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ABSTRACT 

Accurate streamflow forecasting is imperative for efficient water resources 

management. Yet, precise prediction of streamflow is difficult owing to the 

underlying complex relationships between variables, as well as the 

accompanying nonstationary and nonlinearity of the problem. Therefore, 

application of the hybrid ANN model has been given much consideration for its 

capabilities in delivering high predictive accuracy in hydrological forecasting. 

This study aims to assess the performance of short, medium and long term 

streamflow prediction by hybrid ANN model, after conducting thorough 

investigation on wavelet decomposition and developing the most accurate 

model. Historical streamflow data obtained from the Department of Irrigation 

and Drainage was separated into training and testing data set by a 80%:20% 

ratio, respectively. Data pre-processing was conducted by stationary wavelet 

transformation. In total, 12 different models with various combinations of 2 

scenarios, 2 cases and 3 wavelets, including sym5, db5 and coif5 were used to 

predict streamflow. The improvement of hyperparameter tuning and hybrid 

model were verified, where tuning improved the models by a range of 0.93% to 

68.17%, whereas hybrid models received 1082.78% to 1612.64% improvement 

as compared to the standalone model. By majority, S1 models have better 

performance than S2 models, while C1 models have better performance than C2 

models. No wavelet was observed to exhibit apparent advantage. The best 

performing model was identified by the visualizations through the Taylor 

diagram and the Violin diagram and it was the S1*C1sym5 model that stood out. 

Prediction with this model had revealed that short term prediction is the most 

accurate, followed by the medium and long term predctions. By comparison 

then, the loss of accuracy in terms of (R2, RMSE, MAE) for the medium and 

long term respectively, are (95.18%, 1923.37%, 2070.52%) and (95.56%, 

4811.91%，3920.38%). Applications of different ANN learning algorithms 

such as grid search and random search; implementation of quantitative analysis 

to assess the similarity between wavelet and input time series; comparison of 

DWT and SWT; as well as combination of decomposed wavelets from different 

wavelet families; are but some of the  recommended for future similar works. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Accurate hydrological forecasting is challenging, not only because of the 

complicated underlying physical theory of the problem but also owing to the 

presence of nonlinearity, nonstationary, and uncertainty in the system (Feng et 

al., 2022). Regardless of the difficulty, precise hydrological prediction is of 

utmost significance to provide reliable information as the prerequisite data of 

water resources management. Amongst the hydrological forecasting problems, 

streamflow forecasting is frequently investigated to explore possible 

modifications for higher predictive accuracy. Indeed, the topic of streamflow 

forecasting is worth studying, considering its contribution to water resources 

planning. Depending on the forecast lead time, streamflow forecasting could be 

classified as short-term or long-term forecasting with different significance. 

Short-term forecasting facilitates decision making in domestic water reticulation 

systems and irrigation management, whereas long-term forecasting provides 

insight for effective agricultural strategies and reservoir operation, as well as 

floods and droughts management (Kambalimath and Deka, 2021; Li, Wang and 

Qiu, 2019; Poul, Shourian and Ebrahimi, 2019). Similar to other typical 

hydrological forecasting problems, streamflow forecasting is subjected to 

nonlinearity and nonstationary results by factors including but not limited to 

upstream flow conditions, climatic factors, and riverbed properties 

(Kambalimath and Deka, 2021).  

 The predictive models of hydrological forecasting have developed 

progressively from physical models to statistical models and eventually to data-

driven models. The conventional physical model is developed by simulating the 

complex hydrological process with a set of related equations (Li, Wang, and 

Qiu, 2019). The application of a physical model requires an understanding of 

the underlying physical relationships of the parameters, which are often 

sophisticated, as well as a large data set for calibration. Despite the high 

computation difficulty, the predictive accuracy of the physical model is not 

guaranteed. Due to the complexity and scarcity of streamflow, low predictive 
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accuracy is typically found for streamflow forecasting (Feng et al., 2022). Some 

notable statistical methods, such as multiple linear regression and 

autoregression, are created to increase the prediction accuracy of streamflow 

forecasting issues, albeit the massive improvement observed compared to the 

physical model, these statistical models are incapable of handling nonlinear and 

nonstationary problems, which is almost certainly the case with streamflow 

forecasting (Adamowski and Sun, 2010). To date, data-driven models have 

become the prominent predictive models in hydrological forecasting. The 

capacity of data-driven models to detect the hidden link between parameters 

without having to grasp the complicated underlying relationship contributes to 

their efficacy in streamflow forecasting. Thus, data-driven models are capable 

of delivering highly accurate prediction results with minimum computation 

effort and data requirements, even in nonlinear problems (Zhou, Liu, and Duan, 

2020). 

Given its simplicity and efficacy, artificial intelligence in hydrological 

forecasting is fast gaining appeal. Amongst the variety of artificial intelligence 

approaches, the artificial neural network (ANN) and the support vector machine 

(SVM) are inarguably of the highest commonality and effectiveness. Despite 

being a member of the black box family, which is implicit and difficult to 

interpret, the accuracy of the artificial intelligence approach has no comparable 

alternatives (Poul, Shourian, and Ebrahimi, 2019). The ANN algorithm is 

sufficiently robust to identify the hidden association of parameters that resemble 

the function of the human brain. The SVM, employs a kernel function to avoid 

the computation of complex relationships between data and identify the 

mapping pattern between parameters. However, the effectiveness of these data-

driven methods in forecasting nonlinear problems, limited predictive 

performances were observed in the presence of nonstationary time series (Leal, 

Costa, and Campos, 2019; Khan, Muhammad, and El-Shafie, 2020). In order to 

improve the performance of these models in nonstationary problems, the 

concept of data pre-processing is introduced to retrieve crucial information from 

the complex time series. Due to the ability to retrieve temporal and frequency 

information at various resolution levels, wavelet transformation is used as a 

signal decomposition. In fact, incorporating wavelet decomposition with neural 

networks has demonstrated significant improvement in many types of research 
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(Tayyab et al., 2017; Zhang, Zhang, and Singh, 2018; Xu, Chen, and Zhang, 

2021).  

 

1.2 Importance of the Study 

Efficient water resources management is vital in both the economic and 

environmental aspects. Proper flood and drought management may help lessen 

the economic and environmental damage caused by natural catastrophes. 

However, proper planning of water reticulation and agricultural strategies could 

increase the cost-effectiveness of water distribution. These judgments would be 

impossible to make without the assistance of a sophisticated hydrological 

forecasting model. Therefore, developing an accurate yet user-friendly 

predictive model is of utmost importance to provide reliable analysis of the 

effect of water resources strategies. This study investigates the effect of several 

influential factors on the model accuracy to provide insight into developing an 

accurate forecasting model. Specifically, this study compares the effect of 

different mother wavelets, different levels of decomposition, different 

combinations of decomposed wavelets, as well as univariate and multivariate 

forecasting models, which are essential in developing the most accurate 

forecasting model. 

 

1.3 Problem Statement 

Integrated artificial intelligence (AI) models and signal decomposition methods 

are popular approaches in hydrological forecasting. The discrete wavelet 

transform (DWT) and its derivative, the stationary wavelet transform (SWT), 

are popular signal decomposition methods due to their ability to identify 

temporal and frequency information at various resolution levels (Chong et al., 

2022; Chong, Lai and El-Shafie, 2019). Despite much research on univariate 

and multivariate forecasting model, a side-by-side comparison of both model 

has yet to be given. In addition, although extensive studies were conducted to 

investigate the performance of wavelet transformation, conclusive research on 

the selection of the mother wavelet and the level of decomposition for the best 

model performance is still lacking. Furthermore, the efficiency of wavelet 

transform in handling different forecasting lead times is also yet to be explored. 

Thus, it is desirable to compare the performance of wavelet transform in 



4 

different forecasting horizons. Nevertheless, even after multiple research have 

been conducted to exploit the problem, no unified outcome has been attained, 

as yet. 

 

1.4 Aim and Objectives 

The study aims to compare the performance of several wavelet transformation 

algorithms on short, medium, and long-term streamflow forecasting using 

wavelet-based artificial neural networks. Three specific objectives are outlined 

to be accomplished during the investigation, and they are:  

i. To conduct a thorough investigation of the performance of wavelet 

decomposition. 

ii. To develop the most accurate AI model with the optimized set of 

hyperparameters for the application of this study. 

iii. To assess the performance of the wavelet-incorporated model in 

different forecasting horizons. 

 

1.5 Scope and Limitation of the Study 

The scope of this study is focused on providing a thorough investigation of the 

performance of wavelet decomposition. This study considers the influence of 

different mother wavelets, different levels of decomposition and various 

combinations of decomposed wavelets. The comparison of univariate and 

multivariate models is also included in this study to investigate their superiority. 

While the best architecture suitable for all forecasting problems does not exist, 

the best-performing architectures of the ANN in this study are identified. The 

optimum architecture for the ANN is acquired by modifying the number of 

neurons and the hidden layer with the application of hyperparameter tuning. 

This study also includes the assessment of wavelet decomposition in different 

forecasting lead times. Moreover, statistical tests are to be performed to evaluate 

the performance of the models. 

 Nonetheless, certain limitations to this study should be considered in 

research. First of all, amongst the variety of AI models available, only ANN is 

considered. Although adding other AI models is possible, only the ANN was 

chosen to restrict the study's variables and focus on the changes in wavelet 

transformation. Only the SWT is applied in the wavelet transformation because 
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computing continuous wavelet transform (CWT) is redundant and time-

consuming (Zhou et al., 2020). The comparison between the DWT and SWT 

has been excluded from this study and could be considered in future works. 

Lastly, it is certain that variation in the proportion of training to the testing data 

set will affect the model performance (Loh et al., 2021). Again, this impact will 

not be examined in this study, to limit the number of variable parameters that 

contribute to the model's performance. 

 

1.6 Contribution of the Study  

The study provides informative insights into the performance of wavelet 

transformation under the influences of multiple factors, prior to presenting 

convincing evidence about the improvements to the AI models by incorporating 

wavelet transformation as a data pre-processing technique. The knowledge 

serve as the prerequisites for suggesting the applicability of AI models for 

streamflow forecasting, as well as establishing a starting point for future 

comparison or extension work.  

 

1.7 Outline of the Report 

Chapter 1: Introduction  

This chapter introduces the background to the application of AI models for 

streamflow forecasting. The significance of this study is explained through the 

narrative of the importance of study, aim and objectives, scope and limitation, 

as well as the contributions of this study.  

 

Chapter 2: Literature Review  

Ample  credited recent publications were thoroughly reviewed in this chapter to 

provide the comprehensive and inspirational knowledge on the topics of AI 

modelling and wavelet transformation.  

 

Chapter 3: Methodology and Work Plan  

This chapter describes the procedure and methodologies adopted in this study. 

Justification of the methodologies is provided by referring to the findings of 

literature review. The meticulous plan for the progress flow of the study is 

illustrated in a flowchart.   
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Chapter 4: Results and Discussion  

In this chapter, the results of the analyses are presented in an organized form to 

facilitate understanding to the readers. Necessary explanation and comparison 

were conducted to investigate the performance of the chosen AI models.  

 

Chapter 5: Conclusions and Recommendations   

This chapter summarises the gist of the study undertaken and concludes the 

findings of the study. Succinct yet precise conclusion, is produced for efficient 

review of all discussions. The recommendations for future extension work is 

also presented in this chapter.  
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

Detailed literature reviews of the relevant topics are presented in this chapter. 

The main works include the Artificial Neural Networks (ANNs), the wavelet 

transformation (WT), and the coupling of ANN and WT. The fundamental 

concept and theories of the works are revealed. Recent related research is 

extensively examined, as are the noted gaps in the study. This literature review 

also validates the approach used in this investigation.  

 

2.2 Neural Network  

2.2.1 Artificial Neural Network (ANN) 

An Artificial Neural Network (ANN) is a subset of Artificial Intelligence (AI) 

developed to resemble the problem-solving and decision-making abilities of the 

human brain. By the implementation of ANN, the recognition of hidden patterns 

between the input and output data without the knowledge of the underlying 

complex relationship is made possible. Indeed, the application of ANN in 

forecasting has become prevalent as it aborts the necessity of understanding the 

relationship among endogenous variables. A typical ANN is made up of five 

major components: inputs, weights, a threshold or bias, an activation function, 

and an output. The illustration in Figure 2.1 effectively explains the notion of 

the ANN. 
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Figure 2.1: Typical Structure of ANN (Fathian et al., 2019) 

 

 The basic units of ANN are pronounced neurons and linked by 

connections known as synapses. These neurons and synapses form a layer of 

input, single or multiple hidden layers and an output layer. Each neuron is 

assigned with a specific weight and threshold, whereby if the weighted output 

of the neuron exceeds its threshold, the neuron is activated. Upon the activation 

of the neuron, the transmission of data to the next layer will take place. In 

contrary, no data will be passed to the next layer if the threshold is not achieved. 

Most of the neural networks leverage a sigmoid activation function to provide 

continuous activation value instead of discrete binary value (IBM, 2020). A 

typical ANN could be mathematically expressed as: 

 

𝑦 = 𝑓 (∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖

𝑛

𝑖=1

) (2.1) 

 

where y indicates the output, f represents the activation function, while xi, wi and 

bi denote the input, weight and threshold of the ith neuron respectively. 

The forward propagation of the data from input to output is defined as 

feed-forward. Continuous adjustment of weight and threshold of each neuron is 

necessary to minimize the error of the output. The training of network can be 

accomplished by different algorithms such as back propagation, conjugate 

gradient and cascade correlation (Kişi, 2007). By the iterative training of the 
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algorithm, the parameters of the network ultimately converge at the local 

minimum, whereby the highest accuracy of the network is recorded. Apart from 

the parameters, the architecture of the network is also of major influence on the 

accuracy of the model (Zhang et al, 2018).  

The Back Propagation Neural Network (BPNN) is essentially a 

combination of Artificial Neural Network (ANN) and Back Propagation (BP) 

training algorithm. For this reason, the structure of a BPNN shares a high 

similarity with the structure of a basic ANN, with the error propagation being 

the only major difference. Apart from the aforementioned five components of 

ANN, a back propagation of error occurs in BPNN during the training of the 

model. A typical structure of BPNN is illustrated in Figure 2.2. 

 

 

Figure 2.2: Typical Structure of BPNN (Zhang, Ma and Zhang, 2018) 

 

 Training of ANN is mandatory to improve the accuracy of the model 

before implementation. The deviation between the forecasted value and the 

reference value could be minimized by adjusting the weight and threshold of 

every neuron (Zhao et al., 2021). For BPNN algorithm, the training is performed 

repetitively in two stages, namely the forward propagation of input and back 

propagation of error. The input data are initially transmitted from the input layer 

to the hidden layers for processing and eventually to the output layer. The 

accuracy of the output is then assessed. In case of unsatisfactory accuracy, the 

error will be back propagated to the hidden and output layers to modify their 

weight and threshold. This modification is carried out in the steepest descent 
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direction, which contributes to the highest reduction of the performance 

function (Kişi, 2007). The training of model is completed when the error of the 

model falls in the desired range, or when the predefined iteration number is 

reached. The assessment of error could be performed by utilizing the definition 

below: 

 

𝐸 =
1

𝑃
(∑ 𝐸𝑝

𝑃

𝑝=1

) (2.2) 

 

where E represents the global error, P is the total iteration of training and Ep 

denotes the error for the pth training, which is given as: 

 

𝐸𝑝 =
1

2
∑(𝑂𝑘 − 𝐷𝑘)2

𝑁

𝑘=1

(2.3) 

 

where N depicts the number of output node, Ok and Dk represent the obtained 

output and the reference output of kth output node, respectively (Cobaner et al., 

2010). Obviously, due to the cascading effect of the signal propagation, 

adjustment of weight and threshold of the neurons may significantly improve 

the predictive accuracy of the model (Chae et al., 2016).  

The accuracy of a developed network to a problem is dependent on the 

architecture of the network, including the number of hidden layers and neurons. 

Most researchers utilized empirical or trial and error method to reach the 

optimum architecture of the network (Sharma, Singh and Sharma, 2021; 

Falamarzi et al., 2014; Adamowski and Sun, 2010). Higher number of neurons 

do not guarantee a high accuracy of the network, instead, fluctuation of accuracy 

is observed after the number of hidden nodes exceeds a certain limit (Yan, Li 

and Gao, 2014). Sharma, Singh and Sharma (2021) had investigated the 

accuracy of ANN with different architecture. Four ANN models with different 

network architecture had been developed by the authors to predict the river flow 

of Sot river catchment in India. The study had demonstrated the difference 

between performance of models with different architecture. Significant 

improvement of the model was observed, as the model architecture was 
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modified to reckon the input of lag-1 river flow data. Although the authors had 

concluded the best performing architecture in their study, however, the best 

architecture of ANN is case-specific, hence the conclusion might not be 

applicable for other hydrological forecasting problems. Therefore, the necessity 

of identifying the best architecture of ANN in every forecasting problem 

through empirical or trial and error methods remains existing. Another 

influential factor of the model performance, which is the training algorithm 

incorporated in the ANN had been examined by Kişi (2007). In the research, the 

comparison of four different ANN learning algorithms namely cascade 

correlation, conjugate gradient, back propogation and Levenberg-Marquardt 

was carried out. Statistical interpretation of the results had revealed that 

although every algorithm has different performance ranking in different 

forecasting application, the Levenberg-Marquardt had appeared to be the best 

overall model.   

The performance of ANN in forecasting problems is often compared 

with other conventional statistical or data driven models, including but not 

limited to Least Squared based Method (LSM), Support Vector Machine (SVM) 

and ARIMA (Zhang, Zhang and Singh, 2018; Fashae et al., 2018; Zhang, Ma 

and Zhang, 2018). The performance comparison of ANN and SVM will be 

discussed in the later section, after the introduction to the algorithm of SVM. To 

date, numerous comparisons of ANN and ARIMA had been conducted to 

investigate the suitability of ANN as the superior alternative of ARIMA in 

forecasting problem involving nonlinear and nonstationary data (Toğa, Atalay 

and Toksari, 2021; Gui, Wu and Zhang, 2021; Nury, Hasan and Alam, 2017). 

In the research of Fashae et al. (2018), ARIMA was proven to have higher 

predictive accuracy than ANN, whereby the advantage is especially obvious 

when the input data are limited. Similar conclusions were drawn by Toğa, 

Atalay and Toksari (2021) and Gui, Wu and Zhang (2021), after comparing the 

performance of ARIMA and ANN in prediction. Despite the possible lower 

accuracy, ANN had displayed better performance and potential over ARIMA in 

problem with nonstationary time series data. With appropriate structure of ANN 

and increasing complexity of input data, there is a possibility for ANN to 

outperform ARIMA, as witnessed in the study of Zhang, Zhang and Singh 

(2018). The effectiveness of ANN in solving nonlinear and nonstationary 
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problem is also verified by Zhang, Ma and Zhang (2018), after recording an 

outstanding performance of ANN over LSM in predicting the nonlinear sea ice 

melting problem.  

Several modifications of ANN had been proposed to enhance its 

performance. Falamarzi et al. (2014) had developed a wavelet neural network 

(WNN), which is essentially a neural network with wavelet activation function 

instead of sigmoid activation function as in conventional ANN. The developed 

WNN was used to predict evapotranspiration and was found to have higher 

accuracy than regular ANN. Researchers also noticed the improvement of 

model accuracy by incorporating wavelet decomposition to the ANN model 

(Falamarzi et al., 2014; Zhang, Zhang and Singh, 2018). The contribution of 

signal decomposition to the predictive accuracy shall be discussed in the later 

section. Another notable modification of ANN is the development of hybrid 

ANN models. ANN is often coupled with other algorithms to exploit their 

respective strengths, and their results are often encouraging (Fathian et al., 2019; 

Khan, Muhammad and El-Shafie, 2020; Babu and Reddy, 2014). In the work of 

Babu and Reddy (2014), the researchers developed a hybrid model of ARIMA 

and ANN to predict time series data. This combination is reasonable considering 

the ample recorded literatures which suggest higher accuracy of ARIMA over 

ANN in linear problem, and the better capability of ANN to reckon nonlinear 

and nonstationary problem. Certainly, the hybrid model outperformed both 

standalone model of ARIMA and ANN in the study. The hybrid model of 

ARIMA and ANN was further reinforced by Khan, Muhammad and El-Shafie 

(2020) by adopting discrete wavelet transform (DWT) as the signal 

decomposition technique. As a result, the developed Wavelet-ARIMA-ANN 

model outperformed the single ANN and Wavelet-ANN, implying the positive 

contribution of both wavelet and ARIMA combination with ANN. The 

superiority of hybrid ANN over standalone models were also observed in the 

study of Fathian et al. (2019). 

In a nutshell, the utilization of ANN has made the prediction of complex 

hydrological problems without understanding the underlying relationship 

possible. The accuracy of ANN model is dependent on its architecture and the 

adopted training algorithm. Well-developed ANN could achieve higher 

forecasting accuracy than conventional statistical forecasting algorithm. Thus, 
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sound selection of training algorithm and network building is crucial for the 

performance of ANN. However, there is no conclusive standard in deciding the 

best ANN architecture, leaving the task to be done through time consuming trial 

and error method. To overcome its weaknesses and exploit its strength of being 

capable to perform well in nonlinear problems, hybrid models were developed 

by combining ANN with other algorithm such as ARIMA and wavelet 

activation function. Despite the encouraging performance of hybrid models, the 

best combining algorithm with ANN is yet to be identified, owing to the 

complexity resulted from numerous combinations of network architecture, 

training algorithm, as well as incorporating algorithm and type of input data.   

 

2.2.2 Support Vector Machine (SVM) 

The Support Vector Machine (SVM) is a machine learning algorithm developed 

from statistical learning theory. The implementation of SVM is widespread in 

hydrological field, owing to its robustness in solving classification and 

regression problems. The knowledge of support vector classification is 

prerequisite to understand the algorithm of SVM regression. The SVM classifies 

the input data by identifying the hyperplane that differentiates the data most 

precisely. The hyperplane is an established boundary of the separated data. The 

nearest data to the hyperplane, known as the support vectors, will determine the 

location and the orientation of the hyperplane. Out of all possible separating 

boundaries of the data, SVM will select the hyperplane with the highest margin, 

which is the distance from the support vector to the hyperplane. A basic linearly 

separable SVM model is demonstrated in Figure 2.3: 

 

 

Figure 2.3: Basic SVM Classification (Olyaie, Abyaneh and Mehr, 2017) 
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 In real hydrological cases, the data might not be separable by linear 

hyperplane. Thus, SVM employs a kernel function to map the input data from 

the original dimensional space to a higher dimensional space to obtain the 

hyperplane. The introduction of kernel function in SVM has simplified the 

identification of complex relationship between input and output data, by 

waiving the necessity of complicated mathematical transformation (Samantaray 

et al., 2022). Therefore, sound selection of kernel function is imperative for the 

high accuracy of SVM. Common mapping kernel functions include linear, 

polynomial and radial basis function (Raghavendra and Deka, 2014). 

 The capability of identifying complex input-output relationship has 

promoted the application of SVM in regression problem. Given a training set of 

data, SVM is capable of formulating the input-output relationship, which could 

then be utilized to forecast the output of a new input. The development of the 

SVM regression is subjected to the minimization of loss function, which is also 

known as the structural risk minimization principle (Yin et al., 2022). For a 

training data set denoted as: 

 

{𝑥𝑖, 𝑦𝑖}𝑖=1
𝑛 (2.4) 

 

where xi is the ith input vector to be mapped onto the corresponding output yi 

and n is the total number of data. The regression function inferred from the 

training data is:  

 

𝑔(𝑥𝑖) = 𝑤𝑖 . 𝜑(𝑥𝑖) + 𝑏 (2.5) 

 

where wi represents the weight vector, φ is a nonlinear mapping function that 

maps the input vector to a higher dimensional space and b indicates a bias. There 

are several variations of loss functions of the SVM to be minimized. One of the 

most commonly proposed loss function is the ε-insensitive loss function 

outlined below: 

 

𝐿𝜀(𝑦𝑖, 𝑔(𝑥𝑖) ) = {
0, |𝑦𝑖 − 𝑔(𝑥𝑖)| ≤ 𝜀

|𝑦𝑖 − 𝑔(𝑥𝑖)| − 𝜀, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2.6) 
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where Lε is the loss and ε is the error tolerance (Olyaie, Abyaneh and Mehr, 

2017). By solving the minimization problem of loss function subjected to 

multiple constraints, the regression function could eventually be evaluated as: 

 

𝑔(𝑥𝑖) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥, 𝑥𝑖) + 𝑏

𝑛

𝑖=1
(2.7) 

 

where αi and αi
* are the Lagrange multiplier and K(x,xi) represents the kernel 

function, which is expressed as: 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜑(𝑥𝑖) ∗ 𝜑(𝑥𝑗) (2.8) 

 

The graphical illustration of a SVM network architecture is presented in Figure 

2.4. 

 

 

Figure 2.4: Network of Typical SVM (Liu et al., 2022) 

  

 The application of SVM in hydrological forecasting is always 

compared with other forecasting methods especially ANN. A predictive 

accuracy comparison of SVM, ANN and linear genetic programming (LGP) 

was performed in the study of Olyaie, Abyaneh and Mehr (2017). The authors 

estimated the dissolved oxygen (DO) concentration in Delaware River with the 

three aforementioned models. By analysing the results, the authors concluded 

that SVM has better predictive performance over ANN and LGP. The superior 

accuracy of SVM over ANN was also verified by other researchers (Liu et al., 
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2022; Samantaray et al., 2022; Feng et al., 2022). Anyhow, the authors had 

emphasized on the importance of identifying more efficient optimization 

algorithm of SVM and ANN, as surging of predictive accuracy is possible with 

the presence of sound optimization algorithm.The variety of input data and size 

of training data set also contribute to the performance of the model. Indeed, with 

appropriate training algorithm and data pre-processing, ANN is capable of 

delivering higher accuracy over SVM, as witnessed in the study of Alquraish 

and Khadr (2021).  

 As an attempt to improve the performance of SVM, researchers had 

proposed hybrid SVM by combining conventional SVM and other algorithm. In 

the study of Yin et al. (2022), SVM was combined with quantile mapping (QM) 

and cumulative distribution function transform (CDFt) respectively to forecast 

precipitation. Although the conventional SVM had delivered satisfactory 

accuracy, both the combined models, namely SVM-QM and SVM-CDFt 

outperformed the conventional SVM by having higher accuracy and efficient 

computational time. In support of this, the SVM-SSA model developed by 

Samantaray et al. (2022) by combining SVM and Salp Swarm Algorithm (SSA) 

also demonstrated higher accuracy over the conventional SVM model. However, 

despite the improvements, some drawbacks of the hybrid model were also 

observed, which demanded further studies on the most appropriate 

incorporating algorithm.  

 The effect of input signal decomposition on the accuracy of SVM is 

investigated by numerous researchers (Feng et al., 2022; Kambalimath and 

Deka, 2021). Feng et al. (2022) employed the compete ensemble empirical 

mode decomposition with adaptive noise (CEEMDAN) to decompose the 

nonlinear and nonstationary hydrological time series data before inputting the 

data to the SVM model. The authors concluded that CEEMDAN or other signal 

decomposition techniques are capable of reducing the impact of nonlinearity on 

runoff data, after observing the higher accuracy of decomposed model over the 

controlled model. Owing to the fact that only one signal decomposition 

technique is applied in this study, the effectiveness of CEEMDAN over other 

comparable methods remains debatable. Nevertheless, improvement of model 

accuracy is guaranteed with the presence of signal decomposition. Kambalimath 

and Deka (2021) had adopted a different signal decomposition technique, which 
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is the discrete wavelet transform (DWT). Four different mother wavelets 

including Haar, Daubechies, Coiflets and Symlets were utilized to decompose 

the input data. Significant improvement on the model accuracy was noticed by 

the authors after coupling the model with DWT. However, the optimum 

decomposition level of each wavelet, which is crucial for the performance of 

model is not considered by the authors in this study. 

 Summarizing the findings of the section and referring to the advantages 

and disadvantages of SVM outlined by Raghavendra. N and Deka (2014), the 

strengths and weaknesses of SVM are identified. SVM regression has high 

accuracy, often higher than ANN as suggested by researchers (Liu et al., 2022; 

Samantaray et al., 2022; Feng et al., 2022). The utilization of kernel function in 

SVM is twofold, whereby it allows the classification of nonlinearly separable 

data by mapping the data onto higher dimensional space and simplifies the 

complex input-output relationship. Since SVM could work with relatively 

smaller sample size, the problem of model overfitting could be avoided. The 

presence of outlier data will have minimal effect on SVM as the hyperplane is 

only dictated by the support vectors. Some other advantages of SVM include 

good generalization performance and free from local minimum. Nevertheless, 

the weaknesses of SVM are also noticed, mainly on the difficulty in selecting 

the most appropriate kernel function and hyperparameters. Prolonged training 

process of SVM due to the iterative process of kernel and hyperparameters 

selection, as well as the complexity induced from kernel mapping is another 

main drawback of the algorithm.  

 

2.2.3 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a collaboration of 

ANN and Fuzzy Inference System (FIS) which adopts the principle of fuzzy 

logic. Before looking into the algorithm of ANFIS, the understanding of fuzzy 

logic is utmost important as the fundamental knowledge to the topic. Kaur and 

Mahajan (2015) provide a comprehensive introduction to the fuzzy logic by 

outlining its provision of intermediate values between absolute truth and 

absolute false. In traditional Boolean logic, true and false are defined with no 

transitional value to account for any intermediate. However, owing to the 

natural ambiguity and inaccuracy of the real world information, there are many 
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grey shades between the absolutes. Hence, the introduction of fuzzy logic is 

crucial to reckon the possible intermediate values, in pursuance of higher 

accuracy of the model. The difference of Boolean and fuzzy logic is depicted in 

Figure 2.5. 

 

 

Figure 2.5: Difference of Boolean and Fuzzy Logic (Kaur and Mahajan, 2015) 

 

 The ANFIS employs the mapping ability of FIS to create a relationship 

between input and output. The model is then optimized by the self-learning 

capability of ANN (Ghenai et al., 2022). The FIS is capable of recognising 

hidden pattern between data and adaptively formulate a fuzzy rule base for 

prediction. Thus, the application of ANFIS in streamflow forecasting is 

advantageous as it neglects the underlying complicated technical issue. Most 

ANFIS adopt the Takagi-Sugeno Inference model, which relates the input and 

output with a series of IF-THEN rules (Al-qaness et al., 2022). These rules are 

constituted by the linear combination of the crisp numerical inputs. For a model 

with two inputs denoted as x and y, the rules are given as: 

 

Rule 1: IF x is P1 and y is Q1, then 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 

Rule 2: IF x is P2 and y is Q2, then 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

 

with Pi and Qi being the fuzzy sets, fi indicates the output of the fuzzy region, 

while pi, qi and ri (i = 1, 2) denotes the model parameters subjected to 

improvement (Yaseen et al., 2017). The algorithm of ANFIS will be explained 

with the graphical illustration provided in Figure 2.6. 
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Figure 2.6: General Architecture of ANFIS (Al-qaness et al., 2022) 

 

 The Layer 1 of ANFIS is also known as the fuzzification layer. 

Conversion of crisp numerical input to linguistic output will occur within this 

layer. By adopting the membership function assigned to each neuron, the 

membership grades, which represent the degree of truth or falsehood of the 

inputs are determined. Examples of membership functions are continuous 

differentiable functions such as the Gaussian function, generalized bell-shaped 

function and  the triangular or trapezoidal shaped function. However, the 

Gaussian function is a superior membership function over the others due to its 

smoothness and concise definition by two optimizable parameters (Gholami et 

al., 2017). Gaussian function based ANFIS is proven to have higher forecasting 

accuracy through numerous trial and error iterations (Zhou, Guo and Chang, 

2019; Yaseen et al., 2017). The output of node i in the Layer 1, depicted as O1,i 

with a Gaussian membership function is given as:  

 

𝑂1,𝑖 = 𝜇𝐴𝑖(𝑥1) 𝑓𝑜𝑟 𝑖 = 1, 2      𝑜𝑟      𝑂1,𝑖 = 𝜇𝐵𝑖(𝑥2) 𝑓𝑜𝑟 𝑖 = 1, 2 (2.9) 

 

𝜇𝐴𝑖(𝑥1) = exp (
(𝑥 − 𝑐)2

2𝜎2
) (2.10)    

 

where x1 and x2 are the crisp numerical input to the ANFIS,  µAi and µBi represent 

the Gaussian membership function for fuzzy sets Ai and Bi respectively, c and σ 

are the conditional parameters of the function (Zhou, Guo and Chang, 2019).  

 The Layer 2 of the ANFIS determines the firing strength of the node. 

The firing strength is a quantitative measure of the degree of satisfactory of an 

input to the fuzzy rule. The inputs to the Layer 2 will undergo AND operation, 
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whereby their values are multiplied. Since the contribution of each input is 

multiplicative, this layer is also known as the product layer. The mathematical 

equation of the layer is presented below: 

 

𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑥1) × 𝜇𝐵𝑖(𝑥2) 𝑓𝑜𝑟 𝑖 = 1, 2 (2.11) 

 

where the output is also denoted as wi, the weight function to the next layer.  

 Normalization of the firing strength will take place in Layer 3. The 

normalized weight of ith node, depicted as �̅�𝑖, is the proportion of the ith node 

weight in Layer 2 to the total node weight in Layer 2, which is mathematically 

equivalent to: 

𝑂3,𝑖 = �̅�𝑖 =
𝑤𝑖

𝑤1 + 𝑤2 

 𝑓𝑜𝑟 𝑖 = 1, 2 (2.12) 

 

 The Layer 4 of the ANFIS is the defuzzification layer with adaptive 

nodes. Parameters in an adaptive node is optimizable by training. The 

defuzzification of the input to Layer 4 is performed by a linear function with 

adaptive parameters, as given by: 

 

𝑂4,𝑖 = �̅�𝑖𝑓𝑖 = �̅�𝑖(𝑝𝑖𝑥1 + 𝑞𝑖𝑥2 + 𝑟𝑖)  𝑓𝑜𝑟 𝑖 = 1, 2 (2.13) 

 

where pi, qi and ri are consequent parameters subjected to improvement. The 

improvement of these parameters could be accomplished by the self-learning 

capability of the ANN (Ghenai et al., 2022).  

 Finally, all the incoming signals are summarized in Layer 5, giving one 

final output. The accuracy of the output will then be assessed and the model is 

trained. The summation of all the weighted signals is calculated by:  

 

𝑂5,𝑖 = ∑ �̅�𝑖𝑓𝑖
𝑖

=  
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
 𝑓𝑜𝑟 𝑖 = 1, 2 (2.14) 

  

2.3 Wavelet Transformation  

The utilization of wavelet transform (WT) as the superior alternative of Fourier 

transform in time series analysis has been given much consideration since the 
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past decade, for it could provide multi-resolution analysis in both time and 

frequency domain (Zhou, Liu and Duan, 2020; Sharma, 2016). Although the 

satisfactory application of Fourier analysis in stationary time series, it has no 

distinguishable ability in the time domain, since time information is lost during 

Fourier Transformation (Wang, Guo and Duan, 2013). For nonstationary time 

series, provision of varied time and frequency resolution is made possible by 

the introduction of wavelet analysis. For low frequency information, low time 

resolution (long time intervals) and high frequency resolution (small frequency 

intervals) are utilized to detect the gradual changes of frequency; whereas for 

high frequency information, high time resolution and low frequency resolution 

are utilized to record the abrupt frequency changes in rapid time frame 

(Adamowski and Sun, 2010). Nourani, Komasi and Mano (2009) depicted the 

comparison of Fourier transform and wavelet transform as Figure 2.7: 

 

 

Figure 2.7: Comparison of Fourier and Wavelet Transform (Nourani, Komasi 

and Mano, 2009) 

 

 In Fourier transform, the basis function used to filter and decompose 

the time series is either trigonometric sine or cosine function, resulting in 

difficulty of reckoning time series with high difference of frequency (Falamarzi 

et al., 2014). Wavelet transform, allows the selection of the most suitable 

incorporating mother wavelet function by considering the characteristics of the 

time series to be investigated (Cheng et al., 2021; Falamarzi et al., 2014). 
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However, only functions with finite energy and fulfil the admissibility condition 

as follow could be selected as the mother wavelet (Sharma et al., 2016):  

 

𝐶𝜑 = 2𝜋 ∫
|�̅�(𝜔)2|

𝜔
𝑑𝜔 < ∞

+∞

−∞

(2.15) 

 

where �̅�(𝜔), the Fourier transforms of 𝜑(𝑡) is calculated by the equation below: 

 

�̅�(𝜔) =
1

√2𝜋
∫ 𝜑(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

+∞

−∞

(2.16) 

 

The advantage of wavelet over Fourier transformation in analysing 

nonstationary time series is owing to its characteristics of compactly supported, 

zero mean and irregularly shaped. A compactly supported function with its finite 

length could effectively represent a localized data; the irregular shape of a 

wavelet function facilitates the detection of discontinuity or abrupt shape 

changes in the time series data (Chong, Lai and El-Shafie, 2019). 

 There are several mother wavelets available for different shape of time 

series, including but not limited to Morlet, Haar, Daubechies and Coiflet, with 

Morlet being the most frequently adopted in hydrological application, owing to 

its fair balance of temporal and frequency localization (Bilgili et al., 2021; 

Cheng et al., 2021; Chong et al., 2022). From these mother wavelets, a daughter 

wavelet could be derived to best fit the investigated time series and thus return 

the most accurate correlation between the wavelet and the time series. The basic 

derivation of daughter wavelet from its mother wavelet could be mathematically 

expressed as:  

 

𝜑𝑎,𝑏(𝑛) =
1

√𝑎
𝜑 (

𝑛 − 𝑏

𝑎
) ;      𝑛, 𝑎, 𝑏 ∈ 𝑅, 𝑎 > 0 (2.17) 

 

whereby a is known as the scaling parameter which controls the dilation or 

shrinking of the wavelet; b is the shifting parameter which controls the position 

of the wavelet along the time series and R depicts the set of real number (Sharma 
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et al., 2016). The scaling and shifting parameters are responsible in determining 

the time and frequency resolution of the wavelet transformation. In case of a 

high scaling parameter, a, the daughter wavelet is stretched, thus having higher 

frequency resolution and lower time resolution. In contrary, for a low scaling 

parameter, the daughter wavelet is shrunken, delivering higher time resolution 

but lower frequency resolution. The shifting parameter is adjusted to translate 

the daughter wavelet across the time domain to retrieve localized data of the 

time series. Depending on the nature of these two parameters, there are three 

distinct transformations of mother wavelet to daughter wavelet, known as the 

continuous wavelet transform (CWT), discrete wavelet transform (DWT) and 

stationary wavelet transform (SWT). 

 

2.3.1 Continuous Wavelet Transform   

As suggested by the terminology, the continuous wavelet transform (CWT) 

utilizes the continuous real value for both the scaling and shifting parameters. 

Therefore, identification of global and localized features of the time series is 

feasible in CWT since detection of signals is performed in all scale (Zhou et al., 

2020). The CWT of an input time series could be defined as the convolution of 

the wavelet function and the time series, which is mathematically expressed as:  

 

𝑇(𝑎, 𝑏) =
1

√𝑎
∫ 𝜑∗ (

𝑡 − 𝑏

𝑎
) 𝑥(𝑡) 𝑑𝑡

+∞

−∞

(2.18) 

 

where T(a, b) depicts the wavelet coefficient corresponding to scaling factor a 

and shifting factor b; x(t) represents the input time series and 𝜑∗ indicates the 

complex conjugate of the wavelet function 𝜑(𝑡). Since all frequency and time 

data of the time series are preserved in CWT, recovery of the series is feasible 

through the inverse wavelet transformation, given as: 

 

𝑥(𝑡) =
1

𝑐𝜑
∫ ∫

1

√𝑎
𝜑 (

𝑡 − 𝑏

𝑎
) 𝑇(𝑎, 𝑏)

𝑑𝑎. 𝑑𝑏

𝑎2

∞

0

+∞

−∞

(2.19) 

 

whereby 𝑐𝜑 is the function energy as calculated previously in Equation 2.15. 
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 The major drawback of CWT is its data redundancy resulting from the 

continuous values of scaling and shifting parameters. The gigantic set of data 

necessitates long computation time and resources. Indeed, since practical time 

series are often sampled discretely, continuous values of scaling and shifting are 

usually not required to preserve the complete information of the original time 

series (Wang, Jin and Li, 2009). Therefore, to simplify the implementation of 

the wavelet transform, the discrete wavelet transform is introduced.  

 

2.3.2 Discrete Wavelet Transform 

In contrast to the continuous scaling and shifting parameter in CWT, the discrete 

wavelet transform (DWT) utilizes discrete parameters of the powers of 2, known 

as dyadic. Since only discrete dyadic scaling and shifting parameters are 

considered, the wavelet transformation from mother wavelet to daughter 

wavelet provided in Equation 2.17 could be rewritten as:  

 

𝜑𝑚,𝑛(𝑡) =
1

√2𝑚
𝜑(2−𝑚𝑡 − 𝑛) (2.20) 

 

where m and n are integer parameters for scaling and shifting respectively. 

Subsequently, the discrete wavelet coefficient could be computed by the 

convolution of the discrete wavelet and time series as:  

 

𝑇𝑚,𝑛 (𝑡) = 2−
𝑚

2 ∑ 𝜑(2−𝑚𝑡 − 𝑛)𝑥𝑡

𝑁−1

𝑡=0

(2.21) 

 

where 𝑇𝑚,𝑛 is the discrete wavelet coefficient corresponding to scaling 

parameter a = 2m and shifting parameter b = 2mn. This equation is applied to the 

finite time series, xt from t = 0 until t = N – 1, where N = 2M. Integer M governs 

the ranges of m and n, which are given as follows: 

 

1 ≤ 𝑚 ≤ 𝑀 (2.22) 

 

0 ≤ 𝑛 ≤ 2𝑀−𝑚 − 1 (2.23) 
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 In the process of DWT, the original time series will be iteratively 

decomposed by a high pass filter and a low pass filter at each decomposition 

level. The high pass filter produces detail coefficients while the low pass filter 

produces approximate coefficient, each having half the number of the input 

series. For every decomposition level, half of the coefficients, which are the 

detail coefficients will be retained, while the approximate coefficients will be 

passed down to the next level for recursive decomposition, until the desired level 

of decomposition. This process of halving coefficients in each level is known as 

decimation, which strengths and weaknesses are to be discussed later. Figure 

2.8 presents a comprehensive graphic of DWT, illustrated by Pandey, 

Kesharwani and Singh (2015). 

 

 

Figure 2.8: DWT by High Pass and Loss Pass Filter (Pandey, Kesharwani and 

Singh, 2015) 

 

 Similar to CWT, the reconstruction of the original time series is 

possible with DWT, by solving the inverse discrete transformation: 

 

𝑥𝑡 = �̅�(𝑡) + ∑ 𝑊𝑚(𝑡)

𝑀

𝑚=1

(2.24) 

 

in which �̅�(𝑡) depicts the approximate coefficient at the last level M, and the 

latter expression represents the summation of all detail coefficients, 𝑊𝑚(𝑡), 
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from every level of decomposition, which could be calculated by (Nourani, 

Komasi and Mano, 2009): 

 

𝑊𝑚(𝑡) = ∑ 𝑇𝑚,𝑛2−
𝑚

2 𝜑(2−𝑚𝑡 − 𝑛)

2𝑀−𝑚−1

𝑛=0

(2.25) 

 

 The reduction of data generation in DWT simplifies its implementation 

as compared to CWT. Employment of dyadic discretization of parameters, 

together with decimation is helpful in reducing data redundancy. While this is 

advantageous for applications such as data and image compression, it could 

have adverse effect on the accuracy of prediction problem, as less training data 

is available to the forecasting model (Zhou, Liu and Duan, 2020). Maheswaran 

and Khosa (2012) also emphasized on the lack of shift invariant property in 

DWT, whereby the resulted incapability of reckoning newly added data will 

lower the forecasting ability of the model. The authors therefore concluded that 

the implementation of DWT is not suitable in problems involving singularity 

detection, nonparametric regression and forecasting. Quilty and Adamowski 

(2018),  challenged the implementation of DWT in hydrological forecasting 

problems by considering the effect of boundary condition associated to wavelet 

decomposition. Three sources of boundary condition error were identified to be 

the utilization of future data, the inappropriate selection of decomposition level 

and wavelet filters, and also the careless separation of training and testing data. 

Ignorance of these boundary conditions often leads to optimistic forecasting 

accuracy of the model, which is in fact not practically achievable. Considering 

the drawback of DWT, the adoption of stationary wavelet transform is 

encouraged (Zhou, Liu and Duan, 2020; Quilty and Adamowski, 2018; 

Adamowski and Sun, 2010). 

 

2.3.3 Stationary Wavelet Transform  

The stationary wavelet transform (SWT), which is also known as the �̀� trous 

(AT) wavelet transform, is the derivative of DWT to incorporate shift invariant 

property in the transformation. In contrast to DWT, no decimation is 

implemented in SWT, conserving the length of wavelet components at each 
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decomposition level. The resulting gaps from SWT are filled with redundant 

information, by the introduction of padding mode inside the filters (Laha et al., 

2022). Despite the longer computation time and higher memory storage 

demanded by the redundant data, larger number of training data may facilitate 

the accurate calibration of the forecasting model.  

The desirable shift invariant property is obtained by giving up the 

decimation of data. To validate the property, Maheswaran and Khosa (2020) 

had investigated the effect of adding new data into the training set of SWT. As 

a result, uniform and consistent transform was observed before and after the 

addition of new data, guaranteeing the forecasting ability of SWT as opposed to 

the shift variant DWT.The aforementioned boundary condition error of DWT 

resulted from the inclusion of future data is mitigated in SWT, since the 

computation of SWT requires only data of present time index (Zhou, Liu and 

Duan, 2020).  For these reasons, it is rational to suggest that SWT is more 

applicable than DWT in forecasting problems. 

The computation of approximate and detail coefficients of SWT could 

be accomplished by applying the following equation (Maheswaran and Khosa, 

2012): 

 

𝑐𝑗(𝑡) = ∑ ℎ(𝑙)𝑐𝑗(𝑡 + 2𝑗−1𝑙)

∞

𝑡=−∞

(2.26) 

 

where 𝑐𝑗 is the approximate coefficient; h represents a low pass filter storing the 

wavelet function. The selection of wavelet function dictates the coefficients of 

the filter. After computing the approximate coefficient, the detail coefficient 𝑑𝑗, 

could be identified by calculating the difference of two consecutive approximate 

coefficients, expressed as:   

 

𝑑𝑗(𝑡) = 𝑐𝑗−1(𝑡) − 𝑐𝑗(𝑡) (2.27) 

 

It is also worth noticing that the input series is equal to the approximate 

coefficient at decomposition level 0, 𝑐0, therefore making the computation of 

𝑑1 possible. The reconstruction of the original series could be done by addictive 
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reconstruction, since the length of the signals are conserved. The reconstruction 

equation of SWT is given as (Kumar et al., 2021):  

 

𝑐0(𝑡) = ∑ 𝑐𝑗(𝑡) + 𝑑𝑗(𝑡)

𝐽

𝑗=1

(2.28) 

 

2.3.4 Application of Wavelet Transform  

The employment of wavelet transformation in forecasting model is prevalent to 

exploit its proven effectiveness in retaining time information. While the wavelet 

incorporation as signal decomposition method will be discussed in a designated 

section later, this section is focused in the application of wavelet transformation 

as the activation function of the forecasting model. Typically, conventional 

neural networks leverage a sigmoid function as the activation function of the 

neurons. Although the overall satisfactory performance, the sigmoid function 

may fail in recognizing abrupt shape changes of the input time series, thus 

resulting loss of useful information. However, in wavelet transformation, the 

most suitable incorporating mother wavelet could be selected from a variety of 

alternatives based on the input time series characteristics (Cheng et al., 2021).  

Sharma et al. (2016) had developed a mixed wavelet neural network 

(WNN) by replacing the sigmoid activation function of conventional ANN with 

wavelet function. By taking into consideration the nonstationarity and rapid 

varying frequency of the input series, a combination of the Mexican hat and 

Morlet wavelets were chosen. This combination was claimed by the authors as 

effective in detecting and localizing data in multiscale scenario. Similar 

approach was adopted by Falamarzi et al. (2014) in predicting the 

evapotranspiration from temperature and wind speed data. The results of these 

two researches agreed well with each other, whereby the WNN had 

demonstrated inarguably superior performance than the conventional ANN.  

The application of wavelet transformation (WT) in time series analysis 

has proven advantage over conventional signal processing method such as the 

Fourier Transform (FT). In the study of Chong, Lai and El-Shafie (2019), the 

authors compared the performance of wavelet and Fourier transform in 

analysing the river streamflow time series. Although both methods were capable 
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of detecting the trend of input series by identifying the periodic components, 

nonetheless, the time domain information of the input series was given up in the 

FT. Hence, the identification of occurrence time of a data is impossible after FT. 

Apart from the ability to preserve temporal information, the higher effectiveness 

of WT over FT was also verified by Leal, Costa and Campos (2019), who 

concluded that WT required shorter computation time to return higher 

performance than FT.The implementation of WT also allowed the further 

analysis of wavelet coherence. The wavelet coherence analysis was performed 

to investigate the relationship between time series data. The similarity in cyclic 

patterns of two input time series could be identified by wavelet coherence 

(Cheng et al., 2021). In fact, Chong et al. (2022) had conducted a wavelet 

coherence analysis to investigate the relationship between two time series, 

which were the standardized precipitation index (SPI) and the climatic indices. 

The wavelet coherence analysis was performed after the authors had identified 

the spatial and temporal patterns of droughts to reveal possible relationship 

between the time series, which FT is not capable of. 

Another novel application of the wavelet transform is the signal 

denoising. Typically, the signal denoising by wavelet transformation is 

accomplished through three general steps, namely the transformation, filtering 

and reconstruction. The noise coefficient is first computed and filtered out by a 

threshold. The remaining coefficients which exceed the threshold are then 

combined to reconstruct the denoised series. Kumar et al. (2021) had applied 

SWT in denoising electrocardiogram (ECG). The presence of noise in the 

studied ECG was resulted by power line interference and baseline wandering. 

These noises were filtered out by the aforementioned procedures with SWT. 

Other denoising method such as empirical mode decomposition and Fourier 

decomposition as well as DWT were also applied for performance comparison. 

After statistically comparing the results, the authors concluded that the SWT 

based ECG outperformed the alternatives. Indeed, apart from the performance 

of the wavelet, the optimization of threshold also plays a crucial role in 

effectively denoising the signal. An optimization algorithm known as the 

Particle Swarm Optimization (PSO) was proposed by Laha et al. (2022). It was 

observed from the study that the implementation of PSO could appropriately 

adjust the threshold, thus delivering higher performance of signal denoising, as 
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compared to the conventional denoising method known as Minimum Entropy 

Deconvolution (MED).  

 

2.4 Coupled Signal Decomposition and Neural Networks 

Hydrological forecasting problems are often accompanied by nonlinear and 

nonstationary time series data, together with complex variables relationship 

resulting from their endogeneity. To alleviate the computation difficulty, ANN 

is utilized in identifying the hidden mapping patterns of the data without the 

requisite of understanding the underlying complex relationship. The application 

of ANN has proven effectiveness and potential in solving nonstationary 

forecasting problems (Zhang, Ma and Zhang, 2018). That said, despite the 

satisfactory performance of standalone ANN models, enhancement could be 

anticipated by the incorporation of signals decomposition methods. Wavelet 

transformation decomposes the input time series into sub-signals for 

multiresolution analysis, which is helpful in capturing useful information from 

the nonstationary time series at different resolution (Zhou, Liu and Duan, 2020). 

Therefore, it is rational to expect higher predictive accuracy from the 

combination of wavelet decomposition and neural network forecasting, 

especially in hydrological forecasting considering the nonlinearity and 

nonstationarity of the input time series. Indeed, the effectiveness of coupled 

signal decomposition and neural networks in hydrological forecasting had been 

investigated deliberately, with encouraging effect observed in most studies (Xu, 

Chen and Zhang, 2021; Li, Wang and Qiu, 2019; Poul, Shourian and Ebrahimi, 

2019).  

 For verification of results and possible provision of supportive 

evidence, the literature review of the previous researches was performed in 

chronological order. The effectiveness of coupled wavelet decomposition and 

neural network was investigated by Adamowski and Sun (2010). The authors 

developed a coupled stationary wavelet transformation (SWT) and Levenberg 

Marquardt artificial neural network (LMNN) to forecast the short term 

streamflow of non-perennial river. The selection of LMNN was justified by the 

findings of Kişi (2007), who suggested that Levenberg Marquardt is the superior 

training algorithm for ANN. After comparing the performance of coupled model 

to standalone model, the authors concluded that signal decomposition had 



31 

significantly improved the performance of the ANN. This conclusion was then 

confirmed by many other researchers, guaranteeing the improvement of ANN 

accuracy by coupling of wavelet decomposition (Falamarzi et al., 2014; Poul, 

Shourian and Ebrahimi, 2019; Feng et al., 2022 ). Anyhow, the scope of this 

study was limited to the SWT and LMNN. Therefore, further investigation on 

the effect of different types of wavelet decomposition and different types of 

neural networks is demanded, in order to justify the reliability of the developed 

model.  

 Undoubtedly, the selection of incorporating neural network is of 

utmost importance in developing an effective coupled model. Considering its 

importance and complexity due to the numerous combinations with different 

wavelet transformation, the performance of different coupling neural networks 

is worth deliberate investigation (Zhang, Zhang and Singh, 2018; Poul, 

Shourian and Ebrahimi, 2019; Xu, Chen and Zhang, 2021). In the study of Poul, 

Shourian and Ebrahimi (2019), four different models including multi-linear 

regression (MLR), ANN, adaptive neuro-fuzzy inference system (ANFIS) and 

K-nearest neighbours (KNN) and their coupled models were compared. In terms 

of accuracy improvement, which was evaluated by Nash-Sutcliff Efficiency 

(NSE) in this research, all the hybrid models exhibited huge improvement from 

their standalone models. The adoption of wavelet decomposition had 

significantly increased the NSE of MLR, ANN, ANFIS and KNN from 0.340, 

0.404, 0.376 and 0.419 to 0.907, 0.930, 0.923 and 0.847 respectively. The 

upsurge of NSE had confirmed the effectiveness of wavelet decomposition in 

forecasting. Likewise, improvement of predictive accuracy was observed in 

other similar researches, assuring the positive effect of wavelet decomposition 

(Zhang, Zhang and Singh, 2018; Xu, Chen and Zhang, 2021). Amongst the 

models, ANN outperformed the others with the highest accuracy, consistent 

with the findings of Xu, Chen and Zhang (2021). Anyhow, the superiority of 

ANN is not deemed, owing to the uncertainties of input series, training 

algorithm, selection of activation functions and many other factors. Hence, the 

best model to be coupled with wavelet transformation remains debatable, as no 

obvious advantage of any model prevails to date.   

 Apart from the type of neural networks, the type of wavelet 

decomposition also contributed to the accuracy of the coupled model. 
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Researches were conducted to identify the applicability of CWT, DWT and 

SWT, as well as the performance of different mother wavelets (Maheswaran 

and Khosa, 2012; Tayyab et al., 2017; Kambalimath and Deka, 2021). 

Application of DWT is desirable over CWT to simplify the computation, by 

performing transformation with discretely sampled scaling and shifting 

coefficients. Tayyab et al. (2017) had developed a coupled ANN and DWT to 

forecast monthly streamflow. The authors observed improvement in the coupled 

models as compared to the standalone model and claimed that DWT could 

effectively enhance the forecasting ability of the model. However, the authors 

neglected the effect of different mother wavelets, which is highly influential to 

the performance of the model. In support of this, Kambalimath and Deka (2021) 

utilized different mother wavelets in DWT to investigate the corresponding 

performance. The authors successfully verified the improvement brought by 

DWT to the models, but failed to conclude the best incorporating mother 

wavelet, as no mother wavelets demonstrated consistent high accuracy for 

different variable predictions. This is reasonable as the suitability of mother 

wavelet is highly dependent on the characteristics of the input time series. In 

fact, Maheswaran and Khosa (2012) had reached a similar conclusion that no 

universal mother wavelet is suitable for all types of time series. Nevertheless, 

the authors had recommended the compact supported wavelets such as Haar 

wavelet for time series with short memory and transient features; and widely 

supported wavelet with higher vanishing moments like Daubechies 2 for time 

series with long memory and nonlinear features. These recommendations were 

made based on the observation of the study, which again, has limited 

generalized suitability. Another important factor ignored in previous researches 

is the level of decomposition. Although its importance is recognized by the 

authors, its effect and determining standard are yet to be investigated by the 

authors.   

 Despite the numerous researches conducted to investigate DWT and 

SWT separately, the study to compare these two transformations is still lacking. 

Being the modified redundant version of DWT, SWT is theoretically deemed to 

have better predictive accuracy, however, this statement is yet to be supported 

by sufficient research. In fact, Quilty and Adamowski (2018) had challenged the 

application of DWT in hydrological forecasting, on the ground that the induced 
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boundary condition errors were not resolved. Three sources of boundary 

condition errors in wavelet decomposition were outlined, which are the 

utilization of future data, the inappropriate selection of mother wavelets and 

decomposition level, as well as the improper partitioning of training and testing 

data. Most past application of wavelet transformation overlooked the effect of 

boundary condition errors and returned optimistic performance, which is not 

practical. To mitigate the error, the authors suggested a three steps best practice 

in wavelet decomposition. The best practice is begun with the selection of either 

maximal overlap discrete wavelet transform (MODWT) or SWT, followed by 

the selection of decomposition level and mother wavelets for both high and low 

pass filters. After that, the boundary condition must be corrected by removing 

the affected approximate and detail coefficient, which number are calculated by 

the given equation: 

 

𝐿𝐽 = (2𝐽−1)(𝐿 − 1) + 1 (2.29) 

 

where LJ is the number of approximate and detail coefficient affected, while J 

and L depict the decomposition level and length of the wavelet function. This 

idea is agreed by several researchers, as the adoption of this best practice was 

observed in the study of Zhou, Liu and Duan (2020) and Xu, Chen and Zhang 

(2021). Despite the convincing theoretical advantages of SWT over DWT, a 

side-by-side comparison of the two transformation is still of interest, as 

practicality might limit the performance of SWT below its potential, similar to 

the implementation of ANN over ARIMA.  

 The significance of direct framework (DF) and multicomponent 

framework (MF) was investigated in the research of Xu, Chen and Zhang (2021). 

These two frameworks are differentiated by the group of variables to be 

decomposed. For DF, only the input variable is decomposed, whereas for MF, 

both the input and output variables are decomposed. In MF, the decomposed 

subseries of output are predicted and the original output is reconstructed by 

inverse wavelet transformation. Since SWT was utilized in this study, the 

original output series was recovered by additive reconstruction of the subseries. 

The results of this study highly resembled a similar research previously 
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conducted by Zhou, Liu and Duan (2020). The authors of both studies agreed 

on the improvement brought by wavelet transformation, after comparing the 

performance of coupled and standalone models. Superiority of MF over DF was 

witnessed in both studies, and the advantage become more apparent as the 

forecasting lead time increased. As the lead time increased from 1 day to 5 days, 

the difference between root mean square error (RMSE) of MF and DF become 

more apparent (Xu, Chen and Zhang, 2021). The superiority of hybrid model 

over standalone model also become more prevalent with the increment of lead 

time, despite the reduction of the overall accuracy of all the models (Zhou, Lin 

and Duan, 2020). Anyhow, the study area of these two researches was limited. 

The importance of the ignored influential factors such as networks architecture 

and selection of mother wavelets were recognized by the authors. Thus, further 

investigation on the mentioned ignored factors is warranted.   

 

2.5 Summary 

Streamflow forecasting is critical in the water-related field because of the 

benefits it can bring to society and the environment. With the advancement of 

technology, AI-based models have been extensively used as an alternative to 

traditional physically-based hydrological models. The advantage of such AI-

based models lies in their ability to produce comparable or better performance 

without relying on the underlying complex relationship of the hydrological 

systems. Nonetheless, as evidenced from the literature review, there are a few 

research gaps that needed to be considered, which are as follows: 

i. A lack of thorough investigation of the decomposed wavelets as 

input into the AI-based models. The pre-selection of 

decomposed wavelets can inhibit the potential of an AI-based 

model, considering that the discarded decomposed wavelets may 

contain meaningful information to be perceived by the model.  

ii. The efficiency of the wavelet transform in handling the 

forecasting horizons (time lead- 1 day up to 7 days) needs to be 

better understood. 

iii. A comparison of discrete and stationary wavelet transforms in 

the streamflow forecasting application using AI models is 

lacking to justify the better approach.  
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This chapter describes the study's procedure and methodologies. This study's 

primary works include wavelet decomposition, ANN construction, and 

statistical comparisons. The rationale and necessity of adopting the methods 

were revealed with justification given in the previous studies available in the  

literature review. Work was meticulously planned to guarantee the study's 

smooth flow and optimal resource allocation. The overall workflow of the study 

is illustrated in Figure 3.1. 
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Figure 3.1: Flowchart of Streamflow Forecasting 

 

3.2 Study Area and Data Acquisition  

Johor is the only coastal state on Peninsular Malaysia with a east coast and a 

west coast as well, and it borders Singapore at the southern end of the peninsular, 

as shown in Figure 3.2. It has a 400-kilometer shoreline on both the east and 

west coastlines. It is known for its tropical rainforest environment, with the 
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South China Sea monsoon season blowing from November to February. The 

average annual rainfall is 1,788 mm, with an average temperature of 26.7°C and 

humidity levels of 84%. The main river in the Johor state is the Johor River, 

with an approximate length of 130 km and an area catchment of 2,600 km2. The 

Johor River originates from Mount Gemuruh and flows in the north-south 

direction before emptying its flow into the Straits of Johor.Its main tributaries 

are the Linggui River in the north, the Sayong River in the northwest, the Tiram 

River in the southwest, and the Lebam River in the southeast. The temperature 

is estimated to be between 21 and 32 degrees Celsius.   

 

 

Figure 3.2: Location of Johor River Basin 

 

In this study, the univariant streamflow time series will be utilized as the 

input of the forecasting. Thus, the historical streamflow dataset was obtained 

from an existing established hydrological station. The following streamflow 

station's data in Table 3.1 is sourced from Malaysia's Department of Irrigation 

and Drainage (DID), as shown.  
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Table 3.1: The List of Hydrological Observation Stations 

List of hydrological observation stations 

Stn No Station name Location 
Catchment 

area (km2) 

Observation 

period 

1836402 

Sg. Sayong at 

Jambatan 

Johor 

Tenggara 

N 01048’15” 

E 103040’10” 
624 1977-2008 

 

 

3.3 Stationary Wavelet Transform 

The SWT was utilized to decompose the input time series before input for model 

training, to increase the predictive accuracy of the forecasting model. Several 

studies advocated for the use of the SWT in hydrological forecasting as it may 

reduce boundary condition error (Quilty and Adamowski, 2018, 2021; Zhou, 

Liu, and Duan, 2020).  

In SWT, two sets of coefficients, known as the detail coefficient and 

the approximation coefficient, were created from the high pass and loss pass 

filters, respectively. These coefficients were computed by convoluting input 

time series and wavelet functions within each filter. Consequently, careful 

selection of these wavelet functions is required to achieve high prediction 

accuracy via effective decomposition of the input signals. However, there is no 

convincing standard of wavelet selection presented to date. This study thus 

looked at the effects of using various mother wavelets as the wavelet (high pass) 

and scaling (low pass) functions. The list of mother wavelets to be investigated 

is provided in Table 3.2: 

 

Table 3.2: List of Wavelets to be Tested 

Number Name of Wavelet 

1 Symlets 5 

2 Daubechies 5 

3 Coiflet 5 
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Another significant factor influencing the performance of the wavelet 

transform is the decomposition level. Proper selection of the decomposition 

level is necessary to achieve a balance between computation complexity and 

predictive accuracy. Decomposition levels from one to five were applied in this 

study, with their performance analyzed by the statistical parameters including 

the coefficient of determination (R2), mean absolute error (MAE) and root mean 

squared error (RMSE).   

Poor decomposition level selection increases boundary condition error 

in the SWT, necessitating a three-step mitigation strategy proposed by Quilty 

and Adamowski (2018). The authors' three steps included (1) selecting the 

maximal overlap discrete wavelet transform (MODWT) or SWT for wavelet 

decomposition, (2) determining the decomposition level and wavelet functions 

for filters, and finally, (3) correcting boundary error by removing the affected 

approximate and detail coefficients, the number of which was determined by 

Equation 2.29.  

 The approximate coefficient was calculated based on the convolution 

of the input time series and the scaling function, as given by Maheswaran and 

Khosa (2012) in Equation 2.26. After computing the approximate coefficient for 

a particular level of decomposition, the corresponding detail coefficient was 

calculated by Equation 2.27. The reconstruction of the input time series was 

carried out by direct addition of the coefficients, as expressed in Equation 2.28.  

 

3.4 Development of Artificial Neural Network (ANN)  

An Artificial Neural Network of one input layer, a varied hidden layer, and one 

output layer was developed with Python to forecast the streamflow. The model's 

input is a univariant streamflow time series with varying lead times, which after 

transformation by the hidden layer, delivers the anticipated streamflow output. 

As previously noted in the literature review chapter, the model's prediction 

accuracy is dependent on the model's design and training technique. However, 

standards for selecting architecture are yet to be concluded, despite some 

empirical equations proposed to facilitate the selection. Thus, the architecture 

of the ANN, including the number of hidden layers and the number of neurons 

for each layer, was decided based on sequential optimization, termed Bayesian 

optimization. The performance of different architectures is statistically analyzed 
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through R2, MAE and RMSE, and the best-performing architecture will be 

adopted for further investigation. The training algorithm utilized to modify the 

parameters was the Levenberg-Marquardt algorithm, which has proven 

effective in the research of Kişi (2007) and Sharma, Singh, and Sharma (2021).   

The number of neurons in the hidden layer should be properly designed 

to avoid the issue of underfitting or overfitting. Underfitting the model is 

undesirable due to its low prediction capabilities; although overfitting the model 

may produce high accuracy, it has poor generalization ability due to the model's 

overtraining. As a result, the input data were separated into 80%: 20% (training: 

testing) to ensure appropriate but not over-calibration of the model while 

conserving adequate data for validation (Loh et al., 2021). Since the effect of 

the activation function is out of the scope of the study, the developed models 

only leveraged the sigmoid function as the activation function. The architecture 

of the developed ANN is illustrated in Figure 3.3: 

 

 

Figure 3.3: Network Architecture of ANN 

 

The output of the developed ANN could be represented by Equation 2.1.  

 

3.5 Statistical Test 

The performance assessment of model is imperative in identifying the most 

effective incorporating wavelet transformation and neural network. With 

reliable evaluative parameters computed, the selection of alternatives could be 

justified by evidence. In this study, the statistical parameters MAE and RMSE 
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were utilized to measure the performance of the alternatives by calculating the 

error of forecasted outcome relative to the actual outcome.  

 As suggested by its terminology, the mean absolute error (MAE) is 

obtained by computing the absolute errors. The deviation between the expected 

value and the obtained value of the prediction is known as the error. Statistically, 

MAE suggests the distance of the data to the best-fitting regression line. That 

said, if the value of MAE is low, an accurate result is implied. The calculation 

of MAE was done by utilizing the formula expressed as:  

 

𝑀𝐴𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑥𝑖) (3.1) 

 

where yi, xi, and n depict the expected outcome, obtained outcome and number 

of predictions, respectively. The RMSE is essentially the square root of the MSE 

computed to facilitate the interpretation of model performance, owing to its 

advantage of having the same unit as the forecasted parameter. The calculation 

of RMSE was performed by the equation: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)2 (3.2) 

 

The coefficient of determination, R2 is a metric to evaluate the the 

prediction of a statistical model. The R2 has a range a value from 0 to 1, with 1 

being the most accurate while 0 being the least accurate. The coefficient of 

determination in this study was calculated by the equation:  

 

𝑅2 =
∑(𝑥𝑖 − 𝑦𝑚)2

∑(𝑦𝑖 − 𝑦𝑚)2
(3.3) 

 

 

where 𝑦𝑚 depicts the mean value of expected outcome (Kambalimath and Deka, 

2021).
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

The results and discussion of the study are demonstrated in this chapter. 

Presentation of results, alongside the necessary comparison and explanation, are 

performed to investigate the performance of the AI models studied. In light of 

the numerous significant elements influencing the prediction performance under 

examination, the influence of each researched factor is analyzed separately in 

specified subsections to determine the relative contribution of each component 

to the prediction performance.  

 

4.2 Hyperparameter Tuning Analysis 

Two different scenarios and two different cases of streamflow modelling were 

taken into consideration in this study. Hence, a total of four combinations of 

scenarios and cases were investigated, denoted as: 

i. Scenario 1 Case 1 (S1C1),  

ii. Scenario 1 Case 2 (S1C2),  

iii. Scenario 2 Case 1 (S2C1) and,  

iv. Scenario 2 Case 2 (S2C2) respectively.  

 

The difference between Scenario 1 (S1) and Scenario 2 (S2) arises from 

the sequence of streamflow prediction.  

i. In S1, the entire data set comprising 348 streamflow data was first 

decomposed by wavelet transformation into respective sub-signals. 

After being divided into training and testing data sets, the 

decomposed data were used in the ANN model training.  

ii. With S2, the data set was first divided into training and testing data. 

Wavelet decomposition of training data was executed, followed by 

ANN model training with the decomposed training data set. The 

decomposition of the testing data set took place after model training.  
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In this work, Case 1 (C1) and Case 2 (C2) illustrate univariate and 

multivariate streamflow forecasting, respectively.  

i. Several models were generated for the univariate C1 by recurrent 

training of the model at different decomposition levels. However, 

only one input variable was taken into account in the forecast.  

ii. In the case of multivariate C2, only one prediction model was created 

during the machine's first training. Contrary to univariate forecasting, 

C2 requires multiple inputs and is capable of identifying the 

relationship between these variables.   

 

To begin the comparison, the effect of hyperparameter tuning was first 

investigated to justify further comparison in choosing the tuned version as a 

sample rather than the untuned version. As previously mentioned, a total of four 

combinations of scenarios and cases are possible in this study, whereby each of 

the four combinations has another three versions with different incorporating 

wavelets, namely: 

i. the Symlets 5 (sym5),  

ii. Daubechies 5 (db5) and  

iii. Coiflet 5 (coif5) wavelet.  

This study looks at a total of 12 distinct models. Nevertheless, as this subsection 

is primarily intended to validate the improvement of hyperparameter tuning, the 

wavelet variation was omitted by defaulting the wavelet to sym5, leaving just 

four scenario-case models to be compared to their tuned version in this section. 

For example, the comparison between S1C1sym5-5 (untuned S1C1 model of 

sym5 wavelet decomposed to the fifth level) and S1*C1sym5-5 (tuned version) 

was performed. The performances of all untuned and tuned models are 

presented in Table 4.1, while the corresponding hyperparameters are tabulated 

in Table 4.2: 
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Table 4.1: Performance of Untuned and Tuned Models 

Model LOD 

Metrics 

R2 RMSE (m3/s) MAE (m3/s) 

Untuned Tuned Untuned Tuned Untuned Tuned 

S1C1 

5 

0.9598 0.9687 79.159 69.059 55.457 49.501 

S1C2 0.3478 0.5158 324.799 274.407 222.005 196.436 

S2C1 0.0886 0.1490 514.404 694.342 375.281 514.111 

S2C2 0.1226 0.0802 679.264 521.807 527.600 385.285 

 

Table 4.2: Hyperparameters of All Models 

Model 
Parameters 

Learning Rate Activation Function Layers Nodes Steps 

S1C1 0.00417 ReLU 3 3 10 

S1C2 0.04699 ReLU 1 2 9 

S2C1 0.00081 ReLU 3 64 3 

S2C2 0.01862 sigmoid 1 8 3 

Untuned 0.01000 tanh 1 5 4 

 

Based on Table 4.1, out of four scenario-case models, three have 

improved tuned performance compared to the untuned version, with the 

exception of S2C2, in which a decline in R2 metric from 0.1226 to 0.0802 is 

observed after tuning. Indeed, the performance of an ANN model relies on its 

architecture and the weightage of each node. The best set of parameters should 

be established after tuning. Thus, it is reasonable to expect a higher performance 

of the tuned model over the untuned model. The performance loss of S2C2 is 

unexpected and may be attributable to the sigmoid activation function in the 

model, considering that other models using the rectified linear unit (ReLU) had 

considerable R2 improvements ranging from 0.93% to 68.17% compared to the 

untuned values. In fact, the application of conventional sigmoid as an activation 

function has been criticized in several research (Falamarzi et al., 2014; 

Adamowski and Sun, 2010). The incapability of the sigmoid function to identify 

the local minima of the input series might explain the inefficiency. 
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Despite the fact that interpreting R2 values might give meaningful 

insight into model performance, it is not conclusive in assessing model accuracy. 

Therefore, apart from R2, other performance measures like the root mean 

squared error (RMSE) and mean absolute error (MAE) are examined since these 

metrics reflect the performance of an individual prediction rather than the 

overall performance of the regression model. Although frequently observed 

simultaneously, a high R2 number may not necessarily promise a low RMSE or 

MAE value. In other words, a highly correlated regression model with a high R2 

value may also have a high individual prediction deviation, as measured by a 

high RMSE or MAE value. An example of the condition is witnessed in Table 

4.1, whereby despite a higher R2 value of S2*C1 (0.1490) than S2C1 (0.0886), 

a higher set of RMSE and MAE (694.342 m3/s , 514.111 m3/s) is observed as 

compared to those of S2C1 (514.404 m3/s, 375.281 m3/s). 

The RMSE and MAE of each model were evaluated to validate the 

findings of the R2 comparison. For S1C1 and S1C2, lower sets of RMSE and 

MAE values are witnessed in the tuned version. The inference made from a 

lower set of RMSE and MAE is that the model has better accuracy since the 

individual predicted value is less deviated from the observed value. This finding 

agrees with the finding of the R2 comparison, showing the superior performance 

of a tuned model relative to its untuned version. However,  for S2C1, the better 

performance of R2, a higher RMSE, and MAE set is witnessed in the tuned 

version. Although the simultaneous occurrence of high R2, RMSE, and MAE is 

possible, as explained previously, the findings inferred from these observations 

are indeed conflicting. The higher set of RMSE and MAE (694.342 m3/s, 

514.111 m3/s) of the tuned version over the untuned version (514.404 m3/s, 

375.281 m3/s) indicates that the performance of the untuned version is better. 

Anyhow, for this scenario-case model, it is assumed that the finding of R2 

controls, since the percentage of improvement in R2 by tuning is higher (68.17%) 

than the percentage of increment in RMSE and MAE by tuning (34.98%, 

36.99%). Lastly, for S2C2, the outcome of the R2 comparison conflicts with the 

RMSE and MAE comparisons. Although the RMSE and MAE improved after 

turning in this scenario-case model, they contradict the conclusion of R2, which 

implies the tuning for this model is ineffective. Similarly, the finding of R2 is 

accepted, considering the higher percentage difference of R2 (34.58%) than the 
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percentage difference of RMSE and MAE (25.16% and 26.97%) after tuning. 

The comparisons of untuned and tuned models for each scenario-case are 

visualized in Figure 4.1, Figure 4.2, Figure 4.3, and Figure 4.4: 

 

 

Figure 4.1: Performance of Untuned and Tuned Models in S1C1 

 

 

Figure 4.2: Performance of Untuned and Tuned Models in S1C2 
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Figure 4.3: Performance of Untuned and Tuned Models in S2C1 

 

 

Figure 4.4: Performance of Untuned and Tuned Models in S2C2 
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tuned models, three out of four scenario-case models exhibit accuracy 

improvement in this study. The odd model (S2C2) with declined accuracy is 

suspected to have experienced ineffective tuning of the sigmoid activation 

function. Considering the general trend and by a majority, it is rational to 

recognize the improvement of hyperparameter tuning in streamflow forecasting. 

Henceforth, the comparison and analysis in the subsequent subsections are 

conducted with the tuned models by default. 

In fact, it is realized that many different sets of hyperparameters could 
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model is worth further investigation. For example, since Bayesian optimization 

is adopted in this study, further comparison with grid search and random search 

optimization methods could be conducted. The Bayesian optimization was 

conducted using Gaussian processes with the assumption that the objective 

function of the ANN model followed a multivariate Gaussian. Therefore, a tree-

based regression model could be further investigated. 

 

4.3  Wavelet Analysis 

4.3.1 Comparison of Hybrid ANN and Standalone ANN  

As discussed previously in the chapter on literature review, the incorporation of 

wavelet decomposition with ANN often returns encouraging improvement (Xu, 

Chen, and Zhang, 2021; Li, Wang, and Qiu, 2019). The standalone ANN and 

hybrid ANN and wavelet models are compared in this work to first validate this 

hypothesis. In this comparison, since both standalone and hybrid models were 

tuned, the contribution of tuning to accuracy is assumed balanced so that any 

observed improvement is solely contributed by the incorporation of the wavelet 

decomposition. However, it is realized that the performance of parameter tuning 

in each model could be different, resulting in performance discrepancies. 

Anyhow, this plausible difference is not reckoned. Henceforth, the observed 

improvement is attributed to the wavelet decomposition. The effect of different 

mother wavelets will be discussed later in a designated section to eliminate the 

influential factors in this comparison. Also, only univariate forecasting was 

conducted for the standalone model, owing to the singular type of result. 

Therefore, the hybrid models discussed in this section are tuned univariate 

models with sym5 wavelet decomposition to the fifth level (S1*C1sym5-5 or 

S2*C1sym5-5). Due to the inclusion of wavelet, the wavelet transform is only 

relevant to hybrid models. The performance of the standalone and hybrid 

models is presented in Table 4.3:   
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Table 4.3: Performance of Standalone and Hybrid ANN models in both 

Scenarios 

Scenario LOD 

Metrics 

R2 RMSE (m3/s) MAE (m3/s) 

Alone Hybrid Alone Hybrid Alone Hybrid 

1 
5 

0.0819 0.9687 385.812 69.059 276.925 49.501 

2 0.0087 0.1490 470.265 694.342 341.847 514.111 

 

 Through comparison of Table 4.3, the significant improvement of 

hybrid models over standalone models is recognized. For S1, the R2 of the 

standalone model increased from 0.0819 to 0.9687. By incorporating wavelet 

decomposition, the ANN model in this particular study experienced an 

improvement of over 1082.78% relative to the standalone value. Reduction of 

RMSE and MAE is also observed in S1, with respective percentages of 

reduction of 82.10% and 82.12% relative to the standalone values. The 

improvement of R2 is also witnessed in S2 from 0.0087 to 0.1490. By 

calculation, this improvement is equivalent to around 1612.64% of the 

standalone value. Although an increment of RMSE and MAE is noticed in S2, 

this performance reduction is far not as significant as the improvement of R2. 

The increment of RMSE and MAE in S2 are calculated as 47.65% and 50.39%. 

These results provide clear evidence and justification for the incorporation of 

wavelet decomposition, for it can enhance the accuracy of the standalone 

models by more than 1000% in terms of R2. This finding is consistent with the 

previous research discussed in the literature review chapter (Xu, Chen, and 

Zhang, 2021; Li, Wang, and Qiu, 2019; Feng et al., 2022). The improvement is 

contributed by the capabilities of wavelet in solving forecasting problems with 

nonlinearity characteristics. Zhou, Liu, and Duan (2020) suggested that the 

multiresolution analysis enabled by wavelet decomposition is effective in 

solving nonlinearity, which is one of the weaknesses of ANN models. The 

performance of streamflow forecasting by standalone and hybrid models is 

demonstrated in Figure 4.5 and Figure 4.6: 
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Figure 4.5: Performance of Standalone and Hybrid Models in S1 

 

 

Figure 4.6: Performance of Standalone and Hybrid Models in S2 
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different wavelets at the level of decomposition (LOD) 5 is presented in Table 

4.4: 

 

Table 4.4: Performance of S1C1and S2C1 cases with three different wavelets 

Wavelet LOD 

Metrics 

R2 RMSE (m3/s) MAE (m3/s) 

S1 S2 S1 S2 S1 S2 

sym5 

5 

0.9687 0.1490 69.059 694.342 49.501 514.111 

db5 0.0339 0.1896 698.138 704.077 517.083 508.053 

coif5 0.0115 0.1561 890.479 528.106 727.268 396.066 

 

The results of C1 were obtained in the form of decomposed subseries. 

In order to compare the subseries with the reference original time series, 

reconstruction of the decomposed subseries was first performed. The 

reconstruction of the combined wavelet from decomposed wavelet was 

completed by direct summation of all the subseries, including the detail and 

approximate series. For example, to reconstruct the combined series for the 

S1*C1sym5-5 model (tuned Scenario 1 C1 model with sym5 wavelet 

decomposed to the level 5), the approximate series (A) and the detailed series 

from level 5 until level 1 (D5-D1) obtained from modeling were added. The 

reconstruction of decomposed wavelet is illustrated in Figure 4.7. Figure 4.8, 

Figure 4.9, Figure 4.10, Figure 4.11, Figure 4.12, and Figure 4.13. The 

combined series was then compared to the original time series, as shown in 

Figure 4.14:   
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Figure 4.7: Decomposed Detail Series 1 of S1*C1sym5-5 

 

 

Figure 4.8: Decomposed Detail Series 2 of S1*C1sym5-5 
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Figure 4.9: Decomposed Detail Series 3 of S1*C1sym5-5 

 

 

Figure 4.10: Decomposed Detail Series 4 of S1*C1sym5-5 
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Figure 4.11: Decomposed Detail Series 5 of S1*C1sym5-5 

 

 

Figure 4.12: Decomposed Approximate Series of S1*C1sym5-5 
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Figure 4.13: Partial Reconstruction by Adding A and D5 of S1*C1sym5-5 

 

 

Figure 4.14: Performance of combined S1*C1sym5-5 
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difference of 0.1446. For these two wavelet families, the lower R2 values of S1 

have suggested a weaker regression performance of S1 compared to S2.    

Table 4.4 shows that the S1 model has a lower RMSE and MAE than 

the S2 models for the sym5 wavelet. However, the differences of RMSE and 

MAE between S1 and S2 are not as significant as the R2 value. For instance, the 

sym5 model displays an R2 percentage difference of 550.13% relative to the S2 

value but only displays an RMSE and MAE percentage difference of 90.05% 

and 90.37% relative to the S2 value. By looking into all three performance 

metrics, it may be argued that the difference in the performance of S1 and S2 is 

not as extensive as suggested by the R2 alone. For db5, a conflicting result was 

obtained from the comparison of RMSE and MAE. A better-performing lower 

RMSE value was obtained in S1, which opposes the finding of R2. In any case, 

as previously described in the hyperparameter tuning subsection, it is realized 

that getting high R2 and RMSE is possible. In terms of MAE for db5, S1 

experienced a higher error of 517.083 m3/s than 508.053 m3/s of S2, which is in 

unison with the R2 finding. Moving on to the coif5 wavelet, S2 has both RMSE 

and MAE lower than S1, indicating a better prediction of S2, similar to the 

finding suggested by R2. So far, no conclusive hypothesis can be drawn from 

the comparison because firm evidence of performance improvement is lacking. 

The performance comparison of S1 and S2 for each wavelet is visualized in 

Figure 4.15, Figure 4.16, and Figure 4.17: 

 

 

Figure 4.15: Performance of S1C1 and S2C1, with sym5 Wavelet 
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Figure 4.16: Performance of S1C1 and S2 C1, with db5 Wavelet 

 

 

Figure 4.17: Performance of S1C1 and S2C1, coif5 Wavelet 
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Table 4.5: Performance of S1C2 and S2C2,  with three different wavelets 

Wavelet 

 Metrics 

LOD R2 RMSE (m3/s) MAE (m3/s) 

 S1 S2 S1 S2 S1 S2 

sym5 

5 

0.5158 0.0802 274.407 521.807 196.436 385.285 

db5 0.3421 0.1322 336.992 864.383 240.011 690.963 

coif5 0.3513 0.0971 323.095 555.186 230.751 420.658 

 

 As observed from Table 4.5, S1 models of all three types of wavelets 

have achieved higher R2 values than the corresponding S2 models. This result 

appears to confirm the previous finding from the performance comparison of S1 

and S2 of sym5 in C1, which suggests that the S1 model has higher predictive 

accuracy than S2. For Case 2, the S1 models incorporated with sym5, denoted 

as S1*C2sym5-5 (tuned S1C2 model with sym5 wavelet decomposed to level 

5), have returned an R2 value of 0.5158, whereas the corresponding S2 model 

scores an R2 value of 0.0802. The deviation of R2 between these two models is 

0.4356, which is equivalent to a percentage difference of 543.14% relative to 

the S2 value. Likewise, the S1 models of db5 and coif5 wavelets also 

demonstrated a better R2 performance than the S2 models, showing a percentage 

difference relative to the S2 value of 158.77% and 261.79%, respectively. Since 

the R2 value is higher in S1 than in S2, it is rational to deduce that a stronger 

relationship exists between the predicted and observed data in S1 than in S2.   

 The accuracy of individual prediction in each scenario was evaluated 

by comparing the RMSE and MAE of the models. By comparison, the S1 model 

has lower RMSE and MAE than the S2 model, indicating a better prediction 

performance of S1 since a smaller error is expected in each prediction. This 

statement holds for all three wavelets under investigation. For instance, the S1 

model of the sym5 wavelet returns RMSE and MAE values of 274.407 m3/s and 

196.436 m3/s, which is lower than the RMSE and MAE of S2, recorded as 

521.807 m3/s and 385.285 m3/s, respectively. Therefore, it is reasonable to 

conclude that the predictive accuracy of S1 is higher than S2 in C2, as evidenced 

by the higher R2 and lower RMSE and MAE shown in all comparisons. The 

performance comparison of S1 and S2 for each wavelet is visualized in Figure 

4.18, Figure 4.19, and Figure 4.20.  
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Figure 4.18: Performance of S1C2 and S2C2, with sym5 Wavelet 

 

 

Figure 4.19: Performance of S1C2 and S2C2, with db5 Wavelet 
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Figure 4.20: Performance of S1C2 and S2C2, coif5 Wavelet 
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Table 4.6: Comparison of C1S1 and C2S1, with three different wavelets 

Wavelet 

 Metrics 

LOD R2 RMSE (m3/s) MAE (m3/s) 

 C1 C2 C1 C2 C1 C2 

sym5 

5 

0.9687 0.5158 69.059 274.407 49.501 196.436 

db5 0.0339 0.3421 698.138 336.992 517.083 240.011 

coif5 0.0115 0.3513 890.479 323.095 727.268 230.751 

 

Table 4.7: Comparison of C1S2 and C2S2, with three different wavelets 

Wavelet 

 Metrics 

LOD R2 RMSE (m3/s) MAE (m3/s) 

 C1 C2 C1 C2 C1 C2 

sym5 

5 

0.1490 0.0802 694.342 521.807 514.111 385.285 

db5 0.1896 0.1322 704.077 864.383 508.053 690.963 

coif5 0.1561 0.0971 528.106 555.186 396.066 420.658 

 

 By looking in Table 4.6, two different trends are observed in the 

relationship of C1 and C2. Firstly, for the sym5 wavelet models, C1 had shown 

better accuracy than C2, as suggested by the set of higher R2 but lower RMSE 

and MAE values (0.9687, 69.059 m3/s, 49.501 m3/s) as compared to C2 (0.5158, 

274.407 m3/s, 196.436 m3/s). It implies the univariate forecasting model 

outperforms the multivariate forecasting model in terms of predictive accuracy. 

Secondly, an opposite trend is observed for the db5 and coif5 models, with C2 

having better performance metrics than C1, particularly higher R2 but lower 

RMSE and MAE values. In contrast to the previous finding, this observation 

suggests that the multivariate forecasting model performs better. The 

disagreement of trend is likely a result of the exceptionally high accuracy of the 

S1*C1sym5-5 model, in contrast to the db5 and coif5 models. This extreme 

value becomes the outlier of the trend, consequently leading to the observation 

of an unexpected trend. Similarly, the superior performance of multivariate 

forecasting models over univariate forecasting models has been recorded in 

several studies, showing consistency with the second observed trend (Aboagye-

Sarfo et al., 2015; Dyar et al., 2016). 
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 The performances of univariate C1 and multivariate C2 are also 

compared in S2. According to the R2 presented in Table 4.6, it is realized that 

C1 of all three wavelets are more accurate than C2, showing a complete 

dominance of univariate over multivariate forecasting in this scenario. 

Nevertheless, the disagreement of R2, RMSE, and MAE in the sym5 model is 

realized and worth noting. By calculation, C1 is 85.79% better but 33.06% 

weaker and 33.44% weaker in terms of R2, RMSE, and MAE. Therefore, the 

metric R2 controls the determination of the model accuracy since the deviation 

of RMSE and MAE are relatively small and negligible compared to the R2 value. 

In fact, the superior performance of the univariate model has also been recorded 

in several research (Rao, Sinha, and Basu, 2013; Anowar and Eluru, 2018).    

 The comparisons performed in this sub-section are an effort to reckon 

the improvement of multivariate over univariate streamflow forecasting. 

Aboagye-Sarfo et al. (2015) observed the improvement of multivariate time 

series modeling over conventional univariate models. The author credited the 

improvement to the capability of the multivariate model in identifying the 

relationship between the input variables. This finding is subsequently verified 

by many other researchers, for instance, Dyar et al. (2016) and Felix et al. (2018). 

However, the ability to handle multiple variables may occasionally become a 

drawback to the model's efficiency, as Rao, Sinha, and Basu (2013) discovered. 

The authors explained the lower prediction accuracy of the multivariate model 

with the higher complexity of the model optimization due to the larger input 

data set. It is in unison with the findings of Anowar and Eluru (2018), which 

despite the overall high accuracy, a marginal deficiency of the multivariate 

model had been recorded in some of the results. The authors mentioned no 

denial of the improved model fitness of the multivariate model at the expense 

of extra complexity resulting from the involvement of multiple variables. Hence, 

improved C2 performance was anticipated from this study. However, among the 

six combinations, four combinations between C1 and C2 indicated that C1 

performed better. A plausible explanation for the observation is due to the better 

model optimization of C1, as mentioned by Rao, Sinha, and Basu (2013), which 

resulted in better accuracy of univariate C1 over multivariate C2 models. The 

performance of C1 and C2 models with different incorporating wavelets in 
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different scenarios is visualized in Figure 4.21, Figure 4.22, Figure 4.23, Figure 

4.24, Figure 4.25, and Figure 4.26:   

 

 

Figure 4.21: Performance of C1S1 and C2S1, with sym5 Wavelet 

 

 

Figure 4.22: Performance of C1S1 and C2S1, with db5 Wavelet 
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Figure 4.23: Performance of C1S1 and C2S1, with coif5 Wavelet 

 

 

Figure 4.24: Performance of C1S2 and C2S2, with sym5 Wavelet 
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Figure 4.25: Performance of C1S2 and C2S2, with db5 Wavelet 

 

 

Figure 4.26: Performance of C1S2 and C2S2, with coif5 Wavelet 

 

4.3.3 Comparison of Family Wavelet  

Wavelet decomposition is incorporated in this study as a method of data pre-

processing. Cheng et al. (2021) suggested that wavelet transformation relies on 

the suitability of the selected wavelet and the input time series to perform well. 

Therefore, the best-performing wavelet for any study is case-specific owing to 

the different characteristics of the input time series (Maheswaran and Khosa, 

2012). In this particular study, three different wavelet families are used in this 

study to rank the suitability of each wavelet. The types of wavelets utilized in 

this study are shown in Table 4.8. The performances of each wavelet in both S1 

and S2 are presented in Table 4.9 and Table 4.10, respectively: 
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Table 4.8: Type of Wavelet Families Incorporated (Patro and Kumar, 2016; 

Mandala et al., 2023; Santos et al., 2014) 

Symlets 5 (sym5) Daubechies 5 (db5) Coiflets 5 (coif5) 
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Table 4.9: Performance of Different Wavelets in C1 and C2 of S1 

S1Case LOD 

Metrics 

R2 RMSE (m3/s) MAE (m3/s) 

sym5 db5 coif5 sym5 db5 coif5 sym5 db5 coif5 

1 
5 

0.9687 0.0339 0.0115 69.059 698.138 890.479 49.501 517.083 727.268 

2 0.5158 0.3421 0.3513 274.407 336.992 323.095 196.436 240.011 230.751 

 

 

Table 4.10: Performance of Different Wavelets in C1 and C2 of S2 

S2Case LOD 

Metrics 

R2 RMSE (m3/s) MAE (m3/s) 

sym5 db5 coif5 sym5 db5 coif5 sym5 db5 coif5 

1 
5 

0.1490 0.1896 0.1561 694.342 704.077 528.106 514.111 508.053 396.066 

2 0.0802 0.1322 0.0971 521.807 864.383 555.186 385.285 690.963 420.658 
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From Table 4.9, the best performance of sym5 amongst all three wavelets in S1 

is recognized. Indeed, sym5 has the highest R2 yet lowest RMSE and MAE in 

both C1 and C2. Therefore, the advantage of sym5 over db5 and coif5 in this 

scenario is certain. Meanwhile, the relationship between db5 and coif5 is 

ambiguous, considering the different observations from C1 and C2. The db5 

model demonstrated higher accuracy in C1 but lower accuracy in C2 compared 

to the coif5 model in terms of all three metrics. As a matter of fact, the 

performances of db5 and coif5 are considerably similar, as suggested by the 

small difference in R2 values. The difference in R2 between these two wavelets 

is 0.0224 and 0.0092. In terms of RMSE and MAE, the differences range from 

4.01% to 40.65% relative to the smaller value. Hence, the conclusion that db5 

and coif5 have comparable performance is inferred. 

For the wavelet performance in S2 presented in Table 4.10, the db5 

models are found to be the best-performing models in both C1 and C2. However, 

this statement is only valid for the comparison of R2 values. Despite achieving 

the highest R2 value, the db5 models at the same time experience the highest 

RMSE and MAE. Since no similar trend is observed from the three metrics, a 

comparison of the three metrics was carried out to classify the performance of 

the models. Firstly, by comparison of R2, both cases deliver the same trend, 

where db5 has the highest accuracy, followed by coif5 and sym5 models. 

Secondly, by the comparison of RMSE, the model performance in descending 

order is coif5, sym5, db5 in C1 and sym5, coif5, db5 in C2. Thirdly, by the 

comparison of MAE, the model accuracy in descending order is coif5, db5, 

sym5 in C1 and sym5, coif5, db5 in C2. In fact, there is no apparent advantage 

of any wavelet over the others, owing to the relatively small difference of R2, 

RMSE, and MAE. Since no unanimous findings are observed, no conclusive 

statement is drawn on the best-performing wavelet in S2. 

According to Rhif et al. (2022), the selection of a mother wavelet for 

high accuracy is dictated by two criteria, including the physical properties of the 

wavelet and the similarity between the wavelet and the input time series. It is 

reasonable as the improved performance of wavelet transformation over 

conventional Fourier transformation is attributed to the variety of wavelet 

shapes, which is helpful in localizing data and detecting data discontinuity 

(Chong, Lai, and El-Shafie, 2019). Thus, to identify the performance ranking of 
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sym5, db5, and coif5, the respective physical properties and resemblance to 

input time series are compared. 

Rhif et al. (2022) outlined four properties of wavelet to be considered 

in discussing the accuracy of the mother wavelet, including orthogonality, 

compact support, symmetry, and vanishing moments. The application of an 

orthogonal wavelet is imperative to avoid loss of information during the 

reconstruction of decomposed wavelet. A compactly supported wavelet has 

better localization capacity in both the time and frequency domain; whereas a 

symmetrical wavelet is better at reducing non-linear phase delay, which in turn 

reduces the effect of border distortion in the signal. Wavelet with greater 

vanishing moments is better at processing the transient portions of a signal. 

(Upadhya et al., 2022). A summary of the discussed properties for the three 

incorporated wavelets is presented in Table 4.11: 

 

Table 4.11: Summary of Wavelet Properties (Upadhya et al., 2022) 

Properties  sym5 db5 coif5 

Orthogonality  Yes Yes Yes 

Compactly Supported 

Orthogonal  

9 9 29 

Symmetry Near 

symmetric 

Asymmetric  Near 

Symmetric  

Vanishing Moments 5 5 10 

 

 Table 4.11 comparison reveals that the properties of the sym5 and db5 

wavelets are similar, except for symmetry, where sym5 is more symmetric than 

db5. On the contrary, the orthogonal coif5 wavelet is relatively distinct. It is the 

most compactly supported and has the most vanishing moments. Anyhow, the 

comparison of wavelet properties alone is not conclusive on the performance of 

the mother wavelet; the wavelet's similarity to the input time series also 

influences performance. The input time series is illustrated in Figure 4.27 and 

compared to the mother wavelets shown in Table 4.8:   
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Figure 4.27: Input Streamflow Time Series 

 

In contrast, to the similarity between the mother wavelet and the input 

time series, two qualitative and quantitative methods have been proposed 

(Moradi, 2022). The qualitative method is accomplished by visual inspection of 

the similarities between the time series and mother wavelet. However, due to 

the similarities between the three wavelets selected, visual inspection is bound 

to be inaccurate. Therefore, the performance ranking of the wavelets cannot be 

determined unless a quantitative analysis of the resemblance is performed. 

Anyhow, no relevant quantitative analysis is involved in the scope of this study; 

thus, the expected performance ranking of different wavelet families remains 

vague and is worth further investigation.   

 

4.4 Uncertainty Assessment 

In order to select the best-performing model from the 12 investigated models by 

considering multiple metrics such as the R2, standard deviation, and the 

distribution of the data, two visualization tools, namely the Taylor diagram and 

the Violin diagram, were employed. By plotting these two diagrams, visual aids 

are provided to assist in the determination of the best-performing model. The 

plotted Taylor diagram is presented in Figure 4.28: 
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Figure 4.28: Taylor Diagram of the Observed and 12 Studied Models 

 

 A Taylor diagram is utilized to assess the resemblance of the predicted 

model to the observed model by taking into consideration the standard deviation 

and the coefficient of determination (R2) values of the predicted model relative 

to the observed model. Therefore, it should be noted that the model's 

performance metrics should not be interpreted by the model's respective 

abscissa and ordinate. Instead, the metrics should be interpreted concerning the 

reference model. From Figure 4.28, the model with the highest resemblance to 

the reference model is S1*C1sym5. In other words, the predicted streamflow of 

the tuned S1C1 model incorporating sym5 wavelet has the most similar standard 

deviation and R2 with the observed streamflow amongst all the studied models. 

Another informative observation from Figure 4.28 includes the worst models 

among S1*C1coif5 and S2*C2db5, with the lowest R2 and the largest difference 

in standard deviation, respectively. The C2 models (triangular mark) are more 

consistent than the C1 models (circular mark). This is inferred from the 
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distribution of the models, where five out of six C2 models fall closely in the 

average zone; whilst the distribution of C1 models is relatively scattered. Before 

concluding the best-performing model, the comparison between predicted 

streamflow distribution and observed streamflow distribution is also necessary, 

to provide convincing evidence of the effectiveness of the model. To do so, a 

Violin diagram was plotted and presented in Figure 4.29:   

 

 

Figure 4.29: Violin Diagram of the Observed and 12 Studied Models 

 

 The Violin diagram in Figure 4.29 illustrates the distribution of the 

observed and predicted dataset. Several characteristics of the violin were 

compared to determine the most similar distribution of the dataset. First, the 

shape of the violin, which is essentially the distribution of the data was 

compared. Second, the box within the violin, representing the interquartile range 

or half number of the data set was observed. Lastly, the extent of the violin graph 

was contrasted to identify the difference between the range of datasets amongst 

models. Considering these three characteristics, the model with the highest 

similarity of dataset distribution is the S1*C1sym5 model, which is in unison 

with the previous finding from the Taylor diagram. Also, it is interesting to 

notice that except for S2*C2db5, C2 models generally have better resemblance 

in data distribution, in contrast with C1 models with a large range of data 

fluctuation. Hence, considering the unanimous findings from Taylor and Violin 
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diagram, as well as the justification from previous metrics comparison, the 

model S1*C1sym5 is identified as the best-performing model in this study. 

 

4.5 Performance of Short, Medium and Long Term Forecasting 

After the identification of the most accurate model in the study, the model 

(S1*C1sym5) is utilized to investigate the performance of the hybrid ANN 

model in predicting streamflow in different time frames. The forecasting 

horizons of 1 month, 6 months, and 12 months were selected to represent the 

short, medium, and long-term predictions, respectively. All previously 

discussed influential factors, such as the tuning performance, scenarios, cases, 

and incorporating wavelet, were made constant in this analysis using the 

selected best model to make predictions for all three forecasting horizons. The 

performances of the S1*C1sym5 model in different forecasting horizons are 

demonstrated in Table 4.12: 

 

Table 4.12: Performance of S1*C1sym5 in Short, Medium and Long Term 

Forecasting 

Term 
Metrics 

R2 RMSE (m3/s) MAE (m3/s) 

Short 0.9687 69.059 49.501 

Medium 0.0467 1397.316 1074.429 

Long 0.0333 3392.118 1990.130 

 

Through observation of Table 4.12, it is realized that the R2 of the 

model had reduced significantly from 0.9687 to 0.0467 and further to 0.0333 

for short, medium, and long-term forecasting. By setting short-term forecasting 

as the performance benchmark, the performance reduction in terms of R2 is 

95.18% and 95.56%. In other words, the model loses more than 95% accuracy 

during its application in medium and long-term prediction. This apparent 

reduction in R2 is suggesting a sharp drop in the performance of the model in 

the longer prediction horizon. The model also experienced a soaring increment 

of RMSE, from 69.059 m3/s to 1397.316 m3/s and ultimately to 3392.118 m3/s, 

which are equivalent to over 1923.37% and 4811.91% of increment. Likewise, 

the MAE of the model had increased from 49.501 m3/s to 1074.429 m3/s and 
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1990.130 m3/s, resulting in a percentage increment of over 2070.52% and 

3920.38%, relative to the original short-term forecasting. The findings of R2, 

RMSE, and MAE provide firm evidence to infer that the performance of the 

S1*C1sym5 model in this study reduces significantly from short to medium and 

long-term prediction. A possible explanation for the performance reduction is 

the increased complexity of handling the data over a longer time horizon, which 

results in increased difficulty in identifying the hidden patterns of the input data 

by ANN. The performances of short, medium, and long-term forecasting are 

illustrated in Figure 4.30: 

 

 

Figure 4.30: Performance of S1*C1sym5 in Different Horizons 

 

 Based on Figure 4.30, it is noticed that despite the near-perfect 

resemblance of the short-term prediction to the observed streamflow, the 

performance of its corresponding medium and long-term prediction is 

unsatisfactory. However, some similarities between the medium and long-term 

predictions are observed. For instance, the overall shape and occurrence of local 

minima share a certain degree of similarity.   
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

As a conclusive summary of the research, the wavelet transformation was 

thoroughly reviewed and incorporated in a hybrid ANN model to forecast 

streamflow over the short, medium, and long-term horizons. In total, 12 

different models by the combination of 2 scenarios, 2 cases and 3 wavelets were 

investigated and examined.   

The hyperparameter tuning performance of the model was first 

investigated by contrasting the tuned and untuned versions of a model. The 

results validate the advantageous performance of the tuned model, justifying the 

application of the tuned model in subsequent comparisons. Next, the 

comparison of standalone and hybrid ANN models was conducted to emphasize 

the improvement of wavelet incorporation. Performance enhancement in terms 

of R2 of 1082.78% and 1612.64% were recorded for the S1 and S2 scenarios 

(data pre-processing conditions), respectively, by incorporating sym5 wavelet 

into the model.   

The performance of S1 and S2 were compared for all three wavelets in 

both cases. In C1 (univariate model), S1 models were found to be more accurate 

when incorporated with sym5 wavelet but less accurate with db5 and coif5 

wavelet. In C2 (multivariate), S1 models of all wavelets were found to have 

better performance than the corresponding S2 models. The percentages of R2 

improvement, relative to the values of S2, are 543.14%, 158.77%, and 261.79% 

for sym5, db5, and coif5, respectively. Four out of six comparisons between S1 

and S2 have suggested the superiority of S1. A similar approach of comparison 

was utilized to compare the performance of C1 and C2 models for all three 

wavelets in both S1 and S2 scenarios. Similarly, a majority of four out of six 

comparisons have confirmed the better performance of univariate C1 over 

multivariate C2 in this study.   

The three wavelets studied in this research were compared for all four 

scenario-case (S1C1, S1C2, S2C1, S2C2) models. However, no apparent 
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advantage of any wavelet prevailed in this study. The metrics of all 12 models 

were plotted into a Taylor diagram and also with a Violin diagram to facilitate 

the determination of the best-performing model. With the aid of these two 

diagrams, the best-performing model was identified as the S1*C1sym5. This 

model was subsequently applied to evaluate the performance of short, medium, 

and long-term forecasting. The results for 1-month, 6-month, and 12-month 

forecasting horizons revealed the best performance of short-term forecasting. 

Significant reduction of metrics for medium and long-term forecasting was 

observed as (95.18%, 1923.37%, 2070.52%) and (95.56% ， 4811.91% ，

3920.38%) in the form of (R2, RMSE, MAE). Summarizing, it is rational to 

declare the achievement of the aim and objectives of the research. 

 

5.2 Recommendations for future work 

The findings of this research have limited coverage on the topic of wavelet 

decomposition and hybrid ANN models. Therefore, several recommendations 

are outlined below to address the encountered limitations and the direction of 

future research: 

i. Application and comparison of different ANN learning algorithms, 

for instance, grid search and random search. 

ii. Implementation of quantitative analysis to evaluate the resemblance 

of wavelet to the input time series. 

iii. Performance evaluation of the combination of decomposed wavelets 

from multiple wavelet families. 

iv. Direct comparison of DWT and SWT to verify the theoretical 

advantage of SWT. 
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