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ABSTRACT 

 

Conventional image restoration methods often require careful feature selection 

and fine-tuning, which can be a complicated process and not always possible. 

On the other hand, Deep-learning (DL) models rely heavily on the datasets 

availability and neural network architecture, which can lead to reduced 

performance if the network is poorly designed. Recently, Deep Image Prior 

(DIP), a learning-free approach to image restoration has emerged as an 

alternative. However, DIP requires a pre-defined early stopping, which can limit 

its practical applications. Hence, this project aims to improve image restoration 

through DIP and address the limitation mentioned. This research proposes the 

use of Metric-based Early Stopping (MB-ES) with the DIP model for image 

denoising and super-resolution tasks. The proposed MB-ES algorithm utilizes 

intermediate restored images to identify the optimal stopping point using PSNR 

and SSIM metrics, thus eliminating the need for pre-defined early stopping. The 

results show that MB-ES requires fewer iterations to obtain a better-quality 

image and has lower design complexity as compared to the existing Early 

Stopping using Exponential Moving Variance (ES-EMV). The proposed MB-

ES algorithm with DIP is then evaluated on both image denoising and super-

resolution tasks, and compared with classical and deep learning-based methods. 

The results show that the proposed MB-ES algorithm achieves remarkable 

performance in detecting the stopping point that closely resembles the ground 

truth. In general, the proposed MB-ES on DIP outperforms classical methods 

and shows comparable performance with recent deep-learning-based models. It 

is worth noting that DIP does not require heavy training on massive datasets to 

achieve the performance that DL models possess. The findings of this research 

are hoped to benefit practical applications especially when dataset is not 

available and computational resource is limited for DL.  
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Image restoration can be treated as an inverse problem in image processing to 

recover a high-quality image from a corrupted image. Image restoration is 

unavoidable as the images are often degraded during the data acquisition process. 

Image degradation may result in blurring, information loss due to sampling, 

quantization effects, and numerous types of noise. As its name implies, image 

restoration attempts to reconstruct an image from its deteriorated original data. 

It has a wide range of applications, including astronomical imaging, remote 

sensing, medical imaging, microscope imaging, photographic deblurring and 

others (Khare et al., 2011).  

Digital image processing is superior to analogue image processing, 

where it offers a greater variety of algorithms that can be applied to the image 

data, thereby mitigate issues like noise and distortion. There are numerous 

approaches to image restoration, the two most common of which are filter-based 

and deep learning-based. Nevertheless, each approach comes with its strengths 

as well as drawbacks. In order to achieve a higher level of performance, the 

architecture design for both approaches have been made extremely complicated 

by integrating a variety of sub-modules. (Mahony et al., 2019). Although the 

performance has improved, the cost has also increased accordingly. More 

recently, a novel method known as a deep image prior with the use of 

handcrafted image priors has emerged (Ulyanov et al., 2018). This approach 

does not involve any learning and still delivers outstanding performance. 

 

1.2 Importance of the Study 

Image quality can be improved from either hardware or software perspective. 

Although upgrading of hardware specification is a possible option to get higher 

quality images, it also comes with additional cost. Moreover, there are 

unavoidable hardware limitations in practise such as sensor imperfection, sensor 

noises or even faulty sensor. In addition, there are external factors that must be 
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taken into consideration such as underwater distortion, low light environment, 

and motion blur.  

Recently, many researchers have focused on the development from the 

software perspective such as super-resolution, image deblurring, and image 

denoising. They can mitigate the effects caused by the aforementioned factors 

without overhead hardware cost and especially crucial when various factors are 

considered. 

Hence, this study focuses on improving image restoration without 

incurring any upgrades and additional expenses on hardware. In general, image 

restoration is one of the most important steps in image pre-processing. It is 

critical to enhance the image data by reducing artifacts or enhancing features 

that will be useful for further analysis and post-processing (Great Learning 

Team, 2020). Besides, this study is hoped to benefit applications that require 

accurate data for model training to gain better performance. 

 

1.3 Problem Statement 

Problem statements for the current study of image restoration are summarized 

as follows: 

(i) In real life, the image acquired will be always degraded due to 

the limitation and flaws in the imaging and capturing process. 

For example, image degradation due to non-linear and space-

variant factors such as random noise signals, underwater 

photography, camera misfocus, low-light environment and 

others (Boyat and Joshi, 2015; Lu et al., 2017; Jiang, 2006). 

(ii) Conventional image restoration methods require a careful 

selection of relevant features from each individual image before 

it can be applied to the specific image restoration process. This 

becomes more complicated when greater number of features are 

involved. In addition, the researcher must work with numerous 

variables in order to fine-tune each feature definition (Mahony 

et al., 2019). Therefore, developing a high-quality image 

restoration model will be a long and cumbersome process. 

(iii) Deep learning (DL) has become popular in various applications 

involving image processing and analysis. However, DL models 
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rely heavily on the provided training datasets and neural 

network architecture. The performance could be significantly 

downgraded if the architecture of the neural network is poorly 

designed. Besides that, training a DL model can also take a 

considerable amount of time as it depends on the processing 

speed of the hardware resources (Mahony et al., 2019). Hence, 

the architecture structure of the neural network is required to be 

properly designed to enhance training speed while retaining 

performance. 

(iv) Deep image prior (DIP), a learning-free approach to image 

restoration that proposes using an untrained convolutional 

neural network with random initialization, has recently 

proposed. This method takes in a corrupted image and uses a 

prior derived from the network’s parameters, iteratively 

produces a restored image as the output (Ulyanov et al., 2018). 

However, this approach requires fine-tuning of 

hyperparameters and stopping criteria for various image 

restoration tasks to obtain the desired results. 

 

1.4 Aim and Objectives 

This project aims to improve image quality through image restoration 

techniques. The detailed objectives of this project are listed as follows: 

(i) To provide a comprehensive study on image restoration, in 

terms of tasks and techniques involved. 

(ii) To investigate the underlying issues of image restoration tasks 

using DIP. 

(iii) To propose a suitable image restoration method solution in DIP 

to address the issue identified. 

 

1.5 Scope and Limitation of the Study 

This project focuses on the study of image restoration tasks and the methods. 

State-of-the-art techniques for image restoration are reviewed. In addition, this 

study further investigates the feasibility of the image restoration approaches and 

evaluates their application to various types of degradation models. 
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Within the scope of this project, the performance for image restoration 

method is evaluated based on selected datasets, which might differ from the 

original resources. The investigation covers limited datasets and test images but 

in numbers that are adequate for the study. Besides that, the project only 

considers some of the noise models that are commonly encountered in real 

world, given the large variety of noise types that exist. 

 

1.6 Contribution of the Study 

This study focuses on the use of DIP in image restoration, which is a relatively 

new approach compared to classical and deep learning techniques. One of the 

main benefits of DIP is that it does not require large datasets for machine 

learning. However, DIP does have its limitations, particularly in fine-tuning 

parameters. The most critical parameter is early stopping to obtain the best 

quality image at a specific iteration during the process. This study aims to 

contribute to the research on DIP by highlighting its benefits and limitations. To 

address the effectiveness in determining the best image during the DIP 

restoration process, Metric-based Early Stopping (MB-ES) has been proposed 

in this study. It is hoped to benefit other researchers who are working with the 

DIP approach in image restoration. 

 

1.7 Outline of the Report 

This report comprises five chapters. Chapter 1 provides an overview of the study, 

including its importance, problem statement, aim and objectives, scope and 

limitations, and contributions. Chapter 2 presents a literature review of the 

related works. Chapter 3 explains the methodology, work plan, and the proposed 

early stopping detection method to improve the image restoration performance 

using DIP model. Chapter 4 discusses the results and the comparison with other 

models. Lastly, Chapter 5 concludes the study and provides recommendations 

for future work. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

In general, the images we see in the real world are continuous signals. Therefore, 

the analogue information of the visuals is sampled digitally to record and store 

the image efficiently. An image is a collection of pixel arrays arranged in 

columns and rows. For instance, a colour image with dimensions of 3 × 320 × 

640 will have a total of 614 400 pixels. These pixels represent the signal 

intensity for each point inside the image. The higher the pixel intensity, the 

brighter the colour will be observed at that particular location, and vice versa. 

This section first provides background on digital images and the degradation of 

image quality due to the wide variety of phenomena. To understand the presence 

of artifacts in images, blur and noise models are reviewed, as illustrated in 

Figure 2.1. Accordingly, some image restoration methods are explored and 

discussed, as outlined in Figure 2.2. 

 

 

Figure 2.1: Overview of Images Types and Image Degradation Models. 
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Figure 2.2: Overview of Image Restoration Methods. 

 

2.2 Basic Types of Images 

There are basically three types of images which are binary, grayscale, and colour 

images as shown in Figure 2.3. The following subsections provide further 

details. 
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Figure 2.3: Sample of Image Models. 

 

2.2.1 Binary Images 

Binary images are images that have been reduced to only two-pixel values 

which are 0 and 255, representing black and white, respectively. They are 

widely utilised in applications where the silhouette of an object contains all the 

necessary information, such as text interpretation and object orientation 

identification. This binary form of data is essential because the output of edge 

detection in digital image processing might hold a binary form. Typically, a 

grayscale image can be thresholded to create binary images using Equation (2.1), 

 

 𝑓(𝑥, 𝑦) = {
255 for 𝑔 > 𝛼

0 for 𝑔 ≤ 𝛼
} (2.1) 

 

where 

𝑓(𝑥, 𝑦) is the function of image 

𝑔 = gray level 

𝛼 = threshold value 

 

2.2.2 Grayscale Images 

In general, grayscale images are stored using 8-bit integers, which gives rise to 

a total of 256 possible different shades of grey. The range of grey shades varies 

between pure black (0) to pure white (255). Grayscale is commonly used 

nowadays due to its simple algorithm and lower computational demands. In 

contrast, colour images require a more complex representation of pixel arrays, 

which increases the amount of training data and processing speed needed. 

 

Binary Grayscale Colour 
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2.2.3 Colour Images 

Colour images are usually composed of three bands of monochrome arrays each 

representing a different colour. For example, the red-green-blue (RGB) colour 

scheme resembles how the retina’s receptors perceive colour. RGB model 

utilizes additive colour mixing and is the fundamental colour model that is used 

in web graphics, television, computers and others. For printing and filters 

purposes, the cyan-magenta-yellow (CMY) colour scheme is used instead of 

RGB. The function of RGB models can be expressed in Equation (2.2), 

 

 𝑓(𝑥, 𝑦) = [

𝑟(𝑥, 𝑦)

𝑏(𝑥, 𝑦)

𝑔(𝑥. 𝑦)
] (2.2) 

 

where 

𝑟(𝑥, 𝑦) = red channel 

𝑏(𝑥, 𝑦) = blue channel 

𝑔(𝑥, 𝑦) = green channel 

 

2.3 Image Degradation Models 

2.3.1 Blur Models 

A blurring image is obtained after the localized averaging of pixels, that leads 

to a loss in image sharpness. Common culprits for this blurring effect include 

lens defocus, changes in the refractive indices of photographic images, or 

relative motion between the camera and the object being captured. Typically, 

blurring is modelled by convolving an image with a point spread function (PSF), 

which is a kernel of a specific size containing data for the convolution process. 

PSFs are categorized as either spatially invariant or spatially variable. In the 

former case, the PSF remains the same for all image pixels, while in the latter, 

the PSF varies for different image pixels. Figure 2.4 illustrates some blurring 

models including motion blur, out-of-focus blur, and environmental blur. 
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Figure 2.4: Sample of Blurring Models. 

 

2.3.1.1 Motion Blur 

Motion blur is a result of the relative movement between an object and an image 

acquisition device. The movement path must be predicted in order to restore a 

motion-blurred image. For example, the PSF can be a blur kernel that resembles 

the movement of the camera during the image capture. The blur is spatially 

invariant if the camera is moved with respect to the stationary scene. Hence, the 

PSF for motion blur can be modelled using Equation (2.3) (Kitchener, 2012), 

 

 𝑃𝑆𝐹(𝑥, 𝑦; 𝐿, 𝜃) = {
  
1

𝐿
, if √𝑥2 + 𝑦2 ≤

𝐿

2
for

𝑥

𝑦
= tan 𝜃

  0 , elsewhere

} (2.3) 

 

where 

𝐿 = length of blur 

𝜃 = angle of blur 

 

2.3.1.2 Out-of-focus Blur 

Typically, the out-of-focus blur appears in the form of a circular disc which is 

also known as a circle of confusion (COC). The COC diameter depends on 

factors such as the aperture number, focal length, and the distance between the 

lens and the object being captured. The lens acts as a low pass filter that 

eliminates high-frequency spectrum when the image acquisition device is out-

of-focus. The PSF for out-of-focus blur is modelled using Equation (2.4) 

(Kitchener, 2012), 

 

Motion Blur Out-of-Focus Blur Environmental Blur 
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 𝑃𝑆𝐹(𝑥, 𝑦; 𝑟) = {
1

𝜋𝑟2
,   if √𝑥2 + 𝑦2 ≤ 𝑟2

0,   elsewhere
} (2.4) 

 

where 

𝑟 = radius of blur 

 

2.3.1.3 Environmental Blur 

Natural phenomena such as the bending and scattering of light through materials 

with different refractive indices can lead to a degradation of image quality. For 

instance, the underwater images are distorted due to wavelength absorption 

which reduces the colour intensity. On top of that, there is a strong correlation 

between the probability of wavelength absorption and the salinity of the water. 

The PSF of environmental blur can be derived from Gaussian distribution, as 

shown in Equation (2.5) (Kitchener, 2012), 

 

 𝑃𝑆𝐹(𝑥, 𝑦; 𝜎ℎ
2) = 𝑐 exp (−

𝑥2 + 𝑦2

2𝜎ℎ
2 ) (2.5) 

 

where 

𝜎ℎ
2 = variance of blur 

𝑐 = normalization constant 

 

2.3.2 Noise Models 

Image noise can be defined as random fluctuation in pixel intensity that 

degrades the original image by adding irrelevant and meaningless content in 

terms of colour or brightness information. The extent of this degradation 

depends primarily on the frequency distribution of the noise source. Figure 2.5 

shows the common noises which are Gaussian, Impulsive/Salt-and-Pepper, 

Shot/Poisson, and Speckle noises. The model of a noisy image can be expressed 

in Equation (2.6), 

 

 𝐴 = 𝐵 + 𝑁 (2.6) 
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where 

𝐴 = Noisy image 

𝐵 = Original image 

𝑁 = Noise signal 

 

 

Figure 2.5: Sample of Different Types of Noise Models. 

 

2.3.2.1 Gaussian Noise 

Gaussian noise is a noise that statistically possesses a bell-shaped probability 

density function, which is similar to a normal distribution as shown in Figure 

2.6. Hence, the noisy image is made up where each pixel is the summation of 

the original pixel with a noise value that followed Gaussian distribution. One of 

the most common applications is additive white Gaussian noise (AWGN). The 

probability density function (PDF) of Gaussian distribution is shown in 

Equation (2.7) (Rani et al., 2016), 

 

 𝑃𝐷𝐹𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 =
1

√2𝜋𝜎𝑁

𝑒
− 

(𝑔−𝑚𝑓)
2

2𝜎𝑁
2

 (2.7) 

 

where 

𝜎𝑁 = standard deviation of noise 

𝑔 = grey level measurement 

Original Gaussian Salt-and-Pepper 

Poisson Speckle 
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𝑚𝑓 = mean of the function 

 

 

Figure 2.6: Graphical Representation of PDF for Gaussian Noise (Source: 

Kanrar and Maji, 2022). 

 

2.3.2.2 Impulsive Noise 

Impulse noise, also referred to as salt-and-pepper noise, is characterized by the 

presence of white and black pixels that are randomly distributed throughout the 

image. On average, the noise affects less than 0.1% of the pixels. Impulse noise 

is typically caused by errors in data transfer and can have a very high intensity. 

The corrupted pixels are either set to 0 (pepper noise) or 255 (salt noise), while 

the rest of the pixels remain unaffected. Impulse noise is commonly found in 

faulty memory locations, errors in an analogue-to-digital converter, 

malfunctioning camera sensors, and other similar situations. The PDF of sale-

and-pepper noise is expressed in Equation (2.8) (Rani et al., 2016), 

 

 𝑃𝐷𝐹𝑠𝑎𝑙𝑡−𝑎𝑛𝑑−𝑝𝑒𝑝𝑝𝑒𝑟 = {
𝑃𝑠𝑎𝑙𝑡 for 𝑔 = salt

𝑃𝑝𝑒𝑝𝑝𝑒𝑟 for 𝑔 = pepper
} (2.8) 

 

where 

𝑃𝑠𝑎𝑙𝑡 = the probability of salt granule 

𝑃𝑝𝑒𝑝𝑝𝑒𝑟 = the probability of pepper granule 

𝑔 = grey level measurement 

 

2.3.2.3 Shot Noise 

Shot noise or Poisson noise which is obtained from electromagnetic sources 

such as visible lights, x-rays, gamma rays and others. It is a fundamental type 

of uncertainty related to light measurement due to the independence of photon 

detections and the quantized nature of light. The fluctuation of photons emitted 
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by these sources results in an image that is spatially and temporally 

unpredictable. 

 

2.3.2.4 Speckle Noise 

In digital and optical computer vision, speckle noise is one of the fundamental 

issues during the image restoration process. Unlike Gaussian and salt-and-

pepper noises, it is multiplicative which can be obtained by multiplying 

randomized pixel values with various image pixels. The image quality is 

diminished by the granular interference of speckle noise. Such noise mostly 

occurs in Synthetic Aperture Radar (SAR), medical images, lasers and others. 

The PDF of speckle noise is followed by a gamma distribution (see Figure 2.7) 

which is expressed in Equation (2.9) (Kanrar and Maji, 2022), 

 

 𝑃𝐷𝐹𝑆𝑝𝑒𝑐𝑘𝑙𝑒 =
𝑎𝑏𝑔(𝑏−1)

(𝑏 − 1)!
 𝑒−𝑎𝑔 (2.9) 

 

where 

𝑎 and 𝑏 = intensity values 

𝑔 = grey level measurement 

 

 

Figure 2.7: Graphical Representation of PDF for Speckle Noise (Source: Kanrar 

and Maji, 2022). 

 

2.4 Classical Image Restoration Methods 

2.4.1 Linear Filter 

Generally, linear filtering can be used to remove noise from an image. There are 

particular filters that are suitable for this task, such as the averaging filter and 

the Gaussian filter. For instance, an averaging filter can be used to eliminate 
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grain noise in an image. Local fluctuations caused by grain are eliminated by 

averaging each pixel’s neighbours. In fact, linear filtering is defined as a process 

at which the value of an output pixel is calculated by adding together the values 

of all the neighbouring input pixels linearly. This is achieved through 

convolution, where each output pixel is computed as a weighted sum of adjacent 

input pixels. A kernel or filter matrix is used during the convolution process to 

perform the linear operation. One major drawback of the convolution filter is 

that it is not effective in dealing with all types of noise. Figure 2.8 shows sample 

outputs with different types of linear filters. 

 

 

Figure 2.8: Denoising Outputs Using Linear Filters. 

 

2.4.1.1 Average Filter 

The fundamental mean filter is a simple noise reduction technique that replaces 

the value of each pixel in an image with the average value of the pixels around 

it, including itself. This can be accomplished using a convolution kernel with 

coefficients that all have the same value. The mean filter computes the average 

value of the neighbouring pixels for each central pixel in the image, resulting in 

noise reduction. Figure 2.9 illustrates a convolution process between a matrix 

with a 3 × 3 square kernel matrix. 

 

 

Figure 2.9: Convolution Process of Average Filter. 

Noisy Image Average Filter Gaussian Filter 
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From Figure 2.8, it can be observed that the output image appears 

smoother, but the edges of the pixels have been affected. The presence of a 

single outlier pixel can significantly alter the average value of its neighbouring 

pixels. When the filter’s neighbourhood spans an edge, it interpolates new 

values for border pixels, resulting in a substantial softening of the boundary. 

This could be problematic if the desired output needs to have sharp edges. 

 

2.4.1.2 Gaussian Filter 

Gaussian smoothing is a method of image processing that uses a two-

dimensional (2D) convolution operator to blur the image and get rid of the noise 

details. It shares some similarities with the mean filter, but the only difference 

is due to the kernel applied, which is an approximation of Gaussian distribution. 

During the convolution process, the center of the filter receives the most weight, 

while the significance decreases as it moves away from the center. Figure 2.10 

demonstrates the convolution process between a matrix with a 3 × 3 Gaussian 

kernel. 

 

 

Figure 2.10: Convolution Process of Gaussian Filter. 

 

The Gaussian filter is able to produce an image with more details as 

compared to the uniform weights of an average filter. It is due to the 

characteristic of Gaussian distribution, where the average weights more heavily 

focused on the values of the central pixels. Hence, given a similar size of the 

kernel, the Gaussian filter outperforms the average filter by smoothing the 

image more moderately while preserving edges.  
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2.4.2 Non-linear Filter 

In the previous section, all of the linear methods listed above yield the same 

result: the image’s structure, lines, and edges are blurred. This is because a linear 

filter is unable to eliminate noise caused by a single pixel with a high spike 

intensity that can significantly impact the weighted average of a kernel. As a 

result, it is inevitable to strike a balance between removing noise and preserving 

image details. Hence, non-linear filters are developed to rectify this issue by 

being able to get rid of any single outlier intensity values, such as the maximum 

or minimum filter, conservative filter, median filter, bilateral blurring filter and 

others. 

 

2.4.2.1 Maximum Filter and Minimum Filter 

The minimum and maximum filters give the minimum and maximum values in 

a moving region of the original image. The former replaces the central pixel 

with the darkest value among its neighbouring pixels, while the latter replaces 

it with the lightest value. Figure 2.11 shows the denoising outputs from both 

filters in removing the salt-and-pepper noise, respectively. 

 

 

Figure 2.11: Denoising Outputs Using Minimum and Maximum Filters. 

 

It can be observed that the edges have been successfully preserved, but 

the denoising performance is not optimal as some noise is still present in both 

cases. 

 

2.4.2.2 Median Filter 

The median filter is a popular image noise reduction technique, similar to the 

mean filter, but with the added benefit of preserving more important image 

Salt-and-Pepper Noise Minimum Filter Maximum Filter 
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details. Unlike the mean filter, it uses the median value of neighbouring pixels 

instead of their average to replace the pixel's original value. This algorithm sorts 

the pixel values in numerical order to compute the median value, which is then 

used to replace the central pixel. Figure 2.12 demonstrates the calculation of the 

median value from a pixel neighbourhood. 

 

 

Figure 2.12: Calculation of Median Value with 3 × 3 Kernel. 

 

Figure 2.13 depicts the denoising output of a median filter applied to 

remove salt-and-pepper noise. It is noticeable that the noise granules have been 

effectively removed from the degraded image. This is because the median filter 

replaces the central pixel value with the median value of the surrounding pixels, 

which preserves the original information. Hence, the impact of salt-and-pepper 

noise on the median filter is less significant than on the average value, as the 

median is less likely to be skewed by outliers. As a result, the median filter does 

not produce artificial pixel values when it spans an edge because the median 

value always corresponds to the value of any of the neighbouring pixels. 

Therefore, this is the reason the median filter is far superior to the mean filter in 

maintaining the sharpness of edges. 

 

 

Figure 2.13: Denoising Output Using Median Filter to Remove Salt-and-Pepper 

Noise. 

Salt-and-Pepper Noise Recovered Image 
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Nevertheless, the median filter is difficult to calculate and can be rather 

costly since the sorting of values into numerical order is considerably time-

consuming and slow. Hence, a smart algorithm was developed to enhance the 

efficiency by taking advantage of the reappearance of the neighbouring pixels 

when the window is slide over an image (Zhu and Huang, 2012). 

 

2.4.2.3 Conservative Filter 

The conservative filter is an image noise reduction technique that uses a fast and 

simple filtering algorithm to preserve high spatial frequency details in an image. 

However, it is less effective in removing additive noise, such as Gaussian noise, 

as it is favourably towards removing clusters of pixels or noise spikes with 

unusually low or high pixel intensity, like salt-and-pepper noise. Typically, 

noise is assumed to have a high spatial frequency and can be reduced by making 

each pixel's intensity comparable with its neighbouring pixels. Unlike average 

and median filtering, conservative smoothing ensures that each pixel’s intensity 

is within its neighbours’ range. The overall process of a conservative filter can 

be described in the following procedures (Fisher et al., 2003): 

(i) Minimum and maximum pixel intensity values are determined 

by considering all the surrounding pixels within a windowed 

region. 

(ii) The central pixel of the image is carried over to the output 

image without any modifications if its intensity falls within the 

intensity ranges of neighbouring pixels. 

(iii) If the intensity of the central pixel is greater than the maximum 

value of its surrounding pixels, it will be replaced with the 

maximum value, and vice versa. 

 

Figure 2.14 depicts the denoising outputs using conservative filter to 

remove salt-and-pepper noise at different levels. Although it does not eliminate 

as much noise as the median filter, it is able to preserve more details such as 

edge sharpness. However, this method is only suitable for cases with low levels 

of salt and pepper noise, as demonstrated in Figure 2.14. It is less effective when 

the image is heavily corrupted, with multiple pixels in the neighbourhood being 

affected. 
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Figure 2.14: Comparison between the Performance of Conservative Filter and 

Median Filter due to Different Salt-and-Pepper Noise Levels. 

 

2.4.2.4 Bilateral Blurring Filter 

Blurring images to minimize noise and details has a side effect of losing image 

edges. Hence, bilateral blurring is utilized to reduce noise while preserving 

edges. The algorithm of bilateral blurring includes two Gaussian distributions. 

The first Gaussian function considers only spatial neighbours, while the second 

considers neighbouring pixel intensity, ensuring that only related pixels are 

included in the blur computation. If nearby pixels within the same 

neighbourhood possess similar values, it is reasonable to assume they are both 

referring to the same entity. However, if they have different values, it can be 

inferred that they are referred to the boundary or edge of an object. Compared 

to the aforementioned methods, the main drawback of this filter is its 

Conservative Filter Median Filter Noise Level = 0.01 

Noise Level = 0.10 Conservative Filter Median Filter 

Noise Level = 0.05 Conservative Filter Median Filter 
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considerably slow processing speed. Figure 2.15 shows the result of removing 

Gaussian noise with a bilateral filter. 

 

 

Figure 2.15: Removal of Gaussian Noise with Bilateral Filter. 

 

2.4.3 Non-blind Deconvolution for Image Restoration 

This type of image restoration method requires prior knowledge of the 

parameters of PSF such as its angle and length. In this section, Lucy-Richardson 

(L-Rich), Wiener filter and regularized filtering deconvolution methods will be 

discussed.  

 

2.4.3.1 Lucy-Richardson (L-Rich) Deconvolution 

L-Rich Deconvolution is a non-blind method that is used to restore a degraded 

image with a known PSF. In the early 1970s, the L-Rich deconvolution method 

gained significant attention in the fields of astronomy and medical imaging. This 

method was initially derived using Bayes’ theorem (Richardson, 1972). The 

parameters of the reconstructed image are modelled with the use of Bayesian 

statistics probability distribution to image restoration methods. The latent image 

and the PSF are both restored simultaneously by the algorithm through an 

iterative process, where the pixels are given by, 

 

 𝑑𝑖 = ∑ 𝑝𝑖𝑗𝑢𝑗 (2.10) 

 

where 

𝑑𝑖 = observed value at the position-𝑖 

Original Gaussian Noise Recovered 
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𝑝𝑖𝑗  = PSF from the true location of position- 𝑗  relative to the observation 

position-𝑖 

𝑢𝑗  = latent image at position-𝑗 

 

The iterative equation for estimating the most likely restored image 

model is obtained by rearranging Equation (2.10), resulting in Equation (2.11): 

 

 𝑢𝑗
(𝑡+1)

=  𝑢𝑗
(𝑡)

∑
𝑑𝑖

𝑐𝑖
𝑝𝑖𝑗

𝑖

 (2.11) 

 

where 

𝑐𝑖 = ∑ 𝑝𝑖𝑗  𝑢𝑗
(𝑡)

𝑗   

 

However, according to the study, they claimed that the convergence of 

the L-Rich iteration is relatively very slow due to the non-linear algorithm. 

Besides that, the number of iterations must be manually set for each image based 

on the PSF size in order to produce a restored image of excellent quality. Despite 

this drawback, this method is widely used because of its ability to achieve 

maximum likelihood implementation and produce high-quality reconstructions 

even in the presence of significant noise levels. Figure 2.16 demonstrates the 

process of blurring an image with a random PSF, while Figure 2.17 shows the 

deblurring process of the blurred image and noisy blurred image by adopting 

the L-Rich blind deconvolution method, respectively. 

 

 

Figure 2.16: Blurring of an Image with a Given Random PSF. 

 

Original Image Original PSF Blurred Image 



22 

 

Figure 2.17: Example of Output Using Lucy-Richardson Deconvolution for (a) 

Blurred Image, and (b) Noisy Blurred Image. 

 

The obtained images from both degradation models have high 

resolution and better quality, which is attributed to the simplicity of Fourier 

transformation requiring less computation. However, the main problem with the 

L-Rich method is the presence of a ringing effect, which can be observed in both 

images. As a result, a modified L-Rich method was proposed by Sharma et al. 

(2013), which divides the discrete wavelet transform (DWT) of the degraded 

image into four sub-frequencies bands, with each being subsequently applied to 

the L-Rich method. 

 

2.4.3.2 Wiener Filter Deconvolution 

Wiener filtering is also a non-blind algorithm used to restore degraded images. 

It is widely applied in several fields such as echo cancellation, linear prediction, 

channel equalization, signal restoration and others. The Wiener filter is capable 

of eliminating both the additive noise and the blurring at the same time, making 

it a two-in-one process. This is achieved by performing deconvolution through 

inverse filtering (high-pass filtering) while simultaneously removing noise with 

(a) 

(b) 

Restored Image Reconstructed PSF 

Restored Image Reconstructed PSF 
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a compression operation (low-pass filtering). The objective of this method is to 

determine the restoration function that best approximates the original image so 

that the mean square error can be minimized as much as possible. The 

deconvolution output can be modelled as Equation (2.12), 

 

 𝐵′ = 𝑓𝑊 ∗ (𝐵 + 𝑁) (2.12) 

 

where 

𝐵′ = estimated image 

𝑓𝑊 = function of Wiener Filter 

 

Figure 2.18 shows that the Wiener Filter deconvolution algorithm is 

able to estimate the PSF effectively to recover the image. The optimal trade-off 

between inverse filtering and noise smoothing allows the filter to 

simultaneously remove additive noise and invert the blurring. Another 

advantage of the Wiener filter is its ability to incorporate the power spectra of 

the original image and additive noise, without the concern of singularity in 

inverse filtering. 

 

 

Figure 2.18: Example of Output from Wiener Filter Deconvolution. 

 

Despite its effectiveness, the Wiener filter has some limitations. The 

inverse filtering approach is highly susceptible to the presence of additive noise, 

making it difficult to accurately estimate the power spectra and achieve optimal 

restoration results. As a solution, a modified noise estimation that proposed by 

Shimamura et al. (2009) that considers the noise power spectrum in both low 

Blurred Image Recovered Image 
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and high-frequency regions. Furthermore, Wiener filters are fairly slow to be 

used since the operation is always involved in the frequency response domain 

(Das et al., 2015). Hence, the fast Hartley transform (FHT) had been integrated 

with the Wiener filter to improve the speed of the deblurring process (Zheng, 

1989). 

 

2.4.3.3 Regularized Filter Deconvolution 

Regularized filtering is an effective technique when the smoothness of an image 

is constrained and there is limited information about additive noise. It utilizes a 

constrained least square restoration algorithm to restore sharpness and remove 

noise from a noisy and blurred image. Regularized filtering requires less prior 

knowledge compared to the Wiener filter to apply restoration. This approach 

can be helpful when no statistical information is provided. Additionally, the 

regularized filtering framework can be modified to handle image edges, 

spatially varying noise, and other challenges. Figure 2.19 shows the restoration 

process of a given blurred and noisy image using regularized filtering 

deconvolution. 

 

 

Figure 2.19: Example of Output from Regularized Filtering Deconvolution. 

 

2.4.4 Blind Deconvolution Image Restoration 

As its name implies, blind deconvolution is a method of deconvolution that 

involves no prior information regarding the PSF of a degraded image. This 

approach enables the target image to be recovered from a single blurred image 

or a group of blurred images even when the PSF is unknown. It can be done 

Blurred and Noisy Image Recovered Image 
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using either an iterative or non-iterative approach. In the iterative approach, the 

PSF estimation is updated with each iteration, and the improved PSF is then 

used to refine the final image until it more closely resembles the original image. 

In contrast, the non-iterative method applies an algorithm that uses external 

information to recover the PSF for image restoration (Navaneethakrishnan, 

2014). 

Besides that, blind deconvolution can be further classified into two 

types: projection-based and maximum-likelihood methods. The former restores 

the PSF and true image simultaneously, while the latter estimates the blur 

parameters, including the PSF and covariance matrices. As a result, the former 

approach is less sensitive to noise and can easily support size irregularities, 

while the latter approach provides low computational complexity and facilitates 

the estimation of blur, noise, and power spectra of the image (Yadav et al., 2016).  

Table 2.1 demonstrates that blind deconvolution outperforms other 

non-blind methods in terms of mean square error (MSE), root mean square error 

(RMSE) and peak signal-to-noise ratio (PSNR). However, A.M et al. (2014) 

have identified three major drawbacks to blind deconvolution: 

(i) Accurate knowledge of the PSF is crucial for achieving better 

performance. 

(ii) Some PSFs do not have frequency zeros, which can lead to 

inaccurate PSF estimation. 

(iii) The presence of additive noise can mask the frequency-domain 

nulls and result in performance degradation. 

 

Table 2.1: Evaluation Metrics on Restoration Outputs (Source: 

Navaneethakrishnan, 2014). Best score is underlined. 

 L-Rich Regularized 

Filtering 

Wiener 

Filter 

Blind 

Deconvolution 

MSE ↓ 207.98 1112.71 366.66 138.29 

RMSE ↓ 10.31 33.96 19.15 11.76 

PSNR ↑ 24.98 17.70 22.52 26.76 

Note: The symbols ↓ and ↑ indicate that lower and higher values, respectively, 

represent better performance for the corresponding metric. 
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2.4.5 Investigation of Classical Image Restoration Methods 

This section presents a comparison of classical image restoration techniques, 

including linear and non-linear filters, and deconvolution methods. Examples of 

the results obtained from these methods will be provided along with 

explanations. 

 

2.4.5.1 Linear and Non-linear Filters Methods 

Figure 2.20 and Figure 2.21 show the denoising results on cameraman image 

using linear and non-linear filters for salt-and-pepper and Gaussian noises, 

respectively. The restored images are compared to the ground truth (GT). Table 

2.2 shows the performance comparison accordingly. 

 

 

Figure 2.20: Salt-and-Pepper Denoising Results on Cameraman Image Using 

Classical Methods. 

GT Salt-and-pepper Noise Average Filter 

Gaussian Filter Minimum Filter Maximum Filter 

Median Filter Conservative Filter Bilateral Filter 
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Figure 2.21: Gaussian Denoising Results on Cameraman Image Using Classical 

Methods. 

 

Table 2.2: Performance Comparison on Cameraman Image Using Classical 

Methods. Best score is underlined. 

Method Salt-and-Pepper Noise Gaussian Noise 

RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑ 

Average Filter 21.2006 21.6038 0.6026 19.8688 22.1674 0.6511 

Gaussian Filter 17.0535 23.4945 0.6359 14.7776 24.7387 0.7306 

Minimum Filter 59.3693 12.6596 0.2541 33.1294 17.7265 0.3138 

Maximum Filter 65.6352 11.7881 0.1457 35.4143 17.1472 0.3064 

Median Filter 8.9133 29.1301 0.9184 13.4765 25.5392 0.5315 

Conservative Filter 26.4358 19.6870 0.5692 20.3595 21.9555 0.3433 

Bilateral Filter 28.3336 19.0848 0.3269 12.5563 26.1536 0.7371 

Note: The symbols ↓ and ↑ indicate that lower and higher values, respectively, 

represent better performance for the corresponding metric. 

 

GT Gaussian Noise Average Filter 

Gaussian Filter Minimum Filter Maximum Filter 

Median Filter Conservative Filter Bilateral Filter 
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From Table 2.4, it can be observed that the median filter outperforms 

the other methods in removing salt-and-pepper noise. In contrast, bilateral filter 

is effective in reducing Gaussian noise. Therefore, it can be concluded that 

different algorithms are required to address different types of noise signals. 

 

2.4.5.2 Deconvolution Methods 

In this subsection, three methods which are L-Rich, Wiener filter, and 

regularized filtering techniques were employed for deconvolution. Figure 2.22 

and Figure 2.23 display the deconvolution results for blurred, and blurred and 

noisy images, respectively. A comparison of the two scenarios is presented in 

Table 2.2. 

 

 

Figure 2.22: Restoration Results on Blurred Cameraman Image Using 

Deconvolution Methods. 

GT Blurred L-Rich Deconvolution 

Wiener Filter Deconvolution  Regularized Filter Deconvolution 
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Figure 2.23: Restoration Results on Blurred and Noisy Cameraman Image 

Using Deconvolution Methods. 

 

Table 2.3: Performance Comparison on Cameraman Image Using 

Deconvolution Methods. Best score is underlined. 

Method Blurred Blurred and Noisy 

RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑ 

Lucy-Richardson 13.3641 25.6120 0.8125 20.7169 21.8043 0.6406 

Wiener Filter 0.3025 58.5148 0.9992 22.0034 21.2810 0.3525 

Regularized Filter 16.5640 23.7475 0.7425 13.5989 25.4607 0.7298 

Note: The symbols ↓ and ↑ indicate that lower and higher values, respectively, 

represent better performance for the corresponding metric. 

 

Table 2.2 shows that the L-Rich method is able to provide satisfactory 

results but there are significant ringing effects, as shown in Figure 2.22. The 

Wiener filter method produces better results for the blurred image but its 

performance deteriorates with the addition of noise. The regularized filtering 

technique provides consistent performance for both scenarios because it uses a 

constrained least square restoration method to handle blurring and noise effects. 

However, since the PSF is known for this case, the deconvolution 

methods are impractical. To make it practical, the model needs to estimate the 

PSF itself through an iterative process to restore the image. 

 

GT Blurred and Noisy L-Rich Deconvolution 

Wiener Filter Deconvolution  Regularized Filter Deconvolution 
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2.4.6 Summary 

Since each image restoration task requires a different algorithm, thus traditional 

methods are notoriously difficult to build. Hence, this will lead to time-

consuming investigations and improvements to the traditional methods. To 

address these issues, the following section will cover the development of 

cutting-edge technology known as deep learning (DL) approaches. 

 

2.5 Deep Learning (DL) Approaches to Image Restoration 

Over the past decade, breakthroughs in deep learning had a profound effect on 

various computer vision tasks including recognition, classification and 

regression. In general, deep learning allows parameters to be learned directly 

from the available resources without any intervention. In addition, deep learning 

is not limited to linearity and is capable of learning transformations that are 

arbitrary complicated and non-linear. As an illustration, a deep learning model 

is able to develop its own complicated algorithm to restore noisy images to clean 

ones. Su et al. (2022) reviewed a wide variety of deep learning-based image 

restoration models, and found that the majority of these models can reach a 

higher level of performance as compared to state-of-the-art alternatives. In this 

section, some DL models related to image denoising, image deblurring and 

super-resolution are briefly discussed. 

 

2.5.1 Image Deblurring 

In 2017, Nah et al. proposed a multi-scale deblurring network to restore an 

image in stages by using a “coarse-to-fine” structure. The multi-scale networks 

were initially developed by Eigen et al. (2014) that made up of two components: 

coarse-scale and fine-scale networks.  The former is used to predict the depth of 

an image structure globally by analysing high-level features, while the latter 

refines the coarse prediction locally by interpreting low-level features. 

Combining the two networks can fully utilise the distributions of the raw data, 

resulting in better performance. Figure 2.24 shows the model architecture of a 

multi-scale structure. Besides that, Zhang et al. (2019) made some modifications 

to the multi-scale networks by adopting residual learning at different levels to 

improve the inferencing speed and applying spatial pyramid matching to allow 

more training data to be refined at the finest level. 
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Figure 2.24: Multi-Scale Network. (Source: Nah et al., 2017). 

 

Kupyn et al. (2018) introduced the DeblurGAN model, which is the first 

use of conditional generative adversarial network (GAN) for deblurring 

purposes. The key elements of the proposed generator are the residual network 

block and perceptual loss function, which is given by, 

 

 𝐿𝑥 =
1

𝑊𝑖,𝑗𝐻𝑖,𝑗 
∑ ∑ [𝜙𝑖,𝑗(𝐼𝑆)𝑥,𝑦 − 𝜙𝑖,𝑗 (𝐺𝜃𝐺

(𝐼𝐵))
𝑥,𝑦

]
2

𝐻𝑖,ℎ

𝑦=1

𝑊𝑖,𝑗

𝑥=1

 (2.13) 

 

where 

𝜙𝑖,𝑗  = feature map after 𝑗-th convolution before 𝑖-th maximum pooling layer 

within a network 

𝑊𝑖,𝑗 = width of the feature maps 

𝐻𝑖,𝑗 = height of the feature maps 

𝐺𝜃𝐺
 = Generator function 

𝐼𝑆 = smooth image 

𝐼𝐵 = blurred image 

 

The proposed approach encourages the restoration of finer texture 

details and is capable of finding solutions for those indistinguishable pixels 

between blurred and sharp images. However, the training speed for the 
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DeblurGAN network is relatively slow which took about 7 days. Therefore, 

Kupyn et al. (2019) proposed another version of the deblurring network, 

DeblurGAN-v2 with a new generator that is constructed based on the Feature 

Pyramid Network (FPN).  FPN generates several feature map layers with 

improved semantics and information, using a structure that is compromised by 

bottom-up and top-down approaches. The former uses a convolutional network 

to collect features, downsampling the spatial resolution while extracting and 

compressing semantic context; whilst the latter restores semantically rich layers 

at a higher spatial resolution. Lateral connections between the bottom-up and 

top-down approaches provide an additional layer of high-resolution features to 

assist in the localization of objects. Besides that, the loss function is updated by 

involving the mean squared error loss to aid in the correction of colour and 

texture distortion, as shown in Equation (2.14), 

 

 𝐿𝐺 = 0.5𝐿𝑃 + 0.006𝐿𝑋 + 0.01𝐿𝑎𝑑𝑣 (2.14) 

 

where 

𝐿𝑃 = MSE loss 

𝐿𝑎𝑑𝑣 = adversarial loss contains both local and global discriminator losses 

𝐿𝑥 = same perceptual loss from DeblurGAN network 

 

As a result, the introduction of FPN and MSE loss function in 

DeblurGAN-v2 greatly improved its training and inference speeds, reducing the 

required convergence time from 7 to 5 days and enhancing the inference speed 

by a factor of 100. 

In the research conducted by Madam Nimisha et al. (2018), they 

introduced an unsupervised end-to-end deblurring network that incorporated a 

GAN model. They claimed that supervised deep-learning approaches relied 

heavily on massive quantities of paired data, which were both difficult and time-

consuming to collect, while unsupervised training strategies could achieve 

similar performances with unpaired data. From the implementation, their model 

was able to acquire a robust prior on the domain of clear pictures via adversarial 

loss. Besides that, they also developed a new convolutional neural network 

(CNN) module that reblurs the GAN output to match the blurred input, 
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increasing the GAN’s robustness and maintaining picture correlation. They also 

exploited the blurred image to guide the network and limit the possible 

outcomes for the clean images to be produced. This can be done through an 

extra gradient module to impose a gradient error in scale space. Table 2.4 

presents an overview of the deblurring models with regard to their 

hyperparameter settings. 
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Table 2.4: Comparison of Image Deblurring Methods. 

Method Description Supervision Activation Function Optimization Regularization Loss Function Reference 

DeepDeblur, 

2017 

Deep Multi-scale 

Network 

Supervised Generator:  

ReLU, (Tanh for 

last layer) 

Discriminator: 

LeakyReLU 

Adam  

(L-Rate = 5 × 10-5 for the first 300000 

epochs, then followed by 5 × 10-6) 

Data 

Augmentation 

GAN +  

MSE 

(Nah et al., 2017) 

DMPHN,  

2019 

Stacked Multi-patch 

Network with 
Residual Learning 

and SPM 

Supervised Encoder-Decoder: 

ReLU 

Adam 

(L-Rate = 10-4 for the first 3000 epochs, 

then followed by 𝛽 = 0.1) 

- MSE (Zhang et al., 2019) 

DeepBlurGAN, 
2018 

Conditional 
Adversarial Networks 

with Residual 

Learning Blocks 

Supervised Generator:  
ReLU 

Discriminator: 

LeakyReLU 

Adam  
(L-Rate = 10-4 for the first 150 epochs, 

then zero for the next 150 epochs) 

Dropout (p = 0.5) GAN + Perceptual (Kupyn et al., 2018) 

DeepBlurGAN-

v2,  

2019 

FPN-based Generator 

and Relativistic 

Discriminator 

Supervised Generator:  

ReLU 

Discriminator: 

LeakyReLU 

Adam  

(L-Rate = 10-4 for the first 150 epochs, 

then 10-7 for the next 150 epochs) 

Dropout (p = 0.5) GAN + Perceptual 

+ MSE 

(Kupyn et al., 2019) 

Unsupervised 

Deblur,  

2018 

GAN with Self-

Supervision and 

Gradient Module 

Unsupervised Generator:  

ReLU (Tanh for 

last layer) 
Discriminator: 

LeakyReLU 

(Sigmoid for last 
layer) 

Adam 

(𝛽1 = 0.9. 𝛽2 = 0.99, L-Rate = 5 × 10-4 

for the first 100000 epochs, then 

followed by L-Rate = 10-4) 

Dropout (p = 0.2) GAN + Reblur + 

Gradient 

 
Note: The weight 

parameters for the 

loss function will 
be updated from 

𝑤𝑎𝑑𝑣 = 1, 

𝑤𝑟𝑒𝑏𝑙𝑢𝑟 = 0.01, 

𝑤𝑔𝑟𝑎𝑑  = 0.001, 

for the first 

100000 epochs, 

then followed by  

𝑤𝑎𝑑𝑣 = 0.01, 

𝑤𝑟𝑒𝑏𝑙𝑢𝑟 = 1, 

𝑤𝑔𝑟𝑎𝑑  = 0. 1, 

(Madam Nimisha et al., 

2018) 

 

Note: Rectified Linear Unit (ReLU), Learning Rate (L-Rate), Momentum Decay Rate (𝛽)
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2.5.2 Image Denoising 

In general, many of the techniques and tools developed for denoising can be 

applied to other types of image inverse problems. This indicates that the 

majority of the models used for denoising are derived from the other image 

restoration models. For instance, Zhang et al. (2017) proposed a DnCNN 

denoising network, which adopted the concept of residual learning to recover a 

clean image that was obscured by noise. It makes use of a residual network to 

connect the input image to the output image in a direct manner. Hence, this 

allows the networks to learn only the residual image without considering the 

actual content of the images. With this feature, the residual networks bring 

substantial benefits to the other image restoration techniques as mentioned in 

several published works (Zhang et al., 2019; Kupyn et al., 2018; Kupyn et al., 

2019). Additionally, the batch normalisation strategy was also implemented to 

improve both training performance and denoising quality.  

In order to get a more accurate result, the deep CNN approach appeared 

to rely on deeper layers rather than shallower ones. Therefore, Tai et al. (2017) 

proposed recursive and gate units to extract the features adaptively for restoring 

noisy images. The former is responsible for learning multi-level representations 

of the current state from various receptive fields; whilst the latter dynamically 

controls the amount of the present and previous states that should be reserved. 

Furthermore, Ye et al. (2018) proposed deep convolution framelets that utilized 

a low-rank Hankel matrix, which convolves local and nonlocal bases to illustrate 

the correlation between deep learning and signal processing. However, the 

CNNs proposed earlier are associated with higher processing costs and memory 

usage, thus making them impractical in reality. Hence, as an example, the 

application of dilated convolutions in computed tomography (CT) image 

denoising had been proposed by Gholizadeh-Ansari et al. (2020). Instead of 

using conventional convolution, they developed a deep neural network that 

leveraged dilated convolutions with various dilation rates to capture more 

contextual information with low computational complexity. Additionally, an 

integrated simple edge detection layer comprised of Sobel operators enhances 

the computation of a 2D gradient of image intensity. As a result, the receptive 

field can be expanded without incurring additional costs, and the depth of the 

network can be shrunk without sacrificing performance. 
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In the real world, all the noise signals do not behave the same and 

images can be randomly distorted. This resulted in the development of multiple 

models with different algorithms to deal with various types and levels of noise 

disturbances. This has led to the consideration of blind denoising methods. As 

a result, Zhang et al. (2018) proposed Fast and Flexible Denoising CNN 

(FFDNet), which adopted a configurable noise level input. FFDNet operated on 

downsampled sub-images while maintaining a decent trade-off between 

denoising performance and inference speed. By selecting a non-uniform noise 

level map, their model is able to handle a wide variety of noise levels with only 

a single CNN, and filter out the noise with spatial variations. Other than that, 

soft shrinkage was adopted by Isogawa et al. (2018) in their image device 

mechanism to modify the noise level adaptively, resulting in the proposal of 

Soft Shrinkage CNN (SCNN). In other words, their CNN model can be instantly 

tuned to match various noise levels of any given input image. Table 2.5 shows 

PSNR performance results on BSD68 datasets for different denoising models. 

Table 2.6 presents an overview of the denoising models as well as their 

hyperparameter settings. 

 

Table 2.5: Result of PSNR Performance between FFDNet with Different 

Models on BSD68 Datasets (Source: Zhang et al., 2018; Isogawa et 

al., 2018). 

Noise Level BM3D DnCNN FFDNet SCNN 

15 31.07 31.72 31.63 31.48 

25 28.57 29.23 29.19 29.03 

50 25.62 26.23 26.29 26.08 

Note: Block-Matching and Three-Dimensional (3D) Filtering (BM3D), is a 

classical method that groups similar image blocks into 3D arrays and applies 

collaborative filtering techniques to reduce noise. 
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Table 2.6: Comparison of Image Denoising Methods. 

Method Description Supervision Activation Function Optimization Regularization Loss Function Reference 

DnCNN, 2017 Deep CNN with 

Residual Learning 

Supervised ReLU (for first Conv layer) 

ReLU + BN (for middle Conv 

layers) 

None (for last Conv layers) 

SGD  

(L-Rate = 10-1 for the first 50 

epochs, then followed by 10-4) 

- MSE (Zhang et al., 2017) 

MemNeT,  

2017 

Deep CNN with 

Recursive and 

Gate Units 

Supervised ReLU + BN SGD 

(L-Rate = 10-1 and then reduced 

by a factor of 10 for every 20 
epochs) 

Data 

Augmentation + 

Modified L2-
norm 

MSE (Tai et al., 2017) 

Multi-resolution 

DCF, 2018 

Deep 

Convolutional 
Framelets with 

Hankel Matrix 

Supervised ReLU + BN (only for first 

Conv layer)  

Adam  

(𝛽1 = 0.9. L-Rate = 10-4, then 

reduced half for every 50 
epochs, until L-Rate = 10-5) 

Data 

Augmentation 

MSE (Ye et al., 2018) 

DRL Denoising,  

2020 

CNN with Dilated 

Convolutions and 

Edge Detection 
Layer 

Supervised ReLU (for first Conv layer) 

ReLU + BN (for middle Conv 

layers) 
None (for last two Conv 

layers) 

Adam  

(L-Rate = 10-3 for the first 20 

epochs, then 10-4 for the next 20 
epochs) 

- MSE + Perceptual (Gholizadeh-Ansari et al., 

2020) 

FFDNet,  
2018 

Blind Denoising 
CNN with 

Varying Noise 

Level  

Unsupervised ReLU (for first Conv layer) 
ReLU + BN (for middle Conv 

layers) 

None (for last Conv layer) 

Adam 
(L-Rate = 10-3 and then reduced 

to 10-4 when the training error 

stop decreasing. Additional 50 
epochs with L-Rate = 10-6  to 

fine tune the model) 

Data 
Augmentation 

MSE (Zhang et al., 2018) 

SCNN, 2018 Blind Denoising 

CNN with Soft 
Shrinkage 

Unsupervised Soft Shrinkage (for feature 

extraction layers) 
Soft Shrinkage + BN (for 

feature conversion layers) 

Adam 

(L-Rate = 10-3) 

- MSE (Isogawa et al., 2018) 

 

Note: Stochastic Gradient Descent (SGD), Batch Normalization (BN) 
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2.5.3 Super-Resolution 

Super-resolution can be categorized as either single-image or multi-image, 

depending on the number of input images. Single-image super-resolution, also 

known as SISR, will be discussed in this section since it is widely known for its 

high efficiency. However, SISR is a typical ill-posed issue. This is because a 

single low-resolution input might be associated with a large number of high-

resolution images, as well as the mapping solution between these two elements 

is typically intractable.  

A simple model named Super-Resolution Convolutional Neural 

Network (SRCNN) was proposed by Dong et al. (2016) to perform the super-

resolution task. The network consists of only three layers that served for patch 

extraction and representation, non-linear mapping, and reconstruction, 

respectively. The authors performed some ablation studies regarding the 

architecture of SRCNN. First of all, the low-resolution input of SRCNN was 

obtained through bicubic interpolation, which leads to inaccurate estimates and 

additional processing time. To overcome this problem, they suggested to replace 

this algorithm of low-resolution input. Besides that, they also claimed that the 

super-resolution performance will vary depending on the width and depth of the 

CNN architecture used. 

In 2016, Shi et al. proposed Efficient Sub-Pixel Convolutional Neural 

Network (ESPCN), which utilized a sub-pixel convolution layer. They argued 

that non-linear convolution feature extraction should be used in low-resolution 

space rather than high-resolution space. Hence, all of the low-resolution features 

are fed into the network that will be utilized at the last layer for generating the 

high-resolution output. By doing so, they proposed expanding the channel of 

upscaling filters to store additional pixels, instead of directly enlarging input 

feature maps to enhance the resolution as the bicubic filter does. Therefore, a 

smaller size of the input kernel is sufficient enough since the upscaling process 

occurs in the channel dimension. This can reduce computational and memory 

complexity while preserving a certain contextual region. 

Deep CNN networks have been shown to achieve superior 

performance in many image restoration tasks. Hence, Kim et al. (2016a) came 

up with Very Deep Super-Resolution (VDSR), which was the first deep CNN 

model to perform SISR tasks. Similarly, the VDSR utilizes the same bicubic 
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low-resolution input, but the novelty is different scale factors of low-resolution 

bicubic are adopted during the training phase. In addition, they intervened the 

residual learning block between bicubic interpolation and high-resolution output 

to accelerate the convergence of the model training. However, the proposed 

complicated deep model network requires additional gradient clipping to 

overcome vanishing gradient problems and a high initial learning rate to 

accelerate convergence. Therefore, the same author further proposed Deep-

Recursive Convolutional Network (DRCN), which adopted recursive learning 

and skip-connection to ease the difficulty of training (Kim et al., 2016b). They 

argued that adding another weight layers resulted in more variables, which made 

the model too large to be retrieved and stored, and increased the risk of 

overfitting. Instead, they reconstructed a high-resolution image using the feature 

maps generated at the end of each recursion level, and integrated all the 

predictions to produce a more robust final prediction. Skip-connections are 

integrated to prevent gradient vanishing, which is superior to the gradient 

clipping technique used in VDSR. In terms of performance, both the VDSR and 

DRCN models produce results that are very close to one another. 

In 2018, the Zero-Shot Super Resolution (ZSSR) model, which 

adopted image-specific learning in CNN, was proposed by Shocher et al. As the 

name suggested, zero-shot is a method that does not utilise any prior image 

examples or pre-training. Hence, the model only requires the test images by 

extracting the relevant internal patches for the training. Contrary to external-

example SISR approaches, a small CNN is enough to build the ZSSR model due 

to the accessibility of downscaling of test images in image-specific learning. 

After observing the success of VDSR, which used a small-scale model for 

training, the researchers of the ZSSR model came up with the notion of using a 

similar approach to gather more small scaled internal training pairs for training 

large-scale models. Besides that, they also adopted the concept of geometric 

self-ensemble, which produced eight different outputs with various rotation 

angles and flipping directions. The resulting images were then combined to 

generate the median image through the back-projection algorithms. However, 

ZSSR has a downside as it increases runtime during the testing phase. Table 2.7 

depicts an overview of the super-resolution models including their 

hyperparameter settings.
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Table 2.7: Comparison of Super-resolution Methods.  

Method Description Supervision Activation Function Optimization Regularization Loss Function Reference 

SRCNN,  

2016 

Simple CNN with 

for Super-

Resolution 

Supervised ReLU SGD with standard 

backpropagation 

(L-Rate = 10-1 for the first 2 

layers, and 10-5 for the last layer) 

- MSE (Dong et al., 2016) 

ESPCN,  

2016 

Sub-Pixel CNN 

with Upscaling 

Filters 

Supervised Tanh SGD 

(L-Rate = 10-2 and then reduced 

to 10-4 when the loss function 
value smaller than a threshold) 

- MSE (Shi et al., 2016) 

VDSR, 2016 Very Deep CNN 

with Adjustable 
Gradient Clipping 

and Residual 

Learning 

Supervised ReLU  SGD  

(L-Rate = 10-1, then reduced by a 
factor of 10 for every 20 epochs, 

until 80 epochs) 

Data 

Augmentation + 
L2-norm 

MSE (Kim et al., 2016a) 

DRCN,  

2016 

Deep CNN with 

Skip Connection 

and Recursive 

Supervision 

Supervised ReLU  SGD  

(L-Rate = 10-2, then reduced by a 

factor if 10 if validation error 

remains constant for 5 epochs, 

until L-Rate = 10-6) 

L2-norm MSE (Kim et al., 2016b) 

ZSSR, 2018 Zero-Shot CNN 

with Small Image-
Specific and 

Geometric Self-

ensemble 
Techniques 

Unsupervised ReLU Adam 

(L-Rate = 10-2, then reduced by a 
factor if 10 if the reconstruction 

error greater than the slope of 

linear fit by a factor, until L-Rate 
= 10-6) 

L1-norm MAE (Shocher et al., 2018) 

 

Note: Mean Absolute Error (MAE)
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2.5.4 Investigation of Deep Learning Approaches to Image Restoration 

2.5.4.1 Image Deblurring 

Figure 2.25 displays the deblurring results on CSet9 datasets using DL model 

with all the results recorded in Table 2.8 accordingly. It can be observed that the 

recovered images have outstanding performance in removing blurs. 

 

 

Figure 2.25: Sample of Deblurring Results of DL Approaches on CSet9 

Datasets. 

 

Table 2.8: Performance Comparison on CSet9 Datasets for Deblurring Results 

Using DL Approaches. 

 Blurred Image Recovered Image 

RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑ 

F16 0.0831 20.8300 0.7900 0.0448 26.1899 0.9280 

Lena 0.0722 22.7267 0.7761 0.0359 28.8007 0.9025 

House 0.0589 24.1314 0.8863 0.0349 28.6675 0.9349 

F16 

Lena 

House 

GT Blurred Recovered 
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Note: The symbols ↓ and ↑ indicate that lower and higher values, respectively, 

represent better performance for the corresponding metric. 

 

 

2.5.4.2 Image Denoising 

Figure 2.26 shows the denoising results on CSet9 datasets with a DL model, and 

all the results are tabulated in Table 2.9. It is worth noting that the denoising 

algorithm produces images of exceptional quality, with a significant reduction 

in noise levels. 

 

 

Figure 2.26: Sample of Denoising Results of DL Approaches on CSet9 Datasets. 

 

 

 

 

F16 

Lena 

House 

GT Noisy Recovered 
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Table 2.9: Performance Comparison on CSet9 Datasets for Denoising Results 

Using DL Approaches. 

 Noisy Image Recovered Image 

RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑ 

F16 0.2133 12.6347 0.1874 0.0655 22.8866 0.8946 

Lena 0.1685 15.3647 0.2204 0.0568 24.8124 0.8715 

House 0.1928 13.8427 0.1477 0.0484 25.8516 0.9391 

Note: The symbols ↓ and ↑ indicate that lower and higher values, respectively, 

represent better performance for the corresponding metric. 

 

2.5.4.3 Super-Resolution 

Figure 2.27 shows the super-resolution results on CSet9 datasets using DL 

model, and all the results are tabulated in Table 2.10. The super-resolution 

results are impressive, clearly demonstrating the effectiveness of the DL model 

in generating high-quality images with finer details. 

 

 

Figure 2.27: Sample of Super-Resolution Results of DL Approaches on CSet9 

Datasets. 

F16 

Lena 

House 

GT Low-Resolution Super-Resolution 
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Table 2.10: Performance Comparison on CSet9 Datasets for Super-Resolution 

Results Using DL Approaches. 

 Super-Resolution Image 

RMSE ↓ PSNR ↑ SSIM ↑ 

F16 0.0205 32.9751 0.9780 

Lena 0.0317 29.8713 0.9187 

House 0.0512 25.3688 0.8912 

Note: The symbols ↓ and ↑ indicate that lower and higher values, respectively, 

represent better performance for the corresponding metric. Evaluation metrics 

cannot be performed on low-resolution images due to the unmatched pixel size 

between ground truth and low-resolution images. 

 

2.5.5 Summary 

From the research papers that had been discussed above, it can be deduced that 

efficiency can be improved by using a learning-based approach. Many 

benchmark datasets show that deep learning-based methods greatly outperform 

conventional alternatives. Besides that, high efficiency is achieved when deep 

learning algorithms are implemented on parallel processing units such as 

graphic processing units (GPUs) rather than central processing units (CPUs). 

Nevertheless, deep learning-based algorithms contribute to high computational 

costs, thus making them challenging to implement in real-time processing. As 

an example, matrix processing requires more computer hardware, such as GPUs 

and random-access memory (RAM) which are costly and difficult to be obtained. 

Last but not least, enormous training datasets are necessary for deep learning 

CNNs, yet they are difficult to be collected, labelled, and may not even be a 

good fit for real-world scenarios.  

 

2.6 Deep Image Prior (DIP) Approaches to Image Restoration 

2.6.1 Overview 

In the DIP model, a neural network is randomly initialised and then processed 

using only the distorted image. After that, the network will try to generate an 

image that is similar to the distorted one. Noise naturally exhibits high 

impedance so the model prefers to learn the original pixel over the noise. Hence, 

the early stopping technique is applied to prevent the model from overfitting. It 



45 

is used to terminate the reconstruction process to get rid of the degradation 

details including jagged edges, artifacts and others. Due to the lack of training 

datasets, the complexity of the DIP network architecture plays an important role 

in determining the performance of the image restoration process (Ulyanov et al., 

2018). Figure 2.28 illustrates the overview structure of the DIP model. 

 

 

Figure 2.28: Overview of Deep Image Prior Model Network (Source: Ulyanov 

et al., 2018). 

 

The DIP model can be applied to several image restoration tasks such 

as denoising, deblurring, inpainting, flash no-flash reconstruction and others. 

This can be accomplished by controlling over aspects of the network's structure, 

such as the number of hidden layers, and hyperparameters such as stopping 

criteria and learning rate. The sample results will be provided in the following 

subsections. 
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2.6.2 Investigation of Deep Image Prior to Image Restoration 

2.6.2.1 Image Denoising 

For the image denoising results in Figure 2.29, it can be observed that the DIP 

model exhibits remarkable noise reduction performance, as indicated by the 

evaluation metrics in Table 2.11. 

 

 

Figure 2.29: Sample of Denoising Results of DIP Model on CSet9 Datasets. 

 

Table 2.11: Performance Comparison on CSet9 Datasets for Denoising Results 

Using DIP Model. 

 Noisy Image Recovered Image 

RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑ 

F16 0.2133 12.6347 0.1874 0.0599 236691 0.8798 

Lena 0.1685 15.3647 0.2204 0.0421 27.5219 0.8707 

House 0.1928 13.8427 0.1477 0.0353 29.0368 0.9497 

Note: The symbols ↓ and ↑ indicate that lower and higher values, respectively, 

represent better performance for the corresponding metric. 

F16 

Lena 

House 

GT Noisy Recovered 
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2.6.2.2 Super-Resolution 

The super-resolution results displayed in Figure 2.30 indicate that the DIP 

model can effectively enhance the resolution of low-quality images, achieving 

impressive performance metrics as listed in Table 2.12. 

 

 

Figure 2.30: Sample of Super-Resolution Results of DIP Model on CSet9 

Datasets. 

 

Table 2.12: Performance Comparison on CSet9 Datasets for Super-Resolution 

Results using DIP Model. 

 Super-Resolution Image 

RMSE ↓ PSNR ↑ SSIM ↑ 

F16 0.0243 31.4889 0.9666 

Lena 0.0317 29.8725 0.9097 

House 0.0294 30.1842 0.9334 

Note: The symbols ↓ and ↑ indicate that lower and higher values, respectively, 

represent better performance for the corresponding metric. Evaluation metrics 

F16 

Lena 

House 

GT Low-Resolution Super-Resolution 
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cannot be performed on low-resolution images due to the unmatched pixel size 

between ground truth and low-resolution images. 

 

2.6.2.3 Impainting 

Inpainting process refers to the technique of reconstructing missing or damaged 

parts of an image, video, or any other signal. It involves filling in the missing or 

damaged regions using the information present in the surrounding areas or using 

some other prior information. Figure 2.31 displays the inpainting result on 

CSet9 datasets in which all the results are recorded in Table 2.13. It can be 

observed that the DIP model effectively restores the missing parts of the images, 

resulting in visually pleasing results with high PSNR and SSIM scores. 

 

 

Figure 2.31: Sample of Impainting Results of DIP Model on CSet9 Datasets. 

 

 

F16 

Lena 

House 

GT Corrupted Recovered 
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Table 2.13: Performance Comparison on CSet9 Datasets for Impainting 

Results using DIP Model. 

 Corrupted Image Recovered Image 

RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑ 

F16 0.2470 11.3617 0.8717 0.0316 29.2184 0.9599 

Lena 0.1299 17.6263 0.8383 0.0188 34.3975 0.9535 

House 0.1132 18.4683 0.9088 0.0098 39.7476 0.9858 

Note: The symbols ↓ and ↑ indicate that lower and higher values, respectively, 

represent better performance for the corresponding metric. 

 

2.6.3 Summary 

However, there are several problems with the DIP model. Since the network 

needs to be run specifically to replicate each image while simultaneously 

updates the network's hyperparameters, thus the time required to produce a 

single image will be extremely long. On top of that, distinct hyperparameter 

settings are required for every image restoration task, and it has to be fine-tuned 

manually, which is impractical in reality. 

 

2.7 Overall Summary 

There are many approaches to recover an image in terms of quality, which are 

conventional, DL, and DIP methods. From the literature review, each approach 

has its own pros and cons. Some of the models only work for certain image 

restoration tasks, which results in a variety of models with different algorithms. 

This can be overcome by employing DL methods with the presence of datasets. 

However, the training process took a long time due to a large number of datasets 

is required. Thus, the DIP model can be useful for image restoration tasks where 

dataset is not available. With the proper selection of hyperparameters and an 

appropriate early stopping criterion, satisfactory results can be achieved without 

the requirement of pre-learning or extensive datasets. Nevertheless, both 

methods share the same issue, whereby significant resources and time are 

needed to modify the network's architecture and incorporate additional 

techniques in order to achieve the desired performance. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

The main objective of this study is to propose an innovative approach for 

detecting the optimal stopping point in the image restoration process using the 

DIP model. To effectively carry out this study, the necessary hardware devices 

and software tools such as GPUs, deep learning frameworks, and Python 

libraries were utilized. The effectiveness of the proposed algorithm was 

evaluated by comparing its performance with the classical and iterative image 

restoration models, as well as recent deep learning models. 

 

3.2 Work Plan 

Figure 3.1 shows the general process flow of the project, outlining the major 

stages involved in achieving the objectives. The first stage is an analysis of 

image restoration in terms of image models and degradation models, as depicted 

in Figure 2.1. This is followed by a comprehensive literature review on image 

restoration tasks from a variety of perspectives, as shown in Figure 2.2. The 

review includes an in-depth study of journals, publications, conference 

proceedings, electronic books, and other sources of information. After 

reviewing the related literature, the limitations of the image restoration tasks are 

identified. Hence, the aim and objectives are defined based on the listed problem 

statements.  

 



51 

 

Figure 3.1: General Process Flow. 

 

Subsequently, system setup focuses on acquiring and preparing the 

necessary hardware devices and software tools required to effectively carry out 

the project. Once the system is set up, the next stage involves preparing the test 

images by selecting appropriate test images and applying different types of 

degradation to them, such as low-resolution or noise, to simulate real-world 

scenarios. Accordingly, solution is proposed to detect the optimal stopping point 

in the image restoration process using the DIP model. 

Following the proposal of the solution, the performance evaluation is 

conducted, which involves validation on test images and performance analysis 

in terms of image quality metrics, such as PSNR and SSIM. In addition, the 

proposed algorithm is compared with classical and iterative image restoration 

models, and recent deep learning models, to evaluate its effectiveness. Finally, 

all data are analyzed and discussed. Conclusions and recommendations for 

future research are made. 
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Figure 3.2 shows the FYP1 gantt chart. The project details were 

discussed with the supervisor at the beginning of the first semester. Next, a 

general project overview regarding the background of image restoration was 

conducted. Subsequently, a project introduction and report overview were done 

for the subsequent two weeks. Then, an in-depth study was performed to analyse 

different image restoration tasks. The project flow and the methodology were 

planned to investigate image restoration in terms of implementation methods 

and performance metrics. Preliminary results tabulation, report writing, and 

presentation preparation were carried out as planned in the following weeks. 

 

 

Figure 3.2: FYP1 Gantt Chart. 

 

Figure 3.3 shows the FYP2 gantt chart. The project was further 

discussed with the supervisor to schedule the time frame for each project activity. 

To achieve the project objective, a novel algorithm was proposed based on the 

DIP model, with a focus on improving the image restoration process. A 

tabulation of the data was performed for different image restoration tasks, and 

the results were then compared to other proposed solutions. Subsequently, the 

code was optimized by removing unnecessary building processes. Towards the 

end of the trimester, poster was prepared followed by report writing and 

presentation preparation. 
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Figure 3.3: FYP2 Gantt Chart. 

 

3.3 Implementation 

The image restoration tasks in this project were performed using the Python 

environment, which provides access to a wide range of useful library modules 

such as OpenCV, scikit-image, and PyTorch. These tools were utilized to 

process the images for the preparation of image restoration and evaluate the 

performance of different restoration techniques. 

In this project, Python codes were executed on both laptop and Google 

Colab. The proposed algorithm was developed on a laptop with an anaconda 

environment to ensure the installed Python modules would not interfere with 

the global Python settings. Locally installed frameworks such as TensorFlow, 

PyTorch, and Compute Unified Device Architecture (CUDA) were required to 

make the laptop's GPU processing accessible for deep learning implementation. 

On the other hand, Google Colab provides free access GPU in the browser and 

utilizes the Jupyter notebook for Python code execution. Therefore, cloud 

computing services from Google Colab were utilized to execute other 

restoration methods from Github sources for comparison purposes. One 

advantage of using Google Colab is that modules and frameworks can be 

installed directly without the need to create a virtual environment as the system 

resets once the allocated runtime duration is over. Table 3.1 shows the 

specification of local platform and Google Colab for running the Python codes. 
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Table 3.1: Specifications of Local Platform and Google Colab in the Project. 

 Local Platform Google Colab 

CPU Intel Core i5-8300H CPU @ 

2.30 GHz 

Intel Xeon @ 2.20 GHz 

CPU Cores 4 2 

Memory 16 GB 12 GB 

GPU NVIDIA GeForce GTX1060 

6GB 

NVIDIA Tesla K80  

12GB 

Storage 512 GB SSD 100 GB SSD 

OS Windows 10 Ubuntu 18.04 LTS 

Note: Operating System (OS) 

 

3.4 Performance Metrics 

The performance metrics used in the analysis study of the image restoration 

process are RMSE, PSNR, and SSIM as shown in Table 3.2.
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Table 3.2: Evaluation Metrics of Image Quality. 

Performance 

Metrics 

Description Equation 

Root Mean 

Square 

Error 

(RMSE) 

RMSE measures the square root of the cumulative 

squared error between the original and the degraded 

image. Lower values indicate higher image quality after 

restoration. 

RMSE is calculated as follows, given a 𝑚 × 𝑛  monochromatic 

noise-free image 𝐼 and the noisy estimation of 𝐾: 

 

 𝑅𝑀𝑆𝐸 = √
1

𝑚𝑛
∑ ∑[𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 (3.1) 

   
 

Peak signal-

to-noise 

ratio 

(PSNR) 

PSNR is defined as the strength of an image relative to the 

power of the noise that degrades its representation. In 

general, a greater score indicates a higher quality 

reconstructed image. 

PSNR is further derived from RMSE, the equation is derived as, 

 

 𝑃𝑆𝑁𝑅 = 10 log10 (
𝑀𝐴𝑋𝐼

𝑅𝑀𝑆𝐸
)

2

 (3.2) 

 

where 

𝑀𝐴𝑋𝐼 = the highest possible signal intensity in the actual image with 

a formula of 2𝐵𝑆 − 1, given that 𝐵𝑆 is bits per sample. 
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Structural 

Similarity 

Index 

Measure 

(SSIM) 

SSIM measures how much amount of quality is lost in an 

image due to factors such as data compression or 

transmission losses. The value ranges from 0 to 1, 1 means 

there is a perfect match between the original and 

reconstructed images. 

SSIM is calculated based on two windows named 𝑥 and 𝑦 that share 

a common size of 𝑁 × 𝑁 is determined by, 

 

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 (3.3) 

 

where 

𝜇𝑥 = average of window 𝑥 

𝜇𝑦 = average of window 𝑦 

𝜎𝑥
2 = variance of window 𝑥 

𝜎𝑦
2 = variance of window 𝑦 

𝜎𝑥𝑦 = covariance of windows 𝑥 and 𝑦 

𝑐1 = (𝑘1𝑅𝑑𝑦𝑛𝑎𝑚𝑖𝑐)
2
 

𝑐2 = (𝑘2𝑅𝑑𝑦𝑛𝑎𝑚𝑖𝑐)
2

     

given that the 𝑅𝑑𝑦𝑛𝑎𝑚𝑖𝑐  is the pixel-value dynamic range with a 

formula of 2𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 − 1. By default, the values for 𝑘1 

and 𝑘2 are 0.01 and 0.03, respectively. 
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3.5 Test Image Preparation 

The CSet9 dataset was pre-processed to obtain test images for this study. The 

test set can be divided into two parts: denoising and super-resolution. The 

denoising test set comprises clean images and their corresponding noisy images, 

each generated with different types of noise and intensity levels. The super-

resolution test set contains high-resolution (HR) images and their respective 

low-resolution (LR) images with different scaling factors. The purpose of 

utilizing these test images is to assess the effectiveness of the proposed early 

stopping algorithm for the DIP model in accomplishing denoising and super-

resolution tasks. The following subsections provide details on the noise type, 

intensity level, and scaling factor used for each test image. 

 

3.5.1 Denoising 

Three common types of noise, namely Gaussian, Speckle, and Shot noise, with 

low and high levels for each type, were generated in this project following the 

rules and approaches outlined by previous works  (Hendrycks and Dietterich, 

2019; Wang et al., 2021). Impulse noise was not included in the project due to 

the limitations of the original DIP neural network. Furthermore, modifying the 

DIP neural network was not the main focus of this project. The noise can be 

modelled by using Numpy’s random functions. The following is a brief 

explanation of the noise types and their corresponding parameters.  

(i) Gaussian noise: Additive noise with a mean of 0 and a variance 

of either 0.12 or 0.18 for low or high levels, respectively. The 

noise is generated using NumPy's random.normal function. 

(ii) Speckle noise: Multiplicative noise with a mean of 0 and a 

variance of either 0.20 or 0.35 for low or high levels, 

respectively. The noisy pixel is 𝑥(1 +  𝜀), where 𝜀 is 0-mean 

Gaussian with a variance level, and the noise is generated using 

NumPy's random.normal function. 

(iii) Shot noise: Poisson noise with a rate 𝜆𝑥, where 𝜆 is 25 or 12 for 

low or high levels, respectively. The noisy pixel is Poisson 

distributed, and the noise is generated using NumPy's 

random.poisson function. 
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Table 3.3 summarizes the specific settings and corresponding 

parameter values used for generating the noise, along with the code snippet for 

each noise type. Figure 3.4 presents a sample of clean images alongside noisy 

images affected by Gaussian, Speckle, and Shot noise at both low and high noise 

levels. 

 

Table 3.3: Parameters for Different Types of Noise. 

Noise Type Parameters Code Snippet 

Gaussian  Mean = 0 

Variance = 0.12 

(low) & 0.18 (high) 

 

1. noise = 

np.random.normal(mean, 

variance, img.shape) 

2. noisy_img = img + noise 

Speckle  Mean = 0 

Variance = 0.20 

(low) & 0.35 (high) 

1. noise = 

np.random.normal(mean, 

variance, img.shape) 

2. noisy_img = img + (img * 

noise) 

Shot Rate = 25 (low) & 

(12) high 

1. noisy_img  = 

np.random.poisson(rate * 

img, img.shape) 

2. noisy_img = noisy_img / 

float(rate) 

Note: "np" refer to the NumPy library module, "img" refer to the input image, 

and "shape" refer to the shape of the image (e.g., 512 × 512). 
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Figure 3.4: Examples of Clean and Noisy Images with Different Types of Noise 

and Intensity Level: Gaussian, Speckle, and Shot Noises. Note: The 

performance metrics was measured in the form of (PSNR, SSIM, 

RMSE). 

 

3.5.2 Super-resolution 

To prepare test images for super-resolution, the original high-resolution image 

is all that is needed. The downsampled low-resolution image can be obtained 

through the function provided from the original DIP work (Ulyanov et al., 2018). 

The function loads the image and optionally resizes it to a new size using the 

specified scaling factor (SF). For instance, an image with a size of 512 × 512 

can be resized to 128 × 128 with a SF of 4, which is obtained by dividing the 

original dimensions by the SF. The resulting LR image is returned as NumPy 

arrays, which will be used for super-resolution later. Figure 3.5 presents a 

sample of downsampled images with their respective SF of 2, 3, 4 and 8. 

 

 

Figure 3.5: Examples of Downsampled Images with Different Scaling Factors 

for Super-Resolution. Note: SF refer to Scaling Factor. 
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3.6 DIP Model 

DIP model is recently developed for image restoration tasks (Ulyanov et al., 

2018). The DIP model utilizes the structure of CNNs to restore images without 

requiring any prior knowledge of the image formation model or degradation 

process. Instead, the network is trained using only the degraded image itself, 

which allows it to learn the underlying distribution of the original image from 

the degraded data. 

To implement the DIP model for image restoration, a CNN with an 

encoder-decoder architecture is constructed. The encoder is responsible for 

reducing the input image to a lower-dimensional representation, while the 

decoder maps the representation back to the original image domain. The CNN 

network parameters are randomly initialized and optimized using Adam 

optimizer and MSE loss function. The optimization is done with respect to the 

network parameters and the restored image. 

From a higher-level perspective, a set of features will be generated at 

each encoder layer, which are then concatenated with the corresponding decoder 

features. After concatenating the features, they are fed into a series of 

convolutional layers, resulting in the final output image. The inclusion of skip 

connections in the DIP model plays a vital role in preventing information loss 

during the encoding process. It allows information to be transmitted directly 

from the encoder to the decoder, ensuring that important image features are 

preserved in the restored image.  

The general process of the DIP model to restore an image can be 

formulated as follows: 

 

 𝑥∗ = arg min
𝑥

|𝒜(𝑥) − 𝑦|2
2 + 𝜆𝑅(𝑥) (3.4) 

 

where 

𝑥 = restored image 

𝑦 = degraded image 

𝒜 = degradation operator 

𝜆 = regularization parameter 
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𝑅(⋅)  = a regularizer that encourages the restored image to be smooth or have 

other desirable properties. 

 

Equation (3.4) represents the optimization problem aimed at restoring 

an image 𝑥 from a degraded image 𝑦. The degradation operator 𝒜(⋅) models 

the degradation process that has affected the image and can be customized to 

suit different restoration tasks. The objective is to find the restored image 𝑥* that 

minimizes the difference between the degraded image 𝑦 and the reconstructed 

image obtained from the degradation operator 𝒜(𝑥). A regularization term 𝑅(⋅) 

is also incorporated into the objective function to encourage the restored image 

to be smooth or possess other desired properties. The regularization parameter 

𝜆  balances the trade-off between fidelity to the degraded image and the 

regularization term. By solving this optimization problem, the equation can 

produce a restored image that closely resembles the original image as compared 

to the degraded image. 

Overall, the DIP model, including the skip connections, provides an 

effective way to restore images by leveraging the power of deep learning 

techniques. The DIP model employs an encoder-decoder architecture with skip 

connections and optimizes the loss function via gradient descent to produce 

high-quality restored images from degraded inputs. Nevertheless, the DIP is 

subjected to overfitting issue due to the optimization process based on the 

reconstruction loss itself. As the iteration continues, the model may start to 

incorporate the noise and artifacts present in the degraded input into the restored 

image, resulting in overfitting. To prevent this, early stopping is often used to 

halt the optimization process before overfitting occurs. However, there was no 

method or algorithm to determine the appropriate stopping point for the DIP 

from the original author (Ulyanov et al., 2018). 

 

3.7 Early Stopping Detection Method 

The study by Wang et al. (2021) discussed the implementation of early stopping 

in the DIP model. This was achieved by monitoring the trend of the running 

variance of the reconstruction sequence, leading to the proposal of early 

stopping using exponential moving variance (ES-EMV). According to the 
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authors, although regularization and noise modelling approaches are effective, 

they do not necessarily enhance peak performance and may involve a much 

larger number of iterations than reaching the peak in the original DIP models. 

Additionally, these approaches rely on comprehensive knowledge of the noise 

type and level, which is often not available for many applications, resulting in 

overfitting if the models and hyperparameters are not properly adjusted. The 

proposed equation is shown as, 

 

 𝑉𝐴𝑅(𝑡) ≈
1

𝑊
 ∑ ||𝑥𝑝

𝑡+𝜔 − 𝑥𝑝||
2

𝑊−1

𝜔=0

 (3.5) 

 

where 

𝑊 = window size 

𝑥 = image pixels 

 

The authors observed that the PSNR curve for image denoising 

typically follows an inverted U-shaped curve, increasing rapidly at first and then 

declining due to noise (as seen in Figure 3.6). Conversely, the MSE curve shows 

the opposite trend. This indicates that the DIP model has a preference towards 

the important visual content and is capable of learning it more rapidly compared 

to learning the noise. As a result, the reconstruction quality may reach its highest 

point before any potential degradation caused by noise.  

To achieve superior image quality, it is preferable to locate the peak of 

the PSNR curve or the valley of the MSE curve. By using Equation (3.5), Wang 

et al. (2021) found that the variance of the reconstruction sequence decreases as 

the iteration approached the MSE valley or the PSNR peak. When the iteration 

reaches the saturation point, where the restored images become close to the 

original image but with slight variations, early stopping should be applied to 

avoid overfitting. The calculation of variance involves setting a window size 

parameter (W) and computing the moving variance. In order to detect the valley 

more robustly, a patience number (P) is introduced to allow for up to P 

consecutive steps of variance stagnation (Wang et al., 2021). 
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Figure 3.6: Relationship Between MSE, PSNR, and Variance During Image 

Denoising. 

 

3.8 Proposed Method 

Inspired by the variance method, the metric-based early stopping algorithm 

(MB-ES) has been proposed for identifying the peak and applying early 

stopping in the image restoration process. This algorithm employs the 

intermediate performance metric to track the progress and determine the optimal 

stopping point. 

 

3.8.1 Denoising 

A subtype of MB-ES, named denoising-MB-ES, has been developed 

specifically for denoising task. As an example, the performance of the 

denoising-MB-ES algorithm was assessed using PSNR method for illustration 

purposes. Two types of curves were utilized: PSNR_GT, which measures the 

PSNR between the ground truth and the restored image, and PSNR_INT, which 

measures the PSNR between intermediate restored images. Figure 3.7 illustrates 

both curves share similar characteristics. Table 3.4 shows the equation for 

computing the metrics for each curve, respectively. The function 𝑓𝑀𝑒𝑡𝑟𝑖𝑐  is 

utilized for calculating the metrics (PSNR or SSIM) required to plot the curves 

mentioned earlier. The key difference between Equation (3.6) and Equation (3.7) 

lies in the choice of reference, with the former using the ground truth and the 

latter using the intermediate recovered image. 
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Figure 3.7: Relationship Between MSE_GT, PSNR_GT, and PSNR_INT 

during Image Denoising. Note: MSE_GT refer to mean squared 

error metric between restored images and ground truth. 

 

Table 3.4: Metrics Equation for Plotting Curves. 

Type of Curve Equation 

PSNR_GT  𝑓𝑀𝑒𝑡𝑟𝑖𝑐(𝑥𝑖, 𝑧) , 𝑖 ≥ 0 (3.6) 

 

where 

𝑖 = iteration 

𝑧 = ground truth image 

𝑥 = restored image 

PSNR_INT  𝑓𝑀𝑒𝑡𝑟𝑖𝑐(𝑥𝑖−1, 𝑥𝑖) , 𝑖 ≥ 1 (3.7) 
 

 

This algorithm incorporates three adjustable parameters that influence 

its performance. These include: 

(i) Window size multiplier: A variable that is used to determine the 

length of the window size at each step, resulting in a varying 

window size. 

(ii) Patience number: Similar to the variance method, this 

parameter specifies the number of consecutive steps required to 

terminate the program. 

(iii) Minimum iteration: This parameter establishes when the 

detection algorithm should start after it has been initialized. 
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An issue with the denoising-MB-ES algorithm is the possibility that a 

peak detected in the intermediate performance metric curve may not be the 

optimal stopping point due to overshooting or severe fluctuation. This can result 

in premature early stopping and a low-quality image. To address this issue, the 

density of the surrounding points around the peak is evaluated to determine the 

desired stopping point. This is accomplished by using varying window sizes, 

which allows for a more precise detection of the true peak by computing the 

slope based on the best fit line within the window. The window size is adjusted 

to different lengths to ensure that the slope is computed over a range of points 

with respect to the current stopping point and remains fixed until the next peak 

is discovered. The starting index of the window is then updated to the location 

of the newly discovered peak, and the slope is computed again with varying 

window sizes from the updated starting index (as illustrated from Figure B-1 to 

Figure B-10). Hence, this approach allows for a more robust identification of 

the true peak of the intermediate performance metric curve and reduces the risk 

of stopping at an incorrect point due to fluctuations. Figure 3.8 depicts a 

flowchart illustrating the use of the denoising-MB-ES algorithm for detecting 

stopping point. 
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Figure 3.8: Flowchart of the Denoising-MB-ES Algorithm for Early Stopping 

Detection. Note: The “similarity” could be PSNR or SSIM metrics. 

The size of the window used to compute the slope of the records is 

determined by multiplying "wait_count" value with the 

"window_size_multiplier". For instance, if the 

window_size_multiplier" is set to 100, the window size will be 

increased for 100 for every "wait_count" steps (e.g., 100, 200, 300, 

etc.). 

 

 



67 

 

A preliminary investigation was conducted to evaluate the 

effectiveness of the two common metrics used by denoising-MB-ES, namely 

PSNR and SSIM. The CSet9 images were utilized to compare the performance 

of these metrics. For each of the nine test images, low and high levels of three 

different types of noise were applied, with three trials for each noise level, 

resulting in a total of 162 runs.  

For the comparison between the best and detected recovered images, 

the deviation is terms of PSNR or SSIM can be calculated using the following 

equation: 

 

 %deviation =
𝑀𝐷   − 𝑀𝐵

𝑀𝐵
× 100 (3.8) 

 

where 

𝑀𝐷 = the performance metric score based on detected recovered image with 

respect to ground truth 

𝑀𝐵 = the performance metric score based on best recovered image with respect 

to ground truth 

 

 The best recovered image is identified by finding the peak of the 

performance metric curve between the recovered images and ground truth. In 

most cases, a negative deviation is obtained, indicating that the algorithm is 

trying to detect a recovered image with a quality close to the best one. The closer 

the deviation to 0, the better the performance. However, there may be cases 

where the SSIM curve slightly behaves differently than the PSNR curve, leading 

to a positive SSIM deviation, where 𝑀𝐷 is better than 𝑀𝐵 (see Equation 3.6). 

This occurs because the SSIM metric considers both the structural information 

and luminance in the image, which can result in a different ranking of image 

quality compared to the PSNR metric. Hence, a positive SSIM deviation can be 

observed when the PSNR method is applied on MB-ES, and the algorithm 

detects a recovered image with a better SSIM score than the best recovered 

image. This also applies to PSNR deviation of MB-ES using SSIM method.  
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Table 3.5 presents the detailed results of the denoising-MB-ES 

algorithm using the PSNR and SSIM methods for the Lena image. The Stopping 

Point (SP) refers to the iteration number at which the possible best quality 

restored image is detected during the restoration process. To calculate the total 

number of iterations taken by the restoration process, the patience number is 

also considered. In MB-ES, the patience number specifies additional iterations 

to determine if the stopping point is the optimal point for the detected image. If 

there are no other optimal stopping points within the next few iterations 

specified by the patience number, the program terminates and returns the 

detected image at the stopping point. During the comparison between PSNR and 

SSIM methods, the primary focus is not on the number of iterations taken, but 

rather on the deviations of PSNR and SSIM, as they are the key evaluation 

criteria for image restoration tasks. The aim is to achieve a smaller deviation 

value of PSNR and SSIM (closer to zero) in the MB-ES algorithm, which 

indicates better quality of the recovered image. 

Apart from that, for each noise level of the different types of noise, the 

deviations of PSNR and SSIM for three trials are averaged, resulting in a total 

of six values, respectively. This averaging process is repeated for all nine images 

in the CSet9 dataset. As a result, Figure 3.9 and Figure 3.10 provide the 

summary of the overall findings for all nine CSet9 datasets, with a focus on the 

comparison between PSNR and SSIM methods, respectively.
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Table 3.5: The Proposed Denoising-MB-ES Algorithm Based on PSNR and SSIM Methods on Lena Image. 

Image Noise Type Noise Level Trial 

PSNR Method SSIM Method 

Detected SP Best SP Deviation (%) Detected SP Best SP Deviation (%) 

SP PSNR SSIM SP PSNR SSIM PSNR SSIM SP PSNR SSIM SP PSNR SSIM PSNR SSIM 

Lena Speckle Low 1 1854 29.31760 0.90192 1873 29.62845 0.90400 -1.04916 -0.23061 1438 29.06267 0.90191 1768 29.4632 0.90450 -1.35945 -0.28582 

Lena Speckle Low 2 1813 29.71843 0.90703 2006 29.76778 0.90669 -0.16579 0.03803 1598 29.50712 0.90612 1993 29.5475 0.90747 -0.13672 -0.14946 

Lena Speckle Low 3 1827 29.46919 0.90483 2082 29.65673 0.90287 -0.63237 0.21691 1576 29.29298 0.90311 1848 29.2257 0.90536 0.23020 -0.24839 

Lena Gaussian Low 1 1518 29.43891 0.90033 1698 29.73361 0.90254 -0.99115 -0.24468 1288 29.28057 0.89855 1636 29.6478 0.90279 -1.23853 -0.46940 

Lena Gaussian Low 2 1979 29.69000 0.90165 2056 29.72488 0.90092 -0.11733 0.08032 1337 29.07598 0.89623 1897 29.6514 0.90226 -1.94050 -0.66789 

Lena Gaussian Low 3 1894 29.53778 0.89950 1893 29.68777 0.89998 -0.50520 -0.05392 1111 28.93208 0.89170 1790 29.6231 0.90100 -2.33276 -1.03233 

Lena Shot Low 1 1288 28.28784 0.88808 1599 28.73250 0.88997 -1.54758 -0.21200 979 27.99916 0.88375 1357 28.4649 0.89088 -1.63610 -0.80041 

Lena Shot Low 2 1711 28.79860 0.89347 2080 28.80573 0.88889 -0.02474 0.51577 1297 28.45316 0.89043 1717 28.6125 0.89443 -0.55682 -0.44655 

Lena Shot Low 3 1689 28.64768 0.88714 1509 28.75782 0.89193 -0.38298 -0.53642 1050 28.24166 0.88678 1362 28.6049 0.89266 -1.26973 -0.65784 

Lena Speckle High 1 863 25.76238 0.86436 1235 26.42617 0.85633 -2.51187 0.93752 201 22.85301 0.79517 876 25.7849 0.86711 -11.37045 -8.29665 

Lena Speckle High 2 915 25.86054 0.86334 1107 26.30451 0.86238 -1.68781 0.11094 215 23.00021 0.79506 913 25.9717 0.86655 -11.44132 -8.24978 

Lena Speckle High 3 742 25.67853 0.86350 970 26.23070 0.86479 -2.10508 -0.14975 203 22.51441 0.78948 868 26.0114 0.86842 -13.44404 -9.09003 

Lena Gaussian High 1 1281 27.52195 0.87070 1263 27.79256 0.87209 -0.97367 -0.15905 223 23.88835 0.80307 1101 27.5722 0.87403 -13.36084 -8.11838 

Lena Gaussian High 2 917 27.46783 0.87008 1193 27.69750 0.87190 -0.82920 -0.20893 311 24.85774 0.82009 1045 27.4766 0.87372 -9.53130 -6.13887 

Lena Gaussian High 3 1422 27.59033 0.86486 1278 27.73780 0.86895 -0.53165 -0.47075 374 25.27678 0.83007 1140 27.6580 0.87319 -8.60949 -4.93822 

Lena Shot High 1 920 26.49954 0.86661 958 26.70231 0.86514 -0.75936 0.16916 235 23.30574 0.80063 920 26.4995 0.86661 -12.05229 -7.61305 

Lena Shot High 2 887 26.25472 0.86376 1026 26.67056 0.86640 -1.55915 -0.30486 200 23.29146 0.79780 958 26.5034 0.86741 -12.11901 -8.02422 

Lena Shot High 3 1181 26.32402 0.85456 1049 26.60883 0.86033 -1.07035 -0.67048 207 23.07183 0.79516 868 26.2073 0.86330 -11.96405 -7.89346 

Note: SP refer to stopping point. A closer detected stopping point to the best stopping point does not necessarily imply better quality of the recovered 

image. 
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Figure 3.9: Analysis of PSNR Deviation in the Proposed Denoising-MB-ES 

Algorithm with PSNR and SSIM Methods on CSet9 Images. Refer 

to Table A-1 for more details. 

 

 

Figure 3.10: Analysis of SSIM Deviation in the Proposed Denoising-MB-ES 

Algorithm with PSNR and SSIM Methods on CSet9 Images. Refer 

to Table A-1 for more details. 
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It can be observed that the PSNR method used in denoising-MB-ES 

algorithm outperforms the SSIM method. From Table 3.6, The PSNR method 

shows better performance with a deviation of -1.51030 % and -1.57398 % in 

PSNR and SSIM, respectively. Therefore, PSNR method is preferrable for the 

denoising-MB-ES algorithm. 

 

Table 3.6: Comparison of PSNR and SSIM Deviations for the Proposed 

Denoising-MB-ES Using PSNR and SSIM Method. 

Metrics Method 

PSNR SSIM 

PSNR Deviation (%) -1.51030 -3.36419 

SSIM Deviation (%) -1.57398 -3.21127 

Note: A smaller deviation value (closer to zero) indicates better performance. 

Please refer Table A-1 for further details. 

 

3.8.2 Super-Resolution 

Figure 3.11 shows the comparison of PSNR_INT and PSNR_GT curves for a 

super-resolution process. Both curves measure the PSNR values obtained at 

different iterations during the process. As can be seen from the curve, the value 

of PSNR_INT curve generally increases with the number of iterations, which 

does not reflect the same behaviour with the PSNR_GT curve. Hence, the PSNR 

metric is not suitable because the curve does not provide a clear indication of 

when to stop the super-resolution process. In other words, it is not clear from 

the curve at which iteration the restored image has reached an acceptable level 

of quality. 
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Figure 3.11: Relationship Between PSNR_GT and PSNR_INT During Super-

Resolution. 

 

To address this issue, SSIM metric is used instead since it has a fixed 

range between 0 and 1. Two metrics are utilized, namely SSIM_GT which 

measures the SSIM between ground truth and recovered HR images, and 

SSIM_INT which measures the SSIM between intermediate recovered HR 

images. The SSIM_GT and SSIM_INT are using Equation (3.6) and Equation 

(3.7), respectively, to plot the curves. Figure 3.12 shows that both SSIM_GT 

and SSIM_INT curves share a similar trend. 

 

 

Figure 3.12: Relationship Between SSIM_GT and SSIM_INT During Super-

Resolution. 
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However, the characteristic of the SSIM_INT curve for super-

resolution (see Figure 3.12) is distinct from that of the PSNR_INT curve for 

denoising (see Figure 3.7). The PSNR_INT curve experiences a peak while the 

SSIM_INT curve does not. Therefore, a subtype of MB-ES, specifically the 

super-resolution-MB-ES, was developed with slight differences in stopping 

point detection compared to denoising-MB-ES. 

The performance of the super-resolution-MB-ES algorithm can be 

influenced by three adjustable parameters, which are: 

(i) Patience number: This parameter is similar to the denoising-

MB-ES algorithm and specifies the number of consecutive 

steps required for the program to terminate. 

(ii) Window size: This parameter specifies the number of records 

stored inside the window for computing the slope. 

(iii) Slope threshold: This parameter is utilized to compare with the 

slope in order to decide when the process should be terminated. 

 

It has been observed that the SSIM_INT curve initially increases 

sharply, followed by a gradual increase towards the end, eventually becoming 

“stable” with almost zero gradient. This characteristic is utilized to determine 

the optimal stopping point in the super-resolution process. A sliding window 

approach is employed to compute the slope for the SSIM records that are stored 

in the window throughout the process. Notably, the sliding window approach is 

fixed-length, unlike the denoising-MB-ES algorithm where the window size 

keeps changing.  

During the process, if the slope is greater than the threshold, the 

algorithm updates the best recovered HR image with its corresponding stopping 

point. The program will terminate once the computed slope is less than the 

threshold for the desired consecutive number, and lastly it will return the best 

HR image (as illustrated from Figure B-11 to Figure B-18). Figure 3.13 

summarizes the super-resolution-MB-ES algorithm. 
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Figure 3.13: Flowchart of the Proposed Super-Resolution-MB-ES Algorithm 

for Early Stopping Detection. Note: The “similarity” is SSIM 

metric for super-resolution. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

 

4.1 Introduction 

This chapter aims to analyse the performance of the proposed MB-ES algorithm 

as compared to state-of-the-art methods. Before the benchmarking analyses, 

investigation was performed on the proposed MB-ES algorithm to fine-tune the 

parameter values for the optimal performance. The results from the fine-tune 

process were utilized in the benchmarking analyses, which compared the 

performance of the MB-ES algorithm with ES-EMV. Subsequently, the 

denoising-MB-ES and super-resolution-MB-ES algorithms were compared 

with other existing models. The comparisons are based on the quantitative 

performance metrics, including PSNR and SSIM, as well as the qualitative 

visual inspection of the processed images. The results demonstrate the 

effectiveness and potential of the proposed models for real-world applications. 

Additionally, the discussion on the benchmarking analyses will provides the 

insights into the limitations and possible future improvements. 

 

4.2 Investigation of Fine-tuning Parameter Values for the Proposed 

MB-ES 

In this subsection, the fine-tuning process and results for the parameters of the 

MB-ES algorithm are discussed. The purpose of this investigation is to identify 

the most suitable values for each parameter to enhance the algorithm's 

performance in terms of both image quality and time consumption. CSet9 

dataset and a variety of parameter values were tested. The primary evaluation 

criteria focus on the resulting image quality, indicated by the deviation of PSNR 

and SSIM. The average number of iterations is also taken into consideration as 

a secondary evaluation criterion, in terms of time consumption. 

 



76 

 

4.2.1 Denoising-MB-ES Algorithm 

Among the three adjustable parameters, only the window size multiplier has the 

major effect on the performance. To study its impact, the window size multiplier 

was modified to 50, 100, 200, and 300. The effect of the window size multiplier 

on the deviations of PSNR and SSIM, as well as the average number of iterations, 

is illustrated in Figure 4.1. 

 

 

Figure 4.1: Relationship Between Window Size Multiplier and PSNR/SSIM 

Deviations and Average Number of Iterations. 

 

Hence, it is observed that a window size multiplier of 100 has the 

lowest deviation in terms of both SSIM and PSNR. Additionally, it provides a 

balanced trade-off in terms of the average number of iterations required. 

Therefore, it can be concluded that a window size multiplier of 100 is the 

optimal parameter value for the denoising-MB-ES algorithm. 

 

4.2.2 Super-Resolution-MB-ES Algorithm 

The super-resolution-MB-ES algorithm relies on three parameters: patience, 

threshold, and window size, to achieve high-quality image restoration. The 

following subsections describe the steps taken to analyze the relationship 

between these parameters. 
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4.2.2.1 Slope Threshold Parameter Tuning 

The default parameter values were set to patience = 1000 and window = 1000. 

Figure 4.2 shows the relationship between the slope threshold parameter and the 

deviations of PSNR and SSIM, as well as the average number of iterations. 

Based on the results in Figure 4.2, the threshold parameter is fine-tuned to a 

value of 2 × 10-6 since it has the lowest deviations in both PSNR and SSIM, 

which are closer to zero. 

 

 

Figure 4.2: Relationship Between Slope Threshold Parameter and 

PSNR/SSIM Deviations and Average Number of Iterations (with 

Patience = 1000, Window = 1000). 

 

4.2.2.2 Patience Parameter Tuning 

With the threshold parameter fixed at 2 × 10-6, Figure 4.3 shows the relationship 

between the patience parameter and the deviations of PSNR and SSIM, as well 

as the average number of iterations. The results in Figure 4.3 indicate that the 

optimal value for the patience parameter is 700, as it has the least average 

number of iterations compared to patience values of 800 and 900. 
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Figure 4.3: Relationship Between Patience Parameter and PSNR/SSIM 

Deviations and Average Number of Iterations (with Slope 

Threshold = 2 × 10-6, Window = 1000). 

 

4.2.2.3 Window Size Tuning 

With the threshold parameter fixed at 2 × 10-6 and the patience parameter fixed 

at 700, Figure 4.4 shows the relationship between the window parameter and 

the deviations of PSNR and SSIM, as well as the average number of iterations. 

The results in Figure 4.4 suggest that the optimal window size is 1000, as it has 

a lower average number of iterations compared to a window size of 800. 

 

 

Figure 4.4: Relationship Between Window Parameter and PSNR/SSIM 

Deviations and Average Number of Iterations (with Slope 

Threshold = 2 × 10-6, Patience = 700). 
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4.2.2.4 Final Fine-Tuning 

After the identification of optimal patience and window values as 700 and 1000, 

respectively, further fine-tuning was done on the threshold parameter. Figure 

4.5 shows the relationship between the threshold parameter and the deviations 

of PSNR and SSIM, as well as the average number of iterations. Based on the 

results in Figure 4.5, a threshold value of 2 × 10-6 is found to yield the best 

balance between deviations of PSNR and SSIM, and average number of 

iterations. 

 

 

Figure 4.5: Relationship Between Slope Threshold Parameter and 

PSNR/SSIM Deviations and Average Number of Iterations (with 

Patience = 700, Window = 1000). 

 

4.3 Comparison of the Proposed MB-ES (PSNR) and ES-EMV 

(Variance) 

To investigate the performance, both models were compared on denoising tasks 

using DIP model to provide a fair comparison, as the original author 

implemented the models for this task. The ES-EMV model was tested using its 

default settings, while MB-ES was configured with the fine-tuned values. A 

total of 162 runs were conducted, following the similar procedures described in 

the preliminary investigation of Section 3.8.1. Results are presented in Figure 

4.6 and Figure 4.7, which show the PSNR and SSIM deviations of both models 

on the CSet9 dataset, respectively. A deviation % closer to 0 indicates a closer 

match to the ground truth. It can be observed that images with different noise 
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conditions (Gaussian, Speckle and Shot) exhibit diverse restoration results 

owing to their unique characteristics. Nevertheless, the proposed MB-ES (red) 

performs better than the ES-EMV (blue) in most of the test images for different 

noise conditions. Both models excel at reducing low levels of noise as they 

generally cause less distortion in image quality compared to high levels of noise. 

However, the proposed MB-ES is better at removing high noise-level images 

than the ES-EMV. 

 

 

Figure 4.6: Comparison of PSNR Deviation Between the Proposed MB-ES 

with ES-EMV for the Denoising on CSet9 Images. Refer to Table 

A-2 for more details. 
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Figure 4.7: Comparison of SSIM Deviation Between the Proposed MB-ES with 

ES-EMV for the Denoising on CSet9 Images. Refer to Table A-2 

for more details. 

 

Table 4.1 summarizes the comparison between the proposed MB-ES 

and the ES-EMV model. It can be observed that MB-ES is able to deliver better 

PSNR and SSIM deviations. However, the Baboon images with low- and high-

level noises exhibit huge PSNR and SSIM deviations for both models. It might 

due to the presence of high-frequency components in images. This issue is to be 

investigated in future research. 

 

Table 4.1: Comparison of PSNR and SSIM Deviations Between the Proposed 

MB-ES and ES-EMV. 

Metric Algorithm 

ES-EMV MB-ES 

PSNR Deviation (%) -2.18683 -1.51030 

SSIM Deviation (%) -2.80937 -1.57398 
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Note: A smaller deviation value (closer to zero) indicates better performance. 

Please refer Table A-2 for further details. 

 

Table 4.2 highlights the comparison between MB-ES and ES-EMV 

with a focus on their stopping point detection. MB-ES offers several advantages 

over ES-EMV. Firstly, MB-ES requires fewer iterations (1813.500 < 2507.685) 

to detect the stopping point, resulting in a shorter time for image recovery. 

Secondly, both MB-ES and ES-EMV require low memory usage. However, 

MB-ES only considers the performance metric between intermediate images, 

while ES-EMV utilizes the variance method, which requires dealing with many 

pixels of the entire image. Lastly, MB-ES has lower design complexity as it only 

relies on intermediate images, while ES-EMV requires proofing of 

mathematical formulas and equations to implement the variance method, which 

demands background knowledge related to the field. 

 

Table 4.2: Comparison of the Proposed MB-ES and ES-EMV. 

Comparison Aspect ES-EMV MB-ES 

Average Number of Iterations 2507.685 1813.500 

Memory Usage Low Very Low 

Design Complexity High Low 

Note: Please refer to Table A-2 for further details on the average number of 

iterations. 

 

4.4 Comparison of the Proposed Denoising-MB-ES and Other 

Denoising Models 

To validate the efficiency of the proposed MB-ES in real-world denoising, the 

algorithm was applied to some related iterative denoising models, which are the 

deep-decoder, DD (Heckel and Hand, 2018), Stochastic Gradient Langevin 

Dynamics, SGLD (Cheng et al., 2019) and DIP (Ulyanov et al., 2018). Since 

the proposed method is implemented based on DIP, it serves as the baseline for 

comparison. The detected and best stopping points for each model, labelled as 

“current detection” and “best detection” respectively, are identified from the 

intermediate PSNR curve (PSNR_INT). The current detection is determined 
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from the PSNR_INT using the MB-ES algorithm, while the best detection is the 

recommended stopping point that yields the highest PSNR between the restored 

image and the ground truth. Typically, the best detection is located at the peak 

of the PSNR_GT curve. Each iterative denoising models yields different 

stopping point due to their unique restoration algorithms. To illustrate the 

performance comparison of denoising models in low- and high-level noise, 

Figure 4.8 and Figure 4.9 show the denoising results for the F16 image. 

 

 

Figure 4.8: Comparison of Low-level Speckle Denoising Results on F16 image 

for DD*, SGLD* and DIP*: Analysis of PSNR_INT against (a) 

PSNR_GT and (b) SSIM_GT. Note: The superscript “*” indicates 

the MB-ES was applied to the model. Further details can be found 

in Table A-3. 

 

DD* 

SGLD* 

DIP* 

(a) (b) 
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Figure 4.9: Comparison of High-level Speckle Denoising Results on F16 image 

for DD*, SGLD* and DIP*: Analysis of PSNR_INT Against (a) 

PSNR_GT and (b) SSIM_GT. Note: The superscript “*” indicates 

the MB-ES was applied to the model. Further details can be found 

in Table A-3. 

 

Figure 4.8 and Figure 4.9 demonstrate that the proposed MB-ES 

algorithm is successful in detecting the PSNR_GT peak during the restoration 

process. This indicates that the algorithm can effectively identify the best 

recovered image and achieve a quality close to the ground truth. In addition, 

PSNR method for MB-ES was able to detect the stopping point that closely 

corresponds to the SSIM_GT peak. However, minor differences were observed 

between the best and detected stopping points, which can be considered in future 

studies. Figure 4.10 shows a visual representation of the denoised images 

obtained using MB-ES on the discussed denoising models.  

DD* 

SGLD* 

DIP* 

(a) (b) 
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Figure 4.10: Denoising Results of DD*, SGLD* and DIP* on Low- and High-

Level Speckle Noises Images: F16, Peppers and kodim03. Note: 

The superscript “*” indicates the MB-ES was applied to the model. 

The performance metrics was measured in the form of (PSNR, 

SSIM, RMSE).  

 

It can be clearly seen that the airplane label of F16 and caps label of 

kodim03 have been successfully denoised under both low and high noise levels. 

For Pepper image, the edges of the peppers are effectively preserved while 

maintaining the details. Hence, the proposed MB-ES is capable of detecting the 

optimal stopping point for noise removal in iterative restoration models. 

 

4.5 Comparison of the Proposed Super-Resolution-MB-ES and Other 

Super-Resolution Models 

The performance evaluation of super-resolution involved four models: the 

classical bicubic interpolation method, and two deep learning-based models, 

SRCNN (Dong et al., 2016), ESPCN (Shi et al., 2016), as well as DIP model 

(Ulyanov et al., 2018). In order to perform a comprehensive evaluation of their 

capabilities, the performance of the models was compared using downsampling 

SF of 2, 3, and 4 on the input images. For instance, an image of size 512 × 512 

was downsampled to sizes of 256 × 256 (SF = 2), 170 × 170 (SF = 3), and 128 

× 128 (SF = 4). This allows a thorough analysis of the models' performance 

across different levels of image resolution, enabling a more accurate assessment 

of their effectiveness. Figure 4.11 and Figure 4.12 present the results of the 

comparison between these models in terms of PSNR and SSIM, respectively. 
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Figure 4.11: Comparison of PSNR for Super-Resolution Models on CSet9 

Dataset with Scaling Factors 2, 3, and 4. Note: The superscript “*” 

indicates the MB-ES was applied to the model. Please refer to 

Table A-4 for further details. 

  

 

Figure 4.12: Comparison of SSIM for Super-Resolution Models on CSet9 

Dataset with Scaling Factors 2, 3, and 4. Note: The superscript “*” 

indicates the MB-ES was applied to the model. Please refer to 

Table A-4 for further details. 
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It can be observed that the DIP model outperforms the classical bicubic 

method and is on par with the recent deep learning models, SRCNN and ESPCN 

It is worth noting that the DIP model has advantages in terms of being an 

untrained model compared to the trained models, SRCNN and ESPCN. 

However, there is one exception for the Baboon image where the high-

frequency spectrum does not favour the super-resolution algorithm of DIP.  

Figure 4.13, Figure 4.14 and Figure 4.15 illustrate the visual 

representation of the images obtained from multiple models tested for super-

resolution at different SF values. It can be clearly seen that the eaves of House 

image and human eyes of Lena image were successfully recovered for all super-

resolution models. However, the image quality was getting reduced as the 

downsampled SF increases to a value of four, resulting in mosaic effects 

especially for the bicubic and SRCNN models. Among the super-resolution 

models, ESPCN has the best visualisation quality due to its unique algorithm 

and extensive training dataset. On the other hand, the DIP model is able to 

produce exceptional performance without any mosaic effects on the recovered 

images.  For the Baboon image, the fur edges could not be successfully 

recovered by any of the models at a scaling factor of 4 due to the inherent nature 

of the image itself. In general, it can be concluded that DIP using MB-ES is able 

to still deliver outstanding performance in super-resolution process as compared 

to the classical and deep-learning based methods.
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Figure 4.13: Super-Resolution Results of Bicubic, SRCNN, ESPCN and DIP* on Different Scaling Factors of House Image. Note: The superscript 

“*” indicates the MB-ES was applied to the model. The performance metrics was measured in the form of (PSNR, SSIM, RMSE). 

House (SF = 2) 

House (SF = 3) 

House (SF = 4) 
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Figure 4.14: Super-Resolution Results of Bicubic, SRCNN, ESPCN and DIP* on Different Scaling Factors of Lena Image. Note: The superscript 

“*” indicates the MB-ES was applied to the model. The performance metrics was measured in the form of (PSNR, SSIM, RMSE). 

Lena (SF = 2) 

Lena (SF = 3) 

Lena (SF = 4) 
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Figure 4.15: Super-Resolution Results of Bicubic, SRCNN, ESPCN and DIP* on Different Scaling Factors of Baboon Image. Note: The superscript 

“*” indicates the MB-ES was applied to the model. The performance metrics was measured in the form of (PSNR, SSIM, RMSE). 

Baboon (SF = 2) 

Baboon (SF = 3) 

Baboon (SF = 4) 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

Conventional image restoration methods using filters require careful selection 

of relevant features from individual images. This is not always possible and has 

becoming increasingly complex with a greater number of features involved. 

While deep learning-based methods can address the shortcomings of 

conventional image restoration methods, the training process is computational 

expensive and requires availability of huge datasets. The model training takes 

considerable time depending on the processing speed of hardware resources. 

Furthermore, dataset is not always available. Lately, DIP, a learning-free 

approach to image restoration has emerged as an alternative. DIP uses an 

untrained convolutional neural network with random initialization. However, 

DIP requires pre-defined stopping point to recover image, which is impractical 

in reality. Moreover, different images have their own characteristics that lead to 

various optimal stopping points. Hence, this study highlights the benefits of 

using intermediate images to evaluate metrics such as PSNR and SSIM in image 

restoration, which are applied to the DIP method.  

The proposed MB-ES method provides better performance than the 

ES-EMV method in terms of the average number of iterations taken to detect 

the optimal stopping point and return the best quality image. Apart from that, 

the proposed MB-ES algorithm can be applied on the recent iterative denoising 

model, and is proven to be effective in tracking the peak of the curve between 

restored images and ground truth, resulting in obtaining the best quality image. 

Furthermore, the proposed MB-ES algorithm for super-resolution tasks 

outperforms the classical bicubic method and shows comparable performance 

with recent deep learning super-resolution models. It is worth mentioning that 

the DIP model does not require pre-training on massive datasets and still 

delivers decent performance on image restoration tasks. 
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5.2 Recommendations for future work 

In terms of future work, there are several areas that can be explored to further 

improve the effectiveness of the proposed MB-ES approach on the DIP model. 

Besides, the capabilities of the DIP architecture in restoring images can be 

further enhanced. Some potential future works include: 

(i) The DIP architecture can be modified to enhance the behaviour 

of the intermediate images curve for efficient detection of the 

best quality image. These modifications might include the 

selection of the network, number of layers, loss function, 

optimizer, and other relevant hyperparameters.  

(ii) Additionally, alternative metrics beyond PSNR or SSIM could 

be implemented to evaluate intermediate images such as a blend 

of PSNR and SSIM, or other metrics. These modifications 

potentially improve image restoration outcomes for various 

tasks beyond those examined in this study, such as deblurring 

or inpainting, and provide further insights into the effectiveness 

of the approach for different types of image degradation.  

(iii) To overcome the limitation of dataset selection, a more diverse 

range of datasets can be considered for evaluation.  
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APPENDICES 

Appendix A  

Appendix A: Additional Tables 

 

Table A-1: Overall Comparison of Denoising-MB-ES Algorithm Performance 

on CSet9 Images based on PSNR and SSIM Methods. The best 

score is highlighted in red. 

Image Noise Level Noise Type 

PSNR Method SSIM Method 

Deviation (%) Deviation (%) 

PSNR SSIM PSNR SSIM 

Lena 

Low 

Speckle -0.61577 0.00811 -0.42199 -0.22789 

Gaussian -0.53790 -0.07276 -1.83726 -0.72321 

Shot -0.65177 -0.07755 -1.15422 -0.63493 

High 

Speckle -2.10159 0.29957 -12.08527 -8.54549 

Gaussian -0.77817 -0.27958 -10.50054 -6.39849 

Shot -1.12962 -0.26873 -12.04512 -7.84358 

House 

Low 

Speckle -1.62460 -0.26190 -1.22761 -0.24192 

Gaussian -0.81667 -0.05310 -1.18159 -0.18664 

Shot -1.58575 0.16139 -1.77645 -0.18445 

High 

Speckle -2.21733 0.09623 -1.61099 -0.47667 

Gaussian -1.22780 0.14431 -2.94424 -0.65962 

Shot -2.32439 0.44584 -3.39373 -0.79523 

F16 

Low 

Speckle -0.91919 -0.07680 -2.49951 -0.56049 

Gaussian -0.45661 -0.32679 -0.22181 -0.11658 

Shot -1.78424 -0.16707 -2.86503 -0.71871 

High 

Speckle -2.36519 1.38238 -2.54406 -0.59867 

Gaussian -1.51400 -0.37720 -3.56199 -1.27238 

Shot -3.3143 0.61851 -2.10446 -0.88788 

Peppers 

Low 

Speckle -0.37862 -0.02120 -0.71649 -0.20382 

Gaussian -0.72568 -0.70207 -1.56851 -0.61950 

Shot -0.83702 -1.10534 -2.09640 -0.57826 

High 

Speckle -0.65834 0.18280 -1.80747 -0.85450 

Gaussian -0.45283 0.07510 -2.16237 -0.83168 

Shot -0.48751 -0.05531 -2.66673 -0.74319 

kodim01 

Low 

Speckle -0.41704 -0.43217 0.08253 -0.08308 

Gaussian -0.65694 -1.24820 0.05696 -0.55976 

Shot -0.68046 -1.30495 -0.41853 -1.83928 

High 

Speckle -0.47369 -0.64682 -1.12875 -4.61360 

Gaussian -0.79105 -1.97890 -1.90475 -4.81007 

Shot -0.47435 -0.74474 -6.03004 -12.43427 

kodim02 Low 

Speckle -1.36064 -0.90849 -4.66236 -2.76410 

Gaussian -2.11769 -1.33488 -2.86159 -2.02938 

Shot -0.80612 -0.37096 -3.40882 -2.10258 



99 

 

High 

Speckle -0.68677 -0.33656 -1.30691 -0.60549 

Gaussian -2.19071 -0.72003 -3.20912 -1.68206 

Shot -0.90468 -0.28160 -1.01308 -0.54103 

kodim03 

Low 

Speckle -0.30322 -0.07469 -5.03724 -2.59298 

Gaussian -0.50200 -0.18108 -3.99036 -1.80705 

Shot -1.15672 -0.22841 -3.96045 -1.69144 

High 

Speckle -1.20334 -0.24147 -3.01072 -1.23371 

Gaussian -0.88843 0.05729 -4.19772 -1.28846 

Shot -1.47964 0.10834 -5.33545 -1.59937 

kodim12 

Low 

Speckle -1.06630 -0.17939 -4.22734 -1.43718 

Gaussian -0.80805 -0.10259 -5.40409 -2.15940 

Shot -1.52984 -0.45597 -4.72892 -1.64616 

High 

Speckle -3.05227 0.12072 -3.12247 -0.96943 

Gaussian -1.08043 0.12643 -5.04509 -1.39661 

Shot -2.63025 -0.00409 -3.69749 -0.97397 

Baboon 

Low 

Speckle -4.60521 -12.68824 -4.87232 -13.46522 

Gaussian -3.34769 -11.37382 -6.04949 -17.94385 

Shot -4.51421 -12.52342 -4.60517 -13.38317 

High 

Speckle -4.21210 -12.20148 -4.44957 -13.15723 

Gaussian -4.28815 -12.02414 -4.18284 -12.29107 

Shot -3.82350 -12.38953 -4.95113 -15.40369 

Average -1.51030 -1.57398 -3.36419 -3.21127 
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Table A-2: Overall Comparison of Denoising Performance of Proposed MB-ES 

and ES-EMV on CSet9 Images. The best score is highlighted in red. 

Image Noise Level Noise Type 

ES-EMV MB-ES 

Deviation (%) 
SP 

Deviation (%) 
SP 

PSNR SSIM PSNR SSIM 

Lena 

Low 

Speckle -0.87157 -0.02125 1858 -0.61577 0.00811 1827 

Gaussian -0.45601 -0.04834 1734 -0.5379 -0.07276 1825 

Shot -0.61949 0.03390 1501 -0.65177 -0.07755 1570 

High 

Speckle -2.30761 -0.00273 892 -2.10159 0.29957 898 

Gaussian -1.02203 0.03636 1053 -0.77817 -0.27958 1038 

Shot -1.66766 -0.29522 877 -1.12962 -0.26873 898 

House 

Low 

Speckle -0.81472 -0.11774 1472 -1.6246 -0.26190 1680 

Gaussian -0.52396 0.01309 1314 -0.81667 -0.05310 1213 

Shot -2.16771 -0.01989 1419 -1.58575 0.16139 1016 

High 

Speckle -3.13974 0.21071 664 -2.21733 0.06713 751 

Gaussian -1.52369 0.32322 984 -1.2278 0.17341 859 

Shot -1.87765 0.64487 742 -2.32439 0.44584 549 

F16 

Low 

Speckle -1.14151 -0.02570 1917 -0.91919 -0.07680 1770 

Gaussian -0.68620 -0.07301 2046 -0.45661 -0.32679 2283 

Shot -1.24433 0.20394 1632 -1.78424 -0.16707 1736 

High 

Speckle -2.94088 1.18013 873 -2.36519 1.38238 922 

Gaussian -0.94180 -0.02140 1211 -1.51400 -0.37720 1489 

Shot -4.90841 0.00706 916 -3.31430 0.61851 948 

Peppers 

Low 

Speckle -0.40574 -0.20862 3403 -0.37862 -0.02120 1930 

Gaussian -0.40646 -0.25171 3576 -0.72568 -0.70207 2542 

Shot -0.42921 0.04092 2512 -0.83702 -1.10534 2118 

High 

Speckle -0.89608 0.07516 1681 -0.65834 0.18280 1176 

Gaussian -0.95648 -0.21403 2098 -0.45283 0.07510 1242 

Shot -0.83620 0.13427 1801 -0.48751 -0.05531 1225 

kodim01 

Low 

Speckle -1.43642 -2.22123 3423 -0.41704 -0.43217 2929 

Gaussian -1.48776 -2.55615 2782 -0.65694 -1.24820 1945 

Shot -1.93326 -3.65193 2140 -0.68046 -1.30495 1520 

High 

Speckle -1.22534 -2.77200 1743 -0.47369 -0.64682 1436 

Gaussian -1.68448 -3.35932 1471 -0.79105 -1.97890 1014 

Shot -1.94548 -3.95596 1456 -0.47435 -0.74474 1166 

kodim02 

Low 

Speckle -1.48842 -0.75737 2121 -1.36064 -0.90849 1324 

Gaussian -1.87576 -1.20941 1319 -2.11769 -1.33488 869 

Shot -2.70271 -1.59829 1192 -0.80612 -0.37096 882 

High 

Speckle -1.57953 -0.54656 1117 -0.68677 -0.33656 887 

Gaussian -2.64475 -1.06396 882 -2.19071 -0.72003 601 

Shot -1.62973 -0.65146 762 -0.90468 -0.28160 615 

kodim03 
Low 

Speckle -1.65447 -0.74681 2581 -0.30322 -0.07469 2298 

Gaussian -1.02335 -0.42048 2082 -0.50200 -0.18108 1620 

Shot -1.59828 -0.51143 1645 -1.15672 -0.22841 1229 

High Speckle -1.27940 -0.15715 1400 -1.20334 -0.24147 904 
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Gaussian -1.98709 -0.25335 1275 -0.88843 0.05729 828 

Shot -0.88261 0.19538 1450 -1.47964 0.10834 847 

kodim12 

Low 

Speckle -1.46139 -0.00491 2141 -1.0663 -0.17939 2825 

Gaussian -1.06872 -0.33032 2041 -0.80805 -0.10259 2431 

Shot -1.63745 0.10023 1717 -1.52984 -0.45597 1807 

High 

Speckle -3.10362 0.74423 1034 -3.05227 0.12072 1017 

Gaussian -1.70767 0.13823 1370 -1.08043 0.12643 1599 

Shot -2.76019 0.16165 1168 -2.63025 -0.00409 1312 

Baboon 

Low 

Speckle -7.8426 -22.26031 434 -4.60521 -12.68824 531 

Gaussian -7.40393 -21.52717 498 -3.34769 -11.37382 733 

Shot -7.77718 -22.27885 462 -4.51421 -12.52342 535 

High 

Speckle -6.64162 -20.50244 593 -4.2121 -12.20148 532 

Gaussian -7.45738 -21.61997 367 -4.28815 -12.02414 518 

Shot -6.38305 -19.69263 573 -3.8235 -12.38953 670 

Average -2.18683 -2.80937 1507.685 -1.51030 -1.57398 1313.500 

Extra Iteration for Stagnation   1000   500 

Total Number of Iterations   2507.685   1813.500 

Note: SP refer to stopping point. 

 

Table A-3: Overall Comparison of Performance of Speckle Denoising Models 

on CSet9 Images. 

Image Noise Level 

Denoising Models 

DD* SGLD* DIP* 

PSNR SSIM PSNR SSIM PSNR SSIM 

Baboon 
Low 21.05359 0.63941 19.41878 0.47936 19.74172 0.50368 

High 20.63256 0.59591 19.15094 0.46952 19.32553 0.49387 

F16 
Low 26.27490 0.90613 27.99586 0.91194 28.36041 0.91800 

High 26.41065 0.91123 23.52331 0.86579 23.66905 0.87978 

House 
Low 30.38619 0.94975 32.67716 0.95561 32.32693 0.95314 

High 30.60149 0.94920 28.28808 0.93525 28.21635 0.94030 

Lena 
Low 28.83876 0.89055 29.09199 0.90596 29.05964 0.89012 

High 29.08991 0.89216 25.77598 0.86812 25.93133 0.86554 

Peppers 
Low 26.50702 0.86063 28.35424 0.88884 28.58978 0.88623 

High 26.33956 0.85968 26.04932 0.85330 26.14788 0.85759 

kodim01 
Low 23.37928 0.71661 25.83101 0.81426 26.67326 0.84105 

High 24.02313 0.76360 24.22916 0.74150 24.63131 0.77417 

kodim02 
Low 27.74385 0.85870 29.21487 0.86647 30.39825 0.88475 

High 27.59092 0.85430 28.86322 0.85756 28.52538 0.85450 

kodim03 
Low 28.59014 0.89542 29.56377 0.90259 30.65272 0.91574 

High 28.50474 0.88774 28.47510 0.88897 28.55639 0.89005 

kodim12 
Low 26.32414 0.87458 29.13812 0.89036 29.33887 0.88959 

High 26.40252 0.87314 25.99917 0.86277 26.37522 0.86504 

Note: The superscript “*” indicates the MB-ES was applied to the model. 
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Table A-4: Overall Comparison of Performance of Super-Resolution Models 

on CSet9 Images. The best and second-best scores are highlighted 

in red and blue, respectively. 

Image Factor 

Super-Resolution Models 

Bicubic SRCNN ESPCN DIP* 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Baboon 

2 20.7695 0.7867 22.9102 0.8244 24.3335 0.8608 22.9956 0.7871 

3 20.9033 0.7088 21.3265 0.7172 22.1300 0.7520 20.4400 0.6484 

4 20.6022 0.6290 20.4878 0.6424 21.2311 0.6779 20.7211 0.6233 

F16 

2 24.8609 0.9262 29.3636 0.9570 32.9751 0.9790 31.4889 0.9666 

3 25.3046 0.9195 26.4625 0.9166 29.1376 0.9505 25.5693 0.9123 

4 25.0130 0.8995 24.5397 0.8650 27.2378 0.9205 27.0501 0.9238 

House 

2 30.9390 0.9659 34.5140 0.9790 42.5858 0.9967 40.3861 0.9870 

3 31.9799 0.9655 31.8093 0.9579 39.3516 0.9877 31.8456 0.9584 

4 31.6426 0.9557 29.5416 0.9198 35.3827 0.9725 35.6944 0.9678 

Lena 

2 27.4002 0.9198 31.2525 0.9499 34.9920 0.9692 32.8765 0.9470 

3 28.1882 0.9102 28.6310 0.9113 31.7397 0.9437 28.0248 0.9030 

4 28.0816 0.8929 26.8520 0.8639 29.8713 0.9187 29.8725 0.9097 

Peppers 

2 26.3416 0.9059 29.6982 0.9418 33.0547 0.9660 31.5948 0.9308 

3 26.4937 0.8971 27.3501 0.9054 30.5546 0.9462 26.1031 0.8878 

4 26.1771 0.8828 26.1205 0.8617 28.9430 0.9258 27.8420 0.9023 

kodim01 

2 22.3921 0.8015 24.4631 0.8330 26.8168 0.8801 25.8549 0.8546 

3 22.5176 0.7347 22.9444 0.7272 23.9494 0.7691 22.2905 0.7010 

4 22.1406 0.6642 21.9625 0.6426 22.7064 0.6854 22.7928 0.6911 

kodim02 

2 28.8643 0.9166 31.9016 0.9437 33.1831 0.9541 32.2053 0.9381 

3 29.2645 0.9017 30.1883 0.9105 31.0911 0.9235 28.4309 0.8874 

4 28.7402 0.8768 29.4551 0.8895 30.1688 0.9026 29.5725 0.8887 

kodim03 

2 28.9941 0.9330 31.8467 0.9534 34.1140 0.9697 33.0805 0.9591 

3 29.3750 0.9193 30.1685 0.9236 31.5655 0.9411 29.3823 0.9168 

4 28.9438 0.9019 28.9961 0.8916 30.4288 0.9205 30.2543 0.9164 

kodim12 

2 27.5453 0.9198 31.1125 0.9457 33.2345 0.9594 32.8173 0.9473 

3 27.9519 0.9031 28.4163 0.9050 30.2455 0.9264 27.6597 0.8978 

4 27.1571 0.8809 27.0239 0.8697 28.7153 0.8994 28.7106 0.8967 

Note: The superscript “*” indicates the MB-ES was applied to the model. 
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Appendix B: Additional Figures 

Appendix B  

  

Figure B-1: Demonstration of Early Stopping Detection by Denoising-MB-ES 

(Stage 1) 

 

 

Figure B-2: Demonstration of Early Stopping Detection by Denoising-MB-ES 

(Stage 2). Note: The window size multiplier in this algorithm is 

fixed at 100. The slope is computed from the best fit line, which is 

represented in orange. 
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Figure B-3: Demonstration of Early Stopping Detection by Denoising-MB-ES 

(Stage 3). 

 

 

Figure B-4: Demonstration of Early Stopping Detection by Denoising-MB-ES 

(Stage 4). Note: In cases where the slope is positive, the initial peak 

detected at iteration = 430 will be eliminated, and the algorithm will 

proceed to search for another peak. 
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Figure B-5: Demonstration of Early Stopping Detection by Denoising-MB-ES 

(Stage 5). 

 

 

Figure B-6: Demonstration of Early Stopping Detection by Denoising-MB-ES 

(Stage 6). 
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Figure B-7: Demonstration of Early Stopping Detection by Denoising-MB-ES 

(Stage 7). 

 

 

Figure B-8: Demonstration of Early Stopping Detection by Denoising-MB-ES 

(Stage 8). 
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Figure B-9: Demonstration of Early Stopping Detection by Denoising-MB-ES 

(Stage 9). 

 

 

Figure B-10: Demonstration of Early Stopping Detection by Denoising-MB-ES 

(Stage 10). Note: The patience number is set to 5. As previously 

stated, the window size increases by 100 at each step. If the slope 

is negative for all windows (e.g., window sizes ranging from 100 

to 500), the program will terminate at iteration = 2411 and return 

the image with the highest quality, which is obtained at iteration = 

1911. 
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Figure B-11: Demonstration of Early Stopping Detection by Super-Resolution-

MB-ES (Stage 1). Note: The window will calculate the slope for 

every iteration, but for the sake of simplicity, analysis will be 

performed selectively. 

 

 

Figure B-12: Demonstration of Early Stopping Detection by Super-Resolution-

MB-ES (Stage 2). Note: The computed slope is more than 

threshold of 2 × 10-6. 
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Figure B-13: Demonstration of Early Stopping Detection by Super-Resolution-

MB-ES (Stage 3). Note: The computed slope is more than 

threshold of 2 × 10-6. 

 

 

Figure B-14: Demonstration of Early Stopping Detection by Super-Resolution-

MB-ES (Stage 4). Note: The computed slope is more than 

threshold of 2 × 10-6. 
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Figure B-15: Demonstration of Early Stopping Detection by Super-Resolution-

MB-ES (Stage 5). Note: The computed slope is more than 

threshold of 2 × 10-6. 

 

 

Figure B-16: Demonstration of Early Stopping Detection by Super-Resolution-

MB-ES (Stage 6). Note: The computed slope is now approaching 

the threshold of 2 × 10-6. 
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Figure B-17: Demonstration of Early Stopping Detection by Super-Resolution-

MB-ES (Stage 7). Note: The computed slope is less than threshold 

of 2 × 10-6. The “wait_count” will begin to increase. 

 

 

Figure B-18: Demonstration of Early Stopping Detection by Super-Resolution-

MB-ES (Stage 8). Note: The “wait_count” equals to the “patience” 

of 700 at iteration = 5895. 
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