
 

 

 

DEVELOPMENT OF AN APPLICATION FOR STREAM DECK 

CONTROLLER USING EMBEDDED SYSTEM 

 

 

 

 

 

 

 

CHAI CHUN WEI 

 

 

 

 

 

 

 

A project report submitted in partial fulfilment of the 

requirements for the award of the degree of 

Bachelor of Engineering (Hons) Electronic Engineering 

 

 

 

 

 

Faculty of Engineering and Green Technology 

Universiti Tunku Abdul Rahman 

 

 

May 2023



ii 

 

 

 

DECLARATION 

 

 

 

 

 

I hereby declare that this project report is based on my original work except for 

citations and quotations which have been duly acknowledged.  I also declare that it 

has not been previously and concurrently submitted for any other degree or award at 

UTAR or other institutions. 

 

 

 

 

 

Signature : _________________________ 

 

Name : CHAI CHUN WEI 

 

ID No. : 18AGB05194 

 

Date  : 08 – 07 – 2022  

 

 

Loh
Typewriter
10/5/2022



iii 

 

 

 

APPROVAL FOR SUBMISSION 

 

 

 

 

 

I certify that this project report entitled “Application for Webserver Stream Deck 

Controller using Embedded System” was prepared by CHAI CHUN WEI has met 

the required standard for submission in partial fulfilment of the requirements for the 

award of Bachelor of Engineering (Hons) Electronic Engineering at Universiti Tunku 

Abdul Rahman. 

 

 

 

 

 

Approved by, 

 

 

Signature :   _________________________ 

 

Supervisor :   Ts. Dr. TOH PEK LAN 

 

Date  :   _________________________ 

 

 

FeiWeiFeiWei
Stamp

Loh
Typewriter
15/5/2023



iv 

 

 

 

 

 

 

 

 

 

 

 

The copyright of this report belongs to the author under the terms of the 

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku 

Abdul Rahman.  Due acknowledgement shall always be made of the use of any 

material contained in, or derived from, this report. 

 

 

© 2023, CHAI CHUN WEI. All right reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

 

 

ACKNOWLEDGEMENTS 

 

 

 

I would like to thank everyone who had contributed to the successful completion of 

this project.  I would like to express my gratitude to my research supervisor, Ts. Dr. 

TOH PEK LAN for her invaluable advice, guidance, and her enormous patience 

throughout the development of the research. 

 

In addition, I would also like to express my gratitude to my loving parent and 

friends who had helped and given me encouragement.  

 

 

 

 

 



vi 

 

 

 

DEVELOPMENT OF AN APPLICATION FOR WEBSERVER STREAM 

DECK CONTROLLER USING EMBEDDED SYSTEM 

 

 

ABSTRACT 

 

 

Nowadays, stream deck is a very well-liked application for streamers or editors. It is 

designed to automate basic actions like switching sceneries and going live, but the 

same platform is helpful even if you don't play games for an audience. For instance, 

copying and pasting for editors, opening a file with a single click (recorded the 

keystroke and macro), and other features. Due to pandemic situation, most of the 

workers is going to work from home while some workers are lost their jobs, and 

there is keep borning out new generation, they would like to touch more new 

technology items. However, stream deck is a good tool to conduct their job easier 

especially for streamers, editors, teacher, programmers and so on.  Therefore, stream 

deck is being developed by plenty of companies recently.  In order to carry out this 

project, a PCB is necessary. A PCB is built to combine all hardware and become a 

system. A 3D printer is necessary to build for a casing for stream deck. A webserver 

is constructed to act as user interface for users to change their configuration. 

Moreover, ESP32 is act as a “heart” or “brain” that communicate with TFT screen 

while the program code for the module will be written and compiled by using 

programming IDE software.  The main function of the stream deck is to create a 

shortcut key into a key to do a specific task. After the configuration or setup is done, 

the LED touch screen- ILI9488 TFT screen with XPT2046 touch controller will 

show up the options on the screen. At the end of this project, a DIY stream deck 

system is to create 6 buttons to let users to choose their option to conduct specific 

task by settings up the programmable buttons. 

 

 



vii 

 

 

 

TABLE OF CONTENTS 

 

 

 

DECLARATION ii 

APPROVAL FOR SUBMISSION iii 

ACKNOWLEDGEMENTS v 

ABSTRACT vi 

TABLE OF CONTENTS vii 

LIST OF TABLES x 

LIST OF FIGURES xii 

LIST OF SYMBOLS / ABBREVIATIONS xvii 

LIST OF APPENDICES xix 

 

 

CHAPTER 

1 INTRODUCTION 1 

1.1 Background 1 

1.2 Problem Statements 4 

1.2.1 Efficiency 4 

1.2.2 Price factor 4 

1.2.3 Reviewing projects 5 

1.3 Objectives 11 

2 LITERATURE REVIEW 12 

2.1 Stream Deck 12 

2.2 Thin-Film-Transistor Screen 16 

2.3 Espressif System 19 

2.3.1 Comparison between microcontrollers 20 



viii 

2.4 Software IDE 23 

2.4.1 Arduino IDE 23 

2.4.2 Microsoft Visual Code 24 

2.5 3D Printer 27 

2.6 Rechargeable system 28 

3 METHODOLOGY 32 

3.1 Design Architecture in Detailed 32 

3.2 Project Management 33 

3.3 Hardware used in a Stream Deck 36 

3.3.1 ESP32-WROOM- 32D Module Board 36 

3.3.2 Display Screen 39 

3.3.3 Wireless and Rechargeable System 41 

3.4 Circuit Connection of Hardware 43 

3.4.1 Circuit Connection between the ILI9488 TFT Screen 

and the ESP32-Wroom-32D 44 

3.5 Arduino IDE (Integrated Development Environment) 45 

3.5.1 Arduino IDE Setup 45 

3.5.2 Setup of SPI MSP 3520 module ILI9488 TFT 

Screen 49 

3.5.3 WiFi Setup Function 50 

3.6 PCB Board 53 

3.6.1 Autodesk Eagle Setup for Schematic File 54 

3.6.2 Autodesk Eagle Setup for Schematic File for Board 

file 56 

3.7 3D Printing 61 

3.8 Webpage Interface 62 

3.8.1 Microsoft Visual Code 62 

3.8.2 Arduino JSON 64 

3.9 Equipment and Cost Analysis 65 

4 RESULTS AND DISCUSSIONS 66 

4.1 Schematic Diagram of a Stream Deck 66 



ix 

4.2 Overview of the framework of the Stream Deck 67 

4.3 Default User Interface of Stream Deck 70 

4.4 Access Point (AP) connection 74 

4.5 Station Point (STA) Connection 78 

4.6 Second Way to connect the Station Point (STA) or Access 

Point (AP) 80 

4.7 Web Server for Stream Deck Configurator 82 

4.8 New User Interface of Stream Deck 86 

4.9 Discussion on Actions to be Avoided 98 

4.10 Discussion on Webserver 99 

4.11 Discussion on the Working of a Webserver 100 

5 CONCLUSION AND RECOMMENDATIONS 101 

5.1 Conclusion 101 

5.2 Recommendations 102 

REFERENCES 103 

APPENDICES 109 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

 

 

LIST OF TABLES 

 

 

 

 TABLE TITLE PAGE 

1.1                 Classification of Shortcut Keys (Lim, K.Y., 1997). 1 

1.2  Component and Materials Used of Stream Deck 

(Freotech, 2022). 5 

1.3  Component and Materials Used of Stream Deck 

(NL1_CS, 2019). 7 

1.4  Component and Materials Used of Stream Deck 

(Arduino Team, 2021). 9 

2.1  Products and Prices from the Companies. 14 

2.2  Characteristics of different module TFT Screen. 17 

2.3a  Comparison between different microcontrollers 

(Maier, A., Sharp, A. and Vagapov. Y, 2017). 20 

2.3b  Comparison between different microcontrollers 

(Maier, A., Sharp, A. and Vagapov. Y, 2017). 20 

2.4  Characteristics for Every Battery (Liang Y, Zhao 

C-Z,Yuan H, et al.,2019). 29 

3.1  Gantt Chart for FYP1. 33 

3.2  Gantt Chart for FYP2. 34 

3.3  Features of Each Pin Label. 38 

3.4  Features of Each Pin Label. 40 

3.5  Hardware of the Stream Deck. 43 

3.6  Connection between the ILI9488 TFT Screen with 

ESP32-Wroom-32D. 44 



xi 

3.7  Components List with Price. 65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

 

 

LIST OF FIGURES 

 

 

 

 FIGURE TITLE PAGE 

1.1  The Front View of Stream Deck (Freotech, 2022). 6 

1.2  The Bottom View of Stream Deck (Freotech, 

2022). 6 

1.3  The Front View of Stream Deck (NL1_CS, 2019). 8 

1.4 The Back View of Stream Deck (NL1_CS, 2019). 8 

1.5 The Front View of Crumble Deck (Arduino Team, 

2021). 10 

1.6 The Wiring View of Crumble Deck’s Buttons 

(Arduino Team, 2021). 10 

2.1 Overview Programmable Button (Adrian willings, 

2022). 12 

2.2 ILI9488 Module TFT Screen (LCwiki,2021). 17 

2.3 OTM8009A Module TFT Screen (LCwiki,2019). 18 

2.4 ST7735 Module TFT Screen (LCwiki,2022). 18 

2.5 Main Section of Arduino IDE (Mohamed FEZARI 

and Ali Al Dahoud,2018). 26 

2.6 Main Section of Microsoft Visual Code. 26 

2.7 Overall Characteristic (Liang Y, Zhao C-Z,Yuan H, 

et al.,2019). 29 

2.8  Simplified Representation of Different Battery    

 Charger Circuits. 31 

3.1 Block Diagram of a Stream Deck. 33 



xiii 

3.2 ESP32-WROOM-32D Board (Hallroad,2022). 36 

3.3  Pinouts of ESP32 – WROOM – 32D. 37 

3.4 Pinouts of SPI MSP 3520 module ILI 9488 TFT 

screen(LCwiki,2021.) 39 

3.5  Type-C USB 5V 2A Step-up Boost Converter with 

USB Charger (ShharviElectronic,2022). 42 

3.6  A Lithium Battery Capacity Indicator ( Universal-

solder,2020). 42 

3.7  A Power Supply 3.7V LiPo Battery (Lithium 

Polymer) (Shopee,2023.). 42 

3.8 Stream Deck Circuit Connection. 43 

3.9  Arduino IDE Software. 45 

3.10  Installing the Arduino IDE ESP32 core. 46 

3.11  Installing the Necessary Libraries. 47 

3.12  Installing ESP32 Sketch Data Upload tool. 48 

3.13  Installing ESP32 Sketch Upload Tool. 48 

3.14  Defining for ILI9488 TFT Screen. 49 

3.15  Attempting WiFi Setup. 51 

3.16  SSID and Password for Access Point. 51 

3.17  WiFi and Access Point Setup. 52 

3.18  WiFi and Access Point Setup. 52 

3.19  Access Point Setup. 53 

3.20  Autodesk Eagle software. 53 

3.21  New Project had been created. 54 

3.22  Installing Libraries. 54 

3.23  Schematic Diagram. 55 

3.24  Library Manager Window. 56 



xiv 

3.25  Setup for Board file. 57 

3.26  Settings for Clearance Tab 57 

3.27  Settings for Distance. 58 

3.28  Settings for Sizes. 58 

3.29 Settings for Annular Ring. 59 

3.30  Board Diagram. 60 

3.31  Pass through 2 Pins. 60 

3.32  Designed Case in Tinker CAD. 61 

3.33  Dimension of the Inner and Outer Bottom Case. 61 

3.34  Installing Extension. 62 

3.35  HTML Code on Microsoft Visual Code. 63 

3.36 Visual Studio Code. 63 

4.1  Schematic of Stream Deck. 66 

4.2  Prototype of the Stream Deck. 67 

4.3  Overview Project of the Stream Deck. 68 

4.4  Front View of the Stream Deck. 68 

4.5  Back View of the Stream Deck. 69 

4.6  Side View of the Stream Deck. 69 

4.7  Main Menu at TFT Screen of Stream Deck. 70 

4.8  The Default Contains of The First Section. 71 

4.9  The Default Contains of The Second Section. 72 

4.10  The Default Contains of The Third Section. 72 

4.11  The Default Contains of The Forth Section. 73 

4.12  The Default Contains of The Fifth Section. 73 

4.13  The Default Contains of the Sixth Section. 74 



xv 

4.14  Attempting to Connect Access Point or Station 

Point (WiFi). 75 

4.15  Connection fail. 76 

4.16  SSID of Access Point. 76 

4.17  Password of Access Point. 77 

4.18  Webserver of The Stream Deck. 77 

4.19  WiFi Settings Page. 78 

4.20  Two Option to Use. 79 

4.21  Station Point is Connected. 79 

4.22  WiFi Details. 81 

4.23  Get information from JSON. 81 

4.24  WiFi Settings from Webserver. 82 

4.25  General Settings from Webserver. 83 

4.26  Main Menu from Webserver. 83 

4.27  Menu 1 from Webserver. 83 

4.28  Menu 2 from Webserver. 84 

4.29  Menu 3 from Webserver. 84 

4.30  Menu 4 from Webserver. 84 

4.31  Menu 5 from Webserver. 85 

4.32  Upload a New Logo from Webserver. 85 

4.33  Remove Files from Webserver. 85 

4.34  Main Menu of Stream Deck. 86 

4.35  Media Control User Interface. 87 

4.36  Default Volume in Laptop. 88 

4.37  Decrease Volume by Stream Deck. 88 

4.38  Increase Volume by Stream Deck. 88 



xvi 

4.39  Music is Paused. 88 

4.40  Music is Played. 89 

4.41  Music is Stopped. 89 

4.42  Open Broadcaster Software Studio (OBS Studio). 90 

4.43  OBS Control User Interface. 91 

4.44  Live Control User Interface. 91 

4.45  Hotkeys of OBS Studio. 92 

4.46  Hotkeys of OBS Studio. 92 

4.47  Browser User Interface. 93 

4.48  Shortcut Key of Microsoft Edge. 94 

4.49  Shortcut Key of Google Chrome. 94 

4.50  Editor Control User Interface. 95 

4.51  Splited Music. 95 

4.52  Settigns User Interface. 96 

4.53  Sleep Mode is Enabled. 97 

4.54  Lowest Brightness of Stream Deck. 97 

4.55  Highest Brightness of Stream Deck. 98 

 

4.56                Working of Webserver                                                           100 

 

 

 

 

 

 

 

 

 

 



xvii 

 

 

 

LIST OF SYMBOLS / ABBREVIATIONS  

 

 

 

AM-LCD Active-matrix Liquid-Crystal Display 

BMS  Battery Management System 

BPM Ballistic Particle Manufacturing 

CAD      Computer Aided Drawing 

CdSe Cadmium Selenide 

CPU Central Processing Unit 

DBI  Display Bus Interface 

DPI Display Pixel Interface 

DSI Display Serial Interface 

ESP Epressif  

GRAM Graphics Random Access Memory 

IDE Integrated Development Environment 

IoT Internet of Things 

IPO Initial Public Offering 

LCD Liquid Crystal Display 

MDF  Medium Density Fireboard 

MIPI Mobile Industry Processor Interface 

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor 

OBS      Open Broadcaster Software 

PCB      Printed Circuit Board 

RAM Random Access Memory 

RGB Red-Green-Blue  

RTC Real Time Clock 

RTOS  Real Time Operating System 

SD Secure Digital 

SGC Solid Ground Curing 

SLA  Stereolithographic 



xviii 

SPI Serial Peripheral Interfaces 

SRAM  Static Random Access Memory 

TFT Thin-Film Transistor 

WIMP                 Windows, Icons, Menus and Pointer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xix 

 

 

 

LIST OF APPENDICES  

 

 

 

 APPENDIX TITLE PAGE 

A                              Coding 109 

 

 

 



1 

 

 

 

CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background 

 

According to Lim (1997), WIMPs (Windows, Icons, Menus, and Pointer) have been 

the prevailing design for software applications for the last ten years. Therefore, 

WIMP user interfaces have effectively overtook command-line user interfaces. The 

progress serves as a definitive confirmation of the effectiveness of employing a 

simplistic human factors methodology to allow the production of computer systems 

that are easily navigable for users. As a result of the replacement of the command-

line interface, users are no longer required to commit command syntax to memory. 

The development of recall-directed interaction, specifically shortcut keys, in 

conjunction with the WIMP interface presents a potential contradiction. The tool 

provides users with an opportunity to utilize both the command line and WIMP user 

interface. In Table 1.1 is shown for the classification of the shortcut keys (Lim, 1997). 

 

Table 1.1: Classification of Shortcut Keys (Lim, 1997). 

Number Classification 

1 Separated into simple or complicated shortcut keys. 

2 The frequency of using the shortcut keys. 

3 The physical effort to use shortcut keys. 

 

 

 



2 

Table 1.1 outlines three key considerations that users must consider when deciding 

whether or not to utilise shortcut keys. In addition, a significant proportion of users 

attempt to bypass the utilisation of shortcut keys due to their inability to commit 

them to memory. According to Lim's study in 1997, individuals must exert additional 

effort in order to commit shortcut keys to memory. Consequently, certain users 

express a desire to utilize shortcut keys, yet struggle by an inability to commit them 

to memory. As a result, they resort to compiling a written record of the shortcut keys 

or affixing adhesive labels to the keyboard as a mnemonic aid (Madan, 2018). In 

addition, in cases where the shortcut keys are intricate, such as "ctrl + shift + P", 

users exhibited unwillingness to relinquish their mouse in order to utilize the 

aforementioned shortcut key combination. The reason for their prompt retrieval of 

the mouse may be attributed to a perceived sense of discomfort upon releasing it.  

According to Lim (1997), users rely on a mouse-based method to carry out their 

tasks. Madan (2018) reports that the implementation of stream deck had been 

fortunate for this world. The stream deck is a practical device that comprises a 

limited number of programmable buttons, enabling users to customise their shortcut 

keys by assigning them to the buttons (Adria willings, 2022). In addition, it is 

possible to incorporate icons onto the buttons to serve as visual cues for users 

regarding the respective function of each key (Madan, 2018). Upon activation of the 

designated button, the stream deck facilitates the execution of predetermined shortcut 

keys, thereby streamlining user functionality. In summary, Adrian Willings (2022) 

suggests that the stream deck has practical applications for a variety of users, 

including streamers, editors, officers, teachers, and lecturers. According to Adrian 

Willings (2022), streamers frequently alter multiple scenes in order to interact with 

their viewers. As such, streamers can effortlessly switch between desired scenes by 

simply pressing the pre-configured buttons on their stream deck, thereby eliminating 

the need to navigate through various shortcut keys. During the current pandemic, a 

significant number of employees, particularly educators such as teachers and 

lecturers, have transitioned to carrying out work from their homes. The educators are 

required to deliver their instructional sessions to students via various online 

platforms such as Microsoft Teams, Zoom, Google Meet, among others. According 

to Adrian Willings (2022), individuals who work remotely may encounter 

unexpected events, such as an unannounced visitor entering their workspace, which 

may cause them to forget to mute their audio or hastily search for the mute function. 



3 

Given that the stream deck buttons can incorporate icons and shortcut keys, it is 

advantageous to have the ability to promptly mute by simply clicking on the 

designated button.  In recent times, there has been a surge in the adoption and 

proliferation of the Internet of Things (IoT). The Internet of Things (IoT) is a 

technological advancement that enables the utilisation of physical objects equipped 

with sensors and software capable of processing data, allowing their connection and 

exchange of information with other devices and systems via the internet (Parihar, 

2019). According to Pravalika and Prasad (2019), Internet of Things (IoT) products 

are typically designed to function as automated devices that facilitate data collection, 

control, modification, and other related functions using Bluetooth, WiFi, or cloud 

storage. A single component of hardware used to build IoT products is ESP. It is a 

less expensive and more energy-efficient system on a chip microprocessor. Built-in 

features include WiFi and dual-mode Bluetooth (Pravalika, V., and Prasad, C. R., 

2019). The ESP serves as the project's heart. It is a microcontroller board that 

connects many components, such as buttons, displays, sensors, and more. The board 

is programmed using the project's source code to run the project's activities. The 

source code is stored in the ESP's on-chip memory (Yogendra Singh Parihar, 2019). 

This block may be viewed as the communication between the programmer and the 

user. It is therefore considered as the project's core. Internet of Things (IoT) and 

wireless are now combined in a novel way. After years of research, wireless 

communication was first used in the 19th century. Wireless communication is an 

essential method for transferring data between devices. Wireless communication is 

necessary for consumers to receive information quickly. Users no longer have to take 

cables or wires with them everywhere they go, which makes it easier for them to 

complete jobs quickly and can boost output (Pravalika, V., and Prasad, C. R., 2019).  

 

 

 

 

 

 

 

 

 



4 

1.2 Problem Statements 

 

1.2.1 Efficiency  

 

In contemporary times, individuals lead hectic lifestyles, resulting in infrequent 

recollection of the distinct functions of each keyboard key. The traditional method of 

using the function, which is by using our own memory or create some stickers on the 

surface of the keyboard to use the shortcut keys or hotkeys to operate the task.  A 

stream deck would help users to increase the work efficiency and stay in professional 

by just clicking one of the configured buttons to operate the task. (Adrian willings, 

2022) 

 

 

 

1.2.2 Price factor 

 

As society adjusts to Internet of Things (IoTs) technology, most items are becoming 

safer and more convenient to use as technology advances at a rapid rate. However, 

the price that have related to any technology is increasing and cause users cannot 

afford to buy the items. Of course, in this modern and gaming world, the stream deck 

is also an expensive item especially for the stream deck from Elgato, Razer, and 

Loupedeck companies nowadays. For example, the costs of Elgato stream deck are 

around RM450 for the 6 buttons version and RM700 for 15 buttons, respectively. 

Therefore, a cheaper or budget version with a multifunction stream deck for users is 

needed to reduce the expenses of the users nowadays. 

 

 

 

 

 

 

 

 

 



5 

1.2.3 Reviewing projects 

 

In 2022, Freotech studied the stream deck using ATmega328 microcontroller 

(Freotech, 2022). In Table 1.2, the components and materials used are ATmega328 

pro mini microcontroller, press buttons, and Medium Density Fireboard (MDF) 

board. The aim of the project is to solve the price problem of stream deck. The 

Medium Density Fireboard (MDF) board was used to design as the casing of the 

stream deck, as shown in Figure 1.1. From the diagram, the circuits were built inside 

of the model. In this work, the printed icons were used to stick onto the press buttons 

to indicate the specific tasks. Unfortunately, there have some parts of the project still 

can be improved. For example, the circuit used were not tidied up, and the casing 

was designed using the Medium Density Fireboard (MDF) board, as shown in Figure 

1.2. Therefore, to avoid the circuit connection problem, the circuit should tidy up and 

clean in this FYP project. It will help to check the circuit connection easily when the 

circuit problem occurs. Next, the casing of the stream deck should design using 3D 

printer due to 3D printing is easy to precisely manage a design's dimensions and 

specifications. In this modern era, everyone can learn technology easily by just 

touching the display on the spots. Moreover, the buttons should change to touch 

screen in this FYP project. The icon can import into the screen instead printing out 

the icons.  

 

Table 1.2: Component and Materials Used of Stream Deck (Freotech, 2022). 

Components and materials Amount 

Arduino Pro Micro with ATMega32 chip x1 

Press Buttons x9 

MDF Board x3 

 

 

 



6 

 

Figure 1.1: The Front View of Stream Deck (Freotech, 2022). 

 

 

 

Figure 1.2: The Bottom View of Stream Deck (Freotech, 2022). 



7 

In 2019, NL1_CS also studied the stream deck using Arduino (NL1_CS, 2019). In 

Table 1.3, the components and materials used are Arduino Pro Micro, press buttons, 

PCB and resistors. Again, the purpose of this project is to solve the price of the 

stream deck maximize the amount of buttons for users to configure the settings. This 

project does not use any method to create for casing of the stream deck. The PCB 

had been used to connect all the component together on the board. Therefore, the 

DIY stream deck will be group together to one place and will be look like cleaner 

and tidier as the Figure 1.3 shown. From the Figure 1.4, the circuits were built behind 

of the PCB. The resistors had been used to connect the buttons in order to make sure 

the circuits are stable by reducing current flow, adjusts signal levels, divide voltages 

and terminates transmission lines. Sad to say, there have some parts of the project 

still can be improved. For example, the circuit used were not tidied up, and there are 

no labels for every button, as Figure 1.3 is shown. However, the circuit should be 

tidied up and clean in this FYP project to avoid circuit connection problem. This will 

help to check the circuits connection easily. Moreover, the labels should be indicated 

to every button, and this will let users to know the function and no need to memorize 

to every button.  

 

Table 1.3: Component and Materials Used of Stream Deck (NL1_CS, 2019). 

Components and materials Amount 

Arduino Pro Micro with ATMega32 chip x1 

Press Buttons x12 

PCB  x1 

10k ohm resistors x12 

 



8 

 

Figure 1.3: The Front View of Stream Deck (NL1_CS, 2019). 

 

 

 

Figure 1.4: The Back View of Stream Deck (NL1_CS, 2019). 



9 

In 2021, Arduino Team had published one project related to stream deck (Arduino 

Team, 2021). They named the product as Crumble Deck to act as an alternative of 

stream deck.  From the Table 1.4, the components and materials used are Arduino 

Due, press buttons, TFT screen, and 3D printer. The aim of the project is to solve the 

price problem of stream deck. It also creates a beautify casing for the stream deck. In 

Figure 1.5, the product contains 20 buttons which is using 4 X 5 row and column to 

manually navigate the product. Furthermore, the product had been designed by using 

TFT screen to obtain the touch screen feature. Besides, the Arduino Team had done a 

prototype for the case of the Crumble Deck before using 3D printer. After that, they 

used 3D printer to create a casing model for their product to look nicer. As Figure 1.6 

is shown, their wiring is good example for my fyp project because they have used 

different colour of the wires to connect the 4 x 5 buttons connection. Therefore, it is 

easily to modify or check to avoid circuits connection problems. Unfortunately, they 

mentioned that their product is not stable. Their TFT screen has no respond when the 

touch on it and cause them to build a manual system (buttons system) to navigate the 

product. When the TFT screen is not respond, it is just acting a screen to show the 

labels. In addition, the crumble deck had been designed to have 20 buttons. In this 

design, 20 navigation control is squeeze into one small screen and it will lead to 

messy to users’ vision.  

 

Table 1.4: Component and Materials Used of Stream Deck (Arduino Team, 

2021). 

Components and materials Amount 

Arduino Due with AT91SAM3X8E chip x1 

Press Buttons x20 

TFT screen x1 

3D printed case   x1 



10 

 

Figure 1.5: The Front View of Crumble Deck (Arduino Team, 2021). 

 

 

 

Figure 1.6: The Wiring View of Crumble Deck’s Buttons (Arduino Team, 2021). 



11 

1.3 Objectives 

 

The objective of this project is to develop a device that facilitates the execution of the 

task for its users. The study aims to achieve specific objectives: 

 

i) The configuration of the user interface of the stream deck can be achieved 

      through either the access point or station point. 

ii)    To develop a customizable control that can perform various functions.  

iii)   To configure the touch screen feature. 

iv)   To enable wireless connectivity and establish a Bluetooth connection. 

v)    To develop a low-cost stream deck. 

 



12 

 

 

 

CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Stream Deck  

 

The first stream deck has been invented by Elgato systems (Elgato,2012), and the 

stream deck was launched in 2017. From literature studies, Elgato systems was 

introduced by Markus Fest in 2010 (Hargreaves, Eddie, 2007). The headquarter of 

the company was in Munich, Germany. In 2018, Elgato Systems was rebranded as 

Eve System and Elagato gaming was renamed as Elgato (Elgato, 2012). As we 

known that Elgato stream deck is a convenient control pad, which can be used as 

programmable keyboard (Madan, 2018), as shown in Figure 2.1.  

 

 

Figure 2.1: Overview Programmable Button (Adrian willings, 2022). 



13 

In addition, it can also let users to create their own macros. The macro is a piece of 

code that causes variety of things to happen when hitting a specific key on the stream 

deck. If a copy feature, “ctrl + c” is set into one of buttons in the stream deck, then 

the users can just press the button to conduct the function. Furthermore, this stream 

deck also to assists streamers to remain professional. If streamer need to eat or 

converse with a family member who has stepped into the room, that button might be 

an easy-access feature that rapidly turns off the webcam or mutes the microphone. 

Discord also has a mute and deafen option that may be used to temporarily prevent 

friends from being heard and let streamer chat to their audiences uninterrupted. Since 

this stream deck can be configured, it is good for editors to use it. Therefore, the 

controls that editors can add include those for splitting video tracks, trimming the 

beginning and finish of clips, enabling multi-camera editing, eliminating undesirable 

clips, saving, and many other things. All of this may replace keyboard shortcuts, 

allowing editors to use the stream deck to work more quickly and effectively when 

editing videos. Nowadays, there have several sizes of Elgato stream deck, such as 

mini size (6 buttons), standard version (15 buttons), and XL size (32 buttons) (Elgato, 

2012). As we known that the market price of Elgato stream deck increases when the 

size increase. For example, the price of XL size is about RM1109, while the mini 

size is around RM489. Razer gaming is a company that expended into other gaming 

related products such as keyboards, monitors, controllers, phone, laptops and so on. 

Initially, the Razer brand started as a subsidiary of Karna LLC in 1998 (E.Ferraz and 

G.Fernandez, 2020). The idea at that time was to create and promote high end 

computer mice. However, Karna was closed in 2000. The Razer brand name was 

then in hiatus for around 5 years. In 2005, Min-Liang Tan co-founded Razer with 

Robert Krakoff in California (E.Ferraz and G.Fernandez, 2020). In 2022, the 

company Razer, partnership with Loupedeck company had launched a stream deck 

and name it as “Razer Stream Controller” (Michael Gariffo, 2022). The Razer 

Stream Controller has twelve configurable buttons, menu buttons and adjustable lube 

on the surface of it. It cost RM 1210 (Tom, Warren, 2022). In 2016, Loupedeck has 

been founded by Mikko Kesti in Finland (Loupedeck, 2021). Loupedeck is a leading 

brand of custom editing consoles within professional and hobbyist workstations. For 

sure, they had launched their stream deck and called Loupedeck+, Loupedeck Live 

and Loupedeck CT and the prices are RM 1119, RM 1209 and RM2243. 



14 

Table 2.1: Products and Prices from the Companies. 

Company Products Price 

Elgato 

 

Stream Deck Mini (Elgato, 2012) 

RM489 

 

Stream Deck Standard version (Elgato, 2012) 

RM719 

 

Stream Deck XL version (Elgato, 2012) 

RM  1109 

 

Razer 

 

Razer Stream Controller (Razer, 2012) 

RM1210.14 



15 

Loupedeck 

 

Loupedeck CT (Loupedeck, 2021) 

RM 2243.30 

 

 

Loupedeck Live (Loupedeck, 2021) 

RM 1209.32 

 

 

Loupedeck + (Loupedeck, 2021) 

RM 1119.40 

 

 

 

 

 

 

 

 



16 

2.2 Thin-Film-Transistor Screen  

 

A unique kind of field-effect transistor was called as a thin-film transistor (Hiro 

Kawamoto,2011). The transistor is thin in comparison to that of device's plane. 

Moreover, a thin-film transistor (TFT) was introduced. It possesses supportive, but 

non-conducting substrate. Due to liquid-crystal display (LCD) is one of important 

applications for the TFTs, glass was chosen as the substrate in the study. TFT-LCD 

was presented as the thin-film transistor technology to enhance the visual properties, 

such as addressability and contrast. In 1957, Wallmark reported a thin film MOSFET 

application (Hiro Kawamoto,2011). In 1962, Weimer applied the Wallmark's 

concepts, and created the thin-film transistor (Hiro Kawamoto,2011). In the work, 

the characteristics of MOSFET are different with that of bulk MOSFET. The thin 

coatings of cadmium selenide and cadmium sulphide were used in the study. In 

addition, Lechner, in 1968, also studied the TFT-based LCD (Hiro Kawamoto,2011). 

Then, the dynamic scattering mode of LCD was investigated by Lechner et al., 1971 

(Hiro Kawamoto,2011). In 1973, Brody et al. studied CdSe thin-film transistor TFT-

LCD (Yue Kuo,2013). Luo, in 1975 demonstrated the flat AM-LCD using CdSe 

TFTs (Hiro Kawamoto,2011). In 2013, TFT-based active-matrix displays were used 

in all contemporary high-resolution and high-quality electronic visual display 

systems (Yue Kuo,2013). 

 

 

 

 

 

 

 

 

 

 

 

 



17 

Table 2.2: Characteristics of different module TFT Screen. 

No Characteristics  Module of TFT SCREEN 

ILI9488  OTM8009A ST7735 

1. Type TFT TFT TFT 

2. Screen Size 3.5 inch 3.97inch 1.8inch 

3. Touch Screen Yes and No Yes and No No 

4. Active area(mm) 48.96x73.44 51.84x86.40 28.03*35.04  

5. Weight (gram) No touch: 45g 

With touch: 57g 

No touch: 50g 

With touch:62g 

25g 

6. Driver IC ILI9488 OTM8009A ST7735 

7. Operating 

Temperature 

-20℃~60℃ -20℃~60℃ -20℃~60℃ 

8. Display Colour  RGB 65K RGB 65K RGB 65K colour 

9. Resolution(pixel) 480*320 800*480 128*160 

10. Operating Voltage 5V/3.3V 5V/3.3V 5V/3.3V 

11. Price  RM42 RM75 RM15 

 

 

 

Figure 2.2: ILI9488 Module TFT Screen (LCwiki,2021). 



18 

 

 

Figure 2.3: OTM8009A Module TFT Screen (LCwiki,2019). 

 

 

 

Figure 2.4: ST7735 Module TFT Screen (LCwiki,2022). 

 

 



19 

2.3 Espressif System 

 

The ESP32 is referred to as the enhanced version of ESP8266, a line of 

microcontroller chips made by Espressif Systems in Shanghai. Teo Swee Ann 

founded this Espressif System in 2008, and it is based and headquartered in Shanghai. 

The ESP32 is often referred to as the enhanced version of ESP8266, a line of 

microcontroller chips produced by Espressif Systems. Espressif System 

was established in 2008 by Teo Swee Ann, with its headquarters in Shanghai 

(DroneBotWorkshop,2020). There are 4 locations, including China, Singapore, and 

India. Brazil and the Czech Republic (Espressif,2015). The primary objective of this 

organisation is to provide cutting-edge WiFi and Bluetooth, low-power IoT solutions. 

The well-known ESP8266, ESP32, and ESP32-S families of chips, modules, and 

development boards are produced by them (Espressif,2015). They offered eco-

friendly, adaptable, and affordable chipsets by utilising wireless computing. Their 

objective and ambition are for developers to leverage Espressif's technology globally 

and create intelligent, linked products in the modern day. Espressif's IPO took place 

on the Sci-Tech Innovation Board (STAR) of the Shanghai Stock Exchange in July 

2019 (Espressif,2015). Espressif Systems also provides a related module called ESP-

WROOM-32 along with the launch of ESP32. The module is incredibly simple to 

use despite its small size (25.5 x 18.0 x 2.8mm), due to integrated components such 

an antenna, oscillator, and flash. Similar modules for various microcontrollers are 

frequently used by amateurs or for testing and prototyping. 

 

 

 

 

 

 

 

 

 

 



20 

2.3.1 Comparison between microcontrollers 

 

Table 2.3a: Comparison between different microcontrollers (Maier, A., Sharp, 

A. and Vagapov. Y, 2017). 

 

 

Chip  

(Module) 

ESP32  

(ESP-WROOM-32) 

ESP8266  

(ESP8266-12E) 

Details: 

CPU TensilicaXtensaLX6 

 32 bit Dual-Core  

at 160/240 MHz 

Tensilica LX106 32 bit at 80 

MHz (up to 160 MHz) 

SRAM 520 KB 36 KB available 

FLASH 2MB (max. 64MB) 4MB (max. 16MB) 

Voltage 2.2V to 3.6V 3.0V to 3.6V 

Operating Current 80 mA average 80 mA average 

Programmable Free  

(C, C++, Lua, etc.) 

Free  

(C, C++, Lua, etc.) 

Open source Yes Yes 802.11 b/g/n 

Connectivity: 

WiFi 802.11 b/g/n 802.11 b/g/n 

Bluetooth® 4.2 BR/EDR + BLE - 

UART 3 2 

I/O: 

GPIO 32 17 

SPI 4 2 

I2C 2 1 

PWM 8 - 

ADC 18 (12-bit) 1 (10-bit) 

DAC 2 (8-bit) - 

Size (mm) 25.5 x 18.0 x 2.8  24.0 x 16.0 x 3.0  

Price RM  36.42 RM  22.76 



21 

Table 2.4b: Comparison between different microcontrollers (Maier, A., Sharp, 

A. and Vagapov. Y, 2017). 

 

 

 

 

Chip  

(Module) 
CC32 (CC3220MODSF) Xbee (XB2B-WFPS-001) 

Details: 

CPU ARM Cortex-M4 at 80 MHz N/A 

SRAM 256 KB N/A 

FLASH 1MB (max. 32MB) N/A 

Voltage 2.3V to 3.6V 3.14V to 3.46V 

Operating Current N/A N/A 

Programmable C (SimpleLink SDK) AT and API commands 

Open source No No 

Connectivity: 

WiFi 802.11 b/g/n 802.11 b/g/n 

Bluetooth® - - 

UART 2 1 

I/O: 

GPIO 21 10 

SPI 1 1 

I2C 1 - 

PWM 6 - 

ADC 4 (12-bit) 4 (12-bit) 

DAC - - 

Size (mm) 20.5 x 17.5 x 2.5  24.0 x 22.0 x 3.0  

Price RM  36.42 RM  22.76 



22 

The Table 2.3a and Table 2.3b provides information on the four modules that 

are utilised in the design of Internet of Things (IoT) devices (Maier, A., Sharp, A. 

and Vagapov. Y, 2017). The Internet of Things (IoT) offers a wide range of modules 

and microcontrollers that exhibit significant diversity. However, most of these 

components encounter similar challenges in terms of their physical dimensions, 

operational efficiency, and financial implications. In contrast to the Xbee, RTLDuino 

boards possess open-source capabilities and exhibit distinct expertise in executing 

complex operations. Nevertheless, they exhibit a significant size differential in 

comparison. However, the ESP32 QFN48 is a much smaller component than other 

microcontrollers, measuring only 5mm by 5mm. The published circuit of the ESP-

WROOM-32 module facilitates the integration of ESP32 onto a customized printed 

circuit board, thereby enabling the development of a compact device. The ESP32-

DevKitC board is a readily available and convenient option that is conducive to 

testing and instructional applications and is also compatible with breadboards. 

Although ESP32 is a superior option that can be used in more complicated projects, 

ESP8266, ESP32's predecessor, was very well-liked for the design in many IoT-

related projects (Maier, A., Sharp, A. and Vagapov. Y, 2017). The ESP32 system has 

two Harvard Architecture Xtensa LX6 CPUs and is dual-core (Babiuch,M., 

Foltynek,P., Smutny,P. ,2019). All of these CPUs' internal and external memory as 

well as peripherals are connected to the data bus and/or instruction bus. The two 

cores in the microcontroller, PRO CPU for protocol and APP CPU for application, 

can be used for a variety of things. The address space for the data bus and instruction 

bus combined is 4GB, whereas the address space for peripherals is 512KB. The 

embedded memories also include two 8KB RTC memories, 520KB SRAM, and 

448KB ROM. The external memory may accommodate up to four 16MB Flash cards 

(Maier, A., Sharp, A. and Vagapov. Y, 2017). Since C is the most popular 

programming language for ESP32, most API libraries are also available in C. But 

C++ can also be used to easily programme the microcontroller (Babiuch,M., 

Foltynek,P., Smutny,P. ,2019). The C++ programming option allows for the usage of 

various Arduino libraries, albeit modifications may be needed. A Texas engineer 

named Neil Kolban offers a tonne of C++ libraries for the ESP32 APIs in his GitHub 

repository (Babiuch,M., Foltynek,P., Smutny,P. ,2019).  There are also online tools 

to programme the ESP32 in LUA, JavaScript, etc. because this chip is open source, 

and anyone may create a "operating system" for it. From the table, ESP8266, 



23 

predecessor of ESP32 and CC32 also can be programmed in C language while Xbee 

microcontroller only can be programmed in AT and API commands. This type of 

commands from Xbee is not famous as C language and most of the users need to 

have training and then can program it (Maier, A., Sharp, A. and Vagapov. Y, 2017). 

So, the ESP32 can also be programmed in C++ language and Lua language. The 

ESP32 is widely use in different languages and led to users easily to drive the 

microcontroller. Therefore, most of the users will choose for ESP32. It has been 

demonstrated that ESP32 is a great choice for IoT devices because of its performance 

characteristics and affordability (Babiuch,M., Foltynek,P., Smutny,P. ,2019). The 

microcontroller comes in a few different form factors. The ESP-WROOM-32 module 

offers a small solder friendly footage, whereas the ESP32 QFN48 is the alternative 

for industrial manufactures and small sized solutions. The bread board friendly 

version of the ESP32-DevKitC is the ideal answer for hobbyist and educational 

applications. The widely used ESP32 performs far better than its predecessor, the 

ESP8266, in a wide range of IoT applications. The dual core architecture of the 

microcontroller and a major expansion of the operational features are responsible for 

its great performance. FreeRTOS, an open-source operating system for 

microcontrollers, offers excellent support for real-time applications. ESP32 is 

therefore anticipated to be a key component in the design of upcoming embedded 

systems and Internet of Things (IoT) systems (Maier, A., Sharp, A. and Vagapov. Y, 

2017). 

  

 

 

2.4 Software IDE 

 

2.4.1 Arduino IDE 

The Arduino Integrated Development Environment is free software created by 

Arduino.cc exclusively for Arduino Modules. This program's main feature is a text 

editor that is comparable to notepad but has additional functionality (Nikola Zaltanov, 

2015). To write code, compile it for error checking, and upload it to Arduino 

Modules that are compatible with the programme, utilise the text editor portion 

(Mohamed FEZARI and Ali Al Dahoud,2018). As an example, the integrated 

development environment (IDE) offers a text editor with syntax highlighting and 



24 

autocomplete tools in addition to a serial monitor that lets you inspect and debug the 

output of your code. Moreover, it contains an integrated library manager that makes 

adding libraries to your projects simple. The two main components of this software 

environment are the editor, which is used to write the code and is depicted in the 

accompanying image, and the compiler, which is used to compile and upload the 

code to an Arduino module. Operating System such as Windows, Linux, MacOS are 

accessible to use this software. It is designed to be user-friendly and simple to use, 

even for novice programmers with no prior experience. This software is compatible 

with every Arduino board currently on the market, including the Arduino UNO, 

Arduino Mega, Arduino Leonardo, Arduino Ethernet, and others that use the C/C++ 

programming language like ESP32. For instance, to use Arduino IDE, an Arduino 

board, a USB cable to connect it to computer, and the necessary drivers set up on 

computer in order to utilise the Arduino IDE. The Arduino IDE can be downloaded 

and installed and begin writing and uploading code to Arduino board as soon as have 

all the required parts. The Arduino file is referred to as a Sketch because the user 

writes the code in it and saves it in the .ino file extension (Mohamed FEZARI and 

Ali Al Dahoud,2018). The sketch made on the IDE platform generates a Hex File 

that needs to be transferred and uploaded into the controller. Given that the software 

is open-source, users are free to include their own modules and functions into it for 

any project they like (Mohamed FEZARI and Ali Al Dahoud,2018). 

 

  

 

2.4.2 Microsoft Visual Code 

 

Microsoft created the popular code editor known as Microsoft Visual Code (VS 

Code). It is a free and open-source code editor for Windows, macOS, and Linux that 

supports many different programming languages. This essay will give a summary of 

the benefits, features, and uses of VS Code in academic contexts. The goal of VS 

Code was to provide a quick, lightweight code editor that could be tailored to the 

needs of the user. It includes a cutting-edge user interface with adjustable options, 

syntax highlighting, code completion, debugging, and version control integration. VS 

Code is the best option for developers that need to write, debug, and test code fast 

and effectively because of these capabilities. The adaptability of VS Code is one of 



25 

its key benefits. Numerous programming languages, including well-known ones like 

JavaScript, Python, C++, and Java, are supported. As a result, developers that work 

on a range of projects and want a code editor that can handle different languages 

frequently choose it. The extensibility of VS Code is an additional benefit. It contains 

a sizable ecosystem of extensions that can be added to give the editor more features. 

The addition of support for certain programming languages, frameworks, and tools 

via these extensions can increase developer productivity and efficiency. Students and 

researchers that need to develop, debug, and test code for their work in academic 

contexts can utilize VS Code. Numerous uses are possible for it, such as data 

analysis, machine learning, and scientific computing. Its versatility and support for 

several programming languages make it a useful tool for academics who must work 

with various sorts of data and code. Along with its benefits and features, VS Code 

has a sizable and vibrant user and developer community that contributes to its growth 

and support. Users may seek assistance from this community's resources, including 

tutorials, documentation, and forums, and they can also discuss their experiences 

using the editor. In conclusion, developers and academics alike frequently utilize 

Microsoft Visual Code, a strong and flexible code editor. It is the best option for 

individuals that need to create, debug, and test code rapidly and effectively due to its 

capabilities, adaptability, and extensibility. Data analysis, machine learning, and 

scientific computing are only a few examples of its uses in academic contexts. The 

editor's vibrant user and developer community offers helpful tools and assistance to 

users. 



26 

 

Figure 2.5: Main Section of Arduino IDE (Mohamed FEZARI and Ali Al 

Dahoud,2018). 

 

 

 

Figure 2.6: Main Section of Microsoft Visual Code. 



27 

2.5 3D Printer 

 

A 3D printer uses an additive manufacturing process to create 3D components and 

objects by building them up from many layers of material. Another name for it is 

rapid prototyping (Ativya Gupta,Garima, and Harshit Srivastava, et al.,2021). In 

other words, 3D printing is adding layers consecutively, while traditional machining 

processes rely on the removal of material through procedures like cutting or drilling. 

As a result, an object is manufactured layer by layer until it is complete using a 

layering approach. This is how 3D printing transitions us from a mass production 

line to a custom, one-off manufacture. There were three main 3D printing methods 

introduced in the 1980s (Ativya Gupta,Garima, and Harshit Srivastava, et al.,2021). 

Dr. Kodana was the first to demonstrate the layer-by-layer method of assembly, as 

well as the first to develop a quick prototyping strategy. Additionally, he created the 

ancestor of SLA. He attempted to use UV light to polymerize a photosensitive gum 

but was unsuccessful. Dr. Kodana was shocked to discover that he had not 

documented the entire patent detail prior to the application's one-year due date. You 

can trace the origins of 3D printing invention back to 1983 (Ativya Gupta,Garima, 

and Harshit Srivastava, et al.,2021). The other 3D printing innovations and 

technologies came into being in the 1990s (Ativya Gupta,Garima, and Harshit 

Srivastava, et al.,2021). as well as the debut of fresh 3D printer producers and CAD 

tools. The SLA system is sold for the first time on a commercial basis by 3D systems. 

Additionally, Itzchak Pomerantz et al. and William Masters patents for BPM and 

SGC were among the other growing procedures. A CAD tool has to be used to 

designed or model the object using a digital camera and a very special 

photogrammetry programme, or a 3D scanner. The fact that these 3D printed models 

were made using CAD technology reduces the number of flaws that were discovered 

and may be fixed before printing. The manual modelling method is related to 

sculpting in the sense that it prepares geometric data for 3D computer graphics. This 

information can be used to create three-dimensional representations of the scanned 

object. After being created in a CAD application, the model is frequently saved 

in .skp, .dae, .3ds, or another format. To enable software to read it, the model must 

then be converted to a .STL or .OBJ format (Konstantinos Kitsakis,Nikos Petrou,Ilias 

Tanos, and John Kechagias,2016). Therefore, there are some software can be used 



28 

like tinkercad , fusion360 , AUTODESK and so on (Konstantinos Kitsakis,Nikos 

Petrou,Ilias Tanos, and John Kechagias,2016). 

 

 

 

2.6 Rechargeable system 

 

The rechargeable system needed 2 components to complete the system which are 

batteries and charging board.  First, a disposable or primary battery is supplied fully 

charged and is thrown away after use (Melissa Morris and Sabri Tosunoglu,2012). A 

rechargeable battery, storage battery, or secondary cell (formally a type of energy 

accumulator) is an electrical battery that can be charged, discharged into a load, and 

recharged numerous times (Melissa Morris and Sabri Tosunoglu,2012). It is one or 

more electrochemical cells make up its structure. It stores and accumulates energy by 

a reversible electrochemical reaction; hence the term is called "accumulator" 

(Melissa Morris and Sabri Tosunoglu,2012). From button cells to megawatt systems 

connected to stabilise an electrical distribution network, rechargeable batteries are 

created in a wide variety of sizes and configurations. Lead-acid, zinc-air, nickel-

cadmium (NiCd), nickel-metal hydride (NiMH), lithium-ion (Li-ion), lithium iron 

phosphate (LiFePO4), and lithium-ion polymer (Li-ion polymer) are just a few 

examples of the various electrode materials and electrolytes that are combined. In 

Table 2.4, the table is shown the characteristic for every battery. From late 1800s, the 

lead-acid battery is in use (Liang Y, Zhao C-Z, Yuan H, et al.,2019). Start from 1950, 

Ni-Cd battery is in used while Ni-MH battery is in used since 1990 (Liang Y, Zhao 

C-Z, Yuan H, et al.,2019). After the research, the Li-ion battery has been used from 

1991 until today. The latest battery is called Li-ion polymer (Liang Y, Zhao C-Z, 

Yuan H, et al.,2019).  

 

 

 

 

 

 



29 

Table 2.5: Characteristics for Every Battery (Liang Y, Zhao C-Z, Yuan H, et 

al.,2019). 

Characteristics 
Lead-acid 

battery (A) 

Ni-Cd 

battery (B) 

Ni-MH 

battery (C) 

Li-ion 

battery (D) 

Gravimetric energy 

density (Wh/kg) 30-50 40-60 60-120 170-250 

Volumetric energy 

density (Wh/L) 60-110 150-190 140-300 350-700 

Battery voltage (V) 2 1.2 1.2 3.7 

Cycle life (to 80% of 

the initial capacity) 300 1500 1000 500-2000 

Self-discharge per 

month (%) 5 20 30 <10 

Fast charging time (h) 8-16 1 1-4 1 or less 

In use since  late 1800s 1950 1990 1991 

Toxicity high high low low 

Overcharge tolerance high moderate low low 

Operating temperature 

range (Celsius) -20 to 60 -40 to 60 -20 to 60 -20 to 60 

 

 

 

Figure 2.7: Overall Characteristic (Liang Y, Zhao C-Z, Yuan H, et al.,2019). 

 

 



30 

From the Table 2.4, the cycle life for Li-ion battery is varied and start from 500 until 

to 2000 because its need to depend on the environment factor. For sure, the Table 2.4 

is stated that the Li-ion battery has the highest cycle life compared to other three 

batteries. For Ni-MH battery, it has highest self-discharge per month while lead- acid 

battery and Li-ion battery have the least (Liang Y, Zhao C-Z, Yuan H, et al.,2019). 

Moreover, Li-ion batteries are less in weight, offer a higher energy density, no 

bothersome memory effects, and improved safety compared to Ni-MH batteries. 

Lastly, Li-ion battery has the cheapest cost compared to other batteries and this will 

be a good choice to the project. As a conclusion, Li-ion battery has totally replaced 

successfully to the lead acid battery, Ni-Cd battery and Ni-MH battery after 

comparison as Figure 2.7 is shown. Therefore, the Li-ion battery had been used 

widely by different electronic company like Apple, Lenovo, Huawei and so on 

(Liang Y, Zhao C-Z,Yuan H, et al.,2019). After a few years, there is one developed 

Li-ion battery that called Li-ion polymer batterie since the polymer electrolytes 

replace liquid electrolytes. As the polymer electrolyte, a high-conductivity gel 

containing lithium salts is frequently employed. It should be noted that Li-ion 

polymer batteries, particularly for ultra-slim computers, mobile phones, tablets, and 

wearable electronic gadgets, are very appealing for portable electronics devices due 

to their small and adaptable structure (Liang Y, Zhao C-Z,Yuan H, et al.,2019). 

 

Any rechargeable battery system's charger circuit layout and related control 

strategy determine how well it performs (Alvaro Aguilar,2019). Initiate charging, 

rate optimization, and charge termination are the three main jobs of a battery charger 

(Nourallah Ghaeminezhad and Mohammad Monfared,2021). After measuring the 

voltage across the battery, the charging procedure starts and continues until a certain 

voltage is reached, and then it stops at the point. By doing this, each charging system 

has a BMS that manages all charging activities. In other words, communication 

between the battery, charger, and load occurs via the BMS.  There are few methods 

to represent of different charger circuits which are linear charger, pulse charger and 

switch mode charger. 

 



31 

 

Figure 2.8: Simplified Representation of Different Battery Charger Circuits. 

 

 

In Figure 2.8a, a linear charger operates in the same straightforward manner as a 

linear regulator. Through a resistor or a transistor, the linear regulating element in 

linear regulators lowers the input voltage to a predetermined output voltage. The 

charger features additional circuitry intended to control and protect battery charge, 

which distinguishes it from the linear regulator. Linear chargers are popular due to 

their simplicity and affordability, but the constant current that constantly runs 

through the regulating element causes heat loss and an inefficient charger (Nourallah 

Ghaeminezhad and Mohammad Monfared,2021). The current is pulsed into the 

battery with pulse chargers by toggling transistor, as shown in Figure 2.8b. In order 

to increase efficiency and speed up charging, pulse chargers can adjust the pulse 

width and period with an additional circuit. A pulse charger is more efficient than a 

linear charger and easier to use than a switch-mode charger and causing the costs are 

increasing. For pulse chargers, the input voltage needs to be carefully regulated 

(Nourallah Ghaeminezhad and Mohammad Monfared,2021). The only difference 

between switch-mode chargers and switch-mode power supply is that switch-mode 

chargers use a sophisticated circuit design to control charging and safeguard the 

battery. Switch-mode chargers use less electricity to function and produce less heat 

because the switches are not always active. However, compared to linear chargers, 

switch-mode chargers are far more complex and expensive. The switch-mode 

charger is represented simply in Figure 2.8c (Nourallah Ghaeminezhad and 

Mohammad Monfared,2021). 

 

 

 



32 

 

 

 

CHAPTER 3 

 

 

 

3 METHODOLOGY 

 

 

 

3.1 Design Architecture in Detailed  

 

In my project, the characteristics of Stream Deck that I would like to build are small 

size, lighter weight, convenient to carry, and wireless with rechargeable. 

Microcontroller used in this project is ESP32 – WROOM – 32D. There are 6 buttons 

slots are set in my project. In this stream deck, the signal will be generated from the 

TFT-LCD screen and then the ESP32 – WROOM – 32D is used to operate the task 

what have set into the configuration. The ESP32 – WROOM – 32D has a built-in 

WiFi and Bluetooth features itself which is an electronic device that allows us to 

connect to between devices and devices through internet or Bluetooth. In this project, 

the ESP32 – WROOM – 32D is required to connect to the specific internet protocol 

address to configure the tasks for each button. Moreover, a device come with 

Bluetooth like laptop or smart phone is required to connect with the ESP32 – 

WROOM – 32D. This is because the signal will be sent to the laptop or smart phone 

and the task will be operated together also. First, a lithium battery with built in smart 

protective PCB charging module is connected with charging board to create a 

wireless feature. This lithium battery will help to power up the stream deck no matter 

how the far the distance. The stream deck can be charged by using type-c cable and 

universal serial bus (USB) cable. After powering up the stream deck, TFT-LCD 

screen is turned on, there are 6 configured buttons on the screen. User can just press 

on the screen and the specific task will be operated on the connected Bluetooth 

device.  



33 

 

Figure 3.1: Block Diagram of a Stream Deck. 

 

 

 

3.2 Project Management 

 

The project schedules are shown in Table 3.1 and 3.2, respectively. 

 

Table 3.1: Gantt Chart for FYP1. 

 

 

 

 

 

Task/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Discussion with supervisor                             

Project title selection/ 

Proposed a title                             

Research                             

Build Prototype                             

FYP1 

Introduction                             

Problem statement                             

Objective                             

Literature review                             

Methodology                             

Presentation 

FYP1 presentation                             



34 

Table 3.2: Gantt Chart for FYP2. 

 

Task/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

FYP2 

Build Prototype                             

Results                             

Conclusion                             

Presentation 

Poster Presentation                             

FYP2 Presentation                             



35 

 

Flowchart 1:Work Plane of Stream Deck. 



36 

3.3 Hardware used in a Stream Deck  

 

3.3.1 ESP32-WROOM- 32D Module Board 

 

The main reason of choosing ESP32-WROOM-32D board in this project is due to its 

open source, Arduino-like hardware, lower cost, lighter weight, small size, 3.3V 

operated, can be powered by USB, this board has built-in WiFi, Bluetooth, and 

contains GPIO pins. Arduino module is a great choice to the project, but these 

modules do not contain built-in WiFi feature. Therefore, additional fees have to be 

paid for the additional features. The more features are added on to the system, the 

more fees you have to pay. However, ESP32-WROOM-32D board as shown in 

Figure 3.2, incorporates a built-in WiFi support and Bluetooth support, giving an 

easy pathway to design IoT applications. The features as stated above make the 

ESP32-WROOM-32D board enormously powerful tool for WiFi networking. 

ESP32-WROOM-32D board can be used to host a web server, used as access point, 

or link to internet to upload or fetch data. It is an open-source firmware that is 

extremely important in designing IoT product. The pin layout of ESP32-WROOM-

32D board is shown in Figure 3.3. 

 

 

 

Figure 3.2: ESP32-WROOM-32D Board (Hallroad,2022). 



37 

 

Figure 3.3: Pinouts of ESP32 – WROOM – 32D (ebay,2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

Table 3.3: Features of Each Pin Label. 

 

 

 

 

Pins 

category 
Pin Name Descriptions 

Power Micro-USB, 3.3V,5V,GND 

Micro-USB: ESP32 can be 

powered through USB port 5V: 

Regulated 5v can be supplied to 

this pin which is we be again 

regulated to 3.3V by on board 

regulator, to power the board. 3.3V: 

Regulated 3.3V can be supplied to 

this pin to power the board. GND: 

Ground pins. 

Enable EN To reset the microcontroller. 

Analog Pins 
ADC1_0 to ADC1_5 and ADC2_0 

to ADC2_9 

Used to measure analog voltage in 

the range of 0-3.3V. 12-bit 

18channel ADC. 

DAC pins DAC1 and DAC2 
Used for Digital to analog 

Conversion. 

Input/output 

Pins 
GPIO0 to GPIO39 

Used as input or outputs pins. 0v 

(low) and 3.3V (high). But pins 34 

to 39 can be used as input only. 

Capacitive 

Touch Pins 
T0 to T9 

Used a touch pin normally used for 

capacitive pads. 

RTC GPIO 

Pins 
RTCIO0 to RTCIO17 

Used to wake up the ESP32 from 

deep sleep mode. 

Serial Rx,Tx 
Used to receive and transmit TTL 

serial data. 

External 

Interripts 
All GPIO Used to trigger and interrupt 

PWM All GPIO 

16 independent channel is available 

for PWM any GPIO can be made to 

work as PWM though software 

SVSPI 

GPIO23 

(MOSI),GPIO19(MISO),GPIO18 

(CLK) and GPIO5 (CS) 

Used for SPI-1 communication 

HSPI 

GPIO13 

(MOSI),GPIO12(MISO),GPIO14 

(CLK) and GPIO15 (CS) 

Used for SPI-2 communication 

IIC GPIO21 (SDA), GPIO22(SCL) Used for I2C communication 

AREF AREF 
To provide reference voltage for 

input voltage 



39 

3.3.2 Display Screen  

 

From the Figure 3.4, there is a TFT screen is selected and called SPI MSP 3520 

module ILI 9488 TFT screen. The ILI9488 is a 16.7M single-chip SoC driver for 

320(RGB) x 480 dot a-Si TFT liquid crystal display panels. The ILI9488 consists of 

a power supply circuit, a 960-channel source driver, a 480-channel gate driver, and 

345,600 bytes of GRAM for 320 (RGB) x 480-dot graphics. Parallel DBI Type B 

8/9/16/18/24-bit data bus interfaces and DBI Type C 3-/4-line SPI are both supported 

by the ILI9488 for command input. Shift registers, sensors, and SD cards are just a 

few examples of the small peripherals that are frequently connected to 

microcontrollers via the SPI interface bus. The device users want to talk to is selected 

using a choose line, which also uses separate clock and data lines. For the 

presentation of video images, the ILI9488 offers a DPI (16-/18-/24-bit) data bus. The 

ILI9488 also offers one data lane and one clock lane that can enable up to 500Mbps 

on MIPI-DSI link for MIPI*-DSI* high-speed interface mode. The ILI9488 supports 

a variety of analogue power supply and can run at 1.65V I/O interface voltage. The 

ILI9488 is perfect for portable products where battery power conservation is desired, 

such as digital cellular phones, smart phones, MP3 players, personal media players, 

and similar devices with colour graphics displays. It supports an 8-colour display and 

sleep mode power management functions ILI 9488 TFT screen has been separated 

into two model which are MSP 3520 and MSP 3521. MSP 3520 has touch screen 

feature while MSP 3521 has no touch screen feature. Of course, the price will be 

different in RM 20 ringgit to get the touch feature. Furthermore, the pin label and the 

features had been listed into Table 3.4. 

 

 

Figure 3.4: Pinouts of SPI MSP 3520 module ILI 9488 TFT screen(LCwiki,2021.) 



40 

Table 3.4: Features of Each Pin Label. 

Number Pin Label Description 

1 VCC 5V/3.3V power input. 

2 GND Ground. 

3 CS LCD chips select signal, low label enables. 

4 RESET LCD reset signal low level reset. 

5 DC/RS 

LCD register/ data selection signal           

High level: register, low level: data. 

6 SDI(MOSI) SPI bus writes data signal. 

7 SCK SPI bus clock signal. 

8 LED 

LED backlight control, high level lighting, if not 

controlled, connect 3.3V always bright. 

9 SDO(MISO) 

SPI bus read data signal if you do not need to the 

read function. You cannot connect it. 

THE FOLLOWING IS THE TOUCH SCREEN SIGNAL LINE WIRING, if you 

do not need to touch function or the module itself does not have touch function, 

you cannot connect them. 

10 T_CLK Touch SPI bus clock signal. 

11 T_CS Touch screen chip select signal, low level enable. 

12 T_DIN Touch SPI bus input. 

13 T_DO Touch SPI bus output. 

14 T_IRQ 

Touch screen interrupt signal, low level when touch 

is detected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 

3.3.3 Wireless and Rechargeable System  

 

A type-C USB 5V 2A step-up boost converter with USB charger is selected, as 

shown in Figure 3.5. Moreover, a lithium battery capacity indicator has been chosen 

and show in Figure 3.6. In order to complete the wireless system, a power supply 

3.7V LiPo battery (Lithium Polymer) had been selected as Figure 3.7 is shown.  

The main reason to choose type-C USB 5V 2A step-up boost converter with USB 

charger is because of having a great step-up module with 5V input, output is 

approximately to 5V for many digital devices, so this is really a great module for 

designing a portable charger. Useful for your USB charger projects and onboard 

USB device supply solutions.  This charger will cause the output turn off when the 

load current is less than 50mA continuously. When the charging current drops to 

100mA after reaching the final floating charging voltage, the charging cycle will be 

automatically terminated. However, when the battery voltage drops below 4.1V, the 

charging cycle starts again. When the battery voltage is lower than 2.8V, the battery 

will be precharged with a current of 180mA. As the title of the product, the charger 

will boost the output to approximately 2A and with 92.5% of conversion efficiency 

from 3.6V input and 5V2A output. Since the Stream Deck is ready to build in a small 

size, this charger has small dimension of size, lighter weight, and indicator LED for 

charging. Therefore, this charger is suitable for this project since it has great 

specification and characteristics. Since there are many products of the batteries with 

approximately same specifications and price but the main reason of choosing LiPo 

battery is due to it has built-in BMS protecting circuit to prevent overcharging 

damage issues. Moreover, the self-discharge per month of this LiPo battery is less 

than 10% as stated in Chapter 2. Moreover, the capacity of the of this battery is 

2000mah but it has small size and lighter weight. In addition, it can last longer and 

fulfil the requirement of the characteristic. For rechargeable system, a capacity 

indicator of battery is selected to display the rest of the capacity of the battery. 

 



42 

 

Figure 3.5: Type-C USB 5V 2A Step-up Boost Converter with USB Charger 

(ShharviElectronic,2022). 

 

 

 

Figure 3.6: A Lithium Battery Capacity Indicator (Universal-solder,2020). 

 

 

 

Figure 3.7: A Power Supply 3.7V LiPo Battery (Lithium Polymer) 

(Shopee,2023.).



43 

3.4 Circuit Connection of Hardware 

 

The Figure 3.8 is shown for Stream Deck circuit connection by using the LiPo 

battery, type-C USB 5V 2A step-up boost converter with USB charger, slicer, 

lithium battery capacity indicator, ESP32-Wroom-32D development board and SPI 

MSP 3520 module ILI9488 TFT screen with touch screen mode. 

 

 

Figure 3.8:Stream Deck Circuit Connection. 

 

 

Table 3.5: Hardware of the Stream Deck. 

Components and materials Amount 

ESP32-Wroom-32D x1 

SPI MSP 3520 module ILI9488 TFT Screen x1 

Lithium Battery Capacity Indicator x1 

Slicer (On/Off Button) x1 

Type-C USB 5V 2A step-up boost converter with USB charger x1 

3D printed case   x1 

 

 

 



44 

3.4.1 Circuit Connection between the ILI9488 TFT Screen and the ESP32-

Wroom-32D 

 

The Table 3.6 shows two electronic devices and its’ pins connection. The ILI9488 

TFT screen contains T_IRQ, T_DO, T_DIN, T_CS, SDO(MISO), LED, SCK, 

SDI(MOSI), DC/RS, RESET, CS, GND, and VCC as well as connected to pins 

respectively from ESP32-Wroom-32D which are GPIO27, GPIO19, GPIO23, 

GPIO21, GPIO18,  no connected, GPIO32, GPIO18, GPIO23, GPIO2, GPIO4, 

GPIO15,GND, and 3V3. 

 

Table 3.6: Connection between the ILI9488 TFT Screen with ESP32-Wroom-

32D. 

ILI9488 TFT Screen Pins ESP32-Wroom-32D Pins 

T_IRQ GPIO27 

T_DO GPIO19 

T_DIN GPIO23 

T_CS GPIO21 

T_CLK GPIO18 

SDO (MISO) N.C 

LED GPIO32 

SCK GPIO18 

SDI (MOSI) GPIO23 

DC/RS GPIO2 

RESET GPIO4 

CS GPIO15 

GND GND 

VCC 3V3 

 

 

 

 

 

 



45 

3.5 Arduino IDE (Integrated Development Environment) 

 

The selection of the Arduino IDE software for coding purposes is illustrated in 

Figure 3.9. The Arduino Integrated Development Environment (IDE) version 1.8.19, 

which have been obtained from the official website 

"https://www.arduino.cc/en/software", is considered a legacy version. 

 

 

Figure 3.9: Arduino IDE Software. 

 

 

 

3.5.1 Arduino IDE Setup 

 

Figure 3.10 illustrated the procedure for integrating the Arduino IDE ESP32 core 

with the Arduino IDE application. Upon opening the Arduino IDE software, the 

"File" and "Preferences" options is proceeded to select. In Figure 3.9 illustrated the 

process of copying and pasting the link 

"https://raw.githubusercontent.com/espressif/arduinoesp32/ghpages/package_esp32_i

ndex.json" into the "Additional Boards Manager URLs" section. 

 



46 

 

Figure 3.10: Installing the Arduino IDE ESP32 core. 

 

 

Figure 3.11 illustrated the process of installing libraries into the Arduino Integrated 

Development Environment (IDE) software. To facilitate the installation of libraries, 

the "Sketch" button is pressed and subsequently selected "Include Library" after 

navigating to the "Manage Libraries" option denoted by the yellow box. 

Subsequently, the green box labelled "Add ZIP Library" is selected to facilitate the 

installation of the source library obtained from the internet or GitHub. Consequently, 

a limited number of libraries have been installed, including Adafruit-GFX-Library, 

TFT-eSPI, ArduinoJson, ESPAsyncWebServer, AsyncTCP, and ESP32-BLE-

Keyboard. 

 



47 

 

Figure 3.11: Installing the Necessary Libraries. 

 

 

The stream deck utilized SPIFFS, a flash memory technology utilized by ESP32, to 

retain configuration and image data. It is necessary to transmit these to the ESP32 

before uploading the functional design. The utilization of the ESP32 Sketch Data 

Upload application is necessary. The resource in question is accessible for download 

on the GitHub platform, specifically at the following URL: https://github.com/me-

no-dev/arduino-esp32fs-plugin".  Figure 3.13 depicted the extraction of the tools file 

to the Arduino sketchbook directory. After this, the ESP32 Sketch Upload Tool will 

become available upon the relaunch of the Arduino IDE software, as depicted in 

Figure 3.12. 

 

 



48 

 

Figure 3.12: Installing ESP32 Sketch Data Upload tool. 

 

 

 

Figure 3.13: Installing ESP32 Sketch Upload Tool. 

 

 

 

 

 

 

 



49 

3.5.2 Setup of SPI MSP 3520 module ILI9488 TFT Screen  

 

Figure 3.14 presented a code segment that defines several constants for a program 

designed to operate a TFT display with touch screen capabilities on an ESP32-

Wroom-32D device. The initial lines of code seem to be defining the pin numbers for 

the various connections of the display, such as the SPI communication pins (MISO, 

MOSI, SCLK), chip select pins (CS), and data/command pin (DC). The code 

additionally designated a pin for the purpose of controlling the backlight of the 

display and specifies the requisite level, either HIGH or LOW, to activate it. 

Furthermore, the source code incorporates various font and free typeface libraries 

that can be integrated into the program's flash memory. The code additionally 

ascertains the SPI read frequency, which is utilized for the purpose of retrieving data 

from the display, and the touch frequency, which is employed for communication 

with the touch screen. 

 

 

Figure 3.14: Defining for ILI9488 TFT Screen. 

 

 

 

 

 

 

 



50 

3.5.3 WiFi Setup Function 

 

The execution of the webserver function is based upon the establishment of a 

connection to either the Station Point (STA) or Access Point (AP) within the WiFi 

setup. In Figure 3.15, a C++ function called "startWifiStation" makes up the offered 

snippet of code. To connect to a WiFi network in station (client) mode, use this 

function. The function produces a boolean result that indicates whether the 

connection is successful or not and requires no parameters. The program initially 

prints an informative message to the console using the Serial.printf() function, stating 

which WiFi network it is attempting to connect to. By gaining access to the 

"wificonfig" global variable, it is expected to have the SSID (network name) and 

password of the WiFi network to connect to. The function next determines whether 

the ESP32 WiFi module is currently associated with the chosen WiFi network. If not, 

it switches the module to station mode (WiFi.mode(WIFI_STA)) and uses the 

WiFi.begin() method to try to connect to the network. After that, a loop in the 

method checks the WiFi connection's state. If the connection has not yet been 

established, the function writes a "." to the console to show that it is still trying to 

connect after waiting for a certain length of time (wificonfig.attemptdelay). Until the 

connection is made or until the maximum number of attempts (wificonfig.attempts) 

is reached, this procedure keeps going. The function disconnects from the network 

and returns the result "false" if the connection cannot be made within the allotted 

number of tries. In all other cases, it returns a value of "true" to denote a successful 

connection. Overall, this code sample shows how to use the Arduino IDE to connect 

an ESP32 WiFi module quickly and easily to a WiFi network in client mode. 

 



51 

 

Figure 3.15: Attempting WiFi Setup. 

 

 

In Figure 3.16, the code then compares these values to those in the "wificonfig" 

variable to determine if the WiFi configuration is set to default (i.e., the SSID and 

password are "YOUR WIFI SSID" and "YOUR WIFI PASSWORD", respectively). 

If the default configuration is still active, the code initiates the device as an access 

point (AP) with a predefined SSID and password ("feiweifeiwei" and "iloveyouyv", 

respectively) and displays the AP's IP address on the TFT screen. 

 

 

Figure 3.16: SSID and Password for Access Point. 

 

 

 



52 

Figure 3.17 showed if the WiFi configuration failed to load or is invalid, the code 

restarts the device as an access point (AP) with a predefined SSID and password and 

displays the AP's IP address on the TFT screen. 

 

 

Figure 3.17: WiFi and Access Point Setup. 

 

 

Figure 3.18, if the WiFi configuration is valid and set to "WIFI STA" (station) mode, 

the code attempts to connect to an SSID and password-protected WiFi access point. 

If the connection fails, the code restarts the device as an access point (AP) with a 

predefined SSID and password and displays the AP's IP address on the TFT screen. 

If the connection is successful, the code displays the IP address of the device on the 

TFT display. 

 

 

Figure 3.18: WiFi and Access Point Setup. 

 

 

 

 



53 

Figure 3.19 illustrated the code starts the device as an AP with the specified SSID 

and password and displays the AP's IP address on the TFT screen if the WiFi 

configuration is valid and set to "WIFI AP" (access point) mode. 

 

Figure 3.19: Access Point Setup. 

 

 

 

3.6 PCB Board 

 

The selection of Autodesk Eagle software for the purpose of creating a PCB is 

depicted in Figure 3.20. The software is Autodesk Eagle, specifically version 9.6.2, 

which is available via download from the official website 

at "https://www.autodesk.com/products/eagle/free-download". 

 

 

Figure 3.20: Autodesk Eagle software. 

 

 

 

 

 



54 

3.6.1 Autodesk Eagle Setup for Schematic File 

 

The creation of a new schematic file can be initiated by selecting the "File" option 

followed by "New" and subsequently "Schematic", as depicted in Figure 3.21. Figure 

3.22 depicted the process of installing libraries for the purpose of drawing schematic 

and board. Initially, the "Library" can be located on the toolbars and subsequently, 

the option to "Open library manager" is chosen. The schematic diagram depicted in 

Figure 3.23 is successfully designed utilizing a primary microcontroller, specifically 

the ESP32-Wroom-32D, in conjunction with an SPI MSP 3520 module ILI9488 TFT 

screen featuring touch screen functionality. The schematic diagram is produced using 

version 9.6.2 of the Eagle software. 

 

 

Figure 3.21: New Project had been created. 

 

 

 

Figure 3.22: Installing Libraries. 



55 

Figure 3.24 showed three separate tabs on the "Library Manager" window in green-, 

blue-, and yellow-coloured boxes.  While the blue box is for the libraries that 

are previously available in the software, the green box refers to processing design 

libraries. For the program, the yellow box is the place where searching or download 

libraries and install external source libraries.  The library containing the ESP32-

Wroom-32D development board's footprint and symbol for this project is 

downloaded at “https://www.snapeda.com/parts/ESP32-DEVKITC-

32D/Espressif%20Systems/view-part/?ref=search&t=ESP32-WROOM 

32D%20development%20board&fbclid=IwAR2F1HJVm3cLbTo_smcmajDdxmg2b

LSAbNKtEfB9HqOFlAnlFw8FfIhtII”. Once the.zip folder had been downloaded, 

pick the relevant file by clicking the "Browse" option as shown in Figure 3.24. 

 

 

Figure 3.23: Schematic Diagram. 

 



56 

 

Figure 3.24: Library Manager Window. 

 

 

 

3.6.2 Autodesk Eagle Setup for Schematic File for Board file 

 

The process of setting up a board file is shown in Figure 3.25. "Design rules..." is 

selected after clicking the "Edit" button. After that, a window will be revealed. The 

values of the design criteria for printing boards are shown in Figures 3.26 through 

3.29, namely clearance, distance, sizes, annular ring, and the rest are left the same or 

unaltered. 



57 

 

Figure 3.25: Setup for Board file. 

 

 

 

Figure 3.26: Settings for Clearance Tab 

  



58 

 

Figure 3.27: Settings for Distance. 

 

 

 

Figure 3.28: Settings for Sizes. 



59 

 

Figure 3.29: Settings for Annular Ring. 

 

 

The final board layout, shown in Figure 3.30, is successfully created with a single 

main microcontroller, the ESP32-Wroom-32D, and a main display, an ILI9488 TFT 

screen with SPI MSP 3520 module. The board layout is developed by Eagle software 

9.6.2. The yellow line from the SPI MSP 3520 module ILI9488 TFT screen with 

touch screen mode to the microcontroller ESP32-Wroom-32D is not connected, as 

illustrated in Figure 3.30, because the copper's diameter is greater and cannot fit 

through the pin. Finally, the issue is resolved by altering the copper's diameter and 

how the pins flow through them, as seen in Figure 3.31. 



60 

 

Figure 3.30: Board Diagram. 

 

 

 

Figure 3.31: Pass through 2 Pins. 



61 

3.7 3D Printing 

 

As seen in Figure 3.32, a casing for the project had been created using Tinker CAD 

and the link "https://www.tinkercad.com". The front casing (the blue form) in Figure 

3.33 measures 120mm, 96mm, and 90mm in length, width, and height. The inner 

bottom casing measures 112mm in length, 82mm in width, and 4mm in height. The 

outer bottom casing measures 120mm in length, 96mm in width, and 5mm in height. 

The.stl file had been downloaded and delivered to the 3D printer for printing. 

 

 

Figure 3.32: Designed Case in Tinker CAD. 

 

 

 

Figure 3.33: Dimension of the Inner and Outer Bottom Case. 



62 

3.8 Webpage Interface 

 

3.8.1 Microsoft Visual Code 

 

In Microsoft Visual Code, HTML programming language is used. This Microsoft 

Visual Code is a combination of the powerful developer tooling with a source code 

editor. Hypertext Markup Language (HTML) is the standard markup language for 

generating web applications and web pages. Microsoft Visual Code (VS Code) 

supports the widely used code formatter Prettier, which automatically formats code 

in accordance with a pre-set set of criteria. It supports a wide range of programming 

languages, including HTML, CSS, JavaScript, and TypeScript. Once installed, 

Prettier may be configured to format code automatically on save or manually using a 

keyboard shortcut or menu option. It can be installed as a Code plugin and showed as 

Figure 3.34. Furthermore, LiveServer plugin also need to be installed into the 

Microsoft Visual Code. In Figure 3.35, the HTML code on Microsoft Visual Code is 

shown.  

 

 

Figure 3.34: Installing Extension. 

 

 

 

 



63 

In Figure 3.34, the Prettier plugin is installed to the Microsoft Visual Code following 

the steps of red box. Step1, the icon “Extension” at the first red box is clicked. Step2, 

“Prettier” is type into the searching box and then the plugin is clicked. Step3, 

“Install” button is pressed. Then, the plugin is installed successfully. In order to 

install LiveServer plugin, all the steps is remain unchanged but just change the 

“Prettier” to “LiveServer” at the step2. 

 

 

Figure 3.35: HTML Code on Microsoft Visual Code. 

 

 

 

Figure 3.36： Visual Studio Code. 

 

 

 



64 

3.8.2 Arduino JSON 

 

A well-known C++ library called Arduino JSON makes it simple to parse and 

generate JSON (JavaScript Object Notation) data on ESP32 boards. JSON is a simple 

data format that is frequently used for data transmission between client-side web 

applications and online services. In IoT (Internet of Things) devices, it is also utilised 

to transfer data online. Users can read and write JSON data from and to 

ESP32 boards using the capabilities offered by the Arduino JSON library. It is 

appropriate for usage on resource-constrained gadgets like ESP32 boards since it is 

simple to use and doesn't require any additional dependencies. Users must define a 

"DynamicJsonDocument" object, which is used to store the JSON data, and include 

the library header file in order to utilise the Arduino JSON library. Users can simply 

explore JSON structures, conduct operations like merging and filtering data, and 

easily serialise and deserialize data due to the library's straightforward and user-

friendly API for working with JSON data. It supports a range of JSON data formats, 

including data that is encoded in UTF-8, UTF-16, and UTF-32. The library offers 

tools for adding to, changing, and extracting data from JSON documents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 

3.9 Equipment and Cost Analysis 

 

Table 3.7 shows the components list with price. The total cost for this project is RM 

107.38. 

 

Table 3.7: Components List with Price. 

No. Components 
Unit Price 

(RM) 
Unit 

Total Price 

(RM) 
Remarks 

1. 
ESP32-Wroom-32D 

Development Board 
16.00 1 16.00 Aliexpress 

2. Jumper Wire 2.50 2 5.00 Cytron 

3. 3.5-inch TFT Screen 38.00 1 38.00 Aliexpress 

4. 
Filament for 

Casing 
RM48/KG 200g 9.60 Shopee 

5. Printed Circuit Board 10.00 1 10.00  Aliexpress 

6. Slicer 0.20 10 1.00 Shopee 

7. 
Lithium Battery Charging 

Protection Board  
3.88 1 3.88 Shopee 

8. 
8S Lithium Battery Capacity 

Indicator  
3.30 1 3.30 Shopee 

9. 3.7V LiPo Battery 2000mAh 28.00 1 28.00  Shopee 

10. Bread Board 3.90 2 7.80 Cytron 

11. Other Fees   10.00 

Soldering, 

Hot Glue, 

Electric, 

Shipping 

fees 

   Total 107.38  



66 

 

 

 

CHAPTER 4 

 

 

 

4 RESULTS AND DISCUSSIONS 

 

 

 

4.1 Schematic Diagram of a Stream Deck 

 

The stream deck consists of one main microcontroller, which are ESP32-Wroom-

32D. A schematic diagram of the stream deck is generated using the Eagle software 

9.6.2 version as shown in Figure 4.1. 

 

 

Figure 4.1: Schematic of Stream Deck. 

 



67 

4.2 Overview of the framework of the Stream Deck  

 

The SPI MSP 3520 module ILI 9488 TFT screen, ESP32-Wroom-32D 

microcontroller, battery capacity indicator, slicer, type-C charging protection board, 

and 2000mAh LiPo battery are the electronic components used to construct the 

stream deck.  Figure 4.2 showed the stream deck prototype before the project 

is finished. Figure 4.3 depicted the stream deck's overall project. Figure 4.3 shows 

the soldering of the components into the PCB and placement of them in the precise 

locations that TinkerCAD had previously created. The case is created using a 3D 

printer and produced in a particular colour of grey. Eagle software 9.6.2 version 

is used to create the printed circuit board in yellow colour. Figure 4.4 depicted the 

stream deck's front perspective.  Figure 4.5 depicts the stream deck's backside. 

Figure 4.6 depicts the stream deck's side perspective. 

 

 

Figure 4.2: Prototype of the Stream Deck. 



68 

 

Figure 4.3: Overview Project of the Stream Deck. 

 

 

 

Figure 4.4: Front View of the Stream Deck. 



69 

 

Figure 4.5: Back View of the Stream Deck. 

 

 

 

Figure 4.6: Side View of the Stream Deck. 



70 

4.3 Default User Interface of Stream Deck 

 

In this project, a single TFT screen and a single battery capacity indication are 

utilized. According to Figure 4.7, the TFT screen is positioned at the bottom of the 

front casing, and the battery capacity indication is positioned at the top. The TFT 

screen displays six default buttons with blue colour and black background on the 

main screen along with six distinct logos that use.bmp format icons since the 

configuration default. The volume control part is for the first button. From the second 

button to the fifth button, there is only the default logo and no current indication of a 

function. The stream deck setting itself is included in the last button. Additionally, as 

illustrated in Figure 4.7, the battery capacity indicator displays the capacity of the 

battery block by block that is still in the battery. 25% of the battery is represented by 

each block. 

 

 

Figure 4.7: Main Menu at TFT Screen of Stream Deck. 



71 

By hitting the first button on the main menu, the stream deck is shown in Figure 4.8 

with the first section of the function buttons. After pressing the first button, there are 

six more buttons with additional six functions. The device's mute or unmute feature 

is controlled by the first button. The second button is a function that controls volume 

down, while the third button is a function that controls volume up. The fourth 

button's purpose is to control the play and pause of a video. The fifth button's 

purpose is to halt the playback of videos. The home button on the sixth button 

returns to the main menu. After pressing the second, third, fourth, and fifth buttons 

on the main menu, respectively, there are also six buttons shown from Figure 4.9 to 

Figure 4.12. The six pushed buttons have no use and are denoted by a "?" icon.  The 

sixth button also serves as the home button. After pressing the sixth button on the 

main menu, Figure 4.13 displays additional six function buttons.  WiFi configuration 

is the first button. The TFT screen's brightness is able to adjust using the second and 

third buttons, which decrease and enhance brightness, respectively. The fourth button 

controls whether the stream deck is in sleep mode during the designated time.  The 

fifth button only provides some stream deck information. The home button is the 

final one. Every button has a home button because, once the intended functionality is 

used, main menu must be returned.  

 

 

Figure 4.8: The Default Contains of The First Section. 



72 

 

Figure 4.9: The Default Contains of The Second Section. 

 

 

 

Figure 4.10: The Default Contains of The Third Section. 



73 

 

Figure 4.11: The Default Contains of The Forth Section. 

 

 

 

Figure 4.12: The Default Contains of The Fifth Section. 



74 

 

Figure 4.13: The Default Contains of the Sixth Section. 

 

 

 

4.4 Access Point (AP) connection 

 

A laptop is utilized in this project to establish a connection between the device and 

the stream deck. Pressed the sixth button located on the main menu, which bears a 

setting icon, followed by pressing the first button that displays a WiFi icon.  Figure 

4.14 depicted the stream deck's trying to establish a connection with either the station 

point (STA) or access point (AP), as indicated by the message "Connecting to WiFi".   

Figure 4.15 depicted a scenario where the stream deck is unable to establish a 

connection between the station point and access point. The default access point's 

service set identifier (SSID) and password are displayed on the screen of the stream 

deck.  The wireless network identifier, commonly referred to as SSID, for the 

network is "feiweifeiwei" and the corresponding access credential is "iloveyouyv". 

The default IP address is also displayed as "192.168.4.1". According to Figure 4.16, 

the laptop is required to activate its WiFi functionality and initiate a search for the 



75 

"feiweifeiwei" SSID in order to establish a connection with the access point. Thus, 

the password "iloveyouyv" is required to be entered into the security network box, as 

depicted in Figure 4.17. To verify successful connectivity, a web browser is 

opened and enters "192.168.4.1" into the address bar. Figure 4.18 depicts the 

successful connection of the webserver. 

 

 

Figure 4.14: Attempting to Connect Access Point or Station Point (WiFi). 

 



76 

 

Figure 4.15: Connection fail. 

 

 

 

Figure 4.16: SSID of Access Point. 



77 

 

Figure 4.17: Password of Access Point. 

 

 

 

Figure 4.18: Webserver of The Stream Deck. 

 

 

 

 

 

 

 



78 

4.5 Station Point (STA) Connection 

 

Figure 4.19 displayed the WiFi settings page after the completion of the AP 

connection. The WiFi or hotspot information, such as the Service Set Identifier 

(SSID) and password, is entered into the WiFi settings page. Upon pressing the 

"Save WiFi Config" button, two options become available to the user: to either return 

to the configuration page or to restart the stream deck, as depicted in Figure 4.20. 

Upon activation of the restart function, the preceding procedures are reiterated and 

the display exhibits information regarding the establishment of a connection with the 

station point, along with the display of WiFi or hotspot of IP address. Figure 4.21 

depicted the utilization of a phone hotspot, whereby the IP address of the hotspot is 

displayed on the screen. 

 

 

Figure 4.19: WiFi Settings Page. 

 

 



79 

 

Figure 4.20: Two Option to Use. 

 

 

 

Figure 4.21: Station Point is Connected. 

 



80 

4.6 Second Way to connect the Station Point (STA) or Access Point (AP)  

 

In Figure 4.22, there is another way to connect STA or AP manually. There is a 

JSON file. The specific information had to key in exactly to the related field. Thus, 

the JSON file will be worked fine with the code that is shown the Figure 4.23. In 

Figure 4.23, the code uses the ArduinoJSON library to generate a JSON (JavaScript 

Object Notation) document. JSON is a lightweight data interchange format that is 

simple for both humans and machines to read, write, parse, and generate. From the 

first and second line of the code, the presented code pertains to the management of 

files on the ESP32. To be precise, the process entails the removal of a pre-existing 

file and the subsequent creation of a new file. The initial line of code, 

FILESYSTEM.remove("/config/wificonfig.json"), serves to eliminate the file located 

at the specified path of "/config/wificonfig.json" from the file system. The function 

mentioned above is a constituent element of the SPIFFS (SPI Flash File System) 

library, which facilitates the reading and writing of files to the flash memory of the 

microcontroller. The second line of code declares a variable named "file" of type 

"File" and assigns it the value of "FILESYSTEM".The function call 

open("/config/wificonfig.json", "w") instantiates a new file with identical name and 

path ("/config/wificonfig.json") and initiates it in write mode ("w"). The implication 

of this is that all prior contents of the file will be deleted, rendering the file in a state 

of readiness to accept fresh data. The code generated a new JSON file with a primary 

size of 384 bytes. The statement implies that the document had the capacity to retain 

a maximum of 384 bytes of information, with the possibility of expanding its size if 

necessary. The fourth line of code instantiates a new JSON entity denominated 

wificonfigobject and designates it as the principal entity of the JSON document. A 

JSON object is a composite data structure consisting of a set of unordered key-value 

pairs, where the key is a string, and the value can be any valid JSON data type. The 

subsequent lines of code append key-value pairs to the wificonfigobject. For example, 

the addition of a new key-value pair to the wificonfigobject is achieved through the 

implementation of the statement wificonfigobject["ssid"] = ssid;. The key "ssid" is 

assigned to the newly added pair, while the value is represented by the contents of 

the variable SSID. The code snippet wificonfigobject["password"] = 

wificonfig.password; creates a new key-value pair in which the key is denoted as 

"password" and the value is equivalent to the contents of the password attribute 



81 

within the wificonfig construct. Through the inclusion of these key-value pairs into 

the wificonfigobject, a JSON object is generated that comprehensively encompasses 

the requisite details pertaining to the WiFi configuration, including but not limited to 

the SSID and password. Upon the creation of the JSON object, it can be utilised for 

the purpose of transmitting the aforementioned information to alternative devices or 

alternatively, it can be stored within a file. 

 

 

Figure 4.22: WiFi Details. 

 

 

 

Figure 4.23: Get information from JSON. 

 

 

 



82 

4.7 Web Server for Stream Deck Configurator 

 

Section 4.7 presented a section that displayed all the figures pertaining to the web 

server configuration for the stream deck. The initial tab of the web server features a 

WiFi configuration page designated for the stream deck, as depicted in Figure 4.24. 

Additionally, there exists a universal configuration for the stream deck that can be 

adjusted through a web server. The objective of this page is to modify the hue of the 

primary menu buttons, the hue of the functional buttons, the hue of the latch, and the 

background hue of the stream deck. The new configuration had been completed, as 

depicted in Figure 4.25.  As depicted in Figures 4.27 through 4.30, the shortcut keys 

have been reconfigured within menus 1 through 5 to enhance their functionality for 

specific purposes. Logos are employed to facilitate user recognition of button 

functionality. Hence, the web server had incorporated the "Upload a New Logo" 

page as depicted in Figure 4.32. Additionally, it is suggested to generate personalized 

logos for the stream deck by utilizing the provided link or URL. The specifications 

for logo creation necessitate the utilization of images with recommended dimensions 

of 75x75 pixels and saved in the .bmp file format.  Figure 4.33 displayed a 

compilation of images in the .bmp format. The removal of images is at the discretion 

of the user. 

 

 

Figure 4.24: WiFi Settings from Webserver. 

 



83 

 

Figure 4.25: General Settings from Webserver. 

 

 

 

Figure 4.26: Main Menu from Webserver. 

 

 

 

Figure 4.27: Menu 1 from Webserver. 



84 

 

Figure 4.28: Menu 2 from Webserver. 

 

 

 

Figure 4.29: Menu 3 from Webserver. 

 

 

 

Figure 4.30: Menu 4 from Webserver. 



85 

 

Figure 4.31: Menu 5 from Webserver. 

 

 

 

Figure 4.32: Upload a New Logo from Webserver. 

 

 

 

Figure 4.33: Remove Files from Webserver. 



86 

4.8 New User Interface of Stream Deck 

 

Figure 4.34 displayed the primary menu of the stream deck on the screen after the 

implementation of the updated configuration. The stream deck features six distinct 

buttons, each of which corresponds to a unique menu. These menus include the 

media control menu, the Open Broadcaster Software Studio (OBS Studio) control 

menu, the live control menu, the browser menu control, the edit control menu, and 

the settings of the stream deck. The colour scheme employed in Figure 4.25 is 

noteworthy. Specifically, the menu buttons are assigned a blue colour code of 

#0a20ff, the function buttons are assigned a light blue colour code of #2072b2, the 

latch is assigned a red colour code of #fe0149, and the background is assigned a 

black colour code of #000000. The outcome of this colour scheme can be observed in 

Figure 4.34. 

 

 

Figure 4.34: Main Menu of Stream Deck. 



87 

To utilize the stream deck, the Bluetooth protocol is employed to establish a 

connection between the stream deck and the corresponding device. The present study 

involved the utilization of a laptop device that will be connected to a stream deck 

through the employment of Bluetooth technology. Figure 4.35 illustrated the media 

control menu, which comprises six distinct functions, namely the mute button, 

decrease volume button, increase volume button, play or pause button, stop button, 

and home button. Additionally, it should be noted that the function buttons possess a 

light blue (#2072b2) background colour. Figure 4.36 depicted that the default volume 

on the laptop is set to 30% of the total volume. The buttons responsible for adjusting 

the volume are activated, either to increase or decrease the audio output. The 

alteration in volume is reflected in the outcomes presented in Figure 4.37 and Figure 

4.38. The data presented in Figure 4.37 indicated a reduction in volume from 30% to 

28%. The data presented in Figure 4.38 indicates an increase in volume from 30% to 

32%. The outcomes obtained through the utilization of a stream deck are presented in 

Figures 4.39 to 4.41. The pause, play, and stop buttons are utilized to demonstrate 

these results.   

 

 

Figure 4.35: Media Control User Interface. 



88 

 

 

Figure 4.36: Default Volume in Laptop. 

 

 

 

Figure 4.37: Decrease Volume by Stream Deck. 

 

 

 

Figure 4.38: Increase Volume by Stream Deck. 

 

 

 

Figure 4.39: Music is Paused. 



89 

 

Figure 4.40: Music is Played. 

 

 

 

Figure 4.41: Music is Stopped. 

 

 

 

 

 

 



90 

Given its primary target audience of streamers and editors, the stream deck is 

designed to cater to their specific needs. Thus, as depicted in Figure 4.42, the 

utilization of a broadcasting software, namely Open Broadcaster Software Studio 

(OBS Studio), is observed. The OBS control menu comprises six buttons, namely the 

live streaming button, record button, pause live button, on or off webcam, instant 

replay button, and home button, as illustrated in Figure 4.43. The live control menu 

comprises six buttons, namely the scene 1 button, scene 2 button, scene 3 button, 

microphone on/off button, webcam on/off button, and home button, as depicted in 

Figure 4.44. The buttons had been configured to regulate the OBS studio, as depicted 

in Figure 4.45 and Figure 4.46. The reason for the white colour of the function 

buttons is due to the original .bmp image having a white background rather than a 

transparent one. 

 

 

Figure 4.42: Open Broadcaster Software Studio (OBS Studio). 

 



91 

 

Figure 4.43: OBS Control User Interface. 

 

 

 

Figure 4.44: Live Control User Interface. 



92 

 

Figure 4.45: Hotkeys of OBS Studio. 

 

 

 

Figure 4.46: Hotkeys of OBS Studio. 



93 

Figure 4.47 displayed the browser menu which included buttons for Microsoft Edge, 

Google Chrome, UTAR Portal auto login, copy, and paste. The stream deck is 

capable of launching Microsoft Edge and Google Chrome browsers through the 

utilization of pre-configured shortcut keys, as depicted in Figures 4.48 and 4.49. The 

UTAR Portal Login Button is a feature that facilitates automatic access to the UTAR 

Portal upon activation, by launching a web browser and initiating the login process 

by automatically writing for personal account information. The copy and paste 

functions are executed on a connected device through the operation of the respective 

copy and paste buttons. The colour of the function buttons is white because the .bmp 

image utilized possesses a white background as opposed to a transparent one. 

 

 

Figure 4.47: Browser User Interface. 

 

 

  



94 

 

Figure 4.48: Shortcut Key of Microsoft Edge. 

 

 

 

Figure 4.49: Shortcut Key of Google Chrome. 



95 

Figure 4.50 depicted an edit control menu that comprises commonly used keys such 

as the undo button, redo button, split button, left arrow button, right arrow button, 

and home button. The split button referred to a button that with capability to divide a 

single video or audio file into two distinct sections, as depicted in Figure 4.51.  

 

 

Figure 4.50: Editor Control User Interface. 

 

 

 

Figure 4.51: Splited Music. 

 

 

 

 

 



96 

Figure 4.52 displayed the settings menu, which included a WiFi button for network 

connectivity, a decrease brightness button to reduce the brightness of the stream deck, 

an increase brightness button to enhance the brightness of the stream deck, an on/off 

sleep mode button, an information button about the stream deck, and a home button. 

The operational state of the stream deck depicted in Figure 4.53 is sleep mode. To 

demonstrate the brightness of the stream deck, it had been set within a dimly lit 

environment to capture a more distinct image. Figures 4.54 and 4.55 illustrated the 

minimum and maximum brightness levels of the stream deck. Each button had a 

maximum of 9 possible presses. The brightness can be augmented or diminished by a 

magnitude of 25 units on each time. Thus, it can be observed that the minimum 

brightness value is 25, while the maximum brightness value is 255. 

 

 

Figure 4.52: Settings User Interface. 



97 

 

Figure 4.53: Sleep Mode is Enabled. 

 

 

 

Figure 4.54: Lowest Brightness of Stream Deck. 



98 

 

Figure 4.55: Highest Brightness of Stream Deck. 

 

 

 

4.9 Discussion on Actions to be Avoided 

 

To achieve a transparent logo, it is necessary to alter the background of the .bmp 

image to black. Hence, if the stream deck intends to incorporate a 

black colour background for the function buttons, it is not possible to employ the 

black colour (#000000) .bmp images. Nonetheless, it is possible to modify them 

through the webserver. The .bmp file format may occasionally lack transparency, 

resulting in loading issues when attempting to upload the image into the stream deck. 

Additionally, even if the background is black, the logo may still appear distorted. It is 

advisable to select an alternative background colour from the .bmp image as a 

recommendation. Moreover, the utilization of a type-C charging board is observed in 

the setup of the stream deck. The stream deck ran into an issue whereby it cannot be 



99 

reopened after its closure. A period of approximately 30 seconds is required to allow 

for the discharge of the board from the charging apparatus. Subsequently, the stream 

deck will resume normal functionality and can be reactivated following depletion of 

its power. Moreover, if the user desires to activate the stream deck promptly. The 

type-C charging board required the slicer from the stream deck to be toggled twice 

and subsequently turned off and on again in order to effectuate discharging. 

Consequently, the stream deck will function properly once more. Moreover, the 

modification of the configuration in the webserver necessitated a section-by-section 

alteration in the menu, as opposed to a comprehensive adjustment in a single step. 

 

 

 

4.10 Discussion on Webserver 

 

Webpages comprise various types of data, such as images, text files, hyperlinks, and 

database files, which are stored on a computer, commonly referred to as server space, 

that is connected to the Internet. A webserver is a specialized software application 

that operates on the server-side. Upon a user's request for a webpage, the webserver 

compiles the necessary data materials into a structured webpage and transmits it to 

the user's web browser via the Internet. The fundamental aim of a webserver is to 

gather, handle, and deliver webpages to its users. In this project, this webserver 

functions as a static webserver as opposed to a dynamic web server. Static 

webservers exclusively serve static content, which is unchanging and displayed as-is. 

Static web server is servers that exclusively serve static content, meaning that the 

content is unchanging and displayed as is. For dynamic webservers is servers that 

allow for the modification and updating of webpage content. The exchange of 

information between a webserver and a web browser is facilitated through the 

utilization of a protocol known as HTTP (Hypertext Transfer Protocol). The 

webpages that are stored primarily employ static content, which includes HTML 

documents, images, style sheets, and text files, among others (Douglas.K, Sipiwe.C, 

and et al, 2017). 

 

 



100 

4.11 Discussion on the Working of a Webserver 

 

Initially, individuals input the Uniform Resource Locator (URL) or Internet Protocol 

(IP) address of the intended webpage into the designated address bar. Subsequently, 

the IP address of a domain name is obtained by the web browser using a URL. This 

is achieved either by converting the URL through the Domain Name System (DNS) 

or by searching for the IP address in cache memory. The Internet Protocol (IP) 

address is accountable for routing the user's web browser to the designated webserver. 

Thirdly, once a connection has been established, the web browser will initiate 

a HTTP request to solicit the webpage from the webserver in Figure 4.56. In fourth 

place, once the request is received, the webserver expeditiously transmits the 

requested page or file to the web browser utilizing the HTTP protocol in Figure 4.56. 

Finally, if the requested webpage is not present, or an error arises during the 

procedure, the web server will generate an error message. Provided that there are no 

errors present, the browser will successfully render the webpage (Douglas.K, 

Sipiwe.C, and et al, 2017). 

 

 

Figure 4.56: Working of Webserver. 

 

 

 

 



101 

 

 

 

CHAPTER 5 

 

 

 

5 CONCLUSION AND RECOMMENDATIONS 

 

 

 

5.1 Conclusion 

 

A stream deck using embedded system is developed successfully using one main 

microcontroller ESP32-Wroom-32D, one main display ILI9488 TFT screen, internal 

protection battery, battery indicator and type-C charging protection board. The 

stream deck is functioning well since the TFT screen can precisely display the 

buttons' various colours while in touch-screen mode. The web server can also modify 

the shortcut keys as needed. The webserver may also be used to link networks via 

STA points or APs. Of course, the project's outcomes demonstrate that every 

electronic circuit on the PCB functions correctly and in line with the intended design. 

However, the project also properly builds the case for the stream deck. In addition, 

the type-C protection board may effectively be used to charge the battery. Finally, by 

physically touching the buttons on the screen, the stream deck may successfully 

operate the connected device. 

 

In general, the stream deck possesses the capability to be configured to the 

user interface either through the access point or station point. Additionally, the 

customizable control panel of the stream deck is designed to execute various tasks. 

Moreover, the stream deck possesses the capability to function through touch screen 

and wireless technology. Finally, it is important to note that the stream deck had been 

developed at a relatively low cost, specifically RM107.38. 

 

 



102 

5.2 Recommendations 

 

The stream deck may be enhanced in the future, and the web server may be created 

with a more visually appealing layout. Additionally, due to the stream deck is 

intended for broadcasters and editors, an internal webcam may be attached to it. The 

size and amount of buttons on the stream deck may also be changed at the web server 

to suit the needs of the user. Therefore, a larger TFT panel that can display more than 

two rows and three columns might be used in place of the current TFT screen.



103 

 

 

 

REFERENCES 

 

 

 

Adrian willings,2022. Elgato Stream Deck: Why this gaming control panel is a must-

have for streamers. [online]. Available at: <https://www.pocket-

lint.com/gadgets/news/151906-elagato-stream-deck-best-features >[Accessed 15 

Sep 2022]. 

 

Alvaro Aguilar,2019. A comparison of battery-charger topologies for portable 

applications. Analog Design Journal.[online]. Available at: 

<https://www.ti.com/lit/an/slyt769/slyt769.pdf > [Accessed 11 Sep 2022]. 

 

Arduino Team, 2021. The Crumble Deck is a Stream Deck alternative based on an 

Arduino Due. [online]. Available at : < https://blog.arduino.cc/2021/06/15/the-

crumble-deck-is-a-stream-deck-alternative-based-on-an-arduino-due/ > [Accessed 

8 Sep 2022]. 

 

Ativya Gupta,Garima, and Harshit Srivastava, et al, 2021. DESIGN AND 

FABRICATION OF 3D PRINTER. International Journal of Engineering Applied 

Sciences and Technology, 2021.6(3), ISSN No. 2455-2143, pp. 328-334. 

 

BABIUCH, M., FOLTÝNEK, P., SMUTNÝ, P. Using the ESP32 microcontroller for 

data processing. In Proceedings of 20thInternational Carpathian Control 

Conference ICCC ́2019. Krakow - Wieliczka; Poland; May 26-29, 2019, pp. 88-

93. ISBN:978-172810701-1, DOI: 10.1109/CarpathianCC.2019.8765944. 

 

Douglas.K, Sipiwe.C, and et al, 2017. Computer Engineering and Intelligent Systems. 

Web Server Performance of Apache and Nginx: A Systematic Literature Review. 

8(2), ISSN No.2222-2863. 

https://www.pocket-lint.com/gadgets/news/151906-elagato-stream-deck-best-features
https://www.pocket-lint.com/gadgets/news/151906-elagato-stream-deck-best-features
https://www.ti.com/lit/an/slyt769/slyt769.pdf
https://blog.arduino.cc/2021/06/15/the-crumble-deck-is-a-stream-deck-alternative-based-on-an-arduino-due/
https://blog.arduino.cc/2021/06/15/the-crumble-deck-is-a-stream-deck-alternative-based-on-an-arduino-due/


104 

 

DroneBotWorkshop,2020. Getting started with ESP32. [online]. Avaiable at: < 

https://dronebotworkshop.com/esp32-intro/ > [Accessed 11 Sep 2022].  

 

E.Ferraz and G.Fernandez, 2020. Asian Founders at Work: Stories from the Region’s 

Top Technopreneurs. [e-book] Makati City, Phhilippines: Apress Publishers. 

Available at : Google Books < 

https://books.google.com.my/books?id=4BHGDwAAQBAJ&printsec=frontcover

#v=onepage&q&f=false  > [Accessed 8 Sep 2022]. 

 

Electronics Hub,2018. TP4056 Lithium Ion Battery Charger. [online]. Available at: 

< https://www.electronicshub.org/tp4056-lithium-ion-battery-charger/  > 

[Accessed 15 Sep 2022].  

 

Elgato,2012.. History of Elgato.[online]. Avaiable at :< 

https://www.elgato.com/en/10-years > [Accessed 15 Sep 2022]. 

 

Espressif,2015. About Espressif. [online]. Avaiable at: < 

https://www.espressif.com/en/company/about-us/who-we-are  > [Accessed 11 Sep 

2022]. 

 

Freotech, 2022. DIY Stream/Hotkey Deck(Using An Arduino!!). [online]. Available at: 

<https://www.arduino.coach/diy-stream-hotkey-deckusing-an-

arduino.html#forward > [Accessed 8 Sep 2022]. 

 

G.E. Blomgren,2000. Current status of lithium ion and lithium polymer secondary 

batteries. Fifteenth Annual Battery Conference on Applications and Advances 

(Cat. No.00TH8490). pp97-100. https://doi.org/10.1109/BCAA.2000.838386 . 

 

Hargreaves, Eddie, 2007. Elgato ends collaboration with Miglia. [online]. Available 

at: < https://old.gigaom.com/2007/03/12/elgato-ends-collaboration-with-miglia/ > 

[Accessed 15 Sep 2022]. 

 

https://dronebotworkshop.com/esp32-intro/
https://books.google.com.my/books?id=4BHGDwAAQBAJ&printsec=frontcover#v=onepage&q&f=false
https://books.google.com.my/books?id=4BHGDwAAQBAJ&printsec=frontcover#v=onepage&q&f=false
https://www.electronicshub.org/tp4056-lithium-ion-battery-charger/
https://www.elgato.com/en/10-years
https://www.espressif.com/en/company/about-us/who-we-are
https://www.arduino.coach/diy-stream-hotkey-deckusing-an-arduino.html#forward
https://www.arduino.coach/diy-stream-hotkey-deckusing-an-arduino.html#forward
https://doi.org/10.1109/BCAA.2000.838386
https://old.gigaom.com/2007/03/12/elgato-ends-collaboration-with-miglia/


105 

Hiro Kawamoto,2011. The Inventors of TFT Active-Matrix LCD Receive the 2011 

IEEE Nishizawa Medal. Journal of Display Technology. 8(1), pp3-4. 

https://doi.org/10.1109/JDT.2011.2177740  . 

 

Jennifer Manfrin, 2021. BEST RECHARGEABLE BATTERIES .[online]. Available at: 

<https://bestreviews.com/electronics/chargers/best-rechargeable-batteries > 

[Accessed 11 Sep 2022]. 

 

Konstantinos Kitsakis,Nikos Petrou,Ilias Tanos, and John Kechagias,2016. Design 

and 3d Printing of a Robotic Arm. Book of Abstracts/3rd International 

Conference on Cryptography, Cyber Security and Information Warfare. At: 

Athens 

 

LCwiki, 2019. 3.97inch 16BIT Module OTM8009A SKU:MRB3971. [online]. 

Available at: 

<http://www.lcdwiki.com/3.97inch_16BIT_Module_OTM8009A_SKU:MRB397

1 >[Accessed 10 Sep 2022]. 

 

LCwiki, 2021. 3.5inch SPI Module ILI9488 SKU:MSP3520. [online]. Avaiable at: < 

http://www.lcdwiki.com/3.5inch_SPI_Module_ILI9488_SKU:MSP3520  > 

[Accessed 10 Sep 2022]. 

 

LCwiki,2022. 1.8inch Esplora TFT LCD. [online]. Avaiable at: < 

http://www.lcdwiki.com/1.8inch_Esplora_TFT_LCD > [Accessed 10 Sep 2022]. 

 

Liang Y, Zhao C-Z,Yuan H, et al.,2019 . A review of rechargeable batteries 

forportable electronic devices. InfoMat. 2019;1–27. 

https://doi.org/10.1002/inf2.12000  

 

Lim, K.Y., 1997. Command/Shortcut Keys in WIMP User Interfaces: A Lost Cause? 

Human-Computer Interaction,97, pp.301-306. 

 

https://doi.org/10.1109/JDT.2011.2177740
https://bestreviews.com/electronics/chargers/best-rechargeable-batteries
http://www.lcdwiki.com/3.97inch_16BIT_Module_OTM8009A_SKU:MRB3971
http://www.lcdwiki.com/3.97inch_16BIT_Module_OTM8009A_SKU:MRB3971
http://www.lcdwiki.com/3.5inch_SPI_Module_ILI9488_SKU:MSP3520
http://www.lcdwiki.com/1.8inch_Esplora_TFT_LCD
https://doi.org/10.1002/inf2.12000
https://doi.org/10.1002/inf2.12000%0b%20LIANG%20ET%20AL.27
https://doi.org/10.1002/inf2.12000%0b%20LIANG%20ET%20AL.27


106 

Lin,C.C, 2005. Effects of screen luminance combination and text color on visual 

performance with TFT-LCD. International Journal of Industrial Ergonomics 

35.pp229- 235. https://doi.org/10.1016/j.ergon.2004.09.002 . 

 

Liu, C.T, 2007. Revolution of the TFT LCD Technology. JOURNAL OF DISPLAY 

TECHNOLOGY. 3(4), pp342-350. https://doi.org/10.1109/JDT.2007.908348.  

 

Loupedeck, 2021. Meet Loupedeck. [online]. Avaiable at: < 

https://loupedeck.com/about-loupedeck/ > [Accessed 10 Sep 2022]. 

 

Madan, 2018. ElGateau: A Library for Using the Elgato Stream Deck for 

Experimental Psychology Research. Journal of Open Source Software, 3(31), 

1070, https://doi.org/10.21105/joss.01070  

 

Maggie, Tillman, 2022. Razer made an Elgato Stream Deck-like Stream Controller 

with Loupedeck. [online]. Avaiable at: < https://www.pocket-

lint.com/gadgets/news/razer/161898-razer-made-an-elgato-stream-deck-like-

stream-controller-with-loupedeck > [Accessed 10 Sep 2022]. 

 

Maier, A., Sharp, A. and Vagapov. Y, 2017. Comparative analysis and practical 

implementation of the ESP32 microcontroller module for the Internet of Things. 

In: Proc. 7th IEEE Int. Conference on Internet Technologies and Applications 

ITA-17, Wrexham, UK. 

 

Melissa Morris and Sabri Tosunoglu,2012. COMPARISON OF RECHARGEABLE 

BATTERY TECHNOLOGIES. [online]. Available at: < 

https://www.researchgate.net/publication/281931837_COMPARISON_OF_REC

HARGEABLE_BATTERY_TECHNOLOGIES > [Accessed 11 Sep 2022].  

 

Michael Gariffo, 2022. Razer Teams with Loupedeck for new Stream Controller. 

[online]. Avaiable at: < https://www.zdnet.com/home-and-office/home-

entertainment/razer-teams-with-loupedeck-for-new-stream-controller/ > 

[Accessed 10 Sep 2022]. 

https://doi.org/10.1016/j.ergon.2004.09.002
https://doi.org/10.1016/j.ergon.2004.09.002
https://loupedeck.com/about-loupedeck/
https://doi.org/10.21105/joss.01070
https://www.pocket-lint.com/gadgets/news/razer/161898-razer-made-an-elgato-stream-deck-like-stream-controller-with-loupedeck
https://www.pocket-lint.com/gadgets/news/razer/161898-razer-made-an-elgato-stream-deck-like-stream-controller-with-loupedeck
https://www.pocket-lint.com/gadgets/news/razer/161898-razer-made-an-elgato-stream-deck-like-stream-controller-with-loupedeck
https://www.researchgate.net/publication/281931837_COMPARISON_OF_RECHARGEABLE_BATTERY_TECHNOLOGIES
https://www.researchgate.net/publication/281931837_COMPARISON_OF_RECHARGEABLE_BATTERY_TECHNOLOGIES
https://www.zdnet.com/home-and-office/home-entertainment/razer-teams-with-loupedeck-for-new-stream-controller/
https://www.zdnet.com/home-and-office/home-entertainment/razer-teams-with-loupedeck-for-new-stream-controller/


107 

Mohamed FEZARI and Ali Al Dahoud,2018. Introduction to Arduino IDE. 

Integrated Development Environment “IDE” For Arduino. [online]. Available at: 

<https://www.researchgate.net/profile/Mohamed-Fezari-

2/publication/328615543_Integrated_Development_Environment_IDE_For_Ardu

ino/links/5bd8c6d24585150b2b9206df/Integrated-Development-Environment-

IDE-For-Arduino.pdf > [Accessed 11 Sep 2022].  

 

Nikola Zaltanov, 2015. Arduino and Open Source Computer Hardware and Software. 

IEEE Computer SocietyGrant number. 

https://doi.org/10.13140/RG.2.1.1071.7849  

 

NL1_CS, 2019. Arduino Stream Deck. [online]. Available at : 

<https://www.instructables.com/Arduino-Stream-Deck/ > [Accessed 8 Sep 2022]. 

 

Nourallah Ghaeminezhad and Mohammad Monfared,2021. Charging control 

strategies for lithium-ion battery packs: Review and recent developments. IET 

Power Electronics. 15(15), pp349-367. https://doi.org/10.1049/pel2.12219 . 

 

Pengfei Li and Rizwan Bashirullah,2007. A Wireless Power Interface for 

Rechargeable Battery Operated Medical Implants. IEEE Transactions on Circuits 

and Systems II: Express Briefs. 54(10), pp912-916. 

https://doi.org/10.1109/TCSII.2007.901613   . 

 

Pravalika, V. and Prasad, C. R., 2019. Internet of Things Based Home 

Monitoringand Device Control Using Esp32. International Journal of Recent 

Technology and Engineering (IJRTE). Volume-8, pp58-62. ISSN: 2277-3878. 

 

Razer,2012. Razer Stream controller. [online] Available at: < 

https://www.razer.com/streaming-accessories/razer-stream-controller/RZ20-

04350100-R3U1 > [Accessed 4 Sep 2022]. 

 

 

 

https://www.researchgate.net/profile/Mohamed-Fezari-2/publication/328615543_Integrated_Development_Environment_IDE_For_Arduino/links/5bd8c6d24585150b2b9206df/Integrated-Development-Environment-IDE-For-Arduino.pdf
https://www.researchgate.net/profile/Mohamed-Fezari-2/publication/328615543_Integrated_Development_Environment_IDE_For_Arduino/links/5bd8c6d24585150b2b9206df/Integrated-Development-Environment-IDE-For-Arduino.pdf
https://www.researchgate.net/profile/Mohamed-Fezari-2/publication/328615543_Integrated_Development_Environment_IDE_For_Arduino/links/5bd8c6d24585150b2b9206df/Integrated-Development-Environment-IDE-For-Arduino.pdf
https://www.researchgate.net/profile/Mohamed-Fezari-2/publication/328615543_Integrated_Development_Environment_IDE_For_Arduino/links/5bd8c6d24585150b2b9206df/Integrated-Development-Environment-IDE-For-Arduino.pdf
https://doi.org/10.13140/RG.2.1.1071.7849
https://www.instructables.com/Arduino-Stream-Deck/
https://doi.org/10.1049/pel2.12219
https://doi.org/10.1109/TCSII.2007.901613
https://www.razer.com/streaming-accessories/razer-stream-controller/RZ20-04350100-R3U1
https://www.razer.com/streaming-accessories/razer-stream-controller/RZ20-04350100-R3U1


108 

Shopee,2023. 3.7V LiPo Battery (Lithium Polymer) Batteri for MP3 Bluetooth 

Recorder MP4 GPS Camcorder. [online] Available at: < 

https://shopee.com.my/3.7V-LiPo-Battery-(Lithium-Polymer)-Batteri-for-MP3-

Bluetooth-Recorder-MP4-GPS-Camcorder-

i.126211897.16259884131?sp_atk=9c697ed2-69a7-4279-a3b9-

ec3ce5c04620&xptdk=9c697ed2-69a7-4279-a3b9-ec3ce5c04620> [Accessed 24 

Apr. 2022]. 

 

Tom, Seymour and Ali, Shaheen, 2011. History of Wireless Communication. Review 

of Business Information System- Second Quarter,15(2), pp37-42. 

 

Tom, Warren, 2022. Razer’s Stream Controller takes on the Stream Deck for 

$269.99 / Elgato has some fresh competition. [online]. Avaiable at: < 

https://www.theverge.com/2022/7/14/23215273/razer-stream-controller-release-

date-price-specs > [Accessed 10 Sep 2022]. 

 

Universal-Solder,2020. Green LED Battery Gauge for 1-8 Lithium Cells. [online] 

Available at: <https://universal-solder.ca/product/green-led-battery-gauge-1-8-

cells/ > [Accessed 4 Sep 2022]. 

 

Yogendra Singh Parihar, 2019. Internet of Things and Nodemcu. A review of use of 

Nodemcu ESP8266 in IoT products, 6, pp.1085-1088. 

 

Yue Kuo,2013. Thin Film Transistor Technology—Past, Present, and Future. The 

Electrochemical Society Interface. 22(55),pp55-61. 

https://shopee.com.my/3.7V-LiPo-Battery-(Lithium-Polymer)-Batteri-for-MP3-Bluetooth-Recorder-MP4-GPS-Camcorder-i.126211897.16259884131?sp_atk=9c697ed2-69a7-4279-a3b9-ec3ce5c04620&xptdk=9c697ed2-69a7-4279-a3b9-ec3ce5c04620
https://shopee.com.my/3.7V-LiPo-Battery-(Lithium-Polymer)-Batteri-for-MP3-Bluetooth-Recorder-MP4-GPS-Camcorder-i.126211897.16259884131?sp_atk=9c697ed2-69a7-4279-a3b9-ec3ce5c04620&xptdk=9c697ed2-69a7-4279-a3b9-ec3ce5c04620
https://shopee.com.my/3.7V-LiPo-Battery-(Lithium-Polymer)-Batteri-for-MP3-Bluetooth-Recorder-MP4-GPS-Camcorder-i.126211897.16259884131?sp_atk=9c697ed2-69a7-4279-a3b9-ec3ce5c04620&xptdk=9c697ed2-69a7-4279-a3b9-ec3ce5c04620
https://shopee.com.my/3.7V-LiPo-Battery-(Lithium-Polymer)-Batteri-for-MP3-Bluetooth-Recorder-MP4-GPS-Camcorder-i.126211897.16259884131?sp_atk=9c697ed2-69a7-4279-a3b9-ec3ce5c04620&xptdk=9c697ed2-69a7-4279-a3b9-ec3ce5c04620
https://www.theverge.com/2022/7/14/23215273/razer-stream-controller-release-date-price-specs
https://www.theverge.com/2022/7/14/23215273/razer-stream-controller-release-date-price-specs
https://universal-solder.ca/product/green-led-battery-gauge-1-8-cells/
https://universal-solder.ca/product/green-led-battery-gauge-1-8-cells/


109 

 

 

 

APPENDICES 

 

 

 

APPENDIX A: Coding 

 

 

 

// The pin where the IRQ from the touch screen is connected uses 

ESP-style GPIO_NUM_* instead of just pinnumber 

#define touchInterruptPin GPIO_NUM_27 

 

 

 

// Define the filesystem to be used. For now just SPIFFS. 

#define FILESYSTEM SPIFFS 

 

#include <SPIFFS.h>     // Filesystem support header 

 

const char *versionnumber = "1.0"; 

 

  /* Version 0.9.18a. 

   *  

   * Adding ESP32-S3 support 

   * Trying to add LitteFS Support 

   * Fix #89 

   * Fix #90 

  */ 

 

#include <pgmspace.h> // PROGMEM support header 

#include <FS.h>       // Filesystem support header 

   

#include <Preferences.h> // Used to store states before sleep/reboot 

 

#include <TFT_eSPI.h> // The TFT_eSPI library 

 

#if defined(USEUSBHID) 

 

  #include "USB.h" 

  #include "USBHIDKeyboard.h" 

  #include "Keydefines.h" 

  USBHIDKeyboard bleKeyboard; 

   

#else 

   

  #include <BleKeyboard.h> // BleKeyboard is used to communicate 



110 

over BLE 

  BleKeyboard bleKeyboard("FeiWeiFeiWei", "Made by me"); 

 

    // Checking for BLE Keyboard version 

  #ifndef BLE_KEYBOARD_VERSION 

    #warning Old BLE Keyboard version detected. Please update. 

    #define BLE_KEYBOARD_VERSION "Outdated" 

  #endif // !defined(BLE_KEYBOARD_VERSION)  

   

#endif // if 

 

#if defined(USE_NIMBLE) 

 

  #include "NimBLEDevice.h"   // Additional BLE functionaity using 

NimBLE 

  #include "NimBLEUtils.h"    // Additional BLE functionaity using 

NimBLE 

  #include "NimBLEBeacon.h"   // Additional BLE functionaity using 

NimBLE 

 

#else 

 

  #include "BLEDevice.h"   // Additional BLE functionaity 

  #include "BLEUtils.h"    // Additional BLE functionaity 

  #include "BLEBeacon.h"   // Additional BLE functionaity 

 

#endif // defined(USE_NIMBLE) 

 

#include "esp_sleep.h"   // Additional BLE functionaity 

#include "esp_bt_main.h"   // Additional BLE functionaity 

#include "esp_bt_device.h" // Additional BLE functionaity 

 

#include <ArduinoJson.h> // Using ArduinoJson to read and write 

config files 

 

#include <WiFi.h> // Wifi support 

 

#include <AsyncTCP.h>          //Async Webserver support header 

#include <ESPAsyncWebServer.h> //Async Webserver support header 

 

#include <ESPmDNS.h> // DNS functionality 

 

#ifdef USECAPTOUCH 

  #include <Wire.h> 

  #include <FT6236.h> 

  FT6236 ts = FT6236(); 

#endif // defined(USECAPTOUCH) 

 

AsyncWebServer webserver(80); 

 

TFT_eSPI tft = TFT_eSPI(); 

 

Preferences savedStates; 

 

// This is the file name used to store the calibration data 

// You can change this to create new calibration files. 



111 

// The FILESYSTEM file name must start with "/". 

#define CALIBRATION_FILE "/TouchCalData" 

 

// Set REPEAT_CAL to true instead of false to run calibration 

// again, otherwise it will only be done once. 

// Repeat calibration if you change the screen rotation. 

#define REPEAT_CAL false 

 

// Set the width and height of your screen here: 

#define SCREEN_WIDTH 480 

#define SCREEN_HEIGHT 320 

 

// Keypad start position, centre of the first button 

#define KEY_X SCREEN_WIDTH / 6 

#define KEY_Y SCREEN_HEIGHT / 4 

 

// Gaps between buttons 

#define KEY_SPACING_X SCREEN_WIDTH / 24 

#define KEY_SPACING_Y SCREEN_HEIGHT / 16 

 

// Width and height of a button 

#define KEY_W (SCREEN_WIDTH / 3) - KEY_SPACING_X 

#define KEY_H (SCREEN_WIDTH / 3) - KEY_SPACING_Y 

 

// Font size multiplier 

#define KEY_TEXTSIZE 1 

 

// Text Button Label Font 

#define LABEL_FONT &FreeSansBold12pt7b 

 

// placeholder for the pagenumber we are on (0 indicates home) 

int pageNum = 0; 

 

// Initial LED brightness 

int ledBrightness = 255; 

 

// Every button has a row associated with it 

uint8_t rowArray[6] = {0, 0, 0, 1, 1, 1}; 

// Every button has a column associated with it 

uint8_t colArray[6] = {0, 1, 2, 0, 1, 2}; 

 

//path to the directory the logo are in ! including leading AND 

trailing / ! 

char logopath[64] = "/logos/"; 

 

// templogopath is used to hold the complete path of an image. It is 

empty for now. 

char templogopath[64] = ""; 

 

// Struct to hold the logos per screen 

struct Logos 

{ 

  char logo0[32]; 

  char logo1[32]; 

  char logo2[32]; 

  char logo3[32]; 

  char logo4[32]; 



112 

  char logo5[32]; 

}; 

 

// Struct Action: 3 actions and 3 values per button 

struct Actions 

{ 

  uint8_t action0; 

  uint8_t value0; 

  char symbol0[64]; 

  uint8_t action1; 

  uint8_t value1; 

  char symbol1[64]; 

  uint8_t action2; 

  uint8_t value2; 

  char symbol2[64]; 

}; 

 

// Each button has an action struct in it 

struct Button 

{ 

  struct Actions actions; 

  bool latch; 

  char latchlogo[32]; 

}; 

 

// Each menu has 6 buttons 

struct Menu 

{ 

  struct Button button0; 

  struct Button button1; 

  struct Button button2; 

  struct Button button3; 

  struct Button button4; 

  struct Button button5; 

}; 

 

// Struct to hold the general logos. 

struct Generallogos 

{ 

  char homebutton[64]; 

  char configurator[64]; 

}; 

 

//Struct to hold the general config like colours. 

struct Config 

{ 

  uint16_t menuButtonColour; 

  uint16_t functionButtonColour; 

  uint16_t backgroundColour; 

  uint16_t latchedColour; 

  bool sleepenable; 

  uint16_t sleeptimer; 

  bool beep; 

  uint8_t modifier1; 

  uint8_t modifier2; 

  uint8_t modifier3; 

  uint16_t helperdelay; 



113 

}; 

 

struct Wificonfig 

{ 

  char ssid[64]; 

  char password[64]; 

  char wifimode[9]; 

  char hostname[64]; 

  uint8_t attempts; 

  uint16_t attemptdelay; 

}; 

 

// Array to hold all the latching statuses 

bool islatched[30] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 

 

// Create instances of the structs 

Wificonfig wificonfig; 

 

Config generalconfig; 

 

Generallogos generallogo; 

 

Logos screen0; 

Logos screen1; 

Logos screen2; 

Logos screen3; 

Logos screen4; 

Logos screen5; 

Logos screen6; 

 

Menu menu1; 

Menu menu2; 

Menu menu3; 

Menu menu4; 

Menu menu5; 

Menu menu6; 

 

unsigned long previousMillis = 0; 

unsigned long Interval = 0; 

bool displayinginfo; 

char* jsonfilefail = ""; 

 

// Invoke the TFT_eSPI button class and create all the button 

objects 

TFT_eSPI_Button key[6]; 

 

//--------- Internal references ------------ 

// (this needs to be below all structs etc..) 

#include "ScreenHelper.h" 

#include "ConfigLoad.h" 

#include "DrawHelper.h" 

#include "ConfigHelper.h" 

#include "UserActions.h" 

#include "Action.h" 

#include "Webserver.h" 

#include "Touch.h" 



114 

 

//-------------------------------- SETUP ---------------------------

----------------------------------- 

 

void setup() 

{ 

 

  // Use serial port 

  Serial.begin(115200); 

  Serial.setDebugOutput(true); 

  Serial.println(""); 

 

  Serial.println("[INFO]: Loading saved brightness state"); 

  savedStates.begin("ftd", false); 

   

  ledBrightness = savedStates.getInt("ledBrightness", 255); 

 

  Serial.println("[INFO]: Reading latch stated back from memory:"); 

  savedStates.getBytes("latched", islatched, sizeof(islatched)); 

 

  for(int i = 0; i < sizeof(islatched); i++){ 

 

  Serial.print(islatched[i]); 

     

  } 

  Serial.println(""); 

 

#ifdef USECAPTOUCH 

  #ifdef CUSTOM_TOUCH_SDA 

    if (!ts.begin(40, CUSTOM_TOUCH_SDA, CUSTOM_TOUCH_SCL)) 

  #else 

    if (!ts.begin(40)) 

  #endif // defined(CUSTOM_TOUCH_SDA) 

  { 

    Serial.println("[WARNING]: Unable to start the capacitive 

touchscreen."); 

  } 

  else 

  { 

    Serial.println("[INFO]: Capacitive touch started!"); 

  } 

#endif // defined(USECAPTOUCH) 

 

  // Setup PWM channel and attach pin bl_pin 

  ledcSetup(0, 5000, 8); 

   

#ifdef TFT_BL 

  ledcAttachPin(TFT_BL, 0); 

#else 

  ledcAttachPin(32, 0); 

 

#endif // defined(TFT_BL) 

  ledcWrite(0, ledBrightness); // Start @ initial Brightness 

 

  // --------------- Init Display ------------------------- 

 

  // Initialise the TFT screen 



115 

  tft.init(); 

 

  // Set the rotation before we calibrate 

  tft.setRotation(1); 

 

  // Clear the screen 

  tft.fillScreen(TFT_BLACK); 

 

  esp_sleep_wakeup_cause_t wakeup_reason; 

  wakeup_reason = esp_sleep_get_wakeup_cause(); 

 

 

  // -------------- Start filesystem ---------------------- 

 

  if (!FILESYSTEM.begin()) 

  { 

    Serial.println("[ERROR]: FILESYSTEM initialisation failed!"); 

    drawErrorMessage("Failed to init FILESYSTEM! Did you upload the 

data folder?"); 

    while (1) 

      yield(); // We stop here 

  } 

  Serial.println("[INFO]: FILESYSTEM initialised."); 

 

  // Check for free space 

 

  Serial.print("[INFO]: Free Space: "); 

  Serial.println(FILESYSTEM.totalBytes() - FILESYSTEM.usedBytes()); 

 

  //------------------ Load Wifi Config ----------------------------

------------------ 

 

  Serial.println("[INFO]: Loading Wifi Config"); 

  if (!loadMainConfig()) 

  { 

    Serial.println("[WARNING]: Failed to load WiFi Credentials!"); 

  } 

  else 

  { 

    Serial.println("[INFO]: WiFi Credentials Loaded"); 

  } 

 

  // ----------------- Load webserver --------------------- 

 

  handlerSetup(); 

 

  // ------------------- Splash screen ------------------ 

 

  // If we are woken up we do not need the splash screen 

  if (wakeup_reason > 0) 

  { 

    // But we do draw something to indicate we are waking up 

    tft.setTextFont(2); 

    tft.println(" Waking up..."); 

  } 

  else 

  { 



116 

 

    // Draw a splash screen 

    drawBmp("/logos/freetouchdeck_logo.bmp", 0, 0); 

    tft.setCursor(1, 3); 

    tft.setTextFont(2); 

    tft.setTextSize(1); 

    tft.setTextColor(TFT_WHITE, TFT_BLACK); 

    tft.printf("Loading version %s\n", versionnumber); 

    Serial.printf("[INFO]: Loading version %s\n", versionnumber); 

  } 

 

// Calibrate the touch screen and retrieve the scaling factors 

#ifndef USECAPTOUCH 

  Serial.println("[INFO]: Waiting for touch calibration..."); 

  touch_calibrate(); 

  Serial.println("[INFO]: Touch calibration completed!"); 

#endif // !defined(USECAPTOUCH) 

 

  // Let's first check if all the files we need exist 

  if (!checkfile("/config/general.json")) 

  { 

    Serial.println("[ERROR]: /config/general.json not found!"); 

    while (1) 

      yield(); // Stop! 

  } 

 

  if (!checkfile("/config/homescreen.json")) 

  { 

    Serial.println("[ERROR]: /config/homescreen.json not found!"); 

    while (1) 

      yield(); // Stop! 

  } 

 

  if (!checkfile("/config/menu1.json")) 

  { 

    Serial.println("[ERROR]: /config/menu1.json not found!"); 

    while (1) 

      yield(); // Stop! 

  } 

 

  if (!checkfile("/config/menu2.json")) 

  { 

    Serial.println("[ERROR]: /config/menu2.json not found!"); 

    while (1) 

      yield(); // Stop! 

  } 

 

  if (!checkfile("/config/menu3.json")) 

  { 

    Serial.println("[ERROR]: /config/menu3.json not found!"); 

    while (1) 

      yield(); // Stop! 

  } 

 

  if (!checkfile("/config/menu4.json")) 

  { 

    Serial.println("[ERROR]: /config/menu4.json not found!"); 



117 

    while (1) 

      yield(); // Stop! 

  } 

 

  if (!checkfile("/config/menu5.json")) 

  { 

    Serial.println("[ERROR]: /config/menu5.json not found!"); 

    while (1) 

      yield(); // Stop! 

  } 

 

  // After checking the config files exist, actually load them 

  if(!loadConfig("general")){ 

    Serial.println("[WARNING]: general.json seems to be 

corrupted!"); 

    Serial.println("[WARNING]: To reset to default type 'reset 

general'."); 

    jsonfilefail = "general"; 

    pageNum = 10; 

  } 

 

    // Setup PWM channel for Piezo speaker 

 

#ifdef speakerPin 

  ledcSetup(2, 500, 8); 

 

if(generalconfig.beep){ 

  ledcAttachPin(speakerPin, 2); 

  ledcWriteTone(2, 600); 

  delay(150); 

  ledcDetachPin(speakerPin); 

  ledcWrite(2, 0); 

 

  ledcAttachPin(speakerPin, 2); 

  ledcWriteTone(2, 800); 

  delay(150); 

  ledcDetachPin(speakerPin); 

  ledcWrite(2, 0); 

 

  ledcAttachPin(speakerPin, 2); 

  ledcWriteTone(2, 1200); 

  delay(150); 

  ledcDetachPin(speakerPin); 

  ledcWrite(2, 0); 

} 

 

#endif // defined(speakerPin) 

 

  if(!loadConfig("homescreen")){ 

    Serial.println("[WARNING]: homescreen.json seems to be 

corrupted!"); 

    Serial.println("[WARNING]: To reset to default type 'reset 

homescreen'."); 

    jsonfilefail = "homescreen"; 

    pageNum = 10; 

  } 

  if(!loadConfig("menu1")){ 



118 

    Serial.println("[WARNING]: menu1.json seems to be corrupted!"); 

    Serial.println("[WARNING]: To reset to default type 'reset 

menu1'."); 

    jsonfilefail = "menu1"; 

    pageNum = 10; 

  } 

  if(!loadConfig("menu2")){ 

    Serial.println("[WARNING]: menu2.json seems to be corrupted!"); 

    Serial.println("[WARNING]: To reset to default type 'reset 

menu2'."); 

    jsonfilefail = "menu2"; 

    pageNum = 10; 

  } 

  if(!loadConfig("menu3")){ 

    Serial.println("[WARNING]: menu3.json seems to be corrupted!"); 

    Serial.println("[WARNING]: To reset to default type 'reset 

menu3'."); 

    jsonfilefail = "menu3"; 

    pageNum = 10; 

  } 

  if(!loadConfig("menu4")){ 

    Serial.println("[WARNING]: menu4.json seems to be corrupted!"); 

    Serial.println("[WARNING]: To reset to default type 'reset 

menu4'."); 

    jsonfilefail = "menu4"; 

    pageNum = 10; 

  } 

  if(!loadConfig("menu5")){ 

    Serial.println("[WARNING]: menu5.json seems to be corrupted!"); 

    Serial.println("[WARNING]: To reset to default type 'reset 

menu5'."); 

    jsonfilefail = "menu5"; 

    pageNum = 10; 

  } 

  Serial.println("[INFO]: All configs loaded"); 

 

   

 

  strcpy(generallogo.homebutton, "/logos/home.bmp"); 

  strcpy(generallogo.configurator, "/logos/wifi.bmp"); 

  Serial.println("[INFO]: General logos loaded."); 

 

  // Setup the Font used for plain text 

  tft.setFreeFont(LABEL_FONT); 

 

  //------------------BLE Initialization ---------------------------

--------------------------------------------- 

 

#if defined(USEUSBHID) 

 

  // initialize control over the keyboard: 

  bleKeyboard.begin(); 

  USB.begin();   

 

#else 

 

  Serial.println("[INFO]: Starting BLE"); 



119 

  bleKeyboard.begin(); 

 

#endif //if defined(USEUSBHID) 

 

  // ---------------- Printing version numbers ---------------------

-------------------------- 

   

#if defined(USEUSBHID) 

  Serial.println("[INFO]: Using USB Keyboard"); 

#else 

  Serial.print("[INFO]: BLE Keyboard version: "); 

  Serial.println(BLE_KEYBOARD_VERSION); 

#endif //if defined(USEUSBHID) 

 

  Serial.print("[INFO]: ArduinoJson version: "); 

  Serial.println(ARDUINOJSON_VERSION); 

  Serial.print("[INFO]: TFT_eSPI version: "); 

  Serial.println(TFT_ESPI_VERSION); 

 

  // ---------------- Start the first keypad ------------- 

 

  // Draw background 

  tft.fillScreen(generalconfig.backgroundColour); 

 

  // Draw keypad 

  Serial.println("[INFO]: Drawing keypad"); 

  drawKeypad(); 

 

#ifdef touchInterruptPin 

  if (generalconfig.sleepenable) 

  { 

    pinMode(touchInterruptPin, INPUT_PULLUP); 

    Interval = generalconfig.sleeptimer * 60000; 

    Serial.println("[INFO]: Sleep enabled."); 

    Serial.print("[INFO]: Sleep timer = "); 

    Serial.print(generalconfig.sleeptimer); 

    Serial.println(" minutes"); 

    islatched[28] = 1; 

  } 

#endif // defined(touchInterruptPin) 

 

  Serial.println("[INFO]: Boot completed and successful!"); 

 

} 

 

//--------------------- LOOP ---------------------------------------

------------------------------ 

 

void loop(void) 

{ 

   

  // Check if there is data available on the serial input that needs 

to be handled. 

   

  if (Serial.available()) 

  { 

 



120 

    String command = Serial.readStringUntil(' '); 

 

    if (command == "cal") 

    { 

      FILESYSTEM.remove(CALIBRATION_FILE); 

      ESP.restart(); 

    } 

    else if (command == "setssid") 

    { 

 

      String value = Serial.readString(); 

      if (saveWifiSSID(value)) 

      { 

        Serial.printf("[INFO]: Saved new SSID: %s\n", 

value.c_str()); 

        loadMainConfig(); 

        Serial.println("[INFO]: New configuration loaded"); 

      } 

    } 

    else if (command == "setpassword") 

    { 

      String value = Serial.readString(); 

      if (saveWifiPW(value)) 

      { 

        Serial.printf("[INFO]: Saved new Password: %s\n", 

value.c_str()); 

        loadMainConfig(); 

        Serial.println("[INFO]: New configuration loaded"); 

      } 

    } 

    else if (command == "setwifimode") 

    { 

      String value = Serial.readString(); 

      if (saveWifiMode(value)) 

      { 

        Serial.printf("[INFO]: Saved new WiFi Mode: %s\n", 

value.c_str()); 

        loadMainConfig(); 

        Serial.println("[INFO]: New configuration loaded"); 

      } 

    } 

    else if (command == "restart") 

    { 

      Serial.println("[WARNING]: Restarting"); 

      ESP.restart(); 

    } 

 

    else if (command == "reset") 

    { 

      String file = Serial.readString(); 

      Serial.printf("[INFO]: Resetting %s.json now\n", 

file.c_str()); 

      resetconfig(file); 

    } 

     

    else if(command == "menu1" && pageNum !=1 && pageNum != 7) 

    { 



121 

      pageNum = 1; 

      drawKeypad(); 

      Serial.println("Auto Switched to Menu 1"); 

    } 

   

    else if(command == "menu2" && pageNum !=2 && pageNum != 7) 

    { 

 

      pageNum = 2; 

      drawKeypad(); 

      Serial.println("Auto Switched to Menu 2"); 

    } 

    

    else if(command == "menu3" && pageNum !=3 && pageNum != 7) 

    { 

 

      pageNum = 3; 

      drawKeypad(); 

      Serial.println("Auto Switched to Menu 3"); 

    } 

 

    else if(command == "menu4" && pageNum !=4 && pageNum != 7) 

    { 

 

      pageNum = 4; 

      drawKeypad(); 

      Serial.println("Auto Switched to Menu 4"); 

    } 

 

    else if(command == "menu5" && pageNum !=5 && pageNum != 7) 

    { 

 

      pageNum = 5; 

      drawKeypad(); 

      Serial.println("Auto Switched to Menu 5"); 

    } 

  } 

   

  if (pageNum == 7) 

  { 

      uint16_t t_x = 0, t_y = 0; 

      boolean pressed = false; 

 

    // If pageNum = 7, we are in STA or AP mode. 

    // We no check if the button is pressed, and if so restart. 

#ifdef USECAPTOUCH 

    if (ts.touched()) 

    { 

 

      // Retrieve a point 

      TS_Point p = ts.getPoint(); 

 

      //Flip things around so it matches our screen rotation 

      p.x = map(p.x, 0, 320, 320, 0); 

      t_y = p.x; 

      t_x = p.y; 

 



122 

      pressed = true; 

    } 

 

#else 

 

    pressed = tft.getTouch(&t_x, &t_y); 

 

#endif // defined(USECAPTOUCH) 

 

    if (pressed) 

    {      

      // If pressed check if the touch falls within the restart 

button 

      // drawSingleButton(140, 180, 200, 80, 

generalconfig.menuButtonColour, TFT_WHITE, "Restart"); 

      if (t_x > 140 && t_x < 340){ 

        if (t_y > 180 && t_y < 260){ 

          // Touch falls within the boundaries of our button so we 

restart 

          Serial.println("[WARNING]: Restarting"); 

          ESP.restart(); 

        } 

      } 

 

    } 

 

  } 

  else if (pageNum == 8) 

  { 

 

    if (!displayinginfo) 

    { 

      printinfo(); 

    } 

 

    uint16_t t_x = 0, t_y = 0; 

 

    //At the beginning of a new loop, make sure we do not use last 

loop's touch. 

    boolean pressed = false; 

 

#ifdef USECAPTOUCH 

    if (ts.touched()) 

    { 

 

      // Retrieve a point 

      TS_Point p = ts.getPoint(); 

 

      //Flip things around so it matches our screen rotation 

      p.x = map(p.x, 0, 320, 320, 0); 

      t_y = p.x; 

      t_x = p.y; 

 

      pressed = true; 

    } 

 

#else 



123 

 

    pressed = tft.getTouch(&t_x, &t_y); 

 

#endif // defined(USECAPTOUCH) 

 

    if (pressed) 

    {      

      displayinginfo = false; 

      pageNum = 6; 

      tft.fillScreen(generalconfig.backgroundColour); 

      drawKeypad(); 

    } 

  } 

  else if (pageNum == 9) 

  { 

 

    // We were unable to connect to WiFi. Waiting for touch to get 

back to the settings menu. 

    uint16_t t_x = 0, t_y = 0; 

 

    //At the beginning of a new loop, make sure we do not use last 

loop's touch. 

    boolean pressed = false; 

 

#ifdef USECAPTOUCH 

    if (ts.touched()) 

    { 

 

      // Retrieve a point 

      TS_Point p = ts.getPoint(); 

 

      //Flip things around so it matches our screen rotation 

      p.x = map(p.x, 0, 320, 320, 0); 

      t_y = p.x; 

      t_x = p.y; 

 

      pressed = true; 

    } 

 

#else 

 

    pressed = tft.getTouch(&t_x, &t_y); 

 

#endif // defined(USECAPTOUCH) 

 

    if (pressed) 

    {      

      // Return to Settings page 

      displayinginfo = false; 

      pageNum = 6; 

      tft.fillScreen(generalconfig.backgroundColour); 

      drawKeypad(); 

    } 

  } 

  else if (pageNum == 10) 

  { 

 



124 

    // A JSON file failed to load. We are drawing an error message. 

And waiting for a touch. 

    uint16_t t_x = 0, t_y = 0; 

 

    //At the beginning of a new loop, make sure we do not use last 

loop's touch. 

    boolean pressed = false; 

 

#ifdef USECAPTOUCH 

    if (ts.touched()) 

    { 

 

      // Retrieve a point 

      TS_Point p = ts.getPoint(); 

 

      //Flip things around so it matches our screen rotation 

      p.x = map(p.x, 0, 320, 320, 0); 

      t_y = p.x; 

      t_x = p.y; 

 

      pressed = true; 

    } 

 

#else 

 

    pressed = tft.getTouch(&t_x, &t_y); 

 

#endif // defined(USECAPTOUCH) 

 

    if (pressed) 

    {      

      // Load home screen 

      displayinginfo = false; 

      pageNum = 0; 

      tft.fillScreen(generalconfig.backgroundColour); 

      drawKeypad(); 

    } 

  } 

  else 

  { 

 

    // Check if sleep is enabled and if our timer has ended. 

 

#ifdef touchInterruptPin 

    if (generalconfig.sleepenable) 

    { 

      if (millis() > previousMillis + Interval) 

      { 

 

        // The timer has ended and we are going to sleep  . 

        tft.fillScreen(TFT_BLACK); 

        Serial.println("[INFO]: Going to sleep."); 

#ifdef speakerPin 

        if(generalconfig.beep){ 

        ledcAttachPin(speakerPin, 2); 

        ledcWriteTone(2, 1200); 

        delay(150); 



125 

        ledcDetachPin(speakerPin); 

        ledcWrite(2, 0); 

 

        ledcAttachPin(speakerPin, 2); 

        ledcWriteTone(2, 800); 

        delay(150); 

        ledcDetachPin(speakerPin); 

        ledcWrite(2, 0); 

 

        ledcAttachPin(speakerPin, 2); 

        ledcWriteTone(2, 600); 

        delay(150); 

        ledcDetachPin(speakerPin); 

        ledcWrite(2, 0); 

        } 

#endif // defined(speakerPin) 

        Serial.println("[INFO]: Saving latched states"); 

 

//        You could uncomment this to see the latch stated before 

going to sleep 

//        for(int i = 0; i < sizeof(islatched); i++){ 

//       

//        Serial.print(islatched[i]); 

//           

//        } 

//        Serial.println(""); 

 

        savedStates.putBytes("latched", &islatched, 

sizeof(islatched)); 

        esp_sleep_enable_ext0_wakeup(touchInterruptPin, 0); 

        esp_deep_sleep_start(); 

      } 

    } 

#endif // defined(touchInterruptPin) 

 

    // Touch coordinates are stored here 

    uint16_t t_x = 0, t_y = 0; 

 

    //At the beginning of a new loop, make sure we do not use last 

loop's touch. 

    boolean pressed = false; 

 

#ifdef USECAPTOUCH 

    if (ts.touched()) 

    { 

 

      // Retrieve a point 

      TS_Point p = ts.getPoint(); 

 

      //Flip things around so it matches our screen rotation 

      p.x = map(p.x, 0, 320, 320, 0); 

      t_y = p.x; 

      t_x = p.y; 

 

      pressed = true; 

    } 

 



126 

#else 

 

    pressed = tft.getTouch(&t_x, &t_y); 

 

#endif // defined(USECAPTOUCH) 

 

    // Check if the X and Y coordinates of the touch are within one 

of our buttons 

    for (uint8_t b = 0; b < 6; b++) 

    { 

      if (pressed && key[b].contains(t_x, t_y)) 

      { 

        key[b].press(true); // tell the button it is pressed 

 

        // After receiving a valid touch reset the sleep timer 

        previousMillis = millis(); 

      } 

      else 

      { 

        key[b].press(false); // tell the button it is NOT pressed 

      } 

    } 

 

    // Check if any key has changed state 

    for (uint8_t b = 0; b < 6; b++) 

    { 

      if (key[b].justReleased()) 

      { 

 

        // Draw normal button space (non inverted) 

 

        int col, row; 

 

        if (b == 0) 

        { 

          col = 0; 

          row = 0; 

        } 

        else if (b == 1) 

        { 

          col = 1; 

          row = 0; 

        } 

        else if (b == 2) 

        { 

          col = 2; 

          row = 0; 

        } 

        else if (b == 3) 

        { 

          col = 0; 

          row = 1; 

        } 

        else if (b == 4) 

        { 

          col = 1; 

          row = 1; 



127 

        } 

        else if (b == 5) 

        { 

          col = 2; 

          row = 1; 

        } 

 

        int index; 

 

        if (pageNum == 2) 

        { 

          index = b + 5; 

        } 

        else if (pageNum == 3) 

        { 

          index = b + 10; 

        } 

        else if (pageNum == 4) 

        { 

          index = b + 15; 

        } 

        else if (pageNum == 5) 

        { 

          index = b + 20; 

        } 

        else if (pageNum == 6) 

        { 

          index = b + 25; 

        } 

        else 

        { 

          index = b; 

        } 

 

        uint16_t buttonBG; 

        bool drawTransparent; 

 

        uint16_t imageBGColor; 

        if (islatched[index] && b < 5) 

        { 

          imageBGColor = getLatchImageBG(b); 

        } 

        else 

        { 

          imageBGColor = getImageBG(b); 

        } 

 

        if (imageBGColor > 0) 

        { 

          buttonBG = imageBGColor; 

          drawTransparent = false; 

        } 

        else 

        { 

          if (pageNum == 0) 

          { 

            buttonBG = generalconfig.menuButtonColour; 



128 

            drawTransparent = true; 

          } 

          else 

          { 

            if (pageNum == 6 && b == 5) 

            { 

              buttonBG = generalconfig.menuButtonColour; 

              drawTransparent = true; 

            } 

            else 

            { 

              buttonBG = generalconfig.functionButtonColour; 

              drawTransparent = true; 

            } 

          } 

        } 

        tft.setFreeFont(LABEL_FONT); 

        key[b].initButton(&tft, KEY_X + col * (KEY_W + 

KEY_SPACING_X), 

                          KEY_Y + row * (KEY_H + KEY_SPACING_Y), // 

x, y, w, h, outline, fill, text 

                          KEY_W, KEY_H, TFT_WHITE, buttonBG, 

TFT_WHITE, 

                          "", KEY_TEXTSIZE); 

        key[b].drawButton(); 

 

        // After drawing the button outline we call this to draw a 

logo. 

        if (islatched[index] && b < 5) 

        { 

          drawlogo(b, col, row, drawTransparent, true); 

        } 

        else 

        { 

          drawlogo(b, col, row, drawTransparent, false); 

        } 

      } 

 

      if (key[b].justPressed()) 

      { 

         

        // Beep 

        #ifdef speakerPin 

        if(generalconfig.beep){ 

          ledcAttachPin(speakerPin, 2); 

          ledcWriteTone(2, 600); 

          delay(50); 

          ledcDetachPin(speakerPin); 

          ledcWrite(2, 0); 

        } 

        #endif  

         

        int col, row; 

 

        if (b == 0) 

        { 

          col = 0; 



129 

          row = 0; 

        } 

        else if (b == 1) 

        { 

          col = 1; 

          row = 0; 

        } 

        else if (b == 2) 

        { 

          col = 2; 

          row = 0; 

        } 

        else if (b == 3) 

        { 

          col = 0; 

          row = 1; 

        } 

        else if (b == 4) 

        { 

          col = 1; 

          row = 1; 

        } 

        else if (b == 5) 

        { 

          col = 2; 

          row = 1; 

        } 

 

        tft.setFreeFont(LABEL_FONT); 

        key[b].initButton(&tft, KEY_X + col * (KEY_W + 

KEY_SPACING_X), 

                          KEY_Y + row * (KEY_H + KEY_SPACING_Y), // 

x, y, w, h, outline, fill, text 

                          KEY_W, KEY_H, TFT_WHITE, TFT_WHITE, 

TFT_WHITE, 

                          "", KEY_TEXTSIZE); 

        key[b].drawButton(); 

 

        //---------------------------------------- Button press 

handeling -------------------------------------------------- 

 

        if (pageNum == 0) //Home menu 

        { 

          if (b == 0) // Button 0 

          { 

            pageNum = 1; 

            drawKeypad(); 

          } 

          else if (b == 1) // Button 1 

          { 

            pageNum = 2; 

            drawKeypad(); 

          } 

          else if (b == 2) // Button 2 

          { 

            pageNum = 3; 

            drawKeypad(); 



130 

          } 

          else if (b == 3) // Button 3 

          { 

            pageNum = 4; 

            drawKeypad(); 

          } 

          else if (b == 4) // Button 4 

          { 

            pageNum = 5; 

            drawKeypad(); 

          } 

          else if (b == 5) // Button 5 

          { 

            pageNum = 6; 

            drawKeypad(); 

          } 

        } 

 

        else if (pageNum == 1) // Menu 1 

        { 

          if (b == 0) // Button 0 

          { 

            bleKeyboardAction(menu1.button0.actions.action0, 

menu1.button0.actions.value0, menu1.button0.actions.symbol0); 

            bleKeyboardAction(menu1.button0.actions.action1, 

menu1.button0.actions.value1, menu1.button0.actions.symbol1); 

            bleKeyboardAction(menu1.button0.actions.action2, 

menu1.button0.actions.value2, menu1.button0.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu1.button0.latch) 

            { 

              if (islatched[0]) 

              { 

                islatched[0] = 0; 

              } 

              else 

              { 

                islatched[0] = 1; 

              } 

            } 

          } 

          else if (b == 1) // Button 1 

          { 

            bleKeyboardAction(menu1.button1.actions.action0, 

menu1.button1.actions.value0, menu1.button1.actions.symbol0); 

            bleKeyboardAction(menu1.button1.actions.action1, 

menu1.button1.actions.value1, menu1.button1.actions.symbol1); 

            bleKeyboardAction(menu1.button1.actions.action2, 

menu1.button1.actions.value2, menu1.button1.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu1.button1.latch) 

            { 

              if (islatched[1]) 

              { 

                islatched[1] = 0; 

              } 

              else 



131 

              { 

                islatched[1] = 1; 

              } 

            } 

          } 

          else if (b == 2) // Button 2 

          { 

            bleKeyboardAction(menu1.button2.actions.action0, 

menu1.button2.actions.value0, menu1.button2.actions.symbol0); 

            bleKeyboardAction(menu1.button2.actions.action1, 

menu1.button2.actions.value1, menu1.button2.actions.symbol1); 

            bleKeyboardAction(menu1.button2.actions.action2, 

menu1.button2.actions.value2, menu1.button2.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu1.button2.latch) 

            { 

              if (islatched[2]) 

              { 

                islatched[2] = 0; 

              } 

              else 

              { 

                islatched[2] = 1; 

              } 

            } 

          } 

          else if (b == 3) // Button 3 

          { 

            bleKeyboardAction(menu1.button3.actions.action0, 

menu1.button3.actions.value0, menu1.button3.actions.symbol0); 

            bleKeyboardAction(menu1.button3.actions.action1, 

menu1.button3.actions.value1, menu1.button3.actions.symbol1); 

            bleKeyboardAction(menu1.button3.actions.action2, 

menu1.button3.actions.value2, menu1.button3.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu1.button3.latch) 

            { 

              if (islatched[3]) 

              { 

                islatched[3] = 0; 

              } 

              else 

              { 

                islatched[3] = 1; 

              } 

            } 

          } 

          else if (b == 4) // Button 4 

          { 

            bleKeyboardAction(menu1.button4.actions.action0, 

menu1.button4.actions.value0, menu1.button4.actions.symbol0); 

            bleKeyboardAction(menu1.button4.actions.action1, 

menu1.button4.actions.value1, menu1.button4.actions.symbol1); 

            bleKeyboardAction(menu1.button4.actions.action2, 

menu1.button4.actions.value2, menu1.button4.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu1.button4.latch) 



132 

            { 

              if (islatched[4]) 

              { 

                islatched[4] = 0; 

              } 

              else 

              { 

                islatched[4] = 1; 

              } 

            } 

          } 

          else if (b == 5) // Button 5 / Back home 

          { 

            pageNum = 0; 

            drawKeypad(); 

          } 

        } 

 

        else if (pageNum == 2) // Menu 2 

        { 

          if (b == 0) // Button 0 

          { 

            bleKeyboardAction(menu2.button0.actions.action0, 

menu2.button0.actions.value0, menu2.button0.actions.symbol0); 

            bleKeyboardAction(menu2.button0.actions.action1, 

menu2.button0.actions.value1, menu2.button0.actions.symbol1); 

            bleKeyboardAction(menu2.button0.actions.action2, 

menu2.button0.actions.value2, menu2.button0.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu2.button0.latch) 

            { 

              if (islatched[5]) 

              { 

                islatched[5] = 0; 

              } 

              else 

              { 

                islatched[5] = 1; 

              } 

            } 

          } 

          else if (b == 1) // Button 1 

          { 

            bleKeyboardAction(menu2.button1.actions.action0, 

menu2.button1.actions.value0, menu2.button1.actions.symbol0); 

            bleKeyboardAction(menu2.button1.actions.action1, 

menu2.button1.actions.value1, menu2.button1.actions.symbol1); 

            bleKeyboardAction(menu2.button1.actions.action2, 

menu2.button1.actions.value2, menu2.button1.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu2.button1.latch) 

            { 

              if (islatched[6]) 

              { 

                islatched[6] = 0; 

              } 

              else 



133 

              { 

                islatched[6] = 1; 

              } 

            } 

          } 

          else if (b == 2) // Button 2 

          { 

            bleKeyboardAction(menu2.button2.actions.action0, 

menu2.button2.actions.value0, menu2.button2.actions.symbol0); 

            bleKeyboardAction(menu2.button2.actions.action1, 

menu2.button2.actions.value1, menu2.button2.actions.symbol1); 

            bleKeyboardAction(menu2.button2.actions.action2, 

menu2.button2.actions.value2, menu2.button2.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu2.button2.latch) 

            { 

              if (islatched[7]) 

              { 

                islatched[7] = 0; 

              } 

              else 

              { 

                islatched[7] = 1; 

              } 

            } 

          } 

          else if (b == 3) // Button 3 

          { 

            bleKeyboardAction(menu2.button3.actions.action0, 

menu2.button3.actions.value0, menu2.button3.actions.symbol0); 

            bleKeyboardAction(menu2.button3.actions.action1, 

menu2.button3.actions.value1, menu2.button3.actions.symbol1); 

            bleKeyboardAction(menu2.button3.actions.action2, 

menu2.button3.actions.value2, menu2.button3.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu2.button3.latch) 

            { 

              if (islatched[8]) 

              { 

                islatched[8] = 0; 

              } 

              else 

              { 

                islatched[8] = 1; 

              } 

            } 

          } 

          else if (b == 4) // Button 4 

          { 

            bleKeyboardAction(menu2.button4.actions.action0, 

menu2.button4.actions.value0, menu2.button4.actions.symbol0); 

            bleKeyboardAction(menu2.button4.actions.action1, 

menu2.button4.actions.value1, menu2.button4.actions.symbol1); 

            bleKeyboardAction(menu2.button4.actions.action2, 

menu2.button4.actions.value2, menu2.button4.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu2.button4.latch) 



134 

            { 

              if (islatched[9]) 

              { 

                islatched[9] = 0; 

              } 

              else 

              { 

                islatched[9] = 1; 

              } 

            } 

          } 

          else if (b == 5) // Button 5 / Back home 

          { 

            pageNum = 0; 

            drawKeypad(); 

          } 

        } 

 

        else if (pageNum == 3) // Menu 3 

        { 

          if (b == 0) // Button 0 

          { 

            bleKeyboardAction(menu3.button0.actions.action0, 

menu3.button0.actions.value0, menu3.button0.actions.symbol0); 

            bleKeyboardAction(menu3.button0.actions.action1, 

menu3.button0.actions.value1, menu3.button0.actions.symbol1); 

            bleKeyboardAction(menu3.button0.actions.action2, 

menu3.button0.actions.value2, menu3.button0.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu3.button0.latch) 

            { 

              if (islatched[10]) 

              { 

                islatched[10] = 0; 

              } 

              else 

              { 

                islatched[10] = 1; 

              } 

            } 

          } 

          else if (b == 1) // Button 1 

          { 

            bleKeyboardAction(menu3.button1.actions.action0, 

menu3.button1.actions.value0, menu3.button1.actions.symbol0); 

            bleKeyboardAction(menu3.button1.actions.action1, 

menu3.button1.actions.value1, menu3.button1.actions.symbol1); 

            bleKeyboardAction(menu3.button1.actions.action2, 

menu3.button1.actions.value2, menu3.button1.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu3.button1.latch) 

            { 

              if (islatched[11]) 

              { 

                islatched[11] = 0; 

              } 

              else 



135 

              { 

                islatched[11] = 1; 

              } 

            } 

          } 

          else if (b == 2) // Button 2 

          { 

            bleKeyboardAction(menu3.button2.actions.action0, 

menu3.button2.actions.value0, menu3.button2.actions.symbol0); 

            bleKeyboardAction(menu3.button2.actions.action1, 

menu3.button2.actions.value1, menu3.button2.actions.symbol1); 

            bleKeyboardAction(menu3.button2.actions.action2, 

menu3.button2.actions.value2, menu3.button2.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu3.button2.latch) 

            { 

              if (islatched[12]) 

              { 

                islatched[12] = 0; 

              } 

              else 

              { 

                islatched[12] = 1; 

              } 

            } 

          } 

          else if (b == 3) // Button 3 

          { 

            bleKeyboardAction(menu3.button3.actions.action0, 

menu3.button3.actions.value0, menu3.button3.actions.symbol0); 

            bleKeyboardAction(menu3.button3.actions.action1, 

menu3.button3.actions.value1, menu3.button3.actions.symbol1); 

            bleKeyboardAction(menu3.button3.actions.action2, 

menu3.button3.actions.value2, menu3.button3.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu3.button3.latch) 

            { 

              if (islatched[13]) 

              { 

                islatched[13] = 0; 

              } 

              else 

              { 

                islatched[13] = 1; 

              } 

            } 

          } 

          else if (b == 4) // Button 4 

          { 

            bleKeyboardAction(menu3.button4.actions.action0, 

menu3.button4.actions.value0, menu3.button4.actions.symbol0); 

            bleKeyboardAction(menu3.button4.actions.action1, 

menu3.button4.actions.value1, menu3.button4.actions.symbol1); 

            bleKeyboardAction(menu3.button4.actions.action2, 

menu3.button4.actions.value2, menu3.button4.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu3.button4.latch) 



136 

            { 

              if (islatched[14]) 

              { 

                islatched[14] = 0; 

              } 

              else 

              { 

                islatched[14] = 1; 

              } 

            } 

          } 

          else if (b == 5) // Button 5 / Back home 

          { 

            pageNum = 0; 

            drawKeypad(); 

          } 

        } 

 

        else if (pageNum == 4) // Menu 4 

        { 

          if (b == 0) // Button 0 

          { 

            bleKeyboardAction(menu4.button0.actions.action0, 

menu4.button0.actions.value0, menu4.button0.actions.symbol0); 

            bleKeyboardAction(menu4.button0.actions.action1, 

menu4.button0.actions.value1, menu4.button0.actions.symbol1); 

            bleKeyboardAction(menu4.button0.actions.action2, 

menu4.button0.actions.value2, menu4.button0.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu4.button0.latch) 

            { 

              if (islatched[15]) 

              { 

                islatched[15] = 0; 

              } 

              else 

              { 

                islatched[15] = 1; 

              } 

            } 

          } 

          else if (b == 1) // Button 1 

          { 

            bleKeyboardAction(menu4.button1.actions.action0, 

menu4.button1.actions.value0, menu4.button1.actions.symbol0); 

            bleKeyboardAction(menu4.button1.actions.action1, 

menu4.button1.actions.value1, menu4.button1.actions.symbol1); 

            bleKeyboardAction(menu4.button1.actions.action2, 

menu4.button1.actions.value2, menu4.button1.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu4.button1.latch) 

            { 

              if (islatched[16]) 

              { 

                islatched[16] = 0; 

              } 

              else 



137 

              { 

                islatched[16] = 1; 

              } 

            } 

          } 

          else if (b == 2) // Button 2 

          { 

            bleKeyboardAction(menu4.button2.actions.action0, 

menu4.button2.actions.value0, menu4.button2.actions.symbol0); 

            bleKeyboardAction(menu4.button2.actions.action1, 

menu4.button2.actions.value1, menu4.button2.actions.symbol1); 

            bleKeyboardAction(menu4.button2.actions.action2, 

menu4.button2.actions.value2, menu4.button2.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu4.button2.latch) 

            { 

              if (islatched[17]) 

              { 

                islatched[17] = 0; 

              } 

              else 

              { 

                islatched[17] = 1; 

              } 

            } 

          } 

          else if (b == 3) // Button 3 

          { 

            bleKeyboardAction(menu4.button3.actions.action0, 

menu4.button3.actions.value0, menu4.button3.actions.symbol0); 

            bleKeyboardAction(menu4.button3.actions.action1, 

menu4.button3.actions.value1, menu4.button3.actions.symbol1); 

            bleKeyboardAction(menu4.button3.actions.action2, 

menu4.button3.actions.value2, menu4.button3.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu4.button3.latch) 

            { 

              if (islatched[18]) 

              { 

                islatched[18] = 0; 

              } 

              else 

              { 

                islatched[18] = 1; 

              } 

            } 

          } 

          else if (b == 4) // Button 4 

          { 

            bleKeyboardAction(menu4.button4.actions.action0, 

menu4.button4.actions.value0, menu4.button4.actions.symbol0); 

            bleKeyboardAction(menu4.button4.actions.action1, 

menu4.button4.actions.value1, menu4.button4.actions.symbol1); 

            bleKeyboardAction(menu4.button4.actions.action2, 

menu4.button4.actions.value2, menu4.button4.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu4.button4.latch) 



138 

            { 

              if (islatched[19]) 

              { 

                islatched[19] = 0; 

              } 

              else 

              { 

                islatched[19] = 1; 

              } 

            } 

          } 

          else if (b == 5) // Button 5 / Back home 

          { 

            pageNum = 0; 

            drawKeypad(); 

          } 

        } 

 

        else if (pageNum == 5) // Menu 5 

        { 

          if (b == 0) // Button 0 

          { 

            bleKeyboardAction(menu5.button0.actions.action0, 

menu5.button0.actions.value0, menu5.button0.actions.symbol0); 

            bleKeyboardAction(menu5.button0.actions.action1, 

menu5.button0.actions.value1, menu5.button0.actions.symbol1); 

            bleKeyboardAction(menu5.button0.actions.action2, 

menu5.button0.actions.value2, menu5.button0.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu5.button0.latch) 

            { 

              if (islatched[20]) 

              { 

                islatched[20] = 0; 

              } 

              else 

              { 

                islatched[20] = 1; 

              } 

            } 

          } 

          else if (b == 1) // Button 1 

          { 

            bleKeyboardAction(menu5.button1.actions.action0, 

menu5.button1.actions.value0, menu5.button1.actions.symbol0); 

            bleKeyboardAction(menu5.button1.actions.action1, 

menu5.button1.actions.value1, menu5.button1.actions.symbol1); 

            bleKeyboardAction(menu5.button1.actions.action2, 

menu5.button1.actions.value2, menu5.button1.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu5.button1.latch) 

            { 

              if (islatched[21]) 

              { 

                islatched[21] = 0; 

              } 

              else 



139 

              { 

                islatched[21] = 1; 

              } 

            } 

          } 

          else if (b == 2) // Button 2 

          { 

            bleKeyboardAction(menu5.button2.actions.action0, 

menu5.button2.actions.value0, menu5.button2.actions.symbol0); 

            bleKeyboardAction(menu5.button2.actions.action1, 

menu5.button2.actions.value1, menu5.button2.actions.symbol1); 

            bleKeyboardAction(menu5.button2.actions.action2, 

menu5.button2.actions.value2, menu5.button2.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu5.button2.latch) 

            { 

              if (islatched[22]) 

              { 

                islatched[22] = 0; 

              } 

              else 

              { 

                islatched[22] = 1; 

              } 

            } 

          } 

          else if (b == 3) // Button 3 

          { 

            bleKeyboardAction(menu5.button3.actions.action0, 

menu5.button3.actions.value0, menu5.button3.actions.symbol0); 

            bleKeyboardAction(menu5.button3.actions.action1, 

menu5.button3.actions.value1, menu5.button3.actions.symbol1); 

            bleKeyboardAction(menu5.button3.actions.action2, 

menu5.button3.actions.value2, menu5.button3.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu5.button3.latch) 

            { 

              if (islatched[23]) 

              { 

                islatched[23] = 0; 

              } 

              else 

              { 

                islatched[23] = 1; 

              } 

            } 

          } 

          else if (b == 4) // Button 4 

          { 

            bleKeyboardAction(menu5.button4.actions.action0, 

menu5.button4.actions.value0, menu5.button4.actions.symbol0); 

            bleKeyboardAction(menu5.button4.actions.action1, 

menu5.button4.actions.value1, menu5.button4.actions.symbol1); 

            bleKeyboardAction(menu5.button4.actions.action2, 

menu5.button4.actions.value2, menu5.button4.actions.symbol2); 

            bleKeyboard.releaseAll(); 

            if (menu5.button4.latch) 



140 

            { 

              if (islatched[24]) 

              { 

                islatched[24] = 0; 

              } 

              else 

              { 

                islatched[24] = 1; 

              } 

            } 

          } 

          else if (b == 5) // Button 5 / Back home 

          { 

            pageNum = 0; 

            drawKeypad(); 

          } 

        } 

 

        else if (pageNum == 6) // Settings page 

        { 

          if (b == 0) // Button 0 

          { 

            bleKeyboardAction(11, 1, 0); 

          } 

          else if (b == 1) // Button 1 

          { 

            bleKeyboardAction(11, 2, 0); 

          } 

          else if (b == 2) // Button 2 

          { 

            bleKeyboardAction(11, 3, 0); 

          } 

          else if (b == 3) // Button 3 

          { 

            bleKeyboardAction(11, 4, 0); 

            if (islatched[28]) 

            { 

              islatched[28] = 0; 

            } 

            else 

            { 

              islatched[28] = 1; 

            } 

          } 

          else if (b == 4) // Button 4 

          { 

            pageNum = 8; 

            drawKeypad(); 

          } 

          else if (b == 5) 

          { 

            pageNum = 0; 

            drawKeypad(); 

          } 

        } 

 

        delay(10); // UI debouncing 



141 

      } 

    } 

  } 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


