd until 34th clock

cycle and be low at 34th clock cycle

5. Test Case: MULH with one positive and one negative signed

value

• Instruction MULH will be performed with one positive and

one negative data when ip_m_ext_en is asserted and start

compute multiplication of the upper 32-bit of 64-bit result

with 33 clock cycles.

Input Requirement:

• ip_operand_a = 32’hFFFEA385 (-89211)

• ip_operand_b = 32’h000426C4 (272068)

• ip_funct_3 = 3b’001

• ip_m_ext_en = 1’b1

• Hold for 1 clock cycles.

Expected Output:

• op_result = 32’hFFFFFFFA (-6)

• op_overflow = 1’b0

• the result only output for 1 clock cycle when reach 33th

clock cycle.

P

CHAPTER 5

 94
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

• op_nop_ctrl will be high start from 2nd until 34th clock

cycle and be low at 34th clock cycle.

6. Test Case: MULHSU with one positive signed and one

unsigned value

• Instruction MULHSU will be performed with one positive

signed and one unsigned data when ip_m_ext_en is

asserted and start compute multiplication of the upper 32-

bit of 64-bit result with 33 clock cycles

Input Requirement:

• ip_operand_a = 32’h00015C7B (89211)

• ip_operand_b = 32’h9EC4BA46 (2663693870)

• ip_funct_3 = 3b’001

• ip_m_ext_en = 1’b1

• Hold for 1 clock cycles.

Expected Output:

• op_result = 32’h0000D81F (55327)

• op_overflow = 1’b0

• the result only output for 1 clock cycle when reach 34th

clock cycle

• op_nop_ctrl will be high start from 2nd until 33th clock

cycle and be low at 34th clock cycle.

P

7. Test Case: MULHSU with one negative signed and one

unsigned value

• Instruction MULHSU will be performed with one negative

signed and one unsigned data when ip_m_ext_en is

asserted and start compute multiplication of the upper 32-

bit of 64-bit result with 33 clock cycles

Input Requirement:

• ip_operand_a = 32’hFFFEA385 (-89211)

• ip_operand_b = 32’h9EC4BA46 (4294911968)

• ip_funct_3 = 3b’001

• ip_m_ext_en = 1’b1

P

CHAPTER 5

 95
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

• Hold for 1 clock cycles.

Expected Output:

• op_result = 32’hFFFF27E0 (55327)

• op_overflow = 1’b0

• the result only output for 1 clock cycle when reach 34th

clock cycle

• op_nop_ctrl will be high start from 2nd until 33th clock

cycle and be low at 34th clock cycle.

8. Test Case: MULHU with one positive signed and one unsigned

value

• Instruction MULHU will be performed with two unsigned

data when ip_m_ext_en is asserted and start compute

multiplication of the upper 32-bit of 64-bit result with 33

clock cycles

Input Requirement:

• ip_operand_a = 32’hCAF1B84E (3404838990)

• ip_operand_b = 32’h8841A4E9 (2286003433)

• ip_funct_3 = 3b’011

• ip_m_ext_en = 1’b1

• Hold for 1 clock cycles.

Expected Output:

• op_result = 32’h6C047404 (1812231172)

• op_overflow = 1’b0

• the result only output for 1 clock cycle when reach 34th

clock cycle.

• op_nop_ctrl will be high start from 2nd until 33th clock

cycle and be low at 34th clock cycle.

P

9. Test Case: DIV with two positive signed value

• Instruction DIV will be performed with two positive signed

data when ip_m_ext_en is asserted and start compute

quotient by using division with 10 clock cycles.

Input Requirement:

P

CHAPTER 5

 96
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

• ip_operand_a = 32’h000000BF (191)

• ip_operand_b = 32’h00000017 (23)

• ip_funct_3 = 3b’100

• ip_m_ext_en = 1’b1

• Hold for 1 clock cycles.

Expected Output:

• op_result = 32’h00000008 (8)

• op_overflow = 1’b0

• the result only output for 1 clock cycle when reach 12th

clock cycle.

• op_nop_ctrl will be high start from 2nd until 11th clock

cycle and be low at 12th clock cycle.

10. Test Case: DIV with one positive and one negative signed value

• Instruction DIV will be performed with one positive and

one negative signed data when ip_m_ext_en is asserted and

start compute quotient by using division with 10 clock

cycles

Input Requirement:

• ip_operand_a = 32’h000000BF (191)

• ip_operand_b = 32’hFFFFFFE9 (-23)

• ip_funct_3 = 3b’100

• ip_m_ext_en = 1’b1

• Hold for 1 clock cycles.

Expected Output:

• op_result = 32’hFFFFFFF8 (-8)

• op_overflow = 1’b0

• the result only output for 1 clock cycle when reach 12th

clock cycle.

• op_nop_ctrl will be high start from 2nd until 11th clock

cycle and be low at 12th clock cycle.

P

11. Test Case: DIV with two negative signed value P

CHAPTER 5

 97
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

• Instruction DIV will be performed with two negative

signed data when ip_m_ext_en is asserted and start

compute quotient by using division with 10 clock cycles

Input Requirement:

• ip_operand_a = 32’hFFFFFF41 (-191)

• ip_operand_b = 32’hFFFFFFE9 (-23)

• ip_funct_3 = 3b’100

• ip_m_ext_en = 1’b1

• Hold for 1 clock cycles.

Expected Output:

• op_result = 32’h00000008 (8)

• op_overflow = 1’b0

• the result only output for 1 clock cycle when reach 12th

clock cycle.

• op_nop_ctrl will be high start from 2nd until 11th clock

cycle and be low at 12th clock cycle.

12. Test Case: DIVU with two unsigned value

• Instruction DIV will be performed with two unsigned data

when ip_m_ext_en is asserted and start compute quotient

by using division with 11 clock cycles

Input Requirement:

• ip_operand_a = 32’hC7485D8D (3343408525)

• ip_operand_b = 32’h15A51D1A (363142426)

• ip_funct_3 = 3b’101

• ip_m_ext_en = 1’b1

• Hold for 1 clock cycles.

Expected Output:

• op_result = 32’h00000009 (9)

• op_overflow = 1’b0

• the result only output for 1 clock cycle when reach 13th

clock cycle.

P

CHAPTER 5

 98
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

• op_nop_ctrl will be high start from 2nd until 12th clock

cycle and be low at 13th clock cycle.

13. Test Case: REM with two positive signed value

• Instruction REM will be performed with two positive

signed data when ip_m_ext_en is asserted and start

compute remainder by using division with 11 clock cycles

Input Requirement:

• ip_operand_a = 32’h00001C72 (7282)

• ip_operand_b = 32’h00000272 (626)

• ip_funct_3 = 3b’110

• ip_m_ext_en = 1’b1

• Hold for 1 clock cycles.

Expected Output:

• op_result = 32’h0000018C (396)

• op_overflow = 1’b0

• the result only output for 1 clock cycle when reach 13th

clock cycle.

• op_nop_ctrl will be high start from 2nd until 12th clock

cycle and be low at 13th clock cycle.

P

14. Test Case: REM with one positive and one negative signed

value

• Instruction REM will be performed with one positive and

one negative signed data when ip_m_ext_en is asserted and

start compute remainder by using division with 11 clock

cycles

Input Requirement:

• ip_operand_a = 32’h00001C72 (7282)

• ip_operand_b = 32’hFFFFFD8E (-626)

• ip_funct_3 = 3b’110

• ip_m_ext_en = 1’b1

• Hold for 1 clock cycles.

Expected Output:

P

CHAPTER 5

 99
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

• op_result = 32’h0000018C (396)

• op_overflow = 1’b0

• the result only output for 1 clock cycle when reach 13th

clock cycle.

• op_nop_ctrl will be high start from 2nd until 12th clock

cycle and be low at 13th clock cycle.

15. Test Case: REM with two negative signed value

• Instruction REM will be performed with two negative

signed data when ip_m_ext_en is asserted and start

compute remainder by using division with 11 clock cycles

Input Requirement:

• ip_operand_a = 32’hFFFFE38E (-7282)

• ip_operand_b = 32’hFFFFFD8E (-626)

• ip_funct_3 = 3b’110

• ip_m_ext_en = 1’b1

• Hold for 1 clock cycles.

Expected Output:

• op_result = 32’hFFFFFE74 (-396)

• op_overflow = 1’b0

• the result only output for 1 clock cycle when reach 13th

clock cycle.

• op_nop_ctrl will be high start from 2nd until 12th clock

cycle and be low at 13th clock cycle.

P

16. Test Case: REMU with two unsigned value

• Instruction REMU will be performed with two unsigned

data when ip_m_ext_en is asserted and start compute

remainder by using division with 11 clock cycles

Input Requirement:

• ip_operand_a = 32’hC7485D8D (3343408525)

• ip_operand_b = 32’h15A51D1A (363142426)

• ip_funct_3 = 3b’111

• ip_m_ext_en = 1’b1

P

CHAPTER 5

 100
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

• Hold for 1 clock cycles.

Expected Output:

• op_result = 32’h047A57A3 (75126691)

• op_overflow = 1’b0

• the result only output for 1 clock cycle when reach 13th

clock cycle.

• op_nop_ctrl will be high start from 2nd until 12th clock

cycle and be low at 13th clock cycle.

17. Test Case: Divisor is zero when division (Special Case)

• When a division is occurred, however the divisor is zero

which is an error in a division. Hence, a signal to indicate

an error is required.

Input Requirement:

• ip_operand_a = 32’h003AE27C (3859068)

• ip_operand_b = 32’h00000000 (0)

• ip_funct_3 = 3b’100

• ip_m_ext_en = 1’b1

• Hold for 1 clock cycles.

Expected Output:

• op_result = 32’h00000000 (0)

• op_overflow = 1’b1

• it required 2 clock cycle to output the overflow signal

• the overflow signal only be high for 1 clock cycle when

reach 3rd clock cycle.

• op_nop_ctrl will be high 2nd clock cycle and be low at 3rd

clock cycle.

P

Table 5.1 – Test Plan of M Extension

CHAPTER 5

 101
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

- Testbench Model
/**
Project: Developing Extended ISA on RISC-V Based Processor
Module: b_mul_tb.v
Version: 1
Date Created: 18/04/2023
Created By: Lee Ang
Code Type: Verilog
Description: RV32 M Extension Test Bench
**/

`include "macro.v"
`default_nettype none

module tb_b_m_ext
();
reg [31:0] ip_operand_a_tb, ip_operand_b_tb;
reg [2:0] ip_funct_3_tb;
reg ip_rst_tb, ip_clk_tb, ip_m_ext_en_tb;
wire [31:0] op_result_tb;
wire op_nop_ctrl_tb, op_overflow_tb;

b_m_ext
dut_b_m_ext(
 .ip_operand_a(ip_operand_a_tb),
 .ip_operand_b(ip_operand_b_tb),
 .ip_funct_3(ip_funct_3_tb),
 .ip_m_ext_en(ip_m_ext_en_tb),
 .ip_rst(ip_rst_tb),
 .ip_clk(ip_clk_tb),
 .op_result(op_result_tb),
 .op_nop_ctrl(op_nop_ctrl_tb),
 .op_overflow(op_overflow_tb)
);

initial ip_clk_tb <= 1'b1;
always #(`PERIOD_HALF) ip_clk_tb = ~ip_clk_tb;

initial begin
 @(posedge ip_clk_tb) // initialize the value (at sim time 1)
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_funct_3_tb[2:0] <= 3'b0;
 ip_m_ext_en_tb <= 1'b0;
 ip_rst_tb <= 1'b1;

 // test case 1 (MUL with two positive signed value)
 @(posedge ip_clk_tb) // insert value
 ip_operand_a_tb[31:0] <= 32'h00015C7B; // 89211
 ip_operand_b_tb[31:0] <= 32'h0000058A; // 1418
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b1;
 ip_rst_tb <= 1'b0;

 repeat(34) @(posedge ip_clk_tb) begin // 32 cycle to compute the result
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b0;

CHAPTER 5

 102
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 end

 // test case 2 (MUL with one positive and one negative signed value)
 @(posedge ip_clk_tb) // insert value
 ip_operand_a_tb[31:0] <= 32'hFFFEA385; // -89211
 ip_operand_b_tb[31:0] <= 32'h0000058A; // 1418
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b1;
 ip_rst_tb <= 1'b0;

 repeat(34) @(posedge ip_clk_tb) begin // 32 cycle to compute the result
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b0;
 end

 // test case 3 (MUL with two negative signed value)
 @(posedge ip_clk_tb) // insert value
 ip_operand_a_tb[31:0] <= 32'hFFFEA385; // -89211
 ip_operand_b_tb[31:0] <= 32'hFFFFFA76; // -1418
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b1;
 ip_rst_tb <= 1'b0;

 repeat(34) @(posedge ip_clk_tb) begin // 32 cycle to compute the result
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b0;
 end

 // test case 4 (MULH with two positive signed value)
 @(posedge ip_clk_tb) // insert value
 ip_operand_a_tb[31:0] <= 32'h00015C7B; // 89211
 ip_operand_b_tb[31:0] <= 32'h000426C4; // 272068
 ip_funct_3_tb[2:0] <= 3'b001;
 ip_m_ext_en_tb <= 1'b1;
 ip_rst_tb <= 1'b0;

 repeat(34) @(posedge ip_clk_tb) begin // 32 cycle to compute the result
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b0;
 end

 // test case 5 (MULH with one positive and one negative signed value)
 @(posedge ip_clk_tb) // insert value
 ip_operand_a_tb[31:0] <= 32'hFFFEA385; // -89211
 ip_operand_b_tb[31:0] <= 32'h000426C4; // 272068
 ip_funct_3_tb[2:0] <= 3'b001;
 ip_m_ext_en_tb <= 1'b1;
 ip_rst_tb <= 1'b0;

 repeat(34) @(posedge ip_clk_tb) begin // 32 cycle to compute the result
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b0;

CHAPTER 5

 103
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 end

 // test case 6 (MULHSU with one positive signed and one unigned value)
 @(posedge ip_clk_tb) // insert value
 ip_operand_a_tb[31:0] <= 32'h00015C7B; // 89211
 ip_operand_b_tb[31:0] <= 32'h9EC4BA46; // 2663692870
 ip_funct_3_tb[2:0] <= 3'b010;
 ip_m_ext_en_tb <= 1'b1;
 ip_rst_tb <= 1'b0;

 repeat(34) @(posedge ip_clk_tb) begin // 32 cycle to compute the result
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b0;
 end

 // test case 7 (MULHSU with one negetive signed and one unigned value)
 @(posedge ip_clk_tb) // insert value
 ip_operand_a_tb[31:0] <= 32'hFFFEA385; // -89211
 ip_operand_b_tb[31:0] <= 32'h9EC4BA46; // 2663692870
 ip_funct_3_tb[2:0] <= 3'b010;
 ip_m_ext_en_tb <= 1'b1;
 ip_rst_tb <= 1'b0;

 repeat(34) @(posedge ip_clk_tb) begin // 32 cycle to compute the result
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b0;
 end

 // test case 8 (MULHU with two unigned value)
 @(posedge ip_clk_tb) // insert value
 ip_operand_a_tb[31:0] <= 32'hCAF1B84E; // 3404838990
 ip_operand_b_tb[31:0] <= 32'h8841A4E9; // 2286003433
 ip_funct_3_tb[2:0] <= 3'b011;
 ip_m_ext_en_tb <= 1'b1;
 ip_rst_tb <= 1'b0;

 repeat(34) @(posedge ip_clk_tb) begin // 32 cycle to compute the result
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b0;
 end

 // test case 9 (DIV with two positive signed value)
 @(posedge ip_clk_tb) // insert value
 ip_operand_a_tb[31:0] <= 32'h000000BF; // 191
 ip_operand_b_tb[31:0] <= 32'h00000017; // 23
 ip_funct_3_tb[2:0] <= 3'b100;
 ip_m_ext_en_tb <= 1'b1;
 ip_rst_tb <= 1'b0;

 repeat(12) @(posedge ip_clk_tb) begin // 10 cycle to compute the result
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b0;

CHAPTER 5

 104
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 end

 // test case 10 (DIV with one positive and one negative signed value)
 @(posedge ip_clk_tb) // insert value
 ip_operand_a_tb[31:0] <= 32'h000000BF; // 191
 ip_operand_b_tb[31:0] <= 32'hFFFFFFE9; // -23
 ip_funct_3_tb[2:0] <= 3'b100;
 ip_m_ext_en_tb <= 1'b1;
 ip_rst_tb <= 1'b0;

 repeat(12) @(posedge ip_clk_tb) begin // 6 cycle to compute the result
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b0;
 end

 // test case 11 (DIV with two negative signed value)
 @(posedge ip_clk_tb) // insert value
 ip_operand_a_tb[31:0] <= 32'hFFFFFF41; // -191
 ip_operand_b_tb[31:0] <= 32'hFFFFFFE9; // -23
 ip_funct_3_tb[2:0] <= 3'b100;
 ip_m_ext_en_tb <= 1'b1;
 ip_rst_tb <= 1'b0;

 repeat(12) @(posedge ip_clk_tb) begin // 10 cycle to compute the result
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b0;
 end

 // test case 12 (DIVU with two unsigned value)
 @(posedge ip_clk_tb) // insert value
 ip_operand_a_tb[31:0] <= 32'hC7485D8D; // 3343408525
 ip_operand_b_tb[31:0] <= 32'h15A51D1A; // 363142426
 ip_funct_3_tb[2:0] <= 3'b101;
 ip_m_ext_en_tb <= 1'b1;
 ip_rst_tb <= 1'b0;

 repeat(13) @(posedge ip_clk_tb) begin // 11 cycle to compute the result
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b0;
 end

 // test case 13 (REM with two positive signed value)
 @(posedge ip_clk_tb) // insert value
 ip_operand_a_tb[31:0] <= 32'h00001C72; // 7282
 ip_operand_b_tb[31:0] <= 32'h00000272; // 626
 ip_funct_3_tb[2:0] <= 3'b110;
 ip_m_ext_en_tb <= 1'b1;
 ip_rst_tb <= 1'b0;

 repeat(15) @(posedge ip_clk_tb) begin // 13 cycle to compute the result
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b0;

CHAPTER 5

 105
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 end

 // test case 14 (REM with one positive and one negative signed value)
 @(posedge ip_clk_tb) // insert value
 ip_operand_a_tb[31:0] <= 32'h00001C72; // 7282
 ip_operand_b_tb[31:0] <= 32'hFFFFFD8E; // -626
 ip_funct_3_tb[2:0] <= 3'b110;
 ip_m_ext_en_tb <= 1'b1;
 ip_rst_tb <= 1'b0;

 repeat(15) @(posedge ip_clk_tb) begin // 13 cycle to compute the result
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b0;
 end

 // test case 15 (REM with two negative signed value)
 @(posedge ip_clk_tb) // insert value
 ip_operand_a_tb[31:0] <= 32'hFFFFE38E; // -7282
 ip_operand_b_tb[31:0] <= 32'hFFFFFD8E; // -626
 ip_funct_3_tb[2:0] <= 3'b110;
 ip_m_ext_en_tb <= 1'b1;
 ip_rst_tb <= 1'b0;

 repeat(15) @(posedge ip_clk_tb) begin // 13 cycle to compute the result
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_m_ext_en_tb <= 1'b0;
 end

 // test case 16 (REMU with two unsigned value)
 @(posedge ip_clk_tb) // insert value
 ip_operand_a_tb[31:0] <= 32'hC7485D8D; // 3343408525
 ip_operand_b_tb[31:0] <= 32'h15A51D1A; // 363142426
 ip_funct_3_tb[2:0] <= 3'b111;
 ip_m_ext_en_tb <= 1'b1;
 ip_rst_tb <= 1'b0;

 repeat(13) @(posedge ip_clk_tb) begin // 11 cycle to compute the result
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b0;
 end

 // test case 17 (Special Case - divide by zero)
 @(posedge ip_clk_tb) // insert value
 ip_operand_a_tb[31:0] <= 32'h003AE27C; // 3859068
 ip_operand_b_tb[31:0] <= 32'h00000000; // 0
 ip_funct_3_tb[2:0] <= 3'b100;
 ip_m_ext_en_tb <= 1'b1;
 ip_rst_tb <= 1'b0;

 repeat(4) @(posedge ip_clk_tb) begin // 4 cycle to compute the result
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b0;
 end

CHAPTER 5

 106
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 // test case 18 (Special Case - the largest negative number divide by -1)
 @(posedge ip_clk_tb) // insert value
 ip_operand_a_tb[31:0] <= 32'h80000000; // -4294967296
 ip_operand_b_tb[31:0] <= 32'hFFFFFFFF; // -1
 ip_funct_3_tb[2:0] <= 3'b100;
 ip_m_ext_en_tb <= 1'b1;
 ip_rst_tb <= 1'b0;

 repeat(5) @(posedge ip_clk_tb) begin // 4 cycle to compute the result
 ip_operand_a_tb[31:0] <= 32'b0;
 ip_operand_b_tb[31:0] <= 32'b0;
 ip_funct_3_tb[2:0] <= 3'b000;
 ip_m_ext_en_tb <= 1'b0;
 end

// To stop simulation.
$stop;
end
endmodule

CHAPTER 5

 107
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

5.2 Result of M Extension

- Simulation Result

Figure 5.2.1 – Test case 1 Wave form

Figure 5.2.1 show that the simulation wave form of test case 1. Instruction MUL

will be performed with two positive data when ip_m_ext_en is asserted and start

compute multiplication of the result with 33 clock cycles. First, assert two data

(32’h00015C7B (89211) and 32’h0000058A (1418)) into ip_operand_a[31:0] and

ip_operand_b[31:0] and also insert 3’b000 into ip_funct_3[2:0] for select MUL as

operation, and 1’b1 into ip_m_ext_en for 1 clock cycle to start the multiplication. After

insert the data, set ip_operand_a[31:0], ip_operand[31:0], ip_funct_3[2:0] and

ip_m_ext_en as default value which are all 0 value for 33 clock cycles. In between 2nd

and 33th clock cycle, the switch which is in the counter turn on and op_nop_ctrl outputs

high signal (1’b1) to datapath for 32 clock cycles for stalling the progam counter. The

counter also starts count from 0 to 31. After 32 clock cycles, the output result pin

(op_result[31:0]) outputs 32’h078A414E (126501198) for 1 clock cycle which the

result (64’h00000000078A414E (126501198)) comes from the M extension general

registers (reg_mul_div[63:0]). The overflow pin will be 0 for all the time.

Figure 5.2.2 – Test case 5 Wave form

Figure 5.2.2 show that the simulation wave form of test case 5. Instruction

MULH will be performed with one negative and one positive data when ip_m_ext_en

………….

………….

CHAPTER 5

 108
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

is asserted and start compute multiplication of the result with 33 clock cycles. First,

assert two data (32’h FFFEA385 (-89211) and 32’h000426C (272068)) into

ip_operand_a[31:0] and ip_operand_b[31:0] and also insert 3’b001 into ip_funct_3[2:0]

for select MULH as operation, and 1’b1 into ip_m_ext_en for 1 clock cycle to start the

multiplication. After insert the data, set ip_operand_a[31:0], ip_operand[31:0],

ip_funct_3[2:0] and ip_m_ext_en as default value which are all 0 value for 33 clock

cycles. In between 2nd and 33th clock cycle, the switch which is in the counter turn on

and op_nop_ctrl outputs high signal (1’b1) to datapath for 32 clock cycles for stalling

the progam counter. The counter also starts count from 0 to 31. After 32 clock cycles,

the output result pin (op_result[31:0]) outputs 32’hFFFFFFFA (-6) for 1 clock cycle

which the result (64’hFFFFFFFA594EEFD4 (-24271458348)) comes from the M

extension general registers (reg_mul_div[63:0]). The overflow pin will be 0 for all the

time.

Figure 5.2.3 – Test case 11 Wave form

Figure 5.2.3 show that the simulation wave form of test case 11. Instruction DIV

will be performed with two negative data when ip_m_ext_en is asserted and start

compute division of the result with 10 clock cycles. First, assert two data

(32’hFFFFFF41 (-191) and 32’hFFFFFFE9 (-23)) into ip_operand_a[31:0] and

ip_operand_b[31:0] and also insert 3’b100 into ip_funct_3[2:0] for select DIV as

operation, and 1’b1 into ip_m_ext_en for 1 clock cycle to start the multiplication. After

insert the data, set ip_operand_a[31:0], ip_operand[31:0], ip_funct_3[2:0] and

ip_m_ext_en as default value which are all 0 value for 10 clock cycles. In between 2nd

and 11th clock cycle, the switch which is in the counter turn on and op_nop_ctrl outputs

high signal (1’b1) to datapath for 10 clock cycles for stalling the progam counter. The

switch also will be one to start the calculation until remainder is less than divisor. If the

remainder is greater than divisor, the quotient will plus one on it to calculate result.

CHAPTER 5

109
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

After 10 clock cycles, the output result pin (op_result[31:0]) outputs 32’h00000008 (8)

for 1 clock cycle which the result comes from the quotient registers (quotient [31:0]).

The overflow pin will be 0 for all the time.

Figure 5.2.4 – Test case 15 Wave form

Figure 5.2.4 show that the simulation wave form of test case 15. Instruction

REM will be performed with two negative data when ip_m_ext_en is asserted and start

compute division of the result with 10 clock cycles. First, assert two data

(32’hFFFFE38E (-7282) and 32’hFFFFFD8E (-626)) into ip_operand_a[31:0] and

ip_operand_b[31:0] and also insert 3’b110 into ip_funct_3[2:0] for select REM as

operation, and 1’b1 into ip_m_ext_en for 1 clock cycle to start the multiplication. After

insert the data, set ip_operand_a[31:0], ip_operand[31:0], ip_funct_3[2:0] and

ip_m_ext_en as default value which are all 0 value for 11 clock cycles. In between 2nd

and 11th clock cycle, the switch which is in the counter turn on and op_nop_ctrl outputs

high signal (1’b1) to datapath for 11 clock cycles for stalling the progam counter. The

switch also will be one to start the calculation until remainder is less than divisor. If the

remainder is greater than divisor, the quotient will plus one on it to calculate result.

After 11 clock cycles, the output result pin (op_result[31:0]) outputs 32’h FFFFFE74

(-396) for 1 clock cycle which the result comes from the remainder registers

(remainder[31:0]). The overflow pin will be 0 for all the time.

Figure 5.2.5 – Test case 17 Wave form

CHAPTER 5

 110
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Figure 5.2.5 show that the simulation wave form of test case 15. This test case

is a special that the input value might occurred error when calculating a division. When

a divisor is zero, means it is a error for a division, then the error signal will be high to

indicate is an error there. First, assert two data (32’h003AE27C (3859068) and

32’h00000000 (0)) into ip_operand_a[31:0] and ip_operand_b[31:0] and also insert

3’b100 into ip_funct_3[2:0] for select DIV as operation, and 1’b1 into ip_m_ext_en for

1 clock cycle to start the division. After insert the data, set ip_operand_a[31:0],

ip_operand[31:0], ip_funct_3[2:0] and ip_m_ext_en as default value which are all 0

value for 2 clock cycles. the switch which is in the counter turn on and op_nop_ctrl

outputs high signal (1’b1) to datapath for 2 clock cycle for stalling the progam counter.

The switch also will be one to start the calculation however the divisor is zero. In 4th

clock cycle, it will output the output result pin (op_result[31:0]) as 32’h 00000000 (0)

and error signal (op_overflow) become high for 1 clock cycle. Hence, it will directly

end the operation and light up the error signal.

- Performance

By applying M extension, it has help to reduce clock cycles needed for perform a

multiplication or division. For multiplication it required few instructions like SRL,

AND, BEQ and ADD to performe a for loop for add and shift in 32 cycle. Below

shown how to perform a multiplication by using I instruction set only:

#Input
li t2, 10
li t4, 3
loop:
 srli t3, t2, 0 # get the least significant bit of a
 andi t3, t3, 1 # mask off all but the least significant bit
 beq t3, zero, skip # if the bit is 0, skip the addition
 add t0, t0, t4 # if the bit is 1, add b to the result
skip:
 srli t2, t2, 1 # shift a right by 1
 add t1, t1, 1 # increment a counter
 bne t1, 32, loop # loop until all 32 bits have been multiplied
 mv s0, t0 # move the result to c

Accourding the assembly code above, it has used 8 instruction to do a

multiplication. However, M extension instruction is designed to reduced the

CHAPTER 5

111
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

instruction into a single instruction. Hence, it at least increase 6 times faster in

multiplication performance.

For division, below shown how a to use I instruction set only to perform a

division:

Initialize the dividend and divisor in registers
li a0, 100 # Dividend = 100
li a1, 10 # Divisor = 10
Compute the sign of the quotient
xor a2, a0, a1 # Check if the signs of the dividend and divisor are different
bltz a2, negate # If the signs are different, negate the quotient at the end
li a2, 1 # Otherwise, the quotient is positive
Initialize the quotient and remainder to 0
li a3, 0 # Quotient = 0
li a4, 0 # Remainder = 0
Compute the quotient and remainder using shift and subtract
loop:
 sll a4, a4, 1 # Shift remainder left by 1 bit
 srl a5, a0, 31 # Get the sign bit of the dividend
 or a4, a4, a5 # Add sign bit to remainder
 sll a0, a0, 1 # Shift dividend left by 1 bit
 sub a6, a4, a1 # Compute the difference between remainder and divisor
 bge a6, zero, subtract # If difference is non-negative, subtract divisor from

remainder
 or a3, a3, a2 # Add quotient sign bit to quotient
 srl a5, a3, 31 # Get the sign bit of the quotient
 bne a5, a2, negate # If the signs of quotient and dividend are different,

negate quotient
 jal end # Otherwise, division is complete
subtract:
 addi a4, a4, -a1 # Subtract divisor from remainder
 ori a3, a3, 1 # Add 1 to quotient
 jal loop
negate:
 neg a3, a3 # Negate quotient
end:

As can found that it required couple line of instructions. However, the division

part of M extension might require more clock cycle to compute a result. When there is

a very large dividend divide by a very small divisor, the consume more clock cycle to

do subtraction compare with a fix number of instructions needed. Hence, It is able to

help reducing number of instructions needed when expected quotient is a small value

number, but might decrease performance when expected quotient is a very big value.

CHAPTER 5

112
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

As result, there are improvement on multiplication, but increment or

decrement performance of division is depending on the gap between two inputs.

5.3 Implementation Issues and Challenges

In the progress of developing extended ISA, there are few difficulties. First, the

unsigned and signed data compute in M extension is a major challenge to get a correct

result. Signed data need to consider the negative value and positive value because it

will cause different result. The operand includes negative value like a negative multiply

a positive should consider shifting with zero extend or signed extend of the rs1 value.

Differential of extension will cause different result in the most 32 significant bits in 64

bit result register that related to instruction of MULH and MULHSU. Furthermore, the

division of in M extension even be more challenges to design.

Comparing with multiplication, division is using subtraction to implement the

division. It need consider more logic rules such as signed division, division with zero

values, clock cycle requirement. Signed division need to consider sequence of positive

value and negative division because it effects to consider using addition or subtraction

on reducing dividend to get quotient. For example, positive value divides positive value

required using subtraction because positive value should minus positive values is

correct way to reduce dividend; for positive value divides negative value required using

addition because positive value should minus positive values however the divisor in a

negative value. If using subtraction, the dividend will become larger and larger and

unable to get the answer. Hence, using addition on a negative value can be seen as doing

subtraction on division. In above method, there are a bug of division with zero values

because dividend subtract with zero will remain the same value and cause the infinite

loop for doing division. So, it required to design a logic gate to detect there is a division

with zero value. In multiplication, it is fixed to required 32 clock to implement a

multiplication, but division is another story. The division execution clock cycle depends

on time of subtraction, so there is not a fix clock cycle to come out a result. Therefore,

it required to design comparator to detect dividend is unable to minus anymore to prove

that division is complete.

CHAPTER 6

 113
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

CHAPTER 6

Conclusion

In a nutshell, this project aims to develop extended ISA on RISC based

processor. The progress will be separate into several part. First, design a 5-stage

instruction execution processor that reference to RV32I processor that computation

with 32-bit width data. The stages are instruction fetch, instruction decode, execute,

memory access and write back stage. So far the project has designed the instruction

fetch unit that contain a function to compute data in the data path, registers file that

store 32 of 32-bit values, ALU that compute data with the function selected like,

arithmetic, logical, bit shifting, branch or jump address, etc, data memory that have

more larger space, and control unit of processor that controlling the component function

output the correct result.

In additions, the development of Standard Extension for Integer Multiplication

and Division (M) also has been designed. However, there are some challenges when

design the multiply and divide function. Signed data with negative value and positive

value calculate multiplication cause different result in most significant bit. It is solved

by zero extend or signed extend of the multiplicand. In division part, it need consider

more logic rules such as signed division that need consider to compute addition or

subtraction to achieve dividend minus divisor one by one to get quotient, division with

zero values that need design a detector for fixing division bugs, and clock cycle

requirement that need detect unpredictable cycle to stop division by comparing

dividend and divisor.

As result of this extension has reduced the clock cycle, improve the performance

of multiplication, but not in division due to gap of clock cycle requirement can be very

large. Nevertheless, all 8 instruction of M extension are functional. After analyse the

project can found that there are few future work can be implemented. For example,

multiplication part can using plenty of mux to further decrease clock cycle required into

1 clock cycle. For division can change operating arithmetic method into “subtract and

shift” method to solve the unpredictable clock cycle requirement. Since, there is only

one extension be done, future development can be floating point or vector extension

even though customize extension like computing cryptography.

CHAPTER 6

114
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

In the end, this work focuses on developing an extended ISA on RISC-V based

processors to provide potential customers, such as chipset manufacturers and IoT

device companies, with powerful, high-performance processors that meet specific

requirements. The flexibility of customizing the ISA helps different IT areas to be more

satisfied with the processor they receive, and the growth of RISC-V ISA has the

potential to disrupt the dominance of proprietary architectures in the market. RISC-V

offers a free and open alternative that can be customized for specific use cases, making

it more accessible for smaller companies and startups and enabling new applications

and use cases, such as low-power IoT devices and specialized machine learning

hardware.

REFERENCES

115
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

REFERENCES

1. Codsip. “Extending RISC-V ISA With a Custom Instruction Set Extension,”

design-reuse.com. https://www.design-reuse.com/articles/46237/extending-

risc-v-isa-with-a-custom-instruction-set-extension.html (accessed Apr 10,

2022)

2. A. Waterman, “Design of the RISC-V Instruction Set Architecture,” Ph.D.

dissertation, Dept. Elect. Univ. California, Berkeley, California, USA, 2016.

[Online]. Available: https://people.eecs.berkeley.edu/~krste/papers/EECS-

2016-1.pdf

3. WikiChip, “ARMv8 - ARM” en.wikichip.org.

https://en.wikichip.org/wiki/arm/armv8#:~:text=ARMv8%20(codename%20O

ban)%20is%20the,of%2064%2Dbit%20operating%20capabilities. (accessed

Apr 10, 2022)

4. R. Awati, “Scalable Processor Architecture (SPARC),”

searchservervirtualization.techtarget.com.

https://searchservervirtualization.techtarget.com/definition/SPARC (accessed

Apr 10, 2022)

5. Wikipedia, “OpenRISC,” en.wikipedia.org.

https://en.wikipedia.org/wiki/OpenRISC#:~:text=OpenRISC%20is%20a%20p

roject%20to,project%20of%20the%20OpenCores%20community (accessed

Apr 10, 2022)

6. R. E. Bryant, “Alpha Assembly Language Guide,” dissertation, Univ.

Carnegie Mellon, Pittsburgh, Pennsylvavia, USA, 1998. [Online]. Available:

https://www.cs.cmu.edu/afs/cs/academic/class/15213-f98/doc/alpha-guide.pdf

7. A. Waterman, “The RISC-V Instruction Set Manual,” Ph.D. dissertation, Dept.

EECS. Univ. California, Berkeley, California, USA, 2017. [Online].

Available: https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

8. J. He, “SUPERSCALAR RISC-V PROCESSOR WITH SIMD VECTOR

EXTENSION,” M.S. dissertation, Dept. Elect. Univ. Saskatchewan,

Saskatoon, Saskatchewan, Canada, 2020. [Online]. Available:

https://harvest.usask.ca/bitstream/handle/10388/13040/HE-THESIS-

2020.pdf?sequence=1

https://www.design-reuse.com/articles/46237/extending-risc-v-isa-with-a-custom-instruction-set-extension.html
https://www.design-reuse.com/articles/46237/extending-risc-v-isa-with-a-custom-instruction-set-extension.html
https://people.eecs.berkeley.edu/%7Ekrste/papers/EECS-2016-1.pdf
https://people.eecs.berkeley.edu/%7Ekrste/papers/EECS-2016-1.pdf
https://en.wikichip.org/wiki/arm/armv8#:%7E:text=ARMv8%20(codename%20Oban)%20is%20the,of%2064%2Dbit%20operating%20capabilities
https://en.wikichip.org/wiki/arm/armv8#:%7E:text=ARMv8%20(codename%20Oban)%20is%20the,of%2064%2Dbit%20operating%20capabilities
https://searchservervirtualization.techtarget.com/definition/SPARC
https://en.wikipedia.org/wiki/OpenRISC#:%7E:text=OpenRISC%20is%20a%20project%20to,project%20of%20the%20OpenCores%20community
https://en.wikipedia.org/wiki/OpenRISC#:%7E:text=OpenRISC%20is%20a%20project%20to,project%20of%20the%20OpenCores%20community
https://www.cs.cmu.edu/afs/cs/academic/class/15213-f98/doc/alpha-guide.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://harvest.usask.ca/bitstream/handle/10388/13040/HE-THESIS-2020.pdf?sequence=1
https://harvest.usask.ca/bitstream/handle/10388/13040/HE-THESIS-2020.pdf?sequence=1

REFERENCES

116
Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

9. Ginni, “What is SIMD Architecture?” tutorialspoint.com.

https://www.tutorialspoint.com/what-is-simd-

architecture#:~:text=SIMD%20represents%20single%2Dinstruction%20multi

ple,as%20displayed%20in%20the%20figure. (accessed Apr 10, 2022)

10. A. Tong, “Dynamic Scheduling,” cs.umd.edu.

https://www.cs.umd.edu/~meesh/cmsc411/website/projects/dynamic/tomasulo

.html. (accessed Apr 10, 2022)

11. E. F. Gehringer, “Improved Branch Predictors,” people.engr.ncsu.edu.

https://people.engr.ncsu.edu/efg/521/f02/common/lectures/notes/lec16.pdf.

(accessed Apr 10, 2022)

12. Wikipedia, “Verilog,” en.wikipedia.org. https://en.wikipedia.org/wiki/Verilog

(accessed Apr 10, 2022)

13. Model SE 2020. (2020). Siemens Accessed: April 8, 2022. [Online].

Available: https://eda.sw.siemens.com/en-US/ic/modelsim/ s Software

14. G. Nişancı, P. G. Flikkema, and T. Yalçın, “Symmetric Cryptography on

RISC-V: Performance Evaluation of Standardized Algorithms,”

Cryptography, vol. 6, no. 3, p. 41, Aug. 2022, doi:

https://doi.org/10.3390/cryptography6030041.

15. Aoki, K.; Ichikawa, T.; Kanda, M.; Matsui, M.; Moriai, S.; Nakajima, J.;

Tokita, T. Camellia: A 128-Bit Block Cipher Suitable for Multiple

Platforms—Design andAnalysis. In Selected Areas in Cryptography; Stinson,

D.R., Tavares, S., Eds. Springer: Berlin/Heidelberg, Germany, 2001, pp. 39–

56. (accessed on 12 April 2023). [CrossRef]

https://www.tutorialspoint.com/what-is-simd-architecture#:%7E:text=SIMD%20represents%20single%2Dinstruction%20multiple,as%20displayed%20in%20the%20figure
https://www.tutorialspoint.com/what-is-simd-architecture#:%7E:text=SIMD%20represents%20single%2Dinstruction%20multiple,as%20displayed%20in%20the%20figure
https://www.tutorialspoint.com/what-is-simd-architecture#:%7E:text=SIMD%20represents%20single%2Dinstruction%20multiple,as%20displayed%20in%20the%20figure
https://www.cs.umd.edu/%7Emeesh/cmsc411/website/projects/dynamic/tomasulo.html
https://www.cs.umd.edu/%7Emeesh/cmsc411/website/projects/dynamic/tomasulo.html
https://people.engr.ncsu.edu/efg/521/f02/common/lectures/notes/lec16.pdf
https://en.wikipedia.org/wiki/Verilog
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://eda.sw.siemens.com/en-US/ic/modelsim/

APPENDIX

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

APPENDIX

Final Year Project Weekly Report
(Project II)

Trimester, Year: Y3S3 Study week no.: 1-4

Student Name & ID: Lee Ang, 20ACB04056

Supervisor: Ts. Ooi Joo On

Project Title: Developing Extended ISA on RISC Based Processor

1. WORK DONE

- Multiplier development

- Testing and debugging RV32I

2. WORK TO BE DONE

- Testing and debugging multiplier in M extension

- Study division architecture

- Develop divider

3. PROBLEMS ENCOUNTERED

- Wrong upper 32-bit result of signed data multiplication

4. SELF EVALUATION OF THE PROGRESS

- still can follow up the progress

_________________________ _________________________

Supervisor’s signature Student’s signature

Thomas_Ooi
Stamp

APPENDIX

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Trimester, Year: Y3S3 Study week no.: 5-9

Student Name & ID: Lee Ang, 20ACB04056

Supervisor: Ts. Ooi Joo On

Project Title: Developing Extended ISA on RISC Based Processor

1. WORK DONE

- Testing and debugging multiplier in M extension

- Study division architecture

- Develop divider

2. WORK TO BE DONE

- Develop divider

- Testing and debugging divider in M extension

3. PROBLEMS ENCOUNTERED

- Wrong concept division design.

4. SELF EVALUATION OF THE PROGRESS

- still can follow the progress

_________________________ _________________________

Supervisor’s signature Student’s signature

Thomas_Ooi
Stamp

APPENDIX

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Trimester, Year: Y3S3 Study week no.: 10-13

Student Name & ID: Lee Ang, 20ACB04056

Supervisor: Ts. Ooi Joo On

Project Title: Developing Extended ISA on RISC Based Processor

1. WORK DONE

- Develop divider

2. WORK TO BE DONE

- Testing and Debugging divider

- FYP2 Report

3. PROBLEMS ENCOUNTERED

- wrong clock cycle control cause unexpected output

4. SELF EVALUATION OF THE PROGRESS

- a bit behind schedule

_________________________ _________________________

Supervisor’s signature Student’s signature

Thomas_Ooi
Stamp

APPENDIX

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

POSTER

PLAGIARISM CHECK RESULT

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Plagiarism Check Result

PLAGIARISM CHECK RESULT

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

Full Name(s) of
Candidate(s)

Lee Ang

ID Number(s) 010513-01-0327

Programme / Course Computer Engineering (CT)

Title of Final Year Project Developing Extended ISA on RISC Based Processor

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: ___ 19 %
Similarity by source
Internet Sources: _________18________%
Publications: __________6___________%
Student Papers: ________12__________ %

Number of individual sources listed of
more than 3% similarity: _____2_____

Parameters of originality required and limits approved by UTAR are as Follows:
(i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words
Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality
report to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the
Final Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________
Signature of Co-Supervisor

Name: _________________________

Signature of Supervisor

Name: ____Ts. Ooi Joo On________

Date: _____25/4/2023____________ Date: __________________________

Universiti Tunku Abdul Rahman
Form Title: Supervisor’s Comments on Originality Report Generated by Turnitin
for Submission of Final Year Project Report (for Undergraduate Programmes)
Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

The number of individual sources listed is acceptable.

Thomas_Ooi
Stamp

Thomas_Ooi
Typewriter
The percentage is acceptable.

Bachelor of Information Technology (Honours) Computer Engineering
Faculty of Information and Communication Technology (Kampar Campus), UTAR.

FYP2 Report Checklists

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY
(KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 20ACB04056
Student Name Lee Ang
Supervisor Name Ts. Ooi Joo On

TICK (√) DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.
Front Plastic Cover (for hardcopy)

√ Title Page
√ Signed Report Status Declaration Form
√ Signed FYP Thesis Submission Form
√ Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)

List of Symbols (if applicable)
√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter of

literature review
Appendices (if applicable)

√ Weekly Log
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)
√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the ticked

of these items, and/or any dispute happening for these items in this report.
*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my report.

(Signature of Student)
Date: 27/4/2023

