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ABSTRACT 

 

This study aimed to address the problem of difficult venous access by 

proposing a vein feature extraction algorithm for the forearm using transfer 

learning on a U-net model with EfficientNetB3 as the backbone. The limited 

availability of forearm Near Infrared (NIR) image datasets and the lack of vein 

feature extraction algorithms focused on the forearm part were the main 

research problems. To evaluate the proposed model, the NTUIFDB v1 dataset 

containing 250 NIR forearm images was used and the performance was 

measured using Dice Coefficient and Jaccard Index. The results showed that 

the proposed model achieved an 83.56% Dice Coefficient and 71.76% Jaccard 

Index, outperforming four handcrafted techniques tested and other pre-trained 

models. This research contributes to the field by being the first to implement 

transfer learning on the NTUIFDB v1 dataset and provides a baseline for 

future studies to improve the proposed model. The proposed algorithm could 

aid in improving the success rate of venipuncture in patients with difficult 

venous access, such as pediatrics, geriatrics, obesity, and dark skin tone 

patients. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

The modern medical system has recorded that 80% of patients in the hospital 

have performed intravenous cannulation. Among the parts of the body, 

peripheral venous access is the most common type of access. However, most 

medical workers are still using the sense of touch and sight to perform venous 

access. Even experienced practitioners would make mistakes with patients 

who have indistinct blood vessels. Junior practitioners who lacked practice 

perform badly during their medical routine would cause side effects to the 

patients. Statistics showed that the US healthcare system spent an additional 

$4.7 billion due to the difficult venous access problem (Balter et al., 2015). To 

solve this problem, near-infrared (NIR) imaging could visualize the blood 

vessel pattern for the medical practitioner during venous access. The good 

point of the NIR device is a portable, low-cost solution, and non-invasive 

method as an aid of venous access. 

 

1.2 Importance of the Study 

Intravenous cannulation and venipuncture are one of the most common 

invasive routines carried out during patient treatment and laboratory testing. In 

the conventional method, the physicians and nurses perform needle injections 

through palpation and observation which requires both skills and experience to 

complete. The practitioners first identify the vein’s location and then insert the 

needle into the center of the blood vessels. However, there are various 

challenges in accessing the location and depth during the practical situation 

due to skin colour tone, thickness of subcutaneous fat, and ageing of the skin 

(Cheng et al., 2016; Ichimura, Sasaki and Ogino, 2020). Research showed that 

the failure rate of peripheral intravenous cannulation is recorded at 30% during 

the first needle injection (van Loon et al., 2018). This would cause the patients 

to be feared of the needles or more serious harm such as haemorrhage in the 

aftermath of needle injection failure (Walsh, 2008).  
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 There is research found that only 22.6% of dentists in Malaysia were 

confident to perform intravenous cannulation on adults while the confidence 

rate dropped to 13% when the target was children (Mohd Hakimin Bin 

Mohamed Ashri, 2021). Pediatric patients had small and thin blood vessels 

which unlike adult vessels are with texture and thick diameter. Children have 

fragile veins and are unable to stay still during the venous cannulation which 

might make them uncomfortable during needle injection. Failure of 

performing venous cannulation may cause severe cases and complications to 

the patients where there were 10% to 25% of cases had been reported (Gallieni, 

Pittiruti and Biffi, 2008). According to the data of the FDA, there were 52% of 

complications were caused by the skills of healthcare workers, 12% were due 

to equipment failure, and 30% of cases were unverifiable (Scott, 1995). 

Complications of failure venous access included 34% of infiltration and 

extravasation cases, 20% of phlebitis cases, and other cases such as infections, 

Catheter-related bloodstream infection (CRBSI), swelling of veins, etc 

(Armenteros-Yeguas et al., 2017). Difficult venous access has been a problem 

that caused trouble to the patients and medical practitioners too. Therefore, 

physicians would consider applying chemical or physical techniques to 

improve venous access probability during normal practice. 

 The first technique to introduce is using fist clenching which can 

increase the blood flow rate in the cephalic and ulnar veins as the blood 

volume in the vessels especially the dorsal would enlarge (Simons et al., 1996). 

It is proven that performing hand gripping exercises would dilate the vessels 

due to the muscarinic receptors under the human skin (Török et al., 1997). The 

drawbacks are significant as it requires a period to dilate the veins. Besides 

that, nitroglycerin (NTG) which is used to treat coronary artery disease is 

proven that can result in rapid dilation of the dorsal veins even on a patient’s 

hand that can’t be observed veins initially (Roberge et al., 1987). After 

applying the NTG ointment, there are two reference groups achieved 50% and 

83% success rates of venipuncture during the first attempt. However, 

physicians who used NTG in venipuncture would suffer some side effects such 

as nausea, headache, and blurred vision if no gloves were worn (Anon., 2022). 

Moreover, Rhys-Davies Exsanguinator (RDE) and Esmarch Bandage (EB) are 

commonly used to fill the veins at the cubital fossa of patients in surgery to 
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exsanguinate the arm or leg. It was found that the cross-sectional area of the 

veins was enlarged by 0.32 cm2 and 0.33 cm2 using RDE and EB methods 

(Nee et al., 1994). However, there are risks to applying these methods to elder 

people or patients who used steroids that might cause skin tears. EB method 

would cause venous tortuosity and brittle when it’s applied for more than 5 

minutes (Mbamalu and Banerjee, n.d.).  

 There are alternative approaches to assist in performing venous 

access which is through imaging technology. It is a type of invasive technique 

that obtain blood vessel images to assist the medical practitioners in deciding 

the needle placement. The first introduced method is magnetic resonance 

imaging (MRI). Medical MRI utilizes the spinning behaviour of hydrogen 

nuclei in the water under a strong magnetic field to form a specific 

arrangement. Therefore, body tissues or substances consisting of water can be 

detected using MRI. The image of blood vessels can be taken rapidly with the 

high contrast of the blood vessels and their surrounding tissues. Through 

electrocardiogram (ECG) or pulse-trigger timing, the medical image could 

further differentiate the arteries and veins (Maruyama et al., 2007). Research 

performed MRI scans to carry out adrenal venous sampling (AVS) achieved 

76.6% and 90.6% of success rates on the right and left adrenal veins 

(Chayovan, Limumpornpetch and Hongsakul, 2019). Although the vessel 

image obtained using MRI is quite prominent, the cost and scale of the MRI 

machine are not a suitable choice for treating a large number of patients. 

Patients who have metals in their bodies for instance pacemakers, artificial 

joints, screws implanted during surgery, etc would not be recommended to 

perform MRI (NHS, 2022). 

 Other than that, the transillumination technique is used to examine the 

venous location using fibreoptic lights during venipuncture. The light 

illuminates the patient’s subcutaneous tissue and can pass through the fats to 

assist the practitioners to observe the superficial veins (Kuhns et al., 1975). 

The light source used would not cause thermal injury and is suitable to be 

applied to an infant’s hand. VEINLITE device uses a U-shape design 

surrounded by several light emitting diodes (LEDs) to map the superficial 

veins when the device is close to the target side (Thomas P. Duffy, Gerald T. 

Harder and Kevin Mori, 2012). In a study using transillumination to perform 
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intravenous cannulation, there is an 80% of success rate in adult patients while 

70% to 94% in pediatric patients (Atalay et al., 2005). The transillumination 

technique is much safer and the size of the device is much smaller than MRI 

and ultrasonic. However, the environment would require to be dimmed than 

the ambient light when using the device due to the wavelength of the light 

source is within the visible light region. To achieve a higher penetration rate, 

red or orange light LEDs are often used because it’s the longest wavelength 

among the visible light. Light source from visible light range limits the veins’ 

visibility of certain patients for instance darker colour tone patients where the 

light is more likely to be absorbed by melanin and an obese person where light 

is dispersed through the subcutaneous fat layer. 

 

 

Figure 1.1: Transillumination Device from Veinlite (Veinlite, 2022). 

 

Moreover, ultrasound is also part of the routine of medical practitioners 

to guide peripheral venous access. It uses a high-frequency range of sound 

waves which ranges from 2 MHz to 10 MHz. The pulse signal projected to the 

tissue layer is then reflected to the probe. The ultrasonic images will display 

the reflected signal based on its characteristics. Blood vessels will appear 

black in the ultrasonic images due to the full transmission of the ultrasound 

signal (Hatfield and Bodenham, 1999). An author compares the performance 

of ultrasound and transillumination when performing intravenous cannulation 

where they achieved 92.5% and 80% of success rates (Girgis, 2014). However, 

if only the first attempt is counted as a success, transillumination had only 57.5% 

of success rate while ultrasound has 82.5% of success rate. This shows that 

ultrasound is much more reliable for practitioners to make decisions. 
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Ultrasound shares the same drawbacks as MRI where the cost of equipment is 

high which is not suitable to perform on large numbers of patients. 

Apart from the methods introduced above, near-infrared (NIR) imaging 

is widely used in the medical industry, especially in the characteristics of 

visualizing veins. It can penetrate deeper under the human skin than visible 

light to obtain higher contrast of image compared to the transillumination 

method. NIR wavelengths between 700 to 1000 nm are often used to capture 

the veins pattern due to the haemoglobin absorbing the electromagnetic 

spectrum within this range while other tissues do not (Cuper et al., 2011). 

Therefore, the blood vessels are different from other tissues in the NIR image, 

and the blood vessels look darker than the surrounding tissue. 

 

 

Figure 1.2: Dorsal Hand Vein Captured Using NIR Light Source (Sahana D S 

et al., 2020) 

 

 Due to the NIR absorption characteristics of haemoglobin, it is a type 

of non-invasive technique that determine the haemoglobin level in the human 

body. NIR spectroscopy is one of the applications to monitor the brain 

function of patients. In fact, oxygenated haemoglobin and deoxygenated 

haemoglobin have a difference in absorption rates, clinicians can monitor the 

activity of the brain through the blood flow in the cerebral cortex (Mcintosh et 

al., 2010). The penetration of NIR is not easy to pass through the human head, 
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therefore the NIR signal is collected from its reflection of scattered signals. 

The benefit of NIR spectroscopy compared with other existing methods is that 

it doesn’t generate noise during the patient’s movement (Sakudo, 2016). It is 

then useful to observe the neural activity under the subject’s movement. 

 In addition, NIR is being applied in biometrics verification by 

performing template matching with the real-time collected veins image and the 

database. The parts of the body that are commonly used to capture the vessel 

patterns such as the fingers, palm, dorsal, and iris (Kumar and Zhou, 2012). 

Veins pattern doesn’t change over time which makes the template more 

reliable as compared to fingerprint would change due to chemical exposure. 

Blood vessel pattern is also difficult to be spoofed as the vessel are located 

underneath the skin which increases the security of the verification method. 

NIR blood vessel image collection process can be achieved without contact 

which makes it more feasible to be implemented after the pandemic of 

COVID-19 (Wu et al., 2019). 

 

1.3 Problem Statement 

Venous access is an essential aspect of medical procedures, particularly in 

cases that require repeated access or emergency interventions. Unfortunately, 

the current state of venous access is not optimal, with research indicating that 

up to 30% of patients experience failed needle injection during their first 

attempt, which can cause unnecessary discomfort, anxiety, and even trauma 

(van Loon et al., 2018). As cannulation is one of the most common invasive 

procedure done in the hospitals, this could lead to wastage of supplies such as 

needles, syringe, and alcohol swabs. 

Additionally, difficult venous access issue is not only pose significant 

patient care challenges but also result in increased costs for the US healthcare 

system. Recent reports show that the difficult venous access problem in the US 

healthcare system has led to an additional $4.7 billion in costs (Balter et al., 

2015). The existing medical instruments such as MRI machines and ultrasound 

machines although provide high contrast and accuracy in vessel imaging, it is 

not easy to carry and inconvenient to use. These methods are not feasible to 

carry out during emergency situations, especially for the medical practitioners 

required to perform venous access outside of the hospital. In remote and rural 



7 

areas, the distribution of healthcare resources is far from the cities. Therefore, 

health workers cannot rely on advanced and expensive technology to perform 

needle injections. Low-cost but high-accuracy vein visualization tools are still 

lacking in the market. 

 In recent years, Near-Infrared (NIR) imaging technology has become 

increasingly prevalent, with applications across a range of industries, including 

medical imaging. While there has been extensive research into the use of NIR 

imaging for various medical applications, including vein feature extraction, 

there remains a significant gap in our understanding of forearm blood vessels. 

The forearm is a commonly used and relatively safe location for venous access 

procedures, such as blood drawing and intravenous fluid and drug infusions. In 

situations where peripheral venous access is unlikely to succeed, dorsal and 

central venous access are often used as substitutes (Waitt, Waitt and 

Pirmohamed, 2004). However, these procedures can be uncomfortable for 

patients, highlighting the need for improved methods for accessing forearm 

veins..  

 

1.4 Aim and Objectives 

This project is aimed to produce a forearm-based blood vessels pattern 

recognition. The vessel image should be visualized in the binary image where 

white pixels represent the blood vessel and black pixels are the background. 

Throughout the study, there are three objectives set to be achieved: 

i) To investigate the current state-of-the-art techniques of hand 

blood vessel feature extraction algorithm. 

ii) To develop a hand blood vessel feature extraction algorithm 

using transfer learning method. 

iii) To assess the performance of proposed approaches with respect 

to the state-of-the-art algorithms using the NTUIFDB v1 

forearm dataset 

 

1.5 Scope and Limitation of the Study 

The tasks of this study can be briefly distributed into three parts. Firstly, all the  

forearm veins dataset used by the past researchers should be reviewed and the 

availability should be verified with the original author. Dataset with ground 



8 

truth will be prioritized as it will reduce the workload of the project. The 

ground truth data is used for performance evaluation purpose only.  

Secondly, the region of interest of the forearms was segmented and 

further perform pre-processing enhancement of datasets. The blood vessels 

pattern in the raw datasets are less contrasted and contained unwanted 

backgrounds. This dataset must be enhanced before performing the next step. 

 Lastly, the feature extraction framework was chosen to identify the 

blood vessels in the datasets. The proposed algorithm was evaluated using the 

ground truth and compared with the literature proposed method. 

 Blood vessels datasets acquisition is removed from this study because 

it requires setting up a well-controlled environment to be less hassle for the 

image pre-processing stage. Data acquisition from the public would require 

registration with the university and therefore limited the progress arrangement 

of the study. Besides that, there are numerous applications of NIR blood vessel 

images as mentioned in Section 1.2, only blood vessel pattern extraction is 

being chosen as the purpose of the study. Therefore, the evaluation of the 

algorithm is based on the real location of the veins, unlike biometrics 

applications that required a template database for identity verification. In this 

study, the ground truth of the images is more critical to determining the 

performance of the proposed algorithm. 

 

1.6 Contribution of the Study 

This study makes notable contributions to the field of vein feature extraction. 

Specifically, it demonstrates the effectiveness of transfer learning for forearm 

vein segmentation using a limited dataset, with important applications in 

medical imaging. In addition, the study addresses a gap in the existing 

literature by focusing on vein feature extraction in the forearm, an area of 

research that has received limited attention despite its significance for 

applications such as vein finder and automated venipuncture devices. By 

providing valuable insights into this area, the study has the potential to 

enhance the accuracy and reliability of vein-based biometric systems. 
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1.7 Outline of the Report 

Chapter 1 of this report presents a thorough examination of the importance of 

studying vein feature extraction algorithms. This chapter identifies problems in 

existing research and markets, and outlines the aims and objectives of this 

study. 

Chapter 2 provides an extensive literature review on the topic of vein 

feature extraction, covering key areas such as the anatomical structure of the 

upper limb, vein visualization through Near Infrared Light, Forearm NIR 

dataset used by past researchers, vein pattern extraction algorithms, transfer 

learning on hand vein feature extraction, and open source pre-trained models. 

Chapter 3 focuses on the methodology used in this study, including a 

detailed explanation of how the datasets were handled, how the forearm ROI 

was extracted, the pre-processing techniques applied to the datasets, the veins 

feature extraction algorithm, and the metrics used to evaluate the algorithm. 

Additionally, this chapter outlines the workplan for carrying out this research. 

Chapter 4 presents the results obtained from the vein feature 

extraction model trained, and compares the state-of-the-art techniques with the 

proposed model to select the best algorithm. 

Finally, chapter 5 ended up with a conclusion for this study and 

suggests possible directions for future research. 

 

 

 



10 

CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Anatomical Structure of Upper Limb 

The human’s upper limb is made up of different systems such as bones, 

arteries and veins, muscles, and nerves. The forearm is the structural unit 

which connects the arm and hand through the elbow joint and wrist joint. The 

region between the anterior part of the elbow joint is called the cubital fossa. It 

is an imaginary triangular region in which the base is medial and lateral of 

epicondyles and the two sides of the triangle are brachialis muscles (Drake, 

Vogl and Mitchell, 2018). There are four major structures consisting in the 

cubital fossa which are (Bains and Lappin, 2021) 

i) Median nerve. 

ii) Lateral nerve. 

iii) Brachial artery. 

iv) Biceps tendon. 

 

 

Figure 2.1: Anatomical Structure of Upper Limb (Drake, Vogl and Mitchell, 

2018). 
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Figure 2.2: Cubital Fossa (Drake, Vogl and Mitchell, 2018). 

 

 The brachial artery is often used to measure the blood pressure level 

of the patients by placing the stethoscope over this region. Arteries is 

transferring oxygenated blood throughout various parts of the body which are 

at a higher pressure than veins. Therefore, clinical operations which involve 

needle injections would not consider arteries. Arteries in the cubital fossa are 

thinner and deeper than the veins and blood may spurt out due to the pressure 

in the vessels. On the other hand, veins have a larger diameter and thinner 

walls which carries 80% of the blood in the body (Moore and Rohen, 2013). 

There are numerous bicuspid valves which avoid the blood flow in the 

backward direction.  

 

 

Figure 2.3: Major Superficial Veins at Cubital Fossa (Kim, Park and Park, 

2017). 
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 The veins at the cubital fossa can be classified into two types which 

are deep veins and superficial veins. The deep venous system on the upper 

limb stays closely with the arteries which are unable to be observed easily with 

naked eyes (Nguyen and Duong, 2021). Superficial veins are veins that can be 

accessed easily with palpation and observation. The major superficial veins at 

the cubital fossa are cephalic, basilic, and median cubital veins. The cubital 

fossa is an area that normally performed venous access because most of the 

superficial veins can be found in this region. The median cubital veins, among 

the superficial veins, serve as a connection point between the cephalic and 

basilic veins. This connection point is located at the cubital fossa and is 

considered a priority option for clinicians when performing venipuncture. 

 However, median cubital veins do not appear in the same form in all 

people’s anatomical structures. According to the previous novel study, there 

are four different patterns as shown in Figure 2.4 (Lee et al., 2015). 

 

Table 2.1: Classification of Superficial Veins Pattern. 

Superficial Veins Type Description 

Type I Median cubital vein is dominant after the 

cephalic and basilic veins merge at the node. 

Type II Median cubital vein branches across the 

cephalic and basilic veins. 

Type III Cephalic vein is missing or underdeveloped. 

Type IV Median cubital is missing while cephalic and 

basilic vein does not merge 

 

 

Figure 2.4: Superficial Veins Pattern (Lee et al., 2015). 
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 Type I and II superficial veins pattern can be found in 96.8% of the 

patients which is the ideal case for performing venipuncture. It was found that 

type I and II are the pattern that normally described the median cubital veins in 

medical textbooks. Although type III and IV are rarely found in practical 

situations, they would cause confusion to medical workers who have less 

experience in performing venipuncture. 

Superficial veins are often crossing with the nerves which are very 

close to each other (Horowitz, 2000). There were no patterns found that how 

nerves and veins intertwined each other, and it is very difficult to separate 

them. During the process of venipuncture, contact with the nerve and needle is 

possible to put the patients at risk of injury. Previous research found that there 

was no specific location of the anatomy that was the safest region for every 

individual (Yamada et al., 2008). However, it is suggested that the median 

cubital vein that is near the cephalic vein is unlikely to cause nerve damage. 

Cephalic and basilic could be an alternative if the median cubital vein is not 

suitable for venous access. The risk undertaken is that higher discomfort will 

be experienced due to nerve damage when venous access is performed at the 

basilic vein. 

 

2.2 Vein Visualization through Near Infrared Imaging 

There are two common techniques are being used to collect the NIR images of 

the veins pattern which are reflection and penetration, as shown in Figure 2.5. 

The camera is an infrared light-sensitive device that can receive the signal 

from the NIR region (Pan et al., 2019). Besides using the industrial camera, a 

USB camera equipped with an infrared transmission filter could capture NIR  

 

 

Figure 2.5: NIR Image Acquisition through Reflection (left) and Penetration 

(right) (Pan et al., 2019). 
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images as well (Crisan, Tarnovan and Crişan, 2007). For the reflection method, 

the NIR light source is located on the same side of the camera. When the 

emitted light touches the surface of the hand, a portion of the light is reflected 

the camera. However, the camera will receive environmental noises which 

lower the quality and contrast of the image. The advantage of this method is 

the device can be compact and small. Low power consumption can achieve 

due to the low intensity of light needed. On the other hand, the penetration 

method uses a larger device where the hand stays between the camera and NIR 

light source. The image captured comes with high contrast because most of the 

light that penetrates the hand is received by the camera. Therefore, datasets 

captured using the reflection method require better image processing 

techniques to obtain a clearer veins pattern result.  

 

 

Figure 2.6: NIR Images Captured Using Penetration (left) and Reflection 

(right) (Kauba and Uhl, 2018). 

 

2.3 Forearm NIR Datasets 

Forearm NIR veins datasets were rarely mentioned in the research journal. 

Most of the NIR veins research were regarding biometrics application, where 

fingers, dorsal, and palmer were used due to the thin subcutaneous tissue. 

Forearm veins were not common body parts being used for biometrics 

purposes and therefore they could only be found in other research areas such 

as medical applications and forensic science. According to the summary of 

forearm datasets mentioned in the research papers as shown in Table 2.2, there 

were 3 datasets publicly available. The process of collecting the forearm veins 

is more challenging than the other parts like fingers because larger 
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environmental factors were required to control. The large forearm area often 

requires capturing the data under exposure to environment lighting which is 

also similar to the actual application environment of venous access. Ambient 

light would introduce noises to the image which would require more pre-

processing techniques to obtain a clear image to proceed with veins feature 

extraction. 

 

Table 2.2: NIR Forearm Datasets Reviewed. 

Author Year No. of Datasets Public or Private 

NTUIFDB v1, Zhang et 

al., (2012) 
2012 250 Public 

NTUIFDB v2, Huynh et 

al. (2015) 
2014 1312 Public 

Azueto-Ríos, Hernández-

Gómez and Hernández-

Santiago (2016) 

2016 NaN Private 

Choras (2017) 2017 56 Private 

VeinCV_RL Leli et al. 

(2020) 
2020 320 Public (partially) 

Shah et al., (2022) 2022 18 Private 

 

2.4 Veins Pattern Extraction 

There are two methods and approaches to extracting the veins pattern on the 

NIR image, which are computer vision techniques and deep learning 

techniques. The computer vision technique is a handcrafted feature extraction 

that can detect the veins through the characteristics of the image. As veins 

have different pixel values as compared to the background, this technique 

discovers this difference by following the instruction given. The computer 

vision technique usually has faster performance and is easier to implement. 

However, the drawback is it has lower compatibility to achieve similar 

performance on various datasets because the algorithm was normally designed 

based on the datasets collected by the author. The signal-to-noise ratio and 

background of the datasets will affect the performance of the algorithm. These 
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factors can be lowered by applying image pre-processing techniques to 

achieve a higher quality of images. Other than that, veins pattern extraction 

algorithms proposed by past researchers were mainly applied on fingers, 

dorsal, and palmer. The parameters of the algorithm may be suitable for 

fingers but not other parts like the forearm. 

 In recent years, deep learning techniques have become the 

mainstream to perform veins feature extraction. Unlike handcrafted feature 

extractions, a deep learning algorithm learns about the feature of the veins 

pattern through the training datasets. Tuning the parameters of the deep 

learning model can optimize the performance of the feature extraction. Deep 

learning techniques often achieve higher performance than computer vision 

techniques easily which is the reason researchers gained interest in the deep 

learning method. However, the deep learning model requires a lot of datasets 

so that the model can identify the feature of the veins. The NIR veins datasets 

that are publicly available are normally inadequate to train a deep learning 

model. Some researchers applied the transfer learning method which only 

requires a smaller number of datasets. Besides that, one significant drawback 

of the deep learning model is the high computational cost. GPU is often used 

instead of CPU which can parallel process a huge number of calculations. 

 

2.4.1 Repeated Line Tracking 

A repeated line tracking algorithm is designed to extract the veins pattern on 

the fingers for biometrics verification purposes (Miura, Nagasaka and 

Miyatake, 2004). It uses computer vision technology to identify the dark lines 

of the image which was aimed to achieve a feature extraction process in less 

than 1 second.  

 In the first step, the initial point is identified randomly, and the 

moving direction attribute is calculated to determine the direction of the next 

moving steps. Then, step 2 describes how the dark lines are identified using an 

illustration of the ‘s-p-t’ valley. The current tracking point will go to point p 

which is its neighbour and identify the grey level of that point versus the two 

end points of the cross-sectional line, s and t. The relationship between the s, p, 

and t can be visualised on the graph shown in Figure 2.8. θi is the angle to 

adjust the neighbourhood reached which limits the line tracked from moving 
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away from the dark lines. Once the point at the deepest valley is identified, the 

point will become the current tracking position and the process is repeated 

until there is no valley formed. These tracking points identified will be stored 

in the locus space. 

 

 

Figure 2.7: Flowchart of Repeated Line Tracking Algorithm. 

 

 

Figure 2.8: Dark Line Detection (Miura, Nagasaka and Miyatake, 2004). 

 

 Since the initial tracking point is identified randomly, the point 

outside the dark line may be identified. Noises in the image are also possible 

identified as tracking points. Therefore, the process is iterated N times. The 

points on the dark line will be detected more frequently than the noise which 

accumulates a higher value of it in the locus space. Although noises are 

possibly recorded as tracking points, the value will be comparatively lower 



18 

than real dark lines when the number of iterations becomes larger. Lastly, a 

thresholding method is applied to filter out the lower value of tracking points 

while a higher value of tracking points is identified as the veins.  

 

 

Figure 2.9: Finger Veins Pattern Extracted Using Repeated Line Tracking 

(Miura, Nagasaka and Miyatake, 2004). 

 

 The finger veins pattern extraction performance was evaluated using 

equal error rate (ERR). Repeated line tracking algorithm achieved 0.145% of 

EER. The feature extraction process took for average 450 ms using the 

author’s hardware device. The datasets used for algorithm testing was 

collected using penetration method which the veins pattern has a good contrast. 

The image was only performed normalization before feature extraction to 

adjust the location and angle of the image captured.  

 

2.4.2 Maximum Curvature 

Maximum curvature algorithm is type of method that can solve the limitation 

of repeated line tracking, which is poor performance on extracting narrow 

veins (Miura, Nagasaka and Miyatake, 2007). Repeated line tracking relies on 

the accumulation values of tracking points and therefore wider lines would 

have larger tracking points while narrow lines has lesser. Maximum curvature 

finds the center position of the veins and connect them together. This method 

can still perform well under different brightness and vein width. 
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Figure 2.10: Flowchart of Maximum Curvature Algorithm. 

 

 In the first step of the algorithm, the center position of the veins are 

identified. The cross-sectional view, Pf(z) of the finger veins as shown in 

Figure 2.11 describes the brightness level of the pixels, F(x,y) in a graph. Point 

A, B, and C has lower brightness as the veins are darker than its surrounding 

pixels. Even the wide and narrow veins could be identified. The local 

minimum in the graph indicates that the dark veins are identified. The 

curvature of the cross-sectional profile is calculated as below. 

 

 𝑘(𝑧) =
𝑑2𝑃𝑓(𝑧)/𝑑𝑧

2

{1 + [𝑑𝑃𝑓(𝑧)/𝑑𝑧]
2}
3

2

 (2.1) 

  

 

Figure 2.11: Cross-Sectional View of Finger Veins (Miura, Nagasaka and 

Miyatake, 2007). 

 

The curvature, k(z) function at the positive region is referred to as a 

concave area at the cross-sectional view. Obtaining the local maximum of k(z) 
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will return the center position of the veins. This local maximum is filtered by 

calculating the probability score, Scr(z) as below. 

 

 𝑆𝑐𝑟(𝑧𝑖
′) = 𝑘(𝑧𝑖

′) ×𝑊𝑟(𝑖) (2.2) 

  

The score includes the variable of curvature and width. Higher 

curvature is reflected by the brightness of pixels, where thin veins could 

possibly obtain a score. The larger width of the veins is also more likely to 

obtain a high score. The score designed has considered the thin and wide veins. 

The local maximum profile are obtained in four directions which are 

horizontal, vertical, and two 45° tilting lines of both horizontal and vertical 

directions. This can ensure that the feature extraction results don’t change 

much although the vein’s brightness and width are different in every image 

acquisition process. These four results were then combined by selecting the 

highest pixel values from four results. 

 

 

Figure 2.12: Cross Section Profile, Curvature, and Score Against Z (Miura, 

Nagasaka and Miyatake, 2007). 

 

 After the center position of the veins is identified, these centre points 

are connected to form a continuous line. The center points obtained contained 

different pixel values due to different brightness levels across the image 

forming gradient lines. Therefore, the higher pixel value will be lowered, and 

the lower pixel value should be tuned higher. Lastly, a thresholding method to 

convert the grey image become a binary image to remain the veins as white 

pixels. 
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The author performed veins feature extraction on the datasets and an 

EER of 0.0009% is achieved. The experiments also proved that maximum 

curvature achieved better performance during extracting the patterns of thin 

veins. The datasets were taken using the penetration method where the author 

does not perform any pre-processing techniques to enhance the datasets. 

Although the author claimed that maximum curvature performed well on 

lower brightness images, the statement is yet to be verified. 

 

 

Figure 2.13: Finger Veins Pattern Extracted Using Maximum Curvature 

(Miura, Nagasaka and Miyatake, 2007). 

 

2.4.3 Principal Curvature 

Principal curvature is an advanced algorithm of the maximum curvature. It 

was found that the skin thickness and the veins size vary during every image 

acquisition process which would lead to false identified veins extraction 

(Sheng et al., 2011). Maximum curvature proposed that obtaining the four 

directions of local maximum would be unprecise enough when the image 

quality is not optimum. The author proposed gradient normalization to solve 

the uneven light illumination on the images which degrades the quality of the 

images. Principal curvature extracts the feature through the ‘true’ maximum 

curvature instead of the highest maximum curvature from only four directions 

(Choi et al., 2009).  

 

 

Figure 2.14: Flowchart of Principal Curvature Algorithm (Choi et al., 2009). 
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 Image acquisition of hand veins often comes with noises from the 

environment. Due to the need of simplifying the image capturing device, 

uneven brightness is difficult to be controlled. The author proposed 

normalizing the gradient of the image to obtain an even gradient image. The 

gradient is expressed in vector form which stores the partial derivative of 

image intensity in the xy plane. A normalized gradient (which is also known as 

a unit vector) takes the gradient and divides it by its magnitude. Normalization 

gradient could achieve an even brightness and veins thickness image which 

can improve the image quality for feature extraction. After the normalization 

of the gradient vector, there are some noises with small gradient values in the 

image. These noises are assigned zero by applying a hard threshold value.  

 

 𝐆(x, y) = ∇L(x, y) = (
L(x, y)

δx
,
L(x, y)

δy
) (2.3) 

 𝐆N(x, y) =
∇L(x, y)

‖𝐆(x, y)‖
 (2.4) 

 

where 

L(x,y) = image intensity 

G(x,y) = gradient 

GN(x,y) = normalized gradient 

 

The veins feature can be extracted by applying the principal curvature. 

A Hessian Matrix is constructed which consists of second-order partial 

derivatives.  

 

 𝐻(𝑥, 𝑦) =

(

 
 

𝛿2L(x, y)

δx2
𝛿2L(x, y)

δxδy

𝛿2L(x, y)

δxδy

𝛿2L(x, y)

δy2 )

 
 

 (2.5) 

  

Then, the normalized gradient is applied with gaussian filter to remove 

the noises and smoothen the matrix. The eigenvalues and eigenvectors are then 

determined from the Hessian Matrix. The eigenvalues, λ1 and λ2 represents the 
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principal curvature; while eigenvectors, v1 and v2 indicates the direction of the 

local maxima and minima. In Figure 2.15, the maximum curvature, λ1 and 

minimum curvature, λ2 consist of v1 and v2 to indicate the direction. The local 

maxima obtained from Hessian Matrix is optimized and true according to the 

vein’s images. The local maxima obtained from maximum curvature algorithm 

might not be optimized and inconsistent about the maxima calculated. Lastly, 

the veins feature extracted is binarized where the background is assigned as 0. 

 

 

Figure 2.15: Principal Curvature and Direction(Choi et al., 2009). 

 

 According to the author’s experimental testing, principal curvature 

achieves EER = 0.018% which is quite optimal solution. As compared with 

the maximum curvature algorithm, the datasets are of lower quality, but the 

author’s method still performed better than the novel methods. It shows that 

the veins were identified in continuity form as compared with the other 

methods. The author applied the maximum curvature algorithm on his in-

house datasets, the extracted veins were extracted not as good as mentioned in 

the original author’s literature. This is probably due to the principal curvature 

methods performing gradient normalization which reduces the effect of 

uneven brightness on the feature extraction algorithm. Maximum curvature 

doesn’t consider this factor and hence results in worse performance.  

 

 

Figure 2.16: Finger Veins Pattern Extracted Using Principal Curvature (Choi 

et al., 2009). 
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2.4.4 Wide Line Detector 

The concept of local maximum and minimum of the images tends to identify 

the center of the veins, but the width of the veins could be lost during the 

feature extraction. Principal curvature identifies the eigenvalues and 

eigenvectors from the Hessian Matrix and is sensitive to the noise pixels due 

to the nature of the second-order partial derivative. The wide line detector 

algorithm aimed to extract all the pixel values on the lines which recovers the 

thickness of the veins as much as possible (Liu, Zhang and You, 2007). It does 

not use any derivative method, but a circular filter is used instead to cover 

different widths of the lines. Huang et al. (2010) applied the wide line detector 

method to extract the finger veins. The extracted features were performed self-

proposed normalization to ensure that the templates from the database image 

and processed image had a similar orientation. The normalization is useful for 

biometrics cases, but it is not required for the medical vein viewer application.  

 The size of the finger vein images was reduced firstly to reduce the 

computational cost and time. The size-reduced images were performed wide 

line detection to identify the veins pattern. In the first step, the weighted mask 

having similar brightness (WMSB) score is calculated by detecting the group 

of pixels within the mask which has a brightness level like the center of the 

mask. 

 

 

Figure 2.17: Flowchart of Wide Line Detector Algorithm (Huang et al., 2010). 

 

The circular mask as shown in Figure 2.17 is located on the dark line 

(veins) where the center of the mask has the darkest brightness. Most of the 

pixels in the mask have a brightness like the center and therefore the WMSB 

score is low. If the mask is fully located on the white background, the WMSB 
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score would be at the global maximum. Liu, Zhang and You found out that the 

threshold, t could be set as the standard deviation of the input image and 

rounded to the nearest integer through their experiment. 

 

 𝑠(𝑥, 𝑦, 𝑥0, 𝑦0, 𝑡) = {
0, 𝐹(𝑥, 𝑦) − 𝐹(𝑥0, 𝑦0) > 𝑡
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.6) 

 

where 

𝑠(𝑥, 𝑦, 𝑥0, 𝑦0, 𝑡) = WMSB score 

(x0, y0) = coordinate of the center of the mask 

(x, y) = coordinate of the pixels in the mask except the center 

t = brightness contrast threshold 

 

 

Figure 2.18: Circular Mask on the Finger Veins Image (Huang et al., 2010). 

 

 Then, the WMSB mass of the centre is calculated by finding the 

WMSB score for all pixels within the circular mask. 

 

 𝑚(𝑥0, 𝑦0) =∑ 𝑠(𝑥, 𝑦, 𝑥0, 𝑦0, 𝑡)
(𝑥,𝑦)∈𝑁(𝑥0,𝑦0)

 (2.7) 

 

where 

m(x0, y0) = WMSB mass of the centre 

N(x0, y0) = Neighbourhood region of the mass of the centre 

 

 Finally, the feature image is obtained by generating the binary image 

of the veins pattern (white pixel) and background (black pixel). If the 

calculated mass of the centre is above the threshold, g, it is identified as 

background while lower than that is the veins. Liu, Zhang and You highlight 

that the threshold, g was set as πr2/2 in their proposed algorithm. 
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 𝑉(𝑥0, 𝑦0) = {
0, 𝑚(𝑥0, 𝑦0) > 𝑔

255, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.8) 

 

where 

V(x0, y0) = Feature image 

g = geometric threshold 

 

 About the guideline of creating a circular mask, Liu, Zhang and You 

found out that the algorithm was optimized when the radius of the mask ≥ 2.5 

× widths of lines detected. However, due to the veins’ widths are not the same 

in the image, this relationship could only act as a guideline to search for a 

suitable parameter value. An unoptimized parameter chosen would slow down 

the line detection process or unable detect the lines, but one thing is certain the 

circle mask must be larger than the line width. 

 The author assessed the output of the proposed algorithm by 

performing template matching between two images taken from different 

sessions. The algorithm performed excellently with EER = 0.87% using low-

quality datasets. Although the algorithm seems to identify most of the dark 

pixels that are likely veins, there are more noticeable noises appear in the 

image. This is probably due to lack of pre-processing steps in the algorithm 

which cause the feature extraction algorithm identify noise pixels as dark lines. 

Secondly, the brightness of the image is uneven due to the image captured 

conditions. This is a common problem due to the uneven lighting and light 

distraction from the environment. 

 

 

Figure 2.19: Finger Veins Pattern Extracted Using Wide Line Detector (Huang 

et al., 2010). 
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2.4.5 U-Net Convolutional Neural Network 

U-net is one of the architectures of convolutional neural network (CNN) which 

was proposed for biomedical applications as well (Ronneberger, Fischer and 

Brox, 2015). It solves the major issue in biomedical imaging which is the 

scarcity of datasets. The author applied the data augmentation technique to 

enlarge the small number of datasets such as distortion, deformations, rotation, 

etc which achieve intersection over union (IoU) 92%. During the early 

learning stage of the CNN model, it is still learning to identify the basic 

features such as lines, curves, circles, etc. Data augmentation concept is by 

letting the model learn about basic features through the same images but looks 

differently. 

 

 

Figure 2.20: U-Net Architecture of a CNN model (Ronneberger, Fischer and 

Brox, 2015). 

 

 There are 4 operations throughout the U-Net training process. The 

first one is 3×3 convolutions with ReLU activation function. This layer is 

aimed to reduce the size of the image by 2 pixels on each side and train to 

learn about the important information from the data. The second operation 

which is max pooling 2×2 with a stride of 2 reduces the size of the x-y feature 

map. Max-pooling is used to minimise the dimensionality of the features to 
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remove densely weighted features that are easier to calculate and consume 

fewer computer resources for parameter learning. In other words, the image 

remains with important information, but the spatial information is removed. 

Next, the 2×2 up convolutions transfer the important information to a higher 

resolution image by scaling each vector by 2. At this stage, the image consists 

of spatial and graphical information. Last but not least, the 1×1 convolution 

operation generates the segmentation results which consist of two channels 

which are foreground and background. The output image should be a smaller 

size than the input image but it’s still consisting of spatial and graphical 

information in the segmentation results. 

 Marattukalam and Abdulla (2020) first proposed NIR veins 

segmentation using the U-Net framework on the palmer datasets. The author 

modified the first block by using the Gabor filter which is a Gaussian kernel 

function. The training images were greyscale images which were processed to 

become binary image which contains veins as the foreground. The pre-

processing techniques applied include ROI extraction, adaptive thresholding, 

morphological opening operation, and Medial Axis Thinning algorithm (Lee, 

Kashyap and Chu, 1994). Binary masks are used for training data of the U-Net 

model and as ground truth to compare the prediction results from the trained 

model. As there was no manually labelled ground truth image available, the 

evaluation of the model's performance was carried out using the Dice 

Coefficient and Jaccard Index metrics. The datasets applied were only 6000 

images without mentioning data augmentation was performed. Hence, the 

performance of the model could be enhanced by using more training datasets 

or implementing data augmentation. 

 

 

Figure 2.21: Morphological and Skeletonization Veins Mask (Marattukalam 

and Abdulla, 2020). 
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Figure 2.22: Veins Segmentation Results from U-Net (Marattukalam and 

Abdulla, 2020). 

 

 Jing et al. (2021) performed forearm veins segmentation using a 

modified U-Net model. The author used the in-house datasets which were 

small in size to directly train the model. The data augmentation technique used 

such as shifting, rotation, flipping, etc to generate more images to train a 

robust model. The augmented datasets were further split into training and 

validation purposes to evaluate the model trained while tuning the 

hyperparameters. Besides using the 2×2 Upsampling convolution in the 

expansion path, it was found that 3×3 Conv2DTransponse layers could reduce 

the probability of noises being identified as veins. The batch normalization 

layers were used to reduce the problem of updating coordinates in different 

layers. The batch normalization layer was applied to standardize the data, 

where the mean was set to 0 and the standard deviation was set to 1. The 

training process would be more stable and faster due to the weightage of each 

layer does not change drastically. The novel method achieved high accuracy 

(0.9909) and specificity (0.997) score. However, the recall (0.4856) of the 

model was lower than half which means that more than half of the vein’s 

pixels were not detected. The recall and precision metrics still have room to be 

improved to avoid overfitting. The large size of the datasets could be used and 

performed hyperparameter tuning to optimize the trained model. 
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Figure 2.23: U-Net Segmented Veins (Left) and Ground Truth (Right) (Jing et 

al., 2021). 

 

Table 2.3: Veins Pattern Segmentation Comparison of U-Net Model. 

 Marattukalam and Abdulla 

(2020) 

Jing et al. (2021) 

Modification 

from original 

U-Net 

Replaced Conv 3×3 with 

Gabor Filter 

Replaced 2×2 Upsampling 

Conv with 3×3 

Conv2DTranspose and added 

batch normalization layers 

Datasets 6000 palmer datasets > 20,000 augmented forearm 

images 

Learning Rate 0.00015 0.0001 

Activation 

Function 

- ReLU 

Number of 

Epochs 

20, 30, 40, and 50 25 

Performance Dice Coefficient = 0.69 

Jaccard Index = 0.71 

Specificity = 0.997 

Accuracy = 0.991 

Recall = 0.486 

Precision = 0.660 

 

2.5 Transfer Learning 

Transfer learning is put into practice to improve the learning progress of a new 

task by utilizing knowledge obtained from a learned task that was previously 
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known. There were several authors had proposed transfer learning on veins 

feature extraction tasks. 

 Fairuz, Habaebi and Elsheikh (2018) applied transfer learning 

technique on a pre-trained AlexNet CNN model to perform finger vein 

identification. Three experiments were conducted by varying the input images 

numbers, mini batch size, and number of epochs. The most optimal result was 

obtained in the experiment with 400 input images, a batch size of 50, and 10 

epochs, resulting in an accuracy of 95% and an area under the curve (AUC) of 

0.99. 

 Kuzu, Maiorana and Campisi (2020) proposed a custom network for 

vein feature extraction by modifying the DenseNet161 network. The custom 

embedder was added just before the classification layer and consisted of global 

average pooling, batch normalization, dropout (50%), a fully connected layer, 

and batch normalization. The network weights were initialized from ImageNet, 

and it was found that this outperformed the weights initialized by default. The 

author also performed open-set and closed-set scenario training, and ultimately, 

the closed-set scenario performed the best. The modified DenseNet161 with 

ImageNet weight initialization achieved the best results when tested on three 

different datasets. The SDUMLA (finger vein) dataset achieved an EER of 

0.037%, the Poly U-P (multispectral palmprint) dataset achieved an EER of 

0.005%, and the Bosphorus (dorsal vein) dataset achieved an EER of 0.7%. 

The findings of this study demonstrate that modifying a pre-existing custom 

network and utilizing transfer learning can yield superior model performance, 

rather than creating a new network from the ground up. 

 (Garcia-Martin and Sanchez-Reillo, 2021) had proposed a transfer 

learning method on vein feature extraction for biometric recognition using a 

smartphone. The study utilized four different pre-trained networks, namely 

VGG16, VGG19, ResNet50, and ResNet152. The final fully connected layers 

were replaced with simplified fully connected layers that were randomly 

initialized. To prevent the pre-trained weights from being altered during 

backpropagation, the parts before the fully connected layers were frozen. The 

body was only unfrozen once the head had learned the critical features of the 

dataset. At that point, the body was unfrozen, and the learning rate was 

reduced. The four pre-trained networks were used as feature extractors and 
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applied to three original datasets which are PUT, UC3M-CV2, and UC3M-

CV1. The results were evaluated in terms of EER, with values of 0.38%, 

0.78%, and 2.04% achieved on the respective datasets. Overall, the study 

demonstrates that transfer learning can be a useful approach for vein feature 

extraction in biometric recognition, and pre-trained networks such as VGG16, 

VGG19, ResNet50, and ResNet152 can be effective feature extractors when 

appropriately modified and trained. 

 

2.6 Pre-trained Models 

2.6.1 ResNet 

ResNet (Jian, 2015) is a neural network architecture that was developed in 

2015 by researchers at Microsoft Research Asia. It is specifically designed to 

tackle the issue of vanishing gradients that occurs in very deep neural 

networks. In a typical neural network, each layer transforms the input and 

passes it as the input to the next layer, with the weights of each layer adjusted 

during training to minimize the error between the ground truth and predicted 

output. However, in very deep neural networks, the gradients can become 

extremely small, making it difficult for the network to learn anything further. 

ResNet overcomes this challenge by introducing shortcut connections that 

allow the input to bypass one or more layers and be added to the output of later 

layers. These connections facilitate the flow of information through the 

network, making it easier for gradients to propagate and enabling the network 

to learn deeper and more complex representations. By using these connections, 

ResNet focuses on the essential features of the input, preventing the network 

from becoming overwhelmed by the noises. 

 

2.6.2 ResNeXt 

ResNeXt (Xie et al., 2017) is a deep neural network architecture presented by 

the Microsoft Research team in 2017, which addresses the challenge of scaling 

and generalization in deep learning models. ResNeXt aims to enhance the 

neural networks' performance by increasing their capacity while preventing 

overfitting. In contrast to conventional neural networks, ResNeXt employs a 

novel building block called the "cardinality bottleneck," which splits channels 

into several groups and processes them in parallel. This bottleneck expands the 
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network's capacity while avoiding a rise of the quantity of parameters, which 

can lead to overfitting. ResNeXt also utilizes a hierarchical feature learning 

approach, where small convolutional filters initially process the input, 

followed by larger ones. This approach allows the network to learn different 

features at various scales, resulting in improved performance on a range of 

tasks. The author also claimed that ResNeXt outperformed ResNet family and 

Inception family models. Therefore, ResNeXt provides a more effective and 

efficient way to scale neural networks while maintaining their generalization 

ability. 

 

2.6.3 VGG 

The VGG (Simonyan and Zisserman, 2015) architecture was introduced in 

2014 by researchers from the University of Oxford to address the challenge of 

image recognition in deep learning. The network achieves this goal by 

significantly increasing its depth while maintaining a fixed convolution kernel 

size of 3x3. This increase in depth enhances the network's ability to recognize 

and classify objects in images. To prevent overfitting, VGG employs a novel 

regularization approach that stacks small convolutional filters followed by 

pooling layers, enabling the network to learn a hierarchy of increasingly 

complex features that is crucial for image recognition. 

VGG has several variations, including VGG16 and VGG19, 'which 

have varying amount of convolutional layers. The VGG16 architecture 

comprises 13 convolutional layers, in contrast of VGG19 has 16 convolutional 

layers, but both also consists an additional of 3 fully connected layers. Overall, 

VGG represents a significant departure from existing deep learning models by 

increasing the depth of the network and using small convolutional filters to 

improve image recognition. This approach also enhances the network's ability 

to resist overfitting, making VGG an essential benchmark for image 

recognition tasks and a widely used architecture in various applications. 

 

 

2.6.4 Inception 

The Inception (Szegedy et al., 2014) neural network architecture was 

originated by researchers from Google in 2014 to improve the efficiency and 
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accuracy of image classification. Its main goal was to minimize computational 

cost and memory usage while enhancing neural network performance. Unlike 

traditional neural networks, which rely on manual selection of filter size and 

number, Inception employs an "Inception module," which allows the network 

to learn the optimal filter size and number for each layer. This module 

combines multiple convolutional filters and pooling operations that are applied 

in parallel to the input. The next layer receives the concatenated outputs as 

input. Inception also uses "dimensionality reduction" to decrease the network's 

parameter quantity, allowing it to capture essential features while reducing 

computational cost and memory usage. The architecture has different 

variations such as Inception v1, v2, and v3. These innovations in Inception 

architecture helped to enhance the capabilities of neural networks while 

minimizing the computational cost and memory usage, making it a widely 

used benchmark for image classification tasks. 

 

2.6.5 DenseNet 

DenseNet (Huang et al., 2016) is an architecture of deep neural network that 

was proposed by the team from Facebook AI Research in 2017 to address the 

issue of vanishing gradients that occurs in traditional deep neural networks. 

The goal of DenseNet is to enhance the flow of information and gradients in 

the network while keeping the number of parameters at a minimum. DenseNet 

was introduced to tackle the vanishing gradient problem by introducing a new 

building block known as the "Dense block," which enables the network to 

reuse feature maps from previous layers. In a Dense block, the output of each 

layer is concatenated with the outputs of all preceding layers and fed as input 

to all subsequent layers. This results in dense connections between all layers, 

facilitating the flow of information and gradients throughout the network. 

The DenseNet architecture also employs a technique called 

"bottleneck layers," which compress the feature maps using 1x1 convolutions 

before applying 3x3 convolutions, minimizing the possible amount of 

parameters in the network while preserving its essential features. DenseNet 

has several variations, including DenseNet-121, DenseNet-169, and DenseNet-

201, with varying numbers of layers and parameters. DenseNet-121, for 
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example, comprises four dense blocks and has 7.98 million parameters, 

whereas DenseNet-201 has six dense blocks and 18.3 million parameters. 

 

2.6.6 SENet 

SENet (Hu et al., 2017), or Squeeze-and-Excitation Network, is an innovative 

deep neural network architecture that aims to address the limitations of the 

traditional CNN in modeling interdependencies between channels. The 

researchers from Huazhong University of Science and Technology introduced 

SENet in 2017 with the primary settings of enhancing a neural network's 

ability to learn feature dependencies and relationships across channels. 

While traditional CNNs learn features by convolving input images 

with filters, their inability to effectively model channel dependencies can 

impact their performance. To resolve this, SENet introduces the "Squeeze-and-

Excitation block," a new building block that recalibrates the feature maps 

based on interdependencies between channels. The block comprises a 

"squeeze" operation to reduce the spatial dimensions of feature maps, followed 

by an "excitation" operation that applies a set of learned weights to each 

channel independently. 

By learning to focus on the most informative channels and suppress 

the less informative ones, the excitation operation improves feature 

representation and classification accuracy. This block can be easily integrated 

into existing CNN architectures. SENet achieved state-of-the-art results on the 

ImageNet dataset in 2017 with SENet-154, a 154-layer variation of the 

network. SENet has also been extended beyond image classification to tasks 

like object detection, semantic segmentation, and video classification. 

 

2.6.7 MobileNet 

The next architecture introduced is MobileNet which was developed by 

researchers from Google in 2017 to enable deep neural networks to be 

operated on mobile devices that have constrained computational capabilities. 

The primary aim of MobileNet is to provide a lightweight architecture with 

high accuracy for tasks related to the classification of images while 

minimizing the number of parameters and computational cost. 
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Traditional deep neural networks have a significant amount of 

parameters and need significant computing power, making their deployment 

impractical on mobile devices. To address this issue, MobileNet introduces a 

new building block called the "depthwise separable convolution." Its purpose 

is to split the standard convolution operation into two separate operations: 

utilizes a type of convolution called depthwise convolution, that involves the 

application of a single filter to every input channel independently, and a 

pointwise convolution that applies a 1x1 filter to merge the output of the 

depthwise convolution. This technique reduces the amount of parameters and 

computational cost while maintaining high accuracy on image classification 

tasks. 

MobileNet also uses a technique called "width multiplier" that 

reduces the number of channels in the network by a factor of the multiplier, 

which further reduces the amount of parameters and computational cost 

without significantly impacting accuracy. MobileNet has several variations, 

including MobileNetV1, MobileNetV2, and MobileNetV3, which differ in the 

number of layers and the use of different techniques to improve accuracy and 

reduce computational cost. 

 

2.6.8 EfficientNet 

In 2019, a group of Google researchers introduced EfficientNet (Tan and Le, 

2019a) which is a neural network architecture to tackle the challenge of 

achieving high accuracy on image classification tasks while minimizing the 

number of parameters and computational cost. Unlike existing models, which 

optimize for either depth, width, or resolution, EfficientNet employs a 

technique called compound scaling that simultaneously optimizes all three 

factors. This enables it to achieve state-of-the-art accuracy with fewer 

parameters and lower computational cost. 

To achieve this, EfficientNet scales network depth, width, and 

resolution simultaneously using a fixed scaling coefficient, which is optimized 

using a grid search algorithm to minimize the validation loss. Additionally, it 

introduces a new building block called the "MBConv block," which is a 

combination of depthwise and pointwise convolutions with an inverted 

bottleneck structure that improves feature representation. 
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EfficientNet has variations like EfficientNet-B0 to B7, which differ in 

the number of layers and scaling coefficients used in the compound scaling 

method. It has demonstrated exceptional results in several computer vision 

tasks, which included semantic segmentation. 

 

2.7 Summary 

During the normal practice of intravenous cannulation, medical practitioners 

would consider median cubital superficial veins located at the cubital fossa. 

However, it is often that the veins are not visible to be seen using the 

traditional method. NIR imaging can capture the veins image using two 

approaches, which are reflection and penetration. There are two groups of 

methods to extract the features from the NIR image, which are computer 

vision techniques and deep learning techniques. 

Computer vision techniques are designed based on the geometrical 

structure of the veins and come with a complex handcrafted feature extraction 

which would bring out several problems as below (Qin et al., 2019). 

i) The assumptions are not constantly successful in extracting 

vein patterns. 

ii) It is difficult to interpret the characteristics of all patterns 

generated by pixels. 

iii) It is challenging to construct a mathematical model that can 

accurately represent patterns such as valleys or lines. 

 

However, computer vision techniques can be easily implemented 

without the actual need to understand the mathematical principle behind the 

algorithm if the source code was opened to the public. On the other hand, deep 

learning techniques don’t require searching for patterns from the image, but 

the model will do so. The implementing process is focused on optimizing the 

parameters and layers of model architecture which could be time-consuming 

for the trial-and-error process. The advantage is that deep learning techniques 

could achieve higher accuracy of the veins segmentation easily compare with 

computer vision techniques. In contrast, transfer learning enable to develop a 

deep learning by using small amount of dataset. Fine-tuning on pre-trained 



38 

model was done to address new tasks and the training time is largely reduced 

as those generic features has been learned. 

Based on the literature study, the performance of their vein’s 

segmentation is summarized in Table 2.4. Due to the performance metrics 

were not standardized for all algorithms, it would not be fair to compare which 

algorithm performed better based on their self-published data. Therefore, the 

performance of some literature algorithms would be evaluated in the results 

section. 

 

Table 2.4: Summary of Performance of Literature Method. 

Veins Segmentation 

Algorithm 

Parts of the 

body 

Performance 

Repeated Line Tracking Fingers EER = 0.145% 

Maximum Curvature Fingers EER = 0.0009% 

Principal Curvature Fingers EER = 0.018% 

Wide Line Detector Fingers EER = 0.87% 

U-Net CNN (Marattukalam 

and Abdulla) 

Palmer Dice Coefficient = 0.69 

Jaccard Index = 0.71 

U-Net CNN (Jing et al) Forearm Specificity = 0.997 

Accuracy = 0.991 

Recall = 0.486 

Precision = 0.660 

AlexNet Transfer Learning 

(Fairuz, Habaebi and 

Elsheikh) 

Fingers Accuracy = 95% 

AUC = 0.99 

DenseNet161 Transfer 

Learning (Kuzu, Maiorana 

and Campisi) 

Fingers 

Multispectral 

palmprint 

Dorsal 

EER = 0.037% 

EER = 0.005% 

 

EER = 0.7% 

VGG16, VGG19, ResNet50, 

and ResNet152 Transfer 

Learning (Garcia-Martin and 

Sanchez-Reillo) 

Wrist EER = 0.38% (UC3M-CV2) 

EER = 0.78% (UC3M-CV1) 

EER = 2.04% (PUT) 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

In this study, a well-performed vein feature extraction algorithm for medical 

applications was proposed. Due to the complexity of the image acquisition 

process involving hardware construction and compliance with code of 

standards, obtaining forearm vein datasets was deemed too time-consuming 

for the study's duration. Therefore, NIR datasets were obtained from the 

authors through their published journal papers. The datasets used for this study 

included images of the arm and palm of the upper limb, which were classified 

based on the appropriate method for extracting the region of interest (ROI) 

since the datasets included objects other than the forearm. Both automatic and 

manual ROI extraction were carried out in this study. 

The images obtained from the NIR camera had low quality, which 

requires the application of pre-processing techniques to improve the images. 

Issues such as uneven illumination brightness and noise were prevalent due to 

camera limitations. The veins pattern was then extracted using state-of-the-art 

techniques and self proposed method as discussed in CHAPTER 2, and the 

performance of several feature extraction methods was compared using 

common evaluation metrics utilized in the segmentation problem. 

 

 

Figure 3.1: Process Flow of the Study. 
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 In this study, the hardware specifications used for image processing 

and algorithm development were an Intel I5 processor @ 2.3 GHz, an Nvidia 

graphics card GTX1060, 8 GB of RAM, and a Windows 10 operating system 

environment. MATLAB R2020a were used to run the state-of-the-art 

algorithms while the proposed models were carried out on Microsoft Visual 

Studio Code using Python 3.9.15 and TensorFlow framework (2.10.1). 

 

3.2 Datasets Handling Process 

Among the three publicly available datasets as shown in Table 2.2, there are 

only two consists of ground truth datasets which are NTUIFDB v1 and 

VeinCV_RL. Although NTUIFDB v2 is the largest public dataset found, it is 

not considered in this study as there were no ground truth datasets prepared by 

the author. NTUIFDB v1 would be the suitable dataset for this study where it 

consists of 250 forearms NIR images with its ground truth data to test the 

performance of the feature extraction algorithm. 

 The NTUIFDB v1 dataset was collected from 110 individuals from 9 

countries and was introduced in a research paper in 2012 (Zhang et al., 2012). 

The dataset consists of images captured in two sessions, with varying light 

intensities and angles. The position of the subjects' arm was not standardized 

in the two sessions. The dataset has various issues, which were divided into 

five groups to apply different image preprocessing methods. The 

characteristics of these five groups of images are summarized below: 

i) 2 rulers on the left and right side of the image and 2-floor tile 

lines above and below the forearm. 

ii) Same characteristic as (i) but lack of 1 ruler or floor tile 

elements  

iii) 2 rulers on the left and right side of the image and a wide ruler 

below the forearm 

iv) Same characteristic as (i) but with forearm shadow 

v) Same characteristic as (iv) but forearm position touches or falls 

outside the rulers and floor tile lines  
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Figure 3.2: Group I (on left) and Group II (on right) of NTUIFDB v1. 

 

 

Figure 3.3: Group III (on left) and Group IV (on right) of NTUIFDB v1. 

 

 

Figure 3.4: Group V of NTUIFDB v1. 

 

 Among all the groups, datasets from Group V had the most critical 

issues as shown in Figure 3.4. The forearm laid on top of the ruler while the 

ruler was in the middle of the forearm. The palmer side of the hand was 

included in the image where no visible lines to divide the palmer and forearm 

parts. Besides that, there were some traits found on the forearm such as tattoos, 
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lush hair, and sleeve of their clothes on the minor subjects across different 

groups. 

 

 

Figure 3.5: Distribution of NTUIFDB v1 Datasets. 

 

3.3 Forearm ROI Extraction 

3.3.1 Automatic ROI Extraction 

The Group I image of NTUIFDB v1 has the most complete guideline to 

segment the forearm region.  The 2 rulers located on the left and right side of 

the forearm formed a closed boundary box with the 2 horizontal floor tile lines. 

The region inside the box is exactly the forearm region to be extracted. 

 

 

Figure 3.6: Flowchart of Forearm Edge Detection. 

 

 Firstly, the raw input image consists of digital image noises. It would 

identify these noises as an object if edge detection was straight away 

performed. These grain-like noises were probably caused by the high ISO 

value of the camera (Marie Gardiner, 2020). It amplifies the brightness of the 
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image, but the side effect is less cleaned image would form. Using adaptive 

filtering would eliminate the grains of the image and return a cleaner image. 

Then, edge detection could be performed to highlight the edges of all objects. 

Canny edge detection is utilized to identify all edges present in the images. 

Second-order derivative edge detection is very sensitive to all edges which 

include minor noises. It was found that applying the [0 0.1] vector threshold 

would be sufficient to detect large objects. 

 To identify the vertical rulers at two sides of the forearm and the 

horizontal floor tile lines, Sobel edge detection was used to detect the vertical 

and horizontal edges respectively as shown in Figure 3.7. Both rulers and floor 

tiles have a strong detection result which can be considered as long lines. 

These four long lines intersect each other and form a ‘box’, where the forearm 

is within the ‘box’. Pixels which are located outside the ‘box’ would then be 

converted to black pixels and the forearm would retain its pixel information. 

During the canny edge detection, some forearm edges were discontinued. The 

gap was filled by performing a morphological closing operation using a line as 

a structural element. From the experience of trial and error, 5 pixels of the line 

can connect the gap of edges without connecting other unwanted lines. 

 

  

Figure 3.7: Sobel Edge Detection on Direction: Vertical (left) and Horizontal 

(Right). 
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Figure 3.8: Visualizing the Forearm Edge Detection Process. 

 

The above-explained methods were suitable to be used in Group I and 

IV datasets. For the Group II ROI extraction algorithm, the only difference is 

during the detection of the horizontal edges. The detection of horizontal edges 

would only stop when there are two horizontal edges detected in Groups I and 

IV. The same methods used in Group III would cause the forearm edge 

identified as the boundary of the ‘box’. Therefore, when defining the number 

of pixels detected would be considered as floor tile line, it should be set 

between the forearm edge and floor tile edge as illustrated in Figure 3.9. It 

ensures the algorithm would not detect the forearm edge as a floor tile edge 

when the ‘real’ floor tile edge is absent. 

 

 

Figure 3.9: Illustration of Defining Floor Tile Edge. 

 

 During searching for the two horizontal lines in Groups I and IV, the 

searching starts from the first and last row of the image towards the center. 

Since there are two lines in the image, during defining the number of pixels as 
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floor tile edge, the value can be set lower than the forearm edge as well. It 

ensures that the unclear floor tile lines would also be detected as well. This 

method requires assuming the width of the floor tile so that it can be fully 

removed from the image. In Group III, the assumptions of the width of 

horizontal lines should be larger than in other groups. The trial-and-error 

results showed that the width = 80 is optimized in Group III while width = 30 

is sufficient for other groups.  

 

 

Figure 3.10: Visualizing the Process of ROI Extraction Using Binary Mask. 

 

 When performing the edge detection in the above-mentioned process, 

there were other edges besides the forearm edges being detected. It can be 

observed that in most cases, forearm edges were the longest edge being 

detected. Therefore, the first two longest lines remain while another line would 

be converted to black pixels. The two lines were further connected between 

the two endpoints of the lines to form a closed contour. It can be then 

identified as a shape and filled with the pixels within the closed contour with 

logic ‘1’. A mask is then obtained which represents the ROI of the forearm in 

binary form. The ROI extraction of the forearm raw image can be done by 

overlaying it on the mask. 

 The above-mentioned process could be done in the same way in 

Group I to III datasets. However, the edges of shadow in the Group IV datasets 
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would be detected and the lines are often longer than the forearm edges. 

Therefore, the elimination of the shadow edge should be done before 

continuing the algorithm. This can be done by searching for the lines nearest to 

the lower left corner and the total pixels of the line should be more than the 

threshold set. This is to avoid those thin small lines being detected. Once the 

shadow edge is removed, the same ROI extraction steps can be done together 

with the other groups. 

 

3.3.2 Manual ROI Extraction 

Group V datasets were unable to perform automatic ROI extraction as 

discussed in Section 3.3.1. The automatic thresholding algorithm is designed 

based on the assumption of the forearm within the ‘box’. If the forearm region 

were touching the ruler edges or partially outside, the ruler edges don’t assist 

in segmenting the forearm, wrist, and cubital fossa. Therefore, a manual 

approach to perform ROI extraction on these datasets was proposed using 

Computer Vision Annotation Tool (CVAT). 

 The advantage of using CVAT to manually segment the ROI of the 

forearm is the built-in AI interactor, Deep Extreme Cut (DEXTR). Selecting 

the four corners of the forearm could identify the forearm region in an accurate 

manner. With the help of DEXTR, the segmentation process was much shorter 

as compared with other segmentation tools. 

 

 

Figure 3.11: Manual Forearm ROI Extraction on CVAT. 
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3.4 Image Preprocessing 

There are two issues can be observed from the raw images, which are uneven 

illuminance of the image and digital image noise. The first problem causes the 

brightness to be unevenly distributed across the forearm. The center of the 

image would appear in higher brightness while the boundary of the forearm is 

much dimmer. This can be solved by applying the contrast limited adaptive 

histogram equalization (CLAHE) that can evenly distribute the brightness of 

the image. When the operation stretches the histogram distribution of the 

image, it limits the contrast level to avoid more image noise being introduced. 

 

 

Figure 3.12: Flowchart of Image Pre-processing. 

 

 Besides that, the image enhanced using CLAHE made the noises of 

the image more visible to be seen. By applying both Denoising Convolutional 

Neural Network (DnCNN) and adaptive filtering could largely improve the 

noisy condition of the image. DnCNN is one of the convolutional neural 

network that can denoise the image generally through the residual learning 

strategy (Zhang et al., 2017). It learns about the noise info of the input image 

at the hidden layer and generates a similar noise layer. The denoising of the 

image could be achieved ideally by subtracting the noise layer from the image. 

Below is the architecture of the DnCNN applied for image denoising. 

 

 

Figure 3.13: Architecture of DeCNN. 
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 After performing DnCNN, the large texture of grain-like noises was 

removed. The surface of the output image was still unevenly distributed. 

Adaptive thresholding could remove these noises while at the same time fixing 

the discontinuous line and smoothing the image (Knutsson, Westin and 

Kikinis, 2000). After performing three steps of pre-processing techniques, the 

veins pattern was ready to be extracted. 

 

 

Figure 3.14: Visualizing Image Pre-processing. 

 

3.5 Veins Feature Extraction Algorithms 

3.5.1 State-of-the-art Algorithms 

There were four types of state-of-the-art techniques implemented in this study, 

which are maximum curvature, repeated line tracking, principal curvature, and 

wide line detector. The working principles were discussed in Section 2.4 

previously. The parameters selection of the respective algorithm were shown 

below. 
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Table 3.1: Parameters of Feature Extraction Algorithm. 

Algorithm Parameters 

Repeated Line Tracking 

(Bram Ton, 2022a) 

Maximum iterations = 2000;  

Distance between tracking point and profile = 6;  

Width of profile = 17 

Maximum Curvature 

(Bram Ton, 2022a) 

Sigma = 5 

Principal Curvature 

(Christof Kauba, 2022) 

Sigma = 4;  

The percentage used for hard thresholding = 4; 

Wide Line Detector 

(Bram Ton, 2022b) 

Radius of the circular neighbourhood region = 6 

Neighbourhood threshold = 0.9 

Sum of neighbourhood threshold = 40 

 

 The parameters were optimized through trial-and-error methods and 

the relationship between the parameters and the results. Since these algorithms 

were not given a guideline to choose the suitable parameters, the outcome of 

the veins segmentation results was observed and then tuned for optimization. 

The relationship between tuning the parameters was summarized below. 

 In repeated line tracking, the line tracking initiates at different 

positions. A cross-sectional profile is used to find the deepest point at the s-p-t 

valley. The width of the profile should be wider than the veins and not collide 

with other veins. The lines are connected between the tracking point and the 

profile, shorter profile would result in high processing time but is more 

accurate. The distance selected is nice enough to connect the lines without 

spending too much computational time. The number of iterations determines 

how likely the veins were detected. Iterations under the threshold would 

include the noise as veins while above that the thick veins would be detected 

more than thin veins. 

 The maximum curvature method calculates the local maximum in 

four different directions and the highest score of the curvature detected is 

identified as veins. The sigma parameter is to construct the filter kernels to 

determine the local minimum across the profile. Higher sigma would be 

insensitive to the small veins while noises would include if lower than that. 
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 The principal curvature identifies the local minimum through the 

eigenvalues and eigenvectors of the Hessian Matrix. The sigma parameters 

determine the size of the Gaussian kernel to create and share the same function 

as maximum curvature. The hard threshold is used to remove the noises during 

gradient normalization. Hence, it is normally adjusted to a small value. 

 Lastly, the wide line detector uses a circular mask to match the pixels 

of the image. The veins are identified if the number of dark pixels in the circle 

exceeds the threshold which determines by the parameter, the sum of the 

neighbourhood threshold. The pixels are identified as ‘dark’ through the 

parameter of the neighbourhood threshold. The circular mask should be as 

close to the size of the veins so that the mask can cover all the veins in the 

image. 

 

3.5.2 U-net Transfer Learning Model 

3.5.2.1 Overview 

The proposed method utilized the U-net model architecture, where the pre-

trained model weights were transferred to the encoder part. A total of 28 pre-

trained models from various families were used for training, including ResNet, 

ResNeXt, VGG, Inception, DenseNet, SENet, MobileNet, and EfficientNet. 

The pre-trained models were obtained from training on the ImageNet dataset 

and their weights were transferred to the proposed model. 

 

3.5.2.2 Data Augmentation 

To counterbalance the small dataset size, data augmentation was applied to the 

pre-processed datasets in order to expand the range and diversity of the 

training data. Augmentation strategies were chosen based on the expected 

variations during the injection process, and included: 

i) Horizontally flipping 50% of images, 

ii) Randomly cropping the width or height of some images by 

10%. 

iii) Applying Gaussian blur with σ = 0 to 0.5 on 50% of images, 

iv) Changing the contrast of images by 75% to 150% of the 

original values, 
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v) Adjusting the brightness of images by 80% to 120% of the 

original values, with 20% of images having different RGB 

channel values. 

vi) Rotating images by -10° to 10°. 

 

3.5.2.3 Model Training Settings 

The forearm vein dataset was divided by a ratio of 7:1:2 into three subsets, 

namely the training, validation, and testing sets. The resulting numbers of 

images in each set were 175 for training, 25 for validation, and 50 for testing.

 To construct the U-Net model, a pre-trained model with weights was 

used as the encoder. The pre-trained model was obtained from a publicly 

available Github repository to facilitate the training process. (Pavel 

Iakubovskii, 2019). The last layer of the U-Net model was activated using the 

Sigmoid function to facilitate binary class prediction, as vein segmentation 

involves a binary classification task.  

During the backpropagation process, the Adam optimizer was used 

and set at 0.0001 learning rate. Then, the model was trained for 50 epochs 

using a batch size of 8. The combination of binary cross-entropy loss and 

binary focal loss was used to evaluate the training losses in each epoch. The 

experiment was conducted on TensorFlow 2.0 framework and trained using 

Nvdia GTX1060. 

 

3.6 Evaluation of Algorithm 

Metrics evaluation is to identify whether the algorithm performed as expected. 

There were six types of metrics to determine the performance of the algorithm, 

which are accuracy, specificity, recall, precision, Dice coefficient, and Jaccard 

index. 

 These metrics were based on the fundamentals of the confusion 

matrix, which measures the predicted results and actual data. The feature 

extraction output generated by the algorithm is the predicted case while the 

ground truth data refers to the actual case.  
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Figure 3.15: Confusion Matrix. 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3.1) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3.2) 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.3) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.4) 

 𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (3.5) 

 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 =
𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

2 − 𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
 (3.6) 

   

A dice coefficient is designed to measure how much the predicted 

veins intersect with the actual case and penalize the score for falsely identified 

veins. The evaluation result compares the segmentation of veins and the 

ground truth where both are in binary representation. The Dice coefficient 

shares the same formula with the F1 score when evaluating binary results. It 

takes the balance between recall and precision and provides a harmonic mean 

of the performance.  

 

3.7 Work Plan 

This project was divided into two parts, each spanning 14 weeks. The first part 

focused on completing the progress report, and the schedule is outlined in 

Figure 3.16. The activities planned for this part included four major tasks. In 

the first four weeks, extensive literature research was conducted to understand 

the latest trends and state-of-the-art in vein segmentation algorithms, and 
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datasets were requested during this period. Over the next four weeks, an 

algorithm was developed based on the literature review. However, open-

source code was available, so the development process was centered on 

learning how to use the algorithm. Additionally, ROI extraction of the forearm 

was carried out. Once the algorithm was developed, the datasets were used to 

check the segmentation results. The testing phase took longer than anticipated, 

with a duration of approximately five weeks instead of the planned two weeks. 

Finally, report writing was completed in week 11, which involved preparing 

the progress report and an oral presentation. 

 

 

Figure 3.16: Gantt Chart of FYP Part 1. 

 

 Figure 3.17 shows the Gantt chart for part 2 of the project. The first 

four weeks were allocated for transfer learning model development, with each 

model requiring significant computational power and time. The timeline was 

set at four weeks as a safety line for algorithm development. The next four 

weeks were dedicated to finalizing the FYP report, with a focus on editing the 

content based on the proposed method. In week 11, a poster was required for 

submission to the FYP poster competition, which was completed unexpectedly 

quickly within a week. The last three weeks were spent enhancing the report 

and reviewing the developed algorithm. 



54 

 

Figure 3.17: Gantt Chart of FYP Part 2. 

 

3.8 Summary 

This chapter discussed the relevant steps to develop a vein feature extraction 

algorithm. The first step was to request and obtain the dataset, which was then 

pre-processed to ensure its suitability for use in training and testing the 

algorithm. Next, state-of-the-art and proposed vein feature extraction 

algorithms were developed. Finally the performance of the algorithm were 

evaluated by comparing it to existing approaches, in order to determine the 

best-performing model. Overall, the project aimed to advance the field of hand 

vein feature extraction by developing a novel algorithm that could improve 

upon existing techniques. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

There are 4 state-of-the-art vein segmentation technique and proposed U-net 

transfer learning model developed and their results were presented below. The 

metrics are evaluated based on the segmented veins and ground truth. From 

the performance of the metrics, it can be evaluated whether these originated 

finger vein-based algorithms are suitable to be applied to forearm datasets. The 

proposed transfer learning model were tested on using different pre-trained 

model to evaluate the best performance model in segmenting the veins. 

 

4.2 Results 

4.2.1 State-of-the-art Algorithms 

The results presented in Table 4.1 showed that all of the feature extraction 

algorithms evaluated achieved high levels of accuracy and specificity, with the 

maximum curvature algorithm performing the best overall, achieving accuracy 

and specificity scores of 98.03% and 99.41%, respectively. On the other hand, 

the principal curvature method had the lowest accuracy and specificity scores, 

with values of 91.76% and 92.02%, respectively. While the principal curvature 

method had a relatively high recall score of 76.71%, indicating that most true 

veins were correctly identified, its precision score was the lowest of all the 

algorithms, at only 14.99%. In contrast, the maximum curvature algorithm had 

the highest precision score (41.41%), but the lowest recall score, at 23.14%. 

However, it should be noted that none of the algorithms achieved a precision 

score greater than 50%. 

 

Table 4.1: Accuracy, Specificity, Recall, and Precision of the State-of-the-art 

Vein Segmentation Algorithm. The best achieved results are 

shaded in green and worst results are shaded in orange. 

Algorithm Repeated 

Line 

Maximum 

Curvature 

Principal 

Curvature 

Wide Line 

Detector 



56 

Tracking 

Accuracy 96.55% 98.03% 91.76% 97.18% 

Specificity 97.34% 99.41% 92.02% 98.38% 

Recall 55.15% 23.14% 76.71% 31.27% 

Precision 26.76% 41.41% 14.99% 25.44% 

 

 Table 4.2 presents the Dice coefficient and Jaccard index results for 

the four algorithms evaluated. While the repeated line tracking method did not 

achieve the highest recall or precision scores, it had the highest mean Dice 

coefficient and mean Jaccard index, at 35.14% and 21.58%, respectively, 

which is reasonable given that it had the second-highest recall and precision 

scores among the feature extraction algorithms. However, the repeated line 

tracking algorithm had the highest standard deviation, at 7.76%. In contrast, 

the principal curvature algorithm had the lowest mean Dice coefficient and 

mean Jaccard index, at only 24.66% and 14.25%, respectively. Importantly, 

the differences in mean and median scores among all the algorithms were 

within 0.82%, indicating that segmentation performance was relatively stable 

across the datasets. 

 

Table 4.2: Dice Coefficient and Jaccard Index of the State-of-the-art Veins 

Extraction Algorithm. The best achieved results are shaded in 

green and worst results are shaded in orange. 

Algorithm 
Dice Coefficient Jaccard Index 

Mean Median Std Dev Mean Median Std Dev 

Repeated 

Line 

Tracking 

35.14% 35.95% 7.76% 21.58% 21.91% 5.63% 

Maximum 

Curvature 

29.17% 29.71% 4.41% 17.16% 17.45% 2.98% 

Principal 

Curvature 

24.66% 24.24% 6.80% 14.25% 13.79% 4.71% 

Wide Line 

Detector 

27.50% 28.12% 7.56% 16.16% 16.36% 5.01% 
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4.2.2 U-net Transfer Learning Model 

Table 4.3 presents the U-net model's performance with different pre-trained 

models as the backbone. All pre-trained networks achieved scores of above 98% 

in terms of accuracy and specificity. EfficientNetB2 had the highest accuracy 

score of 98.78%, while ResNet-18 had the lowest accuracy score of 98.31%. 

The difference between the highest and lowest accuracy scores was only 

0.47%, indicating the high efficiency of pre-trained models. On the other hand, 

ResNet-18 had the highest specificity score of 99.96%, while ResNet-152 

scored the lowest specificity of 99.54%. 

 Although the accuracy and specificity scores of all pre-trained models 

were similar, their precision and recall scores reveal a different story when it 

comes to selecting a better backbone for the U-net model. Among all models, 

SEResNet34 achieved the highest precision score of 83.78%, while ResNet-

152 had the lowest precision score of 65.33%. In contrast, the best and worst 

performers in recall were different from precision. EfficientNetB3 achieved 

the highest recall score of 55.27%, while ResNet-18 had the lowest recall 

score of 9.83%. These findings suggest that besides considering accuracy and 

specificity, precision and recall scores can provide additional insights into the 

performance of the pre-trained models as backbones for the U-net model. 

 

Table 4.3: Accuracy, Specificity, Recall, and Precision of the U-net Transfer 

Learning Model. The best achieved results are shaded in green and 

worst results are shaded in orange. 

Backbone Accuracy Specificity Precision Recall 

ResNeXt-50 98.65% 99.71% 73.04% 41.75% 

ResNeXt-101 98.69% 99.78% 77.56% 40.09% 

Inception-v3 98.69% 99.78% 77.56% 40.09% 

Inception-ResNet-v2 98.71% 99.75% 76.06% 43.21% 

DenseNet121 98.69% 99.78% 77.56% 40.09% 

DenseNet169 98.67% 99.78% 76.71% 39.61% 

DenseNet201 98.68% 99.69% 72.75% 44.73% 

SEResNet18 98.63% 99.79% 76.21% 36.60% 

SEResNet34 98.50% 99.92% 83.78% 22.74% 
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SEResNet50 98.67% 99.62% 70.07% 47.99% 

SEResNet101 98.66% 99.64% 70.63% 46.15% 

SEResNet152 98.68% 99.78% 77.30% 39.34% 

SEResNext50 98.61% 99.55% 66.69% 47.96% 

SEResNext101 98.69% 99.68% 72.45% 45.63% 

MobileNet 98.77% 99.72% 76.13% 47.96% 

MobileNetv2 98.59% 99.57% 66.56% 46.17% 

EfficientNetB0 98.75% 99.60% 73.88% 48.76% 

EfficientNetB1 98.75% 99.78% 78.51% 43.93% 

EfficientNetB2 98.78% 99.74% 76.18% 45.43% 

EfficientNetB3 98.75% 99.56% 70.25% 55.27% 

EfficientNetB4 98.75% 99.65% 72.97% 50.61% 

VGG16 98.77% 99.79% 79.87% 44.02% 

VGG19 98.78% 99.75% 77.92% 46.44% 

ResNet-18 98.31% 99.96% 83.60% 9.83% 

ResNet-34 98.61% 99.74% 73.32% 38.21% 

ResNet-50 98.59% 99.84% 75.46% 34.03% 

ResNet-101 98.56% 99.84% 77.58% 29.68% 

ResNet-152 98.57% 99.54% 65.33% 46.78% 

 

The results of the segmentation performance using various pre-trained 

models as the backbone of U-net are presented in Table 4.4. It can be observed 

that the best and worst performers are consistent with the results obtained in 

the recall metrics. EfficientNetB3 achieved the highest dice coefficient and 

Jaccard index, with scores of 83.56% and 71.76%, respectively. On the other 

hand, ResNet-18 had the lowest dice coefficient of 70.11% and Jaccard index 

of 53.98%. These results suggest that the pre-trained models that perform well 

in recall metrics are likely to yield good results in Jaccard index and dice 

coefficient as well. 
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Table 4.4: Dice Coefficient and Jaccard Index of the U-net Transfer Learning 

Model. The best achieved results are shaded in green and worst 

results are shaded in orange. 

Backbone Dice Coefficient Jaccard Index 

ResNeXt-50 80.53% 67.41% 

ResNeXt-101 80.26% 67.02% 

Inception-v3 80.46% 67.30% 

Inception-ResNet-v2 81.21% 68.37% 

DenseNet121 80.46% 67.30% 

DenseNet169 80.25% 67.01% 

DenseNet201 81.30% 68.49% 

SEResNet18 79.33% 65.74% 

SEResNet34 75.11% 60.14% 

SEResNet50 81.83% 69.24% 

SEResNet101 81.44% 68.68% 

SEResNet152 80.22% 66.97% 

SEResNext50 81.41% 68.65% 

SEResNext101 81.50% 68.78% 

MobileNet 82.51% 70.23% 

MobileNetv2 80.97% 68.03% 

EfficientNetB0 82.47% 70.16% 

EfficientNetB1 81.64% 68.98% 

EfficientNetB2 82.40% 70.07% 

EfficientNetB3 83.56% 71.76% 

EfficientNetB4 82.82% 70.68% 

VGG16 81.79% 69.20% 

VGG19 82.29% 69.90% 

ResNet-18 70.11% 53.98% 

ResNet-34 79.57% 66.08% 

ResNet-50 78.50% 64.61% 

ResNet-101 77.26% 62.94% 

ResNet-152 80.96% 68.02% 
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Table 4.5 presents the vein segmentation results obtained from each 

transfer learning model using different backbones. To identify the strengths 

and weaknesses of each backbone, the same pre-processed test image is used 

for comparison. According to the ground truth, there are three long horizontal 

veins visible in the image, which are the major veins for injection. All 

backbones perform well in segmenting these three vein lines. 

 However, there are two details that differentiate the performance of 

these backbones. Firstly, there is a problem with discontinuity in segmented 

lines for ResNeXt-50 and MobileNet, with ResNeXt-50 having more 

significant discontinuity where a vein could be cut into multiple short veins. 

Secondly, the detection of vertical veins is weaker for ResNeXt-50, Inception-

v3, DenseNet201, MobileNet, EfficientNetB3, and VGG19. This could be due 

to the fact that vertical veins are less prominent than horizontal veins, leading 

to fewer features to train the model. However, the vertical veins are not as 

critical as the horizontal veins for injection, which makes this issue less severe. 

  

Table 4.5: Samples of segmented veins generated by the top performer of each 

pre-trained model family. 

Test Image:  Ground truth:  

Backbone Predicted Result 

ResNeXt-50 
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Inception-v3 

 

Inception-ResNet-v2 

 

DenseNet201 

 

SEResNext101 
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MobileNet  

 

EfficientNetB3  

 

VGG19  

 

ResNet-152 
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4.3 Discussion 

4.3.1 Performance of State-of-the-art Hand Vein Segmentation 

The use of accuracy and specificity metrics to evaluate segmentation algorithm 

performance is limited due to imbalanced datasets, where the background 

pixels make up more than half of the total pixels in an image. As a result, 

regions other than the region of interest contribute significantly to the accuracy 

and specificity scores. In contrast, the recall and precision metrics provide 

insight into how well the four algorithms perform in terms of identifying true 

veins. Recall is particularly relevant for evaluating feature extraction 

performance in vein segmentation, as it indicates how likely the algorithm is to 

identify all real veins (ground truth). However, in medical practice, precision 

is more crucial than recall, as false-positives can cause confusion for 

practitioners. Therefore, while recall is a suitable metric for evaluating feature 

extraction performance, precision is of greater importance in medical practice.

 The results from Table 4.1 reveal two significant observations. First, 

the principal curvature method had the highest recall score, at 76.71%, but the 

lowest precision score, at 14.99%. This suggests that more than 80% of the 

segmented veins are not true veins, indicating poor performance in the vein 

segmentation task, as reflected in the lowest Dice coefficient and Jaccard 

index scores. Second, all of the state-of-the-art algorithms performed poorly 

on the NTUIFDB v1 Datasets, with all of their Dice coefficient and Jaccard 

index scores below 50%, as shown in Table 4.2. These state-of-the-art 

techniques were designed to segment finger veins datasets, and their 

performance may be affected when switching to forearm datasets, as the skin 

on the forearm is thicker, and the veins are less visible and have less contrast 

with the surrounding skin. Therefore, these state-of-the-art algorithms are not 

suitable for performing vein segmentation tasks on the NTUIFDB v1 Datasets. 

 

4.3.2 Performance of U-net Transfer Learning Model 

Table 4.6 illustrates the loss of the best performer of each pre-trained model 

family (same as Jaccard index) during training and validation stage. The 

selection of best performer is based on the Jaccard index from Table 4.4. For 

example, DenseNet family consists of DenseNet121, DenseNet169, and 
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DenseNet201 where DenseNet201 would be selected in Table 4.6 as it had the 

highest Jaccard index of 68.49%. 

 The training losses for all models were similar and slowly saturated at 

40 epochs. In the first 10 epochs, the training loss curve experienced a steep 

decrease, after which the rate of decrease slowed down. However, there were 

differences in the performance of validation loss across the different 

backbones. 

ResNeXt-50 experienced a steep decrease in validation loss in the 

first 20 epochs, which continued to drop until 50 epochs. The ultimate 

validation loss was higher than the training loss, indicating that the model was 

slightly overfit to the training data. However, the learning rate was good. 

Inception-v3 exhibited a gradual decrease in validation loss over 20 

epochs, eventually converging to the final validation loss. While the validation 

loss crossed over the training loss in the first 5 epochs, it continued to remain 

at a distance from the training loss thereafter. The model's learning rate was 

also considered good, with slight overfitting to the training data. 

The Inception-ResNet-v2 model experienced a steep drop in 

validation loss in the first 20 epochs but started to intersect with the training 

loss afterwards, with a difference of less than 0.01. This indicates a good 

learning rate, but the model may be slightly overfitting to the training data. 

As for DenseNet201, it also had a good learning rate, with a steep 

decrease in validation loss in the initial 20 epochs. The validation loss and 

training loss were separated by some distance, suggesting that the model was 

slightly overfitting. 

MobileNet and SEResNext101 models had similar behavior, where 

the validation loss gradually decreased in the first 20 epochs. However, the 

validation loss of SEResNext101 remained closer to the training loss and 

intersected with it several times. The validation loss of MobileNet remained at 

a certain distance from the training loss throughout the 50 epochs. 

EfficientNetB3 had the best performance in Jaccard index, and its 

validation loss decreased linearly in the first 35 epochs, indicating a low 

learning rate. The validation loss then started to saturate, but did not intersect 

with the training loss, indicating that the model was still slightly overfitting to 

the training data. 
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VGG19 had a V-shape valley in the first 5 epochs, with the validation 

loss crossing over the training loss. However, it quickly rose above the training 

loss and continued to saturate until the end. This behavior indicates that the 

model was trained at a good learning rate and exhibited a slightly overfitting 

behavior. 

ResNet-152 had a steep decrease in validation loss in the first 10 

epochs and then decreased slowly while moving along with the training loss 

with a certain distance. This behavior shows that the model had a good 

learning rate and was slightly overfitting to the training data. 

In short, the parameters selected to train the model was suitable to be 

used in training. As different model might have different optimized parameters, 

the learning rate and number of epochs used is considered a suitable selection 

that could observed the model performance under the same training conditions. 

 

Table 4.6: Training and Validation Performance of the Top Performer Pre-

trained Model in Each Pre-trained Model Family. 

Backbone Training & Validation Loss 

ResNeXt-50 

 

Train loss = 0.0377 

Val loss = 0.0588 
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Inception-v3 

 

Train loss = 0.0389 

Val loss = 0.0577 

Inception-ResNet-v2 

 

Train loss = 0.0495 

Val loss = 0.0597 

DenseNet201 

 

Train loss = 0.0330 

Val loss = 0.0501 
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SEResNext101 

 

Train loss = 0.0582 

Val loss = 0.0726 

MobileNet 

 

Train loss = 0.0303 

Val loss = 0.0524 

EfficientNetB3 

 

Train loss = 0.0383 

Val loss = 0.0529 
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VGG19 

 

Train loss = 0.0411 

Val loss = 0.0569 

ResNet-152 

 

Train loss = 0.0235 

Val loss = 0.0527 

 

After analyzing the performance of different backbone models during 

transfer learning in Table 4.4, a clear trend has emerged. EfficientNet family 

outperforms other families in terms of Jaccard index, with all but one 

EfficientNet family achieving more than 70%. In contrast, ResNet family did 

not perform well as the backbone during transfer learning, with ResNet18 

having the lowest Jaccard index of 53.98%. Three out of five ResNets scored 

lower than 65% of Jaccard index. Since ResNets were designed to solve the 

vanishing gradient problem by introducing shortcuts to the layers, they may 

not be powerful enough to perform vein segmentation tasks (He et al., 2015). 

In contrast, EfficientNet uses compound scaling to efficiently scale the 

dimensions of depth, width, and resolution using computing resources (Tan 
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and Le, 2019b). Therefore, EfficientNet has more capability to learn complex 

features from the input image, which makes it outperform other backbone 

models. This trend suggests that choosing the right backbone architecture is 

critical to achieving high performance in vein segmentation tasks.  

 

4.3.3 Performance Analysis of State-of-the-art Algorithms and the 

Proposed Models 

Table 4.7 has presented the proposed method as compared with the state-of-

the-art algorithm. The datasets used and pre-processing techniques applied 

were the same before applying the vein segmentation algorithm. Therefore, the 

comparison can reflect on the actual performance of each method without 

considering other variable factor. 

 

Table 4.7: Performance Comparison between State-of-the-art Algorithm and 

the Proposed Methods, where only the best backbone model is 

selected. 

Method Precision Recall 
Dice 

Coefficient 

Jaccard 

Index 

Repeated Line 

Tracking 
26.76% 56.15% 35.14% 21.58% 

Maximum 

Curvature 
41.41% 23.14% 29.17% 17.16% 

Principal 

Curvature 
14.99% 76.71% 24.66% 14.25% 

Wide Line 

Detector 
25.44% 31.27% 27.50% 16.16% 

U-net Transfer 

Learning 

(EfficientNetB3 

as backbone) 

70.25% 55.27% 83.56% 71.76% 

 

 The proposed method with various backbone models, as shown in 

Table 4.7, outperformed the state-of-the-art techniques. However, the 
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comparison would only select the best performer backbone. The proposed 

method achieves a precision 70.25%, which is significantly higher than the 

state-of-the-art maximum curvature method with a precision of 41.41%. It 

means that the proposed method is 30% more reliable in predicting pixel 

belonging to veins. Although the proposed method's recall score of 55.27% is 

lower than repeated line tracking and principal curvature methods, those state-

of-the-art methods have low precision, indicating that most segmented veins 

are not actual veins. Dice coefficient and Jaccard index reflect the overall 

performance of the segmentation results. From the experiment, the proposed 

method achieves an 83.56% dice coefficient and a 71.76% Jaccard index, 

which is much more reliable than the best of state-of-the-art methods, repeated 

line tracking, with a dice coefficient of 35.14% and a Jaccard index of 21.58%. 

 The comparison results established the superiority and robustness of 

the proposed method in vein segmentation tasks. Deep learning models are 

found to be more suitable for this purpose compared to handcrafted feature 

extraction techniques, which were developed based on specific datasets and 

may not perform well on different datasets. Moreover, the state-of-the-art 

algorithms were designed to segment finger veins and their performance may 

not be robust when applied to forearm veins. In contrast, the proposed method 

can be further fine-tuned through transfer learning to learn features on new 

datasets, making it theoretically possible to achieve accurate vein 

segmentation on different datasets. 

 

4.4 Summary 

The performance of four state-of-the-art algorithms was found to be poor 

when evaluated on the NTUIFDB v1 forearm vein dataset. On the other hand, 

the proposed transfer learning model which used U-net as the architecture and 

EfficientNetB3 as the backbone demonstrated excellent performance in vein 

segmentation with scores of 83.56% for Dice coefficient and 71.76% for 

Jaccard index. These results suggest that the proposed model has the potential 

to be used in clinical settings for accurate and reliable vein segmentation. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In conclusion, this study has demonstrated the effectiveness of transfer 

learning in addressing the small dataset problem while ensuring high-

performance levels in forearm vein feature extraction. Our results indicate that 

the EfficientNetB3 model, used as the backbone of the U-net architecture, 

outperformed other state-of-the-art techniques, achieving the highest accuracy 

rates in segmenting the NTUIFDB v1 dataset. Additionally, our findings 

highlight the limitations of handcrafted vein feature extraction methods, which 

did not perform as well as deep learning models in extracting relevant features 

of forearm veins. These results underscore the potential of deep learning 

techniques for improving venous access success rates and reducing healthcare 

costs associated with difficult venous access. In summary, this study provides 

valuable insights into the application of transfer learning and deep learning for 

vein feature extraction in the forearm, paving the way for further research in 

this important area of medical imaging. 

 

5.2 Recommendations for future work 

There are several potential areas for future research in the field of forearm vein 

feature extraction. Firstly, it is recommended that the feature learning 

capability of the transfer learning model be further improved by using larger 

datasets. The use of the NTUIFDB v2 dataset, which includes a larger number 

of images, could significantly enhance the model's performance. However, this 

dataset requires healthcare professionals to label the ground truth of the 

images, which can be time-consuming and labor-intensive. 

Secondly, it is recommended that future studies should focus on 

training the model on open-set scenarios. This would enable the development 

of a robust vein feature extraction algorithm that could identify veins from 

different parts of the body, not just the forearm. Such a model could be 

especially useful in emergency medical situations, where venous access is 
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often challenging due to factors such as patient movement, time constraints, 

and poor lighting conditions. 

Overall, further research in these areas has the potential to 

significantly advance the field of medical imaging and improve the accuracy 

and reliability of vein-based feature extraction systems. 
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APPENDICES 

 

APPENDIX A: Images 

 

Image A-1: Segmented Veins Using Maximum Curvature. 

 

 

Image A-2: Overlaid of Segmented Veins Using Maximum Curvature (Purple) 

on Ground Truth (Green). 
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Image A-3: Segmented Veins Using Repeated Line Tracking. 

 

 

Image A-4: Overlaid of Segmented Veins Using Repeated Line Tracking 

(Purple) on Ground Truth (Green). 
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Image A-5: Segmented Veins Using Principal Curvature. 

 

 

Image A-6: Overlaid of Segmented Veins Using Principal Curvature (Purple) 

on Ground Truth (Green). 
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Image A-7: Segmented Veins Using Wide Line Tracking. 

 

 

Image A-8: Overlaid of Segmented Veins Using Wide Line Tracking (Purple) 

on Ground Truth (Green).  
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Image A-9: Time Taken to Perform Maximum Curvature on 250 Images. 

 

 

Image A-10: Time Taken to Perform Repeated Line Tracking on 250 Images. 
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Image A-11: Time Taken to Perform Wide Line Detector on 250 Images. 

 

 

Image A-12: Time Taken to Perform Principal Curvature on 250 Images. 
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Image A-13: Training process of U-net using EfficientNetB3 as backbone. 

 

 

 

 

Image A-14: Sample images of testing result using U-net with EfficientNetB3 

as backbone. 
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Image A-15: Training and Validation Loss of ResNeXt-50. 

 

 

Image A-16: Training and Validation Loss of ResNeXt-101. 
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Image A-17: Training and Validation Loss of Inception-v3. 

 

 

Image A-18: Training and Validation Loss of Inception-ResNet-v2. 
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Image A-19: Training and Validation Loss of DenseNet121. 

 

 

Image A-20: Training and Validation Loss of DenseNet169. 
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Image A-21: Training and Validation Loss of DenseNet201. 

 

 

Image A-21: Training and Validation Loss of SeresNet18. 
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Image A-22: Training and Validation Loss of SeresNet34. 

 

 

Image A-23: Training and Validation Loss of SeresNet50. 
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Image A-24: Training and Validation Loss of SEResNet101. 

 

 

Image A-25: Training and Validation Loss of SEResNet152. 
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Image A-26: Training and Validation Loss of SEResNext50. 

 

 

Image A-27: Training and Validation Loss of SEResNext101. 
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Image A-28: Training and Validation Loss of MobileNet. 

 

 

Image A-29: Training and Validation Loss of MobileNet v2. 
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Image A-30: Training and Validation Loss of EfficientNetB0. 

 

 

Image A-31: Training and Validation Loss of EfficientNetB1. 
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Image A-32: Training and Validation Loss of EfficientNetB2. 

 

 

Image A-33: Training and Validation Loss of EfficientNetB3. 
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Image A-34: Training and Validation Loss of EfficientNetB4. 

 

 

Image A-35: Training and Validation Loss of VGG16. 
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Image A-36: Training and Validation Loss of VGG19. 

 

 

Image A-37: Training and Validation Loss of ResNet18. 
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Image A-38: Training and Validation Loss of ResNet34. 

 

 

Image A-39: Training and Validation Loss of ResNet50. 
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Image A-40: Training and Validation Loss of ResNet101. 

 

 

Image A-41: Training and Validation Loss of ResNet-152. 


