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ABSTRACT 

 

High transportation demand due to a large population has resulted in traffic 

congestion problems in cities, which can be addressed through public transport. 

However, unbalanced passenger demands and traffic conditions can affect the 

performance of buses. The stop-skipping strategy effectively distributes 

passenger demand while minimizing bus operating costs if the operator can 

adapt to changes in passenger demands and traffic conditions. Therefore, this 

project proposes a deep reinforcement learning-based public transport route 

optimization where the agent can acquire the optimal strategy by interacting 

with the dynamic bus environment. This project aims to maximize the 

passenger satisfaction levels while minimizing bus operator expenditures. 

Thus, the dynamic bus environment is designed based on a bus optimization 

scheme that comprises one express bus followed by one no-skip bus to serve 

stranded passengers due to skipped actions. The reward function is formulated 

as a function of passenger demand, in-vehicle time, bus running time and 

passenger waiting time. which is used to train the double deep Q-network 

(DDQN) agent. Simulation results show that the agent can intelligently skip 

stations and outperform the conventional method under different passenger 

distribution patterns. The DDQN approach yields the best performance in the 

static passenger demand scenario, followed by the scenario with dynamic 

passenger demands according to time, and lastly the randomly distributed 

passenger demand scenario. Future studies should consider the load constraints 

of buses and other factors, such as bus utilization rate, to improve the 

performance of stop-skipping services for passengers and operators. Real-life 

passenger data could be incorporated into the DRL model using Internet of 

Things technology (IoT) for route optimization. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Most cities face the problem of traffic congestion due to the high 

transportation demand from a large population. Public transportation is 

considered as an alternative solution to reduce transportation demand and 

improve the urban transportation system. Transit network planning is crucial 

for the efficiency of public transport, and it is divided into three levels: 

strategic, tactical, and operational (Lu, Han, & Zhou, 2018). In strategic 

planning, the transit network design considers the routes, types of vehicles, 

number and location of stations, and distance between stations to meet the 

mobility needs of the population. Tactical decision making involves 

optimizing the service frequencies and timetables of public transport to 

improve the transportation service level (Ibarra-Rojas et al., 2015). Lastly, 

operational strategies provide control services to minimize operating costs. 

All planning for public transportation faces challenges related to 

traffic conditions and unbalanced distribution of passenger demand along the 

lines. The predetermined schedules and static routes used in conventional 

methods for bus and railway systems cannot accommodate the increasing 

transportation demand in cities. Moreover, it is impractical to continuously 

expand and upgrade the infrastructure and services of transit systems. 

Therefore, operation control strategies are alternative solutions to further 

improve the reliability and efficiency of service while minimizing operating 

costs. The bus system commonly implements these operation control strategies: 

• Short-turn: The bus only serves part of the route with higher demand. 

• Deadheading: Empty buses return to the line’s starting point in the 

low-demand direction to swiftly serve the high-demand direction. 

• Holding: Buses are delayed at specific stops for a particular duration 

to synchronize their arrival with other buses or passengers. 

• Stop-skipping: Bus only stops at certain stops with robust passenger 

demand and skips the stops with lower passenger demand. 
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 According to Ortega et al. (2019), the stop-skipping approach suits 

transit routes with unbalanced passenger demand. The optimal skip and stop 

stations can be planned and designed according to passenger needs. In 1947, 

the Chicago Metro System began offering skip-stop service to distribute 

passenger demand effectively at certain stations during peak hours. The 

Japanese railway system adopted skip-stop operations by providing alternative 

routes and rapid train services to serve stations with higher passenger demand. 

In the bus system, skip-stop operations must consider traffic, passenger 

demand, and operating costs to establish effective and reliable public transport 

routes. 

 An ideal public transport route optimization should intelligently select 

the optimal route and waypoints. Previous studies used mathematical and 

heuristic models to optimize skip-stop operations. Many parameters need to be 

collected and updated occasionally to create a stochastic environment. The 

emergence of artificial intelligence (AI) has promoted the use of intelligent 

transportation control. Reinforcement learning (RL) is one of the research 

trends in optimizing the transit system as it learns through trial and error with 

minimal human intervention. 

 Machine learning (ML) is a subset of AI that builds learning methods 

in machines by using data and algorithms. RL is a type of ML technique that 

trains the agent to select actions by interacting with its environment. The 

critical components of RL, which is derived from the Markov Decision 

Process (MDP) framework, are described below: 

• Environment: The environment is the setting or context where the 

agent functions.  

• Agent: The agent is responsible for making decisions within the 

environment through interaction. It selects the appropriate action 

based on its observations and experience. 

• State Space: The state space comprises information related to the 

environment, representing a snapshot of the environment at certain 

time step. 

• Reward: The reward reflects the quality of action taken, with positive 

rewards indicating good actions and negative rewards indicating bad 
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actions. The agent's primary objective is to increase its total reward 

over time. 

• Policy: The policy is a decision-making strategy used by the agent to 

choose actions based on its current state. It is a function that connects 

states to actions, which governs the agent's behaviour in the 

environment.  

 RL uses the concept of reward-motivated behaviour to train the agent 

to learn from mapping actions to a given set of states through a cumulative 

reward or punishment. Figure 1.1 shows the workflow inside the RL model. 

The agent utilizes the state space to obtain information about the environment 

at a given time t and then selects the best action based on its policy. The policy 

maps the action based on the given states in the environment. The agent 

evaluates the effectiveness of the action in the given state and updates the 

policy accordingly using the reward. This process is repeated continuously as 

the agent learns from the states, actions, and rewards, with the ultimate goal of 

maximizing cumulative reward over time. The agent-environment interaction 

ends when the state reaches the goal state. The agent learns continuously from 

the immediate reward in the episodic task and thus maximizes cumulative 

return by getting the optimal policy. The agent's previous actions directly 

affect the immediate reward from the environment and influence the decision-

making in the next state and all subsequent rewards. RL uses trial and error 

methods to explore the state-action pair without human intervention and then 

exploits the experience to increase the model's performance. 

 

 

Figure 1.1: Reinforcement Learning Model (Martín-Guerrero and Lamata, 

2021). 
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1.2 Importance of the Study 

Nowadays, the increasing transportation demand has raised the need for 

optimization in the public transportation system. The conventional method that 

implements static routes and predetermined schedules cannot efficiently 

distribute the unbalanced demand of passengers. Improper frequency settings 

in the bus system led to passengers being stranded at bus stations due to full 

loads. The travel time and waiting time of passengers are also prolonged by 

traffic congestion during peak hours. Previous studies have utilized 

mathematical models and heuristic algorithms to optimize public 

transportation systems. The emergence of AI has increased interest in 

implementing intelligent transportation systems. Thus, this project introduces 

skip-stop services to address the problem of unbalanced passenger demand 

using RL techniques. 

 The project employs a cutting-edge approach using RL to optimize 

public transport routes. By providing the estimated time of arrival (ETA) and 

passenger demand along bus lines, the RL agent can learn to make real-time 

decisions through trial and error, which improves decision-making over time. 

This approach provides an efficient way to generate the best route for skip-

stop service based on factors such as passenger demand, traffic conditions, and 

travel times. Hence, the main importance of this project is to explore the 

possibility of RL in optimizing public transport routes. The project's results 

could improve the quality of the skip-stop service provided by considering 

passenger demands, travel times, and the total trip duration of the bus along 

the route. 

 

1.3 Problem Statement 

The city’s current public transport system has become overwhelmed due to 

traffic congestion. The conventional public transportation system implements 

a fixed route with a predetermined schedule which cannot adapt to the 

disturbances in the predetermined route, such as traffic jams, accidents or 

maintenance work. Due to the disturbance on the route, public transport cannot 

arrive at the destination before a given deadline, leading to delay problems. 

The prolonged travel duration might delay the arrival time of public transport 

and even might affect the schedule planning.  
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 Besides that, the number of passengers varies at different times. In 

peak hours, the static route suits the high passenger demands at every station 

but might face overcrowding and unbalanced passenger distribution problems.  

It can be improved by adjusting the frequency setting of bus. However, the 

conventional stop approach at every station, even if the demand is low during 

the off-peak time, leads to resource waste and passenger dissatisfaction. A 

static route is not optimal in this scenario as it increases travel time without 

meeting utilization rates. To address this, this project proposes an optimization 

scheme that includes stop-skipping to solve the Vehicle Routing Problem 

(VRP) with RL technique. It needs to determine the optimal route from the 

starting points to various sets of waypoints based on the demand of passengers. 

VRP even becomes complicated when real-time information, such as traffic 

conditions is considered. 

 The previous researcher has proposed various algorithms to optimize 

the routing and scheduling problem in the public transport system. However, it 

involves complex computation to determine the optimal route, mainly when 

applied in real-life applications. Developing deep learning (DL) leads to 

research on implementing RL in route optimization with deep neural networks 

to reduce computation time. Currently, studies focusing on improving the skip-

stop service in bus route optimization using the DRL technique still need to be 

completed. 

 

1.4 Aim and Objectives 

The primary aim of this study was to develop a deep reinforcement learning 

(DRL) model to optimize public transport routes. To achieve this, several 

objectives were identified and pursued throughout the course of the research: 

• Develop a deep reinforcement learning model to optimize the stop-

skipping operation of bus 

• Implement the solution on Google Map, 

• Compare with the conventional method, which uses predetermined 

routes. 
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1.5 Scope and Limitation of the Study 

This study concentrates on implementing a DRL model in public transport 

route optimization. In this project, the UTAR bus is used as public transport 

for testing purposes. Ten bus stops have been designated along the original 

UTAR bus route. Real-time ETA data between the stations along the bus 

routes were collected from the Google Maps Platform. The DRL model has 

been developed and trained with Double Deep Q-Network (DDQN) using data 

collected from Google Maps. The performance of DDQN and conventional 

approaches is being compared and evaluated using the reward function 

designed. The design of the reward function in this project considers various 

factors, including passenger demand, passengers waiting time, passengers in-

vehicle time and total travel duration of bus. Lastly, the trained DRL model 

has been deployed in a web application to show the simulation results. 

A limitation of this project is the lack of real-time data on passenger 

demand at each station. The model needs to generate the passenger demand for 

simulation, which may not accurately reflect real-time conditions. Therefore, 

different passenger demand models were generated to examine the 

performance of the DRL model in different scenarios. Besides that, there are 

some restrictions on the service provided by the Google Maps Platform. It 

only gives the data for present and future departure times; the past travel 

duration in traffic conditions cannot be obtained. The vehicle type cannot be 

set to bus in Distance API's driving mode, which might cause inaccurate 

results. 

 

1.6 Contribution of the Study 

This study proposes a novel approach to optimizing public transport routes 

using DRL. It explores the DRL approach in optimizing the route with real-

time data from the Google Maps Platform. Besides that, it also focuses on 

enhancing the stop-skipping operation in express buses by considering various 

factors like passenger demand and traffic conditions. The reward function, 

which considers different evaluation metrics, is designed in the DRL model. 

The performance of the DRL and conventional approaches is compared and 

evaluated using the designed evaluation metrics. The DRL model has also 

been deployed in a web application to simulate and display the results. The 
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application can simulate the route selection process based on real-time ETA 

data from Google Maps. 

 

1.7 Outline of the Report 

The report is structured into five main chapters, which include an introduction, 

a literature review, a methodology and work plan, results and discussion, and a 

conclusion. The introduction chapter provides an overview of public transport 

route optimization and RL while explaining the problem statement, objectives, 

scope, and limitations of the study. It also highlights the importance and 

contribution of the project. Chapter 2 comprehensively reviews the public 

transport optimization model and the skip-stop service. The chapter also 

explores the theoretical concepts behind RL and DRL and further discusses the 

working principles of Q-Network, DQN, and DDQN. The literature review 

includes a summary of previously conducted studies on the subject and their 

respective evaluation metrics. Chapter 3 explains the DRL model framework 

and the work plan for the entire project. Chapter 4 presents the training results 

for three different passenger demand scenarios. The DDQN agent’s 

performance is assessed using the reward function designed and compared to 

the conventional approach. Lastly, Chapter 5 concludes the study's results and 

provides recommendations for future improvement. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Route Optimization 

The main objective of public transport route optimization is to improve the 

efficiency of routes, taking into account the benefits for both passengers and 

bus operators. The design, service, and operation of public transport are the 

three stages of transit network planning that contribute to its enhancement, as 

discussed in Chapter 1. One way to optimize public transport routes at the 

operational stage is through stop-skipping control, where the travel duration 

and passenger flow are the important criteria. Ibarra-Rojas et al. (2015) the 

stochastic nature of passenger distribution patterns and traffic flow can 

significantly affect the efficiency of the transportation system. However, 

obtaining different data, such as traffic conditions, real-time travel duration 

and the actual passenger flows at the station, from open-source platforms is a 

challenging task. Therefore, the inadequacy of data is a critical challenge in 

optimizing public transportation routes. In real-life scenarios, public transport 

route optimization also needs to balance meeting passenger demand while 

minimizing operating costs. However, the more constraints considered, the 

greater the computational requirements, as noted by Iliopoulou and 

Kepaptsoglou (2019). 

 

2.2 Skip-Stop Services 

Gkiotsalitis and Cats (2021) defined stop-skipping service as a control 

measure that allows the bus to skip certain stops if it is running behind 

schedule. Instead of stopping at all stations along the line, the express bus only 

serves a subset of stations according to demand. Stop-skipping can balance the 

passenger demand while minimizing the travel time.  

Many studies have been undertaken on optimizing public 

transportation routes to improve and enhance the skip-stop operations in public 

transportation systems. Kikuchi and Vuchic (1982) defined stopping regimes 

into three basic types: all-stop, on-call stopping, and demand stopping. The all-

stop regime restricts the vehicle to stop at every station, while the on-call 
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stopping allows the vehicle to serve those stations with boarding and alighting 

demands. In the demand stopping regime, passengers can request the vehicle 

to stop at any stations along the line for boarding and alighting. This study 

even found that the optimal stopping regime and the number of stops change 

according to passenger demand. As the travel demand rises along the route, the 

optimal stopping regimes change from demand stopping to on-call stopping 

and finally the all-stop regime (Kikuchi and Vuchic, 1982). It indicates that the 

stop-skipping operation is more suitable for the scenario with unbalanced 

passenger demand. 

 

2.3 Reinforcement Learning 

RL takes the concept of reward-motivated behaviour in human beings to train 

the machine to make decisions through reward and punishment mechanisms. 

Several vital elements in the reinforcement learning model originate from the 

Markov Decision Process (MDP). According to Sutton and Barto (2018), 

MDPs are a straightforward framework for learning from trial and error to 

achieve goals. Thus, MDP is an ideal mathematical framework representing 

the RL environment as it can formalize sequential decision-making in the RL 

model. There are five critical components in MDP: state, action, transition 

probability, reward, and discount rate. 

MDP has a finite set of actions, rewards and states. At every discrete 

time step, the agent interacts with the RL environment, obtains the current 

state space, and selects the appropriate action. The environment responds by 

transitioning to the next state and providing a reward for the state-action pair. 

The agent takes the next current state and reward to evaluate the policy used. 

The policy in RL can be defined as the probability of transition from the 

previous state-action pair to the state. The agent can learn from the reward and 

update the transition probability, which is the probability distribution over the 

set of actions. 

 The agent aims to optimize the overall return. The environment 

returns the reward at every discrete time step. The episodic task is a multi-

decision process in RL, and it ends when the environment reaches the goal 

state and resets all parameters. The interaction between the environment and 

agent can run continuously without limit. The return, Gt is the sum of all the 
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rewards, R calculated at the end of the time step T. In this scenario, the agent 

would consider the cumulative return in future compared to the immediate 

reward. However, this continuing task might sometimes run infinitely, leading 

to missing a larger total reward in the long run. The single action that gives a 

decent reward might be ignored in cumulative rewards. According to Lee 

(2019), a discount mechanism discounts the importance of future rewards at 

different time steps so that the cumulative reward can be valued differently 

depending on the scenario. The discount factor, γ falls between zero to one. 

When the γ approaches zero, the agent learns to choose the action to maximize 

the immediate rewards (Sutton and Barto, 2018). The discount factor, γ allows 

the agent to consider more the immediate reward, especially in a particular 

state. If the discount factor, γ approaches one, the agent would consider the 

future rewards more. The discount factor helps to achieve the balance between 

immediate and cumulative rewards. 

 

2.3.1 Policy-based and Value-based Learning Algorithms 

The policy defines the behaviour of agents in decision-making. Equation 2.1 

defines the policy, π as the probability distribution that maps actions, a, from 

the given state, s in MDP (Jagtap, 2020). The agent maps the action to a given 

state at the time, t using the state-transition probability matrix of all possible 

actions. The agent discovers the optimal policy to improve the cumulative 

rewards over time, taking into account the discount factor which increases the 

importance of immediate rewards.  

 

  π(a| s)= P[At=a| St=s] (2.1) 

 

where  

P = probability distribution 

At = action at time, t 

St = state at time, t 

 

 In the model-free RL, there are mainly two learning methods: policy-

based and value-based. Both types of learning are used to store the previous 

experience for obtaining the optimal policy. The policy-based learning focuses 
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on finding the optimal policy directly by using the state-action probabilities, 

while value-based learning uses the value function to find the optimal policy.  

 Policy-based learning defines the policy as a set of parameters θ. The 

policy score function, J(θ) calculates the expected reward under the policy. By 

exploring the environment and observing the expected rewards under the 

policy, the policy parameters θ that maximizes the policy score function J(θ) 

can be calculated by performing gradient ascent. It is constantly updated to 

obtain the optimal policy. In short, the policy-based methods train the policy 

directly without using the value function. The standard algorithms in policy-

based methods are the Proximal Policy Optimization, Policy Gradient and 

more. 

 The value-based learning finds the optimal policy by implementing 

the state-value function. The agent trains to learn which state can get more 

reward and takes action to lead to it. Equation 2.2 shows that the value 

function returns the expected value for a given state. The Q-function is 

denoted by Equation 2.3, where the expected return is called the Q-value. 

 

  vπ (s)= Eπ [Rt+1 + γ vπ (St+1 )| St=s] (2.2) 

 

  q
π
(s, a)= Eπ [Rt+1+γ q

π
 (St+1, At+1| St= s, At+1= a)] (2.3) 

 

where 

vπ (s)  = value function 

qπ (s, a) = Q function 

Eπ  = expected value given under policy, π 

R = reward 

γ = discount factor 

 

 Q-function links a state and action to the expected total return if that 

action is taken in that state. The 'Q' in Q-function can be interpreted as 

representing the quality of the action in that state, as it reflects the expected 

cumulative reward. Equation 2.4 expresses the relationship between the Q-

function and the value function. The agents either learn from the value 

function or Q-function based on the algorithms used.  
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  vπ (s)= ∑ π(a| s) q
π
(s, a)

a∈ A
 (2.4) 

 

2.3.2 Q-learning Algorithms 

The Q-learning algorithm learns by taking different actions and updating the 

Q-table with maximum action values. It trains the agent using the greedy 

action that gives the maximum Q-value at a given state. The agent learns 

through exploration and exploitation in RL. In Q-learning, the Q-table is used 

to store all Q-value of state-action pairs. In the initial stage of training, the Q-

value for all state-action pairs is zero. The agent needs to explore the 

environment to obtain the Q-value of the state-action pair and store it in the Q-

table. As the agent keeps learning, the Q-table keeps updating each state-

action pair. The agent also exploits the existing Q-value and updates the Q-

table with rewards. However, a balance between exploration and exploitation 

is important to ensure the agent can continue learning all possibilities in state-

action pairs. Thus, the Epsilon greedy strategy is introduced to balance the 

exploration and exploitation rate in the agent. In this strategy, the exploration 

rate decreases as the episodic task increases. The agent generates a random 

number between 0 and 1. It starts to exploit the environment when the random 

number is higher than the exploration rate. 

 The main idea of the Q-learning algorithm is to obtain the optimal Q-

value for every state-value pair that gives the maximum expected return. The 

learning rate determines the amount by which the previous Q-value should be 

incorporated into the new Q-value calculation. Generally, the learning rate is 

constant in the training process. As the learning rate approaches 1, the new Q-

value increasingly overrides the previous one, and vice versa. It is crucial to 

determine the appropriate learning rate when applying Q-learning to solve a 

problem. The calculation for the new Q-value of the state-action pair can be 

seen in Equation 2.5, which considers the previous Q-value, discounted Q-

value and learning rate. 

 

 Q
new

(st, at) ← Q(st ,at)+ α [Rt+1+ γ max Q (st+1 ,at+1)- Q (st ,at)] (2.5) 
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However, the size of the Q-table increases significantly as the number 

of state-action pair increases. It has led to the slow convergence speed of Q-

learning. As mentioned by Ganapathy, Soh and Joe (2009), the agent faced 

difficulty exploring all possible state-action pairs in mobile robots due to the 

enormous computational burden, a great deal of time required, and the 

increasing size of states in the environment. As data increases and becomes 

more complex, the conventional Q-table cannot handle the problem. The 

neural network can replace the Q-table to improve Q-learning and form deep 

Q-learning. Thus, the authors have focused on integrating Q-learning with the 

artificial neural network to train the autonomous mobile robot to learn in an 

environment. The neural network is functional when there is a complex 

numeric computation which can improve the Q-learning further. 

 

2.4 Deep Reinforcement Learning 

Scalability is the main challenge faced in RL because real-life applications 

consist of high-dimensional states that are different from the simple state in 

MDP. As the number of datasets increases, the training process becomes more 

complicated, and the amount of memory and time needed also increases 

significantly. The deep neural network (DNN) can help the RL model handle 

vast amounts of data and thus introduce the idea of deep reinforcement 

learning (DRL). DRL integrates RL with deep learning (DL) to implement the 

DNN to perform function approximation for both policy and value functions. 

 

2.4.1 Deep Learning 

DL is a machine learning technique inspired by the human brain’s neurons. It 

implements a brain-like logical structure of algorithms called the neural 

network to learn specific knowledge by observing a large set of labeled data. 

The neural network is considered deep when the number of processing layers 

more than two. Data feeds into the deep neural network, and the model 

continues to iterate until output accuracy reaches an acceptable level. It is 

useful in automating predictive analytics by collecting, analyzing and 

interpreting large amounts of data. 

 DNN comprises of multiple layers, including the input, hidden, and 

output layers. The hidden layer consists of multiple processing layers, and 
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each layer consists of interconnected nodes, as shown in Figure 2.1. The 

weight is a parameter assigned to the links between interconnected neurons in 

different layers that determine the influence of inputs on output. Forward 

propagation proceeds with the computation from the input to output layer, 

which chooses the output action based on the weight. The input layer ingests 

the data for processing, and the neurons in hidden layers build upon the 

previous layer to refine the data. In the hidden layer, the input is computed 

with the weighted sum from the previous layer. The activation function is 

applied to the neuron to get a new transformed input from the previous layer 

(Li, 2017). In backpropagation, the error derivatives in prediction are 

computed backward, and the weight and bias are adjusted to optimize the loss 

function by moving from output to input layers. With this DNN mechanism, 

the error in the result can be used to update the weight of the related link and 

thus gradually increase the accuracy of prediction. 

 

 

Figure 2.1: Deep Neural Network (IBM, 2020). 

 

DNN learns from large amounts of raw data and computes the 

prediction automatically. Forward propagation and backpropagation of the 

DNN can be implemented in the RL learning algorithms to form DRL. It can 

be utilized as a function approximation to optimize the policy and value 

function, which handles the scalability problem in RL. 
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2.4.2 Deep Q-Network 

DQN is a commonly employed algorithm in the field of DRL, which merges 

Q-learning with deep learning. The implementation of DQN to play Atari 

games by the Google DeepMind team is a milestone in DRL. Mnih et al. (2013) 

successfully combined Q-learning with convolutional neural networks (CNNs), 

resulting in an agent that played the Atari games better than ordinary human 

players. CNNs are deep neural networks that specialize in finding patterns in 

images, making them suitable for the Atari games where the agent learns from 

the video input. 

 Q-learning utilizes the Q-table to save the Q-values for all state-action 

pairs, while DQN utilizes the Q-Network to approximate the value function in 

Q-learning. The input layer in the Q-network represents the state, the output 

layer represents the action, and the hidden layer stores the weights and biases 

for the DQN. Without processing the data, the problem of high correlation 

between adjacent training data and non-stationary distributions might affect 

the performance of the agent in DQN. To achieve unconditional convergence 

like the Q-learning algorithm, DQN was implemented by combining two 

approaches: experience replay and the target network. 

 Experience replay mechanism saves the previous transition in a 

memory buffer and removes training data randomly to reduce correlations 

between data. Two neural networks are implemented in DQN: the target and 

Q-networks. DQN trains neural network by minimizing the loss function that 

penalizes the difference between Q-network and target network. The loss 

function compares the Q-value in the Q-network with target network and 

updates the weight of Q-network in the backpropagation. Equation 2.6 shows 

the loss function L(θ) of DQN. 

 

  L(θ) = E [(Rt+1+ γ maxa Q
target

 (st+1, a; θ
-))- Q (st, at; θ )]

2
 (2.6) 

 

where 

Qtarget = Q-function of target network 

θ
−

 = weight of target network 

Q = Q-function of Q-network 
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θ = weight of Q-network 

 

 DQN computes the target Q-value by taking the next state as input, 

whereas the evaluation network uses the current state as input. The loss 

function is designed to adjust the weight of the interconnected node in the Q-

network by using the target Q-value as an estimated future value. To generate 

a new estimated value for training, the target network periodically 

synchronizes the parameters from the Q-network. Figure 2.2 shows the 

workflow of the DQN algorithm, where the Q-network is represented by the 

main net and the target network is represented by the target net. 

 

 

Figure 2.2: Deep Q-Network Workflow (He, et al., 2021). 

 

Implementing neural networks provides a solution to the limitations 

of Q-tables in handling high-dimensional state spaces. However, it also 

introduces the problem of data correlation. Unlike Q-learning, which saves the 

value of state-action pair separately in a table, neural networks determine the 

best action based on the weights of the nodes in each layer. Backpropagation 

can modify the weights of other state-action pairs, leading to a decrease in 

accuracy. To address this, experience replay and target networks are used to 
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reduce data correlation by randomly selecting data and using an estimated Q-

value to compute the loss function. 

 

2.4.3 Double Deep Q-Network 

There is an overestimation problem in Q-learning where the estimated Q-value 

is often more significant than the actual Q-value. To solve this problem, Van 

Hasselt developed double Q-learning in 2010 (Van Hasselt, Guez, and Silver, 

2016). This idea was further developed to solve the overestimation problem in 

DQN by introducing double DQN. Double Q-learning uses two Q-functions to 

minimize the overestimation problem by updating the Q-function with the 

value from another Q-function (Jang et al., 2019). This algorithm reduces the 

bias in Q-learning by dividing the evaluation function. Like Q-learning, the 

DQN always chooses the best action based on the largest estimated Q-value 

from the target network, which can exaggerate the previous error, leading to 

overestimation. Van Hasselt, Guez, and Silver (2016) proposed double DQN 

to minimize the overestimation problem. The Q-Network and target network 

predict their Q-values from the current state. The target network provides the 

actual Q-value based on the maximum action argument in the Q-network. The 

Q-network chooses the action, while the target network provides the actual Q-

value based on the given action. Compared to DQN, DDQN separates the 

action selection and evaluation in the target network. The improvement can be 

seen clearly by comparing Equations 2.7 and 2.8 for the target network in 

DQN and double DQN. 

 

 Yt
DQN

≡ Rt+ γ max Q
target

(st+1 , at+1, θ
-
) (2.7) 

 

 Yt
DoubleDQN

≡ 𝑅𝑡+ γ Q
target

(st+1, arg max
a

Q(st+1, a; θ)  , θ
-) (2.8) 

  

2.5 Previous Studies on Public Transport Optimization Model 

Feng and Chen (2005, cited in Zhang and Jia, 2021) discovered that 

conventional bus route optimization models mainly employ optimization 

algorithms and mathematical analysis models. Li, Rousseau, and Gendreau 

(1991) proposed nonlinear 0-1 stochastic programming model to optimize 
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real-time bus schedules with skip-stop operations. The nonlinear mathematical 

model only sought to reduce the overall penalty cost of unsatisfied passenger 

demands, neglecting the operating cost of the bus. Fu, Liu, and Calamai (2003) 

approached the stop-skipping control problem as a non-linear programming 

problem that involves 0 and 1 variables. Their approach factored in the waiting 

times of both waiting and stranded passengers, the total time passengers spent 

in transit, and the total travel time for the bus. The optimization algorithm 

proposed accounted for the costs of both passengers and operators, however, 

the method employed brute-force techniques. Sun and Hickman (2005) 

investigated the feasibility of real-time implementation of skip-stop control 

and presented two objective functions, the policy alternative and basic policy. 

Both policies considered the waiting and transit time for passengers, but the 

basic policy also factored in the additional cost to passengers for disembarking 

at a skipped stop, as the bus does not stop according to the passengers' requests. 

The study concluded that the policy alternative approach is better suited for 

real-time use, as passengers can choose their disembarking station using an 

executive search method. 

 Heuristics algorithms are explored in several studies to optimize the 

skip-stop service in public transportation systems. Liu et al. (2013) utilized the 

Genetic Algorithm with Monte Carlo Simulation to enhance the stop-skipping 

services in bus system. It implemented an optimization scheme comprising of 

one express bus line, followed by another no-skip bus line to minimize the 

overall waiting time of stranded passengers. The researchers aimed to 

minimize the weighted sum of three objective functions, namely bus operating 

time, in-bus time and waiting time for the benefit of both passengers and 

operators. However, the study did not consider the load constraint of the bus. 

Chen et al. (2015) improved the optimization model of the previous study by 

considering capacity and random trip time. Zhang et al. (2018) also proposed a 

genetic algorithm approach but considered the factor of imbalanced passenger 

demand in executing stop-skipping control. The express bus services will only 

start if the demand exceeds the specified threshold. However, optimizing the 

skip-stop service of a bus without considering real-time traffic data is 

impractical because traffic conditions may change as the bus moves to the next 

stops. 
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As machine learning becomes increasingly popular, the RL technique 

is another option to optimize the public transport system, enabling the agent to 

learn through trial and error. Jiang et al. (2019) proposed the RL approach in 

controlling the passenger inflow and generating the skip-stop strategy in the 

railway system. This RL model considered the penalty value of stranded 

passengers distributing along the metro line to optimize the train rescheduling. 

The Q-learning is implemented to deal with the train rescheduling strategies of 

skip-stopping while considering passenger congestion along a real-life metro 

line. This study optimizes the skip-stop strategy in the metro line without the 

need to consider the traffic condition as the bus system. The DRL can also be 

applied to optimizing the dynamic bus schedule as studied by Ai et al. (2022). 

The agent is trained to decide whether the bus should depart or hold at a bus 

station by considering the time, crowded degree, waiting time of passengers, 

and carrying capacity utilization rate. However, the optimization of the bus 

system's route was not considered.  

 

2.5.1 Evaluation Metrics  

Based on the research of Gkiotsalitis and Cats (2021), the authors summarized 

the literature on stop-skipping and listed typical evaluation metrics from 

previous studies. The assessment metrics can be broadly classified into two 

distinct categories: those that contemplate the advantages to passengers, such 

as waiting time, in-vehicle time, unsatisfied passenger demand, and extra cost 

for alighting when skipping stops; and those that consider the benefits to the 

operator, such as total bus travel time, reduction of control actions, and 

deviation from the planned schedule. 

Based on the findings of the literature review presented in Section 2.5, 

it can be inferred that various parameters, such as waiting time, number of 

stranded passengers and in-vehicle time can be used to assess passengers' 

satisfaction. Similarly, the total bus travel time is the key parameter that can be 

employed to evaluate the cost of bus operators. In this project, these evaluation 

metrics will be considered to formulate the reward function of the RL model. 
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2.6 Summary 

The stop-skipping operation is a popular technique for optimizing public 

transport routes. This chapter introduces the concepts of RL and DRL, along 

with the working principles of Q-learning, DQN, and DDQN. Finally, 

previous studies on the subject are reviewed, and their evaluation metrics are 

summarized.
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

The entire project can be mainly categorized into three stages for the 

development of the DRL-based public transport optimization model. In the 

first stage, the ETA data is obtained from the Google Maps Platform, and 

research is conducted on Google Maps API and RL. In the second stage, the 

project continues with the design of the RL framework. The environment and 

agent are built using Python, and the model building and refinement process is 

repeated through model training and evaluation. The reward function is tuned 

until the performance of the results reaches optimal levels. In the last stage, the 

model is deployed in a web application and integrated with Google Maps. 

 

3.2 Software Setup 

3.2.1 Google Maps Platform 

The Google Maps Platform is the maps services provided in the Google Cloud 

Platform. It provides various application programming interfaces (API) to 

retrieve map data such as location, best travel route, and travel time from 

Google Maps. The developer is allowed to embed the Google Maps into the 

website or mobile applications by using the API key. It is a closed source tool 

and charged per API call. The Google Maps libraries are available through 

different client interfaces such as HTTP request, JavaScript API and even 

Python. The Maps JavaScript API provides the same functionality as the client 

libraries but is more specialized in building the maps on the web application.  

 The API key is needed to access the Google Maps Platform Service. 

There are three APIs are enabled for this project which are Maps JavaScript 

API, Distance API and Distance Matrix API. In this project, the ETA data 

between the stations is essential for model training and evaluation. A full set of 

ETA data between the bus stations can be collected by using Direction Matrix 

API. Maps JavaScript API and Distance API will be used to develop the web 

application for model deployment. The Maps JavaScript API is used to build 

the customized maps for bus simulation. The Distance API received the 
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direction requests and returned the direction and route from Google Maps. It 

can integrate with Maps JavaScript API to display the route in the customized 

map. The origin and destination of the bus stops are specified by using the 

longitude and latitude to avoid including the walking distance in path 

generation.  

 

3.2.2 Flask 

Flask is a lightweight and compact web application framework written in 

Python. It is built on the foundation of Werkzeug, which is a Web Server 

Gateway Interface (WSGI) toolkit. Werkzeug serves as an intermediary 

between server-client web applications for handling requests and responses, 

while WSGI facilitates the communication protocol between web server and 

web application. Additionally, Flask allows for the rendering of dynamic web 

applications through Jinja2, a widely-used template engine in Python. By 

combining variables from a Python script with an HTML file, Flask can 

deliver dynamic content within web applications. In this project, Flask is 

utilized to develop a basic web application that supports standard HTTP 

requests. The "GET" request permits clients to retrieve data from the web 

server using a URL, while the "POST" request sends data to the server when 

the client submits a form. The Python server then obtains the required data 

from the client and returns the simulation response. 

 

3.2.3 TensorFlow 

TensorFlow is a library developed for ML and DL applications. It supports 

many programming languages such as Python, JavaScript, C++ and Java. 

Libraries in TensorFlow can perform numerical computation to create DL 

models directly or indirectly and develop neural networks. It supports building 

and training the DL models easily using the module provided. It is one of the 

popular frameworks and tools for ML and DL. It is used to build the DRL 

model for optimizing the route selection in this project. 

TensorFlow is a machine learning platform that provides a variety of useful 

libraries for constructing machine learning models. The libraries within 

TensorFlow are capable of performing numerical computations to create 

machine learning and deep learning models either directly or indirectly, and 
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can be used to develop neural networks. This platform facilitates easy building 

and training of deep learning models through its provided modules. It is one of 

the most popular frameworks and tools for machine learning and deep learning. 

In this project, TensorFlow will be utilized for constructing a deep 

reinforcement learning model that optimizes route selection of express bus. 

 

3.3 Data Collection 

The project began with research on the Google Maps Platform. A route with 

ten stations was designed based on the original route of the UTAR bus. By 

integrating the Google Maps API with Python, the designed route and stations 

can be displayed on Google Maps, and ETA data can be collected using the 

Distance Matrix API. 

 

3.3.1 Bus Route 

There are ten bus stops along the KTM Serdang bus route, which have been 

selected and modified based on the original Route 5: KTM Serdang Station of 

UTAR bus in Sungai Long Campus. The locations of these ten bus stations are 

shown in Table 3.1, along with their longitude and latitude coordinates. 

 

Table 3.1: Location of Ten Bus Stops assigned along the Bus Route. 

Bus Stop Name Longitude Latitude 

S01 UTAR Sungai Long Bus Stop 3.039519 101.794555 

S02 Komersial BT 11 3.042469 101.772179 

S03 Aeon Cheras Selatan (Opp) 3.032193 101.766019 

S04 Klinik Taming 3.024327 101.730146 

S05 KTM Serdang 3.023479 101.716029 

S06 The Mines 3.026984 101.718918 

S07 KG. Baru Belakong 3.026502 101.749507 

S08 Shell Sungai Long 3.041762 101.789526 

S09 Sungai Long Golf & Country 3.042027 101.801568 

S10 UTAR KB Block Entrance 3.039751 101.794424 
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The route is generated by Google Map by providing the origin and 

destination. The Maps JavaScript API displayed the customized map in the 

web application while the Distance API retrieves the route data from Google 

Maps. The generated bus route with ten bus stations is shown in Figure 3.1 

below: 

 

 

Figure 3.1: Bus route of UTAR bus generated with Google Maps. 

 

3.3.2 ETA Data 

ETA data refers to the estimated travel duration between stations. In the DRL 

model, the bus is only allowed to select between no skipping, skipping one 

station, or skipping two stations in order to optimize the route. For example, 

assuming the bus departs from station j, it can only stop at station j+1, j+2, or 

j+3 depending on the chosen action. The ETA data can be obtained from 

Google Maps Platform by using the Distance Matrix API, which requires the 

origin-destination pair and departure time to obtain the related ETA data. The 

data was collected between 7:00 AM and 6:30 PM and stored in an Excel file, 

as shown in Figure 3.2, with the results being stored in seconds. In summary, 

ETA data for 15 days was collected and stored as ten training sets and five 

testing sets for model training and evaluation purposes. 
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Figure 3.2: Stored ETA Data in Excel File. 

 

3.4 Bus Optimization Scheme 

There are N bus stations along the route and each station can be denoted as j = 

1, 2, …, N. Figure 3.3 shows the overview of the bus optimization scheme. The 

bus stop-skipping scheme starts with express bus i and is followed by a no-

skip bus i+1. The bus i allowed to skip one or two stops while the next bus 

i+1 needs to stop at every stop to avoid passengers stranded at the bus stop for 

a long period. Each bus must depart from the first station and terminate at last 

station N. 

 

 

Figure 3.3: Bus Optimization Scheme. 

 

The bus stop-skipping scheme is set to repeat every 30 minutes from 

7:00 AM until 6:30 PM. The express bus departs first from the first station, 

while the regular bus departs 15 minutes later. Assuming the express bus has 
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departed from previous station j-1 and reached station j, the ETA between the 

stations is obtained from the Distance Matrix API and denoted as tj-1, j. At 

station j, the time of arrival Ai,j of bus i can be expressed as follows: 

 

 Ai,j=Di,j-1+tj-1,j. (3.1) 

 

As the bus reaches station j, passengers usually alight from the 

backdoor of the bus, while waiting passengers at station j board the bus. Let 

Ui,j denotes the passengers count that boarding bus i at station j, while Vi,j 

denotes the passengers count that alighting from bus i. The duration for 

passengers to board and alight is known as dwell time. The average time for 

boarding the bus is 5 seconds, whereas the average time for alighting is 3 

seconds. The dwell time τi,j is equal to the maximum time for boarding or 

alighting: 

 

 τi,j=max(5⋅Ui,j , 3⋅Vi,j). (3.2) 

 

As bus i picks up all passengers at station j, the bus starts heading to 

station k, where k can be station j+1, ..., N. The departure time of bus i at 

station j is equal to the time of arrival plus the dwell time: 

 

 Di,j=Ai,j+ τi,j. (3.3) 

 

The subsequent regular bus i+1 will arrive at station j after a certain 

amount of time. The time interval between the departure of bus i and the 

arrival of bus i+1 is known as the headway. The headway Hi for bus i and the 

previous bus at every station is fixed at 15 minutes, while the headway 

between bus i+1 and bus i is expressed as: 

 

 Hi+1,j = Ai+1,j-Di,j. (3.4) 

 

At station j, the total count of passengers waiting for bus i is denoted 

as Wi,j. It is generated using the arrival rate λj, where different passengers will 
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have different destination stations. The arrival rate λj,k represents how often 

passengers arrive at station j with the intention of heading towards station k. 

The count of passengers Wi,jk waiting for bus i at station j and intended to go to 

station k is formulated as: 

 

 W
i,jk= λj,k⋅ Hi,j

. (3.5) 

 

The load of bus i denotes as li and is the sum of boarding passengers 

on the bus i. When passengers board the bus, the count of boarding passengers 

Ui,j is equal to the total number of waiting passengers Wi,j at station j. The total 

number of alighting passengers is the sum of passengers who boarded the bus 

at the previous station n and intended to alight at station j, as expressed by 

Equation 3.6. Equation 3.7 shows the how the bus load is updated with the 

boarding and alighting passengers at each station j. 

 

 Vi,j= ∑  
j-1

n=1 U
i,nj

 (3.6) 

 

 𝑙𝑖,𝑗 = 𝑙𝑖,𝑗−1 + 𝑈𝑖,𝑗 − 𝑉𝑖,𝑗 (3.7) 

 

where  

Vi,j  = passengers alight at station j 

Ui,j = total number of passengers board at station j 

li,j-1 = the load of bus i at previous stopped station j-1 

 

The express bus will skip some stations along the bus route. Assume 

that bus i skipped station j, leaving passengers stranded at station j. Li,jk is the 

number of passengers left behind by bus i at station j who intended to go to 

station k. The subsequent bus i+1 will serve these passengers at station j to 

avoid long waiting times. The travel duration between stations can be obtained 

from Google Maps Platform, which considers real-time traffic conditions. The 

same travel time is implemented for both bus i and bus i+1.  
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3.5 Deep Reinforcement Learning Model Framework 

In this project, the DRL model is utilized to optimize the route selection of an 

express bus in a bus optimization scheme, considering traffic conditions and 

passenger demands. The bus is required to follow a set time schedule and 

terminate service at the last station. To select an action (no skip, skip one 

station, or skip two stations), the agent analyzes the environment using the 

state space at time t-1, which includes important information such as waiting 

passengers and ETA between stations. If the agent selects to skip two stations, 

the bus performs the action by departing from the current station j and 

stopping at station j+3 with a duration of tj,j+3. The decision made by the agent 

is evaluated using the reward function and next state space at time t. The 

simulation continues until both the express bus and no-skip bus arrive at the 

last station. Figure 3.4 depicts the framework of the DRL model. 

 

 

Figure 3.4: DRL Model Framework. 

 

The dynamic bus environment in the DRL model simulates the 

system model design outlined in Section 3.4. The optimization scheme for the 

bus operates every 30 minutes, with the express bus departing from the first 

station and the second no-skip bus departing from the first station after 15 

minutes. During the simulation, the DRL model makes optimal slot-by-slot 

decisions, with the decision point being when the bus is about to depart from 
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the current station. The agent makes decisions based on its experience and the 

state space received from the bus environment. Passenger demand and ETA 

between stations are considered by the DRL model when selecting the route, 

with ETA data collected from the Google Maps Platform using the Distance 

Matrix API and passenger demand generated using the passenger demand 

model. 

 

3.5.1 Passenger Demand Model 

The passengers flow at each station j is generated using the arrival rate λj and 

the interval between the buses, Hi,j, as described in Equation 3.5. The arrival 

rate at station j comprises various passengers who are anticipated to be 

traveling towards station k, denoted as λj,k. The alighting rate at each station is 

fixed as per Table 3.2: 

 

Table 3.2: Alighting Rate for Each Station along The Route. 

Station S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 

Alighting 

Rate 
0 0.7 0 0.5 0 0.8 0.5 0 0 1 

 

The arrival rate at each station is adjusted with the boarding rate and 

alighting rate to generate different types of passengers demands. Three 

different passenger demand scenarios can be generated with this model: 

• Static passenger demand, 

• Dynamic passenger demand varied with time, 

• Random passenger demand. 

The first scenario has a static boarding rate as shown in Table 3.3. In 

the second scenario, the boarding rate at four stations (S01, S02, S05, and S07) 

is randomly varied over time to be higher than the boarding rate at the other 

stations, which is set to be lower. In the third scenario, the arrival rate of 

passengers is randomly assigned without adjusting for the boarding rate. The 

passenger arrival rate is randomly generated within the range of 0.1 to 0.4 for 

all three scenarios. 
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Table 3.3: Boarding rate for each station along the route. 

Station S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 

Boarding 

Rate 
1 1 0 0 0 1 0 0 0 0 

 

3.5.2 State Space Design 

In the DRL model, the state space comprises environment-related data that 

helps the agent understand its surroundings. In this project, one of the most 

crucial pieces of information that must be included in the state space is the 

station ID, which indicates the current station where the bus has stopped. The 

starting point of the dynamic bus environment is denoted as station ID 0, and 

each station is represented by an ID number ranging from 0 to 9. 

Another important piece of information that needs to be included in 

the state space is the scheduled departure time of the bus, particularly in a 

dynamic passenger demand scenario. The bus operates from 7:00 AM to 6:30 

PM, and the schedule is divided into 24 time indices. For instance, a time 

index of 0 represents the bus’s departure from the first station at 7:00 AM. 

Additionally, it is necessary to include the travel duration of the bus 

to reach the next three stations in order for the agent to select the best action. 

Since the agent can only choose between not skipping any stations, skipping 

one station, or skipping two stations, the ETA data can help the agent predict 

the appropriate action while minimizing the operating cost. The ETA data is 

converted to minutes and stored in the state space. 

Finally, the count of passengers waiting at the next three stations is 

also incorporated into the state space to train the agent to halt at stations with a 

higher demand. In summary, eight parameters are saved in the state space to 

aid the agent in comprehending the environment. 

   

3.5.3 Reward Function Design 

The RL model is designed to effectively distribute passenger demand while 

minimizing costs for both bus operators and passengers. The reward function 

plays a crucial role in shaping the agent's behaviour. An appropriately 

designed reward function can define the agent's goal and provide feedback on 
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its performance. The agent learns through reward-punishment mechanisms, 

with rewards given to encourage correct decisions that lead to the desired 

outcome, and penalties given when undesired behaviours occur.  

Assume that the bus i locates at station j in the dynamic bus 

environment and the agent decides to skip station k-1 and heading at station k. 

To optimize the stop-skipping service of the express bus, the reward function 

considered the following factors:  

• Passenger demand: The reward should be given when the DRL model 

meets the demand of passengers. The step reward is proportional to 

the number of passengers alighting and boarding at each station, 

which can be formulated as: 

 

 𝑃𝑖,𝑘 = 𝑈𝑖,𝑘 + 𝑉𝑖,𝑘. (3.8) 

 

• Waiting time: Passengers prefer shorter waiting times at bus stops. 

The DRL model should be rewarded when reducing the passengers’ 

average waiting time at each station. The formula for the average 

waiting time of passengers can be expressed as: 

 

 𝑇𝑤,𝑘
̅̅ ̅̅ ̅ =

𝐻𝑖,𝑘

2
 (3.9) 

 

• In-vehicle time: Passengers prefer shorter travel times on the bus. The 

reward should increase when the in-vehicle time decreases. The in-

vehicle time between station j and k for passengers on bus i includes 

the dwell time and ETA between stations. The load of bus i is 

normalized with the maximum load of the bus, lmax to scale the in-

vehicle time and avoid making it too large. The formula to calculate 

the in-vehicle time is: 

 

 𝑇𝑣,𝑗𝑘 = (𝜏𝑗,𝑘 + 𝑡𝑗,𝑘) ⋅  
𝑙𝑖,𝑗

𝑙𝑚𝑎𝑥
 (3.10) 

 

• Bus running time: Operators prefer shorter running times between 

stops. The DRL model should be rewarded when reducing the 
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operating time of the bus. Equation 3.11 shows the formula to 

calculate the running time of the bus between station j and k: 

 

 𝑇𝑟,𝑗𝑘 =  (𝜏𝑗,𝑘 + 𝑡𝑗,𝑘) (3.11) 

 

• Number of stranded passengers: The penalty should be given when 

the DRL model skips a station and passengers are stranded at the 

station k-1. The number of stranded passengers, denoted as Li,k-1, is 

utilized calculate the penalty. 

• Waiting time of stranded passengers: Passengers who are left 

stranded at a station due to the bus skipping can experience longer 

waiting times, which can negatively impact their experience and 

satisfaction. The DRL model should be punished for the long average 

waiting time of stranded passenger. The formula for the average 

waiting time of stranded passengers at station k-1 is expressed as: 

 

 𝑇𝑤𝑠,𝑘−1
̅̅ ̅̅ ̅̅ ̅̅ ̅ =  

𝐻𝑖,𝑘−1

2
+ 𝐻𝑖+1,𝑘−1 (3.12) 

 

Since the bus optimization scheme involves one express bus and one 

no-skip bus, the reward function is split into two parts to capture rewards and 

penalties from both the first express bus trip and the second no-skip bus trip. 

Boarding demand represents the actual passenger flow at bus stops, while 

alighting demand represents the demand of passengers alighting at specific 

stops. When the agent decides to stop at a station with higher demand, the 

reward should be designed to be higher. The average waiting time and 

normalized in-vehicle time should be reduced to improve passenger 

satisfaction. These parameters should be inversely proportional to the reward 

given. The operating time of the bus is included to consider the bus operator's 

expenditure. The reward should decrease as the running time increases. In 

addition to passenger demand, in-vehicle time, average waiting time, and bus 

running time, a penalty of 0.3 is deducted from the reward to represent the 

constant operating cost of the bus operator. The step reward function for the 

first bus trip is: 
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 Rt1= 
C1Pi,k

C2Tw,k̅̅ ̅̅ ̅̅ +C3Tv,jk+C4Tr,jk

-0.3. (3.13) 

 

The weighted values for each metric are represented by C1, C2, C3 and 

C4. In Equation 3.13, the values of C1, C2 and C3 are set to 1, 2 and 1.3 

respectively. The value of C4 is defined by the total number of stations stopped 

by bus i before arriving station j with a weight of 0.4. While the no-skip bus 

will pick up the stranded passenger at station k-1, the total leftover passenger 

and average waiting time is included for the step reward function in second 

bus trip with C5 = 0.3: 

 

 Rt2= C5
Li, k-1

Tws,k-1
̅̅ ̅̅ ̅̅ ̅̅

.  (3.14) 

 

 Equation 3.15 employs an extra reward constraint, R, which serves to 

either incentivize or penalize the agent's decision to reach the terminal station. 

If the bus successfully reaches the terminal station, the DRL model is 

rewarded. However, if the bus fails to reach the terminal station N within the 

maximum steps allowed in an episode, a penalty is imposed. Equation 3.16 

shows the overall step reward function in an episode. 

 

 𝑅 = {
5    , if bus i reached station N             

-5    , if bus i unable to reach station N 
 (3.15) 

 

 Rt= {
Rt1+Rt2                               

 Rt1+Rt2+R   , if done=True
   (3.16) 

 

To summarize, the reward function is specifically designed to 

motivate the agent to minimize passenger waiting time, reduce in-vehicle 

travel duration, and decrease the overall length of the bus trip. Simultaneously, 

it aims to satisfy the high passenger demand for both boarding and alighting 

from the bus. The function also penalizes the agent for actions that result in 

stranded passengers, extended waiting times, or excessive operating costs. 
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3.5.4 Double Deep Q-Network Agent 

The DDQN agent employs the epsilon-greedy approach to choose actions 

based on the state space, which balances exploration and exploitation rates. 

Exploration involves the agent taking random actions to gain a deeper 

understanding of the environment, while exploitation involves the agent 

selecting actions based on the Q-network's weights and biases. The trade-off 

between these two is crucial for the agent to understand the environment and 

choose the best action based on the state. Figure 3.5 depicts the agent's 

workflow for selecting actions using the epsilon-greedy method. 

 

Figure 3.5: Workflow of action selection in DDQN Model. 

 

To maintain exploration during training, the epsilon value starts to 

decay after the data stored in the experience replay exceeds 2000, with a decay 

rate of 0.999 in the DDQN agent. The agent's experiences obtained over 

multiple episodes are stored in the replay memory, and the state and reward 

obtained from the environment are used to evaluate the action selection of the 

agent. When the number of stored data exceeds 2000, the memory is randomly 

sampled to create a minibatch of experiences, which are then used to update 

the Q-network's weights and biases using the DDQN approach. 

The sampled state, next state, action, reward, and done status data are 

stored separately to calculate the Q-value for both the Q-network and target 

network in the DDQN agent. The target network is used to obtain the actual Q-
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value based on the action selection in the Q-network. The agent then calculates 

the difference between the Q-value predicted by the Q-network and the actual 

Q-value obtained from the target network. This difference is used to update the 

Q-network's weights through backpropagation. To stabilize the learning 

process, the weights of the Q-network are periodically synchronized with the 

target network. The Q-value is updated directly with the reward in the 

corresponding state when the done status is true. When the done status is false, 

the Q-value of the Q-network at time step t is updated using the formula given 

below: 

 

   Q (st, at)  ←   {
Rt+ γ Q

target
(st+1, arg max

a
Q(st+1, a; θ)  , θ

-) 

Rt,                                               if done=True 
  (3.17) 

 

 The architecture of the DDQN agent can be visualized in Figure 3.6. 

The input layer of the DDQN agent receives the current state of the 

environment, which consists of eight features at each time step. The Q-

network, a neural network with hidden layers, processes the state information 

and predicts the expected rewards for each of the three possible actions using a 

softmax function. However, since the Q-network's parameters are updated 

during training, it can lead to instability and overestimation of the expected 

rewards. Therefore, the target network is used to estimate the true expected 

rewards. The target network's parameters are kept fixed and updated 

periodically using the Q-network's parameters. By comparing the estimated 

rewards of the Q-network and target network, the DDQN agent learns to select 

the optimal action at different states of the environment by maximizing the 

reward. This approach reduces the overestimation bias and results in more 

stable and efficient training.  
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Figure 3.6: Architecture of the DDQN agent. 

 

3.6 Model Training 

3.6.1 Training Environment 

This project utilizes TensorFlow version 2.9.1 to implement the DDQN agent 

for model training. The initial training was carried out on Google Colab. 

However, given the extended training period required to generate results, it 

was deemed impractical to continuously monitor the platform due to idle 

activity. Consequently, the decision was made to conduct the training on a 

laptop with the hardware specifications presented in Table 3.4. Given the 

lengthy duration required for the training process to produce the desired results, 

this hardware configuration has been determined to be adequate for the task at 

hand. Although the laptop is equipped with a GPU, the training process in this 

project solely utilizes the CPU. 
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Table 3.4: Hardware Specification of Training Environment. 

Parameters Values 

CPU Model Intel® Core™ i5-1020U 

CPU Frequency 2.11 GHz 

Number of CPU Cores 4 

RAM Available 12 GB 

GPU NVIDIA GeForce MX230 

GPU Memory 7.9 GB 

 

3.6.2 Training Workflow 

The DRL model is trained using ten sets of ETA data obtained from the 

Google Maps Platform, with 5000 training episodes. In each episode, the 

express bus trip is executed first, followed by the no-skip bus trip. The DDQN 

agent makes slot-by-slot decisions based on the state. For the first bus trip, the 

reward is calculated based on passenger demand, in-vehicle time, waiting time, 

and total bus operating time. The state, next state, action, reward, and done 

status data are collected at each step and stored separately in lists. The overall 

simulation flow of the first bus trip is illustrated in Figure 3.7. 
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Figure 3.7: Simulation Flow of First Bus Trip. 

 

Similarly, for the second bus trip, the simulation is similar to the first 

bus trip, but the reward is calculated based on the stranded passengers and 

their waiting time. Since the action for this trip must be no-skipping, the agent 

does not need to make any decisions. Figure 3.8 illustrates the simulation flow 

of the second bus trip. 
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Figure 3.8: Simulation Flow of Second Bus Trip. 

 

Figure 3.9 shows the simulation in an episode, where the reward from 

the first and second bus trips are combined. The reward for the second trip is 

interpreted as a penalty for the skip action due to passenger dissatisfaction. 

The total reward of an episode is equal to the difference between the rewards 

of the first and second bus trips. The state, next state, action, done status data, 

and combined reward are stored in the replay memory and used for experience 

replay at the end of the episode. 
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Figure 3.9: Simulation of Model Training in an Episode. 

 

3.7 Model Evaluation 

The evaluation stage involves comparing the performance of the DRL model 

with the conventional approach, using the designed reward function. Five sets 

of ETA data are used to simulate the dynamic bus environment for both 
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DDQN and conventional approaches. Each approach involves two bus trips in 

the bus optimization scheme. The rewards from the first and second bus trips 

for each approach are combined and compared using the reward function as 

the evaluation metric. The reward function includes factors such as passenger 

demand, in-vehicle time, total bus trip duration, stranded passengers, and 

waiting time. This enables a comprehensive analysis of the performance of the 

two approaches in terms of optimizing benefits for both passengers and 

operators. 

 

3.8 Model Deployment in Web Application 

The Flask is integrated with the Maps JavaScript API and developed into a 

web application. The web application allows the user to select the passenger 

demand mode and departure time to perform the simulation on the live map. 

The DRL model is deployed in a Python script and generates the route 

according to the departure time, real-time ETA data, and passenger demand 

mode. Real-time ETA data can be obtained using the Distance Matrix API. 

The primary function of the web application is to simulate the step-by-step 

route selection process made by the DRL model. 

 

3.9 Gantt Chart  

Figure 3.10 and Figure 3.11 illustrate the project timeline using two Gantt 

charts. 

 

 

Figure 3.10: Gantt Chart of Project Timeline for the June 2022 Semester.  
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Figure 3.11: Gantt Chart of Project Timeline for the January 2023 Semester. 

 

3.10 Summary 

This chapter mainly focuses on explaining the methodology and work plan for 

the entire project. The DRL framework is described clearly, with its important 

components which include environment, agent, state space, action, and reward 

function. Designing the reward function was the most challenging task in this 

project due to the need to consider various factors such as bus operating time, 

passenger in-bus time, passenger waiting time and passenger demand. The 

process of model training and evaluation was performed using the ETA 

datasets collected from Google Maps Platform. Lastly, the model was 

successfully deployed in a web application with Google Maps embedded. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

The training results of DRL model for three different passenger scenarios were 

analyzed and compared. Furthermore, the performance of DDQN and 

conventional approaches was evaluated according to the reward function 

designed. Lastly, the model was deployed in the web application to simulate 

the step-by-step route selection process made by the DRL model. 

 

4.2 Results of Model Training 

In this section, the training results for three different passenger demand 

scenarios is shown. Ten sets of ETA dataset from Google Maps Platform are 

provided model training. The DRL model was trained with 5000 episodes and 

its parameter settings is shown in Table 4.1: 

 

Table 4.1:  The parameter settings in DRL model. 

Parameters Values 

Number of stations  10 

Frequency of express (no-skip) trip per trip 30 minutes 

Dispatch interval between express and no skip trip 15 minutes 

Learning rate 0.0005 

Activation function ReLU 

Number of input nodes 8 

Number of hidden layers 3 

Number of hidden nodes 832 

Number of output nodes 3 

Batch size 32 

Discount rate 0.4 

Experience memory size 5000 

Epsilon Decay 0.999 
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 The discount factor is set to 0.4 to make the agent consider the 

immediate reward more heavily. The DDQN agent is comprised of three 

hidden layers which utilize the ReLU activation function, while the output 

layer adopts the Softmax function to generate the probability distribution for 

the three potential actions. 

 

4.2.1 Training Result of Scenario 1 

Figure 4.1 illustrates the training performance of DDQN agent over 5000 

episodes for static passenger demand. The training performance reached 

converged as the number of episodes grew.  

 

Figure 4.1: Training Results over 5000 episodes for Scenario 1.  

 

4.2.2 Training Result of Scenario 2 

In Scenario 2, the passenger demand varies dynamically depending on the time 

of day. Figure 4.2 illustrates the training results of the DDQN agent for this 

scenario, demonstrating its ability to make stable decisions over time. The 

agent was able to select the optimal route based on the fluctuating passenger 

demand and ETA between stations. The convergence of the results indicates 

the effectiveness of the DDQN agent in handling dynamic passenger demands 

while minimizing bus operating costs. 
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Figure 4.2: Training Results over 5000 episodes for Scenario 2. 

 

4.2.3 Training Result of Scenario 3 

The passenger demands at each station are randomly assigned in Scenario 3. 

Figure 4.3 displays the training results of the DDQN agent for this scenario, 

where the training performance converged as the number of episodes increased. 

 

 

Figure 4.3: Training Results over 5000 episodes for Scenario 3. 
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4.2.4 Loss of Model Training  

The training loss measures the disparity between the predicted Q-value and the 

true Q-value. Figure 4.4 shows the loss of the DDQN agent in all three 

scenarios, where it can be observed that the loss decreased with an increasing 

number of episodes. This indicates that the DDQN agent is approaching the 

optimal set of weights and biases, which will enable it to make accurate 

predictions in different environments. 

 

 

Figure 4.4: Loss of Model in all Three Scenarios. 

 

4.3 Results of Model Evaluation 

In this study, the evaluation results of the DDQN and conventional methods 

are compared for three different passenger demand scenarios. The 

performance of the DRL model with different ETA data obtained from the 

Google Maps Platform is evaluated using five sets of data. Both the DDQN 

and conventional approaches are evaluated using a designed reward function. 

 

4.3.1 Evaluation Result of Scenario 1 

According to the results illustrated in Figure 4.5, the evaluation result showed 

that the DDQN approach performed better than the conventional method. 
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Table 4.2 shows the average reward of both DDQN and conventional 

approaches over 1000 episodes. 

 

Figure 4.5: Evaluation Result of Scenario 1. 

 

Table 4.2: Average Evaluation Score of DDQN and Conventional 

Approaches in Scenario 1.  

Approach DDQN Conventional 

Average Score 4.873 3.879 

 

 Table 4.3 illustrates how the DDQN agent makes decisions based on 

the boarding and alighting demands of passengers at each station. It is evident 

that the agent is capable of stopping at stations with higher passenger demand. 

In some instances, however, the agent will choose to skip a station with high 

demand when the ETA between the stations is increased due to traffic 

conditions. The DDQN approach obtained a higher score than the 

conventional method, indicating that the DRL model is better equipped to 

handle static passenger demand efficiently. This is likely due to the reward 

function being designed to prioritize factors such as the time passengers spend 

waiting and traveling, bus operating time, and passenger demand. 
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Table 4.3: Skip-stop pattern of DDQN Agent in Scenario 1. 

Stop S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 

Boarding 

Demand 12 8 0 0 0 3 0 0 0 0 

Skip (0) / 

Stop (1) 1 1 0 1 0 1 1 0 0 1 

Alighting 

Demand 0 3 0 2 0 4 4 0 0 10 

 

 

4.3.2 Evaluation Result of Scenario 2 

The performance of the DDQN approach in Figure 4.6 was slightly lower than 

in Scenario 1, but it still outperformed the conventional method. Table 4.4 

presents the average scores of both approaches, and it is observed that the 

difference between the scores of the DDQN and conventional methods 

reduced compared to Scenario 1. 

 

Figure 4.6: Evaluation Result of Scenario 2. 

 



62 

Table 4.4: Average Evaluation Score of DDQN and Conventional 

Approaches in Scenario 2.  

Approach DDQN Conventional 

Average Score 4.084 3.425 

 

 Table 4.5 presents an example of a skip-stop decision made by the 

DDQN agent based on a set of boarding and alighting demands of passengers. 

Unlike Scenario 1, the waiting passengers at each station in this scenario are 

randomly assigned based on time. 

 

Table 4.5: Skip-stop pattern of DDQN Agent in Scenario 2. 

Stop S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 

Boarding 

Demand 10 0 4 4 1 3 2 0 1 0 

Skip (0) / 

Stop (1) 1 0 1 1 0 1 1 0 0 1 

Alighting 

Demand 0 2 0 3 0 5 4 0 0 9 

 

 The agent obtains information about the passenger demands of the 

next three stations from the state space and selects the optimal action based on 

the passenger demands and ETA. From the skip-stop pattern in Table 4.5, it 

can be observed that the DDQN agent prioritizes serving stations with higher 

boarding demand. The slightly reduced performance of the DDQN agent in 

this scenario may be due to increased bus operating costs. 

 

4.3.3 Evaluation Result of Scenario 3 

The evaluation results for random passenger demand are presented in Figure 

4.7, comparing the performance of the DDQN and conventional approaches. 

The DDQN approach slightly outperformed the conventional method, but the 

scores for both approaches in Table 4.6 were closer to each other than in 
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Scenarios 1 and 2. This suggests that the DDQN approach did not handle the 

passenger demand as effectively in this scenario.  

 

Figure 4.7: Evaluation Result of Scenario 3. 

 

Table 4.6: Average Evaluation Score of DDQN and Conventional 

Approaches in Scenario 3.  

Approach DDQN Conventional 

Average Score 4.617 4.410 

 

 The skip-stop decisions made by the DDQN agent for a set of 

boarding and alighting demands are shown in Table 4.7. The waiting 

passengers at each station are randomly assigned without following any rules. 

Similar to Scenario 2, the DDQN agent tends to select stations with higher 

boarding demand at each decision point. 

 

Table 4.7: Skip-stop pattern of DDQN Agent in Scenario 3. 

Stop S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 

Boarding 

Demand 11 10 3 5 4 2 1 1 2 0 
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Skip (0) / 

Stop (1) 1 1 0 1 0 1 1 0 0 1 

Alighting 

Demand 0 1 0 4 0 6 5 0 0 13 

 

 As compared to Scenario 1 and 2, the performance of the DDQN 

approach has dropped due to the penalties incurred from stranded passengers 

and their prolonged waiting time. In contrast, the score of the conventional 

approach increased as the passengers were distributed randomly along the 

route, which resulted in increased rewards as the bus served all passengers. 

 

4.4 Results of Model Deployment in Web Application 

The DRL model has been successfully deployed in the web application. Figure 

4.8 shows the user interface design of the developed web application. Google 

Maps is embedded in the web application using the Maps JavaScript API. 

 

 

Figure 4.8: User Interface of Web Application. 

 

There is a query panel on the right side of the web application where 

clients can select the passenger model and scheduled departure time of the bus, 

as demonstrated in Figure 4.9. 
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Figure 4.9: Query Panel of Web Application. 

 

As the client clicks the "Submit" button, the Python web server 

receives the data on passenger demand and departure time of the bus, and then 

transmits it to the DRL model to generate the best route. The server then 

responds to the client with the list of stations that the bus will stop at and 

marks the first station with a red icon on Google Maps, as shown in Figure 

4.10. 

 

 

Figure 4.10: Initial Stage of Bus Simulation in Live Map.  

 

The simulation begins when the "Next" button is clicked. Figure 4.11 

and Figure 4.12 illustrate examples of simulation results. The scheduled 

departure time, origin, destination, skipped stations, and estimated time of 
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arrival are displayed. The blue bus icon represents the origin, while the red 

icon represents the destination. The simulation ends when the bus reaches the 

terminal station. 

 

 

Figure 4.11: Bus Simulation Result from S01 to S02.  

 

 

Figure 4.12: Bus Simulation Result from S04 to S06. 

 

4.5 Summary 

In summary, the performance of a DRL model was evaluated and compared 

with a conventional method under three different passenger demand scenarios. 

The evaluation results showed that the DDQN approach outperformed the 

conventional method in all three scenarios. However, the performance of the 

DDQN approach decreased with dynamic and randomly distributed passenger 

demands. The prolonged waiting time of stranded passengers resulted in 

penalties, causing a decrease in the DDQN approach's score. Conversely, the 
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conventional approach's score increased due to the random distribution of 

passengers along the route, leading to an increase in rewards as more 

passengers were served. The DDQN approach performed best in the static 

passenger demand scenario, followed by the scenario with dynamic passenger 

demands according to time, and lastly the randomly distributed passenger 

demand scenario.   
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

The optimization of public transport routes is an alternative solution to 

reducing the mobility demand of large populations. Stop-skipping operations 

aim to optimize the operation of buses by distributing unbalanced passenger 

demand along the bus line. In this study, a bus optimization scheme consisting 

of one express bus and one regular bus without stop-skipping is applied to 

develop the dynamic bus environment. A DRL approach is proposed to 

optimize the route of the express bus. 

The DRL model is designed to select the optimal route based on 

passenger demand and traffic conditions. Since actual passenger flow data 

cannot be obtained from open or closed sources, three passenger demand 

models are constructed to examine the performance of optimization under 

different scenarios. The ETA data between stations can be collected from the 

Google Maps Platform using the Distance Matrix API. 

The reward function is essential in guiding the agent to achieve its 

goal. To improve passenger satisfaction, the design of the reward function 

takes into account the passenger demand, in-vehicle time of passengers, the 

number of stranded passengers, and the average waiting time for both normal 

and stranded passengers. Other parameters, such as bus travel time and 

constant operating cost penalty, are also included to minimize bus operator 

expenditures. The reward for the first bus trip is based on satisfying the 

passengers and reducing the operating cost of the bus, while the second bus 

trip serves the stranded passengers and compensates for their penalty. The step 

reward and cumulative reward guide the agent towards successfully 

optimizing the route. 

The model training utilized ten sets of ETA datasets to train the 

model with different ETA data, while the model evaluation was performed 

using five sets of ETA datasets. The performance of the DDQN agent and 

conventional methods was evaluated using the designed reward function, 
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which considered passenger demand, in-vehicle time, the number of stranded 

passengers, and operating cost penalties. Based on the training results, the 

DDQN agent was successfully trained to select the route for the stop-skipping 

scheme in 5000 episodes under different passenger demand scenarios. The 

training results of the three passenger demand scenarios converged as the 

episodes grew. 

The performance of the DDQN agent was compared with that of the 

conventional method using the reward function. The performance of both 

approaches was evaluated with respect to passenger satisfaction and bus 

operator expenditures. Based on the evaluation results, the DDQN performed 

best in the static passenger demand scenario, followed by the scenario with 

dynamic passenger demands according to time, and lastly, the randomly 

distributed passenger demand scenario. The static passenger demand scenario 

was set with unbalanced passenger demand, and the stop-skipping service was 

found to perform best in unbalanced passenger demands by comparing the 

evaluation results of Scenario 1 with those of Scenarios 2 and 3. 

Based on the simulation results of stop-skipping patterns, the RL 

model successfully trained the agent to perform stop-skipping operations 

based on the designed reward function, with a trend of serving the station with 

higher boarding demand. Three trained models were deployed in the web 

application, which performed step-by-step simulations for three different 

passenger scenarios. 

The project's main purpose and objectives were successfully achieved 

by developing a DRL-based public transport route optimization, comparing the 

results with conventional methods, and finally implementing the solution in 

Google Maps. 

 

5.2 Recommendations for future work 

In future work, several recommendations can be implemented to further 

enhance the accuracy and efficiency of DDQN public transport route 

optimization. One important consideration is incorporating load constraints to 

ensure the feasibility and realism of the optimized routes. Additionally, it is 

recommended to take into account the actual cost of bus operators, including 
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factors like utilization rate, to optimize the routes in a manner that maximizes 

resource utilization while minimizing operational costs. 

Collecting real-time data using the Internet of Things (IoT) can also 

greatly improve the accuracy of the model. This includes collecting real-time 

data on bus locations, passenger counts, and other relevant variables, which 

can be used to make real-time adjustments to the optimized routes as needed. 

Furthermore, environmental data such as weather and traffic conditions can 

also be collected and incorporated into the model to further improve its 

accuracy. 

In summary, incorporating load constraints, actual cost of bus 

operators, and collecting real-time data using IoT and environmental data can 

all greatly enhance the accuracy and efficiency of DDQN public transport 

route optimization. These recommendations can be explored in future work to 

improve the optimization of public transport routes and contribute to a more 

efficient and sustainable transportation system. 
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