

INVERSE PROBLEM IN IMAGE PROCESSING:

IMAGE RESTORATION

WONG YEN KHAI

UNIVERSITI TUNKU ABDUL RAHMAN

INVERSE PROBLEM IN IMAGE PROCESSING:

IMAGE PROCESSING

WONG YEN KHAI

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Electrical and Electronic

Engineering with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2023

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature :

Name : Wong Yen Khai

ID No. : 1801880

Date : 12/5/2023

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “INVERSE PROBLEM IN IMAGE

PROCESSING: IMAGE RESTORATION” was prepared by WONG YEN

KHAI has met the required standard for submission in partial fulfilment of the

requirements for the award of Bachelor of Electrical and Electronic Engineering

with Honours at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

Signature :

Co-Supervisor :

Date :

Chua Sing Yee

15 May 2023

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2023, Wong Yen Khai. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion

of this project. I would like to take this opportunity to express my sincere

appreciation to everyone who contributed to the successful completion of this

project. I am especially grateful to my research supervisor, Dr. Chua Sing Yee,

for her invaluable guidance, advice, and patience throughout the research

process. Her expert feedback and constructive criticism were instrumental in

shaping the direction and scope of this project, and her unwavering support and

encouragement helped me stay motivated during the challenging times.

In addition, I would also like to express my gratitude to my parents and

friends who have been a constant source of support and encouragement

throughout this journey. Their belief in my abilities and their unwavering

support have been a great source of strength and inspiration for me, and I am

deeply grateful for their contributions to this project.

v

ABSTRACT

Conventional image restoration methods often require careful feature selection

and fine-tuning, which can be a complicated process and not always possible.

On the other hand, Deep-learning (DL) models rely heavily on the datasets

availability and neural network architecture, which can lead to reduced

performance if the network is poorly designed. Recently, Deep Image Prior

(DIP), a learning-free approach to image restoration has emerged as an

alternative. However, DIP requires a pre-defined early stopping, which can limit

its practical applications. Hence, this project aims to improve image restoration

through DIP and address the limitation mentioned. This research proposes the

use of Metric-based Early Stopping (MB-ES) with the DIP model for image

denoising and super-resolution tasks. The proposed MB-ES algorithm utilizes

intermediate restored images to identify the optimal stopping point using PSNR

and SSIM metrics, thus eliminating the need for pre-defined early stopping. The

results show that MB-ES requires fewer iterations to obtain a better-quality

image and has lower design complexity as compared to the existing Early

Stopping using Exponential Moving Variance (ES-EMV). The proposed MB-

ES algorithm with DIP is then evaluated on both image denoising and super-

resolution tasks, and compared with classical and deep learning-based methods.

The results show that the proposed MB-ES algorithm achieves remarkable

performance in detecting the stopping point that closely resembles the ground

truth. In general, the proposed MB-ES on DIP outperforms classical methods

and shows comparable performance with recent deep-learning-based models. It

is worth noting that DIP does not require heavy training on massive datasets to

achieve the performance that DL models possess. The findings of this research

are hoped to benefit practical applications especially when dataset is not

available and computational resource is limited for DL.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xvi

LIST OF APPENDICES xix

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 1

1.3 Problem Statement 2

1.4 Aim and Objectives 3

1.5 Scope and Limitation of the Study 3

1.6 Contribution of the Study 4

1.7 Outline of the Report 4

2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Basic Types of Images 6

2.2.1 Binary Images 7

2.2.2 Grayscale Images 7

2.2.3 Colour Images 8

2.3 Image Degradation Models 8

2.3.1 Blur Models 8

2.3.2 Noise Models 10

2.4 Classical Image Restoration Methods 13

vii

2.4.1 Linear Filter 13

2.4.2 Non-linear Filter 16

2.4.3 Non-blind Deconvolution for Image

Restoration 20

2.4.4 Blind Deconvolution Image Restoration 24

2.4.5 Investigation of Classical Image Restoration

Methods 26

2.4.6 Summary 30

2.5 Deep Learning (DL) Approaches to Image

Restoration 30

2.5.1 Image Deblurring 30

2.5.2 Image Denoising 35

2.5.3 Super-Resolution 38

2.5.4 Investigation of Deep Learning Approaches

to Image Restoration 41

2.5.5 Summary 44

2.6 Deep Image Prior (DIP) Approaches to Image

Restoration 44

2.6.1 Overview 44

2.6.2 Investigation of Deep Image Prior to Image

Restoration 46

2.6.3 Summary 49

2.7 Overall Summary 49

3 METHODOLOGY AND WORK PLAN 50

3.1 Introduction 50

3.2 Work Plan 50

3.3 Implementation 53

3.4 Performance Metrics 54

3.5 Test Image Preparation 57

3.5.1 Denoising 57

3.5.2 Super-resolution 59

3.6 DIP Model 60

3.7 Early Stopping Detection Method 61

3.8 Proposed Method 61

viii

3.8.1 Denoising 63

3.8.2 Super-Resolution 71

4 RESULTS AND DISCUSSION 75

4.1 Introduction 75

4.2 Investigation of Fine-tuning Parameter Values for

the Proposed MB-ES 75

4.2.1 Denoising-MB-ES Algorithm 76

4.2.2 Super-Resolution-MB-ES Algorithm 76

4.3 Comparison of the Proposed MB-ES (PSNR) and

ES-EMV (Variance) 79

4.4 Comparison of the Proposed Denoising-MB-ES

and Other Denoising Models 82

4.5 Comparison of the Proposed Super-Resolution-

MB-ES and Other Super-Resolution Models 86

5 CONCLUSIONS AND RECOMMENDATIONS 92

5.1 Conclusions 92

5.2 Recommendations for future work 93

REFERENCES 94

APPENDICES 98

ix

LIST OF TABLES

Table 2.1: Evaluation Metrics on Restoration Outputs (Source:

Navaneethakrishnan, 2014). Best score is underlined. 25

Table 2.2: Performance Comparison on Cameraman Image Using

Classical Methods. 27

Table 2.3: Performance Comparison on Cameraman Image Using

Deconvolution Methods. 29

Table 2.4: Comparison of Image Deblurring Methods. 34

Table 2.5: Result of PSNR Performance between FFDNet with

Different Models on BSD68 Datasets (Source: Zhang et

al., 2018; Isogawa et al., 2018). 36

Table 2.6: Comparison of Image Denoising Methods. 37

Table 2.7: Comparison of Super-resolution Methods. 40

Table 2.8: Performance Comparison on CSet9 Datasets for

Deblurring Results Using DL Approaches. 41

Table 2.9: Performance Comparison on CSet9 Datasets for

Denoising Results Using DL Approaches. 43

Table 2.10: Performance Comparison on CSet9 Datasets for Super-

Resolution Results Using DL Approaches. 44

Table 2.11: Performance Comparison on CSet9 Datasets for

Denoising Results Using DIP Model. 46

Table 2.12: Performance Comparison on CSet9 Datasets for Super-

Resolution Results using DIP Model. 47

Table 2.13: Performance Comparison on CSet9 Datasets for

Impainting Results using DIP Model. 49

Table 3.1: Specifications of Local Platform and Google Colab in the

Project. 54

Table 3.2: Evaluation Metrics of Image Quality. 55

Table 3.3: Parameters for Different Types of Noise. 58

Table 3.4: Metrics Equation for Plotting Curves. 64

x

Table 3.5: The Proposed Denoising-MB-ES Algorithm Based on

PSNR and SSIM Methods on Lena Image. 69

Table 3.6: Comparison of PSNR and SSIM Deviations for the

Proposed Denoising-MB-ES Using PSNR and SSIM

Method. 71

Table 4.1: Comparison of PSNR and SSIM Deviations Between the

Proposed MB-ES and ES-EMV. 81

Table 4.2: Comparison of the Proposed MB-ES and ES-EMV. 82

xi

LIST OF FIGURES

Figure 2.1: Overview of Images Types and Image Degradation

Models. 5

Figure 2.2: Overview of Image Restoration Methods. 6

Figure 2.3: Sample of Image Models. 7

Figure 2.4: Sample of Blurring Models. 9

Figure 2.5: Sample of Different Types of Noise Models. 11

Figure 2.6: Graphical Representation of PDF for Gaussian Noise

(Source: Kanrar and Maji, 2022). 12

Figure 2.7: Graphical Representation of PDF for Speckle Noise

(Source: Kanrar and Maji, 2022). 13

Figure 2.8: Denoising Outputs Using Linear Filters. 14

Figure 2.9: Convolution Process of Average Filter. 14

Figure 2.10: Convolution Process of Gaussian Filter. 15

Figure 2.11: Denoising Outputs Using Minimum and Maximum Filters.

 16

Figure 2.12: Calculation of Median Value with 3 × 3 Kernel. 17

Figure 2.13: Denoising Output Using Median Filter to Remove Salt-

and-Pepper Noise. 17

Figure 2.14: Comparison between the Performance of Conservative

Filter and Median Filter due to Different Salt-and-Pepper

Noise Levels. 19

Figure 2.15: Removal of Gaussian Noise with Bilateral Filter. 20

Figure 2.16: Blurring of an Image with a Given Random PSF. 21

Figure 2.17: Example of Output Using Lucy-Richardson

Deconvolution for (a) Blurred Image, and (b) Noisy

Blurred Image. 22

Figure 2.18: Example of Output from Wiener Filter Deconvolution. 23

Figure 2.19: Example of Output from Regularized Filtering

Deconvolution. 24

xii

Figure 2.20: Salt-and-Pepper Denoising Results on Cameraman Image

Using Classical Methods. 26

Figure 2.21: Gaussian Denoising Results on Cameraman Image Using

Classical Methods. 27

Figure 2.22: Restoration Results on Blurred Cameraman Image Using

Deconvolution Methods. 28

Figure 2.23: Restoration Results on Blurred and Noisy Cameraman

Image Using Deconvolution Methods. 29

Figure 2.24: Multi-Scale Network. 31

Figure 2.25: Sample of Deblurring Results of DL Approaches on CSet9

Datasets. 41

Figure 2.26: Sample of Denoising Results of DL Approaches on CSet9

Datasets. 42

Figure 2.27: Sample of Super-Resolution Results of DL Approaches on

CSet9 Datasets. 43

Figure 2.28: Overview of Deep Image Prior Model Network (Source:

Ulyanov et al., 2018). 45

Figure 2.29: Sample of Denoising Results of DIP Model on CSet9

Datasets. 46

Figure 2.30: Sample of Super-Resolution Results of DIP Model on

CSet9 Datasets. 47

Figure 2.31: Sample of Impainting Results of DIP Model on CSet9

Datasets. 48

Figure 3.1: General Process Flow. 51

Figure 3.2: FYP1 Gantt Chart. 52

Figure 3.3: FYP2 Gantt Chart. 53

Figure 3.4: Examples of Clean and Noisy Images with Different

Types of Noise and Intensity Level: Gaussian, Speckle,

and Shot Noises. Note: The performance metrics was

measured in the form of (PSNR, SSIM, RMSE). 59

Figure 3.5: Examples of Downsampled Images with Different Scaling

Factors for Super-Resolution. Note: SF refer to Scaling

Factor. 59

xiii

Figure 3.6: Relationship Between MSE, PSNR, and Variance During

Image Denoising. 63

Figure 3.7: Relationship Between MSE_GT, PSNR_GT, and

PSNR_INT during Image Denoising. Note: MSE_GT

refer to mean squared error metric between restored

images and ground truth. 64

Figure 3.8: Flowchart of the Denoising-MB-ES Algorithm for Early

Stopping Detection. Note: The “similarity” could be

PSNR or SSIM metrics. The size of the window used to

compute the slope of the records is determined by

multiplying "wait_count" value with the

"window_size_multiplier". For instance, if the

window_size_multiplier" is set to 100, the window size

will be increased for 100 for every "wait_count" steps (e.g.,

100, 200, 300, etc.). 66

Figure 3.9: Analysis of PSNR Deviation in the Proposed Denoising-

MB-ES Algorithm with PSNR and SSIM Methods on

CSet9 Images. Refer to Table A-1 for more details. 70

Figure 3.10: Analysis of SSIM Deviation in the Proposed Denoising-

MB-ES Algorithm with PSNR and SSIM Methods on

CSet9 Images. Refer to Table A-1 for more details. 70

Figure 3.11: Relationship Between PSNR_GT and PSNR_INT During

Super-Resolution. 72

Figure 3.12: Relationship Between SSIM_GT and SSIM_INT During

Super-Resolution. 72

Figure 3.13: Flowchart of the Proposed Super-Resolution-MB-ES

Algorithm for Early Stopping Detection. Note: The

“similarity” is SSIM metric for super-resolution. 74

Figure 4.1: Relationship Between Window Size Multiplier and

PSNR/SSIM Deviations and Average Number of

Iterations. 76

Figure 4.2: Relationship Between Slope Threshold Parameter and

PSNR/SSIM Deviations and Average Number of

Iterations (with Patience = 1000, Window = 1000). 77

Figure 4.3: Relationship Between Patience Parameter and

PSNR/SSIM Deviations and Average Number of

Iterations (with Slope Threshold = 2 × 10-6, Window =

1000). 78

xiv

Figure 4.4: Relationship Between Window Parameter and

PSNR/SSIM Deviations and Average Number of

Iterations (with Slope Threshold = 2 × 10-6, Patience =

700). 78

Figure 4.5: Relationship Between Slope Threshold Parameter and

PSNR/SSIM Deviations and Average Number of

Iterations (with Patience = 700, Window = 1000). 79

Figure 4.6: Comparison of PSNR Deviation Between the Proposed

MB-ES with ES-EMV for the Denoising on CSet9 Images.

Refer to Table A-2 for more details. 80

Figure 4.7: Comparison of SSIM Deviation Between the Proposed

MB-ES with ES-EMV for the Denoising on CSet9 Images.

Refer to Table A-2 for more details. 81

Figure 4.8: Comparison of Low-level Speckle Denoising Results on

F16 image for DD*, SGLD* and DIP*: Analysis of

PSNR_INT against (a) PSNR_GT and (b) SSIM_GT.

Note: The superscript “*” indicates the MB-ES was

applied to the model. Further details can be found in Table

A-3. 83

Figure 4.9: Comparison of High-level Speckle Denoising Results on

F16 image for DD*, SGLD* and DIP*: Analysis of

PSNR_INT Against (a) PSNR_GT and (b) SSIM_GT.

Note: The superscript “*” indicates the MB-ES was

applied to the model. Further details can be found in Table

A-3. 84

Figure 4.10: Denoising Results of DD*, SGLD* and DIP* on Low- and

High-Level Speckle Noises Images: F16, Peppers and

kodim03. Note: The superscript “*” indicates the MB-ES

was applied to the model. The performance metrics was

measured in the form of (PSNR, SSIM, RMSE). 86

Figure 4.11: Comparison of PSNR for Super-Resolution Models on

CSet9 Dataset with Scaling Factors 2, 3, and 4. Note: The

superscript “*” indicates the MB-ES was applied to the

model. Please refer to Table A-4 for further details. 87

Figure 4.12: Comparison of SSIM for Super-Resolution Models on

CSet9 Dataset with Scaling Factors 2, 3, and 4. Note: The

superscript “*” indicates the MB-ES was applied to the

model. Please refer to Table A-4 for further details. 87

Figure 4.13: Super-Resolution Results of Bicubic, SRCNN, ESPCN

and DIP* on Different Scaling Factors of House Image.

Note: The superscript “*” indicates the MB-ES was

xv

applied to the model. The performance metrics was

measured in the form of (PSNR, SSIM, RMSE). 89

Figure 4.14: Super-Resolution Results of Bicubic, SRCNN, ESPCN

and DIP* on Different Scaling Factors of Lena Image.

Note: The superscript “*” indicates the MB-ES was

applied to the model. The performance metrics was

measured in the form of (PSNR, SSIM, RMSE). 90

Figure 4.15: Super-Resolution Results of Bicubic, SRCNN, ESPCN

and DIP* on Different Scaling Factors of Baboon Image.

Note: The superscript “*” indicates the MB-ES was

applied to the model. The performance metrics was

measured in the form of (PSNR, SSIM, RMSE). 91

xvi

LIST OF SYMBOLS / ABBREVIATIONS

𝐵𝑆 Bits per Sample

𝐺𝜃 Generator Function

𝐻𝑖,𝑗 Height of the Feature Map

𝐼𝐵 Blurred Image

𝐼𝑆 Smooth Image

𝐿𝑎𝑑𝑣 Local and Global Discriminator Losses

𝐿𝑝 MSE Loss

𝐿𝑥 Perceptual Loss

𝑀𝐵 Performance Metric Score based on Best Recovered Image

with respect to Ground Truth

𝑀𝐷 Performance Metric Score based on Detected Recovered

Image with respect to Ground Truth

𝑅𝑑𝑦𝑛𝑎𝑚𝑖𝑐 Pixel-Value Dynamic Range

𝑊𝑖,𝑗 Width of the Feature Map

𝑑𝑗 Observed Value at Position-𝑖

𝑓𝑊 Function of Wiener Filter

𝑚𝑓 Mean of Function

𝑝𝑖𝑗 PSF from the True Location of Position-𝑗 Relative to the

Observation Position-𝑖

𝑢𝑗 Latent Image at Position-𝑗

𝑥𝑝 Image Pixels

𝜎2 Variance of Specific Window or Blur

𝜎𝑁 Standard Deviation for Noise

𝐴 Noisy Image

𝐵 Original Image

𝐵′ Estimated Image

𝐿 Length of Blur

𝑀𝐴𝑋𝐼 Highest Possible Signal Intensity

𝑁 Noise Signal

𝑃 Specific Probability

xvii

𝑅(⋅) Regularizer that encourages the Restored Image to be Smooth

𝑊 Window Size

𝑎 Specific Intensity Value

𝑏 Specific Intensity Value

𝑐 Normalization Constant

𝑓 Function of Image

𝑔 Gray Level

𝑖 Iteration

𝑟 Radius of Blur

𝑥 Restored Image

𝑦 Degraded Image

𝑧 Ground Truth

𝒜 Degradation Operator

𝛼 Threshold Value

𝛽 Momentum Decay Rate

𝜃 Angle of Blur

𝜆 Regularization Parameter

𝜇 Average of Specific Window

𝜎 Covariance of Specific Window

𝜙 Feature Map

AWGN Additive White Gaussian Noise

BM3D Block-Matching and Three-Dimensional Filtering

BN Batch Normalization

CMY Cyan-Magenta-Yellow

CNN Convolutional Neural Network

COC Circle of Confusion

CPU Central Processing Unit

CT Computed Tomography

CUDA Compute Unified Device Architecture

DIP Deep Image Prior

DL Deep Learning

DRCN Deep-Recursive Convolutional Network

xviii

DWT Discrete Wavelet Transform

ES-EMV Early Stopping using Exponential Moving Variance

ESPCN Efficient Sub-Pixel Convolutional Neural Network

FDDNet Fast and Flexible Denoising CNN

FHT Fast Hartley Transform

FPN Feature Pyramid Network

GAN Generative Adversarial Network

GPU Graphic Processing Unit

GT Ground Truth

HR High-Resolution

LR Low-Resolution

L-Rate Learning Rate

L-Rich Lucy-Richardson

MAE Mean Absolute Error

MB-ES Metric-based Early Stopping

OS Operating System

P Patience Number

PDF Point Density Function

PSF Point Spread Function

PSNR Peak-Signal-to-Noise Ratio

RAM Random-Access Memory

ReLU Rectified Linear Unit

RGB Red-Green-Blue

RMSE Root Mean Square Error

RMSE Root Mean Square Error

SAR Synthetic Aperture Radar

SF Scaling Factor

SGD Stochastic Gradient Descent

SISR Single Image Super-Resolution

SP Stopping Point

SRCNN Super-Resolution Convolutional Neural Network

SSIM Structural Similarity Index

VDSR Very Deep Super-Resolution

ZSSR Zero-Shot Super-Resolution

xix

LIST OF APPENDICES

Appendix A: Additional Tables 98

Appendix B: Additional Figures 103

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Image restoration can be treated as an inverse problem in image processing to

recover a high-quality image from a corrupted image. Image restoration is

unavoidable as the images are often degraded during the data acquisition process.

Image degradation may result in blurring, information loss due to sampling,

quantization effects, and numerous types of noise. As its name implies, image

restoration attempts to reconstruct an image from its deteriorated original data.

It has a wide range of applications, including astronomical imaging, remote

sensing, medical imaging, microscope imaging, photographic deblurring and

others (Khare et al., 2011).

Digital image processing is superior to analogue image processing,

where it offers a greater variety of algorithms that can be applied to the image

data, thereby mitigate issues like noise and distortion. There are numerous

approaches to image restoration, the two most common of which are filter-based

and deep learning-based. Nevertheless, each approach comes with its strengths

as well as drawbacks. In order to achieve a higher level of performance, the

architecture design for both approaches have been made extremely complicated

by integrating a variety of sub-modules. (Mahony et al., 2019). Although the

performance has improved, the cost has also increased accordingly. More

recently, a novel method known as a deep image prior with the use of

handcrafted image priors has emerged (Ulyanov et al., 2018). This approach

does not involve any learning and still delivers outstanding performance.

1.2 Importance of the Study

Image quality can be improved from either hardware or software perspective.

Although upgrading of hardware specification is a possible option to get higher

quality images, it also comes with additional cost. Moreover, there are

unavoidable hardware limitations in practise such as sensor imperfection, sensor

noises or even faulty sensor. In addition, there are external factors that must be

2

taken into consideration such as underwater distortion, low light environment,

and motion blur.

Recently, many researchers have focused on the development from the

software perspective such as super-resolution, image deblurring, and image

denoising. They can mitigate the effects caused by the aforementioned factors

without overhead hardware cost and especially crucial when various factors are

considered.

Hence, this study focuses on improving image restoration without

incurring any upgrades and additional expenses on hardware. In general, image

restoration is one of the most important steps in image pre-processing. It is

critical to enhance the image data by reducing artifacts or enhancing features

that will be useful for further analysis and post-processing (Great Learning

Team, 2020). Besides, this study is hoped to benefit applications that require

accurate data for model training to gain better performance.

1.3 Problem Statement

Problem statements for the current study of image restoration are summarized

as follows:

(i) In real life, the image acquired will be always degraded due to

the limitation and flaws in the imaging and capturing process.

For example, image degradation due to non-linear and space-

variant factors such as random noise signals, underwater

photography, camera misfocus, low-light environment and

others (Boyat and Joshi, 2015; Lu et al., 2017; Jiang, 2006).

(ii) Conventional image restoration methods require a careful

selection of relevant features from each individual image before

it can be applied to the specific image restoration process. This

becomes more complicated when greater number of features are

involved. In addition, the researcher must work with numerous

variables in order to fine-tune each feature definition (Mahony

et al., 2019). Therefore, developing a high-quality image

restoration model will be a long and cumbersome process.

(iii) Deep learning (DL) has become popular in various applications

involving image processing and analysis. However, DL models

3

rely heavily on the provided training datasets and neural

network architecture. The performance could be significantly

downgraded if the architecture of the neural network is poorly

designed. Besides that, training a DL model can also take a

considerable amount of time as it depends on the processing

speed of the hardware resources (Mahony et al., 2019). Hence,

the architecture structure of the neural network is required to be

properly designed to enhance training speed while retaining

performance.

(iv) Deep image prior (DIP), a learning-free approach to image

restoration that proposes using an untrained convolutional

neural network with random initialization, has recently

proposed. This method takes in a corrupted image and uses a

prior derived from the network’s parameters, iteratively

produces a restored image as the output (Ulyanov et al., 2018).

However, this approach requires fine-tuning of

hyperparameters and stopping criteria for various image

restoration tasks to obtain the desired results.

1.4 Aim and Objectives

This project aims to improve image quality through image restoration

techniques. The detailed objectives of this project are listed as follows:

(i) To provide a comprehensive study on image restoration, in

terms of tasks and techniques involved.

(ii) To investigate the underlying issues of image restoration tasks

using DIP.

(iii) To propose a suitable image restoration method solution in DIP

to address the issue identified.

1.5 Scope and Limitation of the Study

This project focuses on the study of image restoration tasks and the methods.

State-of-the-art techniques for image restoration are reviewed. In addition, this

study further investigates the feasibility of the image restoration approaches and

evaluates their application to various types of degradation models.

4

Within the scope of this project, the performance for image restoration

method is evaluated based on selected datasets, which might differ from the

original resources. The investigation covers limited datasets and test images but

in numbers that are adequate for the study. Besides that, the project only

considers some of the noise models that are commonly encountered in real

world, given the large variety of noise types that exist.

1.6 Contribution of the Study

This study focuses on the use of DIP in image restoration, which is a relatively

new approach compared to classical and deep learning techniques. One of the

main benefits of DIP is that it does not require large datasets for machine

learning. However, DIP does have its limitations, particularly in fine-tuning

parameters. The most critical parameter is early stopping to obtain the best

quality image at a specific iteration during the process. This study aims to

contribute to the research on DIP by highlighting its benefits and limitations. To

address the effectiveness in determining the best image during the DIP

restoration process, Metric-based Early Stopping (MB-ES) has been proposed

in this study. It is hoped to benefit other researchers who are working with the

DIP approach in image restoration.

1.7 Outline of the Report

This report comprises five chapters. Chapter 1 provides an overview of the study,

including its importance, problem statement, aim and objectives, scope and

limitations, and contributions. Chapter 2 presents a literature review of the

related works. Chapter 3 explains the methodology, work plan, and the proposed

early stopping detection method to improve the image restoration performance

using DIP model. Chapter 4 discusses the results and the comparison with other

models. Lastly, Chapter 5 concludes the study and provides recommendations

for future work.

5

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

In general, the images we see in the real world are continuous signals. Therefore,

the analogue information of the visuals is sampled digitally to record and store

the image efficiently. An image is a collection of pixel arrays arranged in

columns and rows. For instance, a colour image with dimensions of 3 × 320 ×

640 will have a total of 614 400 pixels. These pixels represent the signal

intensity for each point inside the image. The higher the pixel intensity, the

brighter the colour will be observed at that particular location, and vice versa.

This section first provides background on digital images and the degradation of

image quality due to the wide variety of phenomena. To understand the presence

of artifacts in images, blur and noise models are reviewed, as illustrated in

Figure 2.1. Accordingly, some image restoration methods are explored and

discussed, as outlined in Figure 2.2.

Figure 2.1: Overview of Images Types and Image Degradation Models.

6

Figure 2.2: Overview of Image Restoration Methods.

2.2 Basic Types of Images

There are basically three types of images which are binary, grayscale, and colour

images as shown in Figure 2.3. The following subsections provide further

details.

7

Figure 2.3: Sample of Image Models.

2.2.1 Binary Images

Binary images are images that have been reduced to only two-pixel values

which are 0 and 255, representing black and white, respectively. They are

widely utilised in applications where the silhouette of an object contains all the

necessary information, such as text interpretation and object orientation

identification. This binary form of data is essential because the output of edge

detection in digital image processing might hold a binary form. Typically, a

grayscale image can be thresholded to create binary images using Equation (2.1),

 𝑓(𝑥, 𝑦) = {
255 for 𝑔 > 𝛼

0 for 𝑔 ≤ 𝛼
} (2.1)

where

𝑓(𝑥, 𝑦) is the function of image

𝑔 = gray level

𝛼 = threshold value

2.2.2 Grayscale Images

In general, grayscale images are stored using 8-bit integers, which gives rise to

a total of 256 possible different shades of grey. The range of grey shades varies

between pure black (0) to pure white (255). Grayscale is commonly used

nowadays due to its simple algorithm and lower computational demands. In

contrast, colour images require a more complex representation of pixel arrays,

which increases the amount of training data and processing speed needed.

Binary Grayscale Colour

8

2.2.3 Colour Images

Colour images are usually composed of three bands of monochrome arrays each

representing a different colour. For example, the red-green-blue (RGB) colour

scheme resembles how the retina’s receptors perceive colour. RGB model

utilizes additive colour mixing and is the fundamental colour model that is used

in web graphics, television, computers and others. For printing and filters

purposes, the cyan-magenta-yellow (CMY) colour scheme is used instead of

RGB. The function of RGB models can be expressed in Equation (2.2),

 𝑓(𝑥, 𝑦) = [

𝑟(𝑥, 𝑦)

𝑏(𝑥, 𝑦)

𝑔(𝑥. 𝑦)
] (2.2)

where

𝑟(𝑥, 𝑦) = red channel

𝑏(𝑥, 𝑦) = blue channel

𝑔(𝑥, 𝑦) = green channel

2.3 Image Degradation Models

2.3.1 Blur Models

A blurring image is obtained after the localized averaging of pixels, that leads

to a loss in image sharpness. Common culprits for this blurring effect include

lens defocus, changes in the refractive indices of photographic images, or

relative motion between the camera and the object being captured. Typically,

blurring is modelled by convolving an image with a point spread function (PSF),

which is a kernel of a specific size containing data for the convolution process.

PSFs are categorized as either spatially invariant or spatially variable. In the

former case, the PSF remains the same for all image pixels, while in the latter,

the PSF varies for different image pixels. Figure 2.4 illustrates some blurring

models including motion blur, out-of-focus blur, and environmental blur.

9

Figure 2.4: Sample of Blurring Models.

2.3.1.1 Motion Blur

Motion blur is a result of the relative movement between an object and an image

acquisition device. The movement path must be predicted in order to restore a

motion-blurred image. For example, the PSF can be a blur kernel that resembles

the movement of the camera during the image capture. The blur is spatially

invariant if the camera is moved with respect to the stationary scene. Hence, the

PSF for motion blur can be modelled using Equation (2.3) (Kitchener, 2012),

 𝑃𝑆𝐹(𝑥, 𝑦; 𝐿, 𝜃) = {

1

𝐿
, if √𝑥2 + 𝑦2 ≤

𝐿

2
for

𝑥

𝑦
= tan 𝜃

 0 , elsewhere

} (2.3)

where

𝐿 = length of blur

𝜃 = angle of blur

2.3.1.2 Out-of-focus Blur

Typically, the out-of-focus blur appears in the form of a circular disc which is

also known as a circle of confusion (COC). The COC diameter depends on

factors such as the aperture number, focal length, and the distance between the

lens and the object being captured. The lens acts as a low pass filter that

eliminates high-frequency spectrum when the image acquisition device is out-

of-focus. The PSF for out-of-focus blur is modelled using Equation (2.4)

(Kitchener, 2012),

Motion Blur Out-of-Focus Blur Environmental Blur

10

 𝑃𝑆𝐹(𝑥, 𝑦; 𝑟) = {
1

𝜋𝑟2
, if √𝑥2 + 𝑦2 ≤ 𝑟2

0, elsewhere
} (2.4)

where

𝑟 = radius of blur

2.3.1.3 Environmental Blur

Natural phenomena such as the bending and scattering of light through materials

with different refractive indices can lead to a degradation of image quality. For

instance, the underwater images are distorted due to wavelength absorption

which reduces the colour intensity. On top of that, there is a strong correlation

between the probability of wavelength absorption and the salinity of the water.

The PSF of environmental blur can be derived from Gaussian distribution, as

shown in Equation (2.5) (Kitchener, 2012),

 𝑃𝑆𝐹(𝑥, 𝑦; 𝜎ℎ
2) = 𝑐 exp (−

𝑥2 + 𝑦2

2𝜎ℎ
2) (2.5)

where

𝜎ℎ
2 = variance of blur

𝑐 = normalization constant

2.3.2 Noise Models

Image noise can be defined as random fluctuation in pixel intensity that

degrades the original image by adding irrelevant and meaningless content in

terms of colour or brightness information. The extent of this degradation

depends primarily on the frequency distribution of the noise source. Figure 2.5

shows the common noises which are Gaussian, Impulsive/Salt-and-Pepper,

Shot/Poisson, and Speckle noises. The model of a noisy image can be expressed

in Equation (2.6),

 𝐴 = 𝐵 + 𝑁 (2.6)

11

where

𝐴 = Noisy image

𝐵 = Original image

𝑁 = Noise signal

Figure 2.5: Sample of Different Types of Noise Models.

2.3.2.1 Gaussian Noise

Gaussian noise is a noise that statistically possesses a bell-shaped probability

density function, which is similar to a normal distribution as shown in Figure

2.6. Hence, the noisy image is made up where each pixel is the summation of

the original pixel with a noise value that followed Gaussian distribution. One of

the most common applications is additive white Gaussian noise (AWGN). The

probability density function (PDF) of Gaussian distribution is shown in

Equation (2.7) (Rani et al., 2016),

 𝑃𝐷𝐹𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 =
1

√2𝜋𝜎𝑁

𝑒
−

(𝑔−𝑚𝑓)
2

2𝜎𝑁
2

 (2.7)

where

𝜎𝑁 = standard deviation of noise

𝑔 = grey level measurement

Original Gaussian Salt-and-Pepper

Poisson Speckle

12

𝑚𝑓 = mean of the function

Figure 2.6: Graphical Representation of PDF for Gaussian Noise (Source:

Kanrar and Maji, 2022).

2.3.2.2 Impulsive Noise

Impulse noise, also referred to as salt-and-pepper noise, is characterized by the

presence of white and black pixels that are randomly distributed throughout the

image. On average, the noise affects less than 0.1% of the pixels. Impulse noise

is typically caused by errors in data transfer and can have a very high intensity.

The corrupted pixels are either set to 0 (pepper noise) or 255 (salt noise), while

the rest of the pixels remain unaffected. Impulse noise is commonly found in

faulty memory locations, errors in an analogue-to-digital converter,

malfunctioning camera sensors, and other similar situations. The PDF of sale-

and-pepper noise is expressed in Equation (2.8) (Rani et al., 2016),

 𝑃𝐷𝐹𝑠𝑎𝑙𝑡−𝑎𝑛𝑑−𝑝𝑒𝑝𝑝𝑒𝑟 = {
𝑃𝑠𝑎𝑙𝑡 for 𝑔 = salt

𝑃𝑝𝑒𝑝𝑝𝑒𝑟 for 𝑔 = pepper
} (2.8)

where

𝑃𝑠𝑎𝑙𝑡 = the probability of salt granule

𝑃𝑝𝑒𝑝𝑝𝑒𝑟 = the probability of pepper granule

𝑔 = grey level measurement

2.3.2.3 Shot Noise

Shot noise or Poisson noise which is obtained from electromagnetic sources

such as visible lights, x-rays, gamma rays and others. It is a fundamental type

of uncertainty related to light measurement due to the independence of photon

detections and the quantized nature of light. The fluctuation of photons emitted

13

by these sources results in an image that is spatially and temporally

unpredictable.

2.3.2.4 Speckle Noise

In digital and optical computer vision, speckle noise is one of the fundamental

issues during the image restoration process. Unlike Gaussian and salt-and-

pepper noises, it is multiplicative which can be obtained by multiplying

randomized pixel values with various image pixels. The image quality is

diminished by the granular interference of speckle noise. Such noise mostly

occurs in Synthetic Aperture Radar (SAR), medical images, lasers and others.

The PDF of speckle noise is followed by a gamma distribution (see Figure 2.7)

which is expressed in Equation (2.9) (Kanrar and Maji, 2022),

 𝑃𝐷𝐹𝑆𝑝𝑒𝑐𝑘𝑙𝑒 =
𝑎𝑏𝑔(𝑏−1)

(𝑏 − 1)!
 𝑒−𝑎𝑔 (2.9)

where

𝑎 and 𝑏 = intensity values

𝑔 = grey level measurement

Figure 2.7: Graphical Representation of PDF for Speckle Noise (Source: Kanrar

and Maji, 2022).

2.4 Classical Image Restoration Methods

2.4.1 Linear Filter

Generally, linear filtering can be used to remove noise from an image. There are

particular filters that are suitable for this task, such as the averaging filter and

the Gaussian filter. For instance, an averaging filter can be used to eliminate

14

grain noise in an image. Local fluctuations caused by grain are eliminated by

averaging each pixel’s neighbours. In fact, linear filtering is defined as a process

at which the value of an output pixel is calculated by adding together the values

of all the neighbouring input pixels linearly. This is achieved through

convolution, where each output pixel is computed as a weighted sum of adjacent

input pixels. A kernel or filter matrix is used during the convolution process to

perform the linear operation. One major drawback of the convolution filter is

that it is not effective in dealing with all types of noise. Figure 2.8 shows sample

outputs with different types of linear filters.

Figure 2.8: Denoising Outputs Using Linear Filters.

2.4.1.1 Average Filter

The fundamental mean filter is a simple noise reduction technique that replaces

the value of each pixel in an image with the average value of the pixels around

it, including itself. This can be accomplished using a convolution kernel with

coefficients that all have the same value. The mean filter computes the average

value of the neighbouring pixels for each central pixel in the image, resulting in

noise reduction. Figure 2.9 illustrates a convolution process between a matrix

with a 3 × 3 square kernel matrix.

Figure 2.9: Convolution Process of Average Filter.

Noisy Image Average Filter Gaussian Filter

15

From Figure 2.8, it can be observed that the output image appears

smoother, but the edges of the pixels have been affected. The presence of a

single outlier pixel can significantly alter the average value of its neighbouring

pixels. When the filter’s neighbourhood spans an edge, it interpolates new

values for border pixels, resulting in a substantial softening of the boundary.

This could be problematic if the desired output needs to have sharp edges.

2.4.1.2 Gaussian Filter

Gaussian smoothing is a method of image processing that uses a two-

dimensional (2D) convolution operator to blur the image and get rid of the noise

details. It shares some similarities with the mean filter, but the only difference

is due to the kernel applied, which is an approximation of Gaussian distribution.

During the convolution process, the center of the filter receives the most weight,

while the significance decreases as it moves away from the center. Figure 2.10

demonstrates the convolution process between a matrix with a 3 × 3 Gaussian

kernel.

Figure 2.10: Convolution Process of Gaussian Filter.

The Gaussian filter is able to produce an image with more details as

compared to the uniform weights of an average filter. It is due to the

characteristic of Gaussian distribution, where the average weights more heavily

focused on the values of the central pixels. Hence, given a similar size of the

kernel, the Gaussian filter outperforms the average filter by smoothing the

image more moderately while preserving edges.

16

2.4.2 Non-linear Filter

In the previous section, all of the linear methods listed above yield the same

result: the image’s structure, lines, and edges are blurred. This is because a linear

filter is unable to eliminate noise caused by a single pixel with a high spike

intensity that can significantly impact the weighted average of a kernel. As a

result, it is inevitable to strike a balance between removing noise and preserving

image details. Hence, non-linear filters are developed to rectify this issue by

being able to get rid of any single outlier intensity values, such as the maximum

or minimum filter, conservative filter, median filter, bilateral blurring filter and

others.

2.4.2.1 Maximum Filter and Minimum Filter

The minimum and maximum filters give the minimum and maximum values in

a moving region of the original image. The former replaces the central pixel

with the darkest value among its neighbouring pixels, while the latter replaces

it with the lightest value. Figure 2.11 shows the denoising outputs from both

filters in removing the salt-and-pepper noise, respectively.

Figure 2.11: Denoising Outputs Using Minimum and Maximum Filters.

It can be observed that the edges have been successfully preserved, but

the denoising performance is not optimal as some noise is still present in both

cases.

2.4.2.2 Median Filter

The median filter is a popular image noise reduction technique, similar to the

mean filter, but with the added benefit of preserving more important image

Salt-and-Pepper Noise Minimum Filter Maximum Filter

17

details. Unlike the mean filter, it uses the median value of neighbouring pixels

instead of their average to replace the pixel's original value. This algorithm sorts

the pixel values in numerical order to compute the median value, which is then

used to replace the central pixel. Figure 2.12 demonstrates the calculation of the

median value from a pixel neighbourhood.

Figure 2.12: Calculation of Median Value with 3 × 3 Kernel.

Figure 2.13 depicts the denoising output of a median filter applied to

remove salt-and-pepper noise. It is noticeable that the noise granules have been

effectively removed from the degraded image. This is because the median filter

replaces the central pixel value with the median value of the surrounding pixels,

which preserves the original information. Hence, the impact of salt-and-pepper

noise on the median filter is less significant than on the average value, as the

median is less likely to be skewed by outliers. As a result, the median filter does

not produce artificial pixel values when it spans an edge because the median

value always corresponds to the value of any of the neighbouring pixels.

Therefore, this is the reason the median filter is far superior to the mean filter in

maintaining the sharpness of edges.

Figure 2.13: Denoising Output Using Median Filter to Remove Salt-and-Pepper

Noise.

Salt-and-Pepper Noise Recovered Image

18

Nevertheless, the median filter is difficult to calculate and can be rather

costly since the sorting of values into numerical order is considerably time-

consuming and slow. Hence, a smart algorithm was developed to enhance the

efficiency by taking advantage of the reappearance of the neighbouring pixels

when the window is slide over an image (Zhu and Huang, 2012).

2.4.2.3 Conservative Filter

The conservative filter is an image noise reduction technique that uses a fast and

simple filtering algorithm to preserve high spatial frequency details in an image.

However, it is less effective in removing additive noise, such as Gaussian noise,

as it is favourably towards removing clusters of pixels or noise spikes with

unusually low or high pixel intensity, like salt-and-pepper noise. Typically,

noise is assumed to have a high spatial frequency and can be reduced by making

each pixel's intensity comparable with its neighbouring pixels. Unlike average

and median filtering, conservative smoothing ensures that each pixel’s intensity

is within its neighbours’ range. The overall process of a conservative filter can

be described in the following procedures (Fisher et al., 2003):

(i) Minimum and maximum pixel intensity values are determined

by considering all the surrounding pixels within a windowed

region.

(ii) The central pixel of the image is carried over to the output

image without any modifications if its intensity falls within the

intensity ranges of neighbouring pixels.

(iii) If the intensity of the central pixel is greater than the maximum

value of its surrounding pixels, it will be replaced with the

maximum value, and vice versa.

Figure 2.14 depicts the denoising outputs using conservative filter to

remove salt-and-pepper noise at different levels. Although it does not eliminate

as much noise as the median filter, it is able to preserve more details such as

edge sharpness. However, this method is only suitable for cases with low levels

of salt and pepper noise, as demonstrated in Figure 2.14. It is less effective when

the image is heavily corrupted, with multiple pixels in the neighbourhood being

affected.

19

Figure 2.14: Comparison between the Performance of Conservative Filter and

Median Filter due to Different Salt-and-Pepper Noise Levels.

2.4.2.4 Bilateral Blurring Filter

Blurring images to minimize noise and details has a side effect of losing image

edges. Hence, bilateral blurring is utilized to reduce noise while preserving

edges. The algorithm of bilateral blurring includes two Gaussian distributions.

The first Gaussian function considers only spatial neighbours, while the second

considers neighbouring pixel intensity, ensuring that only related pixels are

included in the blur computation. If nearby pixels within the same

neighbourhood possess similar values, it is reasonable to assume they are both

referring to the same entity. However, if they have different values, it can be

inferred that they are referred to the boundary or edge of an object. Compared

to the aforementioned methods, the main drawback of this filter is its

Conservative Filter Median Filter Noise Level = 0.01

Noise Level = 0.10 Conservative Filter Median Filter

Noise Level = 0.05 Conservative Filter Median Filter

20

considerably slow processing speed. Figure 2.15 shows the result of removing

Gaussian noise with a bilateral filter.

Figure 2.15: Removal of Gaussian Noise with Bilateral Filter.

2.4.3 Non-blind Deconvolution for Image Restoration

This type of image restoration method requires prior knowledge of the

parameters of PSF such as its angle and length. In this section, Lucy-Richardson

(L-Rich), Wiener filter and regularized filtering deconvolution methods will be

discussed.

2.4.3.1 Lucy-Richardson (L-Rich) Deconvolution

L-Rich Deconvolution is a non-blind method that is used to restore a degraded

image with a known PSF. In the early 1970s, the L-Rich deconvolution method

gained significant attention in the fields of astronomy and medical imaging. This

method was initially derived using Bayes’ theorem (Richardson, 1972). The

parameters of the reconstructed image are modelled with the use of Bayesian

statistics probability distribution to image restoration methods. The latent image

and the PSF are both restored simultaneously by the algorithm through an

iterative process, where the pixels are given by,

 𝑑𝑖 = ∑ 𝑝𝑖𝑗𝑢𝑗 (2.10)

where

𝑑𝑖 = observed value at the position-𝑖

Original Gaussian Noise Recovered

21

𝑝𝑖𝑗 = PSF from the true location of position- 𝑗 relative to the observation

position-𝑖

𝑢𝑗 = latent image at position-𝑗

The iterative equation for estimating the most likely restored image

model is obtained by rearranging Equation (2.10), resulting in Equation (2.11):

 𝑢𝑗
(𝑡+1)

= 𝑢𝑗
(𝑡)

∑
𝑑𝑖

𝑐𝑖
𝑝𝑖𝑗

𝑖

 (2.11)

where

𝑐𝑖 = ∑ 𝑝𝑖𝑗 𝑢𝑗
(𝑡)

𝑗

However, according to the study, they claimed that the convergence of

the L-Rich iteration is relatively very slow due to the non-linear algorithm.

Besides that, the number of iterations must be manually set for each image based

on the PSF size in order to produce a restored image of excellent quality. Despite

this drawback, this method is widely used because of its ability to achieve

maximum likelihood implementation and produce high-quality reconstructions

even in the presence of significant noise levels. Figure 2.16 demonstrates the

process of blurring an image with a random PSF, while Figure 2.17 shows the

deblurring process of the blurred image and noisy blurred image by adopting

the L-Rich blind deconvolution method, respectively.

Figure 2.16: Blurring of an Image with a Given Random PSF.

Original Image Original PSF Blurred Image

22

Figure 2.17: Example of Output Using Lucy-Richardson Deconvolution for (a)

Blurred Image, and (b) Noisy Blurred Image.

The obtained images from both degradation models have high

resolution and better quality, which is attributed to the simplicity of Fourier

transformation requiring less computation. However, the main problem with the

L-Rich method is the presence of a ringing effect, which can be observed in both

images. As a result, a modified L-Rich method was proposed by Sharma et al.

(2013), which divides the discrete wavelet transform (DWT) of the degraded

image into four sub-frequencies bands, with each being subsequently applied to

the L-Rich method.

2.4.3.2 Wiener Filter Deconvolution

Wiener filtering is also a non-blind algorithm used to restore degraded images.

It is widely applied in several fields such as echo cancellation, linear prediction,

channel equalization, signal restoration and others. The Wiener filter is capable

of eliminating both the additive noise and the blurring at the same time, making

it a two-in-one process. This is achieved by performing deconvolution through

inverse filtering (high-pass filtering) while simultaneously removing noise with

(a)

(b)

Restored Image Reconstructed PSF

Restored Image Reconstructed PSF

23

a compression operation (low-pass filtering). The objective of this method is to

determine the restoration function that best approximates the original image so

that the mean square error can be minimized as much as possible. The

deconvolution output can be modelled as Equation (2.12),

 𝐵′ = 𝑓𝑊 ∗ (𝐵 + 𝑁) (2.12)

where

𝐵′ = estimated image

𝑓𝑊 = function of Wiener Filter

Figure 2.18 shows that the Wiener Filter deconvolution algorithm is

able to estimate the PSF effectively to recover the image. The optimal trade-off

between inverse filtering and noise smoothing allows the filter to

simultaneously remove additive noise and invert the blurring. Another

advantage of the Wiener filter is its ability to incorporate the power spectra of

the original image and additive noise, without the concern of singularity in

inverse filtering.

Figure 2.18: Example of Output from Wiener Filter Deconvolution.

Despite its effectiveness, the Wiener filter has some limitations. The

inverse filtering approach is highly susceptible to the presence of additive noise,

making it difficult to accurately estimate the power spectra and achieve optimal

restoration results. As a solution, a modified noise estimation that proposed by

Shimamura et al. (2009) that considers the noise power spectrum in both low

Blurred Image Recovered Image

24

and high-frequency regions. Furthermore, Wiener filters are fairly slow to be

used since the operation is always involved in the frequency response domain

(Das et al., 2015). Hence, the fast Hartley transform (FHT) had been integrated

with the Wiener filter to improve the speed of the deblurring process (Zheng,

1989).

2.4.3.3 Regularized Filter Deconvolution

Regularized filtering is an effective technique when the smoothness of an image

is constrained and there is limited information about additive noise. It utilizes a

constrained least square restoration algorithm to restore sharpness and remove

noise from a noisy and blurred image. Regularized filtering requires less prior

knowledge compared to the Wiener filter to apply restoration. This approach

can be helpful when no statistical information is provided. Additionally, the

regularized filtering framework can be modified to handle image edges,

spatially varying noise, and other challenges. Figure 2.19 shows the restoration

process of a given blurred and noisy image using regularized filtering

deconvolution.

Figure 2.19: Example of Output from Regularized Filtering Deconvolution.

2.4.4 Blind Deconvolution Image Restoration

As its name implies, blind deconvolution is a method of deconvolution that

involves no prior information regarding the PSF of a degraded image. This

approach enables the target image to be recovered from a single blurred image

or a group of blurred images even when the PSF is unknown. It can be done

Blurred and Noisy Image Recovered Image

25

using either an iterative or non-iterative approach. In the iterative approach, the

PSF estimation is updated with each iteration, and the improved PSF is then

used to refine the final image until it more closely resembles the original image.

In contrast, the non-iterative method applies an algorithm that uses external

information to recover the PSF for image restoration (Navaneethakrishnan,

2014).

Besides that, blind deconvolution can be further classified into two

types: projection-based and maximum-likelihood methods. The former restores

the PSF and true image simultaneously, while the latter estimates the blur

parameters, including the PSF and covariance matrices. As a result, the former

approach is less sensitive to noise and can easily support size irregularities,

while the latter approach provides low computational complexity and facilitates

the estimation of blur, noise, and power spectra of the image (Yadav et al., 2016).

Table 2.1 demonstrates that blind deconvolution outperforms other

non-blind methods in terms of mean square error (MSE), root mean square error

(RMSE) and peak signal-to-noise ratio (PSNR). However, A.M et al. (2014)

have identified three major drawbacks to blind deconvolution:

(i) Accurate knowledge of the PSF is crucial for achieving better

performance.

(ii) Some PSFs do not have frequency zeros, which can lead to

inaccurate PSF estimation.

(iii) The presence of additive noise can mask the frequency-domain

nulls and result in performance degradation.

Table 2.1: Evaluation Metrics on Restoration Outputs (Source:

Navaneethakrishnan, 2014). Best score is underlined.

 L-Rich Regularized

Filtering

Wiener

Filter

Blind

Deconvolution

MSE ↓ 207.98 1112.71 366.66 138.29

RMSE ↓ 10.31 33.96 19.15 11.76

PSNR ↑ 24.98 17.70 22.52 26.76

Note: The symbols ↓ and ↑ indicate that lower and higher values, respectively,

represent better performance for the corresponding metric.

26

2.4.5 Investigation of Classical Image Restoration Methods

This section presents a comparison of classical image restoration techniques,

including linear and non-linear filters, and deconvolution methods. Examples of

the results obtained from these methods will be provided along with

explanations.

2.4.5.1 Linear and Non-linear Filters Methods

Figure 2.20 and Figure 2.21 show the denoising results on cameraman image

using linear and non-linear filters for salt-and-pepper and Gaussian noises,

respectively. The restored images are compared to the ground truth (GT). Table

2.2 shows the performance comparison accordingly.

Figure 2.20: Salt-and-Pepper Denoising Results on Cameraman Image Using

Classical Methods.

GT Salt-and-pepper Noise Average Filter

Gaussian Filter Minimum Filter Maximum Filter

Median Filter Conservative Filter Bilateral Filter

27

Figure 2.21: Gaussian Denoising Results on Cameraman Image Using Classical

Methods.

Table 2.2: Performance Comparison on Cameraman Image Using Classical

Methods. Best score is underlined.

Method Salt-and-Pepper Noise Gaussian Noise

RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑

Average Filter 21.2006 21.6038 0.6026 19.8688 22.1674 0.6511

Gaussian Filter 17.0535 23.4945 0.6359 14.7776 24.7387 0.7306

Minimum Filter 59.3693 12.6596 0.2541 33.1294 17.7265 0.3138

Maximum Filter 65.6352 11.7881 0.1457 35.4143 17.1472 0.3064

Median Filter 8.9133 29.1301 0.9184 13.4765 25.5392 0.5315

Conservative Filter 26.4358 19.6870 0.5692 20.3595 21.9555 0.3433

Bilateral Filter 28.3336 19.0848 0.3269 12.5563 26.1536 0.7371

Note: The symbols ↓ and ↑ indicate that lower and higher values, respectively,

represent better performance for the corresponding metric.

GT Gaussian Noise Average Filter

Gaussian Filter Minimum Filter Maximum Filter

Median Filter Conservative Filter Bilateral Filter

28

From Table 2.4, it can be observed that the median filter outperforms

the other methods in removing salt-and-pepper noise. In contrast, bilateral filter

is effective in reducing Gaussian noise. Therefore, it can be concluded that

different algorithms are required to address different types of noise signals.

2.4.5.2 Deconvolution Methods

In this subsection, three methods which are L-Rich, Wiener filter, and

regularized filtering techniques were employed for deconvolution. Figure 2.22

and Figure 2.23 display the deconvolution results for blurred, and blurred and

noisy images, respectively. A comparison of the two scenarios is presented in

Table 2.2.

Figure 2.22: Restoration Results on Blurred Cameraman Image Using

Deconvolution Methods.

GT Blurred L-Rich Deconvolution

Wiener Filter Deconvolution Regularized Filter Deconvolution

29

Figure 2.23: Restoration Results on Blurred and Noisy Cameraman Image

Using Deconvolution Methods.

Table 2.3: Performance Comparison on Cameraman Image Using

Deconvolution Methods. Best score is underlined.

Method Blurred Blurred and Noisy

RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑

Lucy-Richardson 13.3641 25.6120 0.8125 20.7169 21.8043 0.6406

Wiener Filter 0.3025 58.5148 0.9992 22.0034 21.2810 0.3525

Regularized Filter 16.5640 23.7475 0.7425 13.5989 25.4607 0.7298

Note: The symbols ↓ and ↑ indicate that lower and higher values, respectively,

represent better performance for the corresponding metric.

Table 2.2 shows that the L-Rich method is able to provide satisfactory

results but there are significant ringing effects, as shown in Figure 2.22. The

Wiener filter method produces better results for the blurred image but its

performance deteriorates with the addition of noise. The regularized filtering

technique provides consistent performance for both scenarios because it uses a

constrained least square restoration method to handle blurring and noise effects.

However, since the PSF is known for this case, the deconvolution

methods are impractical. To make it practical, the model needs to estimate the

PSF itself through an iterative process to restore the image.

GT Blurred and Noisy L-Rich Deconvolution

Wiener Filter Deconvolution Regularized Filter Deconvolution

30

2.4.6 Summary

Since each image restoration task requires a different algorithm, thus traditional

methods are notoriously difficult to build. Hence, this will lead to time-

consuming investigations and improvements to the traditional methods. To

address these issues, the following section will cover the development of

cutting-edge technology known as deep learning (DL) approaches.

2.5 Deep Learning (DL) Approaches to Image Restoration

Over the past decade, breakthroughs in deep learning had a profound effect on

various computer vision tasks including recognition, classification and

regression. In general, deep learning allows parameters to be learned directly

from the available resources without any intervention. In addition, deep learning

is not limited to linearity and is capable of learning transformations that are

arbitrary complicated and non-linear. As an illustration, a deep learning model

is able to develop its own complicated algorithm to restore noisy images to clean

ones. Su et al. (2022) reviewed a wide variety of deep learning-based image

restoration models, and found that the majority of these models can reach a

higher level of performance as compared to state-of-the-art alternatives. In this

section, some DL models related to image denoising, image deblurring and

super-resolution are briefly discussed.

2.5.1 Image Deblurring

In 2017, Nah et al. proposed a multi-scale deblurring network to restore an

image in stages by using a “coarse-to-fine” structure. The multi-scale networks

were initially developed by Eigen et al. (2014) that made up of two components:

coarse-scale and fine-scale networks. The former is used to predict the depth of

an image structure globally by analysing high-level features, while the latter

refines the coarse prediction locally by interpreting low-level features.

Combining the two networks can fully utilise the distributions of the raw data,

resulting in better performance. Figure 2.24 shows the model architecture of a

multi-scale structure. Besides that, Zhang et al. (2019) made some modifications

to the multi-scale networks by adopting residual learning at different levels to

improve the inferencing speed and applying spatial pyramid matching to allow

more training data to be refined at the finest level.

31

Figure 2.24: Multi-Scale Network. (Source: Nah et al., 2017).

Kupyn et al. (2018) introduced the DeblurGAN model, which is the first

use of conditional generative adversarial network (GAN) for deblurring

purposes. The key elements of the proposed generator are the residual network

block and perceptual loss function, which is given by,

 𝐿𝑥 =
1

𝑊𝑖,𝑗𝐻𝑖,𝑗
∑ ∑ [𝜙𝑖,𝑗(𝐼𝑆)𝑥,𝑦 − 𝜙𝑖,𝑗 (𝐺𝜃𝐺

(𝐼𝐵))
𝑥,𝑦

]
2

𝐻𝑖,ℎ

𝑦=1

𝑊𝑖,𝑗

𝑥=1

 (2.13)

where

𝜙𝑖,𝑗 = feature map after 𝑗-th convolution before 𝑖-th maximum pooling layer

within a network

𝑊𝑖,𝑗 = width of the feature maps

𝐻𝑖,𝑗 = height of the feature maps

𝐺𝜃𝐺
 = Generator function

𝐼𝑆 = smooth image

𝐼𝐵 = blurred image

The proposed approach encourages the restoration of finer texture

details and is capable of finding solutions for those indistinguishable pixels

between blurred and sharp images. However, the training speed for the

32

DeblurGAN network is relatively slow which took about 7 days. Therefore,

Kupyn et al. (2019) proposed another version of the deblurring network,

DeblurGAN-v2 with a new generator that is constructed based on the Feature

Pyramid Network (FPN). FPN generates several feature map layers with

improved semantics and information, using a structure that is compromised by

bottom-up and top-down approaches. The former uses a convolutional network

to collect features, downsampling the spatial resolution while extracting and

compressing semantic context; whilst the latter restores semantically rich layers

at a higher spatial resolution. Lateral connections between the bottom-up and

top-down approaches provide an additional layer of high-resolution features to

assist in the localization of objects. Besides that, the loss function is updated by

involving the mean squared error loss to aid in the correction of colour and

texture distortion, as shown in Equation (2.14),

 𝐿𝐺 = 0.5𝐿𝑃 + 0.006𝐿𝑋 + 0.01𝐿𝑎𝑑𝑣 (2.14)

where

𝐿𝑃 = MSE loss

𝐿𝑎𝑑𝑣 = adversarial loss contains both local and global discriminator losses

𝐿𝑥 = same perceptual loss from DeblurGAN network

As a result, the introduction of FPN and MSE loss function in

DeblurGAN-v2 greatly improved its training and inference speeds, reducing the

required convergence time from 7 to 5 days and enhancing the inference speed

by a factor of 100.

In the research conducted by Madam Nimisha et al. (2018), they

introduced an unsupervised end-to-end deblurring network that incorporated a

GAN model. They claimed that supervised deep-learning approaches relied

heavily on massive quantities of paired data, which were both difficult and time-

consuming to collect, while unsupervised training strategies could achieve

similar performances with unpaired data. From the implementation, their model

was able to acquire a robust prior on the domain of clear pictures via adversarial

loss. Besides that, they also developed a new convolutional neural network

(CNN) module that reblurs the GAN output to match the blurred input,

33

increasing the GAN’s robustness and maintaining picture correlation. They also

exploited the blurred image to guide the network and limit the possible

outcomes for the clean images to be produced. This can be done through an

extra gradient module to impose a gradient error in scale space. Table 2.4

presents an overview of the deblurring models with regard to their

hyperparameter settings.

34

Table 2.4: Comparison of Image Deblurring Methods.

Method Description Supervision Activation Function Optimization Regularization Loss Function Reference

DeepDeblur,

2017

Deep Multi-scale

Network

Supervised Generator:

ReLU, (Tanh for

last layer)

Discriminator:

LeakyReLU

Adam

(L-Rate = 5 × 10-5 for the first 300000

epochs, then followed by 5 × 10-6)

Data

Augmentation

GAN +

MSE

(Nah et al., 2017)

DMPHN,

2019

Stacked Multi-patch

Network with
Residual Learning

and SPM

Supervised Encoder-Decoder:

ReLU

Adam

(L-Rate = 10-4 for the first 3000 epochs,

then followed by 𝛽 = 0.1)

- MSE (Zhang et al., 2019)

DeepBlurGAN,
2018

Conditional
Adversarial Networks

with Residual

Learning Blocks

Supervised Generator:
ReLU

Discriminator:

LeakyReLU

Adam
(L-Rate = 10-4 for the first 150 epochs,

then zero for the next 150 epochs)

Dropout (p = 0.5) GAN + Perceptual (Kupyn et al., 2018)

DeepBlurGAN-

v2,

2019

FPN-based Generator

and Relativistic

Discriminator

Supervised Generator:

ReLU

Discriminator:

LeakyReLU

Adam

(L-Rate = 10-4 for the first 150 epochs,

then 10-7 for the next 150 epochs)

Dropout (p = 0.5) GAN + Perceptual

+ MSE

(Kupyn et al., 2019)

Unsupervised

Deblur,

2018

GAN with Self-

Supervision and

Gradient Module

Unsupervised Generator:

ReLU (Tanh for

last layer)
Discriminator:

LeakyReLU

(Sigmoid for last
layer)

Adam

(𝛽1 = 0.9. 𝛽2 = 0.99, L-Rate = 5 × 10-4

for the first 100000 epochs, then

followed by L-Rate = 10-4)

Dropout (p = 0.2) GAN + Reblur +

Gradient

Note: The weight

parameters for the

loss function will
be updated from

𝑤𝑎𝑑𝑣 = 1,

𝑤𝑟𝑒𝑏𝑙𝑢𝑟 = 0.01,

𝑤𝑔𝑟𝑎𝑑 = 0.001,

for the first

100000 epochs,

then followed by

𝑤𝑎𝑑𝑣 = 0.01,

𝑤𝑟𝑒𝑏𝑙𝑢𝑟 = 1,

𝑤𝑔𝑟𝑎𝑑 = 0. 1,

(Madam Nimisha et al.,

2018)

Note: Rectified Linear Unit (ReLU), Learning Rate (L-Rate), Momentum Decay Rate (𝛽)

35

2.5.2 Image Denoising

In general, many of the techniques and tools developed for denoising can be

applied to other types of image inverse problems. This indicates that the

majority of the models used for denoising are derived from the other image

restoration models. For instance, Zhang et al. (2017) proposed a DnCNN

denoising network, which adopted the concept of residual learning to recover a

clean image that was obscured by noise. It makes use of a residual network to

connect the input image to the output image in a direct manner. Hence, this

allows the networks to learn only the residual image without considering the

actual content of the images. With this feature, the residual networks bring

substantial benefits to the other image restoration techniques as mentioned in

several published works (Zhang et al., 2019; Kupyn et al., 2018; Kupyn et al.,

2019). Additionally, the batch normalisation strategy was also implemented to

improve both training performance and denoising quality.

In order to get a more accurate result, the deep CNN approach appeared

to rely on deeper layers rather than shallower ones. Therefore, Tai et al. (2017)

proposed recursive and gate units to extract the features adaptively for restoring

noisy images. The former is responsible for learning multi-level representations

of the current state from various receptive fields; whilst the latter dynamically

controls the amount of the present and previous states that should be reserved.

Furthermore, Ye et al. (2018) proposed deep convolution framelets that utilized

a low-rank Hankel matrix, which convolves local and nonlocal bases to illustrate

the correlation between deep learning and signal processing. However, the

CNNs proposed earlier are associated with higher processing costs and memory

usage, thus making them impractical in reality. Hence, as an example, the

application of dilated convolutions in computed tomography (CT) image

denoising had been proposed by Gholizadeh-Ansari et al. (2020). Instead of

using conventional convolution, they developed a deep neural network that

leveraged dilated convolutions with various dilation rates to capture more

contextual information with low computational complexity. Additionally, an

integrated simple edge detection layer comprised of Sobel operators enhances

the computation of a 2D gradient of image intensity. As a result, the receptive

field can be expanded without incurring additional costs, and the depth of the

network can be shrunk without sacrificing performance.

36

In the real world, all the noise signals do not behave the same and

images can be randomly distorted. This resulted in the development of multiple

models with different algorithms to deal with various types and levels of noise

disturbances. This has led to the consideration of blind denoising methods. As

a result, Zhang et al. (2018) proposed Fast and Flexible Denoising CNN

(FFDNet), which adopted a configurable noise level input. FFDNet operated on

downsampled sub-images while maintaining a decent trade-off between

denoising performance and inference speed. By selecting a non-uniform noise

level map, their model is able to handle a wide variety of noise levels with only

a single CNN, and filter out the noise with spatial variations. Other than that,

soft shrinkage was adopted by Isogawa et al. (2018) in their image device

mechanism to modify the noise level adaptively, resulting in the proposal of

Soft Shrinkage CNN (SCNN). In other words, their CNN model can be instantly

tuned to match various noise levels of any given input image. Table 2.5 shows

PSNR performance results on BSD68 datasets for different denoising models.

Table 2.6 presents an overview of the denoising models as well as their

hyperparameter settings.

Table 2.5: Result of PSNR Performance between FFDNet with Different

Models on BSD68 Datasets (Source: Zhang et al., 2018; Isogawa et

al., 2018).

Noise Level BM3D DnCNN FFDNet SCNN

15 31.07 31.72 31.63 31.48

25 28.57 29.23 29.19 29.03

50 25.62 26.23 26.29 26.08

Note: Block-Matching and Three-Dimensional (3D) Filtering (BM3D), is a

classical method that groups similar image blocks into 3D arrays and applies

collaborative filtering techniques to reduce noise.

37

Table 2.6: Comparison of Image Denoising Methods.

Method Description Supervision Activation Function Optimization Regularization Loss Function Reference

DnCNN, 2017 Deep CNN with

Residual Learning

Supervised ReLU (for first Conv layer)

ReLU + BN (for middle Conv

layers)

None (for last Conv layers)

SGD

(L-Rate = 10-1 for the first 50

epochs, then followed by 10-4)

- MSE (Zhang et al., 2017)

MemNeT,

2017

Deep CNN with

Recursive and

Gate Units

Supervised ReLU + BN SGD

(L-Rate = 10-1 and then reduced

by a factor of 10 for every 20
epochs)

Data

Augmentation +

Modified L2-
norm

MSE (Tai et al., 2017)

Multi-resolution

DCF, 2018

Deep

Convolutional
Framelets with

Hankel Matrix

Supervised ReLU + BN (only for first

Conv layer)

Adam

(𝛽1 = 0.9. L-Rate = 10-4, then

reduced half for every 50
epochs, until L-Rate = 10-5)

Data

Augmentation

MSE (Ye et al., 2018)

DRL Denoising,

2020

CNN with Dilated

Convolutions and

Edge Detection
Layer

Supervised ReLU (for first Conv layer)

ReLU + BN (for middle Conv

layers)
None (for last two Conv

layers)

Adam

(L-Rate = 10-3 for the first 20

epochs, then 10-4 for the next 20
epochs)

- MSE + Perceptual (Gholizadeh-Ansari et al.,

2020)

FFDNet,
2018

Blind Denoising
CNN with

Varying Noise

Level

Unsupervised ReLU (for first Conv layer)
ReLU + BN (for middle Conv

layers)

None (for last Conv layer)

Adam
(L-Rate = 10-3 and then reduced

to 10-4 when the training error

stop decreasing. Additional 50
epochs with L-Rate = 10-6 to

fine tune the model)

Data
Augmentation

MSE (Zhang et al., 2018)

SCNN, 2018 Blind Denoising

CNN with Soft
Shrinkage

Unsupervised Soft Shrinkage (for feature

extraction layers)
Soft Shrinkage + BN (for

feature conversion layers)

Adam

(L-Rate = 10-3)

- MSE (Isogawa et al., 2018)

Note: Stochastic Gradient Descent (SGD), Batch Normalization (BN)

38

2.5.3 Super-Resolution

Super-resolution can be categorized as either single-image or multi-image,

depending on the number of input images. Single-image super-resolution, also

known as SISR, will be discussed in this section since it is widely known for its

high efficiency. However, SISR is a typical ill-posed issue. This is because a

single low-resolution input might be associated with a large number of high-

resolution images, as well as the mapping solution between these two elements

is typically intractable.

A simple model named Super-Resolution Convolutional Neural

Network (SRCNN) was proposed by Dong et al. (2016) to perform the super-

resolution task. The network consists of only three layers that served for patch

extraction and representation, non-linear mapping, and reconstruction,

respectively. The authors performed some ablation studies regarding the

architecture of SRCNN. First of all, the low-resolution input of SRCNN was

obtained through bicubic interpolation, which leads to inaccurate estimates and

additional processing time. To overcome this problem, they suggested to replace

this algorithm of low-resolution input. Besides that, they also claimed that the

super-resolution performance will vary depending on the width and depth of the

CNN architecture used.

In 2016, Shi et al. proposed Efficient Sub-Pixel Convolutional Neural

Network (ESPCN), which utilized a sub-pixel convolution layer. They argued

that non-linear convolution feature extraction should be used in low-resolution

space rather than high-resolution space. Hence, all of the low-resolution features

are fed into the network that will be utilized at the last layer for generating the

high-resolution output. By doing so, they proposed expanding the channel of

upscaling filters to store additional pixels, instead of directly enlarging input

feature maps to enhance the resolution as the bicubic filter does. Therefore, a

smaller size of the input kernel is sufficient enough since the upscaling process

occurs in the channel dimension. This can reduce computational and memory

complexity while preserving a certain contextual region.

Deep CNN networks have been shown to achieve superior

performance in many image restoration tasks. Hence, Kim et al. (2016a) came

up with Very Deep Super-Resolution (VDSR), which was the first deep CNN

model to perform SISR tasks. Similarly, the VDSR utilizes the same bicubic

39

low-resolution input, but the novelty is different scale factors of low-resolution

bicubic are adopted during the training phase. In addition, they intervened the

residual learning block between bicubic interpolation and high-resolution output

to accelerate the convergence of the model training. However, the proposed

complicated deep model network requires additional gradient clipping to

overcome vanishing gradient problems and a high initial learning rate to

accelerate convergence. Therefore, the same author further proposed Deep-

Recursive Convolutional Network (DRCN), which adopted recursive learning

and skip-connection to ease the difficulty of training (Kim et al., 2016b). They

argued that adding another weight layers resulted in more variables, which made

the model too large to be retrieved and stored, and increased the risk of

overfitting. Instead, they reconstructed a high-resolution image using the feature

maps generated at the end of each recursion level, and integrated all the

predictions to produce a more robust final prediction. Skip-connections are

integrated to prevent gradient vanishing, which is superior to the gradient

clipping technique used in VDSR. In terms of performance, both the VDSR and

DRCN models produce results that are very close to one another.

In 2018, the Zero-Shot Super Resolution (ZSSR) model, which

adopted image-specific learning in CNN, was proposed by Shocher et al. As the

name suggested, zero-shot is a method that does not utilise any prior image

examples or pre-training. Hence, the model only requires the test images by

extracting the relevant internal patches for the training. Contrary to external-

example SISR approaches, a small CNN is enough to build the ZSSR model due

to the accessibility of downscaling of test images in image-specific learning.

After observing the success of VDSR, which used a small-scale model for

training, the researchers of the ZSSR model came up with the notion of using a

similar approach to gather more small scaled internal training pairs for training

large-scale models. Besides that, they also adopted the concept of geometric

self-ensemble, which produced eight different outputs with various rotation

angles and flipping directions. The resulting images were then combined to

generate the median image through the back-projection algorithms. However,

ZSSR has a downside as it increases runtime during the testing phase. Table 2.7

depicts an overview of the super-resolution models including their

hyperparameter settings.

40

Table 2.7: Comparison of Super-resolution Methods.

Method Description Supervision Activation Function Optimization Regularization Loss Function Reference

SRCNN,

2016

Simple CNN with

for Super-

Resolution

Supervised ReLU SGD with standard

backpropagation

(L-Rate = 10-1 for the first 2

layers, and 10-5 for the last layer)

- MSE (Dong et al., 2016)

ESPCN,

2016

Sub-Pixel CNN

with Upscaling

Filters

Supervised Tanh SGD

(L-Rate = 10-2 and then reduced

to 10-4 when the loss function
value smaller than a threshold)

- MSE (Shi et al., 2016)

VDSR, 2016 Very Deep CNN

with Adjustable
Gradient Clipping

and Residual

Learning

Supervised ReLU SGD

(L-Rate = 10-1, then reduced by a
factor of 10 for every 20 epochs,

until 80 epochs)

Data

Augmentation +
L2-norm

MSE (Kim et al., 2016a)

DRCN,

2016

Deep CNN with

Skip Connection

and Recursive

Supervision

Supervised ReLU SGD

(L-Rate = 10-2, then reduced by a

factor if 10 if validation error

remains constant for 5 epochs,

until L-Rate = 10-6)

L2-norm MSE (Kim et al., 2016b)

ZSSR, 2018 Zero-Shot CNN

with Small Image-
Specific and

Geometric Self-

ensemble
Techniques

Unsupervised ReLU Adam

(L-Rate = 10-2, then reduced by a
factor if 10 if the reconstruction

error greater than the slope of

linear fit by a factor, until L-Rate
= 10-6)

L1-norm MAE (Shocher et al., 2018)

Note: Mean Absolute Error (MAE)

41

2.5.4 Investigation of Deep Learning Approaches to Image Restoration

2.5.4.1 Image Deblurring

Figure 2.25 displays the deblurring results on CSet9 datasets using DL model

with all the results recorded in Table 2.8 accordingly. It can be observed that the

recovered images have outstanding performance in removing blurs.

Figure 2.25: Sample of Deblurring Results of DL Approaches on CSet9

Datasets.

Table 2.8: Performance Comparison on CSet9 Datasets for Deblurring Results

Using DL Approaches.

 Blurred Image Recovered Image

RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑

F16 0.0831 20.8300 0.7900 0.0448 26.1899 0.9280

Lena 0.0722 22.7267 0.7761 0.0359 28.8007 0.9025

House 0.0589 24.1314 0.8863 0.0349 28.6675 0.9349

F16

Lena

House

GT Blurred Recovered

42

Note: The symbols ↓ and ↑ indicate that lower and higher values, respectively,

represent better performance for the corresponding metric.

2.5.4.2 Image Denoising

Figure 2.26 shows the denoising results on CSet9 datasets with a DL model, and

all the results are tabulated in Table 2.9. It is worth noting that the denoising

algorithm produces images of exceptional quality, with a significant reduction

in noise levels.

Figure 2.26: Sample of Denoising Results of DL Approaches on CSet9 Datasets.

F16

Lena

House

GT Noisy Recovered

43

Table 2.9: Performance Comparison on CSet9 Datasets for Denoising Results

Using DL Approaches.

 Noisy Image Recovered Image

RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑

F16 0.2133 12.6347 0.1874 0.0655 22.8866 0.8946

Lena 0.1685 15.3647 0.2204 0.0568 24.8124 0.8715

House 0.1928 13.8427 0.1477 0.0484 25.8516 0.9391

Note: The symbols ↓ and ↑ indicate that lower and higher values, respectively,

represent better performance for the corresponding metric.

2.5.4.3 Super-Resolution

Figure 2.27 shows the super-resolution results on CSet9 datasets using DL

model, and all the results are tabulated in Table 2.10. The super-resolution

results are impressive, clearly demonstrating the effectiveness of the DL model

in generating high-quality images with finer details.

Figure 2.27: Sample of Super-Resolution Results of DL Approaches on CSet9

Datasets.

F16

Lena

House

GT Low-Resolution Super-Resolution

44

Table 2.10: Performance Comparison on CSet9 Datasets for Super-Resolution

Results Using DL Approaches.

 Super-Resolution Image

RMSE ↓ PSNR ↑ SSIM ↑

F16 0.0205 32.9751 0.9780

Lena 0.0317 29.8713 0.9187

House 0.0512 25.3688 0.8912

Note: The symbols ↓ and ↑ indicate that lower and higher values, respectively,

represent better performance for the corresponding metric. Evaluation metrics

cannot be performed on low-resolution images due to the unmatched pixel size

between ground truth and low-resolution images.

2.5.5 Summary

From the research papers that had been discussed above, it can be deduced that

efficiency can be improved by using a learning-based approach. Many

benchmark datasets show that deep learning-based methods greatly outperform

conventional alternatives. Besides that, high efficiency is achieved when deep

learning algorithms are implemented on parallel processing units such as

graphic processing units (GPUs) rather than central processing units (CPUs).

Nevertheless, deep learning-based algorithms contribute to high computational

costs, thus making them challenging to implement in real-time processing. As

an example, matrix processing requires more computer hardware, such as GPUs

and random-access memory (RAM) which are costly and difficult to be obtained.

Last but not least, enormous training datasets are necessary for deep learning

CNNs, yet they are difficult to be collected, labelled, and may not even be a

good fit for real-world scenarios.

2.6 Deep Image Prior (DIP) Approaches to Image Restoration

2.6.1 Overview

In the DIP model, a neural network is randomly initialised and then processed

using only the distorted image. After that, the network will try to generate an

image that is similar to the distorted one. Noise naturally exhibits high

impedance so the model prefers to learn the original pixel over the noise. Hence,

the early stopping technique is applied to prevent the model from overfitting. It

45

is used to terminate the reconstruction process to get rid of the degradation

details including jagged edges, artifacts and others. Due to the lack of training

datasets, the complexity of the DIP network architecture plays an important role

in determining the performance of the image restoration process (Ulyanov et al.,

2018). Figure 2.28 illustrates the overview structure of the DIP model.

Figure 2.28: Overview of Deep Image Prior Model Network (Source: Ulyanov

et al., 2018).

The DIP model can be applied to several image restoration tasks such

as denoising, deblurring, inpainting, flash no-flash reconstruction and others.

This can be accomplished by controlling over aspects of the network's structure,

such as the number of hidden layers, and hyperparameters such as stopping

criteria and learning rate. The sample results will be provided in the following

subsections.

46

2.6.2 Investigation of Deep Image Prior to Image Restoration

2.6.2.1 Image Denoising

For the image denoising results in Figure 2.29, it can be observed that the DIP

model exhibits remarkable noise reduction performance, as indicated by the

evaluation metrics in Table 2.11.

Figure 2.29: Sample of Denoising Results of DIP Model on CSet9 Datasets.

Table 2.11: Performance Comparison on CSet9 Datasets for Denoising Results

Using DIP Model.

 Noisy Image Recovered Image

RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑

F16 0.2133 12.6347 0.1874 0.0599 236691 0.8798

Lena 0.1685 15.3647 0.2204 0.0421 27.5219 0.8707

House 0.1928 13.8427 0.1477 0.0353 29.0368 0.9497

Note: The symbols ↓ and ↑ indicate that lower and higher values, respectively,

represent better performance for the corresponding metric.

F16

Lena

House

GT Noisy Recovered

47

2.6.2.2 Super-Resolution

The super-resolution results displayed in Figure 2.30 indicate that the DIP

model can effectively enhance the resolution of low-quality images, achieving

impressive performance metrics as listed in Table 2.12.

Figure 2.30: Sample of Super-Resolution Results of DIP Model on CSet9

Datasets.

Table 2.12: Performance Comparison on CSet9 Datasets for Super-Resolution

Results using DIP Model.

 Super-Resolution Image

RMSE ↓ PSNR ↑ SSIM ↑

F16 0.0243 31.4889 0.9666

Lena 0.0317 29.8725 0.9097

House 0.0294 30.1842 0.9334

Note: The symbols ↓ and ↑ indicate that lower and higher values, respectively,

represent better performance for the corresponding metric. Evaluation metrics

F16

Lena

House

GT Low-Resolution Super-Resolution

48

cannot be performed on low-resolution images due to the unmatched pixel size

between ground truth and low-resolution images.

2.6.2.3 Impainting

Inpainting process refers to the technique of reconstructing missing or damaged

parts of an image, video, or any other signal. It involves filling in the missing or

damaged regions using the information present in the surrounding areas or using

some other prior information. Figure 2.31 displays the inpainting result on

CSet9 datasets in which all the results are recorded in Table 2.13. It can be

observed that the DIP model effectively restores the missing parts of the images,

resulting in visually pleasing results with high PSNR and SSIM scores.

Figure 2.31: Sample of Impainting Results of DIP Model on CSet9 Datasets.

F16

Lena

House

GT Corrupted Recovered

49

Table 2.13: Performance Comparison on CSet9 Datasets for Impainting

Results using DIP Model.

 Corrupted Image Recovered Image

RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑

F16 0.2470 11.3617 0.8717 0.0316 29.2184 0.9599

Lena 0.1299 17.6263 0.8383 0.0188 34.3975 0.9535

House 0.1132 18.4683 0.9088 0.0098 39.7476 0.9858

Note: The symbols ↓ and ↑ indicate that lower and higher values, respectively,

represent better performance for the corresponding metric.

2.6.3 Summary

However, there are several problems with the DIP model. Since the network

needs to be run specifically to replicate each image while simultaneously

updates the network's hyperparameters, thus the time required to produce a

single image will be extremely long. On top of that, distinct hyperparameter

settings are required for every image restoration task, and it has to be fine-tuned

manually, which is impractical in reality.

2.7 Overall Summary

There are many approaches to recover an image in terms of quality, which are

conventional, DL, and DIP methods. From the literature review, each approach

has its own pros and cons. Some of the models only work for certain image

restoration tasks, which results in a variety of models with different algorithms.

This can be overcome by employing DL methods with the presence of datasets.

However, the training process took a long time due to a large number of datasets

is required. Thus, the DIP model can be useful for image restoration tasks where

dataset is not available. With the proper selection of hyperparameters and an

appropriate early stopping criterion, satisfactory results can be achieved without

the requirement of pre-learning or extensive datasets. Nevertheless, both

methods share the same issue, whereby significant resources and time are

needed to modify the network's architecture and incorporate additional

techniques in order to achieve the desired performance.

50

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

The main objective of this study is to propose an innovative approach for

detecting the optimal stopping point in the image restoration process using the

DIP model. To effectively carry out this study, the necessary hardware devices

and software tools such as GPUs, deep learning frameworks, and Python

libraries were utilized. The effectiveness of the proposed algorithm was

evaluated by comparing its performance with the classical and iterative image

restoration models, as well as recent deep learning models.

3.2 Work Plan

Figure 3.1 shows the general process flow of the project, outlining the major

stages involved in achieving the objectives. The first stage is an analysis of

image restoration in terms of image models and degradation models, as depicted

in Figure 2.1. This is followed by a comprehensive literature review on image

restoration tasks from a variety of perspectives, as shown in Figure 2.2. The

review includes an in-depth study of journals, publications, conference

proceedings, electronic books, and other sources of information. After

reviewing the related literature, the limitations of the image restoration tasks are

identified. Hence, the aim and objectives are defined based on the listed problem

statements.

51

Figure 3.1: General Process Flow.

Subsequently, system setup focuses on acquiring and preparing the

necessary hardware devices and software tools required to effectively carry out

the project. Once the system is set up, the next stage involves preparing the test

images by selecting appropriate test images and applying different types of

degradation to them, such as low-resolution or noise, to simulate real-world

scenarios. Accordingly, solution is proposed to detect the optimal stopping point

in the image restoration process using the DIP model.

Following the proposal of the solution, the performance evaluation is

conducted, which involves validation on test images and performance analysis

in terms of image quality metrics, such as PSNR and SSIM. In addition, the

proposed algorithm is compared with classical and iterative image restoration

models, and recent deep learning models, to evaluate its effectiveness. Finally,

all data are analyzed and discussed. Conclusions and recommendations for

future research are made.

52

Figure 3.2 shows the FYP1 gantt chart. The project details were

discussed with the supervisor at the beginning of the first semester. Next, a

general project overview regarding the background of image restoration was

conducted. Subsequently, a project introduction and report overview were done

for the subsequent two weeks. Then, an in-depth study was performed to analyse

different image restoration tasks. The project flow and the methodology were

planned to investigate image restoration in terms of implementation methods

and performance metrics. Preliminary results tabulation, report writing, and

presentation preparation were carried out as planned in the following weeks.

Figure 3.2: FYP1 Gantt Chart.

Figure 3.3 shows the FYP2 gantt chart. The project was further

discussed with the supervisor to schedule the time frame for each project activity.

To achieve the project objective, a novel algorithm was proposed based on the

DIP model, with a focus on improving the image restoration process. A

tabulation of the data was performed for different image restoration tasks, and

the results were then compared to other proposed solutions. Subsequently, the

code was optimized by removing unnecessary building processes. Towards the

end of the trimester, poster was prepared followed by report writing and

presentation preparation.

53

Figure 3.3: FYP2 Gantt Chart.

3.3 Implementation

The image restoration tasks in this project were performed using the Python

environment, which provides access to a wide range of useful library modules

such as OpenCV, scikit-image, and PyTorch. These tools were utilized to

process the images for the preparation of image restoration and evaluate the

performance of different restoration techniques.

In this project, Python codes were executed on both laptop and Google

Colab. The proposed algorithm was developed on a laptop with an anaconda

environment to ensure the installed Python modules would not interfere with

the global Python settings. Locally installed frameworks such as TensorFlow,

PyTorch, and Compute Unified Device Architecture (CUDA) were required to

make the laptop's GPU processing accessible for deep learning implementation.

On the other hand, Google Colab provides free access GPU in the browser and

utilizes the Jupyter notebook for Python code execution. Therefore, cloud

computing services from Google Colab were utilized to execute other

restoration methods from Github sources for comparison purposes. One

advantage of using Google Colab is that modules and frameworks can be

installed directly without the need to create a virtual environment as the system

resets once the allocated runtime duration is over. Table 3.1 shows the

specification of local platform and Google Colab for running the Python codes.

54

Table 3.1: Specifications of Local Platform and Google Colab in the Project.

 Local Platform Google Colab

CPU Intel Core i5-8300H CPU @

2.30 GHz

Intel Xeon @ 2.20 GHz

CPU Cores 4 2

Memory 16 GB 12 GB

GPU NVIDIA GeForce GTX1060

6GB

NVIDIA Tesla K80

12GB

Storage 512 GB SSD 100 GB SSD

OS Windows 10 Ubuntu 18.04 LTS

Note: Operating System (OS)

3.4 Performance Metrics

The performance metrics used in the analysis study of the image restoration

process are RMSE, PSNR, and SSIM as shown in Table 3.2.

55

Table 3.2: Evaluation Metrics of Image Quality.

Performance

Metrics

Description Equation

Root Mean

Square

Error

(RMSE)

RMSE measures the square root of the cumulative

squared error between the original and the degraded

image. Lower values indicate higher image quality after

restoration.

RMSE is calculated as follows, given a 𝑚 × 𝑛 monochromatic

noise-free image 𝐼 and the noisy estimation of 𝐾:

 𝑅𝑀𝑆𝐸 = √
1

𝑚𝑛
∑ ∑[𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 (3.1)

Peak signal-

to-noise

ratio

(PSNR)

PSNR is defined as the strength of an image relative to the

power of the noise that degrades its representation. In

general, a greater score indicates a higher quality

reconstructed image.

PSNR is further derived from RMSE, the equation is derived as,

 𝑃𝑆𝑁𝑅 = 10 log10 (
𝑀𝐴𝑋𝐼

𝑅𝑀𝑆𝐸
)

2

 (3.2)

where

𝑀𝐴𝑋𝐼 = the highest possible signal intensity in the actual image with

a formula of 2𝐵𝑆 − 1, given that 𝐵𝑆 is bits per sample.

56

Structural

Similarity

Index

Measure

(SSIM)

SSIM measures how much amount of quality is lost in an

image due to factors such as data compression or

transmission losses. The value ranges from 0 to 1, 1 means

there is a perfect match between the original and

reconstructed images.

SSIM is calculated based on two windows named 𝑥 and 𝑦 that share

a common size of 𝑁 × 𝑁 is determined by,

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 (3.3)

where

𝜇𝑥 = average of window 𝑥

𝜇𝑦 = average of window 𝑦

𝜎𝑥
2 = variance of window 𝑥

𝜎𝑦
2 = variance of window 𝑦

𝜎𝑥𝑦 = covariance of windows 𝑥 and 𝑦

𝑐1 = (𝑘1𝑅𝑑𝑦𝑛𝑎𝑚𝑖𝑐)
2

𝑐2 = (𝑘2𝑅𝑑𝑦𝑛𝑎𝑚𝑖𝑐)
2

given that the 𝑅𝑑𝑦𝑛𝑎𝑚𝑖𝑐 is the pixel-value dynamic range with a

formula of 2𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 − 1. By default, the values for 𝑘1

and 𝑘2 are 0.01 and 0.03, respectively.

57

3.5 Test Image Preparation

The CSet9 dataset was pre-processed to obtain test images for this study. The

test set can be divided into two parts: denoising and super-resolution. The

denoising test set comprises clean images and their corresponding noisy images,

each generated with different types of noise and intensity levels. The super-

resolution test set contains high-resolution (HR) images and their respective

low-resolution (LR) images with different scaling factors. The purpose of

utilizing these test images is to assess the effectiveness of the proposed early

stopping algorithm for the DIP model in accomplishing denoising and super-

resolution tasks. The following subsections provide details on the noise type,

intensity level, and scaling factor used for each test image.

3.5.1 Denoising

Three common types of noise, namely Gaussian, Speckle, and Shot noise, with

low and high levels for each type, were generated in this project following the

rules and approaches outlined by previous works (Hendrycks and Dietterich,

2019; Wang et al., 2021). Impulse noise was not included in the project due to

the limitations of the original DIP neural network. Furthermore, modifying the

DIP neural network was not the main focus of this project. The noise can be

modelled by using Numpy’s random functions. The following is a brief

explanation of the noise types and their corresponding parameters.

(i) Gaussian noise: Additive noise with a mean of 0 and a variance

of either 0.12 or 0.18 for low or high levels, respectively. The

noise is generated using NumPy's random.normal function.

(ii) Speckle noise: Multiplicative noise with a mean of 0 and a

variance of either 0.20 or 0.35 for low or high levels,

respectively. The noisy pixel is 𝑥(1 + 𝜀), where 𝜀 is 0-mean

Gaussian with a variance level, and the noise is generated using

NumPy's random.normal function.

(iii) Shot noise: Poisson noise with a rate 𝜆𝑥, where 𝜆 is 25 or 12 for

low or high levels, respectively. The noisy pixel is Poisson

distributed, and the noise is generated using NumPy's

random.poisson function.

58

Table 3.3 summarizes the specific settings and corresponding

parameter values used for generating the noise, along with the code snippet for

each noise type. Figure 3.4 presents a sample of clean images alongside noisy

images affected by Gaussian, Speckle, and Shot noise at both low and high noise

levels.

Table 3.3: Parameters for Different Types of Noise.

Noise Type Parameters Code Snippet

Gaussian Mean = 0

Variance = 0.12

(low) & 0.18 (high)

1. noise =

np.random.normal(mean,

variance, img.shape)

2. noisy_img = img + noise

Speckle Mean = 0

Variance = 0.20

(low) & 0.35 (high)

1. noise =

np.random.normal(mean,

variance, img.shape)

2. noisy_img = img + (img *

noise)

Shot Rate = 25 (low) &

(12) high

1. noisy_img =

np.random.poisson(rate *

img, img.shape)

2. noisy_img = noisy_img /

float(rate)

Note: "np" refer to the NumPy library module, "img" refer to the input image,

and "shape" refer to the shape of the image (e.g., 512 × 512).

59

Figure 3.4: Examples of Clean and Noisy Images with Different Types of Noise

and Intensity Level: Gaussian, Speckle, and Shot Noises. Note: The

performance metrics was measured in the form of (PSNR, SSIM,

RMSE).

3.5.2 Super-resolution

To prepare test images for super-resolution, the original high-resolution image

is all that is needed. The downsampled low-resolution image can be obtained

through the function provided from the original DIP work (Ulyanov et al., 2018).

The function loads the image and optionally resizes it to a new size using the

specified scaling factor (SF). For instance, an image with a size of 512 × 512

can be resized to 128 × 128 with a SF of 4, which is obtained by dividing the

original dimensions by the SF. The resulting LR image is returned as NumPy

arrays, which will be used for super-resolution later. Figure 3.5 presents a

sample of downsampled images with their respective SF of 2, 3, 4 and 8.

Figure 3.5: Examples of Downsampled Images with Different Scaling Factors

for Super-Resolution. Note: SF refer to Scaling Factor.

60

3.6 DIP Model

DIP model is recently developed for image restoration tasks (Ulyanov et al.,

2018). The DIP model utilizes the structure of CNNs to restore images without

requiring any prior knowledge of the image formation model or degradation

process. Instead, the network is trained using only the degraded image itself,

which allows it to learn the underlying distribution of the original image from

the degraded data.

To implement the DIP model for image restoration, a CNN with an

encoder-decoder architecture is constructed. The encoder is responsible for

reducing the input image to a lower-dimensional representation, while the

decoder maps the representation back to the original image domain. The CNN

network parameters are randomly initialized and optimized using Adam

optimizer and MSE loss function. The optimization is done with respect to the

network parameters and the restored image.

From a higher-level perspective, a set of features will be generated at

each encoder layer, which are then concatenated with the corresponding decoder

features. After concatenating the features, they are fed into a series of

convolutional layers, resulting in the final output image. The inclusion of skip

connections in the DIP model plays a vital role in preventing information loss

during the encoding process. It allows information to be transmitted directly

from the encoder to the decoder, ensuring that important image features are

preserved in the restored image.

The general process of the DIP model to restore an image can be

formulated as follows:

 𝑥∗ = arg min
𝑥

|𝒜(𝑥) − 𝑦|2
2 + 𝜆𝑅(𝑥) (3.4)

where

𝑥 = restored image

𝑦 = degraded image

𝒜 = degradation operator

𝜆 = regularization parameter

61

𝑅(⋅) = a regularizer that encourages the restored image to be smooth or have

other desirable properties.

Equation (3.4) represents the optimization problem aimed at restoring

an image 𝑥 from a degraded image 𝑦. The degradation operator 𝒜(⋅) models

the degradation process that has affected the image and can be customized to

suit different restoration tasks. The objective is to find the restored image 𝑥* that

minimizes the difference between the degraded image 𝑦 and the reconstructed

image obtained from the degradation operator 𝒜(𝑥). A regularization term 𝑅(⋅)

is also incorporated into the objective function to encourage the restored image

to be smooth or possess other desired properties. The regularization parameter

𝜆 balances the trade-off between fidelity to the degraded image and the

regularization term. By solving this optimization problem, the equation can

produce a restored image that closely resembles the original image as compared

to the degraded image.

Overall, the DIP model, including the skip connections, provides an

effective way to restore images by leveraging the power of deep learning

techniques. The DIP model employs an encoder-decoder architecture with skip

connections and optimizes the loss function via gradient descent to produce

high-quality restored images from degraded inputs. Nevertheless, the DIP is

subjected to overfitting issue due to the optimization process based on the

reconstruction loss itself. As the iteration continues, the model may start to

incorporate the noise and artifacts present in the degraded input into the restored

image, resulting in overfitting. To prevent this, early stopping is often used to

halt the optimization process before overfitting occurs. However, there was no

method or algorithm to determine the appropriate stopping point for the DIP

from the original author (Ulyanov et al., 2018).

3.7 Early Stopping Detection Method

The study by Wang et al. (2021) discussed the implementation of early stopping

in the DIP model. This was achieved by monitoring the trend of the running

variance of the reconstruction sequence, leading to the proposal of early

stopping using exponential moving variance (ES-EMV). According to the

62

authors, although regularization and noise modelling approaches are effective,

they do not necessarily enhance peak performance and may involve a much

larger number of iterations than reaching the peak in the original DIP models.

Additionally, these approaches rely on comprehensive knowledge of the noise

type and level, which is often not available for many applications, resulting in

overfitting if the models and hyperparameters are not properly adjusted. The

proposed equation is shown as,

 𝑉𝐴𝑅(𝑡) ≈
1

𝑊
 ∑ ||𝑥𝑝

𝑡+𝜔 − 𝑥𝑝||
2

𝑊−1

𝜔=0

 (3.5)

where

𝑊 = window size

𝑥 = image pixels

The authors observed that the PSNR curve for image denoising

typically follows an inverted U-shaped curve, increasing rapidly at first and then

declining due to noise (as seen in Figure 3.6). Conversely, the MSE curve shows

the opposite trend. This indicates that the DIP model has a preference towards

the important visual content and is capable of learning it more rapidly compared

to learning the noise. As a result, the reconstruction quality may reach its highest

point before any potential degradation caused by noise.

To achieve superior image quality, it is preferable to locate the peak of

the PSNR curve or the valley of the MSE curve. By using Equation (3.5), Wang

et al. (2021) found that the variance of the reconstruction sequence decreases as

the iteration approached the MSE valley or the PSNR peak. When the iteration

reaches the saturation point, where the restored images become close to the

original image but with slight variations, early stopping should be applied to

avoid overfitting. The calculation of variance involves setting a window size

parameter (W) and computing the moving variance. In order to detect the valley

more robustly, a patience number (P) is introduced to allow for up to P

consecutive steps of variance stagnation (Wang et al., 2021).

63

Figure 3.6: Relationship Between MSE, PSNR, and Variance During Image

Denoising.

3.8 Proposed Method

Inspired by the variance method, the metric-based early stopping algorithm

(MB-ES) has been proposed for identifying the peak and applying early

stopping in the image restoration process. This algorithm employs the

intermediate performance metric to track the progress and determine the optimal

stopping point.

3.8.1 Denoising

A subtype of MB-ES, named denoising-MB-ES, has been developed

specifically for denoising task. As an example, the performance of the

denoising-MB-ES algorithm was assessed using PSNR method for illustration

purposes. Two types of curves were utilized: PSNR_GT, which measures the

PSNR between the ground truth and the restored image, and PSNR_INT, which

measures the PSNR between intermediate restored images. Figure 3.7 illustrates

both curves share similar characteristics. Table 3.4 shows the equation for

computing the metrics for each curve, respectively. The function 𝑓𝑀𝑒𝑡𝑟𝑖𝑐 is

utilized for calculating the metrics (PSNR or SSIM) required to plot the curves

mentioned earlier. The key difference between Equation (3.6) and Equation (3.7)

lies in the choice of reference, with the former using the ground truth and the

latter using the intermediate recovered image.

64

Figure 3.7: Relationship Between MSE_GT, PSNR_GT, and PSNR_INT

during Image Denoising. Note: MSE_GT refer to mean squared

error metric between restored images and ground truth.

Table 3.4: Metrics Equation for Plotting Curves.

Type of Curve Equation

PSNR_GT 𝑓𝑀𝑒𝑡𝑟𝑖𝑐(𝑥𝑖, 𝑧) , 𝑖 ≥ 0 (3.6)

where

𝑖 = iteration

𝑧 = ground truth image

𝑥 = restored image

PSNR_INT 𝑓𝑀𝑒𝑡𝑟𝑖𝑐(𝑥𝑖−1, 𝑥𝑖) , 𝑖 ≥ 1 (3.7)

This algorithm incorporates three adjustable parameters that influence

its performance. These include:

(i) Window size multiplier: A variable that is used to determine the

length of the window size at each step, resulting in a varying

window size.

(ii) Patience number: Similar to the variance method, this

parameter specifies the number of consecutive steps required to

terminate the program.

(iii) Minimum iteration: This parameter establishes when the

detection algorithm should start after it has been initialized.

65

An issue with the denoising-MB-ES algorithm is the possibility that a

peak detected in the intermediate performance metric curve may not be the

optimal stopping point due to overshooting or severe fluctuation. This can result

in premature early stopping and a low-quality image. To address this issue, the

density of the surrounding points around the peak is evaluated to determine the

desired stopping point. This is accomplished by using varying window sizes,

which allows for a more precise detection of the true peak by computing the

slope based on the best fit line within the window. The window size is adjusted

to different lengths to ensure that the slope is computed over a range of points

with respect to the current stopping point and remains fixed until the next peak

is discovered. The starting index of the window is then updated to the location

of the newly discovered peak, and the slope is computed again with varying

window sizes from the updated starting index (as illustrated from Figure B-1 to

Figure B-10). Hence, this approach allows for a more robust identification of

the true peak of the intermediate performance metric curve and reduces the risk

of stopping at an incorrect point due to fluctuations. Figure 3.8 depicts a

flowchart illustrating the use of the denoising-MB-ES algorithm for detecting

stopping point.

66

Figure 3.8: Flowchart of the Denoising-MB-ES Algorithm for Early Stopping

Detection. Note: The “similarity” could be PSNR or SSIM metrics.

The size of the window used to compute the slope of the records is

determined by multiplying "wait_count" value with the

"window_size_multiplier". For instance, if the

window_size_multiplier" is set to 100, the window size will be

increased for 100 for every "wait_count" steps (e.g., 100, 200, 300,

etc.).

67

A preliminary investigation was conducted to evaluate the

effectiveness of the two common metrics used by denoising-MB-ES, namely

PSNR and SSIM. The CSet9 images were utilized to compare the performance

of these metrics. For each of the nine test images, low and high levels of three

different types of noise were applied, with three trials for each noise level,

resulting in a total of 162 runs.

For the comparison between the best and detected recovered images,

the deviation is terms of PSNR or SSIM can be calculated using the following

equation:

 %deviation =
𝑀𝐷 − 𝑀𝐵

𝑀𝐵
× 100 (3.8)

where

𝑀𝐷 = the performance metric score based on detected recovered image with

respect to ground truth

𝑀𝐵 = the performance metric score based on best recovered image with respect

to ground truth

 The best recovered image is identified by finding the peak of the

performance metric curve between the recovered images and ground truth. In

most cases, a negative deviation is obtained, indicating that the algorithm is

trying to detect a recovered image with a quality close to the best one. The closer

the deviation to 0, the better the performance. However, there may be cases

where the SSIM curve slightly behaves differently than the PSNR curve, leading

to a positive SSIM deviation, where 𝑀𝐷 is better than 𝑀𝐵 (see Equation 3.6).

This occurs because the SSIM metric considers both the structural information

and luminance in the image, which can result in a different ranking of image

quality compared to the PSNR metric. Hence, a positive SSIM deviation can be

observed when the PSNR method is applied on MB-ES, and the algorithm

detects a recovered image with a better SSIM score than the best recovered

image. This also applies to PSNR deviation of MB-ES using SSIM method.

68

Table 3.5 presents the detailed results of the denoising-MB-ES

algorithm using the PSNR and SSIM methods for the Lena image. The Stopping

Point (SP) refers to the iteration number at which the possible best quality

restored image is detected during the restoration process. To calculate the total

number of iterations taken by the restoration process, the patience number is

also considered. In MB-ES, the patience number specifies additional iterations

to determine if the stopping point is the optimal point for the detected image. If

there are no other optimal stopping points within the next few iterations

specified by the patience number, the program terminates and returns the

detected image at the stopping point. During the comparison between PSNR and

SSIM methods, the primary focus is not on the number of iterations taken, but

rather on the deviations of PSNR and SSIM, as they are the key evaluation

criteria for image restoration tasks. The aim is to achieve a smaller deviation

value of PSNR and SSIM (closer to zero) in the MB-ES algorithm, which

indicates better quality of the recovered image.

Apart from that, for each noise level of the different types of noise, the

deviations of PSNR and SSIM for three trials are averaged, resulting in a total

of six values, respectively. This averaging process is repeated for all nine images

in the CSet9 dataset. As a result, Figure 3.9 and Figure 3.10 provide the

summary of the overall findings for all nine CSet9 datasets, with a focus on the

comparison between PSNR and SSIM methods, respectively.

69

Table 3.5: The Proposed Denoising-MB-ES Algorithm Based on PSNR and SSIM Methods on Lena Image.

Image Noise Type Noise Level Trial

PSNR Method SSIM Method

Detected SP Best SP Deviation (%) Detected SP Best SP Deviation (%)

SP PSNR SSIM SP PSNR SSIM PSNR SSIM SP PSNR SSIM SP PSNR SSIM PSNR SSIM

Lena Speckle Low 1 1854 29.31760 0.90192 1873 29.62845 0.90400 -1.04916 -0.23061 1438 29.06267 0.90191 1768 29.4632 0.90450 -1.35945 -0.28582

Lena Speckle Low 2 1813 29.71843 0.90703 2006 29.76778 0.90669 -0.16579 0.03803 1598 29.50712 0.90612 1993 29.5475 0.90747 -0.13672 -0.14946

Lena Speckle Low 3 1827 29.46919 0.90483 2082 29.65673 0.90287 -0.63237 0.21691 1576 29.29298 0.90311 1848 29.2257 0.90536 0.23020 -0.24839

Lena Gaussian Low 1 1518 29.43891 0.90033 1698 29.73361 0.90254 -0.99115 -0.24468 1288 29.28057 0.89855 1636 29.6478 0.90279 -1.23853 -0.46940

Lena Gaussian Low 2 1979 29.69000 0.90165 2056 29.72488 0.90092 -0.11733 0.08032 1337 29.07598 0.89623 1897 29.6514 0.90226 -1.94050 -0.66789

Lena Gaussian Low 3 1894 29.53778 0.89950 1893 29.68777 0.89998 -0.50520 -0.05392 1111 28.93208 0.89170 1790 29.6231 0.90100 -2.33276 -1.03233

Lena Shot Low 1 1288 28.28784 0.88808 1599 28.73250 0.88997 -1.54758 -0.21200 979 27.99916 0.88375 1357 28.4649 0.89088 -1.63610 -0.80041

Lena Shot Low 2 1711 28.79860 0.89347 2080 28.80573 0.88889 -0.02474 0.51577 1297 28.45316 0.89043 1717 28.6125 0.89443 -0.55682 -0.44655

Lena Shot Low 3 1689 28.64768 0.88714 1509 28.75782 0.89193 -0.38298 -0.53642 1050 28.24166 0.88678 1362 28.6049 0.89266 -1.26973 -0.65784

Lena Speckle High 1 863 25.76238 0.86436 1235 26.42617 0.85633 -2.51187 0.93752 201 22.85301 0.79517 876 25.7849 0.86711 -11.37045 -8.29665

Lena Speckle High 2 915 25.86054 0.86334 1107 26.30451 0.86238 -1.68781 0.11094 215 23.00021 0.79506 913 25.9717 0.86655 -11.44132 -8.24978

Lena Speckle High 3 742 25.67853 0.86350 970 26.23070 0.86479 -2.10508 -0.14975 203 22.51441 0.78948 868 26.0114 0.86842 -13.44404 -9.09003

Lena Gaussian High 1 1281 27.52195 0.87070 1263 27.79256 0.87209 -0.97367 -0.15905 223 23.88835 0.80307 1101 27.5722 0.87403 -13.36084 -8.11838

Lena Gaussian High 2 917 27.46783 0.87008 1193 27.69750 0.87190 -0.82920 -0.20893 311 24.85774 0.82009 1045 27.4766 0.87372 -9.53130 -6.13887

Lena Gaussian High 3 1422 27.59033 0.86486 1278 27.73780 0.86895 -0.53165 -0.47075 374 25.27678 0.83007 1140 27.6580 0.87319 -8.60949 -4.93822

Lena Shot High 1 920 26.49954 0.86661 958 26.70231 0.86514 -0.75936 0.16916 235 23.30574 0.80063 920 26.4995 0.86661 -12.05229 -7.61305

Lena Shot High 2 887 26.25472 0.86376 1026 26.67056 0.86640 -1.55915 -0.30486 200 23.29146 0.79780 958 26.5034 0.86741 -12.11901 -8.02422

Lena Shot High 3 1181 26.32402 0.85456 1049 26.60883 0.86033 -1.07035 -0.67048 207 23.07183 0.79516 868 26.2073 0.86330 -11.96405 -7.89346

Note: SP refer to stopping point. A closer detected stopping point to the best stopping point does not necessarily imply better quality of the recovered

image.

70

Figure 3.9: Analysis of PSNR Deviation in the Proposed Denoising-MB-ES

Algorithm with PSNR and SSIM Methods on CSet9 Images. Refer

to Table A-1 for more details.

Figure 3.10: Analysis of SSIM Deviation in the Proposed Denoising-MB-ES

Algorithm with PSNR and SSIM Methods on CSet9 Images. Refer

to Table A-1 for more details.

71

It can be observed that the PSNR method used in denoising-MB-ES

algorithm outperforms the SSIM method. From Table 3.6, The PSNR method

shows better performance with a deviation of -1.51030 % and -1.57398 % in

PSNR and SSIM, respectively. Therefore, PSNR method is preferrable for the

denoising-MB-ES algorithm.

Table 3.6: Comparison of PSNR and SSIM Deviations for the Proposed

Denoising-MB-ES Using PSNR and SSIM Method.

Metrics Method

PSNR SSIM

PSNR Deviation (%) -1.51030 -3.36419

SSIM Deviation (%) -1.57398 -3.21127

Note: A smaller deviation value (closer to zero) indicates better performance.

Please refer Table A-1 for further details.

3.8.2 Super-Resolution

Figure 3.11 shows the comparison of PSNR_INT and PSNR_GT curves for a

super-resolution process. Both curves measure the PSNR values obtained at

different iterations during the process. As can be seen from the curve, the value

of PSNR_INT curve generally increases with the number of iterations, which

does not reflect the same behaviour with the PSNR_GT curve. Hence, the PSNR

metric is not suitable because the curve does not provide a clear indication of

when to stop the super-resolution process. In other words, it is not clear from

the curve at which iteration the restored image has reached an acceptable level

of quality.

72

Figure 3.11: Relationship Between PSNR_GT and PSNR_INT During Super-

Resolution.

To address this issue, SSIM metric is used instead since it has a fixed

range between 0 and 1. Two metrics are utilized, namely SSIM_GT which

measures the SSIM between ground truth and recovered HR images, and

SSIM_INT which measures the SSIM between intermediate recovered HR

images. The SSIM_GT and SSIM_INT are using Equation (3.6) and Equation

(3.7), respectively, to plot the curves. Figure 3.12 shows that both SSIM_GT

and SSIM_INT curves share a similar trend.

Figure 3.12: Relationship Between SSIM_GT and SSIM_INT During Super-

Resolution.

73

However, the characteristic of the SSIM_INT curve for super-

resolution (see Figure 3.12) is distinct from that of the PSNR_INT curve for

denoising (see Figure 3.7). The PSNR_INT curve experiences a peak while the

SSIM_INT curve does not. Therefore, a subtype of MB-ES, specifically the

super-resolution-MB-ES, was developed with slight differences in stopping

point detection compared to denoising-MB-ES.

The performance of the super-resolution-MB-ES algorithm can be

influenced by three adjustable parameters, which are:

(i) Patience number: This parameter is similar to the denoising-

MB-ES algorithm and specifies the number of consecutive

steps required for the program to terminate.

(ii) Window size: This parameter specifies the number of records

stored inside the window for computing the slope.

(iii) Slope threshold: This parameter is utilized to compare with the

slope in order to decide when the process should be terminated.

It has been observed that the SSIM_INT curve initially increases

sharply, followed by a gradual increase towards the end, eventually becoming

“stable” with almost zero gradient. This characteristic is utilized to determine

the optimal stopping point in the super-resolution process. A sliding window

approach is employed to compute the slope for the SSIM records that are stored

in the window throughout the process. Notably, the sliding window approach is

fixed-length, unlike the denoising-MB-ES algorithm where the window size

keeps changing.

During the process, if the slope is greater than the threshold, the

algorithm updates the best recovered HR image with its corresponding stopping

point. The program will terminate once the computed slope is less than the

threshold for the desired consecutive number, and lastly it will return the best

HR image (as illustrated from Figure B-11 to Figure B-18). Figure 3.13

summarizes the super-resolution-MB-ES algorithm.

74

Figure 3.13: Flowchart of the Proposed Super-Resolution-MB-ES Algorithm

for Early Stopping Detection. Note: The “similarity” is SSIM

metric for super-resolution.

75

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

This chapter aims to analyse the performance of the proposed MB-ES algorithm

as compared to state-of-the-art methods. Before the benchmarking analyses,

investigation was performed on the proposed MB-ES algorithm to fine-tune the

parameter values for the optimal performance. The results from the fine-tune

process were utilized in the benchmarking analyses, which compared the

performance of the MB-ES algorithm with ES-EMV. Subsequently, the

denoising-MB-ES and super-resolution-MB-ES algorithms were compared

with other existing models. The comparisons are based on the quantitative

performance metrics, including PSNR and SSIM, as well as the qualitative

visual inspection of the processed images. The results demonstrate the

effectiveness and potential of the proposed models for real-world applications.

Additionally, the discussion on the benchmarking analyses will provides the

insights into the limitations and possible future improvements.

4.2 Investigation of Fine-tuning Parameter Values for the Proposed

MB-ES

In this subsection, the fine-tuning process and results for the parameters of the

MB-ES algorithm are discussed. The purpose of this investigation is to identify

the most suitable values for each parameter to enhance the algorithm's

performance in terms of both image quality and time consumption. CSet9

dataset and a variety of parameter values were tested. The primary evaluation

criteria focus on the resulting image quality, indicated by the deviation of PSNR

and SSIM. The average number of iterations is also taken into consideration as

a secondary evaluation criterion, in terms of time consumption.

76

4.2.1 Denoising-MB-ES Algorithm

Among the three adjustable parameters, only the window size multiplier has the

major effect on the performance. To study its impact, the window size multiplier

was modified to 50, 100, 200, and 300. The effect of the window size multiplier

on the deviations of PSNR and SSIM, as well as the average number of iterations,

is illustrated in Figure 4.1.

Figure 4.1: Relationship Between Window Size Multiplier and PSNR/SSIM

Deviations and Average Number of Iterations.

Hence, it is observed that a window size multiplier of 100 has the

lowest deviation in terms of both SSIM and PSNR. Additionally, it provides a

balanced trade-off in terms of the average number of iterations required.

Therefore, it can be concluded that a window size multiplier of 100 is the

optimal parameter value for the denoising-MB-ES algorithm.

4.2.2 Super-Resolution-MB-ES Algorithm

The super-resolution-MB-ES algorithm relies on three parameters: patience,

threshold, and window size, to achieve high-quality image restoration. The

following subsections describe the steps taken to analyze the relationship

between these parameters.

77

4.2.2.1 Slope Threshold Parameter Tuning

The default parameter values were set to patience = 1000 and window = 1000.

Figure 4.2 shows the relationship between the slope threshold parameter and the

deviations of PSNR and SSIM, as well as the average number of iterations.

Based on the results in Figure 4.2, the threshold parameter is fine-tuned to a

value of 2 × 10-6 since it has the lowest deviations in both PSNR and SSIM,

which are closer to zero.

Figure 4.2: Relationship Between Slope Threshold Parameter and

PSNR/SSIM Deviations and Average Number of Iterations (with

Patience = 1000, Window = 1000).

4.2.2.2 Patience Parameter Tuning

With the threshold parameter fixed at 2 × 10-6, Figure 4.3 shows the relationship

between the patience parameter and the deviations of PSNR and SSIM, as well

as the average number of iterations. The results in Figure 4.3 indicate that the

optimal value for the patience parameter is 700, as it has the least average

number of iterations compared to patience values of 800 and 900.

78

Figure 4.3: Relationship Between Patience Parameter and PSNR/SSIM

Deviations and Average Number of Iterations (with Slope

Threshold = 2 × 10-6, Window = 1000).

4.2.2.3 Window Size Tuning

With the threshold parameter fixed at 2 × 10-6 and the patience parameter fixed

at 700, Figure 4.4 shows the relationship between the window parameter and

the deviations of PSNR and SSIM, as well as the average number of iterations.

The results in Figure 4.4 suggest that the optimal window size is 1000, as it has

a lower average number of iterations compared to a window size of 800.

Figure 4.4: Relationship Between Window Parameter and PSNR/SSIM

Deviations and Average Number of Iterations (with Slope

Threshold = 2 × 10-6, Patience = 700).

79

4.2.2.4 Final Fine-Tuning

After the identification of optimal patience and window values as 700 and 1000,

respectively, further fine-tuning was done on the threshold parameter. Figure

4.5 shows the relationship between the threshold parameter and the deviations

of PSNR and SSIM, as well as the average number of iterations. Based on the

results in Figure 4.5, a threshold value of 2 × 10-6 is found to yield the best

balance between deviations of PSNR and SSIM, and average number of

iterations.

Figure 4.5: Relationship Between Slope Threshold Parameter and

PSNR/SSIM Deviations and Average Number of Iterations (with

Patience = 700, Window = 1000).

4.3 Comparison of the Proposed MB-ES (PSNR) and ES-EMV

(Variance)

To investigate the performance, both models were compared on denoising tasks

using DIP model to provide a fair comparison, as the original author

implemented the models for this task. The ES-EMV model was tested using its

default settings, while MB-ES was configured with the fine-tuned values. A

total of 162 runs were conducted, following the similar procedures described in

the preliminary investigation of Section 3.8.1. Results are presented in Figure

4.6 and Figure 4.7, which show the PSNR and SSIM deviations of both models

on the CSet9 dataset, respectively. A deviation % closer to 0 indicates a closer

match to the ground truth. It can be observed that images with different noise

80

conditions (Gaussian, Speckle and Shot) exhibit diverse restoration results

owing to their unique characteristics. Nevertheless, the proposed MB-ES (red)

performs better than the ES-EMV (blue) in most of the test images for different

noise conditions. Both models excel at reducing low levels of noise as they

generally cause less distortion in image quality compared to high levels of noise.

However, the proposed MB-ES is better at removing high noise-level images

than the ES-EMV.

Figure 4.6: Comparison of PSNR Deviation Between the Proposed MB-ES

with ES-EMV for the Denoising on CSet9 Images. Refer to Table

A-2 for more details.

81

Figure 4.7: Comparison of SSIM Deviation Between the Proposed MB-ES with

ES-EMV for the Denoising on CSet9 Images. Refer to Table A-2

for more details.

Table 4.1 summarizes the comparison between the proposed MB-ES

and the ES-EMV model. It can be observed that MB-ES is able to deliver better

PSNR and SSIM deviations. However, the Baboon images with low- and high-

level noises exhibit huge PSNR and SSIM deviations for both models. It might

due to the presence of high-frequency components in images. This issue is to be

investigated in future research.

Table 4.1: Comparison of PSNR and SSIM Deviations Between the Proposed

MB-ES and ES-EMV.

Metric Algorithm

ES-EMV MB-ES

PSNR Deviation (%) -2.18683 -1.51030

SSIM Deviation (%) -2.80937 -1.57398

82

Note: A smaller deviation value (closer to zero) indicates better performance.

Please refer Table A-2 for further details.

Table 4.2 highlights the comparison between MB-ES and ES-EMV

with a focus on their stopping point detection. MB-ES offers several advantages

over ES-EMV. Firstly, MB-ES requires fewer iterations (1813.500 < 2507.685)

to detect the stopping point, resulting in a shorter time for image recovery.

Secondly, both MB-ES and ES-EMV require low memory usage. However,

MB-ES only considers the performance metric between intermediate images,

while ES-EMV utilizes the variance method, which requires dealing with many

pixels of the entire image. Lastly, MB-ES has lower design complexity as it only

relies on intermediate images, while ES-EMV requires proofing of

mathematical formulas and equations to implement the variance method, which

demands background knowledge related to the field.

Table 4.2: Comparison of the Proposed MB-ES and ES-EMV.

Comparison Aspect ES-EMV MB-ES

Average Number of Iterations 2507.685 1813.500

Memory Usage Low Very Low

Design Complexity High Low

Note: Please refer to Table A-2 for further details on the average number of

iterations.

4.4 Comparison of the Proposed Denoising-MB-ES and Other

Denoising Models

To validate the efficiency of the proposed MB-ES in real-world denoising, the

algorithm was applied to some related iterative denoising models, which are the

deep-decoder, DD (Heckel and Hand, 2018), Stochastic Gradient Langevin

Dynamics, SGLD (Cheng et al., 2019) and DIP (Ulyanov et al., 2018). Since

the proposed method is implemented based on DIP, it serves as the baseline for

comparison. The detected and best stopping points for each model, labelled as

“current detection” and “best detection” respectively, are identified from the

intermediate PSNR curve (PSNR_INT). The current detection is determined

83

from the PSNR_INT using the MB-ES algorithm, while the best detection is the

recommended stopping point that yields the highest PSNR between the restored

image and the ground truth. Typically, the best detection is located at the peak

of the PSNR_GT curve. Each iterative denoising models yields different

stopping point due to their unique restoration algorithms. To illustrate the

performance comparison of denoising models in low- and high-level noise,

Figure 4.8 and Figure 4.9 show the denoising results for the F16 image.

Figure 4.8: Comparison of Low-level Speckle Denoising Results on F16 image

for DD*, SGLD* and DIP*: Analysis of PSNR_INT against (a)

PSNR_GT and (b) SSIM_GT. Note: The superscript “*” indicates

the MB-ES was applied to the model. Further details can be found

in Table A-3.

DD*

SGLD*

DIP*

(a) (b)

84

Figure 4.9: Comparison of High-level Speckle Denoising Results on F16 image

for DD*, SGLD* and DIP*: Analysis of PSNR_INT Against (a)

PSNR_GT and (b) SSIM_GT. Note: The superscript “*” indicates

the MB-ES was applied to the model. Further details can be found

in Table A-3.

Figure 4.8 and Figure 4.9 demonstrate that the proposed MB-ES

algorithm is successful in detecting the PSNR_GT peak during the restoration

process. This indicates that the algorithm can effectively identify the best

recovered image and achieve a quality close to the ground truth. In addition,

PSNR method for MB-ES was able to detect the stopping point that closely

corresponds to the SSIM_GT peak. However, minor differences were observed

between the best and detected stopping points, which can be considered in future

studies. Figure 4.10 shows a visual representation of the denoised images

obtained using MB-ES on the discussed denoising models.

DD*

SGLD*

DIP*

(a) (b)

85

86

Figure 4.10: Denoising Results of DD*, SGLD* and DIP* on Low- and High-

Level Speckle Noises Images: F16, Peppers and kodim03. Note:

The superscript “*” indicates the MB-ES was applied to the model.

The performance metrics was measured in the form of (PSNR,

SSIM, RMSE).

It can be clearly seen that the airplane label of F16 and caps label of

kodim03 have been successfully denoised under both low and high noise levels.

For Pepper image, the edges of the peppers are effectively preserved while

maintaining the details. Hence, the proposed MB-ES is capable of detecting the

optimal stopping point for noise removal in iterative restoration models.

4.5 Comparison of the Proposed Super-Resolution-MB-ES and Other

Super-Resolution Models

The performance evaluation of super-resolution involved four models: the

classical bicubic interpolation method, and two deep learning-based models,

SRCNN (Dong et al., 2016), ESPCN (Shi et al., 2016), as well as DIP model

(Ulyanov et al., 2018). In order to perform a comprehensive evaluation of their

capabilities, the performance of the models was compared using downsampling

SF of 2, 3, and 4 on the input images. For instance, an image of size 512 × 512

was downsampled to sizes of 256 × 256 (SF = 2), 170 × 170 (SF = 3), and 128

× 128 (SF = 4). This allows a thorough analysis of the models' performance

across different levels of image resolution, enabling a more accurate assessment

of their effectiveness. Figure 4.11 and Figure 4.12 present the results of the

comparison between these models in terms of PSNR and SSIM, respectively.

87

Figure 4.11: Comparison of PSNR for Super-Resolution Models on CSet9

Dataset with Scaling Factors 2, 3, and 4. Note: The superscript “*”

indicates the MB-ES was applied to the model. Please refer to

Table A-4 for further details.

Figure 4.12: Comparison of SSIM for Super-Resolution Models on CSet9

Dataset with Scaling Factors 2, 3, and 4. Note: The superscript “*”

indicates the MB-ES was applied to the model. Please refer to

Table A-4 for further details.

88

It can be observed that the DIP model outperforms the classical bicubic

method and is on par with the recent deep learning models, SRCNN and ESPCN

It is worth noting that the DIP model has advantages in terms of being an

untrained model compared to the trained models, SRCNN and ESPCN.

However, there is one exception for the Baboon image where the high-

frequency spectrum does not favour the super-resolution algorithm of DIP.

Figure 4.13, Figure 4.14 and Figure 4.15 illustrate the visual

representation of the images obtained from multiple models tested for super-

resolution at different SF values. It can be clearly seen that the eaves of House

image and human eyes of Lena image were successfully recovered for all super-

resolution models. However, the image quality was getting reduced as the

downsampled SF increases to a value of four, resulting in mosaic effects

especially for the bicubic and SRCNN models. Among the super-resolution

models, ESPCN has the best visualisation quality due to its unique algorithm

and extensive training dataset. On the other hand, the DIP model is able to

produce exceptional performance without any mosaic effects on the recovered

images. For the Baboon image, the fur edges could not be successfully

recovered by any of the models at a scaling factor of 4 due to the inherent nature

of the image itself. In general, it can be concluded that DIP using MB-ES is able

to still deliver outstanding performance in super-resolution process as compared

to the classical and deep-learning based methods.

89

Figure 4.13: Super-Resolution Results of Bicubic, SRCNN, ESPCN and DIP* on Different Scaling Factors of House Image. Note: The superscript

“*” indicates the MB-ES was applied to the model. The performance metrics was measured in the form of (PSNR, SSIM, RMSE).

House (SF = 2)

House (SF = 3)

House (SF = 4)

90

Figure 4.14: Super-Resolution Results of Bicubic, SRCNN, ESPCN and DIP* on Different Scaling Factors of Lena Image. Note: The superscript

“*” indicates the MB-ES was applied to the model. The performance metrics was measured in the form of (PSNR, SSIM, RMSE).

Lena (SF = 2)

Lena (SF = 3)

Lena (SF = 4)

91

Figure 4.15: Super-Resolution Results of Bicubic, SRCNN, ESPCN and DIP* on Different Scaling Factors of Baboon Image. Note: The superscript

“*” indicates the MB-ES was applied to the model. The performance metrics was measured in the form of (PSNR, SSIM, RMSE).

Baboon (SF = 2)

Baboon (SF = 3)

Baboon (SF = 4)

92

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Conventional image restoration methods using filters require careful selection

of relevant features from individual images. This is not always possible and has

becoming increasingly complex with a greater number of features involved.

While deep learning-based methods can address the shortcomings of

conventional image restoration methods, the training process is computational

expensive and requires availability of huge datasets. The model training takes

considerable time depending on the processing speed of hardware resources.

Furthermore, dataset is not always available. Lately, DIP, a learning-free

approach to image restoration has emerged as an alternative. DIP uses an

untrained convolutional neural network with random initialization. However,

DIP requires pre-defined stopping point to recover image, which is impractical

in reality. Moreover, different images have their own characteristics that lead to

various optimal stopping points. Hence, this study highlights the benefits of

using intermediate images to evaluate metrics such as PSNR and SSIM in image

restoration, which are applied to the DIP method.

The proposed MB-ES method provides better performance than the

ES-EMV method in terms of the average number of iterations taken to detect

the optimal stopping point and return the best quality image. Apart from that,

the proposed MB-ES algorithm can be applied on the recent iterative denoising

model, and is proven to be effective in tracking the peak of the curve between

restored images and ground truth, resulting in obtaining the best quality image.

Furthermore, the proposed MB-ES algorithm for super-resolution tasks

outperforms the classical bicubic method and shows comparable performance

with recent deep learning super-resolution models. It is worth mentioning that

the DIP model does not require pre-training on massive datasets and still

delivers decent performance on image restoration tasks.

93

5.2 Recommendations for future work

In terms of future work, there are several areas that can be explored to further

improve the effectiveness of the proposed MB-ES approach on the DIP model.

Besides, the capabilities of the DIP architecture in restoring images can be

further enhanced. Some potential future works include:

(i) The DIP architecture can be modified to enhance the behaviour

of the intermediate images curve for efficient detection of the

best quality image. These modifications might include the

selection of the network, number of layers, loss function,

optimizer, and other relevant hyperparameters.

(ii) Additionally, alternative metrics beyond PSNR or SSIM could

be implemented to evaluate intermediate images such as a blend

of PSNR and SSIM, or other metrics. These modifications

potentially improve image restoration outcomes for various

tasks beyond those examined in this study, such as deblurring

or inpainting, and provide further insights into the effectiveness

of the approach for different types of image degradation.

(iii) To overcome the limitation of dataset selection, a more diverse

range of datasets can be considered for evaluation.

94

REFERENCES

A.M, R., W.M, K., M.A, E. and Aoud, M., 2014. Fast NAS-RIF Algorithm

Using Iterative Conjugate Gradient Method. Signal & Image Processing: An

International Journal, 5(2), pp.63–72.

Boyat, A.K. and Joshi, B.K., 2015. A Review Paper: Noise Models in Digital

Image Processing. Signal & Image Processing an International Journal, [e-

journal] 6(2), pp.64–75. http://doi.org/10.5121/sipij.2015.6206.

Cheng, Z., Gadelha, M., Maji, S. and Sheldon, D., 2019. A Bayesian Perspective

on the Deep Image Prior. IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), [e-journal], pp.5438-5446.

https://doi.org/10.1109/CVPR.2019.00559.

Das, Sanjib, Saikia, J., Das, Soumita and Goñi, N., 2015. A COMPARATIVE

STUDY OF DIFFERENT NOISE FILTERING TECHNIQUES IN DIGITAL

IMAGES. International Journal of Engineering Research and General Science,

3(5), pp.180–191.

Dong, C., Loy, C.C., He, K. and Tang, X., 2016. Image Super-Resolution Using

Deep Convolutional Networks. IEEE Transactions on Pattern Analysis and

Machine Intelligence, [e-journal] 38(2), pp.295-307.

https://doi.org/10.1109/TPAMI.2015.2439281.

Eigen, D., Puhrsch, C. and Fergus, R., 2014. Depth Map Prediction from a

Single Image using a Multi-Scale Deep Network, [online] Available at:

<http://arxiv.org/abs/1406.2283> [Accessed: 31 August 2022].

Fisher, R., Perkins, S., Walker, A. and Wolfart, E., 2003, Image Processing

Learning Resources: Conservative Smoothing. [online] Available at:

<https://homepages.inf.ed.ac.uk/rbf/HIPR2/csmooth.htm#:~:text=Conservativ

e%20smoothing%20is%20a%20noise,sharp%20edges)%20in%20an%20imag

e.> [Accessed: 31 August 2022].

Gholizadeh-Ansari, M., Alirezaie, J. and Babyn, P., 2020. Deep Learning for

Low-Dose CT Denoising. Journal of Digital Imaging, [e-journal] 33(2), pg.504-

515. https://doi.org/10.1007/s10278-019-00274-4.

Great Learning Team, 2020, Introduction to Image Pre-processing | What is

Image Pre-processing?. [online] Available at:

<https://www.mygreatlearning.com/blog/introduction-to-image-pre-

processing/> [Accessed: 5 September 2022].

Heckel, R. and Hand, P., 2018. Deep Decoder: Concise Image Representations

from Untrained Non-convolutional Networks, [online] Available at:

<https://arxiv.org/abs/1810.03982> [Accessed: 28 March 2023].

95

Hendrycks, D. and Dietterich, T., 2019. Benchmarking Neural Network

Robustness to Common Corruptions and Perturbations, [online] Available at:

<https://arxiv.org/abs/1903.12261> [Accessed: 5 September 2022].

Isogawa, K., Ida, T., Shiodera, T. and Takeguchi, T., 2018. Deep Shrinkage

Convolutional Neural Network for Adaptive Noise Reduction. IEEE Signal

Processing Letters, 25(2), pp.224–228.

https://doi.org/10.1109/LSP.2017.2782270.

Jiang, M., 2006. Image Processing and Analysis: Variational, PDE, Wavelet,

and Stochastic Methods. BioMedical Engineering OnLine, [e-journal] 5(1), p.38.

https://doi.org/10.1186/1475-925X-5-38.

Kanrar, S., and Maji, S., 2022. A Study on Image Restoration and Analysis. In:

Kumar, N., Shahnaz, C., Kumar, K., Abed Mohammed, M., Raw, R.S., eds.

2022. Advance Concepts of Image Processing and Pattern Recognition.

Transactions on Computer Systems and Networks. [e-book] Springer, Singapore.

https://doi.org/10.1007/978-981-16-9324-3_3.

Khare, C., Nagwanshi, K. and Nagwanshi, 2011. Implementation and Analysis

of Image Restoration Techniques. International Journal of Computer Trends

and Technology-May to June Issue 2011, [e-journal] 54, pp.1–6.

http://ijcttjournal.org/Volume1/issue-2/ijcttjournal-v1i2p12.pdf.

Kim, J., Lee, J.K. and Lee, K.M., 2016a. Accurate Image Super-Resolution

Using Very Deep Convolutional Networks. 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), [e-journal] pp.1646-1654.

https://doi.org/10.1109/CVPR.2016.182.

Kim, J., Lee, J.K. and Lee, K.M., 2016b. Deeply-Recursive Convolutional

Network for Image Super-Resolution. 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), [e-journal] pp. 1637-1645.

https://doi.org/10.1109/CVPR.2016.181.

Kitchener, M.A., 2012. Investigations into image restoration. PhD thesis,

University of Wollongong, [online] Available at:

<https://ro.uow.edu.au/theses/3900/> [Accessed: 8 September 2022].

Kupyn, O. et al., 2018. DeblurGAN: Blind Motion Deblurring Using

Conditional Adversarial Networks. 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, [e-journal] pp. 8183-8192.

https://doi.org/10.1109/CVPR.2018.00854.

Kupyn, O., Martyniuk, T., Wu, J. and Wang, Z., 2019. DeblurGAN-v2:

Deblurring (Orders-of-Magnitude) Faster and Better. 2019 IEEE/CVF

International Conference on Computer Vision (ICCV), [e-journal] pp. 8877-

8886. https://doi.org/10.1109/ICCV.2019.00897.

96

Lu, H. et al., 2017. Underwater Optical Image Processing: A Comprehensive

Review, [online] Available at: <https://arxiv.org/abs/1702.03600> [Accessed: 8

September 2022].

Madam Nimisha, T., Sunil, K. and Rajagopalan, A.N., 2018. Unsupervised

Class-Specific Deblurring. Proceedings of the European Conference on

Computer Vision (ECCV), [online] pp.353–369. Available at:

<http://www.ee.iitm.ac.in/ipcvlab/> [Accessed: 2 September 2022].

Mahony, N.O. et al., 2019. Deep Learning vs. Traditional Computer Vision,

[online] Available at: <http://arxiv.org/abs/1910.13796> [Accessed: 2

September 2022].

Nah, S., Kim, T.H. and Lee, K.M., 2017. Deep Multi-scale Convolutional

Neural Network for Dynamic Scene Deblurring. 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), [e-journal] pp.257-265.

https://doi.org/10.1109/CVPR.2017.35.

Navaneethakrishnan, R., 2014. A Comparative Study and Analysis of Image

Restoration Techniques Using Different Images Formats. International Journal

of Advanced Research, 1(3), pp.131–137.

Rani, S., Jindal, S. and Kaur, B., 2016. A Brief Review on Image Restoration

Techniques. International Journal of Computer Applications, [e-journal]

150(12), pp.30-33. http://doi.org/10.5120/ijca2016911623.

Richardson, W.H., 1972. Bayesian-Based Iterative Method of Image

Restoration. Journal of the Optical Society of America, 62, pp.55–59.

Sharma, Swati, Sharma, Shipra and Mehra, R., 2013. Image Restoration using

Modified Lucy Richardson Algorithm in the Presence of Gaussian and Motion

Blur. Research India Publications, [online] 3(8), pp.1063–1070. Available at:

<https://www.ripublication.com/aeee/056_pp%20%20%20%201063-1070.pdf>

[Accessed: 2 September 2022].

Shi, W. et al., 2016. Real-Time Single Image and Video Super-Resolution Using

an Efficient Sub-Pixel Convolutional Neural Network. 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), [e-journal] pp.1874-1883.

https://doi.org/10.1109/CVPR.2016.207.

Shimamura, Tetsuya, Furuya, H. and Eda, S., 2009. Image restoration via

Wiener filtering with improved noise estimation, [online] <Available at:

https://www.researchgate.net/publication/229052293> [Accessed: 2 September

2022].

Shocher, A., Cohen, N. and Irani, M., 2018. Zero-Shot Super-Resolution using

Deep Internal Learning. 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, [e-journal] pp.3118-3126.

https://doi.org/10.1109/CVPR.2018.00329.

97

Su, J., Xu, B. and Yin, H., 2022. A survey of deep learning approaches to image

restoration. Neurocomputing, [e-journal] 487(1), pp.46–65.

https://doi.org/10.1016/j.neucom.2022.02.046.

Tai, Y., Yang, J., Liu, X. and Xu, C., 2017. MemNet: A Persistent Memory

Network for Image Restoration. 2017 IEEE International Conference on

Computer Vision (ICCV), [e-journal] pp.4549-4557.

https://doi.org/10.1109/ICCV.2017.486.

Ulyanov, D., Vedaldi, A. and Lempitsky, V., 2018. Deep Image Prior. 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition, [e-journal]

pp.9446-9454. https://doi.org/10.1109/CVPR.2018.00984.

Wang, H. et al., 2021. Early Stopping for Deep Image Prior, [online] Available

at: <http://arxiv.org/abs/2112.06074> [Accessed: 28 March 2023].

Yadav, S., Jain, C. and Chugh, A., 2016. Evaluation of Image Deblurring

Techniques. International Journal of Computer Applications, [e-journal]

139(12), pp.32-36. http://doi.org/10.5120/ijca2016909492.

Ye, J.C., Han, Y. and Cha, E., 2018. Deep Convolutional Framelets: A General

Deep Learning Framework for Inverse Problems. SIAM Journal on Imaging

Sciences, [e-journal] 11(2), pp.991-1048. https://doi.org/10.1137/17M1141771.

Zhang, H., Dai, Y., Li, H. and Koniusz, P., 2019. Deep Stacked Hierarchical

Multi-Patch Network for Image Deblurring. 2019 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), [e-journal] pp.5971-5979.

https://doi.org/10.1109/CVPR.2019.00613.

Zhang, K. et al., 2017. Beyond a Gaussian Denoiser: Residual Learning of Deep

CNN for Image Denoising. IEEE Transactions on Image Processing, [e-journal]

26(7), pp.3142-3155. https://doi.org/10.1109/TIP.2017.2662206.

Zhang, K., Zuo, W. and Zhang, L., 2018. FFDNet: Toward a Fast and Flexible

Solution for CNN based Image Denoising. IEEE Transactions on Image

Processing, [e-journal] 27(9), pp.4608-4622.

https://doi.org/10.1109/TIP.2018.2839891.

Zheng, Y., 1989. A Fast Image Deblurring Algorithm Using the Wiener Filter

and the Hartley Transform. In: Thompson Donald O. and Chimenti, D.E., eds.

1989. Review of Progress in Quantitative Nondestructive Evaluation: Volume

8, Part A and B. Springer US, Boston, MA, pp. 735–742.

Zhu, Y. and Huang, C., 2012. An Improved Median Filtering Algorithm for

Image Noise Reduction. Physics Procedia, [e-journal] 25, pp.609–616.

http://doi.org/10.1016/j.phpro.2012.03.133.

98

APPENDICES

Appendix A

Appendix A: Additional Tables

Table A-1: Overall Comparison of Denoising-MB-ES Algorithm Performance

on CSet9 Images based on PSNR and SSIM Methods. The best

score is highlighted in red.

Image Noise Level Noise Type

PSNR Method SSIM Method

Deviation (%) Deviation (%)

PSNR SSIM PSNR SSIM

Lena

Low

Speckle -0.61577 0.00811 -0.42199 -0.22789

Gaussian -0.53790 -0.07276 -1.83726 -0.72321

Shot -0.65177 -0.07755 -1.15422 -0.63493

High

Speckle -2.10159 0.29957 -12.08527 -8.54549

Gaussian -0.77817 -0.27958 -10.50054 -6.39849

Shot -1.12962 -0.26873 -12.04512 -7.84358

House

Low

Speckle -1.62460 -0.26190 -1.22761 -0.24192

Gaussian -0.81667 -0.05310 -1.18159 -0.18664

Shot -1.58575 0.16139 -1.77645 -0.18445

High

Speckle -2.21733 0.09623 -1.61099 -0.47667

Gaussian -1.22780 0.14431 -2.94424 -0.65962

Shot -2.32439 0.44584 -3.39373 -0.79523

F16

Low

Speckle -0.91919 -0.07680 -2.49951 -0.56049

Gaussian -0.45661 -0.32679 -0.22181 -0.11658

Shot -1.78424 -0.16707 -2.86503 -0.71871

High

Speckle -2.36519 1.38238 -2.54406 -0.59867

Gaussian -1.51400 -0.37720 -3.56199 -1.27238

Shot -3.3143 0.61851 -2.10446 -0.88788

Peppers

Low

Speckle -0.37862 -0.02120 -0.71649 -0.20382

Gaussian -0.72568 -0.70207 -1.56851 -0.61950

Shot -0.83702 -1.10534 -2.09640 -0.57826

High

Speckle -0.65834 0.18280 -1.80747 -0.85450

Gaussian -0.45283 0.07510 -2.16237 -0.83168

Shot -0.48751 -0.05531 -2.66673 -0.74319

kodim01

Low

Speckle -0.41704 -0.43217 0.08253 -0.08308

Gaussian -0.65694 -1.24820 0.05696 -0.55976

Shot -0.68046 -1.30495 -0.41853 -1.83928

High

Speckle -0.47369 -0.64682 -1.12875 -4.61360

Gaussian -0.79105 -1.97890 -1.90475 -4.81007

Shot -0.47435 -0.74474 -6.03004 -12.43427

kodim02 Low

Speckle -1.36064 -0.90849 -4.66236 -2.76410

Gaussian -2.11769 -1.33488 -2.86159 -2.02938

Shot -0.80612 -0.37096 -3.40882 -2.10258

99

High

Speckle -0.68677 -0.33656 -1.30691 -0.60549

Gaussian -2.19071 -0.72003 -3.20912 -1.68206

Shot -0.90468 -0.28160 -1.01308 -0.54103

kodim03

Low

Speckle -0.30322 -0.07469 -5.03724 -2.59298

Gaussian -0.50200 -0.18108 -3.99036 -1.80705

Shot -1.15672 -0.22841 -3.96045 -1.69144

High

Speckle -1.20334 -0.24147 -3.01072 -1.23371

Gaussian -0.88843 0.05729 -4.19772 -1.28846

Shot -1.47964 0.10834 -5.33545 -1.59937

kodim12

Low

Speckle -1.06630 -0.17939 -4.22734 -1.43718

Gaussian -0.80805 -0.10259 -5.40409 -2.15940

Shot -1.52984 -0.45597 -4.72892 -1.64616

High

Speckle -3.05227 0.12072 -3.12247 -0.96943

Gaussian -1.08043 0.12643 -5.04509 -1.39661

Shot -2.63025 -0.00409 -3.69749 -0.97397

Baboon

Low

Speckle -4.60521 -12.68824 -4.87232 -13.46522

Gaussian -3.34769 -11.37382 -6.04949 -17.94385

Shot -4.51421 -12.52342 -4.60517 -13.38317

High

Speckle -4.21210 -12.20148 -4.44957 -13.15723

Gaussian -4.28815 -12.02414 -4.18284 -12.29107

Shot -3.82350 -12.38953 -4.95113 -15.40369

Average -1.51030 -1.57398 -3.36419 -3.21127

100

Table A-2: Overall Comparison of Denoising Performance of Proposed MB-ES

and ES-EMV on CSet9 Images. The best score is highlighted in red.

Image Noise Level Noise Type

ES-EMV MB-ES

Deviation (%)
SP

Deviation (%)
SP

PSNR SSIM PSNR SSIM

Lena

Low

Speckle -0.87157 -0.02125 1858 -0.61577 0.00811 1827

Gaussian -0.45601 -0.04834 1734 -0.5379 -0.07276 1825

Shot -0.61949 0.03390 1501 -0.65177 -0.07755 1570

High

Speckle -2.30761 -0.00273 892 -2.10159 0.29957 898

Gaussian -1.02203 0.03636 1053 -0.77817 -0.27958 1038

Shot -1.66766 -0.29522 877 -1.12962 -0.26873 898

House

Low

Speckle -0.81472 -0.11774 1472 -1.6246 -0.26190 1680

Gaussian -0.52396 0.01309 1314 -0.81667 -0.05310 1213

Shot -2.16771 -0.01989 1419 -1.58575 0.16139 1016

High

Speckle -3.13974 0.21071 664 -2.21733 0.06713 751

Gaussian -1.52369 0.32322 984 -1.2278 0.17341 859

Shot -1.87765 0.64487 742 -2.32439 0.44584 549

F16

Low

Speckle -1.14151 -0.02570 1917 -0.91919 -0.07680 1770

Gaussian -0.68620 -0.07301 2046 -0.45661 -0.32679 2283

Shot -1.24433 0.20394 1632 -1.78424 -0.16707 1736

High

Speckle -2.94088 1.18013 873 -2.36519 1.38238 922

Gaussian -0.94180 -0.02140 1211 -1.51400 -0.37720 1489

Shot -4.90841 0.00706 916 -3.31430 0.61851 948

Peppers

Low

Speckle -0.40574 -0.20862 3403 -0.37862 -0.02120 1930

Gaussian -0.40646 -0.25171 3576 -0.72568 -0.70207 2542

Shot -0.42921 0.04092 2512 -0.83702 -1.10534 2118

High

Speckle -0.89608 0.07516 1681 -0.65834 0.18280 1176

Gaussian -0.95648 -0.21403 2098 -0.45283 0.07510 1242

Shot -0.83620 0.13427 1801 -0.48751 -0.05531 1225

kodim01

Low

Speckle -1.43642 -2.22123 3423 -0.41704 -0.43217 2929

Gaussian -1.48776 -2.55615 2782 -0.65694 -1.24820 1945

Shot -1.93326 -3.65193 2140 -0.68046 -1.30495 1520

High

Speckle -1.22534 -2.77200 1743 -0.47369 -0.64682 1436

Gaussian -1.68448 -3.35932 1471 -0.79105 -1.97890 1014

Shot -1.94548 -3.95596 1456 -0.47435 -0.74474 1166

kodim02

Low

Speckle -1.48842 -0.75737 2121 -1.36064 -0.90849 1324

Gaussian -1.87576 -1.20941 1319 -2.11769 -1.33488 869

Shot -2.70271 -1.59829 1192 -0.80612 -0.37096 882

High

Speckle -1.57953 -0.54656 1117 -0.68677 -0.33656 887

Gaussian -2.64475 -1.06396 882 -2.19071 -0.72003 601

Shot -1.62973 -0.65146 762 -0.90468 -0.28160 615

kodim03
Low

Speckle -1.65447 -0.74681 2581 -0.30322 -0.07469 2298

Gaussian -1.02335 -0.42048 2082 -0.50200 -0.18108 1620

Shot -1.59828 -0.51143 1645 -1.15672 -0.22841 1229

High Speckle -1.27940 -0.15715 1400 -1.20334 -0.24147 904

101

Gaussian -1.98709 -0.25335 1275 -0.88843 0.05729 828

Shot -0.88261 0.19538 1450 -1.47964 0.10834 847

kodim12

Low

Speckle -1.46139 -0.00491 2141 -1.0663 -0.17939 2825

Gaussian -1.06872 -0.33032 2041 -0.80805 -0.10259 2431

Shot -1.63745 0.10023 1717 -1.52984 -0.45597 1807

High

Speckle -3.10362 0.74423 1034 -3.05227 0.12072 1017

Gaussian -1.70767 0.13823 1370 -1.08043 0.12643 1599

Shot -2.76019 0.16165 1168 -2.63025 -0.00409 1312

Baboon

Low

Speckle -7.8426 -22.26031 434 -4.60521 -12.68824 531

Gaussian -7.40393 -21.52717 498 -3.34769 -11.37382 733

Shot -7.77718 -22.27885 462 -4.51421 -12.52342 535

High

Speckle -6.64162 -20.50244 593 -4.2121 -12.20148 532

Gaussian -7.45738 -21.61997 367 -4.28815 -12.02414 518

Shot -6.38305 -19.69263 573 -3.8235 -12.38953 670

Average -2.18683 -2.80937 1507.685 -1.51030 -1.57398 1313.500

Extra Iteration for Stagnation 1000 500

Total Number of Iterations 2507.685 1813.500

Note: SP refer to stopping point.

Table A-3: Overall Comparison of Performance of Speckle Denoising Models

on CSet9 Images.

Image Noise Level

Denoising Models

DD* SGLD* DIP*

PSNR SSIM PSNR SSIM PSNR SSIM

Baboon
Low 21.05359 0.63941 19.41878 0.47936 19.74172 0.50368

High 20.63256 0.59591 19.15094 0.46952 19.32553 0.49387

F16
Low 26.27490 0.90613 27.99586 0.91194 28.36041 0.91800

High 26.41065 0.91123 23.52331 0.86579 23.66905 0.87978

House
Low 30.38619 0.94975 32.67716 0.95561 32.32693 0.95314

High 30.60149 0.94920 28.28808 0.93525 28.21635 0.94030

Lena
Low 28.83876 0.89055 29.09199 0.90596 29.05964 0.89012

High 29.08991 0.89216 25.77598 0.86812 25.93133 0.86554

Peppers
Low 26.50702 0.86063 28.35424 0.88884 28.58978 0.88623

High 26.33956 0.85968 26.04932 0.85330 26.14788 0.85759

kodim01
Low 23.37928 0.71661 25.83101 0.81426 26.67326 0.84105

High 24.02313 0.76360 24.22916 0.74150 24.63131 0.77417

kodim02
Low 27.74385 0.85870 29.21487 0.86647 30.39825 0.88475

High 27.59092 0.85430 28.86322 0.85756 28.52538 0.85450

kodim03
Low 28.59014 0.89542 29.56377 0.90259 30.65272 0.91574

High 28.50474 0.88774 28.47510 0.88897 28.55639 0.89005

kodim12
Low 26.32414 0.87458 29.13812 0.89036 29.33887 0.88959

High 26.40252 0.87314 25.99917 0.86277 26.37522 0.86504

Note: The superscript “*” indicates the MB-ES was applied to the model.

102

Table A-4: Overall Comparison of Performance of Super-Resolution Models

on CSet9 Images. The best and second-best scores are highlighted

in red and blue, respectively.

Image Factor

Super-Resolution Models

Bicubic SRCNN ESPCN DIP*

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Baboon

2 20.7695 0.7867 22.9102 0.8244 24.3335 0.8608 22.9956 0.7871

3 20.9033 0.7088 21.3265 0.7172 22.1300 0.7520 20.4400 0.6484

4 20.6022 0.6290 20.4878 0.6424 21.2311 0.6779 20.7211 0.6233

F16

2 24.8609 0.9262 29.3636 0.9570 32.9751 0.9790 31.4889 0.9666

3 25.3046 0.9195 26.4625 0.9166 29.1376 0.9505 25.5693 0.9123

4 25.0130 0.8995 24.5397 0.8650 27.2378 0.9205 27.0501 0.9238

House

2 30.9390 0.9659 34.5140 0.9790 42.5858 0.9967 40.3861 0.9870

3 31.9799 0.9655 31.8093 0.9579 39.3516 0.9877 31.8456 0.9584

4 31.6426 0.9557 29.5416 0.9198 35.3827 0.9725 35.6944 0.9678

Lena

2 27.4002 0.9198 31.2525 0.9499 34.9920 0.9692 32.8765 0.9470

3 28.1882 0.9102 28.6310 0.9113 31.7397 0.9437 28.0248 0.9030

4 28.0816 0.8929 26.8520 0.8639 29.8713 0.9187 29.8725 0.9097

Peppers

2 26.3416 0.9059 29.6982 0.9418 33.0547 0.9660 31.5948 0.9308

3 26.4937 0.8971 27.3501 0.9054 30.5546 0.9462 26.1031 0.8878

4 26.1771 0.8828 26.1205 0.8617 28.9430 0.9258 27.8420 0.9023

kodim01

2 22.3921 0.8015 24.4631 0.8330 26.8168 0.8801 25.8549 0.8546

3 22.5176 0.7347 22.9444 0.7272 23.9494 0.7691 22.2905 0.7010

4 22.1406 0.6642 21.9625 0.6426 22.7064 0.6854 22.7928 0.6911

kodim02

2 28.8643 0.9166 31.9016 0.9437 33.1831 0.9541 32.2053 0.9381

3 29.2645 0.9017 30.1883 0.9105 31.0911 0.9235 28.4309 0.8874

4 28.7402 0.8768 29.4551 0.8895 30.1688 0.9026 29.5725 0.8887

kodim03

2 28.9941 0.9330 31.8467 0.9534 34.1140 0.9697 33.0805 0.9591

3 29.3750 0.9193 30.1685 0.9236 31.5655 0.9411 29.3823 0.9168

4 28.9438 0.9019 28.9961 0.8916 30.4288 0.9205 30.2543 0.9164

kodim12

2 27.5453 0.9198 31.1125 0.9457 33.2345 0.9594 32.8173 0.9473

3 27.9519 0.9031 28.4163 0.9050 30.2455 0.9264 27.6597 0.8978

4 27.1571 0.8809 27.0239 0.8697 28.7153 0.8994 28.7106 0.8967

Note: The superscript “*” indicates the MB-ES was applied to the model.

103

Appendix B: Additional Figures

Appendix B

Figure B-1: Demonstration of Early Stopping Detection by Denoising-MB-ES

(Stage 1)

Figure B-2: Demonstration of Early Stopping Detection by Denoising-MB-ES

(Stage 2). Note: The window size multiplier in this algorithm is

fixed at 100. The slope is computed from the best fit line, which is

represented in orange.

1st Detected Peak

(430, 32.2417)

Recovered Image at

iteration = 430

430 530

window size = 100

slope = negative

104

Figure B-3: Demonstration of Early Stopping Detection by Denoising-MB-ES

(Stage 3).

Figure B-4: Demonstration of Early Stopping Detection by Denoising-MB-ES

(Stage 4). Note: In cases where the slope is positive, the initial peak

detected at iteration = 430 will be eliminated, and the algorithm will

proceed to search for another peak.

630 430

window size = 200

slope = negative

730 430

window size = 300

slope = positive

105

Figure B-5: Demonstration of Early Stopping Detection by Denoising-MB-ES

(Stage 5).

Figure B-6: Demonstration of Early Stopping Detection by Denoising-MB-ES

(Stage 6).

2nd Detected Peak

(1911, 31.6012)

Recovered Image at

iteration = 1911

2011 1911

window size = 100

slope = negative

106

Figure B-7: Demonstration of Early Stopping Detection by Denoising-MB-ES

(Stage 7).

Figure B-8: Demonstration of Early Stopping Detection by Denoising-MB-ES

(Stage 8).

window size = 200

slope = negative

2111 1911

window size = 300

slope = negative

2211 1911

107

Figure B-9: Demonstration of Early Stopping Detection by Denoising-MB-ES

(Stage 9).

Figure B-10: Demonstration of Early Stopping Detection by Denoising-MB-ES

(Stage 10). Note: The patience number is set to 5. As previously

stated, the window size increases by 100 at each step. If the slope

is negative for all windows (e.g., window sizes ranging from 100

to 500), the program will terminate at iteration = 2411 and return

the image with the highest quality, which is obtained at iteration =

1911.

window size = 400

slope = negative

2311 1911

2411 1911

window size = 500

slope = negative

Terminated at Detected Recovered

Image

108

Figure B-11: Demonstration of Early Stopping Detection by Super-Resolution-

MB-ES (Stage 1). Note: The window will calculate the slope for

every iteration, but for the sake of simplicity, analysis will be

performed selectively.

Figure B-12: Demonstration of Early Stopping Detection by Super-Resolution-

MB-ES (Stage 2). Note: The computed slope is more than

threshold of 2 × 10-6.

1000 0

window size = 1000

slope = 6.6193 × 10-6

109

Figure B-13: Demonstration of Early Stopping Detection by Super-Resolution-

MB-ES (Stage 3). Note: The computed slope is more than

threshold of 2 × 10-6.

Figure B-14: Demonstration of Early Stopping Detection by Super-Resolution-

MB-ES (Stage 4). Note: The computed slope is more than

threshold of 2 × 10-6.

1100 100

window size = 1000

slope = 1.4056 × 10-5

2000 1000

window size = 1000

slope = 5.3077 × 10-6

110

Figure B-15: Demonstration of Early Stopping Detection by Super-Resolution-

MB-ES (Stage 5). Note: The computed slope is more than

threshold of 2 × 10-6.

Figure B-16: Demonstration of Early Stopping Detection by Super-Resolution-

MB-ES (Stage 6). Note: The computed slope is now approaching

the threshold of 2 × 10-6.

3000 2000

window size = 1000

slope = 3.9926 × 10-6

5000 4000

window size = 1000

slope = 2.0589 × 10-6

111

Figure B-17: Demonstration of Early Stopping Detection by Super-Resolution-

MB-ES (Stage 7). Note: The computed slope is less than threshold

of 2 × 10-6. The “wait_count” will begin to increase.

Figure B-18: Demonstration of Early Stopping Detection by Super-Resolution-

MB-ES (Stage 8). Note: The “wait_count” equals to the “patience”

of 700 at iteration = 5895.

5195 4195

window size = 1000

slope = 1.9989 × 10-6

5895 4895

Terminated at 5895
Detected

Recovered Image

= 5195

5195 4195

Patience = 700

