

SIMULATION OF OSCILLATIONS IN A NETWORK OF NEURONS

USING INTEGRATE AND FIRE NEURON MODEL

DANNY NG WEE KIAT

MASTER OF ENGINEERING SCIENCE

FACULTY OF ENGINEERING AND SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

JANUARY 2012

SIMULATION OF OSCILLATIONS IN A NETWORK OF NEURONS

USING INTEGRATE AND FIRE NEURON MODEL

By

DANNY NG WEE KIAT

A dissertation submitted to the Department of Mechatronics and Biomedical

Engineering,

Faculty of Engineering and Science,

Universiti Tunku Abdul Rahman,

in partial fulfilment of the requirements for the degree of

Master of Engineering Science

January 2012

ii

ABSTRACT

SIMULATION OF OSCILLATIONS IN A NETWORK OF

NEURONS USING INTEGRATE AND FIRE NEURON MODEL

Danny Ng Wee Kiat

Human brains display oscillatory patterns at characteristic frequency bands

during various behavioural states. Phenomena of oscillations and synchronous

firings of neurons are particularly important from the functional point of view,

and have generated many interesting hypotheses concerning neural signal

processing in the central nervous system. This study on the simulation of

global oscillations of a network of neurons seeks to provide a better

understanding of the nature of these phenomena. Simulations were conducted

using the Integrate and Fire neuron model. C++ is used for the development of

the simulation algorithm. OpenMP is adopted in the algorithm to enable

parallel processing on a multicore CPU. The effects of the network size,

connection probability, synaptic weight and synaptic delay on the global

oscillations of a network of identical inhibitory neurons were investigated.

Using an extension of the model by Latham et al., simulations of ultra-slow

spontaneous oscillations comparable to those observed in cortical cultures of

rat neurons were achieved.

iii

ACKNOWLEDGEMENT

This dissertation would not have been possible without the guidance and

the help of several individuals who in one way or another contributed and

extended their valuable assistance in the preparation and completion of this

study. I am heartily thankful to my supervisor, Prof. Dato' Dr Goh Sing Yau,

whose encouragement, supervision and support from the preliminary to the

concluding level enabled me to develop an understanding of the subject. His

guidance’s helped me in all the time of research and writing of this thesis. I

thank my fellow colleague in UTAR: Mok Siew Ying and Chan Siow Cheng

for the stimulating discussion and insights on the subject.

iv

APPROVAL SHEET

This dissertation/thesis entitled “Simulation of oscillations in a network of

neurons using integrate and fire neuron model” was prepared by DANNY

NG WEE KIAT and submitted as partial fulfilment of the requirements for the

degree of Master of Engineering Science at Universiti Tunku Abdul Rahman.

Approved by:

(Prof. Dato' Dr Goh Sing Yau) Date:…………………..

Professor/Supervisor

Department of Mechanical and Material Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

v

FACULTY OF ENGINEERING AND SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

Date: __________________

SUBMISSION OF THESIS

It is hereby certified that DANNY NG WEE KIAT(ID No: 09UEM03406)

has completed this thesis entitled “Simulation of Network oscillation using

integrate and fire model” under the supervision of Prof. Dato' Dr Goh Sing Yau

(Supervisor) from the Department of Department of Mechanical and Material

Engineering, Faculty of Engineering and Science.

I understand that the University will upload softcopy of my thesis in pdf format

into UTAR Institutional Repository, which may be made accessible to UTAR

community and public.

Yours truly,

(DANNY NG WEE KIAT)

vi

DECLARATION

I Danny Ng Wee Kiat hereby declare that the dissertation/thesis is based on my

original work except for quotations and citations which have been duly

acknowledged. I also declare that it has not been previously or concurrently

submitted for any other degree at UTAR or other institutions.

(Danny Ng Wee kiat)

Date: __________________

vii

TABLE OF CONTENT

 Page

ABSTRACT II

ACKNOWLEDGEMENT III

APPROVAL SHEET IV

DECLARATION VI

LIST OF FIGURES IX

LIST OF TABLES XI

LIST OF ABBREAVATION XII

CHAPTERS

INTRODUCTION 1

LITERATURE REVIEW 2

2.1 Experimental Studies 2

2.1.1 In Vivo Studies 2

2.1.2 In Vitro Studies 2

2.2 Theoretical And Modelling Studies. 4

2.2.1 Integrate And Fire (IF) Model 4

2.2.2 Other More Detailed Neuron Models 4

2.2.3 Network Oscillations 5

2.2.4 Spontaneous Bursting 6

2.2.5 The Present Study 7

METHODOLOGY 9

3.1 Effects of Parameters of The IF Model on Global

Oscillations In a Network of Homogenous Neurons

9

3.2 Simulation Algorithm 11

3.2.1 Simulation Algorithm Development 13

3.2.2 Implementation of Synaptic Delay 16

3.2.3 Implementation of The After Hyperpolarization

Current

17

3.2.4 Simulation In Networks With Excitatory

Neurons

18

3.3 Simulation of Ultra-Slow Spontaneous Oscillation 19

RESULTS AND DISCUSSION 25

4.1 Simulation Algorithm 25

4.1.1 Comparison of Single Neuron Simulations With

Exact Solutions

25

4.1.2 Network Simulation 29

4.1.3 Effects of Parallel Processing on Simulation

Speed

31

viii

4.1.4 Simulations of A Network of Inhibitory And

Excitatory Neurons

33

4.2 Effect of The Parameters of The IF Model on The Global

Oscillations In A Network of Homogenous Neurons

36

4.2.1 Network Size 37

4.2.2 External Noise 38

4.2.3 Connection Probability 39

4.2.4 Synaptic Delay 40

4.2.5 Synaptic Weight 41

4.3 Simulation of Spontaneous Activity 42

4.3.1 Spontaneous Activity 42

4.3.2 Simulation of Ultra-Slow Spontaneous

Oscillations

47

CONCLUSIONS 52

REFRENCES 53

APPENDICES 63

ix

LIST OF FIGURES

 Page

Figure 1 Experimental results showing spiking activities from 5 different

cultures with spontaneous activity. Periodical fluctuations of

activity over time at a very slow rate (0.001Hz – 0.005 Hz) can

be observed in the cultures. The activity time bin is 10ms (Mok

et al. [19])

3

Figure 2 OpenMP of parallel execution block 12

Figure 3 Flowchart for simulation algorithm 15

Figure 4 Implementation of synaptic delay 17

Figure 5 Experiment data showing spontaneous bursting activity for 10s

in a culture of cortical neurons. a) Activity at troughs of ultra-

slow spontaneous oscillations b) Activity at peaks of ultra-slow

spontaneous oscillations. The activity time bin is 10ms (Mok et

al. [19])

20

Figure 6 Experimental result showing ultra-slow changes in spontaneous

activity. The activity time bin is 10ms (Mok et al. [19])

20

Figure 7 Spike sorting result on one of the electrode a) neuron fires

throughout the whole recording. b) Neuron fires only at the

peaks c, d) neuron with low level of activity. The activity time

bin is 10ms (Mok et al. [19])

21

Figure 8 Comparison of simulated membrane voltage of single IF neuron

model with exact solution

27

Figure 9 Comparison of simulated membrane voltage of single QIF

neuron with the exact analytical solution

28

Figure 10 Comparison of results from simulation of a network of IF

neurons

30

Figure 11 Results from simulation of QIF neurons network using different

method

31

Figure 12 Speed of Simulation for a network of QIF Neurons 32

Figure 13 Speed of Simulation for a network of QIF with AHP Neurons 32

Figure 14 Synchronous Regular State (SR), g = 3, External noise =2 mV.

The activity time bin is 10ms

34

Figure 15 Synchronous Irregular State (SI), Fast Oscillation, g = 6;

External noise = 3 mV. The activity time bin is 10ms

35

Figure 16 Asynchronous Irregular State (AI), g = 5; External noise = 2

mV. The activity time bin is 10ms

35

Figure 17 Synchronous Irregular State (SI), Slow Oscillation, g = 4.5;

External noise = 1.3 mV. The activity time bin is 10ms

36

Figure 18 Frequency of network oscillation for different network size 37

Figure 19 Frequency of network oscillation for different external noise 38

Figure 20 Frequency of network oscillation for different connection

probability

39

Figure 21 Frequency of network oscillation for different synaptic delay 40

Figure 22 Frequency of network oscillation for different synaptic weight 41

x

Figure 23 Simulated activity for different Be and Bi values. Imax of 4 is

used for the simulation. The activity time bin is 10ms

45

Figure 24 Experiment data showing spontaneous bursting activity for 10s

in a culture of cortical neurons. The activity time bin is

10ms(Mok et al. [19])

46

Figure 25 Activity for network with Bi = 0.8, Be = 1.2 Imax = 5 to 3.8.

The activity time bin is 10ms

 47

Figure 26 Simulation results showing 5 peaks in 800s. Parameters for the

simulation of activity: α = 0.07, upper threshold =

3.8.Subnetwork 1: number of neuron = 2000, ηθ = 30000.

Subnetwork 2: number of neurons = 8000, ηθ = 1000. The

activity time bin is 10ms

49

Figure 27 Changes of inhibitory properties, θ in subnetwork 1 and

subnetwork 2 with parameters for the simulation of activity: α =

0.07, upper threshold = 3.8. Sub network 1: number of neuron =

2000, ηθ = 30000. Subnetwork 2: number of neurons = 8000, ηθ

= 1000

50

Figure 28 Simulation results showing 3 peaks in 800s. Parameters for the

simulation of activity: α = 0.07, upper threshold = 3.8.

Subnetwork 1: number of neuron = 3000, ηθ = 30000.

Subnetwork 2: number of neuron = 7000, ηθ = 1000. The

activity time bin is 10ms

51

xi

LIST OF TABLES

 Page

Table 1 Parameters for simulation of homogenous network of

inhibitory neuron

10

Table 2 Network Parameters for IF and QIF networks 29

Table 3 Network parameters for comparison of time taken for

simulation (QIF)

31

Table 4 Network parameter for simulation of network of inhibitory

and excitatory neurons

34

Table 5 Neuron parameters for simulation of spontaneous activity 43

Table 6 Network parameters for simulation of spontaneous activity 43

Table 7 Parameters for the inhibiting properties of a subnetwork 47

xii

LIST OF ABBREAVATION

AHP After Hyperpolarization

CSV Comma Separated Values

EEG Electroencephalography

IF Integrate and Fire

MEA Multi Electrode Array

ODE order differential equation

OpenMP Open Multi-Processing

QIF Quadratic Integrate and Fire

CHAPTER 1

INTRODUCTION

Activities in the brain can be detected non-invasively using appropriate

equipment and displayed as electroencephalography (EEG) signals. These EEG

signals in the human brain display oscillation frequencies in the range of up to

100 Hz during various mental and physical activities. EEG oscillations can be

detected in the frontal lobe of the brain during certain mental activities such as

solving a mathematical problem, in the sensorimotor regions of the cortex

during motor activities such as hand and foot movements, and in the occipital

regions of the brain as evoked potentials when the eye is focused on an object.

These EEG signals have been used to activate various devices in Brain-

Computer Interfaces [1, 2]. The brain is a very complex organ consisting of

many parts and many researchers are currently trying to unravel its mysteries

as evidenced by the large number of articles in journals dealing with

neuroscience [3, 4]. Numerous experiments have been carried out in vitro and

in vivo to study the mechanisms underlying the generation of network

oscillations [6-17]. It is hoped that the current study to simulate global

oscillations in a network of neurons and the use of an extension of the model

by Latham et al.[5] to simulate ultra-slow spontaneous oscillations will be an

additional contribution to existing knowledge of oscillations in neuronal

networks.

2

CHAPTER 2

LITERATURE REVIEW

2.1 Experimental studies

2.1.1 In Vivo Studies

Oscillations are a prevalent phenomenon in biological neural networks.

Oscillations in the form of electroencephalograms (EEG) are present in

different brain structures, with frequencies ranging from 0.5 Hz (δ rhythm) to

40-80 Hz (γ rhythm), and even up to 200 Hz [6]. Many studies focus on the

mechanism for the generation of γ rhythm [7] in the brain as the γ rhythm is

related to numerous cognitive and sensory functions [8]. Slow oscillations of

brain waves less than 15 Hz are usually related to sleep or to the relaxed state

of the brain. Slow oscillations can be detected in vivo during various sleep

states [8]. The occurrence of slow oscillatory activity below 1Hz can be

observed at the cortical, thalamocortical and hippocampal regions in vivo in

animals under anaesthesia [10, 11, 12].

2.1.2 In Vitro studies

Cunningham et al.[13] showed that it is possible to induce gamma

oscillations in vitro in slices of cortical neurons. Sanchez et al.[14] showed that

brain slices immersed in bathing medium that mimic extracellular ionic

composition in situ can generate slow oscillations.

3

Chen et al.[15] showed that spontaneous activation of neurons can be

detected in cultures of neurons. Zhu et al.[16] also detected slow spontaneous

oscillations of activities around 0.005Hz in cultured of hippocampal neurons.

Latham et al.[17] conducted experiments to study the link between the fraction

of endogenously active cells and network firing pattern. Neurotransmitter

blockers are applied in the cultures to examine the presence of endogenously

active cells.

Mok et al.[18] recently reported on ultra-slow spontaneous activities in

MEA cultures of rat cortical neurons. Figure 1 shows an extract of the

experimental results obtained from these cultures. Ultra-slow spontaneous

oscillations lower than 0.005Hz are be observed in the spiking activity of

neurons. These activity patterns emerged spontaneously in certain cultures after

forth week in vitro.

Figure 1 Experimental results showing spiking activities from 5 different cultures with

spontaneous activity. Periodical fluctuations of activity over time at a very slow rate

(0.001Hz – 0.005 Hz) can be observed in the cultures. The activity time bin is 10ms(Mok

et al.[19])

4

2.2 Theoretical and modelling studies.

2.2.1 Integrate and fire (IF) model

Bruce Knight [20] introduced the term “Integrate and Fire” (IF) neuron in

his studies on the encoding for a population of neurons. The basic IF neuron is

characterized as a capacitor in parallel with a resistor [4]. The membrane

voltage of a neuron is represented by the voltage drop across the capacitor in

the IF model. The generalization of a basic IF model allows better

representation of a neuron. The Quadratic IF (QIF) model is the simplest of a

large number of more realistic neuron models [21, 22].

The basic IF, QIF and its variants are usually used to study the dynamics of

networks of spiking neurons. Simulations for a network that has a large number

of neurons can be conducted efficiently using the basic IF model. For certain

limiting cases, the equations describing the behaviour of a network of IF

neurons can be solved exactly.

2.2.2 Other More Detailed Neuron Models

The model introduced by Hodgkin and Huxley [23] describes a neuron by

three different ionic currents across the membrane. Activity of the neuron

depends on the current components from each of the ionic channels. Gating

variables in the equation describe the probability that an ionic channel is open.

Morris et al.[24] introduced the Morris–Lecar model which has a two

dimensional description of neuronal spike dynamics. The model contains 2

5

equations, the first describes the membrane potential and the second describes

the slow recovery variable.

Izhikevich [25] showed that the above more detailed models take a large

number of floating point calculations per iteration. Lob et al.[26] conducted

parallel event-driven neural network simulations using the Hodgkin-Huxley

neuron model. On a single CPU computer, it took an average of 11 thousand

seconds to complete a simulation of 15 seconds of activity in a network of 100

Hodgkin-Huxley neurons. Large clusters of computational units are required to

efficiently simulate a network of neurons using the more detailed neuron

models [27, 28, 29].

2.2.3 Network Oscillations

Oscillations are important as they are required in the process of information

coding and transmission [30, 31, 32]. Synchrony of spiking activities in the

network causes the formation of network wide oscillations. The mechanism for

the generation of oscillations and synchronization of a network is often the

focus of many theoretical studies [33, 34, 35, 36, 37, 38].

A simple network of inhibitory neurons driven by external excitatory inputs

under certain condition can exhibit oscillatory events. Brunel et al.[36] showed

that it is possible to generate global fast oscillations in a network of inhibitory

neurons. Inhibitory coupling in the network can act to synchronize the

oscillatory activity in the network [39]. Heterogeneous networks consisting of

6

inhibitory and excitatory neurons can exhibit a wide range of behaviour

depending on the parameters and inputs given to the network [37, 40].

In an analysis to investigate the time structure of activity in neuronal

network models, Gerstner [4] showed that a noiseless system was always

unstable. The instability may lead to collective oscillations of the entire neuron

population or to higher harmonics where all neurons split into several

subnetworks. Noise added to the network suppressed fast oscillations and

stabilized the system. The period of network oscillations was shown to increase

with randomized inputs.

Brunel et al.[36] showed that the period of global oscillations is dependent

on the characteristics of the external input. He reported that external noise

applied to the networks can produce a phase diffusion of the global

oscillations. Likewise, increasing the noise level was also found to strongly

damp and decrease the amplitude of the oscillatory activity. Traub et al.[42]

constructed a model of a single column thalamocortical network model

exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts.

Activities were generated from random ectopic axonal action potentials

occurring at glutamatergic cells within the column.

2.2.4 Spontaneous Bursting

Modelling studies are conducted by various researchers to explain the

phenomena of spontaneous bursting [5, 43, 44, 45]. Based on the studies

conducted by Latham et al.[5], one of the parameter that controls the firing

7

pattern for a neuronal network depends on the percentage of endogenously

active neurons. If the percentage of endogenously active neurons falls below a

threshold, the network will become silent. When the percentage is above the

threshold, activity can be observed from the simulated network. Kudela et

al.[44] showed that the balance between the excitation and inhibition in the

network is an important factor that modulates the bursting activity of a

network. Synaptic properties in the network also play an important role in the

generation of a synchronous bursting event. Tsodyks et al.[43] simulated a

network capable of generating population burst at particular time intervals. The

synaptic characteristics such as the connection strength and synaptic depression

between neurons in the model can influence the activity pattern of a network.

Volman et al.[45] studied the effect of network structure on the bursting

activity in a cultured network. The underlying architecture of a network can

influence the pattern of the network activity.

2.2.5 The Present Study

The present study investigates the computer simulation of global

oscillations in a network consisting a large number of neurons using the IF

neuron model. A simulation algorithm for solving the IF model was created

using C++. Parallel solvers were implemented in the algorithm to take

advantage of multicore processors available on the market. Using this

algorithm, simulations were carried out to study the effect of the different

parameters of the IF model on the global oscillations of a network of neurons.

An extension of the model by Latham et al.[5]was used to simulate ultra-low

8

oscillations observed by Mok et al.[18] in dissociated cortical cultures of rat

neurons.

9

CHAPTER 3

METHODOLOGY

3.1 Effect of Parameters of the IF Model on Global Oscillations in a

Network of Homogenous Neurons

The differential equation governing the depolarization of the membrane

potential for a sparsely connected network composed of N number of

identical inhibitory IF neurons is given by

[] (1)

where is the resting potential, is the synaptic input, is the external

jump amplitude and is the external input rate. The network is constructed

based on the total number of neurons and the connection probability between

the neurons. The network receives internal inputs from a predetermined

number of connections from other neurons in the network and external

excitatory inputs.

In our study, each neuron within the network receives an external excitation

input. External inputs are statistically independent and can be well approximated

by a Poisson distribution. The average part, μext and the fluctuating part, σext of the

external synaptic input are explicitly given by.

10

 (2a)

 √

 (2b)

where η is the membrane time constant, is the external jump amplitude

and is the mean firing rate.

 A Poisson random process is used to generate the external input rates, .

The rates are multiplied with the external input voltage jump to simulate

external excitation of the membrane. Internal activities are conveyed through

the term . The representation of the internal input is given by

 ∑

∑

 (3)

where is the synaptic weight, is the internal voltage jump,
 is the

emission time of k-the spike at neuron j and is the synaptic delay.

The network parameters are varied to study the behaviour of network. The

range of variation of the parameters is shown in Table 1.

Parameters Range

Min Max

Network Size 1000 250000

External Noise 1mV 12mv

Connection probability 0.05 1

Synaptic Delay 1.5ms 4ms

Synaptic Weight 0.2 1

Table 1 Parameters for simulation of homogenous network of inhibitory neuron

11

3.2 Simulation Algorithm

The simulation algorithm is developed using C++ to take advantage of the

multicore processor architecture. Many of the calculations in the simulation of

a neuronal network can be performed simultaneously. The differential equation

governing the evolution of the membrane voltage and synaptic current can be

solved concurrently by means of parallel computing. The speed of computation

can be increase with the implementation of parallel computing [46, 47].

The Open Multi-Processing (OpenMP) [48] application programming

interface (API) is used to facilitate the implementation of parallel computing.

OpenMP allows multiprocessing on a shared memory system. A master thread

can be parallelised using an OpenMP compiler directive, creating a numbers of

slave threads to work on a task. After all the slave threads have executed the

task, the slave treads will join back to the master thread to allow continuation

of program execution. Figure 2 illustrates a master thread that forks off to

multiple slave treads during an execution of an OpenMP PARALLEL

directive. OpenMP is commonly used to implement numerical simulation

which requires a large number of calculations [49, 50, 51, 52].

12

Figure 2 OpenMP of parallel execution block

Another advantage of using C++ is the ability to use the Object-oriented

Programming (OOP) method for the implementation of neurons [53]. An

object can be represented as a class in a program. A class can contain both data

and function. By treating a neuron as a functional unit, a neuron class can be

created to represent the parameters and features of the particular neuron. OOP

is widely used in the creation of simulation software for neurons and neural

networks [54, 55, 56, 57].

A numerical procedure is implemented to solve the IF first-order

differential equation (ODE). Small time steps are taken to solve the IF equation

to get the evolution of the membrane potential. There are a number of

numerical methods that can be applied to solve the ODE [58]. For the current

simulation, the numerical method used for solving of the ODE is the Fourth-

Order Runge-Kutta Method [59].

Parallel Thread 1 Parallel Thread 2 Parallel Thread 3

Master Thread

Master Thread

13

3.2.1 Simulation Algorithm Development

The equation describing the dynamics of the membrane is represented as a

class. The class will hold the equation in its operator. The function and variable

describing the equation are implemented as a member of the class. The code

below shows an example for the implementation of an equation class.

1 class LinIF{

2 private:

3 double tau, Er, v_thres;

4 public:

5 double v, J;

6 bool type

7

8 LinIF(double e):

9 v(e),

10 Er(-65),

11 tau(20),

12 J(0),

13 v_thres(-55){}

14

15 ~LinIF(){}

16

17 double operator()(double y, double t){

18 return (1/tau) * (-(y-Er)) + J;

19 }

20

21 bool update(){

22 if (v >= v_thres){

23 v = -65;

24 return true;

25 }

26 else

27 return false;

28 }

29 };

Class in Line 1 of the code is the keyword for the declaration of an

expended data structure in C++. The variable describing the equation will be

14

stored in the data members declared from Line 2 to Line 5 of the code. The

equation is implemented in the default operator with 2 inputs y and t. The last

part of the class, line 20 to 27 contain a function to check the reset condition of

the IF model. When the voltage crosses the threshold, the membrane potential

is reset back to the resting potential.

The next step in the algorithm is the implementation of the numerical

solution. A template function is created to solve the equation class. The

function will run the equation through all the necessary steps in solving the

differential equation.

1 template <typename function>double runge_kutta_4th(function equation,

double initial, double t, double dt){

2 double k1 = equation(initial, t);

3 double k2 = equation(initial + 0.5 * k1 * dt, t + 0.5 *dt);

4 double k3 = equation(initial + 0.5 * k2 * dt, t + 0.5 *dt);

5 double k4 = equation(initial + k3 * dt, t + dt);

6 return initial + (k1 + 2*k2 + 2*k3 + k4)/6 * dt;

7 }

The code above shows an example of implementation of Runge-Kutta

method in solving the differential equation. The beginning, midpoint and

endpoint estimates are calculated and stored in variables k1 to k4. Knowing the

function, the initial value, the time and the time step size, the average slopes

from k1 to k4 are calculated and added to the initial values to get the results at

time .

The main simulation algorithm will create objects based on the neuron

class. Information describing the connectivity, type and others properties of the

15

network for each individual neuron will be stored into the vectors. Network

information is generated based on the required parameters for every particular

simulation. Data in the vector will be recalled during the simulation steps to

determine the network characteristics of a neuron.

Figure 3 Flowchart for simulation algorithm

Figure 3 shows a simplified flowchart describing the overall simulation

algorithm. All the required objects and parameters are initialized at the start of

the program. The simulation is carried out for every time step, Δt until a pre-set

Initialization of Neuron Object and Network Parameters

Program End
Reach End

of

Simulation?

Yes

No

OpenMP

Thread 1
OpenMP

Thread 2

OpenMP

Thread n

OpenMP

Implementation

Save Information for

current time step

Program Start

16

time limit. Individual neuron equations are solved in the iteration loop using

OpenMP to distribute the processing load. With a multicore processor, the

threads created can be run simultaneously to shorten the time required to

complete the simulation. The output for every time steps will be recorded and

saved to the hard disk as CSV files. The summation of spikes and the

membrane voltage are some of the outputs that can be saved in this step.

The completed code is compiled using g++ with flags, -O2 and -fopenmp

under Ubuntu. Level 2 optimization of the code will increase the speed of the

program and it is done automatically by the compiler. The fopenmp flag is

needed to enable the use of OpenMP directive in the coding.

3.2.2 Implementation of Synaptic Delay

Synaptic delays are implemented in the code using double ended queue

(deque). Data in the deque can be added and removed from the head and the

end of the list. Spike information from the presynaptic neuron is stored at the

end of the deque. The length of the deque, n is obtained by dividing the desired

time of delay by the time step. Spikes that arrive at the postsynaptic neuron is

removed from the start of deque and used for processing at that particular

simulation time step.

17

Figure 4 Implementation of synaptic delay

Figure 4 shows the flow of a deque implemented for a synapse. Each

synapse will have a unique deque assigned to it to store the information on its

synaptic delay.

3.2.3 Implementation of the After Hyperpolarization current

The hyperpolarization of a neuron occurs after spike generation due to open

potassium ion channel and the influx of calcium ion channel. It causes the

membrane potential of a neuron to fall below the resting potential. The

phenomena of After Hyperpolarization () current can bemodelled using the

equation,

 (4a)

 ∑

 (4b)

where, determines the amplitude of conductance, determines the

change in conductance and is the time a spiking event occurs.

The spiking of a neuron at time will trigger an increase in . This

causes the generation of the AHP current on the membrane potential at the time

 Delay In 1 2 3 ……………. n-2 n-1 n
Input to Neuron
After delay

Length of Delay

18

of spike. This current causes the membrane potential to drop to a lower point

when the membrane recovers after spiking.

The AHP current is modelled as an object in the simulation algorithm. The

code for the differential equation is shown below. The differential part of the

equation is described in the operator of the class. The Runge-Kutta4
th

 order

numerical scheme will be used to solve the differential equation object.

1 class neuron_internal_dynamics{

2 private:

3 double tau, wi, del, z;

4

5 neuron_internal_dynamics(double tau, double del):

6 tau(tau),

7 wi(0),

8 del(del),

9 z(0){}

10

11 ~neuron_internal_dynamics(){}

12

13 double operator()(double y, double t){

14 return -(y/tau) + del * wi;

15 }

16 };

3.2.4 Simulation in Networks with Excitatory Neurons

The simulation code is modified further to facilitate the simulation of

networks with excitatory neurons. The neuron class is modified to

accommodate a parameter for excitatory or inhibitory neurons. A Boolean

variable is used to determine the type of neuron. During simulations, the

neuron type is checked to ensure that the correct routine for inhibitory or

excitatory neurons is called. The accuracy of the current simulation algorithm

19

is checked against the results provided by Brunel et al.[37] for a network of

sparsely connected excitatory and inhibitory neurons.

3.3 Simulation of Ultra-Slow Spontaneous Oscillation

Spontaneous activities in a neuronal network have already been modelled

by Latham et al.[5]. I will extend this model to simulate ultra-slow spontaneous

oscillations observed by Mok et al.[18] in cortical cultures of rat neurons.

Ultra-slow changes to the firing rate were observed in dissociated cortical

cultures grown on an 8x8 grid MEA. Global activity is obtained by summing

up all the activity present on each of the individual electrodes.

Ultra-slow spontaneous oscillatory patterns are observed as a result of

fluctuations in the number of neurons activated at the peaks and troughs.

Figure shows the differences in the number of spikes between the time ranges

from 200s to 210s and from 400s to 410s for culture 4. Fewer neurons are

active during bursting events in Figure 5 (a) compare to Figure 5 (b).

20

Figure 5 Experimental data showing spontaneous bursting activity for 10s in a culture of

cortical neurons. a) Activity at troughs of ultra-slow spontaneous oscillations b) Activity

at peaks of ultra-slow spontaneous oscillations. The activity time bin is 10ms(Mok et al.

[19])

Figure 6 Experimental results showing ultra-slow changes in spontaneous activity. The

activity time bin is 10ms (Mok et al. [19])

0 200 400 600 800 1000 1200 1400 1600 1800
0

20

40

60

80

100

120

140

160

180

Time, (s)

S
p
ik

e
s

21

Figure 6 shows a sample data obtained from the experiment showing ultra-

slow periodical changes in the spontaneous activity. Two distinct firing rates

can be observed in the sample data above. About 90 spikes per time bin can be

observed at periods with low firing rates and about 160 spikes per time bin at

times with high firing rates.

Figure 7 Spike sorting results on one of the electrodes a) neuron fires throughout the

whole recording. b) neuron fires only at the peaks c, d) neuron with low level of activity.

The activity time bin is 10ms (Mok et al. [19])

Why the neurons exhibit this ultra-slow spontaneous oscillating behaviour

is not fully understood. However when spike sorting algorithms [60, 61] were

used to separate the activities from different neurons, the experimental data

showed that some neurons fire continuously while others fire only at the peaks

and not at the troughs.

22

The time evolution equation [5] for the membrane potential of neuron

for modelling activity observed in the experiment is

 () (̃ ̃)

(5a)

 ̃

 ̃

 ∑

 (5b)

 ̃

 ̃

 ∑

 (5c)

 ∑

 (5d)

 ∑

 (5e)

where determines the rate of change for v, is the resting potential; is the

threshold potential, controls the fraction of endogenously active cells,

is the potassium reversal potential, and are the potassium

conductance, ̃ and ̃ describe the synaptic input currents to the neuron. The

time evolution equation of ̃ and ̃ are given by equations 5b-

5e.A Runge-Kutta4
th

order solver, created in C++, was used to solve the

differential equations for the network.

The time period of these ultra-slow spontaneous oscillations is much larger

than previously reported and these ultra-slow spontaneous oscillations are not

affected by the parameters of the standard IF model. It is likely that these

oscillations are controlled by other biochemical processes and/or network

23

structure in the neuronal culture. In order to overcome this difficulty, I

introduce an additional equation,

 ∑

 (6)

that describes the generation and dissipation of an inhibiting property (θ).The

generation of the inhibiting property is proportional to the firing activity and

represented by a parameter α and the dissipation of the inhibiting property is

represented by a decay coefficient, ηθ when the inhibiting property reaches a

higher threshold value, the neurons within the subnetwork stop firing. The

neurons start to fire again when it has dissipated to a lower threshold value.

It has been previously reported [45] that for some large networks, the

synchronized bursting events might be classified as belonging to several

distinct subnetworks with each subnetwork representing a synchronized

bursting event with a well-defined spatio-temporal internal structure. From the

spike sorting results [19], I postulate here that there are two or more such

distinct subnetworks. The generation of the inhibiting property in each

subnetwork is proportional to the firing rate but the decay rate is different

depending on the local subnetwork properties. In this manner we will have

neurons in each subnetwork firing at a different rate. For the purpose of the

present simulations, the neurons are divided into 2 subnetworks. By proper

adjustment of the parameters α and ηθ we can obtain a subnetwork of neurons

that fires continuously and another that fires only at the peaks and not at the

24

troughs. The simulation algorithm described in section 3.2 will be utilized for

the simulation of these ultra-slow spontaneous oscillations.

25

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Simulation Algorithm

Sets of C++ libraries were created for the simulation algorithm. Libraries

containing the equations describing the dynamics of the membrane were

included in the main file of the simulation programs. The developed libraries

were tested for speed and accuracy of simulation. The speeds of simulations for

optimized and OpenMP were compared for different sets of simulations. The

results of the simulations were recorded on to the hard disk using the CSV

format. Information such as the number of spikes, membrane potential and

variable changes during the simulations were selected as the output of the

simulation code.

4.1.1 Comparison of Single Neuron Simulations with Exact Solutions

The accuracy of the simulation algorithm was tested by comparing the

simulation results with the exact analytical solutions for the basic IF neuron

model and also for the QIF neuron model. For the basic IF model, the error is

taken as the difference between the results of the numerical simulation of

 (7)

26

and the exact analytical solution given by

 (8)

For equation 7, the following values were used: η = 20ms, vr = -65mV and

RI = 15mV and for equation 8, and - where is the time when

the spike last occurred. The threshold voltage for spike generation is set at -

55mV. When a spike occurs, the membrane voltage at the current time step

will be reset back to the resting potential at -65mV.

Figure 8 shows a comparison of the results of the membrane voltage

generated by the numerical simulation and the exact analytical solution. The

mean square error obtained from the numerical simulation using the Runge-

Kutta method compared to the exact analytical solution is 7.9113 x 10
-10

showing that the numerical simulation is highly accurate.

27

Figure 8 Comparison of simulated membrane voltage of single IF neuron model with

exact solution

The QIF model used for the comparison is described by

 (9)

and the exact analytical solution given by

(

 (

 √

) √

 (√

 (
 √

))

)

(10a)

 (10b)

 (10c)

 (10d)

0 5 10 15 20 25 30 35 40 45 50
-65

-64

-63

-62

-61

-60

-59

-58

-57

-56

-55

Time, ms

V
o
lt
a
g
e
,

m
v

Runga-Kutta 4th Order

Analytical Solution

28

For the numerical simulations, the following values were used: α0 = 0.2, η =

20mV, vr = -65mV and RI = 15mV and for the analytical solution,

 and - where - is the time when the spike last occurred. The

threshold voltage for spike generation is set at 55 mV and the peak of the spike

set at 0mV. When a spike occurs, the membrane voltage at the current time

step will be reset back to the resting potential at -65mV.

Figure 9 shows a comparison of the results of the membrane voltage

generated by the numerical simulation and the exact analytical solution. The

mean square error obtained from the numerical simulation using the Runge-

Kutta method compared to the exact analytical solution is 1.1457 x 10
-5

showing that the numerical simulation is highly accurate.

Figure 9 Comparison of simulated membrane voltage of single QIF neuron with the exact

analytical solution

0 5 10 15 20 25 30 35 40 45 50
-70

-60

-50

-40

-30

-20

-10

0

Time, ms

V
o
lt
a
g
e
,

m
v

Runga-Kutta 4th Order

Analytical Solution

29

4.1.2 Network Simulation

A network of neurons was created to test for the propagation of error due to

the interconnectivity of neurons. Table 2 shows the parameters of the network.

 Network Parameter

Number of Neuron 5000

Connection Per Neuron 1000

Neuron Type Inhibitory

Table 2 Network parameters for IF and QIF networks

For the simulation of a network of IF neurons, equation 7 is numerically

evaluated using the Runge-Kutta4
th

 order method. In the network, a

presynaptic neuron spike will produce a potential jump J, of -1mV at the

postsynaptic neurons. The sum of the spikes for a simulation of 2000ms is

calculated for the network. The results are compared with those obtained from

a similar simulation using equation 8 (the exact analytical solution of equation

7). Figure 10 shows the number of spikes computed from network simulations

for the IF model using equations 7 and 8. The number of spikes computed from

both cases is identical, showing that there is no propagation of errors in the

simulation.

30

Figure 10 Comparison of results from simulation of a network of IF neurons

Figure 11 shows the number of spikes computed from network simulations

for the QIF model using equations 9 and 10. The number of spikes computed

from both cases is identical, showing that there is no propagation of errors in

the simulation.

200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60
Simulation using equation 8

Time, ms

S
p
ik

e
s

200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60
Simulation using equation 9

Time, ms

S
p
ik

e
s

31

Figure 11 Results from simulation of QIF neurons network using different methods

4.1.3 Effect of Parallel Processing on Simulation Speed

Numerical simulations were carried out for networks of 10000 and 20000

QIF neurons with and without OpenMP implementation. The parameters for

the simulations are given in Table 3.

 Network Parameter

Number of Neuron Varies

Connection Per Neuron 0.2 * Number of Neuron

Neuron Type Inhibitory

External Input Fixed

Table 3 Network parameters for comparison of time taken for simulation (QIF)

Figure 12 shows a comparison of the time taken for the simulation. With

OpenMP implementation, a 5.05% speed increase for the simulation of 10000

200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600
Simulation using equation 10

Time, ms

S
p
ik

e
s

200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600
Simulation using equation 11

Time, ms

S
p
ik

e
s

32

neurons and 3.71% speed increase for the simulation of 20000 neurons can be

observed.

Figure 12 Speed of simulation for a network of QIF Neurons

Test for speed of simulations were also carried out for a network of QIF

neurons with AHP. The parameters in Table 3 were used. An increase of

23.33% in the simulation speed for 10000 neurons and 18.26% increase in

simulation speed for 20000 neurons can be observed.

Figure 13 Speed of simulation for a network of QIF with AHP neurons

0

10

20

30

40

50

60

70

80

10000 20000

Ti
m

e
 T

ak
e

n
 (

s)

Number of Neurons

Quadratic IF Neurons

No OpenMp

OpenMP

0

10

20

30

40

50

60

70

10000 20000

Ti
m

e
 T

ak
e

n
 (

s)

Number Of Neurons

Quadratic IF Neurons With AHP

No OpenMp

OpenMP

33

The overall increase in simulation speed is much higher for the QIF with

AHP neurons compare to QIF neurons only. This is due to the overhead needed

by OpenMP to create individual threads for the execution of the simulations.

Processing time is used up to create threads and forks in the program for

parallel processing. Time is also taken up when the data for threads is

combined at the end of the parallel fork. Containing only a single differential

equation, the network of QIF neurons only receive minor speed improvement

for the simulation due to the time taken by OpenMP. Conversely, the

simulation for a network of QIF with AHP neurons shows a more significant

improvement in computational speed. The overhead imparted with the use of

OpenMP for this simulation is similar to the simulation of QIF neurons. With a

more complex equation, simulation of a network of QIF with AHP neurons

benefit more from the implementation parallel processing using OpenMP.

4.1.4 Simulations of a Network of Inhibitory and Excitatory Neurons

Using the current simulation algorithm, I attempt to reproduce the results as

reported by Brunel [37] for a network of inhibitory and excitatory IF neurons.

The parameters in Table 4 are used for the simulation. The amplitude for the

inhibitory post synaptic potential and external noise are varied in the

simulation. The amplitude of inhibitory post synaptic potential is varied using

the term g as shown in Table 4.

34

Parameters Value

PSP amplitude for excitatory synapses 0.1mV

PSP amplitude for inhibitory synapses -g*0.1mV

Synaptic Delay 2ms

Firing threshold 20mV

Resting potential 10mV

Membrane time constant 20ms

Number of excitatory neurons 10,000

Number of inhibitory neurons 2,500

Inhibitory Connections 250

Excitatory Connection 1000

Table 4 Network parameter for simulation of network of inhibitory and excitatory

neurons

Figure 14 to Figure 17 show the activity patterns as reported by Brunel [3]

can be reproduced using the current simulation algorithm.

Figure 14 Synchronous Regular State (SR), g = 3, External noise =2 mV. The activity time

bin is 10ms

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

time,ms

G
lo

b
a
l
A

c
ti
v
it
y
,

L
F

P

35

Figure 15 Synchronous Irregular State (SI), Fast Oscillation, g = 6; External noise = 3

mV. The activity time bin is 10ms

Figure 16 Asynchronous Irregular State (AI), g = 5; External noise = 2 mV. The activity

time bin is 10ms

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

time,ms

G
lo

b
a
l
A

c
ti
v
it
y
,

L
F

P

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

time,ms

G
lo

b
a
l
A

c
ti
v
it
y
,

L
F

P

36

Figure 17 Synchronous Irregular State (SI), Slow Oscillation, g = 4.5; External noise = 1.3

mV. The activity time bin is 10ms

4.2 Effects of the Parameters of the IF Model on the Global Oscillations in

a Network of Homogenous Neurons

Simulations for a network of homogenous neurons are conducted and the

parameters of the IF model are varied to study the effect of parameters on the

network oscillations.

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

time,ms

G
lo

b
a
l
A

c
ti
v
it
y
,

L
F

P

37

4.2.1 Network Size

Figure 18 Frequency of network oscillation for different network size

The size of the neuronal network is increased while other parameters of the

network are kept constant. The other parameters of the network are ε = 0.2, η =

20ms, D = 2ms, Jij = 0.1mV, and μext = 25mV. Figure 18 shows the variation of

the network oscillation frequency with network size 3 noise levels of 1mV, 4

mV and 8 mV. The frequency of network oscillations decreases sharply as the

number of neurons N in the network increases for N less than 50,000. For N

greater than 100,000, the frequency of network oscillations did not change

significantly. It may be observed that the frequency of network oscillations

increases with external noise from 1 mV to 8 mV.

38

4.2.2 External Noise

Figure 19 Frequency of network oscillation for different external noise

For this simulation, N was chosen to be 130,000 neurons to eliminate the

effect of network size on the frequency of network oscillations. The effect of

different external noise levels to the network is investigated. The following

parameters are kept constant: N=130,000 neuron, η = 20ms, ε = 0.2, D = 2ms,

Jij = 0.1mV, and μext = 25mV. Figure 19 shows that the frequency of network

oscillation increases with external noise until 8 mV after which it remains

relatively constant.

39

4.2.3 Connection Probability

Figure 20 Frequency of network oscillation for different connection probability

Different connection probability for the network is simulated. A network of

130,000 neurons is chosen to eliminate the effect of N on the network

oscillations. For each curve, with the exception of connection probability, the

other parameters remain the same: η = 20ms, D = 2ms, Jij = 0.1mV, and μext =

25mV. Three curves are generated for external noise, ζext = 1mV, ζext = 4mV

and ζext = 8mV. Figure 20 shows that the frequency of oscillation decreases

slightly when the network varies from sparsely to highly connected.

40

4.2.4 Synaptic Delay

Figure 21 Frequency of network oscillation for different synaptic delay

The synaptic delay of the network is varied. The network size of 130,000

with connection ratio of 0.2 is used. Other parameters of the network are η =

20ms, Jij = 0.1mV and μext = 25mV. External noise level of ζext = 1mV and ζext

= 8mV is used for the simulation. Figure 21 shows the results of the

simulation. At low synaptic delays, the frequency of the oscillation is very

high. With higher delay times, the frequency of network oscillation decreases.

41

4.2.5 Synaptic Weight

Figure 22 Frequency of network oscillation for different synaptic weight

The synaptic weights of the network are varied from 0.02 to 0.9. The

parameters of the network are N = 130,000, ε = 0.2, η = 20ms, Jij = 0.1mV and

μext = 25mV. External noise level of ζext = 1mV, 4mV and 8mV are used for

the simulation. The oscillation frequency remains relatively constant for higher

synaptic weights. At lower synaptic weights, the stability of the oscillation is

affected causing a noise-like network activity to occur. Figure 22 shows the

result for the simulation.

42

4.3 Simulation of Spontaneous Activity

Spontaneous activity in cultures of cortical neurons using the model

described in chapter 3.3 will be simulated. By varying the number of

endogenous neurons in the network, regular spontaneous activity can be

obtained.

To simulate ultra-slow spontaneous oscillations in cortical cultures [18], a

network of 2 subnetwork of neurons will be created. An inhibiting property is

introduced in each subnetwork. If the properties of the 2 subnetworks are

different, it is possible to simulate one subnetwork that will fire continuously

while another subnetwork fires periodically

4.3.1 Spontaneous Activity

A network to simulate spontaneous activity is created based on the model

described by equation 5a and with parameters given in Table 5. The parameters

for the neurons and synapses are as described by Latham et al. [5]. In the

model, an applied current is introduced to each of the neurons. The applied

current is chosen randomly from a uniform distribution between 0 and Imax. A

fraction of the neurons will be endogenously active based on the value chosen

for Imax, ̃ and Ĩ describe the synaptic currents between the neurons while gk and

gk-ca represent the potassium conductance for the slow and fast after

hyperpolarization currents.

43

Parameter Value

 10ms

 -65mV

 -50mV

 1/15

 -80mV

 3ms

 0.1mS

 30ms

 1mS

 3000ms

 0.2mS

Table 5 Neuron parameters for simulation of spontaneous activity

Parameter Value

Number of Neuron 10000

Connection Per Neuron 2000

Excitatory Neuron 20%

Inhibitory Neuron 80%

VEPSP 1mV

VIPSP -1.5mV

Connectivity Bias Varied

Imax Varied

Table 6 Network parameters for simulation of spontaneous activity

The network parameters for cortical cultures are listed in Table 6. wij

(Latham et al. [5]) is calculated from Vpsp using

 [
 ⁄

 ⁄
] (11)

with parameter values given in table 5.Neurons in the network are allowed to

connect to all other neurons except itself. Connectivity bias is a ratio which

describes the tendency of the network to favor connections between 2 different

types of neuron.

44

Based on the connectivity bias for inhibitory and excitatory neurons,

connection probability
 (Latham et al. [5]) can be calculated using,

 (12)

 (13)

where
 is the connection bias,

 is the mean number of post synaptic

connection, is the number of excitatory connection and is the number

of inhibitory connection.The network connection is then randomly selected

based on the probability calculated. Imax and connectivity bias are varied to find

a set of parameters that is capable of reproducing activity patterns that are

observe in the experiment.

Connection biases are varied from 0.8-1.2 for inhibitory and excitatory

neurons. For each of the connection patterns, the Imax values are varied and the

effect on the generated spontaneous activity are observed. All the differential

equation are implemented in C++ template and solve using Runge-Kutta

4
th

order numerical scheme.

Figure 23 shows the different types of activity patterns obtained from the

simulation with different connection bias. Periodically repeating firing of

neurons can be observed in Figure 23 (a) and (b) when the inhibitory bias is

low. Figure 23 (c) shows a very low level of activity. Figure 23 (d), (e) and (i)

show a constant activity pattern. Figure 23 (f) and (h) show bursting activity

45

patterns. Figure 23 (g) shows large activity at the start that decays to a lower

activity.

Figure 23 Simulated activity for different Be and Bi values. Imax of 4 is used for the

simulation. The activity time bin is 10ms

The activity patterns of networks with connection bias, Bi = 0.8 are similar

to the experimental results by Mok et al.[18] except that the simulated period

of inactivity in between steady network firing is much smaller compare to the

period detected in the experiments as shown in Figure 24.

46

Figure 24 Experiment data showing spontaneous bursting activity for 10s in a culture of

cortical neurons. The activity time bin is 10ms (Mok et al.[19])

Simulations were carried out for Bi = 0.8 and Imax from 3.6 to 5. For Imax of

3.6 and lower there is no network activity due to the low number of

endogenously active neurons. Figure 25 shows that for Imax values of 4.0 and

3.8, the number of spikes of the network is very low. For Imax values of 5.0 and

4.5, the activity patterns show steady firing with a period of inactivity around

2s to 3s. The activity pattern simulated using network parameters Bi = 0.8 and

Be = 1.2 are the closest to the activity pattern as shown in the experimental

results of Figure 24.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Time, (s)

S
p
ik

e
s

47

Figure 25 Activity for network with Bi = 0.8,Be = 1.2 Imax = 5 to 3.8. The activity time

bin is 10ms

4.3.2 Simulation of Ultra-Slow Spontaneous Oscillations

A network with 2 subnetworks is created for the purpose of simulating the

ultra-slow oscillations as observed by Mok et al.[18]. Neurons are assigned

randomly to the subnetworks. An inhibiting property is assigned to each

subnetwork. The inhibiting property is described by equation 6 in section 3.3.

Parameters in table8, 9 and 10 are used for the simulation.

Parameter for inhibiting property Value

 0.001-0.01

Upper Threshold for θ 4-5

Lower Threshold for θ 0.1

 1000-50000

Number of neuron in each subnetwork 1 90% to 10%

Number of neuron in each subnetwork 2 10% to 90%

Table 7 Parameters for the inhibiting properties of a subnetwork

2 4 6 8 10
0

5

10

15

20
5.0

2 4 6 8 10
0

5

10

15
4.5

2 4 6 8 10
0

1

2

3
4.0

2 4 6 8 10
0

0.5

1

1.5

2
3.8

N
u
m

b
e
r

o
f

S
p
ik

e
s

Time (s)

48

The number of neurons in the 2 subnetworks is varied from 50-50% to 10-

90%. The subnetwork accumulates the inhibitory property when the neurons in

a subnetwork fire. If the inhibitory property reaches the upper threshold value,

the neurons in the subnetwork will become inactive until the value of inhibitory

property falls below the lower threshold value. All external currents to the

neurons within the subnetwork will be set to 0 during this inactive period. The

membrane potential of the neurons in this subnetwork will fall towards the

resting potential during the period of inactivity.

The parameters of subnetwork size, α and ηθ affect the shape and pattern of

the generated ultra-slow oscillation. The size of subnetwork determines the

number of neurons that are active during the peak and trough of the

oscillations. The time period where both subnetworks are active is determined

by the time the inhibitory property takes to reach the upper threshold. The size

of the subnetwork, ηθ and α affects the accumulation rate of inhibitory property.

The period of inactivity for the subnetwork is dependent on ηθ. With no

external current acting on the neurons, no activity will be generated during the

time the inhibitory property takes to reach the lower threshold. For the above

simulation, a small ηθ is assigned to subnetwork 2 to simulate a neuron group

that is active all the time.

By adjusting these 3 parameters, oscillatory patterns with different periods

can be achieved. Figure 26 shows simulation results that are comparable to

activity detected in experiment. When both subnetworks are active, about 150

spikes per time bin can be obtained from the simulation. Activity when only 1

of the subnetwork is active is much lower, at about 45 spikes per time bin.

49

Figure 27 shows the changes of the inhibitory property for subnetwork 1 and

subnetwork 2. The inhibitory property of subnetwork 1 accumulates and

reaches the upper threshold. Then it decays to the lower threshold when

neurons are inactive. The inhibitory property of subnetwork 2 stays at about 0.7

due to the fast decay rate.

Figure 26 Simulation results showing 5 peaks in 800s. Parameters for the simulation of

activity: α = 0.07, upper threshold = 3.8.Subnetwork 1: number of neuron = 2000, τφ =

30000. Subnetwork 2: number of neurons = 8000, τφ = 1000. The activity time bin is 10ms

0 100 200 300 400 500 600
0

50

100

150

200

250

time(s)

S
p
ik

e
s

Simulation

0 100 200 300 400 500 600
0

50

100

150

200

250

time(s)

S
p
ik

e
s

Experiment

50

Figure 27 Changes of inhibitory properties, φ in subnetwork 1 and subnetwork 2 with

parameters for the simulation of activity: α = 0.07, upper threshold = 3.8. Sub network 1:

number of neuron = 2000, τφ = 30000. Subnetwork 2: number of neurons = 8000, τφ =

1000

Figure 28 shows simulation results with another set of parameters.

Different patterns of activity can be obtained by changing the number of

neurons in subnetwork 1 and subnetwork 2. The simulation results show

patterns that are comparable to the activity pattern observed in culture 2.

51

Figure 28 Simulation results showing 3 peaks in 800s. Parameters for the simulation of

activity: α = 0.07, upper threshold = 3.8. Subnetwork 1: number of neuron = 3000, τφ =

30000. Subnetwork 2: number of neuron = 7000, τφ = 1000. The activity time bin is 10ms

Ultra-slow oscillations can be reproduced in simulations by introducing an

inhibition property with a slow time constant to one of the subnetwork. The

inhibition of subnetwork cannot be detected from the experiments conducted

by Mok et al. [18].Further experiments must be carried out to better understand

the underlying biochemical process that causes the Ultra-slow oscillation.

0 100 200 300 400 500 600
0

50

100

150

200

250

time(s)

S
p
ik

e
s

Simulation

0 100 200 300 400 500 600
0

50

100

150

200

250

time(s)

S
p
ik

e
s

Experiment

52

CHAPTER 5

CONCLUSIONS

A simulation algorithm was developed for a network consisting of IF

neurons using objects in C++. Function classes are used to describe the

differential equations in the simulations. Network models are represented in

C++ based on the classes. The simulation algorithm takes advantage of the

parallel processing capabilities of current computer CPU’s to improve the

speed of computation.

Using the above simulation algorithm, the effects of the different

parameters of the IF model on the global oscillations of a network of

homogenous neurons were investigated. The results show that the frequency of

the network global oscillations are affected by the leakage term, the network

size, the connection probability, the external noise, the synaptic delay and the

synaptic weight.

Ultra-slow spontaneous oscillations were simulated using the model by

Latham et al. [5] together with an additional equation that describes the

generation and dissipation of an inhibiting property for 2subnetwork of

neurons. The results of the simulations show activity patterns that are

comparable to ultra-slow spontaneous oscillations observed in cortical cultures

of rat neurons by Mok et al. [18].

53

REFRENCES

[1] A. Vallabhaneni, T. Wang and B. He.Neural Engineering, pp.85-121

2005.

[2] L.F. Tan, C.S. Ng, J.Q. Ng, and S.Y. Goh. “A brain-computer interface

with intelligent distributed controller for wheelchair”in 4th Int. Conf. on

Biomedical Engineering, Kuala Lumpur, IFMBE Proc.,2008, pp. 641–644.

[3] L.F. Abbott. “Theoretical neuroscience rising”Neuron, vol. 60, issue 3,

pp. 489–495, Nov 2008.

[4] W. Gerstner and W.M. Kistler.Spiking Neuron Models Single Neurons,

Populations, Plasticity.Cambridge University Press, 2002.

[5] P. E. Latham, B. J. Richmond, P. G. Nelson, and S.Nirenberg.“Intrinsic

dynamics in neuronal networks.I.Theory.”J. of Neurophysiology, vol 83, issue

2, pp. 808–827, Feb 2000.

[6] A. Husain, W.O. Tatum, P.W. Kaplan. Handbook of EEG

interpretation.Demos Medical, 2008.

[7] E. O. Mann and O. Paulsen.“Mechanisms underlying gamma (’40’)

network oscillations in the hippocampus - a mini-review”,Progress in

Biophysics and Molecular Biology, vol 87, issue 1, pp67 – 76, Jan 2005.

54

[8] X.X. Jia and A. Kohn.“Gamma rhythms in the brain”,PLoS Biology,

vol. 9, issue 4, April 2011.

[9] L. Zhu, K.L. Blethyn, D.W. Cope, V. Tsomaia, V. Crunelli, and S. W.

Hughes. “Nucleus- and species-specific properties of the slow (<1 hz) sleep

oscillation in thalamocortical neurons”,Neuroscience, vol. 141, issue 2, pp.

621–636, Aug 2006.

[10] M. Steriade, A. Nuñez, and F. Amzica.“A novel slow (< 1 hz)

oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing

components.”J. Neuroscience, vol 13, issue 8 pp. 3252–3265, Aug 1993.

[11] F. Amzica and M. Steriade.“Short- and long-range neuronal

synchronization of the slow (< 1 hz) cortical oscillation”,J. of

Neurophysiology, vol. 73, issue 1, pp. 20–38, Jan 1995.

[12] M. Penttonen, N. Nurminen, R. Miettinen, J. Sirviö, D. A. Henze,

J. Csicsvári, and G. Buzsáki. “Ultra-slow oscillation (0.025 hz) triggers

hippocampal afterdischarges in wistar rats”Neuroscience, vol 94, issue 3, pp.

735–743, Oct 1999.

[13] M.O. Cunningham, M.A. Whittington, A. Bibbig, A. Roopun, F.E.N.

LeBeau, A. Vogt, H. Monyer, E.H. Buhl, and R.D. Traub. “A role for fast

rhythmic bursting neurons in cortical gamma oscillations in vitro”,Proc. of the

National Academy of Sciences of the United States of America, vol. 101, no.

18, pp. 7152–7157, Apr 2004.

55

[14] M. V. Sanchez-Vives and D. A. McCormick.“Cellular and network

mechanisms of rhythmic recurrent activity in neocortex”,Nature Neuroscience,

vol. 3, issue 10, pp.1027–1034, Oct 2000.

[15] C.P. Chen, L. Chen, Y.S. Lin, S.Q. Zeng, and Q.M. Luo.“The origin of

spontaneous synchronized burst in cultured neuronal networks based on multi-

electrode arrays”,Biosystems, vol. 85, issue 2, pp. 137–143, Aug 2006.

[16] G. Zhu, X.N. Li, J.B. Pu, W.J. Chen, and Q.M. Luo. “Transient

alterations in slow oscillations of hippocampal networks by low-frequency

stimulations on multi-electrode arrays”,Biomedical Microdevices, vol 12, issue

1, Nov 2009.

[17] P.E. Latham, B.J. Richmond, S. Nirenberg, and P.G. Nelson.“Intrinsic

dynamics in neuronal networks. II. Experiment”J. of Neurophysiology, vol. 83,

issue 2, pp. 828–835, Feb 2000.

[18] S. Y. Mok, Z. Nadasdyb, Y.M. Lim, S.Y. Goh.“Ultra-slow oscillations

in cortical networks in vitro”,Molecular and Cellular Neuroscience, vol. 206,

Mar 2012.

[19] S. Y. Mok, private communication, 2011.

[20] B. W. Knight. “Dynamics of encoding in a population of neurons”,The

J. of General Physiology, vol. 59, issue 6, pp. 734–766, Jun 1972.

56

[21] E.M.Izhikevich. Dynamical systems in neuroscience. MIT Press,

Cambridge,MA, 2006.

[22] D. Hansel and G. Mato. “Existence and stability of persistent states in

large neuronal networks”,Physical Review Letters, vol. 86, issue 18, pp. 4175–

4178, Apr 2001.

[23] A. L. Hodgkin and A. F. Huxley. “A quantitative description of

membrane current and its application to conduction and excitation in nerve”,J.

of Physiology, vol. 117, issue 4, pp. 500–544, Aug 1952.

[24] C. Morris and H. Lecar. “Voltage oscillations in the barnacle giant

muscle fiber”Biophysical J., vol. 35, issue 1, pp. 193–213, Jul 1981.

[25] E. M. Izhikevich. “Which model to use for cortical spiking

neurons?”,IEEE Transactions on Neural Networks, vol. 15, issue 5, pp. 1063–

1070, Sep 2004.

[26] C. J. Lobb, Z. Chao, R. M. Fujimoto, and S. M. Potter.“Parallel event-

driven neural network simulations using the hodgkin-huxley neuron

model”,Proc. of the 19
th

Workshop Principles of Advanced and Distributed

Simulation, PADS 2005, pp. 16–25, 2005.

[27] W. C. Gerken, L. K. Purvis, and R. J. Butera.“Genetic algorithm for

optimization and specification of a neuron model”,Proc. 27th Annual Int. Conf.

57

of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005, pp.

4321–4323, 2005.

[28] B. Han and T. M. Taha.“Neuromorphic models on a gpgpu cluster”,

Proc. Int. Neural Networks Joint Conf., IJCNN, pp. 1–10, 2010.

[29] T. M. Taha, P. Yalamanchili, M. Bhuiyan, R. Jalasutram, C. Chen, and

R. Linderman.“Neuromorphic algorithms on clusters of playstation 3s,Proc.

Int. Neural Networks Joint Conf., IJCNN, pp. 1–8, 2010.

[30] K. MacLeod and G. Laurent. “Distinct mechanisms for synchronization

and temporal patterning of odor-encoding neural assemblies”, Science, vol.

274, issue 5289, pp. 976–979, Nov 1996.

[31] D. Desmaisons, J. D. Vincent, and P. M. Lledo. “Control of action

potential timing by intrinsic subthreshold oscillations in olfactory bulb output

neurons”J Neuroscience, vol. 19, issue 24, pp. 10727–10737, Dec 1999.

[32] W.M. Kistler, J.L.V. Hemmen, and C.I. De Zeeuw.“Time window

control: a model for cerebellar function based on synchronization,

reverberation, and time slicing”,Progress in Brain Research, vol. 124, pp. 275–

297, 2000.

[33] L.F. Abbott and C.V. Vreeswijk.“Asynchronous states in networks of

pulse-coupled oscillators”,Physical Review E, vol. 48, issue 2, pp. 1483–1490,

Aug 1993.

58

[34] D. Hansel, G. Mato, and C. Meunier. “Synchrony in excitatory neural

networks”,NeuralComputation, vol. 7, issue 2, pp. 307–337, Mar 1995.

[35] M.V. Tsodyks and T. Sejnowski.“Rapid state switching in balanced

cortical network models”,Network: Computation in Neural Systems, vo. 6,

issue 2, pp. 111–124, Oct 1995.

[36] N. Brunel and V. Hakim.“Fast global oscillations in networks of

integrate-and-fire neurons with low firing rates”,Neural Computation, vol. 11,

issue 7, pp. 1621–1671, Oct 1999.

[37] N. Brunel. “Dynamics of sparsely connected networks of excitatory and

inhibitory spiking neurons”,JComputational Neuroscience, vol. 8, issue 3, pp.

183–208, Jun 2000.

[38] A. Burkitt. “A review of the integrate-and-fire neuron model: II.

inhomogeneous synaptic input and network properties”, Biological

Cybernetics, vol. 95, issue 2, pp. 97–112, Jul 2006.

[39] X. J. Wang and G. Buzsáki.“Gamma oscillation by synaptic inhibition

in a hippocampal interneuronal network model”,J. Neuroscience, vol. 16, issue

20, pp. 6402–6413, Oct 1996.

[40] D. Hansel and G. Mato. “Asynchronous states and the emergence of

synchrony in large networks of interacting excitatory and inhibitory

neurons”,NeuralComputation, vol. 15, issue 1, pp. 1–56, Jan 2003.

59

[41] W. Gerstner. “Time structure of the activity in neural network

models”Physical Review E, vol. 51, issue 1, pp. 738–758, Jan 1995.

[42] R.D. Traub, D. Contreras, M.O. Cunningham, H. Murray, F.E.N.

LeBeau, A. Roopun, A. Bibbig, W.B. Wilent, M.J. Higley, and M.A.

Whittington. “Single-column thalamocortical network model exhibiting

gamma oscillations, sleep spindles, and epileptogenic

bursts”,J.Neurophysiology, vol. 93, issue 4, pp. 2194–2232, Apr 2005.

[43] M. Tsodyks, A. Uziel, and H. Markram.“Synchrony generation in

recurrent networks with frequency-dependent synapses”,J. ofNeuroscience,

vol. 20, RC50, pp 1-5, Jan 2000.

[44] P. Kudela, P.J. Franaszczuk, and G.K. Bergey.“Changing excitation and

inhibition in simulated neural networks: effects on induced bursting

behaviour”,Biological Cybernetic, vol. 88, issue 4, pp. 276–285, Apr 2003.

[45] V. Volman, I. Baruchi, and E. Ben-Jacob.“Manifestation of function-

follow-form in cultured neuronal networks”,Physical Biology, vol.2, issue 2,

pp. 98–110, Jun 2005.

[46] T.J. Fountain. Parallel Computing: Principles and Practice. Cambridge

University Press, 2006.

[47] L. Chai, Q. Gao, and D.K. Panda. “Understanding the impact of multi-

core architecture in cluster computing: A case study with intel dual-core

60

system.”Proc. Seventh IEEE Int. Symp.Cluster Computing and the Grid

CCGRID 2007, pp. 471–478, 2007.

[48] M.J. Quinn. Parallel Programming in C with MPI and OpenMP.

McGraw-Hill Inc, 2004.

[49] J. Wensch and B. Sommeijer.“Parallel simulation of axon growth in the

nervous system”,Parallel Computing, vol. 30, issue 2, pp. 163–186, 2004.

[50] S. Pang, L. Chen, Y. Yin, A. Duan, J. Zhou, and L. Hu.“A parallel

numerical study of transient heat transfer and fluid flow of weld pool during

laser keyhole welding”, Advanced Materials Research, vol. 97-101, pp. 3001-

3004, Mar 2010.

[51] D. Gao and T.E. Schwartzentruber. “Optimizations and openmp

implementation for the direct simulation monte carlo method”,Computers and

Fluids, vol. 42, issue 1, pp. 73–81, Nov 2011.

[52] H. Jang, A. Park, and K. Jung.“Neural network implementation using

cuda and openmp”,Proc.2008.Digital Image Computing: Techniques and

Applications, DICTA, pp. 155–161, 2008.

[53] G. Svenk. Object-oriented programming: using C++ for engineering

and technology. Cengage Learning, 2003.

61

[54] H. Chen, B. Yuan, D. A. Baxter, and J. H. Byrne.“Parallel computation

in computer simulation for neural networks”,Proc. IEEE Region 10
th

 Conf.

Computers, Communications Control and Power Engineering, TENCON ’02,

volume 1, pp. 641–644, 2002.

[55] J.M. Bower and D. Beeman.“Constructing realistic neural simulations

with genesis”,Methods in molecular biology, vol. 401, pp. 103–125, 2007.

[56] L.N. Long and A. Gupta.“Scalable massively parallel artificial neural

networks”,J. of Aerospace Computing, Information and Communication, vol.

5, issue 1, pp. 3–15, Jan 2008.

[57] W.H. Tseng, S.Y. Lu, and H. Mei.“On the development of a brain

simulator”,Lecture Notes in Computer Science,LNAI(PART 2), pp.258–267,

2010.

[58] D.G. Zill. A First Course in Differential Equations: With Modeling

Applications. Cengage Learning, 2008.

[59] L.R Petzold, U.M. Ascher. Computer methods for ordinary differential

equations and differential-algebraic equations.SIAM, 1998.

[60] R.Q.Quiroga, Z. Nadasdy, and Y. Ben-Shaul.“Unsupervised spike

detection and sorting with wavelets and superparamagnetic clustering”,Neural

Computation, vol. 16, issue 8, pp. 1661–1687, Aug 2004.

62

[61] S. Gibson, J.W. Judy, and D. Markovic.“Comparison of spike-sorting

algorithms for future hardware implementation”Proc. 30th Annual Int. Conf. of

the IEEE Engineering in Medicine and Biology Society, EMBS 2008, pp. 5015–

5020, 2008.

63

APPENDIX A. EQUATIONS:

Equation used in simulation of inhibitory and excitatory neurons:

1 Integrate and Fire Model

[

]
2 External noise generation:

Average Part

3 External noise generation:

Fluctuating Part
 √

4 Internal input current ∑

∑

Equation used for simulation of spontaneous activity:

1 Neuron model for

Simulation of

Spontaneous activity

 ()

 (̃ ̃)

 Synaptic Input ̃

 ̃

 ∑

 Synaptic Input ̃

 ̃

 ∑

 AHP current

 ∑

 AHP current

 ∑

 Equation specifying

weight of synapse

 [
 ⁄

 ⁄
]

 Probability of

connection from

excitatory postsynaptic

neuron

 Probability of

connection from

inhibitory postsynaptic

neuron

64

Equation used for testing of simulation algorithm:

1 Basic IF

model

driven by

constant

current

2 Analytical

solution

of Basic

IF model

3 Quadratic

IF Model

driven by

constant

current

4 Analytical

Solution

of

Quadratic

IF Model

 (
 (

 √

* √

 (√

 (
 √

**

)

65

APPENDIX B:

Example code showing usage of model

#include <iostream>

#include <iomanip>

#include <fstream>

#include <vector>

#include <ctime>

#include <cmath>

#include <cstring>

#include <sstream>

#include <deque>

using namespace std;

using namespace std::tr1;

class LinIF{

 private:

 double v_thres;

 public:

 double v;

 double ge;

 double gi;

 double ref;

 double Er;

 double tau;

 LinIF(double e):

 v(e),

 ge(0),

 gi(0),

 ref(0),

 Er(-65),

 tau(20),

 v_thres(-55){}

 ~LinIF(){}

 double operator()(double y, double t){

 return (1/tau) * (-(y-Er) + 15);

 }

 bool update(){

 if (v >= v_thres){

66

 v = -65;

 return true;

 }

 else

 return false;

 }

};

class QIF{

 public:

 double v;

 double ge;

 double gi;

 double ref;

 double Er;

 double tau;

 double v_thres;

 QIF(double e):

 v(e),

 ge(0),

 gi(0),

 ref(0),

 Er(-65),

 tau(20),

 v_thres(0){}

 ~QIF(){}

 double operator()(double y, double t){

 return (1/tau) * (0.2*(y-Er)*(y-(-55)) + 10) ;

 }

 bool update(){

 if (v >= v_thres){

 v = -65;

 return true;

 }

 else

 return false;

 }

};

template<typename function>double runge_kutta_4th(function equation,

double initial, double t, double dt){

 double k1 = equation(initial, t);

 double k2 = equation(initial + 0.5 * k1 * dt, t + 0.5 *dt);

 double k3 = equation(initial + 0.5 * k2 * dt, t + 0.5 *dt);

 double k4 = equation(initial + k3 * dt, t + dt);

 return initial + (k1 + 2*k2 + 2*k3 + k4)/6 * dt;

}

67

template<typename function>double euler(function equation, double initial,

double t, double dt){

 return initial + equation(initial, t) * dt;

}

int main()

{

 LinIF testRK(-65);

 LinIF testEU(-65);

 QIF testQRK(-65);

 QIF testQEU(-65);

 ofstream out_RK("outRK.csv");

 ofstream out_EU("outEU.csv");

 ofstream out_QRK("outQRK.csv");

 ofstream out_QEU("outQEU.csv");

 out_RK << testRK.v << endl;

 out_EU << testEU.v << endl;

 out_QRK << testQRK.v << endl;

 out_QEU << testQEU.v << endl;

 for (int i = 0; i < 500; i++){

 testRK.v = runge_kutta_4th(testRK, testRK.v, 1, 0.1);

 testRK.update();

 testEU.v = euler(testEU, testEU.v, 1, 0.1);

 testEU.update();

 out_RK << testRK.v << endl;

 out_EU << testEU.v << endl;

 testQRK.v = runge_kutta_4th(testQRK, testQRK.v, 1, 0.1);

 testQRK.update();

 testQEU.v = euler(testQEU, testQEU.v, 1, 0.1);

 testQEU.update();

 out_QRK << testQRK.v << endl;

 out_QEU << testQEU.v << endl;

 }

return 0;

}

68

Neuron with AHP Implementation

#include <iostream>

#include <iomanip>

#include <fstream>

#include <vector>

#include <ctime>

#include <cmath>

#include <cstring>

#include <sstream>

#include <deque>

using namespace std;

using namespace std::tr1;

class gSynIn{

 public:

 double g;

 double spk;

 private:

 double t_syn;

 double Ai;

 public:

 gSynIn():

 g(0),

 spk(0),

 t_syn(3),

 Ai(0.17)

 {}

 ~gSynIn(){}

 double operator()(double y, double t){

 return (1/ t_syn) * (-y + (spk * Ai)) ;

 }

 void reset(){

 spk = 0;

 }

};

class gSynEx{

 public:

 double g;

 double spk;

69

 private:

 double t_syn;

 double Ai;

 public:

 gSynEx():

 g(0),

 spk(0),

 t_syn(3),

 Ai(0.25)

 {}

 ~gSynEx(){}

 double operator()(double y, double t){

 return (1/ t_syn) * (-y + (spk * Ai)) ;

 }

 void reset(){

 spk = 0;

 }

};

class neuron_membrane_dynamics{

 public:

 double gkca;

 double gk;

 double Ia;

 double Ia_mean;

 double v;

 double gi;

 double ge;

 double Ei;

 double Ee;

 double E_syn;

 double c;

 double v_rest;

 double v_thres;

 double E_pot;

 double v_apex;

 double v_repol;

 public:

 neuron_membrane_dynamics(double Ia_m):

 gkca(0),

 gk(0),

 ge(0),

 gi(0),

 Ia_mean(Ia_m),

 Ia(0),

 Ei(-80),

70

 Ee(0),

 E_syn(-60),

 c(10),

 v_rest(-65),

 v_thres(-50),

 E_pot(-80),

 v_apex(20),

 v_repol(-80)

 {

 v = v_rest;

 Ia = Ia_mean;

 }

 ~neuron_membrane_dynamics(){}

 double operator()(double y, double t){

 return (1/c) * ((y - v_rest)*(y - v_thres)/(v_thres -

v_rest)+(-gi*(y-Ei))+(-ge*(y-Ee)));

 }

 bool update(){

 if (v >= v_apex){

 v = v_repol;

 return true;

 }

 else

 return false;

 }

};

template<typename function>double runge_kutta_4th(function equation,

double initial, double t, double dt){

 double k1 = equation(initial, t);

 double k2 = equation(initial + 0.5 * k1 * dt, t + 0.5 *dt);

 double k3 = equation(initial + 0.5 * k2 * dt, t + 0.5 *dt);

 double k4 = equation(initial + k3 * dt, t + dt);

 return initial + (k1 + 2*k2 + 2*k3 + k4)/6 * dt;

}

template<typename function>double euler(function equation, double initial,

double t, double dt){

 return initial + equation(initial, t) * dt;

}

int main()

{

 gSynIn tempI;

 gSynEx tempE;

 neuron_membrane_dynamics testMembrane(0);

 ofstream out_M("outM.csv");

 out_M << testMembrane.v << endl;

71

 for (int i = 0; i < 100; i++){

 tempI.g = runge_kutta_4th(tempI, tempI.g, 1, 1);

 tempI.spk = 0;

 tempE.g = runge_kutta_4th(tempE, tempE.g, 1, 1);

 tempE.spk = 0;

 testMembrane.gi = tempI.g;

 testMembrane.ge = tempE.g;

 testMembrane.v = runge_kutta_4th(testMembrane,

testMembrane.v, 1, 1);

 testMembrane.update();

 out_M << testMembrane.v << endl;

 if(i == 2){

 tempI.spk = 1;

 }

 //if(i == 2){

 // tempE.spk = 1;

 //}

 } return 0;

}

72

Network of neurons solve numerically and analytical with OpenMP

implementation

#include <iostream>

#include <iomanip>

#include <fstream>

#include <vector>

#include <ctime>

#include <cmath>

#include <cstring>

#include <sstream>

#include <random>

#include <deque>

#include <complex>

#include <omp.h>

using namespace std;

using namespace std::tr1;

class QIF{

 public:

 double v;

 double Er;

 double tau;

 double v_thres;

 double I;

 QIF(double e):

 v(e),

 Er(-65),

 tau(20),

 v_thres(-20){}

 ~QIF(){}

 double operator()(double y, double t){

 return (1/tau) * (0.1*(y-Er)*(y-(-55)) + I) ;

 }

 bool update(){

 if (v >= v_thres){

 v = -65;

 return true;

 }

 else

 return false;

73

 }

};

class QIfAnSol{

 private:

 double v_thres;

 public:

 double v;

 double Er;

 double tau;

 double I;

 double prev_t;

 double cur_t;

 QIfAnSol(double e):

 v(e),

 Er(-65),

 tau(20),

 prev_t(0),

 v_thres(-20){}

 ~QIfAnSol(){}

 double operator()(double y, double t){

 complex<double> a(0.1,0), b(0.1*(55+65),0), c((-55*-

65*0.1) + I), z0, z1, ans, pans1, pans2, pans3, pans4, pans5;

 complex<double> f4(4,0);

 complex<double> f2(2,0);

 complex<double> ft(t,0);

 complex<double> f1(1,0);

 complex<double> ftau(20,0);

 complex<double> ftest(-5,0);

 z0 = sqrt(f4*a*c-b*b);

 z1 = f2*a*v+b;

 pans1 = ((z0*z0)*tan(z0/(f2*ftau) * ft) + z0 *z1);

 pans2 = (z0-tan(z0/(f2*ftau) * ft)*z1);

 pans3 = (f1/(f2*a));

 pans4 = tan(ftest);

 pans5 = z0/(f2*ftau) * ft;

 ans = pans3 * (pans1/ pans2 - b);

 return ans.real();

 }

 bool update(){

 if (v >= v_thres){

 v = -65;

 //prev_t = cur_t;

 return true;

 }

 else

74

 return false;

 }

};

template<typename function>double runge_kutta_4th(function equation,

double initial, double t, double dt){

 double k1 = equation(initial, t);

 double k2 = equation(initial + 0.5 * k1 * dt, t + 0.5 *dt);

 double k3 = equation(initial + 0.5 * k2 * dt, t + 0.5 *dt);

 double k4 = equation(initial + k3 * dt, t + dt);

 return initial + (k1 + 2*k2 + 2*k3 + k4)/6 * dt;

}

template<typename function>double euler(function equation, double initial,

double t, double dt){

 return initial + equation(initial, t) * dt;

}

class Timing {

 public:

 Timing(){

 startt=time(NULL);

 endt=time(NULL);

 }

 ~Timing(){}

 void tic(){

 startt=time(NULL);

 }

 void toc(){

 endt=time(NULL);

 }

 time_t diff(){

 return endt-startt;

 }

 private:

 time_t startt, endt;

};

int main()

{

 Timing timing;

 vector<QIF> EuLif;

 vector<QIF> RkLif;

 vector<QIfAnSol> AnLif;

 vector<vector<bool>> netCon;

 int number = 5000;

 bernoulli_distribution rCon(0.2);

 ofstream out_E("spikeE.csv");

 ofstream out_R("spikeR.csv");

 ofstream out_A("spikeA.csv");

 ofstream out_vE("vE.csv");

 ofstream out_vR("vR.csv");

 ofstream out_vA("vA.csv");

75

 ranlux4_01 dseed(float(time(0)));

 cout<< "initializing\n";

 for(int i = 0; i<number; i++){

 vector<bool> temp;

 QIF temp1(-65);

 QIfAnSol temp2(-65);

 for(int j = 0; j<number; j++){

 temp.push_back(rCon(dseed));

 }

 netCon.push_back(temp);

 EuLif.push_back(temp1);

 RkLif.push_back(temp1);

 AnLif.push_back(temp2);

 }

 cout<< "Simulation\n";

 poisson_distribution<int, double>extIn(10);

 int s_time = 0;

 timing.tic();

 out_E << "0" << endl;

 out_R << "0" << endl;

 out_A << "0" << endl;

 out_vE <<EuLif[0].v << endl;

 out_vR <<RkLif[0].v << endl;

 out_vA <<AnLif[0].v << endl;

 double dt = 0.1;

 for(int i = 1; i<=20000; i++){

 for(int j = 0; j<number; j++){

 double extI = extIn(dseed) * 2;

 AnLif[j].I += extI;

 EuLif[j].I += extI;

 RkLif[j].I += extI;

 }

 int spikeE = 0;

 int spikeR = 0;

 int spikeA = 0;

 #pragma omp parallel for schedule(guided, 1000)

 for(int j = 0; j<number; j++){

 //RkLif[j].I = 20;

 AnLif[j].v = AnLif[j](AnLif[j].v, dt);

 AnLif[j].I = 0;

 EuLif[j].v = euler(EuLif[j],EuLif[j].v, dt, dt);

 EuLif[j].I = 0;

 RkLif[j].v = runge_kutta_4th(RkLif[j],RkLif[j].v, dt, dt);

 RkLif[j].I = 0;

 }

 for(int j = 0; j<number; j++){

 if(EuLif[j].update()){

 spikeE += 1;

 for(int k = 0; k < number; k++){

76

 if(netCon[j][k] && EuLif[k].v <= -55)

 EuLif[k].I += -1;

 }

 }

 if(RkLif[j].update()){

 spikeR += 1;

 for(int k = 0; k < number; k++){

 if(netCon[j][k] && RkLif[k].v <= -55)

 RkLif[k].I += -1;

 }

 }

 if(AnLif[j].update()){

 spikeA += 1;

 for(int k = 0; k < number; k++){

 if(netCon[j][k] && AnLif[k].v <= -55)

 AnLif[k].I += -1;

 }

 }

 }

 out_R << spikeR << endl;

 out_vR <<RkLif[0].v << endl;

 out_E << spikeE << endl;

 out_A << spikeA << endl;

 out_vE <<EuLif[0].v << endl;

 out_vA <<AnLif[0].v << endl;

 timing.toc();

 if (timing.diff() > 0){

 s_time++;

 timing.tic();

 cout<< setw(10) << i*dt << "ms\t" << setw(10) <<

s_time << "s" << endl;

 }

 }

 system("pause");

return 0;

}

77

Simulation of Spontaneous activity

#include "stdafx.h"

using namespace std;

using namespace std::tr1;

class neuron_internal_dynamics{

 public:

 double tau;

 double wi;

 double del;

 double z;

 neuron_internal_dynamics(double tau, double del):

 tau(tau),

 wi(0),

 del(del),

 z(0){}

 ~neuron_internal_dynamics(){}

 double operator()(double y, double t){

 return -(y/tau) + del * wi;

 }

};

class neuron_membrane_dynamics{

 public:

 double gkca;

 double gk;

 double Ia;

 double Ie;

 double I;

 double v;

 private:

 double t_cell;

 double v_rest;

 double v_thres;

 double E_pot;

 double v_apex;

 double v_repol;

 public:

 neuron_membrane_dynamics(double Ia):

 gkca(0),

78

 gk(0),

 Ie(0),

 I(0),

 t_cell(10),

 v_rest(-65),

 v_thres(-50),

 E_pot(-80),

 v_apex(20),

 v_repol(-80),

 Ia(Ia)

 {

 v = v_rest;

 }

 ~neuron_membrane_dynamics(){}

 double operator()(double y, double t){

 return (1/t_cell) * ((v - v_rest)*(v-v_thres)/(v_thres -

v_rest) + Ia - (gk + gkca) * (v - E_pot) - (v * I - Ie));

 }

 bool update(){

 if (v >= v_apex){

 v = v_repol;

 return true;

 }

 else

 return false;

 }

};

template<typename function>double runge_kutta_4th(function equation,

double initial, double t, double dt){

 double k1 = equation(initial, t);

 double k2 = equation(initial + 0.5 * k1 * dt, t + 0.5 *dt);

 double k3 = equation(initial + 0.5 * k2 * dt, t + 0.5 *dt);

 double k4 = equation(initial + k3 * dt, t + dt);

 return initial + (k1 + 2*k2 + 2*k3 + k4)/6 * dt;

}

int main()

{

 vector<neuron_membrane_dynamics> membrane_dynamics;

 vector< vector<neuron_internal_dynamics>> internal_dynamics;

 vector< vector<double>> wij;

 bool check;

 clock_t c_start, c_end;

 clock_t c_itv_start, c_itv_end;

 time_t t_curr;

 double t_taken, t_total = 0;

79

 double applied_current;

 double t_sim;

 int net_size;

 double net_fraction;

 double net_in;

 double net_ex;

 double net_mean;

 double net_bias_in;

 double net_bias_ex;

 double net_probInIn;

 double net_probInEx;

 double net_probExIn;

 double net_probExEx;

 double V_pspIn = -1.5;

 double V_pspEx = 1;

 double V_preIn = -80;

 double V_preEx = 0;

 double *V_pspj, *V_prei;

 double progress;

 int t_sim_end;

 char *dir_curr;

 char dir_name[80];

 double temp;

 ofstream out_para("parameters.csv");

 //cout << left <<setw(40) << "Input Network Size" << ": ";

 //cin >> net_size;

 //cout << left <<setw(40) << "Input Mean Conenction" << ": ";

 //cin >> net_mean;

 //cout << left <<setw(40) << "Input Inhibitory Fraction" << ": ";

 //cin >> net_fraction;

 //cout << left <<setw(40) << "Input Network Bias(in)" << ": ";

 //cin >> net_bias_in;

 //cout << left <<setw(40) << "Input Network Bias(ex)" << ": ";

 //cin >> net_bias_ex;

 cout<< left << setw(40) << "Input Applied Current (mV)" << ": ";

 cin>> applied_current;

 //cout << left <<setw(40) << "Input Simulation End Time (s)" << ": ";

 //cin >> t_sim;

 net_size = 10000;

 net_mean = 2000;

 net_fraction = 0.2;

 net_bias_in = 1.2;

 net_bias_ex = 0.8;

 t_sim = 7;

 out_para << "Network Size," << net_size << endl;

 out_para << "Network mean," << net_mean << endl;

 out_para << "Inhibitory Fraction," << net_fraction << endl;

80

 out_para << "Network Bias(in)," << net_bias_in << endl;

 out_para << "Applied Current," << applied_current << endl;

 out_para << "Network Bias(ex)," << net_bias_ex << endl;

 out_para << "Simulation End Time," << t_sim << endl;

 cout<< left << setw(40) << "Initiaizing" << endl;

 t_curr = time(0);

 cout<< setw(40) << "Initiaizing Started On" << ": " << ctime(&t_curr);

 c_start = clock();

 double temp1[4] = {30,2000,3,3}; // tau

 double temp2[4] = {1,0.2,0.1,0.1}; // del

 ranlux4_01 dseed(time(0));

 uniform_real<double> r_real(0, applied_current);

 net_in = net_fraction * net_size;

 net_ex = net_size - net_in;

 net_probInIn = (net_mean * net_bias_in) / (net_ex + net_in *

net_bias_in);

 net_probInEx = (net_mean * net_bias_ex) / (net_ex + net_in *

net_bias_ex);

 net_probExIn = net_mean / (net_ex + net_in * net_bias_in);

 net_probExEx = net_mean / (net_ex + net_in * net_bias_ex);

 cout<< net_probInIn << " " << net_probInEx << " " << net_probExIn

<< " " << net_probExEx << endl;

 bernoulli_distribution r_bInIn(net_probInIn);

 bernoulli_distribution r_bInEx(net_probInEx);

 bernoulli_distribution r_bExIn(net_probExIn);

 bernoulli_distribution r_bExEx(net_probExEx);

 bernoulli_distribution *r_ptr;

 V_pspj = &V_pspIn;

 V_prei = &V_preIn;

 c_itv_start = clock();

 for (int i = 0; i<net_size; i++){

 neuron_membrane_dynamics nmd_temp(r_real(dseed));

 membrane_dynamics.push_back(nmd_temp);

 vector<neuron_internal_dynamics> nid_vtemp;

 for(int j = 0; j<4; j++){

 neuron_internal_dynamics nid_temp(temp1[j],

temp2[j]);

 nid_vtemp.push_back(nid_temp);

 }

 internal_dynamics.push_back(nid_vtemp);

 vector<double> temp_wij;

 if (i == net_in){

 V_pspj = & V_pspEx;

 V_prei = &V_preEx;

 }

 for(int j = 0; j<net_size; j++){

 if (i < net_in && j < net_in)

 r_ptr = &r_bInIn;

 else if (i < net_in)

81

 r_ptr = &r_bExIn;

 else if (i >= net_in && j < net_in)

 r_ptr = &r_bInEx;

 else if (i >= net_in)

 r_ptr = &r_bExEx;

 if (r_ptr->operator()(dseed) == 1 && j != i)

 temp_wij.push_back(*V_pspj / (*V_prei + 65) *

55.84311504);

 else

 temp_wij.push_back(0);

 }

 wij.push_back(temp_wij);

 }

 cout<< left << setw(40) << "Initiaizing Ended On" << ": " <<

ctime(&t_curr);

 cout<< left << setw(40) << "Starting Simulation" << endl;

 t_curr = time(0);

 cout<<setw(40) << "Simulation Started On" << ": " << ctime(&t_curr);

 c_start = clock();

 ofstream out_spikes("spikes.dat");

 ofstream out_in1("in1.dat");

 ofstream out_ex1("ex1.dat"); vector<string> out_data;

 for(int j = 0; j< net_size; j++)

 out_data.push_back("");

 double dt = 0.1;

 t_sim_end = (int) (t_sim * 1000/dt);

 c_itv_start = clock();

 progress = 1;

 for (int i = 0; i < t_sim_end; i++){

 V_prei = &V_preIn;

 int spikes_total = 0;

 #pragma omp parallel for

 for(int j = 0; j< net_size; j++){

 for(int k = 0; k< 4; k++){

 internal_dynamics[j][k].z =

runge_kutta_4th(internal_dynamics[j][k], internal_dynamics[j][k].z, 0, dt);

 internal_dynamics[j][k].wi = 0;

 }

 membrane_dynamics[j].gk =

internal_dynamics[j][0].z;

 membrane_dynamics[j].gkca=

internal_dynamics[j][1].z;

 membrane_dynamics[j].I =

internal_dynamics[j][2].z;

 membrane_dynamics[j].Ie =

internal_dynamics[j][3].z;

 membrane_dynamics[j].v =

runge_kutta_4th(membrane_dynamics[j], membrane_dynamics[j].v, 0, dt);

 }

82

 #pragma omp parallel for shared(internal_dynamics,

spikes_total)

 for(int j = 0; j< net_size; j++){

 if (j == net_in)

 V_prei = &V_preEx;

 if(membrane_dynamics[j].update()){

 internal_dynamics[j][0].wi += 1;

 internal_dynamics[j][1].wi += 1;

 spikes_total++;

 for(int k = 0; k < net_size; k++){

 if (wij[j][k] != 0){

 internal_dynamics[k][2].wi +=

wij[j][k];

 internal_dynamics[k][3].wi +=

wij[j][k] * *V_prei;

 }

 }

 }

 }

 out_in1 << i << "," << membrane_dynamics[net_in].v << endl;

 out_ex1 << i << "," << membrane_dynamics[net_in + 1].v <<

endl;

 out_spikes << i << "," <<spikes_total << endl;

 if (((double) (i +1)) / ((double) t_sim_end) * 100 >=

progress){

 cout<< left << setw(18) << "Percentage" << ": " ;

 cout<< right << setw(18) << progress << "%" << endl;

 progress += 1;

 }

 }

 t_curr = time(0);

 cout<< left <<setw(40) << "Simulation Ended On" << ": " <<

ctime(&t_curr);

 c_end = clock();

 t_taken = difftime(c_end, c_start) / 1000000;

 t_total += t_taken;

 cout<< left << setw(40) << "Time Taken" << ": " << t_taken << "s" <<

endl;

 return 0;

}

83

Simulation of Spontaneous activity and ultr- slow oscillation

#include<iostream>

#include<cmath>

#include<fstream>

#include<vector>

#include<time.h>

#include<omp.h>

#include<tr1/random>

#include<iomanip>

#include<string>

 #include <sstream>

 #include <typeinfo>

 #include <stdexcept>

using namespace std;

using namespace std::tr1;

#define pi 3.14159265

class fluctuation{

 public:

 double tau;

 double wi;

 double z;

 double del;

 double ini;

 fluctuation(double tau):

 tau(tau),

 wi(0),

 z(0){}

 ~fluctuation(){}

 double operator()(double y, double t){

 return -((y-ini)/tau) - wi;

 }

};

class neuron_internal_dynamics{

 public:

 double tau;

 double wi;

 double del;

 double z;

 bool waste;

84

 neuron_internal_dynamics(double tau, double del):

 tau(tau),

 wi(0),

 del(del),

 z(0),

 waste(false){}

 ~neuron_internal_dynamics(){}

 double operator()(double y, double t){

 return -(y/tau) + del * wi;

 }

};

class neuron_membrane_dynamics{

 public:

 double gkca;

 double gk;

 double Ia;

 double Ie;

 double I;

 double v;

 double I_back;

 double wT;

 private:

 double t_cell;

 double v_rest;

 double v_thres;

 double E_pot;

 double v_apex;

 double v_repol;

 public:

 neuron_membrane_dynamics(double Ia):

 gkca(0),

 gk(0),

 Ie(0),

 I(0),

 t_cell(10),

 v_rest(-65),

 v_thres(-50),

 E_pot(-80),

 v_apex(20),

 v_repol(-80),

 Ia(Ia)

 {

 I_back = Ia;

85

 v = v_rest;

 }

 ~neuron_membrane_dynamics(){}

 double operator()(double y, double t){

 return (1/t_cell) * ((v - v_rest)*(v-v_thres)/(v_thres -

v_rest) + Ia - (gk + gkca) * (v - E_pot) - (v * I - Ie));

 }

 bool update(){

 if (v >= v_apex){

 v = v_repol;

 return true;

 }

 else

 return false;

 }

};

template<typename function>double runge_kutta_4th(function equation,

double initial, double t, double dt){

 double k1 = equation(initial, t);

 double k2 = equation(initial + 0.5 * k1 * dt, t + 0.5 *dt);

 double k3 = equation(initial + 0.5 * k2 * dt, t + 0.5 *dt);

 double k4 = equation(initial + k3 * dt, t + dt);

 return initial + (k1 + 2*k2 + 2*k3 + k4)/6 * dt;

}

int main()

{

 vector<neuron_membrane_dynamics> membrane_dynamics;

 vector<neuron_internal_dynamics> waste;

 neuron_internal_dynamics waste1(3*10000, 1);

 neuron_internal_dynamics waste2(1000, 1);

 waste.push_back(waste1);

 waste.push_back(waste2);

 vector< vector<neuron_internal_dynamics>> internal_dynamics;

 vector< vector<double>> wij;

 vector< double > fluc;

 bool check;

 clock_t c_start, c_end;

 clock_t c_itv_start, c_itv_end;

 time_t t_curr;

 double t_taken, t_total = 0;

 double applied_current;

 double t_sim;

 int net_size;

 double net_fraction;

86

 double net_in;

 double net_ex;

 double net_mean;

 double net_bias_in;

 double net_bias_ex;

 double net_probInIn;

 double net_probInEx;

 double net_probExIn;

 double net_probExEx;

 double mean1, mean2;

 //double fluc;

 double V_pspIn = -1.5;

 double V_pspEx = 1;

 double V_preIn = -80;

 double V_preEx = 0;

 double *V_pspj, *V_prei;

 double progress;

 int t_sim_end;

 char *dir_curr;

 char dir_name[80];

 double temp;

 double w_thres1,w_thres2;

 vector<double> w_thres;

 ofstream out_para("parameters.txt");

 net_size = 10000;

 net_mean = 2000;

 net_fraction = 0.2;

 net_bias_in = 0.8;

 net_bias_ex = 1.2;

 t_sim = 1000;

 cout<< left << setw(40) << "Input Network Size" << ": " << net_size

<< "\n";

 cout<< left << setw(40) << "Input Mean Conenction" << ": "<<

net_mean <<"\n";

 cout<< left << setw(40) << "Input Inhibitory Fraction" << ": "<<

net_fraction <<"\n";

 cout<< left << setw(40) << "Input Network Bias(in)" << ": "<<

net_bias_in <<"\n";

 cout<< left << setw(40) << "Input Network Bias(ex)" << ": "<<

net_bias_ex <<"\n";

 cout<< left << setw(40) << "Input Simulation End Time (s)" << ": " <<

t_sim <<"\n";

 double por;

 //cout << left <<setw(40) << "Current Flunctuation Peak2Peak" << ": ";

 //cin >> fluc;

 cout<< left << setw(40) << "Ia" << ": ";

87

 cin>> mean1;

 cout<< left << setw(40) << "W Thres 1" << ": ";

 cin>> w_thres1;

 cout<< left << setw(40) << "W Thres 2" << ": ";

 cin>> w_thres2;

 cout<< left << setw(40) << "Proportion" << ": ";

 cin>> por;

 w_thres.push_back(w_thres1);

 w_thres.push_back(w_thres2);

 out_para << "Network Size," << net_size << endl;

 out_para << "Network mean," << net_mean << endl;

 out_para << "Inhibitory Fraction," << net_fraction << endl;

 out_para << "Network Bias(in)," << net_bias_in << endl;

 out_para << "Applied Current," << mean1 << endl;

 out_para << "w_thres1," << w_thres1 << endl;

 out_para << "w_thres2," << w_thres2 << endl;

 out_para << "Por," << por << endl;

 out_para << "Network Bias(ex)," << net_bias_ex << endl;

 out_para << "Simulation End Time," << t_sim << endl;

 cout<< left << setw(40) << "Initiaizing" << endl;

 t_curr = time(0);

 cout<< setw(40) << "Initiaizing Started On" << ": " << ctime(&t_curr);

 c_start = clock();

 double temp1[4] = {30,3000,3,3}; // tau

 double temp2[4] = {1,0.2,0.1,0.1}; // del

 ranlux4_01 dseed(time(0));

 net_in = net_fraction * net_size;

 net_ex = net_size - net_in;

 net_probInIn = (net_mean * net_bias_in) / (net_ex + net_in *

net_bias_in);

 net_probInEx = (net_mean * net_bias_ex) / (net_ex + net_in *

net_bias_ex);

 net_probExIn = net_mean / (net_ex + net_in * net_bias_in);

 net_probExEx = net_mean / (net_ex + net_in * net_bias_ex);

 cout<< net_probInIn << " " << net_probInEx << " " << net_probExIn

<< " " << net_probExEx << endl;

 bernoulli_distribution r_bInIn(net_probInIn);

 bernoulli_distribution r_bInEx(net_probInEx);

 bernoulli_distribution r_bExIn(net_probExIn);

 bernoulli_distribution r_bExEx(net_probExEx);

 bernoulli_distribution *r_ptr;

 bernoulli_distribution SubNetwork(por);

88

 uniform_real<double> r_real1(0, mean1);

 uniform_real<double> r_real2(0, mean2);

 uniform_real<double> *u_ptr;

 V_pspj = &V_pspIn;

 V_prei = &V_preIn;

 c_itv_start = clock();

 for (int i = 0; i<net_size; i++){

 u_ptr = &r_real1;

 neuron_membrane_dynamics nmd_temp(u_ptr-

>operator()(dseed));

 if(SubNetwork(dseed))

 nmd_temp.wT = 0;

 else

 nmd_temp.wT = 1;

 membrane_dynamics.push_back(nmd_temp);

 fluc.push_back(nmd_temp.Ia);

 vector<neuron_internal_dynamics> nid_vtemp;

 for(int j = 0; j<4; j++){

 neuron_internal_dynamics nid_temp(temp1[j],

temp2[j]);

 nid_vtemp.push_back(nid_temp);

 }

 internal_dynamics.push_back(nid_vtemp);

 vector<double> temp_wij;

 if (i == net_in){

 V_pspj = & V_pspEx;

 V_prei = &V_preEx;

 }

 for(int j = 0; j<net_size; j++){

 if (i < net_in && j < net_in)

 r_ptr = &r_bInIn;

 else if (i < net_in)

 r_ptr = &r_bExIn;

 else if (i >= net_in && j < net_in)

 r_ptr = &r_bInEx;

 else if (i >= net_in)

 r_ptr = &r_bExEx;

 if (r_ptr->operator()(dseed) == 1 && j != i)

 temp_wij.push_back(*V_pspj / (*V_prei + 65) *

55.84311504);

 else

89

 temp_wij.push_back(0);

 }

 wij.push_back(temp_wij);

 }

 cout<< left << setw(40) << "Initiaizing Ended On" << ": " <<

ctime(&t_curr);

 cout<< left << setw(40) << "Starting Simulation" << endl;

 t_curr = time(0);

 cout<<setw(40) << "Simulation Started On" << ": " << ctime(&t_curr);

 c_start = clock();

 ofstream out_spikes("spikes.dat");

 ofstream out_in1("in1.dat");

 ofstream out_ex1("ex1.dat");

 ofstream out_fluc1("fluc1.dat");

 ofstream out_fluc2("fluc2.dat");

 ofstream out_w1("w1.dat");

 ofstream out_w2("w2.dat");

 vector<string> out_data;

 for(int j = 0; j< net_size; j++)

 out_data.push_back("");

 double dt = 0.1;

 t_sim_end = (unsigned long) (t_sim * 1000 / dt);

 c_itv_start = clock();

 progress = 0;

 int fluc_index = 0;

 for (unsigned long i = 0; i < t_sim_end; i++){

 double t = double(i) * dt;

 V_prei = &V_preIn;

 int spikes_total = 0;

 for(int j = 0; j<2; j++){

 waste[j].z = runge_kutta_4th(waste[j],waste[j].z ,t,dt);

 waste[j].wi = 0;

 if(waste[j].waste){

 if(waste[j].z < 0.1)

 waste[j].waste = false;

 }

 if(waste[j].z >w_thres[j])

 waste[j].waste = true;

 }

 #pragma omp parallel for

 for(int j = 0; j< net_size; j++){

 if(waste[membrane_dynamics[j].wT].waste){

 for(int k = 0; k< 4; k++){

 internal_dynamics[j][k].z = 0;

 internal_dynamics[j][k].wi = 0;

 }

 membrane_dynamics[j].Ia = 0;

 membrane_dynamics[j].gk = 0;

90

 membrane_dynamics[j].gkca = 0;

 membrane_dynamics[j].I = 0;

 membrane_dynamics[j].Ie = 0;

 }

 else{

 for(int k = 0; k< 4; k++){

 internal_dynamics[j][k].z =

runge_kutta_4th(internal_dynamics[j][k], internal_dynamics[j][k].z, t, dt);

 internal_dynamics[j][k].wi = 0;

 }

 membrane_dynamics[j].Ia = fluc[j];

 membrane_dynamics[j].gk =

internal_dynamics[j][0].z;

 membrane_dynamics[j].gkca =

internal_dynamics[j][1].z;

 membrane_dynamics[j].I =

internal_dynamics[j][2].z;

 membrane_dynamics[j].Ie =

internal_dynamics[j][3].z;

 }

 membrane_dynamics[j].v =

runge_kutta_4th(membrane_dynamics[j], membrane_dynamics[j].v, t, dt);

 }

 #pragma omp parallel for

 for(int j = 0; j< net_size; j++){

 if (j == net_in)

 V_prei = &V_preEx;

 if(membrane_dynamics[j].update()){

 internal_dynamics[j][0].wi = 1;

 internal_dynamics[j][1].wi = 1;

 //cout << j << "\t" << waste[j].z << endl;

 waste[membrane_dynamics[j].wT].wi += 0.001

* 7;

 spikes_total++;

 for(int k = 0; k < net_size; k++){

 internal_dynamics[k][2].wi += wij[j][k];

 internal_dynamics[k][3].wi += wij[j][k] *

*V_prei;

 }

 }

 }

 out_spikes << i << " " <<spikes_total << endl;

 out_w1 << i << " " <<waste[0].z << endl;

 out_w2 << i << " " <<waste[1].z << endl;

 if (((double) (i +1)) / ((double) t_sim_end) * 100 >=

progress){

 cout<< left << setw(18) << "Percentage" << ": " ;

 cout<< right << setw(18) << progress << "%" << endl;

 progress += 0.01;

 }

91

 }

 t_curr = time(0);

 cout<< left <<setw(40) << "Simulation Ended On" << ": " <<

ctime(&t_curr);

 c_end = clock();

 t_taken = difftime(c_end, c_start) / 1000000;

 t_total += t_taken;

 cout<< left << setw(40) << "Time Taken" << ": " << t_taken << "s" <<

endl;

 return 0;

}

