

IOT SMART AGRICULTURE AND

SMART IRRIGATION SYSTEM

TAY YONG TANG

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor of Engineering (Honours) Electronic Engineering

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

May 2022

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

Universiti Tunku Abdul Rahman or other institutions.

Signature :

Name : TAY YONG TANG

ID No. : 18AGB04717

Date : 12 MAY 2023

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “IOT SMART AGRICULTURE AND

SMART IRRIGATION SYSTEM” was prepared by TAY YONG TANG has met

the required standard for submission in partial fulfilment of the requirements for the

award of Bachelor of Engineering (Honours) Electronic Engineering at Universiti

Tunku Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : Dr. LEE YU JEN

Date : _________________________

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any material

contained in, or derived from, this report.

© 2022, Tay Yong Tang. All right reserved.

v

Specially dedicated to

my beloved mother, father, brothers and sister.

vi

ACKNOWLEDGEMENTS

I would like to express my profound gratitude to everyone for their contributions to

the successful completion of my project titled IoT smart agriculture and smart

irrigation systems. I would like to express my special thanks to my project supervisor,

Dr. Lee Yu Jen, for his invaluable advice, guidance, and enormous patience throughout

the development of the project.

Next, I would also like to take this opportunity to express my gratitude to my

loving parents, who have helped and given me encouragement when I am facing

difficulties during the development of the project. In addition, I would like to thank

my classmate, Lee Kar Tien, for the information exchange on the project.

I would like to acknowledge that this project was completed entirely by me and

not by someone else.

Signature :

Name : TAY YONG TANG

vii

IOT SMART AGRICULTURE AND

SMART IRRIGATION SYSTEM

ABSTRACT

Indoor plantation is popular among every household to keep people enjoying living in

a green space, keep their house fresh, and most like having gorgeous plants around.

However, people nowadays have hectic schedules. It is difficult for them to pay more

attention to their plants at home while they are working. In this project, an IoT smart

agriculture and smart irrigation system is developed. This system is able to measure

air temperature and air humidity by using the DHT22 sensor; soil moisture in two

different areas by using two capacitive soil moisture sensors; and the water level in the

water tank by using an ultrasonic sensor. The Node MCU ESP32 DEVKIT V1 DOIT

development board is used in this project to interface with the Blynk server. The

conditions of the plants are sent to the cloud and displayed on the smartphone via the

Blynk IoT application. Besides that, the conditions can also be displayed physically

by using the OLED display. Then, this system includes a smart irrigation system that

is operated with the stepper motor, the water pump, and the automations that can be

activated in the Blynk IoT app. When the soil moisture is fall below 30 %, a

notification is sent to the smartphone, and the irrigation system is activated. In addition,

another automation is applied to detect the water level of the water tank and send a

notification when the water level is below 15 %. After that, the reliability of this system

is analysed, and the overall performance of the display system, irrigation system, and

automation achieved above 90 % accuracy. The energy saving efficiency analysis

shows that the smart irrigation system is able to save 80.65 % of water when the plants

are placed in a cold environment and 67.74 % of water when the plants are placed in a

room temperature environment. Lastly, the improvement of this project is suggested

by implementing the camera and artificial intelligence in this system.

viii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS vi

ABSTRACT vii

TABLE OF CONTENTS viii

LIST OF TABLES xii

LIST OF FIGURES xiv

LIST OF CODING LISTING xviii

LIST OF SYMBOLS / ABBREVIATIONS xix

LIST OF APPENDICES xxi

CHAPTER

1 INTRODUCTION 1

1.1 Project Background 1

1.2 Problem Statements 4

1.3 Aims and Objectives 4

1.4 Chapter Outline 5

1.5 Summary 5

2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Commercial Products in The Market 7

2.2.1 Libelium 8

2.2.2 CropX 9

ix

2.2.3 PRECISIONHAWK 11

2.3 Non-Commercial Projects 11

2.3.1 IoT Automatic Plant Watering System 12

2.3.2 IoT Smart Agriculture & Automatic Irrigation

System with ESP8266 13

2.3.3 Avengers Plant Monitoring Device 14

2.4 Overview of Development board 15

2.4.1 Introduction to Arduino 16

2.4.2 Introduction to Node MCU 18

2.4.3 Introduction to Raspberry Pi 20

2.5 Hardware for Soil Moisture Detection 21

2.5.1 Capacitive Soil Moisture Sensor 22

2.5.2 Conductivity Sensor 23

2.5.3 Soil Moisture & Temperature & EC Sensor 24

2.6 Hardware for Humidity and Temperature Detection 25

2.6.1 DHT Sensors 25

2.6.2 DS18B20 Temperature sensor 26

2.6.3 Barometric Sensors 27

2.7 IoT Platform 28

2.7.1 Google Cloud Platform 28

2.7.2 AWS IoT Core 29

2.7.3 Blynk 30

2.8 Summary 31

3 METHODOLOGY 32

3.1 Introduction 32

3.2 Development Board Selection 33

3.3 IoT Monitoring System 34

3.3.1 IoT Platform Selection 34

3.3.2 Soil Moisture Sensor Selection 36

3.3.3 Humidity and Temperature Sensor Selection 38

3.3.4 Ultrasonic Sensor 38

3.4 Irrigation System 39

x

3.4.1 Irrigation System Model 40

3.4.2 Water Pump 41

3.4.3 Stepper Motor 42

3.5 System Working Principle 43

3.5.1 Block Diagram of the Complete System 44

3.5.2 Operating Flow of Physical Display System 45

3.5.3 Operating Flow of IoT Monitoring System 47

3.5.4 Operating Flow of Irrigation System 49

3.5.5 Operating Flow of Smart Irrigation System 51

3.5.6 Operating Flow of the Complete System 52

3.5.7 Pin Allocation 54

3.6 Cost Estimation 57

3.7 Project Management 59

3.8 Summary 60

4 RESULTS AND DISCUSSIONS 62

4.1 Introduction 62

4.2 Preliminary Result 62

4.3 Hardware Implementation 64

4.3.1 Physical Display System 65

4.3.2 IoT Monitoring System 66

4.3.3 Irrigation System 67

4.3.4 Prototype 68

4.3.5 Prototype Board and Printed Circuit Board 68

4.4 Software Implementation 70

4.4.1 User Interface 70

4.4.2 Automations 72

4.5 System Analysis 74

4.5.1 Humidity and Temperature Detection Ranges Analysis

 74

4.5.2 Soil Moisture Detection Range Analysis 75

4.5.3 Display System Analysis 76

4.5.4 Irrigation System Analysis 78

xi

4.5.5 Automations Analysis 80

4.6 Efficiency on Water Saving Analysis 82

4.6.1 Case Study 1: Cold Environment 82

4.6.2 Case Study 2: Room Temperature Environment 83

4.6.3 Total Water Saving 84

4.7 Cost Analysis 85

4.8 Summary 88

5 CONCLUSION AND RECOMMENDATIONS 89

5.1 Conclusion 89

5.2 Limitations 90

5.3 Recommendations for Improvement 91

RERERENCES 92

APPENDICES 97

xii

LIST OF TABLES

 TABLE TITLE PAGE

2.1 Comparison between Arduino UNO and Arduino

UNO Wi-Fi (Arduino.cc.,2018) 17

2.2 Comparison between Node MCU ESP32 and Node

MCU ESP8266 (Ashwak, 2021) 19

2.3 The Raspberry Pi 2 Model B and The Raspberry Pi

3 Model B+ (www.pololu.com, n.d.) 21

2.4 DHT11 and DHT22 Specifications (Random Nerd

Tutorials, 2019). 26

2.5 DS18B20 Temperature Sensor Specifications

(Maxim Integrated Products, 2019) 27

2.6 BME280 Sensor Specifications (BME280 -Data

sheet, 2018) 28

3.1 Virtual Pins Allocation in Blynk 35

3.2 Pin Definition of NodeMCU ESP32 55

3.3 Pins Allocation of NodeMCU ESP32 Board 56

3.4 Cost Estimation of This Project 57

3.5 Gantt Chart of FYP 1 59

3.6 Gantt Chart of Short Semester 59

3.7 Gantt Chart of FYP 2 60

4.1 Readings of the DHT22 Sensor 74

4.2 Readings of the Capacitive Soil Moisture Sensor 75

4.3 Performance of OLED display and Virtual Display 77

xiii

4.4 Performances of Physical LEDs and Virtual LEDs 77

4.5 Accuracy of the Display System 78

4.6 Performances of the Irrigation System 79

4.7 Accuracy of the Irrigation System 80

4.8 Performances of the Automations 81

4.9 Accuracy of the Automations 82

4.10 Water Usage and Saving 85

4.11 Cost Analysis of the Entire Project 86

xiv

LIST OF FIGURES

 FIGURE TITLE PAGE

1.1 Sketch Model of the Irrigation System 2

2.1 Smart Agriculture Xtreme (Libelium, n.d.) 8

2.2 Smart Agriculture PRO (Libelium, n.d.) 9

2.3 Dashboard on Mobile App of CropX Technology

(CropX, n.d.) 10

2.4 Dashboard on Desktop App of CropX Technology

(CropX, n.d.) 10

2.5 Drone with Sensors (PRECISIONHAWK, n.d.) 11

2.6 Watering System Model (Orion, n.d.) 12

2.7 Dashboard of the Blynk IoT Mobile App (Orion,

n.d.) 13

2.8 IoT Smart Agriculture & Automatic Irrigation

System with ESP8266 (Parajuli, 2022) 14

2.9 Dashboard of the Blynk IoT Mobile App (Parajuli,

2022) 14

2.10 Avengers Plant Monitoring Device

(Vishalsoniindia, n.d.) 15

2.6 Raspberry Pi (Monk, 2016) 20

2.7 Capacitive Soil Moisture Sensor (Shawn, 2010) 22

2.8 Hardware Schematic of the Capacitive Soil

Moisture Sensor (Alam, 2019) 22

2.9 Resistive Soil Moisture Sensor (Shawn, 2010) 23

xv

2.10 Plot of the Electrical Resistance of a Soil Sample

(Antonio, 2021) 24

2.11 Soil Moisture, Temperature and Electrical

Conductivity (EC) Sensor (Antonio, 2021) 24

2.12 Logo of Google Cloud Platform (Google, 2019) 29

2.13 Logo of AWS IoT Core Platform (Amazon Web

Services, Inc., n.d.) 30

2.14 Logo of Blynk Platform (Blynk.io, 2015) 30

3.1 ESP32 Function Block Diagram (Esp32.net, 2016) 33

3.2 Blynk IoT App 35

3.3 Defining the Input and Output 35

3.4 Accuracy of Capacitive Soil Moisture Sensors

(SMEC300 and SM100) and Resistive Soil

Moisture Sensor (YL69 and YL100) (Adla et al.,

2020) 37

3.5 Overview of Capacitive Soil Sensor

(wiki.seeedstudio.com, n.d.) 37

3.6 DHT 22 Sensor Module 38

3.7 HC-SR04P Ultrasonic Sensor (Cytron

Technologies Malaysia, n.d.) 39

3.8 HC-SR04 Ultrasonic Sensor (Cytron Technologies

Malaysia, n.d.) 39

3.9 Sketch Model of Irrigation System 40

3.10 3D Sketch of Belt Holder 40

3.11 3D Sketch of Motor Holder 40

3.12 3D Sketch of Pulley Holder 41

3.13 3D Sketch of Linear Slider 41

3.14 R385 DC12 V Diaphragm Water Pump (Cytron

Technologies Malaysia, n.d.) 42

3.15 L298N Motor Driver (Cytron Technologies

Malaysia, n.d.) 42

xvi

3.16 12 V 28BJ-48 Stepper Motor (Cytron Technologies

Malaysia, n.d.) 42

3.17 ULN2003 Driver Board (Cytron Technologies

Malaysia, n.d.) 43

3.18 Block Diagram of the Complete System 45

3.19 Flowchart of Physical Display System 47

3.20 Flowchart of IoT Monitoring System 49

3.21 Flowchart of Irrigation System 50

3.22 Flowchart of Smart Irrigation System 52

3.23 Flowchart of the Complete System 53

3.24 Pin Configuration of NodeMCU ESP32 Board

(Ashwak, 2021) 54

4.1 Hardware Connection on the Breadboard 63

4.2 Contents of the OLED Display 63

4.3 User Interface on the Blynk IoT App 64

4.4 Hardware of the Physical Display System 65

4.5 Operation of the Status Indicator LEDs 66

4.6 Hardware of the IoT Monitoring System 66

4.7 Hardware of the Irrigation System 67

4.8 Position of the Limiter Switch 67

4.9 Prototype of the Smart Agriculture and Smart

Irrigation System 68

4.10 Prototyped Board 69

4.11 Printed Circuit Board 69

4.12 Web Dashboard on the Blynk Concole 71

4.13 Operation of the Virtual LEDs 71

4.14 Mobile Dashboard on the Blynk IoT App 72

xvii

4.15 Automation Page on the Blynk IoT App 73

4.16 Notifications of the Automation 73

4.17 Marking of the Target Distance 79

4.18 Soil Moisture Percentage in Area B from 26

February to 3 March 83

4.19 Soil Moisture Percentage in Area B from 6 April to

9 April 83

xviii

LIST OF CODING LISTING

CODE LISTING TITLE PAGE

 1 Code to Set Connection Between ESP32 Development Board 70

xix

LIST OF SYMBOLS / ABBREVIATIONS

% Percentage

°C Degree Celsius

A Ampere

gf Gram Force

Hz Hertz

L Litre

m Meter

min Minute

Pa Pascal

s Second

V Voltage

VCC Voltage common collector

ADC analogue to digital converter

AI artificial intelligence

APP application

AWS amazon web service

BLE bluetooth low energy

DAC digital to analogue converter

DC direct current

DHT digital humidity and temperature

GPIO general purpose input output

HDMI high-definition multimedia interface

HSPI high-speed parallel interface

HTTP hypertext transfer protocol

IDE integrated development environment

LED light-emitting diode

xx

I input

I/O input and output

IoT internet of things

I2C inter-integrated circuit

I2S inter-IC sound

MCU micro-controller unit

MQTT message queuing telemetry transport

OLED organic light-emitting diode

OTP one-time password

P power

PCB printed circuit board

PVC polyvinyl chloride

PWM pulse width modulation

RAM random access memory

RTOS real-time operating system

SBC single board computer

SCL serial clock line

SD secure digital

SDA serial data line

SDK software development kit

SOC system on chip

SPI serial peripheral interface

TV television

UART universal asynchronous receiver/transmitter

ULP ultra low power

USB universal serial bus

Wi-Fi wireless fidelity

xxi

LIST OF APPENDICES

 APPENDIX TITLE PAGE

A Coding for the IoT Smart Agriculture and Smart

Irrigation System 97

B Printed Circuit Board Design 148

1

1 INTRODUCTION

1.1 Project Background

Indoor plantation is popular among every household to keep people enjoying living in

a green space, and most like having gorgeous plants around. Some people also aim to

keep their house fresh with the indoor plantation, as the green plants are able to cycle

the air during the day. In addition, some people also take up indoor planting as a hobby.

However, people nowadays have hectic schedules. It is difficult for them to pay more

attention to their plants at home while they are working.

There is a smart irrigation system on the market that is able to water the plants

automatically, but the conditions of the plants, such as the moisture of the soil, the

humidity of the air, and the temperature around the plants, are unable to be detected

(Nermin et al., 2017). This raises the issue that people may not water their plants with

the right amount of water. Thus, a new solution may be needed to solve this problem.

In the years from 2010 to 2011, the Internet of Things (IoT) had been gaining huge

popularity as people started to debate that Google was trying to index the physical

world by using IoT (Lasse and L.K, 2014). IoT is an automation system that is able to

perform networking, sensing, or artificial intelligence to interface a computer system

with a device (tutorialspoint, 2016). So, the decision to design an IoT-based plant

monitoring system with a smart irrigation system has been made in this project.

In the study of previous projects or products on the market, most of the IoT

systems and the smart irrigation systems are separated. Most products on the market

2

to monitor plants are intended for use in a large field, such as for crops, and are

therefore unsuitable for a small-scale plantation, such as an indoor plantation. CropX,

for example, has a cloud-based decision support tool that provides users with

appropriate plantation decisions and plans based on continuous monitoring of soil and

crop conditions (Cropx, n.d.). So, this project plans to develop an IoT system that is

able to detect air temperature, air humidity around the plants, and soil moisture, as

referred to by the products on the market, but on a smaller scale that is suitable for

indoor plantations.

Besides that, for the smart irrigation system, most of the products or projects

are designed in such a way that the water is spread out from the ground. This may be

unsuitable for indoor plantations as the water may spread around the house, which may

lead to accidents. To address this issue, this project intends to create a model that can

be watered from the top of the plant and has a fixed watering range, as shown in Figure

1.1. The irrigation system is able to water the plants from the top equally along the

fixed area with a bar that is able to move in the X direction, where the water tube is

attached to the bar. The design concept of this irrigation system model is inspired by

the project done by Orion Maker (Orion, n.d.).

Figure 1.1: Sketch Model of the Irrigation System

Next, in order to connect to the cloud, the microcontroller or hardware control

device must be able to connect to the internet. After comparing the various

microcontrollers on the market, this project considers using the Node MCU ESP32 as

3

the control device that has internet connectivity functionality and is able to connect to

the IoT cloud via the internet. There are a lot of functions available in Blynk, which is

the IoT cloud platform that is used in this project. The language used to develop the

connectivity between the development board and the cloud is user friendly. The

condition of the plants, such as soil moisture, air humidity, and air temperature, can be

stored in the IoT cloud for three months, providing users with the ability to monitor

the plants easily. In this project, the dashboard is built using the Blynk IoT app, which

is available on smartphones and computers. The design of the input and output to

collect data from the plants and display it on the smartphone or computer is done in

this project using the Blynk IoT app on the smartphone and the Blynk console on the

computer.

In addition, the air humidity and the air temperature are collected using the

DHT22 sensor module, and the soil moisture in two different areas is collected using

the capacitive soil moisture sensor. Some LEDs to indicate the stepper motor that

moves the moving bar and the status of the water pump that pumps the water to the

moving bar are included in this project. At the same time, the statuses are also

displayed on the Blynk IoT app. An OLED display is also added in this project to

display the air temperature, air humidity, and soil moisture physically, even though

they have been shown on the Blynk IoT app, to allow users to monitor the plants

physically when needed. A button is also included to give an instant watering

instruction either physically or remotely in the Blynk app, so that watering can be

performed instantly when needed.

Moreover, a 12 V priming diaphragm pump spray motor is used to pump the

water to the moving bar with small holes to water the plants, and it is controlled by

using the L298N motor driver board. The L298N is able to control the power of the

water pump, and this board also contains a heat sink, which is able to prevent it from

getting heated easily as it drives a 12 V motor. A 12 V stepper motor is used in this

project to move the bar along the X direction and is controlled by the ULN2003 driver

board. Last but not least, this system is powered by using 12 V, as the motors used are

12 V. A 12 V power adapter is used as the power supply. Since the power supply is 12

V, this project has to use an LM2596 stepdown power module to limit the voltage

supply to the Node MCU ESP32, which needs only 5 V.

4

1.2 Problem Statements

Ideally, people having indoor plants will be able to take care of their plants well as

they can pay more attention to their plants around their home. However, they have a

busy lifestyle in reality, which causes them to be unable to look after their plants, even

if the plants are just around them, as they need to rush to their workplace and stay there

for the whole day. This leads to the death of plants because of a lack of monitoring and

watering. Research has shown that applying a smart irrigation system will enable us to

water the plants automatically every day to keep them alive. Even so, a problem that

still has not been solved completely, is the unknown condition of the plants. Thus, the

idea that IoT can be applied to this project to collect data from the plants and send it

to the IoT cloud for feedback to the users has emerged.

This project is going to develop an IoT smart agriculture and smart irrigation

system. This system is able to measure air temperature, air humidity, and soil moisture.

The condition of the plants will be sent to the cloud, and then feedback will be sent to

the users via their phones. The users will be able to react to and measure the condition

of their plants from anywhere in the world. Then, this system includes a smart

irrigation system that automatically waters the plants without the user's engagement.

1.3 Aims and Objectives

The objectives of this project are shown as follow:

i) To design a system that is able to detect and measure the soil moisture, air

temperature and air humidity.

ii) To develop a device that is able to interact with IoT cloud via internet so that

monitoring of plant conditions can be done from an isolated place.

iii) To achieve an automatic watering system.

iv) To customize an app showing the condition of the plants.

5

1.4 Chapter Outline

The introductory chapter introduces the background of the project, including its idea,

overview, problem statement, and objectives. Next, Chapter 2 highlights the relevant

literature. The literature reviewed includes commercial and non-commercial products

related to this project, development boards, soil moisture detection hardware, humidity

and temperature detection hardware, and the IoT platform. After that, Chapter 3

justifies the research methodology by explaining the selection of components to be

applied to the project, introducing the working principle of this system, and describing

cost estimation and project management. Then, Chapter 4 shows and discusses the

system development results for hardware and software. Besides that, several analyses

are also performed and recorded to evaluate the reliability of the system in Chapter 4.

The analyses are system analyses, energy saving efficiency analysis, and cost analysis.

Lastly, Chapter 5 concludes this project. The limitations and recommendations for

improvement of the system are also included in Chapter 5.

1.5 Summary

This chapter has mentioned that indoor plantations are popular among every household

nowadays as a hobby or way to create a green space at home. However, due to some

reasons, the owner of the plant is unable to take care of it, leading to its death. This is

the problem that needs to be solved in this project. Besides that, this chapter has also

mentioned that the IoT is applied to this system to perform networking and sensing to

interface computer systems and devices.

After that, the idea of designing an IoT-based plant monitoring system with a

smart irrigation system has been discussed in this chapter. This system is able to detect

the air humidity, air temperature, and soil moisture of pants and send these conditions

to the IoT cloud, which then show up on the owner’s app on the phone. This chapter

also briefly introduces the components that are used in this system. In addition, this

chapter has listed several objectives to frame this project. Lastly, the outline of every

chapter has been included in this chapter to provide the roadmap of this report.

6

The next chapter, Chapter 2, will discuss the relevant literature, review research

on commercial and non-commercial products from others, and provide information on

every choice of component used in this project.

7

2 LITERATURE REVIEW

2.1 Introduction

In this chapter, literature reviews are conducted to gain an understanding of existing

research that relates to this project. Literature reviews are important to provide

knowledge and concepts for this project. This project is able to gain a better

understanding of how findings are presented and discussed. Thus, this project has

reviewed the commercial products on the market, the non-commercial project, the

development board, the moisture detection hardware, the humidity and temperature

detection hardware, and the IoT platform. Three products or projects are included for

every category that is stated above. The details, pros, and cons of each item reviewed

are discussed and highlighted in this chapter.

2.2 Commercial Products in The Market

A commercial product corresponds to a product created by humans and developed

from project results that is capable of being sold, registered, relocated, or otherwise

discharged, whether for payment or not. In short, consumers need to pay to use the

products. Normally, the product cost is high but supported by higher technology. This

section lists some products from different companies. The advantages and

disadvantages of each product are discussed.

8

2.2.1 Libelium

Libelium is a company that offers a complete IoT technology (Libelium, n.d.). This

company offers smart agriculture products such as Plug & Sense. This product consists

of two models, which are Smart Agriculture Xtreme that costs around RM 60000 as

shown in Figure 2.1 and Smart Agriculture PRO that costs around RM 5000 as shown

in Figure 2.2. This product is designed with more than 20 high-end sensors to monitor

the plants and built with an antenna to transfer information to their own Libelium

Cloud. It allows the user to monitor a lot of parameters, including the condition of

plants, soil monitoring, plant growth analysis, humidity, temperature, atmospheric

monitoring, and weather observation.

The advantages of this product are that it is designed with a lot of sensors that

are able to collect different environmental data in order to give better results in

monitoring the plants; the high-end sensors provide high-accuracy data for monitoring

the plants; automation of data collection; real-time information for daily monitoring

anywhere in the world; weather observation function; and it is able to be applied in a

very large-sized plant field. The disadvantages of this product are that it is designed

without an automatic irrigation system that is able to water the plants automatically,

and it is also not suitable for a small-scale plantation or a home plantation, as some

features may seem to be extra and unnecessary. Besides that, this product is also

expensive for household use, which is why it's built with all kinds of high-tech sensors.

Figure 2.1: Smart Agriculture Xtreme (Libelium, n.d.)

9

Figure 2.2: Smart Agriculture PRO (Libelium, n.d.)

2.2.2 CropX

CropX is a cloud-based decision support tool company that offers integrated hardware

and software systems with a suite of decision and planning tools based on continuous

monitoring of soil and crop conditions (CropX, n.d.). These planning and reporting

tools allow users to record and schedule farm activities at the same time that they

monitor the crop's health and growth.

The advantages of this product include: providing a dashboard on a mobile as

shown in Figure 2.3 or desktop app as shown in Figure 2.4 that is able to give advice

to the farmers after analysing the data from the soil sensor satellites and field properties;

obtaining precise weather information including air temperature, humidity, wind speed,

min and max temperatures, and more; having a deep depth moisture sensor that

accurately captures the of the soil’s water content; and being able to collect images of

the crops from several satellites and renew them every two to three days on average to

observe the crop conditions. The disadvantages of this product are that it is only

suitable for very large-scale plantations, and the cost of owning this tool is also high.

10

Figure 2.3: Dashboard on Mobile App of CropX Technology (CropX, n.d.)

Figure 2.4: Dashboard on Desktop App of CropX Technology (CropX, n.d.)

11

2.2.3 PRECISIONHAWK

PrecisionHawk is a company that has a drone-based agriculture solution that includes

drones, sensors, and its own web-based portal designed for users. Drones will be

deployed by an array of sensors and collect crop data as shown in Figure 2.5. This data

will be sent to a web-based portal for analysis and feedback to users on the action to

take on their crop (PrecisionHawk, n.d.).

The advantages of this product are that it comes with a visual sensor to collect

the livestock data and a multispectral sensor that enables the user to capture

radiometric thermal data in order to get visibility into the crop health and have a clear

view from the top to monitor the plant. However, the disadvantages of this product are

that it is only suitable during the daytime with no rainy days, it is unable to truly detect

the soil condition of the plant, and it is unable to monitor the plant while in an isolated

place.

Figure 2.5: Drone with Sensors (PRECISIONHAWK, n.d.)

2.3 Non-Commercial Projects

A non-commercial project is one undertaken by an individual with no primary profit

motive. A non-commercial project is created as a hobby by an individual. Most of the

non-commercial projects are cheaper than commercial projects because they have no

profile. At the same time, the technology involved in the project will also be lower

than in commercial projects to save costs. Most of the non-commercial projects are

12

suitable for house use only. This section includes the related, non-commercial projects

that are carried out by students or professionals. The pros and cons of these projects

are discussed.

2.3.1 IoT Automatic Plant Watering System

A watering system model was constructed using a total of 13 pieces of PVC pipe; 12

pieces were built in the rectangular shape as the system's body, and 1 piece was used

at the top that can move along and provide watering action as shown in Figure 2.6.

This system uses the NodeMCU ESP8266 as the microcontroller to interact with the

Blynk IoT to perform actions on the system. The dashboard in the mobile app is shown

in Figure 2.7. The actions include a timer set by the user to water the plants and instant

watering (Orion, n.d.).

The system's advantages include the ability to automate the watering action on

the plant during a set time, the ability for the user to control the watering action on the

plant using the phone while in an isolated location, the display of the system's

movement status, and the watering of the plant is done equally from the top, preventing

water flooding in a specific area only. However, this system is unable to let the user

monitor the condition of the plants. The controlling action also cannot be done if the

internet is disconnected.

Figure 2.6: Watering System Model (Orion, n.d.)

13

Figure 2.7: Dashboard of the Blynk IoT Mobile App (Orion, n.d.)

2.3.2 IoT Smart Agriculture & Automatic Irrigation System with ESP8266

The project is using the Node MCU ESP8266 to create an IoT-based system to monitor

the plants as shown in Figure 2.8. This system is also connected with several sensors

to detect the soil moisture level, air temperature and humidity, soil temperature, motion

activity and rain status. There is also an automatic irrigation system that controls the

water pump to water the plant when soil moisture reaches a certain threshold. The

system will feedback the data to the user via the Blynk IoT platform (Parajuli, 2022).

The dashboard of Blynk IoT mobile app showing the data of the plants is shown in

Figure 2.9.

The advantage of the system built is that it automates the watering action on

the plant when soil moisture reaches a certain threshold. This system is also able to

display the status of the plant, so that users are able to monitor it using their phones

while in an isolated place. The disadvantage of this system is that users are unable to

14

control the watering system manually when needed. The watering action of straight

tubes may result in uneven watering or flooding of the plant.

Figure 2.8: IoT Smart Agriculture & Automatic Irrigation System with

ESP8266 (Parajuli, 2022)

Figure 2.9: Dashboard of the Blynk IoT Mobile App (Parajuli, 2022)

2.3.3 Avengers Plant Monitoring Device

The project is done by using an Arduino Uno with a wireless fidelity (Wi-Fi) module

board. The board used is the Tuya CBU board, which was developed by Tuya Smart.

15

Tuya Smart also has their own IoT cloud to provide the interfacing of data with the

phone. This project includes two resistance sensors that are able to measure soil

moisture from two plants and also uses Tuya sensors for measuring temperature and

humidity (Vishalsoniindia, n.d.). Figure 2.10 shows the plant monitoring system with

the data display on the smartphone.

The advantages the system provides are: very cheap in terms of cost to build

the system; able to display the conditions of the plant on the phone, so that the user is

able to monitor it using the phone while in an isolated place; a customised dashboard

can be done on the computer and interacted with the phone using the IoT; and a larger

area of soil moisture data can be collected through the use of two soil moisture sensors.

However, this system uses a fixed IoT device, which means all technologies used must

come from the company. The system is also without an automatic watering system that

is able to water the plant easily.

Figure 2.10: Avengers Plant Monitoring Device (Vishalsoniindia, n.d.)

2.4 Overview of Development board

The development board is a printed circuit board that incorporates the target

microcontroller as well as some hardware. It helps this project program the processor

onboard effectively as the hardware of the development board has been pretested by

the manufacturers. Thus, this project is able to develop and test the project efficiently.

In this section, various types of development boards are introduced. They include the

16

Node Microcontroller Unit (Node MCU), the Raspberry Pi, and the Arduino. The basic

introduction of these three common development boards is discussed in this section.

2.4.1 Introduction to Arduino

Arduino is a user-friendly hardware and software-based open-source electronic

platform. The Arduino board acts like a mini-computer that is able to interact between

the computer and external hardware. A user is able to send some instructions to the

microcontroller in the Arduino board to carry out some action in a simple programming

language, such as C or C. For instance, the Arduino board is able to read the input

from a sensor and convert it into an output, such as activating a motor or turning on an

light-emitting diode (LED) (Arduino.cc., 2018).

 The benefits of using Arduino include its low cost, cross-platform

compatibility, simple programming environment, open source, and extensibility in

both software and hardware. Arduino is inexpensive because the lowest price of an

Arduino board can go up to RM 25 only, such as the Arduino Uno. Arduino is able to

work on different operating systems such as Windows and Linux, making it cross-

platform. Arduino also comes with its own integrated development environment (IDE),

which can be programmed in C or C and provides a straightforward programming

environment. However, there are some disadvantages to using Arduino in IoT projects.

They do not include internet connectivity or the expensive Arduino Wi-Fi board.

Arduino boards such as Arduino Uno do not have built-in support for wireless

networks and Wi-Fi modules may need to be added in order to get a Wi-Fi connection

(Yuan, 2017). The Arduino UNO Wi-Fi board is seen to be an expensive board as the

price is up to RM 259. The comparison between the Arduino UNO board and the

Arduino UNO Wi-Fi board is shown in Table 2.1.

17

Table 2.1: Comparison between Arduino UNO and Arduino UNO Wi-Fi

(Arduino.cc.,2018)

Board

Technical

Specification

Arduino UNO

Arduino UNO Wi-Fi

Microcontroller ATmega328P ATmega4809

Flash Memory 32 kB 48 kB

Internet

Connectivity

No Yes

PWM Digital I/O

Pins

6 5

Analogue Input

Pins

6

Clock Frequency 16 MHz

Operating Voltage 5 V

Analogue Input

Pins

6

Size 68.6 mm 53.4 mm

Price RM 25 RM 259

18

2.4.2 Introduction to Node MCU

Node Microcontroller Unit (Node MCU) is an open source LUA-based firmware and

hardware development environment that is built for the ESP8266 Wi-Fi system on chip

(SOC) from Espressif System (Yuan, 2017). Then the Node MCU ESP8266 DEVKIT

board is invented to make the Node MCU easier to use. This board incorporates the

ESP8266 chip on a standard circuit board. The board is built with a micro universal

serial bus (USB) port, a reset button, LED lights, a Wi-Fi antenna, and General Purpose

Input Output (GPIO) pins that can be plugged into a bread board. The Node MCU

ESP8266 DEVKIT board can be easy to flash like the Arduino by connecting it to a

laptop using a micro USB cable. This board can also be programmed by using C++ or

C in the Arduino IDE. Later, Espressif System created another advanced version of

the Node MCU ESP8266, which is the ESP32. This board is created to replace the lack

of security of the ESP8266 board (Ashwak, 2021).

The benefits of using the Node MCU ESP8266 module are that it provides high

performance and powerful onboard processing at a low cost, resulting in a functional

Wi-Fi. The price of a Node MCU ESP8266 is around RM 15. For less than RM 20, it

can monitor and control devices from an isolated place. At the same time, it can also

set up a network for itself, allowing other devices to connect to it, which increases the

versatility of the ESP8266. Besides that, the Node MCU ESP8266 devkit board has 17

multiplexing GPIO pins. These pins can be assigned to all sorts of peripheral duties,

such as analogue to digital converter (ADC) channels, universal asynchronous

receiver/transmitter (UART) interface, pulse width modulation (PWM) outputs, serial

peripheral interface (SPI), inter-integrated circuit (I2C), and inter-IC sound (I2S)

interface. Next, the Node MCU ESP32 is an upgrade of the ESP8266 with an ultra-

low power co-processor. The price of a Node MCU ESP32 is around RM 30. It has 34

GPIO pins with an Xtensa dual-core processor running at 160 MHz, working with

more complicated projects and providing a faster processing rate. The most important

function of ESP32 is that it provides hi-tech security. Additionally, ESP32's built-in

temperature sensor allows users to access and detect temperature values remotely

without extra external hardware, but the value taken may be affected by the circuit

temperature itself. The comparison between Node MCU ESP32 and Node MCU

ESP8266 is shown in Table 2.2.

19

Table 2.2: Comparison between Node MCU ESP32 and Node MCU ESP8266

(Ashwak, 2021)

Board

Technical

Specification

Node MCU ESP32

Node MCU ESP8266

Microcontroller Single or dual core 32-bit

LX6 Xtensa

Single core 32-bit L106

Xtensa

Co-Processor Ultra Low Power (ULP) NO

Clock Frequency 160 MHz or 240 MHz 80 MHz

Flash Memory 512 B 4 MB

Internet

Connectivity
Yes Yes

Bluetooth Bluetooth Low Energy

(BLE)
No

Security Security Boot flash

encryption. one-time

password (OTP) 1024-bit

No

Power Consumption
10 uA deep sensor 20 uA

Temperature Sensor Yes No

Touch Sensor 10 No

Total GPIO 39 17

Total SPI 4 2

Operating Voltage 3 V to 3.6 V

Size 25.4 mm 48.3 mm 3.0

mm

49.0 mm 24.5 mm 13.0

mm

Price RM 30 RM 15

20

2.4.3 Introduction to Raspberry Pi

As shown in Figure 2.6, the Raspberry Pi is a low-cost single-board computer (SBC)

that runs the Linux operating system and can be input with a keyboard or mouse using

USB and output to a computer monitor or television (TV) using high-definition

multimedia interface (HDMI) (Monk, 2016). The Raspberry Pi can be programmed

using any type of language, such as C, C, Java, or Python. Many tasks can be done

by having a Raspberry Pi. For example, document editing, browsing the internet,

playing games, and using it as a media centre to play videos (Singh et al., 2021). At a

price of around RM 150 for the Raspberry Pi 2 model B and RM 156 to get the

Raspberry Pi 3 model B, Table 2.3 shows two models of the Raspberry Pi.

Figure 2.6: Raspberry Pi (Monk, 2016)

The benefits of using the Raspberry Pi for IoT projects are that it supports a

wide range of peripherals because it has 26 GPIO pins that can interface with a variety

of hardware. The Raspberry Pi also supports almost all the peripherals available on the

Arduino. Then, due to the popularity of this board, the Raspberry Pi market resources

are vast, providing a large community to support the project. Next, the Raspberry Pi

comes with a 1.6 GHz processor, which means this board has a faster processing rate,

leading to good performance. The disadvantage of using the Raspberry Pi is that it

lacks internal storage, necessitating the use of a micro secure digital (SD) card as

internal storage. This will greatly increase the boot time and read or write speed of the

Raspberry Pi, as the SD card is slow in speed. Furthermore, because the IoT monitoring

system will be running continuously, the Raspberry Pi may overheat. The powerful

21

processor and multiple features mean high power is needed and it is easy to cause the

board to heat up. Heat sinks or cooling fans may need to be added to the Raspberry Pi,

but they come at an extra cost.

Table 2.3: The Raspberry Pi 2 Model B and The Raspberry Pi 3 Model B+

(www.pololu.com, n.d.)

Board

Technical

Specification

Raspberry Pi 2 Model B Raspberry Pi 3 Model B+

CPU BCM2836 BCM2837B0

CPU Speed 900 MHz 1.4 GHz

CPU Cores 4

HDMI Yes

SD Socket micro SD

USB Port 4

Internet Connectivity
No

2.4 GHz 5 GHz

802.11b/g/n/ac

Bluetooth No 4.2

Size 85.1 mm 55.88 mm 20.32 mm

Price RM 150 RM 156

2.5 Hardware for Soil Moisture Detection

For plants and agriculture, it is important to have the right amount of water, so as not

to over or under water the plants. Since there is a limitation on the human vision system,

the moisture level of the soil cannot be detected using naked eyes. Soil moisture

sensors play an important role in measuring the volumetric water content of soil. This

section includes three types of soil moisture sensors that can be applied to the

monitoring system.

22

2.5.1 Capacitive Soil Moisture Sensor

Figure 2.7 shows the capacitive soil moisture sensor that utilises the dielectric contrast

between water and soil to detect the moisture value of the soil (Joshua, 2020).

Theoretically, dry soil has a permittivity value of between 2 and 6, while water has a

value of roughly 80. So, this sensor analysis determines the permittivity value in order

to predict the volumetric water content in the soil. Figure 2.8 shows the hardware

schematic of the capacitive soil moisture sensor. There is a built-in 555 timer chip with

a frequency oscillator circuit, which supplies a constant square wave to the sensor

(Alam, 2019). The higher the soil moisture, the greater the capacitance of the sensor.

Figure 2.7: Capacitive Soil Moisture Sensor (Shawn, 2010)

Figure 2.8: Hardware Schematic of the Capacitive Soil Moisture Sensor (Alam,

2019)

One of the advantages of using capacitive soil moisture sensors is that they

give a long life service to a project. This is because the capacitive soil moisture sensor

is made of corrosion-resistant material and there is no direct exposure of metal

23

electrodes. Besides that, the accuracy of capacitive soil moisture sensors is also high,

as proved in the paper written by Joshua (Joshua, 2020). In Joshua's paper, it is

mentioned that there is only a 6 % error in readings from the soil moisture sensor,

indicating this sensor gives a good detection of the water content in the soil.

2.5.2 Conductivity Sensor

The conductivity sensor, which is also called a resistive soil moisture sensor, as shown

in Figure 2.9, makes use of the relationship between electrical resistance and water

content in soil (Shawn, 2010). When the voltage is applied to the two probes, current

will be produced and sent from one to another. The change in current will be measured

to represent the presence of water. The soil will act as the resistance for the two probes

(Antonio, 2021). When the water content in the soil is low, electrical conductivity will

be low as in the absence of water, the resistance will be high, leading to low current

passing through the probes.

Figure 2.9: Resistive Soil Moisture Sensor (Shawn, 2010)

One reason to get a resistive soil moisture sensor is that it is very cheap in terms

of cost, which can be obtained by using RM 5 only. However, the corrosion of this

sensor is high as it is frequently used. Then, the sensitivity of this sensor is also low as

the conductivity of the two probes may be affected by the concentration of salt in the

soil. This is proved by the experiment by Antonio, in which the change in voltage is

small upon watering, as shown in Figure 2.10, from 2.11 V to 1.84 V.

24

Figure 2.10: Plot of the Electrical Resistance of a Soil Sample (Antonio, 2021)

2.5.3 Soil Moisture & Temperature & EC Sensor

As shown in Figure 2.11, the soil moisture, temperature, and electrical conductivity

(EC) sensor is a device that can measure soil moisture and electrical conductivity. This

device contains three stainless steel probes that are able to prevent corrosion. They are

inserted into the soil surface or profile to measure soil moisture and temperature

quickly. The moisture sensor measures the dielectric constant of the soil in order to

measure the volume of the soil moisture content. The temperature sensor uses a

precision platinum resistance element. The product's built-in drift calibration and

temperature compensation circuits can be adapted to most applications. (Antonio,

2021).

Figure 2.11: Soil Moisture, Temperature and Electrical Conductivity (EC)

Sensor (Antonio, 2021)

25

The advantage of using this device is that it is able to detect an extra condition

of the soil, which is the temperature of the soil. This allows the monitoring of plants

to become more detailed. Secondly, this device is also corrosion free due to the use of

stainless steel material as the probes. However, the price of this device is quite high to

implement in a project, which costs around RM 400.

2.6 Hardware for Humidity and Temperature Detection

Humidity and temperature are important aspects to take into account in plantations to

make sure the plants can grow healthily. So, hardware to detect the humidity and

temperature around the plants is needed in order to take quick action in bad conditions.

This section will include three types of humidity and temperature sensors that can be

applied to the monitoring system. The pros and cons of these sensors will be discussed.

2.6.1 DHT Sensors

DHT sensors are the digital sensors that perform measurements of the temperature and

relative humidity. These sensors are made with a capacitive humidity sensor and a

thermistor. These sensors are digital because they give a digital signal output for

temperature and humidity by using a chip. This gives an analogue to digital conversion.

There are two versions of DHT sensors: DHT11 and DHT22. Both have the same

pinout but are different in characteristics (Random Nerd Tutorials, 2019).

The advantages of using DHT sensors are that they are low cost, easy to

interface with a microcontroller via a digital signal, and they are able to detect both the

temperature and humidity of the air. However, these sensors are very basic and slow.

Version DHT11 has the advantages of ultra-low cost (RM 4.50 in the market) and

faster sampling rate, yet it has low accuracy and range of measurement. In contrast,

DHT22 sensors have better accuracy and a longer range of measurement. In other

26

words, the price of DHT22 will be higher than DHT11, which is RM 15.50. The

specifications of both DHT11 and DHT22 are shown in Table 2.4.

Table 2.4: DHT11 and DHT22 Specifications (Random Nerd Tutorials, 2019).

DHT Version

Specification

DHT11

DHT22

Power Supply Range 3.0 V to 5.5 V 3.0 V to 6 V

Temperature

Detection Range
0 °C to 50 °C -40 °C to 80 °C

Humidity Detection

Range
20 % to 90 % 0 % to 100 %

Accuracy ± 2.0 °C ± 0.5 °C

Sampling Rate 1 second 2 seconds

Size 15.5 mm 12mm 5.5

mm

15.1 mm 25 mm 7.7

mm

Price RM 4.50 RM 15.50

2.6.2 DS18B20 Temperature sensor

The DS18B20 is a programmable-resolution digital sensor that requires only one data

line to interface with a central microcontroller. This sensor provides a resolution of 9-

bit to 12-bit temperature measurement and has an alarm function (Maxim Integrated

Products, 2019). It also has a unique 64-bit serial code, allowing multiple DS18B20

sensors to connect to one microcontroller with only one data wire. In addition, it can

derive power directly from the data line without an external power supply.

The advantages of using DS18B20 temperature sensors are low cost, saving on

the usage of microcontroller pins, and adjustable accuracy. However, this sensor only

detects or measures the temperature value. The specifications of the DS18B20

temperature sensor are included in Table 2.5.

27

Table 2.5: DS18B20 Temperature Sensor Specifications (Maxim Integrated

Products, 2019)

Sensor

Specification

DS18B20

Power Supply Range 3.0 V to 5.5 V

Temperature

Detection Range
-55 °C to 125 °C

Accuracy ± 0.5 °C

Price RM 4.30

2.6.3 Barometric Sensors

A barometric sensor is a sensor that is able to measure the atmospheric pressure. There

are two versions of the barometer sensor: BME280 and BMP180. BME280 is a new

version of BMP180 that is built with both a temperature and humidity sensor, while

BMP180 is only equipped with a temperature sensor (BME280-Data sheet, 2018).

Thus, the BME280 is a barometric sensor that is able to measure air temperature,

humidity, and pressure. BME280 is able to detect the temperature range from -40 °C

to 85 °C, while BMP180 just measures from 0 °C to 65 °C. In addition, the BME280

also provides SPI and I2C interfaces.

The advantages of using BME280 are that this sensor is able to achieve high

performance in obtaining the air humidity and pressure values, has a wider temperature

measurement range, and has more functionalities. However, the price of a BME280

sensor module is higher, at around RM 40. In addition, the BME280 sensor module

self-heats a little bit, which may cause the temperature reading to vary by 1 °C to 2 °C.

The specifications of the BME280 sensor are included in Table 2.6.

28

Table 2.6: BME280 Sensor Specifications (BME280 -Data sheet, 2018)

Sensor

Specification

BME280

Power Supply Range 3.3 V to 5.0 V

Temperature

Detection Range
-40 °C to 85 °C

Accuracy ± 0.5 °C

Price RM 38.50

2.7 IoT Platform

The IoT platform is served as a middleman to connect hardware and software by using

the internet. The IoT cloud platform can simultaneously handle massive data volumes

from devices, applications, and sensors and take action to provide a real-time reaction.

Three different IoT platform options that can be used with the monitoring system are

covered in this section. The advantages and disadvantages of various platforms are

examined.

2.7.1 Google Cloud Platform

In 2011, Google has created the Google Cloud Platform, a middleware. This platform

makes it simple for consumers to access the cloud and other computing services (Saran,

2018). This platform is also included a tonne of cloud functionalities that helps the

customers perform their tasks, like cloud storage, data analytics, and machine learning.

The Google Cloud platform also consists of a variety of components, including Google

Cloud Dataflow, Google Cloud Endpoints, Google Cloud Storage, and others. These

components are beneficial to users in a variety of ways (Google, 2019).

29

Utilizing the Google Cloud Platform provides its benefits due to its high

performance and extensive functionality. The web responds more quickly on this

platform and loads pages more quickly. Additionally, it functions well with the

hardware setups, which results in a better cloud hosting experience. Additionally, with

the aid of the Google cloud servers, consumers have access to their data from anywhere

in the world. Users must, however, pay a high subscription fee to use the platform.

Figure 2.12 shows the logo of Google Cloud Platform.

Figure 2.12: Logo of Google Cloud Platform (Google, 2019)

2.7.2 AWS IoT Core

AWS IoT Core is a managed cloud service that enables customers to connect their

devices to the cloud and communicate with other devices and cloud apps even when

they are not online. The AWS IoT Device software development kit (SDK), which

facilitates the connection between a user's devices and allows for message exchange

with the AWS IoT Core, is one of the main components of the AWS IoT Core (Amazon

Web Services, Inc., n.d.). message queuing telemetry transport (MQTT), lightweight

communication protocols, and hypertext transfer protocol (HTTP) are all supported.

Additionally, with mutual authentication and end-to-end encryption, AWS IoT Core

offers a safe platform for transferring data to AWS endpoints and other devices.

The benefits of adopting this platform include its ability to process massive

volumes of messages or data, the ability to follow and communicate with apps even

when they are not connected, and the ability to securely access devices. However,

access to this site requires payment. Pricing is determined based on connectivity,

30

messaging, and shadow device usage. Figure 2.13 shows the logo of AWS IoT Core

Platform.

Figure 2.13: Logo of AWS IoT Core Platform (Amazon Web Services, Inc., n.d.)

2.7.3 Blynk

A group of software tools called Blynk requires users to deploy linked electrical

devices, prototype them, and manage them remotely. Blynk's major goal is to make

the process of developing mobile applications as simple as possible (Blynk.io, 2015).

By creating a no-code Android app and a web application to analyse real-time and

historical data flowing from devices, users may connect their gear with the cloud. At

the same time, customers have the option of controlling them remotely from a remote

location and receiving alerts or notifications when certain criteria are reached. The

application is also prepared for end customers, allowing anyone who has bought the

product to download it, connect it to their device, and use it right away.

Blynk has the benefits of being free for personal use and prototyping, and the

Blynk app is an app editor that can customise an app to share the project with friends

and family, who can also use the functionality. In addition, Blynk is a user-friendly

platform with simpler visualisation and connectivity. Blynk, however, cannot

communicate with devices while they are offline, and it also does not allow the export

of significant amounts of data. Figure 2.14 shows the logo of Blynk Platform.

Figure 2.14: Logo of Blynk Platform (Blynk.io, 2015)

31

2.8 Summary

In this chapter, three commercial products have been reviewed from three different

companies: Libelium, CropX, and PrecisionHawk. Firstly, Libelium provides

complete IoT technology, including its own Libelium Cloud. Secondly, CropX

provides a cloud-based decision support tool to help customers schedule farm activities

and monitor their crops' health and growth. Thirdly, PrecisionHawk provides drone-

based agriculture solutions with its own-design drones, visual sensors, and web-based

portal.

Next, the non-commercial projects that has been reviewed in this chapter are

the IoT automatic plant watering system, the IoT smart agriculture & automatic

irrigation system with ESP8266, and the Avengers Plant Monitoring Device. Firstly,

the IoT automatic plant watering system project has built a watering system that is able

to control the watering action using a smartphone anytime, anywhere. Secondly, the

IoT smart agriculture & automatic irrigation system with ESP8266 project has built a

system that monitors the condition of the plants and performs irrigation automatically.

Thirdly, the Avengers Plant Monitoring Device project developed a system that can

detect the soil moisture of the plants and display it to the user via smartphone.

Besides that, the development boards, soil moisture detection hardware,

humidity and temperature detection hardware, and IoT platforms have been

investigated in this chapter. Firstly, the development boards are the Arduino, Node

MCU, and Raspberry Pi. Secondly, the soil moisture detection hardware are the

capacitive soil moisture sensor, conductivity sensor, and soil moisture, temperature

and electrical conductivity (EC) sensor. Thirdly, the reviewed humidity and

temperature detection hardware are the DHT sensor, the DS18B20 temperature sensor,

and the barometric sensor. Fourthly, the IoT platforms reviewed in this chapter are

Google Cloud Platform, AWS IoT Core, and Blynk.

In the next chapter, Chapter 3, the methodology of this project will be discussed.

The most suitable hardware and software will be decided. The system working

principal also will also be discussed to connect the hardware and software. Lastly, the

management of this project will also be included in the next chapter.

32

3 METHODOLOGY

3.1 Introduction

There are six sections in this chapter to discuss the principles of this project. The first

section is the selection of the development board. This section discusses the most

suitable development board reviewed in Chapter 2 to be applied to this project and

how it operates in this project. The next section is on the IoT monitoring system, which

includes IoT platform selection, soil moisture sensor selection, humidity and

temperature sensor selection, and other hardware related to the IoT monitoring system.

Their connection and the operation of the hardware are included in this section. The

third section is the irrigation system. This section includes the hardware applied to the

irrigation system to perform watering actions. In addition, discussion on the system

working principle is included in the fourth section to provide the system architecture

design and the connection between hardware, so that a clear illustration the of system

design is given. The operating flow of every part of the entire system is discussed.

Furthermore, the cost estimation is also done in this chapter to set a budget for this

project. The last section is the management of the project. The Gantt charts are

included in this section to demonstrate the project milestones.

33

3.2 Development Board Selection

The Node MCU ESP32 DEVKIT V1 DOIT development board is used for this project

among many other boards analysed because it has the best pricing among the available

alternatives for the ESP32. Although ESP8266 costs less than ESP32 and was used in

the majority of the projects examined, its 17 GPIO pins are seen as insufficient to

construct a system with IoT monitoring and smart irrigation. Therefore, by investing a

few extra ringgits to purchase an ESP32 with 30 GPIO pins, the problem of a lack of

GPIO pins may be resolved, increasing the capability of the system.

A dual-core 32-bit processor is also included with the ESP32, as can be seen

in the function block diagram in Figure 3.1. The dual-core processor in this project

allows it to synchronise two tasks: monitoring and watering, to perform multitasking

more effectively, despite the fact that FreeRTOS is capable of doing so. The ESP32

comes equipped with extra random access memory (RAM) and Flash memory, an

ADC, and a variety of other peripherals, as was mentioned in Chapter 2.4.2. To

complete this project, these capabilities are more than adequate. Furthermore, this

board's biggest feature is its inclusion of Wi-Fi and Bluetooth, which makes it stand

out from similarly priced boards like Arduino. Consequently, this project makes it

simple to manage the device from an isolated place at a low price in order to achieve

the low-cost IoT monitoring.

Figure 3.1: ESP32 Function Block Diagram (Esp32.net, 2016)

34

3.3 IoT Monitoring System

The IoT monitoring system is added to overcome one of the issues faced in the non-

commercial project, which is that the condition of the plants is unknown. The low cost

and small scale IoT monitoring system is applied to this project, which is suitable for

indoor plantation as compared to the commercial projects reviewed in Chapter 2.2.

This IoT monitoring system contains parts such as an IoT platform, soil moisture

sensor, air temperature and humidity sensor.

3.3.1 IoT Platform Selection

Blynk is the IoT platform that is being used in this project, enabling prototype and

remote control of the linked devices. Blynk supports a wide range of devices, including

the Arduino, ESP32, ESP8266, Raspberry Pi, and others. The benefit of adopting

Blynk is that it is a free IoT platform for personal use, and the system may be shared

with up to five other individuals. In addition, Blynk offers a no-code required app,

which allows this project to customise an app to accomplish the goal, which is also the

motivation behind utilising this platform.

The Blynk IoT app, which can be downloaded using a smartphone, is offered

by Blynk and is shown in Figure 3.2. With the help of this app, the project can modify

a no-code Android app that analyses both recent and older data from connected devices.

In addition to creating mobile dashboards, Blynk also offers web dashboards for

customising and interacting with connected devices. This project is defined in Blynk

by the input and output using the virtual pin as shown in Figure 3.3 via a computer or

mobile device. Blynk offers 256 virtual pins and supports double, integer, and string

as its three data types. This project can include more additional functionalities in the

system thanks to the large number of virtual pins.

35

Figure 3.2: Blynk IoT App

Figure 3.3: Defining the Input and Output

In addition, Blynk also includes the automation function, with which this

project can set some events or actions to take when any threshold values are reached.

Notification is also sent to report the condition of the plants, and automatic irrigation

can be done without engagement. Another interesting function of Blynk is Blynk.Air.

The firmware can be sent to the connected device over the air from Blynk to update

the device without programming the device directly using a cable. The allocation of

virtual pins is shown in Table 3.1.

Table 3.1: Virtual Pins Allocation in Blynk

Virtual Pin Name Description

V0 HUMIDITY Humidity data input from the DHT sensor

V1 TEMPERATURE Temperature data input from the DHT sensor

36

V2 SOIL A

MOISTURE

Soil moisture in area A data input from the

capacitive soil moisture sensor

V3 SOIL B

MOISTURE

Soil moisture in area B data input from the

capacitive soil moisture sensor

V4 INSTANT

WATERING

Instant watering signal output to perform

watering action manually

V7 PUMP_START Pump status (start) input from the connected

device

V8 MOVING_START Stepper motor moving status (start) input

from the connected device

V9 DISTANCE Output signal to the stepper motor to control

the total moving distance (0 to 25 cm)

V10 PUMP POWER Output PWM signal to the water pump to

control the strength of water pump

V12 WATER LEVEL

PERCENTAGE

Water level data input from the ultrasonic

sensor.

3.3.2 Soil Moisture Sensor Selection

This project uses capacitive soil moisture sensors to detect the condition of the soil.

As opposed to resistive sensors, capacitive soil moisture sensors do not directly expose

the electrode metal to the air, which considerably reduces electrode degradation and

gives a long life to this project. This is significant because the system will be in

operation for a long time. The soil moisture value needs to be able to be measured

often as part of this project. In addition, the capacitive soil moisture sensors

outperformed the resistive sensors in terms of sensitivity and accuracy. The experiment

done by Adla et al. showed that the capacitive soil moisture sensors are more accurate

than the resistive soil moisture sensors (Adla et al., 2020). Figure 3.4 shows the

accuracy of capacitive soil moisture sensors (SMEC300 and SM100) and resistive soil

moisture sensors (YL69 and YL100), in 4 different soils. The closer the bubble is to

37

its origin, the more accurate the sensor is. As a result, capacitive sensors can provide

a more precise assessment of the soil's state for effective plant monitoring.

Figure 3.4: Accuracy of Capacitive Soil Moisture Sensors (SMEC300 and

SM100) and Resistive Soil Moisture Sensor (YL69 and YL100) (Adla et al.,

2020)

In this project, a total of two capacitive soil moisture sensors are used to detect

two different areas of soil moisture value. In Figure 3.5, the structural and pin-out of

the capacitive soil sensor is shown. It is also included with a rail-to-rail output

operation amplifier, LMV358ID, to drive high capacitive-load with low voltage

operation needed. A grove cable is connected to the sensor and then connected to the

NodeMCU ESP32 board.

Figure 3.5: Overview of Capacitive Soil Sensor (wiki.seeedstudio.com, n.d.)

38

3.3.3 Humidity and Temperature Sensor Selection

The DHT22 sensor is used to measure the temperature and humidity of the air. The

DHT sensor, which is the most appropriate sensor to utilise in this project, is a basic

and inexpensive digital temperature and humidity sensor, as discussed in Chapter 2.

The cost of a single DHT22 sensor module is RM 15.50. Then, as illustrated in Figure

3.6, this project can simply connect the leftmost pin to ground, the centre pin to VCC

(which ranges from 3 V to 5 V), and the rightmost pin to the ESP32's data input pin.

The Arduino IDE has the Adafruit DHT sensor library installed to programme the

ESP32 board and manage the DHT22 sensor.

Figure 3.6: DHT 22 Sensor Module

3.3.4 Ultrasonic Sensor

The ultrasonic sensor is added to this project as an extra feature to detect the water

level of the tank. This project uses the model HC-SR04P as shown in Figure 3.7, which

is compatible with the model HC-SR04 ultrasonic sonar distance sensor as shown in

Figure 3.8. The ultrasonic sensor uses an ultrasonic transmitter and ultrasonic receiver

to measure the distance between two points. The basic working principle of this sensor

is to use the trigger pin to create a high-level signal for at least 10 μs and then the

module sends eight 40 kHz signals and detects the available pulse signal back. The

amount of time taken to travel from and back to the sensor is used to measure the

distance. The range of detection is about 2 cm to 450 cm with a 5 V power supply and

2 cm to 400 cm with a 3 V power supply (ElecFreaks, 2011). The only difference

between model HC-SR04P and model HC-SR04 is that model HC-SR04P supports a

3 V to 5 V power supply, while model HC-SR04 only supports 5 V. Thus, the reason

for choosing model HC-SR04P in this project is that node MCU ESP32 is a 3.3 V

39

system, which means an extra level shifter needs to be added when using model HC-

SR04.

Figure 3.7: HC-SR04P Ultrasonic Sensor (Cytron Technologies Malaysia, n.d.)

Figure 3.8: HC-SR04 Ultrasonic Sensor (Cytron Technologies Malaysia, n.d.)

3.4 Irrigation System

The irrigation system is added to overcome one of the issues encountered in the non-

commercial project, which is that the watering action is insufficient. A low-cost, small-

scale irrigation system is applied to this project, which is suitable for indoor plantations.

To address the issue of water spreading around the house, this project intends to create

a model that can be watered from the top of the plant and has a fixed watering range.

This idea comes from one of the non-commercial projects reviewed in Chapter 2.3.1.

A model of this irrigation system is developed. This watering system contains parts

such as the water pump and stepper motor.

40

3.4.1 Irrigation System Model

The irrigation system model is constructed using a total of 13 pieces of PVC pipe: 12

pieces are built into the rectangular shape of the system's body, and one piece is used

at the top that can move along and provide watering action, as shown in Figure 3.9.

There are 8 pieces of 3-way corner elbow PVC fitting connectors that are used to

combine the 12 pieces of PVC pipe. The irrigation system is able to water the plants

from the top equally along the fixed area with a bar that is able to move in the X

direction, where the water tube is attached to the bar. In order to move the bar, there

are five pieces of 3D-printed holders applied in the system. Figures 3.10 to 3.13 show

the 3D-printed holder: a belt holder, a motor holder, a pulley holder, and two linear

sliders that hold the watering bar.

Figure 3.9: Sketch Model of Irrigation System

Figure 3.10: 3D Sketch of Belt Holder

Figure 3.11: 3D Sketch of Motor Holder

41

Figure 3.12: 3D Sketch of Pulley Holder

Figure 3.13: 3D Sketch of Linear Slider

3.4.2 Water Pump

The R385 DC12 V diaphragm water pump, as shown in Figure 3.14, is applied in this

project to pump the water from the water tank to the moving bar. It operates at a direct

current (DC) voltage of 12 V, providing water pressure of 0.3 MPa at the inlet. This

pump can pump water at a rate of 1.6 Lmin, which is appropriate for this project

because it must pump water from a lower to a higher position (Cytron Technologies

Malaysia, n.d.). Since there are only power pins allocated on the water pump, a driver

is added to provide the signal sent from the ESP32 board and control the input power

to turn on or off the water pump. The driver is an L298N motor driver that supports 7

V to 30 V. L298N is a high-voltage and high-current dual full-bridge driver that is able

to receive a digital signal and drive the motor (STMicroelectronics, n.d.). This project

uses the module of the L298N motor driver as shown in Figure 3.15, which consists of

a 5 V or 12 V input voltage terminal, 2 output terminals, a heatsink mounted with the

L298N for better heat dissipation, and header pins for a digital input signal.

42

Figure 3.14: R385 DC12 V Diaphragm Water Pump (Cytron Technologies

Malaysia, n.d.)

Figure 3.15: L298N Motor Driver (Cytron Technologies Malaysia, n.d.)

3.4.3 Stepper Motor

The 12 V 28BJ-48 stepper motor, as shown in Figure 3.16, is used with a bearing and

belt to move the PVC pipe and perform the watering action in this project. This stepper

motor is operated at 12 V and is able to provide a pull-in torque of 300 gf/cm. In

addition, this is a 4-phase stepper motor that needs 4 digital inputs to be controlled.

Thus, the ULN2003 driver board, as shown in Figure 3.17, is used to control the

stepper motor. The ULN2003 is a high-voltage and high-current Darlington array,

containing seven open collector Darlington pairs with common emitters

(STMicroelectronics, n.d.).

Figure 3.16: 12 V 28BJ-48 Stepper Motor (Cytron Technologies Malaysia, n.d.)

43

Figure 3.17: ULN2003 Driver Board (Cytron Technologies Malaysia, n.d.)

After that, the steps of the motor required to pull the moving bar by one

centimetre is calculated using Equation 3.1 below.

Total steps � Target distance � � � !"# $% $&! %'(()!*$(' +$&
,-!("+ ./ � 0'((!1 !! / &'23!)#45 (3.1)

The stepper motor is operated in half step in this project. Therefore, 4096 steps are

needed to complete one full revolution. Then, the pitch of the belt is 2 as used for the

GT2 pulley. In addition, the teeth numbers of the pulley that is used in this project are

20. By inserting the value into Equation 3.1, this project able is to get the total steps

that the stepper motor is required to pull the moving bar to the target distance. The

outcome of Equation 3.1 is in millimetres. Thus, it needs to multiply by ten to get the

distance in centimetre. Equation 3.2 shows the final formula to get the total steps value

that is used to control the stepper motor.

Total steps � Target distance � � 6789
,: � :745 � 10 (3.2)

3.5 System Working Principle

The system architecture design and the flow of the system are discussed in this section

to give a clear illustration of the system design. The block diagram is drawn to show

the system architecture design. In addition, the pin allocation on the Node MCU ESP32

board is included in this section to make sure the order is sent correctly to the interfaced

hardware.

44

3.5.1 Block Diagram of the Complete System

A block diagram is included in this subsection, as shown in Figure 3.18, giving a visual

representation of the system design so that future technical issues can be managed

effectively. A 12 V power supply is provided to the system, powering the water pump

motor driver, stepper motor driver, and ESP32 board. A step-down power module is

added to regulate the 12 V supply voltage to 5 V to make sure the voltage supply to

the ESP32 board is maintained at 5 V. The idea of this complete system is that the

NodeMCU ESP32 acts as the middleware to interface with Blynk Cloud and the

hardware to collect data and give instructions.

The NodeMCU ESP32 is connected to the Blynk server via the internet, storing

data in the Blynk Cloud, and displaying the condition of the plants to the application

on the computer and smartphone. The conditions of the plants, such as soil moisture,

air temperature, and air humidity, are collected using a humidity and temperature

sensor and two capacitive soil sensors, connected to the ESP32 board. An ultrasonic

sensor is also added to detect the water level in the tank. After that, a push button is

added to perform instant watering physically, and a limiter switch is added to control

the movement of the watering bar. Moreover, the condition is also displayed on the

OLED display by the ESP32 board, and four LEDs are added to indicate the status of

the water pump and stepper motor. In addition, a digital signal is sent from ESP32 to

the water pump motor driver and stepper motor driver to carry out the watering.

45

Figure 3.18: Block Diagram of the Complete System

3.5.2 Operating Flow of Physical Display System

The flowchart of the physical display system is shown in Figure 3.19. This is a

predefined process to display the condition of the plants physically by using OLED

display; and the status of the stepper motor and the water pump by using LEDs. Firstly,

air temperature, air humidity, soil moisture area A, and soil moisture area B are

detected by the sensors and sent to the Node MCU ESP32 board. At the same time, the

ESP32 board stores the data and converts the soil moisture value in areas A and B into

a percentage. Then, the air temperature and air humidity data is displayed on the OLED

first. The air temperature is displayed in degrees Celsius (°C), and the air humidity is

displayed in percentage (%). A four-second delay is added before displaying the soil

moisture.

After that, the soil moisture in area A is displayed next. The display style is

classified into three stages based on the soil moisture. The first stage is when the soil

46

moisture percentage value is between 0 % and 30 %. At the top of the OLED display,

the message "Plant A needs water" is displayed, followed by a crying animated emoji

in the middle of the display and the soil moisture percentage value (%) next to the

emoji. The second stage is when the soil moisture percentage value is between 31 %

and 70 %. At the top of the OLED display, the message "Plant A looks good" is

displayed, followed by a neutral animated emoji in the middle of the display and the

soil moisture percentage value (%) next to the emoji. The third stage is when the soil

moisture percentage value is between 71 % and 100 %. At the top of the OLED display,

the message "Plant A very fresh" is displayed, followed by a happy animated emoji in

the middle of the display and the soil moisture percentage (%) next to the emoji. A

five-second delay is added before displaying the soil moisture value of area B. The soil

moisture in area B is displayed next and has the same display style as the soil moisture

in area A. The only difference is that the message displayed changes from A to B. For

example, "Plant A looks good" changes to "Plant B looks good". A five-second delay

is added again.

Meanwhile, there are four LEDs (two red and two green) that are used in this

system to indicate the status of the water pump and the stepper motor. When the water

pump is activated to pump the water from the water tank to the moving bar, the green

LED that indicates the status of the water pump is turned on, and the red led that

indicates the status of the water pump is turned off. When the water pump is

deactivated, the green LED that indicates the status of the water pump is turned off,

and the red LED that indicates the status of the water pump is turned on. This is same

for stepper motor status: when the stepper motor is activated to move the moving bar,

a green LED that indicates stepper motor status is turned on, and a red LED that

indicates stepper motor status is turned off. When the stepper motor is deactivated, the

green LED that indicates stepper motor status is turned off, and the red LED that

indicates stepper motor status is turned on. The loop system is repeated to display the

condition of the plants physically.

47

Figure 3.19: Flowchart of Physical Display System

3.5.3 Operating Flow of IoT Monitoring System

The flowchart of the IoT monitoring system is shown in Figure 3.20. This is a

predefined process to display the condition of the plants, the status of the water pump,

the status of the stepper motor, and the water level of the water tank. Firstly, the

connection to the Blynk server is checked. When the connection is made, variables

like air temperature, air humidity, soil moisture in area A and area B, and water level

are read by the sensors. The Node MCU ESP32 board receives the data by using

another core different from the physical display system. The data is sent to the Blynk

48

server and stored in the Blynk Cloud. Next, the data is sent to the Blynk console on

the computer and the Blynk IoT app on the smartphone.

After that, the data are displayed on the Blynk IoT app to let this project

monitor the condition of the plants. The data for air temperature, air humidity, and soil

moisture in areas A and B are also tabulated into a graph and recorded in the second

tab of the Blynk app. The data of air temperature and air humidity are displayed every

30 minutes, while the data of soil moisture in area A and soil moisture in area B are

displayed every 50 minutes. For the data of the water level, there is an automation that

can be activated. When the automation is activated, the percentage of water level is

checked by the system. If the percentage of the water level is less than 15 %, a

notification is sent to the smartphone.

Meanwhile, there are two virtual LEDs used on the Blynk IoT app to indicate

the status of the water pump and the stepper motor. When the water pump is activated

to pump the water from the water tank to the moving bar, the virtual green LED that

indicates the status of the water pump is turned on, and it is turned off when the water

pump is deactivated. This is the same for stepper motor status: when the stepper motor

is activated to move the moving bar, the virtual green LED that indicates stepper motor

status is turned on, and it is turned off when the stepper motor is deactivated.

49

Figure 3.20: Flowchart of IoT Monitoring System

3.5.4 Operating Flow of Irrigation System

The flowchart of the irrigation system is shown in Figure 3.21. This is a predefined

process to perform irrigation by controlling the stepper motor and the water pump.

Firstly, the stepper motor and the water pump are activated when this predefined

process is called. The stepper motor is accelerated to 200 steps per second and then

moved at a constant speed of 450 steps per second. The positive sign is used to control

the rotation direction of the stepper motor. So, the stepper motor is rotated clockwise

to pull the moving bar from left to right. With the distance value and water pump power

value set on the Blynk IoT app, the moving bar is moved to the target distance, and

water is pumped from the water tank to the moving bar.

50

After reaching the target distance, the water pump is deactivated. Then, the

stepper motor is accelerated to 200 steps per second and then moved at a constant

speed of -450 steps per second. The negative sign is used to control the rotation

direction of the stepper motor to rotate anticlockwise and pull the moving bar from

right to left. After that, this system checks for the limiter switch signal continuously.

When the limiter switch signal is equal to 1, which means the moving bar has returned

to the starting point, the stepper motor is deactivated, and the moving bar is stopped.

Figure 3.21: Flowchart of Irrigation System

51

3.5.5 Operating Flow of Smart Irrigation System

The flowchart of the smart irrigation system is shown in Figure 3.22. This is a

predefined process to perform watering actions automatically when the automation is

activated on the Blynk IoT app. In the Blynk IoT app, there is an automation page

where the automation can be activated This project can choose to activate automation

for soil moisture in areas A, B, or both. Thus, this system determines which automation

is activated at the beginning.

After that, the soil moisture percentage value in the specific area is checked.

When the soil moisture is lower than 30 %, the stepper motor and the water pump are

activated. The stepper motor is accelerated to 200 steps per second and then moves at

a constant speed of 450 steps per second. The positive sign is used to control the

rotation direction of the stepper motor. So, the stepper motor is rotated clockwise to

pull the moving bar from left to right. With the distance value and water pump power

value set on the Blynk IoT app, the moving bar is moved to the target distance, and

water is pumped from the water tank to the moving bar.

After reaching the target distance, the water pump is deactivated. Then, the

stepper motor is accelerated to 200 steps per second and then moves at a negative

constant speed of 450 steps per second. The negative sign is used to control the rotation

direction of the stepper motor to rotate anticlockwise and pull the moving bar from

right to left. After that, this system checks for the limiter switch signal continuously.

When the limiter switch signal is equal to 1, which means the moving bar has returned

to the starting point, the stepper motor is deactivated, and the moving bar is stopped.

52

Figure 3.22: Flowchart of Smart Irrigation System

3.5.6 Operating Flow of the Complete System

The flowchart of the whole system in this project is shown in Figure 3.23. At the

beginning, the connection of the Node MCU ESP32 development board to the Wi-Fi

is detected. When the connection is successful, the system proceeds to check the status

of the limiter switch. When the limiter switch gives a signal of 0, the moving bar is not

at the starting position. So, the stepper motor is activated to move the moving bar from

right to left to the starting position at a negative constant speed of 450 steps per second.

When the limiter switch gives a signal of 1, the moving bar has reached its starting

position, and the stepper motor is deactivated. After that, the signal from the push

button is checked continuously by this system. When the signal from the push button

53

equals 1, this system enters the predefined process of the irrigation system to perform

irrigation on the plants.

At the same time, this system also enters into the predefined processes of the

IoT monitoring system and physical display system to perform specific tasks. On the

Blynk app, this project is able to set the moving distance value of the moving bar, the

water pump power, activate the predefined process of the smart irrigation system, and

perform an instant watering action. The values of moving distance and water pump

power are used in every watering action. After that, this system checks the signal for

instant watering continuously. When the signal is equal to 1, this system enters the

predefined process of irrigation system.

Figure 3.23: Flowchart of the Complete System

54

3.5.7 Pin Allocation

Before starting to programme the NodeMCU ESP32 board, the allocation of the pins

to interface with external hardware such as sensors, LEDs, buttons, and other

components is important, so that the order is sent to the correct pin of the hardware.

The pin configuration of the NodeMCU ESP32 is shown in Figure 3.24.

Figure 3.24: Pin Configuration of NodeMCU ESP32 Board (Ashwak, 2021)

The NodeMCU ESP32 has 30 pins in total, the majority of which are

multipurpose. The pins are two power pins, two ground pins, one enable pin, 25 GPIO

pins that can be assigned for various functions, 12 ADC channels, two digital-to-

analogue converter (DAC) channels, UART pins that provide two UART interface

functions, eight SPI pins that provide two SPI buses of high-speed parallel interface

(HSPI) and VSPI; serial data line (SDA) pin and serial clock line (SCL) pin that

provides a single I2C bus, and nine capacitive touch-sensing GPIO pins. The summary

of the pins is included in Table 3.2. After figuring out the available pins on the ESP32

board, the tasks are allocated to the pins needed in order to control the external

hardware. The pin allocations of the NodeMCU ESP32 board are included in Table

3.3.

55

Table 3.2: Pin Definition of NodeMCU ESP32

Pin No. Name Type Function

1 EN I Module-enable signal (active high)

2 SENSORVP I GPIO36, ADC

3 SENSORVN I GPIO39, ADC

4 IO34 I GPIO34, ADC

5 IO35 I GPIO35, ADC

6 IO32 I/O GPIO32, ADC, TOUCH, XTAL

7 IO33 I/O GPIO33, ADC, TOUCH, XTAL

8 IO25 I/O GPIO25, ADC, DAC

9 IO26 I/O GPIO26, ADC, DAC

10 IO27 I/O GPIO27, ADC, TOUCH

11 IO14 I/O GPIO14, ADC, TOUCH, HSPI_CLK

12 IO12 I/O GPIO12, ADC, TOUCH, HSPI_MISO

13 IO13 I/O GPIO13, ADC, TOUCH, HSPI_MOSI

14 GND P Ground

15 VIN P Input voltage

16 3V3 P Power supply

17 GND P Ground

18 IO15 I/O GPIO15, ADC, TOUCH, HSPI_CS0

19 IO2 I/O GPIO2, ADC, TOUCH

20 IO4 I/O GPIO4, ADC, TOUCH

21 IO16 I/O GPIO16, UART_RXD

22 IO17 I/O GPIO17, UART_TXD

23 IO5 I/O GPIO5, VSPI_CS0

24 IO18 I/O GPIO18, VSPI_CLK

25 IO19 I/O GPIO19, VSPI_MISO

26 IO21 I/O GPIO21, SDA

27 RXD0 I/O GPIO3, UART_RXD

28 TXD0 I/O GPIO1, UART_TXD

29 IO22 I/O GPIO22, SCL

30 IO23 I/O GPIO23, VSPI_MOSI

56

Table 3.3: Pins Allocation of NodeMCU ESP32 Board

Pin No. Name State Task Allocated

1 EN - -

2 SENSORVP Input Limiter switch signal

3 SENSORVN Input Instant watering button signal

4 IO34 Input Analogue input from capacitive soil moisture

sensor A

5 IO35 Input Analogue input from capacitive soil moisture

sensor B

6 IO32 Output Digital output signal to turn on green LED

when stepper motor is moving and turn off

when stepper motor is stopping

7 IO33 Output Digital output signal to turn on red LED when

stepper motor is stopping and turn off when

stepper motor is moving

8 IO25 - -

9 IO26 Input Analogue input from echo pin of ultrasonic

sensor to receive the pulse signal.

10 IO27 Output Digital output signal to trigger pin of

ultrasonic sensor to trigger it to send pulse

signal

11 IO14 Output Digital output signal to turn on/off the water

pump

12 IO12 Output Digital output signal to turn on green LED

when water pump is on and turn off when

water pump is off

13 IO13 Output Digital output signal to turn on red LED when

water pump is off and turn off when water

pump is on

14 GND Power Ground

15 VIN Power Direct supply with regulated 5V input voltage

16 3V3 Power Supply regulated 3.3 V voltage to sensors,

display and more

57

17 GND Power Ground

18 IO15 - -

19 IO2 - -

20 IO4 Input Analogue input from DHT22 sensor

21 IO16 - -

22 IO17 Output Digital signal to pin 4 of motor driver board

(IN4)

23 IO5 Output Digital signal to pin 3 of motor driver board

(IN3)

24 IO18 Output Digital signal to pin 2 of motor driver board

(IN2)

25 IO19 Output Digital signal to pin 1 of motor driver board

(IN1)

26 IO21 Output Serial data line to OLED display

27 RXD0 - -

28 TXD0 - -

29 IO22 Output Serial clock line to OLED display

30 IO23 - -

3.6 Cost Estimation

The cost estimation is provided in this section to give a budget to this project, so that

this project is built with sufficient funds. The cost of this entire project is estimated to

be around RM 327. The details of the cost estimation are shown in Table 3.4.

 Table 3.4: Cost Estimation of This Project

A. Main Part

 Item Cost (RM)

1. Development Board 30.00

Total Estimated Cost of Main Part: RM 30.00

B. IoT Monitoring System

58

 Item Cost (RM)

1. Humidity and Temperature Sensor 20.00

2. Capacitive Soil Moisture Sensor (Corrosion Resistance) 60.00

3. Ultrasonic Sensor used for water level detection 10.00

Total Estimated Cost of IoT Monitoring System: RM 90.00

C. Physical Display or Control System

 Item Cost (RM)

1. OLED 15.00

2. Push Button 2.00

Total Estimated Cost of Physical Display or Control System: RM 17.00

D. Irrigation System

 Item Cost (RM)

1. Belt 10.00

2. Pulley 5.00

3. Water Pump with its Driver Board 20.00

4. Stepper Motor with its Driver Board 15.00

Total Estimated Cost of Irrigation System: RM 50.00

E. Watering Model

 Item Cost (RM)

1. Platform to hold the Stepper Motor 10.00

2. PVC Pipe 50.00

3. Corner Holder 40.00

4. Water Tube 5.00

Total Estimated Cost of Watering Model: RM 105.00

F. Power and Other Components

 Item Cost (RM)

1. Power Supply Adapter 10.00

2. Wires 5.00

3. Others 50.00

Total Estimated Cost of Power and Other Components: RM 65.00

Total Estimated Cost: RM 327.00

59

3.7 Project Management

This project is scheduled by using a Gantt chart, which is one of the most applied

planning and guiding tools in projects today (Geraldi et al., 2012). The Gantt chart

enables this project to define and manage the time and project flow in order to meet

the target. The advantages of using Gantt charts are that the progress of the project is

able to be measured clearly and no time is wasted on the project. The Gantt charts for

this project are shown in Table 3.5 to Table 3.7.

Table 3.5: Gantt Chart of FYP 1

Week

Task

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Title propose and revise

Literature review

Research for software

and hardware design

Prototype draft

sketching

Hardware design of IoT

monitoring system

Program of IoT

monitoring system

Discussion with

supervisor

Reporting

Presentation

preparation

FYP 1 report

submission

FYP 1 oral presentation

Table 3.6: Gantt Chart of Short Semester

Week

Task

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Research for software

and hardware design

Hardware of watering

system design

Program of watering

system

Building model of

watering system

60

Testing and

troubleshooting

watering system

Reporting

Table 3.7: Gantt Chart of FYP 2

Week

Task

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Literature review

Program of watering

system

Building model of

watering system

Improvement on

complete system

Discussion with

supervisor

Reporting

Presentation

preparation

Poster design

FYP 2 final report

submission

Poster submission

FYP 2 oral presentation

3.8 Summary

In this chapter, the selection of the development board that is applied to the system has

been discussed first. The development board is the Node MCU ESP32 DEVKIT V1

DOIT, which has the best cost and flexibility of function. Next, the IoT monitoring

system is discussed in the second section, which selects Blynk IoT as the IoT platform,

the capacitive soil moisture sensor to detect the soil moisture, the DHT22 sensor to

detect the air humidity and air temperature, and the model HC-SR04P ultrasonic sensor

to detect the water level in the water tank.

After that, the third section is the irrigation system. This section discussed the

model of the irrigation system. The sketch of the model is shown in this section to give

a better illustration of the project. The parts to build the irrigation system model are

61

also included. The R385 DC12 V diaphragm water pump and 12 V 28BJ-48 stepper

motor with the driver board are used in this project to complete the irrigation system.

In addition, the fourth section is the discussion on the system's working

principle. The block diagram has been included in this section to connect every

component of the entire system. In this section, the flowcharts are also drawn to show

the operating flow of every predefined process and the complete system. The pin

allocation is also included in this section. Furthermore, the cost estimation has been

done in the following section to set a budget for this project. The last section is the

management of the project. The Gantt charts are included in this section to demonstrate

the project milestones.

In the next chapter, Chapter 4, the results and discussion of this project will be

discussed. The hardware and software implementation will be indicated in the next

chapter. Next, the system and cost of the project will also be analysed.

62

4 RESULTS AND DISCUSSIONS

4.1 Introduction

In this chapter, six sections are discussed to show the outcomes of this project. Firstly,

the preliminary result is shown at the beginning of this chapter. In the preliminary

results section, the tasks that are carried out in the early phase of the project are

discussed, which help to smooth the process of this project. Next, the hardware

implementation is discussed in the second section. This section shows all the hardware

that is used to build the physical display system, the IoT monitoring system, and the

irrigation system. Besides that, the prototype of the watering model, the prototype

board, and the printed circuit board are also included in this section. After that, the

software implementation of this project is discussed in the third section. This section

is about the user interface and automation that are applied in this system. Furthermore,

the fourth section is the system analysis. The system is operated with a number of tests.

The overall accuracy of the system is also included in this section. Moreover, the fifth

section analyses the energy-saving efficiency of this system. Lastly, a cost analysis is

carried out to calculate the cost of the entire project.

4.2 Preliminary Result

The preliminary task has been carried out in the early phase of this project to expedite

the outcomes. The IoT monitoring system, physical display, and control system have

63

been built on a breadboard during this phase. These systems are built to test the

connectivity between the IoT platform and the development board to achieve control

action. Thus, troubleshooting and modifications can be performed in the future to make

this project more effective. This project is able to purchase some main hardware and

apply it to the breadboard.

Figure 4.1 shows the connection of the hardware on the breadboard. In Figure

4.1, the LEDs indicate the status of the water pump and stepper motor, the OLED

displays the condition of the plants, the DHT22 sensor measures the air humidity and

air temperature, the push button gives a watering order, and the development board is

connected to the IoT cloud. Figure 4.2 shows the air humidity, air temperature, and

soil moisture displayed on the OLED display. The temperature and humidity of the air,

animated emoji, and percentage of soil moisture are shown on the OLED display. The

user interface for the Blynk IoT app is shown in Figure 4.3. The conditions of the plant

are displayed on the Blynk IoT app. In the first tab of the Blynk IoT app, the air

humidity and air temperature are tabulated into a graph, from which this project can

observe the change in the values. The status of the water pump and stepper motor are

displayed on the next tab, along with a button to give the irrigation order.

Figure 4.1: Hardware Connection on the Breadboard

Figure 4.2: Contents of the OLED Display

64

Figure 4.3: User Interface on the Blynk IoT App

4.3 Hardware Implementation

In this section, how the connection of every piece of hardware is built to offer

functionality to the system accordingly is discussed. Every piece of hardware is

connected together by referring to the system architecture design in Chapter 3.5.1 and

the block diagram in Figure 3.18. In addition, the pin allocation in Table 3.3 is used as

the preference to connect every piece of external hardware with the development board.

Besides that, the prototype of the watering model, the prototype board, and the printed

circuit board are also included in this section.

65

4.3.1 Physical Display System

Figure 4.4 shows the physical display system that is constructed based on the block

diagram in Figure 3.18. The hardware in this system is an OLED display and four

LEDs. The OLED display shows the condition of the plants with the same contents

that have been completed in the preliminary task, as shown in Figure 4.2. Next, the

four LEDs are classified into two combinations, one red and one green. The

combination of the red and green LEDs on the left indicates the status of the water

pump, while the combination of the red and green LEDs on the right indicates the

status of the stepper motor.

Figure 4.5 shows the operation of the LEDs in three different situations. The

first scenario occurs when the moving bar moves to the target position while the

watering action continues. Both green LEDs of the LED combination are lit up. Next,

in the second situation, the moving bar moves back to its original position after the

watering action. So, the left LED combination is changed from green to red, indicating

the moving bar is moved without the watering action. The third situation is when the

moving bar stays stationary at the origin. Both red LEDs of the LED combination are

lit up.

Figure 4.4: Hardware of the Physical Display System

66

Figure 4.5: Operation of the Status Indicator LEDs

4.3.2 IoT Monitoring System

Figure 4.6 shows the IoT monitoring system that is constructed based on the block

diagram in Figure 3.18. The hardware components of this system are a DHT22

humidity and temperature sensor, two capacitive soil moisture sensors, and an

ultrasonic sensor. Firstly, the DHT22 sensor is installed on the PCB to measure the air

humidity and air temperature in a higher position. Then, the ultrasonic sensor is

installed on the top of the water tank to detect the water level. Lastly, two capacitive

soil moisture sensors are placed inside the soil of the plant.

Figure 4.6: Hardware of the IoT Monitoring System

67

4.3.3 Irrigation System

Figure 4.7 shows the irrigation system that is constructed based on the block diagram

in Figure 3.18. The hardware components of this system are a stepper motor with its

driver board, a water pump with its driver board, a water tube, a push button, and a

limit switch. The stepper motor is able to pull the moving bar with the help of a belt

and the pulleys. The water is transferred through the water tube from the water tank to

the moving bar by using the water pump. Next, the push button and the limit switch

are operated as signal providers to activate and deactivate the system. Figure 4.8 shows

the limiter switch which has been attached under the platform of the stepper motor.

When the moving bar holder touches the limiter switch, the system is deactivated.

Figure 4.7: Hardware of the Irrigation System

Figure 4.8: Position of the Limiter Switch

68

4.3.4 Prototype

Figure 4.9 shows the prototype of this project. This prototype is constructed to

showcase the operation of the complete system in this project. The dimensions of the

prototype are 65 cm ´ 55 cm ´ 35 cm in XYZ representation. As shown in Figure 4.9,

the control system is located on the right side, above the water tank. In addition, there

are two platforms that have been installed on top of the prototype to support the stepper

motor and pulley holders. The moving bar is moved by pulling the belt in the middle.

Besides that, the plant is placed in the middle of the prototype.

Figure 4.9: Prototype of the Smart Agriculture and Smart Irrigation System

4.3.5 Prototype Board and Printed Circuit Board

Figure 4.10 shows the prototype board, and Figure 4.11 shows the printed circuit board

(PCB) of the complete system. Both the prototype board and PCB are created based

on the board design as shown in Appendix B. Firstly, this project is planned to

implement the prototype board only with an enclosure to separate the display system

from the development board. However, the Wi-Fi connection is affected after applying

the system to the prototype board, as the development board is placed inside the

enclosure which the data interface speed with the IoT cloud is slow. Besides that, the

69

cable usage on the prototype board is minimal as compared to the breadboard, but the

connection error occurred due to multiple connection points in a pin.

Thus, the decision to make a PCB is made to avoid any connection errors due

to soldering skill, breadboard, or wires. Only a PCB is printed and applied in this

project, on which the development board and display system are combined. Besides

that, the development board is also exposed to the air to minimise the time delay of

data transmission. The blue components on the left are the terminal blocks used to

connect with the power and signal wires. Next, the female headers in the middle are

signal pins for the stepper motor, and the grove terminals at the bottom are used as

power and signal pins for the soil moisture sensor. The physical and control system is

on the right of the development board. Lastly, the implementation of the PCB gives

the circuit a tidy appearance and has better wire management for future maintenance.

Figure 4.10: Prototyped Board

Figure 4.11: Printed Circuit Board

70

4.4 Software Implementation

The C++ programming language is used in this project to build the system. Besides

that, the Arduino IDE is used as the platform to develop the software code of the

system. The Arduino IDE provides the library for both the Blynk and ESP32

development board. By using the Arduino IDE, this project is able to programme the

hardware and build the connection between the ESP32 development board and the

Blynk. Code Listing 4.1 shows the code that is used to set the connection between the

ESP32 development board and the Blynk. The complete system programming code is

shown in Appendix A.

Code Listing 1: Code to Set Connection Between the Blynk and the ESP32

Development Board

#define BLYNK_TEMPLATE_ID "TMPL7hEMVYkv"

#define BLYNK_DEVICE_NAME "FYP"

char auth[] = "2kibXNYB0toNBcrq8NxhYRLRWK5-oAUu";

//Authentication code sent by Blynk

char ssid[] = "taytang"; //WiFi SSID

char pass[] = "1234567890"; //WiFi Password

4.4.1 User Interface

Blynk provides a web dashboard via the Blynk console on the computer and a

mobile dashboard via the Blynk IoT app on the smartphone to build the user interface

manually, as mentioned in Chapter 3.3.1. The developer mode on the Blynk console

and Blynk IoT app allows this project to include possible widgets. The widgets are the

button, the value displays, the gauges, the LEDs, the sliders, and the super charts. The

widgets are linked to the data streams, which are the virtual pins allocated in Table 3.1.

Figure 4.12 shows the web dashboard design on the Blynk console, and Figure 4.14

shows two tabs of the mobile dashboard on the Blynk IoT app. There are minor

changes that have been made on the mobile dashboard, as shown in Figure 4.3, due to

the addition of features and the changes in Blynk’s terms on February 2023 where free

users are limited to the usage of ten data streams.

71

On the first tab of the mobile dashboard, the air humidity, air temperature, soil

moisture in areas A and B, and water level are displayed using value displays and

gauges. After that, the four virtual LEDs used to display the status of the water pump

and the stepper motor shown in Figure 4.3 are reduced to two and moved to the first

tab. When the water pump or the stepper motor is activated, the LED is turned green,

as shown in Figure 4.13. Next, the super charts shown in Figure 4.3 are moved to the

second tab. The second tab of the mobile dashboard displays the super charts only.

Four super charts are included to visualise live and historical data on the humidity, the

temperature, and the soil moisture in areas A and B.

Figure 4.12: Web Dashboard on the Blynk Console

Figure 4.13: Operation of the Virtual LEDs

72

Figure 4.14: Mobile Dashboard on the Blynk IoT App

4.4.2 Automations

The automation is achieved by utilising Blynk. Figure 4.15 shows the automation page

on the Blynk IoT app, which can be activated. Three automations are added to this

system. The first two automations are named "Soil A" and "Soil B". Both of these

automations detect the soil moisture percentage in areas A and B; four actions are

carried out automatically when the soil moisture falls below 30 %. Firstly, when the

soil moisture is detected as being lower than 30 %, notification is sent to the

smartphone. Then, the flow of the smart irrigation system is operated as mentioned in

Chapter 3.5.5. The notification that is sent to the smartphone is shown in Figure 4.16.

Besides that, the date and time of the latest activation of the automation are also shown.

73

The "Water Level" automation detects the water level percentage and sends the

notification to the smartphone when the water level percentage is below 15 %.

Figure 4.15: Automation Page on the Blynk IoT App

Figure 4.16: Notifications of the Automation

74

4.5 System Analysis

In this subsection, various analyses are performed and recorded. The analyses

performed on the system are humidity and temperature detection range analysis, soil

moisture detection range analysis, display system analysis, control system analysis,

smart irrigation system analysis, and Wi-Fi analysis. The purpose of these analyses is

to evaluate and verify the performance of the system. Besides that, the system analysis

is to test the solidity of the system by using the accuracy formula, which is the number

of successful tests divided by the total number of samples taken. In addition, the

energy-saving efficiency of the smart irrigation system is analysed to estimate the

amount of energy saved. Lastly, the cost of this project is analysed to check whether it

is over the budget mentioned in Chapter 3.6.

4.5.1 Humidity and Temperature Detection Ranges Analysis

The humidity and temperature detection range analysis has taken place in an air-

conditioned environment with a temperature of 24 °C. Overall, the temperature

detected is 23.5 °C, which is within the accuracy range of ± 0.5 °C as mentioned in

Chapter 2.6.1. After that, a hot and wet towel is placed near the DHT22 sensor with a

distance of 5 cm, 10 cm, 15 cm, 20 cm, 30 cm, and 40 cm. The towel is renewed every

time a test is conducted to increase the accuracy of the data that is taken. This analysis

shows that this system is able to detect the humidity and temperature around 20 cm.

This is because the humidity and temperature readings are almost the same as the

readings taken without the hot and wet towel while the towel reached 30 cm. The

readings of the DHT22 sensor are shown in Table 4.1.

Table 4.1: Readings of the DHT22 Sensor

Readings Without the Hot and Wet Towel is Applied

Humidity (%) Temperature (°C)

67.9 23.5

Readings With the Hot and Wet Towel is Applied

75

Distance of the Hot and

Wet Towel (cm)

Readings

Humidity (%) Temperature (°C)

5 70.6 25.0

10 69.5 24.5

15 68.5 24.3

20 68.0 24.0

30 67.7 23.9

40 67.5 23.4

4.5.2 Soil Moisture Detection Range Analysis

The area of the soil moisture that can be detected by the capacitive soil moisture sensor

is tested in this analysis. This analysis is performed by pouring 100 ml of water onto

the soil around the sensor from 20 cm to 5 cm, respectively. The results of this analysis

show that the effective soil moisture detection range is around 10 cm from the sensor.

Thus, the plants can be planted in this range to get the best soil condition detection in

this system.

Table 4.2: Readings of the Capacitive Soil Moisture Sensor

Soil Moisture Percentage Without the Water is Added (%)

25

Soil Moisture Percentage When the Water is Added

Distance of the Water Added (cm) Soil Moisture Percentage (%)

5 47

10 40

15 31

20 25

76

4.5.3 Display System Analysis

The display system analysis is done on the physical display and the virtual display on

the Blynk IoT app. As mentioned in Chapter 3.5.2, the physical display system is

operated with an OLED display and four LEDs. Then, the OLED display displays the

humidity and temperature for 4 seconds and continues with the display of soil moisture

percentage in areas A and B for 5 seconds each. Thus, the 14 seconds of display are

classified as a cycle. In this analysis, the contents displayed on the OLED display are

checked for 15 cycles. Besides that, the virtual display is analysed by using the super

charts widgets, as the data is tabulated in the charts. The historical data for the humidity,

the temperature, and the soil moisture is taken 15 times continuously over a time range.

From the analysis, the OLED display is unable to display the humidity and

temperature in the 6th cycle, while the soil moisture percentage in areas A and B is

displayed successfully throughout the test. The potential reason for the error in the 6th

cycle to display the humidity and temperature is the noise that violated the interface

between the development board and the sensor. Next, the data taken from the super

chart on the Blynk IoT app proved that the humidity, temperature, and soil moisture in

areas A and B were successfully displayed throughout the test. In addition, the water

level display is observed at the same time directly from the display as there is no super

chart to tabulate the data. Table 4.3 shows the analysis results for the physical display

and the virtual display. After that, the analysis is continued by testing the four physical

LEDs and the two virtual LEDs on the Blynk IoT app that display the status of the

stepper motor and the water pump. The operations of the physical LEDs and virtual

LEDs are shown in Figures 4.5 and 4.14. The analysis is done 15 times with the

irrigation system activated. The physical LEDs performed correctly throughout the test.

In contrast, the virtual LEDs fail to show the status of the stepper motor and the water

pump at the 5th test when the watering action is performed. The reason is that the

mobile Wi-Fi signal strength was weak during the 5th test. Then, the problem is solved

by using a strong mobile data plan while using the Blynk IoT app. The result of the

analysis is recorded in Table 4.4. Lastly, the overall accuracy of the display system is

tabulated in Table 4.5.

77

Table 4.3: Performance of OLED display and Virtual Display

Ability to Display the Data

Physical Display

 No. Test

Data
1 2 3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1

5

Humidity and Temperature

Soil Moisture Percentage in Area A

Soil Moisture Percentage in Area B

Virtual Display

 No. Test

Data
1 2 3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1

5

Humidity and Temperature

Soil Moisture Percentage in Area A

Soil Moisture Percentage in Area B

Water Level

Table 4.4: Performances of Physical LEDs and Virtual LEDs

Operation of the LEDs

Two Combinations of Physical LEDs

 No. Test

Data
1 2 3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1

5

No action (Both Red)

Watering action is performed (Both

Green)

Moving bar moves back to original

starting (Right Red & Left Green)

Two Virtual LEDs

 No. Test

Data
1 2 3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1

5

No action (Both No Color)

Watering action is performed (Both

Green)

Moving bar moves back to original

starting (Right No Color & Left

Green)

78

Table 4.5: Accuracy of the Display System

Conditions of the Surrounding and the Plants

Conditions

Accuracy

Physical Display Virtual Display

Humidity and Temperature 93.33 % 100 %

Soil Moisture Percentage in Area A 100 % 100 %

Soil Moisture Percentage in Area B 100 % 100 %

Water Level - 100 %

Status of Stepper Motor and Water Pump

Conditions

Accuracy

Physical LEDs Virtual LEDs

No action 100 % 100 %

Watering action is performed 100 % 93.33 %

Moving bar moving back to starting

position
100 % 93.33 %

4.5.4 Irrigation System Analysis

In this subsection, the operation of the irrigation system as mentioned in Chapter 3.5.4

is tested. The physical push button and the virtual push button are pressed 15 times.

Then, the irrigation system is observed to verify that the operations are carried out

successfully. The observations included the activation of the stepper motor, the

activation of the water pump, the movement of the moving bar, the ability of the

moving bar to reach the target distance, and the ability of the moving bar to stop when

touching the limit switch. Next, there are three sets of results that are analysed using

the different target distances of 10 cm, 20 cm, and 30 cm. Thus, three lines with 10 cm

each are marked on the moving bar path, as shown in Figure 4.17. Lastly, all the

operations of the irrigation system have taken place successfully throughout the

analysis. The results of the system analysis are shown in Table 4.6, and the overall

accuracy of the irrigation system operation is shown in Table 4.7.

79

Figure 4.17: Marking of the Target Distance

Table 4.6: Performances of the Irrigation System

Target Distance: 10 cm

 No. Test

Actions
1 2 3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1

5

P

U

S

H

B

U

T

T

O

N

P

H

Y

S

I

C

A

L

Moving and reaching target

distance (stepper motor and

water pump activate)

Moving back and stop at

starting point (stepper motor

activate; water pump

deactivate)

V

I

R

T

U

A

L

Moving and reaching target

distance (stepper motor and

water pump activate)

Moving back and stop at

starting point (stepper motor

activate; water pump

deactivate)

Target Distance: 20 cm

 No. Test

Actions
1 2 3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1

5

P

U

S

H

B

U

T

T

P

H

Y

S

I

C

A

L

Moving and reaching target

distance (stepper motor and

water pump activate)

Moving back and stop at

starting point (stepper motor

activate; water pump

deactivate)

V

I

R

Moving and reaching target

distance (stepper motor and

water pump activate)

80

O

N

T

U

A

L

Moving back and stop at

starting point (stepper motor

activate; water pump

deactivate)

Target Distance: 30 cm

 No. Test

Actions
1 2 3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1

5

P

U

S

H

B

U

T

T

O

N

P

H

Y

S

I

C

A

L

Moving and reaching target

distance (stepper motor and

water pump activate)

Moving back and stop at

starting point (stepper motor

activate; water pump

deactivate)

V

I

R

T

U

A

L

Moving and reaching target

distance (stepper motor and

water pump activate)

Moving back and stop at

starting point (stepper motor

activate; water pump

deactivate)

Table 4.7: Accuracy of the Irrigation System

Operations

Accuracy

Physical Button Virtual Button

Moving and reaching target distance

(stepper motor and water pump

activate)

100 % 100 %

Moving back and stop at starting

point (stepper motor activate; water

pump deactivate)

100 % 100 %

4.5.5 Automations Analysis

The two automations that have been mentioned in Chapter 4.4.2 are used to make the

irrigation system smart, and the other automation is used for water level detection. The

operation of the smart irrigation system is described in Chapter 3.5.5. Thus, the

analysis in this subsection is undertaken to verify the ability of the automations to

81

activate the irrigation system when the soil moisture is below the threshold. Then, the

automation of water level is also analysed.

The analysis is carried out by using soil with different soil moisture in two

areas. The soil moisture in one of the areas is below the threshold while the other is

above the threshold. Next, the capacitive soil moisture sensor is moved from the wet

soil to the dry soil and vice versa for 15 times while the automation is activated to

observe the performance of the smart irrigation system. Next, the water level

automation analysis is done at the same time as the soil moisture analysis by filling the

water tank to just above 10 % of the threshold. So that, every time the smart irrigation

system is turned on, the water level is below the threshold.

From the analysis, the "Soil A" automation failed at the 8th test, and the "Soil

B" automation failed at the 5th test. They have the same failing reason: the Wi-Fi

strength of the smartphone was weak during the test, causing a violation of the

interface between Blynk and the smartphone. In contrast, the "Water Level"

automation is performed successfully throughout the test. The automation results for

the soil moisture and the water level are shown in Table 4.8, and the overall accuracy

of the automations is shown in Table 4.9.

Table 4.8: Performances of the Automations

Automations

Name
 No. Test

Operation
1 2 3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1

5

“Soil

A”

Sends Notification

Activates Irrigation System

“Soil

B”

Sends Notification

Activates Irrigation System

“Water

Level”

Sends Notification

82

Table 4.9: Accuracy of the Automations

Name of Automations Accuracy

“Soil A” 93.33 %

“Soil B” 93.33 %

“Water Level” 100 %

4.6 Efficiency on Water Saving Analysis

In this section, the efficiency of water savings is investigated for the smart irrigation

system. This analysis aims to estimate the amount of water is saved when the smart

irrigation system is activated based on the soil moisture percentage. During the

analysis, the soil moisture in area B is measured continuously, and the change in the

soil moisture percentage is observed from the super chart on the Blynk IoT app. The

first case is studied to determine the times needed for the soil moisture in area B that

is in a cold environment to drop below 30 % and the second case is studied to determine

the times needed for the soil moisture in area B that is in a room temperature

environment to drop below 30 %. Then, the amount of water that is saved in both cases

is also mentioned.

4.6.1 Case Study 1: Cold Environment

In this case study, this project with the plants is allocated to a cold environment where

the average air temperature is 24 °C. To begin, the soil moisture of the plants is

increased to 80%. Then, the plants are left in the environment, and the change in soil

moisture is measured by the IoT monitoring system. After some days, the change in

soil moisture of the plants is observed from the super chart via the Blynk IoT app.

Figure 4.18 shows that the soil moisture is at 80 % as the water is added to the soil on

February 26 and drops below 30 % on March 3. So, the soil moisture drops below 30 %

in 5 days when the plants are placed in the cold environment. The historical data is

displayed by the super chart on the Blynk IoT app is shown in Figure 4.18.

83

Figure 4.18: Soil Moisture Percentage in Area B from 26 February to 3 March

4.6.2 Case Study 2: Room Temperature Environment

In this case study, this project with the plants is allocated to the hostel, where the

average air temperature is 32 °C. Firstly, the soil moisture of the plants is increased by

80 %. Then, the plants are left in the environment, and the change in soil moisture is

measured by the IoT monitoring system. After some days, the change of the soil

moisture of the plants is observed from the super chart via the Blynk IoT app. Figure

4.19 shows that the soil moisture is 80 % as the water is added to the soil on April 6,

and the soil moisture is below 30 % on April 9. So, the soil moisture drops below 30 %

in 3 days when the plants are placed in the room-temperature environment. The

historical data displayed by the super chart on the Blynk IoT app is shown in Figure

4.19.

Figure 4.19: Soil Moisture Percentage in Area B from 6 April to 9 April

84

4.6.3 Total Water Saving

Before both cases are studied, the amount of water pumped to the plants during

each irrigation is measured. Therefore, 400 mL of water is pumped to the plants with

the lowest power of the water pump, and this amount of water is able to increase the

soil moisture percentage from 30 % to 80 %. Assuming that irrigation is carried out

every morning manually without the smart irrigation system, the amount of water

needed in a month will be 12.4 L (400 mL 31 days).

Next, the smart irrigation system is activated automatically when the soil

moisture percentage drops below 30 %. When the plants are allocated to the cold

environment, this system is estimated to activate six times per month based on the time

estimation for the soil moisture percentage to drop below the threshold as mentioned

in Chapter 4.6.1. Therefore, 2.4 L (400mL 6 times) of water are needed for the plants

watering, and 10 L of water are saved by using the smart irrigation system as compared

to watering the plants daily for a month. In contrast, this system is activated 10 times

per month based on the time estimation as mentioned in Chapter 4.6.2 when the plants

are placed in the room-temperature environment. Thus, 4 L (400mL 10 times) of

water is needed for the plants watering, and 8.4 L of water is saved by using the smart

irrigation system as compared to watering the plants daily in a month.

 Lastly, the smart irrigation system saves 80.65 % of water when the plants are

placed in a cold environment, while 67.74 % of water is saved when the plants are

placed in a room-temperature environment. Table 4.10 shows the usage, savings

amount, and percentage savings of water by the smart irrigation system in cold and

room temperature environments.

Percentage of water saving

� >?@AB C?DAE FG @ℎA CI?B@ JBBJK?@JLM CGC@AI JM ? ILM@ℎ
 >?@AB MAAEAE NJ@ℎLO@ @ℎA CI?B@ JBBJK?@JLM CGC@AI JM ? ILM@ℎ � 100 %

85

Table 4.10: Water Usage and Saving

Without the Smart Irrigation System

Water usage (monthly) 12.4 L

With the Smart Irrigation System

Environment

Cold Room Temperature

Water usage (monthly) 2.4 L 4 L

Water saving (monthly) 10 L 8.4 L

Percentage of water saving (monthly) 80.65 % 67.74 %

4.7 Cost Analysis

The cost analysis is provided in this section to give a cost overview of this project. The

cost of this entire project is around RM 286.60. This analysis shows that this project is

within the budget, and the fund usage is below RM 327 as estimated in Chapter 3.6.

The details of the cost analysis are shown in Table 4.11.

The cost is dynamic based on the watering model. This is because the watering

model can be built based on the needs. So, Equation 4.1 below is used to determine

the cost based on the size of the watering model.

Total cost � RM 276 + T�,6UV6WV6X4YZ:7.2
Z7.6\ % 5 � RM1] (4.1)

Where

X = length of the watering model, cm

Y = height of the watering model, cm

Z = width of the watering model, cm

86

Table 4.11: Cost Analysis of the Entire Project

A. Main Part

Item Name Description

Price/Unit

(RM)
Unit

Total Cost

(RM)

1.
NODEMCU

ESP32

Development Board
29.00 1 29.00

Total Cost of Main Part: RM 29.00

B. IoT Monitoring System

 Item Name Description
Price/Unit

(RM)
Unit

Total Cost

(RM)

1.
DHT22 Humidity and

Temperature Sensor
15.50 1 15.50

2.

Grove Capacitive

Soil Moisture

Sensor

Capacitive Soil

Moisture Sensor

(Corrosion Resistance)

29.80 2 59.60

3.

3 V to 5.5 V

SR04P

Ultrasonic

Ranging Module

Ultrasonic Sensor used

for water level

detection
4.90 1 4.90

4. Blynk IoT IoT Platform - - -

Total Cost of IoT Monitoring System: RM 80.00

C. Physical Display or Control System

 Item Name Description
Price/Unit

(RM)
Unit

Total Cost

(RM)

1.

OLED 0.91" 128 32 I2C

IIC OLED LCD LED

Blue Graphic Display

Module

14.90 1 14.90

2. LEDs Red and Green (3 mm) 0.10 4 0.40

3. Resistors 100 Ω, 200 Ω, 10k Ω 0.05 6 0.30

4.
Push Button 12 mm 12 mm 1

mm
1.60 1 1.60

Total Cost of Physical Display or Control System: RM 17.20

D. Irrigation System

 Item Name Description
Price/Unit

(RM)
Unit

Total Cost

(RM)

1.
GT2 Belt 6 mm Belt used to pull

moving bar
10.00

1

Meter
10.00

2.
GT2 Pulley 20

Teeth 5 mm Bore

Pulley attached to

Stepper Motor
4.60 1 4.60

3.

GT2 Pulley

Toothless Idler

5mm Bore

Combination with

GT2 Pulley 20 Teeth 5

mm Bore and Belt to

pull the moving bar

4.50 1 4.50

87

4.

R385 DC 12 V

Diaphragm

Water Pump

Water Pump

10.90 1 10.90

5.
L298N 2 A DC

Motor Driver

Water Pump Driver

Board
5.40 1 5.40

6.

12 V 28BYJ-48

Stepper Motor

with ULN2003

Stepper Motor with its

Driver Board 8.80 1 8.80

Total Cost of Irrigation System: RM 44.20

E. Watering Model

 Item Name Description
Price/Unit

(RM)
Unit

Total Cost

(RM)

1.
Acrylic Sheet Platform to hold the

Stepper Motor
15.00 1 15.00

2.
PVC Pipe 1/2"

1.00
10

Feet
10.00

3.
PVC 3 Way

Elbow

3/4"
3.00 8 24.00

4. PVC PT Socket 1/2" 0.80 24 19.20

5. PVC V Socket 1/2" 0.50 24 12.00

6.
PVC Tube 5/16" Tube for water supply

1.00
3

Meter
3.00

Total Cost of Watering Model: RM 83.20

F. Power and Other Components

 Item Name Description
Price/Unit

(RM)
Unit

Total Cost

(RM)

1.

12 V 2 A AC to

DC Power

Supply Adapter

Power Supply Adapter

5.40 1 5.40

2.

LM2596 DC to

DC Adjustable

Step Down

Regulator

Step Down Converter

used to convert 12 V

to 5 V
11.20 1 11.20

3.
Rocker Switch

Small 2 Pins Red

Power Switch
1.60 1 1.60

4. KAR301-2 Way Terminal Block 0.70 6 4.20

5.
Straight Female

Header
1 40 ways

1.20 4 4.80

6.

Grove 4-pin

Straight Through

Hole Socket

Grove Connector for

Capacitive Soil

Moisture Sensor

0.40 2 0.80

7.
Some Jumper

Wire

2.50 2 5.00

Total Cost of Power and Other Components: RM 33.00

Total Cost: RM 286.60

88

4.8 Summary

In this chapter, the preliminary results have been discussed, including the fact that the

IoT monitoring system and OLED display are built in the early phases of the project.

After that, the hardware implementation results have also been considered in this

chapter. This section talks about the combination of several components to operate as

a system. The systems are a physical display system, an IoT monitoring system, and

an irrigation system. Next, the software implementation has been clarified, which

includes the user interface design and the automations. The dashboards of the Blynk

console on the computer and the dashboard of the Blynk IoT app on the smartphone

are designed and shown in this section. Then, three automations: Soil A", "Soil B",

and "Water Level have been incorporated to make this system smart.

Besides that, the humidity and temperature detection ranges, the soil moisture

detection range, the display system, the irrigation system, and automations have all

been analysed in this chapter. Firstly, the effective detection ranges of the humidity

and temperature are around 20 cm. Secondly, the capacitive soil moisture sensor is

able to measure the soil moisture around 10 cm from the sensor. Thirdly, the physical

and virtual displays have achieved 93.33 % accuracy in displaying the humidity and

temperature and 100 % accuracy in displaying the soil moisture, status of the stepper

motor, and status of the water pump. Fourthly, the irrigation system has achieved 100%

accuracy on both reaching the target distance with the stepper motor and water pump

activated and moving back to the starting position with the stepper motor and water

pump deactivated when physical push buttons are pressed. Lastly, the automations

analysis shows that the "Soil A" automation and the "Soil B" automation have achieved

93.33 % accuracy, while the "Water Level" automation has achieved 100 % accuracy.

In addition, the efficiency analysis of water savings shows that the smart irrigation

system saves 80.65 % of water when the plants are placed in a cold environment and

67.74 % of water when the plants are placed in a room-temperature environment.

Furthermore, the cost of this project is RM 286.60. In the next chapter, Chapter 5 will

conclude this project. The limitations and recommendations to improve this project

will also be included in the next chapter.

89

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In conclusion, the objectives of this project, listed in Chapter 1.4, have been

successfully achieved. This IoT smart agriculture and smart irrigation system is able

to monitor the condition of the plants from an isolated place by using the Blynk IoT

app on the smartphone or the Blynk console on the computer. Besides that, the

automatic watering action is also achieved when the soil moisture falls below a certain

threshold. Then, the PCB board is also designed and printed in this project to connect

the development board with all the external hardware. This system is divided into an

IoT monitoring system, a display system, an irrigation system, and the automations.

Firstly, the IoT monitoring system has carried out measurements of the

conditions by using different types of sensors, and the data are recorded by the ESP32

development board and sent to the Blynk server that is connected to the Blynk Cloud.

The conditions of the plants are stored in the Blynk Cloud and displayed on the

smartphone via the Blynk IoT app. Then, there are also four super charts that are

utilised to show the live or historical data of the plants’ conditions, so that the

monitoring of the plants is more effective. Secondly, the display system is adopted to

display the condition of the plants physically by using the OLED display and to display

the status of the stepper motor and the water pump by using LEDs. This subsystem is

coordinated with the IoT monitoring system, and the data are also displayed virtually

on the smartphone. Thirdly, the stepper motor and the water pump work together as

the irrigation system. A prototype of the watering model is built to showcase the

90

operation of the irrigation system. The irrigation system can be activated manually by

using the physical push button or virtually by using the button in the Blynk IoT app.

Before pressing the button, the target distance and the power of the water pump are set.

Fourthly, automation is applied to this system to make it smart. The automations work

together with the IoT monitoring system and the irrigation system. When the soil

moisture of the plants falls below 30 %, the irrigation system is activated automatically

to water the plant. At the same time, a notification is sent to the smartphone via the

Blynk IoT app. Then, one of the automations measures the water level, and a

notification is sent when the water level drops below 15 %.

Lastly, the analyses carried out in Chapter 4 have shown that the overall

performance of this system is good and the accuracy of the test is above 90 %. This

system is also efficient in terms of saving water, as the smart irrigation system saves

80.65 % of water when the plants are placed in a cold environment and 67.74 % of

water when the plants are placed in a room temperature environment.

5.2 Limitations

The IoT smart agriculture and smart irrigation system is performing well if the same

plants are growing in two different areas, as the same amount of water will be pumped

in both areas. For instance, a small flower is planted in area A, while a tomato is planted

in area B. The water demands of both plants are different, so the amount of water

needed for the tomato will be higher than for the small flower. A total of 500 mL of

water will be pumped to the plants in both areas. The needs of the plants are unable to

be fulfilled at the same time.

Besides that, the watering action is forced to activate when moving to the target

distance. For example, when the automation detects that soil moisture in area B is

below the threshold, the irrigation system is activated to water the plants in area B.

However, irrigation is also done to the plants in area A, which are still fresh, as the

moving bar is moved along area A to reach area B.

91

In addition, the change in Blynk’s term has limited the data streams for the free

user to utilise the IoT platform. This action has reduced the functionality of this project

as only 10 data points are able to be applied to this system. Lastly, the plants are not

visible in this system. The size of the plants cannot be detected in this system, which

may cause the system to fail as the plants get taller because it may block the moving

bar from moving along and watering the plants. So, the plants still need to be visible

physically in the house.

5.3 Recommendations for Improvement

In this section, some recommendations for future project improvement are suggested

to enhance this project’s market value. Firstly, the watering action mode can be

adjusted to water the plants in the target position with a different amount of water. The

target position and the amount of water can be set by using the smartphone. Besides

that, a camera is also suggested to be implemented in this system to make the plant

visible on the smartphone for better monitoring. The camera can be installed on the

moving bar, and the plants can be recorded during the irrigation.

In addition, it is suggested that artificial intelligence (AI) be applied to this

system. The AI can work together with the camera that provides vision to the system

to analyse the plants. With the image processing, the AI is able to recognise the growth

of the plants based on their colour or size and give suitable advice to the owner to plan

the plantation. Thus, a more effective monitoring system can be developed as it is able

to predict the growth of the plants.

92

5 RERERENCES

Alam, 2019. Interface Capacitive Soil Moisture Sensor v1.2 with Arduino. [online]

How To Electronics. Available at: <https://how2electronics.com/interface-

capacitive-soil-moisture-sensor-arduino/> [Accessed 6 August 2022].

Adla, S., Rai, N.K., Karumanchi, S.H., Tripathi, S., Disse, M. and Pande, S. (2020).

Laboratory Calibration and Performance Evaluation of Low-Cost Capacitive and

Very Low-Cost Resistive Soil Moisture Sensors. Sensors, [online] 20(2), p.363.

Available at: <https://www.mdpi.com/1424-8220/20/2/363#sec3dot1dot2-

sensors-20-00363> [Accessed 3 March 2023].

Amazon Web Services, Inc., n.d. AWS IoT Core Features - Amazon Web Services.

[online] Available at: <https://aws.amazon.com/iot-core/features/?nc=sn&loc=3>

[Accessed 31 July 2022].

Antonio, R., 2021. Comparing soil moisture sensors for smart irrigation systems.

[online] Arduino Project Hub. Available at:

<https://create.arduino.cc/projecthub/antonio-ruiz/comparing-soil-moisture-

sensors-for-smart-irrigation-systems-

caa7aa?ref=similar&ref_id=415286&offset=4> [Accessed 6 August 2022].

Arduino, 2018. Arduino - Introduction. [online] Arduino.cc. Available at:

<https://www.arduino.cc/en/guide/introduction> [Accessed 23 July 2022].

Ashwak, 2021. ESP32 vs ESP8266 - Which One To Choose? [online] Electronics Hub.

Available at: <https://www.electronicshub.org/esp32-vs-esp8266/> [Accessed 23

July 2022].

93

Blynk.io., 2015. Blynk. [online] Available at: <https://blynk.io/> [Accessed 31 July

2022].

BME280 -Data sheet., 2018. [online] Available at:

<https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf> [Accessed 30

July 2022].

CropX., n.d. CropX Technologies. [online] Available at: <https://cropx.com/>

[Accessed 16 July 2022].

Cytron Technologies Malaysia. (n.d.). 12V 28BYJ-48 Stepper Motor + ULN2003

Driver Board. [online] Available at: https://my.cytron.io/p-12v-28byj-48-stepper-

motor-plus-uln2003-driver-board [Accessed 30 March 2023].

Cytron Technologies Malaysia. (n.d.). 2Amp 7V-30V L298N Motor Driver / Stepper

Driver (2 Channels). [online] Available at: https://my.cytron.io/p-2amp-7v-30v-

l298n-motor-driver-stepper-driver-2-channels [Accessed 30 March 2023].

Cytron Technologies Malaysia. (n.d.). 3V-5.5V SR04P Ultrasonic Ranging Module.

[online] Available at: https://my.cytron.io/c-sensor/c-ultrasonic-sensor/p-3v-5.5v-

ultrasonic-ranging-module [Accessed 26 March 2023].

Cytron Technologies Malaysia. (n.d.). 5VDC HC-SR04 Ultrasonic Sensor. [online]

Available at: <https://my.cytron.io/c-sensor/c-ultrasonic-sensor/p-5v-hc-sr04-

ultrasonic-sensor> [Accessed 26 March 2023].

Cytron Technologies Malaysia. (n.d.). R385 DC12V Diaphragm Water Pump. [online]

Available at: https://my.cytron.io/p-r385-dc12v-diaphragm-water-pump

[Accessed 30 March 2023].

ElecFreaks (2011). Ultrasonic Ranging Module HC -SR04. [online] Available at:

<https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf>.

94

Esp32.net., 2016. The Internet of Things with ESP32. [online] Available at:

<http://esp32.net/> [Accessed 30 July 2022].

Geraldi, J. and Lechter, T., 2012. Gantt charts revisited: A critical analysis of its roots

and implications to the management of projects today. International Journal of

Managing Projects in Business.

Google, 2019. Cloud Computing Services | Google Cloud. [online] Google Cloud.

Available at: <https://cloud.google.com/> [Accessed 31 July 2022].

Joshua, H., 2020. (PDF) Capacitive Soil Moisture Sensor Theory, Calibration, and

Testing. [online] ResearchGate. Available at:

<https://www.researchgate.net/publication/342751186_Capacitive_Soil_Moisture

_Sensor_Theory_Calibration_and_Testing> [Accessed 6 August 2022].

Libelium., n.d. Smart Agriculture IoT Solution» How IoT Works in the market? [online]

Available at: <https://www.libelium.com/iot-solutions/smart-agriculture/>

[Accessed 16 July 2022].

Lueth, K.L., 2014. Why it is called Internet of Things: Definition, history,

disambiguation. [online] Iot-analytics.com. Available at: <https://iot-

analytics.com/internet-of-things-definition/> [Accessed 21 August 2022].

Maxim Integrated Products, 2019. DS18B20. [online] Available at:

<https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf> [Accessed 30 July

2022].

Nermin Đuzić and Dalibor Đumić (2017). Automatic Plant Watering System via Soil

Moisture Sensing by means of Suitable Electronics and its... [online] ResearchGate.

Available at:

<https://www.researchgate.net/publication/319130612_Automatic_Plant_Waterin

g_System_via_Soil_Moisture_Sensing_by_means_of_Suitable_Electronics_and_i

ts_Applications_for_Anthropological_and_Medical_Purposes> [Accessed 16 July

2022].

95

Orion, n.d. IoT Automatic Plant Watering System. [online] Instructables. Available at:

<https://www.instructables.com/IoT-Automatic-Plant-Watering-System/>

[Accessed 17 July 2022].

Parajuli, A., 2022. IoT Smart Agriculture & Automatic Irrigation System with

ESP8266. [online] The IOT Projects. Available at: <https://theiotprojects.com/iot-

smart-agriculture-automatic-irrigation-system-with-esp8266/> [Accessed 17 July

2022].

PrecisionHawk., n.d. Agriculture: Drone Mapping and Analytics. [online] Available

at: <https://www.precisionhawk.com/agriculture> [Accessed 16 July 2022].

Random Nerd Tutorials., 2019. DHT11 vs DHT22 vs LM35 vs DS18B20 vs BME280

vs BMP180 | Random Nerd Tutorials. [online] Available at:

<https://randomnerdtutorials.com/dht11-vs-dht22-vs-lm35-vs-ds18b20-vs-

bme280-vs-bmp180/> [Accessed 30 July 2022].

Saran, G., 2018. Introduction To Google Cloud Platform - Whizlabs Blog. [online]

Available at: <https://www.whizlabs.com/blog/google-cloud-

platform/#:~:text=Google %20cloud %20platform %20is %20a> [Accessed 31

July 2022].

Shawn, 2010. Soil Moisture Sensor – How to choose and use with Arduino. [online]

Seeedstudio.com. Available at:

<https://www.seeedstudio.com/blog/2020/01/10/what-is-soil-moisture-sensor-

and-simple-arduino-tutorial-to-get-started/> [Accessed 6 August 2022].

STMicroelectronics. (n.d.). L298 - STMicroelectronics. [online] Available at:

https://www.st.com/en/motor-drivers/l298.html#st_all-features_sec-nav-tab

[Accessed 30 March 2023].

96

STMicroelectronics. (n.d.). ULN2003 - STMicroelectronics. [online] Available at:

https://www.st.com/en/interfaces-and-transceivers/uln2003.html [Accessed 30

March 2023].

tutorialspoint, 2016. About the Tutorial. [online] Available at:

<https://www.tutorialspoint.com/internet_of_things/internet_of_things_tutorial.pd

f> [Accessed 21 August 2022].

Vishalsoniindia, n.d. Avengers Plant Monitoring Device | Arduino IoT Projects | IoT

Projects. [online] Instructables. Available at:

<https://www.instructables.com/Avengers-Plant-Monitoring-Device-Arduino-

IoT-Proje/> [Accessed 17 July 2022].

wiki.seeedstudio.com., n.d. Grove - Capacitive Moisture Sensor (Corrosion-Resistant)

- Seeed Wiki. [online] Available at: <https://wiki.seeedstudio.com/Grove-

Capacitive_Moisture_Sensor-Corrosion-Resistant/#typical-applications>

[Accessed 30 July 2022].

Yuan, M., 2017. Getting to know NodeMCU and its DEVKIT board. [online] IBM

Developer. Available at: <https://developer.ibm.com/tutorials/iot-nodemcu-open-

why-use/> [Accessed 23 July 2022].

97

5 APPENDICES

APPENDIX A: Coding for the IoT Smart Agriculture and Smart Irrigation System

#define BLYNK_PRINT Serial

#define BLYNK_TEMPLATE_ID "TMPL7hEMVYkv"

#define BLYNK_DEVICE_NAME "FYP"

#include <Wire.h>

#include <DHT.h>

#include <AccelStepper.h>

#include <PWMOutESP32.h>

#include <BlynkSimpleEsp32.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_GFX.h>

#include <Adafruit_SSD1306.h>

//Setting Up Connection Between Blynk and ESP32

char auth[] = "2kibXNYB0toNBcrq8NxhYRLRWK5-oAUu";

//Authentication code sent by Blynk

char ssid[] = "taytang"; //WiFi SSID

char pass[] = "1234567890"; //WiFi Password

//DHT22 Pin

#define DHTPIN 4 // Digital pin connected to the DHT sensor

#define DHTTYPE DHT22 // DHT 22 (AM2302), AM2321

//Capacitive Sensor Pins

98

#define soilA_Pin 34

#define soilB_Pin 35

//Water Level Pins

#define trigPin 27

#define echoPin 26

//Water Pump Pin

#define waterPump 14

//Hardware Input Pins

#define limitSwitch 36 //Limit Switch Pin

#define watering 39 //PushButton Pin

//LED Indicators Pins

#define pumpOnLED 12

#define pumpOffLED 13

#define workingLED 32

#define restingLED 33

// ULN2003 Motor Driver Pins

#define IN1 19

#define IN2 18

#define IN3 5

#define IN4 17

#define MotorInterfaceType 8 //HALF4WIRE (half stepper with 4 motor pin

usage)

//OLED display size declaration

#define SCREEN_WIDTH 128 // OLED display width, in pixels

#define SCREEN_HEIGHT 64 // OLED display height, in pixels

#define OLED_RESET -1 // Reset pin # (or -1 if sharing Arduino reset pin)

99

//define sound speed in cm/uS

#define SOUND_SPEED 0.034

//Range Declaration Of Soil Moisture

const int AirValue = 2440;

const int WaterValue = 1540;

//Range Declaration of water level

const int WLMax = 25;

const int WLMin = 0;

//Hardware Data

int soilMoistureValueA = 0;

int soilmoisturepercentA = 0;

int soilMoistureValueB = 0;

int soilmoisturepercentB = 0;

int limitSwitchState = 0 ;

int waterButtonState = 0;

float duration;

float waterL;

int waterlevelperct;

//Data From Blynk App

int distance = 0;

int totalSteps = 0;

int instantWatering = 0;

int pumpPower = 0;

int readStop = 0;

PWMOutESP32 pwm;

//Virtual LEDs Pins on BLYNK

WidgetLED pump_start(V7);

WidgetLED moving_start(V8);

100

Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire,

OLED_RESET);

BlynkTimer timer;

DHT dht(DHTPIN, DHTTYPE);

AccelStepper stepper (MotorInterfaceType, IN1, IN3, IN2, IN4);

//Emoji Declaration

//CRYING/***/

const unsigned char PROGMEM frame05 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x03, 0x00, 0x01, 0x80, 0x70, 0x0C, 0x1F, 0xE0, 0x07, 0xF8, 0x30, 0x0C,

0x3D, 0x78, 0x1F, 0x7C, 0x38, 0x18, 0x30, 0x18, 0x18, 0x0C, 0x18, 0x18, 0x00,

0x00, 0x00, 0x00, 0x18, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x30, 0x00, 0x00,

0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00,

0x00, 0x0C, 0x30, 0x00, 0x07, 0xF0, 0x00, 0x0C, 0x30, 0x00, 0x3F, 0xFC, 0x00,

0x0C, 0x30, 0x00, 0x78, 0x1E, 0x00, 0x0C, 0x30, 0x00, 0xE0, 0x07, 0x00, 0x0C,

0x30, 0x01, 0xC0, 0x03, 0x80, 0x0C, 0x30, 0x03, 0x80, 0x01, 0xC0, 0x0C, 0x30,

0x03, 0x00, 0x00, 0xC0, 0x0C, 0x18, 0x07, 0x00, 0x00, 0xE0, 0x1C, 0x18, 0x06,

0x00, 0x00, 0x60, 0x18, 0x18, 0x06, 0x00, 0x00, 0x60, 0x18, 0x0C, 0x07, 0xFF,

0xFF, 0xE0, 0x30, 0x0C, 0x0F, 0xFF, 0xFF, 0xF0, 0x30, 0x0E, 0x02, 0x00, 0x00,

0x20, 0x60, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0, 0x03, 0x00, 0x00, 0x00, 0x00,

0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80,

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xE0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

const unsigned char PROGMEM frame25 [] = {

101

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00,0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x07, 0x0F, 0xC0, 0x03, 0xF0, 0xE0,

0x0E, 0x1F, 0xF0, 0x0F, 0xF8, 0x70, 0x0C, 0x38, 0x38, 0x1C, 0x1C, 0x30, 0x0C,

0x20, 0x18, 0x18, 0x04, 0x30, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18, 0x00,

0x00, 0x00, 0x00, 0x18, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x30, 0x18, 0x00,

0x00, 0x00, 0x0C, 0x30, 0x30, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x28, 0x00, 0x00,

0x02, 0x0C, 0x30, 0x30, 0x00, 0x00, 0x07, 0x8C, 0x30, 0x00, 0x07, 0xE0, 0x07,

0xCC, 0x30, 0x00, 0x3F, 0xFC, 0x03, 0xEC, 0x30, 0x00, 0x78, 0x1E, 0x03, 0x3C,

0x30, 0x00, 0xE0, 0x07,0x03, 0x3C, 0x30, 0x01, 0xC0, 0x03, 0x83, 0x1C, 0x30,

0x03, 0x80, 0x01, 0xC3, 0x1C, 0x18, 0x03, 0x00, 0x00, 0xC3, 0x0C, 0x18, 0x07,

0x00, 0x00, 0xC3, 0x0C, 0x18, 0x06, 0x00, 0x00, 0x63, 0x0C,0x0C, 0x06, 0x00,

0x00, 0x63, 0x9C, 0x0C, 0x06, 0xAD, 0xDA, 0xF1, 0xF8, 0x0E, 0x0F, 0xFF,

0xFF, 0xE0, 0xF0, 0x07, 0x06, 0xAA, 0xAA, 0xE0, 0xE0, 0x03, 0x00, 0x00,0x00,

0x00, 0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03,

0x80, 0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00,

0x03, 0xE0, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,

0x1F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00};

const unsigned char PROGMEM frame35 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x38, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x02, 0x80, 0x01, 0x40, 0xC0, 0x07, 0x1F, 0xE0, 0x07, 0xF0, 0xE0,

0x0E, 0x3E, 0xF8, 0x1F, 0x7C, 0x70, 0x0C, 0x30, 0x38, 0x18, 0x0C, 0x30, 0x0C,

0x00, 0x00, 0x00, 0x00, 0x30, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18, 0x00,

0x00, 0x00, 0x00, 0x18, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x30, 0x10, 0x00,

102

0x00, 0x00, 0x0C, 0x30, 0x38, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x70, 0x00, 0x00,

0x00, 0x0C, 0x30, 0xD0, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x90, 0x02, 0x80, 0x03,

0x8C, 0x31, 0x90, 0x1F, 0xF8, 0x03, 0xCC, 0x30, 0xB0, 0x3D, 0x7E, 0x03, 0xFC,

0x30, 0xE0, 0xF0, 0x0F, 0x03, 0x7C, 0x30, 0x01, 0xC0, 0x03, 0x83, 0x1C, 0x30,

0x01, 0x80, 0x01, 0x83, 0x1C, 0x18, 0x03, 0x80, 0x00, 0xC3, 0x8C, 0x18, 0x03,

0x00, 0x00, 0xC1, 0x0C, 0x18, 0x06, 0x00, 0x00, 0x63, 0x8C, 0x0C, 0x06, 0x00,

0x00, 0x61, 0x8C, 0x0C, 0x06, 0x00, 0x00, 0x61, 0x8C, 0x0E, 0x0F, 0xFF, 0xFF,

0xF1, 0xFC, 0x07, 0x07, 0xFF, 0xFF, 0xE0, 0xF8, 0x03, 0x00, 0x00, 0x00, 0x00,

0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80,

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x1C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x07, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

const unsigned char PROGMEM frame45 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x06, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x0F, 0xC0, 0x03, 0xF0, 0x70, 0x0C, 0x3F, 0xF0, 0x0F, 0xFC, 0x30,

0x0C,0x38, 0x38, 0x1C, 0x1C, 0x30, 0x18, 0x20, 0x08, 0x18, 0x04, 0x18, 0x18,

0x00, 0x00, 0x00, 0x00, 0x18, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x30, 0x00,

0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x70, 0x00,

0x00, 0x00, 0x0C, 0x30, 0xF0, 0x02, 0xC0, 0x00, 0x0C, 0x33, 0xF0, 0x1F, 0xF8,

0x00, 0x0C, 0x33, 0xE0, 0x7E, 0xBE, 0x00, 0x0C, 0x37, 0x60, 0xF0, 0x0F, 0x03,

0xCC, 0x3E, 0x61, 0xC0, 0x03, 0x83, 0xEC, 0x3E, 0x61, 0x80, 0x01, 0x81, 0xFC,

0x3C, 0x63, 0x00, 0x00, 0xC1, 0xBC, 0x1C, 0x63, 0x00, 0x00, 0xC1, 0x9C, 0x1F,

0xE6, 0x00, 0x00, 0x61, 0x8C, 0x1F, 0xC6, 0x00, 0x00, 0x61, 0x8E, 0x0D, 0x06,

0x5F, 0xFA, 0x61, 0x86, 0x0C, 0x0F, 0xFF, 0xFF, 0xF1, 0x86, 0x0E, 0x07, 0xD0,

0x05, 0xE1, 0x86, 0x07, 0x00, 0x00, 0x00, 0x01, 0xCE, 0x03, 0x00, 0x00, 0x00,

0x00, 0xFC, 0x01, 0x80, 0x00, 0x00, 0x01, 0xF8, 0x01, 0xC0, 0x00, 0x00, 0x03,

103

0x80, 0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00,

0x03, 0xE0, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,

0x1F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00};

const unsigned char PROGMEM frame55 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00,

0x07,0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C,

0x00, 0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00,

0x00, 0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00,

0x01, 0xC0, 0x03, 0x02, 0x80, 0x01, 0x40, 0xC0, 0x07, 0x1F, 0xE0, 0x07, 0xF8,

0xE0, 0x0E, 0x3E, 0xF8, 0x1F, 0x7C, 0x70, 0x0C, 0x30, 0x38, 0x18, 0x0C, 0x30,

0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18,

0x00, 0x00, 0x00, 0x08, 0x18, 0x18, 0x00, 0x00, 0x00, 0x08, 0x18, 0x30, 0x00,

0x00, 0x00, 0x02, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x04, 0x0C, 0x30, 0x00, 0x00,

0x00, 0x00, 0x0C, 0x30, 0x00, 0x07, 0xF0, 0x00, 0x0C, 0x30, 0x00, 0x3F, 0xFC,

0x00, 0x0C, 0x30, 0x00, 0x78, 0x1E, 0x00, 0x0C, 0x31, 0xC0, 0xE0, 0x07,

0x00,0x0C, 0x37, 0xC1, 0xC0, 0x03, 0x80, 0x0C, 0x3F, 0xC3, 0x80, 0x01, 0xC0,

0x0C, 0x3D, 0x83, 0x00, 0x00, 0xC0, 0x0C, 0x19, 0x87, 0x00, 0x00, 0xE0, 0x1C,

0x39, 0x86, 0x00, 0x00, 0x60, 0x18, 0x31, 0x86, 0x00, 0x00, 0x60, 0x18, 0x31,

0x8F, 0x55, 0x55, 0x60, 0x30, 0x33, 0x87, 0xFF, 0xFF, 0xF0, 0x30, 0x3F, 0x06,

0xDB, 0x6D, 0xA0, 0x60, 0x1F, 0x00, 0x00, 0x00, 0x00, 0xE0, 0x03, 0x00,

0x00,0x00, 0x00, 0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00,

0x00, 0x03, 0x80, 0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00,

0x1E, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0,

0x00, 0x00, 0x03, 0xE0, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00,

0x00, 0x00, 0x1F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00};

const unsigned char PROGMEM frame65 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

104

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x06, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x0F, 0xC0, 0x03, 0xF0, 0x70, 0x0C, 0x3F, 0xF0, 0x0F, 0xFC, 0x30, 0x0C,

0x38, 0x38, 0x1C, 0x1C, 0x30, 0x18, 0x20, 0x08, 0x18, 0x04, 0x18, 0x18, 0x00,

0x00, 0x00, 0x00, 0x18, 0x18, 0x00, 0x00, 0x00, 0x0E, 0x18, 0x30, 0x00, 0x00,

0x00, 0x0F, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x0D, 0x8C, 0x30, 0x00, 0x00, 0x00,

0x04, 0xCC, 0x30, 0x00, 0x00, 0x00, 0x04, 0xCC, 0x30, 0x00, 0x07, 0xE0, 0x04,

0x4C, 0x30, 0x00, 0x3F, 0xFC, 0x04, 0x4C, 0x30, 0x00, 0x78, 0x1E, 0x06, 0xCC,

0x30, 0x00, 0xE0, 0x07, 0x03, 0x8C, 0x30, 0x01, 0xC0, 0x03, 0x80, 0x0C, 0x30,

0x03, 0x80, 0x01, 0xC0, 0x0C, 0x18, 0x03, 0x00, 0x00, 0xC0, 0x1C, 0x18, 0x07,

0x00, 0x00, 0xE0, 0x18, 0x18, 0x06, 0x00, 0x00, 0x60, 0x18, 0x0C, 0x06, 0x00,

0x00, 0x60, 0x30, 0x0C, 0x07, 0xFF, 0xFF, 0xE0, 0x30, 0x0E, 0x0F, 0xFF, 0xFF,

0xF0, 0x60, 0x07, 0x05, 0x00, 0x00, 0xA0, 0xE0, 0x03, 0x00, 0x00, 0x00, 0x00,

0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80,

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

const unsigned char PROGMEM frame75 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x06, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x0F, 0xC0, 0x03, 0xF0, 0x70, 0x0C, 0x3F, 0xF0, 0x0F, 0xFC, 0x30, 0x0C,

0x38, 0x38, 0x1C, 0x1C, 0x30, 0x18, 0x20, 0x08, 0x18, 0x04, 0x18, 0x18, 0x00,

0x00, 0x00, 0x00, 0x18, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x30, 0x00, 0x00,

0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x07, 0x0C, 0x30, 0x00, 0x00, 0x00,

0x07, 0x8C, 0x30, 0x00, 0x00, 0x00, 0x07, 0xCC, 0x30, 0x00, 0x07, 0xE0, 0x06,

0xEC, 0x30, 0x00, 0x3F, 0xFC, 0x06, 0x3C, 0x30, 0x00, 0x78, 0x1E, 0x07, 0x3C,

105

0x30, 0x00, 0xE0, 0x07, 0x02, 0x1C, 0x30, 0x01, 0xC0, 0x03, 0x87, 0x1C, 0x30,

0x03, 0x80, 0x01, 0xC3, 0x1C, 0x18, 0x03, 0x00, 0x00, 0xC3, 0x1C, 0x18, 0x07,

0x00, 0x00, 0xE3, 0x18, 0x18, 0x06, 0x00, 0x00, 0x63, 0xF8, 0x0C, 0x06, 0x00,

0x00, 0x61, 0xF0, 0x0C, 0x07, 0xFF, 0xFF, 0xE0, 0x70, 0x0E, 0x0F, 0xFF, 0xFF,

0xF0, 0x60, 0x07, 0x05, 0x00, 0x00, 0xA0, 0xE0, 0x03, 0x00, 0x00, 0x00, 0x00,

0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80,

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

const unsigned char PROGMEM frame85 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x07, 0x07, 0xC0, 0x03, 0xE0, 0xE0,

0x0E, 0x1F, 0xF0, 0x0F, 0xF8, 0x70, 0x0C, 0x3C, 0x78, 0x1E, 0x1C, 0x30, 0x0C,

0x30, 0x18, 0x18, 0x0C, 0x38, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18, 0x00,

0x00, 0x00, 0x00, 0x18, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x38, 0x10, 0x00,

0x00, 0x00, 0x0C, 0x30, 0x38, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x78, 0x00, 0x00,

0x00, 0x0C, 0x30, 0xD0, 0x07, 0xF0, 0x00, 0x0C, 0x30, 0x90, 0x3F, 0xFC, 0x00,

0x0C, 0x30, 0x90, 0x78, 0x1E, 0x03, 0x8C, 0x30, 0xF0, 0xE0, 0x07, 0x03, 0xEC,

0x30, 0xE1, 0xC0, 0x03, 0x83, 0xFC, 0x30, 0x03, 0x80, 0x01, 0xC3, 0xBC, 0x30,

0x03, 0x00, 0x00, 0xC1, 0x9C, 0x18, 0x07, 0x00, 0x00, 0xE1, 0x8C, 0x18, 0x06,

0x00, 0x00, 0x61, 0x8C, 0x18, 0x06, 0x00, 0x00, 0x61, 0x8C, 0x0C, 0x07, 0x7F,

0xFE, 0xE1, 0x86, 0x0C, 0x0F, 0xFF, 0xFF, 0xF1, 0x86, 0x0E, 0x02, 0xA0, 0x02,

0xA1, 0x8E, 0x07, 0x00, 0x00, 0x00, 0x01, 0xFC, 0x03, 0x00, 0x00, 0x00, 0x00,

0xF8, 0x01, 0x80, 0x00, 0x00, 0x01, 0xC0, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80,

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xE0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

106

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

const unsigned char PROGMEM frame95 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x0F, 0xE0, 0x07, 0xF0, 0x70, 0x0C, 0x3F, 0xF0, 0x0F, 0xFC, 0x30, 0x0C,

0x38, 0x38, 0x1C, 0x1C, 0x38, 0x18, 0x20, 0x08, 0x10, 0x04, 0x18, 0x18, 0x00,

0x00, 0x00, 0x00, 0x18, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x30, 0x00, 0x00,

0x00, 0x00, 0x0C, 0x30, 0x30, 0x00, 0x00, 0x00, 0x0C, 0x30, 0xF8, 0x00, 0x00,

0x00, 0x0C, 0x31, 0xF0, 0x07, 0xF0, 0x00, 0x0C, 0x33, 0xF0, 0x3F, 0xFC, 0x00,

0x0C, 0x33, 0x30, 0x78, 0x1E, 0x00, 0x0C, 0x36, 0x30, 0xE0, 0x07, 0x03, 0xCC,

0x36, 0x71, 0xC0, 0x03, 0x83, 0xEC, 0x36, 0x33, 0x80, 0x01, 0xC1, 0xFC, 0x3E,

0x73, 0x00, 0x00, 0xC1, 0xBC, 0x1F, 0xE7, 0x00, 0x00, 0xE1, 0x9C, 0x1F, 0xE6,

0x00, 0x00, 0x61, 0x8C, 0x19, 0x06, 0x00, 0x00, 0x61, 0x8E, 0x0C, 0x07, 0xFF,

0xFF, 0xE1, 0x86, 0x0C, 0x0F, 0xFF, 0xFF, 0xF1, 0x86, 0x0E, 0x05, 0x00, 0x00,

0xA1, 0x86, 0x07, 0x00, 0x00, 0x00, 0x01, 0xCE, 0x03, 0x00, 0x00, 0x00, 0x00,

0xFC, 0x01, 0x80, 0x00, 0x00, 0x01, 0xF8, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80,

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xE0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

//Happy/**/

const unsigned char PROGMEM frame012 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

107

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x06, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x00, 0x00, 0x00, 0x00, 0x70, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0C,

0x07, 0x80, 0x03, 0xC0, 0x30, 0x18, 0x1F, 0xE0, 0x0F, 0xF0, 0x18, 0x18, 0x3C,

0x78, 0x1E, 0x3C, 0x18, 0x18, 0x30, 0x18, 0x18, 0x0C, 0x18, 0x30, 0x00, 0x00,

0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00,

0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x1E, 0x00, 0x00, 0xF0,

0x0C, 0x30, 0x1F, 0xF8, 0x2F, 0xF8, 0x0C, 0x30, 0x1D, 0xFF, 0xFF, 0xB8, 0x0C,

0x30, 0x18, 0x17, 0xF0, 0x30, 0x0C, 0x30, 0x0C, 0x00, 0x00, 0x30, 0x0C, 0x30,

0x0C, 0x00, 0x00, 0x30, 0x0C, 0x18, 0x0E, 0x00, 0x00, 0x60, 0x1C, 0x18, 0x06,

0x00, 0x00, 0x60, 0x18, 0x18, 0x07, 0x00, 0x00, 0xE0, 0x18, 0x0C, 0x03, 0x00,

0x01, 0xC0, 0x30, 0x0C, 0x01, 0x80, 0x03, 0x80, 0x30, 0x0E, 0x01, 0xC0, 0x07,

0x00, 0x60, 0x07, 0x00, 0xF0, 0x0E, 0x00, 0xE0, 0x03, 0x00, 0x7E, 0x3C, 0x00,

0xC0, 0x01, 0x80, 0x1F, 0xF8, 0x01, 0x80, 0x01, 0xC0, 0x03, 0xC0, 0x03, 0x80,

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

const unsigned char PROGMEM frame22 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x06, 0x0F, 0xC0, 0x07, 0xE0, 0xE0,

0x0E, 0x1F, 0xF0, 0x1F, 0xF0, 0x70, 0x0C, 0x38, 0x30, 0x18, 0x38, 0x30, 0x0C,

0x30, 0x38, 0x38, 0x18, 0x30, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18, 0x00,

0x00, 0x00, 0x00, 0x18, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x30, 0x00, 0x00,

0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x0F, 0xFF, 0xFF,

0xE0, 0x0C, 0x30, 0x0F, 0xFF, 0xFF, 0xE0, 0x0C, 0x30, 0x0C, 0x00, 0x00, 0x60,

0x0C, 0x30, 0x0C, 0x00, 0x00, 0x60, 0x0C, 0x30, 0x0C, 0x00, 0x00, 0x60, 0x0C,

0x30, 0x0C, 0x00, 0x00, 0x60, 0x0C, 0x30, 0x0E, 0x00, 0x00, 0x60, 0x0C, 0x30,

108

0x06, 0x00, 0x00, 0xC0, 0x0C, 0x18, 0x06, 0x00, 0x00, 0xC0, 0x1C, 0x18, 0x07,

0x00, 0x01, 0xC0, 0x18, 0x18, 0x03, 0x00, 0x01, 0x80, 0x18, 0x0C, 0x03, 0x80,

0x03, 0x80, 0x30, 0x0C, 0x01, 0x80, 0x03, 0x00, 0x30, 0x0E, 0x00, 0xC0, 0x06,

0x00, 0x60, 0x07, 0x00, 0xE0, 0x0E, 0x00, 0xE0, 0x03, 0x00, 0x78, 0x3C, 0x00,

0xC0, 0x01, 0x80, 0x1F, 0xF0, 0x01, 0x80, 0x01, 0xC0, 0x07, 0xC0, 0x03, 0x80,

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

const unsigned char PROGMEM frame42 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x00, 0x00, 0x00, 0x00, 0x70, 0x0C, 0x1F, 0xC0, 0x0F, 0xE0, 0x30, 0x0C,

0x3F, 0xE0, 0x1F, 0xF8, 0x30, 0x18, 0x70, 0x70, 0x38, 0x38, 0x18, 0x18, 0x40,

0x10, 0x20, 0x08, 0x18, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x30, 0x00, 0x00,

0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x38, 0x00, 0x00,

0x70, 0x0C, 0x30, 0x3F, 0x80, 0x07, 0xF0, 0x0C, 0x30, 0x3F, 0xFF, 0xFF, 0xF0,

0x0C, 0x30, 0x30, 0x7F, 0xFC, 0x30, 0x0C, 0x30, 0x38, 0x00, 0x00, 0x70, 0x0C,

0x30, 0x18, 0x00, 0x00, 0x60, 0x0C, 0x30, 0x1C, 0x00, 0x00, 0xE0, 0x0C, 0x30,

0x0C, 0x00, 0x00, 0xC0, 0x0C, 0x18, 0x06, 0x00, 0x01, 0xC0, 0x1C, 0x18, 0x07,

0x00, 0x03, 0x80, 0x18, 0x18, 0x03, 0x80, 0x07, 0x00, 0x18, 0x0C, 0x01, 0xE0,

0x1E, 0x00, 0x30, 0x0C, 0x00, 0xF8, 0x7C, 0x00, 0x30, 0x0E, 0x00, 0x3F, 0xF0,

0x00, 0x60, 0x07, 0x00, 0x0F, 0xC0, 0x00, 0xE0, 0x03, 0x00, 0x00, 0x00, 0x00,

0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80,

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xE0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

109

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

const unsigned char PROGMEM frame52 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x00, 0x00, 0x00, 0x00, 0x70, 0x0C, 0x1F, 0xC0, 0x0F, 0xE0, 0x30, 0x0C,

0x3F, 0xE0, 0x1F, 0xF8, 0x30, 0x18, 0x70, 0x70, 0x38, 0x38, 0x18, 0x18, 0x40,

0x10, 0x20, 0x08, 0x18, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x30, 0x00, 0x00,

0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x38, 0x00, 0x00,

0x70, 0x0C, 0x30, 0x3F, 0x80, 0x03, 0xF0, 0x0C, 0x30, 0x3F, 0xFF, 0xFF, 0xF0,

0x0C, 0x30, 0x30, 0xFF, 0xFC, 0x30, 0x0C, 0x30, 0x18, 0x00, 0x00, 0x70, 0x0C,

0x30, 0x18, 0x00, 0x00, 0x60, 0x0C, 0x30, 0x1C, 0x00, 0x00, 0xE0, 0x0C, 0x30,

0x0E, 0x00, 0x00, 0xC0, 0x0C, 0x18, 0x06, 0x00, 0x01, 0xC0, 0x1C, 0x18, 0x07,

0x00, 0x03, 0x80, 0x18, 0x18, 0x03, 0x80, 0x07, 0x00, 0x18, 0x0C, 0x01, 0xE0,

0x1E, 0x00, 0x30, 0x0C, 0x00, 0x7C, 0xFC, 0x00, 0x30, 0x0E, 0x00, 0x3F, 0xF0,

0x00, 0x60, 0x07, 0x00, 0x07, 0x00, 0x00, 0xE0, 0x03, 0x00, 0x00, 0x00, 0x00,

0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80,

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

const unsigned char PROGMEM frame72 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC3, 0xC0, 0x03, 0xC3, 0x80, 0x03, 0x8F, 0xF0, 0x0F, 0xF1,

0xC0, 0x03, 0x1C, 0x78, 0x0E, 0x38, 0xC0, 0x07, 0x18, 0x18, 0x18, 0x18, 0xE0,

110

0x0E, 0x10, 0x18, 0x18, 0x08, 0x70, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0C,

0x00, 0x00, 0x00, 0x00, 0x30, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18, 0x00,

0x00, 0x00, 0x00, 0x18, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x30, 0x07, 0xFF,

0xFF, 0xF0, 0x0C, 0x30, 0x0F, 0xFF, 0xFF, 0xE0, 0x0C, 0x30, 0x0C, 0x00, 0x00,

0x30, 0x0C, 0x30, 0x06, 0x00, 0x00, 0x60, 0x0C, 0x30, 0x06, 0x00, 0x00, 0x60,

0x0C, 0x30, 0x06, 0x00, 0x00, 0x60, 0x0C, 0x30, 0x06, 0x00, 0x00, 0x60, 0x0C,

0x30, 0x06, 0x00, 0x00, 0xE0, 0x0C, 0x30, 0x03, 0x00, 0x00, 0xC0, 0x0C, 0x30,

0x03, 0x00, 0x00, 0xC0, 0x0C, 0x18, 0x03, 0x80, 0x01, 0xC0, 0x1C, 0x18, 0x01,

0x80, 0x01, 0x80, 0x18, 0x18, 0x01, 0xC0, 0x03, 0x80, 0x18, 0x0C, 0x00, 0xE0,

0x07, 0x00, 0x30, 0x0C, 0x00, 0x70, 0x0E, 0x00, 0x30, 0x0E, 0x00, 0x3C, 0x3C,

0x00, 0x60, 0x07, 0x00, 0x1F, 0xF8, 0x00, 0xE0, 0x03, 0x00, 0x07, 0xE0, 0x00,

0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80,

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

const unsigned char PROGMEM frame82 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x03, 0xE0, 0x03, 0xF0, 0xC0, 0x06, 0x0F, 0xF0, 0x07, 0xF8, 0xE0,

0x0E, 0x1C, 0x38, 0x0E, 0x1C, 0x70, 0x0C, 0x18, 0x1C, 0x1C, 0x0C, 0x30,

0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18,

0x00, 0x00, 0x00, 0x00, 0x18, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x30, 0x00,

0x00, 0x00, 0x10, 0x0C, 0x30, 0x0F, 0xFE, 0xBF, 0xF8, 0x0C, 0x30, 0x0F, 0xFF,

0xFF, 0xF8, 0x0C, 0x30, 0x0C, 0x02, 0xA0, 0x18, 0x0C, 0x30, 0x06, 0x00, 0x00,

0x18, 0x0C, 0x30, 0x06, 0x00, 0x00, 0x30, 0x0C, 0x30, 0x06, 0x00, 0x00, 0x30,

0x0C, 0x30, 0x07, 0x00, 0x00, 0x30, 0x0C, 0x30, 0x03, 0x00, 0x00, 0x60, 0x0C,

0x30, 0x03, 0x80, 0x00, 0x60, 0x0C, 0x18, 0x01, 0x80, 0x00, 0xE0, 0x1C, 0x18,

0x01, 0xC0, 0x01, 0xC0, 0x18, 0x18, 0x00, 0xE0, 0x01, 0x80, 0x18, 0x0C, 0x00,

111

0x70, 0x07, 0x00, 0x30, 0x0C, 0x00, 0x38, 0x0F, 0x00, 0x30, 0x0E, 0x00, 0x1F,

0x7C, 0x00, 0x60, 0x07, 0x00, 0x07, 0xF8, 0x00, 0xE0, 0x03, 0x00, 0x00, 0x80,

0x00, 0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03,

0x80, 0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00,

0x03, 0xE0, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,

0x1F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00};

const unsigned char PROGMEM frame92 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x06, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x00, 0x00, 0x00, 0x00, 0x70, 0x0C, 0x07, 0xF0, 0x03, 0xF8, 0x30, 0x0C,

0x1F, 0xF8, 0x07, 0xFC, 0x30, 0x18, 0x1C, 0x1C, 0x0E, 0x0E, 0x18, 0x18, 0x10,

0x0C, 0x08, 0x02, 0x18, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x30, 0x00, 0x00,

0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x0E, 0x00, 0x00,

0x1C, 0x0C, 0x30, 0x0F, 0xE0, 0x00, 0xFC, 0x0C, 0x30, 0x0F, 0xFF, 0xFF,

0xFC, 0x0C, 0x30, 0x0C, 0x3F, 0xFF, 0x0C, 0x0C, 0x30, 0x0E, 0x00, 0x00, 0x1C,

0x0C, 0x30, 0x06, 0x00, 0x00, 0x18, 0x0C, 0x30, 0x07, 0x00, 0x00, 0x38, 0x0C,

0x30, 0x03, 0x00, 0x00, 0x70, 0x0C, 0x18, 0x01, 0x80, 0x00, 0x60, 0x1C, 0x18,

0x01, 0xC0, 0x00, 0xE0, 0x18, 0x18, 0x00, 0xE0, 0x01, 0xC0, 0x18, 0x0C, 0x00,

0x78, 0x07, 0x80, 0x30, 0x0C, 0x00, 0x1E, 0x3E, 0x00, 0x30, 0x0E, 0x00, 0x0F,

0xFC, 0x00, 0x60, 0x07, 0x00, 0x01, 0xC0, 0x00, 0xE0, 0x03, 0x00, 0x00, 0x00,

0x00, 0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03,

0x80, 0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00,

0x03, 0xE0, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,

0x1F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00};

const unsigned char PROGMEM frame102 [] = {

112

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x06, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x00, 0x00, 0x00, 0x00, 0x70, 0x0C, 0x07, 0xF0, 0x03, 0xF8, 0x30, 0x0C,

0x1F, 0xF8, 0x07, 0xFC, 0x30, 0x18, 0x1C, 0x1C, 0x0E, 0x0E, 0x18, 0x18, 0x10,

0x04, 0x08, 0x02, 0x18, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x30, 0x00, 0x00,

0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x0E, 0x00, 0x00,

0x1C, 0x0C, 0x30, 0x0F, 0xE0, 0x01, 0xFC, 0x0C, 0x30, 0x0F, 0xFF, 0xFF,

0xFC, 0x0C, 0x30, 0x0C, 0x1F, 0xFF, 0x0C, 0x0C, 0x30, 0x0E, 0x00, 0x00, 0x1C,

0x0C, 0x30, 0x06, 0x00, 0x00, 0x18, 0x0C, 0x30, 0x07, 0x00, 0x00, 0x38, 0x0C,

0x30, 0x03, 0x00, 0x00, 0x30, 0x0C, 0x18, 0x03, 0x80, 0x00, 0x70, 0x1C, 0x18,

0x01, 0xC0, 0x00, 0xE0, 0x18, 0x18, 0x00, 0xE0, 0x01, 0xC0, 0x18, 0x0C, 0x00,

0x70, 0x07, 0x80, 0x30, 0x0C, 0x00, 0x3E, 0x1F, 0x00, 0x30, 0x0E, 0x00, 0x0F,

0xFC, 0x00, 0x60, 0x07, 0x00, 0x03, 0xE0, 0x00, 0xE0, 0x03, 0x00, 0x00, 0x00,

0x00, 0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03,

0x80, 0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00,

0x03, 0xE0, 0x0F, 0xE0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,

0x1F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00};

const unsigned char PROGMEM frame122 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x06, 0x07, 0xE0, 0x03, 0xF0, 0xE0,

0x0E, 0x0F, 0xF8, 0x0F, 0xF8, 0x70, 0x0C, 0x1C, 0x18, 0x0C, 0x1C, 0x30, 0x0C,

0x18, 0x1C, 0x1C, 0x0C, 0x30, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18, 0x00,

0x00, 0x00, 0x00, 0x18, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x30, 0x00, 0x00,

113

0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x07, 0xFF, 0xFF,

0xF0, 0x0C, 0x30, 0x07, 0xFF, 0xFF, 0xF0, 0x0C, 0x30, 0x06, 0x00, 0x00, 0x30,

0x0C, 0x30, 0x06, 0x00, 0x00, 0x30, 0x0C, 0x30, 0x06, 0x00, 0x00, 0x30, 0x0C,

0x30, 0x06, 0x00, 0x00, 0x30, 0x0C, 0x30, 0x06, 0x00, 0x00, 0x30, 0x0C, 0x30,

0x03, 0x00, 0x00, 0x60, 0x0C, 0x18, 0x03, 0x00, 0x00, 0x60, 0x1C, 0x18, 0x03,

0x80, 0x00, 0xE0, 0x18, 0x18, 0x01, 0x80, 0x00, 0xC0, 0x18, 0x0C, 0x01, 0xC0,

0x01, 0xC0, 0x30, 0x0C, 0x00, 0xC0, 0x01, 0x80, 0x30, 0x0E, 0x00, 0x60, 0x03,

0x00, 0x60, 0x07, 0x00, 0x70, 0x07, 0x00, 0xE0, 0x03, 0x00, 0x3C, 0x1E, 0x00,

0xC0, 0x01, 0x80, 0x0F, 0xF8, 0x01, 0x80, 0x01, 0xC0, 0x03, 0xE0, 0x03, 0x80,

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

const unsigned char PROGMEM frame132 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x06, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x00, 0x00, 0x00, 0x00, 0x70, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0C,

0x07, 0xC0, 0x03, 0xE0, 0x30, 0x18, 0x0F, 0xF0, 0x07, 0xF8, 0x18, 0x18, 0x1C,

0x78, 0x1E, 0x3C, 0x18, 0x18, 0x30, 0x18, 0x18, 0x0C, 0x18, 0x30, 0x00, 0x00,

0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00,

0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x0E, 0x00, 0x00, 0x78,

0x0C, 0x30, 0x1F, 0xF4, 0x0F, 0xF8, 0x0C, 0x30, 0x1D, 0xFF, 0xFF, 0xB8, 0x0C,

0x30, 0x0C, 0x07, 0xF0, 0x18, 0x0C, 0x30, 0x0C, 0x00, 0x00, 0x30, 0x0C, 0x30,

0x0C, 0x00, 0x00, 0x30, 0x0C, 0x18, 0x06, 0x00, 0x00, 0x70, 0x1C, 0x18, 0x06,

0x00, 0x00, 0x60, 0x18, 0x18, 0x03, 0x00, 0x00, 0xE0, 0x18, 0x0C, 0x03, 0x80,

0x01, 0xC0, 0x30, 0x0C, 0x01, 0xC0, 0x01, 0x80, 0x30, 0x0E, 0x00, 0xE0, 0x03,

0x80, 0x60, 0x07, 0x00, 0x70, 0x0F, 0x00, 0xE0, 0x03, 0x00, 0x3E, 0x3C, 0x00,

0xC0, 0x01, 0x80, 0x1F, 0xF8, 0x01, 0x80, 0x01, 0xC0, 0x01, 0xC0, 0x03, 0x80,

114

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

//Neutral/***/

const unsigned char PROGMEM frame03 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x00, 0x00, 0x00, 0x00, 0x70, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0C,

0x00, 0x00, 0x00, 0x00, 0x30, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18, 0x01,

0x80, 0x03, 0x80, 0x18, 0x18, 0x03, 0xE0, 0x07, 0xC0, 0x18, 0x30, 0x03, 0xE0,

0x07, 0xC0, 0x0C, 0x30, 0x07, 0xE0, 0x07, 0xE0, 0x0C, 0x30, 0x03, 0xE0, 0x07,

0xC0, 0x0C, 0x30, 0x01, 0xC0, 0x03, 0x80, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00,

0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C,

0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30,

0x00, 0x00, 0x00, 0x00, 0x0C, 0x18, 0x00, 0x00, 0x00, 0x00, 0x1C, 0x18, 0x07,

0xFF, 0xFF, 0xE0, 0x18, 0x18, 0x03, 0xFF, 0xFF, 0xC0, 0x18, 0x0C, 0x00, 0x00,

0x00, 0x00, 0x30, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0E, 0x00, 0x00, 0x00,

0x00, 0x60, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0, 0x03, 0x00, 0x00, 0x00, 0x00,

0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80,

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

const unsigned char PROGMEM frame013 [] = {

115

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00,

0x00,0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00,

0x01, 0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x07, 0x00, 0x00, 0x00, 0x00,

0xE0, 0x0E, 0x00, 0x00, 0x00, 0x00, 0x70, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30,

0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18,

0x01, 0x80, 0x03, 0x80, 0x18, 0x18, 0x03, 0xE0, 0x07, 0xC0, 0x18, 0x30, 0x03,

0xE0, 0x07, 0xC0, 0x0C, 0x30, 0x07, 0xE0, 0x07, 0xE0, 0x0C, 0x30, 0x03, 0xE0,

0x07, 0xC0, 0x0C, 0x30, 0x01, 0xC0, 0x03, 0x80, 0x0C, 0x30, 0x00, 0x00, 0x00,

0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00,

0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C,

0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x18, 0x00, 0x00, 0x00, 0x00, 0x1C, 0x18,

0x07, 0xFF, 0xFF, 0xE0, 0x18, 0x18, 0x03, 0xFF, 0xFF, 0xC0, 0x18, 0x0C, 0x00,

0x00, 0x00, 0x00, 0x30, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0E, 0x00, 0x00,

0x00, 0x00, 0x60, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0, 0x03, 0x00, 0x00, 0x00,

0x00, 0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03,

0x80, 0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00,

0x03, 0xE0, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,

0x1F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00};

const unsigned char PROGMEM frame23 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x00, 0x00, 0x00, 0x00, 0x70, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0C,

0x00, 0x00, 0x00, 0x00, 0x30, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18, 0x00,

0x80, 0x01, 0x00, 0x18, 0x18, 0x03, 0xE0, 0x07, 0xC0, 0x18, 0x30, 0x07, 0xE0,

116

0x07, 0xE0, 0x0C, 0x30, 0x07, 0xE0, 0x07, 0xE0, 0x0C, 0x30, 0x03, 0xE0, 0x07,

0xC0, 0x0C, 0x30, 0x01, 0xC0, 0x03, 0x80, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00,

0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C,

0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30,

0x00, 0x00, 0x00, 0x00, 0x0C, 0x18, 0x00, 0x00, 0x00, 0x00, 0x1C, 0x18, 0x07,

0xFF, 0xFF, 0xE0, 0x18, 0x18, 0x03, 0xFF, 0xFF, 0xC0, 0x18, 0x0C, 0x00, 0x00,

0x00, 0x00, 0x30, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0E, 0x00, 0x00, 0x00,

0x00, 0x60, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0, 0x03, 0x00, 0x00, 0x00, 0x00,

0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80,

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xE0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

const unsigned char PROGMEM frame33 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x00, 0x00, 0x00, 0x00, 0x70, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0C,

0x00, 0x00, 0x00, 0x00, 0x30, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18, 0x00,

0x00, 0x00, 0x00, 0x18, 0x18, 0x03, 0xC0, 0x07, 0xC0, 0x18, 0x30, 0x07, 0xF0,

0x07, 0xE0, 0x0C, 0x30, 0x07, 0xE0, 0x0F, 0xE0, 0x0C, 0x30, 0x03, 0xE0, 0x07,

0xC0, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00,

0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C,

0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30,

0x00, 0x00, 0x00, 0x00, 0x0C, 0x18, 0x00, 0x00, 0x00, 0x00, 0x1C, 0x18, 0x07,

0xFF, 0xFF, 0xE0, 0x18, 0x18, 0x03, 0xFF, 0xFF, 0xC0, 0x18, 0x0C, 0x00, 0x00,

0x00, 0x00, 0x30, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0E, 0x00, 0x00, 0x00,

0x00, 0x60, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0, 0x03, 0x00, 0x00, 0x00, 0x00,

0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80,

117

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

const unsigned char PROGMEM frame43 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x00, 0x00, 0x00, 0x00, 0x70, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30,

0x0C,0x00, 0x00, 0x00, 0x00, 0x38, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18,

0x00, 0x00, 0x00, 0x00, 0x18, 0x18, 0x00, 0x80, 0x01, 0x00, 0x18, 0x30, 0x07,

0xF0, 0x0F, 0xE0, 0x0C, 0x30, 0x07, 0xF0, 0x0F, 0xE0, 0x0C, 0x30, 0x03, 0xC0,

0x03, 0x80, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00,

0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00,

0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C,

0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x38, 0x00, 0x00, 0x00, 0x00, 0x1C, 0x18,

0x07, 0xFF, 0xFF, 0xE0, 0x18, 0x18, 0x03, 0xFF, 0xFF, 0xC0, 0x18, 0x0C, 0x00,

0x00, 0x00, 0x00, 0x30, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0E, 0x00, 0x00,

0x00, 0x00, 0x60, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0, 0x03, 0x00, 0x00, 0x00,

0x00, 0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03,

0x80, 0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00,

0x03, 0xE0, 0x0F, 0xE0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,

0x1F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00};

const unsigned char PROGMEM frame53 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

118

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x00, 0x00, 0x00, 0x00, 0x70, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0C,

0x00, 0x00, 0x00, 0x00, 0x38, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18, 0x00,

0x00, 0x00, 0x00, 0x18, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x30, 0x07, 0xE0,

0x07, 0xE0, 0x0C, 0x30, 0x07, 0xF0, 0x0F, 0xE0, 0x0C, 0x30, 0x00, 0x00, 0x00,

0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00,

0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C,

0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30,

0x00, 0x00, 0x00, 0x00, 0x0C, 0x38, 0x00, 0x00, 0x00, 0x00, 0x1C, 0x18, 0x07,

0xFF, 0xFF, 0xE0, 0x18, 0x18, 0x03, 0xFF, 0xFF, 0xC0, 0x18, 0x0C, 0x00, 0x00,

0x00, 0x00, 0x30, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0E, 0x00, 0x00, 0x00,

0x00, 0x60, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0, 0x03, 0x00, 0x00, 0x00, 0x00,

0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80,

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xE0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

const unsigned char PROGMEM frame63 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x00, 0x00, 0x00, 0x00, 0x70, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0C,

0x00, 0x00, 0x00, 0x00, 0x38, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18, 0x00,

0x00, 0x00, 0x00, 0x18, 0x18, 0x00, 0x80, 0x01, 0x00, 0x18, 0x30, 0x07, 0xF0,

0x0F, 0xE0, 0x0C, 0x30, 0x07, 0xF0, 0x0F, 0xE0, 0x0C, 0x30, 0x03, 0xC0, 0x03,

0x80, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00,

0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C,

119

0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30,

0x00, 0x00, 0x00, 0x00, 0x0C, 0x38, 0x00, 0x00, 0x00, 0x00, 0x1C, 0x18, 0x07,

0xFF, 0xFF, 0xE0, 0x18, 0x18, 0x03, 0xFF, 0xFF, 0xC0, 0x18, 0x0C, 0x00, 0x00,

0x00, 0x00, 0x30, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0E, 0x00, 0x00, 0x00,

0x00, 0x60, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0, 0x03, 0x00, 0x00, 0x00, 0x00,

0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80,

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xE0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

const unsigned char PROGMEM frame73 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x00, 0x00, 0x00, 0x00, 0x70, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0C,

0x00, 0x00, 0x00, 0x00, 0x30, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18, 0x00,

0x00, 0x00, 0x00, 0x18, 0x18, 0x03, 0xC0, 0x07, 0xC0, 0x18, 0x30, 0x07, 0xF0,

0x07, 0xE0, 0x0C, 0x30, 0x07, 0xE0, 0x0F, 0xE0, 0x0C, 0x30, 0x03, 0xE0, 0x07,

0xC0, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00,

0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C,

0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30,

0x00, 0x00, 0x00, 0x00, 0x0C, 0x18, 0x00, 0x00, 0x00, 0x00, 0x1C, 0x18, 0x07,

0xFF, 0xFF, 0xE0, 0x18, 0x18, 0x03, 0xFF, 0xFF, 0xC0, 0x18, 0x0C, 0x00, 0x00,

0x00, 0x00, 0x30, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0E, 0x00, 0x00, 0x00,

0x00, 0x60, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0, 0x03, 0x00, 0x00, 0x00, 0x00,

0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80,

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

120

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

const unsigned char PROGMEM frame83 [] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x1F, 0xFC, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x07,

0xE0, 0x07, 0xE0, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x3C, 0x00,

0x00, 0x3C, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00, 0xE0, 0x00, 0x00,

0x07, 0x00, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x01,

0xC0, 0x03, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0,

0x0E, 0x00, 0x00, 0x00, 0x00, 0x70, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0C,

0x00, 0x00, 0x00, 0x00, 0x30, 0x18, 0x00, 0x00, 0x00, 0x00, 0x18, 0x18, 0x01,

0x80, 0x03, 0x80, 0x18, 0x18, 0x03, 0xE0, 0x07, 0xC0, 0x18, 0x30, 0x03, 0xE0,

0x07, 0xC0, 0x0C, 0x30, 0x07, 0xE0, 0x07, 0xE0, 0x0C, 0x30, 0x03, 0xE0, 0x07,

0xC0, 0x0C, 0x30, 0x01, 0xC0, 0x03, 0x80, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00,

0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C,

0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x30,

0x00, 0x00, 0x00, 0x00, 0x0C, 0x18, 0x00, 0x00, 0x00, 0x00, 0x1C, 0x18, 0x07,

0xFF, 0xFF, 0xE0, 0x18, 0x18, 0x03, 0xFF, 0xFF, 0xC0, 0x18, 0x0C, 0x00, 0x00,

0x00, 0x00, 0x30, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0E, 0x00, 0x00, 0x00,

0x00, 0x60, 0x07, 0x00, 0x00, 0x00, 0x00, 0xE0, 0x03, 0x00, 0x00, 0x00, 0x00,

0xC0, 0x01, 0x80, 0x00, 0x00, 0x01, 0x80, 0x01, 0xC0, 0x00, 0x00, 0x03, 0x80,

0x00, 0xE0, 0x00, 0x00, 0x07, 0x00, 0x00, 0x78, 0x00, 0x00, 0x1E, 0x00, 0x00,

0x3C, 0x00, 0x00, 0x3C, 0x00, 0x00, 0x0F, 0x00, 0x00, 0xF0, 0x00, 0x00, 0x03,

0xE0, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x1F,

0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00};

/***/

void RunBlynk(void* parameter){

 for(;;){

 Serial.print("BlynkRun is running on: ");

 Serial.println(xPortGetCoreID());

 vTaskDelay(100 / portTICK_PERIOD_MS);

121

 Blynk.run();

 timer.run();

 }

}

/***/

void HumiTemp(void* parameter){

 for(;;){

 float humidityValue = dht.readHumidity();

 float temperatureValue = dht.readTemperature();

 Blynk.virtualWrite(V0, humidityValue);

 Blynk.virtualWrite(V1, temperatureValue);

 vTaskDelay(3000 / portTICK_PERIOD_MS);

 }

}

/***/

void SoilA(void* parameter){

 for(;;){

 float soilMoistureValueA = analogRead(soilA_Pin);

 soilmoisturepercentA = map(soilMoistureValueA, AirValue, WaterValue, 0,

100);

 Blynk.virtualWrite(V2, soilmoisturepercentA);

 vTaskDelay(5000 / portTICK_PERIOD_MS);

 }

}

/***/

void SoilB(void* parameter){

 for(;;){

 float soilMoistureValueB = analogRead(soilB_Pin);

 soilmoisturepercentB = map(soilMoistureValueB, AirValue, WaterValue, 0,

100);

 Blynk.virtualWrite(V3, soilmoisturepercentB);

 vTaskDelay(5000 / portTICK_PERIOD_MS);

 }

122

}

/**/

void WaterLvl(void* parameter){

 for(;;){

// Clears the trigPin

 digitalWrite(trigPin, LOW);

 delayMicroseconds(2);

// Sets the trigPin on HIGH state for 10 micro seconds

 digitalWrite(trigPin, HIGH);

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

// Reads the echoPin, returns the sound wave travel time in microseconds

 duration = pulseIn(echoPin, HIGH);

// Calculate the distance

 waterL = duration * SOUND_SPEED/2;

 waterlevelperct = map(waterL, WLMax, WLMin, 0, 100);

 Blynk.virtualWrite(V12, waterlevelperct);

 vTaskDelay(3000 / portTICK_PERIOD_MS);

 }

}

/**/

BLYNK_WRITE(V4){

 instantWatering = param.asInt(); }

BLYNK_WRITE(V9){

 distance = param.asInt(); }

BLYNK_WRITE(V10){

 pumpPower = param.asInt(); }

/**/

void SysCtrl(void* parameter){

 for(;;){

 distanceCal(distance);

 goHome();

 waterButtonState = digitalRead(watering);

123

 if((instantWatering == 1) || (waterButtonState == 1)){

 goWork(totalSteps);

 goHome();

 }

 }

}

/***/

// Calculation of steps require to pull the load by 1 cm (Steps/cm)

// Total steps = distance set * (Steps of one full revolution / (belt pitch [GT2 = 2]

x Teeth numbers of pulley [20]))

// The outcome of this equation will in mm. Thus x10 to get cm

void distanceCal(int distance){

 totalSteps = distance * (4096 / (2 * 20)) * 10;

}

/***/

void goWork(int totalSteps){

 stepper.setCurrentPosition(0);

 stepper.enableOutputs();

 stepper.moveTo(totalSteps);

 workLEDs();

 pwm.analogWrite(waterPump, pumpPower);

 while(stepper.distanceToGo()!= 0){

 stepper.setSpeed(450);

 stepper.runSpeed();

 }

 stepper.setSpeed(0);

}

/**/

void goHome(){

 stepper.setCurrentPosition(0);

 limitSwitchState = digitalRead(limitSwitch);

124

 pwm.analogWrite(waterPump, 0);

 if(limitSwitchState==0){

 goBackLeds();

 }

 else{

 restLEDs();

 }

 stepper.enableOutputs();

 while(limitSwitchState !=1){

 stepper.setSpeed(-450);

 stepper.runSpeed();

 limitSwitchState = digitalRead(limitSwitch);

 }

 stepper.setSpeed(0);

 stepper.disableOutputs();

 limitSwitchState = digitalRead(limitSwitch);

}

/**/

void workLEDs(){

 moving_start.on();

 pump_start.on();

 delay(10);

 digitalWrite(pumpOnLED,HIGH);

 digitalWrite(workingLED,HIGH);

 digitalWrite(pumpOffLED,LOW);

 digitalWrite(restingLED,LOW);

}

/**/

void goBackLeds(){

 moving_start.on();

 pump_start.off();

 delay(10);

 digitalWrite(pumpOnLED,LOW);

125

 digitalWrite(workingLED,HIGH);

 digitalWrite(pumpOffLED,HIGH);

 digitalWrite(restingLED,LOW);

}

/**/

void restLEDs(){

 moving_start.off();

 pump_start.off();

 digitalWrite(pumpOnLED,LOW);

 digitalWrite(workingLED,LOW);

 digitalWrite(pumpOffLED,HIGH);

 digitalWrite(restingLED,HIGH);

}

/**/

void setup(){

// Debug console

 Serial.begin(115200);

 delay(10);

 Serial.print("Connecting to ");

 Serial.println(ssid);

 WiFi.begin(ssid, pass);

 int wifi_ctr = 0;

 while (WiFi.status() != WL_CONNECTED){

 delay(1000);

 Serial.print(".");

 }

 Serial.println("WiFi connected");

 Blynk.begin(auth, ssid, pass);

 dht.begin();

//Pump

 pinMode(waterPump, OUTPUT);

//Water Level

126

 pinMode(trigPin, OUTPUT);

 pinMode(echoPin, INPUT);

//Limit Switch

 pinMode(limitSwitch, INPUT);

//Buttons

 pinMode(watering, INPUT);

//LEDs

 pinMode(pumpOnLED, OUTPUT);

 pinMode(pumpOffLED, OUTPUT);

 pinMode(workingLED, OUTPUT);

 pinMode(restingLED, OUTPUT);

//Define the maximun steps per second

 stepper.setMaxSpeed(1000);

 stepper.setAcceleration(200);

//initialize with the I2C addr 0x3C (128x64)

 display.begin(SSD1306_SWITCHCAPVCC, 0x3C);

 display.clearDisplay();

 display.setTextColor(WHITE);

xTaskCreatePinnedToCore(RunBlynk, "BlynkRun",2048,NULL,1,NULL,0);

xTaskCreatePinnedToCore(HumiTemp, "DHT",4096,NULL,1,NULL,0);

xTaskCreatePinnedToCore(SoilA, "SoilMoistureA",4096,NULL,1,NULL,0);

xTaskCreatePinnedToCore(SoilB, "SoilMoistureB",4096,NULL,1,NULL,0);

xTaskCreatePinnedToCore(WaterLvl, "WaterLevel",4096,NULL,1,NULL,0);

xTaskCreatePinnedToCore(SysCtrl, "SystemControl",10000,NULL,0,NULL,0);

xTaskCreatePinnedToCore(OLED, "OLED_Display",10000,NULL,1,NULL,1);

}

/***/

void loop(){

}

127

/**/

void OLED(void*parameter){

 for(;;){

 float humidityValue = dht.readHumidity();

 float temperatureValue = dht.readTemperature();

//Display Temperature On OLED

 display.clearDisplay();

 display.setTextColor(WHITE);

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print("Temperature: ");

 display.setTextSize(2);

 display.setCursor(0, 10);

 display.print(temperatureValue);

 display.print(" ");

 display.setTextSize(1);

 display.cp437(true);

 display.write(167);

 display.setTextSize(2);

 display.print("C");

//Display Humidity On OLED

 display.setTextSize(1);

 display.setCursor(0, 35);

 display.print("Humidity: ");

 display.setTextSize(2);

 display.setCursor(0, 45);

 display.print(humidityValue);

 display.print(" %");

 display.display();

 vTaskDelay(5000 / portTICK_PERIOD_MS);

 soilA_emoji();

128

 vTaskDelay(5000 / portTICK_PERIOD_MS);

 soilB_emoji();

 vTaskDelay(5000 / portTICK_PERIOD_MS);

 }

}

/***/

void soilA_emoji(){

 float soilMoistureValueA = analogRead(soilA_Pin);

 int percentA = map(soilMoistureValueA, AirValue, WaterValue, 0, 100);

 if (percentA < 0){

 soilmoisturepercentA = 0;

 }

 else if (percentA > 100){

 soilmoisturepercentA = 100;

 }

 else if (percentA >= 0 && percentA <= 100){

 soilmoisturepercentA = percentA;

 }

 if (soilmoisturepercentA >= 0 && soilmoisturepercentA <= 30){

 //Crying

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print("Plant A need Water...");

 display.drawBitmap(10, 8, frame05, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

129

 display.setCursor(0, 0);

 display.print("Plant A need Water...");

 display.drawBitmap(10, 8, frame25, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print("Plant A need Water...");

 display.drawBitmap(10, 8, frame35, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print("Plant A need Water...");

 display.drawBitmap(10, 8, frame45, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

130

 display.setCursor(0, 0);

 display.print("Plant A need Water...");

 display.drawBitmap(10, 8, frame55, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print("Plant A need Water...");

 display.drawBitmap(10, 8, frame65, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print("Plant A need Water...");

 display.drawBitmap(10, 8, frame75, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

131

 display.setCursor(0, 0);

 display.print("Plant A need Water...");

 display.drawBitmap(10, 8, frame85, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print("Plant A need Water...");

 display.drawBitmap(10, 8, frame95, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(70);

 }

 else if (soilmoisturepercentA > 30 && soilmoisturepercentA <= 70){

 //Neutral

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A looks good...");

 display.drawBitmap(10, 8, frame03, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(60);

132

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A looks good...");

 display.drawBitmap(10, 8, frame013, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(60);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A looks good...");

 display.drawBitmap(10, 8, frame23, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(60);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A looks good...");

 display.drawBitmap(10, 8, frame33, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(60);

133

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A looks good...");

 display.drawBitmap(10, 8, frame43, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(60);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A looks good...");

 display.drawBitmap(10, 8, frame53, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(60);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A looks good...");

 display.drawBitmap(10, 8, frame63, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(60);

134

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A looks good...");

 display.drawBitmap(10, 8, frame73, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(60);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A looks good...");

 display.drawBitmap(10, 8, frame83, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(50);

 }

 else if (soilmoisturepercentA > 70 && soilmoisturepercentA <= 100){

 //Happy

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A very fresh...");

 display.drawBitmap(10, 8, frame012, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

135

 delay(40);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A very fresh...");

 display.drawBitmap(10, 8, frame22, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(40);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A very fresh...");

 display.drawBitmap(10, 8, frame42, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(40);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A very fresh...");

 display.drawBitmap(10, 8, frame52, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

136

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A very fresh...");

 display.drawBitmap(10, 8, frame72, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A very fresh...");

 display.drawBitmap(10, 8, frame82, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A very fresh...");

 display.drawBitmap(10, 8, frame92, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

137

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A very fresh...");

 display.drawBitmap(10, 8, frame102, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A very fresh...");

 display.drawBitmap(10, 8, frame122, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant A very fresh...");

 display.drawBitmap(10, 8, frame132, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentA);

 display.println(" %");

 display.display();

138

 delay(30);

 }

}

/***/

void soilB_emoji(){

 float soilMoistureValueB = analogRead(soilB_Pin);

 int percentB = map(soilMoistureValueB, AirValue, WaterValue, 0, 100);

 if (percentB < 0) {

 soilmoisturepercentB = 0;

 }

 else if (percentB > 100){

 soilmoisturepercentB = 100;

 }

 else if (percentB >= 0 && percentB <= 100){

 soilmoisturepercentB = percentB;

 }

 if (soilmoisturepercentB >= 0 && soilmoisturepercentB <= 30){

 //Crying

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print("Plant B need Water...");

 display.drawBitmap(10, 8, frame05, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

139

 display.print("Plant B need Water...");

 display.drawBitmap(10, 8, frame25, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print("Plant B need Water...");

 display.drawBitmap(10, 8, frame35, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print("Plant B need Water...");

 display.drawBitmap(10, 8, frame45, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

140

 display.print("Plant B need Water...");

 display.drawBitmap(10, 8, frame55, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print("Plant B need Water...");

 display.drawBitmap(10, 8, frame65, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print("Plant B need Water...");

 display.drawBitmap(10, 8, frame75, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

141

 display.print("Plant B need Water...");

 display.drawBitmap(10, 8, frame85, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print("Plant B need Water...");

 display.drawBitmap(10, 8, frame95, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(70);

 }

 else if (soilmoisturepercentB > 30 && soilmoisturepercentB <= 70){

 //Neutral

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B looks good...");

 display.drawBitmap(10, 8, frame03, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(60);

 display.clearDisplay();

142

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B looks good...");

 display.drawBitmap(10, 8, frame013, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(60);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B looks good...");

 display.drawBitmap(10, 8, frame23, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(60);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B looks good...");

 display.drawBitmap(10, 8, frame33, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(60);

 display.clearDisplay();

143

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B looks good...");

 display.drawBitmap(10, 8, frame43, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(60);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B looks good...");

 display.drawBitmap(10, 8, frame53, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(60);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B looks good...");

 display.drawBitmap(10, 8, frame63, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(60);

 display.clearDisplay();

144

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B looks good...");

 display.drawBitmap(10, 8, frame73, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(60);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B looks good...");

 display.drawBitmap(10, 8, frame83, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(50);

 }

 else if (soilmoisturepercentB > 70 && soilmoisturepercentB <= 100){

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B very fresh...");

 display.drawBitmap(10, 8, frame012, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(40);

 display.clearDisplay();

145

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B very fresh...");

 display.drawBitmap(10, 8, frame22, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(40);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B very fresh...");

 display.drawBitmap(10, 8, frame42, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(40);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B very fresh...");

 display.drawBitmap(10, 8, frame52, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

delay(30);

 display.clearDisplay();

146

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B very fresh...");

 display.drawBitmap(10, 8, frame72, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B very fresh...");

 display.drawBitmap(10, 8, frame82, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B very fresh...");

 display.drawBitmap(10, 8, frame92, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

delay(30);

 display.clearDisplay();

147

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B very fresh...");

 display.drawBitmap(10, 8, frame102, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B very fresh...");

 display.drawBitmap(10, 8, frame122, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(30);

 display.clearDisplay();

 display.setTextSize(1);

 display.setCursor(0, 0);

 display.print ("Plant B very fresh...");

 display.drawBitmap(10, 8, frame132, 48, 48, WHITE);

 display.setCursor(65, 25);

 display.print(soilmoisturepercentB);

 display.println(" %");

 display.display();

 delay(30);

 }

}

148

APPENDIX B: Printed Circuit Board Design

Schematic Diagram of the Smart Agriculture and Smart Irrigation System

149

Board design of the Smart Agriculture and Smart Irrigation System

