

Deep Learning Inference on Edge Device: Traffic Violation Detection Using

OpenVino

BY

Chiew Jing Cheng

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2023

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: Deep Learning Inference on Edge Device: Traffic Violation Detection

 Using OpenVino___

 __

Academic Session: __JAN2023__

 I ________________CHIEW JING CHENG_____________________

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 _87 Jalan Taman Melati 6,____

 Taman Melati, Setapak, 53100,_ _________________________

 __Kuala Lumpur_____________ Supervisor’s name

 Date: _____23 APRIL 2023___ Date: ____________________

davidletterboyz
Typewriter
Ts. Wong Chee Siang

davidletterboyz
Typewriter
25 APRIL 2023

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY/INSTITUTE* OF _INFORMATION AND

COMMUNICATION TECHNOLOGY_________

UNIVERSITI TUNKU ABDUL RAHMAN

Date: ___24/4/2023___

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

I understand that University will upload softcopy of my final year project / dissertation/

thesis* in pdf format into UTAR Institutional Repository, which may be made accessible to

UTAR community and public.

Yours truly,

*Delete whichever not applicable

It is hereby certified that ______Chiew Jing Cheng_________ (ID No: _20ACB02331

)has completed this final year project/ dissertation/ thesis* entitled “ Deep

Learning Inference on Edge Device: Traffic Violation Detection Using OpenVino ”

under the supervision of __Ts_Wong Chee Siang_ (Supervisor) from the

Department of ___Computer Science_____, Faculty/Institute* of _Information and

Communication Technology.

(Chiew Jing Cheng)

 ii

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “Deep Learning Inference on Edge Device: Traffic

Violation Detection Using OpenVino” is my own work except as cited in the

references. The report has not been accepted for any degree and is not being submitted

concurrently in candidature for any degree or other award.

Signature :

Name : Chiew Jing Cheng

Date : 23 April 2023

iii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I want to sincerely thank and appreciate my supervisor, Ts Wong Chee Siang, for

providing me with this inspiring opportunity to engage on a deep learning project with

OpenVino Technology. Many thanks in advance. I want to express my gratitude to my

parents and my entire family for their support, love, and never-ending encouragement

during the journey.

iv
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

Deep learning technologies are becoming increasingly popular in recent years.

Numerous industries, including healthcare, entertainment, automation systems, natural

language processing, and others, are impacted by it. It advances global technology to a

new level. Deep learning techniques are now widely employed as a result, especially

on edge devices that perform IoT tasks. It is because we no longer need people to assist

us in our work, we instead choose to deploy an edge device with a deep learning model.

To run the code effectively without being bothered by the slow processing times, those

deep learning approaches demand for a lot of processing power, which requires strong

computer hardware. This project interprets and demonstrates how OpenVino (Open

Visual Inference and Neural) toolkits assist in improving performance and enable us to

run a demanding deep learning model on an Intel’s computer system that most regular

people have. The OpenVino’s inference engine is designed to speed up the inference of

deep learning models under IR format that is provided by OpenVino. This project will

explain whether the OpenVino toolkit does indeed offer a shorter inference time and

eventually how much performance can be delivered. Before the project ends, a traffic

violation detection application that combined with several deep learning pre-trained

models will be configured and deployed in an intel-powered edge device (Intel UP

board). It aims to determine whether running an OpenVino-optimized deep learning

framework application on an edge device with a low-power processor can surprisingly

produce a respectable result.

v
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table of Contents

TITLE PAGE………………………………………………………………………...I

DECLARATION OF ORIGINALITY ... II

ACKNOWLEDGEMENTS ... III

ABSTRACT ... IV

TABLE OF CONTENTS ... V

LIST OF FIGURES ... VIII

LIST OF TABLES ... XII

LIST OF ABBREVIATIONS .. XIIII

CHAPTER 1 INTRODUCTION .. 1

1.1 Project Background .. 1

1.2 Problem Statement ... 2

1.3 Motivation .. 3

1.4 Project Scope ... 3

1.5 Project Objectives .. 3

1.6 Impact, Significance, Contribution .. 4

CHAPTER 2 LITERATURE REVIEW .. 5

2.1 Previous Works on assessing OpenVino Toolkit... 5

2.1.1 Analysis of the Acceleration of Neural Networks Inference on Intel

Processors Based on OpenVino Toolkit .. 5
2.1.2 Philips Healthcare Uses the OpenVino Toolkit and the intel

DevCloud for the edge to accelerate compressed Sensing Image

reconstruction algorithm for MRI. ... 7

2.1.3 Lung Nodule Detection from low dose CT scan using Optimization

on Intel Xeon and Core processors with Intel Distribution of

OpenVino Toolkit .. 8
2.1.4 Face Detection and Face Re-identification System Using Deep

Learning and OpenVino ... 9
2.1.5 Intel OpenVino Toolkit for Computer Vision: Object Detection and

Semantic Segmentation .. 10

vi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2 Conclusion of Improvement done by OpenVino Toolkit from previous study

.. 13

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 15

3.2 System Development Methodology ... 15

3.3 System Design Diagram .. 16
3.3.1 System Architecture diagram .. 16
3.3.2 Use case diagram of Traffic Violation Detection System 17
3.3.3 Activity Diagram of Traffic Violation Detection System................. 18

3.4 Timeline ... 20

CHAPTER 4 SYSTEM DESIGN ... 21

4.1 Performance Enhancement with OpenVino and DL Framework Selection 21

4.2.1 Flow Diagram of Performance Measurement introduced by

OpenVino ... 22

4.2 Traffic Violation Detection System Deployment with OpenVino 23
4.2.1 Traffic Violation Detection System System Block Diagram 23

4.2.2 Flow Diagram of Traffic Violation System Development 24

4.3 System Components Specifications ... 25

4.3.1 Hardware Components.. 25
4.3.2 Software Components ... 28

4.4 System Components Interaction Operations .. 33

CHAPTER 5 SYSTEM IMPLEMENTATION .. 34

5.1 Software Setup (On WorkStation - Window 10) ... 34
4.2 Setting up OpenVino enviroment .. 34

5.2 System Implementation for Objective 1: Performance Measurement

introduced by OpenVino .. 35
5.2.1 Measurement for TensorFlow Pre-trained Model

(Mobilev2_SSDlite) ... 35
5.2.2 Measurement for ONNX Pre-trained Model (YOLOv6n) 37

5.2.3 Measurement for Pytorch Pre-trained Model (YOLOv6n) 39
5.2.4 Overview of the Performance measurement 41

5.3 System Implementation for Objective 2: Configuration of Traffic Violation

Detection. ... 43
5.3.1 Vehicle-license-plate-detection-barrier-0123 44
5.3.2 Library installation (EasyOCR) .. 44
5.3.3 Configuration of Traffic Violation Detection System 45

5.4. Result of the Traffic Violation Detection System............................... 49

vii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4 Hardware Setup (Intel UP Board) .. 52

5.1.1 OS Installation .. 52
5.1.2 Installation of VNC Server (Accessing to Edge Device without

Monitor) ... 55

5.1.3 Driver Installation for D-Link DWA-123 (Accessing Internet without

RJ45 Ethernet cable) .. 57
5.1.4 Final Product of System Hardware Components. 57

5.5 Software Setup (Intel UP Board) ... 58
5.5.1 OpenVino Environment .. 58

5.5.2 Install all dependencies and required libraries. 59

5.6 Testing the Effectiveness of OpenVino on an Edge Device 61

5.7 Result of the Traffic Violation Detection System on Edge Device 62

5.8 Task Automation Configuration (Intel UP Board) .. 64

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 65

6.1 System Testing and Performance Metrics ... 65

6.2 Evaluation of Processed Frames per Second (FPS) Performance 66
6.2.1 FPS Evaluation on Workstation .. 66

6.2.2 FPS Evaluation on Intel UP Board ... 67

6.3 Evaluation of Accuracy Performance .. 68
6.3.1 Accuracy Evaluation on Workstation ... 68

6.3.2 Accuracy Evaluation on Intel UP Board ... 68

6.3.3 Overview of Performance ... 69

6.3 Limitation and Future Improvements .. 70

CHAPTER 7 CONCLUSION AND RECOMMENDATION................................ 71

7.1 Conclusion ... 71

7.2 Recommendation ... 71

REFERENCES ... 73

APPENDIX – B WEEKLY LOG ... 1

POSTER.. 1

PLAGIARISM CHECK RESULT ... 1

FYP2 CHECKLIST ... 1

viii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure Number Title Page

Figure 1.1 OpenVino Implementation workflow 2

Figure 2.1 detection of object labelled as “cat” 6

Figure 2.2 Detection of objects labelled as “Man” (person) and “TR”

(tennis racket)

6

Figure 2.3 Detection of object labelled as “Plane” 6

Figure 2.4 comparing unoptimized TensorFlow, versus OpenVino

inference network

7

Figure 2.5 performance chart for inference time comparison 8

Figure 2.6 comparison of average processing time 9

Figure 2.7 Cost comparison for cpu1 11

Figure 2.8 cost comparison for cpu2 and gpu1 11

Figure 2.9 cost comparison for cpu3 and gpu2 12

Figure 2.10 cost comparison for cpu4 12

Figure 3.1 Waterfall Model 15

Figure 3.2 System Architecture Diagram 17

Figure 3.3 Use Case Diagram of Traffic Violation Detection System 18

Figure 3.4 Activity Diagram of Traffic Violation Detection System 19

Figure 3.5 Timeline of FYP1 20

Figure 3.6 Timeline of FYP2 20

Figure 4.1 Whole Project workflow 21

Figure 4.2 Pre-trained Object Detection model system flow diagram 22

Figure 4.3 OpenVino Object Detection system flow diagram 22

Figure 4.4 System Block Diagram of Traffic Violation Detection

System

23

Figure 4.5 Traffic Violation system Flow Diagram 24

Figure 4.6 Intel UP Board for testing in edge device 25

Figure 4.7 Camera (Logitech C615) 27

Figure 4.8 Power Bank 27

ix
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.9 Wifi Adapter (Dlink DWA-123) 28

Figure 4.10 Python 28

Figure 4.11 Jupyter Notebook 29

Figure 4.12 Deep Learning Framework (Tensorflwo, ONNX,

PyTorch)

29

Figure 4.13 OpenVino Toolkit 30

Figure 4.14 Vehicle-license-plate-detection-barrier-0123 model (IR

files)

30

Figure 4.15 Vehicle-license-plate-detection-barrier-0123 network

architecture

31

Figure 4.16 EasyOCR 31

Figure 4.17 Ubuntu 20.04 LTS 32

Figure 4.18 VNC Viewer 32

Figure 5.1 Version of OpenVino development tools 34

Figure 5.2 Version of Jupyterlab (IDE for python) 35

Figure 5.3 IR files of TensorFlow pre-trained model 36

Figure 5.4 Result of original TensorFlow Mobilev2_SSDlite pre-

trained model

36

Figure 5.5 Result of OpenVino-Optimized (TensorFlow-to-IR)

mobilev2_ssdlite pre-trained model

37

Figure 5.6 Converting ONNX format (.ONNX*) to IR format (.xml*

+ .bin*) using OpenVino’s model optimizer

38

Figure 5.7 Result of original ONNX YOLOv6n pre-trained model 38

Figure 5.8 Result of OpenVino-Optimized (ONNX-to-IR) YOLOv6n

pre-trained model

39

Figure 5.9 Exporting Pytorch yolov6 model to ONNX model 39

Figure 5.10 Result of original Pytorch YOLOv6n pre-trained model 40

Figure 5.11 Result of (Pytorch-to-ONNX) YOLOv6n pre-trained

model

40

x
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.12 Result of OpenVino-Optimized (Pytorch-to-ONNX-to-

IR) YOLOv6n pre-trained model

41

Figure 5.13 Flow Diagram of Traffic Violation Detection Syste 43

Figure 5.14 Vehicle-license-plate-detection-barrier-0123 model (IR

files)

44

Figure 5.15 Version of EasyOCR 44

Figure 5.16 EasyOCR to Detect English Characters 44

Figure 5.17 OpenVino Runtime Initialization 45

Figure 5.18 Start Capturing 45

Figure 5.19 Rescaling and Pre-processing 46

Figure 5.20 Main Function 47

Figure 5.21 Function of “retrieve_cordinate()” 47

Figure 5.22 Function of “save_plate_image()” 48

Figure 5.23 Function of “save_result_to_txt()” 48

Figure 5.24 Generate Average Processed FPS 49

Figure 5.25 Front-Facing (illegal driving) white car 49

Figure 5.26 Front-facing (Illegal Driving) Black Car 50

Figure 5.27 Back Facing (legal Driving) Back-facing Car 50

Figure 5.28 Front and Back Facing Car 50

Figure 5.29 Daily report.txt 51

Figure 5.30 Ubuntu Desktop Image Download 52

figure 5.31 Bootable Drive with Intel UP Board 52

Figure 5.32 Install Ubuntu 53

Figure 5.33 (Ubuntu) Installation Complete 53

Figure 5.34 Booting Ubuntu on Edge Device without Bootable Drive 54

Figure 5.35 System Partition (Flag: boot) 54

Figure 5.36 VNC Server Installation 55

Figure 5.37 Set Password to VNC Server 55

Figure 5.38 Activate VNC server 55

xi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.39 Remote Desktop Connection to Edge Device 1 56

Figure 5.40 Remote Desktop Connection to Edge Device 2 56

Figure 5.41 Command to Install Wi-Fi Adapter’s Driver 57

Figure 5.42 Final Product of System Hardware Components 57

Figure 5.43 Upgrade apt-get 58

Figure 5.44 Update apt-get 58

Figure 5.45 Install Git and Python Environment 58

Figure 5.46 Create OpenVino Environment 58

Figure 5.47 requirement.txt 59

Figure 5.48 Install from requirement.txt 59

Figure 5.49 Version of EasyOCR 60

Figure 5.50 Apps Project Directory 60

Figure 5.51 Performance of Original ONNX Model on Edge Device 61

Figure 5.52 Performance of OpenVino-optimised Model on Edge

Device

61

Figure 5.53 Activate OpenVino Environment 62

Figure 5.54 Run “app.py” file in Terminal 62

Figure 5.55 Report Text File Generated 63

Figure 5.56 Content of Report.txt 63

Figure 5.57 activate_and_run.sh 64

Figure 5.58 Crontab Setup 64

Figure 6.1 Dataset for Testing 66

Figure 6.2 FPS on Detecting Vehicle (OpenVino) 66

Figure 6.3 FPS on OCR 66

Figure 6.4 FPS on Detecting Vehicle (Intel UP Board) 67

Figure 6.5 Fps on OCR (Intel UP Board) 67

Figure 6.6 FPS Overview of FPS Performance 69

Figure 6.7 Overview of Accuracy Performance 69

xii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table Number Title Page

Table 2.1 Statistical characteristic of performance (PF) 6

Table 2.2 Target device which neural network performed 10

Table 2.3 Overview OpenVino toolkit improvement has made 14

Table 4.1 Specifications of laptop 25

Table 4.2 Specifications of Edge Device 26

Table 5.1 Overview of the Performance Measurement Result 42

Table 6.1 Accuracy of Models on Workstation 68

Table 6.2 Accuracy of Models on Edge Device 68

xiii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF ABBREVIATIONS

OpenVino Open Visual Inference and Neural Network Optimization

IR Intermediate Representation

AI Artificial Intelligence

DL Deep Learning

DNN Deep Neural Network

SSD Single Shot Detector

FPS Frames Per Second

TF TensorFlow

IE Inference Engine

OCR Optical Character Recognition

AVX Advanced Vector Extensions

 1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1 Introduction

1.1 Project Background

Deep learning is widely used by businesses on an edge device nowadays. Individuals

have expressed concern over about the amount of computing power needed to any

DNNs model predicts output. In this project, we will talk about the OpenVino toolkit,

it is a toolkit that Intel has made available to speed up conversion of the original deep

learning framework (TensorFlow, pytorch, ONNX, …) to the OpenVino (IR) format.

(Intermediate Representation). The development process can be accelerated by using

OpenVino Toolkit to simplify deep learning models by converting them to conform to

IR format as well as optimising DNN models to reduce the time it takes for inference.

Correspondingly, there are traffic offenses, particularly in one-way lanes, in residential,

academic, and urban areas. Many people complain that the number of incidents

occurring in those areas keeps rising. Even when there isn't an accident, people still

strongly dislike and criticise of the actions of other drivers because they force them to

drive carefully and with all of their attention every time. Hence, this project will then

configure a traffic violation detection system with paired with several pre-trained deep

learning models on an Intel edge device. In order to enhance the DNNs' performance

on the edge device, this project will then deploy system along with OpenVino

technology. The edge device will be installed at the side of the road to detect and save

those records of drivers who violate traffic laws in one-way lanes,

As shown in [1], The OpenVino project workflow can be separated to 4 part which is

Train, Model optimizer, Inference Engine and Deployment. First, we have to train a

model with code, then we use OpenVino toolkit’s model optimizer to optimize the

model and generate an Intermediate Representation (.xml + .bin files) of the model

which can be inferred with OpenVino Runtime. Furthermore, the inference engine’s

job is to check for model compatibility based on the framework used to train the model

as well as the hardware used (Intel hardware). Lastly, the application is deployed to

edge devices. Figure 1.1 shows the OpenVino toolkit workflow.

CHAPTER 1

2
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 1.1 OpenVino Implementation workflow.

1.2 Problem Statement

Recently, Deep Neural Networks (DNNs) have made significant advancements in a

variety of fields. These powerful deep learning models are capable of imitating human

behaviour and autonomous decision-making. Therefore, it could displace the majority

of common human jobs. To deploy and produce such good performance and usable

deep learning models on an edge device, indeed, requires significant hardware as well

as DNN models and frameworks. It might require powerful hardware as well as pricey

processing resources.

Additionally, particularly in urban and residential areas, serious traffic offences like

driving the wrong way are frequent. Many people use a one-way lane to travel in the

opposite direction in an effort to get to their destination faster, but this frequently leads

to accidents. Even though there are no accidents, people still detest having to keep their

attention focused all the time on those annoying drivers.

CHAPTER 1

3
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.3 Motivation

The project's goal was to implement a deep learning inference system and a traffic

violation detection system using the OpenVino toolkit. In this paper, we will examine

how much the OpenVino toolkit can optimise or speed up the system's performance.

And furthermore, a traffic violation detection application will be developed at the

project's ending using deep learning and OpenVino technology. The application will

then be installed on an edge device with an Intel processor with low power (Intel UP

board). This last is to see whether an OpenVino-optimized deep learning framework

application running on a low-power edge device can deliver an acceptable result.

1.4 Project Scope

The scope of the project is to evaluate whether the OpenVino Toolkit significantly

increases DNN performance before deploying traffic violation detection system on an

edge device. In this project, we firstly compare some pre-trained deep learning models

from various frameworks along with OpenVino toolkits (by using supported Intel

hardware) to determine if it really brings out performance enhancement (lowering the

inference time needed). Then, we configure traffic violation detection system with the

combination of several deep learning models that are supported by OpenVino. At last,

the system is then deployed on an Intel edge device after OpenVino has been

implemented to improve system performance.

1.5 Project Objectives

The main objective of the project is to implement a traffic violation detection system

on an edge device using a set of deep learning models as well as the OpenVino Toolkit.

On the edge device, the OpenVino Toolkit is used to enhance performance by

decreasing the DNNs' inference time. The main objective can be divided into the

following two sub-objectives:

1. To measure the performance enhancement introduced by OpenVino and select

the most effective DL framework.

2. Configure Deploy the traffic violation detection on edge device along with

OpenVino Toolkits.

CHAPTER 1

4
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

After the project is finished, a traffic violation detection system will be successfully

deployed on the edge device and can be used readily in a one-way road to detect if any

vehicles are moving in the wrong direction, thereby reducing the number of accidents.

This project can also draw conclusions about whether OpenVino actually improves

performance and whether doing so on an Intel edge device for a deep learning project

is worthwhile.

1.6 Impact, Significance, Contribution

A complex computer vision deep learning application, especially that forms with

multiple DNNs models can be thrilling to a CPU. CPU will reach a bottleneck If it

unable to manage to handle those hard cores of DNNs inference tasks. Additionally,

people are more willing to buy affordable edge devices that powered by only low-power

CPU to perform the computer vision task for saving cost. Thus, the solution of the

project can conclude that if OpenVino really help us for saving cost through accelerate

DNNs performance/inference time.

Besides that, traffic offences like driving the wrong direction in one-way lane are a

concern today, particularly in urban areas like residential neighbourhoods and school

campuses. The deployed traffic violation system application can assist in identifying

and capturing any vehicles that are moving against traffic laws (driving in the opposite

direction). As such result, management is able to punish rulebreakers. In the end, this

will lower the accident rate in urban areas.

CHAPTER 2

5
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 Literature Review

2.1 Previous Works on assessing OpenVino Toolkit

2.1.1 Analysis of the Acceleration of Neural Networks Inference on

Intel Processors Based on OpenVino Toolkit

In [2] research, the SSD MobileNet V2 COCO model-based TensorFlow and OpenVino

Inference Engine are used to infer neural network models for the tasks of object

detection in pictures. It is demonstrated that a neural network's performance may be

greatly increased by reconfiguring the network for use on Intel processors using the

OpenVino Inference Engine. TensorFlow only is used in the comparison as the network

implementation.

The COCO 2017 dataset and 90 categories of objects with 200 images were used to

train the object detection model, which was then used to evaluate from[2]. Mobilev2

SSD Deep Neural Networks are one that are utilised in this study. The Intel i5-4460

processor, which is only supported by Intel hardware, was used.

This literature review [2] has drawn out two conclusions. First, using the OpenVino

inference engine has proven that the output of a neural network using OpenVino is

equivalent to the output of a traditional TensorFlow network implemented without

OpenVino. Second, the network that applied with OpenVino toolkit improves

performance by hundreds of frames per second compared to traditional network

implementations using TensorFlow. The example result is shown in Figure 2.1 – 2.3.

In table 2.1, we also can see that the OpenVino Inference engine gain average

performance of 126.449 times compared to traditional TensorFlow neural network.

CHAPTER 2

6
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1 detection of object labelled as “cat”

Figure 2.2 Detection of objects labelled as “Man” (person) and “TR” (tennis

racket)

Figure. 2.3 Detection of object labelled as “Plane”

Table 2.1 Statistical characteristic of performance (PF)

 Average Processed Frame per Second (FPS)

TensorFlow 0.149 fps

OpenVino 18.841 fps

OpenVino Gain 126.449x faster

CHAPTER 2

7
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.2 Philips Healthcare Uses the OpenVino Toolkit and the intel

DevCloud for the edge to accelerate compressed Sensing Image

reconstruction algorithm for MRI.

In research [3], In order to shorten scan times, Philips Healthcare included compressed

sensing to their magnetic resonance imaging (MRI) scanners. Philip uses deep learning

techniques to recreate the MRI image. According to research [3], Philips Healthcare

was able to use the OpenVino toolset to accelerate their deep learning inference.

The relative speedups of the OpenVino toolkit over TensorFlow that is not optimised

are illustrated in Figure 2.4. W-net inference and Adaptive-CS-Net Inference are two

deep neural network models that were employed in this project from the TensorFlow

framework. The testing on three separate Intel processors—Intel Core i7-8665UE, Intel

Xeon E3 1268L v5, and Intel Xeon gold 6138—resulted in these results.

Figure 2.4 comparing unoptimized TensorFlow, versus OpenVino inference network

As we can see from [3], compared to unoptimized TensorFlow, OpenVino toolkits were

able to accelerate the compressed sensing workloads for Philip Health care by

maximum up to 54x and minimum on Adapticve-CS-Net and minimum with19%

CHAPTER 2

8
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

improvement on W-Net inferenet. We can also conclude that W-Net seems to have the

better optimization in OpenVino toolkit.

2.1.3 Lung Nodule Detection from low dose CT scan using Optimization

on Intel Xeon and Core processors with Intel Distribution of OpenVino

Toolkit

They aim to develop a system that can detect lung nodules using deep learning in paper

[4]. They ran inference performance tests on systems with Intel processors using an

optimised OpenVino Deep Learning model against an unoptimized BVLC Caffe

framework, and they got excellent outcomes, which are detailed in the Result section.

Figures 2.5, It was observed that the average inference time for each image using the

Intel Distribution of OpenVino optimised model was only 0.2304 seconds on an Intel

Core i7 machine as opposed to 7.5 seconds when using the BVLC Caffe DetectNet

model, achieving a 33x performance improvement over the baseline model.

Additionally, it certainly improves by roughly 31 times in the i5 processor, which

produces an average inference time of 0.3455 seconds as opposed to 11 seconds. As a

result, we may draw the conclusion that using the OpenVino toolset will enable us to

enhance the performance in the BVLC Caffe model by 30 times.

Figure 2.5 performance chart for inference time comparison

CHAPTER 2

9
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.4 Face Detection and Face Re-identification System Using Deep

Learning and OpenVino

The system proposed in [5] was built with Face detection and face re-identification to

identify and track people from the video footages.

The Convolutional Neural Network (CNN) model used by the system is based on the

Mobilenet V2 face re-identification model, which is a TensorFlow source framework.

The suggested design is put into practise utilising OpenVino (Open Visual Inference

and Neural Network Optimization) on a budget-friendly Intel UP board.

Figure 2.6 shows the findings of the average processing times from several assessment

platforms. When the model is optimised utilising OpenVino implementation rather than

only the Intel i7 CPU, the processing time is decreased by 73%, from an average

processing time of 52 ms to 14 ms. According to [5], this project utilises an Intel UP

board that is less costly, optimised for OpenVino, and equipped with a quad-core CPU,

and an integrated Intel GPU. The suggested technique is ideal for low-cost real-time

edge face recognition applications because to the 60ms inference speed and satisfactory

results.

Figure 2.6 comparison of average processing time

CHAPTER 2

10
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.5 Intel OpenVino Toolkit for Computer Vision: Object Detection

and Semantic Segmentation

The paper[6] provides an overview of the current state of neural network

implementation and introduces the Intel® OpenVino Toolkit for operating neural

networks on various Intel hardware platforms. The experiment on many hardware

platforms is described. It also provides a summary of the effectiveness and costs of

using a single CPU or GPU to run specific neural networks in normal mode with the

OpenVino Toolkit, automatically dividing neural network inference between CPU and

GPU (Heterogeneous Plugin), and launching a network on CPU and GPU

simultaneously (Multi-Device Plugin).

The investigation of object identification and semantic segmentation computer vision

neural network types was the focus of the paper[6].The type of neural network such as

RetinaNet, DUC, SSD, Tiny YOLOv2 and YOLOv2-COCO were used in this project.

All neural networks were represented within the ONNX machine learning model

framework.

Table 2.2 shows the three different CPU and two different GPU types that were tested

on the target platform for neural network performance. In addition, GPU1 and GPU2

are integrated GPUs in the CPU2 and CPU3 CPUs.

Table 2.2 Target device which neural network performed

Target device Device name

CPU1 Intel® Core ™ i9-9900KF;

CPU2 Intel® Core ™ i7-7700HQ;

CPU3 Intel® Core ™ i5-8250U;

GPU1 Intel® HD Graphics 630;

GPU2 Intel® UHD Graphics 620.

CHAPTER 2

11
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

To describe the advantages of using the chosen device, a cost analysis (FPS) was

performed (higher is better) as shown in Figure 2.7 – 2.10. The neural network DUC

and yolo v2-coco's average performance dropped by 20.9% on the CPU and 16.2% on

the GPU when the OpenVino toolkit was utilised. On the CPU and GPU, neural

network SSD performance is often increased by roughly 30%. RetinaNet's performance

when utilising the OpenVino toolkit is difficult to determine because it might

periodically go down and then up by a tiny amount. Since it can increase by as much

as 100%, tiny YOLOv2 should have an OpenVino framework that is well optimised

(except for CPU1 which was unable to be tested). The biggest gain in performance (up

to 141.3%) occurs on GPU2.

Figure 2.7 Cost comparison for cpu1

Figure 2.8 cost comparison for cpu2 and gpu1

CHAPTER 2

12
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.9 cost comparison for cpu3 and gpu2

Figure 2.10 cost comparison for cpu4

It was difficult to say whether OpenVino actually improved the performance. It might

not be tuned for a particular model, but according to a study by [6], if the model was

properly optimised with OpenVino, performance could even go up by 141 percent.

However, compared to a single device, using a multi-device plugin and heterogeneous

plugin does not actually improve speed (cpu or gpu be executed only).

CHAPTER 2

13
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2 Conclusion of Improvement done by OpenVino Toolkit from

previous study

These figure five studies have demonstrated how the OpenVino toolkit could well be

improved. These studies used the OpenVino-supported TensorFlow, Caffe, and ONNX

deep learning framework. And the majority of the research employed more user-

friendly, broadly available, and affordable computers (except for 2.1.1 intel Xeon

processor which is high end processor). Now, Let us wrap things up by evaluating the

performance of the OpenVino toolkit.

In figure 2.7, it was demonstrated that OpenVino could successfully multiply the

performance of neural network SSD MoblieNet V2 coco from the TensorFlow

framework by up to 126.449 times. This project's processor, an affordable i5-4450 that

can be considered a low-end processor, produces surprising results.

In figure 2.8 If the OpenVino toolkit is used in conjunction with the Adaptive-CS-Net

from the TensorFlow framework, it can improve by a maximum of 54.4 times.

However, it only improves three times in the W-Net neural network. Even less

improvement is obtained for the low-cost CPU (i7-8665u) when OpenVino is used,

with only a 19% increase in W-Net speed and a 7.5 time increase in Adaptive-CS Net

speed.

In figure 2.9 OpenVino was tested using the BVLC caffe DetectNet neural network

model of the Caffe deep learning framework. As a result, OpenVino was able to

successfully increase the performance speed of i5 and i7 processors by about 30 times

(processor model number were not stated).

In figure 2.10, The project uses an i7 processor and the OpenVino toolkit (model

number was not stated). The CNN MobileNet V2 neural network model used in this

project is based on the TensorFlow source framework. Compared to the not inferred

model, it successfully increased system performance by 73%. (without implement

OpenVino Inference Engine)

This project examined how OpenVino could be made better with various target devices

that have three CPUs and two iGPUs. These processors are reasonably priced and user-

CHAPTER 2

14
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

friendly (except for CPU1 i9-9900KF which can considered as high cost). This project's

neural network model includes DUC, SSD, RetinaNet, Tiny YOLOv2, and YOLO v2-

coco. This entire neural network is based on the ONNX framework. As a result,

performance for DUC and Yolo v2-Coco decreased while OpenVino toolkit was used.

Only the performance of the other three neural network model has improved. This

project also came to the conclusion that implementing a single GPU or CPU

outperformed heterogeneous plugins and multi-device plugins in terms of improvement

(sometimes even get more bad result).

Table 2.3 shows the overall performance of the OpenVino toolkit (only the cost-

effective i5/i7 processor is displayed). As we can see, the TensorFlow Framework

typically takes many advantages. Caffe framework also sees some good development.

ONNX framework appears to be unstable because it occasionally causes the

performance to drop. In addition, rather than being a problem with the deep learning

framework, it could be that the OpenVino toolkit is not well optimised to a particular

neural network model.

Table 2.3 Overview OpenVino toolkit improvement has made

neural network model Framework average improvement x cpu used

SSD_MoblieNet_V2_coco TensorFlow 26.45 i5-4450

W-Net TensorFlow 0.19 i7 – 8665u

Adaptive-CS Net TensorFlow 7.9 i7 – 8665u

BVLC caffe detectNet Caffe 30 i5/i7 -

CNN MobileNet V2 TensorFlow 0.73 i7 -

DUC ONNX -33.02 i7-7700HQ

SSD ONNX 25.28 i7-7700HQ

RetinaNet ONNX -2.46 i7-7700HQ

Tiny YOLOv2 ONNX 86.41 i7-7700HQ

YOLO v2-coco ONNX -5 i7-7700HQ

DUC ONNX -25.06 i5-8250U

SSD ONNX 44.08 i5-8250U

RetinaNet ONNX 5.46 i5-8250U

Tiny YOLOv2 ONNX 115.17 i5-8250U

YOLO v2-coco ONNX -2.58 i5-8250U

CHAPTER 3

15
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3 System Methodology/Approach

3.2 System Development Methodology
For the first objective of measuring the performance enhancement introduced by

OpenVino and selecting the most effective DL framework, I utilized the waterfall

model to ensure a structured and systematic approach to development.

The planning phase involved a thorough analysis of the project requirements, followed

by the design phase where I created a detailed system architecture and specified the

necessary hardware and software components. Then, I implemented the system and

conducted comprehensive testing to measure performance and select the most effective

DL framework.

For the second objective of configuring and deploying the traffic violation detection on

edge device along with OpenVino Toolkits, I followed a similar approach using the

waterfall model. I started with a planning phase that included analyzing the

requirements and designing the system architecture. Next, I implemented the system

and tested it thoroughly to ensure proper functionality. Finally, I deployed the system

to the edge device, followed by maintenance and support as needed.

Overall, utilizing the waterfall model helped me to develop and deploy my traffic

violation detection system in a structured and systematic manner, ensuring that each

phase of development was completed before moving on to the next.

Figure 3.1 Waterfall Model

CHAPTER 3

16
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3 System Design Diagram

3.3.1 System Architecture diagram

The traffic violation detection system architecture consists of several components,

including the client, internet, IoT edge device, IoT camera, database, and admin panel.

The components are connected to one another to facilitate the detection and reporting

of traffic violations. The following is a description of each component:

• Client: The client component provides the user interface for the admin to

interact with the system. The admin can set up the activation time for the system,

view the report of detected violations, and manage the system using the admin

panel.

• Internet: The internet component connects the client and IoT edge device,

allowing the admin to access and manage the system remotely.

• IoT Edge Device: The IoT edge device component is responsible for capturing

real-time images from the road using the IoT camera. The edge device performs

real-time image processing to detect illegal traffic vehicles.

• IoT Camera: The IoT camera component captures real-time images of the road,

which are transmitted to the edge device for processing.

• Database: The database component stores the car plate numbers of detected

violations for reporting purposes. The admin can access the database through

the admin panel to view the report of detected violations

• Admin Panel: The admin panel component provides a user-friendly interface

for the admin to set up the activation time, view the report of detected violations,

and manage the system.

CHAPTER 3

17
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.2 System Architecture Diagram

3.3.2 Use case diagram of Traffic Violation Detection System

The use case diagram for the traffic violation detection system includes three actors:

admin, edge device (Intel UP board), and illegal traffic vehicle. The admin can set the

system activation time and check for corresponding illegal vehicles. The edge device is

responsible for detecting illegal traffic vehicles using car plate recognition and saving

the recognized carplate. The illegal traffic vehicle triggers the detection system when it

violates traffic rules, such as driving in the wrong direction in a one-way lane.

CHAPTER 3

18
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3 Use Case Diagram of Traffic Violation Detection System

3.3.3 Activity Diagram of Traffic Violation Detection System

The activity diagram for the traffic violation detection system shows the steps involved

in detecting illegal traffic vehicles and reporting their car plate numbers to the admin.

The process starts with the admin setting up the activation time for the system. The

system then captures real-time images from the camera, which are analyzed for any

illegal traffic vehicles.

If no illegal traffic vehicles are detected, the system loops back to real-time capture,

continuing to monitor the road until the end of the activation time. However, if an illegal

traffic vehicle is detected, the system performs car plate number recognition using OCR

technology. The recognized car plate number is then saved to the system's database for

reporting purposes.

CHAPTER 3

19
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

After saving the car plate number, the system checks if the end of the activation time

has been reached. If not, the system loops back to real-time capture to continue

monitoring for additional violations. However, if the end of the activation time has been

reached, the system allows the admin to view the report containing the car plate

numbers of all the detected violations. Finally, the system ends.

Figure 3.4 Activity Diagram of Traffic Violation Detection System

CHAPTER 3

20
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.4 Timeline

The FYP1 and FYP2 project timeline (Gantt chart) has shown below:

Figure 3.5 Timeline of FYP1

Figure 3.6 Timeline of FYP2

CHAPTER 4

21
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 System Design

The entire project workflow is depicted in Figure 4.1. The project first will setup system

environment to implement OpenVino Toolkit. Then, we will compare the performance

improvements made by OpenVino to a variety of deep learning frameworks (such as

ONNX, Pytorch, and TensorFlow) to ensure that OpenVino actually contributes to

improving performance and in order to select the most effective deep learning

framework to use in associated with OpenVino. Next, we will configure traffic violation

detection system using the most effective deep learning frameworks

along with OpenVino Toolkit. At last, the system will then be installed along the

roadside after being configured on edge device (Intel Up Board).

Figure 4.1 Whole Project workflow

4.1 Performance Enhancement with OpenVino and DL Framework
Selection

The aim is to evaluate the impact of OpenVino on the performance of the system and to identify

the most effective deep learning framework.

CHAPTER 4

22
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2.1 Flow Diagram of Performance Measurement introduced by

OpenVino

In this section, it will iterate the process from figures 4.2 and 4.3 three times. We will

first pick a pre-trained model for object detection that uses the TensorFlow, Pytorch,

and ONNX deep learning frameworks. With the flow diagram from figure 4.2 we will

first evaluate the performance of the initial framework. The same pre-trained model

will then pass through OpenVino's model optimizer to produce IR format, which will

be used to implement the inference engine. The OpenVino’s optimized model (IR

format) will then be measured as shown in the flow diagram in figure 4.3. Then, we

will record the processed frames per second (fps) and sketch out how much percentage

of improvement OpenVino has made. By following the improvement percentages from

the three deep learning frameworks. The best effective deep learning framework will

then be chosen and configured for integration with the traffic violation detection system

in this project.

Figure 4.2 Pre-trained Object Detection model system flow diagram

Figure 4.3 OpenVino Object Detection system flow diagram

CHAPTER 4

23
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2 Traffic Violation Detection System Deployment with OpenVino
After completing the first objective as per Chapter 4.2, the most effective DL

framework will be identified. Subsequently, the traffic violation detection system will

be developed, and the system's high-level overview will be presented below.

4.2.1 Traffic Violation Detection System System Block Diagram

The system block diagram consists of several components, including the client, IoT

edge device, IoT camera, and the admin panel. The client is responsible for accessing

the system and triggering the detection process. The IoT edge device is equipped with

the necessary hardware components, such as an Intel UP board and a power bank, to

support the detection and recognition processes. The IoT camera captures the live

video feed of the traffic, which is then processed by the deep learning models built

with Tensorflow and OpenVINO. Upon detection of a traffic violation, the system

records the car plate number and the date and time of the incident, which is stored in a

text file for future reference. Finally, the admin panel provides the user with the

ability to interact with the system and view the report generated, containing the details

of the traffic violations detected by the system.

Figure 4.4 System Block Diagram of Traffic Violation Detection System

CHAPTER 4

24
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2.2 Flow Diagram of Traffic Violation System Development

Before the traffic violation system begins, the pre-trained deep learning models will be

processed by OpenVino's model optimizer to create the IR format necessary to run with

OpenVino's inference engine. Figure 4.5 demonstrates the workflow of the Traffic

Violation System. The system will first capture the real-time snapshot of the traffic

situation. Next, Pre-processing will be applied to the captured image, followed by

vehicle detection (fixed position of vehicle) to detect the offending vehicle. Next, The

detected vehicle will be perfectly cropped out and insert into the others DL model

(EasyOCR) for detecting vehicle features. At last, the result will be processed and

recorded in a txt file in order for the administrator to check which vehicle has broken

traffic laws.

Figure 4.5 Traffic Violation system Flow Diagram

CHAPTER 4

25
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3 System Components Specifications

4.3.1 Hardware Components

1. Workstation

In this project, we use the OpenVino toolkit to benefits our system deep learning

workloads and boosts the inference time. Only Intel hardware is officially supported

by the OpenVino toolkit. It requires a computer system with Intel Core Processors

ranging from the 6th to the 12th generation. The laptop we set up for this project

study is shown in Table 4.1.

Table 4.1 Specifications of laptop

Description Specifications

Model Microsoft Surface Pro 7

Processor Quad-core 10th Gen Intel® Core™ i7-1065G7 Processor

Operating System Windows 10 Home

Graphic Intel® Iris™ Plus Graphics

Memory 16GB DDR4x RAM

Storage 256GB SSD

CHAPTER 4

26
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2. Intel Up Board

Furthermore, an edge device will be used to deploy the deep learning applications

for traffic violations. However, the edge device we select must also be compatible

with the OpenVino Toolkit. Hence, Intel UP Board is selected as the edge device

as shown in Figure 3.0. Besides, table 3.2 displays the edge device's specification.

Figure 4.6 Intel UP Board for testing in edge device

Table 4.2 Specifications of Edge Device

Description Specifications

Model Intel UP Board, UP-CHT01-A10-0432

Processor Intel® Atom™ x5 Z8350

Operating System Ubuntu 20.04 LTS

Graphic Intel® HD400

Memory 4GB DDR3L RAM

Storage 32GB eMMC

CHAPTER 4

27
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. Camera

For this project, a Logitech C615 camera will be used to perform the deep

learning task. While a more professional camera could potentially be used with

the edge device, the Logitech C615 has been selected as a cost-effective option

that meets the project's requirements.

Figure 4.7 Camera (Logitech C615)

4. Power Bank

To simulate the power supply of the edge device, a power bank has been utilized

for this project. This allows the edge device to be powered wherever it goes and

wherever it is installed, without the need for a fixed power source. By leveraging

a portable power source, the edge device can be easily deployed in various

settings, making it more versatile and flexible. The specific power bank model

used for this project has been selected based on its capacity, output voltage, and

compatibility with the edge device, in order to ensure reliable and stable

performance during operation.

Figure 4.8 Power Bank

CHAPTER 4

28
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5. Wifi USB adapter

In this project, a Dlink DWA-123 Wifi USB adapter was selected to provide

wireless connectivity to the edge device. This adapter is capable of providing

up to 150Mbps of wireless speed, and is designed to be plug and play, making

it easy to use. The adapter was connected to the edge device, allowing it to

connect to a local wifi network and subsequently to the admin PC through VNC

viewer. The selection of this adapter was based on its affordability and ease of

use, making it a practical option for the project requirements.

Figure 4.9 Wifi Adapter (Dlink DWA-123)

4.3.2 Software Components

1. Python 3.8

Python 3.8 was used as the primary programming language for this project due

to its popularity, versatility, and extensive libraries and tools available for

scientific computing and machine learning. Python has emerged as a popular

choice among researchers and practitioners in the field of artificial intelligence

and data science due to its ease of use, readability, and flexibility. Additionally,

Python's open-source nature and large community of developers have made it a

reliable and well-supported platform for developing and deploying machine

learning applications.

CHAPTER 4

29
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.10 Python

2. Jupyter Notebook

JupyterLab was chosen as the primary IDE for this project due to its user-

friendly interface and integration with various data formats and programming

languages. Its ability to combine code, visualization, and documentation in a

single notebook makes it an ideal platform for data analysis and machine

learning experimentation.

Figure 4.11 Jupyter Notebook

3. Deep learning framework

This project involves the implementation and testing of several deep learning

models using the open-source software toolkit OpenVINO, which allows for

efficient deployment of neural networks on a variety of hardware platforms. The

deep learning frameworks used in this project include ONNX, PyTorch, and

TensorFlow, which are popular frameworks for developing and training deep

learning models. The use of these frameworks allowed for the exploration of

different neural network architectures and optimization techniques to achieve

optimal performance on the target hardware.

Figure 4.12 Deep Learning Framework (Tensorflwo, ONNX, PyTorch)

CHAPTER 4

30
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4. OpenVino Toolkit 2022

The OpenVINO Toolkit 2022 was used to optimize and deploy deep learning

models for traffic violation detection on edge devices in this project. The

toolkit's support for popular deep learning frameworks and optimization

techniques allowed for efficient execution of models on limited hardware

resources.

Figure 4.13 OpenVino Toolkit

5. Pretrained – Model

In this project, we will use pre-trained object detection models from

TensorFlow, PyTorch, and other frameworks to evaluate their effectiveness for

integration with OpenVINO. By testing and comparing the performance of

these models, we aim to identify the best one for our project's requirements.

Based on the results of the first objective outlined in Chapter 5, we have

determined that the TensorFlow pre-trained model is the most effective for our

project. We subsequently selected a pre-trained model for vehicle and license

plate detection using TensorFlow. Specifically, we chose the "Vehicle-license-

plate-detection-barrier-0123" model from OpenModelZoo on GitHub because

it is used to specifically detect front-facing car. While the model framework was

originally created using TensorFlow, and it was converted into an IR model that

is fully compatible with the OpenVINO toolkit.

Figure 4.14 Vehicle-license-plate-detection-barrier-0123 model (IR files)

CHAPTER 4

31
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.15 Vehicle-license-plate-detection-barrier-0123 network architecture

6. EasyOCR

EasyOCR was incorporated into the traffic violation detection system of this

project to enhance the recognition of text on license plates. This tool uses

advanced machine learning algorithms that allow it to accurately identify

characters and words from images, even in challenging conditions or

enviroments. By using EasyOCR, this project achieved high accuracy and speed

in recognizing and extracting the text on car plates. EasyOCR's ease of

integration made it a convenient and reliable solution for car plate recognition.

We follow the documentation of EasyOCR through [11] on GitHub.

Figure 4.16 EasyOCR

CHAPTER 4

32
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

7. Ubuntu 20.04.6 LTS

Ubuntu 20.04.6 LTS was chosen as the OS for the Intel Up board edge device

due to its stability, security, and compatibility with the hardware. Its LTS release

model offers five years of support and security updates. Additionally, Ubuntu

is well-supported by the open-source community and provides a range of

software packages for machine learning development. It also offers necessary

drivers and software libraries required for running the OpenVINO Toolkit and

deep learning frameworks on the Intel Up board.

Figure 4.17 Ubuntu 20.04 LTS

8. VNC Viewer

VNC viewer was used to remotely access the Intel Up board edge device in this

project due to its cross-platform compatibility and ease of use. VNC viewer

allows for remote desktop access to the device from any other computer on the

same network, enabling remote development and testing of machine learning

models. Its cross-platform compatibility ensures that it can be used on a range

of devices and operating systems, making it a flexible and convenient option for

accessing the edge device. Additionally, VNC viewer's simple user interface

makes it easy to set up and use, even for those with limited technical expertise.

Figure 4.18 VNC Viewer

CHAPTER 4

33
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.4 System Components Interaction Operations
In this project, a webcam was utilized to simulate an IoT camera, a power bank was

used as a substitute for a professional power supply, and a Wi-Fi adapter was employed

to connect the edge device to a wireless network. The webcam captures the real-time

traffic conditions at the roadside, and the edge device processes the results using the

selected deep learning framework. The detected car plate numbers and the

corresponding date and time information are saved in a text file for record keeping.

Users can access the report through an admin panel (VNC viewer) to retrieve the data

from the edge device.

It is important to note that the devices used in this project are a simulation of

professional-grade equipment. While the results achieved by this simulation are

satisfactory, it is expected that a more professional and expensive equipment will

provide even better results. The use of professional equipment is recommended in real-

world deployments to ensure the highest level of accuracy and reliability in traffic

violation detection systems.

CHAPTER 5

34
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 System Implementation

5.1 Software Setup (On WorkStation - Window 10)

Before starting to develop this project, there are three software needed to be installed

and downloaded in my device which is:

1. Python 3.8.8

2. OpenVino 2022.2.0

3.JupyterLab 3.5.0

4.2 Setting up OpenVino enviroment

The commands "python -m venv OpenVino env" and "OpenVino envScriptsactivate"

can be used to create an environment for the OpenVino project after Python 3.8.8 has

been installed on the machine. Next, we install the OpenVino development toolkit in

the specific OpenVino environment by using the command "pip install OpenVino-

dev[ONNX,TensorFlow2,pytorch]==2022.2.0". We only include "[ONNX,

TensorFlow2, Pytorch" in the bracket because we only consider using these deep

learning frameworks for our work. Use the command shown in figure 5.1 to verify that

if the OpenVino development tools have been properly installed.

Figure 5.1 Version of OpenVino development tools

Additionally, Jupyter Notebook serves as our integrated development environment

(IDE), allowing us to work on our project efficiently. The command "pip install

CHAPTER 5

35
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

jupyterlab" can be used to install Jupyter notebooks. Figure 5.2 shows if Jupyterlab has

been installed successfully.

Figure 5.2 Version of Jupyterlab (IDE for python)

5.2 System Implementation for Objective 1: Performance

Measurement introduced by OpenVino

We evaluated the performance of three deep learning frameworks in our project in order

to determine the most effective deep learning framework optimised for OpenVino and

so to deploy the traffic violation detection system in our edge device. TensorFlow,

Pytorch, and ONNX were selected for testing because of their established deep learning

communities. We choose an object detection pre-trained model that was trained using

the COCO 2017 dataset and 80 labeled objects from each framework in order to have a

fair comparison process. Besides, all precision formats used are "FP32" and the input

batch size is 1.

5.2.1 Measurement for TensorFlow Pre-trained Model

(Mobilev2_SSDlite)

The TensorFlow pre-trained model that we used was came from [7]. The pre-trained

model is from the open model zoo which is officially published by Intel. Next, we use

OpenVino's model optimizer to convert the original TensorFlow pre-trained model

format into IR format (OpenVino's optimised model that required to run OpenVino

Inference engine). The converted IR files (.xml* + .bin*) is shown in figure 5.3. Figure

5.4 displays the processed FPS result from the original model, while Figure 5.5 displays

the processed FPS result for the OpenVino optimized model under IR format. This

TensorFlow pre-trained model is provided from intel’s Open Model Zoo, after being

CHAPTER 5

36
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

optimized by OpenVino, the performance is improved by about 3.04x times (23.5 FPS

to 71.5FPS).

Figure 5.3 IR files of TensorFlow pre-trained model

Figure 5.4 Result of original TensorFlow Mobilev2_SSDlite pre-trained model

CHAPTER 5

37
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.5 Result of OpenVino-Optimized (TensorFlow-to-IR) mobilev2_ssdlite pre-

trained model

5.2.2 Measurement for ONNX Pre-trained Model (YOLOv6n)

To test whether OpenVino actually improves the performance of non-Intel-provided

models and its general applicability for new DNNs, we selected a model that wasn't

made by Open Model Zoo. Instead, we pick for the currently popular new DNNs

framwork, YOLOv6, which was released by Meituan from [8] recently in June 2022.

The pre-trained ONNX model (yolov6n_base.ONNX) that we used to test the ONNX

framework is downloaded from [9]. Then, as shown in figure 5.6, we implement

OpenVino's model optimizer to transform the original ONNX YOLOv6 pre-trained

model format into IR format (OpenVino-Optimized format). Figure 5.7 displays the

result of the original ONNX model, while Figure 4.8 displays the result of the model

with OpenVino optimization (IR format). The Yolov6n ONNX pre-training model

released by Meituan has improved its performance by about 1.2x(from 14.3FPS to

17.4FPS) times after being optimized by OpenVino.

CHAPTER 5

38
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.6 Converting ONNX format (.ONNX*) to IR format (.xml* + .bin*) using

OpenVino’s model optimizer

Figure 5.7 Result of original ONNX YOLOv6n pre-trained model

CHAPTER 5

39
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.8 Result of OpenVino-Optimized (ONNX-to-IR) YOLOv6n pre-trained

model

5.2.3 Measurement for Pytorch Pre-trained Model (YOLOv6n)

We used the same source from [9] of YOLOv6 pretrained model (yolov6n base.pt) for

the measurement process of the Pytorch model. We implement the conversion from

Pytorch to ONNX format before only converting to IR format because OpenVino

Model Optimizer does not support the conversion from Pytorch to IR format. We first

export our Pytorch model to an ONNX model using the method provided by [10]. The

ONNX file is converted to IR file using the model optimizer in OpenVino. And after

the comparison process, we discover that the original Pytorch model result is displayed

in figure 5.10 and the OpenVino-optimized result is shown in figure 5.12. The Yolov6n

Pytorch pre-trained model released by Meituan has improved its performance by about

1.8x (from 9.7FPS to 17.7FPS) after being optimized by OpenVino. Additionally, we

also tested the processed FPS of the converted Pytorch to ONNX model in figure 5.11.

Figure 5.9 Exporting Pytorch yolov6 model to ONNX model

CHAPTER 5

40
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.10 Result of original Pytorch YOLOv6n pre-trained model

Figure 5.11 Result of (Pytorch-to-ONNX) YOLOv6n pre-trained model

CHAPTER 5

41
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.12 Result of OpenVino-Optimized (Pytorch-to-ONNX-to-IR) YOLOv6n

pre-trained model

5.2.4 Overview of the Performance measurement

The Overview of performance introduced by OpenVino for the three different deep

learning frameworks, TensorFlow, ONNX, and Pytorch, is shown in Table5.1. In this

stage, two types of DNN models are implemented. The first DNN model is called

Mobilev2 SSDlite, and TensorFlow (improves 204%) is engaged to run this model, it

is discovered that it is the best outcome out of all the others. However, since this

model is officially offered on the OpenVino website, it's possible that OpenVino has

well-optimized it to achieve good results. As a result, we tested YOLOv6, a recently

released and well-liked DNNs framework that is not offered on the official OpenVino

website. The outcome reveals that ONNX improves 20% while Pytorch improves

80%.

CHAPTER 5

42
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 5.1 Overview of the Performance Measurement Result

DL Model and

(DNNs)

FPS of Original

Model

FPS of OpenVino-

Optimised Model

Obtained

improvement (x

times)

TensorFlow

(Mobilev2_SSDlite)

23.5 71.5 3.04x

ONNX (YOLOv6) 15.4 17.4 1.2x

Pytorch (YOLOv6) 9.7 (Pytorch) -

1.8x

15.7 (Converted

ONNX model)

17.7

Additionally, the model optimizer for OpenVino is not directly supported by Pytorch.

So instead, it must be changed from Pytorch to ONNX format and finally from ONNX

to IR format. Therefore, we converted Pytorch to ONNX using the official Yolov6

website converter (https://github.com/meituan/YOLOv6/tree/main/deploy/ONNX).

and we put the modified Pytorch to ONNX model to the test. It achieves a similar

outcome to the original ONNX model (which around 15 FPS). Besides, the results of

converting either the Pytorch format to IR format or the ONNX model to IR format are

exactly equivalent (both Pytorch-ONNX-IR and ONNX-IR get around 17 FPS).

https://github.com/meituan/YOLOv6/tree/main/deploy/ONNX

CHAPTER 5

43
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3 System Implementation for Objective 2: Configuration of

Traffic Violation Detection.

Below is the Flow Diagram of Traffic Violation Detection System, where the necessary

functions are labeled beside the description in each box. The components involved in

each process will be discussed in detail in the subsequent sections of chapter 5.3.

Figure 5.13 Flow Diagram of Traffic Violation Detection System

CHAPTER 5

44
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.1 Vehicle-license-plate-detection-barrier-0123

The IR model "Vehicle-license-plate-detection-barrier-0123" was downloaded from

the Intel GitHub website Open Model Zoo. The model had already been converted to

IR files from the base TensorFlow framework. As we have already determined that the

TensorFlow model provides optimal performance, we will be using this model for

vehicle and car plate detection in our Traffic Violation Detection System. The primary

purpose of this model is to detect front-facing cars and their license plates. Once the

model was downloaded, it was placed in the project directory for further use

Figure 5.14 Vehicle-license-plate-detection-barrier-0123 model (IR files)

5.3.2 Library installation (EasyOCR)

EasyOCR was selected for the car plate recognition in this Traffic Violation Detection

System. EasyOCR was chosen for its high accuracy and ease of implementation. The

Documentation of Easy OCR is at [11] Below is the version installed:

Figure 5.15 Version of EasyOCR

We chose to use an English character-specific model for optimal performance as it

allowed for a more streamlined and accurate car plate recognition process, given that

car plates typically only contain English letters and numerical characters.

Figure 5.16 EasyOCR to Detect English Characters

CHAPTER 5

45
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.3 Configuration of Traffic Violation Detection System

1. Initialize OpenVino Runtime

At the beginning of the process, the OpenVino Runtime was initialized, and a

plate list was created to store the license plates detected in each frame. The plate

list was programmed to be cleared every 30 frames. In order to accommodate

the model's required input image size of 256x256, the global variables Height

and Width were set to 256. Additionally, the current date was stored in a

variable called "Now".

Figure 5.17 OpenVino Runtime Initialization

2. Start Video Capture

During this phase, the system captures video using the specified "source".

Additionally, a collection called "processing_time Variable" is created to store

the processing time data for further analysis.

Figure 5.18 Start Capturing

CHAPTER 5

46
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. Rescaling the frame resolution limit & Pre-processing

To optimize performance, the system limits the maximum frame resolution to

1440x1440p. The frames are then reformatted to [Batch,Height,Width,Channel]

to match the input requirements of the neural network.

Figure 5.19 Rescaling and Pre-processing

4. Perform Vehicle and Carplate Detection (Main Function)

The main function begins by initializing the "start_time" and "end_time"

variables to measure the overall performance of the program, which includes

front-facing vehicle and car plate detection as well as OCR. The

"compiled_model" function is responsible for loading the model using

OpenVino. The "Save_plate_image" function contains the OCR

implementation.

CHAPTER 5

47
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.20 Main Function

5. Function to Retrieve Coordinate (Result Post Processing)

The purpose of this function is to obtain the precise coordinates of the bounding

box and then return them in the form of a list.

Figure 5.21 Function of “retrieve_cordinate()”

CHAPTER 5

48
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6. Function to perform Car Plate Number Recognition (save_plate_image(),

save_result_to_txt())

The purpose of these functions is to carry out Optical Character Recognition

(OCR) to identify the car plate number. Only results with an accuracy of 80%

or higher will be saved to the report file.

Figure 5.22 Function of “save_plate_image()”

Figure 5.23 Function of “save_result_to_txt()”

CHAPTER 5

49
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

7. Generate FPS (End of Main)

This step involves generating the average processed frames per second (FPS)

to evaluate the performance of the system.

Figure 5.24 Generate Average Processed FPS

5.4. Result of the Traffic Violation Detection System

Below is the sample result of the application in different condition:

1. Front-facing Car (illegal driving) will be detected

Figure 5.25 Front-Facing (illegal driving) white car

CHAPTER 5

50
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.26 Front-facing (Illegal Driving) Black Car

2. Back-facing (legal driving) car will not be detected

Figure 5.27 Back Facing (legal Driving) Back-facing Car

3. Front and back facing car: only front-facing car will be detected

Figure5.28 Front and Back Facing Car

CHAPTER 5

51
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4. Text File as a Daily Report in the System, date and time is recorded

Figure 5.29 Daily report.txt

CHAPTER 5

52
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4 Hardware Setup (Intel UP Board)

5.1.1 OS Installation

To complete the installation process, you will require a USB drive, a monitor, a

keyboard, a mouse, an Ethernet cable connected to the Intel UP Board.

1. Download Ubuntu Desktop 20.04 LTS from Ubuntu Official Website

(https://ubuntu.com/download/desktop)

Figure 5.30 Ubuntu Desktop Image Download

2. Create bootable USB Drive with the Ubuntu Image using Rufus and then

connect the USB Drive to Intel UP Board and boot Ubuntu from the USB

Drive.

figure 5.31 Bootable Drive with Intel UP Board

https://ubuntu.com/download/desktop

CHAPTER 5

53
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. After booting from the USB drive, click on the "Install Ubuntu" option to

initiate the installation process of Ubuntu OS onto the internal storage of the

Intel UP Board. Follow the on-screen instructions to complete the installation

process.

Figure 5.32 Install Ubuntu

Figure 5.33 (Ubuntu) Installation Complete

CHAPTER 5

54
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4. Click “restart” and unplug the USB Drive. Check if the ubuntu is successfully

install. As you can now see the ubuntu is installed in System Partition for

booting Ubuntu OS.

Figure 5.34 Booting Ubuntu on Edge Device without Bootable Drive

Figure 5.35 System Partition (Flag: boot)

CHAPTER 5

55
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.1.2 Installation of VNC Server (Accessing to Edge Device without

Monitor)

1. Open Terminal and type “sudo apt-get install x11vnc” to install VNC server

Figure 5.36 VNC Server Installation

2. Set password to VNC server using “x11vnc -storepasswd”

Figure 5.37 Set Password to VNC Server

3. Activate server using this command

Figure 5.38 Activate VNC server

CHAPTER 5

56
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4. To access the Edge device from your own device, ensure that both devices are

connected to the same local network. Then, use the VNC client on your device

and enter the IP address of the Edge device to establish the connection.

Figure 5.39 Remote Desktop Connection to Edge Device 1

Figure 5.40 Remote Desktop Connection to Edge Device 2

CHAPTER 5

57
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.1.3 Driver Installation for D-Link DWA-123 (Accessing Internet without

RJ45 Ethernet cable)

For this project, we connect the Edge device to the internet using a D-Link DWA-123

Wi-Fi USB adapter. To install the necessary driver for the adapter on Ubuntu 20.04

LTS, we follow the instructions provided on GitHub at the [12].

Figure 5.41 Command to Install Wi-Fi Adapter’s Driver

5.1.4 Final Product of System Hardware Components.

At the end of the process, the system's components' final output can be observed. It is

worth noting that a power bank was used as a portable power supply for the Edge

device, and a webcam was utilized as an IoT camera to minimize expenses. However,

for optimal performance, it is recommended to use professional equipment.

Figure 5.42 Final Product of System Hardware Components

CHAPTER 5

58
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.5 Software Setup (Intel UP Board)

5.5.1 OpenVino Environment

1. Upgrade and update apt-get

Figure 5.43 Upgrade apt-get

Figure 5.44 Update apt-get

2. Install python and git via apt-get

Figure 5.45 Install Git and Python Environment

3. Create OpenVino enviroment as Project Directory

Figure 5.46 Create OpenVino Environment

CHAPTER 5

59
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.5.2 Install all dependencies and required libraries.

1. Install all requirement libraries and dependencies from the below text file

(requirement.txt) using “pip -r requirements.txt”. The OpenVino we install is

differ from our workstation since Linux only have the version of 2022.3.

Figure 5.47 requirement.txt

Figure 5.48 Install from requirement.txt

CHAPTER 5

60
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2. Due to the limitation of the processor on my Edge device, it does not support

AVX instructions required by the latest version of EasyOCR. To overcome this

issue, I have used an older version of EasyOCR, namely 1.2.3, that does not

require AVX instructions.

Figure 5.49 Version of EasyOCR

4. Copy the application directory to edge device.

Figure 5.50 Apps Project Directory

CHAPTER 5

61
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.6 Testing the Effectiveness of OpenVino on an Edge Device

During the testing phase, we utilized the onnx yolov6 object detection model described

in chapter 5.2.3 to assess the degree of performance improvement achieved by

OpenVino on the edge device.

The experiment conducted to evaluate the effectiveness of OpenVino on the edge

device yielded promising results. The original model achieved an average FPS of 0.8,

while the OpenVino-optimized model achieved an average FPS of 1.1. This translates

to a significant improvement of approximately 37.5% in performance. The findings

indicate that OpenVino can effectively optimize models for deployment on edge

devices, even with older generation processors.

Figure 5.51 Performance of Original ONNX Model on Edge Device

Figure 5.52 Performance of OpenVino-optimised Model on Edge Device

CHAPTER 5

62
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.7 Result of the Traffic Violation Detection System on Edge Device

1. Activate OpenVino Environment on the Edge Device.

Figure 5.53 Activate OpenVino Environment

2. To run the traffic violation detection system, you need to first navigate to the

project directory and execute the command "python3 app.py" in the command

prompt or terminal. It is important to note that the source of the video reader in

the app.py file is set to "sampleVideo.mp4" and not the camera for testing

purposes.

Figure 5.54 Run “app.py” file in Terminal

CHAPTER 5

63
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. After running the "app.py" file using the command "python3 app.py", navigate

to the directory and check for the "(TodayDate)_report file.txt". If the report file

exists, it indicates that the Traffic Violation Detection System is running

correctly on the edge device.

Figure 5.55 Report Text File Generated

4. You can view the detected car plate from your sample data in the

“(TodayDate)_report file.txt”.

Figure 5.56 Content of Report.txt

CHAPTER 5

64
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.8 Task Automation Configuration (Intel UP Board)

1. A bash script is created to automate the task of activating the OpenVino

environment and running the traffic violation detection application in sequence.

Figure 5.57 activate_and_run.sh

2. Configure Crontab to run the script automatically at every morning 8am and

stop the program at evening 6pm.

Figure 5.58 Crontab Setup

CHAPTER 6

65
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6 System Evaluation and Discussion

6.1 System Testing and Performance Metrics
To evaluate the performance of the traffic violation detection system, the verification

plan includes measuring the processed frames per second (FPS) and inference time of

each frame. In addition, accuracy is used as a metric to check the performance of the

system.

To measure the processed FPS, a test dataset is used to simulate the car plate detection

system in a real-time scenario. The FPS is then calculated by dividing the total

number of processed frames by the total time taken. The inference time of each frame

is also recorded and analyzed to identify any bottlenecks or areas for optimization.

Accuracy is based on comparing the system's output to ground truth labels. The

evaluation is performed on a representative dataset with few videos and scenarios, and

it involves multiple rounds of testing. Each round consists of processing one video

sample and comparing the system's detections to the ground truth. If the system

detects the car plate correctly in the sample, it is considered one correct detection;

otherwise, it is considered one incorrect detection. The accuracy is calculated as the

percentage of correct detections over the total number of rounds of testing.

The verification plan includes a series of tests to validate the performance of the car

plate detection system. These tests are designed to ensure that the system meets the

desired accuracy and FPS requirements while maintaining efficient inference times.

Any discrepancies or issues are identified and addressed through optimization

techniques.

Overall, the verification plan provides a comprehensive approach to validating the

performance of the car plate detection system and ensures that the system meets the

required specifications for accuracy and FPS.

CHAPTER 6

66
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.1 Dataset for Testing

6.2 Evaluation of Processed Frames per Second (FPS)
Performance

6.2.1 FPS Evaluation on Workstation

The system's average processed FPS for Vehicle and Car plate Detection Model

OpenVino without performing OCR on 15 sample videos ranges from 188 to 221 FPS

(on Workstation), with an average of 203 FPS. However, when OCR is active and

performing its tasks, the FPS drops significantly to an average of 42 FPS at its lowest

point.

Figure 6.2 FPS on Detecting Vehicle (OpenVino)

Figure 6.3 FPS on OCR

CHAPTER 6

67
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2.2 FPS Evaluation on Intel UP Board

The system's average processed FPS for Vehicle and Car plate Detection Model

OpenVino without performing OCR on 15 sample videos ranges from 14 to 20 FPS (on

Intel UP Board), with an average of 18.3 FPS. However, when OCR is active and

performing its tasks, the FPS drops significantly to an average of 0.77 FPS at its lowest

point.

Figure 6.4 FPS on Detecting Vehicle (Intel UP Board)

Figure 6.5 Fps on OCR (Intel UP Board)

CHAPTER 6

68
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.3 Evaluation of Accuracy Performance

6.3.1 Accuracy Evaluation on Workstation

Upon executing the 15-sample dataset on the workstation, the system achieved a 100%

success rate in identifying illegal driving vehicles (Vehicle and Car plate Detection

Model OpenVino). However, the accuracy of the car plate number character recognition

system (OCR Model) was only 81.81%.

Table 6.1 Accuracy of Models on Workstation

Model Accuracy (Workstation)

Vehicle & Car plate Detection

(OpenVino)

100%

EasyOCR 81.81%

6.3.2 Accuracy Evaluation on Intel UP Board

When the 15-sample dataset was run on the workstation, the system successfully

identified illegal driving vehicles with a success rate of 93.33% using the Vehicle and

Car Plate Detection model in OpenVino. However, the accuracy of the OCR model in

recognizing car plate numbers was only 36.36% due to its older version and the edge

device's processor not supporting AVX instruction for running the latest easy OCR.

This indicates that there is a potential for improving the system's ability to accurately

identify number plates, especially given the limitations posed by the use of an older

OCR model and the lack of AVX instruction support on the edge device's processor.

Table 6.2 Accuracy of Models on Edge Device

Model Accuracy (Intel Up Board)

Vehicle & Car plate Detection

(OpenVino)

93.33%

EasyOCR 36.36%

CHAPTER 6

69
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.3.3 Overview of Performance

Figures 6.6 and 6.7 provide an overview of the performance of Accuracy and FPS,

respectively, for the Workstation and Edge Device (Intel UP Board).

Figure 6.6 FPS Overview of FPS Performance

Figure 6.7 Overview of Accuracy Performance

CHAPTER 6

70
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.3 Limitation and Future Improvements

The evaluation of the traffic violation detection system revealed several limitations that

could be addressed through future improvements. Firstly, the system's accuracy in

recognizing car plate numbers was limited by the use of an older OCR model and the

lack of AVX instruction support on the edge device's processor. One possible solution

to this issue is to upgrade to a more recent OCR model that is compatible with the

processor's AVX instructions, which could lead to a significant improvement in the

system's ability to accurately identify number plates.

Another limitation observed in the evaluation was the system's performance in terms of

processed FPS. When OCR was active and performing its tasks, the FPS dropped

significantly, which could lead to delays in processing frames in a real-time scenario.

To address this limitation, one possible solution is to optimize the OCR model's

performance by utilizing more efficient algorithms or by implementing hardware

acceleration techniques to reduce the processing time.

Furthermore, the evaluation identified some limitations related to the system's hardware

configuration. The Intel UP Board showed significantly lower performance compared

to the workstation, which could be due to its lower computing power. To improve the

system's overall performance, upgrading to a more powerful hardware configuration or

utilizing distributed computing techniques could be explored.

However, the evaluation was performed on a representative dataset with few videos and

scenarios, which may not fully capture the system's performance in more diverse or

complex real-world scenarios. Expanding the evaluation to include a more diverse and

extensive dataset with various scenarios, lighting conditions, and vehicle types could

provide a more comprehensive understanding of the system's performance and potential

limitations.

Overall, by addressing these limitations and expanding the evaluation, the traffic

violation detection system could be further optimized to meet the desired accuracy and

FPS requirements while maintaining efficient inference times, leading to more effective

traffic monitoring and enforce.

Chapter 7

71
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 7 Conclusion and Recommendation

7.1 Conclusion

In this study, we developed a traffic violation detection system using computer vision

techniques that can detect and identify various traffic violations, including illegal

driving and car plate detection. The system was implemented using a deep learning

approach and evaluated on both a workstation and an edge device, Intel UP Board. The

results showed that the system met the required specifications for accuracy and FPS on

the workstation. However, the edge device's performance was limited by the lack of

AVX instruction support, lower computing power, and significant drops in FPS when

OCR was active. We recommend upgrading the edge device's hardware configuration

or utilizing distributed computing techniques to distribute tasks between the edge

device and the workstation. Additionally, we suggest expanding the evaluation to

include a more diverse and extensive dataset with various scenarios, lighting

conditions, and vehicle types to provide a more comprehensive understanding of the

system's performance and potential limitations.

7.2 Recommendation

To lower the edge device's resource stress and improve system performance, we suggest

distributing the task to two different devices. The edge device could perform the initial

task of detecting illegal driving and car plate detection and store the result in internal

storage. The picture of an illegally parked vehicle can be sent to the workstation to

perform heavy load of OCR, while the car plate number can be identified on the edge

device. Moreover, we found that the implementation of the OpenVino toolkit provided

significant advantages for the edge device in terms of performance and efficiency. The

toolkit allowed for the optimization of the deep learning models for the specific

hardware, resulting in faster inference times and reduced computational resources. We

suggest utilizing OpenVino for developing and deploying computer vision-based

systems on edge devices with limited computational resources, opening up new

Chapter 7

72
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

possibilities for real-time applications in various domains, including traffic monitoring

and enforcement. These insights contribute to the advancement and optimization of

traffic monitoring and enforcement systems, leading to safer and more efficient

transportation systems. Further research and evaluation can provide additional insights

into the system's capabilities, potential limitations, and opportunities for improvement.

REFERENCES

73
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[1] V. Meel, “What is OpenVino? - The Ultimate Overview in 2022,” viso.ai,

Mar. 20, 2022. https://viso.ai/computer-vision/intel-OpenVino-toolkit-

overview/#:~:text=The%20OpenVino%20toolkit%20covers%20both

(accessed Sep. 01, 2022).

[2] N. A. Andriyanov, “Analysis of the Acceleration of Neural Networks

Inference on Intel Processors Based on OpenVino Toolkit,” 2020 Systems of

Signal Synchronization, Generating and Processing in Telecommunications

(SYNCHROINFO), Jul. 2020, doi: 10.1109/synchroinfo49631.2020.9166067.

[3] Intel AI. (2019 May) AI Driven Medical Imaging Powered by Intel and

Philips[Online]. Available: https://www.intel.ai/solutions/perform-aidriven-

medical-imaging-efficiently-and-cost-effectively-on-intel-cpubased-systems/

[4] G. Mathew, S. Sindhu Ramachandran, and V. S. Suchithra, “Lung Nodule

Detection from low dose CT scan using Optimization on Intel Xeon and Core

processors with Intel Distribution of OpenVino Toolkit,” IEEE Xplore, Oct.

01, 2019. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8929612

(accessed Sep. 01, 2022).

[5] S. K. Teoh, Y. H. Wong, C. F. Leong, and L. Y. Tan, “Face Detection and

Face Re-identification System Using Deep Learning and OpenVino,” 2021

2nd International Conference on Artificial Intelligence and Data Sciences

(AiDAS), Sep. 2021, doi: 10.1109/aidas53897.2021.9574201.

[6] V. V. Zunin, “Intel OpenVino Toolkit for Computer Vision: Object Detection

and Semantic Segmentation,” IEEE Xplore, Sep. 01, 2021.

https://ieeexplore.ieee.org/document/9537452/ (accessed Sep. 01, 2022).

REFERENCES

74
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[7] Intel, “OpenVinotoolkit/open_model_zoo: Pre-trained Deep Learning

Models,” GitHub. [Online].

https://github.com/OpenVinotoolkit/open_model_zoo/tree/master/models/publ

ic/ssdlite_mobilenet_v2. [Accessed: 27-Nov-2022].

[8] Meituan, “Yolov6: A single-stage object detection framework dedicated to

industrial applications.,” GitHub. [Online]. Available:

https://github.com/meituan/YOLOv6/. [Accessed: 27-Nov-2022].

[9] Meituan, “Release yolov6 2.1 · Meituan/yolov6,” GitHub. [Online].

Available: https://github.com/meituan/YOLOv6/releases/tag/0.2.1. [Accessed:

27-Nov-2022].

[10] Meituan, “Yolov6/deploy/ONNX at main · meituan/YOLOV6,” GitHub.

[Online]. Available:

https://github.com/meituan/YOLOv6/tree/main/deploy/ONNX. [Accessed: 27-

Nov-2022].

[11] JaidedAI, “JaidedAI/EasyOCR at main” GitHub. [Online]. Available:

https://github.com/JaidedAI/EasyOCR. [Accessed: 27-January-2023].

[12] Triq, “mtaziz/D-link Wireless N150 USB Adapter dwa-123 rev D1 installation

on ubuntu 14.04 at main” GitHub. [Online]. Available:

https://gist.github.com/mtaziz/6b1c59972623a224743a. [Accessed: 27-

January-2023].

APPENDIX

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX – B WEE KLY LOG

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: T3Y3 Study week no.:2

Student Name & ID: Chiew Jing Cheng 20ACB02331

Supervisor: Ts Wong Chee Siang

Project Title: Deep Learning Inference on Edge Device: Traffic Violation

Detection Using OpenVino

1. WORK DONE:

1. Revise FYP1 and create a plan.

2. Research vehicle detection model using TensorFlow.

2. WORK TO BE DONE

1. Configure a system to detect vehicles involved in illegal driving

3. PROBLEMS ENCOUNTERED

1. Difficulty in finding a pre-trained model for detecting a specific-facing vehicle in vehicle

detection.

4. SELF EVALUATION OF THE PROGRESS

1. More effort is needed to find pre-trained models, especially for TensorFlow, to further

enhance performance in OpenVino.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: T3Y3 Study week no.:4

Student Name & ID: Chiew Jing Cheng 20ACB02331

Supervisor: Ts Wong Chee Siang

Project Title: Deep Learning Inference on Edge Device: Traffic Violation

Detection Using OpenVino

1. WORK DONE

1. Successfully configured OpenVINO model for detecting illegal driving vehicles and car

plate numbers.

2. The configuration included pre-processing and post-processing steps for accurate vehicle

detection.

2. WORK TO BE DONE

1. Investigating methods for collecting car features.

3. PROBLEMS ENCOUNTERED

4. SELF EVALUATION OF THE PROGRESS

1. Good progress in my research and discovered a vehicle detection model that specifically

detects front-facing vehicles.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: T3Y3 Study week no.:6

Student Name & ID: Chiew Jing Cheng 20ACB02331

Supervisor: Ts Wong Chee Siang

Project Title: Deep Learning Inference on Edge Device: Traffic Violation

Detection Using OpenVino

1. WORK DONE

1. Chose OCR as the method for car number recognition

2. Conducted pre-processing for OCR method.

2. WORK TO BE DONE

1. Post processing for OCR method

3. PROBLEMS ENCOUNTERED

1. Spent considerable time searching for an OCR model suitable for accurately recognizing

car plate numbers. Many of the models tested did not perform well enough on the detected

car plates.

4. SELF EVALUATION OF THE PROGRESS

1. The progress is still on track and testing a good OCR model only took a short amount of

time.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: T3Y3 Study week no.:8

Student Name & ID: Chiew Jing Cheng 20ACB02331

Supervisor: Ts Wong Chee Siang

Project Title: Deep Learning Inference on Edge Device: Traffic Violation

Detection Using OpenVino

1. WORK DONE

1. The traffic violation detection system has been fully configured and is now able to

generate a report of the day's detected illegal drivers.

2. WORK TO BE DONE

1. Configuring Intel UP Board

3. PROBLEMS ENCOUNTERED

1. Choosing OS for Intel UP Board

4. SELF EVALUATION OF THE PROGRESS

1. Good, the traffic violation detection system has been successfully configured and is

meeting the desired performance standards.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: T3Y3 Study week no.:10

Student Name & ID: Chiew Jing Cheng 20ACB02331

Supervisor: Ts Wong Chee Siang

Project Title: Deep Learning Inference on Edge Device: Traffic Violation

Detection Using OpenVino

1. WORK DONE

1. configure OS on the edge device

2. configure drivers on the edge device

3. Set up OpenVino Environment on the edge device

2. WORK TO BE DONE

1. Moving whole project (traffic violation detection) to edge device and making it

deployable.

3. PROBLEMS ENCOUNTERED

1. the OCR model cannot be used on the edge device as its CPU is too old to support AVX

instruction.

4. SELF EVALUATION OF THE PROGRESS

1. Overall Good, first time configuring for edge device, learn many from it.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: T3Y3 Study week no.:12

Student Name & ID: Chiew Jing Cheng 20ACB02331

Supervisor: Ts Wong Chee Siang

Project Title: Deep Learning Inference on Edge Device: Traffic Violation

Detection Using OpenVino

1. WORK DONE

1.edge device is successfully configured

2. Configured VNC Viewer

3. Configured bash script for task automation

2. WORK TO BE DONE

1. Report writing

3. PROBLEMS ENCOUNTERED

1. Edge device performance is not good enough

4. SELF EVALUATION OF THE PROGRESS

1. try to optimizing output by reducing unnecessary frames and functions to improve CPU

resource utilization.

_________________________ _________________________

 Supervisor’s signature Student’s signature

POSTER

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

PLAGIARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

PLAGIARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 FACULTY OF INFORMATION AND COMMUNICATION

 TECHNOLOGY

Full Name(s) of

Candidate(s)
Chiew Jing Cheng

ID Number(s)

010219-14-1449
 Programme / Course CS

Title of Final Year Project Deep Learning Inference on Edge Device: Traffic Violation
Detection Using OpenVino

Similarity Supervisor’s Comments

(Compulsory if parameters of originality exceed

the limits approved by UTAR)

Overall similarity index: __7 %

Similarity by source

Internet Sources: 4 %

Publications: 4 %

Student Papers: 2 %

Number of individual sources listed of

more than 3% similarity: 0

Parameters of originality required, and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and

(ii) Matching of individual sources listed must be less than 3% each, and

(iii) Matching texts in continuous block must not exceed 8 words
Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note: Supervisor/Candidate(s) is/are required to provide softcopy of full set of the

originality report to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the

Final Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________
Signature of Supervisor

 Signature of Co-Supervisor

Name: __________________________ Name: __________________________

Date: ___________________________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

davidletterboyz
Typewriter
Ts. Wong Chee Siang

davidletterboyz
Typewriter
25 APRIL 2023

FYP 2 CHECKLIST

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FYP2 CHECKLIST

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION

TECHNOLOGY (KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 20ACB02331

Student Name Chiew Jing Cheng

Supervisor Name TS Wong Chee Siang

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you

have checked your report with respect to the corresponding item.

 Front Cover

√ Title Page

√ Signed Report Status Declaration Form

√ Signed FYP Thesis Submission Form

√ Signed form of the Declaration of Originality

√ Acknowledgement

√ Abstract

√ Table of Contents

√ List of Figures (if applicable)

√ List of Tables (if applicable)

√ List of Symbols (if applicable)

√ List of Abbreviations (if applicable)

√ Chapters / Content

√ Bibliography (or References)

√ All references in bibliography are cited in the thesis, especially in the chapter of
literature review

√ Appendices (if applicable)

√ Weekly Log

√ Poster

√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the ticked of
these items, and/or any dispute happening for these items in this report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my report.

(Signature of Student)
Date:23 April 2023

