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ABSTRACT 

SIMULATION OF OSCILLATIONS IN A NETWORK OF 

NEURONS USING INTEGRATE AND FIRE NEURON MODEL 

Danny Ng Wee Kiat 

 

Human brains display oscillatory patterns at characteristic frequency bands 

during various behavioural states. Phenomena of oscillations and synchronous 

firings of neurons are particularly important from the functional point of view, 

and have generated many interesting hypotheses concerning neural signal 

processing in the central nervous system. This study on the simulation of 

global oscillations of a network of neurons seeks to provide a better 

understanding of the nature of these phenomena. Simulations were conducted 

using the Integrate and Fire neuron model. C++ is used for the development of 

the simulation algorithm. OpenMP is adopted in the algorithm to enable 

parallel processing on a multicore CPU. The effects of the network size, 

connection probability, synaptic weight and synaptic delay on the global 

oscillations of a network of identical inhibitory neurons were investigated. 

Using an extension of the model by Latham et al., simulations of ultra-slow 

spontaneous oscillations comparable to those observed in cortical cultures of 

rat neurons were achieved.  
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CHAPTER 1 

INTRODUCTION 

Activities in the brain can be detected non-invasively using appropriate 

equipment and displayed as electroencephalography (EEG) signals. These EEG 

signals in the human brain display oscillation frequencies in the range of up to 

100 Hz during various mental and physical activities. EEG oscillations can be 

detected in the frontal lobe of the brain during certain mental activities such as 

solving a mathematical problem, in the sensorimotor regions of the cortex 

during motor activities such as hand and foot movements, and in the occipital 

regions of the brain as evoked potentials when the eye is focused on an object. 

These EEG signals have been used to activate various devices in Brain-

Computer Interfaces [1, 2]. The brain is a very complex organ consisting of 

many parts and many researchers are currently trying to unravel its mysteries 

as evidenced by the large number of articles in journals dealing with 

neuroscience [3, 4]. Numerous experiments have been carried out in vitro and 

in vivo to study the mechanisms underlying the generation of network 

oscillations [6-17]. It is hoped that the current study to simulate global 

oscillations in a network of neurons and the use of an extension of the model 

by Latham et al.[5] to simulate ultra-slow spontaneous oscillations will be an 

additional contribution to existing knowledge of oscillations in neuronal 

networks.   
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Experimental studies 

2.1.1 In Vivo Studies 

Oscillations are a prevalent phenomenon in biological neural networks. 

Oscillations in the form of electroencephalograms (EEG) are present in 

different brain structures, with frequencies ranging from 0.5 Hz (δ rhythm) to 

40-80 Hz (γ rhythm), and even up to 200 Hz [6]. Many studies focus on the 

mechanism for the generation of γ rhythm [7] in the brain as the γ rhythm is 

related to numerous cognitive and sensory functions [8]. Slow oscillations of 

brain waves less than 15 Hz are usually related to sleep or to the relaxed state 

of the brain. Slow oscillations can be detected in vivo during various sleep 

states [8]. The occurrence of slow oscillatory activity below 1Hz can be 

observed at the cortical, thalamocortical and hippocampal regions in vivo in 

animals under anaesthesia [10, 11, 12]. 

2.1.2 In Vitro studies 

Cunningham et al.[13] showed that it is possible to induce gamma 

oscillations in vitro in slices of cortical neurons. Sanchez et al.[14] showed that 

brain slices immersed in bathing medium that mimic extracellular ionic 

composition in situ can generate slow oscillations.  
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Chen et al.[15] showed that spontaneous activation of neurons can be 

detected in cultures of neurons. Zhu et al.[16] also detected slow spontaneous 

oscillations of activities around 0.005Hz in cultured of hippocampal neurons. 

Latham et al.[17] conducted experiments to study the link between the fraction 

of endogenously active cells and network firing pattern. Neurotransmitter 

blockers are applied in the cultures to examine the presence of endogenously 

active cells. 

Mok et al.[18] recently reported on ultra-slow spontaneous activities in 

MEA cultures of rat cortical neurons. Figure 1 shows an extract of the 

experimental results obtained from these cultures. Ultra-slow spontaneous 

oscillations lower than 0.005Hz are be observed in the spiking activity of 

neurons. These activity patterns emerged spontaneously in certain cultures after 

forth week in vitro. 

 

Figure 1 Experimental results showing spiking activities from 5 different cultures with 

spontaneous activity. Periodical fluctuations of activity over time at a very slow rate 

(0.001Hz – 0.005 Hz) can be observed in the cultures. The activity time bin is 10ms(Mok 

et al.[19]) 
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2.2 Theoretical and modelling studies. 

2.2.1 Integrate and fire (IF) model 

Bruce Knight [20] introduced the term “Integrate and Fire” (IF) neuron in 

his studies on the encoding for a population of neurons. The basic IF neuron is 

characterized as a capacitor in parallel with a resistor [4]. The membrane 

voltage of a neuron is represented by the voltage drop across the capacitor in 

the IF model. The generalization of a basic IF model allows better 

representation of a neuron. The Quadratic IF (QIF) model is the simplest of a 

large number of more realistic neuron models [21, 22].  

The basic IF, QIF and its variants are usually used to study the dynamics of 

networks of spiking neurons. Simulations for a network that has a large number 

of neurons can be conducted efficiently using the basic IF model. For certain 

limiting cases, the equations describing the behaviour of a network of IF 

neurons can be solved exactly. 

2.2.2 Other More Detailed Neuron Models 

The model introduced by Hodgkin and Huxley [23] describes a neuron by 

three different ionic currents across the membrane. Activity of the neuron 

depends on the current components from each of the ionic channels. Gating 

variables in the equation describe the probability that an ionic channel is open. 

Morris et al.[24] introduced the Morris–Lecar model which has a two 

dimensional description of neuronal spike dynamics. The model contains 2 
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equations, the first describes the membrane potential and the second describes 

the slow recovery variable.  

Izhikevich [25] showed that the above more detailed models take a large 

number of floating point calculations per iteration. Lob et al.[26] conducted 

parallel event-driven neural network simulations using the Hodgkin-Huxley 

neuron model. On a single CPU computer, it took an average of 11 thousand 

seconds to complete a simulation of 15 seconds of activity in a network of 100 

Hodgkin-Huxley neurons. Large clusters of computational units are required to 

efficiently simulate a network of neurons using the more detailed neuron 

models [27, 28, 29]. 

2.2.3 Network Oscillations 

Oscillations are important as they are required in the process of information 

coding and transmission [30, 31, 32]. Synchrony of spiking activities in the 

network causes the formation of network wide oscillations. The mechanism for 

the generation of oscillations and synchronization of a network is often the 

focus of many theoretical studies [33, 34, 35, 36, 37, 38].  

A simple network of inhibitory neurons driven by external excitatory inputs 

under certain condition can exhibit oscillatory events. Brunel et al.[36] showed 

that it is possible to generate global fast oscillations in a network of inhibitory 

neurons. Inhibitory coupling in the network can act to synchronize the 

oscillatory activity in the network [39]. Heterogeneous networks consisting of 
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inhibitory and excitatory neurons can exhibit a wide range of behaviour 

depending on the parameters and inputs given to the network [37, 40]. 

In an analysis to investigate the time structure of activity in neuronal 

network models, Gerstner [4] showed that a noiseless system was always 

unstable. The instability may lead to collective oscillations of the entire neuron 

population or to higher harmonics where all neurons split into several 

subnetworks. Noise added to the network suppressed fast oscillations and 

stabilized the system. The period of network oscillations was shown to increase 

with randomized inputs. 

Brunel et al.[36] showed that the period of global oscillations is dependent 

on the characteristics of the external input. He reported that external noise 

applied to the networks can produce a phase diffusion of the global 

oscillations. Likewise, increasing the noise level was also found to strongly 

damp and decrease the amplitude of the oscillatory activity. Traub et al.[42] 

constructed a model of a single column thalamocortical network model 

exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. 

Activities were generated from random ectopic axonal action potentials 

occurring at glutamatergic cells within the column. 

2.2.4 Spontaneous Bursting 

Modelling studies are conducted by various researchers to explain the 

phenomena of spontaneous bursting [5, 43, 44, 45]. Based on the studies 

conducted by Latham et al.[5], one of the parameter that controls the firing 
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pattern for a neuronal network depends on the percentage of endogenously 

active neurons. If the percentage of endogenously active neurons falls below a 

threshold, the network will become silent. When the percentage is above the 

threshold, activity can be observed from the simulated network. Kudela et 

al.[44] showed that the balance between the excitation and inhibition in the 

network is an important factor that modulates the bursting activity of a 

network. Synaptic properties in the network also play an important role in the 

generation of a synchronous bursting event. Tsodyks et al.[43] simulated a 

network capable of generating population burst at particular time intervals. The 

synaptic characteristics such as the connection strength and synaptic depression 

between neurons in the model can influence the activity pattern of a network. 

Volman et al.[45] studied the effect of network structure on the bursting 

activity in a cultured network. The underlying architecture of a network can 

influence the pattern of the network activity. 

2.2.5 The Present Study 

The present study investigates the computer simulation of global 

oscillations in a network consisting a large number of neurons using the IF 

neuron model. A simulation algorithm for solving the IF model was created 

using C++. Parallel solvers were implemented in the algorithm to take 

advantage of multicore processors available on the market. Using this 

algorithm, simulations were carried out to study the effect of the different 

parameters of the IF model on the global oscillations of a network of neurons. 

An extension of the model by Latham et al.[5]was used to simulate ultra-low 
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oscillations observed by Mok et al.[18] in dissociated cortical cultures of rat 

neurons. 
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CHAPTER 3 

METHODOLOGY 

3.1 Effect of Parameters of the IF Model on Global Oscillations in a 

Network of Homogenous Neurons 

The differential equation governing the depolarization of the membrane 

potential       for a sparsely connected network composed of N number of 

identical inhibitory IF neurons is given by 

      

  
 

 

 
[                        ] (1) 

 

where   is the resting potential,        is the synaptic input,      is the external 

jump amplitude and   is the external input rate. The network is constructed 

based on the total number of neurons and the connection probability between 

the neurons. The network receives internal inputs from a predetermined 

number of connections from other neurons in the network and external 

excitatory inputs.  

In our study, each neuron within the network receives an external excitation 

input. External inputs are statistically independent and can be well approximated 

by a Poisson distribution. The average part, μext and the fluctuating part, σext of the 

external synaptic input are explicitly given by. 
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                   (2a) 

         √         
 

 (2b) 

 

where η is the membrane time constant,      is the external jump amplitude 

and         is the mean firing rate. 

 A Poisson random process is used to generate the external input rates,  . 

The rates are multiplied with the external input voltage jump     to simulate 

external excitation of the membrane. Internal activities are conveyed through 

the term      . The representation of the internal input is given by  

       ∑     
 

∑      
    

 

 (3) 

 

where       is the synaptic weight,    is the internal voltage jump,   
  is the 

emission time of k-the spike at neuron j and   is the synaptic delay. 

The network parameters are varied to study the behaviour of network. The 

range of variation of the parameters is shown in Table 1.  

Parameters Range 

Min Max 

Network Size 1000 250000 

External Noise 1mV  12mv 

Connection probability 0.05 1 

Synaptic Delay 1.5ms 4ms 

Synaptic Weight 0.2 1 

Table 1 Parameters for simulation of homogenous network of inhibitory neuron 
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3.2 Simulation Algorithm  

The simulation algorithm is developed using C++ to take advantage of the 

multicore processor architecture. Many of the calculations in the simulation of 

a neuronal network can be performed simultaneously. The differential equation 

governing the evolution of the membrane voltage and synaptic current can be 

solved concurrently by means of parallel computing. The speed of computation 

can be increase with the implementation of parallel computing [46, 47].  

The Open Multi-Processing (OpenMP) [48] application programming 

interface (API) is used to facilitate the implementation of parallel computing. 

OpenMP allows multiprocessing on a shared memory system. A master thread 

can be parallelised using an OpenMP compiler directive, creating a numbers of 

slave threads to work on a task. After all the slave threads have executed the 

task, the slave treads will join back to the master thread to allow continuation 

of program execution. Figure 2 illustrates a master thread that forks off to 

multiple slave treads during an execution of an OpenMP PARALLEL 

directive. OpenMP is commonly used to implement numerical simulation 

which requires a large number of calculations [49, 50, 51, 52].  
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Figure 2 OpenMP of parallel execution block 

Another advantage of using C++ is the ability to use the Object-oriented 

Programming (OOP) method for the implementation of neurons [53]. An 

object can be represented as a class in a program. A class can contain both data 

and function. By treating a neuron as a functional unit, a neuron class can be 

created to represent the parameters and features of the particular neuron. OOP 

is widely used in the creation of simulation software for neurons and neural 

networks [54, 55, 56, 57]. 

A numerical procedure is implemented to solve the IF first-order 

differential equation (ODE). Small time steps are taken to solve the IF equation 

to get the evolution of the membrane potential. There are a number of 

numerical methods that can be applied to solve the ODE [58]. For the current 

simulation, the numerical method used for solving of the ODE is the Fourth-

Order Runge-Kutta Method [59]. 

Parallel Thread 1 Parallel Thread 2 Parallel Thread 3 

Master Thread 

Master Thread 
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3.2.1 Simulation Algorithm Development 

The equation describing the dynamics of the membrane is represented as a 

class. The class will hold the equation in its operator. The function and variable 

describing the equation are implemented as a member of the class. The code 

below shows an example for the implementation of an equation class. 

1 class LinIF{ 

2 private: 

3 double tau, Er, v_thres;  

4  public: 

5 double v, J; 

6 bool type 

7    

8   LinIF(double e): 

9    v(e), 

10    Er(-65), 

11    tau(20), 

12 J(0), 

13    v_thres(-55){} 

14  

15   ~LinIF(){} 

16  

17   double operator()(double y, double t){ 

18    return (1/tau) * (-(y-Er)) + J; 

19   } 

20  

21   bool update(){ 

22    if (v >= v_thres){ 

23     v = -65; 

24     return true; 

25    } 

26    else 

27     return false; 

28   } 

29 }; 

 

Class in Line 1 of the code is the keyword for the declaration of an 

expended data structure in C++. The variable describing the equation will be 
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stored in the data members declared from Line 2 to Line 5 of the code. The 

equation is implemented in the default operator with 2 inputs y and t. The last 

part of the class, line 20 to 27 contain a function to check the reset condition of 

the IF model. When the voltage crosses the threshold, the membrane potential 

is reset back to the resting potential. 

The next step in the algorithm is the implementation of the numerical 

solution. A template function is created to solve the equation class. The 

function will run the equation through all the necessary steps in solving the 

differential equation. 

1 template <typename function>double runge_kutta_4th(function equation, 

double initial, double t, double dt){ 

2  double k1 = equation(initial, t); 

3  double k2 = equation(initial + 0.5 * k1 * dt, t + 0.5 *dt); 

4  double k3 = equation(initial + 0.5 * k2 * dt, t + 0.5 *dt); 

5  double k4 = equation(initial + k3 * dt, t + dt); 

6  return initial + (k1 + 2*k2 + 2*k3 + k4)/6 * dt; 

7 } 

 

The code above shows an example of implementation of Runge-Kutta 

method in solving the differential equation. The beginning, midpoint and 

endpoint estimates are calculated and stored in variables k1 to k4. Knowing the 

function, the initial value, the time and the time step size, the average slopes 

from k1 to k4 are calculated and added to the initial values to get the results at 

time       . 

The main simulation algorithm will create objects based on the neuron 

class. Information describing the connectivity, type and others properties of the 
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network for each individual neuron will be stored into the vectors. Network 

information is generated based on the required parameters for every particular 

simulation. Data in the vector will be recalled during the simulation steps to 

determine the network characteristics of a neuron.  

 

Figure 3 Flowchart for simulation algorithm 

Figure 3 shows a simplified flowchart describing the overall simulation 

algorithm. All the required objects and parameters are initialized at the start of 

the program. The simulation is carried out for every time step, Δt until a pre-set 

Initialization of Neuron Object and Network Parameters 

Program End  
Reach End 

of 

Simulation? 

Yes 

No 

OpenMP 

Thread 1 
OpenMP 

Thread 2 

OpenMP 

Thread n 

OpenMP 

Implementation 

Save Information for 

current time step 

Program Start  
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time limit. Individual neuron equations are solved in the iteration loop using 

OpenMP to distribute the processing load. With a multicore processor, the 

threads created can be run simultaneously to shorten the time required to 

complete the simulation. The output for every time steps will be recorded and 

saved to the hard disk as CSV files. The summation of spikes and the 

membrane voltage are some of the outputs that can be saved in this step. 

The completed code is compiled using g++ with flags, -O2 and -fopenmp 

under Ubuntu. Level 2 optimization of the code will increase the speed of the 

program and it is done automatically by the compiler. The fopenmp flag is 

needed to enable the use of OpenMP directive in the coding. 

3.2.2 Implementation of Synaptic Delay 

Synaptic delays are implemented in the code using double ended queue 

(deque). Data in the deque can be added and removed from the head and the 

end of the list. Spike information from the presynaptic neuron is stored at the 

end of the deque. The length of the deque, n is obtained by dividing the desired 

time of delay by the time step. Spikes that arrive at the postsynaptic neuron is 

removed from the start of deque and used for processing at that particular 

simulation time step.  
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Figure 4 Implementation of synaptic delay 

Figure 4 shows the flow of a deque implemented for a synapse. Each 

synapse will have a unique deque assigned to it to store the information on its 

synaptic delay. 

3.2.3 Implementation of the After Hyperpolarization current 

The hyperpolarization of a neuron occurs after spike generation due to open 

potassium ion channel and the influx of calcium ion channel. It causes the 

membrane potential of a neuron to fall below the resting potential. The 

phenomena of After Hyperpolarization (    ) current can bemodelled using the 

equation, 

       
   

       (4a) 

     

  
  

    

    
      ∑       

 

 (4b) 

 

where,     determines the amplitude of conductance,     determines the 

change in conductance and    is the time a spiking event occurs. 

The spiking of a neuron at time   will trigger an increase in     . This 

causes the generation of the AHP current on the membrane potential at the time 

    Delay In 1     2      3    …………….     n-2      n-1       n 
Input to Neuron  
After delay 

 

Length of Delay 
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of spike. This current causes the membrane potential to drop to a lower point 

when the membrane recovers after spiking. 

The AHP current is modelled as an object in the simulation algorithm. The 

code for the differential equation is shown below. The differential part of the 

equation is described in the operator of the class. The Runge-Kutta4
th

 order 

numerical scheme will be used to solve the differential equation object. 

1 class neuron_internal_dynamics{ 

2 private: 

3 double tau, wi, del, z;  

4  

5 neuron_internal_dynamics(double tau, double del): 

6   tau(tau), 

7   wi(0), 

8   del(del), 

9   z(0){} 

10    

11 ~neuron_internal_dynamics(){} 

12   

13 double operator()(double y, double t){ 

14  return -(y/tau) + del * wi; 

15 } 

16 }; 

 

3.2.4 Simulation in Networks with Excitatory Neurons 

The simulation code is modified further to facilitate the simulation of 

networks with excitatory neurons. The neuron class is modified to 

accommodate a parameter for excitatory or inhibitory neurons. A Boolean 

variable is used to determine the type of neuron. During simulations, the 

neuron type is checked to ensure that the correct routine for inhibitory or 

excitatory neurons is called. The accuracy of the current simulation algorithm 
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is checked against the results provided by Brunel et al.[37] for a network of 

sparsely connected excitatory and inhibitory neurons.  

3.3 Simulation of Ultra-Slow Spontaneous Oscillation 

Spontaneous activities in a neuronal network have already been modelled 

by Latham et al.[5]. I will extend this model to simulate ultra-slow spontaneous 

oscillations observed by Mok et al.[18] in cortical cultures of rat neurons. 

Ultra-slow changes to the firing rate were observed in dissociated cortical 

cultures grown on an 8x8 grid MEA. Global activity is obtained by summing 

up all the activity present on each of the individual electrodes.  

Ultra-slow spontaneous oscillatory patterns are observed as a result of 

fluctuations in the number of neurons activated at the peaks and troughs. 

Figure shows the differences in the number of spikes between the time ranges 

from 200s to 210s and from 400s to 410s for culture 4. Fewer neurons are 

active during bursting events in Figure 5 (a) compare to Figure 5 (b). 
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Figure 5 Experimental data showing spontaneous bursting activity for 10s in a culture of 

cortical neurons. a) Activity at troughs of ultra-slow spontaneous oscillations b) Activity 

at peaks of ultra-slow spontaneous oscillations. The activity time bin is 10ms(Mok et al. 

[19]) 

 

Figure 6 Experimental results showing ultra-slow changes in spontaneous activity. The 

activity time bin is 10ms (Mok et al. [19]) 

0 200 400 600 800 1000 1200 1400 1600 1800
0

20

40

60

80

100

120

140

160

180

Time, (s)

S
p
ik

e
s



 

21 

Figure 6 shows a sample data obtained from the experiment showing ultra-

slow periodical changes in the spontaneous activity. Two distinct firing rates 

can be observed in the sample data above. About 90 spikes per time bin can be 

observed at periods with low firing rates and about 160 spikes per time bin at 

times with high firing rates.  

 

Figure 7 Spike sorting results on one of the electrodes a) neuron fires throughout the 

whole recording. b) neuron fires only at the peaks c, d) neuron with low level of activity. 

The activity time bin is 10ms (Mok et al. [19]) 

Why the neurons exhibit this ultra-slow spontaneous oscillating behaviour 

is not fully understood. However when spike sorting algorithms [60, 61] were 

used to separate the activities from different neurons, the experimental data 

showed that some neurons fire continuously while others fire only at the peaks 

and not at the troughs. 
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The time evolution equation [5] for the membrane potential of neuron       

for modelling activity observed in the experiment is 
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where   determines the rate of change for v,   is the resting potential;  is the 

threshold potential,        controls the fraction of endogenously active cells,   

is the potassium reversal potential,     and         are the potassium 

conductance, ̃  and  ̃    describe the synaptic input currents to the neuron. The 

time evolution equation of  ̃               and  ̃    are given by equations 5b-

5e.A Runge-Kutta4
th

order solver, created in C++, was used to solve the 

differential equations for the network.  

The time period of these ultra-slow spontaneous oscillations is much larger 

than previously reported and these ultra-slow spontaneous oscillations are not 

affected by the parameters of the standard IF model. It is likely that these 

oscillations are controlled by other biochemical processes and/or network 



 

23 

structure in the neuronal culture. In order to overcome this difficulty, I 

introduce an additional equation,  

  

  
  

 

  
  ∑       

  

   

     

 (6) 

 

that describes the generation and dissipation of an inhibiting property (θ).The 

generation of the inhibiting property is proportional to the firing activity and 

represented by a parameter α and the dissipation of the inhibiting property is 

represented by a decay coefficient, ηθ when the inhibiting property reaches a 

higher threshold value, the neurons within the subnetwork stop firing. The 

neurons start to fire again when it has dissipated to a lower threshold value.  

It has been previously reported [45] that for some large networks, the 

synchronized bursting events might be classified as belonging to several 

distinct subnetworks with each subnetwork representing a synchronized 

bursting event with a well-defined spatio-temporal internal structure. From the 

spike sorting results [19], I postulate here that there are two or more such 

distinct subnetworks. The generation of the inhibiting property in each 

subnetwork is proportional to the firing rate but the decay rate is different 

depending on the local subnetwork properties. In this manner we will have 

neurons in each subnetwork firing at a different rate. For the purpose of the 

present simulations, the neurons are divided into 2 subnetworks. By proper 

adjustment of the parameters α and ηθ we can obtain a subnetwork of neurons 

that fires continuously and another that fires only at the peaks and not at the 
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troughs. The simulation algorithm described in section 3.2 will be utilized for 

the simulation of these ultra-slow spontaneous oscillations.  
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Simulation Algorithm 

Sets of C++ libraries were created for the simulation algorithm. Libraries 

containing the equations describing the dynamics of the membrane were 

included in the main file of the simulation programs. The developed libraries 

were tested for speed and accuracy of simulation. The speeds of simulations for 

optimized and OpenMP were compared for different sets of simulations. The 

results of the simulations were recorded on to the hard disk using the CSV 

format. Information such as the number of spikes, membrane potential and 

variable changes during the simulations were selected as the output of the 

simulation code. 

4.1.1 Comparison of Single Neuron Simulations with Exact Solutions 

The accuracy of the simulation algorithm was tested by comparing the 

simulation results with the exact analytical solutions for the basic IF neuron 

model and also for the QIF neuron model. For the basic IF model, the error is 

taken as the difference between the results of the numerical simulation of  

  

  
  

 

 
             (7) 
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and the exact analytical solution given by 

                        
  

  
 
 
 (8) 

 

For equation 7, the following values were used: η = 20ms, vr = -65mV and 

RI = 15mV and for equation 8,      and     -   where    is the time when 

the spike last occurred. The threshold voltage for spike generation is set at -

55mV. When a spike occurs, the membrane voltage at the current time step 

will be reset back to the resting potential at -65mV. 

Figure 8 shows a comparison of the results of the membrane voltage 

generated by the numerical simulation and the exact analytical solution. The 

mean square error obtained from the numerical simulation using the Runge-

Kutta method compared to the exact analytical solution is 7.9113 x 10
-10

 

showing that the numerical simulation is highly accurate. 
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Figure 8 Comparison of simulated membrane voltage of single IF neuron model with 

exact solution 

The QIF model used for the comparison is described by  
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For the numerical simulations, the following values were used: α0 = 0.2, η = 

20mV, vr = -65mV and RI = 15mV and for the analytical solution,    

  and    -   where     -   is the time when the spike last occurred. The 

threshold voltage for spike generation is set at 55 mV and the peak of the spike 

set at 0mV. When a spike occurs, the membrane voltage at the current time 

step will be reset back to the resting potential at -65mV. 

Figure 9 shows a comparison of the results of the membrane voltage 

generated by the numerical simulation and the exact analytical solution. The 

mean square error obtained from the numerical simulation using the Runge-

Kutta method compared to the exact analytical solution is 1.1457 x 10
-5

 

showing that the numerical simulation is highly accurate. 

 

Figure 9 Comparison of simulated membrane voltage of single QIF neuron with the exact 

analytical solution 
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4.1.2 Network Simulation 

A network of neurons was created to test for the propagation of error due to 

the interconnectivity of neurons. Table 2 shows the parameters of the network. 

 Network Parameter 

Number of Neuron 5000 

Connection Per Neuron 1000 

Neuron Type Inhibitory 

Table 2 Network parameters for IF and QIF networks 

For the simulation of a network of IF neurons, equation 7 is numerically 

evaluated using the Runge-Kutta4
th

 order method. In the network, a 

presynaptic neuron spike will produce a potential jump J, of -1mV at the 

postsynaptic neurons. The sum of the spikes for a simulation of 2000ms is 

calculated for the network. The results are compared with those obtained from 

a similar simulation using equation 8 (the exact analytical solution of equation 

7). Figure 10 shows the number of spikes computed from network simulations 

for the IF model using equations 7 and 8. The number of spikes computed from 

both cases is identical, showing that there is no propagation of errors in the 

simulation. 
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Figure 10 Comparison of results from simulation of a network of IF neurons 

Figure 11 shows the number of spikes computed from network simulations 

for the QIF model using equations 9 and 10. The number of spikes computed 

from both cases is identical, showing that there is no propagation of errors in 

the simulation. 
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Figure 11 Results from simulation of QIF neurons network using different methods 

4.1.3 Effect of Parallel Processing on Simulation Speed 

Numerical simulations were carried out for networks of 10000 and 20000 

QIF neurons with and without OpenMP implementation. The parameters for 

the simulations are given in Table 3. 

 Network Parameter 

Number of Neuron Varies 

Connection Per Neuron 0.2 * Number of Neuron 

Neuron Type Inhibitory 

External Input Fixed 

Table 3 Network parameters for comparison of time taken for simulation (QIF) 

Figure 12 shows a comparison of the time taken for the simulation. With 

OpenMP implementation, a 5.05% speed increase for the simulation of 10000 
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neurons and 3.71% speed increase for the simulation of 20000 neurons can be 

observed. 

 

Figure 12 Speed of simulation for a network of QIF Neurons 

Test for speed of simulations were also carried out for a network of QIF 

neurons with AHP. The parameters in Table 3 were used. An increase of 

23.33% in the simulation speed for 10000 neurons and 18.26% increase in 

simulation speed for 20000 neurons can be observed. 

 

Figure 13 Speed of simulation for a network of QIF with AHP neurons 
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The overall increase in simulation speed is much higher for the QIF with 

AHP neurons compare to QIF neurons only. This is due to the overhead needed 

by OpenMP to create individual threads for the execution of the simulations. 

Processing time is used up to create threads and forks in the program for 

parallel processing. Time is also taken up when the data for threads is 

combined at the end of the parallel fork. Containing only a single differential 

equation, the network of QIF neurons only receive minor speed improvement 

for the simulation due to the time taken by OpenMP. Conversely, the 

simulation for a network of QIF with AHP neurons shows a more significant 

improvement in computational speed. The overhead imparted with the use of 

OpenMP for this simulation is similar to the simulation of QIF neurons. With a 

more complex equation, simulation of a network of QIF with AHP neurons 

benefit more from the implementation parallel processing using OpenMP. 

4.1.4 Simulations of a Network of Inhibitory and Excitatory Neurons 

Using the current simulation algorithm, I attempt to reproduce the results as 

reported by Brunel [37] for a network of inhibitory and excitatory IF neurons. 

The parameters in Table 4 are used for the simulation. The amplitude for the 

inhibitory post synaptic potential and external noise are varied in the 

simulation. The amplitude of inhibitory post synaptic potential is varied using 

the term g as shown in Table 4. 
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Parameters Value 

PSP amplitude for excitatory synapses 0.1mV 

PSP amplitude for inhibitory synapses -g*0.1mV 

Synaptic Delay 2ms 

Firing threshold 20mV 

Resting potential 10mV 

Membrane time constant 20ms 

Number of excitatory neurons 10,000 

Number of inhibitory neurons 2,500 

Inhibitory Connections 250 

Excitatory Connection 1000 

Table 4 Network parameter for simulation of network of inhibitory and excitatory 

neurons 

Figure 14 to Figure 17 show the activity patterns as reported by Brunel [3] 

can be reproduced using the current simulation algorithm. 

 

Figure 14 Synchronous Regular State (SR), g = 3, External noise =2 mV. The activity time 

bin is 10ms 
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Figure 15 Synchronous Irregular State (SI), Fast Oscillation, g = 6; External noise = 3 

mV. The activity time bin is 10ms 

 

Figure 16 Asynchronous Irregular State (AI), g = 5; External noise = 2 mV. The activity 

time bin is 10ms 
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Figure 17 Synchronous Irregular State (SI), Slow Oscillation, g = 4.5; External noise = 1.3 

mV. The activity time bin is 10ms 

4.2 Effects of the Parameters of the IF Model on the Global Oscillations in 

a Network of Homogenous Neurons 

Simulations for a network of homogenous neurons are conducted and the 

parameters of the IF model are varied to study the effect of parameters on the 

network oscillations.  
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4.2.1 Network Size 

 

Figure 18 Frequency of network oscillation for different network size 

The size of the neuronal network is increased while other parameters of the 

network are kept constant. The other parameters of the network are ε = 0.2, η = 

20ms, D = 2ms, Jij = 0.1mV, and μext = 25mV. Figure 18 shows the variation of 

the network oscillation frequency with network size 3 noise levels of 1mV, 4 

mV and 8 mV. The frequency of network oscillations decreases sharply as the 

number of neurons N in the network increases for N less than 50,000. For N 

greater than 100,000, the frequency of network oscillations did not change 

significantly. It may be observed that the frequency of network oscillations 

increases with external noise from 1 mV to 8 mV. 
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4.2.2 External Noise 

 

Figure 19 Frequency of network oscillation for different external noise 

For this simulation, N was chosen to be 130,000 neurons to eliminate the 

effect of network size on the frequency of network oscillations. The effect of 

different external noise levels to the network is investigated. The following 

parameters are kept constant: N=130,000 neuron, η = 20ms, ε = 0.2, D = 2ms, 

Jij = 0.1mV, and μext = 25mV. Figure 19 shows that the frequency of network 

oscillation increases with external noise until 8 mV after which it remains 

relatively constant. 
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4.2.3 Connection Probability 

 

Figure 20 Frequency of network oscillation for different connection probability 

Different connection probability for the network is simulated. A network of 

130,000 neurons is chosen to eliminate the effect of N on the network 

oscillations. For each curve, with the exception of connection probability, the 

other parameters remain the same: η = 20ms, D = 2ms, Jij = 0.1mV, and μext = 

25mV. Three curves are generated for external noise, ζext = 1mV, ζext = 4mV 

and ζext = 8mV. Figure 20 shows that the frequency of oscillation decreases 

slightly when the network varies from sparsely to highly connected. 
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4.2.4 Synaptic Delay 

 

Figure 21 Frequency of network oscillation for different synaptic delay 

The synaptic delay of the network is varied. The network size of 130,000 

with connection ratio of 0.2 is used. Other parameters of the network are η = 

20ms, Jij = 0.1mV and μext = 25mV. External noise level of ζext = 1mV and ζext 

= 8mV is used for the simulation. Figure 21 shows the results of the 

simulation. At low synaptic delays, the frequency of the oscillation is very 

high. With higher delay times, the frequency of network oscillation decreases. 
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4.2.5 Synaptic Weight 

 

Figure 22 Frequency of network oscillation for different synaptic weight 

The synaptic weights of the network are varied from 0.02 to 0.9. The 

parameters of the network are N = 130,000, ε = 0.2, η = 20ms, Jij = 0.1mV and 

μext = 25mV. External noise level of ζext = 1mV, 4mV and 8mV are used for 

the simulation. The oscillation frequency remains relatively constant for higher 

synaptic weights. At lower synaptic weights, the stability of the oscillation is 

affected causing a noise-like network activity to occur. Figure 22 shows the 

result for the simulation. 
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4.3 Simulation of Spontaneous Activity 

Spontaneous activity in cultures of cortical neurons using the model 

described in chapter 3.3 will be simulated. By varying the number of 

endogenous neurons in the network, regular spontaneous activity can be 

obtained. 

To simulate ultra-slow spontaneous oscillations in cortical cultures [18], a 

network of 2 subnetwork of neurons will be created. An inhibiting property is 

introduced in each subnetwork. If the properties of the 2 subnetworks are 

different, it is possible to simulate one subnetwork that will fire continuously 

while another subnetwork fires periodically 

4.3.1 Spontaneous Activity 

A network to simulate spontaneous activity is created based on the model 

described by equation 5a and with parameters given in Table 5. The parameters 

for the neurons and synapses are as described by Latham et al. [5]. In the 

model, an applied current    is introduced to each of the neurons. The applied 

current is chosen randomly from a uniform distribution between 0 and Imax. A 

fraction of the neurons will be endogenously active based on the value chosen 

for Imax,  ̃ and Ĩ describe the synaptic currents between the neurons while gk and 

gk-ca represent the potassium conductance for the slow and fast after 

hyperpolarization currents. 
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Parameter Value 

   10ms 

   -65mV 

   -50mV 

  1/15 

   -80mV 

   3ms 

   0.1mS 

   30ms 

   1mS 

      3000ms 

      0.2mS 

Table 5 Neuron parameters for simulation of spontaneous activity 

Parameter Value 

Number of Neuron 10000 

Connection Per Neuron 2000 

Excitatory Neuron 20% 

Inhibitory Neuron 80% 

VEPSP 1mV 

VIPSP -1.5mV 

Connectivity Bias Varied 

Imax Varied 

Table 6 Network parameters for simulation of spontaneous activity 

The network parameters for cortical cultures are listed in Table 6. wij 

(Latham et al. [5]) is calculated from Vpsp using 

    
       

  

 

  

  
  

   [
          ⁄

      ⁄
] (11) 

 

with parameter values given in table 5.Neurons in the network are allowed to 

connect to all other neurons except itself. Connectivity bias is a ratio which 

describes the tendency of the network to favor connections between 2 different 

types of neuron. 
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Based on the connectivity bias for inhibitory and excitatory neurons, 

connection probability     
 (Latham et al. [5]) can be calculated using, 

    
 

   

        

 (12) 

    
 

   
   

        

 (13) 

 

where     
 is the connection bias,     

 is the mean number of post synaptic 

connection,     is the number of excitatory connection and     is the number 

of inhibitory connection.The network connection is then randomly selected 

based on the probability calculated. Imax and connectivity bias are varied to find 

a set of parameters that is capable of reproducing activity patterns that are 

observe in the experiment. 

Connection biases are varied from 0.8-1.2 for inhibitory and excitatory 

neurons. For each of the connection patterns, the Imax values are varied and the 

effect on the generated spontaneous activity are observed. All the differential 

equation are implemented in C++ template and solve using Runge-Kutta 

4
th

order numerical scheme. 

Figure 23 shows the different types of activity patterns obtained from the 

simulation with different connection bias. Periodically repeating firing of 

neurons can be observed in Figure 23 (a) and (b) when the inhibitory bias is 

low. Figure 23 (c) shows a very low level of activity. Figure 23 (d), (e) and (i) 

show a constant activity pattern. Figure 23 (f) and (h) show bursting activity 
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patterns. Figure 23 (g) shows large activity at the start that decays to a lower 

activity. 

 

Figure 23 Simulated activity for different Be and Bi values. Imax of 4 is used for the 

simulation. The activity time bin is 10ms 

The activity patterns of networks with connection bias, Bi = 0.8 are similar 

to the experimental results by Mok et al.[18] except that the simulated period 

of inactivity in between steady network firing is much smaller compare to the 

period detected in the experiments as shown in Figure 24.  
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Figure 24 Experiment data showing spontaneous bursting activity for 10s in a culture of 

cortical neurons. The activity time bin is 10ms (Mok et al.[19]) 

Simulations were carried out for Bi = 0.8 and Imax from 3.6 to 5. For Imax of 

3.6 and lower there is no network activity due to the low number of 

endogenously active neurons. Figure 25 shows that for Imax values of 4.0 and 

3.8, the number of spikes of the network is very low. For Imax values of 5.0 and 

4.5, the activity patterns show steady firing with a period of inactivity around 

2s to 3s. The activity pattern simulated using network parameters Bi = 0.8 and 

Be = 1.2 are the closest to the activity pattern as shown in the experimental 

results of Figure 24. 
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Figure 25 Activity for network with Bi = 0.8,Be = 1.2 Imax = 5 to 3.8. The activity time 

bin is 10ms 

4.3.2 Simulation of Ultra-Slow Spontaneous Oscillations 

A network with 2 subnetworks is created for the purpose of simulating the 

ultra-slow oscillations as observed by Mok et al.[18]. Neurons are assigned 

randomly to the subnetworks. An inhibiting property is assigned to each 

subnetwork. The inhibiting property is described by equation 6 in section 3.3. 

Parameters in table8, 9 and 10 are used for the simulation. 

Parameter for inhibiting property Value 

  0.001-0.01 

Upper Threshold for θ 4-5 

Lower Threshold for θ 0.1 

   1000-50000 

Number of neuron in each subnetwork 1 90% to 10% 

Number of neuron in each subnetwork 2 10% to 90% 

Table 7 Parameters for the inhibiting properties of a subnetwork 
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The number of neurons in the 2 subnetworks is varied from 50-50% to 10-

90%. The subnetwork accumulates the inhibitory property when the neurons in 

a subnetwork fire. If the inhibitory property reaches the upper threshold value, 

the neurons in the subnetwork will become inactive until the value of inhibitory 

property falls below the lower threshold value. All external currents to the 

neurons within the subnetwork will be set to 0 during this inactive period. The 

membrane potential of the neurons in this subnetwork will fall towards the 

resting potential during the period of inactivity. 

The parameters of subnetwork size, α and ηθ affect the shape and pattern of 

the generated ultra-slow oscillation. The size of subnetwork determines the 

number of neurons that are active during the peak and trough of the 

oscillations. The time period where both subnetworks are active is determined 

by the time the inhibitory property takes to reach the upper threshold. The size 

of the subnetwork, ηθ and α affects the accumulation rate of inhibitory property. 

The period of inactivity for the subnetwork is dependent on ηθ. With no 

external current acting on the neurons, no activity will be generated during the 

time the inhibitory property takes to reach the lower threshold. For the above 

simulation, a small ηθ is assigned to subnetwork 2 to simulate a neuron group 

that is active all the time. 

By adjusting these 3 parameters, oscillatory patterns with different periods 

can be achieved. Figure 26 shows simulation results that are comparable to 

activity detected in experiment. When both subnetworks are active, about 150 

spikes per time bin can be obtained from the simulation. Activity when only 1 

of the subnetwork is active is much lower, at about 45 spikes per time bin. 
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Figure 27 shows the changes of the inhibitory property for subnetwork 1 and 

subnetwork 2. The inhibitory property of subnetwork 1 accumulates and 

reaches the upper threshold. Then it decays to the lower threshold when 

neurons are inactive. The inhibitory property of subnetwork 2 stays at about 0.7 

due to the fast decay rate. 

 

Figure 26 Simulation results showing 5 peaks in 800s. Parameters for the simulation of 

activity: α = 0.07, upper threshold = 3.8.Subnetwork 1: number of neuron = 2000, τφ = 

30000. Subnetwork 2: number of neurons = 8000, τφ = 1000. The activity time bin is 10ms 
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Figure 27 Changes of inhibitory properties, φ in subnetwork 1 and subnetwork 2 with 

parameters for the simulation of activity: α = 0.07, upper threshold = 3.8. Sub network 1: 

number of neuron = 2000, τφ = 30000. Subnetwork 2: number of neurons = 8000, τφ = 

1000 

Figure 28 shows simulation results with another set of parameters. 

Different patterns of activity can be obtained by changing the number of 

neurons in subnetwork 1 and subnetwork 2. The simulation results show 

patterns that are comparable to the activity pattern observed in culture 2. 
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Figure 28 Simulation results showing 3 peaks in 800s. Parameters for the simulation of 

activity: α = 0.07, upper threshold = 3.8. Subnetwork 1: number of neuron = 3000, τφ = 

30000. Subnetwork 2: number of neuron = 7000, τφ = 1000. The activity time bin is 10ms 

Ultra-slow oscillations can be reproduced in simulations by introducing an 

inhibition property with a slow time constant to one of the subnetwork. The 

inhibition of subnetwork cannot be detected from the experiments conducted 

by Mok et al. [18].Further experiments must be carried out to better understand 

the underlying biochemical process that causes the Ultra-slow oscillation. 
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CHAPTER 5 

CONCLUSIONS 

A simulation algorithm was developed for a network consisting of IF 

neurons using objects in C++. Function classes are used to describe the 

differential equations in the simulations. Network models are represented in 

C++ based on the classes. The simulation algorithm takes advantage of the 

parallel processing capabilities of current computer CPU’s to improve the 

speed of computation. 

Using the above simulation algorithm, the effects of the different 

parameters of the IF model on the global oscillations of a network of 

homogenous neurons were investigated. The results show that the frequency of 

the network global oscillations are affected by the leakage term, the network 

size, the connection probability, the external noise, the synaptic delay and the 

synaptic weight. 

Ultra-slow spontaneous oscillations were simulated using the model by 

Latham et al. [5] together with an additional equation that describes the 

generation and dissipation of an inhibiting property for 2subnetwork of 

neurons. The results of the simulations show activity patterns that are 

comparable to ultra-slow spontaneous oscillations observed in cortical cultures 

of rat neurons by Mok et al. [18].  
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APPENDIX A. EQUATIONS: 

Equation used in simulation of inhibitory and excitatory neurons:  

1 Integrate and Fire Model       
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2 External noise generation: 
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Equation used for simulation of spontaneous activity:  
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Equation used for testing of simulation algorithm:  

1 Basic IF 

model 

driven by 

constant 

current 
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APPENDIX B: 

Example code showing usage of model 

#include <iostream> 

#include <iomanip> 

#include <fstream> 

#include <vector> 

#include <ctime> 

#include <cmath> 

#include <cstring> 

#include <sstream> 

#include <deque> 

 

using namespace std; 

using namespace std::tr1; 

 

class LinIF{ 

  

 private: 

  double v_thres; 

 public: 

  double v; 

  double ge; 

  double gi; 

  double ref; 

  double Er; 

  double tau; 

 

  LinIF(double e): 

   v(e), 

   ge(0), 

   gi(0), 

   ref(0), 

   Er(-65), 

   tau(20), 

   v_thres(-55){} 

 

  ~LinIF(){} 

 

  double operator()(double y, double t){ 

   return (1/tau) * (-(y-Er) + 15); 

  } 

 

  bool update(){ 

   if (v >= v_thres){ 
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    v = -65; 

    return true; 

   } 

   else 

    return false; 

  } 

}; 

class QIF{ 

 

 public: 

  double v; 

  double ge; 

  double gi; 

  double ref; 

  double Er; 

  double tau; 

  double v_thres; 

 

  QIF(double e): 

   v(e), 

   ge(0), 

   gi(0), 

   ref(0), 

   Er(-65), 

   tau(20), 

   v_thres(0){} 

 

  ~QIF(){} 

 

  double operator()(double y, double t){ 

   return (1/tau) * (0.2*(y-Er)*(y-(-55)) + 10) ; 

  } 

 

  bool update(){ 

   if (v >= v_thres){ 

    v = -65; 

    return true; 

   } 

   else 

    return false; 

  } 

}; 

template<typename function>double runge_kutta_4th(function equation, 

double initial, double t, double dt){ 

 double k1 = equation(initial, t); 

 double k2 = equation(initial + 0.5 * k1 * dt, t + 0.5 *dt); 

 double k3 = equation(initial + 0.5 * k2 * dt, t + 0.5 *dt); 

 double k4 = equation(initial + k3 * dt, t + dt); 

 return initial + (k1 + 2*k2 + 2*k3 + k4)/6 * dt; 

} 
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template<typename function>double euler(function equation, double initial, 

double t, double dt){ 

 return initial + equation(initial, t) * dt; 

} 

 

int main() 

{ 

 LinIF testRK(-65); 

 LinIF testEU(-65); 

 QIF testQRK(-65); 

 QIF testQEU(-65); 

 ofstream out_RK("outRK.csv"); 

 ofstream out_EU("outEU.csv"); 

 ofstream out_QRK("outQRK.csv"); 

 ofstream out_QEU("outQEU.csv"); 

 out_RK << testRK.v << endl; 

 out_EU << testEU.v << endl; 

 out_QRK << testQRK.v << endl; 

 out_QEU << testQEU.v << endl; 

 for (int i = 0; i < 500; i++){ 

  testRK.v = runge_kutta_4th(testRK, testRK.v, 1, 0.1); 

  testRK.update(); 

  testEU.v = euler(testEU, testEU.v, 1, 0.1); 

  testEU.update(); 

  out_RK << testRK.v << endl; 

  out_EU << testEU.v << endl; 

  testQRK.v = runge_kutta_4th(testQRK, testQRK.v, 1, 0.1); 

  testQRK.update(); 

  testQEU.v = euler(testQEU, testQEU.v, 1, 0.1); 

  testQEU.update(); 

  out_QRK << testQRK.v << endl; 

  out_QEU << testQEU.v << endl; 

 } 

return 0; 

} 
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Neuron with AHP Implementation 

 

#include <iostream> 

#include <iomanip> 

#include <fstream> 

#include <vector> 

#include <ctime> 

#include <cmath> 

#include <cstring> 

#include <sstream> 

#include <deque> 

 

using namespace std; 

using namespace std::tr1; 

 

class gSynIn{ 

 public: 

  double g; 

  double spk; 

   

 private: 

  double t_syn; 

  double Ai; 

 

 public: 

  gSynIn(): 

   g(0), 

   spk(0), 

   t_syn(3), 

   Ai(0.17) 

   {} 

 

  ~gSynIn(){} 

 

  double operator()(double y, double t){ 

   return (1/ t_syn) * (-y + (spk * Ai)) ; 

  } 

   

  void reset(){ 

   spk = 0; 

  } 

}; 

class gSynEx{ 

 public: 

  double g; 

  double spk; 
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 private: 

  double t_syn; 

  double Ai; 

 

 public: 

  gSynEx(): 

   g(0), 

   spk(0), 

   t_syn(3), 

   Ai(0.25) 

   {} 

 

  ~gSynEx(){} 

 

  double operator()(double y, double t){ 

   return (1/ t_syn) * (-y + (spk * Ai)) ; 

  } 

   

  void reset(){ 

   spk = 0; 

  } 

}; 

class neuron_membrane_dynamics{ 

 public: 

  double gkca; 

  double gk; 

  double Ia; 

  double Ia_mean; 

  double v; 

  double gi; 

  double ge; 

  double Ei; 

  double Ee; 

  double E_syn; 

  double c; 

  double v_rest; 

  double v_thres; 

  double E_pot; 

  double v_apex; 

  double v_repol; 

 

 public: 

  neuron_membrane_dynamics(double Ia_m): 

   gkca(0), 

   gk(0), 

   ge(0), 

   gi(0), 

   Ia_mean(Ia_m), 

   Ia(0), 

   Ei(-80), 
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   Ee(0), 

   E_syn(-60), 

   c(10), 

   v_rest(-65), 

   v_thres(-50), 

   E_pot(-80), 

   v_apex(20), 

   v_repol(-80) 

   { 

    v = v_rest; 

    Ia = Ia_mean; 

   } 

 

  ~neuron_membrane_dynamics(){} 

 

  double operator()(double y, double t){ 

   return (1/c) *  ((y - v_rest)*(y - v_thres)/( v_thres - 

v_rest)+(-gi*(y-Ei))+(-ge*(y-Ee))); 

  } 

   

  bool update(){ 

   if (v >= v_apex){ 

    v = v_repol; 

    return true; 

   } 

   else 

    return false; 

  } 

 

}; 

template<typename function>double runge_kutta_4th(function equation, 

double initial, double t, double dt){ 

 double k1 = equation(initial, t); 

 double k2 = equation(initial + 0.5 * k1 * dt, t + 0.5 *dt); 

 double k3 = equation(initial + 0.5 * k2 * dt, t + 0.5 *dt); 

 double k4 = equation(initial + k3 * dt, t + dt); 

 return initial + (k1 + 2*k2 + 2*k3 + k4)/6 * dt; 

} 

template<typename function>double euler(function equation, double initial, 

double t, double dt){ 

 return initial + equation(initial, t) * dt; 

} 

 

int main() 

{ 

 gSynIn tempI; 

 gSynEx tempE; 

 neuron_membrane_dynamics testMembrane(0); 

 ofstream out_M("outM.csv"); 

 out_M << testMembrane.v << endl; 
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 for (int i = 0; i < 100; i++){ 

  tempI.g = runge_kutta_4th(tempI, tempI.g, 1, 1); 

  tempI.spk = 0; 

  tempE.g = runge_kutta_4th(tempE, tempE.g, 1, 1); 

  tempE.spk = 0; 

  testMembrane.gi = tempI.g; 

  testMembrane.ge = tempE.g; 

  testMembrane.v = runge_kutta_4th(testMembrane, 

testMembrane.v, 1, 1); 

  testMembrane.update(); 

  out_M << testMembrane.v << endl; 

  if(i == 2){ 

   tempI.spk = 1; 

  } 

  //if(i == 2){ 

  // tempE.spk = 1; 

  //} 

 }    return 0; 

} 
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Network of neurons solve numerically and analytical with OpenMP 

implementation 

#include <iostream> 

#include <iomanip> 

#include <fstream> 

#include <vector> 

#include <ctime> 

#include <cmath> 

#include <cstring> 

#include <sstream> 

#include <random> 

#include <deque> 

#include <complex> 

#include <omp.h> 

 

using namespace std; 

using namespace std::tr1; 

 

class QIF{ 

 

 public: 

  double v; 

  double Er; 

  double tau; 

  double v_thres; 

  double I; 

 

  QIF(double e): 

   v(e), 

   Er(-65), 

   tau(20), 

   v_thres(-20){} 

 

  ~QIF(){} 

 

  double operator()(double y, double t){ 

   return (1/tau) * (0.1*(y-Er)*(y-(-55)) + I) ; 

  } 

 

  bool update(){ 

   if (v >= v_thres){ 

    v = -65; 

    return true; 

   } 

   else 

    return false; 
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  } 

}; 

class QIfAnSol{ 

  

 private: 

  double v_thres; 

 public: 

  double v; 

  double Er; 

  double tau; 

  double I; 

  double prev_t; 

  double cur_t; 

 

  QIfAnSol(double e): 

   v(e), 

   Er(-65), 

   tau(20), 

   prev_t(0), 

   v_thres(-20){} 

 

  ~QIfAnSol(){} 

 

  double operator()(double y, double t){ 

   complex<double> a(0.1,0), b(0.1*(55+65),0), c((-55*-

65*0.1) + I), z0, z1, ans, pans1, pans2, pans3, pans4, pans5; 

   complex<double> f4(4,0); 

   complex<double> f2(2,0); 

   complex<double> ft(t,0); 

   complex<double> f1(1,0); 

   complex<double> ftau(20,0); 

   complex<double> ftest(-5,0); 

   z0 = sqrt(f4*a*c-b*b); 

   z1 = f2*a*v+b; 

   pans1 = ((z0*z0)*tan( z0/(f2*ftau) * ft) + z0 *z1); 

   pans2 = (z0-tan( z0/(f2*ftau) * ft)*z1); 

   pans3 = (f1/(f2*a)); 

   pans4 = tan(ftest); 

   pans5 = z0/(f2*ftau) * ft; 

   ans = pans3 * (pans1/ pans2 - b); 

   return ans.real(); 

  } 

 

  bool update(){ 

   if (v >= v_thres){ 

    v = -65; 

    //prev_t = cur_t; 

    return true; 

   } 

   else 
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    return false; 

  } 

}; 

template<typename function>double runge_kutta_4th(function equation, 

double initial, double t, double dt){ 

 double k1 = equation(initial, t); 

 double k2 = equation(initial + 0.5 * k1 * dt, t + 0.5 *dt); 

 double k3 = equation(initial + 0.5 * k2 * dt, t + 0.5 *dt); 

 double k4 = equation(initial + k3 * dt, t + dt); 

 return initial + (k1 + 2*k2 + 2*k3 + k4)/6 * dt; 

} 

template<typename function>double euler(function equation, double initial, 

double t, double dt){ 

 return initial + equation(initial, t) * dt; 

} 

 

class Timing { 

 public: 

  Timing(){ 

   startt=time(NULL); 

   endt=time(NULL); 

  } 

  ~Timing(){} 

  void tic(){ 

  startt=time(NULL); 

  } 

  void toc(){ 

  endt=time(NULL); 

  } 

  time_t diff(){ 

  return endt-startt; 

  } 

 private: 

  time_t startt, endt; 

}; 

int main() 

{ 

 Timing timing; 

 vector<QIF> EuLif; 

 vector<QIF> RkLif; 

 vector<QIfAnSol> AnLif; 

 vector<vector<bool>> netCon; 

 int number = 5000; 

 bernoulli_distribution rCon(0.2); 

 ofstream out_E("spikeE.csv"); 

 ofstream out_R("spikeR.csv"); 

 ofstream out_A("spikeA.csv"); 

 ofstream out_vE("vE.csv"); 

 ofstream out_vR("vR.csv"); 

 ofstream out_vA("vA.csv"); 
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 ranlux4_01 dseed(float(time(0))); 

 cout<< "initializing\n"; 

 for(int i = 0; i<number; i++){ 

  vector<bool> temp; 

  QIF temp1(-65); 

  QIfAnSol temp2(-65); 

  for(int j = 0; j<number; j++){ 

   temp.push_back(rCon(dseed)); 

  } 

  netCon.push_back(temp); 

  EuLif.push_back(temp1); 

  RkLif.push_back(temp1); 

  AnLif.push_back(temp2); 

 } 

 cout<< "Simulation\n"; 

 poisson_distribution<int, double>extIn(10); 

 int s_time = 0; 

 timing.tic(); 

 out_E << "0" << endl; 

 out_R << "0" << endl; 

 out_A << "0" << endl; 

 out_vE <<EuLif[0].v << endl; 

 out_vR <<RkLif[0].v << endl; 

 out_vA <<AnLif[0].v << endl; 

 double dt = 0.1; 

 for(int i = 1; i<=20000; i++){ 

  for(int j = 0; j<number; j++){ 

   double extI = extIn(dseed) * 2; 

   AnLif[j].I += extI; 

   EuLif[j].I += extI; 

   RkLif[j].I += extI; 

  } 

  int spikeE = 0; 

  int spikeR = 0; 

  int spikeA = 0; 

  #pragma omp parallel for schedule(guided, 1000) 

  for(int j = 0; j<number; j++){ 

   //RkLif[j].I = 20; 

   AnLif[j].v = AnLif[j](AnLif[j].v, dt); 

   AnLif[j].I = 0; 

   EuLif[j].v = euler(EuLif[j],EuLif[j].v, dt, dt); 

   EuLif[j].I = 0; 

   RkLif[j].v = runge_kutta_4th(RkLif[j],RkLif[j].v, dt, dt); 

   RkLif[j].I = 0; 

  } 

  for(int j = 0; j<number; j++){ 

   if(EuLif[j].update()){ 

    spikeE += 1; 

    for(int k = 0; k < number; k++){ 
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     if(netCon[j][k] && EuLif[k].v <= -55) 

      EuLif[k].I += -1; 

    } 

   } 

   if(RkLif[j].update()){ 

    spikeR += 1; 

    for(int k = 0; k < number; k++){ 

     if(netCon[j][k] && RkLif[k].v <= -55) 

      RkLif[k].I += -1; 

    } 

   } 

   if(AnLif[j].update()){ 

    spikeA += 1; 

    for(int k = 0; k < number; k++){ 

     if(netCon[j][k] && AnLif[k].v <= -55) 

      AnLif[k].I += -1; 

    } 

   } 

  } 

  out_R << spikeR << endl; 

  out_vR <<RkLif[0].v << endl; 

  out_E << spikeE << endl; 

  out_A << spikeA << endl; 

  out_vE <<EuLif[0].v << endl; 

  out_vA <<AnLif[0].v << endl; 

  timing.toc(); 

  if (timing.diff()  > 0){ 

   s_time++; 

   timing.tic(); 

   cout<< setw(10) << i*dt << "ms\t" << setw(10) << 

s_time << "s" << endl; 

  } 

 }  

 system("pause"); 

return 0; 

} 

  



 

77 

Simulation of Spontaneous activity 

 

#include "stdafx.h" 

 

using namespace std; 

using namespace std::tr1; 

 

class neuron_internal_dynamics{ 

 public: 

  double tau; 

  double wi; 

  double del; 

  double z; 

      

  neuron_internal_dynamics(double tau, double del): 

   tau(tau), 

   wi(0), 

   del(del), 

   z(0){} 

 

  ~neuron_internal_dynamics(){} 

 

  double operator()(double y, double t){ 

   return -(y/tau) + del * wi; 

  } 

}; 

 

class neuron_membrane_dynamics{ 

 public: 

  double gkca; 

  double gk; 

  double Ia; 

  double Ie; 

  double I; 

  double v; 

 

 private: 

  double t_cell; 

  double v_rest; 

  double v_thres; 

  double E_pot; 

  double v_apex; 

  double v_repol; 

 

 public: 

  neuron_membrane_dynamics(double Ia): 

   gkca(0), 
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   gk(0), 

   Ie(0), 

   I(0), 

   t_cell(10), 

   v_rest(-65), 

   v_thres(-50), 

   E_pot(-80), 

   v_apex(20), 

   v_repol(-80), 

   Ia(Ia) 

   { 

    v = v_rest; 

   } 

 

  ~neuron_membrane_dynamics(){} 

 

  double operator()(double y, double t){ 

   return (1/t_cell) * ( (v - v_rest)*(v-v_thres)/( v_thres - 

v_rest) + Ia - (gk + gkca) * (v - E_pot) - (v * I - Ie)); 

  } 

   

  bool update(){ 

   if (v >= v_apex){ 

    v = v_repol; 

    return true; 

   } 

   else 

    return false; 

  } 

}; 

 

template<typename function>double runge_kutta_4th(function equation, 

double initial, double t, double dt){ 

 double k1 = equation(initial, t); 

 double k2 = equation(initial + 0.5 * k1 * dt, t + 0.5 *dt); 

 double k3 = equation(initial + 0.5 * k2 * dt, t + 0.5 *dt); 

 double k4 = equation(initial + k3 * dt, t + dt); 

 return initial + (k1 + 2*k2 + 2*k3 + k4)/6 * dt; 

} 

 

int main() 

{ 

 vector<neuron_membrane_dynamics> membrane_dynamics; 

 vector< vector<neuron_internal_dynamics>> internal_dynamics; 

 vector< vector<double>> wij; 

 bool check; 

 clock_t c_start, c_end; 

 clock_t c_itv_start, c_itv_end; 

 time_t t_curr; 

 double t_taken, t_total = 0; 
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 double applied_current; 

 double t_sim; 

 int net_size; 

 double net_fraction; 

 double net_in; 

 double net_ex; 

 double net_mean; 

 double net_bias_in; 

 double net_bias_ex; 

 double net_probInIn; 

 double net_probInEx; 

 double net_probExIn; 

 double net_probExEx; 

 double V_pspIn = -1.5; 

 double V_pspEx = 1; 

 double V_preIn = -80; 

 double V_preEx = 0; 

 double *V_pspj, *V_prei; 

 double progress; 

 int t_sim_end; 

 char *dir_curr; 

 char dir_name[80]; 

 

 double temp; 

  

 ofstream out_para("parameters.csv"); 

 //cout << left <<setw(40) << "Input Network Size" << ": "; 

 //cin >> net_size; 

  

 //cout << left <<setw(40) << "Input Mean Conenction" << ": "; 

 //cin >> net_mean; 

 //cout << left <<setw(40) << "Input Inhibitory Fraction" << ": "; 

 //cin >> net_fraction; 

 //cout << left <<setw(40) << "Input Network Bias(in)" << ": "; 

 //cin >> net_bias_in; 

 //cout << left <<setw(40) << "Input Network Bias(ex)" << ": "; 

 //cin >> net_bias_ex; 

 cout<< left << setw(40) << "Input Applied Current (mV)" << ": "; 

 cin>> applied_current; 

 //cout << left <<setw(40) << "Input Simulation End Time (s)" << ": "; 

 //cin >> t_sim; 

 net_size = 10000; 

 net_mean = 2000; 

 net_fraction = 0.2; 

 net_bias_in = 1.2; 

 net_bias_ex = 0.8; 

 t_sim = 7; 

 out_para << "Network Size," << net_size << endl; 

 out_para << "Network mean," << net_mean << endl; 

 out_para << "Inhibitory Fraction," << net_fraction << endl; 
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 out_para << "Network Bias(in)," << net_bias_in << endl; 

 out_para << "Applied Current," << applied_current << endl; 

 out_para << "Network Bias(ex)," << net_bias_ex << endl; 

 out_para << "Simulation End Time," << t_sim << endl; 

 

 cout<< left << setw(40) << "Initiaizing" << endl; 

 t_curr = time(0); 

 cout<< setw(40) << "Initiaizing Started On" << ": " << ctime(&t_curr); 

 c_start = clock(); 

 double temp1[4] = {30,2000,3,3};  // tau 

 double temp2[4] = {1,0.2,0.1,0.1}; // del 

 ranlux4_01 dseed(time(0)); 

 uniform_real<double>  r_real(0, applied_current); 

 net_in = net_fraction * net_size; 

 net_ex = net_size - net_in; 

 net_probInIn = (net_mean * net_bias_in) / (net_ex + net_in * 

net_bias_in); 

 net_probInEx = (net_mean * net_bias_ex) / (net_ex + net_in * 

net_bias_ex); 

 net_probExIn = net_mean / (net_ex + net_in * net_bias_in); 

 net_probExEx = net_mean / (net_ex + net_in * net_bias_ex); 

 cout<< net_probInIn << " " << net_probInEx << " " << net_probExIn 

<< " " << net_probExEx << endl; 

 bernoulli_distribution r_bInIn(net_probInIn); 

 bernoulli_distribution r_bInEx(net_probInEx); 

 bernoulli_distribution r_bExIn(net_probExIn); 

 bernoulli_distribution r_bExEx(net_probExEx); 

 bernoulli_distribution *r_ptr; 

 V_pspj = &V_pspIn; 

 V_prei = &V_preIn; 

 c_itv_start = clock();  

 for (int i = 0; i<net_size; i++){ 

  neuron_membrane_dynamics nmd_temp(r_real(dseed)); 

  membrane_dynamics.push_back(nmd_temp); 

  vector<neuron_internal_dynamics> nid_vtemp; 

  for(int j = 0; j<4; j++){ 

   neuron_internal_dynamics nid_temp(temp1[j], 

temp2[j]); 

   nid_vtemp.push_back(nid_temp); 

  } 

  internal_dynamics.push_back(nid_vtemp); 

  vector<double> temp_wij; 

  if (i == net_in){ 

   V_pspj = & V_pspEx; 

   V_prei = &V_preEx; 

  } 

  for(int j = 0; j<net_size; j++){ 

   if (i < net_in && j < net_in) 

    r_ptr = &r_bInIn; 

   else if (i < net_in) 
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    r_ptr = &r_bExIn; 

   else if (i >= net_in && j < net_in) 

    r_ptr = &r_bInEx; 

   else if (i >= net_in) 

    r_ptr = &r_bExEx; 

   if (r_ptr->operator()(dseed) == 1 && j != i) 

    temp_wij.push_back(*V_pspj / (*V_prei + 65) * 

55.84311504); 

   else 

    temp_wij.push_back(0); 

  } 

  wij.push_back(temp_wij); 

 } 

 cout<< left << setw(40) << "Initiaizing Ended On" << ": " << 

ctime(&t_curr); 

 cout<< left << setw(40) << "Starting Simulation" << endl; 

 t_curr = time(0); 

 cout<<setw(40) << "Simulation Started On" << ": " << ctime(&t_curr); 

 c_start = clock(); 

 ofstream out_spikes("spikes.dat"); 

 ofstream out_in1("in1.dat"); 

 ofstream out_ex1("ex1.dat"); vector<string> out_data; 

 for(int j = 0; j< net_size; j++) 

  out_data.push_back(""); 

 double dt = 0.1; 

 t_sim_end = (int) (t_sim * 1000/dt); 

 c_itv_start = clock();  

 progress = 1; 

 for (int i = 0; i < t_sim_end; i++){ 

  V_prei = &V_preIn; 

  int spikes_total = 0; 

  #pragma omp parallel for 

  for(int j = 0; j< net_size; j++){ 

   for(int k = 0; k< 4; k++){ 

    internal_dynamics[j][k].z = 

runge_kutta_4th(internal_dynamics[j][k], internal_dynamics[j][k].z, 0, dt); 

    internal_dynamics[j][k].wi = 0; 

   } 

   membrane_dynamics[j].gk = 

internal_dynamics[j][0].z; 

   membrane_dynamics[j].gkca= 

internal_dynamics[j][1].z; 

   membrane_dynamics[j].I = 

internal_dynamics[j][2].z; 

   membrane_dynamics[j].Ie = 

internal_dynamics[j][3].z; 

   membrane_dynamics[j].v = 

runge_kutta_4th(membrane_dynamics[j], membrane_dynamics[j].v, 0, dt); 

  } 
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  #pragma omp parallel for shared(internal_dynamics, 

spikes_total) 

  for(int j = 0; j< net_size; j++){ 

   if (j == net_in) 

    V_prei = &V_preEx; 

   if(membrane_dynamics[j].update()){ 

    internal_dynamics[j][0].wi += 1; 

    internal_dynamics[j][1].wi += 1; 

    spikes_total++; 

    for(int k = 0; k < net_size; k++){ 

     if ( wij[j][k] != 0 ){ 

      internal_dynamics[k][2].wi += 

wij[j][k]; 

      internal_dynamics[k][3].wi += 

wij[j][k] * *V_prei; 

     } 

    } 

   } 

  } 

  out_in1 << i << "," << membrane_dynamics[net_in].v << endl; 

  out_ex1 << i << "," << membrane_dynamics[net_in  + 1].v << 

endl; 

  out_spikes << i << "," <<spikes_total << endl; 

  if ( ((double) (i +1 ) ) / ((double) t_sim_end) * 100  >= 

progress){ 

   cout<< left << setw(18) << "Percentage" << ": " ; 

   cout<< right << setw(18) << progress << "%" << endl; 

   progress += 1; 

  } 

 } 

 t_curr = time(0); 

 cout<< left <<setw(40) << "Simulation Ended On" << ": " << 

ctime(&t_curr); 

 c_end = clock(); 

 t_taken = difftime(c_end, c_start) / 1000000; 

 t_total += t_taken; 

 cout<< left << setw(40) << "Time Taken" << ": " << t_taken << "s" << 

endl; 

 return 0; 

} 
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Simulation of Spontaneous activity and ultr- slow oscillation 

#include<iostream> 

#include<cmath> 

#include<fstream> 

#include<vector> 

#include<time.h> 

#include<omp.h> 

#include<tr1/random> 

#include<iomanip> 

#include<string> 

 #include <sstream> 

 #include <typeinfo> 

 #include <stdexcept> 

 

using namespace std; 

using namespace std::tr1; 

 

#define pi 3.14159265 

 

class fluctuation{ 

 public: 

  double tau; 

  double wi; 

  double z; 

  double del; 

  double ini; 

      

  fluctuation(double tau): 

   tau(tau), 

   wi(0), 

   z(0){} 

 

  ~fluctuation(){} 

 

  double operator()(double y, double t){ 

   return -((y-ini)/tau) - wi; 

  } 

}; 

 

class neuron_internal_dynamics{ 

 public: 

  double tau; 

  double wi; 

  double del; 

  double z; 

  bool waste; 
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  neuron_internal_dynamics(double tau, double del): 

   tau(tau), 

   wi(0), 

   del(del), 

   z(0), 

   waste(false){} 

 

  ~neuron_internal_dynamics(){} 

 

  double operator()(double y, double t){ 

   return -(y/tau) + del * wi; 

  } 

   

   

}; 

 

class neuron_membrane_dynamics{ 

 public: 

  double gkca; 

  double gk; 

  double Ia; 

  double Ie; 

  double I; 

  double v; 

  double I_back; 

  double wT; 

 

 private: 

  double t_cell; 

  double v_rest; 

  double v_thres; 

  double E_pot; 

  double v_apex; 

  double v_repol; 

 

 public: 

  neuron_membrane_dynamics(double Ia): 

   gkca(0), 

   gk(0), 

   Ie(0), 

   I(0), 

   t_cell(10), 

   v_rest(-65), 

   v_thres(-50), 

   E_pot(-80), 

   v_apex(20), 

   v_repol(-80), 

   Ia(Ia) 

   { 

    I_back = Ia; 
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    v = v_rest; 

   } 

 

  ~neuron_membrane_dynamics(){} 

 

  double operator()(double y, double t){ 

   return (1/t_cell) * ( (v - v_rest)*(v-v_thres)/( v_thres - 

v_rest) + Ia - (gk + gkca) * (v - E_pot) - (v * I - Ie)); 

  } 

   

  bool update(){ 

   if (v >= v_apex){ 

    v = v_repol; 

    return true; 

   } 

   else 

    return false; 

  } 

}; 

 

template<typename function>double runge_kutta_4th(function equation, 

double initial, double t, double dt){ 

 double k1 = equation(initial, t); 

 double k2 = equation(initial + 0.5 * k1 * dt, t + 0.5 *dt); 

 double k3 = equation(initial + 0.5 * k2 * dt, t + 0.5 *dt); 

 double k4 = equation(initial + k3 * dt, t + dt); 

 return initial + (k1 + 2*k2 + 2*k3 + k4)/6 * dt; 

} 

 

int main() 

{ 

 vector<neuron_membrane_dynamics> membrane_dynamics; 

 vector<neuron_internal_dynamics> waste; 

 neuron_internal_dynamics waste1(3*10000, 1); 

 neuron_internal_dynamics waste2(1000, 1); 

 waste.push_back(waste1); 

 waste.push_back(waste2); 

  

 vector< vector<neuron_internal_dynamics>> internal_dynamics; 

 vector< vector<double>> wij; 

 vector< double > fluc; 

 bool check; 

 clock_t c_start, c_end; 

 clock_t c_itv_start, c_itv_end; 

 time_t t_curr; 

 double t_taken, t_total = 0; 

 double applied_current; 

 double t_sim; 

 int net_size; 

 double net_fraction; 
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 double net_in; 

 double net_ex; 

 double net_mean; 

 double net_bias_in; 

 double net_bias_ex; 

 double net_probInIn; 

 double net_probInEx; 

 double net_probExIn; 

 double net_probExEx; 

 double mean1, mean2; 

 //double fluc; 

 double V_pspIn = -1.5; 

 double V_pspEx = 1; 

 double V_preIn = -80; 

 double V_preEx = 0; 

 double *V_pspj, *V_prei; 

 double progress; 

 int t_sim_end; 

 char *dir_curr; 

 char dir_name[80]; 

 

 double temp; 

  

 double w_thres1,w_thres2; 

 vector<double> w_thres; 

  

 ofstream out_para("parameters.txt"); 

 net_size = 10000; 

 net_mean = 2000; 

 net_fraction = 0.2; 

 net_bias_in = 0.8; 

 net_bias_ex = 1.2;  

 t_sim = 1000; 

 cout<< left << setw(40) << "Input Network Size" << ": " << net_size 

<< "\n"; 

 cout<< left << setw(40) << "Input Mean Conenction" << ": "<< 

net_mean <<"\n"; 

 cout<< left << setw(40) << "Input Inhibitory Fraction" << ": "<< 

net_fraction <<"\n"; 

 cout<< left << setw(40) << "Input Network Bias(in)" << ": "<< 

net_bias_in <<"\n"; 

 cout<< left << setw(40) << "Input Network Bias(ex)" << ": "<< 

net_bias_ex <<"\n"; 

 cout<< left << setw(40) << "Input Simulation End Time (s)" << ": " << 

t_sim <<"\n"; 

 

 double por; 

 //cout << left <<setw(40) << "Current Flunctuation Peak2Peak" << ": "; 

 //cin >> fluc; 

 cout<< left << setw(40) << "Ia" << ": "; 
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 cin>> mean1; 

 cout<< left << setw(40) << "W Thres 1" << ": "; 

 cin>> w_thres1; 

 cout<< left << setw(40) << "W Thres 2" << ": "; 

 cin>> w_thres2; 

 cout<< left << setw(40) << "Proportion" << ": "; 

 cin>> por; 

 w_thres.push_back(w_thres1); 

 w_thres.push_back(w_thres2); 

  

 out_para << "Network Size," << net_size << endl; 

 out_para << "Network mean," << net_mean << endl; 

 out_para << "Inhibitory Fraction," << net_fraction << endl; 

 out_para << "Network Bias(in)," << net_bias_in << endl; 

 out_para << "Applied Current," << mean1 << endl; 

 out_para << "w_thres1," << w_thres1 << endl; 

 out_para << "w_thres2," << w_thres2 << endl; 

 out_para << "Por," << por << endl; 

 out_para << "Network Bias(ex)," << net_bias_ex << endl; 

 out_para << "Simulation End Time," << t_sim << endl; 

  

 

 cout<< left << setw(40) << "Initiaizing" << endl; 

 t_curr = time(0); 

 cout<< setw(40) << "Initiaizing Started On" << ": " << ctime(&t_curr); 

 c_start = clock(); 

 double temp1[4] = {30,3000,3,3};  // tau 

 double temp2[4] = {1,0.2,0.1,0.1}; // del 

 ranlux4_01 dseed(time(0)); 

  

  

  

 net_in = net_fraction * net_size; 

 net_ex = net_size - net_in; 

 net_probInIn = (net_mean * net_bias_in) / (net_ex + net_in * 

net_bias_in); 

 net_probInEx = (net_mean * net_bias_ex) / (net_ex + net_in * 

net_bias_ex); 

 net_probExIn = net_mean / (net_ex + net_in * net_bias_in); 

 net_probExEx = net_mean / (net_ex + net_in * net_bias_ex); 

 cout<< net_probInIn << " " << net_probInEx << " " << net_probExIn 

<< " " << net_probExEx << endl; 

 bernoulli_distribution r_bInIn(net_probInIn); 

 bernoulli_distribution r_bInEx(net_probInEx); 

 bernoulli_distribution r_bExIn(net_probExIn); 

 bernoulli_distribution r_bExEx(net_probExEx); 

 bernoulli_distribution *r_ptr; 

   

  

 bernoulli_distribution SubNetwork(por); 
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 uniform_real<double>  r_real1(0, mean1); 

 uniform_real<double>  r_real2(0, mean2); 

 uniform_real<double> *u_ptr; 

  

 V_pspj = &V_pspIn; 

 V_prei = &V_preIn; 

 c_itv_start = clock();  

  

  

 for (int i = 0; i<net_size; i++){ 

   

  u_ptr = &r_real1; 

    

  neuron_membrane_dynamics nmd_temp(u_ptr-

>operator()(dseed)); 

  if(SubNetwork(dseed)) 

   nmd_temp.wT = 0; 

  else 

   nmd_temp.wT = 1; 

    

  membrane_dynamics.push_back(nmd_temp); 

  fluc.push_back(nmd_temp.Ia); 

   

  vector<neuron_internal_dynamics> nid_vtemp; 

  for(int j = 0; j<4; j++){ 

   neuron_internal_dynamics nid_temp(temp1[j], 

temp2[j]); 

   nid_vtemp.push_back(nid_temp); 

  } 

  internal_dynamics.push_back(nid_vtemp); 

   

  vector<double> temp_wij; 

  if (i == net_in){ 

   V_pspj = & V_pspEx; 

   V_prei = &V_preEx; 

  } 

  for(int j = 0; j<net_size; j++){ 

   if (i < net_in && j < net_in) 

    r_ptr = &r_bInIn; 

   else if (i < net_in) 

    r_ptr = &r_bExIn; 

   else if (i >= net_in && j < net_in) 

    r_ptr = &r_bInEx; 

   else if (i >= net_in) 

    r_ptr = &r_bExEx; 

   if (r_ptr->operator()(dseed) == 1 && j != i) 

    temp_wij.push_back(*V_pspj / (*V_prei + 65) * 

55.84311504); 

   else 
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    temp_wij.push_back(0); 

  } 

  wij.push_back(temp_wij); 

 } 

  

 cout<< left << setw(40) << "Initiaizing Ended On" << ": " << 

ctime(&t_curr); 

 cout<< left << setw(40) << "Starting Simulation" << endl; 

 t_curr = time(0); 

 cout<<setw(40) << "Simulation Started On" << ": " << ctime(&t_curr); 

 c_start = clock(); 

 ofstream out_spikes("spikes.dat"); 

 ofstream out_in1("in1.dat"); 

 ofstream out_ex1("ex1.dat"); 

 ofstream out_fluc1("fluc1.dat"); 

 ofstream out_fluc2("fluc2.dat"); 

 ofstream out_w1("w1.dat"); 

 ofstream out_w2("w2.dat"); 

 vector<string> out_data; 

 for(int j = 0; j< net_size; j++) 

  out_data.push_back(""); 

 double dt = 0.1; 

 t_sim_end = (unsigned long) (t_sim * 1000 / dt); 

 c_itv_start = clock();  

 progress = 0; 

 int fluc_index = 0; 

 for (unsigned long i = 0; i < t_sim_end; i++){ 

  double t = double(i) * dt; 

  V_prei = &V_preIn; 

  int spikes_total = 0; 

   

  for(int j = 0; j<2; j++){ 

   waste[j].z = runge_kutta_4th(waste[j],waste[j].z ,t,dt); 

   waste[j].wi = 0; 

   if(waste[j].waste){ 

    if(waste[j].z < 0.1) 

     waste[j].waste = false; 

   } 

   if(waste[j].z >w_thres[j]) 

    waste[j].waste = true; 

  } 

  #pragma omp parallel for 

  for(int j = 0; j< net_size; j++){ 

   if(waste[membrane_dynamics[j].wT].waste){ 

    for(int k = 0; k< 4; k++){ 

     internal_dynamics[j][k].z = 0; 

     internal_dynamics[j][k].wi = 0; 

    } 

    membrane_dynamics[j].Ia  = 0; 

    membrane_dynamics[j].gk = 0; 
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    membrane_dynamics[j].gkca  = 0; 

    membrane_dynamics[j].I  = 0; 

    membrane_dynamics[j].Ie  = 0; 

   } 

   else{ 

    for(int k = 0; k< 4; k++){ 

     internal_dynamics[j][k].z = 

runge_kutta_4th(internal_dynamics[j][k], internal_dynamics[j][k].z, t, dt); 

     internal_dynamics[j][k].wi = 0; 

    } 

    membrane_dynamics[j].Ia  = fluc[j]; 

    membrane_dynamics[j].gk = 

internal_dynamics[j][0].z; 

    membrane_dynamics[j].gkca  = 

internal_dynamics[j][1].z; 

    membrane_dynamics[j].I  = 

internal_dynamics[j][2].z; 

    membrane_dynamics[j].Ie  = 

internal_dynamics[j][3].z; 

   } 

   membrane_dynamics[j].v  = 

runge_kutta_4th(membrane_dynamics[j], membrane_dynamics[j].v, t, dt); 

  } 

  #pragma omp parallel for 

  for(int j = 0; j< net_size; j++){ 

   if (j == net_in) 

    V_prei = &V_preEx; 

   if(membrane_dynamics[j].update()){ 

    internal_dynamics[j][0].wi = 1; 

    internal_dynamics[j][1].wi = 1; 

    //cout << j << "\t" << waste[j].z << endl; 

    waste[membrane_dynamics[j].wT].wi += 0.001 

* 7; 

    spikes_total++; 

    for(int k = 0; k < net_size; k++){ 

     internal_dynamics[k][2].wi += wij[j][k]; 

     internal_dynamics[k][3].wi += wij[j][k] * 

*V_prei; 

    }  

   } 

  } 

  out_spikes << i << " " <<spikes_total << endl; 

  out_w1 << i << " " <<waste[0].z  << endl; 

  out_w2 << i << " " <<waste[1].z  << endl; 

  if ( ((double) (i +1 ) ) / ((double) t_sim_end) * 100  >= 

progress){ 

   cout<< left << setw(18) << "Percentage" << ": " ; 

   cout<< right << setw(18) << progress << "%" << endl; 

   progress += 0.01; 

  } 
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 } 

 t_curr = time(0); 

 cout<< left <<setw(40) << "Simulation Ended On" << ": " << 

ctime(&t_curr); 

 c_end = clock(); 

 t_taken = difftime(c_end, c_start) / 1000000; 

 t_total += t_taken; 

 cout<< left << setw(40) << "Time Taken" << ": " << t_taken << "s" << 

endl; 

 return 0; 

} 


