PRODUCTION OF HYDROGEN VIA HYDROLYSIS USING ALUMINUM WASTE CAN POWDER COMPOSITES FOR CARBON DIOXIDE METHANATION

By

LIM SENG TAT

A dissertation submitted to the Department of Environmental Engineering Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, in partial fulfillment of the requirements for the degree of Master of Engineering Science February 2022

TABLE OF CONTENTS

Page

ABSTRACT	ii
ACKNOWLEDGEMENTS	iii
APPROVAL SHEET	iv
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS	vii

CHAPTER

1.0	INTRODUCTION	1
	1.1 World's Energy Consumption and Fuel Shares	1
	1.2 Carbon Dioxide Mitigation	5
	1.3 Hydrogen as the Future Fuel	7
	1.4 Aluminum Waste Can	8
	1.5 Problem Statement	9
	1.6 Research Objectives	11
	1.7 Novelty	11
	1.8 Scope of Study	12
	1.9 Organization of thesis	13

2.0	LITERATUR	RE REVIEW	15
	2.1 Introduction	on	15
	2.2 Hydrogen	Production	15
	2.2.1	Methane Steam Reforming (SMR)	16
	2.2.2	Water-gas Shift Reaction (WGSR)	17

	2.2.3	Coal Gasification (CG)	18
	2.2.4	Electrolysis of Water (EW)	19
	2.2.5	Biomass Gasification (BG)	25
	2.2.6	Photovoltaic (PV) Electrolysis	25
	2.2.7	Wind Turbine Electrolysis System (W-EL)	26
	2.2.8	Hydropower Electrolysis System (H-EL)	26
	2.3 Aluminur 2.3.1	n-water Reaction Activation of Aluminum in Alkaline Condition	29 30
	2.3.2	Mechano-chemical Activation of Aluminum in	33
		Neutral Condition	
	2.3.3	Hydrogen Production using Aluminum	35
		Waste Cans	
	2.4 Current T	rends of Greenhouse Gases and Carbon Dioxide	45
	2.5 Technolog	gies of Carbon Dioxide Capture	48
	2.6 Carbon D	ioxide Methanation	52
3.0	MATERIAL	S AND METHODS	57
	3.1 Introducti	on	57
	3.2 Materials	, Chemicals and Equipment	59
	3.3 Preparatio	on of Waste Can Powder	65
	3.3.1	Disintegration of Waste Can Strips	65
	3.3.2	Activation of Aluminum Waste Can Powder	66
	3.4 Hydrolysi	is Setup	68
	3.4.1	Hydrolysis Process Optimization	69
	3.4.2	Gibbs Free Energy Calculation	70
	3.5 Carbon D	ioxide Methanation	71
	3.5.1	Preparation of Methanation Catalyst	73
	3.5.2	Catalytic Activity Calculation	75
	3.6 Character	ization	76
	3.6.1	X-ray Diffraction Analysis	76
	3.6.2	Particle Size Distribution Analysis	76
	3.6.3	Brunauer-Emmet-Teller Surface Area	77
	3.6.4	Field Emission Scanning Electron Microscopy	78
	3.6.5	Energy-dispersive X-ray Fluorescence	78
		Spectroscopy	

	RESULTS A	ND DISCUSSIONS	79
	4.1 Introduction		79
	4.2 Disintegra	tion of Aluminum Waste Cans	79
	4.3 Optimizat	ion of Hydrolysis Process	82
	4.3.1	Effect of Different Type of Alkaline	83
		Solutions	
	4.3.2	Effect of Different Water Source	84
	4.3.3	Effect of Reaction Temperatures	86
	4.4 Co	omparison of Hydrogen Production Via Commercial	87
		Aluminum and AWCP	
	4.5 Characteri	zation of AWCP	88
	4.5.1	BET Active Surface Area and Pore Characteristics	88
	4.5.2	X-ray Fluorescence Spectroscopy (XRF)	92
	4.5.3	X-ray Diffraction Analysis (XRD)	93
	4.3.4	Field Emission Scanning Electron Microscopy	95
		(FESEM)	
4.6 Hydrolysis Performance of Binary Aluminum Composites			96
	4.7 Characteri	zation of Binary AWCP Composites	100
	4.7.1	X-ray Diffraction Analysis (XRD)	101
	4.7.2	Field Emission Scanning Electron Microscopy	102
		(FESEM)	
	4.7.3	BET Active Surface Area	103
4.8 Hydrolysis Performance of Aluminum Ternary Composites		104	
4.9 Characterization of Ternary AWCP Composites		109	
	4.9.1	X-ray Diffraction Analysis (XRD)	109
	4.9.2	Field Emission Scanning Electron Microscopy	110
		(FESEM)	
	4.9.3	BET Active Surface Area Analysis	112
	4.10 Gibbs Fr	ee Energy	112
	4.11 Batch Ca	rbon Dioxide Methanation	115
	4.12 Continuc	ous Carbon Dioxide Methanation	120
	4.12.1	Continuous Carbon Dioxide Methanation	120
		via 5 min Refeed	

5.0	CONCLUSION AND RECOMMENDATION	125
	5.1 Conclusion	125
	5.2 Recommendation for Future Work	128
	LIST OF REFERENCES	129-140
	APPENDICES	141-152
	LIST OF PUBLICATIONS	153

ABSTRACT

PRODUCTION OF HYDROGEN VIA HYDROLYSIS USING ALUMINUM WASTE CAN POWDER COMPOSITES FOR CARBON DIOXIDE METHANATION

Lim Seng Tat

Hydrogen (H_2) is a promising solution to conventional fossil fuel energy because it gives near-zero carbon emission and contains high calorific value. Recently methanation of carbon dioxide (CO₂) using H₂ is gaining interest. Many studies have focused on catalyst optimization of the methanation process. However, no studies have been performed to study methanation using clean H_2 . The common methanation process uses commercial H_2 gas, which is more expensive and therefore not commercially feasible. Therefore, a clean and sustainable H₂ production method is needed for methanation. Aluminum waste can powder (AWCP) which was synthesized by novel disintegration method was used in hydrolysis reaction to produce H2 gas. Different types of alkaline solutions, different types of water sources, and different durations of disintegration time were investigated to study their effects on hydrolysis. AWCP and selected pure metals (i.e., Zinc (Zn), Tin (Sn), Magnesium (Mg) and Indium (In)) were mechanochemically activated by the ball milling method to synthesize binary AWPC composites (i.e., AWCP/Zn, AWCP/Sn, AWCP/Mg and AWCP/In) and ternary AWCP composites (i.e, AWCP/Sn/Mg and

AWCP/Sn/In) to maximize H₂ production by forming microgalvanic cells. Branauer-Emmet-Teller (BET) analysis proved that disintegration method using medicine blender is novel as Field Emission Scanning Electron Microscopy (FESEM) confirmed uneven fresh surfaces that are flaky in structure compared to pore-like structure of commercial Al. This method increased the BET surface area of the AWCP composites and contributed to a higher H₂ yield due to ball-to-ball and ball-to-jar collisions during the ball milling process, which helped water to penetrate Al more effectively. The addition of pure metals to AWCP could reduce the total reaction time significantly. Binary AWCP (3% Sn), produced 1360 ml/g H₂ in 240 s. However, ternary AWCP (3% Sn-3% Mg) produced 1320 ml / g of H₂ in 660 s. XRD analysis confirmed the formation of intermetallic phases in AWCP (3%Sn -3% Mg). Upon optimizing the H₂ production, the gas was tested to produce methane (CH₄) using CO₂ in a catalytic system. In batch methanation, AWCP (3% Sn-3% Mg) generated much higher CH₄ because it had a longer total reaction time and allowed longer residence time for H₂ and CO₂ to react. The pure AWCP (100%) produced the highest CH_4 production due to low gas hourly space velocity (GHSV). For continuous methanation, AWCP (3% Sn) yielded the highest amount of CH₄ despite high GHSV because a lot of unreacted H₂ was left for further reaction continuously. In this study, a feasible and sustainable clean generation of H₂ for use in methanation was successfully achieved.

v

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to my supportive and experienced supervisor (Prof. Dr. Sumathi Sethupathi) and co-supervisor (Dr. Tan Kok Tat) who have been of tremendous support of this research. They have been providing technical and theoretical assistant on this research throughout the process.

Secondly, I would like to thank Universiti Tunku Abdul Rahman for the research grant provided throughout this study which helped me to sustain all the expenses throughout this research.

Thirdly, I would like to thank Universiti Putra Malaysia for the friendliness which allowed me to utilize and made full use of their laboratory equipment and facilities throughout the research.

APPROVAL SHEET

This dissertation/thesis entitled "**PRODUCTION OF HYDROGEN VIA HYDROLYSIS USING ALUMINUM WASTE CAN POWDER COMPOSITES FOR CARBON DIOXIDE METHANATION**" was prepared by LIM SENG TAT and submitted as partial fulfillment of the requirements for the degree of Master of Engineering Science at Universiti Tunku Abdul Rahman.

Approved by:

(Prof. Dr. Sumathi Sethupathi)

Date:

Supervisor

Department of Environmental Engineering

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

(Dr. Tan Kok Tan)

Date: _____

Co-supervisor

Department of Petrochemical Engineering Faculty of Engineering and Green Technology Universiti Tunku Abdul Rahman

LIST OF TABLES

Table

Page

2.1	Specifications of three major types of electrolyzers	20
2.2	Conventional techniques to produce H ₂ , its advantages and limitations	21-22
2.3	H_2 production systems with modifications and its results	23-24
2.4	Technical data for various H ₂ production methods	28
2.5	Hydrolysis performance of Al and its alloys in alkaline conditions	37-38
2.6	Hydrolysis performance of Al and its alloys in neutral conditions	39-42
2.7	Advantages and disadvantages of post-combustion technology	51
2.8	A review of past methanation experiments	55-56
3.1	List of materials	59-61
3.2	List of equipment used for the study	62-64
3.3	Composition of binary and ternary AWCP	67
3.4	Details of the parameter studied for hydrolysis optimization	70
4.1	BET surface area and the pore characteristics of disintegrated AWCP	90
4.2	EDXRF analysis of disintegrated AWCP produced from 100 PLUS waste cans	93
4.3	The major peaks (degree) and its corresponding intensity (a.u.) for both disintegrated AWCP and commercial Al	94

4.4	H ₂ production performance analysis of AWCP and binary AWCP composites	98-99
4.5	BET surface area of binary AWCP composites	104
4.6	H ₂ production performance analysis of AWCP and ternary AWCP composites	106
4.7	Comparison of research outcomes with literature work	108
4.8	BET surface area of ternary AWCP composites	112
4.9	Hydrolysis results, final temperature and respective Gibbs free energy of AWCP samples.	114
4.10	Standard-state enthalpy of formation and absolute entropy data	114
4.11	CH ₄ total production and catalytic activity for batch methanation based on 0.5g sample without refeed	119
4.12	CH ₄ total production and catalytic activity for continuous methanation based on 0.5g sample with refeed every 5 min for 1 hr	124

LIST OF FIGURES

Page

Figures

1.1	Global total energy consumption from 1990-2017 in MT	2
1.2	Global fuel shares of total energy supply in 2018	3
1.3	Global fuel shares of electricity production by fuel in 2017	4
1.4	Global CO_2 emissions from fuel combustion by region in 2017	5
1.5	Thermochemical and electrochemical routes for CO ₂ hydrogenation to form valuable products	7
2.1	Total GHGs emissions (GT of CO ₂ equivalent) from 1970-2012	45
2.2	Total GHGs emissions in 2017 (equivalent to $6,457$ GT CO ₂ emissions)	46
2.3	World's total CO ₂ emission (GT) from 1960-2014	47
2.4	Shares of total 1297 patents on solid sorbents, membrane and solvent	48
2.5	Overview of post-combustion carbon capture technologies	50
3.1	Overall workflow	58
3.2	Water displacement apparatus set-up for Al hydrolysis for H_2 production	68
3.3	Schematic diagram of CO_2 methanation process utilizing H_2 produced from the AWCP/NaOH/H ₂ O reaction	71
3.4	Actual methanation rig facility at PutraCAT Lab, Universiti Putra Malaysia	72

3.5	Procedural steps for 15 wt % Ni/PSAC catalyst synthesis via wetness impregnation method	74
4.1	Particle size distribution of AWCP after (a) 1 min (b) 5 min, (c) 10 min, (d) 15 min, (e) 20 min disintegration and (f) commercial Al.	81
4.2	Hydrolysis performance of disintegrated AWCP using different type of alkaline solutions	84
4.3	Hydrolysis performance of disintegrated AWCP using different types of water sources	85
4.4	Hydrolysis performance of disintegrated AWCP at different reaction temperatures (°C)	86
4.5	Hydrogen production of disintegrated AWCP versus commercial Al powder	88
4.6	N_2 adsorption/desorption of AWCP after 20 min of disintegration time	92
4.7	The major peaks for Al material (degree) and its corresponding intensity (a.u.) for AWCP and commercial Al	94
4.8	FESEM images of (a) commercial Al and (b) AWCP at 20K magnification	95
4.9	H_2 production graph of AWCP binary composites: a) AWCP/Sn, b) AWCP/Mg, c) AWCP/In and d) AWCP/Zn	97
4.10	The XRD patterns of binary AWCP (3% Sn) composite	101
4.11	FESEM micrographs of AWCP (3% Sn) composite at X1500 magnification (a) and at X500 magnification (b); with EDS mappings of AWCP (c) and Sn (d)	103
4.12	H_2 production graph over time of AWCP ternary composites (a) AWCP/Sn/Mg and (b) AWCP/Sn/In	105
4.13	The XRD patterns of AWCP (3% Sn-3% Mg) ternary composite	110
4.14	FESEM micrographs of AWCP (3% Sn-3% Mg) ternary composite at $\times 1500$ magnification (a) and X500 magnification (b); with EDS mappings of AWCP (c), Mg (d) and Sn (e)	111

- 4.15 Total H₂ and CH₄ production profile for batch CO₂ 118 methanation for selected AWCP samples
- 4.16 (a) H₂ production and (b) CH₄ production (μmol) 123 from continuous CO₂ methanation based on every 5-min re-feed for 1 hr using AWCP (100%), AWCP (97%), AWCP (94%), AWCP (3% Sn) binary composite, and AWCP (3% Sn 3% Mg) ternary composite

LIST OF ABBREVIATIONS

Al	Aluminum
AWCP	Aluminum waste can powder
BET	Brunauer-Emmett-Teller
CO ₂	Carbon dioxide
FESEM	Field emission scanning electron microscopy
GC	Gas chromatography
GHGs	Greenhouse gases
H ₂	Hydrogen
In	Indium
CH ₄	Methane
Mg	Magnesium
N_2	Nitrogen
PSA	Particle size analysis
NaOH	Sodium hydroxide
Sn	Tin
H ₂ O	Water
XRF	X-ray fluorescence
XRD	X-ray diffraction
Zn	Zinc

CHAPTER 1

INTRODUCTION

1.1 World's Energy Consumption and Fuel Shares

The world's total energy consumption has increased from 8,457 MT (1990) to 13,576 MT (2017). Figure 1.1 shows the total global consumption of energy from 1990to 2017 in MT (1 MT is equivalent to 42 GJ or 11,630 kWh). Global Energy Statistical Yearbook (2019) disclosed the United States and China being the primary contributors to increase in global energy production. However, there was a decrease in energy production in European Union (EU) due to reduced electricity generation from nuclear energy sources, depleted oil and gas resources, and most importantly, climate policies that determined the end of electricity generation using coal. Younas et al. (2019) also discussed the world's energy demand and expected the demand to reach about 48 % (20,538 MT) in the upcoming 20 years. It is to be noted that, most of the energy currently being used is primarily supplied by the conventional fossil fuels which generally produces significant amounts of carbon footprint. Meanwhile, Malaysia is expected to consume about 100 MT by 2030 (Ghani et al., 2019).

Figure 1.1: Global total energy consumption from 1990-2017 in MT (Global Energy Statistical Yearbook, 2019).

Figure 1.2 shows the global total primary energy supply fuel shares in 2018. It was reported that the conventional fossil fuels comprised of natural gas, oil and coal primarily accounted for about 79.4 % of world's total primary energy supply; 9.6 % from nuclear energy; 2.3 % from hydropower; 6.1 % from other renewable energy and waste; and 2.6 % from the others (Key World Energy Statistics, 2019).

Figure 1.2: Global fuel shares of total energy supply in 2018 (Key World Energy Statistics, 2019).

Whereas, Figure 1.3 shows the global electricity production fuel shares in 2017. The conventional fossil fuels (fossil thermal) were responsible for 64.8 % of total electricity generation; 10.3 % from nuclear power; 15.9 % from hydropower; and 9.0 % from the other sources (Key World Energy Statistics, 2014).

Figure 1.3 Global fuel shares of electricity production by fuel in 2017 (Key World Energy Statistics, 2019).

Figure 1.4 shows the global CO₂ emissions by fuel combustion by region in 2017. The Organization for Economic Cooperation and Development (OECD) comprised of 35.3 % world's emissions; 28.3 % from China; 12.7 % from non-OECD Asia; 7.5 % from non-OECD Europe and Eurasia; 5.4 % from Middle East; 3.9 % from Bunkers; and 3.2 % from non-OECD Americas (Key World Energy Statistics, 2019). On the other hand, CO₂ emissions per capita increased from 1.33 tons (year 1971) to 7.98 tons of (year 2020) at annual increment rate of 3.8% (Knoema, 2022). The above data has clearly shown that fossil fuels are still in high demand compared to renewable energy. Moreover, CO₂ mitigation is required with immediate effect to reduce CO₂ level as much as possible to prevent further damage to the earth.

Figure 1.4: Global CO₂ emissions from fuel combustion by region in 2017 (Key World Energy Statistics, 2019).

1.2 Carbon Dioxide Mitigation

The above-mentioned data has clearly supported the environmental crisis related to carbon emissions. Thus, CO₂ mitigation is urgently required to resolve this global issue. Many nations have come in consensus to solve this carbon emissions under the Paris Agreement, adopted by 55 countries (which are responsible for about 55 % of global emissions) to work towards the same goal, which is to fight climate change globally. This urges all scientists and researchers to find out green and sustainable methods to produce energy to meet the global requirements at the same time.

Effective solutions are needed to resolve the global environmental problems. Carbon capture and storage (CCS) and CO₂ transformation into value-added products were promising solutions for carbon emissions mitigation (Younas et al., 2016). CCS captures CO₂ gas from a point source of any type of industrial plants such as cement factories, iron and steel, and chemical sectors. Metz et al (2005) stated incorporating CCS in a conventional power plant to reduce CO₂ emissions by 80-90 %. There are different CCS configurations of technologies such as oxy combustion, cryogenic combustion and pre-combustion and postcombustion. According to Jacquemin, Beuls and Ruiz (2010), high cost and transportation difficulties are some of the drawbacks of these CCS technologies.

Due to the major drawbacks of CCS, another promising CO₂ mitigation solution worth investigating is CO₂ transformations into value-added products. Many researches have been focusing on CO₂ conversions; for instance, to produce methane (CH₄) which is one of the important fuels in power generation in many industries. Other than CH₄, CO₂ can be converted to many other products such as oxalic acid, dimethyl ether (DME), alkyl formates, alkyl formamides, carbon monoxide (CO), syngas or synthesis gas (mixture of H₂, CO and CO₂), and methanol through thermochemical or electrochemical route (Younas et al., 2016). Figure 1.5 indicates value-added products that can be formed from thermochemical and electrochemical routes via CO₂ hydrogenation. CO₂ transformation to CH₄, called Sabatier reaction or CO₂ methanation worthwhile to be explored and researched. The reason is that the CO₂ methanation utilizes the waste CO₂ or CO from the point sources in any manufacturing or process plants, the CH₄ that is generated will not directly go into the atmosphere. Instead of that, the CH₄ generated will be utilized as a fuel to produce energy. As a result, this will further increase the energy efficiencies of the plants and reduce overall energy consumptions.

Figure 1.5: Thermochemical and electrochemical routes for CO₂ hydrogenation to form valuable products (Younas et al., 2016).

1.3 Hydrogen as the Future Fuel

Although conventional fossil fuels have been playing a dominant role in production of global energy, H_2 has also been making significant contributions to the energy systems. Most importantly, H_2 is clean and near zero or zero carbon emissions. Now that the environmental issue is a global concern, H_2 energy is promising alternative solution in the energy transition. The demand for H_2 is growing while the primary source for the H_2 production currently is fossil-based fueled. H_2 has many uses in many sectors. H_2 is used in refining and production of ammonia, methanol and steel. El-Emam and Ozcan (2019) mentioned the world's H₂ consumption is approximately 65 million tonnes annually. In Malaysia, Sarawak has introduced H₂ fuel cell buses in an attempt to initiate the green public transport. These aforementioned buses are manufactured by Foshan Feishi Automobole Manufacture Co. Ltd. in China. It can travel a distance of 300 km with consumption of 20 kg H₂. The H₂ came from the Integrated H₂ Production Plant and refueling station built by Sarawak's Energy in collaboration with the renowned industrial gas maker, Linde EOX Sdn Bhd. The H₂ is produced via an electrochemical process converting water into H₂ gas through electrolysis of water (Al-Ogaili et al., 2021). It is crucial for the authorities and government bodies to acknowledge the contribution of H₂ to the energy transition that is in effective implementation, conventional fossil fuels will deplete one day, the transition to a renewable energy is inevitable.

1.4 Aluminum Waste Cans

Aluminum has been widely used for packaging of food and beverage products, transportation, and building all over the world due to aluminum is having many desirable properties including its light-weight (Wang et al., 2014). Elsarrag, Elhoweris and Alhorr (2017) reported global aluminum production at approximately 61 million MT annually. Aluminum waste cans can be readily recycled. However, Ben (2019) reported the problem of aluminum recycling on a global scale. Significant amount of aluminum waste is disposed of in landfill despite its reusability potential. Disposal of aluminum waste into the landfills

does not pose a problem initially as they can be dormant for a long time. However, the possibility of contacting with water at high pressures can generate H_2 in the landfill posing risk of combustion and explosion (Elsarrag, Elhoweris and Alhorr, 2017). This could lead to landfill fires and toxic emissions that may affect the health of nearby communities. On top of that, only about 10 - 15 % of aluminum waste are being recycled globally (Ben, 2019) Additionally, the smelting of cans in aluminum waste recycling also posed inefficiencies contributing to recycling issues such as production of salt cake, a combination of aluminum nitrides, oxides, metals and salts which are expensive to be recycled (Ben, 2019). The aluminum waste cans are potential raw materials in production of green and renewable high-purity H_2 gas in view of replacing or integrating with the high carbon-footprint steam reforming process which conventionally generates H_2 currently. This study aims to resolve recycling of aluminum waste and its potential to generate green H_2 gas.

1.5 Problem Statement

Increasing demand for energy, aluminum waste dumping and the rapid climatic change due to the increasing amount of atmospheric CO_2 have been deeply associated with current global warming conditions. In view of increasing demand of energy, the dependency of current conventional fossil fuels would not be sustainable as they are not renewable, depleting from time to time, and are high in carbon footprint.

Aluminum waste dumping and if the initiatives of aluminum waste recycling is not started immediately, it would lead to another associated global emission of pollutants. All these contributions directly or indirectly contribute towards the increase of atmospheric CO₂ which will lead to global warming and climatic change. All these are evitable if efforts on finding green solutions are being made on a global scale.

Besides, considerable efforts have been made in capturing CO_2 from major sources and converting it to a valuable fuel, methane (CH₄) in a process called methanation or Sabatier reaction. The researchers are currently using commercial H₂ for methanation and emphasized on the optimization of catalysts; commonly, nickel-based catalysts (Zhang et al., 2014; Mutz et al., 2015; Jia et al., 2019). The commercial H₂ produced from conventional methods are of high carbon footprint and H₂ has higher calorific value compared to that of CH₄ gas. This results in loss of energy efficiency. Therefore, methanation using commercial H₂ gas is not feasible and sustainable.

The aim of this research is to optimize the production of H_2 gas from Al waste cans and test its potential for CO_2 methanation to produce value-added CH_4 . The expected output of this study is an economic, green and sustainable H_2 production system from Al waste cans and a potential source of H_2 for CO_2 methanation.

1.6 Research Objectives

The research objectives are highlighted below:

- 1. To synthesize the aluminum waste can powder via disintegration and investigate the effect of hydrolysis process using different alkaline solutions, water sources, and duration of disintegration time for AWCP.
- To analyze the performance of binary and ternary AWCP composites for hydrolysis.
- 3. To evaluate the performance of binary and ternary AWCP composites for CO₂ methanation via batch and continuous study.

1.7 Novelty

There are many research works reported in the literature for CO₂ methanation using H₂. However, none has been reported using H₂ produced from aluminumwater reaction. Many other activation methods to increase H₂ production from aluminum-water reaction have been reported using commercial Al powder. Nevertheless, none has been done using high-RPM disintegrated Al waste can powder and ball-milled with binary and ternary mixture of different types of metals.

1.8 Scope of Study

- In this study, aluminum waste can powder (AWCP) was synthesized using a disintegrator. AWCP was ball-milled with activation metals to produce AWCP composites to maximize H₂ production in hydrolysis with alkaline solution at room temperature.
- To further optimize the system, variables such as types of alkaline solutions, different reaction temperatures, types of water sources, and different duration of disintegration time were investigated to determine the optimized conditions for the hydrolysis system.
- The disintegrated AWCP was mechano-chemical activated by ball milling. Different compositions of AWCP composites were synthesized via ball-milling to study its effect on hydrolysis, maximum H₂ production volume, H₂ production rate and total reaction time. The optimized H₂ system will be used for the carbon dioxide methanation to produce CH₄ in batch and continuous study.
- In batch methanation, the selected pure AWCP and AWCP composites were used in carbon dioxide methanation to study the H₂ and CO₂ conversions and CH₄ yield. In this part, the results will be studied thoroughly to identify the factors that help increased CH₄ yield.
- In continuous methanation, the selected samples were allowed to run the methanation continuously for 1 hour to study the CH4 production in a continuous manner.

• The outlet gas was analyzed every 5 min to investigate the amount of unreacted H₂, unreacted CO₂, and generated CH₄ to determine the conversion of H₂, conversion of CO₂, and CH₄ yield.

1.9 Organization of Thesis

The dissertation starts with Chapter 1 on the background of the research and adds information to support the statements. It also focuses on the novelty, problem statement, objectives and scope of the work.

Chapter 2 discloses the literature review of the study which yields critical assessment of the information that has been added such as the history of the study, the past related research which has been done, the outcomes of the research and its impact to this research. It gives readers information on the developments of the topic being studied and the improvement and novelty of this research.

Chapter 3 conveys the information on the methodology and materials that were used in the conduct of the experiment. This chapter includes methodological approach of turning aluminum waste can into powder; production of binary and ternary aluminum composites from ball milling disintegrated Al waste can powder with chosen metal elements; the batch and continuous CO₂ methanation process to investigate the methane production from the optimized aluminumwater reaction system. This chapter also describes the method of analysis such as XRD, FESEM, XRF, BET and PSA. Chapter 4 discusses the results of the experiment and discussion with scientific support. The characterization results of the samples were tabulated and discussed so that readers can understand the microscopic structure and other characteristic properties of the samples produced and its relationship with the hydrolysis performance and methane production yield and selectivity.

Chapter 5 puts forward the conclusion and summary of the dissertation with results provided in a concise yet precise manner. It summarizes and reflect the research and connects with the objectives that were outlined in the beginning of the research. This chapter also includes recommendations for future work on this research area.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter reviews the core topics of this research such as H₂ energy, global warming and CO₂ utilization, H₂ and utilization of CO₂ by methanation. In this section the review of current techniques of H₂ production, types of H₂ production systems are analyzed and discussed. The works related to aluminum-water reaction were thoroughly discussed to reflect and report the performances of previous researches on hydrolysis of aluminum and its alloys. Lastly, CO₂ methanation techniques and current trends in methanation were discussed.

2.2 Hydrogen Production

There is a growing concern towards environmental damage caused by the fossil -fuel based processes which urgently calls for carbon neutral energy systems. H₂ is the promising solution because it is a very clean energy. However, most of the current H_2 is produced by hydrocarbons which produce significant amount of CO₂ to the atmosphere. Half of global H_2 demand is currently fulfilled by natural gas steam reforming (SMR); 30% from oil reforming, and balance 20% from coal gasification, water electrolysis, and others (Muradov and Vezirolu, 2005; Kothari, Buddhi and Sawhney, 2008; Dincer and Acar, 2015). About 95% of H_2 is generated by SMR and coal gasification which its feedstock is all fossil fuel based. Although these conventional methods are mature and wellestablished, Wang et al. (2009) commented that they should not be a deep-rooted strategy for H_2 production, notwithstanding the fact that they are neither sustainable nor clean.

2.2.1 Methane Steam Reforming (SMR)

Methane steam reforming (SMR) produced almost 90% of the current global demand for H_2 at high temperature and pressure conditions (Haryanto et al., 2005). Also, about 95% of H_2 in the United States was produced by steam reforming in 2012 (LeValley, Richard and Fan, 2014). Steam reforming is the current most cost-effective H_2 production method. The feedstock for the steam reforming process can be methane, ethane, methanol, ethanol, acetone and other hydrocarbons (LeValley, Richard and Fan, 2014). Methane is the most commonly used natural gas to be used as the feedstock for steam reforming process. It is an endothermic reaction where methane is mixed with steam and heated in a steam reforming reactor or reformer at 750-1450°C and 5-25 atm over metal nickel catalyst to produce CO, CO₂, H₂ and unreacted CH₄ which are

called syngas. The small amount of naturally occurring sulfur compounds in natural gas is removed by using zinc oxide adsorbent which makes the purification process easier (Muellerlanger et al., 2007). The CO is usually employed in a water-gas shift reaction (WGSR) where CO reacts with water to generate CO_2 and H_2 ; therefore, more amount of H_2 will be formed. The final product will be fed to a pressure swing adsorption (PSA) unit for purification (Ogden, 1999; Spath and Mann, 2001). The partial and overall reactions of SMR are shown in (Eq. 2.1, Eq. 2.2 and Eq. 2.3).

$CH_4 + H_2O \rightarrow CO + 3H_2$	(2.1)
$CO + H_2O \rightarrow CO_2 + H_2$	(2.2)

$CH_4 + 2H_2O \rightarrow CO_2 + 4H_2$ (2.	.3	0)
--	----	---	---

2.2.2 Water-gas Shift Reaction (WGSR)

WGSR is a reversible and exothermic reaction between CO and water to form CO₂ and H₂. It is a reversible reaction; therefore, upon changes in the reaction conditions, the reaction reverses, commonly known as reversed water-gas shift reaction (RWGS). WGSR is commonly employed in steam reforming and partial oxidation of hydrocarbons since both reactions produce carbon

monoxide, WGSR is employed to reduce CO levels and additionally increase H₂ production. Iron-based and copper-based catalysts are commonly employed in the WGSR (Newsome, 1980). Shift reactors are adiabatic with increasing temperature along the bed of the catalyst as WGSR is exothermic in nature. The reactors can be single-stage for lower purity H₂; or two-stage if high purity H₂ was desired (Newsome, 1980). The WGSR reaction is shown in (Eq. 2.4).

 $H_2O + CO \rightarrow CO2 + H_2$ $\Delta H = -40.6 \text{ kJ/mol}$ (2.4)

2.2.3 Coal Gasification (CG)

Coal gasification (CG) is a process of converting carbonaceous organic matter into syngas at high temperature, at above 700°C. A consistent flow rate of oxygen and steam are both introduced into the gasifier for reaction. CG is commonly employed in regions that have limited natural gas resources and in manufacturing of ammonia and methanol (Muellerlanger et al., 2007). The syngas containing carbon monoxide can normally be integrated with a WGSR to produce more H₂. The final product will be further purified in a PSA unit (Ogden, 1999; Muellerlanger et al., 2007; Pilavachi, Chatzipanagi and Spyropoulou, 2009). Gasification of coals which are fossil fuel derived is clearly a non-renewable option.

2.2.4 Electrolysis of Water (EW)

Electrolysis cell is used to produce H_2 and oxygen from water by introduction of electric current to pass between two electrodes of the cell. The water before input to the electrolyzer is pre-treated to eliminate mineral deposits and prevent any electrochemical reactions (Bhandari, Trudewind and Zapp, 2014). Electrolysis technology is well-established and being commercialized in the industry for H_2 production (Lodhi, 2003). The anodic and cathodic half and overall equations are shown in (Eq. 2.5, Eq. 2.6, and Eq. 2.7).

Cathode:
$$4H_2O + 4e^- \rightarrow 2H_2 + 4OH^-$$
 (2.5)

Anode:
$$4OH^{-} \rightarrow 2H_2O + O_2 + 4e^{-}$$
 (2.6)

Overall:
$$H_2O + \text{electricity} \rightarrow H_2 + \frac{1}{2}O_2 + \text{Heat}$$
 (2.7)

Table 2.1 shows the specifications of three major types of electrolyzers: Alkaline type, PEM and SOE. Table 2.2 systematically tabulates the conventional techniques to produce H_2 , its advantages and limitations which are generally fossil fuel based. Table 2.3 indicates the H_2 production systems with results after modifications with latest findings from literature review.

Specification	Alkaline	PEM	SOE
Technology maturity	Commercialized	Demonstration phase	In research
Cell temperature, 'C	60-80	50-80	900-1000
Cell pressure, bar	< 30	< 30	< 30
Current density, A/cm ²	0.2-0.4	0.6-2.0	0.3-1.0
Cell voltage, V	1.8-2.4	1.8-2.2	0.95-1.3
Power density, W/cm ²	<u>≤</u> 1.0	<u>≤</u> 4.4	-
Voltage efficiency, %	62-82	67-82	81-86
Specific system energy consumption, kWh/Nm ³	4.5-7.0	4.5-7.5	2.5-3.5
H ₂ production, Nm ³ /hr	< 760	< 30	-
Stack lifetime, hr	< 90,000	< 20,000	< 40,000
System lifetime, yr	20-30	10-20	-
H_2 purity, %	> 99.8	99.999	-
Cold start up time, min	15	< 15	> 60

Table 2.1: Specifications of three major types of electrolyzers (Bhandari, Trudewind and Zapp, 2014; Dincer and Acar, 2015).

Method	Advantages	Drawbacks	References
SMR	 Mature and well-established technology Lowest current cost Most viable approach 	• High capital, operation and maintenance costs	(Acar and Dincer, 2014)
WGSR	• Commonly employed in steam reforming and partial oxidation of hydrocarbons to additionally convert CO to CO ₂ and H ₂	 Reaction which is thermodynamically limited Required to operate at low temperatures Higher amount of catalyst needed to achieve required CO conversions 	(De Falco, Piemonte and Basile, 2011)
CG	Low-costRenewable source	 High capital cost for the gasification reactor Relatively lower efficiency Feedstock impurities 	(Acar and Dincer, 2014)

Table 2.2: Conventional techniques to produce H₂, its advantages and limitations.
Table 2.2: Continue.

Method	Advantages	Drawbacks	References
EW	 No pollution with renewable resources such as wind and solar energy. High-purity H₂ production Less maintenance due to no moving parts. 	High capital costsLow efficiency	(Acar and Dincer, 2014; Bhandari, Trudewind and Zapp, 2014)

Method	Modification	Results	References
SMR	 Novel electro-catalytic SMR using Ni- based reforming catalyst, Ni-CeO₂/γ- Al₂O₃-MgO 	Reduction in reforming temperatureProlonged catalyst life	(Lu et al., 2019)
SMR	• Using Silica-zirconia membrane supported on modified alumina for H ₂ purification	 Significant improvement in H₂ selectivity Better separation of product from CH₄ feed 	(Akbari and Omidkhah, 2019)
WGSR	• Adsorptive Reactor (AR) integrated in WGSR	 Higher CO conversion Lower catalyst use Lower separator loads Reduced capital costs Improve process efficiency Reduced energy consumption 	(Karagöz et al., 2019)

Table 2.3: H_2 production systems with modifications and its results.

Table 2.3: Continue.

Method	Modification	Results	References
CG	• Employment of LaFeO ₃ modified with potassium as catalyst for coal char CO ₂ gasification	 Improved catalytic performance Recyclable catalyst Equipment-friendly Lower initial reaction temperature 	(Wang et al., 2019)
EW	• High-area chemically-modified electrodes (CME) with ternary Ru, Sb and Ta or bismuth oxides on carbon using microwave heating method	 Low cost Homogenous morphology of the catalyst Higher electrochemical active areas than unmodified electrodes Shorter production time Reduced production costs 	(Gonzaga et al., 2019)

2.2.5 Biomass Gasification (BG)

Gasification of biomass is a similar process compared to CG. The feedstock for BG derived from crops; for instance, is a renewable alternative for electricity or H_2 production. Few general categories of biomass resources are; for instance, industrial waste, energy crops, forestry waste, agricultural residues and municipal waste. The biomass gasification reaction equation is shown in (Eq. 2.8).

Biomass + Heat + Steam \rightarrow Syngas + CH₄ + light and heavy hydrocarbons + char. (2.8)

However, BG is not fully commercialized due to several technical aspects in feedstock preparation, ash removal, and gasification procedure (Muellerlanger et al., 2007; Pilavachi, Chatzipanagi and Spyropoulou, 2009).

2.2.6 Photovoltaic (PV) Electrolysis

PV electrolysis (PV-EL) is a water electrolysis process powered by solar power through photovoltaic cells. In PV electrolysis, the solar/H₂ conversion efficiency is of utmost importance. The low conversion efficiency can be made up by increasing the surface area of photovoltaic cells so as to collect more sunlight. Khaselev, Bansal and Turner (2001) reported an overall solar/H₂ conversion efficiency of 7.8. However, H_2 production using solar energy still requires in-depth research to increase the overall solar/ H_2 conversion efficiency.

2.2.7 Wind Turbine Electrolysis System (W-EL)

H₂ production system using wind turbines powered by wind power to produce electricity for electrolyzer. The system is composed of a turbine, electrolyzer, H₂ storage device, and fuel cell. The electric power generated from wind power is utilized to generate H₂ from the electrolyzer. However, the development of wind-powered H₂ production technology is not mature enough. The major challenge in wind power is that the wind energy is also weather dependent, it is simply not a constant source of energy and geographically dependent (Li et al., 2019).

2.2.8 Hydropower electrolysis system (H-EL)

H₂ production system from electrolyzer powered by electricity produced from hydropower. Hydropower takes advantage of the potential energy and kinetic energy stored in the water itself in order to generate electricity. Unfortunately, it is still not a mature H₂ production system because most of the electricity produced from hydropower will be transmitted to the national power grid. Posso et al. (2015) studied the feasibility of a hydro-powered H₂ production system in. However, it has limitations as well where the construction of the hydropower infrastructure will affect the environment, destroying the floras and faunas, and therefore, a redundant idea which disobey the core values of the Paris Agreement.

Table 2.4 shows the technical data for various H_2 production methods such as production rate, overall efficiencies, CO_2 emissions, and H_2 production cost to compare overall of the methods.

In conclusion, SMR is carbon intensive and requires high operation and maintenance costs. WGSR requires a significant amount of catalyst to support the reaction. Both CG and EW have high capital cost with relatively low efficiency. The conventional H₂ production methods are energy intensive, of high capital and maintenance costs, and high emissions. On the other hand, BG has efficiency of 50-60% but CO₂-capture system was not reported which requires more in-depth development. PV electrolysis has very low conversion efficiency and it is highly dependent on weather. Wind-powered has not reached mature development at this point of time. Hydro-powered H₂ production systems require heavy destruction of the ecosystem for its construction. In short, a sustainable, green and cost-effective H₂ production system is needed as an alternative solution to reduce emissions. Other promising solution to produce clean H₂ is urgently needed to replace fossil fuel sources.

Table 2.4: Technical data for various H₂ production methods.

H ₂ production process	Production rate (m ³ _{STP} /h)	Overall efficiencies (%) without CO ₂ capture	CO ₂ emission (kg CO ₂ /kg H ₂)*	H ₂ production cost (USD/kg H ₂ /day)
SMR	20,000-250,000	70-80	7.33	32.75
CG	20,000-100,000	55	29.33	22.37
BG	≥57,000	50-60	5.89	23.78
Water electrolysis	1-1000	64-70	-	-
PV-EL	-	-	0	17.36
W-EL	-	-	0	36.75
H-EL	-	-	0	1.4

*Excluding CO_2 produced in the entire process chain.

2.3 Aluminum-Water Reaction

Wang et al (2009) mentioned about the technical challenges for compact and safe H₂ storage. The conventional methods in increasing H₂ storage values highpressure compression and liquefaction at low temperatures. Albeit wellestablished and understood techniques aforementioned, the H₂ storage is not entirely safe and reliable. Nowadays, H₂ storage using chemical hydrides is providing solid-state storage for H₂ which is much safer despite slow kinetics and high temperature requirements totally restricting its industrial applications (Sakintuna, Lamari-Darkrim, and Hirscher, 2007; Wang et al., 2009). Apparently, H₂ storage using hydrides is not as promising as it looks in addition to its high cost. Now, reactions of reactive metals in water were reported producing significant amounts of H₂ and showing potentials in H₂ energy and storage. As a matter of fact, H₂ generation from displacement reactions of metals was discovered in the olden days. Wang et al. (2009) stated that the need for H₂ storage can be eliminated with on-demand H₂ generation from reactive metals. Tzimas et al. (2003) reported that water generally contains about (111 kg H_2/m^3) and much higher than in gasoline (84 kg H_2/m^3 and pure liquid H_2 (71 kg H_2/m^3). Among the reactive metals such as Zn, Mg, and Al, Al has reported producing the most significant amount of H₂ per unit mass (Kravchenko et al., 2005; Wang et al., 2009).

2.3.1 Activation of Aluminum in Alkaline Condition

Aluminum is can be easily sourced due to its availability on earth. It is called the viable metal it has many favourable properties such as light weight and renewable in the sense that it can be recycled and reused (Wang et al., 2009). 1 g of Al metal is able to produce 1360 mL H₂ at normal room temperature (RTP) (Ho and Huang, 2016; Shmelev, Yang and Yim, 2016; Yang et al., 2019). But the formation of oxide layer on the Al surface prevents hydrolysis reaction. According to Wang et al. (2009), the hydroxide ions (OH⁻) in alkaline solutions will destroy the protective inert oxide layer on the Al forming aluminum oxide, Al₂O₃. Therefore, Al is easily dissolved in the alkaline condition even at room temperature, leading to desired H₂ yield, H₂. The aluminum-water reaction alternative pathways are shown in (Eq. 2.9 and Eq. 2.10) at different reaction temperatures (Razavi-Tousi and Szpunar, 2014).

$$2Al + 4H_2O \rightarrow 2AlOOH + 3H_2$$
 (T> 70°C) (2.9)

$$2Al + 6H_2O \rightarrow 2Al(OH)_3 + 3H_2$$
 (T< 70°C) (2.10)

Whereas, the aluminum-water reaction in alkaline NaOH solution is shown in Eq. (2.11 and 2.12). NaOH depletion process is shown in Eq. 2.11 will be regenerated via decomposition of NaAl(OH)₄ in Eq. 2.12. Therefore, only water is being consumed throughout the process. Both Eq. 2.11 and Eq. 2.12 together will yield Eq. 2.13. The overall reaction which is expressed as follows.

$$2Al + 6H_2O + 2N_aOH \rightarrow 2N_aAl(OH)_4 + 3H_2$$
 (2.11)

$$NaAl(OH)_4 \rightarrow NaOH + Al(OH)_3$$
 (2.12)

$$2Al + 6H_2O \rightarrow 2Al(OH)_3 + 3H_2$$
 (2.13)

According to Huang et al. (2013), the by-product Al(OH)₃ is non-volatile and non-corrosive. It is widely used in the ceramic industry as raw material. Besides being useful products in the ceramic industry, Al hydroxide can be utilized as an adsorbent in chromatography, ink production and glass lubricants, etc. (Huang et al., 2013).

Stockburger et al. (1992) reported the optimum temperature for Al/H₂O reaction about 70-90°C and NaOH concentration of 5.75 M. Soler et al. (2005) reported using Al foil, 260 mL/min of H₂ was produced with 5M KOH solution at 75°C. Martinez et al. (2005) reported using Al waste cans to substitute commercial Al powder, the waste cans were pretreated with H₂SO₄ to remove paint and plastic cover, about 12.5 mL/min/g H₂ was produced using 6M NaOH solution at RTP. NaOH is a more effective alkaline solution in Al consumption than KOH and Ca(OH)₂ (Soler et al., 2007). Other than Al powders, Al and its alloys were reported to enhance H₂ generation. Soler et al. (2007) also reported 216mL/min/g of H₂ production for Al-88 wt %/Si-12 wt% alloy in Ca(OH)₂ alkaline solution at 75°C. Soler et al. (2007) reported production of 190 mL/min/g of H₂ using Al/Si added with NaBH₄ in saturated Ca(OH)₂ at 75 °C, equivalent to 94% of maximum H₂ conversion yield. The enhanced H₂ production could be attributed to the increase of pH value due to hydrolysis of NaBH₄, but NaBH₄ is expensive to be considered practically (Soler et al., 2007). Apart from the aforementioned alkaline solutions, Liu et al. (2018) employed CaO and Li/Li₂O combined with Al powder to obtain a maximum H₂ yield of 90%. The rapid reaction was explained by the rapid consumption of OH⁻ ions. Other than CaO and Li/Li₂O, other metals that have been used were MgO, Al₂O₃, ZnO, La₂O₃, TiO₂ and NaAlO₂ with H₂ yield of \leq 15%. There are several parameters that can affect the H₂ production besides reaction temperature and concentration of alkaline solution, such as employment of stirring in RPM, morphology and initial mass of metals induced, pretreatments of the metals, the mixing conditions in the reactor, and the Al-alloy composition if alloys were employed. Other approaches such as Al amalgamation with mercury (Hg) in Al/H₂O reaction; however, Hg is toxic to; hence, not an applicable method in H₂ generation (Du Preez and Bessarabov, 2018). Kaya et al. (2021) experimented similar experiment using Al-2wt% Zn in 5M NaOH solution under room temperature conditions generated 0.46 ml/min/cm² of H₂, the conclusion found out combination of pure Al and Zn metals had high corrosion ratio due to Zn's low melting point which helped reacts well in the alkaline condition when alloying with Al metal. Zn also increased production rate and yield of H₂ with enhanced pitting corrosion amount of Al-alloys.

2.3.2 Mechano-Chemical Activation of Aluminum in Neutral Condition

Besides activating Al in acidic or alkaline condition, mechano-chemical activation is an alternative activation method involving mechanical and chemical processes. For example, Al metals (Al foils, cans, rods, bars, tubes, plates, and flakes) are repeatedly fractured on the principle of impact and attrition where the Al metals are fractured into smaller powder forms via collisions between milling balls and the sample powder inside the ball milling machine (Fan, Xu and Sun, 2007). Razavi-Tousi and Szpunar (2014) synthesized Al powder of 99.8% purity with 190 µm particle size using ball milling method. 70 mL and 80 mL of H₂ produced for 4-hour and 7-hour ball milling process in Al/H₂O reaction. The longer the milling time for the powder, the higher H₂ production rate can be obtained. Ball milling increases the BET active surface area value of the powder by decreasing its particle size by introducing cracks due to attrition and collisions. Also, it increased lattice imperfections which also increased the affinity of the ball-milled powder for Al/H₂O reaction. Inert oxide film on the surface of the particles was broken and fresh surfaces exposed to initiate hydrolysis reaction during ball milling process (Razavi-Tousi and Szpunar, 2014). Liang et al. (2016) ball-milled mixture of Fe, Co, and Ni metals gave H₂ yield of 80 to 90% at 45°C. Kravchenko et al. (2005) utilized low melting point (l.m.p.) metals to synthesize Al-alloys such as Zn, Ga, Bi and In metals. A total H₂ production volume of 1000 mL/g was obtained at 82°C for 30 minutes using Al-80 wt%, Ga-5.3 wt%, In-2.0 wt%, Sn-5.4 wt% & Zn-7.3 wt% alloy composite (Kravchenko et al., 2005). On the other hand, Fan, Xu and Sun (2007) explained and reported that ball milling method

is more effective than melting for production of Al-alloys.

940 mL/g H₂ was produced at RTP in ~ for 15 minutes for Al-80 wt%, Bi-5 wt%, Ga-10 wt%, & Zn -5 wt%; whereas, 1050 mL/g of H₂ was produced at RTP in~ for 15 minutes for Al-80 wt%, Bi-8 wt%, Zn-2 wt%, Ga-8 wt%, & CaH₂-2 wt%. Addition of CaH₂ made the composite not to agglomerate and blend equally in the miller. (Fan, Xu and Sun, 2007). However, l.m.p. metals caused slow reaction rate at room temperature and are easily evaporated in the melting process (Fan, Xu and Sun, 2007). Du Preez and Bessarabov (2018) later improvised by reacting Al-90 wt% & 10 wt% total In & Sn at RTP attaining 96.5-99.5% maximum H₂ yield by ball milling for 30 minutes at 1500 RPM. Escobar-Alarcón et al. (2019) synthesized Al-9 wt% Mg by melting at 300 °C

for 72 hours. It was reacted with distilled water with ultrasonic YAG laser with 1064 nm, 5 ns pulse duration and 10 Hz repetition conditions to generate 500 ml/min H₂ in water displacement apparatus. Zhang et al. (2018) later synthesized Al-30 wt% Sn- 10 wt % Zn ternary composite via high pressure torsion (HPT) for N= 10 turns at room temperature and at 1 RPM. The composite was reacted with pure water at room temperature conditions generated >900 ml/g H₂. The addition of Zn increased the H₂ generation rate and H₂ yield.

2.3.3 Hydrogen Production using Aluminum Waste Cans

Yang et al. (2019) made use of Al waste can from Sprite cans, reported 95.3% H₂ yield (1297 ml H₂ in 360 s) with alkaline condition, 0.75M NaOH. In this study, aluminum waste cans instead of being recycled, Al waste cans are combined with activation elements such as Sn and In metals to form a composite of Al-Sn-In that is mechano-chemically prepared via ball milling, a modification from work of Du Preez and Bessarabov (2018). Yolcular, Karaoglu and Karasoglu (2020) produced Al-alloy chips powder through ball milling with by adding 20 wt% NaCl salt at 200 RPM for duration of 40 hours. The Al-alloys comprised of 90 wt% to 99.62 wt% Al and balance small amount of trace elements such as Si, Fe, Cu, Mn, Zn, Ti, and Cr which are found in most aluminum beverage cans. The hydrolysis results were 700 to 900 ml/g of H₂. The maximum H₂ generation and H₂ yield would be investigated in this project using Al powder generated from Al waste cans.

Deng et al. (2005) conducted a modification on Al particle surfaces by reacting Al powder and Al(OH)₃ mixed with ethanol solution and introduced to ball milling for 48 hours, then sintered at 600°C in vacuum to produce porous Al/ γ -Al₂O₃. The modified Al particles was able to perform hydrolysis at room temperature to produce H₂. About 2000-2500 µmol of H₂ was produced for Al-30wt %/ γ -Al₂O₃-70wt % in 20 hrs duration (Deng et al., 2005). Adans et al. (2016) successfully synthesized γ -Al₂O₃ from Al waste cans via precipitation methods with specific surface area comparable to that of commercial one about

204 m²/g. Table 2.5 shows the hydrolysis performance of Al and its alloys in alkaline conditions. Table 2.6 shows the hydrolysis performance of Al and its alloys in neutral conditions.

It can be deduced from the literature review that no research by far focused on doping Al waste can powder with activation elements to improve hydrolysis performance. Therefore, in this study, Al waste cans are to be mechanochemically activated by different activation elemental metals to form binary and ternary Al composites. The AWCP composites are mechano-chemically prepared via ball milling machine. Table 2.5: Hydrolysis performance of Aluminum and its alloys in alkaline conditions.

Treatment and type of	Alkaline Solution	Temperature	Maximum H ₂	Maximum H ₂	References
metal/metal alloys		(°C)	production rate	conversion yield	
Atomization of Al (99.8 &	10M, 1M & 0.1M	25	>500 ml/min/0.2g	100%	Belitskus, 1970
99.99% purity); Al-12%Si	NaOH				
Al foil powder (99.9%	0.003 – 0.1M NaOH	30-80	For aluminum foil,	For aluminum foil,	Aleksandrov,
purity)			40 ml/s/cm ²	0.6 μm/mm	Tsyganova and
					Pisarev, 2003

Paint and plastic cover	6M NaOH	23 ± 3	12.5 ml/min/g	-	Martinez et al., 2005
removal using H ₂ SO ₄					
-Al can strips					
Al powder	5М КОН	75	260 ml/min	-	Soler et al., 2005
Al powder (99.9% purity)	1.0M & 5.0M NaOH	RTP	-	-	Hiraki et al., 2007
Al alloys (powder, rod, bar,	Ca(OH) ₂	75	216 ml/min/g for	76%	Soler et al., 2007
foil, tube, plate & flake)			Al 88wt%/Si 12wt%		
			alloy		

Table 2.5: C	Continue.
--------------	-----------

Treatment and type of	Alkaline Solution	Temperature	Maximum H ₂	Maximum H ₂	References
metal/metal alloys		(°C)	production rate	conversion yield	
Addition of NaBH ₄	Ca(OH) ₂	75	190 ml/min/g (for	94%	Soler et al., 2007
Al, Al/Si, Al/Co, Al/Mg			Al/Si + NaBH ₄ +		
(powder/flake)			saturated Ca(OH) ₂)		
Al (99% purity)	Ca(OH) ₂ & Li(OH) ₂	RTP	-	90% for both	Liu et al., 2018
				CaO & Li/Li ₂ O	
				(X=0.05g)	
Pretreated with concentrated	NaOH	40	1296 ml in 0.75M	95.3%	Yang et al., 2019
H ₂ SO ₄ to remove paint, cut			NaOH		

into small flakes &					
magnetic grind into powder					
-Al can powder					
Al-2wt% Zn	NaOH	25	0.46 ml/min/cm ²	-	Kaya et al., 2021
Synthesized via casting at					
high temperatures					

Treatment and type of	Temperature	Maximum H ₂	Maximum H ₂	References
metal/metal alloys	(°C)	production rate / condition	conversion yield	
Melting	82	1000 ml/g in ~ for 30 min for Al-	100%	Kravchenko et al., 2005
Al alloys		80wt%, Ga-5.3wt%, In-2.0wt%, Sn-		
		5.4wt% & Zn-7.3wt% alloy		
Ball milling	RTP	940 ml/g in ~ for 15 min for Al-	100%	Fan, Xu and Sun, 2007
Al & Al-alloys (l.m.p.		80wt%, Bi-5wt%, Ga-10wt% & Zn-		
metals: Zn, Ga, Bi, Pb, Sn,		5wt%		
Mg, In, etc)				

Table 2.6: Hydrolysis performance of Al and its alloys in neutral conditions.

		1050 ml/g in ~ for 15 min for Al- 80wt%, Bi-8wt%, Zn-2wt%, Ga-8wt% & CaH ₂ -2wt%		
Ball milling	RTP	1050 ml/g in 5min of hydrolysis for 5	93.4%	Fan et al., 2008
Al-Bi-hydride, Al-Bi-solid		hours milling		
salt powder		Al-10wt%, Bi-10wt%, MgH ₂ mixture & Al-10wt%, Bi-10wt%, MgCl ₂ mixture		
Ball milling for 20 hr at 270	70	NaCl salt to aluminum mole ratio	95%	Alinejad and Mahmoodi,
RPM		1:5:1		2009
Ball to powder ratio 20:1				
Al (99% purity) < 100μm				

Table 2.6: Continue.

Treatment and type of	Temperature	Maximum H ₂	Maximum H ₂	References
metal/metal alloys	(°C)	production rate / condition	conversion yield	
Ball milling	RTP	Induction time \sim 3 hr for 70 vol% Al +	-	Deng, Liu and Gai, 2005
Al/y-Al ₂ O ₃		30 vol% γ-Al ₂ O ₃		
Direct addition	RTP	Shortens induction from 79.2 hr to 2.4	-	Gai, Fang and Deng, 2007
$Al + \gamma - Al_2O_3$		hr		
Ball milling for 2, 4, 7, 11 &	80	80 ml for 7-hour ball milled Al-water	-	Razavi-Tousi and Szpunar,
19 hr @ 200RPM		reaction		2014

Ball to powder ratio 30:1		70 ml for 4-hour ball milled Al-water		
Al powder (99.8% purity)		reaction		
190 µm particle size				
(without activation				
elements)				
Ball milling in low alkaline	70	1350 ml/g for Al-Ni-Bi (wt% was not	100%	Ho and Huang, 2016
condition (NaOH) for 5 hr		reported)		ζ,
@ 300RPM				

Table 2.6: Continue.

Treatment and type of	Temperature	Maximum H ₂	Maximum H ₂	References
metal/metal alloys	(°C)	production rate / condition	conversion yield	
Ball milling	35	3ml/g/min for Al-Fe (X = 0.02g);	80-90%	Liang et al., 2016
Al-M (M= Fe, Co or Ni)		4ml/g/min for Al-Co (X= 0.20g);		
		5ml/g/min for Al-Ni (X= 0.05g)		
Ball milling	45	4ml/g/min for Al-Fe (X = 0.02g);	80-90%	Liang et al., 2016
Al-M (M= Fe, Co or Ni)		4ml/g/min for Al-Co (X= 0.20g);		
		2ml/g/min for Al-Ni (X= 0.05g)		

Ball milling for 3 hr	35	9.5 ml/g/sec for Al-90wt%, Bi-7.5wt%	85%	Xiao et al., 2018
Al powder (99% purity)		& Sn-2.5wt%		
17-19 μm				
Ball milling for 30min	RTP	A1-90wt% & 10 wt% total In & Sn	96.5 - 99.5%	Du Preez and Bessaraboy.
@1500 RPM				2018
Ball to powder ratio 30:1				
Al powder (99% purity)				
<200 μm				

Tab	le 2	2.6:	Cor	ntinue	•
Tab	le 2	2.6:	Cot	ntinue	•

Treatment and type of	Temperature	Maximum H ₂	Maximum H ₂	References
metal/metal alloys	(°C)	production rate / condition	conversion yield	
Ball milling for 5 hr @ 250	RTP	1058.1 ml/g	91.6%	Zhao et al., 2019
RPM				
Ball to powder ratio 60:1				
Al-BiOCl				
Ball milling for 40 hr	70	Al 1050 ~ 700 ml/g in 5 min	-	Yolcular, Karaoglu and
@200RPM in 1M NaOH		Al 6013 ~ 800 ml/g in 5 min		Karasoglu, 2020
solution		A1 7075 ~ 900 ml/g in 10 min		
Ball to powder ratio 10:1				

Al chips (Al 1050, Al 6013				
& Al 7075)				
Ultrasonic laser (YAG	RTP	500 ml/min	-	Escobar-Alarcon et al., 2019
@1064 nm; 5ns pulse				
duration; 10 Hz repetition)				
Al-9wt% Mg				
High pressure torsion (HPT)	RTP	950 ml/g	69%	Zhang et al., 2018
Al-30wt%Sn – 10wt% Zn				

2.4 Current Trends of Greenhouse Gases and Carbon Dioxide

Greenhouse gases (GHGs) are generally composed of carbon dioxide (CO₂), methane (CH₄), water vapour (H₂O) and chlorofluorocarbons (CFCs). Figure 2.1 shows the total GHGs emissions (GT of CO₂ equivalent) from 1970-2012. The value increased from 27.66 GT CO₂ equivalent to 53.53 GT CO₂ equivalent from 1970-2012 (within 4 decades). The increasing CO₂ level is caused by rapid industrialization globally, which caused the concentration of CO₂ to be on the uptrend fashion from 280 ppm to 410 ppm. It is predicted to rise to 570 ppm by year 2100 (Younas et al., 2016).

Figure 2.1: Total GHGs emissions (GT of CO2 equivalent) from 1970-2012 (The World Bank, 2019).

Figure 2.2 shows the particular GHG emissions in 2017 (GT of CO₂ equivalent) from 1970-2012. The electricity production, transportation and industrial sectors in general accounted about 79 % of total GHGs emissions in 2017; the rest was from commercial, residential, and agricultural sectors (United States Environmental Protection Agency, 2019).

Figure 2.2: Total GHGs emissions in 2017 (equivalent to 6,457 GT CO₂ emissions) (United States Environmental Protection Agency, 2019).

 CO_2 overloads the environment is a known factor for global climate change due to global warming. The global temperature increases because of the "greenhouse effect". Therefore, CO_2 is one of the major contributors to greenhouse gases (GHGs). Other global environmental issues such as formation of acid rain, melting of glaciers, rise of sea levels, ocean acidification, and adverse health effects are all caused by increasing CO_2 level at an uncontrolled rate. On the other hand, climatic change forces some of the regions to spend additional energy in pumping water to overcome drought problem, insufficient crops and potable water source (Kellogg and Schware, 2019). When additional energy is needed to fulfil the increasing energy demand caused by global climatic change, more CO₂ is produced as a by-product. Figure 2.3 shows the world's total CO₂ emissions (GT) from 1960-2014. From 1960-1973, the CO₂ emissions increased from 9.4 GT to 16.8 GT due to the Second Industrial Revolution (IR). During this period of time, coal mines, textile factories and steel work emerged due to the invention of the combustion engine (Coats and Jones, 1982). The value continuously rises to a staggering 36 GT CO₂ emissions in 2014; apparently due to increasing energy demand and human population as time goes by. Excessive CO₂ emissions will be a serious threat in both presence and future, and it needs immediate attention to curb this worrisome increasing trend.

Figure 2.3: World's total CO₂ emission (GT) from 1960-2014 (The World Bank, 2019).

2.5 Technologies of Carbon Dioxide Capture

There are generally several CO_2 capture technologies: pre-combustion, oxycombustion and post-combustion. Younas et al. (2016) reported 90 % of CO_2 capture efficiency through the aforementioned CO_2 capture technologies. CO_2 capture technologies are important for review in this research as CO_2 capture efficiencies affect the production of CH_4 , the ultimate goal of this research is to convert as much CO_2 and optimized H_2 from aluminium-water reaction to valuable CH_4 in a continuous manner. Li et al. (2013) reported that a total of 1297 patents are relevant to CO_2 capture solvents, solid sorbents and membranes (refer Figure 2.4). The aforementioned researchers later explained the likelihood of more patents on solvents and solid sorbents was due to a wider range of material availability for solvents and solid sorbents compared to that of membrane.

Figure 2.4: Shares of total 1297 patents on solid sorbents, membrane and solvent (Li et al., 2013).

Pre-combustion technology captures the waste CO_2 from syngas from reformers of upstream gasifiers (Li et al., 2013). The fuel was initially decarbonized before the combustion process. A pre-combustion system was utilized to transform solid, liquid or gaseous fuel into syngas using a gasifier or reformer. It was a well-established technology being used worldwide at chemical plants and refineries. The fuel is initially decarbonized before the combustion process. The CO_2 produced will be separated and undergo dehydration to remove water vapor to increase purity of CO_2 (Yu et al., 2012). In conclusion, for solvent, heat is not required to reverse chemicals but there would be H₂ loss during recovery of flash. Lastly, there is no steam load for membrane system but with H₂ loss at decreasing partial pressure.

Post-combustion capture (PCC) captures waste CO_2 from flue gas of any plant. Liquid solvents were utilized to flue gases that are low in concentration and pressure. This would result in bonding of acidic CO_2 with alkaline solvent such as monoethanolamine (MEA). CO_2 that was bonded would be released upon heating of the liquid solution (Farrell et al., 2019). The product was then cooled, compressed, purified and stored. This process did not affect the production process; it could be easily integrated into an existing process plant. Farrell et al. (2019) reported post-combustion capture being capable of producing a CO_2 stream of 99.9 % purity, while about 85-90 % of CO_2 capture efficiency. Despite the high conversion efficiencies of a post-combustion capture technology to be costly for implementation. For example, additional equipment is required to get rid of sulphur oxides (SO_x), nitrous oxides (NO_x) and some impurities such as dust from flue gas as these impurities can damage the quality of the solvent (Farrell et al., 2019). Figure 2.5 shows the overview of post-combustion carbon capture technologies.

Figure 2.5: Overview of post-combustion carbon capture technologies (Yu et al., 2012).

Table 2.7 shows the advantages and downsides of post-combustion technology. In conclusion, solid sorbents CO₂-capture system releases too much heat causing operational implications. Solvents, on the other hand, have a trade issue between kinetics and heat of reaction. Membranes' system has a poor economy of scale. Lastly, methanation is most promising even though it has low efficiencies at low pressures, it has the best process control among all the systems discussed. Also, methanation is the current trend and proposed as the promising solution in the CO₂-capture system.

Table 2.7: Advantages and disadvantages of post-combustion technology(National Energy Technology Laboratory, 2010).

CO ₂ capture system	Advantages	Disadvantages	
Solid sorbet/ Activated carbon	Large capacities and fast kinetics.	Difficult heat management creating operational issues when reaction is heat- releasing.	
Solvent	High chemical potential for selective capture at low CO_2 partial pressure.	There is a trade-off between kinetics and heat of reaction.	
Membrane	Simple modular design.	Poor economy of scale.	
Methanation	Good process control as isothermal condition can be achieved.	Low efficiencies at low pressures.	

2.6 Carbon Dioxide Methanation

Recent research has been carried out to study metal-based catalysts for CO_2 methanation at low temperatures and atmospheric pressure (Younas et al., 2016). Miao et al. (2016) mentioned two types of CO_2 methanation mechanisms that are exothermic and reversible reaction as shown in Eq. 2.14 and Eq. 2.15. One mechanism said CO_2 associatively adsorbed with adatom H_{ad} forming oxygenate intermediates and hydrogenated to form CH₄. Another mechanism suggested CO2 dissociates to form carbonyl (CO_{ad}) and O_{ad} , then form CH₄ via carbonyl hydrogenation.

$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$$
 $\Delta H_{298} = -165 \text{ kJmol}^{-1}$ (2.14)

$$CO + 3H_2 \rightarrow CH_4 + H_2O \qquad \qquad \Delta H_{298} = -206 \text{ kJmol}^{-1} \qquad (2.15)$$

The thermochemical-route methanation occurs at the temperature of about 150-500 °C and commonly at atmospheric pressure couples with Ni-based catalysts (metal-based catalysts). The by-product of this reaction, called the Sabatier reaction, is the valuable CH₄, commonly used as a fuel to generate electricity. High temperatures may cause sintering to the catalyst during the reaction; therefore, low temperatures are emphasized to improve the methanation reaction. Cheng et al. (2017) have also mentioned that Co- and Ru-based catalysts are of higher cost impact despite higher catalyst efficiencies. On the other hand, Ni-based catalysts are preferred due to its availability, lower cost and fair activity (Cheng et al., 2017). Besides, it was discovered that by adding other metals such as Ce, La and Fe can improve catalytic activity and stability of Ni catalysts for syngas methanation process at low temperatures. Aluminum oxide, Al₂O₃ is reported by Cheng et al. (2017) has a porous structure and high surface area. Nonetheless, Al_2O_3 has a shortcoming which its pore structure easily collapsed during phase transformation at high temperatures. Palm shell activated carbon (PSAC) was used to prepare Ni-based methanation catalyst for methanation reaction following Younas' work (Younas et al. (2016). Palm waste is abundant in Malaysia; thus, it is more cost -effective compared to other precursor materials. No one has used nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O) to active PSAC for CO₂ adsorption purpose. Younas et al. (2016) physically and chemically modified PSAC using NaOH, Ni(NO3)2.6H2O to enhance the adsorption capacity of CO₂.

 H_2 is introduced as shown in the reaction (CO₂ + 4H₂ → CH₄ + 2H₂O), to facilitate the methanation process. No research has been carried out to investigate the more viable H₂ production method. Most of the research focused on the optimization of catalysts and the methanation process. Most of the research has used the commercial H₂. Therefore, it is apparently not feasible to use commercial H₂ which is expensive and H₂ is of higher calorific value gas compared to relatively lower calorific value CH₄. Hence, a more economical H₂ production should be investigated for proposed CO₂ methanation, so that the CH₄ produced can be more cost-effective.
Table 2.8 shows a review of the methanation process done by researchers. All of the methanation experiments were using commercial H_2 gas from cylinder tanks. It is generally known that the commercial H_2 gas is cost-intensive. For instance, H_2 of 99.9992% purity costs about RM 24.00 - 27.00 per m³ (Global Gas Report, 2020).

Therefore, we need to look into alternative H_2 source which is more costeffective and cleaner since the conventional H_2 production method is CO₂emitting intensive. No one has mechano-chemically activated AWCP with activation metal to form AWCP composites and to react with alkaline solution at room temperature. The novelty of this work is to use the H_2 produced from AWCP composite hydrolysis for CO₂ methanation to generate CH₄. Table 2.8: A review of past methanation experiments.

Catalysts	Method	Reaction conditions	CO ₂ conversion (%)	CH4 selectivity (%)	References
Ni/SiO ₂ -Al ₂ O ₃	Incipient wetness impregnation	500 °C, 1 bar	35.0	30.0	Chang et al., 2003
15 wt% Ni/TiO ₂	Deposition precipitation	260 °C, 1 bar	96.0	99.0	Liu et al., 2013
12 wt% Ni/Al ₂ O ₃	Incipient wetness impregnation	325 °C, 15 bar	67.3	87.0	Zhang et al., 2014
10 wt% Ni/La ₂ O ₃	Incipient wetness impregnation	350 ℃, 15 bar	97.1	100.0	Huanling et al., 2010
23 wt% Ni/Al ₂ O ₃	Incipient wetness impregnation	400 °C, 1 bar	81.0	98.0	Mutz et al., 2015
3.7wt%Ru/CeO ₂ /r	Incipient wetness impregnation	350 °C, 1 bar	>75.9	99.0	Sakpal, 2018
Mesoporous Rh	Wet chemical reduction	550 °C, 1 bar	98.9	81.2	Arandiyan et al., 2018
2.5 wt% Ru/TiO ₂	Solvothermal hydrolysis	325 °C, 1 bar	>80.0	100.0	Chai et al., 2019
5 wt% Ni/ZrO ₂	Plasma decomposition	350 °C, 1 bar	79.1	76.5	Jia et al., 2019

Table 2.8:	Continue.
------------	-----------

Catalysts	Method	Reaction conditions	CO ₂ conversion (%)	CH4 selectivity (%)	References
2 wt% Co/ZrO ₂	Incipient wetness impregnation	400 °C, 30 bar	85.0	99.0	Li et al., 2019
CO ₃ O ₄ nanorods	Co-precipitation	230 °C, 10 bar	70.0	~99.0	Jimenez, Wen and Lauterbach, 2019
2 wt% Ni@CeO2- ZrO2	Colloidal nanoparticle dispersion	350 °C, 1 bar	58.0	>97.5	Vrijburg et al., 2019

CHAPTER 3

MATERIALS AND METHODS

3.1 Introduction

The research was divided to 4 phases systematically *i.e.* Phase I is to prepare the best disintegrated aluminum powder from aluminum waste cans. Phase II was to optimize the hydrolysis process. Phase 3 to activate the AWCP and Phase 4 was to analyze the CO₂ methanation using the H₂ produced. Figure 3.1 shows the overall workflow of this study.

Figure 3.1: Overall workflow.

3.2 Materials, Chemicals and Equipment

The materials, chemicals and equipment used in this study are tabulated in Table 3.1 and Table 3.2 as shown below.

Table 3	.1: L	list of	materials	
---------	-------	---------	-----------	--

No.	Materials/Chemicals	Source/Info	Purpose of Usage
1	100 PLUS waste beverage cans	Restaurants within Kampar town	To synthesize Al waste can powder
2	Hand Dishwashing Liquid 1.5L	Sunlight Pro Hand Dishwashing Liquid 1.5L, Unilever	To wash the oil content of the aluminum waste cans
3	Commercial aluminium powder, Al (99 % purity)	Bendosen, Malaysia	To compare its hydrolysis performance with that of Al waste can powder
4	Sodium hydroxide, NaOH pellets (99 % purity)	R&M Chemicals, UK	To produce alkaline solutions to speed up Al hydrolysis reaction
5	Barium hydroxide octahydrate, Ba(OH) ₂ .8H ₂ O (98 % purity)	Merck, Germany	To compare its hydrolysis performance with NaOH solution
6	Potassium hydroxide, KOH pellets (99 % purity	R&M Chemicals,UK	To compare its hydrolysis performance with NaOH solution

Table 3.1: Conti

No.	Materials/Chemicals	Source/Info	Purpose of Usage
7	Tap water	Universiti Tunku Abdul Rahman (Kampar)	To dissolve NaOH pellets to produce alkaline solution
8	Distilled water	(Resistivity of 0.3 M Ω cm) produced by Favorit distillation system (W4L WaterStill, Malaysia)	To dissolve NaOH pellets to produce alkaline solution
9	Deionized water	(Resistivity of 10 M Ω ·cm) produced by Elga water purification system (Micra, Republic of Korea)	To dissolve NaOH pellets to produce alkaline solution
10	Ultrapure water	(Resistivity of 18.3 MΩ·cm) produced by Human Corporation water purification system (New Human UP 900, United Kingdom)	To dissolve NaOH pellets to produce alkaline solution
11	Commercial nitrogen gas, N2 (99.999 % purity)	Linde, Malaysia	Used in all purging procedures
12	Commercial carbon dioxide, CO ₂ (99.999 % purity)	Linde, Malaysia	To react with H_2 in methanation reaction
13	Nickel (II) nitrate hexahydrate, Ni(NO3)2.6H2O (>98 % purity)	GENE Chemicals, Malaysia	To systhesize methanation catalyst
14	Palm shell activated carbon, PSAC	Commercial product, unknown	To synthesize methanation catalyst

No.	Materials/Chemicals	Source/Info	Purpose of Usage
15	Tin powder, Sn (<45 μm , 99.8 % purity)	Sigma-Aldrich, United States	To be ball-milled with Al waste can powder as an activation element
16	Lead powder, Pb (200-mesh, 99.9 % purity)	Alfa Aesar, United States	To be ball-milled with Al waste can powder as an activation element
17	Zinc granular, Zn (20-mesh, >99 % purity)	Acros Organics, United States	To be ball-milled with Al waste can powder as an activation element
18	Magnesium powder, Mg (>99 % purity)	SYSTERM, Malaysia	To be ball-milled with Al waste can powder as an activation element
19	Manganese powder, Mn (40-mesh, >99 % purity)	Acros Organics, United States	To be ball-milled with Al waste can powder as an activation element
20	Indium powder, In (100 mesh, 99.9 % purity)	Alfa Aesar, United States	To be ball-milled with Al waste can powder as an activation element

Table 3.2: List of equipment used for the study.	
--	--

No.	Equipment	Brand/Model	Purpose of Usage
1	Disintegrator	Golden Bull Multi-function Disintegrator SY-04 200G	To disintegrate the Al waste can into powder form
2	Ball miller	Pulverisette 4 Vario-Planetary Mill, FRITSCH	To ball mill the Al waste can powder and the added activation element to form Al composite
3	Analytical balance	Shimadzu AY220	To weigh chemical powder
4	Sonicator bath	Cole-Parmer 8890	To sonicate the PSAC and Ni(NO3)2.6H2O for better impregnation
5	Rotary Evaporator	BUCHI Rotavapor R-300	To remove water content of catalyst sample
6	Oven	MEMMET 122AK3002	To dry samples
7	Carbonization unite	SAF Advance Tech	To carbonize the catalyst sample and activate PSAC
8	Command module	SDPROC Aalborg	To control the flow of CO2 gas into gas rig
9	X-ray diffraction (XRD) machine	Shimadzu diffractometer XRD-6000 model	To determine the crystalline structure and phase of the samples

Tabl	le 3.	2:0	Conti	nued.

No.	Equipment	Brand/Model	Purpose of Usage
10	Field-emission scanning electron microscope (FESEM)	JSM 7600F FESEM, JEOL	To conduct structural morphology analyses of the samples
11	Energy Dispersive X-ray Fluorescence (EDXRF) elemental analyzer	Rigaku, Japan	To determine the elemental analysis of the samples
12	Brunauer-Emmett-Teller (BET) machine	Thermo-Finnigan Sorpmatic 1990	To measure the total active surface area of the samples
13	Particle size analyser (PSA)	Mastersizer 2000 Ver. 5.60	To determine the particle size distribution of the samples
14	Gas chromatography machine (GC)	Agilent 6890N (G1540 N) equipped with Varian capillary columns HP-PLOT/Q and HPMOLSIV	To determine the composition of the gas collected from A1/H2O reaction and the H2 purity
15	125 mL stainless steel milling jar	Pulverisette 4 Vario-Planetary Mill, FRITSCH accessories	To content the Al samples for milling purpose
16	5 mm milling balls	Pulverisette 4 Vario-Planetary Mill, FRITSCH accessories	To ball mill the Al samples in the milling machine by collision
17	Metal cutter	Taparia TCS 08	To cut Al waste can into strips

Table	3.2:	Continued	l.

No.	Equipment	Brand/Model	Purpose of Usage
18	Water bath heater	Thermo Scientific Precision GP 20	To heat the conical flask for different reaction temperatures
19	Parafilm (10 cm X 10cm)	Parafilm M	To temporarily seal the mouth of measuring cylinder during inversion process to the basin to prevent water loss

3.3 Preparation of Aluminum Waste Can Powder

100 PLUS beverage aluminum waste cans were used in this study. No other types of waste cans were used to ensure the consistent chemical composition of the cans used in corresponding to the accuracy of the experiment results.

The collected aluminum waste cans were then cleaned with dishwasher to remove any impurities or oil. Then it is washed with tap water and were left to dry under the sun for 1 day. The paints on the dried aluminum waste cans were removed using sandpaper. The aluminum waste cans were cut into strips of rectangular shape (10 cm x 2 cm). They were stored in an air -tight plastic container containing inert stream of N_2 gas.

3.3.1 Disintegration of Aluminum Waste Can Strips

The aluminum waste cans were disintegrated using a disintegrator at a speed of 25000 rpm. During disintegration, the aluminum waste cans were being shredded by blades at high speed to produce fine AWCP. As times goes, the AWCP particle size reduced as disintegration duration prolonged. Immense amount of heat was produced from the high-speed disintegration which further activated the AWCP by removal of inert oxide layer while N₂ was purged into the disintegrator before disintegration started. The strips were disintegrated at different duration of time until a desired fine powder is achieved. The parameter of disintegration time was 1 min, 5 min, 10 min, 15 min and 20 min. The maximum disintegration time was fixed to 20 min due to the device limitation;

the machine was overheated after 20 min of continuous disintegration. The disintegrated particle size of AWCP were analyzed used particle size analyser (PSA) (Mastersizer 2000 Ver. 5.60) to identify the particle size of AWCP produced.

3.3.2 Activation of Aluminum Waste Can Powder

The prepared AWCP was activated with different types of metal via mechanochemical activation and prepared as a composite. A ball mill was used to mechanically activate the powder. The AWCP was ball-milled with the following metals: Tin (Sn), Magnesium (Mg), Zinc (Zn) and Indium (In).

Two types of composites are prepared *i.e.* binary and ternary. Binary composite has one type of new metal and ternary with two types of new metal added to the Al waste can powder. The binary Al composites was prepared by fixing the Al content at not less than 93 wt% of Al and varying the activation metal content from 1, 3, 5 & 7 wt%. Similarly, for ternary composite, Al composites were prepared at no lesser than 94 wt% of Al waste can powder with activation metals of not more than 6 wt%. The metals for ternary study were chosen based on the performance from the binary study. The complete parameters for the binary and ternary composites preparation are shown in Table 3.3.

Binary Composition				
AWCP (99%)	AWCP (96%)	AWCP (95%)	AWCP (93%)	
+	+	+	+	
Metal (1%)	Metal (3%)	Metal (5%)	Metal (7%)	
(Zn/Sn/Mg/In)	(Zn/Sn/Mg/In)	(Zn/Sn/Mg/In)	(Zn/Sn/Mg/In)	
Ternary Composition				
	AWCP (94%) + Combined Metal (6%)			
AWCP (1%	AWCP (1% Sn-5% Mg)		AWCP (1% Sn-5% In)	
AWCP (3% Sn-3% Mg)		AWCP (3% Sn-3% In)		
AWCP (5% Sn-1% Mg)		AWCP (5% Sn-1% In)		

Table 3.3: Composition of binary and ternary AWCP composites.

The ACWP and activation metal powder were weighed according to the compositions as shown in Table 3.3 using a weighing balance. The mixtures were made into composites using a ball mill, then stored in a 125 mL stainless steel milling jar. Stainless steel milling balls of size 5 mm each were placed inside the milling jar at a ratio of 30:1 whereby 0.3 kg of milling balls per 0.1 kg powder. Inert N₂ gas purging was performed at the milling jar before the milling started. The mixtures were milled at speed of 1200 rpm for duration of 60 minutes (Yang et al., 2019). Once milling process ended, the milling jar was cooled down to room temperature before the composites were retrieved and stored. The produced AWCP composites were hydrolyzed immediately in view of aging and oxidation.

3.4 Hydrolysis Setup

The H_2 is produced using a simple water displacement apparatus which consists of a conical flask, measuring cylinder, basin, tubing, rubber seal, and water bath heater (if reaction temperature is required to exceed room temperature). The setup is illustrated in Figure 3.2. A 2 L measuring cylinder was filled with tap water completely. It took about 20 sec to completely fill the cylinder. A semitransparent film (Parafilm) of a size of 10 cm x 10 cm was utilized to temporarily seal the opening of the measuring cylinder to avoid spillage of water when it was placed inverted onto the basin that was also filled partially with tap water. Figure 3.2 shows the actual process image.

Figure 3.2: Water displacement apparatus set-up for Al hydrolysis for H₂ production.

0.5 g of AWCP samples prepared were then added into the conical flask containing 200ml of 1M NaOH solution made from deionized water and it was

sealed with the rubber seal before the reaction starts to prevent loss of gas which will affect the accuracy of the H₂ production rate obtained. The conical flask was connected with a polymeric tubing which extended from top of the rubber seal to the mouth of the measuring cylinder that was inverted so that the gas produced was released inside the inverted measuring cylinder. The H₂ production was measured based on the total volume (mL) of water displaced reflecting ml of H₂ gas produced. The AWCP samples reacted with 200ml of alkaline solution prepared by deionized water which was suggested in section 3.8. Each set of experiment was repeated at least three times. The percentage differences in each result were less than 2 %. An average value was reported.

3.4.1 Hydrolysis Process Optimization

Different types of alkaline solution, different water sources and different temperatures for hydrolysis were studied to investigate for their effect on H₂ production. The concentration of the alkaline solution was fixed at 1 M. The details of the parameter studied are tabulated in Table 3.4. Different parameters such as different water sources, different alkaline solutions, and different duration of disintegration time were studied on effect of total H₂ production volume. The parameters that produced the highest H₂ volume were chosen to be used as the fixed variables in H₂ production system for AWCP, AWCP binary and AWCP ternary composites and also for the batch and continuous methanation.

Process parameter	Details
Type of alkaline solutions	NaOH, Ba(OH)2 and KOH
Hydrolysis temperatures (°C)	25º C, 50ºC, 60ºC, 70ºC, 80ºC and 100ºC
Type of water source	Deionized water, distilled water, ultrapure water and tap water

Table 3.4: Details of the parameter studied for hydrolysis optimization.

3.4.2 Gibbs Free Energy Calculation

The initial and final temperatures of the reaction systems were recorded, and the temperature data was referred to calculate the Gibbs free energy to explain the hydrolysis mechanism. It also indicates the spontaneity of the hydrolysis reactions varied by different Al samples. The Gibbs free energy was calculated based on the equations (Eq. 3.1 and Eq. 3.2):

$$2AI + 6H_2O \rightarrow 2AI(OH)_3 + 3H_2 \tag{3.1}$$

$$\Delta G = \Delta H - T \Delta S \tag{3.2}$$

Whereby,

 $\Delta G = Gibbs$ free energy (kJ/mol)

 ΔH = change in enthalpy (kJ/mol)

 $T = change in temperature (^{o}K)$

 ΔS = change in entropy (J/mol. ^oK)

3.5 Carbon Dioxide Methanation

Figure 3.3 shows the schematic diagram of CO_2 methanation process utilizing H_2 from Al hydrolysis reaction. Figure 3.4 shows actual methanation rig. The CO_2 methanation reaction was carried out in a custom-made fixed-bed reactor (Diameter = 6 mm, Height= 34 cm).

Figure 3.3: Schematic diagram of CO₂ methanation process utilizing H₂ produced from the Al hydrolysis.

Figure 3.4: Actual methanation rig facility at PutraCAT Lab, Universiti Putra Malaysia: (a) Gas Chromatography machine and (b) Methanation Test Rig.

0.5 g of methanation catalyst (15 wt % Ni/PSAC) was inserted into the reactor system sandwiched between two glass wool to hold the catalyst in place (Younas et al., 2016). Then the fixed bed reactor was heated to 220 °C, the temperature was regulated by a temperature sensor using Type-K thermocouple. High purity lab grade CO₂ gas (99.9 %) from gas tank and H₂ generated from AWCP/NaOH/H₂O reaction were introduced in excess into the methanation reactor. The H₂ flowrate from hydrolysis was calculated based on the best optimized hydrolysis process via the water displacement method using AWCP (100%), approximately 170 ml/min. The CO₂ flow rate was fixed at 50ml/min for all the experimental runs.

Both gases were pre-mixed using a gas mixer before entering the reactor system.

The reacted and unreacted gases were collected into a sampling bag for every 5 min interval. The collected gases were characterized using a gas chromatography which is equipped with varian capillary columns HP-PLOT/Q and HP-MOLSIV to determine unreacted H₂, unreacted CO₂, and generated CH₄ to obtain H₂ conversion, CO₂ conversion, CH₄ selectivity and CH₄ conversion. The collected sample was being injected to the gas chromatography. Each GC analysis took about 20 min to obtain the results. Each set of experiments was repeated at least three times. The percentage differences in each result were less than 2 %. An average value was reported.

Two types of conditions were operated for the CO_2 methanation process. A batch and continuous processes were tested. Batch process means a single run of methanation until the 0.5g AWCP is exhausted. Whereas, for the continuous process the methanation reaction was operated in a continuous manner for a duration of 1 hour. In this investigation, the time to re-feed AWCP into the H₂ production system was investigated based on the results obtained in the batch methanation system. The CO₂ methanation was done using the optimized H₂ produced parameters reached in section 3.8.

3.5.1 Preparation of Methanation Catalyst

The methanation catalyst, 15 wt % Ni/PSAC was synthesized based on previous work by Younas et al. (2016). PSAC was selected as the support, while Ni was chosen as the active metal phase of the catalyst. 15%Ni/PSAC was used based

on Younas et al (2016) work. Impregnation of metallic cation Ni^{2+} in the pores of PSAC significantly enhances selectivity and CO₂ adsorption capacity in the PSAC, which is due to the electrostatic interactions between CO₂ and the Ni^{2+} ions (Younas et al., 2016). Figure 3.5 shows the procedural steps for 15 wt % Ni/PSAC catalyst synthesis via wetness impregnation method. Firstly, 15 wt % of nickel nitrate hexahydrate, Ni(NO₃)₂.6H₂O was added to the distilled water to dissolve before 85 wt % PSAC was added into the solution. Then, the mixture was sonicated in a water-bath sonicator. The mixture was evaporated in the rotary evaporator and then dried in the oven overnight. The sample was then calcined using a tubular furnace at 500 °C with a stream of N₂ gas to prevent oxidation of the sample. Finally, the samples were further calcined with argon (Ar) gas at 400 °C to eliminate oxygen (O₂) as Ar is much heavier.

Figure 3.5: Procedural steps for 15 wt % Ni/PSAC catalyst synthesis via wetness impregnation method (Younas et al., 2016).

3.5.2 Catalytic Activity Calculation

The activity of the methanation catalyst is to be determined as it affects the amount of CH_4 produced. The conversion of CO_2 and H_2 , and selectivity and yield of CH_4 are defined Eq. 3.3, 3.4 3.5 and 3.6 as follows:

H₂ conversion, XH₂ (%) =
$$\frac{\text{H2,in} - \text{H2,out}}{\text{H2,in}} \times 100$$
 (3.3)

$$CO_2 \text{ conversion, } XCO_2(\%) = \frac{CO_2, \text{in} - CO_2, \text{out}}{CO_2, \text{in}} \times 100$$
 (3.4)

CH₄ selectivity, SCH₄ (%) =
$$\frac{CH4,out}{CO2,in - CO2,out} \times 100$$
 (3.5)

CH₄ yield, YCH₄ (%) =
$$\frac{XCO_2 \times SCH_4}{100}$$
 (3.6)

Whereby,

 X_{H_2} = conversion for H_2 (%)

 X_{CO2} = conversion for CO₂ (%)

 S_{CH4} = selectivity for CH_4 (%)

 Y_{CH4} = yield for CH₄ (%)

 $CO_{2,in} = inlet CO_2 (ppm)$

 $CO_{2,out} = outlet CO_2 (ppm)$

CH₄,_{out} = generated CH₄ (ppm)

3.6 Characterization

Samples were characterized using Brunauer-Emmett-Teller (BET) Surface Area Measurement (BET), X-ray Diffraction Analysis (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy-dispersive X-ray Fluorescence Spectroscopy (EDXRF), and Particle Size Distribution Analysis (PSA).

3.6.1 X-ray Diffraction Analysis (XRD)

X-ray diffraction (XRD) is the main technique used to obtain information regarding the structure, crystalline phase change and the degree of crystallinity of the catalyst. The samples were analyzed by using a Shimadzu diffractometer XRD-6000 model employing Cu–K_{α} radiation at 30 kV and 30 mA, produced by Philips glass diffraction X-ray tube broad-focused on 2.7 kW. The analysis was carried out at room temperature and performed at 2 θ ranging over 5° to 80° at a scanning rate of 2° per min. The sample was ground and placed on the Al sample holder.

3.6.2 Particle Size Distribution Analysis (PSA)

The particle size distribution of the Al samples powder was analysed by Mastersizer 2000 Ver. 5.60 (Malvern Instruments Ltd., England). Each of the Al samples were tested for its respective refractive index (RI) before particle size analysis. The accessories, optical unit, and computer were switched on prior to the analysis. The beaker was cleaned and filled with 800 mL of distilled water. The Mastersizer software was opened in the computer connected to the machine. Firstly, manual measurement was made using a standard operating procedure (SOP). The sample was then added into the beaker at a speed of 2000 RPM to dissolve the sample in the water. Once the correct amount of sample was added, the "START" button was pressed to initiate the actual measurement. The particle size distribution graph was obtained at the end of the analysis. The analysis was repeated for other Al samples.

3.6.3 Brunauer-Emmet-Teller (BET) Surface Area

The total surface area of the catalysts was measured by using Brunauer– Emmett–Teller (BET) method. The BET analyses were conducted using Thermo–Finnigan Sorpmatic 1990 series by using N₂ adsorption/desorption analysis. A 0.5 g sample minimum was used for analysis. Before the analysis, the sample was degassed at 150 °C for 12 h, by applying the N₂ adsorption/desorption technique on the surface of the catalyst at liquid N₂ temperature of –196 °C and relative pressure (P/P_o) ranging from 0.04 to 0.4, and a linear relationship was kept maintained.

3.6.4 Field Emission Scanning Electron Microscopy (FESEM)

Structural and of the sample was analysed by field-emission scanning electron microscopy (FESEM) with an attached energy dispersive X-ray (EDX) spectrometer. Samples on the sample holder were pre-coated with element platinum (Sb, 99.99% purity) using an auto-fine coater JFC-1600, JEQL. The micrograph was taken using a JSM 7600F FESEM, JEOL with an emission current at 2.00 kV and working distance (WD) at 3.0 mm. The major elements in the catalyst sample were analysed using the EDX spectrometer model EX-230BU, JEOL with an emission current at 15.00 kV and 8.00 mm WD.

3.6.5 Energy-dispersive X-ray Fluorescence Spectroscopy (EDXRF)

Energy Dispersive X-ray Fluorescence (EDXRF) elemental analyzer (Rigaku, Japan) was used to determine the elemental analysis of the samples. An X-ray fluorescence (XRF) was operated at 4 kW was used to determine the elemental composition of the disintegrated ACWP.

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter will review the overall results of the experiment with detailed discussion using the data obtained and scientific explanations to discuss the parameters that affect the hydrolysis performance of the samples. The characterization results on AWCP composites using BET, XRF, XRD and FESEM were discussed thoroughly. The hydrolysis performance of AWCP, AWCP binary composites and AWCP ternary composites were discussed in details. At last, the batch methanation and continuous methanation using H2 produced from AWCP hydrolysis were discussed in this chapter.

4.2 Disintegration of Aluminum Waste Cans

Different disintegration duration (min) will affect the particle size of the AWCP differently. Figure 4.1 (a) to (f) graphically show the particle size distribution of disintegrated AWCP at different disintegration time *i.e.* 1 min, 5 min, 10 min, 15 min, 20min, and lastly for commercial Al. Then, the Al waste can was disintegrated for 1 min, the particle size ranged from 1684-1820 µm. When the

disintegration time was extended to 5 min, the particle size falls in the range of $371-400 \mu m$. When the disintegration time was further extended to 10 min, the particle size was in the range of $118-141 \mu m$. During disintegration, the aluminum waste cans were being shredded by blades at high speed to produce fine AWCP. As times goes, the AWCP particle size reduced as disintegration duration prolonged

Figure 4.1: Particle size distribution for AWCP (a) 1 min (b) 5 min, (c) 10 min and (d) 15 min, (e) 20 min disintegration and (f) commercial Al.

When disintegration time was increased to 15 min, the particle size was within 11-13 μ m. Figure 4.1 (e) and (f) show the particle size distribution of AWCP result from 20 min of disintegration and commercial Al powder. Commercial Al shows a range of 10-150 μ m particle size whereas 20 min of disintegration time was within 0.01-1 μ m. Commercial Al powder was used as a control in this study for comparison. 20 min of disintegration time was chosen for the upcoming experiments as it yielded the smallest size of particles. The disintegration time was stopped at 20th minute due to device limitation. Disintegrated AWCP had better contact and surface area for the hydrolysis reaction to occur due to increased water-to-surface ratio (Yang et al., 2019).

4.3 Optimization of Hydrolysis Process

The AWCP underwent a series of optimization parametric studies on the reaction conditions. Different reaction temperatures were studied with various temperatures: 25 °C, 50 °C, 60 °C, 70 °C, 80 °C and 100 °C. The next parameter studied on the type of alkaline solutions: NaOH, KOH and Ba(OH)₂. Lastly, different types of water sources were experimented on disintegrated AWCP, different water sources had different value of H₂ generation rate and total H₂ volume.

4.3.1 Effect of Different Type of Alkaline Solution

Alkalis NaOH, KOH, and Ba(OH)₂ were selected to study the effect on total H₂ production in hydrolysis using disintegrated AWCP. The hydrolysis process condition was fixed at using 200 mL of 1 M alkaline solution prepared by deionized water. 0.5 g of Al powder was fed into the reaction system at room temperature (25 °C). Figure 4.2 shows the hydrolysis performance of disintegrated AWCP using different types of alkaline solutions. NaOH solution had the highest H₂ production volume due to the amount of available hydroxide ions in the aqueous solution. On the other hand, KOH solution produced 1300 ml placed second, while Ba(OH)₂ generated 1010 ml of H₂ placed last. The NaOH solution required slightly over 28 min induction time compared to KOH with 32 min. In short, Ba(OH)₂ is the weakest alkaline solution which needed a longer induction period. On top of that, some of the AWCP could not complete the hydrolysis reaction in Ba(OH)₂ solution. In conclusion, NaOH is the best alkaline solution for hydrolysis of AWCP due to lower activation energies required.

Figure 4.2: Hydrolysis performance of disintegrated AWCP using different type of alkaline solutions.

4.3.2 Effect of Different Water Source

Figure 4.3 shows the hydrolysis performance of disintegrated AWCP using different types of water sources. Different types of water sources: ultrapure water, deionized water, tap water and distilled water in this parametric study. Each of these water sources was used to make 200 mL of 1.0 M NaOH solution. 1 g of Al powder was fed into hydrolysis reaction system at RTP condition. Deionized water produced highest amount of H_2 (1340 ml) which the hydrolysis process took 28.5 min to complete. By definition, deionized water is a form of mineralized water source. It does not contain any impurities or ions; therefore, no other side reactions would occur.

On the other hand, tap water has impurities that can affect the rate of reaction. Tap water containing chlorine may react with Al to produce aluminum chloride, AlCl₃ which explained the poor hydrolysis performance (Phung, Sethupathi and Piao, 2018). Therefore, tap water is the poorest water source option available for hydrolysis. The lower the resistivity value of the water source, the higher salt concentration available. The higher the salt concentration, the higher the H₂ production rate by theory. Distilled water with resistivity of 0.3 M Ω ·cm should have higher total H₂ production volume compared to deionized water with resistivity of 10 M Ω ·cm because distilled water contains salts and ions (Yang et al., 2019). The trace elements in disintegrated AWCP such as Mn, Si, K Cr, Ga, Cl, Ca, S and P elements. These trace elements may react with the ions and salt found in distilled water. Whereas, ultrapure water has the least amount of salt or ions which are not favourable for hydrolysis.

Figure 4.3: Hydrolysis performance of disintegrated AWCP using different

types of water sources.

4.3.3 Effect of Reaction Temperature

Different reaction temperatures will result in different hydrolysis performance affecting total H₂ production volume and production rate. Different temperature settings: 25°C (RTP), 50°C, 60°C, 70°C, 80°C, and 100°C were experimented on fixed variables of 200 mL of 1.0 M NaOH solution and 1 g of disintegrated AWCP powder. Figure 4.4 shows the hydrolysis performance of disintegrated AWCP at different reaction temperatures (°C). As the reaction temperature increased, the performance of hydrolysis improved. The reaction temperature plays a role in speeding up the reaction rate. However, it does not affect the total H₂ production rate.

Figure 4.4: Hydrolysis performance of disintegrated AWCP at different reaction temperatures (°C).

The higher the reaction temperature, the shorter induction time. At temperatures above 50 °C, the maximum H₂ production of 1340 mL can be produced within 2 to 5 minutes. However, about 30 min was needed to produce the same amount of H₂ at RTP. The Al particles gain more kinetic energy at elevated contributed to more production of H₂ (Yang et al., 2019). However, 25°C room temperature was selected for AWCP hydrolysis as the temperature only speeds up reaction, it did not increase H₂ yield.

4.4 Comparison of Hydrogen Production via Commercial Al and AWCP

Figure 4.5 shows the H₂ production graph of disintegrated AWCP versus commercial Al powder. The hydrolysis process condition was fixed at 200 mL of 1 M NaOH solution prepared in deionized water with 1 g of Al powder at room temperature (25 °C). Disintegrated AWCP produced more H₂ (1340 ml) than that of commercial Al powder (1140 ml). This means, AWCP had 15% more H₂ yield. This can be explained by difference of particle size and BET active surface area values. Disintegrated AWCP has a particle size of 0.01 to 1 μ m with BET value 18.54 m²/g. However, particle size of commercial Al was detected between 10 to 150 μ m with BET value 0.85 m²/g.

Figure 4.5: Hydrogen production of disintegrated AWCP versus commercial Al powder.

4.5 Characterization of AWCP

This session will discuss the results for BET surface area and pore size; x-ray fluorescence spectroscopy (XRF) analysis results; XRD results; and FESEM results of AWCP.

4.5.1 BET Surface Area and Pore Size

The effect of disintegration time (min) on the performance of AWCP was studied by determination of its respective BET active surface area and pore characteristics. Table 4.1 indicates the relationship between disintegration time (min) and the BET active surface area of the disintegrated AWCP and the characteristics of commercial Al. According to the data, the longer the disintegration time, the higher the BET active surface area of AWCP. The highest surface area was obtained by optimized 20 min of disintegration at 25000 rpm. The optimized 20 min-disintegrated AWCP had 18.5 m²/g of multipoint BET surface area, 0.031 cc/g total pore volume and 6.7 nm average pore diameter was reported for AWCP.

Commercial Al powder has BET surface area of 0.8 m²/g. Analysis results showed that AWCP had higher BET surface area values than that of commercial Al. AWCP had higher water-to-surface ratio thus more water was able to penetrate the particle, dissolution of Al was promoted, more H₂ was produced as a result. AWCP was produced using a high-speed medicine blender had higher BET values compared to that reported by Ho and Huang (2016) which reported between 0.08 to 3.2 m^2 /g. Yang et al. (2019) reported BET surface area values between 1.6 to 2.5 m^2 /g for AWCP generated using a magnetic grinder. AWCP containing other trace metals such as Mn, Ga, Ca and Fe helped enhance the total H₂ production volume (Wang et al., 2009).
Table 4.1: BET surface area and the pore characteristics of disintegrated AWCP and commercial Al.

Disintegration time of AWCP (min)	Multipoint BET (m ² /g)	DR Method micropore area (m ² /g)	DR Method micropore area (cc/g)	Total pore volume (cc/g)	Average pore diameter (nm)
1	0.1	0.9	0.001	0.001	0.3
5	0.2	2.3	0.002	0.002	1.3
10	0.3	4.2	0.005	0.006	4.4
15	7.3	10.2	0.007	0.014	5.3
20	18.5	22.5	0.008	0.031	6.7
Commercial Al	0.8	5.3	0.002	0.008	4.6

Gas adsorption has been an important standard procedure to characterize the porous solids and powders. In this study, N₂ adsorption/desorption technique was used to characterize the porous structure of the disintegrated AWCP. Thommes et al. (2015) reported physisorption isotherms can be generally categorized into six different types. Figure 4.6 shows the N_2 adsorption/desorption of AWCP after 20 min of disintegration time. The corresponding N₂ isotherm is a Type IV (a). The BET analysis determines the average pore diameter and DR method micropore width of AWCP produced after 20 min disintegration time are 6.679 nm and 2.241 nm respectively, which its porosity can be classified as mesopores in the context of physisorption. Type IV isotherms are defined by mesoporous adsorbents. The behaviour of the adsorption in mesopores is affected by the interactions between adsorbent and adsorptive, and also the interactions between the molecules in the state of condensation (Thommes et al., 2015). In Type IV (a) isotherm, the capillary condensation is linked by hysteresis which happens when the AWCP pore width exceeded a certain critical width length. This so-called critical width relies on the adsorption system and temperatures. The Type IV(a) isotherm describes the shape of the graph for N₂ isotherm graph in Figure 4.6. It has a Type H5 hysteresis loop, which indicated distinctive form linked to particular pore structures which comprised of both open and partially blocked mesopores (Thommes et al., 2015).

Figure 4.6: N_2 adsorption/desorption of AWCP after 20 min of disintegration time.

4.5.2 X-ray Fluorescence Spectroscopy (XRF)

EDXRF analysis was performed on AWCP to study the elemental composition of the AWCP which the results were shown in Table 4.2. The disintegrated AWCP comprised of 96.2 wt % of Al; 1.35 wt % of Mn; 0.953 wt % of Mg; 0.734 wt % of Fe; 0.315 wt % of Cu and others in trace amount including Si, K, Cr, Ga, Cl, Ca, S and P elements.

Component	Result (mass %)	Intensity
Aluminum (Al)	96.2000	95.1348
Manganese (Mn)	1.3500	3.4336
Magnesium (Mg)	0.9530	0.4830
Iron (Fe)	0.7340	2.9751
Copper (Cu)	0.3150	2.8077
Silicon (Si)	0.1510	0.0559
Potassium (K)	0.0708	0.3774
Zinc (Zn)	0.0630	0.7618
Chromium (Cr)	0.0386	0.0668
Gallium (Ga)	0.0227	0.3084
Chlorine (Cl)	0.0217	0.1280
Calcium (Ca)	0.0140	0.0886
Sulphur (S)	0.0127	0.0632
Potassium (P)	0.0079	0.0354

Table 4.2: EDXRF analysis of disintegrated AWCP produced from 100 PLUS waste cans.

4.5.3 X-ray Diffraction Analysis (XRD)

XRD characterization analysis test was performed on disintegrated AWCP and commercial Al to study crystal structure and crystallinity of the samples. Figure 4.7 illustrated the XRD results of AWCP and commercial Al. For AWCP, the major peaks at 38°, 44°, 65° and 78° were Al components confirmed by JCPDS card number 01-074-1119, while the other micro-peaks indicated other trace

metals. For commercial Al, the major peaks at 38°, 44°, 65° and 78° were identified as Al components and no other micro-peaks similar to that of AWCP was identified signified pure Al content.

Figure 4.7: The major peaks for Al material (degree) and its corresponding intensity (a.u.) for AWCP and commercial Al.

Table 4.3: The major peaks (degree) and its corresponding intensity (a.u.) forAWCP and commercial A1.

Major peak (degree)	Intensity (a.u.) for disintegrated AWCP	Intensity (a.u.) for commercial Al
38°	1717	1488
44°	856	549
65°	508	118
78°	488	117

4.5.4 Field Emission Scanning Electron Microscope (FESEM)

FESEM analysis were performed on AWCP and commercial Al to study topographical and elemental details at magnified levels. Figure 4.8 shows the FESEM images of (a) commercial Al and (b) AWCP. Commercial Al showed a well-distributed structure with numerous pores on its surface, while disintegrated AWCP which was produced by disintegration method has an irregular surface with structure that were flaky in shape. The particles underwent a cold-welding mechanism which homogenizes the mixture of particles. The particles became hardened and fractured into smaller particles which contributed to the flake-like structure (Du Preez and Bessaraboy, 2018).

Figure 4.8: FESEM images of (a) commercial Al and (b) AWCP at 20K magnification.

4.6 Hydrolysis Performance of Binary Al Composites

Upon comparing the commercial and AWCP, it was found that AWCP performed better than commercial Al. To further enhance the performance of AWCP, binary mixtures with other alloy metals was tested. 4 different metals were used *i.e.* Sn, Mg, Zn and In. Mixture ratio was prepared according to literature (du Preez and Bessarabov, 2018).

0.5 g of binary AWCP composites was introduced into the aluminum-water reaction system. The experiment was repeated three times to obtain the average results. Figure 4.9 shows the H₂ production (mL) versus time (sec) of the binary AWCP composites. Table 4.4 indicates the H₂ production performance analysis between AWCP and AWCP binary composites.

Figure 4.9: H₂ production graph of AWCP binary composites: a) AWCP/Sn, b) AWCP/Mg, c) AWCP/In and d) AWCP/Zn.

Sample	Maximum H2 Production Volume (mL/0.5g)	Total Reaction Time Based on 0.5g (sec)	Average Maximum H2 Production Rate (mL/g.sec)
AWCP (100%)	670	1710	0.39
AWCP (99%)	663	1712	0.38
AWCP (97%)	650	1715	0.37
AWCP (95%)	635	1722	0.36
AWCP (93%)	623	1725	0.36
AWCP (1% Sn)	670	360	1.86
AWCP (3% Sn)	680	240	2.83
AWCP (5% Sn)	660	267	2.47
AWCP (7% Sn)	620	360	1.72
AWCP (1% Zn)	660	364	1.81
AWCP (3% Zn)	665	420	1.58

Table 4.4: H₂ production results of AWCP and AWCP binary composites.

Sample	Maximum H2 Production Volume (mL/0.5g)	Total Reaction Time Based on 0.5g (sec)	Average Maximum H2 Production Rate (mL/g.sec)
AWCP (5% Zn)	650	420	1.54
AWCP (7% Zn)	620	240	2.58
AWCP (1% Mg)	655	380	1.72
AWCP (3% Mg)	670	432	1.55
AWCP (5% Mg)	645	540	1.19
AWCP (7% Mg)	630	385	1.63
AWCP (1% In)	660	330	2.00
AWCP (3% In)	675	330	2.04
AWCP (5% In)	640	75	8.53
AWCP (7% In)	620	180	3.44

AWCP binary composites reacted aggressively in alkaline solution between 0th to 20th second, then the reaction increased proportionally with time, and became stable after 100 seconds. AWCP (3% Sn) had the most vigorous reaction with 680 ml H₂ produced which only consumed total of 240 sec only (equivalent to 4 min). AWCP (3% Sn) generated 610 ml, on the other hand, AWCP (3% In) produced 560 ml, measured at 50th second.

For AWCP/Sn composite, the Sn metal promoted micro-galvanic activity between Sn and AWCP which were anode-cathode relationship in aluminumwater reaction. All binary composites had H₂ generation of more than the theoretical H₂ yield 1360 ml. The activation metal increased the H₂ yield and shortened total reaction time. Metals addition in the composite promoted synergistic effect. Disintegration process via medicine blender gave a larger surface area for the AWCP to react with NaOH solution with the Sn metal which can be explained by BET value (19.37 m²/g) of AWCP (3% Sn). For H₂ production volume from the highest to lowest: AWCP (3% Sn) > AWCP (3% In) > AWCP (3% Mg) > AWCP (3% Zn). This is because of the electrode potential difference between Al and activation metal; the larger the electrode potential difference, the higher tendency of Al potential driven towards more active direction, which promoted Al dissolution.

4.7 Characterization of AWCP Binary Composites

The binary AWCP composites were characterized using Brunauer-Emmett-

Teller (BET) Surface Area Measurement (BET), X-ray Diffraction Analysis (XRD), Field Emission Scanning Electron Microscopy (FESEM), and Energydispersive X-ray Fluorescence Spectroscopy (EDXRF).

4.7.1 X-ray Diffraction Analysis (XRD)

XRD analysis was done on AWCP (3% Sn) binary composite to determine intermetallic phases AWCP/Sn. Figure 4.10 shows the XRD result of AWCP (3% Sn) binary composite. The major peaks which were located at degree 38°, 44°, 65° and 78° were Al components with JCPDS card number 01-074-5276. The other micro-peaks were identified Sn metal deposited on Al surface. The XRD analysis confirmed no formation of intermetallic phases which similar conclusion was reported by Preeze and Bessarabov (2018).

Figure 4.10: The XRD patterns of binary AWCP (3% Sn) composite.

4.7.2 Field-emission Scanning Electron Microscope (FESEM)

Figure 4.13 shows FESEM images of AWCP (3% Sn) binary composite with its EDS mappings. The images showed even distribution of Sn on AWCP surface. Commercial Al in Figure 4.8 (a) shows well-distributed structure with numerous pores on its surface. Figure 4.11 shows that the AWCP (3% Sn) surface was flake-like similarly reported in AWCP FESEM analysis. The AWCP (3% Sn) particles underwent particle size reduction. Many deformities and irregularities can be seen for AWCP (3% Sn) composite particles which contributed to increased water-to-surface ratio. Size reduction alone does not guarantee Al particles to be hydrolyzed under ambient conditions. The activation metal must be equally distributed on Al particle's surface which is proved by EDS-mapping. The EDS results reported chemical composition of $3.00 \pm 0.26\%$ Sn, coincided with the pre-determined 3 wt% Sn content in AWCP (3% Sn) binary composite.

Figure 4.11: FESEM micrographs of AWCP (3% Sn) composite at X1500 magnification (a) and at X500 magnification (b); with EDS mappings of AWCP (c) and Sn (d).

4.7.3 BET Surface Area

Among binary composites AWCP, AWCP (3% Sn) had the highest active surface area of 19.37 m²/g. During ball milling process, the particles went through a cold-welding process which homogenized the mixture of particles (Du Preez and Bessarabov, 2018; Yang et al., 2019; Lim et al. 2020). During ball milling process, Al and activation metal cold-welded to one another when ball-to-ball and ball-to-jar collisions happened, forming larger coagulated particles. The larger coagulated particles then divided into smaller particles which homogenize the constituents. After certain period of plastic deformation, the ductile particles hardened and fractured into smaller particles which explained the higher BET surface area (Du Preez and Bessarabov, 2018).

Al samples	BET surface area (m²/g)
Commercial A1	0.475
Disintegrated AWCP	18.54
AWCP (3%Sn)	19.37
AWCP (3%In)	18.83
AWCP (3%Mg)	18.79
AWCP (3%Zn)	18.82

Table 4.5: BET surface area of binary AWCP composites.

4.8 Hydrolysis Performance of Aluminum Ternary Composites

In the synthesis of AWCP ternary composites, Sn, Mg and In metals were selected as they have more significant production H_2 and rate of reaction compared to performance of AWCP binary composite doped with Zn metal. Figure 4.12 (a) and (b) indicated the H_2 production over time graph of AWCP ternary composites. From 0 to 200 seconds of the reaction, all ternary composites were rapid. AWCP (1% Sn-5% In) and AWCP (5% Sn-1% In) showed the highest compared to AWCP (94%) and AWCP (3% Sn-3% In). In terms of total H_2 production volume as shown in Table 4.9, AWCP (3% Sn-3% In) showed the highest total H_2 production volume with 645 ml in 360 sec despite of low H_2 production rate.

Figure 4.12: H₂ production graph over time of AWCP ternary composites (a) AWCP/Sn/Mg and (b) AWCP/Sn/In.

Sample	Maximum H2 Production Volume (mL/0.5g)	Total Reaction Time Based on 0.5g (sec)	Average Maximum H2 Production Rate (mL/g.sec)
AWCP (94%)	629	1720	0.36
AWCP (1%Sn – 5%Mg)	640	360	1.77
AWCP (3%Sn - 3%Mg)	660	660	1.00
AWCP (5%Sn - 1%Mg)	650	92	7.06
AWCP (1%Sn - 5%In)	600	77	7.79
AWCP (3%Sn - 3%In)	645	360	1.79
AWCP (5%Sn - 1%In)	640	95	6.73

Table 4.6: H₂ production results of AWCP and AWCP ternary composites.

For AWCP (3% Sn-3% In) composite, its reaction was slow and steady provided more room for hydrolysis and production of H₂. H₂ production volume did not increase when Sn or In content \geq 5 wt%.

AWCP (3% Sn-3% Mg) ternary composite produced 1320 ml/g H₂ in 660 sec. On the other hand, AWCP (3% Sn-3% In) ternary composite produced 1290 ml/g in 360 sec. In terms of total H₂ production, AWCP (3% Sn-3% Mg) is the best. However, in term of total evolution time required, AWCP (3% Sn-3% In) only required 360 sec to complete the hydrolysis reaction compared to 660 sec by AWCP (3% Sn-3% Mg).

Mg metal (-2.38 V) had a more negative electrode potential compared with Al (-1.663 V). The Mg metal would corrode first during the hydrolysis reaction at localized Al/Mg electrodes. The total H₂ generation was not only contributed by Al hydrolysis, Mg and the other metals in AWCP also suffered hydrolysis reaction. Wang et al. (2014) reported that Mg metal capable producing maximum of 1019 ml/g H₂ at room temperature. The localized Al/Sn would experience micro-galvanic activity. The redox reaction between Al (anode) and Sn (cathode) helped promote Al anodic dissolution. However, AWCP (3% Sn - 3% In) had lower H₂ generation due to electrode potential of In metal is only about -0.34 V. However, the presence of In metal in the composite significantly reduced the total reaction time.

Sample	Activation Method	Temperature	Max. H ₂ Production	Max. H ₂ Yield	Reference
		(°C)	Rate		
Commercial Al	Alkaline -5M KOH	25	12.5 ml/g/min	NR	(Solar et al., 2005)
Commercial Al	Alkaline - Ca(OH) ₂	25	Not reported	90 %	(Liu et al., 2018)
Commercial Al	Ball milling – *4 hr & **7 hr at 200	80	*70 ml	NR	(Razavi-Tousi and
	RPM		**80 ml		Szpunar, 2014)
Al-5%Bi-10%Ga-5%Zn	Ball milling – milling hr and speed NR	25	940 ml/g ~for 900 sec	70 %	(Fan, Xu and Sun,
					2007)
Al-7.5%Bi-2.5%Sn	Ball milling – 3 hr, milling speed NR	35	9.5 ml/g/sec	85 %	(Xiao et al., 2018)
Al-5%Sn-5%In	Ball milling – 0.5 hr at 1500 RPM	25	1346 ml/g ~for 300 sec	99 %	(Du Preez and
					Bessarabov, 2018)
Commercial Al	Alkaline – 1M NaOH	25	1140 ml/g ~for 960 sec	84 %	This study
AWCP (100%)	Ball milling – 1 hr at 1200 RPM	25	1340 ml/g ~for 1710 sec	98.5 %	This study
	Alkaline – 1M NaOH		_		
AWCP (3%Sn)	Ball milling – 1 hr at 1200 RPM	25	1360 ml/g ~for 240 sec	100 %	This study
	Alkaline – 1M NaOH		_		
AWCP (3%Sn-3%Mg)	Ball milling – 1 hr at 1200 RPM	25	1320 ml/g ~for 660 sec	97 %	This study
	Alkaline – 1M NaOH		_		

Table 4.7: Comparison of research outcomes with literature work.

*NR means Not Reported

Table 4.7 shows the comparison between literature work versus experimental outcome for the composites synthesized in this study in term of $_{H2}$ production volume and H_2 yield. AWCP (3%Sn) is the best among the samples in Table 4.7 based on total H_2 production volume 1360 ml/g with H_2 yield 100%. Compared to that of Al-5%Sn-5%In (Du Preez and Bessarabov, 2018), AWCP (3%Sn) not only had the highest H_2 production volume, it had also shortest total H_2 evolution time 240 sec. However, Al-5%Sn-5%In (Du Preez and Bessarabov, 2018) > AWCP (100%) > AWCP (3%Sn-3%Mg) in term of total H_2 production volume.

4.9 Characterization of AWCP Ternary Composites

The AWCP ternary composites were characterized using Brunauer-Emmett-Teller (BET) Surface Area Measurement (BET), X-ray Diffraction Analysis (XRD), Field Emission Scanning Electron Microscopy (FESEM), and Energydispersive X-ray Fluorescence Spectroscopy (EDXRF).

4.9.1 X-ray Diffraction Analysis (XRD)

XRD analysis was performed on AWCP (3%Sn - 3%Mg) ternary composites (refer Figure 4.13) to investigate the formation of intermetallic phases between AWCP, Sn and Mg. The major peaks at 38°, 44°, 65° and 78° were identified as Al component confirmed by JCPDS card number 01-074-5276. The smaller

peaks at 34°, 40°, 58° and 69° indicated Sn metal; while peaks at 30°, 32°, 36° and 44° showed Mg component. Throughout the hydrolysis, the micro-galvanic activity between Al and activation metals will remain elevated. As the AWCP was consumed, the composites would further react to produce H_2 (du Preez and Bessarabov, 2018).

Figure 4.13: The XRD patterns of AWCP (3% Sn-3% Mg) ternary composite.

4.9.2 Field-emission Scanning Electron Microscope (FESEM)

Figure 4.14 shows the FESEM pictures of AWCP (3% Sn-3% Mg) ternary composite. Micrograph showed the distribution of Sn and Mg metals were even on AWCP surface. In the ball milling process, as ball-to-ball and ball-to-jar collisions happened; the AWCP, Sn and Mg were cold-welded to one another. The metals were homogenously distributed across the Al surface and smaller particles were formed due to constant collision and attrition. Moreover, the presence of intermetallic phase between metals promoted hydrolysis activity (du Preez & Bessarabov, 2018). Intermetallic phases between Sn/In and Sn/Mg

enhanced the hydrolysis process and increased total H_2 production volume. EDX result yielded an average chemical composition of 3.63 wt% Sn and 4.32 wt% Mg, well coincided with the predetermined 3 wt% Sn and 3 wt% Mg.

Figure 4.14: FESEM micrographs of AWCP (3% Sn-3% Mg) ternary composite at ×1500 magnification (a) and X500 magnification (b); with EDS mappings of AWCP (c), Mg (d) and Sn (e).

4.9.3 BET Surface Area

Table 4.8 shows the BET surface area value of AWCP ternary composites. AWCP (3% Sn-3% Mg) had the highest BET surface area (19.43 m^2/g). The random collision and aggregation during ball milling produced the random BET surface area.

Table 4.8: BET surface area of ternary AWCP composites.

Al samples	BET surface area (m²/g)
AWCP (3%Sn - 3%Mg)	19.43
AWCP (3%Sn - 3%In)	18.96

4.10 Gibbs Free Energy

The hydrolysis mechanism of the novel synthesized disintegrated Al waste can powder, optimized binary and ternary Al composites was studied in this section. Gibbs free energy (GFE) is defined as the thermodynamic potential energy which can be used to determine the maximum work of a thermodynamic system. The GFE was calculated based on the following equations (Eq. 4.1 and Eq. 4.2):

$$2A1 + 6H_2O \rightarrow 2A1(OH)_3 + 3H_2 \tag{4.1}$$

$$\Delta G = \Delta H - T \Delta S \qquad (4.2)$$

The initial and final temperature of the hydrolysis of each sample were recorded in the experiment as the temperature data using a Hanna Instruments Checktemp digital bimetal thermometer in degree Celsius. The calculated data of Gibbs energy calculation are shown in Table 4.9. The standard-state enthalpy of formation and absolute entropy data for the reactants and products involved in aluminum-water reaction are shown in Table 4.10. The calculation of Gibbs free energy for the reaction using the Al samples aforementioned was based on the assumption of 100 % Al content. The Gibbs free energy calculated for all samples were $\Delta G^0 < 0$, which indicates the reactions were spontaneous and favourable in increasing temperatures. Table 4.9: Hydrolysis results, final temperature and respective Gibbs free energy of AWCP samples.

Al samples (0.5g)	Total reaction time	Hydrogen	Initial	Final temperature	Gibbs free energy,
	based on 0.5g (sec)	production	temperature	(°C)	ΔG (kJ/mol)
		(ml/0.5g)	(°C)		
AWCP (100%)	1710	670	25.0	62.4	-889.06
AWCP (3%Sn)	240	680	25.0	68.5	-889.59
AWCP (3%Sn - 3%Mg)	660	660	25.0	65.9	-889.36

Table 4.10: Standard-state enthalpy of formation and absolute entropy data.

Material	ΔH (kJ/mol)	ΔS (J/mol.K)
Al	0	28.3
H ₂ O	-285.8	69.9
H ₂	0	130.6
Al(OH)3	-1287.4	85.4

In ascending order of Gibbs free energy values, disintegrated ACWP (-889.06 kJ/mol), AWCP (3% Sn- 3% Mg) (-889.36 kJ/mol) and AWCP (3% Sn) (-889.59 kJ/mol). AWCP (3% Sn) had the most spontaneous reaction with the highest GFE among the samples, supported by the total reaction time (sec) data, 4min, the shortest reaction time to produce 1360 ml/g of H₂. Although the ternary AWCP (3% Sn- 3% Mg) composite generated the highest total volume of H₂, 1320 ml/g, the reaction consumed 660 sec.

4.11 Batch Carbon Dioxide Methanation

AWCP (100%), AWCP (97%), AWCP (94%), binary AWCP (3%Sn) composite and ternary AWCP (3%Sn-3%Mg) composite were selected to study batch methanation according to fixed hydrolysis conditions (200 ml of 1 M NaOH solution prepared by deionized water with 1 g Al sample fed at RTP).

Undoped AWCP had longer total reaction time AWCP (100%) compared to AWCP (97%) and AWCP (94%). The addition of 3% and 6% of activation metals (Zn, Mg Sn, or In) in binary and ternary composites, respectively, shortened the total reaction time compared to AWCP that was undoped. As discussed, the activation metals increased H₂ yield and shortened the total induction time. The hydrolysis process by undoped AWCP lasted for less than 30 min on overall.

Figure 4.15 shows the total H_2 and CH_4 production profile for batch CO_2 methanation for selected AWCP samples. In the first 5 min, binary composites generated the highest amount of H_2 , followed by ternary and others. The ternary

and binary composites generated the highest volume of CH₄ compared to the other samples in the first 5 min. But, after 10 minutes, AWCP (3% Sn) stopped producing CH₄.

The undoped AWCP samples (AWCP (100%), AWCP (97%), and AWCP (94%)) continuously produced H₂ for approximately 28.5 min, these samples were continuously supplied H₂ for methanation to occur, leading to additional CH₄ production. Therefore, the undoped AWCP had more total CH₄ volume than the binary and ternary composites. For AWCP (100%), H₂ conversion ranged from 83% - 90%; it increased as H₂ production became less rapid as time went on because of lower GHSV resulted in higher conversion. While CO₂ conversion reduced from 51.3% to 0.5% from 5th – 30th min because more CO₂ were unreacted as less H₂ was produced as time went on. On the other hand, CH₄ selectivity increased when GHSV is low. Lastly, CH₄ yield reduced as less H₂ was produced after the rapid H₂ evolution. Based on Table 4.11, the trend was found similar in the undoped AWCP composites such as AWCP (97%) and AWCP (94%).

For AWCP (3% Sn), the H₂ production stopped at 5th min. Both H₂ and CO₂ conversion were 54.5%, CH₄ selectivity of 53% and lastly CH₄ yield of 28.9% which was higher than that of undosped AWCP composite in terms of CH₄ selectivity and yield. For AWCP (3% Sn – 3% Mg), the H₂ production stopped after 10th min. The H₂ conversion reduced from 82.9% to 75.3%. The CO₂ conversion reduced drastically from 76.6% to 5.7% because H₂ production was almost stopped after 5th min, but minimal H₂ production henceforth. However, the CH4 yield was 30%, slightly higher than that of binary composite due to

lower GHSV. For binary and ternary composites, most of the H₂ gas produced did not react. The unreacted reactant gases passed through the methanation reactor. Sufficient time was not provided for the reactant gases ($CO_2 + H_2$) to react with the catalyst to form CH₄. Therefore, gas hourly space velocity (GHSV) crucially determined the total CH₄ production in methanation based on the flowrate of H₂ produced from each AWCP sample. AWCP (3%Sn -3%Mg) produced slightly higher CH₄ production than AWCP (3% Sn), due to additional 5 min production of H₂. The undoped AWCP with lower GHSV generated much higher amount of total CH₄ because they had longer feed gas time even though the total amount of H₂ produced was lower compared to the composites. Most of the H₂ was not wasted and reacted efficiently to form CH₄. Therefore, gas hourly space velocity (GHSV) crucially determined the total CH₄ production in methanation based on the flowrate of H₂ produced from each AWCP (3%Sn -3% Mg) and ternary AWCP (3% Sn -3% Mg) are 19,951, 144,272 and 50,919 hr⁻¹.

Figure 4.15: Total H_2 and CH_4 production profile for batch CO_2 methanation for selected AWCP samples.

Time	Undoped AWCP												Binary	AWCI)	Ternary AWCP					
(min)	100 wt%				97 wt%				94 wt%					(3%	o Sn)		(3% Sn – 3% Mg)				
	$X_{\rm H2}$	X _{CO2}	$S_{\rm CH4}$	Y_{CH4}	X_{H_2}	X_{CO2}	$S_{\rm CH4}$	Y_{CH4}	$X_{\rm H2}$	X_{CO2}	$S_{\rm CH4}$	Y_{CH4}	$X_{\rm H2}$	X_{CO2}	S _{CH4}	Y_{CH4}	X_{H_2}	X_{CO2}	$S_{\rm CH4}$	Y_{CH4}	
5	83.5	51.3	47.2	24.2	80.9	49.7	45.8	22.8	78.4	47.6	44.4	21.1	54.5	54.5	53.0	28.9	82.9	76.6	39.2	30.0	
10	83.2	16.2	46.4	7.5	80.2	15.6	45.0	7.0	78.2	14.9	43.6	6.5	0	0	0	0	75.3	5.7	41.1	2.3	
15	85.5	8.9	48.8	4.4	82.9	8.6	47.4	4.1	80.3	8.9	45.9	4.1	0	0	0	0	0	0	0	0	
20	86.2	86.2 5.2 48.4 2.5			83.6	5.2	46.9	2.4	81.1	4.5	45.5	2.1	0	0	0	0	0	0	0	0	
25	89.1	1.7	48.4	0.8	86.5	1.7	46.9	0.8	83.8	2.4	45.5	1.1	0	0	0	0	0	0	0	0	
30	90.2	0.5	48.4	0.3	87.5	0.5	46.9	0.2	84.8	0.5	45.5	0.2	0	0	0	0	0	0	0	0	
35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Total	176.9					161.2				147.0				130.9				142.6			
CH_4																					
produced																					
(µmol)																					
Total H ₂		14,1	66.7		13,740.1				13,313.0					14,4	43.0		14,018.4				
produced																					
(µmol)																					

Table 4.11: CH₄ total production and catalytic activity for batch methanation based on 0.5g sample without refeed.

The total amount of H₂ produced did not dictate the amount of CH₄ produced in methanation. Low GHSV is very important for CO₂ methanation reaction as it increased the contact time between the feed and the catalyst. Low GHSV also enhanced the conversion of CO₂ and CH₄ yield (Fan and Tahir, 2021). Albeit AWCP (3%Sn) produced the highest amount of H₂ among all samples, it has the highest GHSV which deters the methanation process and wasted the H₂ generated because a large amount of H₂ did not react with CO₂. In conclusion, the CH₄ production of the selected samples followed this descending trend, AWCP (100%) (176.9 µmol) > AWCP (97%) (161.2 µmol) > AWCP (94%) (147 µmol) > AWCP (3%Sn -3%Mg) (130.9µmol) > AWCP (3%Sn) (142.6 µmol). Chang et al. (2003) reported 35% CO₂ conversion and 30% CH₄ selectivity based on Ni-based catalysts. The reported CH₄ selectivity of 50% was similar to what Younas et al. (2016) reported in his work based on the same Ni-based catalyst. However, Younas et al. (2016) used commercial H₂ to do the methanation process.

4.12 Continuous Carbon Dioxide Methanation

The methanation reaction would be operated in a continuous manner for a duration of 1 hr with a continuous re-feed of AWCP every 5 min.

4.12.1 Continuous Carbon Dioxide Methanation via 5 min Refeed

In continuous study, the selected AWCP samples were introduced within 1 hr of reaction. The activity study was assumed complete upon completion of the

hydrolysis and methanation processes which is 1 hour. Figure 4.22 (a) and (b) shows the continuous hydrolysis of H₂ and production of CH₄ for 1 hr respectively. Based on Fig. 4.16 (b), in the first 5 min, it is noticed that the trend of total amount of CH₄ produced by each sample was alike the one reported in the batch methanation because the first 5 min was by batch process before 0.5g of AWCP sample was re-fed into the system. However, the order of total amount of CH₄ produced has changed. Whereby, AWCP (3%Sn) (1963.7 µmol) > AWCP (100%) (1926.7 µmol) > AWCP (3%Sn-3%Mg) (1821.9 µmol) > AWCP (97%) (1689.1 μ mol) > AWCP (94%) (1481.4 μ mol). For AWCP (100%), the H₂ conversion trend was similar in batch methanation. However, for CO₂ conversion, it increased from 51.3% to 86.6% as H₂ was supplied continuously resulted in H₂ reacted with CO₂ continuously to form CH₄ in reactor. The CH₄ selectivity was remained at 40-50% and CH₄ yield increased to 39.8% as time went on as H₂ was supplied in continuous manner. The trend remained similar for the undoped AWCP composites such as AWCP (97%) and AWCP (94%). For binary AWCP (3% Sn) composite, the H₂ and CO₂ conversion increased from 55% to 76%, CH4 selectivity ranged between 48 -58% and yield between 29.7% to 35.9%. For ternary AWCP (3% Sn – 3% Mg) composite, the H₂ and CO₂ conversion ranged approximately 70% to 80%, CH₄ selectivity from 40% to 50% and yield between 30% to 40%. In batch methanation process, the long residence time made methanation process favorable due to longer residence time for feed gas to form CH₄. However, in continuous methanation process, the AWCP samples were re-fed into the system for every 5 min continuously for a duration of 1 hr. It is theoretically correct that the longer the residence time the feed gas had, the more time for feed gas to form CH₄. However, in continuous methanation, H₂ was continuously fed into the system every 5min, there is more H₂ being introduced for produce more CH₄. Some of the H₂ could have pass the methanation reactor without reaction with catalyst and CO₂. However, not 100% of the unreacted H₂ was removed from the reactor even though the outlet gas was channeled into gas sampling bag for GC analysis for every 5 min. The AWCP binary and ternary composites with higher H₂ production had more unreacted H₂ being left to further react continuously in the reactor, contributing to more formation of CH₄ although with shorter residence time compared to AWCP (97%) and ACWP (94%). ACWP (3% Sn) produced the highest CH₄ among all the candidates which was 1963.7 µmol. Therefore, for continuous methanation study further studies is needed especially on the gas hourly space velocity (GHSV) and different refeed time of Al. This can be explored as the future of this study.

Figure 4.16: (a) H₂ production and (b) CH₄ production (μmol) from continuous CO₂ methanation based on every 5-min re-feed for 1 hr using AWCP (100%), AWCP (97%), AWCP (94%), AWCP (3% Sn) binary composite, and AWCP (3% Sn - 3% Mg) ternary composite.

Time	Undoped AWCP													Binary	AWCI	2	Ternary AWCP			
(min)	100 wt%				97 wt%				94 wt%				(3% Sn)				(3% Sn - 3% Mg)			
	$X_{\rm H2}$	X_{CO_2}	$S_{\rm CH4}$	Y_{CH4}	$X_{\rm H2}$	X_{CO2}	$S_{\rm CH4}$	Y_{CH4}	X_{H_2}	X_{CO_2}	$S_{\rm CH4}$	Y_{CH4}	$X_{\rm H2}$	X_{CO2}	$S_{\rm CH4}$	Y_{CH4}	$X_{\rm H2}$	$X_{\rm CO2}$	S _{CH4}	Y_{CH4}
5	83.5	51.3	47.2	24.2	87.7	53.8	43.0	23.1	75.2	45.6	43.0	21.1	55.0	55.0	54.0	29.7	78.3	72.4	49.7	35.9
10	83.2	67.4	46.4	31.2	78.2	63.2	42.9	27.1	68.7	54.8	42.9	19.6	75.3	75.2	51.1	38.4	81.6	81.6	44.0	35.9
15	85.4	78.1	48.8	38.1	85.6	78.1	42.6	33.2	77.1	70.1	42.6	23.5	69.0	68.9	58.8	40.5	80.2	80.2	51.3	41.1
20	86.0	83.8	41.1	34.4	88.2	85.9	42.4	36.4	80.2	77.4	42.4	29.9	75.2	75.1	51.1	38.4	73.4	73.4	44.4	32.6
25	75.9	75.5	48.4	36.5	77.3	76.9	42.2	32.4	69.5	69.1	42.2	32.8	73.6	73.4	47.1	34.5	76.2	76.2	43.1	32.8
30	83.6	83.6	47.2	39.5	83.0	82.2	42.4	34.8	75.2	74.5	42.4	29.1	74.3	74.3	51.1	38.0	77.9	77.9	46.2	36.0
35	86.0	86.0	46.4	39.8	73.6	72.2	42.2	30.5	65.8	64.5	42.2	31.6	73.1	73.1	50.8	37.1	82.3	82.3	49.3	40.5
40	75.0	75.0	48.8	36.6	76.3	74.7	43.5	32.5	68.7	67.3	43.5	27.2	65.0	65.0	48.8	31.7	75.8	75.8	40.3	30.5
45	83.5	83.5	41.1	34.3	84.7	82.2	43.5	35.7	77.1	75.6	43.5	32.9	73.2	73.3	51.1	37.5	74.3	74.3	40.1	29.7
50	85.6	85.6	47.2	40.4	88.0	86.3	42.2	36.4	80.2	78.6	42.2	33.2	64.4	64.5	55.5	35.8	75.8	75.8	45.1	34.2
55	83.4	83.4	46.3	38.6	86.5	84.7	43.5	36.8	78.9	78.1	46.3	36.1	68.0	67.9	51.1	34.7	73.6	73.9	42.0	31.0
60	85.6	86.6	45.2	38.6	73.4	72.7	43.5	31.6	65.8	65.4	43.5	28.4	76.2	76.2	47.2	35.9	71.8	71.8	45.8	32.9
Total		17	6.9		161.2				147.0				130.9				142.6			
CH_4																				
produced																				
(µmol)																				
Total H ₂	14,166.7				13,740.1				13,313.0				14,443.0				14,018.4			
produced																				
(µmol)																				

Table 4.12: CH₄ total production and catalytic activity for continuous methanation based on 0.5g sample with refeed every 5 min for 1 hr.

CHAPTER 5

CONCLUSION

5.1 Conclusion

The use of AWCP to produce green H_2 in hydrolysis reaction proved feasible for CO₂ methanation to generate value-added CH₄ in both batch and continuous fashion. EDXRF analysis showed that the AWCP comprised of 96.2 wt % of Al and other trace amounts of Mn, Mg, Fe, Cu and others. FESEM showed that the AWCP (3% Sn) surface was flake-like and irregular due to the disintegration method used to prepare the AWCP which was random and high-speed. FESEM showed that for AWCP (3% Sn – 3% Mg), the activation metals Sn/Mg were equally distributed on the disintegrated AWCP surface. AWCP, Sn and Mg were cold-welded to one another as ball-to-ball and ball-to-jar collisions occurred in ball milling process which gave homogenous distribution of activation metals and formation of smaller particles.

The disintegration method using medicine blender was a novel approach successfully synthesized the raw, binary, and ternary composites of
AWCP. Disintegration method increased the BET surface area of AWCP samples and higher H_2 yield compared to commercial Al. The hydrolysis reaction was optimized by studying various factors that affect the hydrolysis results. For disintegration time, the longer the Al samples were exposed to disintegration, the smaller the particle size of Al sample produced, 20 min disintegration time had the smallest particle size of 0.01 to 1 μ m, beyond 20 min was neglected due to device limitation. For alkaline solution, NaOH had the best hydrolysis performance compared to Ba(OH)₂ and KOH due to the availability of hydroxide ions. For type of water source, deionized water was selected among other water sources such as distilled water, ultrapure water and tap water. The hydrolysis process is a success for AWCP samples using 1 g of Al sample in 200ml of 1M NaOH solution prepared by deionized water at room temperature conditions which H_2 production was measured by water displacement method.

The AWCP composites which were synthesized by ball milling method were capable to complete the hydrolysis reaction within 4 to 9 min which is comparably much shorter compared to other literature. The highest yield of H₂ (680 ml) was achieved by AWCP (3 % Sn) binary composite within 240 s with 97 wt% of AWCP content.

Nevertheless, if compared to the wt% of AWCP, the highest yield of H_2 (660 ml) was achieved by the ternary composite AWCP (3 % Sn - 3 % Mg) ternary composite within 660 s with only 94 wt % of AWCP content

in the mixture. The ternary AWCP composites were successfully synthesized with other pure metals via ball milling method at high rotational speed which characterization results showed homogenous distribution across the Al surface. Ternary AWCP (3% Sn – 3% Mg) ternary composite generated the highest amount of H₂.

Batch and continuous methanation was a success using the H₂ produced from AWCP-water reaction. The highest amount of CH₄ produced for batch and continuous was 176.9 μ mol and 1963.7 μ mol respectively using AWCP (100%) and AWCP (3% Sn) respectively. AWCP (3% Sn) had the highest CH₄ production in continuous methanation because it had higher H₂ production and had more unreacted H₂ being left to further react continuously in the reactor, contributing to more formation of CH₄. In continuous methanation, due to the rapid rate of H₂ production, more than 50% of the produced H₂ did not react in the methanation process due to lack of contact time between the reactant gases and catalyst. Low GHSV of the H₂ produced from AWCP was the most significant factor to have high yield of CH₄. This study has given an insight on the feasibility of producing H₂ from pure AWCP and its composites.

5.2 Recommendation for Future Work

The following are recommendations for this research work to be applied in future;

- Investigate other activation method using mechano-activation method such as photocatalyst to split water for H₂ production.
- Utilize H_2 sensor which can provide more accurate H_2 production volume instead of water displacement method.
- Optimize the CO_2 methanation parameters such as pressure, temperature, catalyst and others to improve the CH_4 selectivity resulting in higher CH_4 production rate using Al produced H_2 .
- Different types of methanation catalyst and dosage of catalyst should be tested to optimize the methanation process.
- For continuous methanation study further studies is needed especially on the gas hourly space velocity (GHSV) and different re-feed time of Al.

REFERENCES

- Abe, J.O., Popoola, A.P.I., Ajenifuja, E. and Popoola, O.M. (2019). Hydrogen energy, economy and storage: review and recommendation. *International Journal of Hydrogen Energy*, 44(29), pp.15072-15086.
- Acar, C. and Dincer, I. (2019) 'Review and evaluation of hydrogen production options for better environment', *Journal of Cleaner Production*. Elsevier, 218, pp. 835–849. doi: 10.1016/j.jclepro.2019.02.046.
- Acar, C., Dincer, I. and Naterer, G. F. (2016) 'Review of photocatalytic watersplitting methods for sustainable hydrogen production', *International Journal of Energy Research*. Wiley Online Library, 40(11), pp. 1449– 1473.
- Acar, C. and Dincer, I. (2015). Comparative assessment of hydrogen production methods from renewable and non-renewable sources. *International Journal of Hydrogen Energy*, 39(1), pp.1-12.
- Adans, Y.F., Martins, A.R., Coelho, R.E., Virgens, C.F.D., Ballarini, A.D. and Carvalho, L.S. (2016). A simple way to produce γ-alumina from aluminum cans by precipitation reactions. *Materials Research*, 19(5), pp.977-982.
- Akbari, A. and Omidkhah, M. (2019). Silica-zirconia membrane supported on modified alumina for hydrogen production in steam methane reforming unit. *International Journal of Hydrogen Energy*, 44(31), pp.16698-16706.
- Al-Ogaili, A.S., Al-Shetwi, A.Q., Sudhakar Babu, T., Hoon, Y., Abdullah, M.A., Alhasan, A. and Al-Sharaa, A. (2021). Electric buses in malaysia: Policies, innovations, technologies and life cycle evaluations. *Sustainability*, 13(21), p.11577.
- Aleksandrov, Y.A., Tsyganova, E.I. and Pisarev, A.L. (2003). Reaction of Aluminum with Dilute Aqueous NaOH Solutions. *Russian Journal of General Chemistry*, 73(5).

- Alinejad, B. and Mahmoodi, K. (2009). A novel method for generating hydrogen by hydrolysis of highly activated aluminum nanoparticles in pure water. *International Journal of Hydrogen Energy*, *34*(19), pp.7934-7938.
- Arandiyan, H., Kani, K., Wang, Y., Jiang, B., Kim, J., Yoshino, M., Rezaei, M., Rowan, A.E., Dai, H. and Yamauchi, Y. (2019). Correction to "Highly Selective Reduction of Carbon Dioxide to Methane on Novel Mesoporous Rh Catalysts". ACS Applied Materials & Interfaces, 11(49), pp.46398-46398.
- Belitskus, D. (1970). Reaction of aluminum with sodium hydroxide solution as a source of hydrogen. *Journal of the Electrochemical Society*, *117*(8), pp.1097-1099.
- Ben, H. (2019). 'Silver Science' Turns Aluminium Scrap Into Clean Energy Source In Farm-Shed Reactor. [online] Eandt.theiet.org. Available at: https://eandt.theiet.org/content/articles/2019/08/silver-sciencecreates-diy-zero-carbon-aluminium-hydroxide-reactor-in-a-farm-shed/> [Accessed 30 Jan 2022].
- Bhandari, R., Trudewind, C.A. and Zapp, P. (2014). Life cycle assessment of hydrogen production via electrolysis–a review. *Journal of cleaner production*, 85, pp.151-163.
- Chai, S., Men, Y., Wang, J., Liu, S., Song, Q., An, W. and Kolb, G. (2019).
 Boosting CO₂ methanation activity on Ru/TiO₂ catalysts by exposing (001) facets of anatase TiO₂. *Journal of CO₂ Utilization*, *33*, pp.242-252.
- Chang, F.W., Kuo, M.S., Tsay, M.T. and Hsieh, M.C. (2003). Hydrogenation of CO₂ over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation. *Applied Catalysis A*: General, 247, pp. 309–320.
- Cheng, C., Shen, D., Xiao, R. and Wu, C. (2017). Methanation of syngas (H2/CO) over the different Ni-based catalysts. *Fuel*, 189, pp.419-427.
- Coats, A. and Jones, E. (1982). The European Miracle: Environments, Economies, and Geopolitics in the History of Europe and Asia. *The Economic History Review*, 35(2), p.329.

- da Silva Veras, T., Mozer, T., da Costa Rubim Messeder dos Santos, D. and da Silva César, A. (2017). Hydrogen: Trends, production and characterization of the main process worldwide. *International Journal of Hydrogen Energy*, 42(4), pp.2018-2033.
- Deng, Z.Y., Ferreira, J.M., Tanaka, Y. and Ye, J. (2007). Physicochemical mechanism for the continuous reaction of γ -Al₂O₃-modified aluminum powder with water. *Journal of the American Ceramic Society*, 90(5), pp.1521-1526.
- Deng, Z.Y., Liu, Y.F., Tanaka, Y., Ye, J. and Sakka, Y. (2005). Modification of Al particle surfaces by γ-Al₂O₃ and its effect on the corrosion behavior of Al. *Journal of the American Ceramic Society*, 88(4), pp.977-979.
- Drage, T.C., Smith, K.M., Pevida, C., Arenillas, A. and Snape, C.E. (2009). Development of adsorbent technologies for post-combustion CO₂ capture. *Energy Procedia*, *1*(1), pp.881-884.
- du Preez, S. and Bessarabov, D. (2018). Hydrogen generation by the hydrolysis of mechanochemically activated aluminum-tin-indium composites in pure water. *International Journal of Hydrogen Energy*, 43(46), pp.21398-21413.
- Escobar-Alarcón, L., Iturbe-García, J.L., González-Zavala, F., Solis-Casados, D.A., Pérez-Hernández, R. and Haro-Poniatowski, E. (2019). Hydrogen production by ultrasound assisted liquid laser ablation of Al, Mg and Al-Mg alloys in water. *Applied Surface Science*, 478, pp.189-196.
- El-Emam, R.S. and Özcan, H. (2019). Comprehensive review on the technoeconomics of sustainable large-scale clean hydrogen production. *Journal of Cleaner Production*, 220, pp.593-609.
- Elsarrag, E., Elhoweris, A. and Alhorr, Y. (2017). The production of hydrogen as an alternative energy carrier from aluminium waste. *Energy, Sustainability and Society*, 7(1), p.9.
- Fan, M.Q., Xu, F., Sun, L.X., Zhao, J.N., Jiang, T. and Li, W.X. (2008). Hydrolysis of ball milling Al–Bi–hydride and Al–Bi–salt mixture for hydrogen generation. *Journal of Alloys and Compounds*, 460(1-2), pp.125-129.

- Fan, M., Xu, F. and Sun, L. (2007). Studies on hydrogen generation characteristics of hydrolysis of the ball milling Al-based materials in pure water. *International Journal of Hydrogen Energy*, 32(14), pp.2809-2815.
- Gonzaga, I.M.D., Andrade, A.C.A., Silva, R.S., Salazar-Banda, G.R., Cavalcanti, E.B. and Eguiluz, K.I.B. (2019). Synthesis of high-area chemically modified electrodes using microwave heating. *Chemical Engineering Communications*, 206(5), pp.647-653
- Haryanto, A., Fernando, S., Murali, N. and Adhikari, S. (2005). Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review. *Energy & Fuels*, 19(5), pp.2098-2106.
- The World Bank. (2019). CO₂ emissions (kt) | Data. [online] Available at: https://data.worldbank.org/indicator/EN.ATM.CO2E.KT?end=2014&n ame_desc=false&start=1960&view=chart [Accessed 26 Jan 2022].
- The World Bank. (2019). Total greenhouse gas emissions (kt of CO₂ equivalent) / Data. [online] Available at: https://data.worldbank.org/indicator/EN.ATM.GHGT.KT.CE [Accessed 30 Jan 2022].
- Ghani, W.W.A.K., Salleh, M.A.M., Adam, S.N., Shafri, H.M., Shaharum, S.N., Lim, K.L., Rubinsin, N.J., Lam, H.L., Hasan, A., Samsatli, S. and Tapia, J.F. (2019). Sustainable bio-economy that delivers the environment– food–energy–water nexus objectives: The current status in Malaysia. *Food and Bioproducts Processing*, 118, pp.167-186.
- Global Energy Statistical Yearbook 2019. (2019). Global Natural Gas Production | World gas natural statistics | Enerdata. [online] Available at: https://yearbook.enerdata.net/natural-gas/world-natural-gasproduction-statistics.html [Accessed 1 Jan 2022].
- Global Energy Statistical Yearbook 2019. (2019). World Energy Primary Production | Energy Production | Enerdata. [online] Available at: https://yearbook.enerdata.net/total-energy/world-energyproduction.html [Accessed 26 Jan 2022].
- Haraya, K., Obata, K., Hakuta, T. and Yoshitome, H. (1986). The permeation of gases through a new type polyimide membrane. *International Journal of Hydrogen Energy*, 11(1), pp.48-52.

- Ho, C.Y. and Huang, C.H. (2016). Enhancement of hydrogen generation using waste aluminum cans hydrolysis in low alkaline de-ionized water. *International Journal of Hydrogen Energy*, *41*(6), pp.3741-3747.
- Huang, X., Gao, T., Pan, X., Wei, D., Lv, C., Qin, L. and Huang, Y. (2013). A review: Feasibility of hydrogen generation from the reaction between aluminum and water for fuel cell applications. *Journal of Power Sources*, 229, pp.133-140.
- Huanling, S., Jian, Y., Jun, Z. and Lingjun, C. (2010). Methanation of carbon dioxide over a highly dispersed Ni/La₂O₃ catalyst. *Chinese Journal of Catalysis*, 31, pp. 21–23.
- Jacquemin, M., Beuls, A. and Ruiz, P. (2010). Catalytic production of methane from CO₂ and H₂ at low temperature: Insight on the reaction mechanism. *Catalysis Today*, 157(1-4), pp.462-466.
- Jia, X., Zhang, X., Rui, N., Hu, X. and Liu, C.J. (2019). Structural effect of Ni/ZrO₂ catalyst on CO₂ methanation with enhanced activity. *Applied Catalysis B: Environmental*, 244, pp.159-169.
- Jimenez, J.D., Wen, C. and Lauterbach, J. (2019). Design of highly active cobalt catalysts for CO₂ hydrogenation via the tailoring of surface orientation of nanostructures. *Catalysis Science & Technology*, *9*(8), pp.1970-1978.
- Karagöz, S., Chen, H., Cao, M., Tsotsis, T.T. and Manousiouthakis, V.I. (2019). Multiscale model based design of an energy-intensified novel adsorptive reactor process for the water gas shift reaction. *AIChE Journal*.
- Kaya, M.F., Kahveci, O., Erol, H. and Akkaya, A. (2021). Effect of low B addition on Al-Zn alloy's hydrogen production performance. *International Journal of Hydrogen Energy*, 46(29), pp.15192-15202.
- Khaselev, O., Bansal, A. and Turner, J.A. (2001). High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. *International Journal of Hydrogen Energy*, 26(2), pp.127-132.
- Knoema. (2022). Malaysia CO₂ emissions per capita, 1970-2021 knoema.com. [online] Available at: https://knoema.com/atlas/Malaysia/CO2-emissions-per-capita [Accessed 6 June 2022].

- Kothari, R., Buddhi, D. and Sawhney, R. (2008). Comparison of environmental and economic aspects of various hydrogen production methods. *Renewable and Sustainable Energy Reviews*, 12(2), pp.553-563.
- Kravchenko, O.V., Semenenko, K.N., Bulychev, B.M. and Kalmykov, K.B. (2005). Activation of aluminum metal and its reaction with water. *Journal Alloys Compound*, 397, pp.58–62.
- LeValley, T., Richard, A. and Fan, M. (2014). The progress in water gas shift and steam reforming hydrogen production technologies – A review. *International Journal of Hydrogen Energy*, 39(30), pp.16983-17000.
- Li, W., Liu, Y., Mu, M., Ding, F., Liu, Z., Guo, X. and Song, C. (2019). Organic acid-assisted preparation of highly dispersed Co/ZrO₂ catalysts with superior activity for CO₂ methanation. *Applied Catalysis B: Environmental*, 254, pp.531-540.
- Liang, J., Gao, L.J., Miao, N.N., Chai, Y.J., Wang, N. and Song, X.Q. (2016). Hydrogen generation by reaction of Al–M (M= Fe, Co, Ni) with water. *Energy*, *113*, pp.282-287.
- Li, B., Duan, Y., Luebke, D. and Morreale, B. (2013). Advances in CO₂ capture technology: A patent review. *Applied Energy*, *102*, pp.1439-1447.
- Li, Z., Guo, P., Han, R. and Sun, H. (2019). Current status and development trend of wind power generation-based hydrogen production technology. *Energy Exploration & Exploitation*, *37*(1), pp.5-25.
- Lim, S.T., Sethupathi, S., Alsultan, A.G., Leong, L.K. and Taufiq-Yap, Y.H. (2020). Hydrogen Gas Production Using Aluminum Waste Cans Powder Produced by Disintegration Method. In *Key Engineering Materials* (Vol. 853, pp. 228-234). Trans Tech Publications Ltd.
- Liu, J. et al. (2013). Enhanced low-temperature activity of CO₂ methanation over highly-dispersed Ni/TiO₂ catalyst. *Catalysis Science & Technology*, 3, pp. 2627–2633.
- Liu, H., Yang, F., Yang, B., Zhang, Q., Chai, Y. and Wang, N. (2018). Rapid hydrogen generation through aluminum-water reaction in alkali solution. *Catalysis Today*, *318*, pp.52-58.

- Lodhi, M. (2003). Helio-hydro and helio-thermal production of hydrogen. *International Journal of Hydrogen Energy*.
- Lu, Q., Hou, Y., Laraib, S.R., Khalifa, O., Li, K., Xie, W.L., Cui, M.S. and Yang, Y.P. (2019). Electro-catalytic steam reforming of methane over Ni-CeO₂/γ-Al₂O₃-MgO catalyst. *Fuel Processing Technology*, 192, pp.57-64.
- Martínez, S.S., Sánchez, L.A., Gallegos, A.A.Á. and Sebastian, P.J. (2007). Coupling a PEM fuel cell and the hydrogen generation from aluminum waste cans. *International Journal of Hydrogen Energy*, *32*(15), pp.3159-3162.
- MatWeb Material Property Data. (2019). MatWeb The Online Materials Information Resource. [online] Available at: http://www.matweb.com/search/DataSheet.aspx?MatGUID=aaaabe41a 20a4ed2b48270f7f2ef1b2d&ckck=1 [Accessed 26 Jan 2022].
- Metz, B., Davidson, O., de Coninck, H. C., Loos, M., and. Meyer, L.A. (2005). Carbon Dioxide Capture and Storage. Cambridge University Press: IPCC Special Report, pp.422.
- Miao, B., Ma, S.S.K., Wang, X., Su, H. and Chan, S.H. (2016). Catalysis mechanisms of CO₂ and CO methanation. *Catalysis Science & Technology*, 6(12), pp.4048-4058.
- Muellerlanger, F., Tzimas, E., Kaltschmitt, M. and Peteves, S. (2007). Technoeconomic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. *International Journal of Hydrogen Energy*, 32(16), pp.3797-3810.
- Muradov, N. and Vezirolu, T. (2005). From hydrocarbon to hydrogen-carbon to hydrogen economy. *International Journal of Hydrogen Energy*, 30(3), pp.225-237.
- Mutz, B., Carvalho, H.W.P., Mangold, S., Kleist, W. and Grunwaldt, J.D. (2015). Methanation of CO₂: Structural response of a Ni-based catalyst under fluctuating reaction conditions unraveled by operando spectroscopy. *Journal of Catalysis*, 327, pp. 48–53.

- National Oceanic and Atmospheric Administration. (2019). ESRL Global Monitoring Division - Global Greenhouse Gas Reference Network. [online] Esrl.noaa.gov. Available at: https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/#global [Accessed 1 Jan 2022].
- Newsome, D.S. (1980). The Water-gas Shift Reaction. *Catalysis Reviews Science and Engineering*, 21(2), pp.275-318.
- Ogden, J.M. (1999). Prospects for building a hydrogen energy infrastructure. Annual Review of Energy and the Environment, 24, pp.227–79.
- Phung, K.K., Sethupathi, S. and Piao, C.S. (2018). Production of H₂ from aluminium/water reaction and its potential for CO₂ methanation. In *IOP Conference Series: Earth and Environmental Science* (Vol. 140, No. 1, p. 012020). IOP Publishing.
- Pilavachi, P., Chatzipanagi, A. and Spyropoulou, A. (2009). Evaluation of hydrogen production methods using the Analytic Hierarchy Process. *International Journal of Hydrogen Energy*, 34(13), pp.5294-5303.
- Porciúncula, C.B., Marcilio, N.R., Tessaro, I.C. and Gerchmann, M. (2012). Production of hydrogen in the reaction between aluminum and water in the presence of NaOH and KOH. *Brazilian Journal of Chemical Engineering*, 29(2), pp.337-348.
- Posso, F., Espinoza, J.L., Sánchez, J. and Zalamea, J. (2015). Hydrogen from hydropower in Ecuador: Use and impacts in the transport sector. *International Journal of Hydrogen Energy*, 40(45), pp.15432-15447.
- Rajaura, R. S. *et al.* (2016) 'Role of interlayer spacing and functional group on the hydrogen storage properties of graphene oxide and reduced graphene oxide', *International Journal of Hydrogen Energy*. Elsevier, 41(22), pp. 9454–9461.
- Razavi-Tousi, S.S. and Szpunar, J.A. (2014). Role of ball milling of aluminum powders in promotion of aluminum-water reaction to generate hydrogen. *Metallurgical and Materials Transactions E*, 1(3), pp.247-256.

- Rogelj, J., den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., Riahi, K. and Meinshausen, M. (2016). Paris Agreement climate proposals need a boost to keep warming well below 2 °C. *Nature*, 534(7609), pp.631-639.
- Sakintuna, B., Lamari-Darkrim, F. and Hirscher, M. (2007). Metal hydride materials for solid hydrogen storage: a review. *International Journal of Hydrogen Energy*, *32*(9), pp.1121-1140.
- Sakpal, T.R. (2019). Structure-sensitivity in CO₂ methanation over CeO₂ supported metal catalysts. University of Twente.
- Schaaf, T., Grünig, J., Schuster, M.R., Rothenfluh, T. and Orth, A. (2014). Methanation of CO₂-storage of renewable energy in a gas distribution system. *Energy, Sustainability and Society*, *4*(1), p.2.
- Spath, P.L., Mann, M.K. (2001). Life cycle assessment of hydrogen production via natural gas steam reforming. *National Renewable Energy Laboratory*.
- Soler, L., Macanás, J., Munoz, M. and Casado, J. (2005). Hydrogen generation from aluminum in a non-consumable potassium hydroxide solution. In Proceedings International Hydrogen Energy Congress and Exhibition IHEC (pp. 13-15).
- Soler, L., Macanás, J., Munoz, M. and Casado, J. (2007). Aluminum and aluminum alloys as sources of hydrogen for fuel cell applications. *Journal of Power Sources*, *169*(1), pp.144-149.
- Stockburger, D., Stannard, J.H., Rao, B.M.L., Kobasz, W. and Tuck, C.D. (1992). On-line hydrogen generation from aluminum in an alkaline solution. In *Proc Symp Hydrogen Storage Mater Batteries Electrochem* (Vol. 92, No. 5, pp. 431-44).
- TheStar. (2020). Chinese-made buses boost green public transport in Sarawak. [online] Available at: <2020. [online] Available at: <https://www.thestar.com.my/news/regional/2020/01/21/chinesemade-buses-boost-green-public-transport-in-sarawak> [Accessed 29 April 2020].> [Accessed 29 Jan 2022].
- Thomas, D.C. and Benson, S.M. eds. (2005). Carbon Dioxide Capture for Storage in Deep Geologic Formations-Results from the CO₂ Capture

Project: Vol 1-Capture and Separation of Carbon Dioxide from Combustion, Vol 2-Geologic Storage of Carbon Dioxide with Monitoring and Verification. Elsevier.

- Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J. and Sing, K.S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). *Pure and Applied Chemistry*, 87(9-10), pp.1051-1069.
- Tzimas, E., Filiou, C., Peteves, S.D. and Veyret, J.B. (2003). Hydrogen storage: state-of-the-art and future perspective. *EU Commission, JRC Petten, EUR 20995EN*, pp.1511-1519.
- United Nations Framework Convention On Climate Change. (2015). Paris Agreement, FCCC/CP/2015/L.9/Rev.1. Conference of the Parties, 21st session, 30 Nov – 11 Dec 2015, Paris.
- United Nations Framework Convention On Climate Change. (2019). The Paris Agreement / UNFCCC. [online] Available at: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement [Accessed 30 Jan 2022].
- United States Environmental Protection Agency (EPA). (2019). Sources of Greenhouse Gas Emissions | US EPA. [online] Available at: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions [Accessed 26 Jan 2022].
- Vega, F., Cano, M., Camino, S., Fernández, L.M.G., Portillo, E. and Navarrete, B. (2018). Solvents for Carbon Dioxide Capture. *Carbon Dioxide Chemistry, Capture and Oil Recovery*, p.141.
- Vrijburg, W.L., van Helden, J.W., Parastaev, A., Groeneveld, E., Pidko, E.A. and Hensen, E.J. (2019). Ceria–zirconia encapsulated Ni nanoparticles for CO₂ methanation. *Catalysis Science & Technology*, 9(18), pp.5001-5010.
- Wang, Q., Luo, C., Li, X., Ding, H., Shen, C., Cao, D. and Zhang, L. (2019). Development of LaFeO3 modified with potassium as catalyst for coal char CO2 gasification. *Journal of CO₂ Utilization*, 32, pp.163-169.

- Wang, H., Leung, D., Leung, M. and Ni, M. (2009). A review on hydrogen production using aluminum and aluminum alloys. *Renewable and Sustainable Energy Reviews*, 13(4), pp.845-853.
- Xiao, F., Guo, Y., Li, J. and Yang, R. (2018). Hydrogen generation from hydrolysis of activated aluminum composites in tap water. *Energy*, *157*, pp.608-614.
- Yang, H., Zhang, H., Peng, R., Zhang, S., Huang, X. and Zhao, Z. (2019). Highly efficient hydrolysis of magnetic milled powder from waste aluminum (Al) cans with low-concentrated alkaline solution for hydrogen generation. *International Journal of Energy Research*, 43(9), pp.4797-4806.
- Younas, M., Leong, L.K., Mohamed, A.R. and Sethupathi, S. (2016). CO₂ adsorption by modified palm shell activated carbon (PSAC) via chemical and physical activation and metal impregnation. *Chemical Engineering Communications*, 203(11), pp.1455-1463.
- Younas, M., Loong Kong, L., Bashir, M., Nadeem, H., Shehzad, A. and Sethupathi, S. (2016). Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO₂. *Energy & Fuels*, 30(11), pp.8815-8831.
- Yu, Z.Y., Duan, Y., Feng, X.Y., Yu, X., Gao, M.R. and Yu, S.H. (2021). Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. *Advanced Materials*, *33*(31), p.2007100.
- Yu, C.H., Huang, C.H. and Tan, C.S. (2012). A review of CO₂ capture by absorption and adsorption. *Aerosol Air Quality Retoration*, *12*(5), pp.745-769.
- Zhang, J. et al. (2014). Low-temperature methanation of syngas in slurry phase over Zr-doped Ni/ γ -Al₂O₃ catalysts prepared using different methods. *Fuel*, 132, pp. 211–218.
- Zhang, F., Edalati, K., Arita, M. and Horita, Z. (2018). Hydrolytic hydrogen production on Al–Sn–Zn alloys processed by high-pressure torsion. *Materials*, 11(7), p.1209.
- Zhao, C., Xu, F., Sun, L., Chen, J., Guo, X., Yan, E., Yu, F., Chu, H., Peng, H., Zou, Y. and Liu, Z. (2019). A novel AlBiOCl composite for hydrogen

generation from water. *International Journal of Hydrogen Energy*, 44(13), pp.6655-6662.

,

APPENDICES

Appendix 1: GC result of AWCP (100%).

	A (1 / DALY (MEEN (MERNIE)	3.0	pampie Name: A
Injection Date Sample Name Acq. Operator Acq. Instrumen Method Last changed Butane Method	<pre>> : 1/16/2020 11:37:55 : ALRAW1 : ALEX t : Instrument 1 : C\HPCHEM\1\METHOI : 12/12/2019 1:16:40</pre>	AM Location : Vial Inj : 1 Inj Volume : Exte DS\QIST.M PM by ADIRA	 1 1 xrnal
TCD2 B,	(ALEX/ALRAW100.D)		
2500			
4000-			
3500			
3000-		<u> </u>	
2500-		1	
1000			
1500-			
1			
1000-			
		보	
500-		22	
	<u>^</u>	بمبيبة تالبا لاب	
	2 4	6 8 10	12 14 15 min
	External Star	dard Report	
Ported Bu	. Rianal		
Sorces by	dified : Thursd	May, December 12, 2019 1:15:45 P	м
Calib. Data Mo	1		
Calib. Data Mo Multiplier Dilution	: 1.0000		
Calib. Data Mo Multiplier Dilution Sample Amount	: 1.0000 : 1.0000 : 1.0000	0 [ppm] (not used in calc.)	
Calib. Data Mo Multiplier Dilution Sample Amount Use Multiplie	: 1.0000 : 1.0000 : 1.0000 : 5 Dilution Factor wi	0 [ppm] (not used in calc.) th ISTDs	
Calib. Data Mo Multiplier Dilution Sample Amount Use Multiplie: Signal 1: TCD2	: 1.0000 : 1.0000 : 1.0000 : 5 Dilution Factor wi B,	0 [ppm] (not used in calc.) th ISTDs	
Calib. Data Mo Multiplier Dilution Sample Amount Use Multiplie Signal 1: TCD2 RetTime Type [min]	: 1.0000 : 1.0000 : 1.0000 : 5 Dilution Factor wi B, Area Amt/Area [25 uV*a]	0 [ppm] (not used in calc.) th ISTDs Amount Grp Name	
Calib. Data Mo Multiplier Dilution Sample Amount Use Multiplie Signal 1: TCD2 RetTime Type [min]	: 1.0000 : 1.0000 : 1.0000 : 5 Dilution Factor wi B, Area Amt/Area [25 uV*s]	0 [ppm] (not used in calc.) th ISTDs Amount Grp Name [ppm]	
Callb. Data Mo Multiplier Dilution Sample Amount Use Multiplie Signal 1: TCD2 RetTime Type [min] 4.710 7.779 BB	: 1.0000 : 1.0000 : 1.0000 : 5 Dilution Factor wi B, Area Amt/Area [25 uV*s] 	0 [ppm] (not used in calc.) th ISTDs Amount Grp Name [ppm] 	
Callb. Data Mo Multiplier Dilution Sample Amount Use Multiplie Signal 1: TCD2 RetTime Type [min] 4.710 7.779 BB 11.496	: 1.0000 : 1.0000 : 1.0000 : 5 Dilution Factor wi B, Area Amt/Area [25 uV*s] 	0 [ppm] (not used in calc.) th ISTDs Amount Grp Name [ppm] 	
Calib. Data Mo Multiplier Dilution Sample Amount Use Multiplie. Signal 1: TCD2 RetTime Type [min] 4.710 7.779 BB 11.496 16.442	: 1.0000 : 1.0000 : 1.0000 : 5 Dilution Factor wi B, Area Amt/Area [25 uV*s] 	0 [ppm] (not used in calc.) th ISTDs A Amount Grp Name [ppm] 	
Calib. Data Mo Multiplier Dilution Sample Amount Use Multiplie. Signal 1: TCD2 RetTime Type [min] 4.710 7.779 BB 11.496 16.442 Totals :	: 1.0000 : 1.0000 : 1.0000 : 5 Dilution Factor wi B, Area Amt/Area [25 uV*s]]	0 [ppm] (not used in calc.) th ISTDs A Amount Grp Name [ppm] 	
Calib. Data Mo Multiplier Dilution Sample Amount Use Multiplie: Signal 1: TCD2 RetTime Type [min] 4.710 7.779 BB 11.496 16.442 Totals : Results obta 1 Warnings or	: 1.0000 : 1.0000 : 1.0000 : 5 Dilution Factor wi B, Area Amt/Area [25 uV*s] 	0 [ppm] (not used in calc.) th ISTDs A Amount Grp Name [ppm] 	
Calib. Data Mo Multiplier Dilution Sample Amount Use Multiplie: Signal 1: TCD2 RetTime Type [min] 4.710 7.779 BB 11.496 16.442 Totals : Results obta 1 Warnings or Warning : Cali	: 1.0000 : 1.0000 : 1.0000 : 5 Dilution Factor wi B, Area Amt/Area [25 uV*s] 113.59403 505.1199 ined with enhanced int Errors : brated compound(s) not	0 [ppm] (not used in calc.) th ISTDs A Amount Grp Name [ppm] - CO2 9 5.73808e4 H2 - CO 5.73808e4 - CO 5.73808e4 egrator! t found	

Appendix 2: GC result of AWCP (3% Sn).

Injection Date Sample Name Acq Operator Acq. Instrument Method Last changed Butane Nethod	: 1/16/2020 2:23:01 P : AL3SN3 : ALEX : Instrument 1 : C\HFCHEM\1\METHOD : 12/12/2019 1:16:40	M Le S\QISTM Inj PM by ADIRA	cation : Vial 1 Inj : 1 Volume : External	
TCD2 B, (ALE	EXAL38N300.0)			
25 oV				
4000				
3500				
3000				
2500				
2000				
1500				
1000				
500	15.1	770-H2		
				to be the second s
	-2 -4			1415_ md
	2 4 External Stand	lard Report		1435mad
Sorted By Calib. Data Modif Multiplier Silution Sample Amount Use Multiplier 1	Z 4 External Stand fied : Thurada : 1.0000 : 1.0000 Dilution Factor wit	lard Nepart by, December 12, [ppm] (not u h ISTDa	2019 1:15:45 PM	14 35 mid
Sorted By Calib. Data Modif Multiplier Dilution Sample Amount Dae Multiplier & Signel 1: TCD2 B,	External Stand External Stand Fled : Thurada : 1.0000 : 1.00000 Dilution Factor wit	lard Report Ny, December 12, [ppm] (not u h ISTDa	2019 1:1545 PM	14 35 mid
Sorted By Calib Data Modif Multiplier Signel Amount One Multiplier a Signel 1: TCD2 B, RetTime Type [min] [External Stand External Stand fled : Thursda : 1.0000 Dilution Factor wit Area Ant/Area 25 uV*s]	ard Nepart y, December 12, [ppm] (not u h ISTDa Amount Grp [ppm]	2019 1:15:45 PM med in calc.) Name	1425md
Sorted By Calib. Data Modif Multiplier Oliution Sample Amount Ose Multiplier a Signal 1: TCD2 B, RetTime Type [min] 4.710 7.770 BB 11.496 16.442	External Stand External Stand Fled : Thursda : 1.0000 : 1.0000 Dilution Factor wit Area Ant/Area 25 uV*a] 113.59657 505.11199	Anount Grp 1	2019 1:15:45 PM Wed in calc.) Name	1435md
Sorted By Calib. Data Modif Multiplier Signal Amount One Multiplier a Signal 1: TCD2 B, RetTime Type [min] [4.710 7.770 BB 11.496 16.442 Totals :	External Stan: External Stan: Fied : Signal 1.0000 1.0000 Dilution Factor wit Area Ant/Area 25 uV*al 113.59657 505.11199 	Amount Grp 1 1 1 1 1 1 1 1 1 1 1 1 1	2019 1:15:45 PM Wed in calc.) Name	1435mad
Sorted By Calib. Data Modif Multiplier Ollution Sample Amount Ose Multiplier i Signal 1: TCD2 B, RetTime Type [min] 4.710 7.770 BB 11.496 16.442 Totale : Results obtaine I Marnings or Er	External Stand External Stand Fled : Thurada : 1.0000 Dilution Factor wit Area Ant/Area 25 uV*s] 11359657 505.11199 	Amount Grp 1 1 1 1 1 1 1 1 1 1 1 1 1	2019 1:1545 PM Wed in calc.) Name	1455mid
Sorted By Calib. Data Modif Multiplier Dilution Sample Amount Use Multiplier & Signal 1: TCD2 B, RetTime Type [min] [4.710 7.770 BB 11.496 16.442 Totale : Results obtaine 1 Marning : Calibré	External Stand External Stand Fied : Signal 1.0000 Dilution Factor wit Axea Ant/Area 25 uV*al 113.59657 505.11199 	Amount Grp 1 1 1 1 1 1 1 1 1 1 1 1 1	2019 1:15:45 PM med in calc.) Name	145

Samp	ole Informatio	n						
Samp	le name	Al3%Sn						
Filen	ame	ITAR Metal I	ouvle & 13% Sec					
Annli	eation	UTAP Metal I	owde up rush					
Dete	cation	El CIAR Metal I	22.024					
Date		5/6/2020 4:46:	22 PM					
Analy	zed by	RGSC						
Count	s	1						
Comn	nent							
	1 born							
Analy	vzed result(FF	method)		A			-	
No.	Component	Result	Unit	Stat. Err.	LLD	LLQ	Element lir	he Intensity(cps/mA
1	Mg	0.897	mass%	0.0072	0.0071	0.0213	4: Mg-Ka	180.122
2	AI	91.4	mass%	0.0005		0.0084		1 53 3 50
3	Si	0.438	mass%	0.0025	0.0024	0.0071	4: Si-Kα	152.370
4	Р	0.0169	mass%	0.0003	0.0004	0.0013	4: P-Kα	14.907
5	S	0.0127	mass%	0.0002	0.0004	0.0011	4: S-Kα	20.888
6	Ti	0.0541	mass%	0.0009	0.0018	0.0054	3: Ti-Kα	43.867
7	v	0.0066	mass%	0.0003	0.0007	0.0020	3: V-Kα	8.136
8	Cr	0.0320	mass%	0.0004	0.0006	0.0019	3: Cr-Kα	61.881
9	Mn	1.83	mass%	0.0031	0.0009	0.0027	2: Mn-Kα	1177.029
10	Fe	0.933	mass%	0.0019	0.0033	0.0098	2: Fe-Kα	937.359
11	Co	0.0089	mass%	0.0005	0.0013	0.0039	2: Co-Ka	12.375
12	Ni	0.0159	mass%	0.0002	0.0003	0.0010	2: Ni-Kα	31.578
13	Cu	0.425	mass%	0.0011	0.0003	0.0010	2: Cu-Ka	1124.702
14	Zn	0.107	mass%	0.0004	0.0002	0.0007	2: Zn-Kα	390.598
15	Ga	0.0350	mass%	0.0002	0.0002	0.0007	2: Ga-Kα	162.740
16	Ge	ND	mass%					
17	As	0.0008	mass%	< 0.0001	0.0002	0.0005	2: As-Kβ1	1.139
18	Se	ND	mass%					
19	Nb	ND	mass%					
20	Mo	ND	mass%					
21	Ru	ND	mass%					
22	Rh	ND	mass%					
23	Pd	ND	mass%					
24	Ag	ND	mass%					
25	Cd	ND	mass%					
26	In	ND	mass%					
27	Sn	3.71	mass%	0.0052	0.0072	0.0217	1: Sn-Ka	2511.099
28	Sb	ND	mass%					
29	La	ND	mass%					
30	Ce	ND	mass%					
31	Pr	ND	mass%					
32	Nd	ND	mass%					
33	Hf	(0.0080)	mass%	0.0010	0.0029	0.0087	2: Hf-Lα	7.416
34	Ta	(0.0033)	mass%	0.0007	0.0020	0.0061	2: Ta-La	3.812
35	W	ND	mass%					
36	Ir	0.0030	mass%	0.0002	0.0004	0.0013	2: Ir-La	5.530
37	Pt	0.0024	mass%	0.0001	0.0002	0.0007	2: Pt-La	5.385
38	Au	0.0038	mass%	0.0001	0.0003	0.0009	2: Au-La	10.005
39	Hg	ND	mass%					
40	TI	0.0025	mass%	< 0.0001	< 0.0001	<0.0001	2: TI-La	8.413
41	Pb	0.0086	mass%	0.0001	0.0003	0.0010	2: Pb-LB1	39.617
42	Bi	ND	mass%					
		. 167						

Appendix 3: XRF result on elemental composition of AWCP (3% Sn).

Appendix 4: XRF result on elemental spectrum of AWCP (3% Sn).

1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0 6

Cu

RX9

Analyzed res	ult	I	Page 2/2
Sample Informat	ion		
Sample name File name Application Date Analyzed by Counts Comment	Al3%Sn UTAR Metal PowdeAl3%Sn UTAR Metal Powde 5/6/2020 4:46:22 PM RGSC 1		
Spectrum			
cps/mA			
1.0 X 300	0 X 200	x 50	X 40
			Ť.
وم من کلہ 1.6 میں کلہ 1.6 میں	Sn-La Sn-La		
be 0.4-			
0.2-			

10

Мо

8

14

12

20 25 30

AI

35

keV

Appendix 5: XRD result of AWCP (100%).

Match! Phase Analysis Report

Universiti Tunku Abdul Rahman, Faculty of Science

Sample: AL01 ()

Sample Data File name File path Data collected Data range Original data range Number of points Step size Rietveid refinement converged Alpha2 subtracted Background subtr. Data smoothed 2theta correction Radiation Wavelength

LST_AL01.ORG C:hxddat/Standard/LST_AL01 Mar 14, 2019 16:20:56 10.110° - 80.110° 10.000° - 80.000° 3501 0.020 No No No No No O.11° X-rays 1.540600 Å

Matched Phases

A	Amount (%) 88.1 11.9	Name Aluminum Hydroxide Bayerite Unidentified peak area	Formula sum AI (O H)3
A: Alumi Bayerite Formula Entry nur Figure-of Total num Peaks in Peaks in Peaks in Peaks in Intensity Space gr Crystal s Unit cell I/IC Calc. der Reference	Inum Hydroxide (88.1%) sum mber 	AI (O H)3 01-074-1119 0.876722 198 198 21 0.53 P21/a monoclinic a= 5.0620 A b= 8.6710 A c 1.33 2.505 g/cm ³ Rothbauer, R., Zigan, F., O' (1967)	= 4.7130 Å β= 90.270 ° Daniel, H., Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 125 , 317

Candidates

Appendix 6: XRD pattern of AWCP (100%).

Diffraction Pattern Graphics

Appendix 7: PSA analysis of commercial Al and ACWP (100%).

Referen Instruments (2). Referen, UK Tel 2+ +[44] (2) 3584-092436 Rex +[44] (0) 3584-092299 Madember 2000 Ver. 5.60 Serial Number : MAL1060483 Rie name: RIST 2018/mee Record Number: 762 13/10/2019 9:45:45 AM

Appendix 8: BET analysis summary report of ACWP (3% Sn).

Full Report Set

MicroActive for TriStar II Plus 2.03

MicroActive for TriStar II Plus Version 2.03 Serial # 384 Unit 1 Port 2

Page 1

Sample: 000-368 Operator: NAZRUL Submitter: ABDUL KAREEM File: C:Users/BET\Documents\ABD...\3% SN (ABDUL KAREEM).SMP

Started: 2/26/2020 5:36:49 PM Completed: 2/26/2020 10:06:39 PM Report Time: 2/27/2020 9:54:38 AM Sample Mass: 0.3359 g Cold Free Space: 48.4949 cm³ Low Pressure Dose: None Automatic Degas: No Analysis Adsorptive: N2 Analysis Bath Temp.: -195.800 °C Thermal Correction: No Warm Free Space: 15.7668 cm³ Measured Equilibration Interval: 5 s Sample Density: 1.000 g/cm³

Summary Report

Surface Area

Single point surface area at p/p° = 0.299467776: 18.8965 m²/g

BET Surface Area: 19.3702 m²/g

Langmuir Surface Area: 19.6149 m²/g

t-Plot External Surface Area: 20.9222 m²/g

Pore Volume

Single point adsorption total pore volume of pores less than 1.1445 nm width at p/p° = 0.010205277: 0.000105 cm³/g

Single point desorption total pore volume of pores less than 20.6503 nm width at p/p° = 0.900000000: 0.007482 cm³/g

Pore Size

Adsorption average pore diameter (4V/A by BET): 0.20673 nm

Desorption average pore diameter (4V/A by BET): 14.77815 nm

BJH Adsorption average pore width (4V/A): 5.0799 nm

BJH Desorption average pore width (4V/A): 5.0258 nm

Appendix 9: BET isotherm linear plot of ACWP (3% Sn).

Appendix 10: BET analysis sample log message at PutraCat Lab, Universiti Putra Malaysia (UPM).

Sample log				
Date	Time	Log Message		
2/26/2020	5:36:49 PM	Started analysis of file 3% SN (ABDUL KAREEM).SMP on port 2.		
2/26/2020	5:36:49 PM	System volume: 13.5999 cm ³		
2/26/2020	5:47:31 PM	Pressure transducer zeroed.		
2/26/2020	5:57:49 PM	Measured free space on port 2, Warm: 15.0049 cm ³ , Cold: 47.7331 cm ³		
2/26/2020	6:09:45 PM	Pressure transducer zeroed.		
2/26/2020	6:09:45 PM	Starting p° in p° tube measurement.		
2/26/2020	7:41:29 PM	p° over Sample is 758.91 mmHg.		
2/26/2020	7:41:28 PM	Measured p ^e over sample: 758.91443 mmHg		
2/26/2020	10:06:39 PM	Finished a sample analysis for C:\Users\BET\Documents\ABD\3% SN (ABDUL KAREEM).SMP on port 2.		

Appendix 11: Gibbs Free Energy Calculation.

For example, the Gibbs free energy calculation for disintegrated AWCP is as follows:

$$\Delta H^{0} = \sum H_{f^{0}} (Products) - \sum H_{f^{0}} (Reactants)$$
$$= [2(-1287.40) + 3(0)] - [2(0) + 6(-285.90)]$$
$$= -860 \text{ kJ/mol}$$

$$\Delta S^{0} = \sum S^{0} (Products) - \sum S^{0} (Reactants)$$
$$= [2(85.40) + 3(130.60)] - [2(28.30) + 6(69.90)]$$
$$= 86.6 \text{ J/mol.K}$$

$$\Delta G_{298.15}^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

= -860 kJ/mol - (298.15K) (86.6/1000 kJ/mol.K)
= -885.82 kJ/mol

 $\Delta G_{335.55}{}^{\textbf{o}} = \Delta H_{298.15}{}^{\textbf{o}}$ - T $\Delta S_{298.15}{}^{\textbf{o}}$

= -860 kJ/mol - (335.55K) (86.6/1000 kJ/mol.K)

=-889.06 kJ/mol (disintegrated AWCP)

Appendix 12: Example of catalytic activity calculation for CO₂ methanation.

CO₂ conversion, X_{CO2} (%) = (CO₂,in - CO₂,out)/(CO₂,in) x 100

= (7140-3477)/7140 x 100

= 51.3 %

CH₄ selectivity, S_{CH4} (%) = (CH4,out)/(CO2,in - CO2,out) x 100

= 1730.0631/(0.7140-0.3477) x 100

= 47.232 %

CH₄ yield, Y_{CH4} (%) = ($X_{CO2} \times S_{CH4}$)/100

= (51.3 X 47.232)/100

= 24.230 %

Appendix 12: Composition definition of AWCP and its composites.

Sample	Definition
0.5g AWCP (100%)	0.5g AWCP*
0.5g AWCP (97%)	0.485g AWCP
0.5g AWCP (3% Sn)	0.485g AWCP + 0.015g Sn
0.5g AWCP (3% Sn – 3% Mg)	$0.47 ext{g AWCP} + 0.015 ext{g Sn} + 0.015 ext{g Mg}$

*AWCP (optimized condition: disintegrated for 20min) in 1M NaOH solution prepared by deionized water at STP conditions.

LIST OF PUBLICATION

No.	Туре	Title	Description				
1.	Conference proceeding	Hydrogen Gas Production Using Aluminum Waste Cans Powder Produced By Disintegration Method	3 rd International on Advanced Energy Materials (ICAEM 2020) – in Okinawa, Japan on 17 Feb 2020.				
Lim, 5 2020. Produ 853, p	Lim, S.T., Sethupathi, S., Alsultan, A.G., Leong, L.K. and Taufiq-Yap, Y.H., 2020. Hydrogen Gas Production Using Aluminum Waste Cans Powder Produced by Disintegration Method. In Key Engineering Materials (Vol. 853, pp. 228-234). Trans Tech Publications Ltd.						
2.	WOS Journal	Hydrogen Production via Activated Waste Aluminum Cans and Its Potential for Methanation	An Energy&Fuels Published Journal in 2021.				
Lim, S.T., Sethupathi, S., Alsultan, A.G. and Munusamy, Y., 2021. Hydrogen Production via Activated Waste Aluminum Cans and Its Potential for Methanation. <i>Energy & Fuels</i> , <i>35</i> (19), pp.16212-16221.							