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ABSTRACT 
 

Vehicle parking has become a significant issue in urban areas due to the imbalance 

between supply and demand for parking spaces, and increasing the number of parking 

spaces is no longer an effective solution. Predicting open parking vacancies using 

machine learning is a practical and effective solution to overcome parking issues. The 

ability to predict parking availability maximizes parking space utilization, ultimately 

alleviating traffic congestion. The reduction in idling vehicles results in a decrease in 

gas emissions, which reduces the burden on the environment. This study proposes a 

parking prediction model using support vector regression (SVR) to predict available 

parking spaces. A custom object detector developed using the YOLOv4 algorithm was 

used to collect the data for training the machine learning model. The results show that 

the custom YOLOv4 model accurately detects and identifies empty and occupied 

parking spaces, while the SVR prediction model can predict the number of empty 

parking spaces. Noise such as weather, lightning issue and obstacles is considered in 

YOLOv4 model. Next weather features is included in training the machine learning 

model. In this project, two additional machine learning algorithms, namely linear 

regression (LR) and decision tree regressor, were used to compare the performance of 

the support vector regression (SVR) prediction model. Additionally, four different 

hyperparameter tuning techniques were employed to obtain the most promising fine-

tuned support vector regression (SVR) model, including grid search, random search, 

random search plus, and parameter optimization loop. Moreover, a PySimpleGUI was 

developed to provide an interactive parking vacancy prediction model graphic user 

interface (GUI).  
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CHAPTER 1 INTRODUCTION 
 

Vehicle parking is one of the global issues, especially in urban areas. With the 

increasing economic development and urbanization, the number of cars increases 

rapidly, which leads to an imbalance between the supply and demand for parking lot 

[1]. In urban areas, people typically spend more than 5 minutes searching for a car park 

and the time needed is longer during the weekend. When people start finding a car park, 

this is where idling starts. Idling is one of the most waste fuel actions done by every 

driver, especially Malaysians. Idling can see everywhere, even though within the 

educational centre too. One hour idling a day might spend individuals between RM 2.60 

to RM 2.80 per day and that is around RM78 to RM84 per month [2]. 

People nowadays are able to calculate the estimated driving time needed in order 

to reach the destination on time, sometimes however they could still face the challenges 

of being late due to obstacles in finding a car park. Increasing the parking area is not a 

sustainable solution when it is limited in space. However, applying effective parking 

management would be a realistic alternative [3]. A prediction of parking vacancies 

using ML would provide an estimation of how long it would take them to have their car 

parked. With the allotted time on distance and vehicle parking, there is less chance that 

people will be late for their school or work, etc.  

Furthermore, people nowadays are less patient than before, especially doing 

things that they think are not worth it, for example, finding a parking space. Individuals’ 

mood could spoil easily if they spend too much time finding a parking space. The longer 

the time an individual spends searching for parking, the less time will be for the next 

activity on their schedule. Additionally, people experience anxiety when trying to find 

a parking spot since they are unsure of when they will be able to park or where the next 

spot will be. 

Parking vacancies prediction plays a part in protecting the earth as there will be 

less idling, which means reducing greenhouse gas emissions (CO2) and pollutants that 

are harmful to human health. Moreover, parking vacancies prediction also significantly 

impacts people’s planning and saves people’s time. Such that, if the prediction result 

shows that finding parking vacancies requires more than 30 minutes, they will change 

their mind by calling a grab to their destination instead of driving by themselves. 
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Furthermore, parking vacancies prediction could avoid people’s daily emotions from 

getting spoiled because of spending a long time finding a car park. 

1.1 Problem Statement and Motivation 

Nowadays, finding a parking space is challenging as the number of vehicles is 

growing faster than the number of parking spaces. Finding a parking space would be 

time-consuming, especially in a high population and car-density area. According to [4], 

individuals in Kuala Lumpur spend around 25 minutes daily searching for parking. A 

person who lives in Southeast Asia spends an average of 30 minutes seeking parking. 

Sometimes, the time estimate for individuals to find parking which according to the 

research, may not be accurate in real-time situations, which means individuals may 

spend 10 minutes, 30 minutes, or even more to get their vehicle parked. 

There will be more petrol waste while the longer time individuals spend on 

searching parking. People usually have their car idling while waiting for an available 

parking space. Idling for 10 minutes costs between 1/10 and 4/10 of a litre of gasoline, 

depending on the individual’s vehicle [2]. So, if more people put their car in idling, the 

more petrol will be wasted, and the money spent on refuelling their car. 

Gasoline will continue to burst as long as the car’s engine runs, indirectly causing 

environmental pollutants such as carbon dioxide, nitrogen oxide, and other 

hydrocarbons which escape through the tailpipe. These pollutants will cause climate 

change, air pollution, global warming and affect the health of all living creatures. 

According to [50], 11 hours of CO2 emission while cruising for parking in a shopping 

center, where 4 h represent guest non-peak hours and the remaining 7 h represent guest 

peak hours, will result in 37kg of CO2 emission, which is comparable to 122 km driven 

by an average normal car in an area of 320 m. 

Furthermore, the weather condition is one of the parameters that would affect the 

prediction of the open space parking vacancies. Weather changes frequently and the 

changes in weather conditions like sunny to rainy would somehow restrict the 

movement of the parking, as during rainy days if people do not have an umbrella, it 

would restrict them from picking up their car or getting out of the car. Additionally, the 

weather also affects people’s mood and thereby affects the number of parking vacancies, 
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for example during cloudy people will be unlikely to go out as they are afraid of getting 

themselves wet. 

Next, this project aims to propose a prediction model for parking space vacancies 

to help individuals to identify the estimated time for the available parking space. 

Although the model cannot instantly create an available parking space for individuals, 

it does calculate the estimated time individuals will have to wait to get parking. With 

the estimated time given, individuals can save their time by doing other meaningful 

activities, such as replying to messages, catching up on social media and cleaning their 

car’s cupboard instead of keeping their eyes on the parking lot all the time. Since people 

know how much time is needed to find their next open parking place, searching for a 

parking space won't ruin anyone's mood anymore. As a result, people won't feel anxious 

about finding parking as they always did. 

Furthermore, parking prediction is a more environment-friendly solution and less 

petrol waste because there will be less idling. Through parking prediction, people spend 

lesser time finding a parking space, since available parking space is shown to them. 

Gradually, there will be less idling and lesser car emission, which less pollution to the 

earth.      

1.2 Research Objectives 

In this project, a review of existing studies has been conducted to identify the problems 

that occur in predicting open space parking vacancies. After reviewing the existing 

studies, an ML algorithm that is capable to fit well with the parking data and noise (etc, 

weather and nearby parking condition) is proposed for use in developing the parking 

prediction model and it is SVR.  

The main objectives of this project are: 

1. To investigate ML algorithms and techniques that have been used in the existing 

studies which are related to predicting open space parking vacancies. This allows us to 

study and identify the problems and other factors that occur in the existing study. 

2. To propose ML algorithms which concerned with more noises  to predict the parking 

space, like weather and nearby parking lot conditions. Dealing with environmental 

factors will increase the accuracy and performance of the model proposed. 
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3. To build the model using the proposed SVR  algorithm to predict the available 

parking space. The proposed model is practical at handling time series and nonlinear 

problems, resulting in it being capable of predicting the parking space with a standard 

level of accuracy. 

4. To test the proposed model’s performance by using MSE, RMSE, MAE, and MAPE 

performance metrics. This allows us to identify how well the proposed model is in 

learning and predicting the available parking space. 

5. To optimize the performance of an SVR model by employed multiple 

hyperparameter tuning techniques. By doing so, a higher likelihood of identifying the 

best set of parameters for SVR model with the selected dataset.  

1.3 Project Scope and Direction  

 The scope of the project is to propose a parking prediction model using ML to 

predict available parking spaces in open parking spaces. The scale of open parking 

spaces includes small, medium and large parking lots. This model is considered with 

noise, such as weather of the day, the current capacity of the nearby parking lot and the 

road condition of the parking lot. So less chance that the prediction result is getting 

affected, thereby improving the accuracy of the prediction result. 

 To develop the parking vacancies prediction model, the software libraries that 

are going to use are the Scikit-learn library and the YOLO framework. Scikit-learn is 

the Python libraries use for developing ML algorithms. To issue these software libraries, 

the programming language will be python. Then YOLO is used to develop an object 

detecting model to collect the parking lot dataset and will be used to fit in the ML model. 

One month later after the release of YOLOv4, YOLOv5 was released. A study 

[46] was conducted and showing that YOLOv5 is faster in inference time when 

compared to YOLOv4. However, they stated that YOLOv4 on Darknet continues to be 

the most accurate if the user is looking for the latest and not frightened of a little more 

specific configuration [46]. Hence, YOLOv4 algorithm was chosen to use in this project. 

1.4 Contributions 

This project will propose a parking vacancy prediction to make the parking lot 

more efficient. As parking space is predictable, utilization of the parking lot will be 
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maximized. Maximizing the utilization of parking lots will decrease the occurrence of 

street parking and double parking, which will increase the capacity of the road. As a 

result, the problem of traffic congestion will be alleviated as all the lanes on the road 

are smooth and unimpeded. 

Individuals may save more money while also helping to keep the environment air 

cleaner. When idling is reduced, less petrol is consumed, which means less money is 

spent on refuelling their automobile. In addition, lesser idling means lesser gas 

emissions by the car and results in reducing the burden on the natural environment. 

Furthermore, the object detection model built with YOLOv4 can classify empty 

and occupied parking spaces and later generate numerical data. These data will be used 

as a dataset to develop the parking prediction model. Thereby the data collection 

process in the parking lot shall be lightened as this process is automated. Moreover, the 

parking vacancy prediction model can be further used by researchers as a base for 

developing a parking prediction software or system. 

1.5 Report Organization 

In the first Chapter, an introduction and problem statement about parking 

vacancy are made. The objective, scope, and direction of this project are stated here as 

well as the contribution of this research. Then the details of this research are shown in 

the following chapters. In Chapter 2, previous studies related to predicting open space 

parking vacancy is being reviewed, and the technique used in these studies include ML, 

NN, and deep learning. strengths and weaknesses in each study are identified, and a 

proposed solution is founded at the end.  

Chapter 3 details the system models proposed to address open space parking 

vacancies, including diagrams, pseudocode, and a timeline for the project. Chapter 4 

focuses on the system design and presents the equations and techniques used in the 

object detection model and ML model, along with flowcharts. Additionally, a GUI 

framework is introduced for making predictions. 

Chapter 5 lists the required resources for the experiments and simulations, 

including hardware, software, software libraries, and datasets. This chapter also 

includes the configuration and development of the model. Chapter 6 presents the system 

evaluation and discussion. This chapter covers the testing and analysis results for both 

the YOLOv4 and ML algorithms, which are thoroughly recorded and discussed. 
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Lastly, in Chapter 7, the conclusion and recommendation section summarize the 

main findings and contributions of the study and suggest directions for future research.
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CHAPTER 2 LITERATURE REVIEW 

2.1 Previous works on Machine Learning 

In the year 2020, a study was conducted by authors [3] in predicting the parking 

occupation where the study are focused on parking type and parking scale. The ML 

technique used in this study includes SVR, LR, BPNN, and ARIMA.  

SVM is a statistical learning theory which able to handle linear and nonlinear 

problems and is useful for a wide range of tasks [6]. It is built on the concept of finding 

the optimal hyperplane for separating characteristics into distinct domains [7]. SVM 

can obtain decision-making rules and accomplish minimal error for independent tests 

based on the SRM principle to effectively handle learning problems [8]. 

SVM is a more complex model and is better fit when it has a greater number of 

parameters [9]. Even when the number of dimensions exceeds the number of samples, 

the method is still successful [10]. Last, a convex optimization problem is what SVM 

is. Finding the global optimum is simple because the locally optimal solution is also the 

optimal global solution. However, noise does affect the accuracy of SVM, which mean 

large data set is not suitable for SVM as the larger the data set, the more the noise [11]. 

 

Figure 2.1: SVR diagram [5] 

 SVR is based on the same concept as SVM, but it is used to solve regression 

issues [12]. SVR is common to use in times series problems, and it has a strong ability 

to deal with nonlinear problems. SVR enables the determination of acceptable error in 

f(x)   

f(x)   

f(x)

y

x0
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the model and matches the data with a best-fit line, the hyperplane line with the greatest 

number of points [13]. Because it is based on the SRM concept, which is effectively a 

convex quadratic programming optimization problem with linear constraints, SVR 

decreases risk [5]. 

 

Figure 2.2: LR diagram [14] 

 LR is a supervised ML learning method. It carries out a regression function. The 

concept can be illustrated by diagram as Figure 2.2. The simplest concept of linear 

regression is to assign a point set, D, and create a function (line of regression) that fit 

the point set (datapoint) with the least number of errors possible. As a result, the term 

Linear Regression was being coined. Because linear regression indicates a linear 

relationship, it determines how the dependent variable’s value changes as the 

independent variable’s value changes [14]. 

The following is the generic form of the multiple linear regression model: 

 𝑌 = 𝐵0 + 𝐵1𝑋1 + 𝐵2𝑋2 +⋯+ 𝐵𝑘𝑋𝑘 + 𝑢    (1) 

Where 

𝑌 = the explained variable 

𝑋𝑖 (i=1, 2, …, K) is the K explanatory variable 

𝐵𝑖 (i=1, 2, …, K) is the K 1 unknown parameter 

𝑢 = the random error term 

 LR is smooth in the calculation. There are no adjustment parameters, so it is 

simple and easy to understand and explain [15]. However, LR operates poorly when 
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there is a nonlinear relationship. The reason is they do not have the innate flexibility to 

record more complicated patterns [15]. 

 

Figure 2.3: General structure of BPNN [16] 

 BPNN is a feed-forward hierarchical ANN made up of three or more completely 

linked layers of neurons, as shown in Figure 2.3 [17]. BP network can store and learn 

a lot of input-output mode-mapping relations without exposing the mathematical 

equation in advance.  

Furthermore, the learning rule is to use the gradient descent approach using 

backpropagation to continually update the network’s weight and threshold [3]. The 

heart of NN training is backpropagation. Backpropagation is the process of fine-tuning 

the weights of a NN depending on the preceding epoch’s (i.e. iteration) error rate (i.e. 

loss). As a result, continually updating the network’s weight and threshold do reduce 

error rates, boosting the model’s generalization, thus making it more reliable [18].  

In the training process of [3], the network’s predictability was maximized by 

training the model with various combinations of these parameters. The predictability 

was being maximized because the learning process automatically adjusts the weights 

and thresholds in BPNN to reduce mistakes, allowing a single hidden layer BPNN to 

approximate any nonlinear function with arbitrary precision [19].  

The fault tolerance and robustness of BPNN are excellent. The BP’s 

convergence speed, on the other hand, is slow, and it’s simple to slip into the local 
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minimum. Furthermore, because of its fundamental properties, BPNN’s prediction 

outputs are unstable [5].  

ARIMA is a ML algorithm. For prediction, ARIMA needs ongoing historical 

data. It is commonly use in demand forecasting, for example predicting future demand 

for the food production and the price of the stocks in the future based on previous prices. 

Based on the stability of the initial sequence and the variations in regression, ARIMA 

models may be separated into MA, AR, ARMA, and ARIMA. The advantages of the 

ARIMA model are it performs well for short-term predictions and models non-

stationary time series. However, it is challenging to predict turning points, performs 

worse for long-term forecasting, and cannot be employed for seasonal time series [20].  

In the study [3], the data collected in this study include total four parking lots 

from Shenzhen, Dongguan, and Shanghai with different scales. There is a total of 

606,959 records of vehicles’ in-time and out in the data set. A total of 7 weeks of data 

is collected. The data for the first 6 weeks are being used to train models, and the data 

for the last week are being utilized as test dataset.  

There is two FM used in [3], which FM regards weekday and weekend as the 

same set and FM2 regards weekends and weekdays as two separate sets. The type of 

parking lot used to examine these ML techniques includes commercial, official and 

mixed functional and size includes large, medium and small. PL1 is large commercial 

parks. PL2 is medium office parking lots. PL3 is a small mixed-function parking lot. 

For the last parking lots, PL4 is small office parking lots. 

The metric used to evaluate the model performance are RMSE and MAE, as 

shown in Figure2.4-2.5. The lesser the error rate represents, the better the algorithm.  
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Figure 2.4: Forecasting results of the four parks with FM 1 [3] 

 

Figure 2.5: Forecasting results of the four parks with FM 2 [3] 

The ARIMA model was not applied in FM 2 because it is not suitable for this 

method as it is a time series model. In Figure 2.4, the ARIMA model overall has the 

worst performance in FM 1. In Figure 2.4 and Figure 2.5, BPNN which is stated as NN 

performs the worst for the mixed parking lots, PL3. As a result, the overview for the 

figures above shows that SVM has the best performance between ARIMA, LR and NN, 

except large commercial parking, PL1 for both forecasting methods. It concludes that 

SVM effectively solves practical problems using small samples, local minimum points, 

high-level pattern recognition, and nonlinearity. 

Following in the year 2018, [5] has also conducted a similar study in predicting 

the number of vacant parking spaces. SVR is being applied and optimized using a FOA. 



CHAPTER 2 

12 
Bachelor of Information Systems (Honours) Information Systems Engineering 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
  

The comparative models include BPNN extreme learning machine, and wavelet NN, 

which are all widely used prediction models. 

The type of parking space includes the large parking lot of a local grand 

shopping mall and the small parking lot of a restaurant. The traffic is heavy for the local 

grand shopping mall, and the traffic flow trend is obvious. While for restaurants, the 

traffic is light. 

The data are collected in two days from 11.00 am to 8.00 pm and recorded every 

10 minutes. A total of 108 data was collected. The 54 data collected on the first day is 

used as training data set, and the remaining data were used as the test data set.  

The result shows that FOA-SVR exceeds all other models in terms of accuracy, 

while it is only second to SVR in terms of stability. This prediction model can also be 

used in any parking lot or garage if only information on car activities such as arrival 

and departure times, among other things, are provided. 

2.2 Previous works on Deep Learning 

 

Figure 2.6: Current system in use to forecast when a parking space will become available [21] 

This study which was conducted in 2018 by [21] shows how to use Caffe and 

the Nvidia DiGITS framework to create a real-time parking spot categorization system 

based on CNN. Some CNN configurations based on LeNet network with the Nesterov 
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Accelerated Gradient as solver and the AlexNet network with the Stochastic Gradient 

Descent were built in this study to utilise in the classification system.  

CNN are complex feed forward NN in deep learning. The study in [21] said, the 

architecture of CNN is similar to a human NN, which is made up of synapses (weights) 

and neurons and deals with a complex task. It is a Deep Learning method that can take 

an image as input, assign importance (learnable weights and biases) to distinct 

aspects/objects in the image, and distinguish one from the other [23].  

CNN has an accuracy greater than 90% inter and intra-datasets. Because of its 

great accuracy, CNN is utilized in picture categorization and recognition [24]. CNN 

was used in [21] as it makes the process of creating a classifier easier. It is because they 

extract and use information from the dataset automatically. CNN’s performance is 

entirely dependent on the hardware employed. If the CNN contains several layers, the 

training process will take a longer time if the device does not have a powerful GPU 

[25]. 

There are 782 photos of parking lots in the collection, which were taken from 

two universities of the Witwatersrand parking sites. The data was collected during a 

working week (5 days), at a rate of one frame per minute, from 6 am until around 8 am. 

The camera’s position and the buildings’ placement in this study were set such that a 

car leaving a parking spot does not obscure more than 60% of the following automobile 

on the road. 

The study result shows that computer vision employing a single camera and 

CNN has a success rate comparable to older approaches (using sensors). As illustrated 

in Figure 2.6, the system can produce an accurate output depending on the present state 

of the parking place the camera is facing, provided that the spot is accurately specified 

by the user when the system is activated. 
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Figure 2.7: Result of YOLOv3 vehicle detection when the vehicle in-motion [22] 

Next, in the year 2021, [22] conducted a study of parking availability prediction 

using YOLOv3 CNN on a university campus. YOLOv3 algorithm is used to train and 

predict whether the parking area is occupied or unoccupied. This study utilized three 

datasets: PKLot, COCO, and an in-house dataset. In this study, the proposed model is 

trained using 50% of the data, and the model is tested on the other 50%. In addition, the 

in-house dataset's video clip contains noise from various sources, such as rain and 

drivers adjusting their cars in the parking lot. This type of video clip could help to test 

the predicted performance of the suggested technique to find vacant parking spots. 

Since YOLOv3 can maintain the complete segmented picture after 

segmentation, classification based on the full segmented image may very well be 

accomplished in this study. Additionally, YOLOv3 offers quick video rendering at 45 

frames per second, which makes YOLOv3 algorithm a pleasant choice for real-time 

processing. YOLOv3 can identify vehicles in this study and calculate the available 

parking spaces, but it is still unable to detect moving vehicles, as shown in Figure 2.7. 

The result of the study by [22] shows that the YOLOv3 algorithm can 

distinguish between vacant and occupied parking spaces in real-time. However, the 

algorithm may be improved in certain ways, particularly regarding the detection of 

incorrect parking and moving cars.  

2.3 Limitations of Previous Studies 

Studies from [3] and [5] did not take into account of nearby parking lots. For 

university, college, famous food court, and other parking spaces are severely lacking 
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during peak hours. When the parking space is fully occupied, people will start parking 

their cars at the nearest parking space. As a result, a full parking lot affects the parking 

vacancy of the nearby parking lot, thereby affecting the accuracy of parking vacancy 

prediction. 

Furthermore, the weather is one of the elements that affect the prediction result 

of the number of parking vacancies. The previous studies by [3] and [5] did not take 

into account weather as one of the features in their dataset. Weather does affect 

individuals’ movement, as during rainy individuals may not pick up their car because 

of no umbrella or because the rain is too heavy to go outside. 

In addition, weather was not considered in the previous study by [21]. Weather 

is an important element that can affect the accuracy of the parking vacancy prediction. 

Weather such as heavy rains can be affecting the image capture by the camera, and it 

might be difficult for the prediction model to learn the data and predict the available 

space. Therefore, countries near the equator and surrounded by the sea, such as 

Singapore as well as Malaysia, should consider the weather situation while predicting 

parking vacancies. 

The parking space used to do training and testing for parking detection in the 

previous study are mostly captured in a good condition, which is the parking line is 

clear and no puddle because during and after rainy. The previous studies by [21] did 

not consider much on the noise that capture in the images, for example the parking spot 

that block by growing tree and streetlamp. Moreover, they did not consider parking 

space’s road condition and do some special cases to handle the noises in the parking 

space. For example, the tree branching drop-down and blocked the parking space, the 

large vehicle which occupies more than one normal car park and puddle which it would 

cause reflection. In the absence of any special case assumption, the accuracy of parking 

space detection tends to decrease over time. 

Table 2.1: Limitation of previous studies on ML 

 [3] [5] 

Consider on the vacancy of the 

nearby parking lots 

No No 
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Consider on the weather condition 

(rainy, cloudy and sunny) 

No No 

Table 2.2: Limitation of previous studies on deep learning 

 [21] [22] 

Special cases consider on parking 

space’s road condition 

No Yes 

Noises consider on the parking spot 

that block by tree or streetlamp 

No Yes 

Weather condition (rainy, cloudy 

and sunny) 

No Yes 

 

2.4 Proposed Solutions 

This project aims to improve the accuracy of the method used by considering 

the light of the environment (which cause by weather), weather situation, nearby 

parking situation, parking space’s road conditions (double park and puddle), and the 

noise capture in the images that commonly appears such as parking spot that block by 

growing tree and streetlamp and do the correction on it. With the consideration of the 

element above, parking detection should be more accurate while performing the testing 

for the dataset.       

South Asian countries experience unpredictable weather patterns, with frequent 

shifts between sunny and rainy weather due to their tropical rainforest climate and high 

annual rainfall. Given that the dataset collected in Malaysia, it is essential to consider 

the weather conditions in developing an accurate prediction model. 

SVR was chosen to develop the prediction model due to its strong ability to 

handle nonlinear time series problems and reduce the risk of inaccurate predictions 

based on the SVM concept. The prediction accuracy of the SVR model should be 

improved through hyperparameter tuning. This process can aid in the identification of 

the best hyperparameters for the model. Moreover, a Python GUI framework name 

PySimpleGUI should be employee to develop a GUI for end user to perform prediction 

on the parking vacancy model. 
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This project utilizes CNN due to its high accuracy rate of 90% and ability to 

automatically extract and utilize information from datasets, making the creation of a 

classifier easier. Additionally, CNN was utilized in processing the images in the parking 

prediction dataset. The YOLO algorithm, which employs CNN and is known for its 

rapid video rendering capabilities, was employed for the image processing in this 

project's parking prediction. 

2.5 Summary 

 Out of the four ML algorithms studied, SVM is effective for models with many 

parameters, and the convex optimization problem of SVM makes finding a global 

optimum simple. However, SVM is unsuitable for building a prediction model because 

it is a classifier. Therefore, it is replaced by SVR, which is based on SVM and is a 

regressor. LR's equation is easy to understand, but it is not flexible enough to record 

complicated patterns, and it performs worse when there is a nonlinear relationship. 

BPNN is great in fault tolerance and robustness; however, it is slow in convergence 

speed and easily falls into the local minimum. Therefore, BPNN may not perform well 

without a large training dataset. In conclusion, SVR is undoubtedly the ideal option to 

develop the parking vacancy prediction model. 

 To optimize the SVR model's prediction accuracy, four hyperparameter tuning 

techniques were utilized, namely, grid search, random search, random search plus and 

parameter optimization loop. These methods allow for a systematic search of 

hyperparameter values to identify the optimal combination for the specific problem at 

hand. 

After reviewing previous studies, CNN was found to have a great accuracy 

result. Creating a classifier is easier because it automatically extracts and uses 

information from the data set. In addition, CNN needs modification to deal with all 

probable noise, so it requires a lot of input data and training. As a result, YOLO is a 

realistic option to use to develop the object detection model since it applies CNN and 

has CNN characteristics like automatically adjusting the image size during training and 

excellent accuracy. 
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CHAPTER 3 SYSTEM MODEL 

3.1 Model Design Diagram 

 

Figure 3.1: YOLOv4 Architecture [38] 

The YOLOv4 architecture (in Figure 3.1) is made up of several components [38]. 

The input is the collection of training images fed into the network, processed in parallel 

batches by the GPU. The Backbone and Neck modules are responsible for extracting 

and combining features, respectively. The detection neck and detection head work 

together as the object detector, while the head performs the detection and prediction of 

objects. 

The SVR diagram (as in Figure 2.1) features an interval with f(x) as its central 

value and a width of 2ϵ. If the prediction for a training sample that falls within the range, 

as defined by the lines f(x) + ϵ and f(x)- ϵ, is deemed accurate, and thus no loss is 

incurred. In contrast, a loss is computed for predictions that fall outside of this range. 

The loss is only calculated when the absolute difference between the predicted and 

actual values exceeds the insensitivity threshold (ϵ). 
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3.2 Pseudocode 

      The table below shows the pseudocode for developing the parking vacancy 

prediction model, which start from data loading, data pre-processing, training with 

ML algorithms process, fine-tuning model process till model testing process. 

Parking vacancy prediction model pseudocode: 

Read the labelled file and transform the data into a data frame. 

Save the data frame table as a CSV file. 

Load the table in the CSV file into Jupyter Notebook as a data frame. 

Convert the features in the data frame into integer and datetime date type (time series). 

Convert categorical data to numerical data. 

Standardize the numerical data. 

Split the dataset into input matrix and output vector. 

Split the dataset into test and train sets. 

Train and validate the model. 

Evaluate the model using the train, validation and test dataset. 

Fine-tuning model using test dataset. 

Make prediction using the model. 

 The table below shows the pseudocode for developing the custom YOLOv4 

object detection from create storage, download needed library, data pre-processing, 

training process till the testing process (start prediction). 

Custom YOLOv4 object detection pseudocode: 

Connect Google Colab to Google Drive. 

Download the darknet library from GitHub into Google Drive. 

Customize the configuration file and set only two classes for the training later. 

Paste the dataset and all the configuration files into Google Drive. 

Split the dataset into train and test sets. 

Download pre-train YOLOv4 weight. 

Enable the GPU and OPENCV before building the darknet. 

Build the darknet and start the training process using the pre-train YOLOv4 weight. 

Test the model performance on unseen video and pictures using the best weight created. 
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Predict images and generate the labelled text file for later use in the prediction model. 

 

3.3 Gantt chart 

 

FYP 1 Gantt chart. 
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Figure 3.2: Gantt Chart of FYP1 from June 13, 2022 (week 1) to September 16, 2022 (week 14)  
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Table 3.1 FYP1 Gantt Chart details 

ID Task Name Duration 12-06-22 02-09-22 

1 FYP1 60 days 13-06-22 17-06-22 

2 Review of IIPSPW proposal 5 days 20-06-22 24-06-22 

3 Chapter1 5 days 27-06-22 01-07-22 

4 Find Dataset 5 days 04-07-22 08-07-22 

5 Chapter 2: Literature review and 

Summary 

5 days 11-07-22 15-07-22 

6 Study and train using YOLOv4(object 

detection model) 

5 days 18-07-22 22-07-22 

7 Evaluate and make prediction using 

YOLOv4 (object detection model) 

5 days 25-07-22 05-08-22 

8 Chapter 3: Methods/Technologies 

Involved 

10 days 08-08-22 12-08-22 

9 Pre-processing the dataset (prediction 

model) 

5 days 15-08-22 19-08-22 

10 Train and evaluate the model (prediction 

model) 

5 days 22-08-22 24-08-22 

11 Chapter 4: Preliminary Work 3 days 25-08-22 26-08-22 

12 Chapter 5: Conclusion 2 days 29-08-22 29-08-22 

13 Poster 1 day 30-08-22 01-09-22 

14 FYP1 report checking 3 days 02-09-22 02-09-22 

15 FYP1 report submission 1 day 05-09-22 16-09-22 

16 Oral Presentation 10 days 12-06-22 02-09-22 

 

FYP 2 Gantt chart. 
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Figure 3.3: Gantt Chart of FYP2 from January 30, 2023 (week 1) to March 5, 2023 (week 14) 
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Table 3.2 FYP2 Gantt Chart details 

ID Name Duration Start Date End Date 

1 FYP2 65 days 30-01-23 28-04-23 

2 Review of FYP1 5 days 30-01-23 03-02-23 

3 Chapter2: Literature review 5 days 06-02-23 10-02-23 

4 Study and finding ways to fine turning 

the model 

5 days 13-02-23 17-02-23 

5 Further training and enhance the 

YOLOv4 model (object detection 

model) 

15 days 20-02-23 10-03-23 

6 Further training and enhance the model 

(prediction model) 

10 days 27-02-23 10-03-23 

7 Evaluate and make prediction on the 

model 

5 days 13-03-23 17-03-23 

8 Chapter 3: System Model 1 day 20-03-23 20-03-23 

9 Chapter 4: System design 1 day 21-03-23 21-03-23 

10 Chapter 5: Experiment/Simulation 3 days 22-03-23 24-03-23 

11 Chapter 6: System evaluation and 

discussion 

5 days 27-03-23 31-03-23 

12 Enhance the FYP report 7 days 31-03-23 10-04-23 

13 Chapter 7: Conclusion and 

recommendation 

3 days 13-04-23 17-04-23 

14 FYP2 report checking and correction 8 days 18-04-23 27-04-23 

15 FYP2 submission 1 day 28-04-23 28-04-23 

16 Oral Presentation 10 days 24-04-23 05-05-23 
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CHAPTER 4 SYSTEM DESIGN 

4.1 Machine Learning Equation 

To develop a parking vacancy prediction model, two models are necessary. The 

first model is an object detection model that employs YOLOv4 to detect the number of 

empty and occupied parking spaces in input images. It produces labelled text files for 

each input image. The second model employs SVR to create the parking vacancy 

prediction model. The output text files from the object detection model serve as the 

input dataset for the SVR model [1]. 

The cost function includes PCC, and the k-fold Cross-validation method. Then, 

MAE, MSE, RMSE, and MAPE are used to evaluate to performance of the SVR model. 

Later, mAP is used in YOLOv4, and the loss function is used in YOLOv4. Precision 

and recall are then used to evaluate the classification model, and the F1 score, which is 

a harmonic mean of precision and recall, is used as the final evaluation metric. 

Four types of hyperparameter tuning methods are utilized to determine the 

optimal combination of hyperparameters for the SVR model, which include grid search, 

random search, random search plus and parameter optimization loop. 

To identify the most useful features in the dataset before training, it is necessary 

to use a method such as PCC [39]. By applying this equation, it is possible to determine 

which features exhibit a strong positive correlation with the output feature. The feature 

with the highest correlation can then be identified as the most useful feature in the 

dataset.  

Here is the equation for Pearson’s correlation coefficient (PCC): 

  

 𝑟 =
𝑛(∑𝑥𝑦)−(∑𝑥)(∑𝑦)

√[𝑛∑𝑥2−(∑𝑥)
2
][𝑥 ∑𝑦2−(∑𝑦)

2
     (2) 

Where 

𝑟 = Pearson Coefficient 

𝑛 = number of attributes 

∑𝑥𝑦= sum of products of the x and y values 

∑𝑥 = sum of the x values 
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∑𝑦= sum of the y values 

∑𝑥2 = sum of the squared x scores 

∑𝑦2= sum of the squared y scores 

 

 

Figure 4.1: k-fold Cross-validation method [39] 

Subsequently, to evaluate whether the algorithm is overfitting or underfitting, 

the k-fold Cross-validation method is used [39]. Cross-validation is used when a piece 

of the training set is put aside expressly for analysis and optimization. Parameters are 

learned by this method on the training set and then evaluated the performance on the 

validation set. In Figure 4.1, other folds are used as a training set and saved one-fold as 

a validation set. It repeats using the validation set as each fold in turn. 

To measures the performance of the model. Performance metrics are used. The 

first equation is MAE [3]. The size of errors for the entire group is determined by MAE 

using the average of absolute errors for a set of predicted and real values. Smaller MAE 

indicates it is better. 

Here is the equation for mean absolute error (MAE): 

 𝑀𝐴𝐸 =
1

𝑁
∑ |(𝑦�̂� − 𝑦𝑖)|
𝑁
𝑖=1       (3) 

Where 

𝑀𝐴𝐸 = mean absolute error 
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𝑁 = Total number of data points 

𝑦𝑖= true value/observed value 

𝑦�̂�= predicted value 

 Moreover, the equation used to evaluate the performance result of the prediction 

model is MSE.  It is certainly the most straightforward and typical loss function. MSE 

is expressed in units of the target variable's square. It is used to calculate the difference 

between predicted and observed values.  

Here is the equation for mean square error (MSE): 

 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖)̂

2𝑁
𝑖=1       (4) 

Where 

𝑀𝑆𝐸 = mean square error 

𝑁 = Total number of data points 

𝑦𝑖= observed value 

𝑦�̂�= predicted value 

 The next equation is the arithmetic square root of MSE, or RMSE is used to 

calculate the difference between predicted and observed values too [3].  Larger errors 

are effectively penalised more harshly by RMSE. The accuracy of the prediction model 

can be evaluated by calculating the RMSE. A smaller value of RMSE indicates a better 

fit between the data and the model, and therefore a more accurate prediction model. 

Here is the equation for root mean square error (RMSE):  

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖)̂2
𝑁
𝑖=1       (5) 

Where 

RMSE= root mean square error 

𝑁 = Total number of data points 

𝑦𝑖= observed value 

𝑦�̂�= predicted value 

 Furthermore, a statistical metric MAPE is used to examine how accurately a 

ML algorithm performs on a given dataset. The error referred to by the model 
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evaluation can be defined by MAPE as a loss function. A smaller number of MAPE 

indicate the model is better and with lesser error. Compared to RMSE, MAPE is a better 

option since it is expressed as a percentage, which is simple for both developers and 

end users to understand [48]. 

Here is the equation for mean absolute percentage error (MAPE): 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑖−𝑦�̂�

𝑦𝑖
|𝑁

𝑖=1       (6) 

Where  

𝑀𝐴𝑃𝐸= mean absolute percentage error 

𝑁 = Total number of data points 

𝑦𝑖= observed value 

𝑦�̂�= predicted value 

Next, mAP is used to evaluate the object detection model using YOLOv4. It 

began by going through the process of turning a prediction score into a class label. Then, 

a precision-recall curve is produced using various thresholds. Average precision is 

measured from the curve. In the end, sum up the average precision of all the classes and 

divide by n number of classes [41]. A higher score results in greater precision of the 

model's detections. 

Here is the equation for mean Average Precision (mAP):   

 𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘
𝑘=𝑛
𝑘=1        (7) 

Where 

𝑚𝐴𝑃 = mean Average Precision 

𝑛 = number of classes 

𝐴𝑃𝑘= the average precision (AP) of class k 

Next, YOLO calculated loss using the sum-squared error between the 

predictions and the actual data [40]. The classification loss, the localization loss, and 

the confidence loss make up the loss function. If an object is spotted, the squared error 

of the class conditional probabilities for each class represents the classification loss for 

each cell. Next, localization loss measures the size and position errors of the predicted 

border boxes. Moreover, the confidence loss is the measurement of the objectness of 
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the box, and it includes 2 equations where the first equation is used when an object is 

detected in the box, and the second equation is used when an object is not detected in 

the box. Eventually, all these three loss equations form a loss function for YOLO. 

Here is the loss function for YOLO [40]: 

 

(8) 

 

Where  

Line 1&2: Localization loss 

𝟙𝑖𝑗
𝑜𝑏𝑗

= 1 if the j th boundary box in cell i is responsible for detecting the 

object, otherwise 0 

𝜆𝑐𝑜𝑜𝑟𝑑 = increase the weight for the loss in the boundary box coordinates 

 

Line 3: Confidence loss (front & back) 

Front:  

Ĉ𝑖 =  the box confidence score of the box j in cell i 

𝟙𝑖𝑗
𝑜𝑏𝑗

= 1 if the j th boundary box in cell i is responsible for detecting the 

object, otherwise 0 

Back: 

𝟙𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

=  the complement of  𝟙𝑖𝑗
𝑜𝑏𝑗

 

Ĉ𝑖 = the box confidence score of the box j in cell i 

𝜆𝑛𝑜𝑜𝑏𝑗 = weights down the loss when detecting background 

 

𝜆𝑐𝑜𝑜𝑟𝑑∑∑𝟙𝑖𝑗
𝑜𝑏𝑗

[(𝑥𝑖 − 𝑥 𝑖 )
2 + (𝑦𝑖 − ŷ𝑖 )

2]

𝐵

𝑗=0

𝑆2

𝑖=0

+ 𝜆𝑐𝑜𝑜𝑟𝑑∑∑𝟙𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 −√ŵ𝑖)
2 + (√ℎ𝑖 −√ĥ)2]

𝐵

𝑗=0

𝑆2

𝑖=0

+∑∑𝟙𝑖𝑗
𝑜𝑏𝑗

(𝐶𝑖 − Ĉ𝑖)
2

𝐵

𝑗=0

𝑆2

𝑖=0

 + 𝜆𝑛𝑜𝑜𝑏𝑗∑∑𝟙𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

(𝐶𝑖 − Ĉ𝑖)
2

𝐵

𝑗=0

𝑆2

𝑖=0

+∑𝟙𝑖
𝑜𝑏𝑗

∑ (𝑝𝑖(𝑐) − 𝑝 𝑖(𝑐))
2

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑆2

𝑖=0
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Line 4: Classification loss 

𝟙𝑖
𝑜𝑏𝑗

= 1 if the area i contains an item; otherwise, 0. 

𝑝 𝑖(𝑐)= denotes the conditional class probability for class c in cell i 

 

Next, precision and recall are used to evaluate the classification model, which 

the object detection model. Precision measures how accurately a positive prediction 

was made. Recall measures the proportion of accurately recognised positive samples 

[39]. 

Here is the equation for precision: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝐹𝑃+𝑇𝑃)
      (9) 

Where 

𝑇𝑃= True positive 

𝐹𝑃= False positive 

 

Here is the equation for recall: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝐹𝑁+𝑇𝑃)
       (10) 

Where 

𝑇𝑃= True positive 

𝐹𝑁= False negative 

Next, F1 score is applied to integrate recall and precision into a single score. 

When precision and recall are large, the value of F1 score is high. 

Here is the equation for 𝐹1 score: 

𝐹1 =
𝑇𝑃

𝑇𝑃+
𝐹𝑁+𝐹𝑃

2

         (11) 

Where 

𝑇𝑃= True positive 

𝐹𝑁= False negative 

𝐹𝑃= False positive 
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Four types of hyperparameter tuning methods are utilized to determine the 

optimal combination of hyperparameters for the SVR model, which include grid search, 

random search, random search plus and parameter optimization loop. 

The grid search technique is used to find the best hyperparameter combination 

for the SVR model by exhaustively testing every combination on a grid [39]. However, 

this method can take a long time and require a lot of computing power when the model 

has many hyperparameters or large grids. 

The next hyperparameter tuning method is random search. This method has an 

advantage over grid search in terms of time and processing power because it only 

evaluates a limited range of hyperparameter combinations. The characteristic of 

random search allows for a wider range of hyperparameters to be explored without 

significant increases in computation time. However, this approach may result in higher 

variance during computation. 

Another hyperparameter tuning method is random search plus, which can yield 

results comparable to random search with fewer samples by dividing the 

hyperparameter space into cells and exploring each one systematically. This ensures 

that no cell is overlooked and reduces the likelihood of missing a promising solution. 

Study from [52] have shown that random search plus outperforms scikit-learn's random 

search by 10-50% in SVM models. Furthermore, random search plus can sample more 

efficiently than random search, with shorter runtimes for each run. The optimal method 

for dividing the space for random search plus is to use a value of k = 3. 

The final hyperparameter tuning method is the parameter optimization loop, 

which utilises a defined search strategy to iteratively adjust the parameters [53]. For 

each parameter, an output flow variable is generated and applied to the model. This 

method uses a random search strategy whereby the parameter combinations are picked 

at random and assessed. The loop comes to an end after a pre-set number of iterations.  

4.2 Framework 

PySimpleGUI is the GUI framework employed in this project to create an 

interactive UI display for predicting parking vacancy. It is open source and cross-
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platform, with a lot of documentation and tutorials available. PySimpleGUI integrates 

with tkinter, Qt (pyside2), wxPython, and Remi (for browser support), making GUI 

development incredibly quick and easy to learn. It only requires a Python3 environment 

and can be installed with a single line of code (pip install pysimplegui). Users only need 

to call the PySimpleGUI library before using it [51]. 

Compared to other popular Python GUI frameworks in the market, 

PySimpleGUI is much easier to use and learn. In conclusion, PySimpleGUI is a great 

choice for Python developers who want to create graphical user interfaces quickly and 

easily without sacrificing functionality or control. 

4.3 Flowchart 

  Figure 4.2 shows the flowchart of developing the parking vacancy prediction 

model using ML algorithm, SVR and Figure 4.3 shows the development flowchart of 

the custom YOLOv4 object detection model. 



CHAPTER 4 
 

 

33 
Bachelor of Information Systems (Honours) Information Systems Engineering 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
  

Figure 4.2: Development Flowchart of Parking Vacancy Prediction Model
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Figure 4.3: Development Flowchart of Custom YOLOv4 Object Detection Model
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CHAPTER 5 EXPERIMENT/SIMULATION 

5.1 System Requirement 

5.1.1 Hardware 

The hardware involved in this project is a laptop. A laptop was used to build the 

parking prediction model. Table 5.1 show the specification of the hardware used in 

conducting the research. 

Table 5.1 Specifications of laptop 

Description Specifications 

Model  Asus A510U series  

Processor  Intel Core i5-8250U  

Operating System  Windows 10  

Graphic  Intel® UHD Graphics 620 (FT2) DDR3 &  

NVIDIA GeForce MX150 DDR5  

Memory  4GB DDR4 + 8GB DDR4 RAM  

Storage  TOSHIBA MQ04ABF100 1TB SATA HDD  

 

5.1.2 Software 

The software used in this project is Google Colab, and Jupyter Notebook runs in 

an anaconda environment. 

Google Colab is a free cloud service for Python programming offered by Google. 

It allows users to access and work on Jupyter notebooks without needing to download 

or install any software. Additionally, Colab provides free access to GPUs, which is 

essential for training a customized YOLOv4 object detector. As the laptop used for this 

project lacked a strong GPU, Colab was utilized for the YOLOv4 model development. 

The notebooks created in Colab are saved in Google Drive and can be easily shared, 

similar to Google Docs or Sheets.  
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Jupyter Notebook is a web-based Python IDE designed for creating and sharing 

documents with text, live code, equations, and visualisations [27]. It is open-source 

software. Data scientists and researchers often prioritize data analysis over 

development, and Jupyter Notebook is an excellent tool for this purpose. It provides an 

interactive computational environment for creating data science apps, enabling users to 

experiment with data and see the results of the code for each command they execute 

[28]. Therefore, Jupyter Notebook was chosen for developing the parking vacancy 

prediction model due to its interactivity and ease of sharing. However, it was not used 

to develop the YOLOv4 object detection model. 

Anaconda is an open-source distribution of the Python and R programming 

languages for data research that tries to streamline package management and 

deployment in Python version 3.9 [29]. A GUI programme called Anaconda Navigator 

is part of the Anaconda distribution and makes it simple to install, run, and configure 

applications like Jupyter Notebook. An isolated environment is one created using 

Conda Python. It enables you to install packages without changing the Python setup on 

your machine [30]. So, Anaconda has chosen to act as a virtual environment for running 

Jupyter Notebook. 

5.1.3 Software libraries 

The software libraries adopted in this project are Scikit-learn, YOLOv4 

algorithm and PySimpleGUI. 

Scikit-learn is one of the popular Python libraries for developing ML algorithms 

[31]. Scikit-learn includes libraries in solving classification, regression, clustering, pre-

processing, model selection, and dimensionality reduction problem. SVM libraries is 

use in this project, the SVR algorithm is applying in this project especially during the 

model development. 

Next, the YOLOv4 algorithm was a real-time object detection model created by 

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao [43]. At the time 

of its release in April 2020, YOLOv4 was declared to be one of the most advanced real-

time object detectors. It operates by splitting the object detection problem into two 

components: regression, which uses bounding boxes to identify object location, and 
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classification, which identifies the object's class. YOLOv4 is built using the Darknet 

framework [33]. Compared to YOLOv3, YOLOv4 performs 12 percent quicker and 10 

percent more accurately [32].  Then in study [46] was conducted and showing that 

YOLOv5 is faster in inference time when compared to YOLOv4 but they also mention 

YOLOv4 on Darknet continues to be the most accurate if user is looking for the latest 

and do with more specific configuration. Hence, YOLOv4 algorithm was chosen to use 

in this project. 

PySimpleGUI is a Python library that offers a robust and user-friendly GUI 

framework, built on top of the tkinter library. It builds on top of tkinter library, makes 

it easier to create GUIs by providing a wide range of capabilities and a simple API. It 

utilizes the Python programming language to develop a GUI that simplifies the 

visualization and interaction of data for users. PySimpleGUI can be easily installed 

using the "pip install pysimplegui" command. The use of PySimpleGUI can greatly 

expedite the prediction of parking vacancy models and create a simpler and clearer user 

experience. 

Table 5.2: Summarize for the software libraries 

Scikit-learn • Python libraries for developing ML algorithms. 

• Libraries for solving ML problem, classification, 

regression and etc. 

• Include SVR algorithm 

YOLOv4 algorithm • Real-time object detection model 

• Faster and more accuracy than YOLOv3 

• Slower than YOLOv5 in inference time 

• Continues to be the most accurate, without afraid of 

having more specific configuration 

PySimpleGUI • Python GUI framework 

• Easy install 

• Quick to learn and easy apply 
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5.1.4 Datasets 

Total of four datasets is used in this project. The datasets included PKLot dataset 

[34], CARPK dataset [35], CNRPark+EXT dataset [36], and Aerial View of Parking 

Lot [37].  

 

Figure 5.1: PKLot PUCPR sample image during sunny weather [34] 

 

Figure 5.2: PKLot UFPR04 sample image during rainy weather [34] 

 

Figure 5.3: PKLot UFPR05 sample image during cloudy weather [34] 
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The PKLot dataset [34] contains 12,417 labeled images of parking lots. All 

images were snapped at the parking lots of PUCPR and UFPR, which located in 

Curitiba, Brazil, classified as vacant or occupied. The dataset is segmented based on 

weather conditions, including sunny, overcast, and rainy, as shown in Figure 5.1-5.3. 

The images display various challenges such as shadows from trees and buildings, 

excessive sunshine exposure, poor lighting on rainy days, and differences in perspective.  

 

Figure 5.4: CARPK sample image [35] 

The second dataset utilized in this study is the CARPK dataset [35], which 

includes almost 90,000 vehicles photographed by drones in four parking lots. The 

images were captured from a height of approximately 40 meters, and each automobile's 

bounding box is indicated on the image set. Additionally, a portion of the dataset from 

PUCPR, which represents scenes that are obscured from the aerial view in the PKLot 

dataset, was incorporated. The training set of the CARPK dataset comprises 989, and 

the testing set consists of 459 images. This study was partially funded by Taiwan's 

Ministry of Science and Technology, thus justifying that part of the CARPK dataset (in 

Figure 5.4) was collected in Taiwan, although the study does not explicitly specify the 

dataset collection location. 
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Figure 5.5: CNRPark+EXT Camera 1 sample image [36] 

The third dataset used in this project is CNRPark+EXT dataset [36]. The dataset 

CNRPark+EXT was created on a parking lot with 164 parking spots and contains 

around 150,000 labelled pictures. CNR-EXT is a subset of CNRPark+EXT. It is made 

up of photographs taken between November 2015 and February 2016 by 9 cameras 

using diverse views and angles of view and in varying weather situations (sunny, 

overcast and rainy) in the CNR Research Area in Pisa, Italy. CNR-EXT records a 

variety of lighting circumstances, including partial occlusion patterns imposed on 

barriers like trees, lampposts, and other vehicles, as well as completely or partially 

shadowing of the vehicles (Figure 5.5). 

 

Figure 5.6: Aerial View of Parking Lot sample image [37] 

The last dataset used in this project was named Aerial View of Parking Lot [37]. 

The dataset consists of pictures of several parking lots that were captured using a drone. 

To manage the large images, each raw image was divided into 6 smaller images, which 

were then compressed as shown in Figure 5.6. In total, 299 images were collected and 
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divided into two segments: 280 images for training and 19 images for testing. The 

images were labelled using the Make-Sense.ai labelling tool. The dataset was collected 

by students at Tiangong University, and it can be reasonably inferred that the dataset 

was collected in Tianjin, China, although the study does not explicitly state the location 

of the dataset collection.
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Table 5.3: Comparison of the datasets 

Data set Size Location taken Noise (consider) Testing set size Training set size 

PKLot 12,417 

Pontical Catholic University of Parana 

(PUCPR), and Federal University of 

Parana (UFPR), located in Curitiba, 

Brazil 

Climate condition, buildings shadows, 

presence of the trees, lampposts, and 

other vehicles, excessive sunlight 

exposure 

2483 9934 

CARPK 1448 
Pontical Catholic University of Parana 

(PUCPR) and Taiwan 
Buildings shadows 459 989 

CNRPark+EXT 144,965 CNR Research Area in Pisa, Italy 

Climate condition, buildings shadows, 

presence of the trees, lampposts, and 

other vehicles, excessive sunlight 

exposure 

31825 113,140 

Aerial View 299 Tianjin, China - 19 280 
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5.2 Setting up software 

Before begin developing the ML model, Anaconda needs to be downloaded and 

installed on the laptop. Since Google Colab is a web IDE, no download or installation 

is required. Anaconda can be easily installed by downloading Anaconda Python 3.9 64-

Bit Graphical Installer for Windows. After successfully installing Anaconda, Jupyter 

Notebook is ready to use. 

5.3 YOLOv4 model 

5.3.1 Configuration on YOLOv4 model 

 

Figure 5.7: Create a yolov4 folder in Google Drive

 

Figure 5.8: Create a training folder inside the yolov4 folder  

Step 1, create a yolov4 folder in Google Drive (Figure 5.7) and a training folder 

inside the yolov4 folder (Figure 5.8) to store training weight. Download the yolov4-

custom config file (yolov4-custom.cfg) from darknet/cfg directory. 

!git clone https://github.com/AlexeyAB/darknet 
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Figure 5.9: Output of cloning the darknet git repository 

Step 2, download the darknet to the yolov4 folder by cloning the darknet git 

repository (as in Figure 5.9). 

 

Figure 5.10: The yolov4-custom file 

In step 3, make changes in the yolov4-custom file which can be found in the cfg 

folder under the yolov4 folder (in Figure 5.10). 

Line batch size is the number of segments per iteration. If the line batch size is set 

as 64, then there will be 64 images in every line batch. Next, the subdivision number 

determines the number of “mini batches” in one batch. If the number of the subdivision 

is 16, a batch has broken into 16 pieces. The GPU process four images at a time 

(64/16=4), and it is repeated 16 times to complete a batch of 64 images. Once the batch 

is complete, a new batch of 64 images begin processing. The max batches are the 

number of iterations for the training, and the standard is the number of classes*2000 or 

not less than 6000 iterations.  

Furthermore, the line steps are set according to 80% and 90% of the max batches. 

Moreover, the network size is the network resolution. The width and height must be 

multiples of 32 and increasing width and height can increase precision; however, 

increasing it does decrease the training speed. In addition, the line classes change 

according to the number of classes that need to be trained. Lastly, the filter size is equal 

to (number of classes+5) *3 [42]. Moreover, the learning rate used to train the model is 

0.001, the default learning rate set by the YOLOv4 model. After 1000 iterations, the 

learning rate will be manually updated to 0.0001 and used until 9000 iterations. 
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Changes made in the yolov4-custom configuration file are as below: 

● change line batch to batch=64 

● change line subdivisions to subdivisions=16 

● change line max batches to 9000 (iterations) 

● change line steps to 80% and 90% of max batches, which is steps= 7200, 8100 

● set network size width=416 height=416  

● change line classes to classes=2 in each of 3 [yolo]-layers 

● change [filters=255] to filters= 21 in the 3 [convolutional] 

The default value for the parameter "ignore_thresh" in YOLOv4 is 0.7, which 

means that duplicated detections are kept only if their IoU with the ground truth 

bounding box is greater than 0.7 [56]. Increasing this value can improve the accuracy 

of the detector. However, the parking lot image dataset used in this project contains 

around 100 objects with small bounding boxes per image, and a lot of noise due to 

obstructions, road conditions, and weather conditions. This is different from typical 

datasets that contain only a single or a few objects per image. Therefore, setting the 

"ignore_thresh" value to 0.9 as suggested in [43] may not be suitable for this dataset, 

as it is likely to cause overfitting issues. 

Next, the parameter "iou_normalizer" serves as the normalizer for delta-IoU and 

it normalizes the delta-IoU for every object's bounding box [56]. The default value for 

this parameter in YOLOv4 is 0.07, while the value suggested in [43] is 0.5. However, 

using an "iou_normalizer" with a value of 0.5 is not suitable for the dataset used, as it 

may affect the calculation of the normalizer. 

After several test on different value for the parameters network size width and 

height, "ignore_thresh" and "iou_normalizer” it was observed that adjusting the 

network size from 416 to 512 did not improve the object detector's accuracy. This lack 

of improvement could be attributed to the image dataset's resolution, which is 640x640. 

Another test was conducted using an "ignore_thresh" value of 0.9 and an 

"iou_normalizer" value of 0.5, which resulted in poor performance even after 6000 

iterations (as shown in the appendix). Both the mAp50% and average IoU results were 

not more than 27%. Other tests were also conducted, such as adjusting the network size 

width and height with only "ignore_thresh" or only "iou_normalizer" and they showed 
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optimized results. However, after evaluating all the tested models, the default parameter 

values yielded the most promising result. 

Step 4a, create a data file and a names file and named both of the file as obj 

(obj.data and obj.names). The obj.data file includes the number of classes, the directory 

for the training file, and the test file, which includes images and labelled file names. 

Next, the names file includes the names for the two classes, which are space-empty and 

space-occupied. Then, the directory for the names file saves classes' names, and the 

directory for the backup saves the training weight. Both files can be found in appendix. 

Step 4b, create a python file name process (process.py). This process.py script 

generates two files, train.txt and test.txt, each containing the paths to 90% of the images 

and 10% of the images, respectively [43]. This python file (process.py) can be found in 

appendix. 

 

Figure 5.11: Upload needed file to yolov4 folder 

Step 4c, upload the files (obj.zip, yolov4-custom.cfg, obj.data, obj.names and 

process.py) to Google Drive inside the yolov4 folder (in Figure 5.11). 
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Figure 5.12: Copy the files and paste under data and cfg folder 

During data cleaning of the obj.zip dataset (which contained 12,412 labelled txt 

files and images), it was discovered that some txt files were empty. After removing 

these files, the dataset was left with 10,926 labelled txt files and images. 

Step 5, remove all files from the data and cfg folders except for the labels folder 

in the needed data. Then, move the files (obj.names and obj.data) from the yolov4 

folder into the darknet directory. Afterward, unzip the obj.zip file to the data folder 

located inside the darknet folder (as in Figure 5.12). 

 

Figure 5.13: Copy and paste process file 

Step 6, paste process file (process.py) to the darknet directory (in Figure 5.13) 

and run the file to produce the train.txt and test.txt files in our darknet/data folder (in 

Figure 5.12). 



CHAPTER 5 
 

 

48 
Bachelor of Information Systems (Honours) Information Systems Engineering 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
  

 

Figure 5.14: Download the weights file for the Yolov4 pre-trained model 

Step 7, download the weights file for the YOLOv4 pre-trained model. Figure 

5.14 show the process and result of downloading the weights file. Transfer learning is 

employed, whereby instead of training a model from scratch, YOLOv4 weights that 

have already been trained up to 137 convolutional layers are utilized. By leveraging 

transfer learning, the learning process can be accelerated and the accuracy can be 

improved. 

5.3.2 Train on YOLOv4 model 

 

Figure 5.15: Connect to Google Drive 

Before training the custom model, Google Colab must connect to Google Drive 

(Figure 5.15) to access the download darknet, custom file and the dataset used for the 

training. 

%cd darknet/ 

!sed -i 's/OPENCV=0/OPENCV=1/' Makefile 

!sed -i 's/GPU=0/GPU=1/' Makefile 

!sed -i 's/CUDNN=0/CUDNN=1/' Makefile 

!sed -i 's/CUDNN_HALF=0/CUDNN_HALF=1/' Makefile 

!sed -i 's/LIBSO=0/LIBSO=1/' Makefile 

 

Figure 5.16: Make changes in Makefile 

 Then, modify the Makefile to enable OPENCV and GPU by turning CUDNN, 

CUDNN_HALF and LIBSO value to 1 (Figure 5.16). OPENCV is an open-source 

computer vision library designed to solve computer vision problems [44]. CUDNN is a 
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GPU-accelerated library of primitives for deep neural networks [45]. After making 

changes in Makefile, the darknet is ready to be built. 

 

Figure 5.17: Build darknet 

 

Figure 5.18: Train the custom model using the pre-train yolov4 weights output 

Code that trains the custom model using the pre-train yolov4 weights: 

!./darknet detector train data/obj.data cfg/yolov4-custom.cfg yolov4.conv.137 -dont_show -

map 

A command “!make” is executed to build the darknet (Figure 5.17), the training 

for the custom model starts by using the pre-train yolov4 weights using the code (trains 

the custom model using the pre-train yolov4 weights). The output after executed the 

code is shown in Figure 5.18. However, the output slot only can display up to 5000 

lines, so the output since the start of the training cannot be previewed and screenshot 

here. Total iterations for this training are 6000. 

Code that continues training yolov4 based on its last weights: 

!./darknet detector train data/obj.data cfg/yolov4-custom.cfg /mydrive/yolov4/training/yolov4-

custom_last.weights -dont_show -map 
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Figure 5.19: Continue the training on last check point, last weights 

 Training stopped after exceeding the usage limit of Google Colab. The previous 

code (trains the custom model using the pre-train yolov4 weights) needs to be modified 

to continue training the custom YOLOv4 model. Else, the training will be restarted 

from the first iterations. Thus, the last weight is used to continue the training from the 

last checkpoint using the code (continues training yolov4 based on its last weights) and 

with the continuous output in Figure 5.19. 

 

Figure 5.20: Training output after 6000 iterations 

 After a total of 6000 iterations of the training, the output is shown in Figure 5.20.  



CHAPTER 5 
 

 

51 
Bachelor of Information Systems (Honours) Information Systems Engineering 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
  

A custom YOLOv4 model was trained with the initial dataset of 12412 labelled 

files, including empty files. After performing data cleaning to remove the empty files, 

the dataset was reduced to 10926 labelled files. To improve the performance of the 

model, an additional 3000 iterations were performed using only the cleaned dataset of 

10926 labelled files. 

 

Figure 5.21: Training output after 9000 iterations 

Code that continues training yolov4 based on its last weights (modified): 

!./darknet detector train data/obj.data cfg/yolov4-

custom.cfg /mydrive/yolov4/training/yolov4-custom_last.weights -dont_show 

A modification was needed for the code (continues training yolov4 based on its 

last weights), as it would otherwise output an error. This was due to an incompatibility 

issue with the OpenCV version, as the training was being continued after a 6-month 

break [57]. The modification involved removing the “-map” command, and the 

resulting code (shown above) now outputs the iterations and saving process only, 

without performing or outputting any mAP calculation during training. After a total of 

9000 iterations of training, the output is shown in Figure 5.21. 
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5.4 Prediction model 

5.4.1 Dataset preprocessing (text label file to CSV file) 

 

Figure 5.22: Store parking features in data frame 

The label text file generated from the YOLOv4 model is used to develop the 

prediction model. Unfortunately, the Y   v4 model’s accuracy is still not good 

enough, so the PKLot label text file is used to train this prediction model. In order to 

extract information from these text files, pre-processing is required.  

First, execute the code (creating a new data frame to store the data (parking 

features) extracted from all the files) in appendix. The format of the data frame is shown 

as Figure 5.22. 

 Second, the code (read the text files) in appendix processes the text files (cloudy, 

rainy and sunny) that store the date and time and store the data (label file name) 

accordingly into the list (cloudy, rainy and sunny). 

 Third, the code (reading label XML file) in appendix indicates the process of 

reading label XML file (second type of label file for the PKLot) and store it into 

dictionary which to use later.  

Some of the label text files are empty. Other than excluding these data in the 

dataset, the empty labelled text files are recorded and replaced by labelled XML files 

(another type of label file for PKLot dataset) that are downloaded from different sources.  

All the data, such as DateTime, occupancy, and total parking, that is read in 

from the XML files is stored in a dictionary and later utilized. The dictionary (my_dict) 

key is the file name and include two values, numbers of occupied parking and the 

number of total parking spaces in the parking area.  

Fourth, the code (appends data into data frame) in appendix demonstrates how 

to obtain data (occupied parking, total parking, date, time, and weather) from all label 
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files, apply an if else segment (to fill in the different types of weather and the missing 

value), and then save the data in accordance with the created data frame. 

 In this process, the date and time extracted from the label text file are compared 

with the weather lists to add one more feature, weather, and later stored in the data 

frame. The weather condition included cloudy (equal to 0), rainy (equal to 1) and sunny 

(equal to 2). Furthermore, if any text file matches the key in an empty label file 

dictionary, the dictionary value should be utilised (replace the total parking and 

occupancy value in the text file) and stored in the data frame.  

 

Figure 5.23: Data frame of PKLot with weather condition 

 Figure 5.23 show that all the data is successfully stored in the “df” data frame. 

Fifth, the code (saves data frame as csv) in appendix shows saving the data frame 

into a CS  file and named “'pklot_weatherNcomplete”. This dataset was used to develop 

the parking vacancy prediction model. 
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5.4.2 Data preprocessing 

 

Figure 5.24: Read PKLot CSV file into data frame 

The code (import the needed libraries) in appendix is applied to import the 

needed python libraries and the output after executed the code (load the dataset into a 

data frame) in appendix. 

 The code (modify and create features) in appendix shows create new features 

(DateTime and empty), drop unnecessary features (location, occupied, date and time) 

and convert “DateTime” to DateTime data type and the numerical data (empty, total 

parking and weather) to integer data type. 

 

Figure 5.25: Quick description of all attributes in the pk data frame 
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 The output for the code (displays description of all attributes) in appendix is 

show in Figure 5.25. In Figure 5.25 a total of 12416 columns for four features and 

indicates no single cell in the column is a null value. 

 

Figure 5.26: Check redundancy in DateTime 

 The output for the code (checks DateTime redundancy) in appendix is display 

in Figure 5.26 and in this figure displays the redundancy happened in DateTime is False 

for 12416 over 12416 data. As a result, no redundancy occurred. 

 

Figure 5.27: Statistics of all numerical attributes in pk data frame 

 The output for the code (check statistics of all numerical attribute) in appendix 

is display in Figure 5.27 and this figure display the summary statistics of all numerical 

attributes in the data frame.  

The summary statistic includes count (number of values that are not empty for 

every numerical attribute), mean (the average values for every numerical attribute), and 

std (standard deviation for every numerical attribute). Next it shows min (minimum 

value for every numerical attribute), 25% (25% percentile* for every numerical 

attribute), 50% (50% percentile* for every numerical attribute), 75% (75% percentile* 

for every numerical attribute) and max (maximum value for every numerical attribute).  

According to the statistic of total parking, there are 12416 data in this attribute. 

Total parking has a mean value of 57.95 and a standard deviation of 31.92. Then with 
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a minimum value of 28 and a maximum value of 100. Furthermore, 25% percentile 

with the value of 28, 50% percentile with the value of 40, 75% percentile with the value 

of 100. 

According to the statistic of weather, there are 12416 data in this attribute. 

Weather has a mean value of 1.22 and a standard deviation of 0.91. However mean and 

standard deviation is not important in this case because Weather is a nominal data 

convert to numeric which represent 0 as cloudy, 1 as rainy and 2 as sunny. Then 

“Weather” has a minimum value of 0 and a maximum value of 2. Furthermore, 2 % 

percentile with the value of 0, 50% percentile with the value of 2, 75% percentile with 

the value of 2. As a result, most weather are in the condition of sunny as more than 50% 

of the data are 2.  

According to the statistic of empty, there are 12416 data in this attribute. Empty 

has a mean value of 30.91 which mean average 30.91 parking is empty in the dataset 

and a standard deviation of 31.8. Then with a minimum value of 0 and a maximum 

value of 100. Furthermore, 25% percentile with the value of 4, 50% percentile with the 

value of 27, 75% percentile with the value of 40. 
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Figure 5.28: Histogram of each numerical attribute in pk data frame 

The output for the code (plots the histogram of each numerical attribute) in 

appendix is display in Figure 5.28 and this figure display the histogram for “Total 

parking”, “Weather”, “DateTime” and “Empty”.  

The “Total parking” histogram shows that there are only three types of parking 

lots, which include the capacity of 28, 40 and 100.  

Then, the “Weather” histogram shows that most of the data are 2 (2 is sunny), 

which the quantity is close to seven thousand, the next highest is 0 (0 is cloudy), which 

the quantity is around four thousand, and 1 (1 is rainy) happened the less among them 

which is around one thousand and five hundred. 

Furthermore, the “DateTime” histogram shows the distribution of the dataset in 

date, and one bar contains around five days. This “DateTime” histogram also reveals 

that some of the days in the histogram are empty, meaning the data set is not in 

continuously.  

Lastly, there are three peaks in the “Empty” histogram. After analysing this 

histogram, the result is that three parking lot are frequently in zero capacity and a full 

capacity condition. The total capacity of the first parking lot is 28, the next is 40, and 

the last is 100. 

 

Figure 5.29: correlation matrix of pk data frame 

The output for the code (display correlation matrix) is display in Figure 5.29 

and this figure shows the correlation matrix of the “pk” data frame. According to this 

figure, empty and total parking strongly correlate with a value of 0.61, a strong 

correlation relationship.  



CHAPTER 5 
 

 

58 
Bachelor of Information Systems (Honours) Information Systems Engineering 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
  

Next, the relationship between empty and weather has a correlation value of 

negative 0.057, and this value is not expected as the statement in the literature review. 

The reason for this might be because of the characteristic of the dataset. This dataset is 

collected from a university, and the class conducted in the university is not cancel by 

weather like rainy unless it is extreme weather like a hurricane or blizzard.  

The weather condition in this dataset (cloudy, rainy and sunny) do not affect the 

scheduling of the classes. Hence, no matter in rainy, sunny or cloudy, the class is still 

being conducted, and the student still needs to attend it. In conclusion, the weather did 

not affect much on the number of empty parking because this dataset is collected at a 

university.  

  Then, the relationship between total parking and weather has a correlation 

value of 0.004, which is to be expected given that weather conditions are unlikely to 

significantly impact the overall parking capacity of a lot. In conclusion, the correlations 

show that weather is less critical in this dataset.   

 

Figure 5.30: Count unique values of weather 

 Figure 5.30 shows that the "Weather" column mostly contains the value 2, 

indicating a sunny day with 6,912 occurrences, which is over half the total dataset of 

12,416. The next highest value is 0, representing a cloudy day with only 4,162 

occurrences. The least common weather condition in the dataset is 1, representing a 

rainy day with only 1,324 occurrences. 
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Figure 5.31: Graph plot with Empty and 

DateTime in Cloudy  

Figure 5.32: Graph plot with Empty and 

DateTime in Rainy

 

Figure 5.33: Graph plot with Empty and DateTime in Sunny 

The code (plots graph according to weather types) in appendix plot total three 

figures (Figure 5.31, Figure 5.32 and Figure 5.33). The figures above show three types 

of weather (cloudy, rainy and sunny) in the PKLot dataset with “Empty” as the y-axis 

and “DateTime” as the x-axis.  

In Figure 5.31, there is only 4162 datasets in cloudy, and the slash line is the 

empty data that are missing in the DateTime because the weather other than cloudy is 

filtered out.  

Next, in Figure 5.32, there is only 1342 datasets in rainy, and the slash line is 

the empty data that are missing in the Date Time because the weather other than rainy 

is filtered out. 

Lastly, in Figure 5.33, there is only 6912 datasets in sunny, and the slash line is 

the empty data that are missing in the DateTime because the weather other than sunny 

is filtered out. 

5.4.3 Train on prediction model 

The code (import the needed libraries) in the appendix imports all the necessary 

libraries that will be used to develop and evaluate the ML models. These include the 

SVR, LR, and decision tree regression libraries, as well as loss functions such as MSE, 

MAE, and MAPE. Other relevant libraries, such as NumPy, Pandas, and Scikit-learn, 

and more are also imported as shown in appendix. 
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First, run the data pre-processing codes in appendix (done in the 4.3.2 Data processing 

section): 

1. Read the CSV file into a data frame 

2. Create a new column name “DateTime” by combining the “Date” and “Time” 

3. Convert “DateTime” to DateTime data type  

4. Create a new column of the “DateTime_year”, “DateTime_month”, 

“DateTime_week”, “DateTime_day”, “DateTime_hour”, “DateTime_minute” 

and “DateTime_dayofweek” using the “DateTime” column 

5. Create a new column name “Empty” by minus “Occupied” with “Total parking” 

6. Drop unneeded columns (“Location”, “Date”, “Time”, “DateTime” and 

“Occupied”) 

7. Convert all numerical columns (“Total parking”, “Empty”, “Weather” and 

“DateTime_week”) to integer data type 

8. Select “Total parking” with the value of 100 as the training and testing dataset. 

At step number four, the timestamp cannot fit the ML model, so a discrete component 

is applied in DateTime.  

 

Figure 5.34: The shape of the original training set and the processed training set x and y 

 Second, the code (split dataset and pre-processing) in appendix is the last data 

pre-processing steps before the ML training start.  

This start by split the dataset into X as input matrix, y as output vector, and X 

and y into training, validation and testing sets. The data is split into a training set with 

a size of 70%, validation set with a size of 15% and a testing set with a size of 15%. 

Next, the weather column is extracted and applied with one-hot encoding instead of the 

ordinary label. Then, standardize the numeric data is applied due to the data contains 

varying scales. After merging the numerical and weather datasets into a single NumPy 

array for fitting the ML model, the data type of y_train, y_val and y_test sets should be 

converted to NumPy arrays as well. 
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Figure 5.34 show the original dataset has 12416 rows of data and 10 columns. 

After pre-processing this dataset into x_train and y_train, the x_train has 3131 rows of 

data (only including total parking equal to 100) with 11 columns (drop one feature to 

create y and apply one-hot encoding to the weather column). For the y_train it has 3131 

rows of data. 

           After running the code above the ML training is ready to go. The performance 

of the SVR algorithm is evaluated and make comparison by applying two other ML 

algorithms like LR and Decision Tree Regression. The function “show10results” in 

appendix is created to display the prediction value for the 10 random samples selected 

from the training set. 

regr = SVR() 

regr.fit(X_train_tr, y_train) 

y_pred = regr.predict(X_train_tr) 

 

Figure 5.35: Performance output of the SVR model 

Next, create a regressor object using the SVR library and train this model using 

the training set. After the model fit the data, the evaluation of the model's performance 

on the training set is started by predicting the y_train set (the empty parking space). 

The “show10results” function is called to display the prediction value for the 10 random 

samples selected from the training set. 

Furthermore, to evaluate how well the created model fits the data, the function 

code of MSE, RMSE, MAE and MAPE in appendix are used. The performance output 

is shown in Figure 5.35. MSE result is 657.01. RMSE result is 25.63. MAE result is 

19.35. Lastly, MAPE result is 2.3085e+15. 
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k_fold_scores = cross_val_score(regr, X_train_tr, y_train,  

                                scoring = 'neg_mean_squared_error', cv=5) 

regr_rmse_scores = np.sqrt(-k_fold_scores) 

display_scores(regr_rmse_scores) 

 

Figure 5.36: Result of 5-fold cross validation with SVR using the training set 

The code above shows applying the 5-fold cross-validation score function on 

the SVR model. The RMSE score is likely be overly optimistic when evaluated directly 

on the training set. Hence cross-validation is used to obtain a more accurate RMSE 

value. K-fold cross-validation is performed on the model by calling the cross_val_score 

function from sklearn. In this case, a 5-fold cross-validation (cv=5) is performed on the 

SVR model with an output score of negative mean squared error. This output is 

subsequently converted to RMSE and display the mean of the RMSE, 26.6 (in Figure 

5.36). The standard deviation of the RMSE, which is 1.0445 (in Figure 5.36). 

lin_reg = LinearRegression() 

lin_reg.fit(X_train_tr, y_train) 

y_pred = lin_reg.predict(X_train_tr) 

 

Figure 5.37: Performance output of the LR model 

The code above shows training a model with LR. Before building a model using 

LR, the first step is to import the LR library from sklearn.  

Next, create a regressor object using the LR library and train this model using 

the training set. After the model fit the data, the evaluation of the model's performance 

on the training set is started by predicting the y_train set (the empty parking space), the 
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target variable. The “show10results” function is called to display the prediction value 

for the 10 random samples selected from the training set. 

Furthermore, to evaluate how well the created model fits the data, the function 

code of MSE, RMSE, MAE and MAPE in appendix are used. The performance output 

is shown in Figure 5.37. MSE result is 795.06. RMSE result is 28.20. MAE result is 

22.46. Lastly, MAPE result is 1.6063e+15. 

k_fold_scores = cross_val_score(lin_reg, X_train_tr, y_train,  

                                scoring = 'neg_mean_squared_error', cv=5) 

lin_reg_rmse_scores = np.sqrt(-k_fold_scores) 

display_scores(lin_reg_rmse_scores) 

 

Figure 5.38: Result of 5-fold cross validation with LR using the training set 

The code above shows applying the 5-fold cross-validation score function on 

the LR model. The RMSE score is likely be overly optimistic when evaluated directly 

on the training set. Hence cross-validation is used to obtain a more accurate RMSE 

value. K-fold cross-validation is performed on the model by calling the cross_val_score 

function from sklearn. In this case, a 5-fold cross-validation (cv=5) is performed on the 

LR model with an output score of negative mean squared error. This output is 

subsequently converted to RMSE and display the mean of the RMSE, 28.26 (in Figure 

5.38). The standard deviation of the RMSE, which is 0.6255 (in Figure 5.38). 

tree_reg = DecisionTreeRegressor(random_state=42) 

tree_reg.fit(X_train_tr, y_train) 

y_pred = tree_reg.predict(X_train_tr) 
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Figure 5.39: Performance output of the decision tree regression model 

The code above shows training a model with Decision Tree Regressor. Before 

building a model using decision tree regressor, the first step is to import the decision 

tree regressor library from sklearn.  

Next, create a regressor object using the Decision Tree Regressor library and 

train this model using the training set. After the model fit the data, the evaluation of the 

model's performance on the training set is started by predicting the y_train set (the 

empty parking space), the target variable. The “show10results” function is called to 

display the prediction value for the 10 random samples selected from the training set. 

Furthermore, to evaluate how well the created model fits the data, the function 

code of MSE, RMSE, MAE and MAPE in appendix are used. The performance output 

is shown in Figure 5.39. MSE result is 0.0062. RMSE result is 0.0786. MAE result is 

0.0063. Lastly, MAPE result is 1.8456e-04. 

k_fold_scores = cross_val_score(forest_reg, X_train_tr, y_train,  

                                scoring = 'neg_mean_squared_error', cv=5) 

tree_rmse_scores = np.sqrt(-k_fold_scores) 

display_scores(tree_rmse_scores) 

 

Figure 5.40: Result of 5-fold cross validation with decision tree regressor using the training set 

The code above shows applying the 5-fold cross-validation score function on 

the decision tree regression model. The RMSE score is likely be overly optimistic when 
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evaluated directly on the training set. Hence cross-validation is used to obtain a more 

accurate RMSE value. K-fold cross-validation is performed on the model by calling the 

cross_val_score function from sklearn. In this case, a 5-fold cross-validation (cv=5) is 

performed on the LR model with an output score of negative mean squared error. This 

output is subsequently converted to RMSE and display the mean of the RMSE, 5.24 (in 

Figure 5.40) The standard deviation of the RMSE, which is 0.5211 (in Figure 5.40). 

5.4.4 Fine tune the prediction model 

There are several parameters in SVR that undergo changes during 

hyperparameter tuning, including C, gamma, degree, kernel, and epsilon. The 

parameter C is responsible for controlling the margin of the hyperplane. If the value of 

C is too low, it may result in an underfitting issue, whereas a high value of C may lead 

to an overfitting issue [54]. 

The next parameter, gamma, determines the influence of a single training 

example on the separation line. A low gamma value gives importance to points far from 

the potential separation line, while a high gamma value gives importance to points near 

the possible line. In this case, only the 'scale' and 'auto' options for gamma are applied 

for hyperparameter tuning. 

The parameter degree defines the degree of the polynomial kernel function used 

in SVR. In this dataset, it was observed that a degree value of approximately 3 provides 

optimal results. However, for other types of kernel functions, this parameter will be 

ignored. 

Next, the parameter kernel includes four types: linear, poly, rbf, sigmoid, and 

precomputed. After manually testing the parameter kernel, the results show that "poly" 

and "rbf" have the most optimized results for this dataset. 

Lastly, the parameter epsilon determines the width of the tube around the 

hyperplane [55]. Points that fall within this tube are considered accurate predictions and 

are not penalized by the algorithm. The parameter epsilon was manually tested within 

the range of 0 to 10, and the results indicated that an epsilon value of approximately 7 

was optimal for this dataset. 
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The first parameter grid, denoted by “param_grid_svr2”, was created after 

several tests and an understanding of each parameter. The grid consisted of a C value 

range of 5000 to 10000 in increments of 1000, gamma values of scale and auto, degree 

values of 1 and 3, kernel types of rbf and poly, and epsilon values of 6, 7, and 8, as 

shown in the appendix. The second parameter grid, denoted by “param_random_svr”, 

consisted of 20 randomly generated C values between 10 to 1000, with the same gamma 

and kernel values as “param_grid_svr2”, degree values of 1, 3, and 5, and 10 epsilon 

values randomly generated between 5 to 10. 

 

Figure 5.41: Output after performed grid search on SVR model 

Perform the first fine tuning technique, grid search, on the SVR model by using 

the function code (returns the model after a grid search or random search has been 

performed) in appendix with the input fine tuning technique name "Grid" and the 

parameter grid named "param_grid_svr2" as in appendix. This fine tuning took 6361.84 

seconds to finish, and the best hyperparameter for this model is shown in Figure 5.41. 

 

Figure 5.42: Output after performed random search on SVR model 
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Perform the second tuning technique, random search, on the SVR model by using 

the function code (returns the model after a grid search or random search has been 

performed) in appendix with the input fine tuning technique name "Random" and the 

parameter grid named "param_random_svr" as in appendix. This fine tuning took 

215.93 seconds to finish, and the best hyperparameter for this model is shown in Figure 

5.42. 

 

Figure 5.43: Output after performed random search plus on SVR model 

There is no existing library available to perform the random search plus method. 

Therefore, a self-defined function for Random Search Plus was created based on the 

study [52]. This function utilizes all the parameters available in "param_random_svr", 

except for the parameter C, where only two C values are used at a time (one select 

ascendingly, one select randomly). This explains why there are 20 iterations of Random 

Search being performed, as shown in Figure 5.43. During this hyperparameter tuning, 

the original SVR model's MSE error is recorded and compared to the MSE result of 

each Random Search iteration. Finally, the Random Search iteration with the smallest 

MSE error is outputted as an optimized SVR model. 
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Perform the third fine tuning technique, random search plus, on the SVR model 

by using the function code (returns the model after a random search plus has been 

performed) in appendix with the input parameter grid named "param_random_svr” as 

in appendix. This fine tuning took 3519.83 seconds to finish. After it run 20 times 

random search, the best hyperparameter for this model is shown in Figure 5.43. 

 

Figure 5.44: Output after performed parameter optimization loop on SVR model 

Since there was no library available to perform the parameter optimization loop 

method, a self-defined function for Random Search Plus was created based on the 

methodology described in [53]. This function tests every combination of 

hyperparameters by randomly selecting one value for each parameter in 

"param_random_svr” and repeats the testing according to the input number of 

iterations, as shown in Figure 5.44 with 100 iterations. The optimized SVR model is 

determined by selecting the model with the smallest MSE error among all models 

generated in the iterations of the Random Search Plus function. 

Perform the last fine tuning technique, parameter optimization loop, on the SVR 

model by using the function code (returns the model after a parameter optimization 

loop has been performed) in appendix with the input of 100 loops and the parameter 

grid named "param_random_svr” as in appendix. This fine tuning took 140.26 seconds 

to finish. After 100 loops, the best hyperparameter for this model is shown in Figure 

5.44. 
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5.5 Comment and highlight the feasibility of the proposed method 

There is a significant amount of noise present in the images captured in the open 

parking space. This noise includes parking spaces blocked by trees, oil leaks in the 

parking lot, ground fissures on the parking lot, and faded parking lines. Furthermore, 

the lighting conditions in the images are affected by the weather, and at times, the 

parking lot photo may be overexposed due to sunlight. All of these conditions make it 

challenging to detect empty and occupied parking spaces accurately. Fortunately, a 

robust object detection algorithm called YOLOv4 is employed here, which has the 

capability to handle all of these conditions with minimal time and resource costs. 

YOLOv4 utilises CNN for object detection, and it has high object detection speed and 

accuracy, resulting in fewer background faults. 

Next, SVR is used to develop the parking vacancy prediction model. The 

expected output of the prediction model is the number of empty parking spaces. This 

prediction output is created by anticipating the input features collected from the parking 

lot, which include the total parking space, date and time and the weather type. SVR is 

well-suited for nonlinear and time series problems, making it a good choice for 

developing the parking vacancy prediction model. 

Additionally, implementing a user-friendly GUI for the parking vacancy 

prediction model would increase accessibility for users without programming 

knowledge. This could potentially expand the usage of the model to a wider audience. 

The PySimpleGUI framework, which is known for its simplicity and cost-efficiency, 

was chosen for the development of the GUI. 

5.6 Concluding Remark 

A hybrid prediction model is developed using the YOLOv4 framework and SVR 

ML algorithm. In other words, this model is formed by a custom YOLOv4 object model 

and an SVR model. This hybrid prediction model only requires the input dataset in an 

image format, making the data collection process much easier in real life. The system 

requirements to develop the model include a laptop as the hardware, software such as 

Jupyter Notebook in the Anaconda environment, and main software libraries such as 
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scikit-learn, Darknet YOLOv4, and PySimpleGUI. Four datasets from Brazil, Taiwan, 

Italy, and China are used in this study.     
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CHAPTER 6 SYSTEM EVALUATION AND DISCUSSIN 
 

6.1 Model Testing and Performance Metrics (YOLOv4 model) 

 

The performance and work results of the YOLOv4 model 

 

Figure 6.1: Training result 

● Max batch is 9000 

● Total loss is 2.402813 

● The average loss is 3.582072 

● Currently learning rate on 6000 iterations is 0.000001 

● Time spends on process the batch 12.96769 seconds 

● Number of images utilised overall during training 576000 images 

● Time estimates to complete the max batch or iteration 0.257028 hours 

Based on the training results depicted in Figure 6.1, it can be observed that the 

YOLOv4 model was trained with 9000 iterations or max batch, resulting in a total loss 

of 2.402813 and an average loss of 3.582072. According to [47], training should 

continue until the average loss value falls below 0.3, as this parameter is a crucial 

indicator of the model's performance. A lower average loss value indicates a better-

performing model, although it should not fall below 0.05. However, it is noteworthy 

that the average loss for this custom YOLOv4 model increased from 2.947 at 6000 

iterations to 3.582 at 9000 iterations. This suggests that the standard loss value may not 

be applicable in this case, as the dataset used in this study has different characteristics 

when compared to the dataset used in this study [47]. 

 Furthermore, at the beginning of training the learning rate is set to 0.001, after 

training for 6000 iterations it decreases to 0.00001, then at 9000 iterations it decreases 

to 0.000001. Learning rate decay was used and it helped with both optimization and 

generalization during training. The batch processing time was 12.96769 seconds, and a 
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total of 576000 images were used overall during training. Finally, the estimated time 

remaining to complete the maximum batch or iteration in training is 0.257028 hours. 

 

Figure 6.2: Training result with mAP@IoU=0.5 

 

Figure 6.3: Training result with mAP@IoU=0.75 

Precision, recall, and F1 score are presented in Figure 6.2 and Figure 6.3, and 

these values were computed using the final weights. mAP is then calculated using IoU. 

IoU measures the overlap between the predicted and ground truth bounding boxes, and 

its value ranges from 0 to 1. For this model, the average IoU values for 0.5 and 0.75 

IoU thresh are both 94.51%. Furthermore, the model achieved a high level of accuracy 

in detecting the intended targets, as evidenced by the mAP values of 99.98% and 99.97% 

at 50% and 75%, respectively, in the test dataset. 
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Figure 6.4: Loss and mAP chart 

In addition, the loss and mAP chart presented in Figure 6.4 only covers the range 

from 4800 to 9000 iterations. This is because the last training was continued from 4800 

iterations, and several loss and mAP charts from each continuous training were 

overlapped to show the overall loss during training. Due to usage limits on Google 

Colab, the training process for the custom model had to be segmented, and the loss and 

mAP chart before 4800 iterations were not included. Figure 6.4 indicates that the loss 

starts to increase after 9000 iterations, suggesting that the training should be stopped, 

or the learning rate should be lowered. Upon completion of the 9000 iterations, a 

"bad.list" file was generated to store any label files that may have issues. 
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(i)        (ii)a    (ii)b 

Figure 6.5: PKLot- PUCPR (i) test data, (ii) prediction result on the test data with (a) 0.2, (b) 0.7 thresh 

value 

     

(i)     (ii)a   (ii)b 

Figure 6.6: CARPK (i) test data, (ii) prediction result on the test data with (a) 0.2, (b) 0.7 thresh value 

   

(i)     (ii)a   (ii)b 
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Figure 6.7: CNRPark+EXT (i) test data, (ii) prediction result on the test data with (a) 0.2, (b) 0.7 thresh 

value 

   

(i)      (ii)a    (ii)b 

Figure 6.8: Aerial View of Parking Lot (i) test data, (ii) prediction result on the test data with (a) 0.2, 

(b) 0.7 thresh value 

The trained custom YOLOv4 model was evaluated on four unseen datasets, 

namely PK Lot, CARPK, CNRPark+EXT, and Aerial View of Parking Lot. The first 

test was conducted on the PK Lot sample dataset using a thresh value of 0.2 and 0.7. 

The results are presented in Figure 6.5, which show that the model was able to detect 

all the parking spaces in the centre area only, regardless of the thresh value used. This 

issue is due to the limited number of labelled parking spaces in the centre area of the 

PK Lot dataset. Additionally, the model performed well and achieved a perfect result 

on this dataset. With the sign of the loss is increasing when the training approach 9000 

iteration, it indicating the model has potential for overfitting. 

The second test was conducted on the CARPK sample dataset using the same 

threshold value as before. The results are presented in Figure 6.6. At a threshold value 

of 0.2, the model performed poorly, wrongly identifying more than half of the occupied 

parking spaces as vacant and mistaking the pavement markings on the road as empty 

parking spaces. With a threshold value of 0.7, the model performed slightly better, with 

every bounding box correctly positioned and unaffected by the pavement markings on 

the road. However, the model still failed to correctly identify objects, as it identified 

more than half of the occupied parking spaces as vacant. This can be explained by the 

fact that this dataset contains incorrect pavement markings, which can mislead the 

model into mistaking them for parking lines and output a poor result. Moreover, the 

overfitting issue with this model can explain why it failed to correctly identify objects. 
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The third test was conducted on the CNRPark+EXT sample dataset using the 

same threshold value as before. The results are presented in Figure 6.7. However, at a 

threshold value of 0.2, the model incorrectly identified the car top as an empty parking 

space. Even with a threshold value of 0.7, the model still could not accurately identify 

the occupied parking spaces in the sample dataset. These prediction results are poor as 

the model could not correctly identify the objects and misidentified the car top as an 

empty parking space. It can be concluded that this dataset is not suitable for the model 

as the images only show a single straight line under the car, making it difficult for both 

humans and machines to identify it as a parking space. 

During the last test on the Aerial View of Parking Lot sample dataset using the 

same threshold value as before, there was an issue with overlapping anticipated and 

true bounding boxes at a threshold value of 0.2, highlighting the importance of IoU for 

this testing. The results are presented in Figure 6.8. At a threshold value of 0.7, the 

overlapping issue did not occur, but the results still showed that the model needs further 

improvement, as it was unable to identify every object in the image and misidentified a 

few occupied parking spots as empty, possibly due to the lighting and colour of the car 

tops being similar to that of the road, especially since it was a cloudy day with limited 

sunlight. 

6.2 Model Testing and Performance Metrics (Prediction model) 

 

The performance and work results of the prediction model 

 

Figure 6.9: The processed test set x 

pk_filter_large.Empty.mean() 

 

Figure 6.10: Mean of empty features after filer with total parking equal 100 

The validation set's weather column is taken out and applied using one-hot 

encoding rather than the standard label using the code (pre-processing validation set) 
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in appendix. This is due to the data itself has various scales, and the numerical data in 

the dataset needs to be standardised. Finally, create a single NumPy array by combining 

the numerical and weather sets to predict using a ML model. In Figure 6.9, shows the 

shape of validation set after pre-processing. The code (pre-processing test set) in 

appendix is executed afterward, which functions basically as the validation set. 

Both the x validation and test sets contain 671 rows of data after pre-processing 

(only includes total parking equal to 100) and 11 columns (after applying one-hot 

encoding to the weather column). The mean of empty features after filter with total 

parking equal to 100 is 57.027 and it used to calculate the accuracy of the model using 

RMSE. 

Then it is ready to perform testing on the created model with the validation and 

test sets. The function code (shows the evaluation result on train, validation and test 

sets) is utilised to print the evaluation result on train, validation and test sets by input 

the ML model. 

show_3result(regr,'regr')  

 

Figure 6.11: Performance testing on the SVR model 

Perform testing using the validation and test sets on the SVR model by using 

the function code (shows the evaluation result on train, validation and test sets) in 

appendix. The performance outputs for the validation and test sets are shown in Figure 

6.11. For validation set, MSE result is 737.82, RMSE result is 27.16, MAE result is 

21.23 and MAPE result is 2.9220e+15. For test set, MSE result is 735.58, RMSE result 

is 27.12, MAE result is 21.04 and MAPE result is 1.5783e+15. 

show_3result(lin_reg,'lin_reg') 
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Figure 6.12: Performance testing on the LR model 

Perform testing using the validation and test sets on the LR model by using the 

function code (shows the evaluation result on train, validation and test sets) in appendix. 

The performance outputs for the validation and test sets are shown in Figure 6.12. For 

validation set, MSE result is 859.48, RMSE result is 29.32, MAE result is 23.63 and 

MAPE result is 2.2345e+15. For test set, MSE result is 851.11, RMSE result is 29.17, 

MAE result is 23.32 and MAPE result is 1.1776e+15. 

show_3result(tree_reg,'tree_reg') 

 

Figure 6.13: Performance testing on the decision tree regression model 

Perform testing using the validation and test sets on the decision tree regression 

model by using the function code (shows the evaluation result on train, validation and 

test sets) in appendix. The performance outputs for the validation and test sets are 

shown in Figure 6.13. For validation set, MSE result is 20.34, RMSE result is 4.51, 

MAE result is 1.81 and MAPE result is 2.0135e+13. For test set, MSE result is 15.72, 

RMSE result is 3.96, MAE result is 1.79 and MAPE result is 2.2149e+14. 

Following the SVR model is evaluated after performing on four different types 

of hyperparameter tuning techniques. The function code (shows the evaluation result 

on train, validation and test sets) is utilised to print the evaluation result on train, 
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validation and test sets by inputting each of the SVR model after performing 

hyperparameter tuning. 

 

Figure 6.14: Performance testing on the fine-tuned SVR model, obtained using grid search 

The performance of the fine-tuned SVR model, obtained using grid search, was 

evaluated on the training, validation, and test sets using the function code (shows the 

evaluation result on train, validation and test sets) provided in the appendix. The 

resulting performance outputs for the three sets are summarized in Figure 6.14. The 

MSE for the training set was found to be 99.47, while the MSE for the validation and 

test sets are 148.14 and 141.53, respectively. Similarly, the RMSE for the training, 

validation, and test sets were found to be 9.97, 12.17, and 11.90, respectively, while the 

MAE results were 7.31, 8.78, and 8.85, respectively. Finally, the MAPE for the training 

set was 4.852E+14, while the MAPE for the validation and test sets are 8.5308E+14 

and 4.7698E+14, respectively. 

 

Figure 6.15: Performance testing on the fine-tuned SVR model, obtained using random search 
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The performance of the fine-tuned SVR model, obtained using random search, 

was evaluated on the training, validation, and test sets using the function code (shows 

the evaluation result on train, validation and test sets) provided in the appendix. The 

resulting performance outputs for the three sets are summarized in Figure 6.15. The 

MSE for the training set was found to be 136.32, while the MSE for the validation and 

test sets are 179.50 and 179.81, respectively. Similarly, the RMSE for the training, 

validation, and test sets were found to be 11.68, 13.40, and 13.41, respectively, while 

the MAE results were 8.67, 10.03, and 10.09, respectively. Finally, the MAPE for the 

training set was 4.3559E+14, while the MAPE for the validation and test sets are 

6.2625E+14 and 4.6148E+14, respectively. 

 

Figure 6.16: Performance testing on the fine-tuned SVR model, obtained using random search plus 

The performance of the fine-tuned SVR model, obtained using random search 

plus, was evaluated on the training, validation, and test sets using the function code 

(shows the evaluation result on train, validation and test sets) provided in the appendix. 

The resulting performance outputs for the three sets are summarized in Figure 6.16. The 

MSE for the training set was found to be 134.49, while the MSE for the validation and 

test sets are 179.97 and 175.59, respectively. Similarly, the RMSE for the training, 

validation, and test sets were found to be 11.60, 13.42, and 13.25, respectively, while 

the MAE results were 8.14, 9.69, and 9.61, respectively. Finally, the MAPE for the 

training set was 4.0003E+14, while the MAPE for the validation and test sets are 

5.7626E+14 and 3.9977E+14, respectively. 
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Figure 6.17: Performance testing on the fine-tuned SVR model, obtained using parameter optimization 

loop 

The performance of the fine-tuned SVR model, obtained using parameter 

optimization loop, was evaluated on the training, validation, and test sets using the 

function code (shows the evaluation result on train, validation and test sets) provided 

in the appendix. The resulting performance outputs for the three sets are summarized 

in Figure 6.17. The MSE for the training set was found to be 136.47, while the MSE 

for the validation and test sets are 179.72 and 180.00, respectively. Similarly, the RMSE 

for the training, validation, and test sets were found to be 11.68, 13.41, and 13.42, 

respectively, while the MAE results were 8.71, 10.06, and 10.11, respectively. Finally, 

the MAPE for the training set was 4.4265E+14, while the MAPE for the validation and 

test sets are 6.3624E+14 and 4.6793E+14, respectively. 

 From the result discussion above, the summary table summarizes all the results is made, 

and this can be seen in following Table 6.1-2. While Table 6.3 show the two of the 

parameter grid in details.  
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Table 6.1: Prediction result 

Result/Models 
Support vector 

regression (SVR) 
Linear regression (LR) 

Decision tree 

regression 

Prediction Result- Training set 

MSE 657.01 795.06 0.0062 

RMSE 25.63 28.20 0.0786 

MAE 19.35 22.46 0.0063 

MAPE 2.3085E+15 1.6063E+15 1.85E-04 

5-fold CV 

Mean of CV 26.60 28.26 5.24 

Standard 

deviation of CV 
1.04 0.63 0.52 

Validation set 

MSE 737.82 859.48 20.3422 

RMSE 27.16 29.32 4.5102 

MAE 21.23 23.63 1.8182 

MAPE 2.922E+15 2.2345E+15 2.0135E+13 

Test set 

MSE 735.58 851.11 15.7242 

RMSE 27.12 29.17 3.9654 

MAE 21.04 23.32 1.7923 

MAPE 1.5783E+15 1.1776E+15 2.2149E+14 
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Table 6.2: Prediction result (after fine-tuning) 

Result/SVR Model Grid search Random search 
Random search 

plus 

Parameter 

optimization loop 

Prediction Result- Training set 

MSE 99.47 136.32 134.49 136.47 

RMSE 9.97 11.68 11.60 11.68 

MAE 7.31 8.67 8.14 8.71 

MAPE 4.852E+14 4.3559E+14 4.0003E+14 4.4265E+14 

Validation set 

MSE 148.14 179.50 179.97 179.72 

RMSE 12.17 13.40 13.42 13.41 

MAE 8.78 10.03 9.69 10.06 

MAPE 8.5308E+14 6.2625E+14 5.7626E+14 6.3624E+14 

Test set 

MSE 141.53 179.81 175.59 180.00 

RMSE 11.90 13.41 13.25 13.42 

MAE 8.85 10.09 9.61 10.11 

MAPE 4.7698E+14 4.6148E+14 3.9977E+14 4.6793E+14 

Number of Loops - - 
20 times Random 

search 
100 times 

Time took (minutes):  106.03 3.60 58.66 2.34 

Parameter Grid: param_grid_svr2 param_random_svr param_random_svr param_random_svr 

Best Parameters: 

{'kernel': 'rbf', 

'gamma': 'scale',  

'epsilon': 7, 

'degree': 1, 'C': 

10000} 

{'kernel': 'rbf', 

'gamma': 'scale', 

'epsilon': 7.3147, 

'degree': 1, 'C': 

982.1243} 

{'kernel': 'rbf', 

'gamma': 'scale', 

'epsilon': 5.6508, 'C': 

982.1243} 

{'kernel': 'rbf', 

'gamma': 'scale', 

'epsilon': 7.4406, 'C': 

982.1243} 
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Table 6.3: Parameter Grid  

param_grid_svr2 param_random_svr 

{'C': 

[6000,7000,8000,9000,10000],  

'gamma': ['scale', 'auto'],  

'degree':[1,3],  

 'kernel': ['rbf','poly'], 

'epsilon':[6,7,8]} 

{'C': uniform(loc=10, 

scale=990).rvs(20),  

'gamma': ['scale', 'auto'], 

'degree':[1,3,5],  

'kernel': ['rbf','poly'],  

'epsilon': uniform(loc=5, 

scale=5).rvs(10)} 



CHAPTER 6 
 

 

85 
Bachelor of Information Systems (Honours) Information Systems Engineering 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

According to Table 6.1, the decision tree regression models have an overfitting 

issue because the MSE and RMSE are so low, with values of 0.0062 and 0.0786 It 

might be because this ML algorithm is too complex for the dataset. On the other hand, 

the LR model also has a bit underfitting problem as the MSE and RMSE are slightly 

higher than the SVR model, which is 795.06 and 28.20, respectively. This can be 

explained by the fact that LR is a much simpler ML algorithm than SVR. The SVR 

delivers the best result among the three models, but it still seems to have an underfitting 

issue. An RMSE of SVR, which is 25.63 (25.63/57.027=44.96%), is not very pleasant 

compared to the average “empty” value of  7.027. 

Although the model created with decision tree regression has the most petite 

MAE and MAPE. Still, it is not the best model because these values are too small, and 

obviously, there is an overfitting issue. Then, the MAP and MAPE of the SVR model 

are 19.35 and 2.3085e+15, respectively. In this case, the MAPE is larger than 1 due to 

the fact that the y_true values are very close to or equal to zero. Therefore, the MAPE 

is less significant in the model evaluation. The MAP of the SVR model is slightly lower 

than that of the LR model. Hence, SVR is more considerable than the other two 

algorithms. The standard value of MAPE should be 25% or lower, and the MAPE of 

the decision tree regression model achieves this with a value of 0.018%, but the result 

is too promising and might lead to model overfitting [49]. 

Table 6.1 shows a more accurate RMSE and standard deviation of RMSE for 

every model after applying the 5-fold cross-validation score. First, convert all the 

negative mean square errors that output as the result of a 5-fold cross-validation score 

to RMSE, then the mean function is applied, and the calculated value (mean of RMSE) 

is a more accurate RMSE. A more accurate RMSE for SVR, LR, and decision tree 

regression are 26.6, 28.26, and 5.24, respectively.  

After evaluating all the models on unseen data using validation and test sets, the 

SVR model has a slight overfitting issue (MSE of the validation set is 2.24 lower than 

the MSE of the test set), but it still performs the best among the three models, as the 

MSEs are both the smallest, with values of 737.82 and 735.58, respectively. 

Subsequently, the LR model has a bit of an overfitting issue too, as the MSE on the 

validation set slightly decreases to 8.38 when compared to the MSE on the test set. Next, 
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decision tree regression is overfitting, as the MSE increases significantly (from 0.0062 

to 20.34) when testing with the validation set, and the MSE of the test set is 4.61 lower 

than the MSE of the validation set. The changes is significant in decision tree regression 

when comparing the changes in the result using a ratio. 

Since SVR model perform the best among the three ML algorithms, SVR model 

is being selected to fine-tuning to find the best hyperparameter. Four fine tuning 

technique is applied. Two different parameter grid is utilised as shown in Table 6.3. 

The prediction results of the fine-tuned SVR models are presented in Table 6.2. 

The SVR model obtained through grid search exhibits an overfitting issue as the 

validation set MSE is 6.61 lower than the test set MSE, despite having the lowest errors 

among the four models. On the other hand, the SVR model obtained through random 

search has a training MSE of 136.32, a validation MSE of 179.50, and a test MSE of 

179.81, indicating that it is a good model with no overfitting or underfitting issues. 

However, the SVR model obtained through random search plus also exhibits overfitting, 

with a validation MSE decrement of 4.62 when compared to the test MSE. Finally, the 

SVR model obtained through parameter optimization loop yields similar results to 

random search, albeit with slightly higher errors on the training, validation, and test sets. 

Based on the results, it can be concluded that the fine-tuned SVR model 

obtained using random search is the most suitable model for this dataset. This model 

has a good balance between training, validation, and test errors, indicating that it is not 

overfitting or underfitting. In contrast, the other models either have overfitting or 

underfitting issues, which may impact their performance on new, unseen data. 

Therefore, the fine-tuned SVR model obtained using random search is the most 

appropriate model for this dataset. 

 

Figure 6.18: Save the fine-tuned SVR model using random search as sav file 
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Furthermore, the best weight obtained from the fine-tuned SVR model using 

random search (Figure 6.18) is being utilized for the "Predict Open Space Parking 

Vacancies" GUI, which is developed using PySimpleGUI. 

 

Figure 6.19: Parking Vacancy Prediction Model-GUI 

The initial version of the parking vacancy prediction model GUI requires three 

inputs from the user: weather type, date, and time (Figure 6.19). As the SVR model was 

developed using only the PK Lots dataset, the current version of the model can only 

make predictions for PK Lots. Once the user has entered the date and time in the correct 

format and selected the current weather, they can click the "Predict" button to obtain 

the parking vacancy prediction based on their input. The "Clear" button can be used to 

clear all inputs, including weather, date, time, and prediction output. To exit the system, 

the user can click the "Exit" button. 

The model is limited to predicting dates within the monthly range of July to 

December every year, as it was developed using a dataset collected only from 

September to November. To address this limitation, the dataset used to build the SVR 

model should include data from every month of the year. This will ensure that the model 

can make accurate predictions throughout the year. Based on the current dataset, the 

model has shown promising results for predicting dates from August until November 

each year.  
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6.3 Project Challenges  

Testing the YOLOv4 model in this project was a frustrating experience as the 

software used for performing training and testing on the model was time-consuming. 

In the current year, Google Colab's usage limit has decreased to 5-7 hours per day, with 

a cooldown period of 12-16 hours. As a result, the actual time spent on fine-tuning and 

testing in this research was almost double the expected time. 

Performing hyperparameter tuning required significant CPU usage. To accelerate 

the test speed, a PC in the FYP lab is being utilised. As testing various parameter 

combinations took considerable time, a laptop was utilized to remotely control the lab 

PC during working days. However, the lab PC unexpectedly shut down twice, resulting 

in the loss of project software, test records, and important data. Although some critical 

tests were saved on the drive, most of the data was lost. Resulting in spending nearly 

three extra hours to reinstall necessary software and reconfigure the environment.  

6.4 Objective Evaluation  

The trained custom YOLOv4 model has demonstrated its ability to accurately 

detect occupied and vacant parking spaces, even in the presence of various types of 

noise, including obstacles, weather conditions, road conditions, and lighting conditions, 

as evidenced by its high accuracy on the PK Lots sample dataset. However, when tested 

on three other datasets, the results were poor, likely due to the pavement markings on 

the road being too similar to the boundary lines around the parking spaces. A significant 

point to consider is that these datasets were collected from different countries, with 

varying parking lot styles and car designs, which may have contributed to the model's 

decreased accuracy. Furthermore, this study did not consider nearby parking lots as part 

of the model's training data. 

Next, an SVR model is developed to predict current and future empty parking 

spaces for the parking lot dataset that the model is trained with. This model takes into 

account the weather conditions of the day, and weather conditions during the desired 

prediction date will be requested as one of the input features. Additionally, an 

interactive GUI for the parking prediction model is created with PySimpleGUI, which 

allows individuals without programming experience to predict the availability of empty 

parking spaces using the SVR model. However, the current version of the prediction 
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model is limited to making predictions within the months from July to December, as 

the dataset used to train the model only covers the period from September 2012 to 

November 2012 (3 months only). 

Overall, the hybrid prediction model is fully developed with the ability to predict 

empty parking space using an interactive GUI. The model includes a custom YOLOv4 

object detection model and an SVR ML algorithm, which together enable accurate 

detection of occupied and vacant parking spaces. The model also takes into account 

weather conditions as an input feature for prediction. While the current version of the 

model is limited to making predictions within the months of July to December, it 

represents a promising development in the field of parking prediction models. 

6.5 Concluding Remark 

In this chapter, the performance of the hybrid prediction model, which consists 

of a custom YOLOv4 object detection model and an SVR model, is evaluated. The 

testing and evaluation of both the YOLOv4 object detection model and the SVR model 

are discussed in detail. Additionally, the challenges encountered during the fine-tuning 

process for both models are documented. Finally, the objective of this study is evaluated 

based on the performance and improvement of the hybrid prediction model.  
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CHAPTER 7 CONCLUSION AND 

RECOMMENDATION 

7.1 Conclusion 

In conclusion, this project aimed to overcome the issue of vehicle parking by 

developing a hybrid open parking space prediction model using ML and YOLOv4 

object detector. The purpose of the model was to predict available parking space, which 

would maximize the utilization of parking space and reduce idling, ultimately having a 

positive impact on the environment. Through the literature review, it was found that 

SVR and YOLO object detection algorithms built with CNN were the most suitable 

algorithms for developing the prediction model. SVR is capable of handling nonlinear 

and time series problems effectively, while YOLO is known for its ability to perform 

real-time object detection with high accuracy. As a result, SVR was used to develop the 

parking vacancy prediction model, and YOLO was chosen to develop the object 

detection model. 

During the YOLOv4 training, various environmental factors such as weather, 

road condition, and obstacles like trees or lamp posts were included in the training 

dataset. The custom YOLOv4 model was developed and tested on unseen data, and it 

was able to generate a label text file that was used as the dataset in developing the ML 

model. Several configurations were tested, and it was found that the first version of the 

custom YOLOv4 model showed the most promising performance. The training 

continued until 9000 iterations, where the model showed signs of overfitting. However, 

when tested on three other datasets, the model did not perform well, likely due to 

differences in the datasets used to train the model. Additionally, a new type of noise 

was identified, where pavement markings on the road were mistakenly identified by the 

model as empty parking spaces. As a result, future improvements for this model could 

include training with additional datasets specifically for detecting parking spaces with 

a reasonable noise included and testing on different parameter combinations in the 

configuration file. 

           Next, the parking vacancy prediction model was developed using SVR. The 

dataset used to train the model included weather conditions, but the performance 

analysis revealed that this feature had little impact on the number of empty parking 

spaces. This issue was attributed to the dataset characteristics. Additionally, two other 
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ML algorithms were compared to the SVR model, and the results indicated that the 

SVR model performed better. The SVR model was then fine-tuned using four 

hyperparameter tuning techniques, and the model fine-tuned with the random search 

method produced the most promising results, with the least overfitting issue and a lower 

error rate than the other three techniques. Ultimately, the SVR model fine-tuned with 

the random search method was integrated into the parking vacancy prediction GUI 

model. 

However, the dataset used to train the SVR model is limited from September 

2012 to November 2012 because only the dataset with large parking spaces is used, 

thereby the SVR model could not make a prediction for the month of January till June 

for every year. Next, an idea to include nearby parking conditions as a feature in the 

SVR model is not feasible for predicting parking vacancies because the prediction 

model is applied using an ML algorithm. 

Finally, an interactive GUI has been developed using PySimpleGUI to enable 

users, particularly those without programming experience, to test the prediction model 

and predict the current and future availability of open parking spaces. The GUI has been 

designed with user-friendliness in mind, allowing non-technical users to easily access 

and utilize the prediction model. 

7.2 Recommendation 

It is recommended to increase the dataset used to train the custom YOLOv4 

model by including all available datasets in the future. For object detection research, 

other research datasets typically have similar features and styles, with a single training 

image having only a few or a dozen objects. In contrast, the dataset used in this project 

contains a total of 100 small objects for most images. Therefore, it is important to 

consider the characteristics and features of the dataset used, as it has a significant impact 

on the model accuracy. Next, it is essential to increase the standards for dataset selection 

and cleaning processes to ensure that the dataset used is free from errors and contains 

characteristics suitable for the model. Otherwise, the ML model may have an 

underfitting issue, leading to lower performance. Using inadequate or unsuitable data 

can result in lower model performance, making it crucial to consider dataset quality and 

suitability for the model. 
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 For the custom YOLOv4 model, further testing could be conducted on different 

parameter combinations in the configuration file. However, given the time investment 

required, such improvements may not yield significant results. Therefore, it would be 

more practical to select a sufficient amount of diverse and suitable datasets. 

Additionally, future work could involve including datasets with different road 

conditions, such as painted parking spaces, incorrect pavement markings, faded 

markings, and old markings. Furthermore, developing the object detection model with 

a higher version of the YOLO framework could achieve a more precise and accurate 

results. 

Lastly, the SVR model can be improved by revising it to include more input 

features such as the nearby parking conditions and the occurrence of public holidays on 

the day. The nearby parking condition feature can be implemented by considering 

driver parking behavior, their priorities or preferred parking spaces in the parking lot 

using a rating scale. Additionally, a bigger dataset that includes data from each month 

of the year should be prioritized as the current model is unable to accurately predict 

parking vacancies in the first half of the year. Given the expected increase in the number 

of input features, it is recommended that various types of ANN algorithms be tested for 

developing the prediction model. ANNs are a suitable option when dealing with high 

complexity, similar to SVR. In particular, ANNs have been found to be effective for 

handling large numbers of input features, making them a viable alternative to SVR.
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YOLOv4 configuration files 

Content for the data file named obj (obj.data): 

classes = 2 

train = data/train.txt 

valid = data/test.txt 

names = data/obj.names 

backup = /mydrive/yolov4/training 

 

Content for the names file named obj (obj.names):  

space-empty 

space-occupied 

 
Content for the names file named process (process.py):  

import glob, os 

# Current directory 

current_dir = os.path.dirname(os.path.abspath(__file__)) 

current_dir = 'data/obj' 

 

# Percentage of images to be used for the test set 

percentage_test = 10; 

 

# Create and/or truncate train.txt and test.txt 

file_train = open('data/train.txt', 'w') 

file_test = open('data/test.txt', 'w') 

 

# Populate train.txt and test.txt 

counter = 1 

index_test = round(100 / percentage_test) 

for pathAndFilename in glob.iglob(os.path.join(current_dir, "*.jpg")): 

title, ext = os.path.splitext(os.path.basename(pathAndFilename)) 

 

    if counter == index_test: 

        counter = 1 

        file_test.write("data/obj" + "/" + title + '.jpg' + "\n") 

    else: 

        file_train.write("data/obj" + "/" + title + '.jpg' + "\n") 

        counter = counter + 1 

 

Code used to connect to Google Drive: 

#mount drive 

%cd .. 

from google.colab import drive 

drive.mount('/content/gdrive') 

 

# Creating a symbolic link allows accessing /content/gdrive/My\ Drive/ through the shorter 

path /mydrive. 
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!ln -s /content/gdrive/My\ Drive/ /mydrive      

      

#Navigate to /mydrive/yolov4 

%cd /mydrive/yolov4 

 

Code used to download the weights file for the YOLOv4 pre-trained model: 

!wget 

https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.

conv.137 

 

YOLOv4 test with “ignore_thresh" value of 0.9 and "iou_normalizer" value of 0.5: 

 

 

Prediction model preprocessing (text label file to CSV file) 

Code that read the text files: 

#store parking datetime in list according to weather status 

cloudy=[] 

rainy=[] 

sunny=[] 

 

with open('C:\\Users\\weiju\\A parking data\\sample\\cloudy.txt') as f: 

    Lines = f.readlines() 

    for line in Lines: 

        cloudy.append(line.strip()) 

f.close() 

with open('C:\\Users\\weiju\\A parking data\\sample\\rainy.txt') as f: 

    Lines = f.readlines() 

    for line in Lines: 

        rainy.append(line.strip()) 
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f.close() 

with open('C:\\Users\\weiju\\A parking data\\sample\\sunny.txt') as f: 

    Lines = f.readlines() 

    for line in Lines: 

        sunny.append(line.strip()) 

f.close() 

 

Code that creating a new data frame to store the data(parking features) extracted from 

all the files: 

#create dataframe to store parking features 

parkingDataset = ({ 

    'Location':[], 

    'Occupied' :[], 

    'Total parking':[], 

    'Date':[], 

    'Time':[], 

    'Weather':[] 

               }) 

df = pd.DataFrame(parkingDataset) 

print(df) 

 

Code that prints out dataframe: 

print(df) 

 

Code that reading label XML file: 

#store labelfile(xml) that are null in the dataset(original) 

loss=[] 

with open('C:\\Users\\weiju\\A parking data\\sample\\output.txt') as f: 

    Lines = f.readlines() 

    for line in Lines: 

        loss.append(line.strip()) 

f.close() 

 

#save label file(xml) information (datetime, occupancy and empty parking) to 

dictonary(my_dict) 

my_dict={ } 

for filename in loss: 

    tempFor1=[] #occupy 

    temp=[] #empty 

    file = minidom.parse(os.path.join("C:\\Users\\weiju\\A parking 

data\\missing_xml\\",filename)) 

    models = file.getElementsByTagName('space') 

    for elem in models: 

        word=elem.attributes['occupied'].value 

        if word=='1': 

            tempFor1.append(word) 

        else: 

            temp.append(word) 
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    my_dict[os.path.basename(filename).split('.xml')[0]] = 

[len(tempFor1),len(temp)+len(tempFor1)] 

print(len(my_dict)) 

 

Code that appends data into data frame: 

#retrive data from every labelled file and store it according to pre-create dataframe 

path =r"C:/Users/weiju/A parking data/PKLot/PKLot_dataset/" 

for filename in glob.glob(os.path.join(path, '*.txt')): 

    with open(os.path.join(os.getcwd(), filename), 'r') as f: # open in readonly mode 

        fileName=os.path.basename(filename).split('_jpg')[0] 

        location='PKlots' 

        date= datetime.strptime(fileName[:10],"%Y-%m-%d").strftime('%d/%m/%Y') 

        time= datetime.strptime(fileName[11:], '%H_%M_%S').time() 

        temp=fileName.strip() 

 

        if fileName in cloudy: 

            weather=0 

        elif fileName in rainy: 

            weather=1 

        elif fileName in sunny: 

            weather=2 

        else : 

            weather=3 

 

        temp=[]#for empty parking 

        tempFor1=[]#for occupied parking 

        for line in f: 

            words = line.split() 

            if words[0]=='1': 

                tempFor1.append(words[0]) 

            else: 

                temp.append(words[0]) 

        empty=len(temp) 

        occupied=len(tempFor1) 

        totalParking=len(tempFor1)+len(temp) 

 

        if fileName in my_dict.keys(): 

            value=my_dict[fileName] 

            occupied=value[0] 

            totalParking=value[1] 

        new_row = {'Location':location, 'Occupied':occupied, 'Total parking':totalParking, 

'Date':date,'Time':time,'Weather':weather} 

        df = df.append(new_row, ignore_index=True) 

 

Code that saves data frame as csv: 

#save dataframe as csv 

path= 'C:\\Users\\weiju\\A parking data\\' 

df.to_csv(path+'pklot_weatherNcomplete.csv', index=False) 
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Prediction model preprocessing 

Code used to import the needed libraries: 

# import python libraries 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import joblib 

import random 

from datetime import datetime  

from time import time 

from sklearn.pipeline import make_pipeline 

from sklearn.preprocessing import StandardScaler, LabelBinarizer  

from sklearn.metrics import mean_squared_error, mean_absolute_error, 

mean_absolute_percentage_error 

from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, 

StratifiedKFold, cross_val_score 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.linear_model import LinearRegression 

from sklearn.svm import SVR 

from scipy.stats import uniform, randint 

 

Code that used to modify and create features for dataset:  

pk["DateTime"] = pk["Date"] +' '+ pk["Time"] 

#create new columns to store empty space 

pk['Empty'] =  (pk['Total parking'] - pk['Occupied']) 

#drop unneeded attribute- Occupied, location, duplicate data and time 

pk.drop('Location', inplace=True, axis=1) 

pk.drop('Occupied', inplace=True, axis=1) 

pk.drop('Date', inplace=True, axis=1) 

pk.drop('Time', inplace=True, axis=1) 

#convert object to DateTime 

pk['DateTime'] = pd.to_datetime(pk['DateTime'], format = '%d/%m/%Y %H:%M:%S', 

errors = 'coerce') 

#convert float to integer 

pk['Empty'] = pk['Empty'].astype(np.int64) 

pk['Total parking'] = pk['Total parking'].astype(np.int64) 

pk['Weather'] = pk['Weather'].astype(np.int64) 

 

Code that read the dataset into a data frame: 

#read dataset (parking lot dataset with null fixed and weather included) 

pk = pd.read_csv("pklot_weatherNcomplete.csv") 

pk 

 

Code that displays description of all attributes: 

# Quick description all attributes in pk after process  

pk.info() 

 

Code that checks DateTime redundancy: 
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#check redundancy DateTime 

pk['DateTime']. duplicated().value_counts() 

 

Code that check statistics of all numerical attribute: 

# The statistics of all numerical attributes in pk 

pk.describe() 

 

Code that plots the histogram of each numerical attribute: 

# Plot the histogram of each numerical attribute in pk(occupied, total parking, weather and 

DateTime) 

pk.hist(bins=50, figsize=(20,15)) 

plt.show() 

 

Code that display correlation matrix: 

# The correlation matrix of pk 

# no value with nearly to 1 

corr_matrix=pk.corr() 

corr_matrix 

 

Code that counts number for types of weather: 

pk['Weather'].value_counts() 

 

Code that plots graph according to weather types: 

#visualization 

pk_filter_large = pk[(pk['Weather']==0)] 

pk_filter_large.plot(x='DateTime',y='Empty', color='orange') 

plt.title('Cloudy') 

plt.show() 

pk_filter_large = pk[(pk['Weather']==1)] 

pk_filter_large.plot(x='DateTime',y='Empty', color='orange') 

plt.title('Rainy') 

plt.show() 

pk_filter_large = pk[(pk['Weather']==2)] 

pk_filter_large.plot(x='DateTime',y='Empty', color='orange') 

plt.title('Sunny') 

plt.show() 

 

Prediction model training 

Code that perform data pre-processing: 

#load dataset (parking lot dataset with null fixed and weather included) 

pk = pd.read_csv("pklot_weatherNcomplete.csv") 

#combine date and time in single column 

pk["DateTime"] = pk["Date"] +' '+ pk["Time"] 

#convert object to DataTime 

pk['DateTime'] = pd.to_datetime(pk['DateTime'], format = '%d/%m/%Y %H:%M:%S', 

errors = 'coerce') 
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pk['DateTime_year'] = pk['DateTime'].dt.year 

pk['DateTime_month'] = pk['DateTime'].dt.month 

pk['DateTime_week'] = pk['DateTime'].dt.isocalendar().week 

pk['DateTime_day'] = pk['DateTime'].dt.day 

pk['DateTime_hour'] = pk['DateTime'].dt.hour 

pk['DateTime_minute'] = pk['DateTime'].dt.minute 

pk['DateTime_dayofweek'] = pk['DateTime'].dt.dayofweek 

#create new columns to store empty space 

pk['Empty'] =  (pk['Total parking'] - pk['Occupied']) 

#drop unneeded attribute- Occupied, location, duplicate data and time 

pk.drop('Location', inplace=True, axis=1) 

pk.drop('Date', inplace=True, axis=1) 

pk.drop('Time', inplace=True, axis=1) 

pk.drop('DateTime', inplace=True, axis=1) 

pk.drop('Occupied', inplace=True, axis=1) 

#convert float to integer 

pk['Empty'] = pk['Empty'].astype(np.int64) 

pk['Total parking'] = pk['Total parking'].astype(np.int64) 

pk['Weather'] = pk['Weather'].astype(np.int64) 

pk['DateTime_week'] = pk['DateTime_week'].astype(np.int64) 

#filter out parking lot type with the parking space size 

pk_filter_large = pk[(pk['Total parking']==100)] 

pk_filter_large.info() 

 

Code that split dataset and pre-processing: 
# Split the data set into the input matrix and output vector 

X = pk_filter_large.drop('Empty', axis = 1) 

y = pk_filter_large['Empty'] 

 

## Split the dataset into training and testing set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=3) 

X_train,X_val,y_train,y_val=train_test_split(X_train,y_train,test_size=0.15/0.85,random_s

tate=2) 

 

# split the weather columns to be apply one-hot encoding later 

X_train_num = X_train.drop('Weather', axis = 1) 

X_train_weather = X_train['Weather'] 

 

# # Standardize numeric data 

from sklearn.preprocessing import StandardScaler        

scaler = StandardScaler(copy=False) 

scaler.fit(X_train_num) 

X_train_num_tr = scaler.transform(X_train_num) 

 

# One-hot encode weather column 

from sklearn.preprocessing import LabelBinarizer 

lb_encoder = LabelBinarizer() 

lb_encoder.fit(X_train_weather) 

X_train_weather_tr = lb_encoder.transform(X_train_weather) 

 

# combine the transformed numerical and weather set ('Cloudy','Rainy','Sunny') 

X_train_tr = np.hstack([X_train_num_tr, X_train_weather_tr]) 

y_train = y_train.values ; #convert to numpy array 
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y_val = y_val.values  

y_test = y_test.values   

 

Code that shows shape of original dataset (train):  

print('Shape of original dataset, train:', pk.shape) 

print('x: shape=', X_train_tr.shape, 'type=', type(X_train_tr)) 

print('y: shape=', y_train.shape, 'type=', type(y_train)) 

 

Code for “show10results” function  

#show10results function 

def show10results(y_train, y_pred): 

    print('Result for the 10 random samples:') 

    selected = np.random.randint(0, len(y_train), 10) 

    for i in selected: 

        print('actual = {:7.0f} pred ={:7.0f}'.format(y_train[i], y_pred[i])) 

 

Function code of MSE, RMSE, MAE and MAPE: 

# Show result of 10 random samples 

show10results(y_train, y_pred) 

# Show the MSE RMSE MAE and MAPE 

regr_mse = mean_squared_error(y_train , y_pred) 

regr_rmse = np.sqrt(regr_mse) 

final_mae = mean_absolute_error(y_train , y_pred) 

final_mape = mean_absolute_percentage_error(y_train, y_pred) 

print('MSE =', regr_mse) 

print('RMSE =', regr_rmse) 

print('MAE=', final_mae) 

print('MAPE=', final_mape) 

 

Fine tune the prediction model 

Parameter grid named “param_grid_svr2”  

param_grid_svr2 = {'C': [6000,7000,8000,9000,10000],  

                  'degree':[1,3], 

              'gamma': ['scale', 'auto'], 

                  'epsilon':[6,7,8], 

              'kernel': ['rbf','poly']} 

 

Parameter grid named “param_random_svr”  

param_random_svr = {'C': uniform(loc=10, scale=990).rvs(20), 

                  'gamma': ['scale', 'auto'], 

                    'degree':[1,3,5], 

                  'kernel': ['rbf','poly'], 

                  'epsilon': uniform(loc=5, scale=5).rvs(10)} 
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Function code that returns the model after a grid search or random search has been 

performed: 

def perform_search_svr(grid_random, algo, parameter): 

    k = StratifiedKFold(n_splits=5) 

    #identify grid or random search 

    if grid_random=='Grid': 

        search_obj=GridSearchCV(algo, parameter, refit = True, verbose = 3, cv=k) 

    elif grid_random=="Random": 

        search_obj=RandomizedSearchCV(estimator=algo, 

                                       param_distributions=parameter, 

                                       n_iter=100, 

                                       scoring='neg_mean_squared_error', 

                                       cv=k, 

                                       n_jobs=-1 

                                       ) 

    print('Performing ', grid_random,' Search...', end = '') 

    t0 = time() 

    # perform grid search 

    search_obj.fit(X_train_tr, y_train) 

    print('done') 

    print('time took:', time() - t0) 

    return search_obj 

 

Function code that returns the model after a random search plus has been performed: 

def perform_search_randomPlus(parameter): 

    # the number of iterations for random search plus 

    num_iterations = len(parameter['C']) 

    print('Performing Random Search Plus...\nFor',num_iterations, end = ' times......\n') 

    t0 = time() 

    model = SVR() 

    model.fit(X_train_tr, y_train) 

 

    # Evaluate the model's performance on a validation set 

    y_pred = model.predict(X_val_tr) 

    mse = mean_squared_error(y_val, y_pred) 

    best_mse = mse 

    print('\nNo_0 MSE is ',mse) 

     

    for i in range(num_iterations): 

        new_para={ 

            'kernel': parameter['kernel'], 

            'C': (parameter['C'][i], random.choice(parameter['C'])), 

            'gamma': parameter['gamma'], 

            'epsilon': parameter['epsilon'] 

             

        } 

        t1 = time() 

        k = StratifiedKFold(n_splits=5) 

        search_obj=RandomizedSearchCV(estimator=model, 

                                       param_distributions=new_para, 

                                       n_iter=100, 

                                       scoring='neg_mean_squared_error', 
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                                       cv=k, 

                                       n_jobs=-1) 

 

        search_obj.fit(X_train_tr, y_train) 

        y_pred = search_obj.predict(X_val_tr) 

        mse = mean_squared_error(y_val, y_pred) 

        print('No_',i+1,'MSE is ',mse, '  -----time took:', time() - t1) 

         

        if mse < best_mse: 

            best_params = search_obj.best_params_ 

            best_mse = mse 

         

    # Train a final model with the best hyperparameters on the entire training set 

    final_model = SVR(kernel=best_params['kernel'], C=best_params['C'], 

gamma=best_params['gamma'], epsilon=best_params['epsilon']) 

    print('\nBest parameters-->',best_params) 

    print('\nBest MSE-->',best_mse) 

    final_model.fit(X_train_tr, y_train) 

    print('\ndone') 

    print('time took:', time() - t0) 

    return final_model 

 

Function code that returns the model after a parameter optimization loop has been 

performed: 

def perform_search_parameterOpt_loop(iteration, parameter): 

    print('Performing Random Search Plus...\nFor',iteration, end = ' times......\n') 

    t0 = time() 

    model = SVR() 

    model.fit(X_train_tr, y_train) 

 

    # Evaluate the model's performance on a validation set 

    y_pred = model.predict(X_val_tr) 

    mse = mean_squared_error(y_val, y_pred) 

    best_mse = mse 

    print('\nNo_0 MSE is ',mse) 

     

    # Set the number of iterations for random search plus 

    num_iterations = iteration 

     

    for i in range(num_iterations): 

        t1 = time() 

        params = { 

            'kernel': random.choice(parameter['kernel']), 

            'C': random.choice(parameter['C']), 

            'gamma': random.choice(parameter['gamma']), 

            'epsilon': random.choice(parameter['epsilon']) 

        } 

 

        model = SVR(kernel=params['kernel'], C=params['C'], gamma=params['gamma'], 

epsilon=params['epsilon']) 

        model.fit(X_train_tr, y_train) 
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        y_pred = model.predict(X_val_tr) 

        mse = mean_squared_error(y_val, y_pred) 

        print('No_',i+1,'MSE is ',mse,'  -----time took:', time() - t1) 

         

        if mse < best_mse: 

            best_params = params 

            best_mse = mse 

         

    # Train a final model with the best hyperparameters on the entire training set 

    final_model = SVR(kernel=best_params['kernel'], C=best_params['C'], 

gamma=best_params['gamma'], epsilon=best_params['epsilon']) 

    print('\nBest parameters-->',best_params) 

    print('\nBest MSE-->',best_mse) 

    final_model.fit(X_train_tr, y_train) 

    print('\ndone') 

    print('time took:', time() - t0) 

    return final_model 

 

Predicting model performance result 

Code that converts YOLOv4. weight file to PyTorch .pth file: 

from tool import darknet2pytorch 

import torch 

 

# load weights from darknet format 

model = darknet2pytorch.Darknet('cfg/yolov4-custom.cfg', inference=True) 

model.load_weights('yolov4-custom_best.weights') 

 

# save weights to pytorch format 

torch.save(model.state_dict(), 'save/yolov4-pytorch.pth') 

 

# reload weights from pytorch format 

model_pt = darknet2pytorch.Darknet('cfg/yolov4-custom.cfg', inference=True) 

model_pt.load_state_dict(torch.load('save/yolov4-pytorch.pth')) 

 

Code that pre-processing validation set:  

# split the weather columns to be apply one-hot encoding later 

X_val_num = X_val.drop('Weather', axis = 1) 

X_val_weather = X_val['Weather'] 

# # Standardize numeric data 

X_val_num_tr = scaler.transform(X_val_num) 

# One-hot encode weather column 

X_val_weather_tr = lb_encoder.transform(X_val_weather) 

# combine the transformed numerical and weather set ('Cloudy','Rainy','Sunny') 

X_val_tr = np.hstack([X_val_num_tr, X_val_weather_tr]) 

X_val_tr.shape 

 

Code that pre-processing test set:  

# split the weather columns to be apply one-hot encoding later 
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X_test_num = X_test.drop('Weather', axis = 1) 

X_test_weather = X_test['Weather'] 

# # Standardize numeric data 

X_test_num_tr = scaler.transform(X_test_num) 

# One-hot encode weather column 

X_test_weather_tr = lb_encoder.transform(X_test_weather) 

# combine the transformed numerical and weather set ('Cloudy','Rainy','Sunny') 

X_test_tr = np.hstack([X_test_num_tr, X_test_weather_tr]) 

X_test_tr.shape 

 

Function code that shows the evaluation result on train, validation and test sets:  

def show_3result(model,modelName): 

    model_tr_prd=model.predict(X_train_tr) 

    final_mse=mean_squared_error(y_train, model_tr_prd) 

    final_rmse = np.sqrt(final_mse) 

    final_mae = mean_absolute_error(y_train,model_tr_prd) 

    final_mape = mean_absolute_percentage_error(y_train,model_tr_prd) 

    print('<--- ',modelName,' train --->') 

    print('MSE =',final_mse) 

    print('RMSE=', final_rmse) 

    print('MAE =', final_mae) 

    print('MAPE=', "{:.4e}".format(final_mape)) 

 

    model_val_prd=model.predict(X_val_tr) 

    final_mse=mean_squared_error(y_val, model_val_prd) 

    final_rmse = np.sqrt(final_mse) 

    final_mae = mean_absolute_error(y_val,model_val_prd) 

    final_mape = mean_absolute_percentage_error(y_val,model_val_prd) 

    print('\n<--- ',modelName,' validate --->') 

    print('MSE =',final_mse) 

    print('RMSE=', final_rmse) 

    print('MAE =', final_mae) 

    print('MAPE=', "{:.4e}".format(final_mape)) 

 

    model_test_prd=model.predict(X_test_tr) 

    final_mse=mean_squared_error(y_test, model_test_prd) 

    final_rmse = np.sqrt(final_mse) 

    final_mae = mean_absolute_error(y_test,model_test_prd) 

    final_mape = mean_absolute_percentage_error(y_test,model_test_prd) 

    print('\n<--- ',modelName,' test --->') 

    print('MSE =',final_mse) 

    print('RMSE=', final_rmse) 

    print('MAE =', final_mae) 

    print('MAPE=', "{:.4e}".format(final_mape)) 
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FINAL YEAR PROJECT WEEKLY REPORT 

 

FINAL YEAR PROJECT WEEKLY REPORT 
(Project I) 

 

Trimester, Year: T3,Y3 Study week no.: 2 

Student Name & ID: Lee Wei Jun 19ACB03389 

Supervisor: Tseu Kwan Lee 

Project Title: Predicting Open Space Parking Vacancies using Machine 

Learning 

 

 

1. WORK DONE 
[Please write the details of the work done in the last fortnight.] 

 

● Review on FYP1 writing report 

● Reduced plagiarism percentage 

● Finalise figures and equations 
 

 

 

2. WORK TO BE DONE 

 

● Study parameter for YOLOv4 configuration file and SVR algorithm 

● Update command code for YOLOv4 

● Read related article and add to the literature review 

 

 

3. PROBLEMS ENCOUNTERED 

 

● Previous YOLOv4 command code shown error after run 

 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 

A bit late on the work, need to catch up. 

 

 

 

 

_________________________   _________________________ 

       Supervisor’s signature              Student’s signature 
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FINAL YEAR PROJECT WEEKLY REPORT 
(Project I) 

 

Trimester, Year: T3, Y3 Study week no.: 4 

Student Name & ID: Lee Wei Jun 19ACB03389 

Supervisor: Tseu Kwan Lee 

Project Title: Predicting Open Space Parking Vacancies using Machine 

Learning 

 

 

1. WORK DONE 
[Please write the details of the work done in the last fortnight.] 

 

● Finished reading related article and has added in the literature review  

● Code fixed 

● Studied parameter for YOLOv4 configuration file and SVR algorithm 
 

 

 

2. WORK TO BE DONE 

 

● Update report format to FYP2 

● Clean dataset for YOLOv4 

● Start to train YOLOv4 with different parameters 

● Perform fine tuning on SVR model 

● Try and test on new fine tuning 

● Rent PC in FYP lab to perform machine learning training 

 

3. PROBLEMS ENCOUNTERED 

 

● Still a bit confuse about the parameters for YOLOv4 and SVR algorithm 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 

Should start performing fine tuning test on different combination of parameter, 

in order to have a deeper understanding about the parameters 

 

 

 

 

 

_________________________   _________________________ 

       Supervisor’s signature              Student’s signature 
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FINAL YEAR PROJECT WEEKLY REPORT 
(Project I) 

 

Trimester, Year: T3,Y3 Study week no.: 6 

Student Name & ID: Lee Wei Jun 19ACB03389 

Supervisor: Tseu Kwan Lee 

Project Title: Predicting Open Space Parking Vacancies using Machine 

Learning 

 

 

1. WORK DONE 
[Please write the details of the work done in the last fortnight.] 

 

 

● Update report format to FYP2 

● Clean dataset for YOLOv4 

● Trained YOLOv4 on different parameters 

● Perform several fine tuning test on SVR model 

● Rented a PC in FYP lab 
 

 

2. WORK TO BE DONE 

 

● Test more combination of parameters for YOLOv4 

● Test more combination of parameters for SVR model 

● Finalise the new fine tuning technique  

 

 

3. PROBLEMS ENCOUNTERED 

 

● PC in FYP lab shut down for no reasons, need to setup the environment 

again  

● Training custom YOLOv4 using Google Colab is time consuming because 

it has a usage limit with every 5-8 hours of usage, it will follow with 12-16 

hours cool down time 

 

4. SELF EVALUATION OF THE PROGRESS 

 

 

Keep up  

 

 

 

 
 

 

_________________________   _________________________ 

       Supervisor’s signature              Student’s signature 
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Student Name & ID: Lee Wei Jun 19ACB03389 

Supervisor: Tseu Kwan Lee 

Project Title: Predicting Open Space Parking Vacancies using Machine 

Learning 

 

 

1. WORK DONE 
[Please write the details of the work done in the last fortnight.] 

 

 

● Finalise the new fine tuning technique  
 

 

2. WORK TO BE DONE 

 

● Test more combination of parameters for YOLOv4 

● Test more combination of parameters for SVR model 

● Develop a GUI for parking vacancy prediction 

 

3. PROBLEMS ENCOUNTERED 

 

 

● Overfitting issue for SVR model 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 

 

Should be continue on the report.  

 

 

 

 
 

 

_________________________   _________________________ 

       Supervisor’s signature              Student’s signature 

  



APPENDIX 

19 
Bachelor of Information Systems (Honours) Information Systems Engineering 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

FINAL YEAR PROJECT WEEKLY REPORT 
(Project I) 
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Student Name & ID: Lee Wei Jun 19ACB03389 

Supervisor: Tseu Kwan Lee 

Project Title: Predicting Open Space Parking Vacancies using Machine 

Learning 

 

 

1. WORK DONE 
[Please write the details of the work done in the last fortnight.] 

 

 

● Developed a GUI for parking vacancy prediction 

● Finalize the coding for the machine learning  
 

 

2. WORK TO BE DONE 

 

● Test more combination of parameters for YOLOv4 

● Test more combination of parameters for SVR model 

● Continue on report writing 

 

3. PROBLEMS ENCOUNTERED 

 

● Mistake found on the coding for the machine learning 

 

4. SELF EVALUATION OF THE PROGRESS 

 

Should put more effort on report writing as the deadline is coming soon 

 

 

 

      

 

_________________________   _________________________ 

       Supervisor’s signature              Student’s signature 
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1. WORK DONE 
[Please write the details of the work done in the last fortnight.] 

 

● testing more combination of parameters for YOLOv4 

● testing more combination of parameters for SVR model 

 
 

1. WORK TO BE DONE 

 

 

● Evaluate the performance of YOLOv4 and SVR model 

● Continue on report writing 

 

3. PROBLEMS ENCOUNTERED 

 

● Cannot perform remote control for PC in FYP lab for a day because of 

electricity problem in university (lightning strike cause short circuit)  

 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 

Should stop on fine tuning the YOLOv4 and SVR model. Start evaluating the 

test result. 

 

 

 

 

      

 

_________________________   _________________________ 

       Supervisor’s signature              Student’s signature 
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