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ABSTRACT 

 

Biometric identification employs physiological or behavioral 

characteristics to identify an individual. It provides a robust technique and has 

become the standard in identity authentication and access control. Among all 

the biometrics, iris has distinct phase information used for accurate 

recognition. Furthermore, iris verification systems can be non-invasive and 

user friendly as iris pattern is imaged from a distance. Due to its reliability, iris 

recognition is used for high security applications. For the use of iris 

recognition on portable devices, the user can capture the iris image while 

pointing the capture device at his eye. This project presents an implementation 

of a Digital Signal Processor (DSP) based iris verification system. The goal is 

to develop a fast speed and high accuracy iris verification embedded system, 

based on Analog Devices Blackfin DSP. The project involves two parts, 

software and hardware. First, the iris verification algorithm is developed in a 

C/C++ program. The three main stages of iris verification system are image 

preprocessing, feature extraction and template matching. The method 

implemented is evaluated on iris images taken from the CASIA iris image 

database version 1.0. Experimental results show that the proposed 1D Log 

Gabor filter and 1D advanced correlation filter have achieved high accuracy of 

98.62% and 98.77% respectively. For the DSP implementation, the C/C++ 

code is further optimized to perform the verification in a shorter time. All the 

algorithms are mapped onto the DSP without compromising performance. 

Optimization is done through C/C++ source code tuning, loop optimization 

using pragmas and optimizing of conditional codes. Data cache and memory 

are utilized for optimization as well. The optimization gain is as high as 

67.74%. Final experimental results demonstrate that the iris verification 

system is capable of completing a verification in less than one second. The 

DSP based iris verification system provides a fast and accurate authentication 

solution within a compact portable device. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 

Due to rising security concern, access control has become important in 

protecting resources for authorized personnel. For the traditional access 

control applications, users must possess identity claims, such as personal 

identification number (PIN), password and identity card. However, they are 

futile against identity theft, forgery and forgetfulness.  

 

Biometrics is more reliable because it is based on inherent traits of a 

person which are difficult to steal, forge or being forgotten. This leads to the 

awareness of the importance of biometrics. It employs physiological or 

behavioral characteristics to identify an individual. The physiological 

characteristics are iris, fingerprint, face and hand geometry. Voice, signature, 

handwriting and keystroke dynamics are classified as behavioral 

characteristics. Biometric identification has provided a robust technique for 

proving identity and has become the standard in identity authentication and 

access control.  

 Recent research has shown that iris recognition can attain a high level 

of accuracy. There is only one false identification in 131,000 comparisons 

(Daugman, 1993). The high matching speed enables comparison between 
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different irises in large database. Iris recognition is user friendly because iris 

can be captured from a certain distance. Furthermore, iris pattern is stable 

throughout life and difficult to forge. Therefore, it is the most accurate and 

reliable biometric identification. Iris recognition is suitably applied for high 

security access control and personal identity authentication. 

 At present, most of the prominent iris recognition algorithms are 

developed in General Purpose Processor (GPP) (Daugman, 1993, 2004; 

Wildes, 1997; Kong and Zhang, 2001; Tisse et al., 2002; Ma et al., 2002; Cui 

et al., 2004). Due to the growing demand for portable devices in consumer 

markets (PDAs, cell phone, mobile iris scanner), iris verification algorithm 

needs to be ported into the embedded system. 

This thesis proposes an iris verification algorithm with high speed and 

accuracy and its implementation on embedded processor. Digital signal 

processor technology provides a fast authentication solution within a compact 

portable device.  

 

1.2 Motivation 

 

 The main motivations for designing an embedded platform for iris 

verification system are: 

 

1. Developing a robust iris verification algorithm: 

Iris verification is well suited to be applied to high security access-control 

system. Over the past decade, a number of investigations were carried out 
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on iris recognition (Daugman, 1993, 2004; Wildes, 1997; Kong and Zhang, 

2001; Tisse et al., 2002; Ma et al., 2002; Cui et al., 2004). However, there 

are still some improvements that can be achieved. For example, iris 

localization can be enhanced to effectively segment a non-ideal iris image. 

A complete solution is required to remove the eyelids, eyelashes, 

reflections and pupil noises. Fast iris matching is needed to compare 

billions of templates in seconds. Iris recognition research is motivated not 

only by its accuracy challenges but also by its demand for fast response by 

access control and identity authentication applications.  

   

2.  There is a growing demand for high-end embedded system:  

Due to the growing demands for portable devices in consumer market, iris 

verification algorithm needs to be ported into embedded systems. DSP 

technology provides a fast authentication solution within a small portable 

device. The portable device can be used in various environments.  

 

1.3 Scope of Work 

 

 The scope of work for designing a digital signal processor based iris 

verification system includes the following: 

 

1. The iris verification algorithm is able to verify user with high level of 

confidence and fast speed.  

2. In the iris image preprocessing stage, the algorithm must be able to locate 

the iris region accurately under various environments. The noise removal 
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algorithm will be developed to achieve higher accuracy rate. It will be able 

to account for the rotation, translation, and scale variance of the iris images.  

3. A publicly available database called CASIA iris image database version 

1.0 will be used for evaluating the algorithm. 

4. The algorithm will be mapped onto the Blackfin DSP without 

compromising the performance. The algorithm will be further optimized to 

achieve the speed requirement. The verification time should be less than 

one second. 

 

1.4 Objectives 

  

The project objective is to implement the iris verification prototype 

using the Blackfin Digital Signal Processor (DSP) for access control 

application. The iris verification system must be able to verify user identity 

accurately in less than one second.  

 

Iris segmentation is developed as part of the iris verification algorithm. 

It must be able to localize iris region from the background rapidly regardless 

of varying illumination and contrast levels. It must remove the noises in the 

segmented iris regions, such as eyelashes, eyelids, reflections and pupil. 

 

 Biometric templates generated from the feature extraction stage must 

be able to capture salient information relevant to user identity. The biometric 

template must be generated in a compact format for efficient storage and 
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matching. Feature matching must be able to differentiate an authentic user 

from an imposter with high confidence level.  

 

All these algorithms must be able to be mapped into DSP without 

compromising performance. The compiler features are employed to optimize 

the algorithm for faster execution. The research outcome is a DSP based iris 

verification system that could verify an individual accurately with fast speed. 

 

1.5 Thesis Outline 

 

Chapter 1 introduces the background on biometrics technology and its 

applications. It presents the advantages of iris recognition for high security 

access-control applications. The motivation, scope of work and objectives are 

also outlined. 

 

Chapter 2 presents the literature review of existing iris recognition 

algorithms. The three main stages in iris recognition system are image 

preprocessing, feature extraction and template matching. In addition, the 

implementation of iris verification algorithm on embedded system is studied. 

 

Chapter 3 discusses the proposed algorithm for the iris verification 

system. Three main stages of iris verification algorithm are discussed in detail.  
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Chapter 4 explains various experiments that are conducted in this 

research. The experimental results for iris localization and recognition are 

illustrated in the last section.   

 

Chapter 5 presents the implementation of the iris verification system 

using Blackfin processor. The optimization strategies for the iris verification 

system are discussed in detail. The performance profiles of the iris verification 

system are analyzed in the last section.  

 

Chapter 6 concludes the thesis and the works that have been done for 

the research. The contributions of the research are highlighted as well. Future 

works are suggested for further improvement of the iris verification system.   
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 CHAPTER 2  

 

LITERATURE REVIEW 

 

 Iris recognition has become a popular research topic in recent years. 

Many approaches have been proposed for iris recognition. There are three 

main stages in an iris recognition system: image preprocessing, feature 

extraction and template matching. 

 

2.1 Image Preprocessing 

 

The objective of the image preprocessing stage is to segment the iris 

region which has an abundance of unique features. Image preprocessing is 

divided into three steps, iris localization, iris normalization and image 

enhancement. Iris localization detects the inner and outer boundaries of an iris 

as circles. Eyelid and eyelash that may cover part of the iris are detected and 

masked. Iris normalization converts iris image from Cartesian coordinates to 

Polar coordinates. The normalized iris image is a rectangular image with 

angular and radial resolution. The iris image may have low contrast and non-

uniform illumination caused by the position of the light source. All these 

factors can be compensated by the image enhancement algorithm. 
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2.1.1 Iris Localization 

2.1.1.1 Integro-differential operator 

  

Integro-differential operator is proposed for locating the inner and 

outer boundaries of iris (Daugman, 1993, 2004). The operator computes the 

partial derivative of the average intensity of circle points. It searches for the 

circular path with maximum difference in intensity values. Since it uses raw 

derivative information, the operator can compute faster and does not require a 

specific threshold value. However, the operator may fail to locate the iris 

boundaries if there is noise in the image, such as reflection. 

  

2.1.1.2 Hough Transform 

 

 Since the inner and outer boundaries of an iris can be modelled as 

circles, circular Hough transform is used to localize the iris (Wildes, 1997; 

Kong and Zhang, 2001; Tisse et al., 2002; Ma et al., 2002).  

 

First, edge detection is applied to the binary image to generate the edge 

map. The edge map is obtained by calculating the first derivative of intensity 

values and thresholding the results. The formula is defined as  

),(*),(),( yxIyxGyxg    
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 y)(x,G denotes a two dimensional Gaussian filter of scale σ positioned at 

point (x0,y0). Gaussian filter is applied to filter the random edges which are 

irrelevant to reduce false circle detection. The voting procedure is realized 

using circular Hough Transform in order to search for the circular contour 

from the edge map. Assuming a circle with centre coordinate (xc,yc) and radius 

r, each edge point on the circle casts a vote in Hough space. The circular 

contour of interest is defined as  

222 )()( ryyxx cici   (2.2) 

 

The centre coordinate and radius of the circle with maximum number of votes 

are defined as the pupil centre and iris inner boundary respectively. The 

disadvantage of the Hough transform algorithm is that it requires a threshold 

value to generate the edge map. The selected threshold value may remove 

some critical edge points and result in false circle detection.   

 

2.1.1.3 Discrete Circular Active Contour 

 

 Active contour model has been used to localize iris (Ritter and Cooper, 

2003). The contour consists of a number of vertices connected as a simple 

closed curve. First, a darkest average point is used as the centre of the first 

inner contour. The inner contour is moved by the internal and external forces 

until it reaches equilibrium. The outer contour is moved in a similar manner. 

The algorithm repeats until the inner and outer contours are matched. The 

discrete circular active contour model for the iris boundary is affected by the 
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specular reflections from the cornea. Therefore, image pre-processing 

algorithm is required to remove the specular reflections. 

  

2.1.1.4 Bisection Method 

 

 Lim et al. (2001) and Sung et al. (2004) applied the bisection method 

to locate the centre of the pupil. First, edge detection is applied to the iris 

image to extract the edge information. For every two points on the same edge 

component, bisection method is applied to draw the perpendicular lines to the 

centre point. The centre point with maximum number of line intersections is 

selected as the centre of the pupil. A virtual circle is drawn with reference to 

the centre of the pupil and the radius is increased within a certain range. Two 

virtual circles with the largest number of edge points are chosen as the iris 

inner and outer boundaries. Bisection method is affected by the non-uniform 

illuminations and reflections from eye-glasses, therefore image pre-processing 

algorithm is needed to remove the high intensity areas caused by illuminations 

and reflections. 

 

2.1.1.5 Black Hole Search Method 

  

Black hole search method is used to compute the centre and area of a 

pupil (Teo and Ewe, 2005; Grabowski et al., 2006). Since the pupil is the 

darkest region in the image, the approach applies threshold segmentation 

method to find the region. A threshold is defined to identify the dark areas in 

the iris image. These dark areas are called “black holes”. The centre of mass of 
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these black holes is computed from the global image. The area of pupil is 

made up of the total number of these black holes within the region. The radius 

of the pupil can be calculated from the circle area formula. Black hole search 

method is not suitable for images with dark iris. The area of dark iris would be 

detected instead of the area of pupil.  

 

2.1.2 Eyelid Detection 

 

 Cui et al. (2004) proposed texture segmentation to detect upper and 

lower eyelids. The energy of different frequencies at each region is computed 

to segment the eyelashes. The region with high frequency is considered as the 

eyelash area. The upper eyelashes are fitted with a parabolic arc. The parabolic 

arc shows the position of the upper eyelid. For lower eyelid detection, the 

histogram of the original image is used. The lower eyelid area is segmented to 

compute the edge points of the lower eyelid. The lower eyelid is a parabolic 

arc that fits with the edge points.   

 

Chen et al. (2006) used Daubechies wavelets method to decompose the 

original iris image into four frequency bands. Canny edge detection is applied 

to each band image. To minimize the influence of eyelashes, Canny edge 

detector is tuned to the horizontal direction. To detect the upper eyelid, edges 

outside the upper iris boundary area are removed. The edge points that are 

close to each other within a certain distance are connected. The longest 

connected edge that fits with a parabolic arc is defined as the upper eyelid. To 

detect the lower eyelid, the steps are repeated with lower iris boundary area.  
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2.1.3 Eyelash Detection 

 

 Gabor filter and variance of intensity approaches are proposed for 

eyelash detection (Kong and Zhang, 2001). The eyelashes are categorized into 

separable eyelashes and multiple eyelashes. Separable eyelashes are detected 

using 1D Gabor filters. A low output value is obtained from the convolution of 

the separable eyelashes with the Gabor filters. For multiple eyelashes, the 

variance of intensity is very small. If the variance of intensity in a window is 

smaller than a threshold, the centre of the window is considered as the 

eyelashes. 

 

According to Huang et al. (2004), both the edge and region 

information are used for eyelash detection. To speed up iris segmentation, the 

iris is roughly localized using filtering, edge detection and Hough transform. 

The localized iris is normalized to a rectangular image. A bank of Gabor filters 

is applied to the image to extract the edge information. The edge information 

is combined with the region information to detect the eyelashes and pupil 

noise regions. 

 

2.1.4 Iris Normalization 

 

Iris may be captured in different sizes with varying imaging distance. 

Due to illumination variations, the radial size of the pupil may also be 

different. In some cases, the pupil and iris may be non-concentric. Therefore, 

the iris region needs to be normalized to compensate for these variations. The 
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homogeneous rubber sheet model algorithm remaps each pixel in the localized 

iris region from the Cartesian coordinates to polar coordinates (Daugman, 

1993, 2004). The remapping formulas are defined in Equation (2.3). 

 

),(),( rIyxI    

)](,[ np RRr  , ]2,0[     

)cos(rxx ci    

)sin(ryy ci   (2.3) 

 

where (xi,yi) denotes the polar coordinates of a point inside iris region, (xc,yc) 

and Rp are the centre coordinates and radius of the pupil respectively, Rn(θ) is 

the distance from pupil centre to the iris outer boundary which is in the 

function of θ, I(x,y) represents a pixel in Cartesian coordinate system and 

),( rI  represents a pixel in Polar coordinate system. 

 

2.1.5 Image Enhancement  

  

The normalized iris image has low contrast and non-uniform 

illumination caused by the light source position. The image needs to be 

enhanced to compensate for these factors. Local histogram analysis is applied 

to the normalized iris image to reduce the effect of non-uniform illumination 

(Zhu et al., 2000).  
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2.2 Feature Extraction 

 

 Iris has an abundance of unique texture features, especially inside the 

inner part of the iris. Feature extraction transforms the enhanced iris image 

into a set of discriminant signatures. The significant features are encoded into 

templates for identification. 

 

2.2.1 Gabor Filters 

 

 Daugman (1993, 2004) proposed 2D Gabor filters to extract iris 

features. Gabor filter’s impulse response is defined as a harmonic function 

multiplied by a Gaussian function. It provides optimum localization in both 

spatial and frequency domains.  

 

Each isolated iris pattern is demodulated to extract its phase 

information using quadrature 2D Gabor wavelets. The phase information is 

extracted for recognizing irises because it is discriminating. It does not depend 

on extraneous factors, such as imaging contrast, illumination and camera gain 

(Daugman, 2004).  

 

1D Log Gabor filter is also used to extract the frequency information 

which represents the iris textures. A Log Gabor filter is a Gaussian transfer 

function on a logarithmic scale (Field, 1987). It is a band pass filter that 

removes the DC components caused by background brightness. The 1D Log 
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Gabor filter on the linear frequency scale has a transfer function as shown in 

Equation (2.4). 

)))/(log(2/))/log(exp(()( 2
0

2
0 wkwwwG   (2.4) 

where ω0 denotes the filter’s centre frequency and k denotes the bandwidth of 

the filter. The plot of 1D Log Gabor filter in frequency domain is shown in 

Figure 2.1. 
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Figure 2.1: 1D Log Gabor filter in frequency domain 
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Figure 2.2: Real part of 1D Log Gabor filter in the spatial domain 
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Figure 2.3: Imaginary part of 1D Log Gabor filter in the spatial domain 
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After applying 1D Log Gabor filter on each row of the enhanced iris 

image, a series of real and imaginary numbers is generated. The phase 

information is quantized into four quadrants in the complex plane as shown in 

Figure 2.4. The equations of the phase demodulation process are defined in 

Equation (2.5). The template consists of binary digits only. 

 

 

 

                            Phase Demodulation 

 

                                                Iris template 

Figure 2.4: Phase demodulation process 

 

1),( yxTRE   if Real(f(x,y)≥0)  

0),( yxTRE   if Real(f(x,y)<0)  

1),( yxTIM   if Imaginary(f(x,y)≥0)  

0),( yxTIM   if Imaginary(f(x,y)<0) (2.5) 

 

where f(x,y) denotes the filtered image after performing inverse Fast 

Fourier Transform (FFT).  

Real 

Imaginary 

θ 

(1,1) 
(0,1) 

(0,0) (1,0) 

01 00 10 11 00 11 01 10 10 10 10 11 00 11 11 00 01 01 
10 10 00 00 00 00 11 11 10 01 01 01 11 10 11 00 10 10  
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2.2.2 Wavelet Transform 

 

 Wavelet transform decomposes the iris region into components with 

different resolutions. The commonly used wavelets are Daubechies, 

Biorthogonal, Haar and Mexican Hat wavelet (Poursaberi and Araabi, 2005, 

2007; Chen et al., 2006; Rydgren et al., 2004; Boles and Boashash, 1998; 

Sanchez-Avila et al., 2002).  

 

A bank of wavelet filters is applied to the normalized iris region. Each 

filter is tuned for each resolution with each wavelet defined by scaling 

functions. The output of the filters is encoded to generate a compact biometric 

template.  

 

The advantage of wavelet transform over Fourier transform is that it 

has both space and frequency resolution. The features are localized in both 

space and frequency domains with varying window sizes.  

 

2.2.3 Laplacian of Gaussian Filter 

 

 Laplacian of Gaussian filters are used to extract features by 

decomposing the iris region (Wildes, 1997; Wildes et al., 1994). A cascade of 

Gaussian-like filters is applied to the iris image. The four level Laplacian of 

Gaussian filters are constructed to generate a compact biometric template. 

This approach compresses the data to obtain significant information. The 

compressed data can be stored and processed effectively. 
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2.2.4 Key Local Variation 

 

 Key local variations are used to represent the characteristics of the iris 

(Ma et al., 2004). The normalized iris image is decomposed into a set of 1D 

intensity signals. Dyadic wavelet transform is applied to each intensity signal. 

Local extrema of the wavelet transform results correspond to sharp intensity 

variations of the original signal. The local maximum and minimum points are 

encoded into a feature vector. The feature vector is then converted to a binary 

template.  

 

2.2.5 Discrete Cosine Transform 

 

 This iris coding method is based on differences of discrete cosine 

transform (DCT) coefficients of angular patches from normalized iris image 

(Monro et al., 2007). The normalized iris image is divided into diagonal 8x12 

patches. The average over width is windowed using a Hanning window to 

reduce the effects of noise. A similar Hanning window and DCT is applied to 

the patch along its length. The differences between the DCT coefficients of 

adjacent patches are obtained. A binary template is generated from the zero 

crossings of the differences between the DCT coefficients. This iris coding 

method has low complexity and good interclass separation. It is superior to 

other approaches in terms of both speed and accuracy.  
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2.2.6 Advanced Correlation filter 

 

Advanced correlation filter is designed for recognition of irises from 

the same class (Thornton J. et al., 2005; Vijaya Kumar B.V.K. et al., 2003). 

First, the cross-correlation between the test image and the filter is performed. 

The output correlation plane should contain a sharp peak if there is match 

between the test image and the filter. There is no discernible peak if the test 

image is from an imposter. One of the advanced correlation filter is called 

Optimal Trade-off Synthetic Discriminant Function (OTSDF). The trade-off 

between average correlation energy (ACE) and output noise variance (ONV) 

can be optimized using this filter. ACE calculates the average energy of the 

filter output. The filter output represented by the training images should be 

reduced to lower the sidelobes. The equation for ACE is below. 

ACE = h+Dh     (2.6) 

 

where h is a vector representing the correlation filter, D is a diagonal matrix 

with the average power spectrum of the training images and the superscript + 

denotes the complex conjugate transpose. ONV measures the variance of the 

noise at the correlation output. The ONV equation is defined in Equation (2.7) 

if the noise is white.  

ONV = h+h     (2.7) 

 

In order to optimize both ACE and ONV, the vector of the correlation filter is 

defined in Equation (2.8). 

h = A-1X(X+A-1X)-1u    (2.8) 
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where A=αI+√(1-α2)D, vector u is the predefined peak constraints (1 for 

authentics and 0 for imposters) and matrix X is the vectorized 2D Fourier 

transform of the training images.  

 

2.3 Template Matching 

 

 The templates generated from the feature extraction stage need a 

corresponding matching metric. The matching metric compares the similarity 

between the templates. A threshold is set to differentiate between intra-class 

and inter-class comparisons.  

 

2.3.1 Hamming Distance 

 

Hamming distance is defined as the fractional measure of dissimilarity 

between two binary templates (Daugman, 1993, 2004). A Hamming distance 

value of zero would represent a perfect match. The two templates that are 

completely independent would give a Hamming distance near to 0.5. A 

threshold is set to decide whether the two templates are from the same iris or 

different irises. 

 

The fractional Hamming Distance is sum of the exclusive-OR between 

two templates over the total number of bits. Noise mask is used in the 

calculation to exclude the noise regions.                                                                                                                       

maskBmaskA
maskBmaskAtemplateBtemplateA

HD


)( 
  (2.9) 
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where  denotes the boolean exclusive-OR operator (XOR),   denotes the 

bitwise AND operator, maskA and maskB are two noise masks corresponding 

to the two matching templates. For the noise mask, “1” represents the iris 

region and “0” represents the noise region. 

 

The advantage of Hamming distance is fast matching speed because 

the templates are in binary format. Hamming distance is suitable for 

comparisons of millions of templates in large database. 

 

2.3.2 Weighted Euclidean Distance 

  

Weighted Euclidean distance is used to compare two templates for 

matching purpose (Zhu et al., 2000). Weighted Euclidean Distance is defined 

as a measure of similarity between two templates. The distance between two 

feature points is calculated. An iris template is compared with all templates in 

the database. The two templates are matched if the Weighted Euclidean 

Distance is minimum. The Weigthed Euclidean Distance is defined in 

Equation (2.10). 

                            

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                                      (2.10) 

 

where fi denotes the ith feature of the test iris, fi
(k) and δi

(k) denote the ith feature 

and its standard deviation of iris k, N denotes the total number of features 

extracted from an iris. 
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2.3.3 Nearest Feature Line 

 

Nearest feature line is an efficient classification method in iris 

matching stage (Ma et al., 2002). Feature line passes through any two feature 

points of the same class. The feature line extracts more variations of the 

feature vector than the feature points (Li and Lu, 1999). The distance from a 

feature point to the feature line is calculated. The nearest feature line distance 

will be used in the classification stage.  

 

2.3.4 Peak to Correlation Energy  

 

 After cross correlating a test image with the advanced correlation filter, 

Peak to Correlation Energy (PCE) is used as a matching metric (Thornton J. et 

al., 2005; Vijaya Kumar B.V.K. et al., 2003). It is a metric used to measure 

the degree of match for the correlation output. It is defined in Equation (2.11). 

PCE = (peak - µ)/σ             (2.11) 

 

where µ and σ denote mean and standard deviation of the correlation output. 

 

2.3.5 Peak to Sidelobe Ratio 

 

 Another metric used to measure the degree of similarity of correlation 

planes is called Peak to Sidelobe Ratio (Chong et al., 2005). A test image from 

the same class will give a large PSR while the different class test image will 

produce a very low PSR. The PSR is defined in Equation (2.12). 
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PSR =(mean(mask) – mean(sidelobe))/ σ(sidelobe)          (2.12) 

 

First, the correlation peak near the origin is located. The mean value of the 

central mask which is centred at the peak is calculated. The sidelobe is the 

annular region between the central mask and a larger square region. After 

locating the sidelobe, the mean and standard deviation of the sidelobe are 

computed.  

 

2.4 Embedded Systems for Iris Verification 

 

In commercial access control application, embedded systems are 

preferred because of low-power and portability. In general, there are two types 

of embedded system implementation: hardware-based (FPGA, VLSI) and 

software-based (DSP, microcontroller).  

 

Liu-Jimenez et al. (2004) proposed a new architecture for an iris 

authentication system on FPGA. It is based on the biometric co-processor 

which performs the biometric tasks. The processor can avoid software attacks 

and thus improve the security of the system.  

 

Liu-Jimenez et al. (2005) proposed a new biometric architecture based 

on a combination of hardware and software. The architecture, which is 

implemented on FPGA, provides a more secure and faster solution. The 

pipelined architecture reduces the processing time by 80%.  
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An architecture dedicated to iris identification based on wavelet packet 

analysis is introduced by Ea et al. (2005). The architecture is implemented on 

System-on-a-programmable-chip (SOPC). The SOPC consists of a NIOS 

processor and hardware intellectual property (IP). The wavelet IP is 

implemented on Altera Stratix Board EP1S25F780C5. 

 

For DSP implementations, the iris recognition systems are dominated 

by commercial solutions. Analog Devices Inc. (2007d) uses Blackfin DSP to 

drive the authentication algorithms. The iris capture camera and embedded iris 

authentication engine board are housed inside a computer mouse. The 

registration and authentication data are stored inside DSP and thus eliminate 

threats from the hackers. 

 

Iritech Inc. (2007) implements iris recognition on high performance 

embedded systems. It uses Texas Instrument’s DM642 DSP processor. It 

employs multimodal biometrics, which include iris and face identification 

algorithms. The multimodal biometrics enhances the accuracy of the iris 

recognition system. 

 

Miyazawa et al. (2006) developed an iris recognition system based on 

DSP. The prototype utilizes the DSP technology to achieve real time iris 

recognition. A fixed point DSP is used because it runs at higher clock 

frequency with lower power consumption.  
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CHAPTER 3 

 

IRIS VERIFICATION ALGORITHM 

  

This chapter presents the major stages of the iris verification system. 

The block diagram of the proposed algorithms is illustrated in Figure 3.1. 

 

 

Figure 3.1: Block diagram of the proposed algorithms 
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3.1 Image Preprocessing 

  

The proposed approach gives a solution for compensating all four 

types of noises to achieve higher recognition rate. It consists of four parts: (a) 

Pupil is localized using automatic thresholding and circular Hough Transform 

methods. (b) Two search regions from iris inner boundary to image boundary 

are located based on pupil center as origin. Intensity difference is computed on 

the search regions to detect the iris outer boundary. (c) Two search regions are 

selected based on pupil position and Sobel edge detector is used to detect the 

upper and lower eyelids. (d) Thresholding is implemented to remove eyelashes, 

reflection and pupil noises. The method is evaluated using the iris images 

taken from the CASIA iris image database version 1.0 (CASIA, 2007). Figure 

3.2 illustrates the three main steps of iris image preprocessing stage. 

 

Iris Localization

Iris 
Normalization

Image 
Enhancement

Iris Image Preprocessing

 

Figure 3.2: Three main steps of iris image preprocessing stage 
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3.1.1 CASIA Iris Database  

 

The proposed algorithm was evaluated on CASIA iris image database 

version 1.0 (CASIA, 2007). There are 756 iris images from 108 different 

people. For each eye, seven images are captured in two sessions. The 

resolution of the iris image is 320×280 pixels. All the images are captured in 

8-bit gray scale mode using homemade digital optical sensor. Near infrared 

illumination is used together with the optical sensor. The examples of iris 

images from CASIA database are shown in Figure 3.3. 

 

          

       

Figure 3.3: Examples of iris images from CASIA database 

 

3.1.2 Iris Inner Boundary Localization 

 

 First, the pupil is detected using thresholding operation. From the gray 

scale eye image, thresholding is performed to generate a binary image which 

contains the pupil. Automatic threshold is chosen because the intensity values 

vary depending on imaging contrast, illumination and camera gain.  
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 The proposed segmentation algorithm begins by finding the darkest 

region in the iris image. The iris image is divided into 20×20 pixels 

rectangular blocks. Then, the rectangular block with minimum average 

intensity is identified. The minimum average intensity is used as the automatic 

threshold of the binary image. Due to the presence of the non-uniform 

illumination inside pupil region, the automatic threshold is increased by a 

constant value. From our experiments, we tested with different values of 5, 10, 

15, 20, 25, and 30. The pupil detection rate is highest when the threshold is 

increased by 10. Figure 3.4 illustrates the process of detecting the pupil region. 

 

             

                  (a)                                 (b)                                   (c) 

Figure 3.4: (a) Original iris image. (b) Iris image with 20×20 pixels 
rectangular blocks. (c) Rectangular block with minimum average 
intensity 

 

Morphological operator is applied to the binary image to remove the 

reflections inside the pupil region and dark spots caused by eyelashes. 

Morphological gradient detects the sharp gray-level transitions in the image 

for boundary extraction. Morphological gradient of the image is the difference 

between the dilation and erosion. Dilation fills up holes to remove the 

illumination inside the pupil region. Erosion removes the spurious pixels, 

which are the dark spots caused by eyelashes. Dilation image is subtracted by 



29 
 

the erosion image to obtain the boundary of the pupil region. Figure 3.5(b) 

shows the binary image after thresholding and morphological operator.  

 

 

       

                         (a)                                (b)                                 (c)         

Figure 3.5: (a) Binary image after thresholding. (b) Binary image after 
thresholding and morphological operator. (c) Pupil localization    
 
 

Since the iris inner boundary can be approximately modelled as a 

circle, circular Hough transform is used to localize it (Wildes, 1997; Kong and 

Zhang, 2001). Circular Hough Transform is used to find the centre coordinate 

and radius of the pupil. If the number of votes is less than a certain threshold 

set by the circular Hough Transform, it is assumed that the eye is heavily 

occluded by eyelids, or that it is in defocused or in motion blurred condition. 

 

3.1.3 Iris Outer Boundary Localization 

 

In order to locate the iris outer boundary, the proposed method selects 

two search regions including the iris outer boundary. Localization is limited 

within the two search regions to reduce computational time. The two search 

regions are defined around the outer boundary, thus this method can reduce 

incorrect localization. The right and left search regions are defined as shown 

in Figure 3.6(a).  
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                                          (a)                                 (b) 

Figure 3.6: (a) Right and left search regions of the iris image. (b) Iris 
inner and outer boundaries localization 
 
 

The pupil centre is referred as origin. The search region is a sector with 

radius from pupil boundary to a maximum radius. Maximum radius is defined 

as the distance from pupil centre to boundary of the right or left search region.  

 

 )max_,,,min( thresholdyheightyxwidthr cccright   (3.1) 

)max_,,,min( thresholdyheightyxr cccleft   (3.2) 

 

where rright denotes the maximum radius of the right search region and rleft 

denotes the maximum radius of the left search region. Maximum threshold is 

defined based on the iris size. The minimum radius of the search regions starts 

ten pixels away from the pupil boundary. This is to avoid the effect caused by 

the pupil noise. In order to avoid occlusion caused by eyelashes, upper and 

lower eyelids, the two search regions are selected on the lower iris region.  

 

The intensities of each radius in the search region are added up 

according to Equation (3.3). The sum of intensities of each radius is calculated 

to reduce the effect caused by noise and variation of iris texture. The negative 
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sign in the Equation (3.3) indicates that the y-coordinate starts from top to 

bottom of the image.  

 





n

m
cc rxwidthryrI



 )cos(*)sin(][  (3.3) 

 

Finally, the iris outer boundary, Riris can be calculated using Equation 

(3.6). The right and left iris boundaries are the maximum difference between 

the sum of intensities of two outer radii and two inner radii. The iris outer 

boundary is the average of the distances from pupil centre to right iris 

boundary, Rr and left iris boundary, Rl. 

 

       ]}2[]1[]1[]2[{maxarg  rIrIrIrIR
r

r  (3.4) 

]}2[]1[]1[]2[{maxarg  rIrIrIrIR
rl  (3.5) 

2
lr

iris
RRR 

  (3.6) 

 

The iris centre (xiris,yiris) is defined in Equation (3.7) and (3.8). The x-

coordinate of the iris centre shifts from the pupil centre depending on the 

difference between Rr and Rl. The y-coordinate of the iris centre is assumed to 

be the same as the pupil centre.  

                                 

2
)( lr

ciris
RRxx 

  (3.7) 

ciris yy   (3.8) 
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3.1.4 Upper and Lower Eyelids Detection 

 

Similar to iris outer boundary localization, the proposed method selects 

two search regions to detect upper and lower eyelids. This method confines 

the search regions to reduce the possibility of incorrect eyelids detection and 

speed up the detection. The upper and lower search regions are labelled as in 

Figure 3.7(a). The pupil centre, iris inner and outer boundaries are used as 

references to select the two search regions.  

 

    

                                          (a)                                 (b) 

Figure 3.7:(a) Upper and lower search regions of the iris image. (b) Upper 
and lower eyelids detection    
 

The search regions are confined within the iris inner and outer 

boundaries. Sobel edge detection is applied to the search regions to detect the 

eyelids. In order to reduce the false edge detection caused by eyelashes, Sobel 

kernel is tuned to the horizontal direction.   

 

Table 3.1: Sobel kernel tuned to horizontal direction 

-1 -2 -1 

0 0 0 

1 2 1 
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After edge detection, the edge image is generated. The eyelids are 

detected using linear Hough Transform method. The method calculates the 

total number of edge points in every horizontal row inside the search regions. 

The horizontal row with maximum number of edge points is selected as eyelid 

boundary. If the maximum number of edge points is less than a predefined 

threshold, it is assumed that the eyelid is not presented in the search regions. 

The eyelids detection process is illustrated in Figure 3.8. 

 

     

                                 (a)                       (b)                         (c) 

Figure 3.8:(a) Upper search region of the iris image. (b) Upper search 
region after Sobel edge detection. (c) Upper eyelid detection   
 

In the proposed method, the eyelid boundaries are approximately 

modelled as straight line which allows for faster computation. Figure 3.9 

shows the examples of the localized iris images from CASIA iris database. 

 

       

       

Figure 3.9: The examples of localized iris images from CASIA iris image 
database 
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3.1.5 Eyelashes, Reflection and Pupil Noise Removal 

 

Eyelashes appear randomly inside the iris region. It is difficult to detect 

the eyelashes effectively. However, the eyelashes are observed to have low 

intensity values. A thresholding technique is implemented to segment the 

eyelashes accurately.  

 

In general, iris imaging device uses near infrared light as illumination 

source. Near Infrared (NIR) illuminator is used to reveal complex textures for 

darkly pigmented irises. Reflection regions are characterized by high intensity 

values close to 255. A high threshold value is chosen to separate the reflection 

noise. 

 

The pupil is not necessary a circular region. When the pupil boundary 

is approximately modelled as circle, some parts of the pupil will exist inside 

the normalized iris region as noise. Similar to eyelashes and reflection 

detection, an appropriate threshold is defined to remove the pupil noise. Figure 

3.10 illustrates the normalized iris image with pupil, eyelashes and reflection 

noises. 

 

 

         Reflection   Eyelashes        Pupil noise 

 

Figure 3.10: Normalized iris image with pupil, eyelashes and reflection 

noises 
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3.1.6 Normalization and Enhancement 

 

Normalization remaps each pixel in the localized iris region from the 

Cartesian coordinates to polar coordinates. The non-concentric polar 

representation is normalized to a fixed size rectangular block. In the 

experiments, the size of the normalized iris image is 256×32 pixels. An iris 

image normalization example and the iris normalization technique are 

illustrated in Figure 3.11 and Figure 3.12 respectively.  

 

 

Figure 3.11: An example of iris image normalization 

 

 

Figure 3.12: Normalization process  

 

 The pupil centre is used as the reference point and the remapping 

formulas are defined in Equation (2.3). The distance from pupil centre to the 

iris outer boundary, Rn(θ), which is a function of θ, is calculated using 

Equation (3.9) and (3.10). 
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22 )()( cdcd yyxxd   (3.9) 

 cos)sin()( 22  ddRR sn  

 
(3.10) 

where (xd,yd) and Rs denote centre coordinates and radius of the iris 

respectively, and (xc,yc) is the centre coordinates of the pupil. 

 

 

Figure 3.13: Geometry representation for iris normalization 

 

The normalized iris image has low contrast and non-uniform 

illumination caused by the light source position. Local histogram equalization 

is applied to the normalized iris image to normalize brightness and increase 

the contrast of the image. Thus, the effect of non-uniform illumination is 

reduced and a well-distributed texture image is obtained. Figure 3.14 shows 

the enhanced iris image after local histogram equalization. 

 

 

Figure 3.14: Enhanced iris image 
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The iris region is divided into three zones according to the 

characteristic of the iris texture. The three zones have the same size. Zones Z1, 

Z2 and Z3 are illustrated in Figure 3.14 and Figure 3.15.  

 

    

Figure 3.15:(a) Three zones of the iris image. (b) Pupillary zone, collarette 
boundary and ciliary zone of the iris 
 

  The iris is divided into two major regions: pupillary zone and ciliary 

zone. Zone Z1 is the pupillary zone which contains an abundance of textures. 

Zone Z2 is the collarette boundary that separates pupillary zone and ciliary 

zone. Zone Z3 corresponds to the ciliary zone with the flattest textures. The 

iris is categorized into different zones so that iris features can be analyzed and 

extracted more effectively. 

   

3.2 Feature Extraction 

3.2.1 1D Log Gabor filter 

  

1D Log Gabor filter is used to extract the frequency information which 

represents the iris textures. First, the 2D normalized iris image is decomposed 

into 1D intensity signals. 1D Log Gabor filter is multiplied with each 1D 

intensity signal in the frequency domain as in Equation (3.11).  

)()()( wIwGwF ii   (3.11) 
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where )(wFi is the ith row of filtered image, G(w) is the 1D Log Gabor filter 

and )(wIi is the ith row of enhanced iris image in frequency domain. 

 

The iris features are extracted based on its anatomical structure. It is 

observed that the inner zone, Z1 contains the finest iris texture. The variation 

of the fine texture indicates that it contains high frequency components. The 

high frequency information can be extracted using Log Gabor filter with high 

centre frequency, ω0. The middle zone, Z2 has a larger block of texture due to 

the presence of the collarette boundary. It is processed using Log Gabor filter 

with a lower centre frequency. The flattest texture appears in the outer zone, 

Z3. The flat texture has low frequency components and therefore the coarsest 

Log Gabor filter with lowest centre frequency is used to capture the local 

details of the outer zone, Z3. By analysing the iris texture, the most significant 

iris features can be extracted with less redundancy.   

 

After applying 1D Log Gabor filters, a series of real and imaginary 

numbers is generated. The phase information is quantized into four quadrants 

in the complex plane. Each quadrant is encoded with two bits phase 

information. Therefore, each pixel in the enhanced iris image is demodulated 

into two bits code in the template. The phase demodulation method used to 

encode iris template is illustrated in Figure 2.4. 

 

1D intensity signals are used because the information density is the 

highest in the angular direction, which corresponds to the horizontal row in the 

enhanced iris image (Ma et al., 2003).  
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The binary template is encoded for matching purpose. The template 

contains no amplitude information of the iris. Actual iris image cannot be 

reconstructed from the template. Therefore, the use of binary template would 

avoid the showing of original iris image.  

 

Furthermore, the binary template can be stored and processed 

effectively using DSP technology. Because the binary template matching is 

computationally efficient, it is suitable for comparisons of millions of 

templates in large database. Therefore, this algorithm is suitable to be ported 

to the DSP embedded system.   

 

3.2.2 1D Advanced Correlation filter 

  

Since the information density is the highest in the angular direction, 1D 

advanced correlation filter is proposed to extract the iris features. First, 2D 

normalized iris image is decomposed into 1D intensity signals. One 

correlation filter is designed using the Fourier Transform of each 1D intensity 

signal. 

 

Correlation filters capture the spatial frequency of the iris image. They 

are implemented in frequency domain array and 1D FFT is used to speed up 

the computation. The training of advanced correlation filters is illustrated in 

Figure 3.16. Correlation filters are designed for each iris class in the training 

set. All iris images that are in the same class are captured from the same eye. 
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Figure 3.16: Training of the 1D advanced correlation filters 

 

The advanced correlation filters are designed using Optimal Trade-off 

Synthetic Discriminant Function (OTSDF), which is defined in Equation (2.8). 

After the advanced correlation filters are designed for each iris class in the 

training set, the feature vector of the test image can be extracted. The feature 

vector extraction is illustrated in Figure 3.17. The advanced correlation filter 

designed for the l-th iris class is denoted as h


. The correlation output is 

defined in Equation (3.12).  

                              )()()( nhnxnc ii


                                            (3.12) 

where )(nxi
 is the 1D feature of the i-th test image, and * denotes cross 

correlation function of the two 1D signals. The output correlation plane should 

contain a sharp peak near the origin if the test image belongs to the same iris 

class.  
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Figure 3.17: Feature vector extraction in 1D advanced correlation filters 

 

OTSDF filter is chosen because it can optimize trade-off between 

average correlation energy (ACE) and output noise variance (ONV). By 

reducing the average correlation energy, the filter can produce a sharp peak at 

the output correlation plane for the training images. By reducing the output 

noise variance, it can tolerate the additive white noise.  

 

The advanced correlation filter is chosen due to its rotation invariance 

property. It can compensate for the rotation of iris caused by head tilt or 

rotation of the camera. The location of correlation peak shows the relative 

shift between the test image and the filter. Furthermore, the correlation filter 

can tolerate the within-class variations. Therefore, the OTSDF filter can 

achieve higher recognition rate than other correlation filter even if the test 

images contain noises. 
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3.3 Template Matching 

3.3.1 Total Hamming Distance 

 

 Hamming distance is used as the measure of dissimilarity between two 

binary templates encoded by 1D Log Gabor filter. Total Hamming Distance 

(THD) is the summation of Hamming distance from three different zones with 

different weightings.  

 

321 HDHDHDTHD    (3.13) 

where HDi, i=1,2,3 denotes the Hamming distance between two templates 

computed from three different zones, Z1, Z2 and Z3. α, β and γ represent the 

weightings of the Hamming distance for zone Z1, Z2, and Z3 respectively. 

The weightings must satisfy the condition defined in Equation (3.14). 

 

1   (3.14) 

α, β and γ have decreasing weightings because the inner zone provides more 

texture information than the outer zones. Zone Z1 contains the most 

significant features that contribute to the recognition. Zone Z3 has less 

discriminating information because its texture is the flattest and it is often 

occluded by eyelids and eyelashes. 

 

In order to account for rotational variance during imaging, the user 

template is shifted right and left bit-wise during matching. Each bit shifting in 

the template corresponds to rotation of the iris by an angle depends on the 

angular resolution. Ten Hamming distances are calculated from successive 
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shifts of the user template. The lowest Hamming distance is chosen as the best 

match between the two templates.  

 

Finally, a threshold is set to determine whether the templates are from 

same iris or different irises. If the Total Hamming Distance is lower than the 

predefined threshold, the user will gain access from the iris verification system. 

However, if the Total Hamming Distance is higher than the predefined 

threshold, the user’s access will be denied and the user will be considered as 

an imposter.   

 

3.3.2 Peak to Sidelobe Ratio 

  

 After cross correlation between the 1D advanced correlation filter and 

1D intensity signal of the test image, the output correlation plane is generated. 

The peak sharpness of the correlation plane is measured using Peak to 

Sidelobe Ratio as defined in Equation (2.12). An authentic iris image produces 

a large PSR while an imposter image yields a very low PSR. 

 

  Total Peak to Sidelobe Ratio is the summation of all PSR from each 

row of the correlation output plane. 

 



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where PSRi denotes the Peak to Sidelobe Ratio of the ith row of correlation 

outputs. N is the total number of rows of the output plane. δ, ε and ζ represent 
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the weightings of the Peak to Sidelobe Ratio for zone Z1, Z2, and Z3 

respectively. The weightings must satisfy the condition defined in Equation 

(3.16). 

 

1   (3.16) 

δ, ε and ζ have decreasing weightings because inner zone provides more 

texture information than the outer zones.  

 

Finally, a threshold is set to distinguish whether the test image is from 

the same or different iris class. If the PSR exceeds the predefined threshold, 

the test image is from the same iris class. However, if the PSR is lower than 

the predefined threshold, the test image is from different iris class.   

 

PSR locates the peak sharpness of the correlation output. The location 

of the correlation peak indicates the relative shift of the test image. Therefore, 

PSR can account for the rotational variance of the test iris image. Furthermore, 

PSR is invariant to any uniform scale changes in illumination of the test image.  

 

3.4 Summary  

  

 In this chapter, the image preprocessing, feature extraction and 

template matching of an iris verification system are presented. For the iris 

localization stage, automatic thresholding and circular Hough Transform 

algorithms are applied to the iris image to detect the iris inner boundary. Iris 

outer boundary is detected using the proposed search region and intensity 
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gradient methods. Upper and lower search regions are defined to limit the 

searching space when detecting the eyelids. Sobel edge detector and linear 

Hough Transform are implemented to obtain the eyelids position. A 

thresholding method is applied to remove the eyelashes, pupil and reflection 

noises. After the iris region is correctly segmented, the iris region is 

normalized into a fixed rectangular block before local histogram equalization 

is applied. The significant iris features are extracted from the enhanced iris 

image. 1D Log Gabor filter with different centre frequency is applied to three 

different iris zones to extract the features of the iris. Total Hamming Distance 

calculates the dissimilarity between two iris templates. For the 1D advanced 

correlation filter, cross correlation between the filter and the test image is 

performed to generate the correlation output. Peak to sidelobe ratio is used to 

measure the peak sharpness of the correlation plane. A threshold is set to 

distinguish whether the test image is from an authentic user or an imposter. 

  

 

 

 

 

 

 

 

 

 

 



46 
 

CHAPTER 4 

 

RESULTS AND ANALYSIS 

 

 Section 4.1 presents the experimental setup for the iris verification 

system. The performance evaluation is described in Section 4.2. Section 4.3 

explains the experimental results for iris localization. Experiment using 1D 

Log Gabor Filter and Total Hamming Distance is discussed in Section 4.4 

while experiment using 1D Advanced Correlation filter and Peak to Sidelobe 

Ratio is discussed in Section 4.5. Finally, the summary is presented in Section 

4.6.  

 

4.1 Experimental Setup 

 

 The experiments are performed using CASIA iris image database 

version 1.0 (CASIA, 2007) as used in the work of Miyazawa K. et al. 

(Miyazawa K. et al., 2006), Thornton J. et al. (Thornton J. et al., 2005), Cui J. 

et al. (Cui J. et al., 2004), Yuan X. et al. (Yuan X. et al., 2007), Zhu Y. et al. 

(Zhu Y. et al., 2000), and Huang J. et al. (Huang J. et al., 2004). The prototype 

is run on a computer with Pentium 4 2.4 GHz CPU and 4GB RAM.  

 

The main tools used for the experiments are MATLAB (R2006b) and 

Microsoft Visual Studio 2008. MATLAB is used for testing some of the 

algorithms. 1D Log Gabor filter response is plotted quickly in Matlab. 

Different Log Gabor filter parameters are evaluated to obtain the most suitable 
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response for iris feature extraction. Moreover, circular Hough Transform and 

Fast Fourier Transform (FFT) are tested using Matlab to verify their 

functionality. 

 

The iris verification algorithm is developed in C/C++ language. The 

software tool used is Microsoft Visual Studio 2008 with its richness in 

predefined functions and standard libraries.  

 

 For the computer vision applications, Intel® Open Computer Vision 

Library (Intel Corporation, 2007) is integrated into the algorithm. It is an open 

source computer vision library developed by Intel Corporation. It consists of 

various image processing algorithms, including edge detection, segmentation, 

object identification, histogram analysis, morphological operators and so forth.  

  

4.2 Performance Evaluation  

 

 The recognition performance is evaluated by plotting the Receiver 

Operating Curve (ROC). The three measures for ROC curve are False 

Rejection Rate, False Acceptance Rate and Equal Error Rate. 

1) False Rejection Rate (FRR): The fraction of the number of rejected genuine 

attempts divided by total number of genuine attempts. 

2) False Acceptance Rate (FAR): The fraction of the number of falsely 

accepted imposter attempts divided by total number of imposter attempts.   

3) Equal Error Rate (EER): The intersection point on the ROC curve where 

FAR is equal to FRR. 
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Figure 4.1: An example plot of ROC curve 

 

 Figure 4.1 shows the example plot of ROC curve. The values of FRR 

and FAR are threshold dependent. By adjusting the threshold, a list of FRR 

and FAR values is plotted on the ROC curve. The relation between FAR and 

FRR is illustrated in Figure 4.2. 

  

    

 Figure 4.2: The relation between FAR and FRR and threshold value 

 

 If the threshold is shifted to the right, the FAR will increase but the 

FRR will decrease. However, if the threshold is shifted to the left, the FRR 

will increase but the FAR will decrease. A high FAR will increase the risk of 
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granting access to unauthorized personnel. On the other hand, a high FRR will 

cause inconvenience to user access as the probability of rejecting a genuine 

attempt is increased.  

  

 Therefore, EER is a threshold independent performance measure that is 

commonly used. The highest performance security system has the lowest EER 

value. 

  

4.3 Iris Localization results 

 

  The circular Hough Transform and proposed intensity gradient 

method have performed well on the iris localization. The proposed algorithm 

was evaluated using CASIA iris image database version 1.0 (CASIA, 2007). 

The results of iris inner and outer boundaries detection are shown in Table 4.1. 

Table 4.2 shows the results of upper and lower eyelids detection.    

 

Table 4.1: Comparison of iris inner and outer boundaries detection rate 

with other algorithms 

 

Method Iris inner boundary 
detection rate 

Iris outer boundary 
detection rate 

Cui et al. (2004) 99.34% 99.34% 

Xu et al. (2006) 98.42% 98.42% 

Proposed 99.07% 98.68% 
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Table 4.2: Comparison of upper and lower eyelids detection rate with 

other algorithms 

 

Method Upper eyelid 
detection rate 

Lower eyelid 
detection rate 

Cui et al. (2004) 97.35% 93.39% 

Xu et al. (2006) 98.52% 98.52% 

Proposed 95.77% 95.37% 

 

 

In Table 4.1 and Table 4.2, the iris boundaries and eyelids detection 

rates are observed by eyes because there is no standard method for evaluating 

the detection results. Since the iris segmentation results on CASIA iris image 

database version 1.0 is shown in Cui et al. (2004) and Xu et al. (2006), the 

performance of the proposed method is compared with their methods in Table 

4.1 and Table 4.2. It can be concluded that the proposed method is comparable 

with their methods.  

 

The detection rates of the iris inner and outer boundaries are 99.07% 

and 98.68% respectively. The false localization of iris inner boundary is 

caused by the pupil that is not a perfect circle. The algorithms try to find the 

best circle which fits the pupil boundary. Iris outer boundary is detected 

incorrectly due to the presence of eyelashes and the iris outer boundary is too 

near to the image boundary. 

 

The accuracy of upper and lower eyelids detection are 95.77% and 

95.37% as shown in Table 4.2. The eyelid boundaries are usually covered by 
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eyelashes. Furthermore, it is difficult to model the eyelid boundaries using 

parabolic shape. The presence of skin fold also causes false eyelids detection.    

 

            

                              (a)                            (b)                           (c) 

Figure 4.3: Inaccurate segmentation due to (a) iris outer boundary near to 
image boundary. (b) presence of eyelashes. (c) pupil is not a perfect circle 
  

The proposed iris localization method is accurate because it utilizes the 

iris anatomical structure characteristics. The circular Hough Transform and 

intensity gradient methods are less complex and thus can reduce the 

computational cost. 

 

4.4 Experiment using 1D Log Gabor Filter and Total Hamming Distance 

 

 For the feature extraction stage, 1D Log Gabor filter is used to extract 

the discriminating frequency information which represents the iris textures. 

For the template matching stage, Total Hamming Distance calculates the 

dissimilarity between two iris templates. The experiments were carried out by 

using CASIA iris image database version 1.0 (CASIA, 2007). Figure 4.4 

shows the ROC curve plotted to evaluate the recognition performance using 

1D Log Gabor filter.   
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Figure 4.4: ROC curve for iris recognition results using 1D Log Gabor 

filter  

 

ROC curve is plotted to measure the recognition accuracy.  From the 

experimental results, the algorithm shows an overall accuracy of 98.62% with 

Equal Error Rate (EER) of 1.38%. It is noted that the result is not perfect due 

to the low quality of the iris images. The iris region is heavily occluded by 

eyelids and eyelashes or distorted much due to pupil dilation and constriction. 

Some of the iris images are defocused or are motion blurred as shown in 

Figure 4.5.  

   

 

                               (a)                         (b)                           (c) 

Figure 4.5: (a) A heavily occluded eye. (b) A defocused eye. (c) A motion 
blurred eye 
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4.5 Experiment using 1D Advanced Correlation filter and Peak to 

Sidelobe Ratio 

 

For second method, 1D advanced correlation filter is applied on the 

test image to generate the correlation output. Peak to sidelobe ratio is used to 

measure the peak sharpness of the correlation plane. The experiments were 

carried out by using CASIA iris image database version 1.0 (CASIA, 2007). 

There are 108 iris classes with 7 images each. The first iris image from each 

class is selected as training image while the other 6 images are used as testing 

images.    

 

 

Figure 4.6: ROC curve for iris recognition results using 1D advanced 

correlation filter 

 

From our research, we found that the 1D advanced correlation filter 

algorithm has better results than the 1D Log Gabor algorithm. The Equal Error 

Rate is only 1.23% and its performance degrades slowly due to the presence of 
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noise and eyelid occlusion. This shows that the correlation filter is noise 

tolerant. The noise inside the iris image is assumed as additive white noise. 

The trade-off between output variance noise and average correlation energy 

can be optimized to obtain the best recognition accuracy.  

 

4.6 Summary 

 

 In this chapter, the experimental results for iris localization and 

recognition are presented. The proposed iris localization method is comparable 

to that of Cui et al. (2004) and Xu et al. (2006). The experimental results show 

that the proposed iris localization method is effective. It uses a less complex 

algorithm but produces results comparable to the other algorithms. The 

proposed 1D Log Gabor filter and Total Hamming Distance method have 

achieved a high recognition rate of 98.62%. The recognition rate for the 

proposed 1D advanced correlation filter and Peak to Sidelobe ratio is 98.77%. 

In conclusion, the innovative iris recognition algorithms based on texture 

analysis and advanced correlation filter presented in this research are 

comparable to existing algorithms.  

 

 

 

 

 

 

 



55 
 

CHAPTER 5 

 

BLACKFIN BASED IMPLEMENTATION AND OPTIMIZATION OF 

IRIS VERIFICATION SYSTEM 

 

The first section of this chapter addresses the challenges of 

implementing the DSP based iris verification system.  The second section 

describes the design flow for the embedded iris verification system. The 

implementation detail of the iris verification system using Blackfin processor 

is also presented. The iris verification algorithm is ported from PC onto the 

Blackfin evaluation board. The optimization strategies for the DSP system are 

discussed in detail. C/C++ source code tuning, compiler’s pragmas, and 

conditional code optimization are implemented to obtain the best code 

execution performance for the processor. The performance profiles of the iris 

verification system are shown in the last section. The performance is evaluated 

in terms of speed before and after optimization. 

5.1 DSP Design Challenge 

 It is a challenging task to develop an iris verification system on a 

digital signal processor (DSP) platform. The porting of the iris verification 

algorithm onto a DSP platform must be carefully designed to meet stringent 

requirements, including accuracy and speed. The algorithm needs to be 

optimized for DSP without compromising performance. This is the main 

challenge in this project, since it is difficult to meet all the requirements 

without having to make trade-offs. For example, most DSP platform has very 
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limited amount of computation power and memory. It is necessary to make 

trade-offs between the speed and memory.  

To cope with the design challenges, an integrated software 

development and debugging environment (IDDE) is used in the DSP 

development. It consists of C/C++ compiler, assembler, expert linker, loader, 

run-time library, simulator and hardware emulator. The development tools 

help to manage the project efficiently and meet changing development needs. 

These tools provide an easy-to-use interface which speeds up development 

time and reduces design error.  
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5.2 Embedded Systems Design Flows 
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Microsoft 
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Figure 5.1: Design flow for embedded iris verification system 
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 Figure 5.1 illustrates the design flow for the embedded iris verification 

system. The first design phase is the algorithm design and testing. Iris 

localization, feature extraction and template matching algorithms are 

developed to meet the specification. In order to implement a robust algorithm, 

prominent algorithms available from open source are investigated. The 

algorithms are analyzed and tested using Matlab programming language. The 

purpose of exploring algorithms using Matlab is to conceptualise and evaluate 

the algorithms without having to focus on the implementation details.  

At design phase II, the iris verification system is implemented on the 

PC platform. Matlab code is rewritten in C/C++ and debugged using 

Microsoft Visual Studio 2008. Major works include: 

1. Study of fundamental algorithm such as the Fast Fourier Transform (FFT) 

and rewriting it into C/C++ code.  

2. Selected functions from OpenCV library are integrated with the algorithm 

to perform simple image processing operations. For instance, Hough circle 

transform function is called to detect the iris inner boundary. After the 

algorithm is developed, its performance will be evaluated in terms of accuracy 

and speed. Once the system is verified, it will be implemented on the Blackfin 

platform for real world application. 

 

At the final design phase, the DSP implementation and optimization 

are completed using VisualDSP++ software. When porting the iris verification 

algorithm onto the DSP platform, the iris verification recognition rate of the 

Blackfin implementation must be equal with the PC-based system. Finally, 



59 
 

processor architecture and memory layout are exploited in order to optimize 

the Blackfin implementation. The software and hardware optimization must be 

able to reduce the processor cycles to achieve faster verification time without 

compromising performance.  

 

5.3 Implementation on Blackfin Processor 

 

In the iris verification implementation, the PC-based iris verification 

algorithm is ported into the Blackfin processor. The mapping of C/C++ source 

code into Blackfin processor must be completed without compromising 

performance. First, the code is compiled and run successfully in VisualDSP++. 

Then, the result of the Blackfin-based algorithm is compared with the PC-

based result. This is to verify that the PC platform and the Blackfin platform 

produce the same result. 

 

For the implementation on Blackfin processor, the verification time is 

less than one second to process a 320×280 grayscale iris image. The iris 

verification stages consist of iris segmentation, normalization and template 

matching. The 1D Log Gabor filter and Total Hamming Distance method are 

chosen to be implemented on Blackfin processor. This is because the encoded 

binary template is only 16 K bytes and it is possible to avoid the showing of 

the actual iris images. The binary template is small in size and can be stored 

efficiently. The advantage of using Total Hamming Distance is the fast 

matching speed. Therefore, 1D Log Gabor filter and Total Hamming Distance 

are used for implementing iris recognition device using DSP technology. 
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Figure 5.2 illustrates the system architecture of the embedded iris 

verification system. The embedded iris verification system is implemented on 

ADSP-BF561 EZ-KIT LITE evaluation board, which is based on the Blackfin 

ADSP-BF561 dual-core processor. The system comprises of three parts, video 

decoding, DSP processing and video encoding.  

 

CMOS Sensor
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EZ-Extender 

Board
Parallel 

peripheral 
interface 1

DMA 
controller

Core/system bus interfaceSDRAM

Blackfin 
processor

Parallel 
peripheral 
interface 2

DMA 
controller

Video 
encoder

TV Tuner

Blackfin processor 

EZ-KIT LITE Evaluation board  

 

Figure 5.2: System architecture of the embedded iris verification system 

 

5.3.1 Video Decoder 

 

The decoding part captures iris images using Complementary Metal 

Oxide Semiconductor (CMOS) sensor and transmits data to the DSP board via 

Blackfin A-V EZ-Extender card. First, the iris image is captured using CMOS 

image sensor. The Blackfin A-V EZ-Extender decodes the image into digital 

format. Parallel peripheral interface (PPI) serves as a video interface between 

the video decoder and the Blackfin processor. The data is transferred from the 

PPI to SDRAM via Direct Memory Access (DMA) channel and external bus 
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interface unit (EBIU). The data is buffered in the SDRAM for further image 

processing. However, in this project, the experiment loads offline iris images 

from the dataset into the SDRAM for verification purpose. The executable 

code and data is loaded from PC into the EZ-KIT Lite evaluation board via 

USB interface. 

 

5.3.2 DSP Processing 

 

The iris image data stored in the SDRAM is transferred into core for 

processing via EBIU. The iris images are verified using the iris verification 

code which is stored in Level 1 (L1) and Level 2 (L2) on-chip instruction 

memories. On-chip memory supports instruction execution at the fastest speed 

with minimum latency. DSP is well suited to compute the Fast Fourier 

Transform (FFT) algorithm which is required in the feature extraction stage. 

16-bit fixed point DSP is used because it runs at higher clock frequency with 

lower power consumption than a floating point DSP.  

 

5.3.3 Video Encoder 

 

In the encoding part, the localized iris images and the verification 

results are transferred to the ADV7179 video encoder. The images are 

transferred in NTSC frame format via the video channel. Multiple peripherals 

are chained to build up the video channel. The peripherals include SDRAM, 

EBIU, DMA channel and PPI. The video encoder converts the digital data into 

its corresponding analog TV signal output. A TV tuner is used to convert the 
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analog signal into digital video format for display on the computer monitor. 

Figure 5.3 displays the Blackfin-based prototype of the iris verification system.  

 

 

 

Figure 5.3: Blackfin-based iris verification system 

 

5.4 Optimization on Blackfin Processor 

 

In order to achieve less than one second execution time, the DSP-based 

iris verification algorithm needs to be optimized. Code optimization must be 

carried out without altering the original code behaviour. Using VisualDSP++, 

a statistical profiler identifies the areas of the program that spend most of the 

processing time. By optimizing these areas of the program, the best code 

execution performance can be obtained.  
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5.5 C/C++ Source Code Tuning 

 

At this stage, the iris verification algorithm has been successfully 

compiled and run in VisualDSP++. However, the algorithm has not achieved 

the targeted performance, where the verification time should take less than one 

second. The objective of C/C++ source code tuning is to present the algorithm 

in a way that gives the optimizer visibility of the data and operations. Hence, 

the algorithm can be safely manipulated to obtain the best execution 

performance (Analog Devices Inc., 2003).  

 

VisualDSP++ compiler generates efficient code from the 

straightforward C code. In default setting, the C/C++ compiler is in non-

optimized mode. The automatic optimization can be enabled by adding -0 

compiler switch to the compiler invocation. The compiler optimization can be 

configured to optimize for speed, or code size, or a factor between speed and 

code size. The output of the optimizer is the correct code that executes faster 

and has smaller size.  

 

Tuning C/C++ source code begins by identifying the areas of the 

program that are computationally intensive. Statistical profiler provided in 

VisualDSP++ is used to find those areas of code. The areas of program that 

are most frequently executed are optimized to provide the largest gains.  

 

Next, function inlining is used for small and frequently-executed 

functions. It avoids program flow latencies, function entry and exit 
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instructions, and parameter passing overheads. As illustrated below, the 

variable that has a fixed value throughout the program is declared as constant. 

 

 

 

 

 

For the source code tuning, condition branches such as if-else construct, 

are relocated outside the loops. If a loop has conditional code, long control-

flow latencies may be incurred if the decision has to branch against the 

compiler’s prediction. An example of conditional statement inside a loop is 

taken from the iris verification algorithm. 

 

 

 

 

 

After code tuning, the conditional code is relocated outside the for loop. The 

optimized code is illustrated below. 

 

 

 

 

 

 

void evRFFT(const uchar *in, EvComplex *out, const EvComplex w[],  
int N ) 
{ 
 int i, j, k, m; 
 const int N2 = N >> 1; 
 const float Wn = 2*PI/N; 

int Len1, Len2, baseidx; 
 ... 
  
} 

for( i = 0; i <= n/2; i++ ) 
    { 
        if( type == 1) 
        { 

 ... 
        } 
        else 
        { 

... 
        } 
    } 

if( type == 1) 
   {    for( i = 0; i <= n/2; i++ ) 
        { 

 ... 
        } 
   } 
else 
   { 

for( i = 0; i <= n/2; i++ ) 
        { 

 ... 
        } 
   } 
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The nested loops are rewritten so that the inner loop iterates more than 

the outer loop. This is because the optimizer focuses on improving the 

performance of the inner loop. Iris verification algorithm has a few nested 

loops where the outer loop iterates many times while the inner loop iterates a 

few times only. An example of similar nested loop is illustrated below. 

 

 

 

 

 

The nested loop is rewritten so that the inner loop has more iterations 

than the outer loop.   

  

 

 

 

 

5.6 Level-1 Code Optimization 

 

The iris verification algorithm after code tuning is benchmarked using 

a statistical profiler. Statistical profiler identifies the areas of the program that 

are most frequently executed. Optimizing these areas of code would provide 

the largest gain. The optimization strategy focuses on the speed performance. 

Optimization is carried out until the targeted speed performance is reached. 

 

for( r = radius ; r<radius +3; r++ ) 
 { for( degree=0; degree <360; degree+= 1) 
  {  
   ... 
  } 
 }  

for( degree=0; degree <360; degree+= 1) 
 { for( r = radius ; r<radius +3; r++ ) 
  {  
   ... 
  } 
 }  
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From the statistical profiling, it is found that the algorithm spends most 

of its execution time inside for loop construct. Therefore, loop optimization is 

carried out in order to achieve largest performance gain. The optimization of a 

loop reaps a benefit for every iteration of that loop.  

 

5.6.1 Loop Optimization using Pragmas 

 

The Blackfin processor allows the code to execute more than one 

iteration in parallel. Loop vectorization is performed by calling the pragmas 

provided by the compiler. Loop optimization pragma (#pragma vector_for, 

#pragma all_aligned, #pragma loop_count) is placed before the loops to guide 

the compiler to perform optimization. The examples of loop statements are for, 

while and do statements.  

 

#pragma vector_for assures the compiler that there are no loop-carried 

dependencies. It tells the compiler that all the iteration may be run in parallel. 

The compiler checks various properties of the loop and vectorizes the loop 

whenever it is safe to do so. 

 

#pragma all_aligned is inserted so that every pointer variable in the 

loop is aligned on a word boundary at the beginning of the first iteration. An 

example of pragma keyword applied in the code is shown below. 

 

 

 

   #pragma vector_for 
   #pragma all_aligned 
 for(i=0;i<AREA; i++) 
 {  
  ... 
 } 
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#pragma loop_count tells the compiler about the loop’s iteration counts. 

The pragma includes information of minimum count, maximum count and a 

multiple of constant times. Using the iteration count range, the compiler 

makes more reliable decisions for the optimization strategy. It decides whether 

the loop is worth unrolling and whether the loop needs to be generated for odd 

iterations. If the loop count is a multiple of some constant, the loop can be 

vectorized without the need for conditionally-executed iterations. The section 

of code using loop count pragma is shown below.  

 

 

 

 

 

 

5.6.2 Optimizing Conditional Code 

 

A pipelined processor executes instructions at the fastest speed when 

the program is relatively linear. If the conditional statement is placed in the 

program, it will incur branch latency caused by pipeline flushing. The 

compiler attempts to decide whether the condition is usually branched to true 

or to false. It arranges for the most efficient path of execution which is most 

commonly executed. 

 

Blackfin processor has incorporated static branch prediction for 

conditional statements. Programmer can use expected_true and expected_false 

for( i = 0; i <= width - 4; i += 4, s += 4 ) 
{ 

  ... 
         #pragma loop_count (5,10) 
         for( k = 1, j = cn; k <= ksize2; k++, j += cn ) 
         { 

... 
         } 
   ... 
    } 
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built-in functions to control the compiler’s behaviour. These functions tell the 

compiler which condition is most likely to be executed. For example, the 

following code checks whether the region of interest is inside an image.  

 

 

 

 

 

 

The condition y>gray->origin && y<gray->height is 

expected to be true in most cases. Then, the expected_true built-in function is 

placed before the condition statement. The compiler arranges for the true cases 

to be executed most efficiently.  

 

5.7 Level-2 Code Optimization 

 

The hierarchical memory structure of Blackfin processor can be 

utilized to minimize the latency caused by memory access.  

 

Due to the limited amount of internal memory, the iris images, 

templates and masks are stored in the SDRAM. SDRAM provides a 128MB of 

memory but operates at longer latency than the on-chip memory. The high 

speed processor is idle while fetching data from the external memory. This 

may leads to slow execution speed of the program. Fortunately, the iris 

verification algorithm can be fit into the L1 and L2 instruction memories. Data 

for( i = 0, rad=0; i <WIDTH; i++, rad+= THETA) 
{  
... 

 for( r2 = rpi3,j=0 ; j < HEIGHT; r2+= r_step,j++ ) 
  {  
  if(expected_true(y>gray->origin && y<gray->height)) 
   ... 

} 
 ... 
 }  
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cache and memory layout optimization are implemented for faster accessing of 

the data in the external memory. 

 

5.7.1 Data Cache 

 The data stored in the L1 internal memories can be fetched with single-

cycle accesses. However, there is limited amount of L1 and L2 on-chips 

memories. There are only 64K bytes of data SRAM in each processor core. In 

the iris verification system, the iris images, templates and masks are too large 

to fit into the internal memory. These data are stored in the SDRAM with 

128M bytes of memory but operates at longer latency. 

 Therefore, the data cache is enabled to transfer data from the SDRAM 

to L1 memory for faster processing. The most frequently used data is 

transferred to the L1 internal memory by the cache controller. Data in the 

cache can be accessed efficiently within a processor single cycle. 

 Blackfin ADSP-BF561 has 64K bytes of L1 data memory in each core. 

32K bytes of the data memory is set as the data SRAM. The remaining 32K 

bytes of data memory can be configured either as data SRAM or data cache. In 

the iris verification system, 16K bytes of data bank A is configured as data 

cache.  

 Static cache management is implemented to manage the cache. 

Cacheability protection lookaside buffers (CPLBs) table are also configured 

with its descriptors to define cacheable external memory. The CPLB 
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descriptors are fitted with 32 fixed entries, which cover the entire cacheable 

external memory, from 0x00000000 to 0x2000000 (32 M bytes). Figure 5.4 

illustrates the optimized L1 memory layout for the iris verification system. 

 

Figure 5.4: Internal L1 memory layout after the data cache is turned on 
using Expert Linker 
 

 

5.7.2 Memory Layout Optimization 

 

The Blackfin ADSP-BF561 supports a hierarchical memory model 

with different size and performance parameters. The L1 memory can be 

accessed in single cycle. L2 memory provides larger space but with higher 

latency. SDRAM has the longest memory access latency. The memory layout 

can be utilized to achieve better performance.  
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By default, there is one system heap used by calls to allocation 

functions like malloc in C. Multiple heaps are implemented in the iris 

verification system. Multiple heaps are needed to serve allocations either using 

fast-but-scarce memory or slower-but-plentiful memory. Frequently accessed 

data structures are allocated in the L1 internal memory. If the data structure is 

too large, it will be allocated in the SDRAM during compile time.  

 

Iris images are stored in SDRAM sub-bank 0, while the iris templates, 

masks and NTSC frame are mapped into SDRAM sub-bank 1. Blackfin 

processor supports two memory operations in one cycle if the addresses are 

located in two different sub-banks. The memory layout after optimization is 

shown in Figure 5.5.   

 

L1 Internal Memory 

Sub-bank 1 (fast heap 1, frequently 

accessed data structure) 

Sub-bank 0 (fast heap 0) 

Unused 

SDRAM (External Memory) 

Sub-bank 1 (slow heap 1, iris templates, 

masks and NTSC frame) 

Sub-bank 0 (slow heap 0, iris images) 

Unused 

 

Figure 5.5: Optimized memory layout for iris verification system  
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5.8 Experiments 

 

The iris verification code is stored in Level 1 (L1) and Level 2 (L2) on-

chip memories. On-chip memory supports instruction execution at the fastest 

speed with minimum latency. The test image is loaded from the PC to the 

evaluation board. The test image size is 320×280. For verification purpose, the 

iris templates and iris masks are loaded into the SDRAM due to their large 

sizes. 

 

5.9 Performance Profile  

 

The performance profile for the original iris verification algorithm is 

gathered using statistical profiler tool. The DSP runs at clock frequency 525 

MHz. Table 5.1 shows the performance profile of the iris verification system 

before and after optimization. Before optimization, the experimental results 

reveal that the iris verification system has not achieved the speed requirement 

of less than one second. It shows that the iris segmentation stage consumes 

67.2% of the total computation time. This is because the iris segmentation 

scans the whole image for the iris region. Therefore, optimization is focused 

on the iris segmentation stage.  
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First, the compiler optimization is turned on and the source code tuning 

is implemented. In Level-l optimization, the strategies include loop 

optimization using pragmas and conditional statement optimization. The 

computation time for iris verification system after Level-1 optimization is 

shown in Table 5.1. The experimental results confirmed that the compiler 

optimization produces an equivalent code with higher performance. The total 

computation time of iris verification algorithm drops by about 30%. The total 

computation time is 1.029 second, but it has not met the speed requirement of 

the iris verification system. 

Table 5.1 also shows the result of the iris verification system after 

Level-2 optimization. It is noted that the iris verification algorithm has 

achieved the desired speed performance. The total verification time is 470.23 

milliseconds. From the experimental results, it is obvious that the iris 

verification algorithm has achieved significant speed improvement, by saving 

up to 554.44 milliseconds (291,076,365 cycles). It is 53.85% faster than the 

iris verification system before Level-2 optimization. Cycle saving at Level-2 

optimization is attributed to the cache enabled for memory access. The 

performance bottleneck is caused by the frequent access to the slower external 

memory. After the data cache is enabled, the data is transferred from the 

SDRAM to L1 memory for faster processing.   

For the implementation on Blackfin platform, the PC-based iris 

verification algorithm is ported to benchmark accuracy. The PC-based iris 

verification algorithm shows an overall accuracy of 98.62%. Multiple 

regression tests are performed during the implementation and optimization of 
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iris verification system. This is to ensure that implementation and optimization 

of iris verification algorithm does not alter the original code behaviour.   

 

 

Figure 5.6: Execution time for all iris verification stages before and after 
optimization  
 

 

Figure 5.7: Final prototype of the iris verification system 
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORKS 

 

6.1 Conclusion 

 

In this project, a robust iris verification algorithm is developed and 

implemented on the Blackfin DSP. First, the iris verification algorithm is 

developed to process the grayscale iris images of 320×280. For the iris 

localization stage, circular Hough Transform algorithm is applied to the iris 

image to localize the iris inner boundary. Iris outer boundary is detected using 

the proposed intensity gradient method. Upper and lower search regions are 

proposed to limit the searching space when detecting the eyelids. Sobel edge 

detector and linear Hough Transform are implemented to detect the eyelids. A 

thresholding method is applied to remove the eyelashes, pupil and reflection 

noises. An effective iris segmentation method for iris recognition system is 

proposed in this thesis. It proposes a solution for compensating all types of 

noises to achieve higher recognition rate.  

 

Second, after the iris region is correctly segmented, the iris region is 

normalized into a fixed rectangular block before image enhancement 

algorithm is applied. The significant iris features are extracted from the 

enhanced iris image. 1D Log Gabor filter and 1D advanced correlation filter 

are employed to capture the spatial frequency of the iris images. Total 

Hamming Distance and Peak to Sidelobe Ratio are used to classify the 
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matching score from 1D Log Gabor filter and 1D advanced correlation filter 

respectively. For 1D Log Gabor filter method, the encoded binary template is 

only 16 K bytes and is able to avoid storing of actual iris images. The binary 

templates are suitable for implementing iris recognition devices using DSP 

technology. The approach has achieved a high recognition rate up to 98.62% 

on CASIA iris image database version 1.0 (CASIA, 2007). For 1D advanced 

correlation filter method, the recognition rate is 98.77% on the same database.  

 

Third, the iris verification prototype is implemented on the EZ-KIT 

Lite evaluation board. The iris verification algorithm is successfully ported 

into the evaluation board without compromising performance. Integrated 

software development and debugging environment is used to manage the 

project efficiently. The IDDE tools help to develop the project from algorithm 

design to the DSP-based implementation. The Blackfin-based platform is 

evaluated to ensure that code behaviour is the same as that of the PC-based 

version. 

 

Finally, three phases of optimization are implemented to ensure that 

the iris verification system conforms to the speed requirement. The areas of 

the program that take up most of the processing time are optimized to obtain 

the best code execution performance. Loop optimization is carried out in order 

to achieve largest performance gain. The optimization of a loop reaps a benefit 

for every iteration of that loop. Hardware level optimization techniques 

implemented includes data cache and memory layout optimization. The 

optimized iris verification system has achieved the desired speed performance. 
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The total verification time is 470.23 milliseconds to process an iris image. The 

total optimization gain is as high as 67.74%. 

 

6.2 Thesis Contribution 

 

 The main contribution is the implementation of a DSP-based iris 

verification system prototype. A fast and accurate iris verification system is 

implemented within a compact hardware module. It is suitable for access 

control application. The execution time for the iris verification is less than one 

second. The generated template size is 16 K bytes, which is suitable for DSP 

implementation.  

 

An effective iris segmentation method for iris recognition system is 

proposed in this thesis. Circular Hough Transform is used to locate the iris 

inner boundary. The proposed method makes use of the search regions to 

locate the iris outer boundary and eyelids. The iris segmentation localize iris 

region correctly for identification purpose. 

 

A fast and robust iris verification algorithm is developed. The 

algorithm has high accuracy and is able to remove noises, such as eyelids, 

eyelashes, pupil and illumination. Furthermore, it enhances the iris image by 

improving its contrast using histogram equalization. The algorithm also 

compensates for iris image translation, scale and rotation variance.    
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 Implementation framework for iris verification system is presented. 

The implementation workflow is applied to map the algorithm onto the DSP 

without compromising performance. Software and hardware toolchains are 

employed to speed up the workflow. The toolchains can help to reduce error 

and manage the project effectively. 

 

 The segment of program that consumes most of the computation time 

is identified before the optimization is applied. C/C++ source code tuning is 

done to obtain the best code execution performance. The optimizer is used to 

generate efficient code from the straightforward C code. Function inlining is 

applied to small and frequently-executed functions. Conditional branches such 

as if-else construct, are relocated outside the loops to avoid latency. The 

nested loops are rewritten so that the inner loop iterates more than the outer 

loop.  

 

 Loop optimization is carried out in order to achieve the largest 

performance gain. The optimization of a loop reaps a benefit for every 

iteration of that loop. Loop vectorization is performed by calling the pragmas 

provided by the compiler. Static branch prediction produces the most efficient 

instruction sequence by choosing the most commonly executed path. 

 

  The hierarchical memory structure is utilized to minimize the latency 

caused by memory access. Data cache is enabled to transfer most frequently 

used data from SDRAM to L1 memory for faster processing. The memory 

layout is utilized to achieve higher speed performance. Multiple heaps are 
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defined to serve allocations either using fast-but-scarce memory or slower-but-

plentiful memory. Data are stored in two different memory blocks because 

Blackfin processor supports two memory operations in one cycle if the 

addresses are located in two different blocks.  

 

6.3 Future Works  

 

Although much work has been accomplished in this research, there are 

still some improvements for future work. The algorithm was evaluated on 

CASIA iris database version 1.0 (CASIA, 2007). The database has limited 

number of iris images and the images are captured under controlled condition. 

The CASIA iris image database contains irises from Asian population only. 

More experiments with more iris images from diversified populations can be 

conducted in the future. The experiments will be conducted in different 

realistic environments to develop more robust iris verification algorithms.  

 

In the iris verification system, the image frame is downloaded from PC 

to EZ-KIT LITE evaluation board for testing and debugging. The system 

operates in offline mode. However, it is preferable to use on-board image 

sensor for realistic applications.  

 

In order to meet speed and power consumption requirements, 

heterogeneous DSP/FPGA architecture is the trend in high-performance 

embedded computing. DSP can focus on performing iris segmentation and 

FFT algorithms. Meanwhile, the matching algorithm can be mapped on FPGA 
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modules to achieve parallelism by pipelined architecture. Thus, millions of 

comparisons between templates in large database could be performed in 

seconds. Hardware and software co-design allows designers to customize the 

hardware and software architecture to meet the requirements of the 

applications.   

 

Another area to work on is the real-time application of the iris 

verification system. Real Time Operating System (RTOS) can be mapped to 

Blackfin DSP board. The examples of RTOS used in Blackfin processor are 

Fusion RTOS, uClinux, and Integrity. RTOS can schedule processes on real 

time system. It manages the hardware resources well to meet the strict timing 

requirement. RTOS allows dual-core Blackfin processor to perform pipeline 

algorithms on both cores simultaneously to speed the processing of the iris 

verification algorithm.  
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