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ABSTRACT 

 

This project presents the development of a smart application that uses object 

detection and tracking algorithms to count the number of passengers on the 

UTAR bus. An additional package to recognize the gender of the passengers is 

provided. The system utilizes YOLO for object detection and DeepSORT for 

tracking, which runs on a Raspberry Pi 4 with Intel Neural Compute Stick 

(NCS) 2. The passenger count information is wirelessly transmitted back to the 

campus using LoRa and Wi-Fi technology. The proposed system offers real-

time monitoring and analysis of passenger flow on the bus, providing insights 

to optimize bus schedules and routes. Furthermore, the system architecture can 

be extended to support other applications on the campus, creating a smart 

wireless network for the university. The accuracy of the person counting 

application using YOLOv4-tiny is 85 %, and the frames per second is 9.97. 

The accuracy for passenger gender recognition tested using YOLOv5 and 

YOLOv7 is 100 %. Besides, the overall performance of LoRa still has room 

for improvement due to the low packet delivery ratio. In addition, the 

performances of Wi-Fi wireless networking in terms of total packets received 

and latency are satisfactory. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

A smart campus combines advanced network infrastructure, internet-

connected sensors and devices, and data analytics to create an intelligent 

environment for students and staff (Martin, 2023).  

Integrating various technologies, including Artificial Intelligence (AI) 

and the Internet of Things (IoT), in a smart campus aims to enhance the 

quality of life for university students and staff by optimizing the use of 

resources. 

To become a smart wireless campus, the smart campus can utilise 

wireless technologies such as long-range (LoRa) and Wi-Fi. In a smart 

wireless campus, various smart applications can be deployed to improve the 

operational efficiency and safety of the university. NerveNet, a resilient mesh-

topological network developed by Japan National Institute of Information and 

Communications Technology (NICT), is applied as a wireless network in this 

project. 

The smart wireless campus in this project is an application to track 

and count the number of passengers going into or out of the university’s bus. 

Afterwards, the information will be transmitted back to campus using LoRa 

and Wi-Fi technologies.  

 

1.2 Importance of the Study 

At the UTAR campus, the students face several challenges when using the bus 

services provided by the university. The challenges include the bus being too 

crowded and not on time. The proposed smart application has several potential 

benefits for the university community.  

First, the smart application can track and monitor the number of 

passengers on the university’s bus in real-time. The data collected can be used 

for another deep learning (DL) application. The DL application can predict the 

number of students onboarding the specific bus trip. With this prediction, the 

university can adjust the service accordingly. 



2 

Besides, the application can improve the safety and security of the 

students by ensuring the bus is not overcrowded. In addition, the application 

can enable the university to respond faster in case of emergencies by 

monitoring the real-time location of the bus. 

In short, this smart application will improve the overall student 

experience and help the university to manage the bus system.  

 

1.3 Problem Statement 

The current system of the university does not provide passenger counting and 

gender detection. Under the current system, the bus is frequently overcrowded, 

and the student might need to wait for the next trip.  

The smart application in this project can count the number of 

passengers on the bus. The real-time data will be transmitted back to campus 

using LoRa and Wi-Fi technologies. The student can check the number of 

passengers on the bus while waiting at the bus stop. If the bus is overcrowded, 

the student can make necessary adjustments, such as using another way to go 

to campus.  

 

1.4 Aim and Objectives 

The aim of this project is to design and implement a smart wireless campus 

network based on LoRa and Wi-Fi. The three objectives are: 

(i) To develop a smart monitoring application for passenger 

counting on UTAR buses. 

(ii) To deploy a NerveNet-based mesh network testbed with LoRa 

and Wi-Fi. 

(iii) To integrate the smart application into the wireless network 

test bed. 

(iv) To evaluate the experimental performance of the smart 

application and wireless network system. 

 

1.5 Scope and Limitation of the Study 

This study will focus solely on UTAR's bus system, with the wireless network 

being constructed to cover the UTAR bus route. Hence, some wireless 
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network modifications must be made if the smart application is deployed 

elsewhere.    

There are a few limitations of this study. Firstly, the lighting 

conditions on the bus might be poor. Poor lighting will lead to inaccurate 

results because the AI algorithm fails to detect the passenger.  

Besides, the limited coverage range of LoRa is another limitation of 

this study. The ideal coverage range of LoRa for urban areas is only up to 5 

km (Anon., 2023).  

In addition, the inference speed of the AI algorithm in this project is 

another significant element. This project will require real-time data, and the 

smart application will run on an edge device, Raspberry Pi 4. If the inference 

speed is slow on the edge device, processing the passenger counting 

application takes a long time and cannot provide real-time data.  

Furthermore, the power source of the edge device is another 

limitation of this study. It is important to look for a long-lasting power source 

to power up the edge device, which will be located on the bus. The suggested 

power source is solar power. The edge device can be powered on using a 

portable solar panel, which will also be located on the bus.   

 

1.6 Contribution of the Study 

The study aims to contribute to the university, students, and staff. Firstly, this 

project will enhance the overall student experience using the university bus 

services. Using this smart application, students can avoid waiting for an 

overcrowded bus. 

Next, this study will provide the university with an efficient 

transportation management system. The university management can arrange 

the bus trip based on the data collected from the smart application. 

In addition, this study will provide insights related to the development 

of LoRa and Wi-Fi technologies in the smart wireless campus.  

 

1.7 Outline of the Report 

This report contains five chapters. Chapter 1 will provide this project's 

overview, including the general introduction, aims and objectives, problem 

statements, and scope and limitations. Chapter 2 will provide the literature 
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reviews of the previously done works related to this project's scope. After that, 

Chapter 3 will explain this project's methodology and work plan, including the 

hardware and software used. Chapter 4 will present the results and the analysis 

of the obtained results. Lastly, Chapter 5 concludes this project and provides 

recommendations for future works. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

This chapter will provide a literature review of the previously done works 

related to this project. The areas include object detection, object tracking, 

person detection method, LoRa, Wi-Fi, MQTT, NerveNet, and edge AI.  

 

2.2 Object Detection 

Vision-based object detection can be divided into traditional machine vision 

and complex deep learning methods (Song et al., n.d.).  

 

2.2.1 Introduction To Traditional Machine Vision Methods 

The working principles of traditional machine vision techniques are extracting 

features from images and using these features to recognize or classify the 

objects in the image (O’ Mahony et al., n.d.). The features extracted include 

edges, corners, and other distinctive points in the image. After extracting the 

features, they will be matched to a database of known features to identify the 

objects in the image.  

 Manual feature engineering is usually required in traditional machine 

vision methods, as shown in Figure 2.1. The process can be time-consuming, 

and the algorithm may not generalize well to new images because the 

algorithm is not class specific.  

However, the traditional method is very general and can be used for 

simple applications where specific class knowledge is not required (O’ 

Mahony et al., n.d.). In contrast, traditional methods may be more suitable for 

easier, more domain-specific tasks that do not require as much data.  

 

 
Figure 2.1: Traditional Machine Vision Methods (O’ Mahony et al., n.d.). 
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2.2.2 Introduction to Complex Deep Learning Methods  

Rupali (2022) explains that deep learning is a subset of machine 

learning (ML), and ML is a subset of artificial intelligence. Figure 2.2 visually 

depicts the relationship between these concepts: artificial intelligence, machine 

learning, and deep learning.  

Machine learning can observe the input data, which consists of past 

experiences, and produce a model to solve the problems or predict any 

required value (Baduge et al., 2022). The significant difference between 

machine learning and deep learning is that deep learning has multiple hidden 

layers, but machine learning only consists of a single layer.   

 According to Wang et al. (2018), complex deep learning methods 

utilize the end-to-end learning structure, as shown in Figure 2.3, rather than 

the manual feature engineering used in the traditional machine vision method. 

The end-to-end learning structure in deep learning methods will automatically 

work out the most descriptive and salient features concerning each class.  

 Furthermore, deep learning neural networks are trained rather than 

programmed, which offers greater flexibility and accuracy in applications such 

as object detection (O’ Mahony et al., n.d.). Deep learning demonstrates 

flexibility by allowing the model to be re-trained using custom datasets. 

Moreover, complex deep learning methods require less human intervention 

than traditional methods. 

However, one drawback of the deep learning method is that it 

necessitates using substantial data for training. If only limited data are 

available for training in deep learning, the algorithm might not perform well in 

terms of accuracy. 

 

 
Figure 2.2: Artificial Intelligence, Machine Learning, and Deep Learning. 
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Figure 2.3: Complex Deep Learning Methods (Wang et al., 2018). 

 

Jiang et al. (2020) categorized deep learning object detection methods 

in region proposal-based two-stage and regression-based one-stage methods. 

Popular two-stage methods include Region-based Convolutional Neural 

Networks (R-CNN) and Fast R-CNN. In contrast, one-stage methods include 

You Only Look Once (YOLO) and Single Shot Detector (SSD). 

Zhang et al. (2020) mentioned that the two-stage methods perform 

better. However, these approaches require much higher computing power than 

the one-stage method. Hence, the two-stage methods are unsuitable for real-

time applications due to the required high computing complexity.  

 Moreover, Saponara et al. (2022) mentioned that R-CNN is 

unsuitable for real-time application because large amounts of computational 

time are needed to classify the regions for each image. They also mentioned 

that YOLO only uses a single network evaluation while R-CNN and Fast R-

CNN use thousands of regions for every image.  

Next, in the research done by Sambolek & Ivasic-Kos (2021), the 

YOLO algorithm obtained the best results. In the research, Cascade R-CNN 

and Faster R-CNN detectors were also used. The results show that Cascade R-

CNN and Faster R-CNN significantly perform worse than the YOLO 

algorithm.  

Furthermore, the research done by Chen et al. (2020) shows that 

YOLO algorithms have obtained higher accuracy and faster detection speed 

compared to Faster-RCNN, which belongs to the two-stage methods. 

Besides, in the research done by Arcos-García et al. (Arcos-García, 

Álvarez-García and Soria-Morillo, 2018), although the results of YOLO and 

SSD are not as good as Faster R-CNN, both YOLO and SSD still can achieve 

competitive accuracy results. They also discovered that YOLO and SSD are 

much faster than Faster R-CNN. Besides, the YOLO and SSD consumed less 
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memory than Faster R-CNN. Hence, the YOLO and SSD, which are the one-

stage method, are an optimal choice for any deployment in embedded devices 

or edge devices. 

In addition to comparing YOLO and SSD, Masmoudi et al. (2019) 

found out that YOLO is very fast compared to SSD, but SSD has a better 

result than YOLO in their research. They mentioned that YOLO is suitable for 

applications requiring real-time processing, while SSD is suitable for 

applications that detect small objects due to its high accuracy.  

Additionally, the research done by Kim et al. (2019) shows that 

YOLO and SSD are faster than Faster R-CNN, but the accuracy of R-CNN is 

higher. However, upon further analysis in the research, it was found that 

YOLO produces reasonably accurate results within a shorter time, making it 

an appropriate model for detecting people in embedded or edge devices. 

 

2.3 Complex Deep Learning Methods 

Based on the literature review of the previous part, the regression-

based one-stage method is more suitable than the region proposal-based two-

stage method for real-time applications due to faster inference speed. Besides, 

the YOLO algorithm is better than SSD in the real-time application and person 

detection, as mentioned by Masmoudi et al. (2019) and Kim et al. (2019). 

The deep learning algorithms applied in this project are YOLOv4, 

YOLOv4-tiny, YOLOv5, and YOLOv7. YOLOv4 and YOLOv4-tiny will be 

used to detect the passenger on the bus. Besides, YOLOv5 and YOLOv7 will 

be used to recognize the gender of the passengers as an additional package in 

this project. 

 

2.3.1 You Only Look Once (YOLO) 

You Only Look Once (YOLO) was introduced by Joseph Redmon in 2016 

(Chamidu, 2020). Back in 2016, more recent approaches used the region 

proposal-based two-stage method. In these two-stage methods, such as R-CNN, 

the potential bounding boxes in an image will be generated first, and a 

classifier will be run on these proposed boxes. After that, a post-processing 

process refines the bounding boxes of the detected objects using bounding box 

regression and eliminates duplicate detections (Girshick et al., 2014). These 
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methods are slow, and optimising the algorithm is difficult because each 

component must be trained separately (Redmon et al., 2015). In YOLO, object 

detection was reframed as a regression-based one-stage method.  

 According to Redmon et al. (2015), YOLO has several benefits in 

object detection compared to traditional methods. Firstly, the speed of YOLO 

is breakneck. The pipeline of YOLO is simple since YOLO frame the 

detection as a regression problem. With the simple pipeline, YOLO can 

process real-time streaming video with less than 25 ms of latency. Secondly, 

YOLO has been found to have fewer than half the number of background 

errors compared to Fast R-CNN because it reasons globally about the input 

image when making predictions. Thirdly, YOLO has a high generalizability 

level, making it less prone to breaking down when applied to new domains or 

unforeseen inputs compared to other detection methods such as R-CNN. 

 When an input image is fed into YOLO, it partitions it into an S x S 

grid. Each grid cell is then tasked to detect any objects for which the centre 

falls within the cell. Subsequently, the bounding boxes and corresponding 

confidence scores for each box are predicted by each grid cell (Parico and 

Ahamed, 2021). A higher confidence score for a box indicates that the model 

is more confident that the box contains an object and that the object contained 

in the box corresponds to the model's prediction. Conversely, the confidence 

scores for a grid cell should be zero if it contains nothing. In cases where the 

grid cell detects an object, the confidence score is calculated as the intersection 

over union (IoU) between the predicted box and the ground truth.  

For each bounding box, YOLO predicts five values: x, y, w, h, and 

confidence. The (x,y) is a coordination that indicates the bounding box's centre 

relative to the grid cell's bounds. The w and h values represent the width and 

height of the bounding box, predicted relative to the input image. Additionally, 

regardless of the number of bounding boxes, only one set of conditional class 

probabilities is predicted for each grid cell(Redmon et al., 2015). The process 

of YOLO is shown in Figure 2.4. 

 



10 

 
Figure 2.4: Process of YOLO (Parico and Ahamed, 2021). 

 

 According to Redmon et al. (2015), the network of YOLO was 

influenced by GoogLeNet and consisted of 24 convolutional layers and two 

fully connected layers. However, instead of using the inception modules 

present in GoogLeNet, YOLO employed 1 x 1 convolutional layers followed 

by 3 x 3 convolutional layers (Diwan, Anirudh and Tembhurne, 2023). The 1 x 

1 reduction layers reduce the feature space from the preceding layers. As a 

result, the network's final output is a tensor of predictions with a size of 7 x 7 x 

30. The complete network of YOLO is shown in Figure 2.5. 

 There are some limitations of YOLO, as mentioned by Redmon et al. 

(2015). One limitation is that YOLO struggles to detect small objects that 

appear in a group, like birds. YOLO’s solid spatial constraints restrict its 

ability to predict many nearby objects. Next, YOLO may have difficulty 

detecting objects in novel aspect ratios since it relies on learned data to predict 

bounding boxes. 

 

 
Figure 2.5: Full Network of YOLO (Redmon et al., 2015). 
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 Redmon et al. (2015) compared YOLO with other detection systems 

in their research. Compared to R-CNN, YOLO only proposes 98 bounding 

boxes per image, while R-CNN proposes about 2000 bounding boxes. Besides, 

although R-CNN's speed is up in other fast detection systems such as Fast R-

CNN and Faster R-CNN by sharing the computation power, both models still 

cannot apply in real-time applications.  

 In addition to the YOLO, a fast version of YOLO was designed. The 

convolutional layers of Fast YOLO reduced from 24 to 9 compared to YOLO. 

Furthermore, the number of filters used in the convolutional layers of Fast 

YOLO is fewer than YOLO. According to Redmon et al. (2015), Fast YOLO 

is the fastest object detection model on the PASCAL dataset. The mean 

average precision (mAP) of Fast YOLO is two times higher than previous 

work on real-time detection.  

 In short, YOLO is a unified model for object detection. YOLO can be 

trained directly on entire images. Besides, YOLO can generalize to new 

domains making it a robust object detection model. In addition, the fastest 

object detection model at that time is Fast YOLO, making real-time 

applications workable.  

 

2.3.2 YOLOv4 

YOLOv4 was developed by Alexey Bochkovskiy, Chien-Yao Wang 

and Hong-Yuan Mark Liao in April 2020. YOLOv4 is the fourth version of the 

YOLO series. New methods were introduced, and some complex and powerful 

techniques were showcased in YOLOv4. According to Diwan et al. (2023), 

YOLOv4 performs better in speed and accuracy than all the previous versions 

of YOLO at that time. In addition, Jiang et al. (2022) mentioned that the 

changes in YOLOv4 compared to the previous versions are YOLOv4 more 

focused on comparing the data and have a substantial improvement.  

 An object detector can be divided into several building blocks: 

backbone, neck, and head. Figure 2.6 shows the building blocks of an object 

detector and the difference between one-stage and two-stage detectors. 

Backbone acts as the feature extractor of the deep learning architecture. Some 

examples of backbone include VGG16, ResNet-50, and CSPDarknet53. Neck  
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Figure 2.6: Building Blocks of One-Stage Detector and Two-Stage Detector 

(Bochkovskiy, Wang and Liao, 2020). 

 

acts as a feature aggregator and collects feature maps from different stages of 

the backbone. Head refers to the object detector, which discovers the region 

where the object might exist (Vishal, 2021). According to Bochkovskiy et al. 

(2020), YOLOv4’s architecture includes a CSPDarknet53 backbone, a neck 

composed of an SPP additional module and PANet, and a head based on 

YOLOv3.  

Besides, many choices of the bag of freebies (BoF) and bag of 

specials (BoS) are available in YOLOv4. According to Bochkovskiy et al. 

(2020), BoF refers to the methods where the training strategy is changed or the 

training cost is increased to achieve better accuracy. Furthermore, utilizing 

BoF to improve a model's accuracy does not result in an increase in inference 

cost. BoS refers to the post-processing methods and plugin modules that will 

slightly increase the inference cost and significantly improve the accuracy 

(Vishal, 2021).  

 According to Bochkovskiy et al. (2020), one of the BoF for the 

backbone used in YOLOv4 is Mosaic, and for the detector is Cross mini-Batch 

Normalization (CmBN). Furthermore, the BoS used in the backbone includes 

Cross stage partial connections (CSP), and the detector includes Spatial 

Pyramid Pooling-block (SPP-block) and PAN path-aggregation block.  

 Mosaic is a new data augmentation method Bochkovskiy et al. (2020) 

introduced. Four training images were mixed in Mosaic, as shown in Figure 

2.7. Mixing four images allows the detection of objects outside the normal 

context. Moreover, the activation statistics are computed based on four distinct 

images at each layer, leading to a reduced dependency on a large mini-batch 

size. 
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Figure 2.7: Mosaic in YOLOv4 (Bochkovskiy, Wang and Liao, 2020).  

 

 Next, CmBN is a modified version of Cross Batch Normalization 

(CBN). The differences between CBN and CmBN are shown in Figure 2.8. In 

CBN, it normalizes the data with four batches in training. CBN utilize the 

mean and standard deviation of the past four batches to normalize the current 

batch (Vishal, 2021). CmBNollows the idea of CBN by collecting the statistics 

only between the mini-batches within a single batch (Bochkovskiy, Wang and 

Liao, 2020).  

 Besides, CSP used in YOLOv4 can reduce the computation cost and 

achieve a more prosperous gradient combination (Diwan, Anirudh and 

Tembhurne, 2023). According to C. Y. Wang et al. (2020), CSP can achieve 

this by dividing the feature map of the base layer into two separate parts, 

which can then be combined via a proposed cross-stage hierarchy. The 

differences between DenseNet and CSPNet are shown in Figure 2.9. 

 

 
Figure 2.8:Differences between CBN and CmBN (Bochkovskiy, Wang and 

Liao, 2020). 
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Figure 2.9: Differences between (a) DenseNet and (b) CSPNet (Diwan, 

Anirudh and Tembhurne, 2023). 

 

 Furthermore, an SPP block was used after the CSPDarknet53 in 

YOLOv4 to separate some important features from the backbone. In SPP, the 

feature map of the input image will be extracted using convolutional layers. 

After that, a feature set will be generated. Repeating the feature set generation 

process by n times will produce the different feature maps in height and width 

dimensions, creating a pyramid. In YOLOv4, SPP was applied in each part 

and combined to generate an output feature map (Vishal, 2021). Figure 2.10 

shows the process of SPP. 

 In addition, a modified PAN was created in YOLOv4. The addition 

connection of PAN was replaced by concatenation (Bochkovskiy, Wang and 

Liao, 2020). Figure 2.11 shows the differences between the original PAN and 

the modified PAN. 

 

 
Figure 2.10: Flows of SPP (Vishal, 2021). 
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Figure 2.11: Differences between Original PAN and Modified PAN. 

 

 In the research done by Chethan Kumar et al. (2020) and Degadwala 

et al. (2021), the results show that YOLOV4 can achieve high accuracy in 

object detection. According to Chethan Kumar et al. (2020), YOLOv4 

achieved 99 % accuracy for the video dataset. Besides, Degadwala et al. (2021) 

mentioned that the accuracy of YOLOv4 is 98.9 % for medical face mask 

detection in their project.  

 

2.3.3 YOLOv4-tiny 

YOLOv4-tiny is proposed based on the architecture of YOLOv4 and is a 

compact version of YOLOv4 (Kulshreshtha et al., 2021). According to Jiang et 

al. (2020), the network structure of YOLOv4-tiny is more straightforward and 

more suitable for developing on embedded devices when compared to 

YOLOv4. In addition, Parico and Ahamed (2021) mentioned that the inference 

speed (FPS) for YOLOv4-tiny is higher than YOLOv4 when having a lower 

inference memory usage, as shown in Figure 2.12. 

 According to Wang et al. (2021), the backbone of YOLOv4-tiny is 

greatly simplified. Figure 2.13 shows the network structure of YOLOv4-tiny. 

In addition, Jiang et al. (2020) mentioned that YOLOv4-tiny uses 

CSPDarknet53-tiny as its backbone network instead of the CSPDarknet53 

used in YOLOv4. Moreover, YOLOv4-tiny abandons the Spatial Pyramid 

Pooling (SPP) and uses the feature pyramid network to increase the object 

detection speed (Anand, Das and Sarkar, 2021).  
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Figure 2.12: Comparison of YOLO v4 models in Inference Speed and 

Inference Memory Usage (Parico and Ahamed, 2021). 

 

 
Figure 2.13: The Network Structure of YOLOv4-tiny (Wang et al., 2021). 

 

Furthermore, YOLOv4 and YOLOv4-tiny differ in that YOLOv4 was 

trained using the weights of 137 pre-trained convolutional layers, whereas 

YOLOv4-tiny was only trained using the weights of 29 pre-trained 

convolutional layers (Kulshreshtha et al., 2021). 

From the research done by Kulshreshtha et al. (2021), YOLOv4 

obtained the final mAP of 97.10 %, and YOLOv4-tiny obtained the last mAP 

of 95.20 %. However, the detection time of YOLOv4-tiny is six times faster 

than YOLOv4. Although the mAP of YOLOv4-tiny is slightly lower than 

YOLOv4 for 1.9 %, YOLOv4-tiny was chosen in this research because the 

application requires on-the-spot decisions. 

Next, the research done by Ying et al. (2021) shows that the 

YOLOv4-tiny is four times faster than YOLOv4, and the accuracy of 

YOLOv4-tiny was not compromised much compared to YOLOv4.  In addition, 

the research done by Anand, Das and Sarkar (2021) shows that YOLOv4-tiny 

achieved 4.6 times higher in frame-per-second (FPS) and the mAP of 

YOLOv4-tiny only 0.75 % less than YOLOv4. They mentioned that YOLOv4-

tiny is preferred for real-world surveillance cameras because it performs better 

in FPS. 
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 In short, the architecture of YOLOv4-tiny is different from YOLOv4. 

However, the prediction process of YOLOv4 and YOLOv4-tiny are the same. 

Overall, the YOLOv4-tiny has a much faster speed than YOLOv4 but a 

slightly lower mAP than YOLOv4. Hence, YOLOv4-tiny is more suitable for 

this project because this project requires a real-time application.  

 

2.3.4 YOLOv5 

YOLOv5 was released in June 2020, just two months after the release of 

YOLOv4. Zhu et al. (2021) stated that in YOLOv5, the backbone network is 

CSPDarknet53 with an SPP layer, the neck network is PANet, and the head 

network is YOLO detection. Do (2021) mentioned that the architecture of 

YOLOv4 and YOLOv5 are very similar, and the starting date of the research 

of boto YOLOv4 and YOLOv5 are close.  

 According to Jiang et al. (2022), people are dissatisfied with 

YOLOv5 because it contains fewer innovations when compared to YOLOv4. 

However, YOLOv5 still has some performance improvements and some 

significant advantages. The advantages of YOLOv5 include the user-friendly 

PyTorch framework, which enables a more straightforward training process 

and makes it easier to develop into production than the Darknet framework 

used in YOLOv4 (Jiang et al., 2022). Besides, YOLOv5 integrates a large 

amount of computer vision technologies. 

 In addition, according to Do (2021), the YOLOv5 possessed 

advantages in engineering. The installation and integration of YOLOv5 are 

more straightforward than in previous versions because YOLOv5 is written in 

Python instead of C language in the previous versions. The growth potential of 

YOLOv5 is higher than YOLOv4 because YOLOv5 uses the PyTorch 

framework, and the PyTorch community is larger than the Darknet community.  

 According to Jacob (2020), the notable difference in YOLOv5 is the 

auto-learning bounding box anchors. The previous version of YOLO utilized 

the k-mean clustering algorithm with different k values to select the five most 

appropriate anchor boxes, which helped to enhance model performance while 

reducing training time. However, a limitation of this approach is that the 

anchor boxes cannot easily adapt to unique custom datasets (Do, 2021). To 

address this, the k-means clustering algorithm is run on the unique custom 
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dataset to obtain the best-fit anchor boxes. After that, these parameters will be 

manually configurated into YOLO. In YOLOv5, the anchor box selection 

process was integrated. Hence, the network can automatically learn the most 

suitable anchor boxes for unique custom datasets during training (Jacob, 2020). 

 Comparing the performance between YOLOv4 and YOLOv5 is hard 

to achieve accurately because the two models use different programming 

languages and frameworks. However, YOLOv5 was proven to perform better 

than YOLOv4 under certain circumstances (Do, 2021). 

 

2.3.5 YOLOv7 

YOLOv7 was introduced by Chien-Yao Wang, Alexey Bochkovskiy, and 

Hong-Yuan Mark Liao in July 2022 (Gaudenz, 2023). According to Wang, 

Bochkovskiy and Liao (2022), YOLOv7 has better performance in speed and 

accuracy than other all-known object detectors. YOLOv7 has the highest 

accuracy of 56.8 % average precision (AP) and can achieve up to 160 FPS on 

GPU V100.  

There are two significant changes in the YOLOv7’s architecture 

compared to the previous version: extended efficient layer aggregation 

networks (E-ELAN) and model scaling for concatenation-based models. 

Besides, another significant change in YOLOv7 is the trainable bag of freebies 

(BoF). The trainable BoF include planned reparameterized convolution, coarse 

for auxiliary, and fine for lead loss (Gaudenz, 2023).  

 According to Wang, Bochkovskiy, and Liao (2022), the primary 

considerations in designing efficient architectures are the number of 

parameters, amount of computation, and computational density. To overcome 

this, the authors propose Extended-ELAN based on ELAN. Compared to 

ELAN, the gradient transmission path of the original architecture in E-ELAN 

will not change. The cardinality of the added features was increased using the 

group convolution in E-ELAN. After that, the features of different groups will 

be combined in the shuffle and merged in a cardinality manner. Hence, the use 

of parameters and computations can be improved in E-ELAN by enhancing 

the features learned by different feature maps. Figure 2.14 shows the 

difference between ELAN and E-ELAN. 
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Figure 2.14: (a) ELAN and (b) E-ELAN (Wang, Bochkovskiy and Liao, 2022). 

  

Besides, Wang, Bochkovskiy, and Liao (2022) proposed the 

corresponding compound model scaling for the concatenation-based model in  

YOLOv7. Performing a depth scaling on both the concatenation-based model 

and the scaled-up concatenation-based model results in an increase in the 

output width of a computational block. Hence, the input width of the 

subsequent transmission layer will increase in these two models. To address 

this issue, Wang, Bochkovskiy, and Liao (2022) introduced a compound 

scaling approach for increasing the depth and width of a concatenation-based 

model. In this approach, only the depth of the computational block needs to be 

scaled, and then the remaining transmission layers are scaled correspondingly 

in width. Figure 2.15 shows the differences between the three models 

mentioned above. 

 

 
Figure 2.15: The differences between (a) the concatenation-based model, (b) 

the scaled-up concatenation-based model, and (c) the proposed 

model (Gaudenz, 2023). 

(a) (b)  



20 

  According to Wang, Bochkovskiy, and Liao (2022), although 

RepConv obtained better performance in VGG architectures, there is a 

significant accuracy loss due to the direct application in ResNet or DenseNet. 

Hence, to address this issue, the planned re-parameterized convolution 

architecture in YOLOv7 used RepConv without the identity connection 

(Gaudenz, 2023).  With this implementation, the identity connection will not 

exist because the re-parameterized convolution replaces the convolutional 

layer.  

 In addition, the architecture of YOLOv7 contains more than one head. 

The lead head is responsible for the final output, while the auxiliary head 

assists in training the middle layers (Gaudenz, 2023). In YOLOv7, Wang, 

Bochkovskiy, and Liao (2022) introduced the “label assign”, a mechanism that 

takes into account both the network prediction results and the ground truth, 

and then assigns a soft label accordingly.  Lead-guided assigner and coarse-to-

fine lead-guided assigner were proposed by Wang, Bochkovskiy, and Liao 

(Wang, Bochkovskiy and Liao, 2022). 

In short, the authors of YOLOv7 claim that they have developed the 

YOLOv7, which receives state-of-the-art results. The significant changes of 

YOLOv7 include E-ELAN, model scaling for concatenation-based models, 

planned reparameterized convolution, coarse for auxiliary, and fine for lead 

loss. 

 

2.4 Object Tracking Algorithm  

In the field of computer vision, object tracking is a significant research 

direction. Object tracking technology has made incredible progress in the past 

two to three decades (Zhang, Chen and Wei, 2020). In general, an object 

tracking algorithm will automatically identify the objects in the videos and 

assume the detected objects as a set of high-accuracy trajectories (Nico, 2023).  

 The object tracking algorithm can be divided into classical and deep 

learning algorithms. Examples of classical object tracking algorithms are 

Meanshift, Kalman Filter, and Particle Filter. Examples of deep learning 

object tracking algorithms are Simple Online and Realtime Tracking (SORT) 

and Simple Online and Realtime Tracking with a Deep Association Metric 

(DeepSORT).  
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 According to Perera et al. (2021), deep learning object-tracking 

algorithms are gaining more and more attention from researchers due to their 

promising performances. In addition, the performances of the classical 

tracking algorithm are poor, especially under ambient lighting changes and 

occlusions.  

 

2.4.1 Deep Learning Tracking Algorithm 

Recent advancements in deep learning tracking algorithms have led to 

breakthroughs in object-tracking technology. The deep learning tracking 

algorithm used in this project is DeepSORT.  

 

2.4.1.1 DeepSORT 

According to Wojke, Bewley, and Paulus (2017), DeepSORT is an object-

tracking algorithm that extends to SORT. SORT was introduced by Bewley et 

al. (2016), and it is designed for online tracking, where only the detections 

from the previous and current frames are provided to the tracker. DeepSORT 

was integrated with a deep appearance-based metric derived from 

Convolutional Neural Network (CNN) (Parico and Ahamed, 2021). Figure 

2.16 shows the architecture of DeepSORT. 

 The single conventional hypothesis tracking methods using frame-by-

frame data association and recursive Kalman filtering were adopted in 

DeepSORT (Wojke, Bewley and Paulus, 2017). A space with an eight-

dimensional state consisting of a bounding box centre position with the height 

h, aspect ratio γ, and the respective velocities in the coordination of the images 

were defined in Deep SORT. Besides, a Kalman filter was used in DeepSORT. 

 

 
Figure 2.16: Architecture of DeepSORT (Parico and Ahamed, 2021). 
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 In DeepSORT, the algorithm was integrated with appearance 

information and improved DeepSORT’s performance. In addition, the objects 

can be tracked with more extended periods of occlusion, reducing the number 

of identities switched due to the integration (Nico, 2023). According to Wojke, 

Bewley, and Paulus (2017), DeepSORT has demonstrated remarkable 

robustness and speed and is considered among the top-performing tracking 

algorithms. 

 

2.5 Person Detection Methods 

There are two primary categories of person detection methods: those that 

operate on an overhead view and those that operate on a normal view. Person 

counting has many applications, such as crowd analysis and person counting. 

However, it is challenging for the researchers to detect the person accurately 

due to a wide range of variations such as posture, size, and orientation of a 

person (Ahmad, Ahmed and Adnan, 2019). 

 According to Ahmed and Adnan (2018), researchers have done a 

great job on the person detection method, but the algorithm might fail in some 

situations, as shown in Figure 2.17. For example, in Figure 2.17, the 

machinery might block the person, and the camera might not capture the 

person being covered. In this situation, the person detection algorithm might 

fail.   

 However, in the overhead view, as shown in Figure 2.18, the person 

can be seen easily from the camera, and the failure of the person detection 

algorithm can be avoided (Ahmed and Adnan, 2018). In addition, according to 

Ahmad, Ahmed, and Adnan (2019), the wide angle of the overhead view can 

provide more coverage and save cameras’ installation costs. 

 

 
Figure 2.17: Normal View (Ahmed and Adnan, 2018). 
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Figure 2.18: Overhead View (Ahmed and Adnan, 2018). 

 

2.6 Wi-Fi 

One of the wireless networking technologies that fall under the Institute of 

Electrical and Electronics Engineers (IEEE) standard is Wi-Fi, which has 

gained popularity over time. The IEEE 802.11 standard lists the protocol that 

enables communications between Wi-Fi-enabled wireless devices, such as 

access points and routers (Cisco, 2023). 

 Wi-Fi was first introduced by CNR Corporation/AT&T in the 

Netherlands in 1991, and since then, it has rapidly developed to provide 

wireless connectivity for computing devices such as laptops. Wi-Fi is a 

wireless local area network (WLAN) that enables local area networks to 

operate without cables and wiring, making it a popular choice for home and 

business networks. 

 In current worlds, Wi-Fi can mainly be divided into 2.4 GHz and 5 

GHz. The option of choosing either 2.4 GHz or 5 GHz depends on the users' 

application. 2.4 GHz offers a broader coverage range than 5 GHz, and 5 GHz 

offers a much faster speed than 2.4 GHz. The maximum Effective Isotropic 

Radiated Power (EIRP) for WLAN devices under different frequency bands 

are listed in the guidelines provided by Malaysian Communications and 

Multimedia Commission (MCMC) (Malaysian Communications And 

Multimedia Commission, n.d.). The details of the maximum EIRP for each 

frequency band are listed in Appendix A. In addition, the formula of EIRP is 

shown below: 

 

                                          𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 −  𝐶𝐶𝑜𝑜 +  𝐺𝐺𝑜𝑜            (2.1) 

 

where 
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Pout = transmitter power output (dBm) 

Ct = signal loss in cable (dB) 

Gt = gain of the antenna (dBi) 

 

2.7 LoRa 

LoRa is a wireless networking technique derived from Chirp Spread Spectrum 

(CSS) technology (The Things Network, 2023). LoRa used Chirp pulses to 

encode the information on radio waves. One of the advantages of LoRa is that 

it can transmit over a long distance compared to other wireless technologies 

such as Wi-Fi and Bluetooth.  

The ideal application for LoRa is one that only transmits a small 

packet of data with relatively low bit rates. Besides, LoRa is also suitable for 

operating sensors and actuators that operate in low-power mode.  

The Internet of Things (IoT) has snowballed in recent years, and 

many sensors and actuators are required in IoT applications. One of the 

challenges in the IoT field is the connectivity between IoT devices 

(BEHRTECH, 2023). Bluetooth can only be applied to short-range 

applications, and Wi-Fi consumes too much power for the sensors and 

actuators. Hence, LoRa is suitable for most IoT applications that only require 

low bit rates due to the long-distance coverage and low power consumption. 

Figure 2.19 compares LoRa and other wireless networking technologies such 

as Wi-Fi and cellular. 

 

 
Figure 2.19: LoRa vs Other Wireless Networking Technologies. 
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Microchip Technology (2023) states that LoRa is the standard for 

wireless communication for Low-Power Wide Area Networks (LPWAN). 

LPWAN provides low-cost, low-power, ad wide-area coverage for wireless 

networks. Ideally, the range of LoRa is up to 15 km in rural areas and more 

than 2 km in urban areas. 

There are several configurations of LoRa, including Coding Rate 

(CR), Spreading Factor (SF), and bandwidth (Ali, Adilah and Salimi, 2019). 

CR is expressed in the Forward Error Correction (FEC), a process that adds 

some redundant bits to the original data being transmitted to increase the 

protection against data corruption. For example, the CR of 4/8 indicates that 

for every four bits of useful information, another eight bits of redundant data 

will be generated. Besides, SF refers to the ratio of symbol rate and chip rate. 

When the value of SF is higher, more chips will be used to represent a symbol. 

The higher the SF, the longer the transmission range of the LoRa, but the 

lower the data rate. Next, bandwidth is the frequency range of the chirp signal 

used to send the data.  

 

2.8 MQ Telemetry Transport (MQTT) 

MQTT is a messaging protocol designed for IoT with an extremely 

lightweight and efficient structure. Due to its small code footprint, it is 

particularly well-suited for connecting remote devices with limited network 

bandwidth and memory constraints (MQTT, 2023). MQTT employs a publish 

or subscribe communication pattern for machine-to-machine communication. 

Figure 2.20 shows the MQTT publish/subscribe architecture.  

 There are several advantages of MQTT, including its being 

lightweight and efficient. Besides, MQTT is a bi-directional communication 

that makes broadcasting messages to groups of things easier. In addition, 

MQTT can provide a reliable message delivery which is essential for IoT use 

cases.  
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Figure 2.20: MQTT Publish/Subscribe Architecture. 

 

2.9 NerveNet 

According to Inoue and Owada (Inoue and Owada, 2017), NerveNet was 

initially designed and developed in 2008 by Japan’s NICT. At that time, the 

purpose of establishing NerveNet was to provide several services to solve 

social problems in the regions and improve the quality of residents’ lives using 

sensors and actuators (Owada, Inoue and Ohnishi, 2011). Figure 2.21 shows 

the configuration and service image of NerveNet. 

 The East Japan Great Earthquake and subsequent tsunami on March 

11, 2011, motivated Inoue and Owada (2017) to upgrade the NerveNet to a 

disaster-resilient information sharing and communication system. According 

to Inoue and Owada (2017), the upgraded NerveNet can provide a robust 

network without relying on the current network or Internet system. In addition, 

according to Tham et al. (2023), the advantage of NerveNet is that an end 

device does not depend on another end device's availability. The service of 

NerveNet will not be interrupted when any node is down since the other nodes 

will automatically find a new pathway to transfer the message.  

 

2.10 Edge AI 

Edge AI combines both edge computing and AI. According to Liang, Shenoy, 

and Irwin (2020), edge AI refers to the process of running machine learning or 

deep learning algorithm on the edge nodes.  

 Edge AI also refers to deploying AI applications in the device 

throughout the physical world. The computation process of the AI algorithm 

will happen at the edge and not the computing facility as in the traditional 

ways.  
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Edge AI is a powerful solution for processing real-time data 

(Ramasubramanian et al., 2022). Many edge hardware accelerators, including 

Intel NCS 2, have recently merged to support edge AI such as computer vision 

(Liang, Shenoy and Irwin, 2020).  

One of the main advantages of edge AI is that it is suitable for 

applications that require real-time processing. Edge AI will process the 

application locally rather than in a faraway cloud or computing facility, which 

will cause a delay in the application. In addition, the Internet bandwidth is 

much lesser because the processing power is nearer to the edge. This can 

reduce networking costs.  

 

2.11 Summary 

This chapter discussed the literature review done by the previous works and 

the innovation of the models used in this project. The literature review studied 

object detection methods, object tracking algorithms, person detection 

methods, Wi-Fi, LoRa, MQTT, NerveNet, and edge AI.  

 

 
Figure 2.21: Configuration and Service Image of NerveNet (Owada, Inoue and 

Ohnishi, 2011).  
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This section will discuss the overview of the hardware and software required, 

the methodology and the work plan of this project. The methodology will be 

discussed including AI training, AI model optimization, implementation of 

DeepSORT, edge AI testbed, and evaluation of the results.  

 The hardware equipment required includes Intel NUC, Raspberry Pi 4, 

Sony IMX219 camera, DFRobot GPS module, and GlobalSat GPS module. 

The operating system used in this project is Ubuntu 18.04 LTS and Raspberry 

Pi OS. Next, the toolkit used in this project is OpenVINO. In addition, the 

setup on the UTAR bus with the Sony IMX219 camera module will be shown. 

Lastly, this project’s network configurations using LoRa and Wi-Fi will be 

shown.  

 

3.2 Overview of Hardware Required  

This project's hardware implementation includes AI training, wireless 

networking, and smart application.  

 

3.2.1 AI Training 

The training of AI for YOLOv4, YOLOv4-tiny, YOLOv5, and YOLOv7 was 

done on Intel NUC with an external Graphics Processing Unit (GPU). The 

Intel NUC's operating system (OS) is Ubuntu 18.04 long-term support (LTS). 

The specifications of the NUC and external GPU used for AI training are 

listed in Table 3.1.  

 Intel NUC is a small personal computer engineered, built, and backed 

by Intel, as shown in Figure 3.1. Intel NUC allows users to customise their 

mini-PC experience and is used in many use cases. Intel NUC in this project 

consists of 64 GB RAM and a 2 TB solid-state drive (SSD). In addition, the 

Intel NUC was connected to an external NVIDIA GeForce GTX 1080 Ti GPU. 

The external GPU mainly supports the training, which involves thousands of 

images.  
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Table 3.1: Specifications of NUC and External GPU for AI Training. 

CPU Intel i7-10710U 

CPU Cores 6 

Memory  64 GB 

Storage  2 TB SSD 

External GPU NVIDIA GeForce GTX 1080 Ti 

Operating System Ubuntu 18.04 LTS 

 

 
Figure 3.1: Intel NUC. 

 

 The operating system used for the AI training is Ubuntu 18.04 LTS. 

The Ubuntu 18.04 used in this project is the long-term support (LTS) version. 

Ubuntu is a Linux distribution based on Debian that is available with 

community and professional support at no cost. Ubuntu would be one of the 

most popular OS used by most developers due to the freedom to customise the 

OS. Although the latest version of Ubuntu is Ubuntu 23.04, the latest version 

is not recommended to avoid software incompatibility issues in this project.  

 

3.2.2 Smart Application 

The smart application on this project is counting the number of passengers on 

the UTAR bus. The smart application will be run on a Raspberry Pi, assigned 

as R3 in this project. The specifications of the R3 are listed in Table 3.2. The 

smart application will run on the Raspberry Pi 4 consisting of 264 GB of 

Secure Digital (SD) card storage and 8 GB of memory. The OS of this 

Raspberry Pi is the official supported OS, which is Raspberry Pi OS.  

R3 will support both LoRa and Wi-Fi. The Wi-Fi used in R3 is 2.4 

GHz, and the power consumption is 21 dBm, equal to 126 mW. According to 
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 Table 3.2: Specifications of R3 used for Smart Application. 

Model Raspberry Pi 4 

Storage 264 GB SD card 

Memory 8 GB 

 

the guideline shown in Appendix A, for frequency bands between 2.4 GHz to 

2.5 GHz, the maximum EIRP is 27 dBm. In this case, the configuration of Wi-

Fi follows the guidelines set by MCMC. For LoRa, the bandwidth used by R3 

is 125 kHZ, the CR is 4/8, and the SF is 12. 

Since the computational powers of a Raspberry Pi are limited, Intel 

Neural Compute Stick 2 (NCS2) is plugged into the Raspberry Pi used for the 

smart application. Figure 3.2 shows the Intel NCS2. The NCS2 is a 

development kit for AI inferencing that has been designed by Intel to be plug-

and-play. It is often used in conjunction with low-cost edge devices, such as 

the Raspberry Pi, in order to provide additional computational power. The 

NCS2 includes the Movidius Myriad X vision processing unit (VPU) within 

its hardware. 

In addition, Alfa AWUS036ACH Wi-Fi USB 3.0 AC Wi-Fi Adapter 

Dual Band and Alfa Wi-Fi Antenna ARS-N19 2.4GHz 9dBi Dipole Antenna 

are plugged into the Raspberry Pi for smart application. These two pieces of 

hardware shown in Figure 3.3 are used for Wi-Fi wireless networking. 

Furthermore, LoRa RFLink RM-92A, RFLink RM-92X USB, 920 

MHz Whip Antenna ANT-92XA, and an antenna cable are added to this 

Raspberry Pi for LoRa wireless networking. The combination of devices for 

LoRa is shown in Figure 3.4. 

 

 
Figure 3.2: Intel NCS2. 
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Figure 3.3: (a) Alfa AWUS AWUS036ACH Wi-Fi Adapter and (b) Alfa Wi-Fi 

Antenna. 

 

 
Figure 3.4: Combination of the Devices for LoRa. 

 

 Moreover, the 8MP Sony IMX219 camera module for Raspberry Pi, 

as shown in Figure 3.5, is connected to the Raspberry Pi 4 for capturing the 

passengers from the overhead view.  

 Lastly, GlobalSat BU-353S4 G-STAR IV global positioning system 

(GPS) shown in Figure 3.6 is connected to R3. The (GPS) is used to read the 

current locations of the R3. Besides, GPS is also used for LoRa transmission. 

According to Tham et al. (2023), time division multiple access (TDMA) is 

used in NerveNet to overcome any potential signal interference of LoRa. The 

GPS information will be received by the LoRa node for time synchronization 

with other nodes so that the data will be transmitted within the pre-configured 

period.  

 

 
Figure 3.5: 8MP Sony IMX219 Camera Module for Raspberry Pi. 
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Figure 3.6: GlobalSat BU-353S4 G-STAR IV GPS. 

 

3.2.3 Wireless Networking (Wi-Fi) 

In this project, two devices will be purely used for Wi-Fi wireless networking. 

The two devices will be Intel NUC, as shown in Figure 3.1. Both of the 

devices will run on Ubuntu 18.04 LTS OS. Besides, both Intel NUC will use 

2.4 GHz Wi-Fi. 

The first device will be assigned as N8. N8 will be connected to Alfa 

APA-M25 Dual Band 2.4GHz/5GHz 10dBi high gain Directional Indoor Panel 

Antenna as shown in Figure 3.7. The EIRP of N8 is 27 dBm which is the 

maximum EIRP allowed according to the guideline shown in Appendix A. 

 Next, another device purely used for Wi-Fi will be assigned as N10. 

N10 is also connected to Alfa APA-M25 Dual Band 2.4GHz/5GHz 10dBi high 

gain Directional Indoor Panel Antenna. Besides, the combinations of Alfa 

AWUS036ACH Wi-Fi USB 3.0 AC Wi-Fi Adapter Dual Band and Alfa Wi-Fi 

Antenna ARS-N19 2.4GHz 9dBi Dipole Antenna shown in Figure 3.3 also 

plugged into this Intel NUC. The EIRP of N10 is 27 dBm, equal to the 

maximum EIRP allowed for 2.4 GHz, as shown in Appendix A. 

 

 
Figure 3.7: Alfa APA-M25 Antenna. 
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3.2.4 Wireless Networking (LoRa) 

There will be another four Raspberry Pi used in this project, which is known 

as R1, R2, R4, and R5. All four Raspberry Pi are Raspberry Pi 4 models and 

run on the official Raspberry Pi OS. Besides, the four Raspberry Pi are 

connected to a combination of devices for LoRa, the same as R3. The 

combination of the devices for LoRa connected to these four Raspberry Pi is 

shown in Figure 3.4. The configurations of LoRa for the four Raspberry Pi are 

the same as R3, which is 125 kHz bandwidth, CR of 4/8, and SF of 12. 

 In addition, the GPS module is connected to these four nodes for 

TDMA purposes. For R1, the GPS module connected is GlobalSat BU-353S4 

G-STAR IV GPS as shown in Figure 3.6. For R2, R4, and R5, the GPS 

module connected is DFRobot, as shown in Figure 3.8.  

 

3.2.5 Wireless Networking (Wi-Fi + LoRa) 

One Intel NUC in this project will use both Wi-Fi and LoRa wireless 

networking technologies. This NUC is assigned as N4 and runs on Ubuntu 

18.04 LTS OS. N4 will use 2.4 GHz Wi-Fi, and the configuration of LoRa for 

N4 is the bandwidth of 125 kHz, CR of 4/8, and SF of 12. The maximum 

EIRP of N4 is 27 dBm which follows the guideline in Appendix A. 

N4 is connected to Alfa APA-M25 Dual Band 2.4GHz/5GHz 10dBi 

high gain Directional Indoor Panel Antenna as shown in Figure 3.7 and Alfa 

APA-M04 Accurate 7dBi Wi-Fi Directional Antenna as shown in Figure 3.9. 

In addition, the N4 is connected to the DFrobot GPS module, as shown in 

Figure 3.8, for LoRa transmission.  

 

 
Figure 3.8: DFRobot GPS Module. 
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Figure 3.9: Alfa APA-M04 Accurate 7dBi Wi-Fi Directional Antenna. 

 

3.3 AI Training 

This section describes the various stages involved in AI training, which 

include preparing the dataset, training the model, optimizing the model, and 

evaluating the model. 

 

3.3.1 Dataset Preparation 

In this project, two different datasets are being used for training. The first set 

focuses on overhead passenger counting, while the second focuses on the 

additional package provided to the smart application, passenger gender 

recognition. 

 

3.3.1.1 Overhead Passenger Counting 

The overall flowchart for this dataset preparation is shown in Figure 3.10. The 

dataset for overhead passenger counting is obtained from Sun et al. (2019). 

The dataset consists of videos of passengers entering and leaving a bus. There 

will be only one class of object in this dataset: passenger. 

Firstly, the videos are downloaded from the source. After that, the 

VLC media player extracts the frames from the downloaded videos. The steps 

for extracting the frames are shown in Figure 3.11. After the extractions 

process, the output images will be uploaded to roboflow at 

https://roboflow.com/ for annotation (Dwyer, 2022). The comparison of the 

image before and after an annotation is shown in Figure 3.12. Next, the images 

and labelled text files are downloaded from roboflow after annotation. Lastly, 

the images and the labels are divided into training and validation. 
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Figure 3.10: Flowchart for Overhead Passenger Counting Dataset Preparation. 

 

 
Figure 3.11: Flowchart for Extracting the Frames from Downloaded Videos. 

 

 
Figure 3.12: Comparison of (a) Before and (b) After Annotation.  
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3.3.1.2 Passenger Gender Recognition  

The overall flowchart for this dataset preparation is shown in Figure 3.13. The 

dataset for passenger gender recognition is obtained from Kucev (2021). The 

dataset consists of images with four types of masks worn by females and 

males.  

In this project, there will be eight classes of objects in this dataset, 

which are female_type1, male_type1, female_type2, male_type2, 

female_type3, male_type3, female_type4, and male_type4. The difference 

between the eight classes is shown in Figure 3.14. This project will use this 

dataset to recognize the gender of the passengers and whether the passengers 

are wearing the mask properly. 

 Firstly, the images are downloaded from the source. Then, a Python 

file, “preprocess.py”, is run to remove the non-image files and categorize the 

images into eight classes, as mentioned above. After that, the images are 

uploaded to roboflow at https://roboflow.com/ for annotation (Dwyer, 2022). 

Next, the annotated images and the labelled text file are downloaded. Lastly, 

the annotated images and labels are divided into training and validation. 

 

 
Figure 3.13: Flowchart for Passenger Gender Recognition Dataset Preparation. 
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Figure 3.14: (a) female_type1, (b) female_type2, (c) female_type3, (d) 

female_type4, (e) male_type1, (f) male_type2, (g) male_type3, and 

(h) male_type4. 

 

3.3.2  Model Training 

This section will describe the model training of YOLOv4, YOLOv4-tiny, 

YOLOv5, and YOLOv7.  

 

3.3.2.1 YOLOv4 and YOLOv4-tiny 

This section will discuss the model training for YOLOv4 and YOLOv4-tiny 

since the processes are similar. YOLOV4 and YOLOv4-tiny are used to detect 

and count the number of passengers on the UTAR bus. Figure 3.15 presents an 

overview of the training process for both YOLOv4 and YOLOv4-tiny models. 

 First, the darknet repository is cloned from GitHub into the Intel NUC 

used for AI training. Then, the first four lines of “Makefile” in the darknet 

repository are changed, as shown in Figure 3.16. The changes are to speed up 

the training process and allow camera detection. Next, the “make” command is 

run to create the darknet executable file. After that, the darknet executable file 

is copied into two newly created folders: “yolov4” and “yolov4-tiny”.  

 The next step is customising the cfg file, which is the same for 

YOLOv4 and YOLOv4-tiny. The “classes” inside the cfg file are the number 

of classes in our project. For YOLOv4 and YOLOv4-tiny, there is only one 

class. Hence, the “classes” inside the cfg file is changed to “1”. Besides, the 

“filters” also changed in both cfg files to “18” following the formula below: 

 

     𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = (𝑐𝑐𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 5)  × 3    (3.1) 
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where 

classes = number of classes  

 

 
Figure 3.15: Overall Training Process for YOLOv4 and YOLOv4-tiny. 

 

 
Figure 3.16: The Changes Made in “Makefile” (a) before (b) after. 

 

 After that, the obj.data and obj.names files are configured 

accordingly. The configuration is shown in Figure 3.17. The obj.data file 

consists of the number of classes and the training data directory while the 

obj.names consist of the classes' names. 

 After that, the datasets obtained from the previous preparation will be 

copied to a new file, “obj”. The images are divided into a ratio of 9:1, where 

90 % of the images are used for training, and 10 % are used for validation. 

Inside the “obj” file, two new files, which are “train” and “val” are created.  

The images for training and validation are copied into these two files. The 

number of training images is 450, and for validation is 50.  
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Figure 3.17: Configuration of (a) obj.data and (b) obj.names. 

 

In this project, transfer learning is used instead of training from 

scratch. Hence, the pre-trained weights of YOLOv4 and YOLOv4-tiny are 

downloaded from https://github.com/AlexeyAB/darknet/releases/. The pre-

trained weights of YOLOv4 are yolov4conv.137, and for YOLOv4-tiny are 

yolov4-tiny.weights. The difference between these two weights is that the 

weights of YOLOv4 used have been trained up to 137 convolutional layers, 

and the weights of YOLOv4-tiny have only trained up to 29 convolutional 

layers. After obtaining the pre-trained weights, the training for YOLOv4 and 

YOLOv4-tiny can be run. In this project, the training will run for 6,000 

iterations, and the batch size is 64 for both YOLOv4 and YOLOv4-tiny.  

 

3.3.2.2 YOLOv5 

In this project, YOLOv5 will be trained to recognize the gender of the 

passengers and detect whether they are wearing the mask properly as an 

additional package for the smart application. The overall training process of 

YOLOv5 is shown in Figure 3.18.  

 Firstly, the yolov5 repository is cloned from GitHub at 

https://github.com/ultralytics/yolov5. After that, the dataset prepared earlier 

for gender recognition is separated into the ratio of 9:1, where 90 % of the 

images are used for training, and the remaining 10 % are used for validation. 

The number of training images is 3600, and for validation is 400. 

 Then, a new folder, “dataset”, is created on the Desktop of the Intel 

NUC. After that, a folder “y5” is created in the “dataset” folder. Next, two 

new folders are created into the “y5”, which are “images” and “labels”. Then, 

two new folders, which are “train” and “val”, are created in both the “images” 

and “labels” folders, respectively. The structure of the new folders created 

here is shown in Figure 3.19. After that, the images and labels are copied into 

the “train” and “val” folders, respectively. 
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Figure 3.18: Overall Training Process of YOLOv5. 

 

 
Figure 3.19: The Structure of the New Folders Created for YOLOv5. 

 

Then, the y5.yaml is configured. The y5.yaml contains the directory of 

the images and labels. It also contains the number of classes and the names of 

classes. Figure 3.20 shows the y5.yaml after configuration.  

 

 
Figure 3.20: y5.yaml File After Configuration. 



41 

Finally, the pre-trained YOLOv5 weights are downloaded from 

https://github.com/ultralytics/yolov5/releases/. Similar to YOLOv4 and 

YOLOv4-tiny, transfer learning is also applied to YOLOv5. The chosen 

weight is yolov5m.pt. The training can be started once the pre-trained weights 

are downloaded. For the training of YOLOv5, the epochs are 300, and the 

batch size is 16. 

 

3.3.2.3 YOLOv7 

In this project, YOLOv7 will also be trained to recognize the gender of the 

passengers and detect whether they are wearing the mask properly as an 

additional package for the smart application. The overall training process of 

YOLOv7 is shown in Figure 3.21.  

 Firstly, the yolov7 repository is cloned from GitHub at 

https://github.com/WongKinYiu/yolov7. After that, the dataset prepared 

earlier for gender recognition is separated into the ratio of 9:1, where 90 % of 

the images are used for training, and the remaining 10 % are used for 

validation. The number of training images is 3600, and for validation is 400. 

 Then, two new folders, which are “train” and “val”, are created inside 

the “data” folder. Furthermore, two new folders, which are “images” and 

“labels”, are created in the train” and “val” folders, respectively. The structure 

of the new folders created is shown in Figure 3.22. 

 

 
Figure 3.21: Overall Training Process for YOLOv7. 
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Figure 3.22: The Structure of the New Folders Created for YOLOv7. 

 

 After that, the y7.yaml file is configured. The y7.yaml file includes 

the path of the training and validation images, the number of classes, and the 

name of the classes. Figure 3.23 shows the y7.yaml file after the configuration.  

 Lastly, the pre-trained YOLOv7 weights are downloaded from 

https://github.com/WongKinYiu/yolov7/releases/. Similar to YOLOv4, 

YOLOv4-tiny, and YOLOv5, transfer learning is also applied to YOLOv7. 

The chosen weight is yolov7_training.pt. The training can be started once the 

pre-trained weights are downloaded. For the training of YOLOv7, the 

hyperparameters used are the same as YOLOv5; the epochs are 300, and the 

batch size is 16. The same hyperparameters for YOLOv5 and YOLOv7 are 

being applied to compare the performances between the two models.  

 

3.4 AI Model Optimization 

The AI model optimization only will be done on YOLOv4 and YOLOv4-tiny 

because the passengers’ detection and counting will be deployed at the edge, 

where gender recognition is just an additional package of the smart application. 

The model optimization will speed up the model's inference speed, especially 

when the model is deployed on an edge device such as Raspberry Pi. 

 

 
Figure 3.23: y7.yaml File After Configuration. 
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 The AI model optimization will be done using Open Visual Inference 

and Neural Network Optimization (OpenVINO). OpenVINO is an open-

source toolkit providing faster inference for deploying deep learning models 

developed by Intel. The developers can develop cost-effective and robust 

computer vision applications by using OpenVINO.  

 Figure 3.24 shows the overall optimization process using OpenVINO. 

After the training of YOLOv4 and YOLOv4-tiny is completed, the output 

weights will be saved. After that, the output weights will be converted into 

intermediate representation (IR) format by running the model optimizer of 

OpenVINO. The IR format consists of two files which are .xml and .bin. After 

that, the IR format can be fed into the inference engine to check the model's 

compatibility.  

 

3.5 Implementation of DeepSORT 

In this project, the DeepSORT is used for tracking the passenger. After the 

YOLOv4 and YOLOv4-tiny detect the passenger, the algorithm will pass it to 

DeepSORT for tracking. The DeepSORT will be deployed together with 

YOLOv4 and YOLOv4-tiny in IR format after the conversion by OpenVINO. 

The deployment of YOLOv4 and YOLOv4-tiny in OpenVINO format 

with DeepSORT is referred from Mateusz (2021). In addition, the codes are 

modified for passenger counting. The overall process of the passenger 

counting application after modification is shown in Figure 3.25.  

 

 
Figure 3.24: AI Model Optimization Process using OpenVINO.  
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Figure 3.25: Overall Process for Passenger Counting Application. 

  

When DeepSORT tracks any passenger, it will check the direction of 

the passenger crossing the line. If the passenger crosses the line from below to 

above indicates the passenger is going into the bus. If the passenger crosses the 

line from above to below indicates the passenger is going out from the bus. 

After that, the number of passengers going in and out of the bus will be output 

to “job.csv”.  

 

3.6 Edge AI Testbed 

Figure 3.26 shows the edge AI testbed of this project. R3 will run the smart 

application on a UTAR bus. Besides, R1, R2, R3, and R4 will act as LoRa 

nodes and be put in Bandar Sungai Long's surrounding areas. In addition, the 

N10 and N8 will only have Wi-Fi connectivity. Moreover, as mentioned 

earlier, N4 will have both LoRa and Wi-Fi connectivity.  
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Figure 3.26: Edge AI Testbed. 

 

3.7 Edge AI LoRa Deployment 

Figure 3.27 shows the deployment of the edge AI LoRa. As mentioned earlier, 

R3 is the Raspberry Pi that will run the smart application on a UTAR bus and 

act as a publisher. R1, R2, R4, R5, and N4 will act as LoRa nodes and 

subscribers in this configuration. 

 There are five LoRa subscribers and one publisher in this scenario. 

When the publisher publishes data, the nearest subscriber node will receive the 

data and relay the data to further subscriber nodes. As mentioned, this scenario 

will divide one minute into six time slots since LoRa works in TDMA. In this 

scenario, the LoRa nodes can only transmit the data in their designated time 

slots, which last for 10 seconds. If the sent packet does not receive any 

acknowledgement from the other nodes, it will only resend the data for one 

time. After that, the data will be discarded.  

The LoRa sending in this deployment is designed at five data packets 

sent per bus trip. The bus locations are the five points shown in Figure 3.27. 

The mechanism to trigger the LoRa sending after each bus stop is shown in 

Figure 3.28. 

When the bus starts to move, the smart application will be triggered. 

The number of passengers going in and out of the bus will be updated to the 

“job.csv” if the smart application detects any of them. At the same time, the 

GPS of R3 will read the current location and the speed of the bus. If the 

distance between the current locations and the designated locations listed in 
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Figure 3.27: Edge AI LoRa Deployment. 

 

 “gps_corrdinate.csv” is less than 50 m, the application will check the speed of 

the bus. If the bus speed is continuously less than 10 km/h for 20 s, the 

application will check if the speed increases from below 10 km/h to above 30 

km/h. If yes, the LoRa sending mechanism will be triggered, and the LoRa 

will send the last row of data in “job.csv” to N4, the only LoRa node located at 

UTAR. The smart application will stop if it detects that the bus has reached all 

the designated locations listed in “job.csv”. 

 

 
Figure 3.28: LoRa Triggering Mechanism. 
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3.8 Edge AI Wi-Fi Deployment  

Figure 3.29 shows the deployment of the edge AI Wi-Fi. As mentioned earlier, 

R3 have both LoRa and Wi-Fi connectivity. N0 will be placed at KB ground 

floor pantry, N4 at KB 8th floor pantry, and N8 at KB 8th floor office. In this 

configuration, the R3 will send the number of passengers of each stop to N10, 

thus synchronising to N4 and N8 after R3 reaches the UTAR bus stop.  

 Unlike in the LoRa sending mechanism, where only five packets of 

data will be sent to N4, R3 will send every updated row in “job.csv” to N10.  

 

3.9 Evaluation of the Results 

In this section, the metrics used to evaluate the results of this project will be 

introduced. 

 

3.9.1 AI Models 

3.9.1.1 Mean Average Precision (mAP) 

Average precision is a widely used evaluation metric to evaluate the object 

detectors’ accuracy, considering both precision and recall of the predictions.  

 Precision, which is defined as the ratio of true positives to the total 

number of positive predictions made by the model, is a key component of this 

metric. Its formula is shown in equation (3.2). 

 

       𝐸𝐸𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                              (3.2) 

where 

TP = True Positives 

FP = False Positives 

 

 
Figure 3.29: Edge AI Wi-Fi Deployment. 

R3 at KB bus stop

N10 at KB Ground Floor Pantry

N4 at KB 8th Floor Pantry

N8 at KB 8th Floor Office
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On the other hand, the recall metric measures the ability of an object 

detector to identify all positive instances in the dataset. It is calculated as the 

ratio of true positives to the total number of positive instances, and its formula 

is presented as (3.3).  

 

          𝐸𝐸𝑓𝑓𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                        (3.3) 

where 

TP = True Positives 

FN = False Negatives 

 

 In short, To summarize, precision evaluates the accuracy of the 

model's predictions, while recall evaluates the model's ability to detect all 

positive instances. 

 Intersection over union (IoU) is related to mAP. IoU refers to the 

measurements of the overlap between two boundaries. IoU quantifies the 

degree of overlap between the predicted boundary and the ground truth and is 

computed using the formula (3.4). The illustration of poor, good and excellent 

IoU is shown in Figure 3.30. 

 

      𝐸𝐸𝑟𝑟𝐼𝐼 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑜𝑜
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑜𝑜𝑢𝑢𝑢𝑢𝑜𝑜𝑢𝑢

                                    (3.4) 

 

 When IoU varies within a range, the precision and recall will change 

dynamically, and the precision-recall (PR) curve is constructed (Yin et al., 

2021). The average precision (AP) can be viewed as the area under the PR 

curves by setting the IoU to different values. In this project, the evaluations of 

mAP will be carried out at IoU = 0.50. The formula of average precision is 

shown as (3.5). After the computation of AP is done for each class, the mean 

of the AP is computed. The formula of mAP is shown as (3.6). 

 

     𝐴𝐴𝐸𝐸 =  ∫ 𝑝𝑝(𝑓𝑓) 𝑑𝑑𝑓𝑓1
0                     (3.5) 

                                               𝑚𝑚𝐴𝐴𝐸𝐸 =  1
𝐹𝐹
∑ 𝐴𝐴𝐸𝐸𝑢𝑢𝐹𝐹
𝑢𝑢=1                                   (3.6) 
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where 

N = number of classes 

 

 
Figure 3.30: Illustration of (a) Poor, (b) Good, and (c) Excellent IoU. 

 

3.9.1.2 Frames Per Second (FPS)  

FPS measures how many images or frames can be processed in one second. 

FPS is an important metric when dealing with the real-time application. The 

formula of FPS is shown as (3.7).  

 

                  𝐹𝐹𝐸𝐸𝐹𝐹 =  𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜 𝑢𝑢𝑜𝑜𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑜𝑜𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎𝑓𝑓
𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜 𝑜𝑜𝑎𝑎𝑜𝑜𝑝𝑝𝑎𝑎𝑓𝑓𝑓𝑓𝑢𝑢𝑢𝑢𝑝𝑝 𝑜𝑜𝑢𝑢𝑛𝑛𝑎𝑎 

                         (3.7) 

 

3.9.1.3 Accuracy 

The accuracy formula for the AI models is shown as (3.8). Accuracy is the 

ratio of how many correct predictions are made by the detector to the ground 

truth value. 

 

𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑓𝑓𝑐𝑐𝑐𝑐𝐴𝐴 (%) =  𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜 𝐹𝐹𝑜𝑜𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑇𝑇𝑎𝑎𝑎𝑎𝑃𝑃𝑢𝑢𝑝𝑝𝑜𝑜𝑢𝑢𝑜𝑜𝑢𝑢𝑓𝑓
𝐺𝐺𝑎𝑎𝑜𝑜𝑜𝑜𝑢𝑢𝑃𝑃 𝑇𝑇𝑎𝑎𝑜𝑜𝑜𝑜ℎ 𝑉𝑉𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎

 × 100 %    (3.8) 

 

3.9.2 LoRa 

3.9.2.1 Packet Delivery Ratio (PDR) 

The PDR, or Packet Delivery Ratio, is determined by dividing the number of 

received packets by the total number of packets transmitted by the publisher. 

The formula for PDR is displayed as (3.9). 

 

          𝐸𝐸𝑃𝑃𝐸𝐸 =  𝐹𝐹𝑜𝑜𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑇𝑇𝑎𝑎𝑝𝑝𝑃𝑃𝑎𝑎𝑜𝑜𝑓𝑓 𝑅𝑅𝑎𝑎𝑝𝑝𝑎𝑎𝑢𝑢𝑜𝑜𝑎𝑎𝑃𝑃
𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜 𝐹𝐹𝑜𝑜𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑇𝑇𝑎𝑎𝑝𝑝𝑃𝑃𝑎𝑎𝑜𝑜𝑓𝑓 𝑆𝑆𝑎𝑎𝑢𝑢𝑜𝑜

                         (3.9) 
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3.9.2.2 Hop Count 

Hop count refers to how often the LoRa packet is relayed between the LoRa 

nodes in the network. When the packet is relayed by one node, the hop count 

will increase. 

 

3.9.2.3 Received Signal Strength Indicator (RSSI) 

RSSI is a metric that quantifies the signal strength of the transmitted data 

received by the subscriber node from the publisher. The unit of RSSI is dBm. 

The higher value of RSSI indicates that the signal is stronger and vice versa.  

 

3.9.2.4 Time on Air 

Time on air refers to the time the packets reach the subscriber nodes from the 

publisher node. The formula of time on air is shown as (3.10). 

 

              𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓 𝑟𝑟𝑟𝑟 𝑐𝑐𝑓𝑓𝑓𝑓 = 𝐸𝐸𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 𝑇𝑇𝑓𝑓𝑚𝑚𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟𝑚𝑚 𝐸𝐸𝐴𝐴𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑓𝑓𝑓𝑓 − 𝐸𝐸𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑅𝑅𝑓𝑓𝑑𝑑 𝑇𝑇𝑓𝑓𝑚𝑚𝑓𝑓 𝑟𝑟𝑓𝑓 𝐹𝐹𝐴𝐴𝑃𝑃𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑃𝑃𝑓𝑓𝑓𝑓     (3.10) 

  

3.9.3 Wi-Fi 

3.9.3.1 Total Packets Received 

The formula of total packets received is shown as (3.11). It is the ratio of 

packets received to the number of packets sent. 

 

 𝑇𝑇𝑟𝑟𝑓𝑓𝑐𝑐𝑓𝑓 𝐸𝐸𝑐𝑐𝑐𝑐𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑅𝑅𝑓𝑓𝑑𝑑 (%) =  𝐹𝐹𝑜𝑜𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑇𝑇𝑎𝑎𝑝𝑝𝑃𝑃𝑎𝑎𝑜𝑜𝑓𝑓 𝑅𝑅𝑎𝑎𝑝𝑝𝑎𝑎𝑢𝑢𝑜𝑜𝑎𝑎𝑃𝑃
𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜 𝐹𝐹𝑜𝑜𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑇𝑇𝑎𝑎𝑝𝑝𝑃𝑃𝑎𝑎𝑝𝑝𝑎𝑎𝑓𝑓 𝑆𝑆𝑎𝑎𝑢𝑢𝑜𝑜

× 100% (3.11) 

 

3.9.3.2 Latency 

Latency refers to the time it takes for data to travel from its source to its 

destination in a network. The formula of latency in this project is shown as 

(3.12).  

  

      𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑟𝑟𝑐𝑐𝐴𝐴 = 𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓𝑓𝑓𝑠𝑠𝑢𝑢𝑝𝑝 − 𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓𝑜𝑜𝑜𝑜𝑃𝑃𝑎𝑎𝑜𝑜𝑎𝑎                         (3.12) 
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3.10 Work Plan 

The Gantt Chart of this project is shown in this section. Figure 3.31 shows the 

Gantt Chart for Part 1, and Figure 3.32 shows the Gantt Chart for Part 2. 

 

 

 
Figure 3.31: Gantt Chart for Part 1. 
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Figure 3.32: Gantt Chart for Part 2. 
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3.11 Summary 

This chapter discussed this project's overall methodology and work plan, 

including the hardware required, AI training, AI model optimization, 

implementation of DeepSORT, the edge AI testbed, the edge AI LoRa 

deployment, and the edge Wi-Fi deployment. Besides, the metrics used in 

evaluations in this project were introduced. In addition, the Gantt Chart of the 

work plan for this project is also shown in this chapter. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

This chapter will tabulate the results obtained in this project. In addition, 

discussions based on the results will be provided. 

 

4.2 Passenger Counting Application 

4.2.1 Training Results 

The training results of the passenger counting application will be compared 

between YOLOv4 and YOLOv4-tiny. As mentioned in Chapter 3, both models 

will run a training of 6,000 iterations. Figure 4.1 shows the mAP at a threshold 

of 0.5 against the number of iterations for YOLOv4. Figure 4.2 shows the 

mAP at a threshold of 0.5 against the number of iterations for YOLOv4-tiny. 

 For YOLOv4, the highest mAP at a threshold of 0.5 is 95.81 %, and 

for YOLOv4-tiny is 93.43 %. These two weights will be chosen for testing in 

the next section. The training performance of YOLOv4 is higher than 

YOLOv4-tiny because YOLOv4 were developed from 137 convolutional 

layers while YOLOv4-tiny only developed from 29 convolutional layers. 

Besides, the weights of YOLOv4 are also heavier than YOLOv4.  

 

 
Figure 4.1: Graph of mAP@0.5 (%) Against Number of Iteration for YOLOv4. 
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Figure 4.2: Graph of mAP@0.5 (%) Against Number of Iteration for 

YOLOv4-tiny. 

 

 In addition, the best weights of YOLOv4 and YOLOv4-tiny were 

used to run on three different videos to obtain both models' performance in 

terms of frames per second (FPS). Table 4.1 shows the FPS obtained by 

YOLOv4 and YOLOv4-tiny after running the three videos. The average FPS 

for YOLOv4 is 59.27, and for YOLOv4-tiny is 256.0. The results show that 

YOLOv4-tiny is 4.3 times faster than YOLOv4 when running on the Intel 

NUC with an external NVIDIA GeForce GTX 1080 Ti GPU. 

 

4.2.2 Testing Results 

The best weights for YOLOv4 and YOLOv4-tiny were used for testing in this 

section. A total of 16 images were tested where the image might consist of 

more than one passenger. Table 4.2 shows the testing accuracy on 16 images 

for YOLOv4 and YOLOv4-tiny. The results show that YOLOv4 has slightly 

higher accuracy than YOLOv4-tiny. The difference between the two models is 

only 1.09 %.  

 

Table 4.1: FPS of YOLOv4 and YOLOv4-tiny. 

Video FPS of YOLOv4 FPS of YOLOv4-tiny 

Video 1 58.10 247.0 

Video 2 59.50 259.4 

Video 3 60.20 261.7 
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Table 4.2: Accuracy of YOLOv4 and YOLOv4-tiny. 

Model Accuracy (%) 

YOLOv4 84.10 

YOLOv4-tiny 83.01 

 

 However, the accuracy obtained is not a satisfactory result. Hence, 

further analysis was done on the results obtained. All the images tested were 

further analysed to find out the reason that caused the unsatisfactory results. 

After the analysis, there was a huge difference in accuracy when the images 

tested were in good and poor lighting conditions.  

Figure 4.3 shows the ground truth and predicted result for YOLOv4 

under good lighting conditions, while Figure 4.4 shows the ground truth and 

predicted result for YOLOv4 under poor lighting conditions. In addition, 

Figure 4.5 shows the ground truth and predicted result for YOLOv4-tiny under 

good lighting conditions, while Figure 4.6 shows the ground truth and 

predicted result for YOLOv4-tiny under poor lighting conditions. 

From the four images mentioned above, it is clear that both YOLOv4 

and YOLOv4-tiny perform much better under good lighting conditions. The 

accuracy obtained above was further divided into good and poor lighting 

conditions. The results of the comparison are shown in Figure 4.7. From 

Figure 4.7, the results show that the accuracy of both YOLOv4 and YOLOv4-

tiny is above 94 % under good lighting conditions. However, both models' 

accuracy is slightly above 70 % under poor lighting conditions. Hence, it can 

be concluded that the lighting conditions of the bus are important to determine 

the accuracy of the smart application. 

 

 
Figure 4.3: (a) Ground Truth and (b) Predicted Result for YOLOv4 Under 

Good Lighting Conditions. 
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Figure 4.4: (a) Ground Truth and (b) Predicted Result for YOLOv4 Under 

Poor Lighting Conditions. 

 

 
Figure 4.5: (a) Ground Truth and (b) Predicted Result for YOLOv4-tiny Under 

Good Lighting Conditions. 

 

 
Figure 4.6: (a) Ground Truth and (b) Predicted Result for YOLOv4-tiny Under 

Poor Lighting Conditions. 
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Figure 4.7: Accuracy of YOLOv4 and YOLOv4-tiny under Good and Poor 

Lighting Conditions. 

 

4.2.3 Deployment Results  

After the comparison of YOLOv4 and YOLOv4-tiny was made earlier, the 

result of the deployment of the person counting application will be tabulated 

and discussed here.  

The YOLOs weights were converted to OpenVINO for AI model 

optimization. The performances of YOLOv4 and YOLOV4-tiny in IR format 

in terms of FPS were computed by running the models on the three videos 

used previously. However, the inferencing was run on R3 and not Intel NUC 

with an external GPU to test the performance of the deployment on edge 

devices.   

Table 4.3 shows the FPS of YOLOv4 and YOLOv4-tiny for each 

video run on the edge device. Besides, Figure 4.8 shows the average FPS of 

both models after the conversions to IR format were done. The results show 

that YOLOv4-tiny has around ten times faster FPS than YOLOv4.  

 

Table 4.3: FPS of YOLOv4 and YOLOv4-tiny on Edge Device. 

Video FPS of YOLOv4 FPS of YOLOv4-tiny 

Video 1 1.011 9.820 

Video 2 1.019 10.19 

Video 3 1.032 9.910 
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Figure 4.8: Average FPS of YOLOv4 and YOLOv4-tiny on Edge Device. 

 

Hence, YOLOv4-tiny was chosen as the AI model for passenger 

detection and counting application due to its much better performance in terms 

of FPS. YOLOv4-tiny was integrated with DeepSORT before deploying the 

smart application on UTAR’s bus. The result of deploying the smart 

application on UTAR’s bus is shown in Figure 4.9. The results show that the 

application achieved 90 % accuracy for counting the passenger going into the 

bus and 80 % for the passenger going out. Further analysis was done on the 

results obtained.  

Figure 4.10 shows two results obtained from UTAR’s bus under poor 

lighting conditions. As shown in Figure 4.10, the YOLOv4-tiny algorithm 

failed to detect the passenger under poor lighting conditions. This caused the 

tracking not to occur and the passenger to not be counted. Hence, the accuracy 

of this application is affected.  

 

 
Figure 4.9: Performance of YOLOv4-tiny and DeepSORT Deployment. 
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Figure 4.10: Results Obtained from UTAR’s Bus under Poor Lighting 

Condition (a) First Example and (b) Second Example. 

 

4.3 Passenger Gender Recognition  

4.3.1 Training Results 

The training results of the passenger gender recognition and detect whether the 

passenger is wearing the mask properly will be compared between YOLOv5 

and YOLOv7. As mentioned in Chapter 3, both YOLOv5 and YOLOv7 will 

run the training for 300 epochs. Hence, the performance between these two 

models is comparable.  

 Figure 4.11 shows the performance of YOLOv5 and YOLOv7. 

YOLOv7 has a higher mAP at the threshold of 0.5 compared to YOLOv5. 

However, the difference is only 2.21 %, which is acceptable. 

 Furthermore, the benchmarking of both YOLOv5 and YOLOv7 was 

done using OpenVINO. The results of the benchmarking are shown in Figure 

4.12. YOLOv5 achieves 8.56 FPS, much higher than YOLOv7 with only 1.74 

FPS. This result indicates that YOLOv5 is more suitable for real-time 

application.  

 

 
Figure 4.11: Performance of YOLOv5 and YOLOv7. 
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Figure 4.12: Throughput FPS of YOLOv5 and YOLOv7. 

 

4.3.2 Testing Results  

YOLOv5 and YOLOv7 were tested on 3 images from each class, a total of 24 

images. Figure 4.13 shows part of the images tested for YOLOv5, and Figure 

4.14 shows the images tested for YOLOV7. 

 The testing results for both YOLOv5 and YOLOv7 are impressive. 

Both models achieved 100 % accuracy, as shown in Figure 4.15 for the testing.  

 

 
Figure 4.13: Images Tested for YOLOv5 (Kucev, 2021). 
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Figure 4.14: Images Tested for YOLOv7 (Kucev, 2021). 

 

 
Figure 4.15: Testing Accuracy of YOLOv5 and YOLOv7. 

 

4.4 Wireless Networking (LoRa) 

The LoRa wireless networking system was evaluated based on PDR, hop 

count, RSSI, and time on air.  

According to Chapter 3, the LoRa mechanism will be triggered based 

on the current locations and speed of the bus. However, this mechanism failed 

in this project due to the inaccurate reading of GPS. Figure 4.16 shows the 

three readings taken using the same GPS module but on different devices. The 

first and second readings were read on Ubuntu 18.04 LTS OS, while the third 
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was read on Raspberry Pi OS. Although the GPS was put at exactly the same 

point for the three readings, the values of latitude and longitude were different 

in each reading. In addition, although the GPS was fixed at the same point, the 

GPS's speed was not zero. These inaccurate readings of GPS caused the LoRa 

trigger mechanism to fail in this project. Hence, manual sending of LoRa was 

applied at each designated location.  

 Figure 4.17 shows the PDR of LoRa testing in this project. A total of 

10 packets of data were sent during the testing. R1 received two packets, R2 

received zero packets, R4 and R5 received four, respectively, and N4 received 

two. Further analysed of the log record of the LoRa was done to find out the 

reason behind the poor performance of the LoRa network. 

 Firstly, one of the factors that R2 received zero packets is due to its 

direction. R2 was located at one of the units at Forest Green Condominium, 

Sungai Long. The direction of R2 is shown in Figure 3.27 and Figure 4.18. 

The direction of R2 facing is parallel to the bus route. Unlike R4 and R5, 

which had the highest PDR, both the LoRa nodes face perpendicular to the bus 

route.  

Besides, when the bus passes R5, no housing area blocks between the 

publisher and subscriber nodes, as shown in Figure 4.19. However, there is a 

housing area R2 was facing, as shown in Figure 4.18. The housing area might 

cause electromagnetic interference to the LoRa network because many devices 

are connected to other wireless networking systems in the housing area.   

In addition to the interference of the housing area, although R4 also 

faces a housing area, it can receive more packets than R2. The direction of R4 

is shown in Figure 4.20. One of the differences between R2 and R4 is that R4 

has less electromagnetic interference than R2 because R4 only faces one row 

of the housing area.  

 

 
Figure 4.16: (a) First Reading, (b) Second Reading, and (c) Third Reading. 
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Figure 4.17: PDR of Each LoRa Node. 

 

 
Figure 4.18: The Direction of R2. 

 

 
Figure 4.19: The Direction of R5. 

 

 
Figure 4.20: The Direction of R4. 
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Moreover, another significant factor is that the altitude of R4 is higher 

than R2. According to Google Earth's data, Forest Green Condominium is 56 

m above sea level, while Flora Green Condominium is 68 m above sea level. 

Flora Green Condominium is the location where R4 was placed. Also, R2 was 

placed on the second floor, while R4 was placed on the fifth floor. According 

to Choi, Lee, and Lee (2020), the performance of LoRa will drop when the 

areas consist of many obstacles, such as trees. Most obstacles can be avoided 

if the LoRa nodes are put at a higher altitude. 

For R1, one of the two packets received was via multi-hop, which 

will be discussed later. For N4, the two packets were received when the UTAR 

bus was leaving the UTAR bus stop, the first designated location. This is 

reasonable since N4 was located at KB's 8th-floor pantry, the nearest LoRa 

node from UTAR. Other than the first location, N4 received nothing from 

other locations. This is also reasonable since the N4 was not facing the bus 

route except for the first location, as shown in Figure 3.27 and Figure 4.22. It 

is difficult for N4 to receive data from other LoRa nodes due to the thick 

concrete wall of the UTAR campus and substantial electromagnetic 

interference around that area.  

Figure 4.21 shows the hop count of each LoRa node at five 

designated locations listed in “gps_coordinate.csv”. The five designated 

locations follow the UTAR afternoon bus route for Bandar Sungai Long and 

Palm Walk. The route is shown in Figure 4.22.  

 

 
Figure 4.21: Hop Count of Each LoRa Node at 5 Designated Locations. 
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Figure 4.22: UTAR Bus Route for Bandar Sungai Long and Palm Walk. 

 

As mentioned earlier, the packets at the first location were only 

received by N4, the nearest LoRa node to UTAR. N4 received the packets 

from location 1 with a single hop count. For location 2, only R1 and R4 

received the packets sent. Both R1 and R4 are the nearest LoRa nodes from 

location 2. Both of them received the packets directly from R3, which is the 

subscriber. This indicates that there is only one hop count for both R1 and R4 

in location 2.  

Next, R1, R4, and R5 received the packets sent by R3 from location 3. 

Figure 4.21 shows that R1 has three hop counts, R4 has two hop counts, and 

R5 has one hop count at location 3. This indicates that the packets sent from 

R3 were received by R5 first. After that, R4 received the packets through R5, 

and R1 received the packets from R4. 

Then, only R5 received the packet sent by R3 in location 4. Location 

4 is the furthest location of the bus route. The distance of location 4 to the 

nearest LoRa node, R5, is 1.35 km, as shown in Figure 4.23. Hence, the 

distance is the main reason only one packet can be received from location 4. In 

addition, there are many housing areas and a high condominium building 

between locations 4 and R5, as shown in Figure 4.23. 
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Figure 4.23: Distance between Location 4 and R5. 

 

After that, the packets sent by R3 at location 5 were received by R5 

and R4. R5 has one hop count, and R4 has two hop counts. This indicates that 

the packets sent from R3 were received by R5 first, and then R5 floods the 

packets to R4. This result is logical because R5 is the nearest LoRa node from 

location 5, and R4 is the nearest node next to R5. 

Figure 4.24 shows the RSSI of the LoRa transmission in this project. 

The highest RSSI recorded is between N4 and R3. The result shows that the 

signal between N4 and R3 was the strongest. The second strongest signal 

existed between R3 and R5. The distance between R3 and R5 is short when 

the bus passes through R5, and there are not many obstacles blocking the 

signal, as shown in Figure 4.19, except for some short trees. The weakest 

signal existed between R3 and R1, where the packet was sent from location 2. 

The direction of R1 is shown in Figure 4.25. There are some vast trees 

between R3 and R1, although the distance between the two points is not too 

far. The vast trees might block the signal of LoRa and cause the weakest signal 

to exist between R3 and R1. According to Jebril et al. (2018), the blocking of 

the trees caused a near line of sight. The illustration of line-of-sight is shown 

in Figure 4.26. 
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Figure 4.24: RSSI or LoRa Transmission. 

 

 
Figure 4.25: The Direction of R1. 

 
Figure 4.26: Illustration of (a) Line-of-sight, (b) Near Line-of-sight, and (c) 

Non Line-of-sight (Jebril et al., 2018).  

 

 Lastly, the average time on air of the LoRa transmission was 

computed. Figure 4.27 shows the average time on air of each LoRa node at 

five designated locations. For location 1, only 68.5 s were taken for R3 to send 

the packet to N4. For location 2, R3 took 176 s to send the packet to R1 and 

only 124 s to R4. The time differences might be caused by the vast trees' 

blockage between R3 and R1. There is no blockage between R3 and R4, as 

shown in Figure 4.20, due to the high altitude of R4.  
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Figure 4.27: Average Time on Air of Each LoRa Node at 5 Designated 

Locations. 

 

 For location 3, R3 took 117 s to send the packet to R5. As mentioned 

earlier, R4 will receive the packet from R5, and R4 will send the packets to R1 

afterwards. Hence, the average time on air of R1 in location 3 is the longest.  

For location 4, R5 took 439 s to receive the packet from R3. The long 

time on air in this location might be due to the R5 actually receiving the packet 

somewhere else from R3 at the location nearer to R5 instead of the original 

location of R4. This is because the distance between location 4 and R5 is 1.35 

km, as shown in Figure 4.23. According to Microchip Technology (Microchip 

Technology, 2023), the range of LoRa is up to 15 km in rural areas and more 

than 2 km in urban areas in an ideal situation. Additionally, there are many 

housing areas and a high building between locations 4 and R5. Hence, the 

housing areas might cause electromagnetic interference and blockage of the 

signal. 

For location 5, R3 took 181 s to send the packets to the nearest LoRa 

node, R5. After that, R5 will send the packets to R4, as mentioned above. 

Hence, the time on air of R4 was longer than R5 due to this reason.  

 In short, the LoRa trigger mechanism failed in this project due to the 

inaccurate reading from the GPS. Then, the LoRa node R2 is useless in this 

deployment, and the reasons, including the direction and altitude of R2, were 

discussed.  
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4.5 Wireless Networking (Wi-Fi) 

The Wi-Fi wireless networking system evaluation is based on the percentage 

of packets received and the latency. Figure 4.28 shows the packets received by 

each node. Figure 4.29 shows the average latency of each node.  

 In Wi-Fi networks, ten packets of data were sent from R3 to N10 

from the UTAR bus stop, as shown in Figure 3.29. After that, the packets will 

be automatically synchronized across N4 and N8. N4 was located at KB block 

8th-floor pantry, and N8 was at KB 8th-floor office, as shown in Figure 3.29. 

N4, N8, and N10 received all the ten packets sent to them, as shown in Figure 

4.28.  

 Figure 4.29 shows that N4 has the highest average latency, followed 

by N8, and N10 has the lowest average latency. These results are logic based 

on the configuration of the Wi-Fi network. Based on the configuration, R3 will 

send the packets to N10 first. Hence, N10 will have the lowest average latency. 

After that, N10 will synchronize the data to N4, and N4 will synchronize to N8 

based on the configuration. Hence, the results matched the configurations of 

the Wi-Fi network. 

 

 
Figure 4.28: Packets Received by Each Node in Wi-Fi Network. 
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Figure 4.29: Average Latency of Wi-Fi Network. 

 

4.6 Summary 

In this chapter, the results obtained from this project are presented. In addition, 

discussions on the results obtained were provided. 

 For passenger counting applications, three main parts of results are 

presented: training, testing, and deployment. For passenger gender recognition 

applications, only two main parts of results were presented: training results 

and testing results. This is an additional package provided, and no deployment 

results were tested.  

 Besides, the LoRa results tabulated include PDR, hop count, RSSI, 

and time on air. The total packets received and average latency were presented 

for Wi-Fi wireless networking.    
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In this project, a smart application for passenger counting on UTAR buses was 

developed. Additionally, a passenger gender recognition algorithm was 

provided as an additional package to the smart application. After that, a 

NerveNet-based mesh network testbed with LoRa and Wi-Fi was deployed. 

Then, the smart application was integrated into the wireless network testbed. 

Finally, the experimental performance of the smart application and wireless 

network system was evaluated.  

 For the passenger counting application, the performance of YOLOv4 

and YOLOv4-tiny were compared. YOLOv4 has higher mAP than YOLOv4-

tiny in the training stage. However, YOLOv4-tiny has 4.3 times higher frames 

per second  (FPS) than YOLOv4. For the testing results, YOLOv4 achieved 

84.10 % accuracy, while YOLOv4-tiny achieved 83.01 %. Further analysis 

was done on the testing results obtained due to unsatisfactory results. The 

analysis shows that the unsatisfactory results are due to the poor lighting 

condition. YOLOv4 can achieve an accuracy of 95.12 % under good lighting 

conditions but only 73.08 % under poor lighting conditions. Besides, 

YOLOv4-tiny can achieve an accuracy of 94.87 % under good lighting 

conditions but only 71.15 % under poor lighting conditions. After that, 

YOLOv4 and YOLOV4-tiny were tested on the edge device to obtain the FPS. 

The results show that YOLOv4-tiny has almost ten times faster than YOLOv4 

in terms of FPS. Hence, YOLOv4-tiny was chosen to deploy this application 

due to its better performance in terms of FPS. In the deployment stage, the 

average accuracy of the person counting application deployment is 85 %, and 

the unsatisfying performance is due to the poor lighting conditions of the 

UTAR bus.  

 For passenger gender recognition, YOLOv7 has a higher mAP than 

YOLOv5 in the testing stage. However, YOLOv5 has almost five times higher 

FPS than YOLOv7. In the testing stage, both YOLOv5 and YOLOv7 achieved 
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100 % accuracy. However, the FPS of YOLOv5 is almost five times faster 

than YOLOv7. 

 For the LoRa deployment, the LoRa triggering mechanism using the 

data from GPS failed due to the inaccurate reading of the GPS. The three 

latitude and longitude readings from the same location are different. Besides, 

the PDR for all nodes is less than 50 %. In addition, R2 received zero packets 

and is useless in this project for several reasons, including the directions and 

altitudes of R2, as explained earlier. Furthermore, the signal strength between 

R3 and R1 is the weakest. This result is caused by blocking trees, which 

causes the near line of sight. Hence, the overall performance of LoRa still has 

room for improvement.  

For the Wi-Fi deployment, all the packets sent were received. Besides, 

the latency of every node is acceptable following the configuration. N10 

recorded the lowest latency because it was nearest to R3, and N8 recorded the 

highest latency because it was the furthest node from R3.  

  

5.2 Recommendations for future work 

One of the recommendations for future work is to improve the lighting 

condition of the UTAR bus. Both the testing and deployment results prove that 

the lighting condition has enormous effects on the accuracy of the object 

detector. In addition, the analysis of the deployment results also shows that the 

object detector cannot detect the passenger on the UTAR bus under poor 

lighting. The lighting system can be improved by installing a new light and a 

sensor at the bus entrance. By using a sensor, the light can be automatically 

turned on when the bus’s door opens. The automation process will not increase 

the burden on the bus driver.  

 Besides, the R2 should be removed from its current location. It can be 

put at the UTAR KA block to link the N4 and R4. The suggested modification 

is shown in Figure 5.1. The green point indicates R2, which can be put at the 

UTAR KA block. With that, the LoRa performance can be improved since the 

devices can link to each other better than the previous configuration.  
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Figure 5.1: Suggestion for R2 Location (Green Point). 

 

 In addition, more LoRa nodes can be put around Bandar Sungai Long 

following the UTAR bus routes. By doing so, the packets can reach with lower 

time on air because more subscribers nodes can help to relay the packets. The 

suggested locations for more LoRa nodes are shown in Figure 5.2. The red 

point indicates the suggested new LoRa nodes. 

 Furthermore, a more accurate GPS module can be purchased to 

replace the existing one. An accurate GPS is essential in this project to provide 

accurate locations and speed readings to the LoRa nodes. If the GPS is 

accurate, the LoRa trigger mechanism will function well, and the smart 

application will run at full automation.  

 Lastly, a more advanced tracking algorithm can be applied in the 

future. For example, StrongSORT, the upgraded version of DeepSORT, can be 

the tracking algorithm in the future. 

 

 
Figure 5.2: Suggested Additional LoRa Nodes (Red Point). 
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