Deep Learning Inference on Edge Device: Traffic Violation Detection Using
OpenVino
BY
Chiew Jing Cheng

A REPORT
SUBMITTED TO
Universiti Tunku Abdul Rahman
in partial fulfillment of the requirements
for the degree of
BACHELOR OF COMPUTER SCIENCE (HONOURS)
Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2023

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Deep Learning Inference on Edge Device: Traffic Violation Detection

Using OpenVino

Academic Session: _ JAN2023

CHIEW JING CHENG

(CAPITAL LETTER)
declare that I allow this Final Year Project Report to be kept in
Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.
2. The Library is allowed to make copies of this dissertation for academic purposes.
Verified by,

/

(Author’s signature) (Supervisor’s signature)

Address:

87 Jalan Taman Melati 6,

Taman Melati, Setapak, 53100, Ts. Wong Chee Siang

Kuala Lumpur Supervisor’s name

Date: 23 APRIL 2023 Date: __ 25 APRIL 2023

davidletterboyz
Typewriter
Ts. Wong Chee Siang

davidletterboyz
Typewriter
25 APRIL 2023

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY/INSTITUTE* OF _INFORMATION AND

COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 24/4/2023

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that Chiew Jing Cheng (ID No:__20ACB02331
)has completed this final year project/ dissertation/ thesis* entitled “ Deep

Learning Inference on Edge Device: Traffic Violation Detection Using OpenVino ”

under the supervision__of Ts_Wong Chee Siang_ (Supervisor) from the

Department of _ Computer Science , Faculty/Institute* of _Information and

Communication Technology.

I understand that University will upload softcopy of my final year project / dissertation/
thesis* in pdf format into UTAR Institutional Repository, which may be made accessible to

UTAR community and public.

Yours truly,

(Chiew Jing Cheng)

DECLARATION OF ORIGINALITY

I declare that this report entitled “Deep Learning Inference on Edge Device: Traffic
Violation Detection Using OpenVino” is my own work except as cited in the
references. The report has not been accepted for any degree and is not being submitted
concurrently in candidature for any degree or other award.

Signature
Name : Chiew Jing Cheng
Date : 23 April 2023

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

| want to sincerely thank and appreciate my supervisor, Ts Wong Chee Siang, for
providing me with this inspiring opportunity to engage on a deep learning project with
OpenVino Technology. Many thanks in advance. | want to express my gratitude to my
parents and my entire family for their support, love, and never-ending encouragement

during the journey.

iii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

Deep learning technologies are becoming increasingly popular in recent years.
Numerous industries, including healthcare, entertainment, automation systems, natural
language processing, and others, are impacted by it. It advances global technology to a
new level. Deep learning techniques are now widely employed as a result, especially
on edge devices that perform IoT tasks. It is because we no longer need people to assist
us in our work, we instead choose to deploy an edge device with a deep learning model.
To run the code effectively without being bothered by the slow processing times, those
deep learning approaches demand for a lot of processing power, which requires strong
computer hardware. This project interprets and demonstrates how OpenVino (Open
Visual Inference and Neural) toolkits assist in improving performance and enable us to
run a demanding deep learning model on an Intel’s computer system that most regular
people have. The OpenVino’s inference engine is designed to speed up the inference of
deep learning models under IR format that is provided by OpenVino. This project will
explain whether the OpenVino toolkit does indeed offer a shorter inference time and
eventually how much performance can be delivered. Before the project ends, a traffic
violation detection application that combined with several deep learning pre-trained
models will be configured and deployed in an intel-powered edge device (Intel UP
board). It aims to determine whether running an OpenVino-optimized deep learning
framework application on an edge device with a low-power processor can surprisingly

produce a respectable result.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table of Contents

TITLE PAGE

DECLARATION OF ORIGINALITY

ACKNOWLEDGEMENTS 11
ABSTRACT v
TABLE OF CONTENTS Vv
LIST OF FIGURES VI
LIST OF TABLES Xl
LIST OF ABBREVIATIONS X1
CHAPTER 1 INTRODUCTION 1
1.1 Project Background 1
1.2 Problem Statement 2
1.3 Motivation 3
1.4 Project Scope 3
1.5 Project Objectives 3
1.6 Impact, Significance, Contribution 4
CHAPTER 2 LITERATURE REVIEW 5
2.1 Previous Works on assessing OpenVino Toolkit 5
2.1.1 Analysis of the Acceleration of Neural Networks Inference on Intel
Processors Based on OpenVino Toolkit 5
2.1.2 Philips Healthcare Uses the OpenVino Toolkit and the intel
DevCloud for the edge to accelerate compressed Sensing Image
reconstruction algorithm for MRI. 7
2.1.3 Lung Nodule Detection from low dose CT scan using Optimization
on Intel Xeon and Core processors with Intel Distribution of
OpenVino Toolkit 8
2.1.4 Face Detection and Face Re-identification System Using Deep
Learning and OpenVino 9
2.1.5 Intel OpenVino Toolkit for Computer Vision: Object Detection and
Semantic Segmentation 10
\'

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2 Conclusion of Improvement done by OpenVino Toolkit from previous study

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH
3.2 System Development Methodology

3.3 System Design Diagram
3.3.1 System Architecture diagram
3.3.2 Use case diagram of Traffic Violation Detection System
3.3.3 Activity Diagram of Traffic Violation Detection System

3.4 Timeline

CHAPTER 4 SYSTEM DESIGN

4.1 Performance Enhancement with OpenVino and DL Framework Selection
4.2.1 Flow Diagram of Performance Measurement introduced by
OpenVino

4.2 Traffic Violation Detection System Deployment with OpenVino
4.2.1 Traffic Violation Detection System System Block Diagram
4.2.2 Flow Diagram of Traffic Violation System Development

4.3 System Components Specifications
4.3.1 Hardware Components
4.3.2 Software Components

4.4 System Components Interaction Operations

CHAPTER 5 SYSTEM IMPLEMENTATION

5.1 Software Setup (On WorkStation - Window 10)
4.2 Setting up OpenVino enviroment

5.2 System Implementation for Objective 1: Performance Measurement
introduced by OpenVino
5.2.1 Measurement for TensorFlow Pre-trained Model
(Mobilev2_SSDlite)
5.2.2 Measurement for ONNX Pre-trained Model (YOLOv6n)
5.2.3 Measurement for Pytorch Pre-trained Model (YOLOvV6N)
5.2.4 Overview of the Performance measurement

5.3 System Implementation for Objective 2: Configuration of Traffic Violation

Detection.
5.3.1 Vehicle-license-plate-detection-barrier-0123
5.3.2 Library installation (EasyOCR)
5.3.3 Configuration of Traffic Violation Detection System
5.4. Result of the Traffic Violation Detection System

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

13

15
15

16
16
17
18

20

21

21

22

23
23
24

25
25
28

33

34

34
34

35

35
37
39
41

43
44
44
45
49

Vi

5.4 Hardware Setup (Intel UP Board) 52

5.1.1 OS Installation 52

5.1.2 Installation of VNC Server (Accessing to Edge Device without
Monitor) 55
5.1.3 Driver Installation for D-Link DWA-123 (Accessing Internet without
RJ45 Ethernet cable) 57
5.1.4 Final Product of System Hardware Components. 57
5.5 Software Setup (Intel UP Board) 58
5.5.1 OpenVino Environment 58
5.5.2 Install all dependencies and required libraries. 59
5.6 Testing the Effectiveness of OpenVino on an Edge Device 61
5.7 Result of the Traffic Violation Detection System on Edge Device 62
5.8 Task Automation Configuration (Intel UP Board) 64
CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 65
6.1 System Testing and Performance Metrics 65
6.2 Evaluation of Processed Frames per Second (FPS) Performance 66
6.2.1 FPS Evaluation on Workstation 66
6.2.2 FPS Evaluation on Intel UP Board 67
6.3 Evaluation of Accuracy Performance 68
6.3.1 Accuracy Evaluation on Workstation 68
6.3.2 Accuracy Evaluation on Intel UP Board 68
6.3.3 Overview of Performance 69
6.3 Limitation and Future Improvements 70
CHAPTER 7 CONCLUSION AND RECOMMENDATION 71
7.1 Conclusion 71
7.2 Recommendation 71
REFERENCES 73

APPENDIX - B WEEKLY LOG

POSTER

PLAGIARISM CHECK RESULT

FYP2 CHECKLIST

vii
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure Number Title

Figure 1.1
Figure 2.1
Figure 2.2

Figure 2.3
Figure 2.4

Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 4.1
Figure 4.2

Figure 4.3
Figure 4.4

Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8

OpenVino Implementation workflow

detection of object labelled as “cat”

Detection of objects labelled as “Man” (person) and “TR”
(tennis racket)

Detection of object labelled as “Plane”

comparing unoptimized TensorFlow, versus OpenVino
inference network

performance chart for inference time comparison
comparison of average processing time

Cost comparison for cpul

cost comparison for cpu2 and gpul

cost comparison for cpu3 and gpu2

cost comparison for cpu4

Waterfall Model

System Architecture Diagram

Use Case Diagram of Traffic Violation Detection System
Activity Diagram of Traffic Violation Detection System
Timeline of FYP1

Timeline of FYP2

Whole Project workflow

Pre-trained Object Detection model system flow diagram

OpenVino Object Detection system flow diagram
System Block Diagram of Traffic Violation Detection
System

Traffic Violation system Flow Diagram

Intel UP Board for testing in edge device

Camera (Logitech C615)

Power Bank

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

6

11
11
12
12
15
17

18
19
20
20
21
22

22
23

24
25

27
27

viii

28
28
29
29

30

31

Figure 4.9 Wifi Adapter (Dlink DWA-123)

Figure 4.10 Python

Figure 4.11 Jupyter Notebook

Figure 4.12 Deep Learning Framework (Tensorflwo, ONNX,
PyTorch)

Figure 4.13 OpenVino Toolkit

Figure 4.14 Vehicle-license-plate-detection-barrier-0123 model (IR
files)

Figure 4.15 Vehicle-license-plate-detection-barrier-0123 network
architecture

Figure 4.16 EasyOCR

Figure 4.17 Ubuntu 20.04 LTS

Figure 4.18 VNC Viewer

Figure 5.1 Version of OpenVino development tools

Figure 5.2 Version of Jupyterlab (IDE for python)

Figure 5.3 IR files of TensorFlow pre-trained model

Figure 5.4 Result of original TensorFlow Mobilev2_SSDlite pre-
trained model

Figure 5.5 Result of OpenVino-Optimized (TensorFlow-to-IR)
mobilev2_ssdlite pre-trained model

Figure 5.6 Converting ONNX format ((ONNX*) to IR format (.xml*
+ .bin*) using OpenVino’s model optimizer

Figure 5.7 Result of original ONNX YOLOv6n pre-trained model

Figure 5.8 Result of OpenVino-Optimized (ONNX-to-IR) YOLOv6n
pre-trained model

Figure 5.9 Exporting Pytorch yolové model to ONNX model

Figure 5.10 Result of original Pytorch YOLOvV6N pre-trained model

Figure 5.11 Result of (Pytorch-to-ONNX) YOLOv6n pre-trained

model

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.12

Figure 5.13
Figure 5.14

Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25
Figure 5.26
Figure 5.27
Figure 5.28
Figure 5.29
Figure 5.30
figure 5.31
Figure 5.32
Figure 5.33
Figure 5.34
Figure 5.35
Figure 5.36
Figure 5.37
Figure 5.38

Result of OpenVino-Optimized (Pytorch-to-ONNX-to-
IR) YOLOv6N pre-trained model

Flow Diagram of Traffic Violation Detection Syste

Vehicle-license-plate-detection-barrier-0123 model (IR
files)

Version of EasyOCR

EasyOCR to Detect English Characters
OpenVino Runtime Initialization

Start Capturing

Rescaling and Pre-processing

Main Function

Function of “retrieve cordinate()”
Function of “save plate image()”
Function of “save result to txt()”
Generate Average Processed FPS
Front-Facing (illegal driving) white car
Front-facing (Illegal Driving) Black Car
Back Facing (legal Driving) Back-facing Car
Front and Back Facing Car

Daily report.txt

Ubuntu Desktop Image Download
Bootable Drive with Intel UP Board
Install Ubuntu

(Ubuntu) Installation Complete

Booting Ubuntu on Edge Device without Bootable Drive
System Partition (Flag: boot)

VNC Server Installation

Set Password to VNC Server

Activate VNC server

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

41

43
44

44
44
45
45
46
47
47
48
48
49
49
50
50
50
51
52
52
53
53
54
54
55
55
55

Figure 5.39
Figure 5.40
Figure 5.41
Figure 5.42
Figure 5.43
Figure 5.44
Figure 5.45
Figure 5.46
Figure 5.47
Figure 5.48
Figure 5.49
Figure 5.50
Figure 5.51
Figure 5.52

Figure 5.53
Figure 5.54
Figure 5.55
Figure 5.56
Figure 5.57
Figure 5.58
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7

Remote Desktop Connection to Edge Device 1
Remote Desktop Connection to Edge Device 2
Command to Install Wi-Fi Adapter’s Driver
Final Product of System Hardware Components
Upgrade apt-get

Update apt-get

Install Git and Python Environment

Create OpenVino Environment

requirement.txt

Install from requirement.txt

Version of EasyOCR

Apps Project Directory

Performance of Original ONNX Model on Edge Device

Performance of OpenVino-optimised Model on Edge

Device

Activate OpenVino Environment

Run “app.py” file in Terminal

Report Text File Generated

Content of Report.txt
activate_and_run.sh

Crontab Setup

Dataset for Testing

FPS on Detecting Vehicle (OpenVino)
FPS on OCR

FPS on Detecting Vehicle (Intel UP Board)
Fps on OCR (Intel UP Board)

FPS Overview of FPS Performance

Overview of Accuracy Performance

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

56
56
57
57
58
58
58
58
59
59
60
60
61
61

62
62
63
63
64
64
66
66
66
67
67
69
69

Xi

Table Number

Table 2.1
Table 2.2
Table 2.3
Table 4.1
Table 4.2
Table 5.1
Table 6.1
Table 6.2

LIST OF TABLES

Title

Statistical characteristic of performance (PF)
Target device which neural network performed
Overview OpenVino toolkit improvement has made
Specifications of laptop

Specifications of Edge Device

Overview of the Performance Measurement Result
Accuracy of Models on Workstation

Accuracy of Models on Edge Device

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Page

10
14
25
26
42
68
68

Xii

OpenVino
IR

Al

DL

DNN
SSD

FPS

TF

OCR
AVX

LIST OF ABBREVIATIONS

Open Visual Inference and Neural Network Optimization
Intermediate Representation

Artificial Intelligence

Deep Learning

Deep Neural Network

Single Shot Detector

Frames Per Second

TensorFlow

Inference Engine

Optical Character Recognition

Advanced Vector Extensions

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Xiii

CHAPTER 1 Introduction

1.1 Project Background

Deep learning is widely used by businesses on an edge device nowadays. Individuals
have expressed concern over about the amount of computing power needed to any
DNNs model predicts output. In this project, we will talk about the OpenVino toolkit,
it is a toolkit that Intel has made available to speed up conversion of the original deep
learning framework (TensorFlow, pytorch, ONNX, ...) to the OpenVino (IR) format.
(Intermediate Representation). The development process can be accelerated by using
OpenVino Toolkit to simplify deep learning models by converting them to conform to
IR format as well as optimising DNN models to reduce the time it takes for inference.

Correspondingly, there are traffic offenses, particularly in one-way lanes, in residential,
academic, and urban areas. Many people complain that the number of incidents
occurring in those areas keeps rising. Even when there isn't an accident, people still
strongly dislike and criticise of the actions of other drivers because they force them to
drive carefully and with all of their attention every time. Hence, this project will then
configure a traffic violation detection system with paired with several pre-trained deep
learning models on an Intel edge device. In order to enhance the DNNs' performance
on the edge device, this project will then deploy system along with OpenVino
technology. The edge device will be installed at the side of the road to detect and save

those records of drivers who violate traffic laws in one-way lanes,

As shown in [1], The OpenVino project workflow can be separated to 4 part which is
Train, Model optimizer, Inference Engine and Deployment. First, we have to train a
model with code, then we use OpenVino toolkit’s model optimizer to optimize the
model and generate an Intermediate Representation (.xml + .bin files) of the model
which can be inferred with OpenVino Runtime. Furthermore, the inference engine’s
job is to check for model compatibility based on the framework used to train the model
as well as the hardware used (Intel hardware). Lastly, the application is deployed to

edge devices. Figure 1.1 shows the OpenVino toolkit workflow.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

User
Application

Inference

xml Engine
.bin

Figure 1.1 OpenVino Implementation workflow.

1.2 Problem Statement

Recently, Deep Neural Networks (DNNs) have made significant advancements in a
variety of fields. These powerful deep learning models are capable of imitating human
behaviour and autonomous decision-making. Therefore, it could displace the majority
of common human jobs. To deploy and produce such good performance and usable
deep learning models on an edge device, indeed, requires significant hardware as well
as DNN models and frameworks. It might require powerful hardware as well as pricey

processing resources.

Additionally, particularly in urban and residential areas, serious traffic offences like
driving the wrong way are frequent. Many people use a one-way lane to travel in the
opposite direction in an effort to get to their destination faster, but this frequently leads
to accidents. Even though there are no accidents, people still detest having to keep their

attention focused all the time on those annoying drivers.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

1.3 Motivation

The project's goal was to implement a deep learning inference system and a traffic
violation detection system using the OpenVino toolkit. In this paper, we will examine
how much the OpenVino toolkit can optimise or speed up the system's performance.
And furthermore, a traffic violation detection application will be developed at the
project's ending using deep learning and OpenVino technology. The application will
then be installed on an edge device with an Intel processor with low power (Intel UP
board). This last is to see whether an OpenVino-optimized deep learning framework

application running on a low-power edge device can deliver an acceptable result.
1.4 Project Scope

The scope of the project is to evaluate whether the OpenVino Toolkit significantly
increases DNN performance before deploying traffic violation detection system on an
edge device. In this project, we firstly compare some pre-trained deep learning models
from various frameworks along with OpenVino toolkits (by using supported Intel
hardware) to determine if it really brings out performance enhancement (lowering the
inference time needed). Then, we configure traffic violation detection system with the
combination of several deep learning models that are supported by OpenVino. At last,
the system is then deployed on an Intel edge device after OpenVino has been

implemented to improve system performance.
1.5 Project Objectives

The main objective of the project is to implement a traffic violation detection system
on an edge device using a set of deep learning models as well as the OpenVino Toolkit.
On the edge device, the OpenVino Toolkit is used to enhance performance by
decreasing the DNNs' inference time. The main objective can be divided into the

following two sub-objectives:

1. To measure the performance enhancement introduced by OpenVino and select
the most effective DL framework.

2. Configure Deploy the traffic violation detection on edge device along with
OpenVino Toolkits.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1

After the project is finished, a traffic violation detection system will be successfully
deployed on the edge device and can be used readily in a one-way road to detect if any
vehicles are moving in the wrong direction, thereby reducing the number of accidents.
This project can also draw conclusions about whether OpenVino actually improves
performance and whether doing so on an Intel edge device for a deep learning project

is worthwhile.
1.6 Impact, Significance, Contribution

A complex computer vision deep learning application, especially that forms with
multiple DNNs models can be thrilling to a CPU. CPU will reach a bottleneck If it
unable to manage to handle those hard cores of DNNs inference tasks. Additionally,
people are more willing to buy affordable edge devices that powered by only low-power
CPU to perform the computer vision task for saving cost. Thus, the solution of the
project can conclude that if OpenVino really help us for saving cost through accelerate
DNNs performance/inference time.

Besides that, traffic offences like driving the wrong direction in one-way lane are a
concern today, particularly in urban areas like residential neighbourhoods and school
campuses. The deployed traffic violation system application can assist in identifying
and capturing any vehicles that are moving against traffic laws (driving in the opposite
direction). As such result, management is able to punish rulebreakers. In the end, this

will lower the accident rate in urban areas.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

CHAPTER 2 Literature Review

2.1 Previous Works on assessing OpenVino Toolkit

2.1.1 Analysis of the Acceleration of Neural Networks Inference on

Intel Processors Based on OpenVino Toolkit

In [2] research, the SSD MobileNet V2 COCO model-based TensorFlow and OpenVino
Inference Engine are used to infer neural network models for the tasks of object
detection in pictures. It is demonstrated that a neural network's performance may be
greatly increased by reconfiguring the network for use on Intel processors using the
OpenVino Inference Engine. TensorFlow only is used in the comparison as the network

implementation.

The COCO 2017 dataset and 90 categories of objects with 200 images were used to
train the object detection model, which was then used to evaluate from[2]. Mobilev2
SSD Deep Neural Networks are one that are utilised in this study. The Intel i5-4460

processor, which is only supported by Intel hardware, was used.

This literature review [2] has drawn out two conclusions. First, using the OpenVino
inference engine has proven that the output of a neural network using OpenVino is
equivalent to the output of a traditional TensorFlow network implemented without
OpenVino. Second, the network that applied with OpenVino toolkit improves
performance by hundreds of frames per second compared to traditional network

implementations using TensorFlow. The example result is shown in Figure 2.1 — 2.3.

In table 2.1, we also can see that the OpenVino Inference engine gain average

performance of 126.449 times compared to traditional TensorFlow neural network.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

(c) TensorFlow and Inference Engine
(a) TensorFlow 0.147(FPS) (b} Inference Engine 17.735(FPS) predictions are identical

Figure 2.1 detection of object labelled as “cat”

(c) TensorFlow and Inference Engine
(a) TensorFlow 0.151(FPS} (b} Inference Engine 17.495(FPS) predictions are identical

Figure 2.2 Detection of objects labelled as “Man” (person) and “TR” (tennis

racket)

(c) TensorFlow and Inference Engine
() TensorFlow 0.147(FPS) (b} Inference Engine 15.005(FPS} predictions are identical

Figure. 2.3 Detection of object labelled as “Plane”

Table 2.1 Statistical characteristic of performance (PF)

Average Processed Frame per Second (FPS)
TensorFlow 0.149 fps
OpenVino 18.841 fps
OpenVino Gain 126.449x faster

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

2.1.2 Philips Healthcare Uses the OpenVino Toolkit and the intel
DevCloud for the edge to accelerate compressed Sensing Image

reconstruction algorithm for MRI.

In research [3], In order to shorten scan times, Philips Healthcare included compressed
sensing to their magnetic resonance imaging (MRI) scanners. Philip uses deep learning
techniques to recreate the MRI image. According to research [3], Philips Healthcare

was able to use the OpenVino toolset to accelerate their deep learning inference.

The relative speedups of the OpenVino toolkit over TensorFlow that is not optimised
are illustrated in Figure 2.4. W-net inference and Adaptive-CS-Net Inference are two
deep neural network models that were employed in this project from the TensorFlow
framework. The testing on three separate Intel processors—Intel Core i7-8665UE, Intel
Xeon E3 1268L v5, and Intel Xeon gold 6138—resulted in these results.

W-Net inference on W-Net inference on W-Net inference on
320x320 MRI scan 320x320 MRI scan 320x320 MRI scan

1
19% 20%
speedup speedup

3.0x
speedup |

o
6 o).

4 ~ d - ‘§_ .4 — u
yaam | B ,., L
0 0 L L

Intel® Core i7 8665UE Intel Xeon E3 1268L v5 Intel Xeon Gold 6138 CPU @2.00GHz

M openviNO TensorFlow B OpenviNO
2020.2 (sync) 115.0 202022 (sync)

(a) (b)
Adaptive-CS-Net inference Adaptive-CS-Net inference Adaptive-CS-Net inference

on 320x320 MRl scan on 320x320 MRI scan on 320x320 MRl scan

. 9.8x
speedup speedup
54.4x

02 02
speedup
| o NN g esp

Intel® Core i7 8665UE Intel Xeon E3 1268L v5 Intel Xeon Gold 6138 CPU @2.00GHz

TensorFlow W OpenVINO TensorFlow M OpenVINO TensorFlow
1150 20202 (sync) 1150 202022 (synq) 1150

(b) ()

Figure 2.4 comparing unoptimized TensorFlow, versus OpenVino inference network

As we can see from [3], compared to unoptimized TensorFlow, OpenVino toolkits were
able to accelerate the compressed sensing workloads for Philip Health care by

maximum up to 54x and minimum on Adapticve-CS-Net and minimum with19%

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

improvement on W-Net inferenet. We can also conclude that W-Net seems to have the

better optimization in OpenVino toolKit.

2.1.3 Lung Nodule Detection from low dose CT scan using Optimization
on Intel Xeon and Core processors with Intel Distribution of OpenVino

Toolkit

They aim to develop a system that can detect lung nodules using deep learning in paper
[4]. They ran inference performance tests on systems with Intel processors using an
optimised OpenVino Deep Learning model against an unoptimized BVLC Caffe

framework, and they got excellent outcomes, which are detailed in the Result section.

Figures 2.5, It was observed that the average inference time for each image using the
Intel Distribution of OpenVino optimised model was only 0.2304 seconds on an Intel
Core i7 machine as opposed to 7.5 seconds when using the BVLC Caffe DetectNet
model, achieving a 33x performance improvement over the baseline model.
Additionally, it certainly improves by roughly 31 times in the i5 processor, which
produces an average inference time of 0.3455 seconds as opposed to 11 seconds. As a
result, we may draw the conclusion that using the OpenVino toolset will enable us to
enhance the performance in the BVLC Caffe model by 30 times.

INFERENCE PERFORMANCE FOR SINGLE CT IMAGE (IN SECONDS)

0.8142
0.1 0.19 0.2304 0.31 0.3455
0 - I
Intel Xeon Platinum OpenVINO on IRIS OpenVINO on Core OpenVINO on Xeon OpenVINO on Core OpenVINO on OpenVINO on BVLC Caffe on Core BVLC Caffe on Core
8153 Graphics(FP16) i7(FP32) v5(FP32) i5(FP32) NCS2(FP16) Pentium N4200 i7 i5

Figure 2.5 performance chart for inference time comparison

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

2.1.4 Face Detection and Face Re-identification System Using Deep

Learning and OpenVino

The system proposed in [5] was built with Face detection and face re-identification to

identify and track people from the video footages.

The Convolutional Neural Network (CNN) model used by the system is based on the
Mobilenet V2 face re-identification model, which is a TensorFlow source framework.
The suggested design is put into practise utilising OpenVino (Open Visual Inference
and Neural Network Optimization) on a budget-friendly Intel UP board.

Figure 2.6 shows the findings of the average processing times from several assessment
platforms. When the model is optimised utilising OpenVino implementation rather than
only the Intel i7 CPU, the processing time is decreased by 73%, from an average
processing time of 52 ms to 14 ms. According to [5], this project utilises an Intel UP
board that is less costly, optimised for OpenVino, and equipped with a quad-core CPU,
and an integrated Intel GPU. The suggested technique is ideal for low-cost real-time
edge face recognition applications because to the 60ms inference speed and satisfactory

results.

Average Processing Time (ms)
60

60

52

14

CPU only CPU + OpenVino Intel UP Board + OpenVino

Figure 2.6 comparison of average processing time

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

2.1.5 Intel OpenVino Toolkit for Computer Vision: Object Detection

and Semantic Segmentation

The paper[6] provides an overview of the current state of neural network
implementation and introduces the Intel® OpenVino Toolkit for operating neural
networks on various Intel hardware platforms. The experiment on many hardware
platforms is described. It also provides a summary of the effectiveness and costs of
using a single CPU or GPU to run specific neural networks in normal mode with the
OpenVino Toolkit, automatically dividing neural network inference between CPU and
GPU (Heterogeneous Plugin), and launching a network on CPU and GPU

simultaneously (Multi-Device Plugin).

The investigation of object identification and semantic segmentation computer vision
neural network types was the focus of the paper[6].The type of neural network such as
RetinaNet, DUC, SSD, Tiny YOLOv2 and YOLOv2-COCO were used in this project.
All neural networks were represented within the ONNX machine learning model

framework.

Table 2.2 shows the three different CPU and two different GPU types that were tested
on the target platform for neural network performance. In addition, GPU1 and GPU2
are integrated GPUs in the CPU2 and CPU3 CPUs.

Table 2.2 Target device which neural network performed

Target device | Device name

CPU1 Intel® Core ™ i9-9900KF;
CPU2 Intel® Core ™ i7-7700HQ;
CPUS3 Intel® Core ™ i5-8250U;
GPU1 Intel® HD Graphics 630;
GPU2 Intel® UHD Graphics 620.

10
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

To describe the advantages of using the chosen device, a cost analysis (FPS) was
performed (higher is better) as shown in Figure 2.7 — 2.10. The neural network DUC
and yolo v2-coco's average performance dropped by 20.9% on the CPU and 16.2% on
the GPU when the OpenVino toolkit was utilised. On the CPU and GPU, neural
network SSD performance is often increased by roughly 30%. RetinaNet's performance
when utilising the OpenVino toolkit is difficult to determine because it might
periodically go down and then up by a tiny amount. Since it can increase by as much
as 100%, tiny YOLOvV2 should have an OpenVino framework that is well optimised
(except for CPU1 which was unable to be tested). The biggest gain in performance (up
to 141.3%) occurs on GPU2.

Cost Comparison For CPU1

SSD .
RetinaNet I
YOLO_v2 -

-100 -75 -50 -25 o} 25 50

Figure 2.7 Cost comparison for cpul

Cost Comparison For CPUZ2 and GPU1

= CPU2 GPU1
125

100
75

50

25
0 S ! —
-25

-50
puc SSD RetinaNet Tiny YOLO_v2 YOLO_v2

Figure 2.8 cost comparison for cpu2 and gpul

11

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

Cost Comparison For CPU3 and GPU2

® CPU3 » GPU2
150

100
50
0 -- .- —- ——

-50
Duc SsD RetinaNet Tiny YOLO_v2 YOLO_v2

Figure 2.9 cost comparison for cpu3 and gpu2

Cost Comparison For CPU4

SSD

RetinaNet

TinvYoLe-z _

-25 o] 25 50 75 100

Figure 2.10 cost comparison for cpud

It was difficult to say whether OpenVino actually improved the performance. It might
not be tuned for a particular model, but according to a study by [6], if the model was
properly optimised with OpenVino, performance could even go up by 141 percent.
However, compared to a single device, using a multi-device plugin and heterogeneous

plugin does not actually improve speed (cpu or gpu be executed only).

12

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

2.2 Conclusion of Improvement done by OpenVino Toolkit from

previous study

These figure five studies have demonstrated how the OpenVino toolkit could well be
improved. These studies used the OpenVino-supported TensorFlow, Caffe, and ONNX
deep learning framework. And the majority of the research employed more user-
friendly, broadly available, and affordable computers (except for 2.1.1 intel Xeon
processor which is high end processor). Now, Let us wrap things up by evaluating the

performance of the OpenVino toolkit.

In figure 2.7, it was demonstrated that OpenVino could successfully multiply the
performance of neural network SSD MoblieNet V2 coco from the TensorFlow
framework by up to 126.449 times. This project's processor, an affordable i5-4450 that

can be considered a low-end processor, produces surprising results.

In figure 2.8 If the OpenVino toolkit is used in conjunction with the Adaptive-CS-Net
from the TensorFlow framework, it can improve by a maximum of 54.4 times.
However, it only improves three times in the W-Net neural network. Even less
improvement is obtained for the low-cost CPU (i7-8665u) when OpenVino is used,
with only a 19% increase in W-Net speed and a 7.5 time increase in Adaptive-CS Net

speed.

In figure 2.9 OpenVino was tested using the BVLC caffe DetectNet neural network
model of the Caffe deep learning framework. As a result, OpenVino was able to
successfully increase the performance speed of i5 and i7 processors by about 30 times

(processor model number were not stated).

In figure 2.10, The project uses an i7 processor and the OpenVino toolkit (model
number was not stated). The CNN MobileNet V2 neural network model used in this
project is based on the TensorFlow source framework. Compared to the not inferred
model, it successfully increased system performance by 73%. (without implement

OpenVino Inference Engine)

This project examined how OpenVino could be made better with various target devices
that have three CPUs and two iGPUs. These processors are reasonably priced and user-
13

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2

friendly (except for CPU1 i9-9900KF which can considered as high cost). This project’s
neural network model includes DUC, SSD, RetinaNet, Tiny YOLOv2, and YOLO v2-
coco. This entire neural network is based on the ONNX framework. As a result,
performance for DUC and Yolo v2-Coco decreased while OpenVino toolkit was used.
Only the performance of the other three neural network model has improved. This
project also came to the conclusion that implementing a single GPU or CPU
outperformed heterogeneous plugins and multi-device plugins in terms of improvement

(sometimes even get more bad result).

Table 2.3 shows the overall performance of the OpenVino toolkit (only the cost-
effective i5/i7 processor is displayed). As we can see, the TensorFlow Framework
typically takes many advantages. Caffe framework also sees some good development.
ONNX framework appears to be unstable because it occasionally causes the
performance to drop. In addition, rather than being a problem with the deep learning
framework, it could be that the OpenVino toolkit is not well optimised to a particular

neural network model.

Table 2.3 Overview OpenVino toolkit improvement has made

neural network model Framework | average improvement x cpu used
SSD_MoblieNet_V2_coco | TensorFlow 26.45 | i15-4450
W-Net TensorFlow 0.19 | i7 — 8665u
Adaptive-CS Net TensorFlow 7.9 | i7 —8665u
BVLC caffe detectNet Caffe 30 | i5/i7 -
CNN MobileNet V2 TensorFlow 0.73 | i7 -
DUC ONNX -33.02 | i7-7700HQ
SSD ONNX 25.28 | i7-7700HQ
RetinaNet ONNX -2.46 | i7-7700HQ
Tiny YOLOv2 ONNX 86.41 | i7-7700HQ
YOLO v2-coco ONNX -5 i17-7700HQ
DUC ONNX -25.06 | 15-8250U
SSD ONNX 44.08 | i5-8250U
RetinaNet ONNX 5.46 | 15-8250U
Tiny YOLOv2 ONNX 115.17 | i5-8250U
YOLO v2-coco ONNX -2.58 | 15-8250U
14

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

CHAPTER 3 System Methodology/Approach

3.2 System Development Methodology
For the first objective of measuring the performance enhancement introduced by

OpenVino and selecting the most effective DL framework, | utilized the waterfall

model to ensure a structured and systematic approach to development.

The planning phase involved a thorough analysis of the project requirements, followed
by the design phase where | created a detailed system architecture and specified the
necessary hardware and software components. Then, | implemented the system and
conducted comprehensive testing to measure performance and select the most effective
DL framework.

For the second objective of configuring and deploying the traffic violation detection on
edge device along with OpenVino Toolkits, | followed a similar approach using the
waterfall model. | started with a planning phase that included analyzing the
requirements and designing the system architecture. Next, | implemented the system
and tested it thoroughly to ensure proper functionality. Finally, | deployed the system

to the edge device, followed by maintenance and support as needed.

Overall, utilizing the waterfall model helped me to develop and deploy my traffic
violation detection system in a structured and systematic manner, ensuring that each

phase of development was completed before moving on to the next.

Reguirements -\
Design \

Implementation \
Verification \(

Maintenance

Figure 3.1 Waterfall Model
15

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

3.3 System Design Diagram

3.3.1 System Architecture diagram

The traffic violation detection system architecture consists of several components,
including the client, internet, loT edge device, 10T camera, database, and admin panel.
The components are connected to one another to facilitate the detection and reporting
of traffic violations. The following is a description of each component:

Client: The client component provides the user interface for the admin to
interact with the system. The admin can set up the activation time for the system,
view the report of detected violations, and manage the system using the admin
panel.

Internet: The internet component connects the client and 10T edge device,
allowing the admin to access and manage the system remotely.

loT Edge Device: The 10T edge device component is responsible for capturing
real-time images from the road using the loT camera. The edge device performs
real-time image processing to detect illegal traffic vehicles.

loT Camera: The 10T camera component captures real-time images of the road,
which are transmitted to the edge device for processing.

Database: The database component stores the car plate numbers of detected
violations for reporting purposes. The admin can access the database through
the admin panel to view the report of detected violations

Admin Panel: The admin panel component provides a user-friendly interface
for the admin to set up the activation time, view the report of detected violations,
and manage the system.

16

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

@-\t(us 1o the Systen—p- m\«m to Local nuwnrkm

ClienvAdmin

Admin Panel Ianr\el

Conect to cilent local network

= ~
Store the car plate number of detected violation
= |

o
A
10T Edge ‘%@

Database

Send Realtime data to edge device

10 process

Real time Capture.

IoT thing
camera

Figure 3.2 System Architecture Diagram

3.3.2 Use case diagram of Traffic Violation Detection System
The use case diagram for the traffic violation detection system includes three actors:

admin, edge device (Intel UP board), and illegal traffic vehicle. The admin can set the

system activation time and check for corresponding illegal vehicles. The edge device is

responsible for detecting illegal traffic vehicles using car plate recognition and saving

the recognized carplate. The illegal traffic vehicle triggers the detection system when it

violates traffic rules, such as driving in the wrong direction in a one-way lane.

17

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

Traffic Violation Detection System

e . [legal Traffic

Set system \'-‘ | Vehicle Detection |
| activation time | AN /S
\\\ ,/’. ———
- <<Extend>>
L
//'/ 7-"\\
J / \
A\ / N\
. Car plate
J y Recognition |
Admin \\ 4
— e o
e . Tk Edge Deivee
/" Check the N <<include>>

corresponding | P

_ illegal vehicle / /- ™~
AN 9 e / SaveThe

e~ | Recognised Car |
. Number /

Figure 3.3 Use Case Diagram of Traffic Violation Detection System

3.3.3 Activity Diagram of Traffic Violation Detection System
The activity diagram for the traffic violation detection system shows the steps involved

in detecting illegal traffic vehicles and reporting their car plate numbers to the admin.
The process starts with the admin setting up the activation time for the system. The
system then captures real-time images from the camera, which are analyzed for any
illegal traffic vehicles.

If no illegal traffic vehicles are detected, the system loops back to real-time capture,
continuing to monitor the road until the end of the activation time. However, if an illegal
traffic vehicle is detected, the system performs car plate number recognition using OCR
technology. The recognized car plate number is then saved to the system's database for

reporting purposes.

18
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

After saving the car plate number, the system checks if the end of the activation time
has been reached. If not, the system loops back to real-time capture to continue
monitoring for additional violations. However, if the end of the activation time has been
reached, the system allows the admin to view the report containing the car plate

numbers of all the detected violations. Finally, the system ends.

Activity Diagram of Traffic violation detection System

Admin System
: Y :
/ A 7
Set Up Real Time
o~ S — -~
Activation Time Capture
. Y
Illegal Traffic ki 3
; t Detect;
Vehicle Detection A v
2 J No
v
CSNe—o—oo
N
Detected

OCR carplate ‘
Recognition

T

l

Save Carplate

z » End of time
Number to report

/

View Report < Yes

v

O

Figure 3.4 Activity Diagram of Traffic Violation Detection System

19
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3

3.4 Timeline

The FYP1 and FYP2 project timeline (Gantt chart) has shown below:

Week 7

Week 6

Week 1 Week 2 Week 3 Week 4 Week 5

Revised Proposal and Planning

SetUp System Enviroment

Measurement For TensorFlow
Pre-trained Mode!

Measurement For Onnx
Pre-trained Mode!

Measurement For Pytorch
Pre-trained Mode!

Report Writing

Presentation of FYP1

Figure 3.5 Timeline of FYP1

Revised Proposal and Planning

Research for car detection
Ppretrained model

developing and coding for the
detection model

research for car features
detection pretrained model

developing and coding for car
features detection model

Convert whole system to
OpenVino IR format

Study for saved vehicle model
and API request

Configuring Intel UP board

Report Writing

Presentation of FYP2

Figure 3.6 Timeline of FYP2

20

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

CHAPTER 4 System Design

The entire project workflow is depicted in Figure 4.1. The project first will setup system
environment to implement OpenVino Toolkit. Then, we will compare the performance
improvements made by OpenVino to a variety of deep learning frameworks (such as
ONNX, Pytorch, and TensorFlow) to ensure that OpenVino actually contributes to
improving performance and in order to select the most effective deep learning
framework to use in associated with OpenVino. Next, we will configure traffic violation
detection system using the most effective deep learning frameworks
along with OpenVino Toolkit. At last, the system will then be installed along the
roadside after being configured on edge device (Intel Up Board).

. . measure the performance select the best deep learning
Setup System . .
. t—» enhancement introduced ——| framework to use along with |
Enviroment , .
by openvino openVino

Configure Traffic
Violation Detection -
System

Deploy the system on
Intel Up Board

Figure 4.1 Whole Project workflow

4.1 Performance Enhancement with OpenVino and DL Framework
Selection

The aim is to evaluate the impact of OpenVino on the performance of the system and to identify

the most effective deep learning framework.

21
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

4.2.1 Flow Diagram of Performance Measurement introduced by

OpenVino

In this section, it will iterate the process from figures 4.2 and 4.3 three times. We will
first pick a pre-trained model for object detection that uses the TensorFlow, Pytorch,
and ONNX deep learning frameworks. With the flow diagram from figure 4.2 we will
first evaluate the performance of the initial framework. The same pre-trained model
will then pass through OpenVino's model optimizer to produce IR format, which will
be used to implement the inference engine. The OpenVino’s optimized model (IR
format) will then be measured as shown in the flow diagram in figure 4.3. Then, we
will record the processed frames per second (fps) and sketch out how much percentage
of improvement OpenVino has made. By following the improvement percentages from
the three deep learning frameworks. The best effective deep learning framework will
then be chosen and configured for integration with the traffic violation detection system
in this project.

. (Webcam real-time image pre-processing

 Start }——» capture — for the specific model

p ~ | J requirement - Y

h input the processed
image into the

(] pre-trained model
) -
Output and Processed output result

End - | observe reuslt | (bouding box, class |
N / | | label, FPS)

Figure 4.2 Pre-trained Object Detection model system flow diagram

image pre-processing

Start \":-—- fun Upen\/iqo’s [Webcam real-time = for the specific model |«
\ / model optimizer capture requirement L
- i i input the processed
image into the
OpenVIno's Inference
[) 1 engine
™ Output and Processed Open\h!m
| End 1 observereuslt < | output result (bouding <
N _/ | T | box, class label, FPS)
Figure 4.3 OpenVino Object Detection system flow diagram
22

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

4.2 Traffic Violation Detection System Deployment with OpenVino
After completing the first objective as per Chapter 4.2, the most effective DL

framework will be identified. Subsequently, the traffic violation detection system will

be developed, and the system's high-level overview will be presented below.

4.2.1 Traffic Violation Detection System System Block Diagram
The system block diagram consists of several components, including the client, 10T

edge device, 10T camera, and the admin panel. The client is responsible for accessing
the system and triggering the detection process. The 10T edge device is equipped with
the necessary hardware components, such as an Intel UP board and a power bank, to
support the detection and recognition processes. The 10T camera captures the live
video feed of the traffic, which is then processed by the deep learning models built
with Tensorflow and OpenVINO. Upon detection of a traffic violation, the system
records the car plate number and the date and time of the incident, which is stored in a
text file for future reference. Finally, the admin panel provides the user with the
ability to interact with the system and view the report generated, containing the details

of the traffic violations detected by the system.

Figure 4.4 System Block Diagram of Traffic Violation Detection System

23
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

4.2.2 Flow Diagram of Traffic Violation System Development

Before the traffic violation system begins, the pre-trained deep learning models will be
processed by OpenVino's model optimizer to create the IR format necessary to run with
OpenVino's inference engine. Figure 4.5 demonstrates the workflow of the Traffic
Violation System. The system will first capture the real-time snapshot of the traffic
situation. Next, Pre-processing will be applied to the captured image, followed by
vehicle detection (fixed position of vehicle) to detect the offending vehicle. Next, The
detected vehicle will be perfectly cropped out and insert into the others DL model
(EasyOCR) for detecting vehicle features. At last, the result will be processed and

recorded in a txt file in order for the administrator to check which vehicle has broken

traffic laws.
4 A Webcam real-time Image Vehicle detection
Start Lo . . . - . - o
N J capture pro-processing (Using OpenVino) . Y
Process
] output
o ™~ [| [| CarPlate
‘ End B Record result Process output = Recognition (Easy =
“ Y, | | , OCR)

Figure 4.5 Traffic Violation system Flow Diagram

24
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

4.3 System Components Specifications

4.3.1 Hardware Components
1. Workstation

In this project, we use the OpenVino toolkit to benefits our system deep learning
workloads and boosts the inference time. Only Intel hardware is officially supported
by the OpenVino toolkit. It requires a computer system with Intel Core Processors
ranging from the 6" to the 12" generation. The laptop we set up for this project

study is shown in Table 4.1.

Table 4.1 Specifications of laptop

Description Specifications
Model Microsoft Surface Pro 7
Processor Quad-core 10" Gen Intel® Core™ i7-1065G7 Processor

Operating System Windows 10 Home

Graphic Intel® Iris™ Plus Graphics
Memory 16GB DDR4x RAM
Storage 256GB SSD

25

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

2. Intel Up Board

Furthermore, an edge device will be used to deploy the deep learning applications
for traffic violations. However, the edge device we select must also be compatible
with the OpenVino Toolkit. Hence, Intel UP Board is selected as the edge device

as shown in Figure 3.0. Besides, table 3.2 displays the edge device's specification.

Figure 4.6 Intel UP Board for testing in edge device

Table 4.2 Specifications of Edge Device

Description Specifications
Model Intel UP Board, UP-CHT01-A10-0432
Processor Intel® Atom™ x5 Z8350

Operating System Ubuntu 20.04 LTS

Graphic Intel® HD400
Memory 4GB DDR3L RAM
Storage 32GB eMMC

26

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

3. Camera
For this project, a Logitech C615 camera will be used to perform the deep
learning task. While a more professional camera could potentially be used with
the edge device, the Logitech C615 has been selected as a cost-effective option

that meets the project's requirements.

Figure 4.7 Camera (Logitech C615)

4. Power Bank
To simulate the power supply of the edge device, a power bank has been utilized
for this project. This allows the edge device to be powered wherever it goes and
wherever it is installed, without the need for a fixed power source. By leveraging
a portable power source, the edge device can be easily deployed in various
settings, making it more versatile and flexible. The specific power bank model
used for this project has been selected based on its capacity, output voltage, and
compatibility with the edge device, in order to ensure reliable and stable

performance during operation.

Figure 4.8 Power Bank

27
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

5. Wifi USB adapter
In this project, a Dlink DWA-123 Wifi USB adapter was selected to provide
wireless connectivity to the edge device. This adapter is capable of providing
up to 150Mbps of wireless speed, and is designed to be plug and play, making
it easy to use. The adapter was connected to the edge device, allowing it to
connect to a local wifi network and subsequently to the admin PC through VNC
viewer. The selection of this adapter was based on its affordability and ease of

use, making it a practical option for the project requirements.

Figure 4.9 Wifi Adapter (Dlink DWA-123)

4.3.2 Software Components

1. Python 3.8

Python 3.8 was used as the primary programming language for this project due
to its popularity, versatility, and extensive libraries and tools available for
scientific computing and machine learning. Python has emerged as a popular
choice among researchers and practitioners in the field of artificial intelligence
and data science due to its ease of use, readability, and flexibility. Additionally,
Python's open-source nature and large community of developers have made it a
reliable and well-supported platform for developing and deploying machine
learning applications.

Python 3.8

28
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

Figure 4.10 Python

2. Jupyter Notebook
JupyterLab was chosen as the primary IDE for this project due to its user-
friendly interface and integration with various data formats and programming
languages. Its ability to combine code, visualization, and documentation in a

single notebook makes it an ideal platform for data analysis and machine

_
Jupyter
v

Figure 4.11 Jupyter Notebook

learning experimentation.

3. Deep learning framework
This project involves the implementation and testing of several deep learning
models using the open-source software toolkit OpenVINO, which allows for
efficient deployment of neural networks on a variety of hardware platforms. The
deep learning frameworks used in this project include ONNX, PyTorch, and
TensorFlow, which are popular frameworks for developing and training deep
learning models. The use of these frameworks allowed for the exploration of
different neural network architectures and optimization techniques to achieve

optimal performance on the target hardware.

V@ :

Figure 4.12 Deep Learning Framework (Tensorflwo, ONNX, PyTorch)

29
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

4. OpenVino Toolkit 2022
The OpenVINO Toolkit 2022 was used to optimize and deploy deep learning
models for traffic violation detection on edge devices in this project. The
toolkit's support for popular deep learning frameworks and optimization
techniques allowed for efficient execution of models on limited hardware

resources.

©penVIN®

Figure 4.13 OpenVino Toolkit

5. Pretrained — Model
In this project, we will use pre-trained object detection models from
TensorFlow, PyTorch, and other frameworks to evaluate their effectiveness for
integration with OpenVINO. By testing and comparing the performance of
these models, we aim to identify the best one for our project's requirements.

Based on the results of the first objective outlined in Chapter 5, we have
determined that the TensorFlow pre-trained model is the most effective for our
project. We subsequently selected a pre-trained model for vehicle and license
plate detection using TensorFlow. Specifically, we chose the "Vehicle-license-
plate-detection-barrier-0123" model from OpenModelZoo on GitHub because
it is used to specifically detect front-facing car. While the model framework was
originally created using TensorFlow, and it was converted into an IR model that
is fully compatible with the OpenVINO toolkit.

| vehicle-license-plate-detection-barrier-0123.bin [22/2023 1:29 PM BIM File

| vehicle-license-plate-detection-barrier-0123.mapping 1/ :29 PM MAPPING File

vehicle-license-plate-detection-barrier-0123.xml :20 PM AML File

Figure 4.14 Vehicle-license-plate-detection-barrier-0123 model (IR files)

30
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

Q{ EAfyp\vehicle-license-plate-detection-barrier-0123\FP32\vehicle-license-plate-detection-barrier-0123.xml - Notepad++ =
File Edit 5earch View Encoding Language Seftings Teols Macre Run Pluging Window 2
o = Qoh&}” | |ﬂbﬂ|% ='o| = ;ELJU‘jIA“E]

B project json ,1 B scene pho 14 [vehicledicense-plate-detection-bamier-0123 xml E3 l

1 <2xml wersion="1.0" ?>
2 <net name="vehicle-license-plate-detection-barrier-0123" wversi
<layers>

<layer i1id="0" name="Placeholder" type="Parameter" version="opsetl":>
<data shape="1,256,256,3" clement_type="£32" £

— <rt_info>

<attribute name="fused names" version="0" value="Placeholder"/>

<attribute name="old api_map order" wversion="0" value="0, 2, 3, in/=
- <frt_info>
10 — <output>
11 —| <port id="0" precision="FP32" names="MobilenetV2/input:0,Placeholder,Placeholder:0">
12 <dim=1l</dim>
<dim=256</dim>
<dim>256</dim>
<dim>3</dim>
=] <rt_info>

<attribute name="layout" version="0" layout="[N,H,W,C]"/>
</rt_info>
</porc>
</output>

</lavers

eXtensible Markup Languagefile length: 307,834 lines: 8,420 Ln:16 Col:30 Pos:584 Unizx (LF) UTF-2

Figure 4.15 Vehicle-license-plate-detection-barrier-0123 network architecture

6. EasyOCR

EasyOCR was incorporated into the traffic violation detection system of this
project to enhance the recognition of text on license plates. This tool uses
advanced machine learning algorithms that allow it to accurately identify
characters and words from images, even in challenging conditions or
enviroments. By using EasyOCR, this project achieved high accuracy and speed
in recognizing and extracting the text on car plates. EasyOCR's ease of
integration made it a convenient and reliable solution for car plate recognition.
We follow the documentation of EasyOCR through [11] on GitHub.

[—1
Easy
OCR

[—]

Figure 4.16 EasyOCR

31
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

7. Ubuntu 20.04.6 LTS
Ubuntu 20.04.6 LTS was chosen as the OS for the Intel Up board edge device
due to its stability, security, and compatibility with the hardware. Its LTS release
model offers five years of support and security updates. Additionally, Ubuntu
is well-supported by the open-source community and provides a range of
software packages for machine learning development. It also offers necessary
drivers and software libraries required for running the OpenVINO Toolkit and

deep learning frameworks on the Intel Up board.

Figure 4.17 Ubuntu 20.04 LTS

8. VNC Viewer
VNC viewer was used to remotely access the Intel Up board edge device in this
project due to its cross-platform compatibility and ease of use. VNC viewer
allows for remote desktop access to the device from any other computer on the
same network, enabling remote development and testing of machine learning
models. Its cross-platform compatibility ensures that it can be used on a range
of devices and operating systems, making it a flexible and convenient option for
accessing the edge device. Additionally, VNC viewer's simple user interface

makes it easy to set up and use, even for those with limited technical expertise.

N

-

Figure 4.18 VNC Viewer

32
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4

4.4 System Components Interaction Operations
In this project, a webcam was utilized to simulate an 10T camera, a power bank was

used as a substitute for a professional power supply, and a Wi-Fi adapter was employed
to connect the edge device to a wireless network. The webcam captures the real-time
traffic conditions at the roadside, and the edge device processes the results using the
selected deep learning framework. The detected car plate numbers and the
corresponding date and time information are saved in a text file for record keeping.
Users can access the report through an admin panel (VNC viewer) to retrieve the data
from the edge device.

It is important to note that the devices used in this project are a simulation of
professional-grade equipment. While the results achieved by this simulation are
satisfactory, it is expected that a more professional and expensive equipment will
provide even better results. The use of professional equipment is recommended in real-
world deployments to ensure the highest level of accuracy and reliability in traffic

violation detection systems.

33
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

CHAPTER 5 System Implementation

5.1 Software Setup (On WorkStation - Window 10)

Before starting to develop this project, there are three software needed to be installed

and downloaded in my device which is:
1. Python 3.8.8
2. OpenVino 2022.2.0

3.JupyterLab 3.5.0

4.2 Setting up OpenVino enviroment
The commands "python -m venv OpenVino env" and "OpenVino envScriptsactivate™

can be used to create an environment for the OpenVino project after Python 3.8.8 has
been installed on the machine. Next, we install the OpenVino development toolKkit in
the specific OpenVino environment by using the command "pip install OpenVino-
dev[ONNX,TensorFlow2,pytorch]==2022.2.0". We only include "[ONNX,
TensorFlow2, Pytorch” in the bracket because we only consider using these deep
learning frameworks for our work. Use the command shown in figure 5.1 to verify that
if the OpenVino development tools have been properly installed.
(openvino_env) C:\Users\jingc>pip show openvino

Name: openvino

Version: 2022.2.0

Summary: OpenVINO(TM) Runtime

Home-page: https://docs.openvino.ai/latest/index.html
Author: Intel Corporation

Author-email: openvino_pushbot@intel.com

License: OSI Approved :: Apache Software License
Location: c:\users\jingc\openvino_env\lib\site-packages
Requires: numpy

Required-by: openvino-dev

Figure 5.1 Version of OpenVino development tools

Additionally, Jupyter Notebook serves as our integrated development environment
(IDE), allowing us to work on our project efficiently. The command "pip install

34
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

jupyterlab” can be used to install Jupyter notebooks. Figure 5.2 shows if Jupyterlab has

been installed successfully.

(openvino_env) C:\Users\jingc>pip show jupyterlab

computational environment

b\site-packages
hon, jinja2, jupyter-core, jupyter-server, jupyterlab-server, nbclassic, notebook, packaging, tomli, torna

Required-by:

Figure 5.2 Version of Jupyterlab (IDE for python)

5.2 System Implementation for Objective 1: Performance

Measurement introduced by OpenVino

We evaluated the performance of three deep learning frameworks in our project in order
to determine the most effective deep learning framework optimised for OpenVino and
so to deploy the traffic violation detection system in our edge device. TensorFlow,
Pytorch, and ONNX were selected for testing because of their established deep learning
communities. We choose an object detection pre-trained model that was trained using
the COCO 2017 dataset and 80 labeled objects from each framework in order to have a
fair comparison process. Besides, all precision formats used are "FP32" and the input

batch size is 1.

5.2.1 Measurement for TensorFlow Pre-trained Model

(Mobilev2_SSDlite)

The TensorFlow pre-trained model that we used was came from [7]. The pre-trained
model is from the open model zoo which is officially published by Intel. Next, we use
OpenVino's model optimizer to convert the original TensorFlow pre-trained model
format into IR format (OpenVino's optimised model that required to run OpenVino
Inference engine). The converted IR files (.xml* + .bin*) is shown in figure 5.3. Figure
5.4 displays the processed FPS result from the original model, while Figure 5.5 displays
the processed FPS result for the OpenVino optimized model under IR format. This

TensorFlow pre-trained model is provided from intel’s Open Model Zoo, after being

35
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

optimized by OpenVino, the performance is improved by about 3.04x times (23.5 FPS
to 71.5FPS).

Figure 5.3 IR files of TensorFlow pre-trained model

b J

Inference time: 42.5ms (23.5 FPS)

person 0.64

Figure 5.4 Result of original TensorFlow Mobilev2_SSDlite pre-trained model

36

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Inference time: 14.0ms (71.5 FPS)]

person 0.71

Figure 5.5 Result of OpenVino-Optimized (TensorFlow-to-IR) mobilev2_ssdlite pre-

trained model

5.2.2 Measurement for ONNX Pre-trained Model (YOLOv6n)

To test whether OpenVino actually improves the performance of non-Intel-provided
models and its general applicability for new DNNs, we selected a model that wasn't
made by Open Model Zoo. Instead, we pick for the currently popular new DNNs
framwork, YOLOV6, which was released by Meituan from [8] recently in June 2022.
The pre-trained ONNX model (yolovén_base.ONNX) that we used to test the ONNX
framework is downloaded from [9]. Then, as shown in figure 5.6, we implement
OpenVino's model optimizer to transform the original ONNX YOLOV6 pre-trained
model format into IR format (OpenVino-Optimized format). Figure 5.7 displays the
result of the original ONNX model, while Figure 4.8 displays the result of the model
with OpenVino optimization (IR format). The Yolovén ONNX pre-training model
released by Meituan has improved its performance by about 1.2x(from 14.3FPS to
17.4FPS) times after being optimized by OpenVino.

37
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

(openvino_env) C:\Users\jingc\model>mo --input_model yolovén_base.onnx
Model Optimizer arguments:
Common parameters:
Path to the Input Model: C:\Users\jingc\model\yoloven_base.onnx
Path for generated IR: C:\Users\jingc\model\.
IR output name: yolovén_base
Log level: ERROR
Batch: Not specified, inherited from the model
Input layers: Not specified, inherited from the model
Output layers: Not specified, inherited from the model
Input shapes: Not specified, inherited from the model
Source layout: Not specified
Target layout: Not specified
Layout: Not specified
Mean values: Not specified
Scale values: Not specified
Scale factor: Not specified
Precision of IR: FP32
Enable fusing: True
User transformations: Not specified
Reverse input channels: False
Enable IR generation for fixed input shape: False
Use the transformations config file: None
Advanced parameters:
- Force the usage of legacy Frontend of Model Optimizer for model conversion into IR:
- Force the usage of new Frontend of Model Optimizer for model conversion into IR:
OpenVINO runtime found in: c:\users\jingc\openvino_env\lib\site-packages\openvino
OpenVINO runtime version: 2022.2.0-7713-afl6eald79a-releases/2022/2
Model Optimizer version: 2022.2.0-7713-afl6eald79a-releases/2022/2
[SUCCESS] Generated IR version 11 model.
[SUCCESS] XML file: C:\Users\jingc\model\yolovén_base.xml
[SUCCESS] BIN file: C:\Users\jingc\model\yolovén_base.bin
[SUCCESS] Total execution time: 2.22 seconds.

Figure 5.6 Converting ONNX format ((ONNX¥*) to IR format (.xml* + .bin*) using

OpenVino’s model optimizer

Inference time: 64.9ms (15.4 FPS)

W\

Figure 5.7 Result of original ONNX YOLOQOv6n pre-trained model

38
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

R i

Inference time: 57.6ms (17.4 FPS)

person 0.73

Figure 5.8 Result of OpenVino-Optimized (ONNX-to-IR) YOLOv6n pre-trained
model
5.2.3 Measurement for Pytorch Pre-trained Model (YOLOv6n)

We used the same source from [9] of YOLOV6 pretrained model (yolov6n base.pt) for
the measurement process of the Pytorch model. We implement the conversion from
Pytorch to ONNX format before only converting to IR format because OpenVino
Model Optimizer does not support the conversion from Pytorch to IR format. We first
export our Pytorch model to an ONNX model using the method provided by [10]. The
ONNX file is converted to IR file using the model optimizer in OpenVino. And after
the comparison process, we discover that the original Pytorch model result is displayed
in figure 5.10 and the OpenVino-optimized result is shown in figure 5.12. The Yolov6n
Pytorch pre-trained model released by Meituan has improved its performance by about
1.8x (from 9.7FPS to 17.7FPS) after being optimized by OpenVino. Additionally, we
also tested the processed FPS of the converted Pytorch to ONNX model in figure 5.11.

Figure 5.9 Exporting Pytorch yolové model to ONNX model

39

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Inference time: 103.1ms (9.7 FPS)

person 0.84

Figure 5.11 Result of (Pytorch-to-ONNX) YOLOv6N pre-trained model

40
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

-
Inference time: 56.6ms (17.7 FPS)

person 0.82

Figure 5.12 Result of OpenVino-Optimized (Pytorch-to-ONNX-to-IR) YOLOv6n
pre-trained model

5.2.4 Overview of the Performance measurement
The Overview of performance introduced by OpenVino for the three different deep

learning frameworks, TensorFlow, ONNX, and Pytorch, is shown in Table5.1. In this
stage, two types of DNN models are implemented. The first DNN model is called
Mobilev2 SSDlite, and TensorFlow (improves 204%) is engaged to run this model, it
is discovered that it is the best outcome out of all the others. However, since this
model is officially offered on the OpenVino website, it's possible that OpenVino has
well-optimized it to achieve good results. As a result, we tested YOLOV®6, a recently
released and well-liked DNNs framework that is not offered on the official OpenVino
website. The outcome reveals that ONNX improves 20% while Pytorch improves
80%.

41

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Table 5.1 Overview of the Performance Measurement Result

DL Model and FPS of Original FPS of OpenVino- | Obtained
(DNNs) Model Optimised Model | improvement (x
times)
TensorFlow 23.5 71.5 3.04x
(Mobilev2_SSDlite)
ONNX (YOLOv6) | 154 17.4 1.2x
Pytorch (YOLOvV6) | 9.7 (Pytorch) -
1.8x
15.7 (Converted 17.7

ONNX model)

Additionally, the model optimizer for OpenVino is not directly supported by Pytorch.

So instead, it must be changed from Pytorch to ONNX format and finally from ONNX

to IR format. Therefore, we converted Pytorch to ONNX using the official Yolove

website converter

(https://github.com/meituan/Y OLOv6/tree/main/deploy/ONNX).

and we put the modified Pytorch to ONNX model to the test. It achieves a similar

outcome to the original ONNX model (which around 15 FPS). Besides, the results of

converting either the Pytorch format to IR format or the ONNX model to IR format are
exactly equivalent (both Pytorch-ONNX-IR and ONNX-IR get around 17 FPS).

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

42

https://github.com/meituan/YOLOv6/tree/main/deploy/ONNX

CHAPTER 5

5.3 System Implementation for Objective 2: Configuration of
Traffic Violation Detection.

Below is the Flow Diagram of Traffic Violation Detection System, where the necessary
functions are labeled beside the description in each box. The components involved in

each process will be discussed in detail in the subsequent sections of chapter 5.3.

Scale the limit
of the
resulution

Lower the
resolution of
the frame

Perform
Vechicle and
Carplate
Detection

P

_~"Detected ™
_Illegal Driver? >

Save to report,
Save_result_to_txt(),
most frequent longest string()

l Record Stop
rime and

generate FPS

Figure 5.13 Flow Diagram of Traffic Violation Detection System

43
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.3.1 Vehicle-license-plate-detection-barrier-0123

The IR model "Vehicle-license-plate-detection-barrier-0123" was downloaded from
the Intel GitHub website Open Model Zoo. The model had already been converted to
IR files from the base TensorFlow framework. As we have already determined that the
TensorFlow model provides optimal performance, we will be using this model for
vehicle and car plate detection in our Traffic Violation Detection System. The primary
purpose of this model is to detect front-facing cars and their license plates. Once the

model was downloaded, it was placed in the project directory for further use

| vehicle-license-plate-detection-barrier-0123.bin 1/22/2023 1:29 PM BIM File 2,160 KB

| vehicle-license-plate-detection-barrier-0123.mapping 1/ : 1:20 PM MAPPING File

vehicle-license-plate-detection-barrier-0123 023 1:29 PM XML File

Figure 5.14 Vehicle-license-plate-detection-barrier-0123 model (IR files)

5.3.2 Library installation (EasyOCR)

EasyOCR was selected for the car plate recognition in this Traffic Violation Detection
System. EasyOCR was chosen for its high accuracy and ease of implementation. The

Documentation of Easy OCR is at [11] Below is the version installed:

Name: easyocr
Version: 1.6.2
Summary: End-to-End Multi-Lingual Optical Character Recognition (OCR) Solution
2 github.com/jaidedai/easyocr
tinaradorn
<cittinaradorn@gmail.com

License: Apache License 2.0

users\jingc\openvino_env\lib\site-packages

ja, numpy, opencv-python-headless, Pillow, pyclipper, python-bidi, PyYAML, scikit-image, scipy, Shapely, to

(openvino_env) C:\Users\jingc\openvino_notebooks>

Figure 5.15 Version of EasyOCR

We chose to use an English character-specific model for optimal performance as it
allowed for a more streamlined and accurate car plate recognition process, given that
car plates typically only contain English letters and numerical characters.

import easyocr
reader = easyocr.Reader(['en'], gpu=False)

Figure 5.16 EasyOCR to Detect English Characters

44
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.3.3 Configuration of Traffic Violation Detection System

1. Initialize OpenVino Runtime

At the beginning of the process, the OpenVino Runtime was initialized, and a

plate list was created to store the license plates detected in each frame. The plate

list was programmed to be cleared every 30 frames. In order to accommodate

the model's required input image size of 256x256, the global variables Height

and Width were set to 256. Additionally, the current date was stored in a

variable called "Now".

converted_model_path = f"model/vehicle-license-plate-detection-barrier-8123/FP32/vehicle-license-plate-detection-barrier-6123.xml"

Get the input and
input_layer = compi.

model. input(8)

output_layer = compiled_model.output(@)

Get the in,

#height, wid

height,

width=256,256

plate_list= []

now = datetime.datetime.now()
today_date = now.strftime("%Y-%m-%d")

Figure 5.17 OpenVino Runtime Initialization

2. Start Video Capture

During this phase, the system captures video using the specified "source".

Additionally, a collection called "processing_time Variable™ is created to store

the processing time data for further analysis.

try:

a video player to play with target fps
i1s.VideoPlayer(
source=source, flip=flip, fps=3@, skip_first_frames=skip_first_frames

)

Start capturing
player.start()
if use_popup:
title = "Press ESC to Exit"
cv2.namedWindow(
winname=title, flags=cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE
)

processing_times = collections.deque()
while True:

Figure 5.18 Start Capturing

45

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

3. Rescaling the frame resolution limit & Pre-processing

To optimize performance, the system limits the maximum frame resolution to
1440x1440p. The frames are then reformatted to [Batch,Height,Width,Channel]

to match the input requirements of the neural network.

interpolation=cv2, INTER_AREA

Figure 5.19 Rescaling and Pre-processing

4. Perform Vehicle and Carplate Detection (Main Function)

The main function begins by initializing the "start_time" and "end_time"
variables to measure the overall performance of the program, which includes
front-facing vehicle and car plate detection as well as OCR. The
"compiled_model" function is responsible for loading the model using
OpenVino. The “Save plate_image" function contains the OCR

implementation.

46

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Measure processing time.
start_time = time.time()

Get the rg
e = [input_img])[output_layer]

process result
Delete the dim of @, 1.
boxes = np.squeeze(boxes, (8,1))

Remove zero only boxes.
boxes = boxes[~np.all(boxes ==8, axis=1)]

#seperate Label object
if boxes is None:
car_pos = []
plate_pos = []
elsa:
if len(boxes) =
car_pos = [
plate_pos =
else:
car_pos = boxes[boxes[:, 1] == 1]
plate_pos = boxes[boxes[:, 1] == 2]

e:

{1

Frame_ori=frame.copy()
car_pos=retrieve_coordinate(frame,resized_image,car_pos,threshold=e.3)
plate_pos=retrieve_coordinate(frame,resized_image,plate_pos, threshold=0.3)

#1f both have not empty List
Draw boxes on a frame.
if(((not car_pos) | (not plate_pos)) == @):
frame = draw_boxes(frame=frame, boxes=plate_pos)
s=car_pos)
save_plate_image(frame_ori,plate_pes)
else:
#insert empty string to List every frame
plate_list.append("")

#clear and save every 15 frame
if len(plate_list) > 3@:
predicted_number = most_frequent_longest_string(plate_list)
for plate_number in predicted_number:
save_result_to_txt(plate_number)
plate_list.clear()

stop_time = time.time()

Figure 5.20 Main Function

5. Function to Retrieve Coordinate (Result Post Processing)

The purpose of this function is to obtain the precise coordinates of the bounding

box and then return them in the form of a list.

Jaef ate (bgr_image, resized_image, boxes, threshold=0.3) —> np.ndarray:
Fetch image shapes to ca
(zeal_y, real x), (resized y, resized x) = bgr image.shape[:2], resized image.shape[:2]
ratio_x, ratio_y = real x / resized x, real_y / resized y
Find the boxes ratio
poxes = boxes(:, 1:]
Store the vehicle's position
position = []
Iterate through nOn-zero boxes
] for box in boxes
Pick confidence factor from last place in array
conf = box[1]
] if conf > threshold:
by x and y ratio
we position upper box bar little bit lower to make it visible on image
3 (% min, v_min, x max, v_max) = [
int(max(cornsr_position * ratio_y * resized y, 10)) if idx % 2

else int(corner position * ratio_x + resized x)
for idx, corner position in enumerate(box[2:])
1
position.append([int (box[0]) ,conf,x min, y min, x_max, y max])
return position

Figure 5.21 Function of “retrieve cordinate()”

47

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

6. Function to perform Car Plate Number Recognition (save plate image(),

save result to txt())

The purpose of these functions is to carry out Optical Character Recognition

(OCR) to identify the car plate number. Only results with an accuracy of 80%

or higher will be saved to the report file.

def save_plate_image(img, plate_pos):
Select g vehicle to recognize.
pes = plate_pos[@]
Crop the image with [y_min:y_max, x_min:x_max].
test_car = img[pos[3]:pos[5], pos[2]:pos[4]]
#test_car = img[pos[1]:pos[3], pos[e]:pos[2]]

Resize the image to input_size.
if test_car.size == o:

return
resized_image_re = cv2.resize(test_car, (pos[4]-pos[2], pos[5]-pos[3]))
#plLt_show(cv2.cvtColor(resized image_re, cv2.COLOR_BGR2RGB))
cv2.imwrite("temp_plate.jpg"”, resized_image_re)
resultd= reader.readtext("temp_plate.jpg")

if not result®: #return nothing while not detect the words from image
plate_list.append('"')
return
else:
#save all carplate to plate_Llist, and save to txt file
if(resulte[@][2] > @.8): #check if the word ocr conf 8.6
result = np.array(resulte,dtype=object)
Create an empty List to store the middle numbers
plate_no = []
Loop through the rows of the array
for index, val in enumerate(result):
if result[index][2] <= ©.9:
continue
Get the middle number of each row
middle_number = val[len(val) // 2]
Append the middle number to the List
plate_no.append(middle_number)
Convert the List of numbers to a single string
plate_no = " ".join(str(x) for x in plate_no)
plate_no = plate_no.replace(™ ", "")
#further process the result if only detected plate number Length > 3
if len(plate_no) > 3:
plate_list.append(plate_no) # append carplate to plate_Llist
#save to txt file if only plate_List> 2@
if len(plate_list) »3@ :
predicted_number = most_frequent_longest_string(plate_list)
for plate_number in predicted_number:
save_result_to_txt(plate_number)

plate_list.clear()
else:
plate_list.append('")
return

Figure 5.22 Function of “save plate image()”

def save_result_to_txt(plate_no):

if not plate_no:
return

else:
now = datetime.datetime.now()
date_string = now.strftime("%Y-%m-%d %H:%M:%S")
with open(f'{today_date} report.txt', "a") as f:

f.write(plate_no + "\tTime: "

Figure 5.23 Function of “save result to_txt()”

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

+ date_string + "\n")

48

CHAPTER 5

7. Generate FPS (End of Main)

This step involves generating the average processed frames per second (FPS)

to evaluate the performance of the system.

processing_times.append(stop_time - start_time)

Use processing times jfrom last 28@ frames.

if len(processing_times) > 200:
processing_times.popleft()

|

_, f_width = frame.shape[:2]
Mean processing time [ms].
processing_time = np.mean(processing_times) * 1eee
fps = 1800 / processing_time

Figure 5.24 Generate Average Processed FPS

5.4. Result of the Traffic Violation Detection System

Below is the sample result of the application in different condition:

1. Front-facing Car (illegal driving) will be detected

Figure 5.25 Front-Facing (illegal driving) white car

49

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

Figure 5.26 Front-facing (Illegal Driving) Black Car

2. Back-facing (legal driving) car will not be detected

Figure 5.27 Back Facing (legal Driving) Back-facing Car

3. Front and back facing car: only front-facing car will be detected

Inference time: 21.5ms (46.4 FPS)

Figure5.28 Front and Back Facing Car

50
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

4. Text File as a Daily Report in the System, date and time is recorded

| 2023-04-23 report.txt - Notepad - O X

File Edit Format View Help

P’-’lI{HSSES Time: 2823-84-23 22:59:32
AKWB538 Time: 20823-84-23 23:88:24
AMI3656 Time: 2823-84-23 23:81:85
PLG5362 Time: 2823-84-23 23:81:18
AKWE538 Time: 2023-84-23 23:81:32

Figure 5.29 Daily report.txt

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.4 Hardware Setup (Intel UP Board)

5.1.1 OS Installation

To complete the installation process, you will require a USB drive, a monitor, a
keyboard, a mouse, an Ethernet cable connected to the Intel UP Board.

1. Download Ubuntu Desktop 20.04 LTS from Ubuntu Official Website
(https://ubuntu.com/download/desktop)

ubuntu® releases

Ubuntu 20.04.6 LTS (Focal Fossa)

Select an image

Desktop image

Server installimage

The s install Ubuntu

Figure 5.30 Ubuntu Desktop Image Download

2. Create bootable USB Drive with the Ubuntu Image using Rufus and then
connect the USB Drive to Intel UP Board and boot Ubuntu from the USB

Drive.

figure 5.31 Bootable Drive with Intel UP Board

52
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

https://ubuntu.com/download/desktop

CHAPTER 5

3. After booting from the USB drive, click on the "Install Ubuntu” option to
initiate the installation process of Ubuntu OS onto the internal storage of the

Intel UP Board. Follow the on-screen instructions to complete the installation
process.

Hevatski
lenska
Kaliano Try Ubuntu Install Ubuntu

You'can try Ubuntu without making any changes to your computer. directly from this €D

| Nolocalization (UTF &)
| Norskbokmal

Figure 5.33 (Ubuntu) Installation Complete

53
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

4. Click “restart” and unplug the USB Drive. Check if the ubuntu is successfully
install. As you can now see the ubuntu is installed in System Partition for
booting Ubuntu OS.

Up

bridge
the‘dgop

C

ubuntu®

Figure 5.34 Booting Ubuntu on Edge Device without Bootable Drive

Figure 5.35 System Partition (Flag: boot)

54
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.1.2 Installation of VNC Server (Accessing to Edge Device without

Monitor)

1. Open Terminal and type “sudo apt-get install x11vnc” to install VNC server

:~$ sudo apt-get install xllvnc
[sudo] passwoerd for utar:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
libvncserverl
The following MEW packages will be installed:
libvncserverl xilvnc
0 upgraded, 2 newly installed, © to remove and 62 not upgraded.
Need to get 1,125 kB of archives.
After this operation, 2,561 kB of additional disk space will be used.
Do you want to continue? [Y/n] y
Get:1 http://my.archive.ubuntu.com/ubuntu focal-updates/main amd64 libvncserveri]
amd64 0.9.12+dfsg-9ubuntu®.3 [119 kB]
Get:2 http://my.archive.ubuntu.com/ubuntu focal/universe amd64 x1lvnc amd64 0.9.
16-3 [1,806 kB]
Fetched 1,125 kB in 2s (550 kB/s)
Selecting previously unselected package libvncserveri:amd64.
(Reading database ... 200618 files and directories currently installed.)
Preparing to unpack ./libvncserver1_0.9.12+dfsg-9ubuntu@.3_amd64.deb ...
opoclin i o = e s omde o] Fal _Qauhun ol

Figure 5.36 VNC Server Installation

2. Set password to VNC server using “x11vnc -storepasswd”

:~% xl1llvnc -storepasswd
Enter VNC password:
Verify password:

Write password to /fhomefutar/.vnc/passwd? [y]/n y
Password written to: fhome/utar/.vnc/passwd

Figure 5.37 Set Password to VNC Server

3. Activate server using this command

:~5% sudo xllvnc -display :0 -forever -noxdamage -repeat -rfbau
th ~/.vnc/passwd -rfbport 5906 -shared
18/04/2023 22:51: passing arg to libwvncserver: -rfbauth
18/04/2023 22:51: passing arg to libvncserver: /home/utar/.vnc/passwd
18/04/2023 22:51: passing arg to libwvncserver: -rfbport
18/04/2023 22:51: passing arg to libwncserver: 5980
18/04/2023 22:51: x1lvnc version: 0.9.16 lastmod: 2019-01-05 pid: 8408

18/04/2023 22:51: Using X display :0
18/04/2023 22:51: rootwin: 0x147 reswin: 0x2200001 dpy: 0x90c68740

18/04/2023 22:

18/04/2623 22:51:02 ------------------ USEFUL INFORMATION ------------------
18/04/2023 22:

18/04/2023 22:51: Wireframing: -wireframe mode is in effect for window moves.
18/04/2023 22:51: If this ylelds undesired behavier (poor response, painting
18/04/2023 22:51: errors, etc) it may be disabled:

Figure 5.38 Activate VNC server

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

4. To access the Edge device from your own device, ensure that both devices are
connected to the same local network. Then, use the VNC client on your device

and enter the IP address of the Edge device to establish the connection.

2]

ile View Help
CONNECT Fg5 1650106

(=

192.168.0.106 1

&5

B Authentication X

[] Authenticate to VNC Server
= 192.1680.106:5900 (TCP)

Password: | | ©

CJRemember password Forgot password?

ok || Cancel

&
L
@
=l
]

) &

[+]

@

Figure 5.40 Remote Desktop Connection to Edge Device 2

56
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.1.3 Driver Installation for D-Link DWA-123 (Accessing Internet without
RJ45 Ethernet cable)

For this project, we connect the Edge device to the internet using a D-Link DWA-123

Wi-Fi USB adapter. To install the necessary driver for the adapter on Ubuntu 20.04

LTS, we follow the instructions provided on GitHub at the [12].

= % sudo apt-get install build-essent ® +

File

sudo
sudo

Edit View

apt-get install build-essential git
git clone https://github.com/lwfinger/rtl8188eu

cd rtl8l188eu

sudo
sudo
sudo
sudo

make all

make install
modprobe -r 8188eu
modprobe 8188eu

Figure 5.41 Command to Install Wi-Fi Adapter’s Driver

5.1.4 Final Product of System Hardware Components.

At the end of the process, the system's components' final output can be observed. It is

worth noting that a power bank was used as a portable power supply for the Edge

device, and a webcam was utilized as an 10T camera to minimize expenses. However,

for optimal performance, it is recommended to use professional equipment.

Figure 5.42 Final Product of System Hardware Components

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

57

CHAPTER 5

5.5 Software Setup (Intel UP Board)

5.5.1 OpenVino Environment

1. Upgrade and update apt-get

; $ sudo apt-get upgrade
teading package lists... Done
juilding dependency tree

teading state information... Done
alculating upgrade... Done

Figure 5.43 Upgrade apt-get

:~$ sudo apt-get update
[sudo] password for utar:

Sorry, try again.
[sudo] password for utar:
Get:1 http://security.ubuntu.com/ubuntu foc

Figure 5.44 Update apt-get

2. Install python and git via apt-get

:~$ sudo apt-get install python3-venv build-essential python3-

dev git-all
[sudo] password for utar:

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:

Figure 5.45 Install Git and Python Environment

3. Create OpenVino enviroment as Project Directory

:~S python3 -m venv openvino_env

Figure 5.46 Create OpenVino Environment

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

58

CHAPTER 5

5.5.2 Install all dependencies and required libraries.

1. Install all requirement libraries and dependencies from the below text file
(requirement.txt) using “pip -r requirements.txt”. The OpenVino we install is

differ from our workstation since Linux only have the version of 2022.3.

openvino and its dependencies
openvino-dev==2022.3.0
openvino-telemetry==2022.3.0
nncf==2.4.0

deep learning frameworks

tensorflow-macos>=2.5,<=2.12; sys_platform == 'darwin' and platform_machine == 'armé4' # macOS M1 and M2
tensorflow»=2.5,<=2.12; sys_platform == 'darwin' and platform_machine != 'arm64' # macOS x86
tensorflow>=2.5,<=2.12; sys_platform == 'linux' or platform_system == 'Windows'

onnx>=1.11.0

--find-1links https://download.pytorch.org/whl/torch_stable.html

torch==1.13.1; sys_platform == 'darwin'

torch==1.13.14cpu; sys_platform == 'linux' or platform_system == 'Windows’
torchvision==0.14.1; sys_platform == ‘darwin’

torchvision==0.14.1+cpu; sys_platform == 'linux' or platform_system == 'Windows'

#paddlepaddle>=2.4.0

transformers>=4.21.1

jupyter
jupyterlab
ipywidgets
ipykernel>=5.*%
ipython>=7.16.3

others

easyocr

numpy>=1.21.0
opencv-python
Pillow>=8.3.2
matplotlib>=3.4,<3.5.3
scipy

Figure 5.47 requirement.txt

utar@utar-UP-CHTO01: ~fopenvino_notebooks Q =

Dutar-UP-CHTO1: ~f.local/share/... utar@utar-UP-CHTO1: ~fopenvino_not...

(openvino_env) H $ pip install -r requireme
nts.txt

Looking in links: https://download.pytorch.org/whl/torch_stable.html

Ignoring tensorflow-macos: markers 'sys_platform == "darwin" and platform_machin
e == "armg4"' don't match your environment

Ignoring tensorflow: markers 'sys_platform == "darwin" and platform_machine !=
arm64"' don't match your environment

Ignoring torch: markers 'sys_platform == "darwin"' don't match your environment
Ignoring torchvision: markers 'sys _platform == "darwin"' don't match your enviro
nment

Collecting openvino-dev==2022.3.0
Downloading openvino_dev-2822.3.8-9852-py3-none-any.whl (5.8 MB)
eta
Collecting openvino-telemetry==2622.3.0
Downloading openvino_telemetry-2022.3.0-py3-none-any.whl (20 kB)

Figure 5.48 Install from requirement.txt

59
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

2. Due to the limitation of the processor on my Edge device, it does not support
AV X instructions required by the latest version of EasyOCR. To overcome this
issue, | have used an older version of EasyOCR, namely 1.2.3, that does not
require AV X instructions.

(openvino_env) :~S pip show easyocr

Name: easyocr

Version: 1.2.3

Summary: End-to-End Multi-Lingual Optical Character Recognition (OCR) Solution
Home-page: https://github.com/jaidedai/easyocr

Author: Rakpong Kittinaradern

Author-email: r.kittinaradorn@gmail.com

License: Apache License 2.0
Location: /home/futar/openvino_env/1ib/python3.8/site-packages
es: numpy, opencv-python, Pillow, python-bidi, PyYAML, scikit-image, scipy
torchvision
ed-by:
(openvino_env)

Figure 5.49 Version of EasyOCR

4. Copy the application directory to edge device.

it Home apps v
— Name
Y Recent "
23 images
% starred
(it Home 7 model

] Desktop 1 path

[E Documents
. 2023-04-18 report.txt

J1 Music n B

Pictures j carplatejpg

¥ Downloads

H Videos ; temp.jpg

fi Trash ; temp_plate.jpg

+ Other Locations

Figure 5.50 Apps Project Directory

60
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.6 Testing the Effectiveness of OpenVino on an Edge Device

During the testing phase, we utilized the onnx yolov6 object detection model described
in chapter 5.2.3 to assess the degree of performance improvement achieved by
OpenVino on the edge device.

The experiment conducted to evaluate the effectiveness of OpenVino on the edge
device yielded promising results. The original model achieved an average FPS of 0.8,
while the OpenVino-optimized model achieved an average FPS of 1.1. This translates
to a significant improvement of approximately 37.5% in performance. The findings
indicate that OpenVino can effectively optimize models for deployment on edge

devices, even with older generation processors.

run_ocbject_detection(source=0, flip=True, use popup=False)

FP5 0.762007192942806
FPS ©.6838585774049709
FP5S 0.6662708444076991
FP5 0.7278707389014156
FPS ©.7432128972715716
FP5 ©.7735718752308306
FP5S ©.8145288904453153
FP5 0.8451200762043983
FPS ©.8619260955481751
FP5 ©.8820403800144995
Interrupted

Figure 5.51 Performance of Original ONNX Model on Edge Device

[9]1: run_object detection(source=8, flip=True, use_popup=False) B 1T

FPS 1.2487529750261552
FPS 1.0835889253561064
FP5 1.0875786495369503

FPS 1.1274564467844652
FPS 1.117324055260963

FPS 1.131489983010896

FPS 1.1423592915971434
FP5 1.086794486614922

FPS 1.0061603865896267
FPS 1.0014571649866575
Interrupted

o e e e

o

Figure 5.52 Performance of OpenVino-optimised Model on Edge Device

61
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.7 Result of the Traffic Violation Detection System on Edge Device

1. Activate OpenVino Environment on the Edge Device.

:~S% source openvino_env/bin/activate
~5

(openvino_env)

Figure 5.53 Activate OpenVino Environment

2. To run the traffic violation detection system, you need to first navigate to the
project directory and execute the command "python3 app.py" in the command
prompt or terminal. It is important to note that the source of the video reader in
the app.py file is set to "sampleVideo.mp4" and not the camera for testing

purposes.

(openvino_env) 8 $[python3 app.py
Using CPU. Note: This module is much faster with a GPU.
/home futar /openvino_env/1lib/python3.8/site-packages/torchvision/models/ utils.py:252: UserWarning: Acce
ssing the model URLs wia the internal dictionary of the module is deprecated since @.13 and may be remo
ved in the future. Please access them via the appropriate Weights Enum instead.

warnings.warn(
/home futar /openvino_env/lib/python3.8/site-packages/torchvision/models/_ utils.py:208: UserWarning: The
parameter 'pretrained' is deprecated since ©.13 and may be removed in the future, please use 'weights'

instead.

warnings.warn(
/home futar /openvino_env/lib/python3.8/site-packages/torchvision/models/ utils.py:223: UserWarning: Argu
ments other than a weight enum or "None® for 'weights' are deprecated since ©.13 and may be removed in
the future. The current behavior is equivalent to passing ‘weights=None".

warninas.warn(msg)
Source ended
(openvino_env) B = |

Figure 5.54 Run “app.py” file in Terminal

62
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

3. After running the "app.py" file using the command "python3 app.py", navigate
to the directory and check for the "(TodayDate) _report file.txt". If the report file
exists, it indicates that the Traffic Violation Detection System is running

correctly on the edge device.

£zt Home apps

D Recent
* Starred -path Hikem o
Gt Home - model 12items 3Feb
[0 Desktop - images 15 items 01:34
[Documents .

B temp_plate.jpg 2.4kB 01:30
{4 Downloads

B temp.jpg 224.6kB 7Feb
I Music
& Pictures E carplate.jpg 3.4kB 3Feb
B Videos * app.py 14.5kB Rab
% Trash E 2023-04-24 report.xt i 844 bytes 01:36

d

] YONGYUHONG &
+ Other Locations

Figure 5.55 Report Text File Generated

4. You can view the detected car plate from your sample data in the
“(TodayDate)_report file.txt”.

2023-04-24 report.txt

| 1VB98B6OR Time: 2023-04-24 00:42:10
2Nb986BR Time: 2023-04-24 01:11:40

Figure 5.56 Content of Report.txt

63
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5

5.8 Task Automation Configuration (Intel UP Board)

1. A bash script is created to automate the task of activating the OpenVino

environment and running the traffic violation detection application in sequence.

emacs@utar-UP-CHTO1

File Edit Options Buffers Tools Sh-Script Help

#! /bin/bash]]

#Activate the openvino enviroment
source /homejfutar/openvino_env/bin/activate

#Change tp the directory of Python script
cd fhome/utar/openvino_notebooks/notebooks/apps/

#Run the python script
python app.py

#Deactivate openvino enviroment
deactivate

Figure 5.57 activate_and_run.sh

¢ m O O . Q

2. Configure Crontab to run the script automatically at every morning 8am and

stop the program at evening 6pm.

:~$ crontab -1
Edit this file to introduce tasks to be run by cron.

Each task to run has to be defined through a single line
indicating with different fields when the task will be run
and what command to run for the task

To define the time you can provide concrete values for
minute (m), hour (h), day of month (dom), menth (men),
and day of week (dow) or use '*' in these fields (for 'any').

Motice that tasks will be started based on the cron's system
daemon's notion of time and timezones.

Output of the crontab jobs (including errors) is sent through
email to the user the crontab file belongs to (unless redirected).

For example, you can run a backup of all your user accounts
at 5 a.m every week with:
@ 5 * * 1 tar -zcf [var/backups/home.tgz [home/

For more information see the manual pages of crontab(5) and cron(8)
m h dom mon dow command

o 8 * * * [home/utar/Desktop/activate_and_run.sh
0 18 * * * pkill -f app.py

Figure 5.58 Crontab Setup

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

64

CHAPTER 6

CHAPTER 6 System Evaluation and Discussion

6.1 System Testing and Performance Metrics
To evaluate the performance of the traffic violation detection system, the verification

plan includes measuring the processed frames per second (FPS) and inference time of
each frame. In addition, accuracy is used as a metric to check the performance of the

system.

To measure the processed FPS, a test dataset is used to simulate the car plate detection
system in a real-time scenario. The FPS is then calculated by dividing the total
number of processed frames by the total time taken. The inference time of each frame
is also recorded and analyzed to identify any bottlenecks or areas for optimization.

Accuracy is based on comparing the system's output to ground truth labels. The
evaluation is performed on a representative dataset with few videos and scenarios, and
it involves multiple rounds of testing. Each round consists of processing one video
sample and comparing the system's detections to the ground truth. If the system
detects the car plate correctly in the sample, it is considered one correct detection;
otherwise, it is considered one incorrect detection. The accuracy is calculated as the
percentage of correct detections over the total number of rounds of testing.

The verification plan includes a series of tests to validate the performance of the car
plate detection system. These tests are designed to ensure that the system meets the
desired accuracy and FPS requirements while maintaining efficient inference times.
Any discrepancies or issues are identified and addressed through optimization

techniques.

Overall, the verification plan provides a comprehensive approach to validating the
performance of the car plate detection system and ensures that the system meets the

required specifications for accuracy and FPS.

65
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

o L
- - o
., .

B

backl.mp4 back2.mp4 backimpa“l Frontl.mp4 front2.mp4

% o g T % »

front5a.mp4 frontbb.mp4 front7.mp4 front8.mp4 front9.mp4 front10.mp4 front11.mp4

Figure 6.1 Dataset for Testing

6.2 Evaluation of Processed Frames per Second (FPS)
Performance

6.2.1 FPS Evaluation on Workstation
The system's average processed FPS for Vehicle and Car plate Detection Model

OpenVino without performing OCR on 15 sample videos ranges from 188 to 221 FPS
(on Workstation), with an average of 203 FPS. However, when OCR is active and
performing its tasks, the FPS drops significantly to an average of 42 FPS at its lowest

point.

fps 201.78810561210756
fps 201.986295399679

fps 202.99942090795727
fps 203.41650949183992
fps 203.38519182842595
fps 203.33732157158565
fps 203.56859883463724
fps 203.02093979684372
fps 202.87403398159805
fps 203.13848982274376
fps 202.79879770400436
fps 202.79816034688832
fps 202.78923776789424
fps 202.5959284261239

Figure 6.2 FPS on Detecting Vehicle (OpenVino)

THPS 4£.92024221L1125042
fps 43.27471997538658
fps 44.537850818995324
fps 45.9494683418678
fps 45.97923528390433
fps 45.96979398443245
fps 45.94835085147801
fps 45.95636576358654
fps 45.96640596814191
fps 45.96579139268807

Figure 6.3 FPS on OCR

66
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

6.2.2 FPS Evaluation on Intel UP Board

The system's average processed FPS for Vehicle and Car plate Detection Model
OpenVino without performing OCR on 15 sample videos ranges from 14 to 20 FPS (on
Intel UP Board), with an average of 18.3 FPS. However, when OCR is active and
performing its tasks, the FPS drops significantly to an average of 0.77 FPS at its lowest
point.

FE3: 1Y, 094449334 113000
FPS: 18.92240346732197
FP5: 18.858432624432353
FPS: 19.09419205583738
FPS: 18.507471460075763
FP5: 18.53268437309163
FPS: 18.73216464531158
FPS: 18.882331623362152
FP5: 18.746665713161942
FPS: 18.787569095287466
FP5: 18.556103943019775
FPS: 18.5065494052433
FPS: 18.569124537819206
FP5: 18.66411874373976
FPS: 18.293767072918644

Figure 6.4 FPS on Detecting Vehicle (Intel UP Board)

FP5: 17.425B76830472526
FP5: 17.6B039099826619

FP5: 18.036555349322736
FP5: 18.478412575335707

A0 A3

FP5: 0.776980059647683

Figure 6.5 Fps on OCR (Intel UP Board)

67
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

6.3 Evaluation of Accuracy Performance

6.3.1 Accuracy Evaluation on Workstation
Upon executing the 15-sample dataset on the workstation, the system achieved a 100%

success rate in identifying illegal driving vehicles (Vehicle and Car plate Detection
Model OpenVino). However, the accuracy of the car plate number character recognition
system (OCR Model) was only 81.81%.

Table 6.1 Accuracy of Models on Workstation

Model Accuracy (Workstation)
Vehicle & Car plate Detection 100%
(OpenVino)
EasyOCR 81.81%

6.3.2 Accuracy Evaluation on Intel UP Board
When the 15-sample dataset was run on the workstation, the system successfully

identified illegal driving vehicles with a success rate of 93.33% using the Vehicle and
Car Plate Detection model in OpenVino. However, the accuracy of the OCR model in
recognizing car plate numbers was only 36.36% due to its older version and the edge
device's processor not supporting AV X instruction for running the latest easy OCR.
This indicates that there is a potential for improving the system's ability to accurately
identify number plates, especially given the limitations posed by the use of an older

OCR model and the lack of AV X instruction support on the edge device's processor.

Table 6.2 Accuracy of Models on Edge Device

Model Accuracy (Intel Up Board)
Vehicle & Car plate Detection 93.33%
(OpenVino)
EasyOCR 36.36%

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

68

CHAPTER 6

6.3.3 Overview of Performance

Figures 6.6 and 6.7 provide an overview of the performance of Accuracy and FPS,

respectively, for the Workstation and Edge Device (Intel UP Board).

Average FPS (Vehicle De

Intel UP B

Figure 6.6 FPS Overview of FPS Performance

Accuracy (Vehicle Detection OpenVino) Accuracy(EasyOCR)

WorkStation Intel UP Board

Figure 6.7 Overview of Accuracy Performance

69
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6

6.3 Limitation and Future Improvements

The evaluation of the traffic violation detection system revealed several limitations that
could be addressed through future improvements. Firstly, the system's accuracy in
recognizing car plate numbers was limited by the use of an older OCR model and the
lack of AV X instruction support on the edge device's processor. One possible solution
to this issue is to upgrade to a more recent OCR model that is compatible with the
processor's AVX instructions, which could lead to a significant improvement in the
system's ability to accurately identify number plates.

Another limitation observed in the evaluation was the system's performance in terms of
processed FPS. When OCR was active and performing its tasks, the FPS dropped
significantly, which could lead to delays in processing frames in a real-time scenario.
To address this limitation, one possible solution is to optimize the OCR model's
performance by utilizing more efficient algorithms or by implementing hardware

acceleration techniques to reduce the processing time.

Furthermore, the evaluation identified some limitations related to the system's hardware
configuration. The Intel UP Board showed significantly lower performance compared
to the workstation, which could be due to its lower computing power. To improve the
system's overall performance, upgrading to a more powerful hardware configuration or

utilizing distributed computing techniques could be explored.

However, the evaluation was performed on a representative dataset with few videos and
scenarios, which may not fully capture the system's performance in more diverse or
complex real-world scenarios. Expanding the evaluation to include a more diverse and
extensive dataset with various scenarios, lighting conditions, and vehicle types could
provide a more comprehensive understanding of the system's performance and potential

limitations.

Overall, by addressing these limitations and expanding the evaluation, the traffic
violation detection system could be further optimized to meet the desired accuracy and
FPS requirements while maintaining efficient inference times, leading to more effective

traffic monitoring and enforce.

70
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 7

CHAPTER 7 Conclusion and Recommendation

7.1 Conclusion

In this study, we developed a traffic violation detection system using computer vision
techniques that can detect and identify various traffic violations, including illegal
driving and car plate detection. The system was implemented using a deep learning
approach and evaluated on both a workstation and an edge device, Intel UP Board. The
results showed that the system met the required specifications for accuracy and FPS on
the workstation. However, the edge device's performance was limited by the lack of
AVX instruction support, lower computing power, and significant drops in FPS when
OCR was active. We recommend upgrading the edge device's hardware configuration
or utilizing distributed computing techniques to distribute tasks between the edge
device and the workstation. Additionally, we suggest expanding the evaluation to
include a more diverse and extensive dataset with various scenarios, lighting
conditions, and vehicle types to provide a more comprehensive understanding of the
system's performance and potential limitations.

7.2 Recommendation

To lower the edge device's resource stress and improve system performance, we suggest
distributing the task to two different devices. The edge device could perform the initial
task of detecting illegal driving and car plate detection and store the result in internal
storage. The picture of an illegally parked vehicle can be sent to the workstation to
perform heavy load of OCR, while the car plate number can be identified on the edge
device. Moreover, we found that the implementation of the OpenVino toolkit provided
significant advantages for the edge device in terms of performance and efficiency. The
toolkit allowed for the optimization of the deep learning models for the specific
hardware, resulting in faster inference times and reduced computational resources. We
suggest utilizing OpenVino for developing and deploying computer vision-based

systems on edge devices with limited computational resources, opening up new

71
Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 7

possibilities for real-time applications in various domains, including traffic monitoring
and enforcement. These insights contribute to the advancement and optimization of
traffic monitoring and enforcement systems, leading to safer and more efficient
transportation systems. Further research and evaluation can provide additional insights

into the system'’s capabilities, potential limitations, and opportunities for improvement.

72

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

V. Meel, “What is OpenVino? - The Ultimate Overview in 2022,” viso.al,
Mar. 20, 2022. https://viso.ai/computer-vision/intel-OpenVino-toolkit-
overview/#:~:text=The%200penVino%20toolkit%20covers%20both
(accessed Sep. 01, 2022).

N. A. Andriyanov, “Analysis of the Acceleration of Neural Networks
Inference on Intel Processors Based on OpenVino Toolkit,” 2020 Systems of
Signal Synchronization, Generating and Processing in Telecommunications
(SYNCHROINFO), Jul. 2020, doi: 10.1109/synchroinfo49631.2020.9166067.

Intel Al. (2019 May) Al Driven Medical Imaging Powered by Intel and
Philips[Online]. Available: https://www.intel.ai/solutions/perform-aidriven-

medical-imaging-efficiently-and-cost-effectively-on-intel-cpubased-systems/

G. Mathew, S. Sindhu Ramachandran, and V. S. Suchithra, “Lung Nodule
Detection from low dose CT scan using Optimization on Intel Xeon and Core
processors with Intel Distribution of OpenVino Toolkit,” IEEE Xplore, Oct.
01, 2019. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8929612
(accessed Sep. 01, 2022).

S. K. Teoh, Y. H. Wong, C. F. Leong, and L. Y. Tan, “Face Detection and

Face Re-identification System Using Deep Learning and OpenVino,” 2021
2nd International Conference on Artificial Intelligence and Data Sciences

(AIDAS), Sep. 2021, doi: 10.1109/aidas53897.2021.9574201.

V. V. Zunin, “Intel OpenVino Toolkit for Computer Vision: Object Detection

and Semantic Segmentation,” IEEE Xplore, Sep. 01, 2021.
https://ieeexplore.ieee.org/document/9537452/ (accessed Sep. 01, 2022).

73

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[7]

[8]

[9]

[10]

[11]

[12]

Intel, “OpenVinotoolkit/open model zoo: Pre-trained Deep Learning
Models,” GitHub. [Online].
https://github.com/OpenVinotoolkit/open_model_zoo/tree/master/models/publ
ic/ssdlite_mobilenet _v2. [Accessed: 27-Nov-2022].

Meituan, “Yolov6: A single-stage object detection framework dedicated to
industrial applications.,” GitHub. [Online]. Available:
https://github.com/meituan/YOLOV6/. [Accessed: 27-Nov-2022].

Meituan, “Release yolov6 2.1 - Meituan/yolov6,” GitHub. [Online].
Available: https://github.com/meituan/YOLOv6/releases/tag/0.2.1. [Accessed:
27-Nov-2022].

Meituan, “Yolov6/deploy/ONNX at main - meituan/YOLOV6,” GitHub.
[Online]. Available:

https://github.com/meituan/Y OLOv6/tree/main/deploy/ONNX. [Accessed: 27-
Nov-2022].

JaidedAl, “JaidedAI/EasyOCR at main” GitHub. [Online]. Available:
https://github.com/JaidedAl/EasyOCR. [Accessed: 27-January-2023].

Triq, “mtaziz/D-link Wireless N150 USB Adapter dwa-123 rev D1 installation
on ubuntu 14.04 at main” GitHub. [Online]. Available:
https://gist.github.com/mtaziz/6b1c59972623a224743a. [Accessed: 27-
January-2023].

74

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

FINAL YEAR PROJECT WEEKLY REPORT

(Project 1)

Trimester, Year: T3Y3 Study week no.:2

Student Name & ID: Chiew Jing Cheng 20ACB02331

Supervisor: Ts Wong Chee Siang

Project Title: Deep Learning Inference on Edge Device: Traffic Violation
Detection Using OpenVino

1. WORK DONE:
1. Revise FYP1 and create a plan.

2. Research vehicle detection model using TensorFlow.

2. WORK TO BE DONE

1. Configure a system to detect vehicles involved in illegal driving

3. PROBLEMS ENCOUNTERED

1. Difficulty in finding a pre-trained model for detecting a specific-facing vehicle in vehicle
detection.

4. SELF EVALUATION OF THE PROGRESS

1. More effort is needed to find pre-trained models, especially for TensorFlow, to further
enhance performance in OpenVino.

f
Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

FINAL YEAR PROJECT WEEKLY REPORT

(Project 1)

Trimester, Year: T3Y3 Study week no.:4

Student Name & ID: Chiew Jing Cheng 20ACB02331

Supervisor: Ts Wong Chee Siang

Project Title: Deep Learning Inference on Edge Device: Traffic Violation
Detection Using OpenVino

1. WORK DONE

1. Successfully configured OpenVINO model for detecting illegal driving vehicles and car
plate numbers.

2. The configuration included pre-processing and post-processing steps for accurate vehicle
detection.

2. WORK TO BE DONE

1. Investigating methods for collecting car features.

3. PROBLEMS ENCOUNTERED

4. SELF EVALUATION OF THE PROGRESS

1. Good progress in my research and discovered a vehicle detection model that specifically
detects front-facing vehicles.

Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

FINAL YEAR PROJECT WEEKLY REPORT

(Project 1)

Trimester, Year: T3Y3

Study week no.:6

Student Name & ID: Chiew Jing Cheng 20ACB02331

Supervisor: Ts Wong Chee Siang

Project Title: Deep Learning Inference on Edge Device: Traffic Violation
Detection Using OpenVino

1. WORK DONE

2. Conducted pre-processing for OCR method.

1. Chose OCR as the method for car number recognition

2. WORK TO BE DONE
1. Post processing for OCR method

car plates.

3. PROBLEMS ENCOUNTERED

1. Spent considerable time searching for an OCR model suitable for accurately recognizing
car plate numbers. Many of the models tested did not perform well enough on the detected

time.

4. SELF EVALUATION OF THE PROGRESS

1. The progress is still on track and testing a good OCR model only took a short amount of

Supervisor’s signature

Bachelor of Computer Science (Honours)

Student’s signature

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

FINAL YEAR PROJECT WEEKLY REPORT

(Project 1)

Trimester, Year: T3Y3 Study week no.:8

Student Name & ID: Chiew Jing Cheng 20ACB02331

Supervisor: Ts Wong Chee Siang

Project Title: Deep Learning Inference on Edge Device: Traffic Violation
Detection Using OpenVino

1. WORK DONE

1. The traffic violation detection system has been fully configured and is now able to
generate a report of the day's detected illegal drivers.

2. WORK TO BE DONE

1. Configuring Intel UP Board

3. PROBLEMS ENCOUNTERED
1. Choosing OS for Intel UP Board

4. SELF EVALUATION OF THE PROGRESS

1. Good, the traffic violation detection system has been successfully configured and is
meeting the desired performance standards.

¥
Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

FINAL YEAR PROJECT WEEKLY REPORT

(Project 1)

Trimester, Year: T3Y3 Study week no.:10

Student Name & ID: Chiew Jing Cheng 20ACB02331

Supervisor: Ts Wong Chee Siang

Project Title: Deep Learning Inference on Edge Device: Traffic Violation
Detection Using OpenVino

1. WORK DONE
1. configure OS on the edge device
2. configure drivers on the edge device

3. Set up OpenVino Environment on the edge device

2. WORK TO BE DONE

1. Moving whole project (traffic violation detection) to edge device and making it
deployable.

3. PROBLEMS ENCOUNTERED

instruction.

1. the OCR model cannot be used on the edge device as its CPU is too old to support AVX

4. SELF EVALUATION OF THE PROGRESS

1. Overall Good, first time configuring for edge device, learn many from it.

Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

FINAL YEAR PROJECT WEEKLY REPORT

(Project 1)

Trimester, Year: T3Y3 Study week no.:12

Student Name & ID: Chiew Jing Cheng 20ACB02331

Supervisor: Ts Wong Chee Siang

Project Title: Deep Learning Inference on Edge Device: Traffic Violation
Detection Using OpenVino

1. WORK DONE
1.edge device is successfully configured
2. Configured VNC Viewer

3. Configured bash script for task automation

2. WORK TO BE DONE
1. Report writing

3. PROBLEMS ENCOUNTERED

1. Edge device performance is not good enough

4. SELF EVALUATION OF THE PROGRESS

resource utilization.

1. try to optimizing output by reducing unnecessary frames and functions to improve CPU

Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

POSTER

UT / IR B Universiti Tunku Abdul Rahman

UNIVERSITI TUNKU ABDUL RAHMAN

Faculty of Information Communication and Technology

Deep Learning Inference on Edge Device: Traffic
Violation Detection Using OpenVino

® Introduction ® OpenVino

Deep learning is widely used by A tools that developed by Intel
businesses on an edge device nowaday

Speed up deep learning model

Use OpenVino Toolkit to speed up Deep performance / lowering inference time
Learning Inference Time

The traffic violation detection system

will detect whether the driver is driving
in the wrong direction Intel upP BOGI’d

Deploy traffic violation system on an

Intel-power edge device (Intel UP . An Intel-Power Edge Device
Board) in order to integrate the system

with OpenVino
. Device to deploy the system

® Objective

. Device which supported by OpenVino
To measure the performance
enhancement introduced by OpenVino
and select the most effective DL
Framework.

Configure Deploy the traffic violation
detection on edge device along with
OpenVino Toolkits.

@ Conclusion

By determining and implementing OpenVino to run deep learning applications,
one can save on the cost of purchasing powerful processors

Artificial intelligence can replace tedious human work, using traffic violation detection
systems to detect drivers who are driving in the wrong position on a one-way lane.

Project Developer: Chiew Jing Cheng Project Supervisor: Ts Wong Chee Siang

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

PLAGIARISM CHECK RESULT

FYP2

ORIGINALITY REPORT

/s Ay A 2

SIMILARITY INDEX INTERMNET SOURCES PUBLICATIONS STUDEMT PAPERS

PRIMARY SOURCES

V. V. Zunin. "Intel OpenVINO Toolkit for
Computer Vision: Object Detection and
Semantic Segmentation"”, 2021 International
Russian Automation Conference
(RusAutoCon), 2021

Publication

1

-

Ruben] Franklin, Mohana. "Traffic Signal
Violation Detection using Artificial Intelligence
and Deep Learning", 2020 5th International
Conference on Communication and
Electronics Systems (ICCES), 2020

Publication

Ll

eprints.utar.edu.my

Internet Source

1w

Viso.ai

Internet Source

g B

Submitted to Universiti Tunku Abdul Rahman

Student Paper

1w

www.intel.com

Internet Source

<T

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

N. A. Andriyanov. "Analysis of the
Acceleration of Neural Networks Inference on
Intel Processors Based on OpenVINO Toolkit",
2020 Systems of Signal Synchronization,
Generating and Processing in
Telecommunications (SYNCHROINFO), 2020

Publication

H

Shen Khang Teoh, Yiek Heng Wong, Chun
Farn Leong, Lyk Yin Tan. "Face Detection and
Face Re-identification System Using Deep
Learning and OpenVINQO", 2021 2nd
International Conference on Artificial
Intelligence and Data Sciences (AiDAS), 2021

Publication

Gina Mathew, S. Sindhu Ramachandran, V.S.
Suchithra. "Lung Nodule Detection from low
dose CT scan using Optimization on Intel
Xeon and Core processors with Intel
Distribution of OpenVINO Toolkit", TENCON
2019 - 2019 IEEE Region 10 Conference
(TENCON), 2019

Publication

ieeexplore.ieee.org

Internet Source

<Tw

publications.hse.ru

Internet Source

<1«

12

www.ncbi.nlm.nih.gov

Internet Source

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

Publication

}
A

"Proceedings of the International Conference
on Data Engineering and Communication
Technology", Springer Science and Business
Media LLC, 2017

Publication

Fatima Zahra Guerrouj, Mohamed
ABOUZAHIR, Mustapha RAMZI, El Mehdi
ABDALI. "Analysis of the acceleration of deep
learning inference models on a
heterogeneous architecture based on
OpenVINQ", 2021 4th International
Symposium on Advanced Electrical and
Communication Technologies (ISAECT), 2021

Publication

Mau-Luen Tham, Wei Kun Tan. "loT Based
License Plate Recognition System Using Deep
Learning and OpenVINQ", 2021 4th
International Conference on Sensors, Signal
and Image Processing, 2021

Publication

<Tw

Riya Banerjee, Saswati Chakladar, Ashok
Mohanty, Shyamal Kumar Chattopadhyay,
Sanchita Chakravarty. "Leaching
characteristics of rare earth elements from
coal ash using organosulphonic acids",
Minerals Engineering, 2022

Publication

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

Xiaoxuan Wang, Feiyu Zhao, Ping Lin,
Yongming Chen. "Evaluating computing
performance of deep neural network models
with different backbones on loT-based edge
and cloud platforms", Internet of Things, 2022

Publication

Hanan Al-Hadeethi, Shahab Abdulla,
Mohammed Diykh, Ravinesh C. Deo, Jonathan
H. Green. "An Eigenvalues-Based Covariance
Matrix Bootstrap Model Integrated With
Support Vector Machines for Multichannel
EEG Signals Analysis", Frontiers in
Neuroinformatics

Internet Source

Wolfgang Rankl, Wolfgang Effing. "Smart Card
Handbook", Wiley, 2010

Publication

www.dell.com

Internet Source

L)

0

Exclude quotes On Exclude matches < & words

Exclude bibliography On

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

<1y
B Submitted to Mississippi State Board for <1 %
Community & Junior Colleges
Student Paper
;A fict.utar.edu.m /
Internet Source y < %
. www. mdpi.com 4
15 Internet SDurcep { %
etd.aau.edu.et 4
Internet Source { %
17 Submitted to Middlesex University <’
/ Student Paper %
18 Submitted to Technological Institute of the < %
Philippines
Student Paper
. azpdf.or ‘
Intn!::et 5:::uru:§ { %
N www.researchgate.net /
20 Internet Source g < %
o wWww2.utar.edu.my 4
21 Internet Source < %
P9y 'Algorithms and Architectures for Parallel < %

Processing", Springer Science and Business
Media LLC, 2014

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 | Rev No.: 0 | Effective Date: 01/10/2013 | Page No.: 1of 1

FACULTY OF INFORMATION AND COMMUNICATION

TECHNOLOGY
Full Name(s) of Chiew lJing Cheng
Candidate(s)
ID Number(s) 010219-14-1449
Programme / Course CS

Title of Final Year Project |Deep Learning Inference on Edge Device: Traffic Violation
Detection Using OpenVino

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceed
the limits approved by UTAR)

Overall similarity index: 7 %
Similarity by source

Internet Sources: 4 %
Publications: 4 %
Student Papers: 2 %

Number of individual sources listed of
more than 3% similarity: _ 0

Parameters of originality required, and limits approved by UTAR are as Follows:
(i) Owverall similarity index is 20% and below, and
(if) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words
Note: Parameters (i) — (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note: Supervisor/Candidate(s) is/are required to provide softcopy of full set of the
originality report to Faculty/Institute

Based on the above results, | hereby declare that | am satisfied with the originality of the
Final Year Project Report submitted by my student(s) as named above.

7

Signature of §upervisor Signature of Co-Supervisor
Name: Ts. Wong Chee Siang Name:
Date: 25 APRIL 2023 Date:

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

davidletterboyz
Typewriter
Ts. Wong Chee Siang

davidletterboyz
Typewriter
25 APRIL 2023

FYP 2 CHECKLIST

UNIVERSITI TUNKU ABDUL RAHMAN

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION

TECHNOLOGY (KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 20ACB02331
Student Name Chiew Jing Cheng
Supervisor Name TS Wong Chee Siang
TICK (V) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you
have checked your report with respect to the corresponding item.

Front Cover

Title Page

Signed Report Status Declaration Form

Signed FYP Thesis Submission Form

Signed form of the Declaration of Originality

Acknowledgement

Abstract

Table of Contents

List of Figures (if applicable)

List of Tables (if applicable)

List of Symbols (if applicable)

List of Abbreviations (if applicable)

Chapters / Content

Bibliography (or References)

literature review

All references in bibliography are cited in the thesis, especially in the chapter of

Appendices (if applicable)

Weekly Log

Poster

Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

2Ll 22| 22121212 (22 (2|2 2|2 |2 /2 (2 |

| agree 5 marks will be deducted due to incorrect format, declare wrongly the ticked of
these items, and/or any dispute happening for these items in this report.

*Include this form (checklist) in the thesis (Bind together as the last page)

g
/

(Signature of Student)
Date:23 April 2023

I, the author, have checked and confirmed all the items listed in the table are included in my report.

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

