

PREDICTING OPEN SPACE PARKING VACANCIES USING MACHINE

LEARNING

By

Lee Wei Jun

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION SYSTEMS (HONOURS)

INFORMATION SYSTEMS ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2023

ii

REPORT STATUS DECLARATION FORM

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: _Predicting Open Space Parking Vacancies using Machine Learning___

 __

 __

Academic Session: _____January 2023________

 I __________________LEE WEI JUN_____________________

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 ____ __________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 __11, DATARAN CEMPAKA____

 __SARI 1, DESA CEMPAKA____ _____ Ms Tseu Kwan Lee ____

 __31400, IPOH, PERAK___ Supervisor’s name

 Date: ___26 APRIL 2023_____ Date: ___26 APRIL 2023 _

iii

FYP THESIS SUBMISSION FORM

iv

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: __26 APRIL 2023____

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that ______Lee Wei Jun______________ (ID No: __19ACB03389) has

completed this final year project/ dissertation/ thesis* entitled “_Predicting Open Space Parking

Vacancies using Machine Learning _” under the supervision of ___ Ms Tseu Kwan Lee _______

(Supervisor) from the Department of Computer Science, Faculty of Information and Communication

Technology.

I understand that University will upload softcopy of my final year project / dissertation/ thesis* in pdf

format into UTAR Institutional Repository, which may be made accessible to UTAR community and

public.

Yours truly,

(LEE WEI JUN)

v

DECLARATION OF ORIGINALITY

I declare that this report entitled “PREDICTING OPEN SPACE PARKING

VACANCIES USING MACHINE LEARNING” is my own work except as cited in

the references. The report has not been accepted for any degree and is not being

submitted concurrently in candidature for any degree or other award.

Signature : ______ ____________

Name : ____LEE WEI JUN _________

Date : _____26-4-2023_____________

vi

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisors, Ms Tseu

Kwan Lee who has given me this bright opportunity to engage in Green Software,

Sustainability and Machine Learning field studies. When I was facing problems in this

project, the advice from them always assists me in overcoming the problems. Again, a

million thanks to my supervisor.

To a very special person in my life, my mother, Lim Saw Hoon, for her patience,

unconditional support, and love, and for standing by my side during hard times. Finally,

I must say thanks to my parents and my family for their love, support, and continuous

encouragement throughout the course.

A finalised report paper from FYP1 named “Predicting Open Parking Space using Deep

Learning and Support Vector Regression” had submitted to ISMSI 2023 (Paper ID:

MS029). A screenshot of the acceptance notification of the full paper (ISMSI 2023

Acceptance Notification of Full Paper) is attached under the appendix.

vii

ABSTRACT

Vehicle parking has become a significant issue in urban areas due to the imbalance

between supply and demand for parking spaces, and increasing the number of parking

spaces is no longer an effective solution. Predicting open parking vacancies using

machine learning is a practical and effective solution to overcome parking issues. The

ability to predict parking availability maximizes parking space utilization, ultimately

alleviating traffic congestion. The reduction in idling vehicles results in a decrease in

gas emissions, which reduces the burden on the environment. This study proposes a

parking prediction model using support vector regression (SVR) to predict available

parking spaces. A custom object detector developed using the YOLOv4 algorithm was

used to collect the data for training the machine learning model. The results show that

the custom YOLOv4 model accurately detects and identifies empty and occupied

parking spaces, while the SVR prediction model can predict the number of empty

parking spaces. Noise such as weather, lightning issue and obstacles is considered in

YOLOv4 model. Next weather features is included in training the machine learning

model. In this project, two additional machine learning algorithms, namely linear

regression (LR) and decision tree regressor, were used to compare the performance of

the support vector regression (SVR) prediction model. Additionally, four different

hyperparameter tuning techniques were employed to obtain the most promising fine-

tuned support vector regression (SVR) model, including grid search, random search,

random search plus, and parameter optimization loop. Moreover, a PySimpleGUI was

developed to provide an interactive parking vacancy prediction model graphic user

interface (GUI).

viii

TABLE OF CONTENTS

TITLE PAGE 1

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY v

ACKNOWLEDGEMENTS vi

ABSTRACT vii

TABLE OF CONTENTS viii

LIST OF FIGURES xi

LIST OF TABLES xv

LIST OF EQUATIONS xvi

LIST OF SYMBOLS xvii

LIST OF ABBREVIATIONS xviii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 2

1.2 Research Objectives 3

1.3 Project Scope and Direction 4

1.4 Contributions 4

1.5 Report Organization 5

CHAPTER 2 LITERATURE REVIEW 7

2.1 Previous works on Machine Learning 7

2.2 Previous works on Deep Learning 12

2.3 Limitations of Previous Studies 14

2.4 Proposed Solutions 16

ix

2.5 Summary 17

CHAPTER 3 SYSTEM MODEL 18

3.1 Model Design Diagram 18

3.2 Pseudocode 19

3.3 Gantt chart 20

CHAPTER 4 SYSTEM DESIGN 25

4.1 Machine Learning Equation 25

4.2 Framework 31

4.3 Flowchart 32

CHAPTER 5 EXPERIMENT/SIMULATION 35

5.1 System Requirement 35

5.1.1 Hardware 35

5.1.2 Software 35

5.1.3 Software libraries 36

5.1.4 Datasets 38

5.2 Setting up software 43

5.3 YOLOv4 model 43

5.3.1 Configuration on YOLOv4 model 43

5.3.2 Train on YOLOv4 model 48

5.4 Prediction model 52

5.4.1 Dataset preprocessing (text label file to CSV file) 52

5.4.2 Data preprocessing 54

5.4.3 Train on prediction model 59

5.4.4 Fine tune the prediction model 65

5.5 Comment and highlight the feasibility of the proposed method 69

5.6 Concluding Remark 69

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSIN 71

6.1 Model Testing and Performance Metrics (YOLOv4 model) 71

x

6.2 Model Testing and Performance Metrics (Prediction model) 76

6.3 Project Challenges 88

6.4 Objective Evaluation 88

6.5 Concluding Remark 89

CHAPTER 7 CONCLUSION AND RECOMMENDATION 90

7.1 Conclusion 90

7.2 Recommendation 91

REFERENCES 93

APPENDIX A 1

ISMSI 2023 Acceptance Notification of Full Paper 1

YOLOv4 configuration files 3

Prediction model preprocessing (text label file to CSV file) 4

Prediction model preprocessing 7

Prediction model training 8

Fine tune the prediction model 10

Predicting model performance result 13

FINAL YEAR PROJECT WEEKLY REPORT 15

POSTER 21

PLAGIARISM CHECK RESULT 1

FYP 2 CHECKLIST 1

xi

LIST OF FIGURES

Figure Number Title Page

Figure 2.1 SVR diagram 7

Figure 2.2 LR diagram 8

Figure 2.3 General structure of BPNN 9

Figure 2.4 Forecasting results of the four parks with FM 1 11

Figure 2.5 Forecasting results of the four parks with FM 2 11

Figure 2.6 Current system in use to forecast when a parking space

will become available

12

Figure 2.7 Result of YOLOv3 vehicle detection when the vehicle

in-motion

14

Figure 3.1 YOLOv4 Architecture 18

Figure 3.2 Gantt Chart of FYP1 from June 13, 2022 (week 1) to

September 16, 2022 (week 14)

21

Figure 3.3 Gantt Chart of FYP2 from January 30, 2023 (week 1) to

March 5, 2023 (week 14)

23

Figure 4.1 k-fold Cross-validation method 26

Figure 4.2 Development Flowchart of Parking Vacancy Prediction

Model

33

Figure 4.3 Development Flowchart of Custom YOLOv4 Object

Detection Model

34

Figure 5.1 PKLot PUCPR sample image during sunny weather 38

Figure 5.2 PKLot UFPR04 sample image during rainy weather 38

Figure 5.3 PKLot UFPR05 sample image during cloudy weather 39

Figure 5.4 CARPK sample image 39

Figure 5.5 CNRPark+EXT Camera 1 sample image 40

Figure 5.6 Aerial View of Parking Lot sample image 40

Figure 5.7 Create a yolov4 folder in Google Drive 43

Figure 5.8 Create a training folder inside the yolov4 folder 43

Figure 5.9 Output of cloning the darknet git repository 44

Figure 5.10 The yolov4-custom file 44

xii

Figure 5.11 Upload needed file to yolov4 folder 46

Figure 5.12 Copy the files and paste under data and cfg folder 47

Figure 5.13 Copy and paste process file 47

Figure 5.14
Download the weights file for the Yolov4 pre-trained

model

48

Figure 5.15 Connect to Google Drive 48

Figure 5.16 Make changes in Makefile 48

Figure 5.17 Build darknet 49

Figure 5.18 Train the custom model using the pre-train yolov4

weights

49

Figure 5.19 Continue the training on last check point, last weights 50

Figure 5.20 Training output after 6000 iterations 50

Figure 5.21 Training output after 9000 iterations 51

Figure 5.22 Store parking features in data frame 52

Figure 5.23 Data frame of PKLot with weather condition 53

Figure 5.24 Read PKLot CSV file into data frame 54

Figure 5.25 Quick description of all attributes in the pk data frame 54

Figure 5.26 Check redundancy in DateTime 55

Figure 5.27 Statistics of all numerical attributes in pk data frame 55

Figure 5.28 Histogram of each numerical attribute in pk data frame 57

Figure 5.29 Correlation matrix of pk data frame 57

Figure 5.30 Count unique values of weather 58

Figure 5.31 Graph plot with Empty and DateTime in Cloudy 59

Figure 5.32 Graph plot with Empty and DateTime in Rainy 59

Figure 5.33 Graph plot with Empty and DateTime in Sunny 59

Figure 5.34 The shape of the original training set and the processed

training set x and y

60

Figure 5.35 Performance output of the SVR model 61

Figure 5.36 Result of 5-fold cross validation with SVR using the

training set

62

Figure 5.37 Performance output of the LR model 62

Figure 5.38 Result of 5-fold cross validation with LR using the

training set

63

xiii

Figure 5.39 Performance output of the decision tree regression

model

64

Figure 5.40 Result of 5-fold cross validation with decision tree

regressor using the training set

64

Figure 5.41 Output after performed grid search on SVR model 66

Figure 5.42 Output after performed random search on SVR model 66

Figure 5.43 Output after performed random search plus on SVR

model

67

Figure 5.44 Output after performed parameter optimization loop on

SVR model

68

Figure 6.1 Training result 71

Figure 6.2 Training result with mAP@IoU=0.5 72

Figure 6.3 Training result with mAP@IoU=0.75 72

Figure 6.4 Loss and mAP chart 73

Figure 6.5 PKLot- PUCPR (i) test data, (ii) prediction result on the

test data with (a) 0.2, (b) 0.7 thresh value

74

Figure 6.6 CARPK (i) test data, (ii) prediction result on the test

data with (a) 0.2, (b) 0.7 thresh value

74

Figure 6.7 CNRPark+EXT (i) test data, (ii) prediction result on the

test data with (a) 0.2, (b) 0.7 thresh value

75

Figure 6.8 Aerial View of Parking Lot (i) test data, (ii) prediction

result on the test data with (a) 0.2, (b) 0.7 thresh value

75

Figure 6.9 The processed test set x 76

Figure 6.10 Mean of empty features after filer with total parking

equal 100

76

Figure 6.11 Performance testing on the SVR model 77

Figure 6.12 Performance testing on the LR model 78

Figure 6.13 Performance testing on the decision tree regression

model

78

Figure 6.14 Performance testing on the fine-tuned SVR model,

obtained using grid search

79

Figure 6.15 Performance testing on the fine-tuned SVR model,

obtained using random search

79

xiv

Figure 6.16 Performance testing on the fine-tuned SVR model,

obtained using random search plus

80

Figure 6.17 Performance testing on the fine-tuned SVR model,

obtained using parameter optimization loop

81

Figure 6.18 Save the fine-tuned SVR model using random search as

sav file

86

Figure 6.19 Parking Vacancy Prediction Model-GUI 87

xv

LIST OF TABLES

Table Number Title Page

Table 2.1 Limitation of previous studies on ML 16

Table 2.2 Limitation of previous studies on deep learning 16

Table 3.1 FYP1 Gantt Chart details 21

Table 3.2 FYP2 Gantt Chart details 23

Table 5.1 Specifications of laptop 35

Table 5.2 Summarize for the software libraries 37

Table 5.3 Comparison of the datasets 42

Table 6.1 Prediction result 82

Table 6.2 Prediction result (after fine-tuning) 83

Table 6.3 Parameter Grid 84

xvi

LIST OF EQUATIONS

(1) Generic form of the multiple linear regression model

(2) Pearson’s correlation coefficient (PCC)

(3) mean absolute error (MAE)

(4) mean square error (MSE)

(5) root mean square error (RMSE)

(6) mean absolute percentage error (MAPE)

(7) mean Average Precision (mAP)

(8) loss function for YOLO

(9) Precision

(10) Recall

(11) 𝐹1 score

xvii

LIST OF SYMBOLS

 Σ Sigma

+ Plus

- Minus

* Asterisk (multiplication)

× Multiplication

÷ Division

= Equals

() Bracket

% Percent

xviii

LIST OF ABBREVIATIONS

SVM Support Vector Machine

SVR Support Vector Regression

LR Linear Regression

BPNN Backpropagation Neural Network

ARIMA Autoregressive Integrated Moving Average

FM Forecasting Method

PL1 Parking Lots 1

PL2 Parking Lots 2

PL3 Parking Lots 3

PL4 Parking Lots 4

RMSE Root Mean Square Error

MSE Mean Square Error

MAE Mean Absolute Error

ML Machine Learning

FOA Fruit Fly Optimization Algorithm

FOA-SVR Fruit Fly Optimization Algorithm with Support Vector Machine

NN Neural Network

SRM Structural Risk Minimization

RBF Radial Basis Function

C Regularization Parameter

ANN Artificial Neural Network

CNN Convolutional Neural Networks

GUI Graphical User Interface

YOLO You Only Look Once

YOLOv3 You Only Look Once, Version 3

YOLOv4 You Only Look Once, Version 4

YOLOv5 You Only Look Once, Version 5

PUCPR Pontical Catholic University of Parana

UFPR Federal University of Parana

CARPK Car Parking Lot Collection

GPU Graphics Processing Unit

xix

PCC Pearson’s Correlation Coefficient

MAPE Mean Absolute Percentage Error

mAP mean Average Precision

AI Artificial Intelligence

IoU Intersection over Union

MA Moving Average

AR Autoregression

ARMA Autoregressive Moving Average

CHAPTER 1

1
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1 INTRODUCTION

Vehicle parking is one of the global issues, especially in urban areas. With the

increasing economic development and urbanization, the number of cars increases

rapidly, which leads to an imbalance between the supply and demand for parking lot

[1]. In urban areas, people typically spend more than 5 minutes searching for a car park

and the time needed is longer during the weekend. When people start finding a car park,

this is where idling starts. Idling is one of the most waste fuel actions done by every

driver, especially Malaysians. Idling can see everywhere, even though within the

educational centre too. One hour idling a day might spend individuals between RM 2.60

to RM 2.80 per day and that is around RM78 to RM84 per month [2].

People nowadays are able to calculate the estimated driving time needed in order

to reach the destination on time, sometimes however they could still face the challenges

of being late due to obstacles in finding a car park. Increasing the parking area is not a

sustainable solution when it is limited in space. However, applying effective parking

management would be a realistic alternative [3]. A prediction of parking vacancies

using ML would provide an estimation of how long it would take them to have their car

parked. With the allotted time on distance and vehicle parking, there is less chance that

people will be late for their school or work, etc.

Furthermore, people nowadays are less patient than before, especially doing

things that they think are not worth it, for example, finding a parking space. Individuals’

mood could spoil easily if they spend too much time finding a parking space. The longer

the time an individual spends searching for parking, the less time will be for the next

activity on their schedule. Additionally, people experience anxiety when trying to find

a parking spot since they are unsure of when they will be able to park or where the next

spot will be.

Parking vacancies prediction plays a part in protecting the earth as there will be

less idling, which means reducing greenhouse gas emissions (CO2) and pollutants that

are harmful to human health. Moreover, parking vacancies prediction also significantly

impacts people’s planning and saves people’s time. Such that, if the prediction result

shows that finding parking vacancies requires more than 30 minutes, they will change

their mind by calling a grab to their destination instead of driving by themselves.

CHAPTER 1

2
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Furthermore, parking vacancies prediction could avoid people’s daily emotions from

getting spoiled because of spending a long time finding a car park.

1.1 Problem Statement and Motivation

Nowadays, finding a parking space is challenging as the number of vehicles is

growing faster than the number of parking spaces. Finding a parking space would be

time-consuming, especially in a high population and car-density area. According to [4],

individuals in Kuala Lumpur spend around 25 minutes daily searching for parking. A

person who lives in Southeast Asia spends an average of 30 minutes seeking parking.

Sometimes, the time estimate for individuals to find parking which according to the

research, may not be accurate in real-time situations, which means individuals may

spend 10 minutes, 30 minutes, or even more to get their vehicle parked.

There will be more petrol waste while the longer time individuals spend on

searching parking. People usually have their car idling while waiting for an available

parking space. Idling for 10 minutes costs between 1/10 and 4/10 of a litre of gasoline,

depending on the individual’s vehicle [2]. So, if more people put their car in idling, the

more petrol will be wasted, and the money spent on refuelling their car.

Gasoline will continue to burst as long as the car’s engine runs, indirectly causing

environmental pollutants such as carbon dioxide, nitrogen oxide, and other

hydrocarbons which escape through the tailpipe. These pollutants will cause climate

change, air pollution, global warming and affect the health of all living creatures.

According to [50], 11 hours of CO2 emission while cruising for parking in a shopping

center, where 4 h represent guest non-peak hours and the remaining 7 h represent guest

peak hours, will result in 37kg of CO2 emission, which is comparable to 122 km driven

by an average normal car in an area of 320 m.

Furthermore, the weather condition is one of the parameters that would affect the

prediction of the open space parking vacancies. Weather changes frequently and the

changes in weather conditions like sunny to rainy would somehow restrict the

movement of the parking, as during rainy days if people do not have an umbrella, it

would restrict them from picking up their car or getting out of the car. Additionally, the

weather also affects people’s mood and thereby affects the number of parking vacancies,

CHAPTER 1

3
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

for example during cloudy people will be unlikely to go out as they are afraid of getting

themselves wet.

Next, this project aims to propose a prediction model for parking space vacancies

to help individuals to identify the estimated time for the available parking space.

Although the model cannot instantly create an available parking space for individuals,

it does calculate the estimated time individuals will have to wait to get parking. With

the estimated time given, individuals can save their time by doing other meaningful

activities, such as replying to messages, catching up on social media and cleaning their

car’s cupboard instead of keeping their eyes on the parking lot all the time. Since people

know how much time is needed to find their next open parking place, searching for a

parking space won't ruin anyone's mood anymore. As a result, people won't feel anxious

about finding parking as they always did.

Furthermore, parking prediction is a more environment-friendly solution and less

petrol waste because there will be less idling. Through parking prediction, people spend

lesser time finding a parking space, since available parking space is shown to them.

Gradually, there will be less idling and lesser car emission, which less pollution to the

earth.

1.2 Research Objectives

In this project, a review of existing studies has been conducted to identify the problems

that occur in predicting open space parking vacancies. After reviewing the existing

studies, an ML algorithm that is capable to fit well with the parking data and noise (etc,

weather and nearby parking condition) is proposed for use in developing the parking

prediction model and it is SVR.

The main objectives of this project are:

1. To investigate ML algorithms and techniques that have been used in the existing

studies which are related to predicting open space parking vacancies. This allows us to

study and identify the problems and other factors that occur in the existing study.

2. To propose ML algorithms which concerned with more noises to predict the parking

space, like weather and nearby parking lot conditions. Dealing with environmental

factors will increase the accuracy and performance of the model proposed.

CHAPTER 1

4
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. To build the model using the proposed SVR algorithm to predict the available

parking space. The proposed model is practical at handling time series and nonlinear

problems, resulting in it being capable of predicting the parking space with a standard

level of accuracy.

4. To test the proposed model’s performance by using MSE, RMSE, MAE, and MAPE

performance metrics. This allows us to identify how well the proposed model is in

learning and predicting the available parking space.

5. To optimize the performance of an SVR model by employed multiple

hyperparameter tuning techniques. By doing so, a higher likelihood of identifying the

best set of parameters for SVR model with the selected dataset.

1.3 Project Scope and Direction

 The scope of the project is to propose a parking prediction model using ML to

predict available parking spaces in open parking spaces. The scale of open parking

spaces includes small, medium and large parking lots. This model is considered with

noise, such as weather of the day, the current capacity of the nearby parking lot and the

road condition of the parking lot. So less chance that the prediction result is getting

affected, thereby improving the accuracy of the prediction result.

 To develop the parking vacancies prediction model, the software libraries that

are going to use are the Scikit-learn library and the YOLO framework. Scikit-learn is

the Python libraries use for developing ML algorithms. To issue these software libraries,

the programming language will be python. Then YOLO is used to develop an object

detecting model to collect the parking lot dataset and will be used to fit in the ML model.

One month later after the release of YOLOv4, YOLOv5 was released. A study

[46] was conducted and showing that YOLOv5 is faster in inference time when

compared to YOLOv4. However, they stated that YOLOv4 on Darknet continues to be

the most accurate if the user is looking for the latest and not frightened of a little more

specific configuration [46]. Hence, YOLOv4 algorithm was chosen to use in this project.

1.4 Contributions

This project will propose a parking vacancy prediction to make the parking lot

more efficient. As parking space is predictable, utilization of the parking lot will be

CHAPTER 1

5
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

maximized. Maximizing the utilization of parking lots will decrease the occurrence of

street parking and double parking, which will increase the capacity of the road. As a

result, the problem of traffic congestion will be alleviated as all the lanes on the road

are smooth and unimpeded.

Individuals may save more money while also helping to keep the environment air

cleaner. When idling is reduced, less petrol is consumed, which means less money is

spent on refuelling their automobile. In addition, lesser idling means lesser gas

emissions by the car and results in reducing the burden on the natural environment.

Furthermore, the object detection model built with YOLOv4 can classify empty

and occupied parking spaces and later generate numerical data. These data will be used

as a dataset to develop the parking prediction model. Thereby the data collection

process in the parking lot shall be lightened as this process is automated. Moreover, the

parking vacancy prediction model can be further used by researchers as a base for

developing a parking prediction software or system.

1.5 Report Organization

In the first Chapter, an introduction and problem statement about parking

vacancy are made. The objective, scope, and direction of this project are stated here as

well as the contribution of this research. Then the details of this research are shown in

the following chapters. In Chapter 2, previous studies related to predicting open space

parking vacancy is being reviewed, and the technique used in these studies include ML,

NN, and deep learning. strengths and weaknesses in each study are identified, and a

proposed solution is founded at the end.

Chapter 3 details the system models proposed to address open space parking

vacancies, including diagrams, pseudocode, and a timeline for the project. Chapter 4

focuses on the system design and presents the equations and techniques used in the

object detection model and ML model, along with flowcharts. Additionally, a GUI

framework is introduced for making predictions.

Chapter 5 lists the required resources for the experiments and simulations,

including hardware, software, software libraries, and datasets. This chapter also

includes the configuration and development of the model. Chapter 6 presents the system

evaluation and discussion. This chapter covers the testing and analysis results for both

the YOLOv4 and ML algorithms, which are thoroughly recorded and discussed.

CHAPTER 1

6
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Lastly, in Chapter 7, the conclusion and recommendation section summarize the

main findings and contributions of the study and suggest directions for future research.

CHAPTER 2

7
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

2.1 Previous works on Machine Learning

In the year 2020, a study was conducted by authors [3] in predicting the parking

occupation where the study are focused on parking type and parking scale. The ML

technique used in this study includes SVR, LR, BPNN, and ARIMA.

SVM is a statistical learning theory which able to handle linear and nonlinear

problems and is useful for a wide range of tasks [6]. It is built on the concept of finding

the optimal hyperplane for separating characteristics into distinct domains [7]. SVM

can obtain decision-making rules and accomplish minimal error for independent tests

based on the SRM principle to effectively handle learning problems [8].

SVM is a more complex model and is better fit when it has a greater number of

parameters [9]. Even when the number of dimensions exceeds the number of samples,

the method is still successful [10]. Last, a convex optimization problem is what SVM

is. Finding the global optimum is simple because the locally optimal solution is also the

optimal global solution. However, noise does affect the accuracy of SVM, which mean

large data set is not suitable for SVM as the larger the data set, the more the noise [11].

Figure 2.1: SVR diagram [5]

 SVR is based on the same concept as SVM, but it is used to solve regression

issues [12]. SVR is common to use in times series problems, and it has a strong ability

to deal with nonlinear problems. SVR enables the determination of acceptable error in

f(x)

f(x)

f(x)

y

x0

2

CHAPTER 2

8
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

the model and matches the data with a best-fit line, the hyperplane line with the greatest

number of points [13]. Because it is based on the SRM concept, which is effectively a

convex quadratic programming optimization problem with linear constraints, SVR

decreases risk [5].

Figure 2.2: LR diagram [14]

 LR is a supervised ML learning method. It carries out a regression function. The

concept can be illustrated by diagram as Figure 2.2. The simplest concept of linear

regression is to assign a point set, D, and create a function (line of regression) that fit

the point set (datapoint) with the least number of errors possible. As a result, the term

Linear Regression was being coined. Because linear regression indicates a linear

relationship, it determines how the dependent variable’s value changes as the

independent variable’s value changes [14].

The following is the generic form of the multiple linear regression model:

 𝑌 = 𝐵0 + 𝐵1𝑋1 + 𝐵2𝑋2 +⋯+ 𝐵𝑘𝑋𝑘 + 𝑢 (1)

Where

𝑌 = the explained variable

𝑋𝑖 (i=1, 2, …, K) is the K explanatory variable

𝐵𝑖 (i=1, 2, …, K) is the K 1 unknown parameter

𝑢 = the random error term

 LR is smooth in the calculation. There are no adjustment parameters, so it is

simple and easy to understand and explain [15]. However, LR operates poorly when

y

x0

 ata Points

 ine of

regression

ep
en
d
en
t

ar
ia
b
le

Independent ariable

CHAPTER 2

9
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

there is a nonlinear relationship. The reason is they do not have the innate flexibility to

record more complicated patterns [15].

Figure 2.3: General structure of BPNN [16]

 BPNN is a feed-forward hierarchical ANN made up of three or more completely

linked layers of neurons, as shown in Figure 2.3 [17]. BP network can store and learn

a lot of input-output mode-mapping relations without exposing the mathematical

equation in advance.

Furthermore, the learning rule is to use the gradient descent approach using

backpropagation to continually update the network’s weight and threshold [3]. The

heart of NN training is backpropagation. Backpropagation is the process of fine-tuning

the weights of a NN depending on the preceding epoch’s (i.e. iteration) error rate (i.e.

loss). As a result, continually updating the network’s weight and threshold do reduce

error rates, boosting the model’s generalization, thus making it more reliable [18].

In the training process of [3], the network’s predictability was maximized by

training the model with various combinations of these parameters. The predictability

was being maximized because the learning process automatically adjusts the weights

and thresholds in BPNN to reduce mistakes, allowing a single hidden layer BPNN to

approximate any nonlinear function with arbitrary precision [19].

The fault tolerance and robustness of BPNN are excellent. The BP’s

convergence speed, on the other hand, is slow, and it’s simple to slip into the local

The Input ayer The idden ayer The utput ayer

CHAPTER 2

10
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

minimum. Furthermore, because of its fundamental properties, BPNN’s prediction

outputs are unstable [5].

ARIMA is a ML algorithm. For prediction, ARIMA needs ongoing historical

data. It is commonly use in demand forecasting, for example predicting future demand

for the food production and the price of the stocks in the future based on previous prices.

Based on the stability of the initial sequence and the variations in regression, ARIMA

models may be separated into MA, AR, ARMA, and ARIMA. The advantages of the

ARIMA model are it performs well for short-term predictions and models non-

stationary time series. However, it is challenging to predict turning points, performs

worse for long-term forecasting, and cannot be employed for seasonal time series [20].

In the study [3], the data collected in this study include total four parking lots

from Shenzhen, Dongguan, and Shanghai with different scales. There is a total of

606,959 records of vehicles’ in-time and out in the data set. A total of 7 weeks of data

is collected. The data for the first 6 weeks are being used to train models, and the data

for the last week are being utilized as test dataset.

There is two FM used in [3], which FM regards weekday and weekend as the

same set and FM2 regards weekends and weekdays as two separate sets. The type of

parking lot used to examine these ML techniques includes commercial, official and

mixed functional and size includes large, medium and small. PL1 is large commercial

parks. PL2 is medium office parking lots. PL3 is a small mixed-function parking lot.

For the last parking lots, PL4 is small office parking lots.

The metric used to evaluate the model performance are RMSE and MAE, as

shown in Figure2.4-2.5. The lesser the error rate represents, the better the algorithm.

CHAPTER 2

11
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.4: Forecasting results of the four parks with FM 1 [3]

Figure 2.5: Forecasting results of the four parks with FM 2 [3]

The ARIMA model was not applied in FM 2 because it is not suitable for this

method as it is a time series model. In Figure 2.4, the ARIMA model overall has the

worst performance in FM 1. In Figure 2.4 and Figure 2.5, BPNN which is stated as NN

performs the worst for the mixed parking lots, PL3. As a result, the overview for the

figures above shows that SVM has the best performance between ARIMA, LR and NN,

except large commercial parking, PL1 for both forecasting methods. It concludes that

SVM effectively solves practical problems using small samples, local minimum points,

high-level pattern recognition, and nonlinearity.

Following in the year 2018, [5] has also conducted a similar study in predicting

the number of vacant parking spaces. SVR is being applied and optimized using a FOA.

CHAPTER 2

12
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The comparative models include BPNN extreme learning machine, and wavelet NN,

which are all widely used prediction models.

The type of parking space includes the large parking lot of a local grand

shopping mall and the small parking lot of a restaurant. The traffic is heavy for the local

grand shopping mall, and the traffic flow trend is obvious. While for restaurants, the

traffic is light.

The data are collected in two days from 11.00 am to 8.00 pm and recorded every

10 minutes. A total of 108 data was collected. The 54 data collected on the first day is

used as training data set, and the remaining data were used as the test data set.

The result shows that FOA-SVR exceeds all other models in terms of accuracy,

while it is only second to SVR in terms of stability. This prediction model can also be

used in any parking lot or garage if only information on car activities such as arrival

and departure times, among other things, are provided.

2.2 Previous works on Deep Learning

Figure 2.6: Current system in use to forecast when a parking space will become available [21]

This study which was conducted in 2018 by [21] shows how to use Caffe and

the Nvidia DiGITS framework to create a real-time parking spot categorization system

based on CNN. Some CNN configurations based on LeNet network with the Nesterov

CHAPTER 2

13
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Accelerated Gradient as solver and the AlexNet network with the Stochastic Gradient

Descent were built in this study to utilise in the classification system.

CNN are complex feed forward NN in deep learning. The study in [21] said, the

architecture of CNN is similar to a human NN, which is made up of synapses (weights)

and neurons and deals with a complex task. It is a Deep Learning method that can take

an image as input, assign importance (learnable weights and biases) to distinct

aspects/objects in the image, and distinguish one from the other [23].

CNN has an accuracy greater than 90% inter and intra-datasets. Because of its

great accuracy, CNN is utilized in picture categorization and recognition [24]. CNN

was used in [21] as it makes the process of creating a classifier easier. It is because they

extract and use information from the dataset automatically. CNN’s performance is

entirely dependent on the hardware employed. If the CNN contains several layers, the

training process will take a longer time if the device does not have a powerful GPU

[25].

There are 782 photos of parking lots in the collection, which were taken from

two universities of the Witwatersrand parking sites. The data was collected during a

working week (5 days), at a rate of one frame per minute, from 6 am until around 8 am.

The camera’s position and the buildings’ placement in this study were set such that a

car leaving a parking spot does not obscure more than 60% of the following automobile

on the road.

The study result shows that computer vision employing a single camera and

CNN has a success rate comparable to older approaches (using sensors). As illustrated

in Figure 2.6, the system can produce an accurate output depending on the present state

of the parking place the camera is facing, provided that the spot is accurately specified

by the user when the system is activated.

CHAPTER 2

14
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.7: Result of YOLOv3 vehicle detection when the vehicle in-motion [22]

Next, in the year 2021, [22] conducted a study of parking availability prediction

using YOLOv3 CNN on a university campus. YOLOv3 algorithm is used to train and

predict whether the parking area is occupied or unoccupied. This study utilized three

datasets: PKLot, COCO, and an in-house dataset. In this study, the proposed model is

trained using 50% of the data, and the model is tested on the other 50%. In addition, the

in-house dataset's video clip contains noise from various sources, such as rain and

drivers adjusting their cars in the parking lot. This type of video clip could help to test

the predicted performance of the suggested technique to find vacant parking spots.

Since YOLOv3 can maintain the complete segmented picture after

segmentation, classification based on the full segmented image may very well be

accomplished in this study. Additionally, YOLOv3 offers quick video rendering at 45

frames per second, which makes YOLOv3 algorithm a pleasant choice for real-time

processing. YOLOv3 can identify vehicles in this study and calculate the available

parking spaces, but it is still unable to detect moving vehicles, as shown in Figure 2.7.

The result of the study by [22] shows that the YOLOv3 algorithm can

distinguish between vacant and occupied parking spaces in real-time. However, the

algorithm may be improved in certain ways, particularly regarding the detection of

incorrect parking and moving cars.

2.3 Limitations of Previous Studies

Studies from [3] and [5] did not take into account of nearby parking lots. For

university, college, famous food court, and other parking spaces are severely lacking

CHAPTER 2

15
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

during peak hours. When the parking space is fully occupied, people will start parking

their cars at the nearest parking space. As a result, a full parking lot affects the parking

vacancy of the nearby parking lot, thereby affecting the accuracy of parking vacancy

prediction.

Furthermore, the weather is one of the elements that affect the prediction result

of the number of parking vacancies. The previous studies by [3] and [5] did not take

into account weather as one of the features in their dataset. Weather does affect

individuals’ movement, as during rainy individuals may not pick up their car because

of no umbrella or because the rain is too heavy to go outside.

In addition, weather was not considered in the previous study by [21]. Weather

is an important element that can affect the accuracy of the parking vacancy prediction.

Weather such as heavy rains can be affecting the image capture by the camera, and it

might be difficult for the prediction model to learn the data and predict the available

space. Therefore, countries near the equator and surrounded by the sea, such as

Singapore as well as Malaysia, should consider the weather situation while predicting

parking vacancies.

The parking space used to do training and testing for parking detection in the

previous study are mostly captured in a good condition, which is the parking line is

clear and no puddle because during and after rainy. The previous studies by [21] did

not consider much on the noise that capture in the images, for example the parking spot

that block by growing tree and streetlamp. Moreover, they did not consider parking

space’s road condition and do some special cases to handle the noises in the parking

space. For example, the tree branching drop-down and blocked the parking space, the

large vehicle which occupies more than one normal car park and puddle which it would

cause reflection. In the absence of any special case assumption, the accuracy of parking

space detection tends to decrease over time.

Table 2.1: Limitation of previous studies on ML

 [3] [5]

Consider on the vacancy of the

nearby parking lots

No No

CHAPTER 2

16
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Consider on the weather condition

(rainy, cloudy and sunny)

No No

Table 2.2: Limitation of previous studies on deep learning

 [21] [22]

Special cases consider on parking

space’s road condition

No Yes

Noises consider on the parking spot

that block by tree or streetlamp

No Yes

Weather condition (rainy, cloudy

and sunny)

No Yes

2.4 Proposed Solutions

This project aims to improve the accuracy of the method used by considering

the light of the environment (which cause by weather), weather situation, nearby

parking situation, parking space’s road conditions (double park and puddle), and the

noise capture in the images that commonly appears such as parking spot that block by

growing tree and streetlamp and do the correction on it. With the consideration of the

element above, parking detection should be more accurate while performing the testing

for the dataset.

South Asian countries experience unpredictable weather patterns, with frequent

shifts between sunny and rainy weather due to their tropical rainforest climate and high

annual rainfall. Given that the dataset collected in Malaysia, it is essential to consider

the weather conditions in developing an accurate prediction model.

SVR was chosen to develop the prediction model due to its strong ability to

handle nonlinear time series problems and reduce the risk of inaccurate predictions

based on the SVM concept. The prediction accuracy of the SVR model should be

improved through hyperparameter tuning. This process can aid in the identification of

the best hyperparameters for the model. Moreover, a Python GUI framework name

PySimpleGUI should be employee to develop a GUI for end user to perform prediction

on the parking vacancy model.

CHAPTER 2

17
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

This project utilizes CNN due to its high accuracy rate of 90% and ability to

automatically extract and utilize information from datasets, making the creation of a

classifier easier. Additionally, CNN was utilized in processing the images in the parking

prediction dataset. The YOLO algorithm, which employs CNN and is known for its

rapid video rendering capabilities, was employed for the image processing in this

project's parking prediction.

2.5 Summary

 Out of the four ML algorithms studied, SVM is effective for models with many

parameters, and the convex optimization problem of SVM makes finding a global

optimum simple. However, SVM is unsuitable for building a prediction model because

it is a classifier. Therefore, it is replaced by SVR, which is based on SVM and is a

regressor. LR's equation is easy to understand, but it is not flexible enough to record

complicated patterns, and it performs worse when there is a nonlinear relationship.

BPNN is great in fault tolerance and robustness; however, it is slow in convergence

speed and easily falls into the local minimum. Therefore, BPNN may not perform well

without a large training dataset. In conclusion, SVR is undoubtedly the ideal option to

develop the parking vacancy prediction model.

 To optimize the SVR model's prediction accuracy, four hyperparameter tuning

techniques were utilized, namely, grid search, random search, random search plus and

parameter optimization loop. These methods allow for a systematic search of

hyperparameter values to identify the optimal combination for the specific problem at

hand.

After reviewing previous studies, CNN was found to have a great accuracy

result. Creating a classifier is easier because it automatically extracts and uses

information from the data set. In addition, CNN needs modification to deal with all

probable noise, so it requires a lot of input data and training. As a result, YOLO is a

realistic option to use to develop the object detection model since it applies CNN and

has CNN characteristics like automatically adjusting the image size during training and

excellent accuracy.

CHAPTER 3

18
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3 SYSTEM MODEL

3.1 Model Design Diagram

Figure 3.1: YOLOv4 Architecture [38]

The YOLOv4 architecture (in Figure 3.1) is made up of several components [38].

The input is the collection of training images fed into the network, processed in parallel

batches by the GPU. The Backbone and Neck modules are responsible for extracting

and combining features, respectively. The detection neck and detection head work

together as the object detector, while the head performs the detection and prediction of

objects.

The SVR diagram (as in Figure 2.1) features an interval with f(x) as its central

value and a width of 2ϵ. If the prediction for a training sample that falls within the range,

as defined by the lines f(x) + ϵ and f(x)- ϵ, is deemed accurate, and thus no loss is

incurred. In contrast, a loss is computed for predictions that fall outside of this range.

The loss is only calculated when the absolute difference between the predicted and

actual values exceeds the insensitivity threshold (ϵ).

Input Image, Patches, Image Pyramid,

Backbone GG1 , esNet 0, esNe t 101, arknet,

Neck FPN, PANet, Bi FPN,

 ead

 ense Prediction PN, Y , SS , etinaNet, FC S,

Sparse Prediction Faster CNN, FCN,

T S D

O S D

I B N D P S P

CHAPTER 3

19
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2 Pseudocode

 The table below shows the pseudocode for developing the parking vacancy

prediction model, which start from data loading, data pre-processing, training with

ML algorithms process, fine-tuning model process till model testing process.

Parking vacancy prediction model pseudocode:

Read the labelled file and transform the data into a data frame.

Save the data frame table as a CSV file.

Load the table in the CSV file into Jupyter Notebook as a data frame.

Convert the features in the data frame into integer and datetime date type (time series).

Convert categorical data to numerical data.

Standardize the numerical data.

Split the dataset into input matrix and output vector.

Split the dataset into test and train sets.

Train and validate the model.

Evaluate the model using the train, validation and test dataset.

Fine-tuning model using test dataset.

Make prediction using the model.

 The table below shows the pseudocode for developing the custom YOLOv4

object detection from create storage, download needed library, data pre-processing,

training process till the testing process (start prediction).

Custom YOLOv4 object detection pseudocode:

Connect Google Colab to Google Drive.

Download the darknet library from GitHub into Google Drive.

Customize the configuration file and set only two classes for the training later.

Paste the dataset and all the configuration files into Google Drive.

Split the dataset into train and test sets.

Download pre-train YOLOv4 weight.

Enable the GPU and OPENCV before building the darknet.

Build the darknet and start the training process using the pre-train YOLOv4 weight.

Test the model performance on unseen video and pictures using the best weight created.

CHAPTER 3

20
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Predict images and generate the labelled text file for later use in the prediction model.

3.3 Gantt chart

FYP 1 Gantt chart.

CHAPTER 3

21
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.2: Gantt Chart of FYP1 from June 13, 2022 (week 1) to September 16, 2022 (week 14)

CHAPTER 3

22
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 3.1 FYP1 Gantt Chart details

ID Task Name Duration 12-06-22 02-09-22

1 FYP1 60 days 13-06-22 17-06-22

2 Review of IIPSPW proposal 5 days 20-06-22 24-06-22

3 Chapter1 5 days 27-06-22 01-07-22

4 Find Dataset 5 days 04-07-22 08-07-22

5 Chapter 2: Literature review and

Summary

5 days 11-07-22 15-07-22

6 Study and train using YOLOv4(object

detection model)

5 days 18-07-22 22-07-22

7 Evaluate and make prediction using

YOLOv4 (object detection model)

5 days 25-07-22 05-08-22

8 Chapter 3: Methods/Technologies

Involved

10 days 08-08-22 12-08-22

9 Pre-processing the dataset (prediction

model)

5 days 15-08-22 19-08-22

10 Train and evaluate the model (prediction

model)

5 days 22-08-22 24-08-22

11 Chapter 4: Preliminary Work 3 days 25-08-22 26-08-22

12 Chapter 5: Conclusion 2 days 29-08-22 29-08-22

13 Poster 1 day 30-08-22 01-09-22

14 FYP1 report checking 3 days 02-09-22 02-09-22

15 FYP1 report submission 1 day 05-09-22 16-09-22

16 Oral Presentation 10 days 12-06-22 02-09-22

FYP 2 Gantt chart.

CHAPTER 3

23
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3: Gantt Chart of FYP2 from January 30, 2023 (week 1) to March 5, 2023 (week 14)

CHAPTER 3

24
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 3.2 FYP2 Gantt Chart details

ID Name Duration Start Date End Date

1 FYP2 65 days 30-01-23 28-04-23

2 Review of FYP1 5 days 30-01-23 03-02-23

3 Chapter2: Literature review 5 days 06-02-23 10-02-23

4 Study and finding ways to fine turning

the model

5 days 13-02-23 17-02-23

5 Further training and enhance the

YOLOv4 model (object detection

model)

15 days 20-02-23 10-03-23

6 Further training and enhance the model

(prediction model)

10 days 27-02-23 10-03-23

7 Evaluate and make prediction on the

model

5 days 13-03-23 17-03-23

8 Chapter 3: System Model 1 day 20-03-23 20-03-23

9 Chapter 4: System design 1 day 21-03-23 21-03-23

10 Chapter 5: Experiment/Simulation 3 days 22-03-23 24-03-23

11 Chapter 6: System evaluation and

discussion

5 days 27-03-23 31-03-23

12 Enhance the FYP report 7 days 31-03-23 10-04-23

13 Chapter 7: Conclusion and

recommendation

3 days 13-04-23 17-04-23

14 FYP2 report checking and correction 8 days 18-04-23 27-04-23

15 FYP2 submission 1 day 28-04-23 28-04-23

16 Oral Presentation 10 days 24-04-23 05-05-23

CHAPTER 4

25
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 SYSTEM DESIGN

4.1 Machine Learning Equation

To develop a parking vacancy prediction model, two models are necessary. The

first model is an object detection model that employs YOLOv4 to detect the number of

empty and occupied parking spaces in input images. It produces labelled text files for

each input image. The second model employs SVR to create the parking vacancy

prediction model. The output text files from the object detection model serve as the

input dataset for the SVR model [1].

The cost function includes PCC, and the k-fold Cross-validation method. Then,

MAE, MSE, RMSE, and MAPE are used to evaluate to performance of the SVR model.

Later, mAP is used in YOLOv4, and the loss function is used in YOLOv4. Precision

and recall are then used to evaluate the classification model, and the F1 score, which is

a harmonic mean of precision and recall, is used as the final evaluation metric.

Four types of hyperparameter tuning methods are utilized to determine the

optimal combination of hyperparameters for the SVR model, which include grid search,

random search, random search plus and parameter optimization loop.

To identify the most useful features in the dataset before training, it is necessary

to use a method such as PCC [39]. By applying this equation, it is possible to determine

which features exhibit a strong positive correlation with the output feature. The feature

with the highest correlation can then be identified as the most useful feature in the

dataset.

Here is the equation for Pearson’s correlation coefficient (PCC):

 𝑟 =
𝑛(∑𝑥𝑦)−(∑𝑥)(∑𝑦)

√[𝑛∑𝑥2−(∑𝑥)
2
][𝑥 ∑𝑦2−(∑𝑦)

2
 (2)

Where

𝑟 = Pearson Coefficient

𝑛 = number of attributes

∑𝑥𝑦= sum of products of the x and y values

∑𝑥 = sum of the x values

CHAPTER 4

26
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

∑𝑦= sum of the y values

∑𝑥2 = sum of the squared x scores

∑𝑦2= sum of the squared y scores

Figure 4.1: k-fold Cross-validation method [39]

Subsequently, to evaluate whether the algorithm is overfitting or underfitting,

the k-fold Cross-validation method is used [39]. Cross-validation is used when a piece

of the training set is put aside expressly for analysis and optimization. Parameters are

learned by this method on the training set and then evaluated the performance on the

validation set. In Figure 4.1, other folds are used as a training set and saved one-fold as

a validation set. It repeats using the validation set as each fold in turn.

To measures the performance of the model. Performance metrics are used. The

first equation is MAE [3]. The size of errors for the entire group is determined by MAE

using the average of absolute errors for a set of predicted and real values. Smaller MAE

indicates it is better.

Here is the equation for mean absolute error (MAE):

 𝑀𝐴𝐸 =
1

𝑁
∑ |(𝑦�̂� − 𝑦𝑖)|
𝑁
𝑖=1 (3)

Where

𝑀𝐴𝐸 = mean absolute error

CHAPTER 4

27
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

𝑁 = Total number of data points

𝑦𝑖= true value/observed value

𝑦�̂�= predicted value

 Moreover, the equation used to evaluate the performance result of the prediction

model is MSE. It is certainly the most straightforward and typical loss function. MSE

is expressed in units of the target variable's square. It is used to calculate the difference

between predicted and observed values.

Here is the equation for mean square error (MSE):

 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖)̂

2𝑁
𝑖=1 (4)

Where

𝑀𝑆𝐸 = mean square error

𝑁 = Total number of data points

𝑦𝑖= observed value

𝑦�̂�= predicted value

 The next equation is the arithmetic square root of MSE, or RMSE is used to

calculate the difference between predicted and observed values too [3]. Larger errors

are effectively penalised more harshly by RMSE. The accuracy of the prediction model

can be evaluated by calculating the RMSE. A smaller value of RMSE indicates a better

fit between the data and the model, and therefore a more accurate prediction model.

Here is the equation for root mean square error (RMSE):

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖)̂2
𝑁
𝑖=1 (5)

Where

RMSE= root mean square error

𝑁 = Total number of data points

𝑦𝑖= observed value

𝑦�̂�= predicted value

 Furthermore, a statistical metric MAPE is used to examine how accurately a

ML algorithm performs on a given dataset. The error referred to by the model

CHAPTER 4

28
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

evaluation can be defined by MAPE as a loss function. A smaller number of MAPE

indicate the model is better and with lesser error. Compared to RMSE, MAPE is a better

option since it is expressed as a percentage, which is simple for both developers and

end users to understand [48].

Here is the equation for mean absolute percentage error (MAPE):

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑖−𝑦�̂�

𝑦𝑖
|𝑁

𝑖=1 (6)

Where

𝑀𝐴𝑃𝐸= mean absolute percentage error

𝑁 = Total number of data points

𝑦𝑖= observed value

𝑦�̂�= predicted value

Next, mAP is used to evaluate the object detection model using YOLOv4. It

began by going through the process of turning a prediction score into a class label. Then,

a precision-recall curve is produced using various thresholds. Average precision is

measured from the curve. In the end, sum up the average precision of all the classes and

divide by n number of classes [41]. A higher score results in greater precision of the

model's detections.

Here is the equation for mean Average Precision (mAP):

 𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘
𝑘=𝑛
𝑘=1 (7)

Where

𝑚𝐴𝑃 = mean Average Precision

𝑛 = number of classes

𝐴𝑃𝑘= the average precision (AP) of class k

Next, YOLO calculated loss using the sum-squared error between the

predictions and the actual data [40]. The classification loss, the localization loss, and

the confidence loss make up the loss function. If an object is spotted, the squared error

of the class conditional probabilities for each class represents the classification loss for

each cell. Next, localization loss measures the size and position errors of the predicted

border boxes. Moreover, the confidence loss is the measurement of the objectness of

CHAPTER 4

29
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

the box, and it includes 2 equations where the first equation is used when an object is

detected in the box, and the second equation is used when an object is not detected in

the box. Eventually, all these three loss equations form a loss function for YOLO.

Here is the loss function for YOLO [40]:

(8)

Where

Line 1&2: Localization loss

𝟙𝑖𝑗
𝑜𝑏𝑗

= 1 if the j th boundary box in cell i is responsible for detecting the

object, otherwise 0

𝜆𝑐𝑜𝑜𝑟𝑑 = increase the weight for the loss in the boundary box coordinates

Line 3: Confidence loss (front & back)

Front:

Ĉ𝑖 = the box confidence score of the box j in cell i

𝟙𝑖𝑗
𝑜𝑏𝑗

= 1 if the j th boundary box in cell i is responsible for detecting the

object, otherwise 0

Back:

𝟙𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

= the complement of 𝟙𝑖𝑗
𝑜𝑏𝑗

Ĉ𝑖 = the box confidence score of the box j in cell i

𝜆𝑛𝑜𝑜𝑏𝑗 = weights down the loss when detecting background

𝜆𝑐𝑜𝑜𝑟𝑑∑∑𝟙𝑖𝑗
𝑜𝑏𝑗

[(𝑥𝑖 − 𝑥 𝑖)
2 + (𝑦𝑖 − ŷ𝑖)

2]

𝐵

𝑗=0

𝑆2

𝑖=0

+ 𝜆𝑐𝑜𝑜𝑟𝑑∑∑𝟙𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 −√ŵ𝑖)
2 + (√ℎ𝑖 −√ĥ)2]

𝐵

𝑗=0

𝑆2

𝑖=0

+∑∑𝟙𝑖𝑗
𝑜𝑏𝑗

(𝐶𝑖 − Ĉ𝑖)
2

𝐵

𝑗=0

𝑆2

𝑖=0

 + 𝜆𝑛𝑜𝑜𝑏𝑗∑∑𝟙𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

(𝐶𝑖 − Ĉ𝑖)
2

𝐵

𝑗=0

𝑆2

𝑖=0

+∑𝟙𝑖
𝑜𝑏𝑗

∑ (𝑝𝑖(𝑐) − 𝑝 𝑖(𝑐))
2

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑆2

𝑖=0

CHAPTER 4

30
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Line 4: Classification loss

𝟙𝑖
𝑜𝑏𝑗

= 1 if the area i contains an item; otherwise, 0.

𝑝 𝑖(𝑐)= denotes the conditional class probability for class c in cell i

Next, precision and recall are used to evaluate the classification model, which

the object detection model. Precision measures how accurately a positive prediction

was made. Recall measures the proportion of accurately recognised positive samples

[39].

Here is the equation for precision:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝐹𝑃+𝑇𝑃)
 (9)

Where

𝑇𝑃= True positive

𝐹𝑃= False positive

Here is the equation for recall:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝐹𝑁+𝑇𝑃)
 (10)

Where

𝑇𝑃= True positive

𝐹𝑁= False negative

Next, F1 score is applied to integrate recall and precision into a single score.

When precision and recall are large, the value of F1 score is high.

Here is the equation for 𝐹1 score:

𝐹1 =
𝑇𝑃

𝑇𝑃+
𝐹𝑁+𝐹𝑃

2

 (11)

Where

𝑇𝑃= True positive

𝐹𝑁= False negative

𝐹𝑃= False positive

CHAPTER 4

31
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Four types of hyperparameter tuning methods are utilized to determine the

optimal combination of hyperparameters for the SVR model, which include grid search,

random search, random search plus and parameter optimization loop.

The grid search technique is used to find the best hyperparameter combination

for the SVR model by exhaustively testing every combination on a grid [39]. However,

this method can take a long time and require a lot of computing power when the model

has many hyperparameters or large grids.

The next hyperparameter tuning method is random search. This method has an

advantage over grid search in terms of time and processing power because it only

evaluates a limited range of hyperparameter combinations. The characteristic of

random search allows for a wider range of hyperparameters to be explored without

significant increases in computation time. However, this approach may result in higher

variance during computation.

Another hyperparameter tuning method is random search plus, which can yield

results comparable to random search with fewer samples by dividing the

hyperparameter space into cells and exploring each one systematically. This ensures

that no cell is overlooked and reduces the likelihood of missing a promising solution.

Study from [52] have shown that random search plus outperforms scikit-learn's random

search by 10-50% in SVM models. Furthermore, random search plus can sample more

efficiently than random search, with shorter runtimes for each run. The optimal method

for dividing the space for random search plus is to use a value of k = 3.

The final hyperparameter tuning method is the parameter optimization loop,

which utilises a defined search strategy to iteratively adjust the parameters [53]. For

each parameter, an output flow variable is generated and applied to the model. This

method uses a random search strategy whereby the parameter combinations are picked

at random and assessed. The loop comes to an end after a pre-set number of iterations.

4.2 Framework

PySimpleGUI is the GUI framework employed in this project to create an

interactive UI display for predicting parking vacancy. It is open source and cross-

CHAPTER 4

32
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

platform, with a lot of documentation and tutorials available. PySimpleGUI integrates

with tkinter, Qt (pyside2), wxPython, and Remi (for browser support), making GUI

development incredibly quick and easy to learn. It only requires a Python3 environment

and can be installed with a single line of code (pip install pysimplegui). Users only need

to call the PySimpleGUI library before using it [51].

Compared to other popular Python GUI frameworks in the market,

PySimpleGUI is much easier to use and learn. In conclusion, PySimpleGUI is a great

choice for Python developers who want to create graphical user interfaces quickly and

easily without sacrificing functionality or control.

4.3 Flowchart

 Figure 4.2 shows the flowchart of developing the parking vacancy prediction

model using ML algorithm, SVR and Figure 4.3 shows the development flowchart of

the custom YOLOv4 object detection model.

CHAPTER 4

33
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2: Development Flowchart of Parking Vacancy Prediction Model

CHAPTER 4

34
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3: Development Flowchart of Custom YOLOv4 Object Detection Model

CHAPTER 5

35
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 EXPERIMENT/SIMULATION

5.1 System Requirement

5.1.1 Hardware

The hardware involved in this project is a laptop. A laptop was used to build the

parking prediction model. Table 5.1 show the specification of the hardware used in

conducting the research.

Table 5.1 Specifications of laptop

Description Specifications

Model Asus A510U series

Processor Intel Core i5-8250U

Operating System Windows 10

Graphic Intel® UHD Graphics 620 (FT2) DDR3 &

NVIDIA GeForce MX150 DDR5

Memory 4GB DDR4 + 8GB DDR4 RAM

Storage TOSHIBA MQ04ABF100 1TB SATA HDD

5.1.2 Software

The software used in this project is Google Colab, and Jupyter Notebook runs in

an anaconda environment.

Google Colab is a free cloud service for Python programming offered by Google.

It allows users to access and work on Jupyter notebooks without needing to download

or install any software. Additionally, Colab provides free access to GPUs, which is

essential for training a customized YOLOv4 object detector. As the laptop used for this

project lacked a strong GPU, Colab was utilized for the YOLOv4 model development.

The notebooks created in Colab are saved in Google Drive and can be easily shared,

similar to Google Docs or Sheets.

CHAPTER 5

36
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Jupyter Notebook is a web-based Python IDE designed for creating and sharing

documents with text, live code, equations, and visualisations [27]. It is open-source

software. Data scientists and researchers often prioritize data analysis over

development, and Jupyter Notebook is an excellent tool for this purpose. It provides an

interactive computational environment for creating data science apps, enabling users to

experiment with data and see the results of the code for each command they execute

[28]. Therefore, Jupyter Notebook was chosen for developing the parking vacancy

prediction model due to its interactivity and ease of sharing. However, it was not used

to develop the YOLOv4 object detection model.

Anaconda is an open-source distribution of the Python and R programming

languages for data research that tries to streamline package management and

deployment in Python version 3.9 [29]. A GUI programme called Anaconda Navigator

is part of the Anaconda distribution and makes it simple to install, run, and configure

applications like Jupyter Notebook. An isolated environment is one created using

Conda Python. It enables you to install packages without changing the Python setup on

your machine [30]. So, Anaconda has chosen to act as a virtual environment for running

Jupyter Notebook.

5.1.3 Software libraries

The software libraries adopted in this project are Scikit-learn, YOLOv4

algorithm and PySimpleGUI.

Scikit-learn is one of the popular Python libraries for developing ML algorithms

[31]. Scikit-learn includes libraries in solving classification, regression, clustering, pre-

processing, model selection, and dimensionality reduction problem. SVM libraries is

use in this project, the SVR algorithm is applying in this project especially during the

model development.

Next, the YOLOv4 algorithm was a real-time object detection model created by

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao [43]. At the time

of its release in April 2020, YOLOv4 was declared to be one of the most advanced real-

time object detectors. It operates by splitting the object detection problem into two

components: regression, which uses bounding boxes to identify object location, and

CHAPTER 5

37
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

classification, which identifies the object's class. YOLOv4 is built using the Darknet

framework [33]. Compared to YOLOv3, YOLOv4 performs 12 percent quicker and 10

percent more accurately [32]. Then in study [46] was conducted and showing that

YOLOv5 is faster in inference time when compared to YOLOv4 but they also mention

YOLOv4 on Darknet continues to be the most accurate if user is looking for the latest

and do with more specific configuration. Hence, YOLOv4 algorithm was chosen to use

in this project.

PySimpleGUI is a Python library that offers a robust and user-friendly GUI

framework, built on top of the tkinter library. It builds on top of tkinter library, makes

it easier to create GUIs by providing a wide range of capabilities and a simple API. It

utilizes the Python programming language to develop a GUI that simplifies the

visualization and interaction of data for users. PySimpleGUI can be easily installed

using the "pip install pysimplegui" command. The use of PySimpleGUI can greatly

expedite the prediction of parking vacancy models and create a simpler and clearer user

experience.

Table 5.2: Summarize for the software libraries

Scikit-learn • Python libraries for developing ML algorithms.

• Libraries for solving ML problem, classification,

regression and etc.

• Include SVR algorithm

YOLOv4 algorithm • Real-time object detection model

• Faster and more accuracy than YOLOv3

• Slower than YOLOv5 in inference time

• Continues to be the most accurate, without afraid of

having more specific configuration

PySimpleGUI • Python GUI framework

• Easy install

• Quick to learn and easy apply

CHAPTER 5

38
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.1.4 Datasets

Total of four datasets is used in this project. The datasets included PKLot dataset

[34], CARPK dataset [35], CNRPark+EXT dataset [36], and Aerial View of Parking

Lot [37].

Figure 5.1: PKLot PUCPR sample image during sunny weather [34]

Figure 5.2: PKLot UFPR04 sample image during rainy weather [34]

Figure 5.3: PKLot UFPR05 sample image during cloudy weather [34]

CHAPTER 5

39
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The PKLot dataset [34] contains 12,417 labeled images of parking lots. All

images were snapped at the parking lots of PUCPR and UFPR, which located in

Curitiba, Brazil, classified as vacant or occupied. The dataset is segmented based on

weather conditions, including sunny, overcast, and rainy, as shown in Figure 5.1-5.3.

The images display various challenges such as shadows from trees and buildings,

excessive sunshine exposure, poor lighting on rainy days, and differences in perspective.

Figure 5.4: CARPK sample image [35]

The second dataset utilized in this study is the CARPK dataset [35], which

includes almost 90,000 vehicles photographed by drones in four parking lots. The

images were captured from a height of approximately 40 meters, and each automobile's

bounding box is indicated on the image set. Additionally, a portion of the dataset from

PUCPR, which represents scenes that are obscured from the aerial view in the PKLot

dataset, was incorporated. The training set of the CARPK dataset comprises 989, and

the testing set consists of 459 images. This study was partially funded by Taiwan's

Ministry of Science and Technology, thus justifying that part of the CARPK dataset (in

Figure 5.4) was collected in Taiwan, although the study does not explicitly specify the

dataset collection location.

CHAPTER 5

40
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.5: CNRPark+EXT Camera 1 sample image [36]

The third dataset used in this project is CNRPark+EXT dataset [36]. The dataset

CNRPark+EXT was created on a parking lot with 164 parking spots and contains

around 150,000 labelled pictures. CNR-EXT is a subset of CNRPark+EXT. It is made

up of photographs taken between November 2015 and February 2016 by 9 cameras

using diverse views and angles of view and in varying weather situations (sunny,

overcast and rainy) in the CNR Research Area in Pisa, Italy. CNR-EXT records a

variety of lighting circumstances, including partial occlusion patterns imposed on

barriers like trees, lampposts, and other vehicles, as well as completely or partially

shadowing of the vehicles (Figure 5.5).

Figure 5.6: Aerial View of Parking Lot sample image [37]

The last dataset used in this project was named Aerial View of Parking Lot [37].

The dataset consists of pictures of several parking lots that were captured using a drone.

To manage the large images, each raw image was divided into 6 smaller images, which

were then compressed as shown in Figure 5.6. In total, 299 images were collected and

CHAPTER 5

41
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

divided into two segments: 280 images for training and 19 images for testing. The

images were labelled using the Make-Sense.ai labelling tool. The dataset was collected

by students at Tiangong University, and it can be reasonably inferred that the dataset

was collected in Tianjin, China, although the study does not explicitly state the location

of the dataset collection.

CHAPTER 5

42
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 5.3: Comparison of the datasets

Data set Size Location taken Noise (consider) Testing set size Training set size

PKLot 12,417

Pontical Catholic University of Parana

(PUCPR), and Federal University of

Parana (UFPR), located in Curitiba,

Brazil

Climate condition, buildings shadows,

presence of the trees, lampposts, and

other vehicles, excessive sunlight

exposure

2483 9934

CARPK 1448
Pontical Catholic University of Parana

(PUCPR) and Taiwan
Buildings shadows 459 989

CNRPark+EXT 144,965 CNR Research Area in Pisa, Italy

Climate condition, buildings shadows,

presence of the trees, lampposts, and

other vehicles, excessive sunlight

exposure

31825 113,140

Aerial View 299 Tianjin, China - 19 280

CHAPTER 5

43
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.2 Setting up software

Before begin developing the ML model, Anaconda needs to be downloaded and

installed on the laptop. Since Google Colab is a web IDE, no download or installation

is required. Anaconda can be easily installed by downloading Anaconda Python 3.9 64-

Bit Graphical Installer for Windows. After successfully installing Anaconda, Jupyter

Notebook is ready to use.

5.3 YOLOv4 model

5.3.1 Configuration on YOLOv4 model

Figure 5.7: Create a yolov4 folder in Google Drive

Figure 5.8: Create a training folder inside the yolov4 folder

Step 1, create a yolov4 folder in Google Drive (Figure 5.7) and a training folder

inside the yolov4 folder (Figure 5.8) to store training weight. Download the yolov4-

custom config file (yolov4-custom.cfg) from darknet/cfg directory.

!git clone https://github.com/AlexeyAB/darknet

CHAPTER 5

44
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.9: Output of cloning the darknet git repository

Step 2, download the darknet to the yolov4 folder by cloning the darknet git

repository (as in Figure 5.9).

Figure 5.10: The yolov4-custom file

In step 3, make changes in the yolov4-custom file which can be found in the cfg

folder under the yolov4 folder (in Figure 5.10).

Line batch size is the number of segments per iteration. If the line batch size is set

as 64, then there will be 64 images in every line batch. Next, the subdivision number

determines the number of “mini batches” in one batch. If the number of the subdivision

is 16, a batch has broken into 16 pieces. The GPU process four images at a time

(64/16=4), and it is repeated 16 times to complete a batch of 64 images. Once the batch

is complete, a new batch of 64 images begin processing. The max batches are the

number of iterations for the training, and the standard is the number of classes*2000 or

not less than 6000 iterations.

Furthermore, the line steps are set according to 80% and 90% of the max batches.

Moreover, the network size is the network resolution. The width and height must be

multiples of 32 and increasing width and height can increase precision; however,

increasing it does decrease the training speed. In addition, the line classes change

according to the number of classes that need to be trained. Lastly, the filter size is equal

to (number of classes+5) *3 [42]. Moreover, the learning rate used to train the model is

0.001, the default learning rate set by the YOLOv4 model. After 1000 iterations, the

learning rate will be manually updated to 0.0001 and used until 9000 iterations.

CHAPTER 5

45
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Changes made in the yolov4-custom configuration file are as below:

● change line batch to batch=64

● change line subdivisions to subdivisions=16

● change line max batches to 9000 (iterations)

● change line steps to 80% and 90% of max batches, which is steps= 7200, 8100

● set network size width=416 height=416

● change line classes to classes=2 in each of 3 [yolo]-layers

● change [filters=255] to filters= 21 in the 3 [convolutional]

The default value for the parameter "ignore_thresh" in YOLOv4 is 0.7, which

means that duplicated detections are kept only if their IoU with the ground truth

bounding box is greater than 0.7 [56]. Increasing this value can improve the accuracy

of the detector. However, the parking lot image dataset used in this project contains

around 100 objects with small bounding boxes per image, and a lot of noise due to

obstructions, road conditions, and weather conditions. This is different from typical

datasets that contain only a single or a few objects per image. Therefore, setting the

"ignore_thresh" value to 0.9 as suggested in [43] may not be suitable for this dataset,

as it is likely to cause overfitting issues.

Next, the parameter "iou_normalizer" serves as the normalizer for delta-IoU and

it normalizes the delta-IoU for every object's bounding box [56]. The default value for

this parameter in YOLOv4 is 0.07, while the value suggested in [43] is 0.5. However,

using an "iou_normalizer" with a value of 0.5 is not suitable for the dataset used, as it

may affect the calculation of the normalizer.

After several test on different value for the parameters network size width and

height, "ignore_thresh" and "iou_normalizer” it was observed that adjusting the

network size from 416 to 512 did not improve the object detector's accuracy. This lack

of improvement could be attributed to the image dataset's resolution, which is 640x640.

Another test was conducted using an "ignore_thresh" value of 0.9 and an

"iou_normalizer" value of 0.5, which resulted in poor performance even after 6000

iterations (as shown in the appendix). Both the mAp50% and average IoU results were

not more than 27%. Other tests were also conducted, such as adjusting the network size

width and height with only "ignore_thresh" or only "iou_normalizer" and they showed

CHAPTER 5

46
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

optimized results. However, after evaluating all the tested models, the default parameter

values yielded the most promising result.

Step 4a, create a data file and a names file and named both of the file as obj

(obj.data and obj.names). The obj.data file includes the number of classes, the directory

for the training file, and the test file, which includes images and labelled file names.

Next, the names file includes the names for the two classes, which are space-empty and

space-occupied. Then, the directory for the names file saves classes' names, and the

directory for the backup saves the training weight. Both files can be found in appendix.

Step 4b, create a python file name process (process.py). This process.py script

generates two files, train.txt and test.txt, each containing the paths to 90% of the images

and 10% of the images, respectively [43]. This python file (process.py) can be found in

appendix.

Figure 5.11: Upload needed file to yolov4 folder

Step 4c, upload the files (obj.zip, yolov4-custom.cfg, obj.data, obj.names and

process.py) to Google Drive inside the yolov4 folder (in Figure 5.11).

CHAPTER 5

47
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.12: Copy the files and paste under data and cfg folder

During data cleaning of the obj.zip dataset (which contained 12,412 labelled txt

files and images), it was discovered that some txt files were empty. After removing

these files, the dataset was left with 10,926 labelled txt files and images.

Step 5, remove all files from the data and cfg folders except for the labels folder

in the needed data. Then, move the files (obj.names and obj.data) from the yolov4

folder into the darknet directory. Afterward, unzip the obj.zip file to the data folder

located inside the darknet folder (as in Figure 5.12).

Figure 5.13: Copy and paste process file

Step 6, paste process file (process.py) to the darknet directory (in Figure 5.13)

and run the file to produce the train.txt and test.txt files in our darknet/data folder (in

Figure 5.12).

CHAPTER 5

48
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.14: Download the weights file for the Yolov4 pre-trained model

Step 7, download the weights file for the YOLOv4 pre-trained model. Figure

5.14 show the process and result of downloading the weights file. Transfer learning is

employed, whereby instead of training a model from scratch, YOLOv4 weights that

have already been trained up to 137 convolutional layers are utilized. By leveraging

transfer learning, the learning process can be accelerated and the accuracy can be

improved.

5.3.2 Train on YOLOv4 model

Figure 5.15: Connect to Google Drive

Before training the custom model, Google Colab must connect to Google Drive

(Figure 5.15) to access the download darknet, custom file and the dataset used for the

training.

%cd darknet/

!sed -i 's/OPENCV=0/OPENCV=1/' Makefile

!sed -i 's/GPU=0/GPU=1/' Makefile

!sed -i 's/CUDNN=0/CUDNN=1/' Makefile

!sed -i 's/CUDNN_HALF=0/CUDNN_HALF=1/' Makefile

!sed -i 's/LIBSO=0/LIBSO=1/' Makefile

Figure 5.16: Make changes in Makefile

 Then, modify the Makefile to enable OPENCV and GPU by turning CUDNN,

CUDNN_HALF and LIBSO value to 1 (Figure 5.16). OPENCV is an open-source

computer vision library designed to solve computer vision problems [44]. CUDNN is a

CHAPTER 5

49
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

GPU-accelerated library of primitives for deep neural networks [45]. After making

changes in Makefile, the darknet is ready to be built.

Figure 5.17: Build darknet

Figure 5.18: Train the custom model using the pre-train yolov4 weights output

Code that trains the custom model using the pre-train yolov4 weights:

!./darknet detector train data/obj.data cfg/yolov4-custom.cfg yolov4.conv.137 -dont_show -

map

A command “!make” is executed to build the darknet (Figure 5.17), the training

for the custom model starts by using the pre-train yolov4 weights using the code (trains

the custom model using the pre-train yolov4 weights). The output after executed the

code is shown in Figure 5.18. However, the output slot only can display up to 5000

lines, so the output since the start of the training cannot be previewed and screenshot

here. Total iterations for this training are 6000.

Code that continues training yolov4 based on its last weights:

!./darknet detector train data/obj.data cfg/yolov4-custom.cfg /mydrive/yolov4/training/yolov4-

custom_last.weights -dont_show -map

CHAPTER 5

50
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.19: Continue the training on last check point, last weights

 Training stopped after exceeding the usage limit of Google Colab. The previous

code (trains the custom model using the pre-train yolov4 weights) needs to be modified

to continue training the custom YOLOv4 model. Else, the training will be restarted

from the first iterations. Thus, the last weight is used to continue the training from the

last checkpoint using the code (continues training yolov4 based on its last weights) and

with the continuous output in Figure 5.19.

Figure 5.20: Training output after 6000 iterations

 After a total of 6000 iterations of the training, the output is shown in Figure 5.20.

CHAPTER 5

51
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

A custom YOLOv4 model was trained with the initial dataset of 12412 labelled

files, including empty files. After performing data cleaning to remove the empty files,

the dataset was reduced to 10926 labelled files. To improve the performance of the

model, an additional 3000 iterations were performed using only the cleaned dataset of

10926 labelled files.

Figure 5.21: Training output after 9000 iterations

Code that continues training yolov4 based on its last weights (modified):

!./darknet detector train data/obj.data cfg/yolov4-

custom.cfg /mydrive/yolov4/training/yolov4-custom_last.weights -dont_show

A modification was needed for the code (continues training yolov4 based on its

last weights), as it would otherwise output an error. This was due to an incompatibility

issue with the OpenCV version, as the training was being continued after a 6-month

break [57]. The modification involved removing the “-map” command, and the

resulting code (shown above) now outputs the iterations and saving process only,

without performing or outputting any mAP calculation during training. After a total of

9000 iterations of training, the output is shown in Figure 5.21.

CHAPTER 5

52
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4 Prediction model

5.4.1 Dataset preprocessing (text label file to CSV file)

Figure 5.22: Store parking features in data frame

The label text file generated from the YOLOv4 model is used to develop the

prediction model. Unfortunately, the Y v4 model’s accuracy is still not good

enough, so the PKLot label text file is used to train this prediction model. In order to

extract information from these text files, pre-processing is required.

First, execute the code (creating a new data frame to store the data (parking

features) extracted from all the files) in appendix. The format of the data frame is shown

as Figure 5.22.

 Second, the code (read the text files) in appendix processes the text files (cloudy,

rainy and sunny) that store the date and time and store the data (label file name)

accordingly into the list (cloudy, rainy and sunny).

 Third, the code (reading label XML file) in appendix indicates the process of

reading label XML file (second type of label file for the PKLot) and store it into

dictionary which to use later.

Some of the label text files are empty. Other than excluding these data in the

dataset, the empty labelled text files are recorded and replaced by labelled XML files

(another type of label file for PKLot dataset) that are downloaded from different sources.

All the data, such as DateTime, occupancy, and total parking, that is read in

from the XML files is stored in a dictionary and later utilized. The dictionary (my_dict)

key is the file name and include two values, numbers of occupied parking and the

number of total parking spaces in the parking area.

Fourth, the code (appends data into data frame) in appendix demonstrates how

to obtain data (occupied parking, total parking, date, time, and weather) from all label

CHAPTER 5

53
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

files, apply an if else segment (to fill in the different types of weather and the missing

value), and then save the data in accordance with the created data frame.

 In this process, the date and time extracted from the label text file are compared

with the weather lists to add one more feature, weather, and later stored in the data

frame. The weather condition included cloudy (equal to 0), rainy (equal to 1) and sunny

(equal to 2). Furthermore, if any text file matches the key in an empty label file

dictionary, the dictionary value should be utilised (replace the total parking and

occupancy value in the text file) and stored in the data frame.

Figure 5.23: Data frame of PKLot with weather condition

 Figure 5.23 show that all the data is successfully stored in the “df” data frame.

Fifth, the code (saves data frame as csv) in appendix shows saving the data frame

into a CS file and named “'pklot_weatherNcomplete”. This dataset was used to develop

the parking vacancy prediction model.

CHAPTER 5

54
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4.2 Data preprocessing

Figure 5.24: Read PKLot CSV file into data frame

The code (import the needed libraries) in appendix is applied to import the

needed python libraries and the output after executed the code (load the dataset into a

data frame) in appendix.

 The code (modify and create features) in appendix shows create new features

(DateTime and empty), drop unnecessary features (location, occupied, date and time)

and convert “DateTime” to DateTime data type and the numerical data (empty, total

parking and weather) to integer data type.

Figure 5.25: Quick description of all attributes in the pk data frame

CHAPTER 5

55
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 The output for the code (displays description of all attributes) in appendix is

show in Figure 5.25. In Figure 5.25 a total of 12416 columns for four features and

indicates no single cell in the column is a null value.

Figure 5.26: Check redundancy in DateTime

 The output for the code (checks DateTime redundancy) in appendix is display

in Figure 5.26 and in this figure displays the redundancy happened in DateTime is False

for 12416 over 12416 data. As a result, no redundancy occurred.

Figure 5.27: Statistics of all numerical attributes in pk data frame

 The output for the code (check statistics of all numerical attribute) in appendix

is display in Figure 5.27 and this figure display the summary statistics of all numerical

attributes in the data frame.

The summary statistic includes count (number of values that are not empty for

every numerical attribute), mean (the average values for every numerical attribute), and

std (standard deviation for every numerical attribute). Next it shows min (minimum

value for every numerical attribute), 25% (25% percentile* for every numerical

attribute), 50% (50% percentile* for every numerical attribute), 75% (75% percentile*

for every numerical attribute) and max (maximum value for every numerical attribute).

According to the statistic of total parking, there are 12416 data in this attribute.

Total parking has a mean value of 57.95 and a standard deviation of 31.92. Then with

CHAPTER 5

56
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

a minimum value of 28 and a maximum value of 100. Furthermore, 25% percentile

with the value of 28, 50% percentile with the value of 40, 75% percentile with the value

of 100.

According to the statistic of weather, there are 12416 data in this attribute.

Weather has a mean value of 1.22 and a standard deviation of 0.91. However mean and

standard deviation is not important in this case because Weather is a nominal data

convert to numeric which represent 0 as cloudy, 1 as rainy and 2 as sunny. Then

“Weather” has a minimum value of 0 and a maximum value of 2. Furthermore, 2 %

percentile with the value of 0, 50% percentile with the value of 2, 75% percentile with

the value of 2. As a result, most weather are in the condition of sunny as more than 50%

of the data are 2.

According to the statistic of empty, there are 12416 data in this attribute. Empty

has a mean value of 30.91 which mean average 30.91 parking is empty in the dataset

and a standard deviation of 31.8. Then with a minimum value of 0 and a maximum

value of 100. Furthermore, 25% percentile with the value of 4, 50% percentile with the

value of 27, 75% percentile with the value of 40.

CHAPTER 5

57
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.28: Histogram of each numerical attribute in pk data frame

The output for the code (plots the histogram of each numerical attribute) in

appendix is display in Figure 5.28 and this figure display the histogram for “Total

parking”, “Weather”, “DateTime” and “Empty”.

The “Total parking” histogram shows that there are only three types of parking

lots, which include the capacity of 28, 40 and 100.

Then, the “Weather” histogram shows that most of the data are 2 (2 is sunny),

which the quantity is close to seven thousand, the next highest is 0 (0 is cloudy), which

the quantity is around four thousand, and 1 (1 is rainy) happened the less among them

which is around one thousand and five hundred.

Furthermore, the “DateTime” histogram shows the distribution of the dataset in

date, and one bar contains around five days. This “DateTime” histogram also reveals

that some of the days in the histogram are empty, meaning the data set is not in

continuously.

Lastly, there are three peaks in the “Empty” histogram. After analysing this

histogram, the result is that three parking lot are frequently in zero capacity and a full

capacity condition. The total capacity of the first parking lot is 28, the next is 40, and

the last is 100.

Figure 5.29: correlation matrix of pk data frame

The output for the code (display correlation matrix) is display in Figure 5.29

and this figure shows the correlation matrix of the “pk” data frame. According to this

figure, empty and total parking strongly correlate with a value of 0.61, a strong

correlation relationship.

CHAPTER 5

58
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Next, the relationship between empty and weather has a correlation value of

negative 0.057, and this value is not expected as the statement in the literature review.

The reason for this might be because of the characteristic of the dataset. This dataset is

collected from a university, and the class conducted in the university is not cancel by

weather like rainy unless it is extreme weather like a hurricane or blizzard.

The weather condition in this dataset (cloudy, rainy and sunny) do not affect the

scheduling of the classes. Hence, no matter in rainy, sunny or cloudy, the class is still

being conducted, and the student still needs to attend it. In conclusion, the weather did

not affect much on the number of empty parking because this dataset is collected at a

university.

 Then, the relationship between total parking and weather has a correlation

value of 0.004, which is to be expected given that weather conditions are unlikely to

significantly impact the overall parking capacity of a lot. In conclusion, the correlations

show that weather is less critical in this dataset.

Figure 5.30: Count unique values of weather

 Figure 5.30 shows that the "Weather" column mostly contains the value 2,

indicating a sunny day with 6,912 occurrences, which is over half the total dataset of

12,416. The next highest value is 0, representing a cloudy day with only 4,162

occurrences. The least common weather condition in the dataset is 1, representing a

rainy day with only 1,324 occurrences.

CHAPTER 5

59
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.31: Graph plot with Empty and

DateTime in Cloudy

Figure 5.32: Graph plot with Empty and

DateTime in Rainy

Figure 5.33: Graph plot with Empty and DateTime in Sunny

The code (plots graph according to weather types) in appendix plot total three

figures (Figure 5.31, Figure 5.32 and Figure 5.33). The figures above show three types

of weather (cloudy, rainy and sunny) in the PKLot dataset with “Empty” as the y-axis

and “DateTime” as the x-axis.

In Figure 5.31, there is only 4162 datasets in cloudy, and the slash line is the

empty data that are missing in the DateTime because the weather other than cloudy is

filtered out.

Next, in Figure 5.32, there is only 1342 datasets in rainy, and the slash line is

the empty data that are missing in the Date Time because the weather other than rainy

is filtered out.

Lastly, in Figure 5.33, there is only 6912 datasets in sunny, and the slash line is

the empty data that are missing in the DateTime because the weather other than sunny

is filtered out.

5.4.3 Train on prediction model

The code (import the needed libraries) in the appendix imports all the necessary

libraries that will be used to develop and evaluate the ML models. These include the

SVR, LR, and decision tree regression libraries, as well as loss functions such as MSE,

MAE, and MAPE. Other relevant libraries, such as NumPy, Pandas, and Scikit-learn,

and more are also imported as shown in appendix.

CHAPTER 5

60
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

First, run the data pre-processing codes in appendix (done in the 4.3.2 Data processing

section):

1. Read the CSV file into a data frame

2. Create a new column name “DateTime” by combining the “Date” and “Time”

3. Convert “DateTime” to DateTime data type

4. Create a new column of the “DateTime_year”, “DateTime_month”,

“DateTime_week”, “DateTime_day”, “DateTime_hour”, “DateTime_minute”

and “DateTime_dayofweek” using the “DateTime” column

5. Create a new column name “Empty” by minus “Occupied” with “Total parking”

6. Drop unneeded columns (“Location”, “Date”, “Time”, “DateTime” and

“Occupied”)

7. Convert all numerical columns (“Total parking”, “Empty”, “Weather” and

“DateTime_week”) to integer data type

8. Select “Total parking” with the value of 100 as the training and testing dataset.

At step number four, the timestamp cannot fit the ML model, so a discrete component

is applied in DateTime.

Figure 5.34: The shape of the original training set and the processed training set x and y

 Second, the code (split dataset and pre-processing) in appendix is the last data

pre-processing steps before the ML training start.

This start by split the dataset into X as input matrix, y as output vector, and X

and y into training, validation and testing sets. The data is split into a training set with

a size of 70%, validation set with a size of 15% and a testing set with a size of 15%.

Next, the weather column is extracted and applied with one-hot encoding instead of the

ordinary label. Then, standardize the numeric data is applied due to the data contains

varying scales. After merging the numerical and weather datasets into a single NumPy

array for fitting the ML model, the data type of y_train, y_val and y_test sets should be

converted to NumPy arrays as well.

CHAPTER 5

61
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.34 show the original dataset has 12416 rows of data and 10 columns.

After pre-processing this dataset into x_train and y_train, the x_train has 3131 rows of

data (only including total parking equal to 100) with 11 columns (drop one feature to

create y and apply one-hot encoding to the weather column). For the y_train it has 3131

rows of data.

 After running the code above the ML training is ready to go. The performance

of the SVR algorithm is evaluated and make comparison by applying two other ML

algorithms like LR and Decision Tree Regression. The function “show10results” in

appendix is created to display the prediction value for the 10 random samples selected

from the training set.

regr = SVR()

regr.fit(X_train_tr, y_train)

y_pred = regr.predict(X_train_tr)

Figure 5.35: Performance output of the SVR model

Next, create a regressor object using the SVR library and train this model using

the training set. After the model fit the data, the evaluation of the model's performance

on the training set is started by predicting the y_train set (the empty parking space).

The “show10results” function is called to display the prediction value for the 10 random

samples selected from the training set.

Furthermore, to evaluate how well the created model fits the data, the function

code of MSE, RMSE, MAE and MAPE in appendix are used. The performance output

is shown in Figure 5.35. MSE result is 657.01. RMSE result is 25.63. MAE result is

19.35. Lastly, MAPE result is 2.3085e+15.

CHAPTER 5

62
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

k_fold_scores = cross_val_score(regr, X_train_tr, y_train,

 scoring = 'neg_mean_squared_error', cv=5)

regr_rmse_scores = np.sqrt(-k_fold_scores)

display_scores(regr_rmse_scores)

Figure 5.36: Result of 5-fold cross validation with SVR using the training set

The code above shows applying the 5-fold cross-validation score function on

the SVR model. The RMSE score is likely be overly optimistic when evaluated directly

on the training set. Hence cross-validation is used to obtain a more accurate RMSE

value. K-fold cross-validation is performed on the model by calling the cross_val_score

function from sklearn. In this case, a 5-fold cross-validation (cv=5) is performed on the

SVR model with an output score of negative mean squared error. This output is

subsequently converted to RMSE and display the mean of the RMSE, 26.6 (in Figure

5.36). The standard deviation of the RMSE, which is 1.0445 (in Figure 5.36).

lin_reg = LinearRegression()

lin_reg.fit(X_train_tr, y_train)

y_pred = lin_reg.predict(X_train_tr)

Figure 5.37: Performance output of the LR model

The code above shows training a model with LR. Before building a model using

LR, the first step is to import the LR library from sklearn.

Next, create a regressor object using the LR library and train this model using

the training set. After the model fit the data, the evaluation of the model's performance

on the training set is started by predicting the y_train set (the empty parking space), the

CHAPTER 5

63
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

target variable. The “show10results” function is called to display the prediction value

for the 10 random samples selected from the training set.

Furthermore, to evaluate how well the created model fits the data, the function

code of MSE, RMSE, MAE and MAPE in appendix are used. The performance output

is shown in Figure 5.37. MSE result is 795.06. RMSE result is 28.20. MAE result is

22.46. Lastly, MAPE result is 1.6063e+15.

k_fold_scores = cross_val_score(lin_reg, X_train_tr, y_train,

 scoring = 'neg_mean_squared_error', cv=5)

lin_reg_rmse_scores = np.sqrt(-k_fold_scores)

display_scores(lin_reg_rmse_scores)

Figure 5.38: Result of 5-fold cross validation with LR using the training set

The code above shows applying the 5-fold cross-validation score function on

the LR model. The RMSE score is likely be overly optimistic when evaluated directly

on the training set. Hence cross-validation is used to obtain a more accurate RMSE

value. K-fold cross-validation is performed on the model by calling the cross_val_score

function from sklearn. In this case, a 5-fold cross-validation (cv=5) is performed on the

LR model with an output score of negative mean squared error. This output is

subsequently converted to RMSE and display the mean of the RMSE, 28.26 (in Figure

5.38). The standard deviation of the RMSE, which is 0.6255 (in Figure 5.38).

tree_reg = DecisionTreeRegressor(random_state=42)

tree_reg.fit(X_train_tr, y_train)

y_pred = tree_reg.predict(X_train_tr)

CHAPTER 5

64
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.39: Performance output of the decision tree regression model

The code above shows training a model with Decision Tree Regressor. Before

building a model using decision tree regressor, the first step is to import the decision

tree regressor library from sklearn.

Next, create a regressor object using the Decision Tree Regressor library and

train this model using the training set. After the model fit the data, the evaluation of the

model's performance on the training set is started by predicting the y_train set (the

empty parking space), the target variable. The “show10results” function is called to

display the prediction value for the 10 random samples selected from the training set.

Furthermore, to evaluate how well the created model fits the data, the function

code of MSE, RMSE, MAE and MAPE in appendix are used. The performance output

is shown in Figure 5.39. MSE result is 0.0062. RMSE result is 0.0786. MAE result is

0.0063. Lastly, MAPE result is 1.8456e-04.

k_fold_scores = cross_val_score(forest_reg, X_train_tr, y_train,

 scoring = 'neg_mean_squared_error', cv=5)

tree_rmse_scores = np.sqrt(-k_fold_scores)

display_scores(tree_rmse_scores)

Figure 5.40: Result of 5-fold cross validation with decision tree regressor using the training set

The code above shows applying the 5-fold cross-validation score function on

the decision tree regression model. The RMSE score is likely be overly optimistic when

CHAPTER 5

65
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

evaluated directly on the training set. Hence cross-validation is used to obtain a more

accurate RMSE value. K-fold cross-validation is performed on the model by calling the

cross_val_score function from sklearn. In this case, a 5-fold cross-validation (cv=5) is

performed on the LR model with an output score of negative mean squared error. This

output is subsequently converted to RMSE and display the mean of the RMSE, 5.24 (in

Figure 5.40) The standard deviation of the RMSE, which is 0.5211 (in Figure 5.40).

5.4.4 Fine tune the prediction model

There are several parameters in SVR that undergo changes during

hyperparameter tuning, including C, gamma, degree, kernel, and epsilon. The

parameter C is responsible for controlling the margin of the hyperplane. If the value of

C is too low, it may result in an underfitting issue, whereas a high value of C may lead

to an overfitting issue [54].

The next parameter, gamma, determines the influence of a single training

example on the separation line. A low gamma value gives importance to points far from

the potential separation line, while a high gamma value gives importance to points near

the possible line. In this case, only the 'scale' and 'auto' options for gamma are applied

for hyperparameter tuning.

The parameter degree defines the degree of the polynomial kernel function used

in SVR. In this dataset, it was observed that a degree value of approximately 3 provides

optimal results. However, for other types of kernel functions, this parameter will be

ignored.

Next, the parameter kernel includes four types: linear, poly, rbf, sigmoid, and

precomputed. After manually testing the parameter kernel, the results show that "poly"

and "rbf" have the most optimized results for this dataset.

Lastly, the parameter epsilon determines the width of the tube around the

hyperplane [55]. Points that fall within this tube are considered accurate predictions and

are not penalized by the algorithm. The parameter epsilon was manually tested within

the range of 0 to 10, and the results indicated that an epsilon value of approximately 7

was optimal for this dataset.

CHAPTER 5

66
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The first parameter grid, denoted by “param_grid_svr2”, was created after

several tests and an understanding of each parameter. The grid consisted of a C value

range of 5000 to 10000 in increments of 1000, gamma values of scale and auto, degree

values of 1 and 3, kernel types of rbf and poly, and epsilon values of 6, 7, and 8, as

shown in the appendix. The second parameter grid, denoted by “param_random_svr”,

consisted of 20 randomly generated C values between 10 to 1000, with the same gamma

and kernel values as “param_grid_svr2”, degree values of 1, 3, and 5, and 10 epsilon

values randomly generated between 5 to 10.

Figure 5.41: Output after performed grid search on SVR model

Perform the first fine tuning technique, grid search, on the SVR model by using

the function code (returns the model after a grid search or random search has been

performed) in appendix with the input fine tuning technique name "Grid" and the

parameter grid named "param_grid_svr2" as in appendix. This fine tuning took 6361.84

seconds to finish, and the best hyperparameter for this model is shown in Figure 5.41.

Figure 5.42: Output after performed random search on SVR model

CHAPTER 5

67
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Perform the second tuning technique, random search, on the SVR model by using

the function code (returns the model after a grid search or random search has been

performed) in appendix with the input fine tuning technique name "Random" and the

parameter grid named "param_random_svr" as in appendix. This fine tuning took

215.93 seconds to finish, and the best hyperparameter for this model is shown in Figure

5.42.

Figure 5.43: Output after performed random search plus on SVR model

There is no existing library available to perform the random search plus method.

Therefore, a self-defined function for Random Search Plus was created based on the

study [52]. This function utilizes all the parameters available in "param_random_svr",

except for the parameter C, where only two C values are used at a time (one select

ascendingly, one select randomly). This explains why there are 20 iterations of Random

Search being performed, as shown in Figure 5.43. During this hyperparameter tuning,

the original SVR model's MSE error is recorded and compared to the MSE result of

each Random Search iteration. Finally, the Random Search iteration with the smallest

MSE error is outputted as an optimized SVR model.

CHAPTER 5

68
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Perform the third fine tuning technique, random search plus, on the SVR model

by using the function code (returns the model after a random search plus has been

performed) in appendix with the input parameter grid named "param_random_svr” as

in appendix. This fine tuning took 3519.83 seconds to finish. After it run 20 times

random search, the best hyperparameter for this model is shown in Figure 5.43.

Figure 5.44: Output after performed parameter optimization loop on SVR model

Since there was no library available to perform the parameter optimization loop

method, a self-defined function for Random Search Plus was created based on the

methodology described in [53]. This function tests every combination of

hyperparameters by randomly selecting one value for each parameter in

"param_random_svr” and repeats the testing according to the input number of

iterations, as shown in Figure 5.44 with 100 iterations. The optimized SVR model is

determined by selecting the model with the smallest MSE error among all models

generated in the iterations of the Random Search Plus function.

Perform the last fine tuning technique, parameter optimization loop, on the SVR

model by using the function code (returns the model after a parameter optimization

loop has been performed) in appendix with the input of 100 loops and the parameter

grid named "param_random_svr” as in appendix. This fine tuning took 140.26 seconds

to finish. After 100 loops, the best hyperparameter for this model is shown in Figure

5.44.

CHAPTER 5

69
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.5 Comment and highlight the feasibility of the proposed method

There is a significant amount of noise present in the images captured in the open

parking space. This noise includes parking spaces blocked by trees, oil leaks in the

parking lot, ground fissures on the parking lot, and faded parking lines. Furthermore,

the lighting conditions in the images are affected by the weather, and at times, the

parking lot photo may be overexposed due to sunlight. All of these conditions make it

challenging to detect empty and occupied parking spaces accurately. Fortunately, a

robust object detection algorithm called YOLOv4 is employed here, which has the

capability to handle all of these conditions with minimal time and resource costs.

YOLOv4 utilises CNN for object detection, and it has high object detection speed and

accuracy, resulting in fewer background faults.

Next, SVR is used to develop the parking vacancy prediction model. The

expected output of the prediction model is the number of empty parking spaces. This

prediction output is created by anticipating the input features collected from the parking

lot, which include the total parking space, date and time and the weather type. SVR is

well-suited for nonlinear and time series problems, making it a good choice for

developing the parking vacancy prediction model.

Additionally, implementing a user-friendly GUI for the parking vacancy

prediction model would increase accessibility for users without programming

knowledge. This could potentially expand the usage of the model to a wider audience.

The PySimpleGUI framework, which is known for its simplicity and cost-efficiency,

was chosen for the development of the GUI.

5.6 Concluding Remark

A hybrid prediction model is developed using the YOLOv4 framework and SVR

ML algorithm. In other words, this model is formed by a custom YOLOv4 object model

and an SVR model. This hybrid prediction model only requires the input dataset in an

image format, making the data collection process much easier in real life. The system

requirements to develop the model include a laptop as the hardware, software such as

Jupyter Notebook in the Anaconda environment, and main software libraries such as

CHAPTER 5

70
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

scikit-learn, Darknet YOLOv4, and PySimpleGUI. Four datasets from Brazil, Taiwan,

Italy, and China are used in this study.

CHAPTER 6

71
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSIN

6.1 Model Testing and Performance Metrics (YOLOv4 model)

The performance and work results of the YOLOv4 model

Figure 6.1: Training result

● Max batch is 9000

● Total loss is 2.402813

● The average loss is 3.582072

● Currently learning rate on 6000 iterations is 0.000001

● Time spends on process the batch 12.96769 seconds

● Number of images utilised overall during training 576000 images

● Time estimates to complete the max batch or iteration 0.257028 hours

Based on the training results depicted in Figure 6.1, it can be observed that the

YOLOv4 model was trained with 9000 iterations or max batch, resulting in a total loss

of 2.402813 and an average loss of 3.582072. According to [47], training should

continue until the average loss value falls below 0.3, as this parameter is a crucial

indicator of the model's performance. A lower average loss value indicates a better-

performing model, although it should not fall below 0.05. However, it is noteworthy

that the average loss for this custom YOLOv4 model increased from 2.947 at 6000

iterations to 3.582 at 9000 iterations. This suggests that the standard loss value may not

be applicable in this case, as the dataset used in this study has different characteristics

when compared to the dataset used in this study [47].

 Furthermore, at the beginning of training the learning rate is set to 0.001, after

training for 6000 iterations it decreases to 0.00001, then at 9000 iterations it decreases

to 0.000001. Learning rate decay was used and it helped with both optimization and

generalization during training. The batch processing time was 12.96769 seconds, and a

CHAPTER 6

72
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

total of 576000 images were used overall during training. Finally, the estimated time

remaining to complete the maximum batch or iteration in training is 0.257028 hours.

Figure 6.2: Training result with mAP@IoU=0.5

Figure 6.3: Training result with mAP@IoU=0.75

Precision, recall, and F1 score are presented in Figure 6.2 and Figure 6.3, and

these values were computed using the final weights. mAP is then calculated using IoU.

IoU measures the overlap between the predicted and ground truth bounding boxes, and

its value ranges from 0 to 1. For this model, the average IoU values for 0.5 and 0.75

IoU thresh are both 94.51%. Furthermore, the model achieved a high level of accuracy

in detecting the intended targets, as evidenced by the mAP values of 99.98% and 99.97%

at 50% and 75%, respectively, in the test dataset.

CHAPTER 6

73
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.4: Loss and mAP chart

In addition, the loss and mAP chart presented in Figure 6.4 only covers the range

from 4800 to 9000 iterations. This is because the last training was continued from 4800

iterations, and several loss and mAP charts from each continuous training were

overlapped to show the overall loss during training. Due to usage limits on Google

Colab, the training process for the custom model had to be segmented, and the loss and

mAP chart before 4800 iterations were not included. Figure 6.4 indicates that the loss

starts to increase after 9000 iterations, suggesting that the training should be stopped,

or the learning rate should be lowered. Upon completion of the 9000 iterations, a

"bad.list" file was generated to store any label files that may have issues.

CHAPTER 6

74
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

(i) (ii)a (ii)b

Figure 6.5: PKLot- PUCPR (i) test data, (ii) prediction result on the test data with (a) 0.2, (b) 0.7 thresh

value

(i) (ii)a (ii)b

Figure 6.6: CARPK (i) test data, (ii) prediction result on the test data with (a) 0.2, (b) 0.7 thresh value

(i) (ii)a (ii)b

CHAPTER 6

75
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.7: CNRPark+EXT (i) test data, (ii) prediction result on the test data with (a) 0.2, (b) 0.7 thresh

value

(i) (ii)a (ii)b

Figure 6.8: Aerial View of Parking Lot (i) test data, (ii) prediction result on the test data with (a) 0.2,

(b) 0.7 thresh value

The trained custom YOLOv4 model was evaluated on four unseen datasets,

namely PK Lot, CARPK, CNRPark+EXT, and Aerial View of Parking Lot. The first

test was conducted on the PK Lot sample dataset using a thresh value of 0.2 and 0.7.

The results are presented in Figure 6.5, which show that the model was able to detect

all the parking spaces in the centre area only, regardless of the thresh value used. This

issue is due to the limited number of labelled parking spaces in the centre area of the

PK Lot dataset. Additionally, the model performed well and achieved a perfect result

on this dataset. With the sign of the loss is increasing when the training approach 9000

iteration, it indicating the model has potential for overfitting.

The second test was conducted on the CARPK sample dataset using the same

threshold value as before. The results are presented in Figure 6.6. At a threshold value

of 0.2, the model performed poorly, wrongly identifying more than half of the occupied

parking spaces as vacant and mistaking the pavement markings on the road as empty

parking spaces. With a threshold value of 0.7, the model performed slightly better, with

every bounding box correctly positioned and unaffected by the pavement markings on

the road. However, the model still failed to correctly identify objects, as it identified

more than half of the occupied parking spaces as vacant. This can be explained by the

fact that this dataset contains incorrect pavement markings, which can mislead the

model into mistaking them for parking lines and output a poor result. Moreover, the

overfitting issue with this model can explain why it failed to correctly identify objects.

CHAPTER 6

76
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The third test was conducted on the CNRPark+EXT sample dataset using the

same threshold value as before. The results are presented in Figure 6.7. However, at a

threshold value of 0.2, the model incorrectly identified the car top as an empty parking

space. Even with a threshold value of 0.7, the model still could not accurately identify

the occupied parking spaces in the sample dataset. These prediction results are poor as

the model could not correctly identify the objects and misidentified the car top as an

empty parking space. It can be concluded that this dataset is not suitable for the model

as the images only show a single straight line under the car, making it difficult for both

humans and machines to identify it as a parking space.

During the last test on the Aerial View of Parking Lot sample dataset using the

same threshold value as before, there was an issue with overlapping anticipated and

true bounding boxes at a threshold value of 0.2, highlighting the importance of IoU for

this testing. The results are presented in Figure 6.8. At a threshold value of 0.7, the

overlapping issue did not occur, but the results still showed that the model needs further

improvement, as it was unable to identify every object in the image and misidentified a

few occupied parking spots as empty, possibly due to the lighting and colour of the car

tops being similar to that of the road, especially since it was a cloudy day with limited

sunlight.

6.2 Model Testing and Performance Metrics (Prediction model)

The performance and work results of the prediction model

Figure 6.9: The processed test set x

pk_filter_large.Empty.mean()

Figure 6.10: Mean of empty features after filer with total parking equal 100

The validation set's weather column is taken out and applied using one-hot

encoding rather than the standard label using the code (pre-processing validation set)

CHAPTER 6

77
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

in appendix. This is due to the data itself has various scales, and the numerical data in

the dataset needs to be standardised. Finally, create a single NumPy array by combining

the numerical and weather sets to predict using a ML model. In Figure 6.9, shows the

shape of validation set after pre-processing. The code (pre-processing test set) in

appendix is executed afterward, which functions basically as the validation set.

Both the x validation and test sets contain 671 rows of data after pre-processing

(only includes total parking equal to 100) and 11 columns (after applying one-hot

encoding to the weather column). The mean of empty features after filter with total

parking equal to 100 is 57.027 and it used to calculate the accuracy of the model using

RMSE.

Then it is ready to perform testing on the created model with the validation and

test sets. The function code (shows the evaluation result on train, validation and test

sets) is utilised to print the evaluation result on train, validation and test sets by input

the ML model.

show_3result(regr,'regr')

Figure 6.11: Performance testing on the SVR model

Perform testing using the validation and test sets on the SVR model by using

the function code (shows the evaluation result on train, validation and test sets) in

appendix. The performance outputs for the validation and test sets are shown in Figure

6.11. For validation set, MSE result is 737.82, RMSE result is 27.16, MAE result is

21.23 and MAPE result is 2.9220e+15. For test set, MSE result is 735.58, RMSE result

is 27.12, MAE result is 21.04 and MAPE result is 1.5783e+15.

show_3result(lin_reg,'lin_reg')

CHAPTER 6

78
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.12: Performance testing on the LR model

Perform testing using the validation and test sets on the LR model by using the

function code (shows the evaluation result on train, validation and test sets) in appendix.

The performance outputs for the validation and test sets are shown in Figure 6.12. For

validation set, MSE result is 859.48, RMSE result is 29.32, MAE result is 23.63 and

MAPE result is 2.2345e+15. For test set, MSE result is 851.11, RMSE result is 29.17,

MAE result is 23.32 and MAPE result is 1.1776e+15.

show_3result(tree_reg,'tree_reg')

Figure 6.13: Performance testing on the decision tree regression model

Perform testing using the validation and test sets on the decision tree regression

model by using the function code (shows the evaluation result on train, validation and

test sets) in appendix. The performance outputs for the validation and test sets are

shown in Figure 6.13. For validation set, MSE result is 20.34, RMSE result is 4.51,

MAE result is 1.81 and MAPE result is 2.0135e+13. For test set, MSE result is 15.72,

RMSE result is 3.96, MAE result is 1.79 and MAPE result is 2.2149e+14.

Following the SVR model is evaluated after performing on four different types

of hyperparameter tuning techniques. The function code (shows the evaluation result

on train, validation and test sets) is utilised to print the evaluation result on train,

CHAPTER 6

79
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

validation and test sets by inputting each of the SVR model after performing

hyperparameter tuning.

Figure 6.14: Performance testing on the fine-tuned SVR model, obtained using grid search

The performance of the fine-tuned SVR model, obtained using grid search, was

evaluated on the training, validation, and test sets using the function code (shows the

evaluation result on train, validation and test sets) provided in the appendix. The

resulting performance outputs for the three sets are summarized in Figure 6.14. The

MSE for the training set was found to be 99.47, while the MSE for the validation and

test sets are 148.14 and 141.53, respectively. Similarly, the RMSE for the training,

validation, and test sets were found to be 9.97, 12.17, and 11.90, respectively, while the

MAE results were 7.31, 8.78, and 8.85, respectively. Finally, the MAPE for the training

set was 4.852E+14, while the MAPE for the validation and test sets are 8.5308E+14

and 4.7698E+14, respectively.

Figure 6.15: Performance testing on the fine-tuned SVR model, obtained using random search

CHAPTER 6

80
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The performance of the fine-tuned SVR model, obtained using random search,

was evaluated on the training, validation, and test sets using the function code (shows

the evaluation result on train, validation and test sets) provided in the appendix. The

resulting performance outputs for the three sets are summarized in Figure 6.15. The

MSE for the training set was found to be 136.32, while the MSE for the validation and

test sets are 179.50 and 179.81, respectively. Similarly, the RMSE for the training,

validation, and test sets were found to be 11.68, 13.40, and 13.41, respectively, while

the MAE results were 8.67, 10.03, and 10.09, respectively. Finally, the MAPE for the

training set was 4.3559E+14, while the MAPE for the validation and test sets are

6.2625E+14 and 4.6148E+14, respectively.

Figure 6.16: Performance testing on the fine-tuned SVR model, obtained using random search plus

The performance of the fine-tuned SVR model, obtained using random search

plus, was evaluated on the training, validation, and test sets using the function code

(shows the evaluation result on train, validation and test sets) provided in the appendix.

The resulting performance outputs for the three sets are summarized in Figure 6.16. The

MSE for the training set was found to be 134.49, while the MSE for the validation and

test sets are 179.97 and 175.59, respectively. Similarly, the RMSE for the training,

validation, and test sets were found to be 11.60, 13.42, and 13.25, respectively, while

the MAE results were 8.14, 9.69, and 9.61, respectively. Finally, the MAPE for the

training set was 4.0003E+14, while the MAPE for the validation and test sets are

5.7626E+14 and 3.9977E+14, respectively.

CHAPTER 6

81
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.17: Performance testing on the fine-tuned SVR model, obtained using parameter optimization

loop

The performance of the fine-tuned SVR model, obtained using parameter

optimization loop, was evaluated on the training, validation, and test sets using the

function code (shows the evaluation result on train, validation and test sets) provided

in the appendix. The resulting performance outputs for the three sets are summarized

in Figure 6.17. The MSE for the training set was found to be 136.47, while the MSE

for the validation and test sets are 179.72 and 180.00, respectively. Similarly, the RMSE

for the training, validation, and test sets were found to be 11.68, 13.41, and 13.42,

respectively, while the MAE results were 8.71, 10.06, and 10.11, respectively. Finally,

the MAPE for the training set was 4.4265E+14, while the MAPE for the validation and

test sets are 6.3624E+14 and 4.6793E+14, respectively.

 From the result discussion above, the summary table summarizes all the results is made,

and this can be seen in following Table 6.1-2. While Table 6.3 show the two of the

parameter grid in details.

CHAPTER 6

82
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 6.1: Prediction result

Result/Models
Support vector

regression (SVR)
Linear regression (LR)

Decision tree

regression

Prediction Result- Training set

MSE 657.01 795.06 0.0062

RMSE 25.63 28.20 0.0786

MAE 19.35 22.46 0.0063

MAPE 2.3085E+15 1.6063E+15 1.85E-04

5-fold CV

Mean of CV 26.60 28.26 5.24

Standard

deviation of CV
1.04 0.63 0.52

Validation set

MSE 737.82 859.48 20.3422

RMSE 27.16 29.32 4.5102

MAE 21.23 23.63 1.8182

MAPE 2.922E+15 2.2345E+15 2.0135E+13

Test set

MSE 735.58 851.11 15.7242

RMSE 27.12 29.17 3.9654

MAE 21.04 23.32 1.7923

MAPE 1.5783E+15 1.1776E+15 2.2149E+14

CHAPTER 6

83
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 6.2: Prediction result (after fine-tuning)

Result/SVR Model Grid search Random search
Random search

plus

Parameter

optimization loop

Prediction Result- Training set

MSE 99.47 136.32 134.49 136.47

RMSE 9.97 11.68 11.60 11.68

MAE 7.31 8.67 8.14 8.71

MAPE 4.852E+14 4.3559E+14 4.0003E+14 4.4265E+14

Validation set

MSE 148.14 179.50 179.97 179.72

RMSE 12.17 13.40 13.42 13.41

MAE 8.78 10.03 9.69 10.06

MAPE 8.5308E+14 6.2625E+14 5.7626E+14 6.3624E+14

Test set

MSE 141.53 179.81 175.59 180.00

RMSE 11.90 13.41 13.25 13.42

MAE 8.85 10.09 9.61 10.11

MAPE 4.7698E+14 4.6148E+14 3.9977E+14 4.6793E+14

Number of Loops - -
20 times Random

search
100 times

Time took (minutes): 106.03 3.60 58.66 2.34

Parameter Grid: param_grid_svr2 param_random_svr param_random_svr param_random_svr

Best Parameters:

{'kernel': 'rbf',

'gamma': 'scale',

'epsilon': 7,

'degree': 1, 'C':

10000}

{'kernel': 'rbf',

'gamma': 'scale',

'epsilon': 7.3147,

'degree': 1, 'C':

982.1243}

{'kernel': 'rbf',

'gamma': 'scale',

'epsilon': 5.6508, 'C':

982.1243}

{'kernel': 'rbf',

'gamma': 'scale',

'epsilon': 7.4406, 'C':

982.1243}

CHAPTER 6

84
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 6.3: Parameter Grid

param_grid_svr2 param_random_svr

{'C':

[6000,7000,8000,9000,10000],

'gamma': ['scale', 'auto'],

'degree':[1,3],

 'kernel': ['rbf','poly'],

'epsilon':[6,7,8]}

{'C': uniform(loc=10,

scale=990).rvs(20),

'gamma': ['scale', 'auto'],

'degree':[1,3,5],

'kernel': ['rbf','poly'],

'epsilon': uniform(loc=5,

scale=5).rvs(10)}

CHAPTER 6

85
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

According to Table 6.1, the decision tree regression models have an overfitting

issue because the MSE and RMSE are so low, with values of 0.0062 and 0.0786 It

might be because this ML algorithm is too complex for the dataset. On the other hand,

the LR model also has a bit underfitting problem as the MSE and RMSE are slightly

higher than the SVR model, which is 795.06 and 28.20, respectively. This can be

explained by the fact that LR is a much simpler ML algorithm than SVR. The SVR

delivers the best result among the three models, but it still seems to have an underfitting

issue. An RMSE of SVR, which is 25.63 (25.63/57.027=44.96%), is not very pleasant

compared to the average “empty” value of 7.027.

Although the model created with decision tree regression has the most petite

MAE and MAPE. Still, it is not the best model because these values are too small, and

obviously, there is an overfitting issue. Then, the MAP and MAPE of the SVR model

are 19.35 and 2.3085e+15, respectively. In this case, the MAPE is larger than 1 due to

the fact that the y_true values are very close to or equal to zero. Therefore, the MAPE

is less significant in the model evaluation. The MAP of the SVR model is slightly lower

than that of the LR model. Hence, SVR is more considerable than the other two

algorithms. The standard value of MAPE should be 25% or lower, and the MAPE of

the decision tree regression model achieves this with a value of 0.018%, but the result

is too promising and might lead to model overfitting [49].

Table 6.1 shows a more accurate RMSE and standard deviation of RMSE for

every model after applying the 5-fold cross-validation score. First, convert all the

negative mean square errors that output as the result of a 5-fold cross-validation score

to RMSE, then the mean function is applied, and the calculated value (mean of RMSE)

is a more accurate RMSE. A more accurate RMSE for SVR, LR, and decision tree

regression are 26.6, 28.26, and 5.24, respectively.

After evaluating all the models on unseen data using validation and test sets, the

SVR model has a slight overfitting issue (MSE of the validation set is 2.24 lower than

the MSE of the test set), but it still performs the best among the three models, as the

MSEs are both the smallest, with values of 737.82 and 735.58, respectively.

Subsequently, the LR model has a bit of an overfitting issue too, as the MSE on the

validation set slightly decreases to 8.38 when compared to the MSE on the test set. Next,

CHAPTER 6

86
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

decision tree regression is overfitting, as the MSE increases significantly (from 0.0062

to 20.34) when testing with the validation set, and the MSE of the test set is 4.61 lower

than the MSE of the validation set. The changes is significant in decision tree regression

when comparing the changes in the result using a ratio.

Since SVR model perform the best among the three ML algorithms, SVR model

is being selected to fine-tuning to find the best hyperparameter. Four fine tuning

technique is applied. Two different parameter grid is utilised as shown in Table 6.3.

The prediction results of the fine-tuned SVR models are presented in Table 6.2.

The SVR model obtained through grid search exhibits an overfitting issue as the

validation set MSE is 6.61 lower than the test set MSE, despite having the lowest errors

among the four models. On the other hand, the SVR model obtained through random

search has a training MSE of 136.32, a validation MSE of 179.50, and a test MSE of

179.81, indicating that it is a good model with no overfitting or underfitting issues.

However, the SVR model obtained through random search plus also exhibits overfitting,

with a validation MSE decrement of 4.62 when compared to the test MSE. Finally, the

SVR model obtained through parameter optimization loop yields similar results to

random search, albeit with slightly higher errors on the training, validation, and test sets.

Based on the results, it can be concluded that the fine-tuned SVR model

obtained using random search is the most suitable model for this dataset. This model

has a good balance between training, validation, and test errors, indicating that it is not

overfitting or underfitting. In contrast, the other models either have overfitting or

underfitting issues, which may impact their performance on new, unseen data.

Therefore, the fine-tuned SVR model obtained using random search is the most

appropriate model for this dataset.

Figure 6.18: Save the fine-tuned SVR model using random search as sav file

CHAPTER 6

87
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Furthermore, the best weight obtained from the fine-tuned SVR model using

random search (Figure 6.18) is being utilized for the "Predict Open Space Parking

Vacancies" GUI, which is developed using PySimpleGUI.

Figure 6.19: Parking Vacancy Prediction Model-GUI

The initial version of the parking vacancy prediction model GUI requires three

inputs from the user: weather type, date, and time (Figure 6.19). As the SVR model was

developed using only the PK Lots dataset, the current version of the model can only

make predictions for PK Lots. Once the user has entered the date and time in the correct

format and selected the current weather, they can click the "Predict" button to obtain

the parking vacancy prediction based on their input. The "Clear" button can be used to

clear all inputs, including weather, date, time, and prediction output. To exit the system,

the user can click the "Exit" button.

The model is limited to predicting dates within the monthly range of July to

December every year, as it was developed using a dataset collected only from

September to November. To address this limitation, the dataset used to build the SVR

model should include data from every month of the year. This will ensure that the model

can make accurate predictions throughout the year. Based on the current dataset, the

model has shown promising results for predicting dates from August until November

each year.

CHAPTER 6

88
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.3 Project Challenges

Testing the YOLOv4 model in this project was a frustrating experience as the

software used for performing training and testing on the model was time-consuming.

In the current year, Google Colab's usage limit has decreased to 5-7 hours per day, with

a cooldown period of 12-16 hours. As a result, the actual time spent on fine-tuning and

testing in this research was almost double the expected time.

Performing hyperparameter tuning required significant CPU usage. To accelerate

the test speed, a PC in the FYP lab is being utilised. As testing various parameter

combinations took considerable time, a laptop was utilized to remotely control the lab

PC during working days. However, the lab PC unexpectedly shut down twice, resulting

in the loss of project software, test records, and important data. Although some critical

tests were saved on the drive, most of the data was lost. Resulting in spending nearly

three extra hours to reinstall necessary software and reconfigure the environment.

6.4 Objective Evaluation

The trained custom YOLOv4 model has demonstrated its ability to accurately

detect occupied and vacant parking spaces, even in the presence of various types of

noise, including obstacles, weather conditions, road conditions, and lighting conditions,

as evidenced by its high accuracy on the PK Lots sample dataset. However, when tested

on three other datasets, the results were poor, likely due to the pavement markings on

the road being too similar to the boundary lines around the parking spaces. A significant

point to consider is that these datasets were collected from different countries, with

varying parking lot styles and car designs, which may have contributed to the model's

decreased accuracy. Furthermore, this study did not consider nearby parking lots as part

of the model's training data.

Next, an SVR model is developed to predict current and future empty parking

spaces for the parking lot dataset that the model is trained with. This model takes into

account the weather conditions of the day, and weather conditions during the desired

prediction date will be requested as one of the input features. Additionally, an

interactive GUI for the parking prediction model is created with PySimpleGUI, which

allows individuals without programming experience to predict the availability of empty

parking spaces using the SVR model. However, the current version of the prediction

CHAPTER 6

89
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

model is limited to making predictions within the months from July to December, as

the dataset used to train the model only covers the period from September 2012 to

November 2012 (3 months only).

Overall, the hybrid prediction model is fully developed with the ability to predict

empty parking space using an interactive GUI. The model includes a custom YOLOv4

object detection model and an SVR ML algorithm, which together enable accurate

detection of occupied and vacant parking spaces. The model also takes into account

weather conditions as an input feature for prediction. While the current version of the

model is limited to making predictions within the months of July to December, it

represents a promising development in the field of parking prediction models.

6.5 Concluding Remark

In this chapter, the performance of the hybrid prediction model, which consists

of a custom YOLOv4 object detection model and an SVR model, is evaluated. The

testing and evaluation of both the YOLOv4 object detection model and the SVR model

are discussed in detail. Additionally, the challenges encountered during the fine-tuning

process for both models are documented. Finally, the objective of this study is evaluated

based on the performance and improvement of the hybrid prediction model.

CHAPTER 7

90
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 7 CONCLUSION AND

RECOMMENDATION

7.1 Conclusion

In conclusion, this project aimed to overcome the issue of vehicle parking by

developing a hybrid open parking space prediction model using ML and YOLOv4

object detector. The purpose of the model was to predict available parking space, which

would maximize the utilization of parking space and reduce idling, ultimately having a

positive impact on the environment. Through the literature review, it was found that

SVR and YOLO object detection algorithms built with CNN were the most suitable

algorithms for developing the prediction model. SVR is capable of handling nonlinear

and time series problems effectively, while YOLO is known for its ability to perform

real-time object detection with high accuracy. As a result, SVR was used to develop the

parking vacancy prediction model, and YOLO was chosen to develop the object

detection model.

During the YOLOv4 training, various environmental factors such as weather,

road condition, and obstacles like trees or lamp posts were included in the training

dataset. The custom YOLOv4 model was developed and tested on unseen data, and it

was able to generate a label text file that was used as the dataset in developing the ML

model. Several configurations were tested, and it was found that the first version of the

custom YOLOv4 model showed the most promising performance. The training

continued until 9000 iterations, where the model showed signs of overfitting. However,

when tested on three other datasets, the model did not perform well, likely due to

differences in the datasets used to train the model. Additionally, a new type of noise

was identified, where pavement markings on the road were mistakenly identified by the

model as empty parking spaces. As a result, future improvements for this model could

include training with additional datasets specifically for detecting parking spaces with

a reasonable noise included and testing on different parameter combinations in the

configuration file.

 Next, the parking vacancy prediction model was developed using SVR. The

dataset used to train the model included weather conditions, but the performance

analysis revealed that this feature had little impact on the number of empty parking

spaces. This issue was attributed to the dataset characteristics. Additionally, two other

CHAPTER 7

91
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ML algorithms were compared to the SVR model, and the results indicated that the

SVR model performed better. The SVR model was then fine-tuned using four

hyperparameter tuning techniques, and the model fine-tuned with the random search

method produced the most promising results, with the least overfitting issue and a lower

error rate than the other three techniques. Ultimately, the SVR model fine-tuned with

the random search method was integrated into the parking vacancy prediction GUI

model.

However, the dataset used to train the SVR model is limited from September

2012 to November 2012 because only the dataset with large parking spaces is used,

thereby the SVR model could not make a prediction for the month of January till June

for every year. Next, an idea to include nearby parking conditions as a feature in the

SVR model is not feasible for predicting parking vacancies because the prediction

model is applied using an ML algorithm.

Finally, an interactive GUI has been developed using PySimpleGUI to enable

users, particularly those without programming experience, to test the prediction model

and predict the current and future availability of open parking spaces. The GUI has been

designed with user-friendliness in mind, allowing non-technical users to easily access

and utilize the prediction model.

7.2 Recommendation

It is recommended to increase the dataset used to train the custom YOLOv4

model by including all available datasets in the future. For object detection research,

other research datasets typically have similar features and styles, with a single training

image having only a few or a dozen objects. In contrast, the dataset used in this project

contains a total of 100 small objects for most images. Therefore, it is important to

consider the characteristics and features of the dataset used, as it has a significant impact

on the model accuracy. Next, it is essential to increase the standards for dataset selection

and cleaning processes to ensure that the dataset used is free from errors and contains

characteristics suitable for the model. Otherwise, the ML model may have an

underfitting issue, leading to lower performance. Using inadequate or unsuitable data

can result in lower model performance, making it crucial to consider dataset quality and

suitability for the model.

CHAPTER 7

92
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 For the custom YOLOv4 model, further testing could be conducted on different

parameter combinations in the configuration file. However, given the time investment

required, such improvements may not yield significant results. Therefore, it would be

more practical to select a sufficient amount of diverse and suitable datasets.

Additionally, future work could involve including datasets with different road

conditions, such as painted parking spaces, incorrect pavement markings, faded

markings, and old markings. Furthermore, developing the object detection model with

a higher version of the YOLO framework could achieve a more precise and accurate

results.

Lastly, the SVR model can be improved by revising it to include more input

features such as the nearby parking conditions and the occurrence of public holidays on

the day. The nearby parking condition feature can be implemented by considering

driver parking behavior, their priorities or preferred parking spaces in the parking lot

using a rating scale. Additionally, a bigger dataset that includes data from each month

of the year should be prioritized as the current model is unable to accurately predict

parking vacancies in the first half of the year. Given the expected increase in the number

of input features, it is recommended that various types of ANN algorithms be tested for

developing the prediction model. ANNs are a suitable option when dealing with high

complexity, similar to SVR. In particular, ANNs have been found to be effective for

handling large numbers of input features, making them a viable alternative to SVR.

REFERENCES

93
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

REFERENCES

[1] Q. Fu, X. Yang, and Z. Niu, 2014. Bi-level objective model of optimal parking

lot recommendation based on parking guidance signs. Application Research of

Computers, vol. 31, no. 10, pp. 3017–3019, 2014

[2] Mambo Malaysia, “Idling wastes fuel and money (how much you could have

saved?),” Mambo Malaysia, 12-Aug-2021. [Online]. Available:

https://www.mambomalaysia.com/vehicle-idling-wastes-fuel-money/.

[Accessed: 12-Nov-2021].

[3] Z. Zhao and Y. Zhang, “A comparative study of parking occupancy prediction

methods considering parking type and parking scale,” Journal of Advanced

Transportation, 14-Feb-2020. [Online]. Available:

https://www.hindawi.com/journals/jat/2020/5624586/. [Accessed: 17-Nov-

2021].

[4] S. Gautam, “People in Kuala umpur waste 2 minutes every day looking for

parking,” GMP Blog, 0 -Apr-2021. [Online]. Available:

https://blog.getmyparking.com/2020/03/04/people-in-kuala-lumpur-waste-25-

minutes-every-day-looking-for-parking/. [Accessed: 07-Nov-2021].

[5] J. Fan, Q. u, and Z. Tang, “Predicting vacant parking space availability An

SVR method with Fruit Fly Optimisation,” IET Intelligent Transport Systems,

vol. 12, no. 10, pp. 1414–1420, 2018.

[6] . Pupale, “Support vector machines(svm) - an overview,” Medium, 11-Feb-

2019. [Online]. Available: https://towardsdatascience.com/https-medium-com-

pupalerushikesh-svm-f4b42800e989. [Accessed: 12-Nov-2021].

[7] A. Yadav, “Support ector Machines(S M),” Medium, 22-Oct-2018.

[Online]. Available: https://towardsdatascience.com/support-vector-machines-

svm-c9ef22815589. [Accessed: 12-Nov-2021].

[8] C. eng, J. Wu, and . Shao, “ eliability assessment of machining accuracy

on support vector machine,” Intelligent obotics and Applications, pp. 9–

678, 2008.

[9] H. Motulsky and A. Christopoulos, Fitting models to biological data using

linear and nonlinear regression: A practical guide to curve fitting. Oxford

University Press, 2004.

REFERENCES

94
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

 . Cournapeau, M. Brucher, M. Perrot, and É. uchesnay, “Scikit-Learn:

Machine learning in Python,” The Journal of Machine earning esearch, 01-

Feb-2011. [Online]. Available:

https://dl.acm.org/doi/10.5555/1953048.2078195. [Accessed: 13-Nov-2021].

[11] K. hiraj, “Top 4 advantages and disadvantages of support vector machine or

S M,” Medium, 26-Dec-2020. [Online]. Available:

https://dhirajkumarblog.medium.com/top-4-advantages-and-disadvantages-of-

support-vector-machine-or-svm-a3c06a2b107. [Accessed: 12-Nov-2021].

[12] A. Sethi, “Support vector regression in machine learning,” Analytics Vidhya,

01-Apr-2020. [Online]. Available:

https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-

tutorial-for-machine-learning/. [Accessed: 13-Nov-2021].

[13] T. Sharp, “An introduction to support vector regression (S),” Medium, 06-

May-2020. [Online]. Available: https://towardsdatascience.com/an-

introduction-to-support-vector-regression-svr-a3ebc1672c2. [Accessed: 13-

Nov-2021].

[14] Javatpoint, “ inear regression in machine learning” www.javatpoint.com,

2021. [Online]. Available: https://www.javatpoint.com/linear-regression-in-

machine-learning. [Accessed: 13-Nov-2021].

[15] Elite ataScience, “Modern machine learning algorithms Strengths and

weaknesses,” EliteDataScience, 08-Jul-2021. [Online]. Available:

https://elitedatascience.com/machine-learning-algorithms. [Accessed: 13-Nov-

2021].

[16] Y. Wu, . i, and . i, “Chi-square test neural network: A new binary

classifier based on backpropagation neural network,” ar iv.org, 04-Sep-2018.

[Online]. Available: http://arxiv.org/abs/1809.01079. [Accessed: 16-Nov-

2021].

[17] O. N. AL-Allaf, “Fast backpropagation neural network algorithm for reducing

convergence time of BPNN image compression,” ICIMU 2011 : Proceedings

of the 5th international Conference on Information Technology & Multimedia,

2011.

REFERENCES

95
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[18] A. Al-Masri, “ ow does back-propagation in Artificial Neural Networks

Work?,” Medium, 29-Jan-2019. [Online]. Available:

https://towardsdatascience.com/how-does-back-propagation-in-artificial-

neural-networks-work-c7cad873ea7. [Accessed: 13-Nov-2021].

[19] A. Aslanargun, M. Mammadov, B. Yazici, and S. Yolacan, “Comparison of

Arima, neural networks and hybrid models in time series: Tourist arrival

forecasting,” Journal of Statistical Computation and Simulation, vol. 77, no.

1, pp. 29–53, 2007.

[20] N. Bora, “Understanding Arima models for machine learning,” Capital ne,

09-Nov-2021. [Online]. Available: https://www.capitalone.com/tech/machine-

learning/understanding-arima-models/. [Accessed: 28-Sep-2022].

[21] J. Nyambal and . Klein, “Automated parking space detection using

Convolutional Neural Networks,” arXiv.org, 14-Jun-2021. [Online].

Available: http://arxiv.org/abs/2106.07228. [Accessed: 15-Nov-2021].

[22] J. M. Ealn Davan, T. W. Koh, D. L. Tong, and K. L. Tseu, “Anticipation of

parking vacancy during peak/non-peak hours using convolutional neural

network – yolov3 in university campus,” 2021 International Conference on

Green Energy, Computing and Sustainable Technology (GECOST), 2021.

[23] S. Saha, “A comprehensive guide to Convolutional Neural Networks - the eli

way,” Medium, 17-Dec-2018. [Online]. Available:

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-

neural-networks-the-eli5-way-3bd2b1164a53. [Accessed: 15-Nov-2021].

[24] K. Maladkar, “ verview of convolutional neural network in image

classification,” Analytics India Magazine, 21-Nov-2020. [Online]. Available:

https://analyticsindiamag.com/convolutional-neural-network-image-

classification-overview/. [Accessed: 15-Nov-2021].

[25] S. Bhuiya, “ isadvantages of CNN Models,” OpenGenus IQ: Computing

Expertise & Legacy, 19-Jun-2020. [Online]. Available:

https://iq.opengenus.org/disadvantages-of-cnn/. [Accessed: 16-Nov-2021].

[26] “Colaboratory,” Google colab. [Online]. Available:

https://research.google.com/colaboratory/faq.html. [Accessed: 06-Aug-2022].

REFERENCES

96
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[27] M. riscoll, “Jupyter Notebook An introduction,” Real Python, 28-Jul-2022.

[Online]. Available: https://realpython.com/jupyter-notebook-introduction/.

[Accessed: 07-Aug-2022].

[28] M. Cordeiro, “Why data scientists should use Jupyter notebooks with

moderation ?,” Medium, 23-Nov-2021. [Online]. Available:

https://towardsdatascience.com/why-data-scientists-should-use-jupyter-

notebooks-with-moderation-808900a69eff. [Accessed: 07-Aug-2022].

[29] “The world's most popular data science platform,” Anaconda. [nline].

Available: https://www.anaconda.com/. [Accessed: 08-Aug-2022].

[30] “Anaconda and Jupyter Notebook Setup,” Machine Learning for iOS

Developers, pp. 287–296, 2020.

[31] S. ay, “S M Support ector Machine Algorithm in machine learning,”

Analytics Vidhya, 26-Aug-2021. [Online]. Available:

https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-

machine-example-code/. [Accessed: 27-Nov-2021].

[32] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. iao, “Yolov4 ptimal Speed

and accuracy of object detection,” arXiv.org, 23-Apr-2020. [Online].

Available: https://arxiv.org/abs/2004.10934. [Accessed: 07-Aug-2022].

[33] “Yolov4 darknet object detection model,” Roboflow. [Online]. Available:

https://models.roboflow.com/object-detection/yolov4. [Accessed: 07-Aug-

2022].

[34] P. R. L. de Almeida, L. S. Oliveira, A. S. Britto, E. J. Silva, and A. L. Koerich,

“PK ot – a robust dataset for parking lot classification,” Expert Systems with

Applications, vol. 42, no. 11, pp. 4937–4949, 2015.

[35] M.-R. Hsieh, Y.- . in, and W. . su, “ rone-based object counting by

Spatially egularized egional Proposal Network,” 2017 IEEE International

Conference on Computer Vision (ICCV), 2017.

[36] G. Amato, C. Vairo, C. Gennaro, F. Falchi, and F. Carrara,

“CN PA K E TA dataset for visual occupancy detection of parking lots,”

CNR Parking Dataset - Dataset for visual occupancy detection of parking lots.

[Online]. Available: http://cnrpark.it/. [Accessed: 07-Aug-2022].

REFERENCES

97
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[37] BraunGe, “Aerial view car detection for Yolov ,” Kaggle, 02-May-2022.

[Online]. Available: https://www.kaggle.com/datasets/braunge/aerial-view-

car-detection-for-yolov5. [Accessed: 07-Aug-2022].

[38] V. Praharsha, “Yolov4 model architecture,” OpenGenus IQ: Computing

Expertise & Legacy, 11-Jan-2022. [Online]. Available:

https://iq.opengenus.org/yolov4-model-architecture/. [Accessed: 26-Aug-

2022].

[39] M. J. ouglass, “Book review ands-on machine learning with scikit-learn,

Keras, and tensorflow, 2nd edition by Aurélien Géron,” Physical and

Engineering Sciences in Medicine, vol. 43, no. 3, pp. 1135–1136, 2020.

[40] J. ui, “ eal-time object detection with Yolo, yolov2 and now yolov3,”

Medium, 27-Aug-2019. [Online]. Available: https://jonathan-

hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088.

[Accessed: 08-Aug-2022].

[41] J. ui, “Map (mean average precision) for object detection,” Medium, 03-Apr-

2019. [Online]. Available: https://jonathan-hui.medium.com/map-mean-

average-precision-for-object-detection-45c121a31173. [Accessed: 08-Aug-

2022].

[42] Techzizou, “Train a custom Yolov4 object detector (using Google Colab),”

Medium, 12-Mar-2022. [Online]. Available: https://medium.com/analytics-

vidhya/train-a-custom-yolov4-object-detector-using-google-colab-

61a659d4868. [Accessed: 08-Aug-2022].

[43] AlexeyAB, “Alexeyab/ arknet Yolov4 / scaled-yolov4 / yolo - neural

networks for object detection (windows and linux version of darknet),”

GitHub. [Online]. Available: https://github.com/AlexeyAB/darknet#how-to-

train-to-detect-your-custom-objects. [Accessed: 08-Aug-2022].

[44] “ penC library, author at opencv,” OpenCV. [Online]. Available:

https://opencv.org/author/opencv/. [Accessed: 08-Aug-2022].

[45] “Abstract,” NVIDIA Documentation Center. [Online]. Available:

https://docs.nvidia.com/deeplearning/cudnn/developer-

guide/index.html#:~:text=NVIDIA%C2%AE%20CUDA%C2%AE%20Deep,

Matrix%20multiplication. [Accessed: 08-Aug-2022].

REFERENCES

98
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[46] J. Nelson and J. Solawetz, “ esponding to the controversy about yolov ,”

Roboflow Blog, 04-Mar-2021. [Online]. Available:

https://blog.roboflow.com/yolov4-versus-yolov5/. [Accessed: 19-Aug-2022].

[47] Techzizou, “Train a custom yolov4 object detector on Windows,” Medium,

05-Oct-2021. [Online]. Available: https://medium.com/geekculture/train-a-

custom-yolov4-object-detector-on-windows-fe5332b0ca95. [Accessed: 20-

Aug-2022].

[48] S. Allwright, “ MSE vs MAPE, which is the best regression metric?,”

Stephen Allwright, 16-Aug-2022. [Online]. Available:

https://stephenallwright.com/rmse-vs-mape/. [Accessed: 23-Aug-2022].

[49] D. A. Swanson, “ n the relationship among values of the same summary

measure of error,” Review of Economics & Finance, 01-Jan-1970. [Online].

Available: https://ideas.repec.org/a/bap/journl/150301.html. [Accessed: 23-

Aug-2022].

[50] V. Paidi, J. Håkansson, H. Fleyeh, and . G. Nyberg, “ irectory of open

access journals,” Sustainability, 01-Mar-2022. [Online]. Available:

https://doaj.org/article/d57a4c9ecc4947739c082ebdbe32a0bb. [Accessed: 14-

Feb-2023].

[51] “Python guis for humans,” PySimpleGUI. [nline]. Available

https://www.pysimplegui.org/en/latest/#install. [Accessed: 03-Apr-2023].

[52] B. i, “ andom search plus A more effective random search for machine

learning hyperparameters optimization,” T ACE, ct-2020. [Online].

Available: https://trace.tennessee.edu/utk_gradthes/5849/. [Accessed: 13-Apr-

2023].

[53] “Parameter ptimization oop Start,” KNIME Community ub. [nline].

Available:

https://hub.knime.com/knime/extensions/org.knime.features.optimization/lates

t/org.knime.optimization.internal.node.parameter.loopstart.LoopStartParOptN

odeFactory. [Accessed: 13-Apr-2023].

[54] S. Patel, “Chapter 2 S M (Support ector Machine) - theory,” Medium, 04-

May-2017. [Online]. Available: https://medium.com/machine-learning-

101/chapter-2-svm-support-vector-machine-theory-f0812effc72. [Accessed:

18-Apr-2023].

REFERENCES

99
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[55] S. obilas, “Support vector regression (S) - one of the most flexible yet

robust prediction algorithms,” Medium, 12-Feb-2022. [Online]. Available:

https://towardsdatascience.com/support-vector-regression-svr-one-of-the-

most-flexible-yet-robust-prediction-algorithms-

4d25fbdaca60#:~:text=SVR%20has%20an%20additional%20tunable,not%20

penalized%20by%20the%20algorithm. [Accessed: 18-Apr-2023].

[56] AlexeyAB, “CFG parameters in the different layers,” Git ub, 09-Jul-2020.

[Online]. Available: https://github.com/AlexeyAB/darknet/wiki/CFG-

Parameters-in-the-different-layers. [Accessed: 19-Apr-2023].

[57] AlexeyAB, “Cudnn error while training -map · issue

#71 3 · Alexeyab/ arknet,” Git ub. [nline]. Available

https://github.com/AlexeyAB/darknet/issues/7153. [Accessed: 19-Apr-2023].

APPENDIX

1
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX A

ISMSI 2023 Acceptance Notification of Full Paper

APPENDIX

2
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX

3
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

YOLOv4 configuration files

Content for the data file named obj (obj.data):

classes = 2

train = data/train.txt

valid = data/test.txt

names = data/obj.names

backup = /mydrive/yolov4/training

Content for the names file named obj (obj.names):

space-empty

space-occupied

Content for the names file named process (process.py):

import glob, os

Current directory

current_dir = os.path.dirname(os.path.abspath(__file__))

current_dir = 'data/obj'

Percentage of images to be used for the test set

percentage_test = 10;

Create and/or truncate train.txt and test.txt

file_train = open('data/train.txt', 'w')

file_test = open('data/test.txt', 'w')

Populate train.txt and test.txt

counter = 1

index_test = round(100 / percentage_test)

for pathAndFilename in glob.iglob(os.path.join(current_dir, "*.jpg")):

title, ext = os.path.splitext(os.path.basename(pathAndFilename))

 if counter == index_test:

 counter = 1

 file_test.write("data/obj" + "/" + title + '.jpg' + "\n")

 else:

 file_train.write("data/obj" + "/" + title + '.jpg' + "\n")

 counter = counter + 1

Code used to connect to Google Drive:

#mount drive

%cd ..

from google.colab import drive

drive.mount('/content/gdrive')

Creating a symbolic link allows accessing /content/gdrive/My\ Drive/ through the shorter

path /mydrive.

APPENDIX

4
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

!ln -s /content/gdrive/My\ Drive/ /mydrive

#Navigate to /mydrive/yolov4

%cd /mydrive/yolov4

Code used to download the weights file for the YOLOv4 pre-trained model:

!wget

https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.

conv.137

YOLOv4 test with “ignore_thresh" value of 0.9 and "iou_normalizer" value of 0.5:

Prediction model preprocessing (text label file to CSV file)

Code that read the text files:

#store parking datetime in list according to weather status

cloudy=[]

rainy=[]

sunny=[]

with open('C:\\Users\\weiju\\A parking data\\sample\\cloudy.txt') as f:

 Lines = f.readlines()

 for line in Lines:

 cloudy.append(line.strip())

f.close()

with open('C:\\Users\\weiju\\A parking data\\sample\\rainy.txt') as f:

 Lines = f.readlines()

 for line in Lines:

 rainy.append(line.strip())

APPENDIX

5
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

f.close()

with open('C:\\Users\\weiju\\A parking data\\sample\\sunny.txt') as f:

 Lines = f.readlines()

 for line in Lines:

 sunny.append(line.strip())

f.close()

Code that creating a new data frame to store the data(parking features) extracted from

all the files:

#create dataframe to store parking features

parkingDataset = ({

 'Location':[],

 'Occupied' :[],

 'Total parking':[],

 'Date':[],

 'Time':[],

 'Weather':[]

 })

df = pd.DataFrame(parkingDataset)

print(df)

Code that prints out dataframe:

print(df)

Code that reading label XML file:

#store labelfile(xml) that are null in the dataset(original)

loss=[]

with open('C:\\Users\\weiju\\A parking data\\sample\\output.txt') as f:

 Lines = f.readlines()

 for line in Lines:

 loss.append(line.strip())

f.close()

#save label file(xml) information (datetime, occupancy and empty parking) to

dictonary(my_dict)

my_dict={ }

for filename in loss:

 tempFor1=[] #occupy

 temp=[] #empty

 file = minidom.parse(os.path.join("C:\\Users\\weiju\\A parking

data\\missing_xml\\",filename))

 models = file.getElementsByTagName('space')

 for elem in models:

 word=elem.attributes['occupied'].value

 if word=='1':

 tempFor1.append(word)

 else:

 temp.append(word)

APPENDIX

6
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 my_dict[os.path.basename(filename).split('.xml')[0]] =

[len(tempFor1),len(temp)+len(tempFor1)]

print(len(my_dict))

Code that appends data into data frame:

#retrive data from every labelled file and store it according to pre-create dataframe

path =r"C:/Users/weiju/A parking data/PKLot/PKLot_dataset/"

for filename in glob.glob(os.path.join(path, '*.txt')):

 with open(os.path.join(os.getcwd(), filename), 'r') as f: # open in readonly mode

 fileName=os.path.basename(filename).split('_jpg')[0]

 location='PKlots'

 date= datetime.strptime(fileName[:10],"%Y-%m-%d").strftime('%d/%m/%Y')

 time= datetime.strptime(fileName[11:], '%H_%M_%S').time()

 temp=fileName.strip()

 if fileName in cloudy:

 weather=0

 elif fileName in rainy:

 weather=1

 elif fileName in sunny:

 weather=2

 else :

 weather=3

 temp=[]#for empty parking

 tempFor1=[]#for occupied parking

 for line in f:

 words = line.split()

 if words[0]=='1':

 tempFor1.append(words[0])

 else:

 temp.append(words[0])

 empty=len(temp)

 occupied=len(tempFor1)

 totalParking=len(tempFor1)+len(temp)

 if fileName in my_dict.keys():

 value=my_dict[fileName]

 occupied=value[0]

 totalParking=value[1]

 new_row = {'Location':location, 'Occupied':occupied, 'Total parking':totalParking,

'Date':date,'Time':time,'Weather':weather}

 df = df.append(new_row, ignore_index=True)

Code that saves data frame as csv:

#save dataframe as csv

path= 'C:\\Users\\weiju\\A parking data\\'

df.to_csv(path+'pklot_weatherNcomplete.csv', index=False)

APPENDIX

7
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Prediction model preprocessing

Code used to import the needed libraries:

import python libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import joblib

import random

from datetime import datetime

from time import time

from sklearn.pipeline import make_pipeline

from sklearn.preprocessing import StandardScaler, LabelBinarizer

from sklearn.metrics import mean_squared_error, mean_absolute_error,

mean_absolute_percentage_error

from sklearn.model_selection import GridSearchCV, RandomizedSearchCV,

StratifiedKFold, cross_val_score

from sklearn.tree import DecisionTreeRegressor

from sklearn.linear_model import LinearRegression

from sklearn.svm import SVR

from scipy.stats import uniform, randint

Code that used to modify and create features for dataset:

pk["DateTime"] = pk["Date"] +' '+ pk["Time"]

#create new columns to store empty space

pk['Empty'] = (pk['Total parking'] - pk['Occupied'])

#drop unneeded attribute- Occupied, location, duplicate data and time

pk.drop('Location', inplace=True, axis=1)

pk.drop('Occupied', inplace=True, axis=1)

pk.drop('Date', inplace=True, axis=1)

pk.drop('Time', inplace=True, axis=1)

#convert object to DateTime

pk['DateTime'] = pd.to_datetime(pk['DateTime'], format = '%d/%m/%Y %H:%M:%S',

errors = 'coerce')

#convert float to integer

pk['Empty'] = pk['Empty'].astype(np.int64)

pk['Total parking'] = pk['Total parking'].astype(np.int64)

pk['Weather'] = pk['Weather'].astype(np.int64)

Code that read the dataset into a data frame:

#read dataset (parking lot dataset with null fixed and weather included)

pk = pd.read_csv("pklot_weatherNcomplete.csv")

pk

Code that displays description of all attributes:

Quick description all attributes in pk after process

pk.info()

Code that checks DateTime redundancy:

APPENDIX

8
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

#check redundancy DateTime

pk['DateTime']. duplicated().value_counts()

Code that check statistics of all numerical attribute:

The statistics of all numerical attributes in pk

pk.describe()

Code that plots the histogram of each numerical attribute:

Plot the histogram of each numerical attribute in pk(occupied, total parking, weather and

DateTime)

pk.hist(bins=50, figsize=(20,15))

plt.show()

Code that display correlation matrix:

The correlation matrix of pk

no value with nearly to 1

corr_matrix=pk.corr()

corr_matrix

Code that counts number for types of weather:

pk['Weather'].value_counts()

Code that plots graph according to weather types:

#visualization

pk_filter_large = pk[(pk['Weather']==0)]

pk_filter_large.plot(x='DateTime',y='Empty', color='orange')

plt.title('Cloudy')

plt.show()

pk_filter_large = pk[(pk['Weather']==1)]

pk_filter_large.plot(x='DateTime',y='Empty', color='orange')

plt.title('Rainy')

plt.show()

pk_filter_large = pk[(pk['Weather']==2)]

pk_filter_large.plot(x='DateTime',y='Empty', color='orange')

plt.title('Sunny')

plt.show()

Prediction model training

Code that perform data pre-processing:

#load dataset (parking lot dataset with null fixed and weather included)

pk = pd.read_csv("pklot_weatherNcomplete.csv")

#combine date and time in single column

pk["DateTime"] = pk["Date"] +' '+ pk["Time"]

#convert object to DataTime

pk['DateTime'] = pd.to_datetime(pk['DateTime'], format = '%d/%m/%Y %H:%M:%S',

errors = 'coerce')

APPENDIX

9
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

pk['DateTime_year'] = pk['DateTime'].dt.year

pk['DateTime_month'] = pk['DateTime'].dt.month

pk['DateTime_week'] = pk['DateTime'].dt.isocalendar().week

pk['DateTime_day'] = pk['DateTime'].dt.day

pk['DateTime_hour'] = pk['DateTime'].dt.hour

pk['DateTime_minute'] = pk['DateTime'].dt.minute

pk['DateTime_dayofweek'] = pk['DateTime'].dt.dayofweek

#create new columns to store empty space

pk['Empty'] = (pk['Total parking'] - pk['Occupied'])

#drop unneeded attribute- Occupied, location, duplicate data and time

pk.drop('Location', inplace=True, axis=1)

pk.drop('Date', inplace=True, axis=1)

pk.drop('Time', inplace=True, axis=1)

pk.drop('DateTime', inplace=True, axis=1)

pk.drop('Occupied', inplace=True, axis=1)

#convert float to integer

pk['Empty'] = pk['Empty'].astype(np.int64)

pk['Total parking'] = pk['Total parking'].astype(np.int64)

pk['Weather'] = pk['Weather'].astype(np.int64)

pk['DateTime_week'] = pk['DateTime_week'].astype(np.int64)

#filter out parking lot type with the parking space size

pk_filter_large = pk[(pk['Total parking']==100)]

pk_filter_large.info()

Code that split dataset and pre-processing:
Split the data set into the input matrix and output vector

X = pk_filter_large.drop('Empty', axis = 1)

y = pk_filter_large['Empty']

Split the dataset into training and testing set

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=3)

X_train,X_val,y_train,y_val=train_test_split(X_train,y_train,test_size=0.15/0.85,random_s

tate=2)

split the weather columns to be apply one-hot encoding later

X_train_num = X_train.drop('Weather', axis = 1)

X_train_weather = X_train['Weather']

Standardize numeric data

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler(copy=False)

scaler.fit(X_train_num)

X_train_num_tr = scaler.transform(X_train_num)

One-hot encode weather column

from sklearn.preprocessing import LabelBinarizer

lb_encoder = LabelBinarizer()

lb_encoder.fit(X_train_weather)

X_train_weather_tr = lb_encoder.transform(X_train_weather)

combine the transformed numerical and weather set ('Cloudy','Rainy','Sunny')

X_train_tr = np.hstack([X_train_num_tr, X_train_weather_tr])

y_train = y_train.values ; #convert to numpy array

APPENDIX

10
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

y_val = y_val.values

y_test = y_test.values

Code that shows shape of original dataset (train):

print('Shape of original dataset, train:', pk.shape)

print('x: shape=', X_train_tr.shape, 'type=', type(X_train_tr))

print('y: shape=', y_train.shape, 'type=', type(y_train))

Code for “show10results” function

#show10results function

def show10results(y_train, y_pred):

 print('Result for the 10 random samples:')

 selected = np.random.randint(0, len(y_train), 10)

 for i in selected:

 print('actual = {:7.0f} pred ={:7.0f}'.format(y_train[i], y_pred[i]))

Function code of MSE, RMSE, MAE and MAPE:

Show result of 10 random samples

show10results(y_train, y_pred)

Show the MSE RMSE MAE and MAPE

regr_mse = mean_squared_error(y_train , y_pred)

regr_rmse = np.sqrt(regr_mse)

final_mae = mean_absolute_error(y_train , y_pred)

final_mape = mean_absolute_percentage_error(y_train, y_pred)

print('MSE =', regr_mse)

print('RMSE =', regr_rmse)

print('MAE=', final_mae)

print('MAPE=', final_mape)

Fine tune the prediction model

Parameter grid named “param_grid_svr2”

param_grid_svr2 = {'C': [6000,7000,8000,9000,10000],

 'degree':[1,3],

 'gamma': ['scale', 'auto'],

 'epsilon':[6,7,8],

 'kernel': ['rbf','poly']}

Parameter grid named “param_random_svr”

param_random_svr = {'C': uniform(loc=10, scale=990).rvs(20),

 'gamma': ['scale', 'auto'],

 'degree':[1,3,5],

 'kernel': ['rbf','poly'],

 'epsilon': uniform(loc=5, scale=5).rvs(10)}

APPENDIX

11
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Function code that returns the model after a grid search or random search has been

performed:

def perform_search_svr(grid_random, algo, parameter):

 k = StratifiedKFold(n_splits=5)

 #identify grid or random search

 if grid_random=='Grid':

 search_obj=GridSearchCV(algo, parameter, refit = True, verbose = 3, cv=k)

 elif grid_random=="Random":

 search_obj=RandomizedSearchCV(estimator=algo,

 param_distributions=parameter,

 n_iter=100,

 scoring='neg_mean_squared_error',

 cv=k,

 n_jobs=-1

)

 print('Performing ', grid_random,' Search...', end = '')

 t0 = time()

 # perform grid search

 search_obj.fit(X_train_tr, y_train)

 print('done')

 print('time took:', time() - t0)

 return search_obj

Function code that returns the model after a random search plus has been performed:

def perform_search_randomPlus(parameter):

 # the number of iterations for random search plus

 num_iterations = len(parameter['C'])

 print('Performing Random Search Plus...\nFor',num_iterations, end = ' times......\n')

 t0 = time()

 model = SVR()

 model.fit(X_train_tr, y_train)

 # Evaluate the model's performance on a validation set

 y_pred = model.predict(X_val_tr)

 mse = mean_squared_error(y_val, y_pred)

 best_mse = mse

 print('\nNo_0 MSE is ',mse)

 for i in range(num_iterations):

 new_para={

 'kernel': parameter['kernel'],

 'C': (parameter['C'][i], random.choice(parameter['C'])),

 'gamma': parameter['gamma'],

 'epsilon': parameter['epsilon']

 }

 t1 = time()

 k = StratifiedKFold(n_splits=5)

 search_obj=RandomizedSearchCV(estimator=model,

 param_distributions=new_para,

 n_iter=100,

 scoring='neg_mean_squared_error',

APPENDIX

12
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 cv=k,

 n_jobs=-1)

 search_obj.fit(X_train_tr, y_train)

 y_pred = search_obj.predict(X_val_tr)

 mse = mean_squared_error(y_val, y_pred)

 print('No_',i+1,'MSE is ',mse, ' -----time took:', time() - t1)

 if mse < best_mse:

 best_params = search_obj.best_params_

 best_mse = mse

 # Train a final model with the best hyperparameters on the entire training set

 final_model = SVR(kernel=best_params['kernel'], C=best_params['C'],

gamma=best_params['gamma'], epsilon=best_params['epsilon'])

 print('\nBest parameters-->',best_params)

 print('\nBest MSE-->',best_mse)

 final_model.fit(X_train_tr, y_train)

 print('\ndone')

 print('time took:', time() - t0)

 return final_model

Function code that returns the model after a parameter optimization loop has been

performed:

def perform_search_parameterOpt_loop(iteration, parameter):

 print('Performing Random Search Plus...\nFor',iteration, end = ' times......\n')

 t0 = time()

 model = SVR()

 model.fit(X_train_tr, y_train)

 # Evaluate the model's performance on a validation set

 y_pred = model.predict(X_val_tr)

 mse = mean_squared_error(y_val, y_pred)

 best_mse = mse

 print('\nNo_0 MSE is ',mse)

 # Set the number of iterations for random search plus

 num_iterations = iteration

 for i in range(num_iterations):

 t1 = time()

 params = {

 'kernel': random.choice(parameter['kernel']),

 'C': random.choice(parameter['C']),

 'gamma': random.choice(parameter['gamma']),

 'epsilon': random.choice(parameter['epsilon'])

 }

 model = SVR(kernel=params['kernel'], C=params['C'], gamma=params['gamma'],

epsilon=params['epsilon'])

 model.fit(X_train_tr, y_train)

APPENDIX

13
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 y_pred = model.predict(X_val_tr)

 mse = mean_squared_error(y_val, y_pred)

 print('No_',i+1,'MSE is ',mse,' -----time took:', time() - t1)

 if mse < best_mse:

 best_params = params

 best_mse = mse

 # Train a final model with the best hyperparameters on the entire training set

 final_model = SVR(kernel=best_params['kernel'], C=best_params['C'],

gamma=best_params['gamma'], epsilon=best_params['epsilon'])

 print('\nBest parameters-->',best_params)

 print('\nBest MSE-->',best_mse)

 final_model.fit(X_train_tr, y_train)

 print('\ndone')

 print('time took:', time() - t0)

 return final_model

Predicting model performance result

Code that converts YOLOv4. weight file to PyTorch .pth file:

from tool import darknet2pytorch

import torch

load weights from darknet format

model = darknet2pytorch.Darknet('cfg/yolov4-custom.cfg', inference=True)

model.load_weights('yolov4-custom_best.weights')

save weights to pytorch format

torch.save(model.state_dict(), 'save/yolov4-pytorch.pth')

reload weights from pytorch format

model_pt = darknet2pytorch.Darknet('cfg/yolov4-custom.cfg', inference=True)

model_pt.load_state_dict(torch.load('save/yolov4-pytorch.pth'))

Code that pre-processing validation set:

split the weather columns to be apply one-hot encoding later

X_val_num = X_val.drop('Weather', axis = 1)

X_val_weather = X_val['Weather']

Standardize numeric data

X_val_num_tr = scaler.transform(X_val_num)

One-hot encode weather column

X_val_weather_tr = lb_encoder.transform(X_val_weather)

combine the transformed numerical and weather set ('Cloudy','Rainy','Sunny')

X_val_tr = np.hstack([X_val_num_tr, X_val_weather_tr])

X_val_tr.shape

Code that pre-processing test set:

split the weather columns to be apply one-hot encoding later

APPENDIX

14
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

X_test_num = X_test.drop('Weather', axis = 1)

X_test_weather = X_test['Weather']

Standardize numeric data

X_test_num_tr = scaler.transform(X_test_num)

One-hot encode weather column

X_test_weather_tr = lb_encoder.transform(X_test_weather)

combine the transformed numerical and weather set ('Cloudy','Rainy','Sunny')

X_test_tr = np.hstack([X_test_num_tr, X_test_weather_tr])

X_test_tr.shape

Function code that shows the evaluation result on train, validation and test sets:

def show_3result(model,modelName):

 model_tr_prd=model.predict(X_train_tr)

 final_mse=mean_squared_error(y_train, model_tr_prd)

 final_rmse = np.sqrt(final_mse)

 final_mae = mean_absolute_error(y_train,model_tr_prd)

 final_mape = mean_absolute_percentage_error(y_train,model_tr_prd)

 print('<--- ',modelName,' train --->')

 print('MSE =',final_mse)

 print('RMSE=', final_rmse)

 print('MAE =', final_mae)

 print('MAPE=', "{:.4e}".format(final_mape))

 model_val_prd=model.predict(X_val_tr)

 final_mse=mean_squared_error(y_val, model_val_prd)

 final_rmse = np.sqrt(final_mse)

 final_mae = mean_absolute_error(y_val,model_val_prd)

 final_mape = mean_absolute_percentage_error(y_val,model_val_prd)

 print('\n<--- ',modelName,' validate --->')

 print('MSE =',final_mse)

 print('RMSE=', final_rmse)

 print('MAE =', final_mae)

 print('MAPE=', "{:.4e}".format(final_mape))

 model_test_prd=model.predict(X_test_tr)

 final_mse=mean_squared_error(y_test, model_test_prd)

 final_rmse = np.sqrt(final_mse)

 final_mae = mean_absolute_error(y_test,model_test_prd)

 final_mape = mean_absolute_percentage_error(y_test,model_test_prd)

 print('\n<--- ',modelName,' test --->')

 print('MSE =',final_mse)

 print('RMSE=', final_rmse)

 print('MAE =', final_mae)

 print('MAPE=', "{:.4e}".format(final_mape))

APPENDIX

15
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT

FINAL YEAR PROJECT WEEKLY REPORT
(Project I)

Trimester, Year: T3,Y3 Study week no.: 2

Student Name & ID: Lee Wei Jun 19ACB03389

Supervisor: Tseu Kwan Lee

Project Title: Predicting Open Space Parking Vacancies using Machine

Learning

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

● Review on FYP1 writing report

● Reduced plagiarism percentage

● Finalise figures and equations

2. WORK TO BE DONE

● Study parameter for YOLOv4 configuration file and SVR algorithm

● Update command code for YOLOv4

● Read related article and add to the literature review

3. PROBLEMS ENCOUNTERED

● Previous YOLOv4 command code shown error after run

4. SELF EVALUATION OF THE PROGRESS

A bit late on the work, need to catch up.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX

16
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project I)

Trimester, Year: T3, Y3 Study week no.: 4

Student Name & ID: Lee Wei Jun 19ACB03389

Supervisor: Tseu Kwan Lee

Project Title: Predicting Open Space Parking Vacancies using Machine

Learning

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

● Finished reading related article and has added in the literature review

● Code fixed

● Studied parameter for YOLOv4 configuration file and SVR algorithm

2. WORK TO BE DONE

● Update report format to FYP2

● Clean dataset for YOLOv4

● Start to train YOLOv4 with different parameters

● Perform fine tuning on SVR model

● Try and test on new fine tuning

● Rent PC in FYP lab to perform machine learning training

3. PROBLEMS ENCOUNTERED

● Still a bit confuse about the parameters for YOLOv4 and SVR algorithm

4. SELF EVALUATION OF THE PROGRESS

Should start performing fine tuning test on different combination of parameter,

in order to have a deeper understanding about the parameters

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX

17
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project I)

Trimester, Year: T3,Y3 Study week no.: 6

Student Name & ID: Lee Wei Jun 19ACB03389

Supervisor: Tseu Kwan Lee

Project Title: Predicting Open Space Parking Vacancies using Machine

Learning

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

● Update report format to FYP2

● Clean dataset for YOLOv4

● Trained YOLOv4 on different parameters

● Perform several fine tuning test on SVR model

● Rented a PC in FYP lab

2. WORK TO BE DONE

● Test more combination of parameters for YOLOv4

● Test more combination of parameters for SVR model

● Finalise the new fine tuning technique

3. PROBLEMS ENCOUNTERED

● PC in FYP lab shut down for no reasons, need to setup the environment

again

● Training custom YOLOv4 using Google Colab is time consuming because

it has a usage limit with every 5-8 hours of usage, it will follow with 12-16

hours cool down time

4. SELF EVALUATION OF THE PROGRESS

Keep up

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX

18
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project I)

Trimester, Year: T3,Y3 Study week no.: 8

Student Name & ID: Lee Wei Jun 19ACB03389

Supervisor: Tseu Kwan Lee

Project Title: Predicting Open Space Parking Vacancies using Machine

Learning

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

● Finalise the new fine tuning technique

2. WORK TO BE DONE

● Test more combination of parameters for YOLOv4

● Test more combination of parameters for SVR model

● Develop a GUI for parking vacancy prediction

3. PROBLEMS ENCOUNTERED

● Overfitting issue for SVR model

4. SELF EVALUATION OF THE PROGRESS

Should be continue on the report.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX

19
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project I)

Trimester, Year: T3,Y3 Study week no.: 10

Student Name & ID: Lee Wei Jun 19ACB03389

Supervisor: Tseu Kwan Lee

Project Title: Predicting Open Space Parking Vacancies using Machine

Learning

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

● Developed a GUI for parking vacancy prediction

● Finalize the coding for the machine learning

2. WORK TO BE DONE

● Test more combination of parameters for YOLOv4

● Test more combination of parameters for SVR model

● Continue on report writing

3. PROBLEMS ENCOUNTERED

● Mistake found on the coding for the machine learning

4. SELF EVALUATION OF THE PROGRESS

Should put more effort on report writing as the deadline is coming soon

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX

20
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project I)

Trimester, Year: T3,Y3 Study week no.: 11

Student Name & ID: Lee Wei Jun 19ACB03389

Supervisor: Tseu Kwan Lee

Project Title: Predicting Open Space Parking Vacancies using Machine

Learning

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

● testing more combination of parameters for YOLOv4

● testing more combination of parameters for SVR model

1. WORK TO BE DONE

● Evaluate the performance of YOLOv4 and SVR model

● Continue on report writing

3. PROBLEMS ENCOUNTERED

● Cannot perform remote control for PC in FYP lab for a day because of

electricity problem in university (lightning strike cause short circuit)

4. SELF EVALUATION OF THE PROGRESS

Should stop on fine tuning the YOLOv4 and SVR model. Start evaluating the

test result.

_________________________ _________________________

 Supervisor’s signature Student’s signature

APPENDIX

21
Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

PLAGIARISM CHECK RESULT

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

PLAGIARISM CHECK RESULT

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Form T l : S v ’ C mm O l y R G y T

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name(s) of

Candidate(s)
 Lee Wei Jun

ID Number(s)

19ACB03389

Programme / Course IA

Title of Final Year Project Predicting Open Space Parking Vacancies using Machine
Learning

Similarity S v ’ C mm

(Compulsory if parameters of originality exceed the limits

approved by UTAR)

Overall similarity index: __10_ %

Similarity by source

Internet Sources: 6 %

Publications: 7 %

Student Papers: 0 %

Number of individual sources listed of more

than 3% similarity: 0

Parameters of originality required, and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and

(ii) Matching of individual sources listed must be less than 3% each, and

(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note: Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality

report to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the

Final Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________
Signature of Supervisor

 Signature of Co-Supervisor

Name: __________________________

 Name: __________________________

Date: ___________________________ Date: ___________________________

Tseu Kwan Lee

2023 April 23

ok

FYP 2 CHECKLIST

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FYP 2 CHECKLIST

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION

TECHNOLOGY (KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student ID 19ACB03389

Student Name Lee Wei Jun

Supervisor Name Ms Tseu Kwan Lee

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Title Page
√ Signed Report Status Declaration Form
√ Signed FYP Thesis Submission Form
√ Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)
√ List of Symbols (if applicable)
√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review
√ Appendices (if applicable)
√ Weekly Log
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)
√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the

ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)

FYP 2 CHECKLIST

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

I, the author, have checked and confirmed all the items listed in the table are included in my
report.

(Signature of Student)
Date: 26-04-2023

