

MODELLING OF MULTI-ROBOT SYSTEM

FOR SEARCH AND RESCUE

POY YI LER

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Mechatronics Engineering

with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2023

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Signature :

Name : POY YI LER

ID No. : 1904296

Date : 2 May 2023

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled MODELLING OF MULTI-ROBOT

SYSTEM FOR SEARCH AND RESCUE was prepared by POY YI LER

has met the required standard for submission in partial fulfilment of the

requirements for the award of Bachelor of Mechatronics Engineering with

Honours at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

Signature :

Co-Supervisor :

Date :

Dr Shalini Darmaraju

20 May 2023

kwan_
Typewritten Text
Dr Kwan Ban Hoe

kwan_
Typewritten Text
22 May 2023

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made

of the use of any material contained in, or derived from, this report.

© 2023, Poy Yi Ler. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful

completion of this project. I would like to express my gratitude to my research

supervisor and co-supervisor, Dr. Shalini A/P Darmaraju and Dr. Kwan Ban-

Hoe for their invaluable advice, guidance and their enormous patience

throughout the development of the research. Their expertise and commitment

have been instrumental in ensuring the success of this project. It was a great

privilege and honour to work and study under their guidance.

In addition, I would also like to express my gratitude to my loving

parents and friends who have helped and given me encouragement and support

throughout the whole journey of conducting this research. and providing

valuable feedback, which helped me to refine my ideas and improve the

quality of my work. Once again, thank you to everyone who contributed to the

completion of this project.

v

ABSTRACT

The field of robotics has seen an increased interest in multi-robot systems,

which bring a new set of challenges to the table. One of the key aspects in

multi-robot systems is the path planning problem, which involves finding

collision-free paths for each robot to reach their respective destinations while

optimizing various performance metrics. This report focusses on developing a

novel multi-robot path planning algorithm based on the Modified Particles

Swarm Optimization (MPSO) algorithm for dynamic environments. The

MPSO algorithm introduces a new path planning scheme for determining

robot’s waypoints. Unlike the normal PSO algorithm which initializes the

particle swarm at the robot’s starting position and iteratively determining each

waypoint until a completed path is generated, MPSO algorithm initializes the

particle swarm within a predefined search space and searches for the global

best position within it to determine a specific robot waypoint through iteration

updates. Moreover, to cope with dynamic environments, a combination of

global and local path planning methods is introduced. The PSO algorithm

functions as a global path planner, determining the complete path for each

robot, whereas a sensor-based obstacle avoidance algorithm serves as a local

planner to avoid collision with dynamic obstacles during navigation. In this

project, this sensor-based algorithm is known as the Obstacle Avoidance

Algorithm. The simulations conducted using MATLAB demonstrate the

superiority of the MPSO algorithm over the PSO algorithm in terms of average

path length and execution time of all robots in all three proposed scenarios: 16

meter shorter and 7.1 seconds faster in the first scenario, 17.89 meters shorter

and 6.14 seconds faster in scenario 2, and 6.18 meters shorter and 8.47

seconds faster in scenario 3. The impact of the MPSO parameters on the

simulation results is also studied to determine the best PSO parameters that

achieve the best performance. It was found that the number of populations set

to 75 and dynamically adjusts the value of inertial weight, the cognitive and

social parameter provides the best performance in terms of shortest path length

and execution time. In conclusion, this project shows that the MPSO algorithm

is capable of generating a better path compared to the normal PSO algorithm

in terms of average path length and execution time, making it a promising

algorithm for multi-robot path planning in dynamic environments.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES viii

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xiv

LIST OF APPENDICES xv

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.1.1 Search and Rescue (SAR) 2

1.1.2 Mobile Robot 2

1.1.3 Multi-robot System (MRS) 3

1.2 Importance of the Study 4

1.3 Problem Statement 6

1.4 Aim and Objectives 7

1.5 Scope and Limitation of the Study 7

1.6 Contribution of the Study 8

1.7 Outline of the Report 8

2 LITERATURE REVIEW 10

2.1 Introduction 10

2.2 Optimization Criteria 13

2.3 Multi-robot Path Planning Algorithm 13

2.3.1 Classical Method 14

2.3.2 Heuristic Method 25

2.4 Summary 39

vii

3 METHODOLOGY AND WORK PLAN 41

3.1 Introduction 41

3.2 Proposed Multi-robot Path Planning Algorithm 41

3.2.1 Assumptions 41

3.2.2 Classical PSO Algorithm (PSO) 42

3.2.3 Modified PSO Algorithm (MPSO) 43

3.2.4 Dynamic Obstacle Avoidance 48

3.2.5 Flowchart of MPSO Path Planning

Algorithm 50

3.2.6 Flowchart of Obstacle Avoidance

Algorithm 51

3.3 Computer Simulations 52

3.4 Planning and Managing of Project Activities 54

3.4.1 Project Part I 54

3.4.2 Project Part II 55

3.4.3 Summary 58

4 RESULTS AND DISCUSSION 59

4.1 Introduction 59

4.2 Comparison Between PSO and MPSO

Algorithms 59

4.2.1 Scenario 1 (Four Circular Obstacles) 61

4.2.2 Scenario 2 (Seven Circular Obstacles) 68

4.2.3 Scenario 3 (Multiple Long walls) 74

4.3 MPSO Parameters 82

4.3.1 Population Size 82

4.3.2 Inertial Weight 84

4.3.3 Cognitive and Social Learning Factor 85

4.4 Summary 87

5 CONCLUSIONS AND RECOMMENDATIONS 88

5.1 Conclusions 88

5.2 Recommendations for Future Work 89

REFERENCES 91

APPENDICES 98

viii

LIST OF TABLES

Table 2.1: Comparison of Computation Efficiency of ACO and GA

(TAN, 2007) 28

Table 2.2: Comparison of Path Length Generated Using ACO and

GA (Liu, Mao and Yu, 2006) 29

Table 2.3: Path Length Comparison of D2PSO and DPSO (Ayari

and Bouamama, 2017) 33

Table 2.4: Time Parameter for All the Nodes(Han, Zhou and Chen,

2016) 36

Table 2.5: Schedule of All Robots in The Collision Region(Han,

Zhou and Chen, 2016) 36

Table 2.6: Number of Steps Taken to Reach the Goals(Das, Behera

and Panigrahi, 2016) 38

Table 2.7: Average Distance Travelled and Time Taken Using

IPSO-IGSA, IPSO, and IGSA (Das, Behera and

Panigrahi, 2016) 38

Table 2.8: Comparisons between RRT, APF, ACO and PSO

Algorithm 39

Table 3.1: Gantt Chart (Part I) 56

Table 3.2: Gantt Chart (Part II) 57

Table 4.1: PSO Parameters 60

Table 4.2: 60

Table 4.3: Global Best Fitness of Each Iteration in Scenario 1 With

PSO 63

Table 4.4: Global Best Fitness of Each Iteration in Scenario 1 With

MPSO 66

Table 4.5: Result Obtained with PSO and MPSO Algorithms in

Scenario 1 67

Table 4.6: Global Best Fitness of Each Iteration in Scenario 2 With

PSO 69

Table 4.7: Global Best Fitness of Each Iteration in Scenario 2 With

MPSO 72

Starting and Goal Position for Each Robot

ix

Table 4.8: Result Obtained with PSO and MPSO Algorithms in

Scenario 2 73

Table 4.9: Global Best Fitness of Each Iteration in Scenario 3 With

PSO 76

Table 4.10: Global Best Fitness of Each Iteration in Scenario 3 With

MPSO 79

Table 4.11: Results Obtained with PSO and MPSO Algorithms in

Scenario 3 80

Table 4.12: Simulation results with different population sizes 83

x

LIST OF FIGURES

Figure 1.1: MRS for Search and Rescue (Drew, 2021) 4

Figure 1.2: Total number of publications per topic based on keyword

search (Drew, 2021) 5

Figure 2.1: Classification of multi-robot path planning (Lamini, Fathi

and Benhlima, 2017) 11

Figure 2.2: Classification of MRPP Based on Local and Global

Environment (Zhang, Lin and Chen, 2018) 12

Figure 2.3: Total Number of Paper Retrieved from the Database of

Engineering Village (Zhang, Lin and Chen, 2018) 12

Figure 2.4: Combination of Attractive Force and Repulsive Force

(Matoui et al., 2017) 15

Figure 2.5: Illustration of Local Minimum Cases (Abdalla, Abed and

Ahmed, 2017) 16

Figure 2.6: Illustration of Path Oscillation Case (Jing Ren, McIsaac

and Patel, 2006) 16

Figure 2.7: (a) Simulation with APF Which Local Minimum Occurs,

(b) Simulation with APF and SA Where SA Able to Help

the Robot to Escape Local Minimum. (Zhu, Yan and

Xing, 2006) 17

Figure 2.8: Path Planning of the three Algorithms (Wu, Su and Li,

2019) 18

Figure 2.9: Cooperation of three Robots with The Present of Static

Obstacles (Matoui et al., 2017) 19

Figure 2.10: Illustration of RRT Path Planning Algorithm (Lee, Lee

and Shim, 2017) 20

Figure 2.11: (a) Comparison of RRT and (b) RRT* Algorithm

(Bohács, Gyimesi and Rózsa, 2016) 22

Figure 2.12: The Distance Between Robots using RRT* (Yang Li et

al., 2013) 22

Figure 2.13: Path Generated Using RRT* for Two Mobile Robots

(Yang Li et al., 2013) 23

xi

Figure 2.14: Result of RRT (a) and RRT* (b) Using 5000 Nodes

(Connell and Manh La, 2018) 24

Figure 2.15: (a) Initial Position of Moving Obstacle. (b) Final Position

of Moving Obstacles. (c) Result of RRT* Algorithm. (d)

Final Obstacles Position and Executed Path (Connell and

Manh La, 2018) 24

Figure 2.16: Execution time of RRT and RRT* (Connell and Manh La,

2018) 25

Figure 2.17: Illustration of ACO (Patle et al., 2019) 27

Figure 2.18: (a) Sub-optimal Path Using Dijkstra Algorithm, (b)

Globally Optimal Path with ACO (TAN, 2007) 27

Figure 2.19: Illustration of Dead Corner and Route Deadlock (Liu,

Mao and Yu, 2006) 28

Figure 2.20: (a) Environment I and (b) Environment II (Liu, Mao and

Yu, 2006) 29

Figure 2.21: Illustration of PSO (Iran Macedo, 2018) 31

Figure 2.22: (a) In Start Time, (b) In Middle Time, (c) In End Time

(Maryam Yarmohamadi and Hossein Erfani, 2011) 32

Figure 2.24: Result Obtained using D2PSO (Ayari and Bouamama,

2017) 33

Figure 2.25: Searching Procedure of PSO (Biswas, Anavatti and

Garratt, 2017) 34

Figure 2.26: SRVPSO Path Planning with Two Robots with Obstacles

Avoidance(Biswas, Anavatti and Garratt, 2017) 35

Figure 2.27: (a) Simulation Result and (b) Project Diagram (Han,

Zhou and Chen, 2016) 36

Figure 2.28: Simulation Result of IPSO-IGSA Path Planning Using

Six Robots (Das, Behera and Panigrahi, 2016) 38

Figure 3.1: Infeasible Path When Obstacle Blocks Path 47

Figure 3.2: Sensor Angle Coverage of Robot 49

Figure 3.3: Flowchart PSO Path Planning Algorithm 50

Figure 3.4: Flowchart for Obstacle Avoidance Algorithm 51

xii

Figure 3.5: Scenario 1 (Simulation Environment with four Circular

obstacles) 52

Figure 3.6: Scenario 2 (Simulation Environment with Seven Circular

Obstacles) 53

Figure 3.7: Scenario 3 (Simulation Environment with Multiple

Vertical and Horizontal Obstacles) 53

Figure 4.1: Particles’ Position and Waypoints in Scenario 1 With

PSO Algorithm: (a) Robot 1; (b) Robot 2; (c) Robot 3 61

Figure 4.2: Trajectory of Robots in Scenario 1 With PSO Algorithm 62

Figure 4.3: Dynamic Obstacle Detection of Robot 1 and Robot 3 in

Scenario 1 (Simulation Step 5) 62

Figure 4.4: Collision Avoidance Algorithm Triggered to Avoid

Collision in Scenario 1 (Simulation Step 8) 63

Figure 4.5: Graph of Global Best Fitness vs Iteration for Scenario 1

With PSO Algorithm 64

Figure 4.6: Particles’ Position and Waypoints in Scenario 1 With

MPSO Algorithm: (a) Robot 1; (b) Robot 2; (c) Robot 3 65

Figure 4.7: Trajectory of Robots in Scenario 1 With MPSO

Algorithm 66

Figure 4.8: Graph of Global Best Fitness vs Iteration for Scenario 1

With MPSO Algorithm 67

Figure 4.9: Particles’ Position and Waypoints in Scenario 2 With

PSO Algorithm: (a) Robot 1; (b) Robot 2; (c) Robot 3 68

Figure 4.10: Trajectory of Robots in Scenario 2 With PSO Algorithm 69

Figure 4.11: Graph of Global Best Fitness vs Iteration for Scenario 2

With PSO Algorithm 70

Figure 4.12: Particles’ Position and Waypoints in Scenario 2 With

MPSO Algorithm: (a) Robot 1; (b) Robot 2; (c) Robot 71

Figure 4.13: Trajectory of Robots in Scenario 2 With MPSO

Algorithm 72

Figure 4.14: Graph of Global Best Fitness vs Iteration for Scenario 2

With MPSO Algorithm 73

xiii

Figure 4.15: Particles’ Position and Waypoints in Scenario 3 With

PSO Algorithm: (a) Robot 1; (b) Robot 2; (c) Robot 3 74

Figure 4.16: Trajectory of Robots in Scenario 3 With PSO Algorithm 75

Figure 4.17: Dynamic Obstacle Detection of Robot 2 and Robot 3 in

Scenario 3 (Simulation Step 6) 75

Figure 4.18: Collision Avoidance Algorithm Triggered to Avoid

Collision in Scenario 3 (Simulation Step 7) 76

Figure 4.19: Graph of Global Best Fitness vs Iteration for Scenario 3

With PSO Algorithm 77

Figure 4.20: Particles’ Position and Waypoints in Scenario 3 With

MPSO Algorithm: (a) Robot 1; (b) Robot 2; (c) Robot 3 78

Figure 4.21: Trajectory of Robots in Scenario 3 With MPSO

Algorithm 79

Figure 4.22: Graph of Global Best Fitness vs Iteration for Scenario 3

With MPSO Algorithm 80

Figure 4.23: Scenario 1 Used to Evaluate the Effect of PSO

Parameters 82

Figure 4.24: Simulation Results Obtained for Different Population

Size 83

Figure 4.25: Result Obtained with different learning factor for 30

iterations (Cognitive Learning Factor = 2, Social

Learning Factor = 0) 86

Figure 4.26: Result obtained for 30 iterations with cognitive learning

factor = 0 and social learning factor = 2) 87

xiv

LIST OF SYMBOLS / ABBREVIATIONS

SAR Search and Rescue

MRS Multi-robot System

MRPP Multi-robot Path Planning

APF Artificial Potential Field

RRT Rapidly Exploring Random Tree

GA Genetic Algorithm

ACO Ant Colony Optimization

PSO Particle Swarm Optimization

MPSO Modified Particle Swarm Optimization

𝑉𝑖(𝑡 + 1) Velocity of ith particle for next iteration, t+1

𝑥𝑖(𝑡 + 1) Position of ith particle for next iteration, t+1

𝑉𝑖(𝑡) Current velocity of ith particle at current iteration, t

 𝑥𝑖(𝑡) Current position of ith particle at current iteration, t

𝑥𝑃𝐵𝑒𝑠𝑡𝑖 Current personal best position of ith particle

𝑥𝐺𝐵𝑒𝑠𝑡 Current global best position achieved by the swarm.

𝜔 Inertial weight factor

𝑐1 Cognitive learning factor

𝑐2 Social learning factor

𝜑1, 𝜑2 Independent variables uniformly distributed in [0,1]

K Maximum number of iterations

k Current iteration

xv

LIST OF APPENDICES

Appendix A: Pseudocode 98

Appendix B: Simulations 100

Appendix C: Gantt Chart 106

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Catastrophic events such as hurricanes, tsunamis, volcanic eruption,

earthquake, storm, floor, and droughts are classified as natural disaster. Over

the past 2 decades, the world has witnessed a significant number of natural

disasters that have had a monumental impact, resulting in the loss of millions

of lives globally (Prasad and Francescutti, 2017). For instance, the Indian

Ocean tsunami happened in 2004 that claimed the lives of over 225, 000

people across a dozen countries (Britannica, 2022), Haiti earthquake in 2010

that caused approximately 220, 000 deaths (United Nation, 2022) and the

serious Tohoku tsunami and earthquake happened in 2011 that claimed over

15, 500 lives (Becky Oskin, 2022). These examples are just a few among

hundreds of natural disasters that occur every year, resulting in loss of lives

and damage to economics. Despite the fact that natural disasters are a natural

part of the planet’s functioning, they are unavoidable.

In recent years, natural disasters have garnered much attention, and

people are increasingly concerned about their frequency and severity.

According to Intergovernmental Panel on Climate Change (IPCC), experts

indicated that the global temperature is steadily increasing over the years, and

it is significantly impacting the number and frequency of natural hazards and

to some extent over the last decade, we have seen just that even in Malaysia

(Zurich, 2022). Floods have occurred a lot more frequently and more intense

in Malaysia over the past few years that resulting in loss of life and affecting

more than hundred thousand citizens. It is expected that there will be more

severe natural hazards such as storms, droughts, and wildfires in the future,

and it is impossible to avoid them on our dynamic planet. With the world

bracing for this increased rate of disaster events and to lower down the number

of casualties caused by these natural disaster or natural hazards, search and

rescue team plays a vital role in disaster recovery.

2

1.1.1 Search and Rescue (SAR)

During large-scale crises, such as Tohuku earthquake as mentioned previously,

a well-designed and efficient search and rescue operations are crucial in saving

lives. A simple SAR mission consists of a range of tasks which include

searching, locating, rescuing and providing medical assistance to victims that

are trapped inside a hazardous space (Doroftei, Matos and de Cubber, 2014).

As such, SAR operations are of great importance in reducing casualties caused

by disaster events. Given the life-threatening conditions faced by victims,

including exposure to radiation, poisonous gases, and extreme temperature, it

is vital for SAR teams to quickly find and rescue survivors, otherwise, the

likelihood of finding victim alive will drops substantially (Siobhan Grayson,

2014). Traditional SAR operations rely heavily on human resources to perform

these tasks, which can be challenging and demanding. The longer it takes to

find and rescue victims, the lower their chances of survival. Therefore,

reducing the time required for SAR operations is critical in minimizing

casualties caused by natural disasters.

Besides that, SAR missions are often intricate, and disaster-prone

environments pose a significant challenge as they are hazardous and

challenging to navigate for human workers. Additionally, the crisis managers

themselves are at risk of losing their lives in such environments. Consequently,

robotics technology has been incorporated in SAR operations as a solution to

these issues.

1.1.2 Mobile Robot

Robotics technology is increasingly being used in SAR operations due to the

dangerous and complex nature of such missions. Unlike human rescuers,

robots are able to bypass danger and can be deployed immediately to search

for victims. Besides, robots are also capable of reaching areas that may be too

dangerous or inaccessible for human workers, such as narrow spaces and

unstable structure (Siobhan Grayson, 2014). At the same time, in addition to

reducing the risk of human rescuers being exposed to hazardous environments,

the use of robots can also increase the speed of response.

Implementing robotics in SAR operation presents both a challenging

and promising solution to augment human rescuers in various ways and is a

3

fascinating area of research. Throughout the years, different types of robots

have been employed in SAR operations across different environments such as

on the ground, in the air, on the water surface, and underwater. For instance,

drones have been utilized to search for missing people, providing situation

awareness, create real-time maps, monitor, and analyse disasters (altigator, no

date). To date, most rescue robots used are teleoperated, meaning that they are

controlled by human operators from a distance. However, as the SAR

operations become more intricate, a single teleoperated robot has a lot of

drawbacks. A single robot result in a single point of failure, making it

impossible to complete the mission if the robot is damaged, disabled, or

trapped. Furthermore, a single robot often having complex design to navigate

through all kind of terrain and perform all kind of tasks, resulting in the cost of

one single robot being very high. In order to address this limitation, research

has been extended by implementing multi-robot system into SAR operations

with robots equipped with varying degrees of autonomy to minimize the

workload of human operators in high-pressure disaster scenarios.

1.1.3 Multi-robot System (MRS)

Several factors make multi-robot system (MRS) particularly attractive in the

context of SAR. The introduction of MRS results in faster responses and

increased robustness due to the fact that extremely large areas can be

effectively explored and each of the robot becomes dispensable. Besides

searching for victims in needs, responses such as network infrastructure

installation and map generation could also benefit from having multiple robots

working together simultaneously (Drew, 2021). Furthermore, the issue of high

cost of designing a single robot can be addressed. Instead of integrating all

necessary hardware and capabilities on a single robot, it is more economical to

distribute the necessary hardware such as sensor and actuators among multiple

different robots (Queralta et al., 2020). For instance, as shown in Figure 1.1,

multiple robots can be used with each equipped or designed with different

hardwares, some robots can be equipped with gripper to move obstacles, some

robots can be equipped with camera to detect victims and some robots can be

used to carry victims out from hazardous areas. Moreover, collaborative

4

efforts between different types of robots can also be leveraged to tackle

complex tasks that are beyond the capabilities of a single robot.

Figure 1.1: MRS for Search and Rescue (Drew, 2021)

1.2 Importance of the Study

The current era of Industry 4.0 has led to significant advancements in robotics

technology, opening up opportunities for automation in various industries

including engineering, medicine, entertainment, and more. One crucial area of

research in robotics is the study of MRS, which involves a group of robots

working together to accomplish a task. In such a sense, a manufacturing line

which consist of several robotics arm manipulators, mobiles robots and CNC

machines can be considered as a MRS. In the context of SAR operations, the

use of MRS has become increasingly important as natural disasters become

more frequent and severe due to climate change. According to Petteri Taalas

who is the Secretary-General of World Meteorological Organization (WMO),

the increment in the number and severity of climate, water and weather

extremes around the world are the result of climate change, and this also

means that there will be more weather-related natural hazards in the future

such as drought, forest fire, heatwaves and so on (United Nation, 2021).

The primary objective of SAR operations is to save lives as quickly as

possible. MRS has high potential to significantly improve the efficiency of

SAR personnel by improving response times, aiding in initial assessments, and

mapping disaster areas. Besides that, MRS can reduce the risk of injury to

rescuers by performing hazardous tasks. Currently, a single teleoperated robot

is mostly used in SAR operation and the MRS are still not mature enough for

widespread deployment in SAR operations (Drew, 2021; Chitikena, Sanfilippo

and Ma, 2023). However, progresses are being made consistently over the past

5

two decades. Until today, researchers are still focusing on confronting the

challenges of simulation-to-reality transfer and on realistic evaluation of

constituent technologies in hope that the gap between the current capabilities

and those required in a real disaster response can be reduced. According to

Springer handbook of robotics, published field report data shows that there

were a lot of documents related to robot-assisted response SAR operation, very

few of them are involving three or more robots and none of the robots are fully

autonomous (Bruno Siciliano and Oussama Khatib, 2007). Besides, from a

graph presented in (Drew, 2021) as shown in Figure 1.2, the graph shows that

total number of publications related to MRS used in search and rescue is far

less than that of publications related to rescue robot alone. Therefore, while

there are a lot of research done in rescue robot, the research on MRS is still

lacking and successful cases of MRS deployment in SAR operations are scarce.

Although MRS holds great promise for SAR, bridging the gap between

academic interest and practical implementation in the field remains a

significant challenge.

Figure 1.2: Total number of publications per topic based on keyword search

(Drew, 2021)

6

1.3 Problem Statement

Despite the potential benefits of using MRS in SAR operations, it is a complex

task to integrate them effectively. There are numerous factors to consider in

designing an effective MRS, such as the architecture of MRS, centralized or

decentralized; the ability of robots to recognized other robots; the task

allocation for each of the robot; coalition formation; middleware support; the

human-robot interaction; the collaboration among robots; the communication

modalities and more (Gautam and Mohan, 2012).

Apart from that, the navigation of robots is also a crucial aspect that

requires attention when implementing MRS, particularly in SAR operations.

To successfully complete a navigation task, the robot must know its position in

the environment and the position of its goal as well as the method for it to

reach the goal position from initial position. The navigation of robot includes

three primary functions which are localization, mapping, and path planning.

However, in this research project, we will be concentrating solely on path

planning. Path planning of a robot is just simply means to find the optimal

path for the robot from its starting location to goal location. The complexity

and robustness of the path planning algorithm dictate the time distance

required for the robots to travel from starting location to the goal location

which is where the victims located. As the victims might be trapped in a

hazardous environment, the path planning algorithm need to be well designed

so that the robots can reach its destination with the quickest route in the

shortest time possible.

Humans are able to perform path planning effortlessly, such as

avoiding obstacles that were not present before (Tzafestas, 2014). However,

robots lack the same level of intelligence as humans because it needs to

consider collision avoidance when planning their path from the starting

location to the goal location. A good path planning algorithm takes into

account both the static and dynamic obstacles to ensure that all robots can

reach their destination quickly and without any damage. By incorporating

collision avoidance into the path planning algorithm, robots can efficiently

navigate through the environment while avoiding any obstacles.

In fact, MRS particularly multi-robot path planning (MRPP) is not a

new concept and has been an interesting research topic over the past two

7

decades with numerous studies being conducted especially during this era of

industrial 4.0. In the literature, there are a lot of research being done in

designing a path planning algorithm and this number has continued to increase

over the years. Therefore, it is a challenging task to identify which approach of

designing a MRPP algorithm is appropriate for SAR operations as there are

too many available approaches out there ranging from graph-based algorithm

such as A* Algorithm to biologically inspired algorithm such as Genetic

Algorithm (Debnath et al., 2021). Moreover, even though path planning of

MRS is relatively mature in highly structured environments, it remains

difficult to construct an algorithm that works in situations similar to disaster

areas, such as environments with dynamic obstacles or complex geometries, or

in fluctuating environmental conditions like smoke. Not only that, building an

algorithm that works in such dynamic and complex environments requires

high computational speed and high response time, which poses another

significant challenge.

1.4 Aim and Objectives

This project aims to explore the approaches and algorithms used for multi-

robot path planning in search and rescue. By achieving the aim, the optimal

path planning algorithm which able to generate shortest path with collision

avoidance for each of the robots will be developed. The specific objectives of

this project are listed as shown below:

1) To explore, evaluate and compare pros and cons of existing multi-robot

path planning algorithms.

2) To develop an efficient MRPP algorithm to generate an optimal or

shortest path with collision avoidance for each single robot between

start position to destination position (position of survivors).

3) To demonstrate and evaluate the performance of the search and rescue

mission through MATLAB simulation.

1.5 Scope and Limitation of the Study

As mentioned in the problem statement, constructing an MRS is a challenging

task. This project’s scope will be focusing on building a multi-robot point-to-

point path planning algorithm and simulate the SAR operations using

8

MATLAB. In order to simplify the simulation and decrease the computational

complexity, other aspects of MRS such as task allocation, collaboration among

robots and communication between robot will be disregarded. At the same

time, instead of heterogeneity system where different types of robots are

implemented, a homogeneous system is to be designed where all the robots

used in simulation are two-wheels robot. Besides, since this project is expected

to be carried out for only within one year and to further simplify this project,

the SAR simulation environment is assumed to be a known environment or

partially known environment where the location of statics obstacles, starting

location of robots and location of victims are already known.

1.6 Contribution of the Study

This project outlines the existing path planning algorithm used to solve the

multi-robot path planning problem. Each existing path planning algorithm is

evaluated, and a path planning algorithm will be selected and developed with

the aims to generate the shortest path with shortest execution time in a

cluttered environment. The proposed algorithm was modified and fine-tuned to

improve the final simulation results.

1.7 Outline of the Report

This report is divided into five chapters. In Chapter 1, the introduction of the

whole project is discussed. The introduction consists of multiple sections such

as the general introduction on search and rescue and application of multi-robot

system in search and rescue mission, the importance of the study, problem

statement, aims and objectives, scopes and limitation of the study, contribution

of the study, and the outline of the whole report.

 Chapter 2 provides a literature review of the project. The optimization

criteria for solving a path planning problem are discussed. Besides that, the

existing path planning methods and algorithms such as the classical and

heuristic path planning algorithms are discussed and evaluated.

 Chapter 3 outlines the methodology and work plan for the whole

project. The methodology of the proposed MPSO algorithm is explained step

by step. The mathematical formula of the proposed algorithm is also discussed

9

in this chapter to have a deeper understanding. Moreover, Gantt chart for the

whole project is also included.

 Chapter 4 presents the results and discussion. The result generated

with the proposed MPSO algorithm and the PSO algorithm are evaluated in

three different scenarios, and the performance for both the algorithms are

compared to each other to determine the superior algorithm among the two

algorithms. Additionally, the impact of the PSO parameters on the simulation

result is also assessed in this chapter.

 Chapter 5 discusses the conclusion of the report. The limitations of

the whole project are discussed and the recommendation for future works are

also included in this chapter.

10

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

Multi-robot path planning plays a vital role in the development of MRS as it

enables robots to navigate from the starting location to the destination point in

a given SAR mission with the shortest distance and minimum computation

time, thereby conserving energy and minimizing potential hazards. In SAR, it

is crucial for a path planning to produce the optimal path and should also hold

the completeness criteria which ensure that at least one path can be found if

that exists. However, there is still chances that the robot could not find a path

to its destination due to all the paths being blocked by obstacles. In this case,

the robot will never be able to reach the destination and can get stuck during

the navigation.

As illustrated in Figure 2.1, the overall mobile robot path planning

can be categorized into two categories which are the classical and heuristic

methods (Patle et al., 2019). The classical method was widely used before

artificial intelligent techniques were developed. However, the major drawback

of classical approach is that they do not perform well in dynamic environment

or do not respond well to any uncertainties in the environment such as the

behaviours of dynamic obstacles, weather condition and sudden changes of

terrain due to collapsed building. Additionally, it incurs a high computational

cost. In order to overcome this inefficiencies of classical method, heuristic

method was developed. Heuristic method on the other hand has great ability in

handling any uncertainties that present in the environment and thus more

suitable to be used in dynamic environment and real time application (Patle et

al., 2019).

11

Figure 2.1: Classification of multi-robot path planning (Lamini, Fathi and

Benhlima, 2017)

Besides, this MRPP problem can be solved using two techniques

which are known as global and local path planning techniques. Some of the

path planning methods or algorithms can be implemented in local environment

and they are known as local path planning algorithm, some of them can be

implemented in global environment which is known as global path planning

algorithm. Furthermore, some algorithms can also be implemented in both

local and global environment. Global path planning refers to the approach

where the robots have prior knowledge of the environment before planning the

optimal path, and it is also associated with offline path planning (Koubaa et al.,

2018). On the other hand, local path planning assumes that the robots lack the

information about its environment, and they need to navigate in partially

known or unknown environment. Consequently, the robots need to sense the

location for obstacles in real time when searching for the optimal path to avoid

clashing with the obstacles. Local path planning is associated with online path

planning (de Almeida et al., 2020). Some of the path planning approaches or

algorithm for local and global environments are illustrated in Figure 2.2.

12

Figure 2.2: Classification of MRPP Based on Local and Global Environment

(Zhang, Lin and Chen, 2018)

Other than that, in 2018, the number of papers related to mobile robot

path planning retrieved using the Engineering Village database is shown in

Figure 2.3 (Zhang, Lin and Chen, 2018). From the figure, we can observe that

a lot of research have been done on path planning using various type of

algorithms and Genetic Algorithm is the most popular one used in 2018.

Figure 2.3: Total Number of Paper Retrieved from the Database of

Engineering Village (Zhang, Lin and Chen, 2018)

13

Furthermore, the mobile robot path planning algorithm can be

executed in the centralized or decentralized manners. In centralized manner,

all the interactions between the robots are considered using a central path

planner. On the other hand, under decentralized scenario, independent path

planner is assigned to each of the robots and each of them will generate its

own path in its own configuration space (Tang et al., 2020).

There have been a lot of path planning algorithms introduced by other

research which aim to solve path planning problem for MRS. In this chapter,

different types of algorithms will be discussed, evaluated, and compared.

2.2 Optimization Criteria

In order to generate the optimal path for all the robots, there are a lot of

aspects that must be considered in the optimization criteria when planning

multi-robot paths and this often refers to multi-objective path planning

problem (MRPP). Generally, the standard multi-robot multi-objective path

planning optimization criteria are path length, smoothness of the path, total

execution time, path safety and total energy consumption (Atiyah, Adzhar and

Jaini, 2021). The path length optimization is basically referred to finding a

path which has the shortest length between starting and goal locations.

Secondly, the generated path can be considered smooth if the path has very

low changes in the degree of direction. Thirdly, the generated path can be

considered safe if the path always satisfies the safety margin with respect to

the obstacles. Fourthly, the energy consumption is lesser when minimum

number of robot’s rotation is required for it to reach its destination.

Aggregating these objectives together, it will result in a multi-robot

multi-objective path planning problem. We can determine whether the paths

generated are optimal by checking whether any of the criteria had been

satisfied. The idea is to obtain a feasible and optimal or near-optimal path if

the path generated can satisfies two or more optimization criteria such as

having the shortest path while free from any collision and so on.

2.3 Multi-robot Path Planning Algorithm

As mentioned, there are various type of MRPP algorithms that had been

researched and used by many researchers and they can be divided into two

14

methods which are the classical method and the heuristic method. In the

following subsection, the commonly used classical and heuristic approaches

and algorithms will be researched, discussed, evaluated, and compared.

2.3.1 Classical Method

The classical path planning methods either find a solution or determine that no

solution exists. Besides that, these methods often get stuck in local optimum

which searching for path. As mentioned earlier, the disadvantages of the

classical method are the high computational intensity and its inability to cope

with uncertainty. This implies that the common classical methods are not

suitable to be used in real life application due to its natural characteristic that is

unpredictable and uncertain. Example of classical methods are sampling-based

method, potential field method and probabilistic roadmap method.

2.3.1.1 Artificial Potential Field (APF) Method

The potential field algorithm also known as the virtual force field method is

one of the most traditional algorithm used for path planning problem. It is a

real time obstacles avoidance approach that was introduced in 1986 by Khatib

(1986).

In the method of potential field, the environment space is assumed to

be filled with virtual potential field. The overall idea of APF is to control the

motion or movement of robots in the environment using virtual potential field

as shown in Figure 2.4. The robots, target point and obstacles in the

environment are given different potential. The goal position or the target point

is treated as low potential points while the obstacles and the robots are treated

as high potential point. The goal point in the environment which have low

potential produce an attractive force to pull the robots to approach the goal

point while the obstacles and other robots which have high potential produce

repulsive force to prevent collision between robots and obstacles (Wu, Su and

Li, 2019). Besides, the magnitude of the repulsive force is inversely

proportional to the robot-to-obstacle distance. This means that whenever the

robot is far away from the obstacles, the robot will not be affected by the

repulsive force and only if the robot enters the influence area, it will be

repelled away from the obstacles (Matoui et al., 2017a). The resultant force of

15

the combined forces will generate a field with direction and magnitude as

shown in Figure 2.4 which influence the robot to move toward the goal while

avoiding collision with obstacles and other robots.

Figure 2.4: Combination of Attractive Force and Repulsive Force (Matoui et

al., 2017)

 Due to the model’s simplicity and high safety factor, multiple

research projects on potential-based path planning had been done in various

research. At the same time, APF has high flexibility and not only suitable to be

used in static environment but also in dynamic environment where obstacles

and goal location changes from time to time. APF had been used for many

years and it is one of the mature approaches in solving a path planning

problem for single robot. However, according to Borenstein and Koren (1989),

the main drawback of APF is local minimum problem, where the robot might

get stuck at the local minima before attaining the goal configuration. In year

1991, the limitations and shortcomings of APF method were further identified

by Borenstein and Koren (1989). According to this Borenstein and koren, it

was found out that APF has four significant problems such as (1) the local

minima trapping problem, (2) inability to duel with arbitrarily shaped

obstacles, (3) the problem where no passage can be found between closely

arranged obstacles, and (4) path oscillation problem with the presence of

obstacles or in narrow passages. A local minimum as shown in Figure 2.5

refers to the situation where the attractive force generated by the goal position

on the robot is balanced with the repulsive force generated by the obstacles on

the robot. This causes the robot loses its ability to move and could not reach

the goal position without any other external force (Sun et al., 2019). A path

16

oscillation problem as shown in Figure 2.6 occurs when the angle between

repulsive and attractive force is close to 180 degrees. In this case, when the

robot come close to an obstacle, the repulsive force acting on the robot which

is larger than the attractive force repels the robot. However, after moving away

from the obstacle, the attractive force would become greater than the repulsive

force and attract the robot toward the obstacle. This phenomenon will be

repeated until the angle become smaller and it will only be solved once the

angle between the repulsive and attractive force become smaller (Wu, Su and

Li, 2019).

Figure 2.5: Illustration of Local Minimum Cases (Abdalla, Abed and Ahmed,

2017)

Figure 2.6: Illustration of Path Oscillation Case (Jing Ren, McIsaac and Patel,

2006)

 To date, some efforts had been made in research to solve these

limitations for single mobile robot. In recent research, Zhu, Yan and Xing

(2006) proposed hybrid approach by implementing APF with simulated

annealing (SA). In this paper, the APF is mainly used to drive the robot toward

the goal position while the SA algorithm is used for the robot to escape local

minima. From the result, it was shown that by applying SA together with APF,

the robot could avoid local minima problem as shown in Figure 2.7. However,

17

the experiment was only done with simple-shaped obstacles, and the ability of

the robot to escape local minimum trapping problem in complex obstacles

environment such as trapping inside U-shaped obstacles was not discussed in

the paper.

Figure 2.7: (a) Simulation with APF Which Local Minimum Occurs, (b)

Simulation with APF and SA Where SA Able to Help the Robot to

Escape Local Minimum. (Zhu, Yan and Xing, 2006)

 In the case of implementing APF in a MRS, repulsive field was set

between the robots to avoid collision between robots. Wu, Su and Li (2019)

proposed an Improved APF by introducing a new gain constraint and a random

factor which respectively suppressed the path oscillation problem and avoid

local minimum. In Wu, Su and Li’s research, four robots were implemented,

and these robots were required to travel from different starting location to a

same goal location without colliding with obstacles. As mentioned earlier, the

path oscillation mostly likely to occur when the angle between repulsive force

and attractive force is close to 180 degrees. To solve the path oscillation

problem, the gain constraint was added to reduce the angle between the

repulsive force and attractive force so that the oscillation problem can be

suppressed. On the other hand, a random factor or an extra random force with

random direction and magnitude was added into the resultant force of the

robots. This extra force relieves the robot from local minimum trapping

problem. Other than that, to further alleviate the path oscillation problem and

optimized the path, B-spline curve optimization method was used to further

smoothen the path.

18

 In their simulation result as shown in Figure 2.8, three different

results using different algorithms were simulated. The first result was obtained

by implementing the original APF method, the second result was obtained by

implementing the Improved APF method and the third result was obtained by

implementing the Improved APF method with B-spline curve optimization.

The result shows that a much smoother path can be generated by implementing

B-spline curve optimization into the Improved APF algorithm. However, as

reported by the authors, the oscillation could not be fully eliminated and there

was still certain degree of oscillation. Besides, the research was conducted to

simulate the scenario where multiple robots travel to the same location, and

the ability and performance of the Improved APF for multiple robots travelling

to different goal locations was not tested.

Figure 2.8: Path Planning of the three Algorithms (Wu, Su and Li, 2019)

 In another research paper, Matoui et al. (2017) proposed an APF

algorithm for wheeled robot with decentralized architecture. The proposed

APF algorithm was used due to the possibility of implementing it in real time

and dynamic environment. Decentralized architecture was used to allow

cooperation between robots and to increase the flexibility and scalability of the

MRS. Three Pioneer 3DX robots were used to navigate between different start

location to different goal location and each of these robots plan its own

trajectory according to the trajectories of other robots. By looking at their

19

result as shown in Figure 2.9, all three robots were able to reach its goal

locations respectively without colliding with other obstacles or robots. The

authors also mentioned by implementing the decentralized architecture, a

greater number of robots can be added into the environment. However, based

on the results, the paths generated were not the optimal path in terms of the

path’s length even though the robots were able to reach the goal locations

without collision.

Figure 2.9: Cooperation of three Robots with The Present of Static Obstacles

(Matoui et al., 2017)

 In general, APF approach is a mature path planning algorithm that

was used for decades but mostly on single robot navigation, and it can be used

in either static or dynamic environment. However, it has poor performance

when being used in dynamic environment compared to other heuristic

algorithms. Besides that, the original APF algorithm has a lot of shortcomings

such as local minimum problem, path oscillation problem and the problem

where no passage can be generated between two closely spaced obstacles.

These limitations of the algorithm make it troublesome and complex to be

solved as all limitations are difficult to be solved at once.

20

2.3.1.2 Rapidly Exploring Random Tree (RRT) Approach

A sampling-based approach is an approach that construct a graph or tree by

randomly sampling in the state space. It is very popular in path planning

problem due to the advantages of low computational cost, better performance

in complex problem, the ability to find a path in a very short time and the

ability to solve high dimensional problems (Tim Chinenov, 2019). Some path

planning algorithms like the famous Dijkstra’s algorithm need a pre-build

graph for it to search for path using the graph. Unlike Dijkstra’s algorithm,

RRT approach could generates a graph and finds a path using the graph. It

generates a graph and search for the feasible path by growing a tree that fill the

entire configuration space. This tree is rooted at the starting point or starting

node of the robot and a random node is generated at each iteration or each

incremental expansion of the tree-grow. A simple RRT algorithm involves

three steps. The first step is to randomly sample a state in state space, second

step is to select the nearest node of the random tree and the third step is to

grow the tree from the nearest neighbour sampling point to a random node

(Wu et al., 2021). Besides that, each time a node is generated, a check must be

done to ensure that the node does not lies inside an obstacle to prevent

collision. This expansion of the tree stops once certain rules are met such as

when the expansion of node has reached the goal location, or the maximum

iteration has been met. After that, RRT will return a feasible path as shown in

Figure 2.10.

Figure 2.10: Illustration of RRT Path Planning Algorithm (Lee, Lee and Shim,

2017)

21

 In general, RRT is an efficient path planning approach that is used to

solve single robot path planning problem and various research had been done

for single robot navigation problem such as the research done by Melchior and

Simmons (2007) and Lee, Lee and Shim (2017). However, that is not the case

in MRS. The research done on MRPP problem are still lacking today. Besides

that, the simple RRT approach has some shortcomings such as low

convergence speed and low search efficiency. Furthermore, the path produced

by the traditional RRT algorithm is often suboptimal and lacks convergence to

an optimal path because of the random generation of nodes. Regardless of its

shortcoming, numerous improvements have been carried out by researchers.

Several common enhancements involve effectively combining the RRT

algorithm with other algorithms or implementing the optimized RRT*

algorithm, which offers improved performance (Ge et al., 2021).

 Yang Li et al. (2013) proposed a MRPP approach using RRT*

algorithm which at the same time taken into consideration of robot motion

constraints and collision between robots. In contrast to the traditional RRT,

RRT* able to sample a random state and generate an optimal extended state.

RRT* has the working principle as the traditional RRT but with two additional

processes namely “near vertices” and “rewire”. RRT* not only has the

advantage of finding an initial path very quickly, it also keeps on optimizing

the initial path as the number of iteration increases. The fundamental concept

behind RRT* algorithm is to improve the connectivity of nodes in the trees

and expedite the discovery of the goal state by employing a target-biased

approach in sampling state generation. This approach aims to minimize the

zigzag path behaviour commonly observed in traditional RRT, as depicted in

Figure 2.11.

22

Figure 2.11: (a) Comparison of RRT and (b) RRT* Algorithm (Bohács,

Gyimesi and Rózsa, 2016)

 In Yang Li et al.’s research, two robots were implemented to navigate

through an environment with three static obstacles from different starting point

to different goal point as shown in Figure 2.13. As the robots are treated as

moving obstacles, two different types of algorithms were developed to detect

both static and dynamic obstacles. From the result, it shows that throughout

the whole simulation, the minimum distance between the robots is larger than

3.5m which indicate that collision will not happen between the robot as the

safety distance between robots was set to 1m as shown in Figure 2.12.

Figure 2.12: The Distance Between Robots using RRT* (Yang Li et al., 2013)

23

Figure 2.13: Path Generated Using RRT* for Two Mobile Robots (Yang Li et

al., 2013)

 In another recent research presented by Connell and Manh La (2018),

the ability of RRT* algorithm was tested in dynamic environment for multiple

robots through planning and replanning of path. Moreover, the performance

and the differences between the traditional RRT algorithm and the RRT*

algorithm were further compared and evaluated by running two simulations

with different algorithms in the same environment as shown in Figure 2.14. In

the figure, the blue line indicates the best path found while the black line

indicates the initial path found by RRT algorithm. As shown in Figure 2.14,

the result with RRT* shows an obvious improvement in finding the optimal

path comparing to the path generated by the traditional RRT. Besides that, it

was found that the path length using RRT is 117 units while the path generated

with RRT* is shorter by 14 units. This result further proved that RRT* could

generate better optimal path compared to traditional RRT.

24

Figure 2.14: Result of RRT (a) and RRT* (b) Using 5000 Nodes (Connell and

Manh La, 2018)

 Besides that, to improve the ability of this algorithm working in

dynamic environment, the authors also presented a dynamic replanning

method for a mobile robot to avoid collision with any dynamic obstacles. This

path replanning technique utilizes the rewire function, which is employed to

modify the search tree by ensuring that internal vertices do not introduce

unnecessary steps in any existing path when dynamic obstacles are detected.

From the result, it shows that the robots were able to dynamically modify its

course of action to avoid any dynamic obstacles as shown in Figure 2.15.

Figure 2.15: (a) Initial Position of Moving Obstacle. (b) Final Position of

Moving Obstacles. (c) Result of RRT* Algorithm. (d) Final

Obstacles Position and Executed Path (Connell and Manh La,

2018)

25

 Additionally, a MRPP method was also developed by sharing nodes

generated in the tree. The result shows that the proposed MRPP method with

all the robots sharing the nodes can be executed with shorter amount of time

compared to building multiple individual search tree for each of the robot.

 Despite the fact that RRT* can quickly generate an initial path and

produce an asymptotically optimal path compared to the conventional RRT

algorithm, there is a trade-off in reaching this optimal path which is the

execution time and the number of nodes needed. As shown in Figure 2.16, the

execution time of RRT is slowly increasing as the number of nodes increases

but the execution of RRT* increase exponentially as the number of nodes

increases. This implies that a longer execution time and iterations are needed

to obtain the optimal path.

Figure 2.16: Execution time of RRT and RRT* (Connell and Manh La, 2018)

2.3.2 Heuristic Method

Due to the fact that classical path planning methods often encounter issues

with local minimum trapping and exhibit high computational requirement,

there are ill-suited for dynamic or complex obstacle environment. Thus, some

heuristic path planning approach will be discussed in the subsequent sections.

Some of the popular heuristic approaches are Genetic Algorithm (GA),

Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and so

on (Kim and Khosla, 1992).

26

2.3.2.1 Ant Colony Optimization (ACO)

Optimization problem is one of the important problems in various fields such

as industrial, engineering, and scientific areas. For instance, some of the real

time examples for optimization problems are travelling salesman problems,

portfolio optimization, vehicle routing and timetable scheduling. To date, a lot

of optimization algorithms had been developed to solve these optimization

problems and Ant Colony Optimization is one of the examples of optimization

algorithm (Awan-Ur-Rahman, 2020). Ant Colony Optimization (ACO) is a

swarm intelligent algorithm that implement swarm behaviour and it is a

probabilistic technique in finding optimal path. Initially, ACO was used in

solving the travelling salesman problem. Today, ACO is also used to handle

navigation problem for mobile robots to generate an effective path with

obstacle avoidance.

 ACO is inspired by an analogy on behaviour of an ant colony when

sourcing food as shown in Figure 2.17. Essentially, the communication

between the ants enables them to locate the shortest route between the food

source to their nest. To obtain the optimal path with the shortest distance, the

communications of ants are done by the means of pheromone trails (Patle et al.,

2019). As the ant travel, some amount of pheromone is dropped on the path.

As the pheromone evaporates, the shortest path that the ant travel will leave a

higher density of pheromone deposited on the ground. At the same time, the

more ants travel using a certain trail, the more attractive this trail become,

causing even more ant to follow it due to high density of pheromone.

Eventually, the optimal path can be obtained by evaluating the amount of

pheromone deposited on a certain path (Mac et al., 2016). However, according

to Mac et al. (2016), the traditional ACO has disadvantage of long time to

reach optimal solution when used in large size problem.

27

Figure 2.17: Illustration of ACO (Patle et al., 2019)

 TAN (2007) proposed an optimal path planning based on ACO and

Dijkstra algorithm for real time application. The Dijkstra algorithm was

employed to identify a sub-optimal path while considering collision avoidance,

and subsequently, the ACO algorithm was applied to optimize this sub-optimal

path, resulting in the generation of a globally optimal path. The result in

Figure 2.18 shows that ACO indeed effective to be implemented in real time

application. Additionally, the performances of ACO and GA were compared,

it was verified that ACO has better performance compared to GA in terms of

convergence speed, dynamic convergence behaviour and computational

efficiency as shown in Table 2.1. For instance, ACO algorithm only took

average of 0.00059 seconds for one iteration and the total number of iterations

needed was only 175 iterations. On the contrary, GA algorithm took 0.00067

seconds per iteration and the number of iterations required was a lot more than

ACO around 912 iterations.

Figure 2.18: (a) Sub-optimal Path Using Dijkstra Algorithm, (b) Globally

Optimal Path with ACO (TAN, 2007)

28

Table 2.1: Comparison of Computation Efficiency of ACO and GA (TAN,

2007)

 In Liu, Mao and Yu (2006), a path planning algorithm based on ACO

was proposed to solve MRPP problem. In Liu, Mao, and Yu’s paper, a

collision avoidance strategy was adopted for various robots to avoid collision

with each other in a static environment. In ACO algorithm, deadlock is one of

the problems that occur in the traditional ACO. Deadlock refers to the scenario

where the robot is stuck and losses its moveable possibility. Deadlock problem

as shown in Figure 2.19 normally occur when an ant enters a location that is

surrounded by obstacles when searching for a path. This scenario causes the

ant to lose its capability to go forward and this is known as the deadlock

problem. As such, a special penalty function was introduced by Liu, Mao, and

Yu to solve the deadlock problem. Whenever an ant finds a dead corner, a

penalty function was used to decrease the phenomenon intensity of the edges

around the dead corner. Thus, the other ants will ignore those edges in the

coming iteration and deadlock could be avoided.

Figure 2.19: Illustration of Dead Corner and Route Deadlock (Liu, Mao and

Yu, 2006)

 Besides that, the algorithm was executed in distributed manner where

each of the robot plan its own path from its start location to its goal. The

performance and the planned trajectory of two mobile robots using two

different approaches which are the ACO, and GA were compared, and it was

29

found that a more reasonable path can be generated using the proposed ACO

algorithm. The experiment was conducted in two different environments

where more obstacle was added in one of them. From the result shown in

Figure 2.20 and Table 2.2, the path generated using ACO is observed to be

much shorter than the one generated by GA.

Figure 2.20: (a) Environment I and (b) Environment II (Liu, Mao and Yu,

2006)

Table 2.2: Comparison of Path Length Generated Using ACO and GA (Liu,

Mao and Yu, 2006)

2.3.2.2 Particle Swarm Optimization (PSO)

Like ACO, Particle Swarm Optimization is also one of the biologically

inspired algorithms. It is a meta-heuristic optimization algorithm which is

inspired by the natural behaviour of creatures such as flock of birds or school

of fishes, developed in 1995 by Eberhard and Kennedy (Eberhart and Kennedy,

no date). PSO mimic the social behaviour of animals but unlike the real natural

behaviour of animals which normally require a leader within a group to do

certain task or to reach certain target, PSO does not require any leader within

30

the group. For instance, when a flock of birds go to source for food, they do

not go with a certain leader but tend to go with the members which are nearest

to the food location. PSO uses the concept of social and cognitive behaviour of

animal group where sharing of information is done among the group of

animals to increase the survival advantages. Taking an example of a bird

searching for food, the chance of finding food will increase if the bird works

with the flock where there is mutual sharing of the best information among the

flock which then help the flock to locate the best place to hunt. Similarly, the

concept of social interaction of animals in PSO is implemented to search for

optimal path for multi-robot navigation and it is gaining more popularity in

solving complex problem such as multi-robot navigation problem in real time

application due to its advantages of fast searching speed, few parameters to

adjust, easy implementation, and simple structure. However, when used in

path planning problem, PSO has a few disadvantages such as low convergence

precision, reduced particle diversity and local optima trapping issue (Li et al.,

2020).

In PSO, the problem’s working space is initially populated with

random particles, where a swarm of particles is assigned random positions and

velocities. These particles then explore the space iteratively, updating their

position in search of the optimal solution. Particles will move in the search

space based on their respective velocity and this velocity is dependent on

several variables such as inertial, its previous velocity, personal best solution,

and global best solution as shown in Figure 2.21. In every iteration, each of the

particles are updated with two best values. The first best value indicates the

best solution obtained by the particle until the current iteration which refer to

the personal best (pBest) On the other hand, the second-best value is the best

value obtained by any particles until the current iteration and it is referred to

global best (gBest). These two best values affect the next position for each of

the particles. The velocity or movement of each of the particles are affected by

some factors such as random factors, inertial constant and constriction factor.

These factors are responsible on the exploration and exploitation of the swarm

(Das and Jena, 2020).

31

Figure 2.21: Illustration of PSO (Iran Macedo, 2018)

Maryam Yarmohamadi and Hossein Erfani (2011) presented a PSO

path planning algorithm as a feasible approach for self-organized control of a

single mobile robot to avoid colliding with obstacles during the trajectory. In

their work, the initial position (xr,yr) of that one robot is initialized in a random

coordinate at time (t) and the next position of the robot (xr’,yr’) in the next

iteration time (t+1) is calculated using PSO. The next position of the robot will

be calculated in every iteration until the robot reach its goal. In their work, the

implementation of PSO involves the initial population of random particles

being generated around the current position of the robot. At the end of the

algorithm for that iteration, the particle with the best position or gBest will be

chosen to be the next position of the robot. The objective function of their

work is to calculate the shortest distance between the current location to the

goal location using Euclidean distance. Besides that, an objective function will

be developed by adding a penalty function to avoid the obstacle. If the robot

seen an obstacle in front of it during the trajectory, the robot will decide the

direction and rotate either left or right. During the experiment, a single robot

was employed to navigate an environment containing static and dynamic

obstacles, as depicted in Figure 2.22. The starting location was indicated by a

blue dot, the goal location by a red dot, dynamic obstacles by green circles,

static obstacles by white circles, and the generated path was represented by a

line. From the simulation result, it was found that the robot can successfully

navigate from start location to the goal location without any collision and it

32

prove that PSO can be effectively implemented in complex and dynamic

environment.

Figure 2.22: (a) In Start Time, (b) In Middle Time, (c) In End Time (Maryam

Yarmohamadi and Hossein Erfani, 2011)

 As the number of robots used in a MRS increase, the control of the

MRS become infeasible and unreliable. Swarm behaviour-based approach has

been used to effectively solve this problem thanks to its properties of

robustness, scalability, and flexibility. Ayari and Bouamama (2017) proposed

a distributed or decentralised MRPP algorithm using Dynamic Distributed

Particle Swarm Optimization (D2PSO). In their work, the authors address the

main drawback of traditional PSO which is the local optimal problem and to

solve this problem, they introduced two new parameters into the classic PSO

which are the Local Optima Detector for gbest and Local Optima Detector for

pbest. These two parameters are employed to track the number of consecutive

iterations in which there is no improvement in pbest and gbest position. This

indicates that particles that fail to improve their pbest will no longer contribute

to gbest. Thus, it also means that the particles are saturated and need extra

thrust. When a gBest is not improving for a predefined successive iteration, it

might be due to local optima trapping problem. D2PSO proposed in their paper

is to give that extra thrust to push the trapped particles in local optimal out

from the local optima position by heading particles toward a better and

unexplored region. In their experiment, ten robots were used in a known

environment and the D2PSO algorithm was run with 200 iterations as shown in

Figure 2.23. Additionally, the performance of the D2PSO was compared to the

Distributed PSO algorithm. The result in Table 2.3 shows that the D2PSO

33

perform better in escaping local optima and it can be used for large number of

robots. Besides, it also shows that D2PSO can generate shorter path than

Distributed PSO using population size, M of 300 in general.

Figure 2.23: Result Obtained using D2PSO (Ayari and Bouamama, 2017)

Table 2.3: Path Length Comparison of D2PSO and DPSO (Ayari and

Bouamama, 2017)

 Biswas, Anavatti and Garratt (2017) proposed an obstacles avoidance

method for MRPP using Simultaneous Replanning Vectorized Particle Swarm

Optimization (SRVPSO) that focus on effective and deficient obstacle

avoidance. The concept of simultaneous replanning was implemented into the

MRPP in order to avoid collision. In their algorithm, the robots used in the

environment considered each other as dynamic obstacles and collision

avoidance strategy was then implemented. The collision avoidance method

34

they used are divided into two steps. If the particles initialized by PSO

algorithm are within a collision zone, a very high cost will be assigned to the

fitness function or the objective function of the particles and this is the first

step. As a result, the velocity of those particles that are within the collision

zone will be rapidly increased which make the particles to leave the collision

zone and increment in the velocity is the second step. In addition, their

research utilizes Vectorized PSO, which differs from the classical PSO in

terms of evaluating the objective function. In vectorized PSO, the objective

function evaluates all points in the search space simultaneously, whereas in the

classical PSO, the objective function evaluates one point at a time. The

vectorized PSO is used instead of the classic PSO to reduce the programming

code as it does not require the code to be run in loops which make it run faster

than the classic PSO which require loop. Other than that, the distance between

the particles and the obstacles which denoted as 𝐷𝑜𝑏𝑠
𝑎 were calculated and

evaluated at each iteration to maintain a collision free path and this distance

must be bigger than 0 to avoid collision. Whenever this distance is calculated

to be negative, a high cost will be assigned into the objective function of the

particles and these particles will not be considered as the best fitness function

to avoid collision. In simulation as shown in Figure 2.24 and Figure 2.25, two

robots were used in an environment filled with static and dynamic obstacles.

The results demonstrate that the SRVPSO algorithm effectively generates

paths with a high level of safety by avoiding obstacles, while also optimizing

the paths efficiently.

𝐷𝑜𝑏𝑠
𝑎 ≤ 0

Figure

35

Figure

 Han,

Figure

Table

36

Table

 Different

 In

Figure

Table

37

Table

2.4 Summary

In

Table

Classical

Rapidly

- Able to generate the optimum path or

the shortest path with increase of

iterations.

- The number of iterations required,

and execution time increase

exponentially in solving MRPP

problem.

- Increase computational cost with

increased number of robots.

- Lack of research done for MRPP

problem.

Artificial

- Good performance in obstacle

avoidance in both static and dynamic

environment.

- Local optimum trapping problem.

- Path oscillation problem.

- Weak in finding path between closely

arranged obstacles.

38

- Lack of research done for MRPP

problem.

Heuristic

Ant

- Effective in finding global optima.

- Suitable to be implemented in

dynamic environment.

- Slow convergence.

- High memory usage.

Particle

- Fast convergence.

- Simple implementation as there is

only a few parameters need to be

adjusted.

- Prone to trapping in local optima

 Based

39

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This

3.2 Proposed Multi-robot Path Planning Algorithm

Based

3.2.1 Assumptions

The

• Starting position, current position, and destination for all the robots are

known in each reference coordinate system.

• Position of static obstacles are known in each reference coordinate

system.

• Each robot computes its complete path from starting position to its

destination before the navigation.

• All robot used is assumed to be differential drive robot and each of

them are identical to each other.

3.2.2 Classical PSO Algorithm (PSO)

As mentioned in Chapter 2, PSO is an optimization algorithm based on social

behaviour of group of animals. It performs path planning by first initializing a

population of random particles which distributed uniformly around the robot

search space and these particles are assigned with random velocity initially

and they constantly change its velocity and position dynamically during the

optimization process until they reach the goal position. At every iteration, the

particles change their position by updating their velocity and this velocity are

influence by several factors such as the particles’ experience, particle current

motion, influence of the whole swarm as shown in Figure 2.21. Each particles

update its position and velocity in every iteration based on equations 𝑉𝑖(t +

40

1) = 𝑉𝑖(𝑡) + 𝑐1𝜑1(𝑥𝑃𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡)) + 𝑐2𝜑2(𝑥𝐺𝐵𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) (3.1)

and 𝑥𝑖(t + 1) = 𝑥𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) (3.2). The velocity component in

the equation provides a track on previous direction that the particles travelled.

The cognitive element then compares the current particles’ performance with

the previous best performance. Lastly, the social element compares the current

particles’ performance with the previous global best performance of the swarm.

Particle’s Velocity Equation:

𝑉𝑖(t + 1) = 𝑉𝑖(𝑡) + 𝑐1𝜑1(𝑥𝑃𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡)) + 𝑐2𝜑2(𝑥𝐺𝐵𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) (3.1)

where

𝑉𝑖(𝑡 + 1) = Velocity of ith particle for next iteration, t+1

𝑉𝑖(𝑡) = Current velocity of ith particle at current iteration, t

 𝑥𝑖(𝑡) = Current position of ith particle at current iteration, t

𝑥𝑃𝐵𝑒𝑠𝑡𝑖 = (𝑥𝑖(𝑡), 𝑦𝑖(𝑡)) is the current personal best position of ith

 particle

𝑥𝐺𝐵𝑒𝑠𝑡 = (𝑥𝐺𝐵𝑒𝑠𝑡(𝑡), 𝑦𝐺𝐵𝑒𝑠𝑡(𝑡)) is the current global best position

 achieved by the swarm.

𝑐1 = Cognitive parameter

𝑐2 = Social parameter

𝜑1, 𝜑2 = Independent variables uniformly distributed in [0,1]

Particle’s Position Equation:

 𝑥𝑖(t + 1) = 𝑥𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) (3.2)

where

𝑥𝑖(𝑡 + 1) = Position of ith particle for next iteration, t+1

 𝑥𝑖(𝑡) = Current position of ith particle at current iteration, t

𝑉𝑖(𝑡 + 1) = Velocity of ith particle for next iteration, t+1

Velocity Cognitive Element Social Element

41

3.2.3 Modified PSO Algorithm (MPSO)

Until today, different version of the PSO algorithm have been suggested by

researchers to improve its effectiveness, as discussed in Chapter 2. According

to research done by Das, Behera and Panigrahi (2016), balancing the

exploration and exploitation of the algorithm is crucial for enhancing its

performance. This can be achieved by including an inertial weight factor,

designated as 𝜔, in the original particle’s velocity equation as shown in

Equation 𝑉𝑖(t + 1) = 𝜔𝑉𝑖(𝑡) + 𝑐1𝜑1(𝑥𝑃𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡)) + 𝑐2𝜑2(𝑥𝐺𝐵𝑒𝑠𝑡 −

 𝑥𝑖(𝑡) (3.3). The value of the 𝜔 coefficient plays a significant role in

balancing the exploration and exploitation of the particles, and it greatly

influences the convergence behavior of the PSO algorithm. Adjusting the 𝜔

value dynamically can modify the searching capability of the algorithm.

𝑉𝑖(t + 1) = 𝜔𝑉𝑖(𝑡) + 𝑐1𝜑1(𝑥𝑃𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡)) + 𝑐2𝜑2(𝑥𝐺𝐵𝑒𝑠𝑡 − 𝑥𝑖(𝑡) (3.3)

Where

𝜔 = Inertial weight factor

According to equation 𝑉𝑖(t + 1) = 𝜔𝑉𝑖(𝑡) + 𝑐1𝜑1(𝑥𝑃𝐵𝑒𝑠𝑡𝑖 −

𝑥𝑖(𝑡)) + 𝑐2𝜑2(𝑥𝐺𝐵𝑒𝑠𝑡 − 𝑥𝑖(𝑡) (3.3), there are three problem dependent

parameters which need to be tuned to get the desired result. These parameters

are the inertial weight factor (𝜔), and the acceleration coefficient tied to the

cognitive (c1) and the social (c2) parameters. 𝜔 is important in balancing the

global exploration and exploitation or local exploration ability of the particles.

𝜔 greatly influence the convergence behaviour of the PSO algorithm. It is

important as it serves to balance between the exploration and exploitation or

the local exploration ability of the particles. A well-balanced local exploration

ability enables the robot to find the optimal path accurately and rapidly.

According to researches done by Shi and Eberhart (n.d.), Das, Behera and

Panigrahi (2016), a large value of 𝜔 able to provides a wide or global search

while a small value of 𝜔 facilitates fine or local search. It was found that the

Inertial Cognitive Element Social Element

42

searching ability of the algorithm can be dynamically adjusted by changing the

value of 𝜔 . It was proved that by gradually decreasing 𝜔 throughout the

optimization process would improve the particles’ ability between local and

global exploration. Based on the aforementioned research paper, the best value

for maximum and minimum 𝜔 is 0.95 and 0.4 respectively. Therefore, in this

project, a linearly decreasing 𝜔 technique will be adopted, varying from start

to end of the algorithm at 0.4 and 0.95, respectively. The value for the 𝜔 can

be determined using the equation 𝜔 = 𝜔𝑆𝑡𝑎𝑟𝑡 −
𝜔𝑆𝑡𝑎𝑟𝑡−𝜔𝐸𝑛𝑑

𝐾
 𝑘 (3.4).

 𝜔 = 𝜔𝑆𝑡𝑎𝑟𝑡 −
𝜔𝑆𝑡𝑎𝑟𝑡−𝜔𝐸𝑛𝑑

𝐾
 𝑘 (3.4)

where

𝜔𝑆𝑡𝑎𝑟𝑡 = Start value of inertial weight, (e.g 0.95)

𝜔𝐸𝑛𝑑 = End value of inertial weight, (e.g 0.4)

K = Maximum number of iterations

k = Current iteration

Besides that, the acceleration coefficient c1 and c2 also have great

effect on the performance of the algorithm. A higher c1 attracts the particle

toward its personal best position while a higher c2 attracts the particle toward

the global best position. Some researchers adjust these parameters by trial-and-

error technique until a desired output is achieved. However, based on Das,

Behera and Panigrahi (2016), a large value of c2 compared to c1 will lead the

particle to local optimum prematurely and a high c1 compare with c2 will result

in the particles wandering within the search space. They also proved that the

quality of the solution can be further improved by gradually decreasing the

cognitive element and gradually increasing the social element as the iteration

increase. This tunning can be done using equations 𝑐1 = 𝑐1𝑖 − (
𝑐1𝑖−𝑐1𝑓

𝐾
) 𝑘

 (3.5) and 𝑐2 = 𝑐2𝑖 + (
𝑐2𝑖−𝑐2𝑓

𝐾
) 𝑘 (3.6).

 𝑐1 = 𝑐1𝑖 − (
𝑐1𝑖−𝑐1𝑓

𝐾
) 𝑘 (3.5)

43

 𝑐2 = 𝑐2𝑖 + (
𝑐2𝑖−𝑐2𝑓

𝐾
) 𝑘 (3.6)

where

𝑐1𝑖 = Initial value for cognitive component

𝑐1𝑓 = Final value for cognitive component

𝑐2𝑖 = Initial value for social component

𝑐2𝑓 = Final value for social component

3.2.3.1 New Path Planning Scheme Implemented in MPSO

In most of the existing path planning problem that utilize the PSO algorithm,

the particles swarm is first initialized around the robot starting location, and

the particles’ velocity and position are updated in each iteration. In each of the

iteration, one robot’s waypoint will be determined by the algorithm based on

the global best position found by the particle swarm. This process is repeated

until all the particles have converged to the robot’s target position. This means

that if a robot’s trajectory requires ten waypoints from its starting position to

its target position, the PSO algorithm is executed for one execution of 10

iterations, and it will be terminated after 10 iterations are completed. In this

report, a new PSO path planning scheme inspired by the works of the authors

in Das et al. (2016) is introduced into the algorithm. Instead of determining

one waypoint of the robots in each iteration of the PSO algorithm, which is

done in most of the research papers, this project proposes a new path planning

scheme where the algorithm is run once with a few iterations to determine one

waypoint of the robots. For a robot’s complete path from starting location to

its destination, consisting of five waypoints, the PSO algorithm will be

executed five times. In contrast to the normal PSO approach, the proposed

PSO employs a different strategy where the particles’ swarm is not initialized

at the robot starting location, but rather initialized within a predefined search

space. This algorithm with the new path planning scheme is called the

modified PSO algorithm (MPSO).

3.2.3.2 Objective Functions

44

Creating an appropriate fitness function is essential in finding the best path for

each robot while fulfilling environmental requirements like minimizing energy

consumption, execution time, and overall path length. In response to this, two

main objective functions are considered to tackle the path planning problem.

The first objective function aims to generate the shortest possible path between

the robot initial position and the goal position while the second objective

function ensures that there is no collision between robot and static obstacles.

The determination of the successive waypoints for the robots is

contingent on the particles’ ability to search and convergence to a global

optimum position, while the global optimum position is the position found by

the particles swarm within the local search space which has the minimum

distance to the target position. This can be accomplished by utilizing the first

fitness function, F1, expressed in equation 𝐹1=

∑ √(xj
next- x

j

goal
)
2
+ (y

j
next- y

j

goal
)
2

nr
j=1 (3.7), which determine the successive

waypoint with the minimum distance to the destination of the robot by

calculating the Euclidean distance between each of the particle’s location and

the goal location. The particle with the minimum distance will be considered

as the next waypoint for the robot.

 𝐹1= ∑ √(xj
next- x

j

goal
)
2
+ (y

j
next- y

j

goal
)
2

nr
j=1 (3.7)

nr = number of robots

xj
next = x-coordinate of successive waypoint for jth robot

 (x-coordinate of particle with minimum Euclidean distance)

y
j
next = y-coordinate of successive waypoint for jth robot

 (y-coordinate of particle with minimum Euclidean distance)

xj

goal
 = x-coordinate of target position for jth robot

y
j

goal
 = y-coordinate of target position for jth robot

45

 In terms of collision avoidance, the distance between the particles and

the obstacles must not be too close to each other when determining the

waypoint for the robots. In each iteration of the algorithm, the particles aim to

converge toward a global optimum position within the local search space

while avoiding any overlapping with obstacles. Each particle that overlaps

with any obstacles are reinitialized to a new position until it is no longer

overlapping with any obstacles. To avoid any particle getting too close to any

of the obstacle, the second fitness function, F2, can be implemented as shown

in equation 𝐹2= ∑ {
1

√(xj
next- xj

obs)
2
+ (y

j
next- y

j
obs)

2
}nr

j=1 (3.8). The fitness

function for obstacle avoidance can be expressed as a Euclidean distance

function of the distance between the particles and static obstacles. The closer

the particle is to the obstacles, the larger the fitness value. Thus, the position of

the particle near any obstacle will not be considered as the global optimum

point.

 In addition, it should be noted that any particle with a location where

the path is blocked by an obstacle as illustrated in Figure 3.1, will be deemed

as infeasible point. When this happen, the fitness function will be assigned a

value of infinity and the position of that particle will not be considered as the

global best position.

Figure 3.1: Infeasible Path When Obstacle Blocks Path

 𝐹2= ∑ {
1

√(xj
next- xj

obs)
2
+ (y

j
next- y

j
obs)

2
}nr

j=1 (3.8)

46

 The overall objective function is obtained by summing the two

objective functions as shown in equation 𝐹 = λ1F1 +λ2F2 (3.9), where the

λ1 and λ2 are the weights factors of both the fitness functions. The λ1 and λ2

values are adjusted in the simulation to get obtain the desired result by trial

and error. Higher λ1 indicate that F1 is more important than and vice versa

Thus, the optimal path can be achieved by reducing the total fitness value as

represented in equation 𝐹 = λ1F1 +λ2F2 (3.9).

 𝐹 = λ1F1 +λ2F2 (3.9)

3.2.4 Dynamic Obstacle Avoidance

The proposed MPSO algorithm utilized in this project deviates from the

normal PSO path planning approaches that employ local path planning

methods, which determine paths incrementally as the robot progresses towards

its goal. Instead, the proposed MPSO algorithm adopts a global path planning

approach, wherein it plans complete paths for all robots prior to their

navigation within a pre-existing simulated environment. During navigation, an

sensor-based obstacle avoidance algorithm is implemented as the local path

planner to avoid collision with dynamic obstacle. This algorithm is known as

the Obstacle Avoidance Algorithm in this project. The algorithm is based on

sensor data generated from sensor such as LIDAR sensor to avoid dynamic

obstacles within the robot’s sensing range. The algorithm uses multiple

sensors attached to each robot as shown in Figure 3.2 to detect obstacles in the

environment. Upon detection of dynamic obstacle, the robot adjusts its path to

avoid colliding with the obstacle. The robots also treat each other as dynamic

obstacles, allowing them to detect and avoid possible collisions with each

other. In the simulation, three sensors are affixed to each robot, with a

combined sensor angle coverage of 180 degrees. Each individual sensor covers

60 degrees of the robot’s surroundings. When a sensor detects a dynamic

obstacle during navigation, the sensor will be assigned with a logic value of 1

indicating that the sensor detects obstacle, and the robot adjusts its path to

avoid the obstacle and will not travel in the direction of the obstructed sensor.

If the sensors did not detect obstacle, the robot travels toward the direction of

47

the sensor that provide minimum distance between the robot’s current position

to the next waypoints.

Figure 3.2: Sensor Angle Coverage of Robot

48

3.2.5 Flowchart of MPSO Path Planning Algorithm

Figure 3.3 illustrates the flow chart of PSO path planning algorithm for a single robot. This flowchart will be implemented on all the robots in the

MRS. The pseudocode for MPSO algorithm is provided in the Appendix PseudocodeA-1.

Figure 3.3: Flowchart PSO Path Planning Algorithm

49

3.2.6 Flowchart of Obstacle Avoidance Algorithm

Figure 3.4 illustrates the flow chart of Obstacle Avoidance Algorithm for a single robot. This flowchart will be implemented on all the robots in

the MRS. The pseudocode for MPSO algorithm is provided in the Appendix PseudocodeA-2.

Figure 3.4: Flowchart for Obstacle Avoidance Algorithm

50

3.3 Computer Simulations

The multi-robot path planning will be carried out in three different scenarios as

shown in Figure 3.5, Figure 3.6, and Figure 3.7 where three robots are

initialized in different starting location, and they need to navigate through an

environment filled with obstacles to reach their goal location respectively.

These simulations will be conducted in MATLAB R2022a on a Windows

laptop with 8th Generation Intel Core i5-8250U@1.6Ghz microprocessor with

8GB RAM. Each of the robots will consider other robots as dynamic obstacles.

To simplify the simulation, some assumptions are to be made. For instance,

due to the complex shape of a real robot and obstacles in real life, the

simulation will be conducted with three robots in a 2-dimensional workspace

where all the robots are enclosed with circle and all the obstacles are

represented with simple shapes. Furthermore, the robot’s movement is

assumed to be holonomic, and the velocity of robot are assumed to be the

same at 2 m/s. At the end of the simulation, the number of steps taken,

trajectory path length and time required for each robot will be evaluated. The

simulations are done with both basic PSO algorithm and MPSO algorithm to

compare the performance of both algorithms.

Figure 3.5: Scenario 1 (Simulation Environment with four Circular obstacles)

51

Figure 3.6: Scenario 2 (Simulation Environment with Seven Circular

Obstacles)

Figure 3.7: Scenario 3 (Simulation Environment with Multiple Vertical and

Horizontal Obstacles)

52

3.4 Planning and Managing of Project Activities

This section describes the whole planning process in completing this 1-year

project using two Gantt Charts as shown in Table 3.1and Table 3.2. The

project was divided into two parts, spanning two semesters, to aid in its

successful completion. Besides that, for a better personal progress tracking, a

more detailed Gantt chart was constructed for part I by using Gantt Project

software. Both part I and part II of the project was done within 28 weeks in

total. This project had not involved any cost because only software was used.

3.4.1 Project Part I

The part I of this project was conducted in 14 weeks, and it consists of four

major activities to be accomplished. As shown in Table 3.1, the activities to be

completed in part I were project formation and project planning, literature

review, methodology research and progress report preparation. The first task

of the whole project begins with project formation and project planning which

was started at the beginning of project part I. Besides that, the background

study was done on the FYP title to have general understanding on the title

during the first two weeks. Not only that, the general Gantt chart for the whole

project which includes the part I and part II of the project were prepared as

shown in Table 3.1 and Table 3.2. Additionally, the more detail Gantt chart

was also created as shown in Appendix GanttChartC-1 and GanttChartC-3

using a software named Gantt Project in the first three weeks of the project to

have a better progress tracking for personal used. After that, a comprehensive

literature reviews were conducted on the multi-robot path planning algorithms

based on two main path planning approaches which are the classical

approaches and heuristic approaches. In the classical approaches. RRT

algorithm and APF algorithm were discussed by reviewing current papers

published on single robot and multi-robot path planning. Besides. The

heuristic algorithms such as ACO and PSO algorithm were also investigated.

After the literature review, the different algorithm used in multi-robot path

planning problem were compared and a suitable algorithm was chosen. Based

on the chosen algorithm, the methodology for this project was designed and

constructed. In-deep research on the chosen algorithm for deeper

understanding on the mathematical models and a suitable platform,

53

programming language and robot for the simulation were also chosen. In this

project, the simulations were mainly done with MATLAB. Besides that, a

progress report was prepared to document all the research’s results and the

report preparation was started from week 3 together with literature review and

it was submitted in week 14.

3.4.2 Project Part II

On the other hand, the part II of this project consists of five major tasks which

are the PSO algorithm development and MATLAB simulation, result and

discussion, conference paper preparation, poster preparation and final report

preparation. The part II of this project focused on hands on development of the

MRPP algorithm using MPSO in MATLAB software and the aim of this part

is to investigate the performance of MRPP task in a simulated SAR operation

in simulation. At the start of part II, the PSO algorithm was first developed in

MATLAB software to evaluate the performance of the proposed algorithm in

different scenarios such as the total time taken, the minimum path length, the

safety factor and so on. After that, all the result gathered from the simulation

were discussed, tabulated and documented in the report. At the same time, a

conference paper was prepared and submitted for review using the result

generated. At the end of part II, a poster was prepared for poster competition

while at the same time, a final report was prepared to conclude the part I and

part II of this project and this report was submitted in week 14 of part II. After

that, this project was concluded with an oral presentation in week 14

54

Table 3.1: Gantt Chart (Part I)

55

Table 3.2: Gantt Chart (Part II)

56

3.4.3 Summary

This chapter provides a detailed explanation of the MPSO algorithm, which is

an improved version of the classical PSO algorithm. Unlike the PSO algorithm,

the MPSO algorithm incorporates a new path planning scheme that determines

each waypoint of the robot by running the entire MPSO algorithm, rather than

determining one waypoint in each iteration in one run of the algorithm.

Additionally, the inertial weight and learning factors of the MPSO algorithm

are dynamically updated to balance the exploration and exploitation capability

of the algorithm.

 In this project, the combination of global path planning approach and

local path planning approach is considered. MPSO algorithm is implemented

as the global path planner to search for the complete path for all robots. To

avoid obstacle during navigation, a sensor-based obstacle avoidance algorithm

which known as Obstacle Avoidance Algorithm in this project is employed as

a local path planner to help the robot reactively avoid any dynamic obstacles

during navigation.

 The performance for both PSO and MPSO algorithms were evaluated

using MATLAB simulations in three different scenarios, with the same

starting and goal locations for all scenarios, the settings of the scenarios are

also discussed in this chapter. The first scenario is populated with four circular

obstacles with different size, the second scenario is population with seven

circular obstacles with the same size and the third scenarios is populated with

multiple vertical and horizontal obstacles. The complexity of the robot’s

environment increases from the first scenario to the third scenario. All the

scenarios were designed using binary occupancy map function provided in

MATLAB. Furthermore, project planning and management were carefully

executed, and Gantt chart were generated to ensure that all project activities

were completed on time.

57

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

This chapter focus on presenting and discussing the result obtained for all

multi-robot scenarios using the proposed Modified Particle Swarm

Optimization (MPSO) algorithm. This chapter involves the result comparison

between PSO algorithm and MPSO algorithm in section 4.2 and the discussion

on effect of PSO parameter on the simulation result in section 4.3.

4.2 Comparison Between PSO and MPSO Algorithms

In this section, the results obtained with the PSO algorithm and MPSO

algorithms under all three scenarios are presented. Both algorithms were

implemented with global path planning approach and the dynamic collision

avoidance during the navigation of the robots was implemented using the

Obstacle Avoidance Algorithm to help robot avoid any dynamic obstacles.

The basic PSO algorithm was implemented without the proposed path

planning scheme. In PSO algorithm, the particles will be initialized at the

robot starting positions, and the particles iteratively update their position and

velocity using the velocity and position equations shown in equation 𝑉𝑖(t +

1) = 𝜔𝑉𝑖(𝑡) + 𝑐1𝜑1(𝑥𝑃𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡)) + 𝑐2𝜑2(𝑥𝐺𝐵𝑒𝑠𝑡 − 𝑥𝑖(𝑡) (3.3)

and 𝑥𝑖(t + 1) = 𝑥𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) (3.2). In each of the iterations, one

waypoint of the robot will be determined by evaluating the fitness value for

each particle and determining the global best solution. Besides that, based on

the velocity equation for the classical PSO in equation 𝑉𝑖(t + 1) = 𝑉𝑖(𝑡) +

𝑐1𝜑1(𝑥𝑃𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡)) + 𝑐2𝜑2(𝑥𝐺𝐵𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) (3.1), the inertial weight

is not considered, and the social and cognitive learning factors are not

dynamically updated instead they are set with a value of 2 throughout the

whole simulation as the maximum cognitive and social learning factors used in

this project is 2. When both cognitive and social learning factors are equal,

they both exert an equal level of influence on the algorithm’s performance. On

the other hand, the MPSO algorithm implemented with the new path planning

58

scheme where the particles are first initialized within a predefined search

space, and they iteratively search for a global best position within the search

space. The algorithm stops once the global best position is determined and this

global best position will be set as one of the waypoints of the robot. A new

MPSO algorithm is then reiterated again by first initialising the particles

within a predefined search space around the previous generated waypoint and

determine the next waypoint by searching for the global best position within

the search space. These processes are repeated until a complete path is

generated.

In order to compare the performance of both algorithms, both

algorithms were simulated with five times for each scenario, and they were

evaluated in terms of average path length and execution time using the similar

set of PSO parameters as shown in Table 4.1. Besides that, all three scenarios

having the same dimension which is 100 meters x 100 meters and the robots in

all three scenarios are having their own respective starting and goal position as

shown in Table 4.2.

Table 4.1: PSO Parameters

Parameters Value

Swarm Size 100

Maximum Iteration, itertotal 30

Maximum Inertial Weight, max 0.95

Minimum Inertial Weight, min 0.4

Maximum Cognitive Parameter, c1max 2.0

Minimum Cognitive Parameter, c1min 0.5

Maximum Social Parameter, c2max 2.0

Minimum Social Parameter, c2min 0.5

Particle’s Maximum Velocity, Vmax 8

Particle’s Minimum Velocity, Vmin 2

Table 4.2: Starting and Goal Position for Each Robot

 Starting Points (x, y) Target Points (x, y)

59

Robot 1 10 10 90 90

Robot 2 10 50 90 50

Robot 3 10 90 90 10

4.2.1 Scenario 1 (Four Circular Obstacles)

In the first scenario as shown in Figure 3.5, four static obstacles are considered

(same shape, different size). Each robot is starting from different starting

position and targeted to reach different goal position.

4.2.1.1 PSO Algorithm Result

Figure 4.1 illustrates the particles position and the robot’s waypoints generated

in each iteration. Each coloured point represents a particle and the particles

with the same coloured represents the particles in the same iteration.

60

Figure 4.1: Particles’ Position and Waypoints in Scenario 1 With PSO

Algorithm: (a) Robot 1; (b) Robot 2; (c) Robot 3

 After each robot path is generated using the PSO algorithm, the

robots start navigating toward the target position following the generated path.

The trajectory for each of the robot from respective starting position to goal

position are shown in Figure 4.2. During the navigation of the robots, robot 1

and robot 3 sensed each other with their sensor in simulation step 5 as shown

in Figure 4.3. Once the robot sensed any dynamic obstacle in its sensing range,

the robot triggers the Obstacle Avoidance Algorithm in order to help the robot

adjusts its navigation and avoid colliding with other robot as shown in

simulation step 8 in Figure 4.4. From the simulation, both of the robots

successfully avoid collision with the help of the Obstacle Avoidance

61

Algorithm. To have a better understanding on the simulation, the whole

simulation result is provided in the Appendix SimulationB-1.

Figure 4.2: Trajectory of Robots in Scenario 1 With PSO Algorithm

Figure 4.3: Dynamic Obstacle Detection of Robot 1 and Robot 3 in Scenario 1

(Simulation Step 5)

62

Figure 4.4: Collision Avoidance Algorithm Triggered to Avoid Collision in

Scenario 1 (Simulation Step 8)

 Moreover, it is possible to calculate the total best fitness of all three

robots in each iteration using equation 𝐹 = λ1F1 +λ2F2 (3.9), and a

graph displaying the global best fitness over the course of the iterations can be

generated as illustrated in Figure 4.5. According to the plotted graph, it

illustrates that the path for all robots can be obtained after 16 iterations, and it

shows a gradual decrease in fitness values from iteration 1 until iteration 16.

Furthermore, the maximum global best fitness was achieved in iteration 1 with

a value of 339.61, while the minimum global best fitness was attained in

iteration 16 with a value of 32.33 as shown in Table 4.3 and Figure 4.5.

Table 4.3: Global Best Fitness of Each Iteration in Scenario 1 With PSO

No of Iterations Global Best Fitness

1 339.61

2 315.65

3 297.90

4 271.08

5 250.32

6 217.23

7 188.35

8 170.71

63

9 155.51

10 129.00

11 96.64

12 77.32

13 61.06

14 47.16

15 36.70

16 32.33

Figure 4.5: Graph of Global Best Fitness vs Iteration for Scenario 1 With PSO

Algorithm

4.2.1.2 MPSO Algorithm Results

Figure 4.6 illustrates the waypoints for each of the robot generated with MPSO

algorithm. At the same time, the position of the particles in the last run of

MPSO algorithm is shown in the figure. The particles with the same colour

represent the particle in the same iteration. From the figure, we can observe

that the particles were initialized within a predefined search space around the

previous generated waypoint. In order to determine the next waypoint, the

particles iteratively update its velocity and position with equations 𝑉𝑖(t +

1) = 𝜔𝑉𝑖(𝑡) + 𝑐1𝜑1(𝑥𝑃𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡)) + 𝑐2𝜑2(𝑥𝐺𝐵𝑒𝑠𝑡 − 𝑥𝑖(𝑡) (3.3)

and 𝑥𝑖(t + 1) = 𝑥𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) (3.2)to search for the global best

64

position within the search space. The algorithm was terminated when the

global best position is no longer updated.

Figure 4.6: Particles’ Position and Waypoints in Scenario 1 With MPSO

Algorithm: (a) Robot 1; (b) Robot 2; (c) Robot 3

 The trajectory generated for each robot with MPSO algorithm is

shown in Figure 4.7. Based on the figure, it can be observed that the path

planned by the algorithm successfully avoid collision with any obstacle. The

detailed simulation process can be observed in Appendix SimulationB-2 for

deeper understanding.

65

Figure 4.7: Trajectory of Robots in Scenario 1 With MPSO Algorithm

 Similarly, the total best fitness for all three robots in each iteration

can be calculated and a graph displaying the global best fitness over the course

of the iterations is shown in Figure 4.8. It can be observed that only four

iterations are required to compute all robots’ path. Besides that, the maximum

global best fitness found in iteration 1 is 339.61 while the minimum global

best fitness found in iteration 4 is 31.05 as illustrated in Figure 4.8 and Table

4.4.

 After running through the simulation with both PSO and MPSO

algorithms for five times, the performance of both algorithms in scenario 1 can

be evaluated and tabulated in terms of average path length and execution time

as shown in Table 4.5.

Table 4.4: Global Best Fitness of Each Iteration in Scenario 1 With MPSO

No of Iterations Global Best Fitness

1 339.61

2 214.04

3 100.49

4 31.05

66

Figure 4.8: Graph of Global Best Fitness vs Iteration for Scenario 1 With

MPSO Algorithm

Table 4.5: Result Obtained with PSO and MPSO Algorithms in Scenario 1

Start

Point

Target

Point

Total Number

of Iterations

Average Path

Length

(meters)

 Average

Execution

Time (s)

PSO MPSO PSO MPSO PSO MPSO

Robot

1
(10,10) (90,90)

16 4

131.86 122.28 98.46 96.43

Robot

2
(10,50) (90,50) 91.84 81.69 68.52 62.36

Robot

3
(10,90) (90,10) 138.94 113.44 96.97 83.59

 Based on the result in Table 4.5, it can be observed that the average

path length and the average execution time obtained by MPSO for all three

robots is shorter compared to that of the PSO algorithm. Thus, it can be said

that the MPSO algorithm outperform the PSO algorithm in terms of average

path length and execution time in scenario 1.

67

4.2.2 Scenario 2 (Seven Circular Obstacles)

In the second scenario as shown in Figure 3.6, the number of static obstacles

increased from three to seven where the environment is populated with seven

obstacles (same shape, same size). This is to evaluate the performance of the

algorithms in an environment pack with obstacles.

4.2.2.1 PSO Algorithm Results

Figure 4.9 illustrates the particles position and the robot’s waypoints generated

in each iteration in scenario 2 using the PSO algorithm.

Figure 4.9: Particles’ Position and Waypoints in Scenario 2 With PSO

Algorithm: (a) Robot 1; (b) Robot 2; (c) Robot 3

68

 Besides that, the trajectory generated for all robots in scenario 2

using PSO algorithm can be observed in Figure 4.10. From the simulation

result obtained in Figure 4.10 and the Appendix SimulationB-3, it can be

observed that the path planned by the algorithm successfully avoid collision

with any obstacle.

Figure 4.10: Trajectory of Robots in Scenario 2 With PSO Algorithm

 Moreover, the graph of global best fitness over the course of

iterations are displayed in Figure 4.11. From the graph, it can be observed that

the total number of iterations required to generate all robots’ path are 18

iterations. The maximum global best fitness in iteration 1 is 339.61 while the

minimum global best fitness in iteration 18 is 34.45 as shown in Table 4.6 and

Figure 4.11.

Table 4.6: Global Best Fitness of Each Iteration in Scenario 2 With PSO

No of Iterations Global Best Fitness

1 339.61

2 316.49

3 299.83

4 271.58

5 245.44

6 227.54

69

7 198.07

8 180.09

9 152.50

10 126.31

11 112.19

12 100.90

13 89.50

14 82.74

15 59.02

16 45.92

17 37.87

18 34.45

Figure 4.11: Graph of Global Best Fitness vs Iteration for Scenario 2 With

PSO Algorithm

4.2.2.2 MPSO Algorithm Result

The waypoints generated by the MPSO algorithm for scenario 2 are depicted

in Figure 4.12. From the finding illustrated in Figure 4.12 (c), it is noticeable

that Robot 3 successfully created a path between two obstacles that were

located closely to each other, leading to a reduced overall path length. In

comparison to the trajectory produced by the PSO and MPSO algorithms for

Robot 3, the PSO algorithm failed to generate a path between obstacles with

70

narrow gap as shown in Figure 4.9 (c) which result in an increased overall path

length.

Figure 4.12: Particles’ Position and Waypoints in Scenario 2 With MPSO

Algorithm: (a) Robot 1; (b) Robot 2; (c) Robot

 The trajectory of the robots is illustrated in Figure 4.13. From the

result, the Obstacle Avoidance Algorithm was not triggered throughout the

entire navigation process as the robots did not detect any dynamic obstacles

within its sensing range. The entire simulation process of the algorithm in

scenario 2 is illustrated in Appendix SimulationB-4 for deeper understanding.

71

Figure 4.13: Trajectory of Robots in Scenario 2 With MPSO Algorithm

 Furthermore, the graph of global best fitness over the course of

iterations for scenario 2 with MPSO algorithm is displayed in Figure 4.14. The

entire MPSO algorithm was simulated for a total of five times repeatedly to

generate the path for all robots. Besides, it can be observed that the maximum

global best fitness found in iteration 1 is 339.61 while the minimum global

best fitness found in iteration 5 is 33.31 as shown in Table 4.7 and Figure 4.14.

 After running the simulations for both PSO and MSPO algorithms in

scenario 2 for five times, the performance for both algorithms are evaluated

and compared in terms of average path length and execution time. The results

are tabulated in Table 4.8.

Table 4.7: Global Best Fitness of Each Iteration in Scenario 2 With MPSO

No of Iterations Global Best Fitness

1 339.61

2 237.11

3 109.86

4 50.26

5 33.31

72

Figure 4.14: Graph of Global Best Fitness vs Iteration for Scenario 2 With

MPSO Algorithm

Table 4.8: Result Obtained with PSO and MPSO Algorithms in Scenario 2

Start

Point

Target

Point

Total Number

of Iterations

Average Path

Length

(meters)

 Average

Execution

Time (s)

PSO MPSO PSO MPSO PSO MPSO

Robot

1
(10,10) (90,90)

18 5

136.16 126.76 91.87 90.31

Robot

2
(10,50) (90,50) 98.40 79.83 70.22 65.21

Robot

3
(10,90) (90,10) 147.11 121.41 103.13 91.28

 The data presented in Table 4.8 indicates that the MPSO algorithm

performs better than the PSO algorithm in scenario 2 in regard to average path

length and execution time. As the PSO algorithm was unable to generate a

path between two obstacles with narrow gap, the path length produced for

Robot 3 with the PSO algorithm was approximately 25 meters longer than the

path generated by the MPSO algorithm. Therefore, the MPSO algorithm’s

capability to find a path through closely arranged obstacles enabled it to

produce a shorter path.

73

4.2.3 Scenario 3 (Multiple Long walls)

In the third scenario as shown in Figure 3.7, the algorithms were tested in an

environment populated with multiple vertical and horizontal obstacles to

evaluate the performance of the algorithms in environment populated with

vertical and horizontal obstacles.

4.2.3.1 PSO Algorithm Results

Figure 4.15 illustrates the particles’ position and the robot’s waypoints for

each iteration of PSO algorithm in scenario 3.

Figure 4.15: Particles’ Position and Waypoints in Scenario 3 With PSO

Algorithm: (a) Robot 1; (b) Robot 2; (c) Robot 3

74

 The trajectory for all the robots in scenario 3 can be observed in

Figure 4.16. During the robots’ navigation, Robot 2 and Robot 3 detects each

other at simulation step 6 as shown in Figure 4.17. Once the robot detects any

dynamic obstacle within its sensing range. The robot, subsequently, will avoid

the dynamic obstacle by activating the Obstacle Avoidance Algorithm as

shown in Figure 4.18. The result illustrates that the collision between Robot 2

and Robot 3 is successfully avoided. The detailed simulation processes are

illustrated in the Appendix SimulationB-5.

Figure 4.16: Trajectory of Robots in Scenario 3 With PSO Algorithm

Figure 4.17: Dynamic Obstacle Detection of Robot 2 and Robot 3 in Scenario

3 (Simulation Step 6)

75

Figure 4.18: Collision Avoidance Algorithm Triggered to Avoid Collision in

Scenario 3 (Simulation Step 7)

 The graph of global best fitness over the course of iterations in

scenario 3 using PSO algorithm is illustrated in Figure 4.19. It can be observed

that the total number of iterations required to compute all robots’ path is 16

iterations. The maximum global best fitness found in iteration 1 is 339.61

while the minimum global best fitness found in iteration 16 is 34.75 as shown

in Table 4.9 and Figure 4.19.

Table 4.9: Global Best Fitness of Each Iteration in Scenario 3 With PSO

No of Iterations Global Best Fitness

1 339.61

2 320.81

3 299.18

4 287.35

5 274.25

6 256.68

7 238.85

8 231.13

9 191.23

10 165.59

76

11 135.90

12 106.89

13 91.69

14 66.87

15 48.11

16 36.34

17 34.75

Figure 4.19: Graph of Global Best Fitness vs Iteration for Scenario 3 With

PSO Algorithm

77

4.2.3.2 MPSO Algorithm Results

Figure 4.20 illustrates the robot waypoints generated with MPSO algorithm in

scenario 3.

Figure 4.20: Particles’ Position and Waypoints in Scenario 3 With MPSO

Algorithm: (a) Robot 1; (b) Robot 2; (c) Robot 3

 The trajectory of all robots in scenario 3 using MPSO algorithm is

illustrated in Figure 4.21. From the result in Figure 4.21 and Appendix

SimulationB-6, the path planned by the algorithm successfully avoid collision

with any obstacle.

78

Figure 4.21: Trajectory of Robots in Scenario 3 With MPSO Algorithm

 Error! Reference source not found. shows the plot of global best

fitness against the number of iterations. It is observed that the calculation of

paths for all robots requires five iterations. The global best fitness value

decreases quickly from iteration 1 to iteration 4, and the decrement from

iteration 4 to iteration 5 is very minimal as Robot 1 and Robot 2 have already

reached their target position in iteration 4 and the global best fitness for Robot

1 and Robot 2 are already at the minimal value. The maximum global best

fitness found in iteration 1 is 339.61 while the minimum global best fitness

found in iteration 5 is 34.75 as shown in Table 4.10 and Error! Reference

source not found..

 Upon conducting the simulations five times each for PSO and MPSO

algorithms in scenario 3, their performance was evaluated and compared in

terms of average path length and execution time as shown in Table 4.11

Table 4.10: Global Best Fitness of Each Iteration in Scenario 3 With MPSO

No of Iterations Global Best Fitness

1 339.61

2 238.63

3 134.75

4 40.18

5 34.34

79

Figure 4.22: Graph of Global Best Fitness vs Iteration for Scenario 3 With

MPSO Algorithm

Table 4.11: Results Obtained with PSO and MPSO Algorithms in Scenario 3

Start

Point

Target

Point

Total Number

of Iterations

Average Path

Length

(meters)

 Average

Execution

Time (s)

PSO MPSO PSO MPSO PSO MPSO

Robot

1
(10,10) (90,90)

16 5

144.03 132.50 107.1 95.95

Robot

2
(10,50) (90,50) 98.00 96.45 81.28 67.73

Robot

3
(10,90) (90,10) 126.2 120.74 89.90 89.18

 The findings presented in Table 4.11 show that, in scenario 3, the

MPSO algorithm continues to outperform the PSO algorithm in terms of

average path length and execution time. While the average path lengths and

execution times for Robot 2 and Robot 3 are comparable between the two

algorithms, the path generated with MPSO is noticeably straighter than the

path generated with PSO algorithm. This implies that the robot will have to

80

make fewer rotations to alter its direction during the navigation, leading to

reduced energy consumption.

 Upon analysing and comparing the performance of both PSO and

MSPO algorithms across all three scenarios, it can be inferred that the MPSO

algorithm proves to be more effective and efficient than the PSO algorithm.

Thus, the MPSO algorithm can be deemed superior to the PSO algorithm in all

three scenarios.

81

4.3 MPSO Parameters

This section discusses the effect of PSO parameter on the simulation result.

There are several parameters that need to be tuned for better performance in

multi-robot path planning such as population size, inertial weight, cognitive

learning factor, and social learning factor. The choice of PSO parameter can

significantly affect the performance of the multi-robot path planning algorithm,

thus, the parameters need to be chosen wisely. In order to find the suitable

PSO parameter, scenario 1 as shown in Figure 4.23 is used to evaluate the

effect of the parameters on the simulation result.

Figure 4.23: Scenario 1 Used to Evaluate the Effect of PSO Parameters

4.3.1 Population Size

In multi-robot path planning using PSO algorithm, population size or the

particle swarm size is an important parameter that affects the performance of

the algorithm. Population size refers to the number of particles or number of

candidate solution present in a swarm that are generated and evaluated in each

iteration of the algorithm. Since each of the particle in the swarm represents a

candidate solution, increasing the population size able to improve the

performance of the PSO by increasing the exploration capability of the

algorithm when searching for solution. At the same time, the particles will also

have lower chances in getting stuck in local optimum. However, even though

the performance and solution might get improved with increment in population

size, the computation cost of the algorithm can also increase significantly as

the particles will need to be evaluated in every iteration. On the other hand,

82

decreasing the population size can result faster execution time but it decreases

the exploration capability of the algorithm in searching for solution which may

result in premature convergence and lower quality solution. In the worst-case

scenario, the particles might get stuck in local optimum and fail to find the

global optimum solution. Therefore, the choice of population size in multi-

robot path planning using PSO involves a trade-off between convergence

speed and solution quality, as well as the computational resource available for

the simulation. Careful tuning of the population size is necessary to balance

the convergence speed and the solution quality in order to achieve the best

performance of the PSO algorithm.

 The effect of the population size on the simulation result is tested by

comparing the result obtained with different population size of 20, 50, 100,

and 200. The simulation is repeated for each population size and the effect of

the population size is evaluated in terms of the average path length and

average execution time of all robots.

Table 4.12: Simulation results with different population sizes

Population Size Average path lengths (m) Average execution time (s)

20 113.22 53.07

50 109.84 59.04

75 107.75 59.42

100 107.80 71.27

200 107.83 108.23

Figure 4.24: Simulation Results Obtained for Different Population Size

0

20

40

60

80

100

120

20 50 75 100 200

Population Size

Average Path Length (m) Average Execution Times (s)

83

The result presented in Table 4.12 and Figure 4.24 indicate that as the

population size increases from 20 to 200, there is a gradual decrease in the

average path length, from 113.22m to 107.83m. Notably, the average path

length obtained with a population size of 75 is very close to that obtained with

a population size of 100 and 200, indicating that further improvement in path

length may be unlikely. However, as the population size increases, the average

execution time increases substantially. Specifically, the results show that when

a population size of 100 or 200 is used, the execution time increases from

71.27 seconds to 108.23 seconds while the average path length remains similar

to that obtained with a population size of 75. Thus, it can be inferred that an

excessively large population size is not necessarily beneficial in improving the

solution, and instead, it increases the computational power required.

4.3.2 Inertial Weight

The inertial weight is a parameter that controls the trade-off between the

searching ability and convergence speed of the algorithm, it is a crucial

parameter that balance between global and local search ability of the algorithm.

The inertial weight determines the influence of the particle’s previous velocity

on its new velocity where a high value of the inertial weight causes the

particles to move towards their current best position, allowing for faster

convergence, but it also reduces the exploration ability of the MPSO algorithm.

In the context of multi-robot path planning, the inertial weight can also have

significant impact on the simulation result as it affects the searching process

by the rate of convergence and exploration of the swarm. A high value of

inertial weight allows the particles to move more freely and explore the search

space which at the same time increase the chance in finding better solution.

However, it should be noted that higher inertial weight may cause the particles

to overshoot the optimal solution time and increase the number of iterations

required to reach the optimum solution as well as the convergence time. On

the other hand, a low value of inertial weight can lead to faster convergence

but has higher risk in converging to local optimum and trap in local optimum.

84

4.3.3 Cognitive and Social Learning Factor

Cognitive and social learning factor are two other important parameters in

PSO algorithm. These two parameters are crucial in determining the ability of

the PSO algorithm in exploring the search space and converge toward the

global optimum solution. The cognitive learning factor determine how much

the particles learn from its personal best solution while the social learning

factor determines how much the particles learn from the global best solution

found by the particle swarm.

 When high cognitive learning factor is used, the particles rely more

on its own personal best solution to adjust its velocity and position. On the

other hand, when higher social learning factor is used, the particles rely more

on the global best solution found by the particles swarm to adjust its velocity

and position. When the cognitive learning factor is dominating, the algorithm

may tend to explore the search space more widely due to the fact that the

position of the particles relies more on the personal best solution. When the

social learning factor is more dominating, the algorithm may tend to converge

toward a local optimum solution and this local optimum solution may not be

the global optimum solution.

 In order to test the effect on the cognitive and social learning factor

on the simulation result, different combination of cognitive and social learning

factors was used. In the first simulation, the cognitive learning factor is set to 2

while the social learning factor is set to 0 which means that the algorithm

solely relies on the personal best solution found by each particle to determine

the position for each particle. The second simulation was done by setting the

cognitive learning factor to 0 while the social learning factor is set to 2 which

means that the algorithm will be solely rely on the global best solution found

by the particles swarm to determine the position for each particle. All the

simulations were done by setting the inertial weight to be 0.4 as the minimum

inertial value used in this project is 0.4 to observe the result obtained with

different value of cognitive and social learning factors.

 In the first simulation as shown in Figure 4.25 where the cognitive

learning factor is set to 2 while the social learning factor is set to 0, it can be

observed that the particles were first initialized within a predefined search

space around the robot’s starting position. In each iteration, the particles try to

85

update its position depending on the personal best solution found thus far by

the particles. It can be observed that the position of the particles is not

converging toward a global optimum solution, instead, the particle stays at

their own initialized position due to the fact that they only rely on their own

personal best solution.

Figure 4.25: Result Obtained with different learning factor for 30 iterations

(Cognitive Learning Factor = 2, Social Learning Factor = 0)

 In the second simulation as shown in Figure 4.26 where the cognitive

learning factor is set to 0 while the social learning factor is set to 0, similarly,

the particles were first initialized within a pre-defined search space around the

robot’s starting position and the position of the particles are updated iteratively

to search for a global best solution within the search space. The particles with

the same colour represent the particles in the same iteration. From the result, it

can be observed that the particles can converge toward a solution by solely

relying on the global best solution found by the particles swarm to update their

position.

86

Figure 4.26: Result obtained for 30 iterations with cognitive learning factor =

0 and social learning factor = 2)

 Therefore, it is suggested in Das, Behera and Panigrahi (2016) to

dynamically update the cognitive and social learning factor in order to balance

the exploration and exploitation ability of the algorithm.

4.4 Summary

The performance for both PSO and MPSO algorithms are evaluated in terms

on average path length and execution time in three different scenarios. The

biggest difference between MPSO and PSO algorithm is that MPSO algorithm

incorporates a new path planning scheme, which PSO algorithm lacks. From

the result obtained, it is indicated that the MPSO algorithm outperforms the

PSO algorithm in all three scenarios, as it generates shorter average path

length and execution time. Besides that, the impact of PSO parameters on the

simulation results are examined. It reveals that MPSO algorithm has the best

performance in terms of shorter path length and execution time with

population size of 75. Additionally, it has been suggested that updating the

inertial weight and learning factors dynamically can help maintain a balance

between exploration and exploitation capability of the algorithm.

87

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This project aimed to address the challenge of multi-robot path planning in

cluttered environments, particularly in search and rescue missions. To achieve

this, a modified version of the classical PSO algorithm, called MPSO

algorithm, was proposed. Unlike the classical PSO algorithm which determine

each of the robot’s waypoint in each iteration of the algorithm, the MPSO

algorithm incorporates a new path planning scheme that determines one

robot’s waypoint by running the entire algorithm once. In addition, a

combination of global and local path planning approaches was employed to

address the multi-robot path planning problem in dynamic environments. The

PSO algorithm served as the global path planner to determine the complete

path for each robot from respective starting position to respective goal position,

while the Obstacle Avoidance Algorithm served as the local path planner to

avoid collisions with dynamic obstacles during robot navigation.

 Simulation was conducted using both PSO and MPSO algorithms in

three scenarios for five times each, and the results showed that the MPSO

algorithm outperformed the PSO algorithm in terms of average path length and

execution time in all three scenarios. Moreover, the impact of the PSO

parameters on the simulation results was also evaluated, and it was found that

dynamically updating the inertial weight and learning factors could help

maintain a balance between the exploration and exploitation capability of the

algorithm. Furthermore, it was also found that the MPSO algorithm able to

achieve the best performance with a population size of 75. Overall, the

findings of this project suggest that the MPSO algorithm can generate better

paths than the classical PSO algorithm in terms of average path length and

execution time, and the proposed solution can effectively address the multi-

robot path planning problem in dynamic environments.

88

5.2 Recommendations for Future Work

This project can be improved in many ways due to the project’s limitation. it is

important to note that the algorithm overlooks the smoothness aspect of the

path generated. Consequently, the resultant path may exhibit abrupt directional

changes, making it less smooth and challenging for the robot to navigate.

Robot halting and rotation upon any change in direction is necessary due to

lack of path smoothness, leading to increased travel time and higher energy

consumption. There are a few options to enhance the smoothness of the path,

such as adding a penalty function in the fitness function that penalizes sudden

direction change when identifying the next waypoint or utilizing path

smoothing techniques like spline interpolation or other smoothing algorithm

after generating the path with MPSO (Das, Behera and Panigrahi, 2016c; Xu,

Song and Cao, 2021).

 Besides that, optimization algorithms, like the PSO algorithm, often

encounter the issue of local optimum trapping. This happens when the

algorithm converges to a solution that appears optimal within a particular

region of the search space but is far from the true global optimum. The local

optimum problem frequently arises when a complex-shaped obstacle is present

in the environment, and the robot may become stuck at the obstacle and unable

to escape the local optimum solution. Unfortunately, this project does not offer

a solution to tackle the local optimum trapping problem, and the robot may

become trapped in a more complex environment.

 Moreover, the algorithm’s performance in a physical environment

remains untested, as it has only been evaluated in simulations. Thus, the

performance of the algorithm can be further evaluated in the physical

environment with Robotics Operating System (ROS). Furthermore, it is

important to note that an efficient multi-robot system need to considered

multiple aspects such as path planning, formation control, task allocation and

so on. In this project, only the path planning problem is considered due to time

constraint.

 Therefore, future work could involve introducing path smoothing

technique in the path planning algorithm, solving the local optimum trapping

89

problem, and extending the algorithm to physical experiments using Robotics

Operating System (ROS) to validate its performance in a real-world scenario.

90

REFERENCES

Abdalla, T.Y., Abed, A.A. and Ahmed, A.A., 2017. ‘Mobile robot navigation

using PSO-optimized fuzzy artificial potential field with fuzzy control’,

Journal of Intelligent & Fuzzy Systems, 32(6), pp. 3893–3908. Available at:

https://doi.org/10.3233/IFS-162205.

de Almeida, J.P.L.S. et al., 2020. ‘A Global/Local Path Planner for Multi-

Robot Systems with Uncertain Robot Localization’, Journal of Intelligent &

Robotic Systems, 100(1), pp. 311–333. Available at:

https://doi.org/10.1007/s10846-020-01196-y.

altigator (no date) Drones for search & rescue missions.

Atiyah, A.N., Adzhar, N. and Jaini, N.I., 2021. ‘An overview: on path

planning optimization criteria and mobile robot navigation’, Journal of

Physics: Conference Series, 1988(1), p. 012036. Available at:

https://doi.org/10.1088/1742-6596/1988/1/012036.

Awan-Ur-Rahman, 2020. Introduction to Ant colony optimization(ACO).

Ayari, A. and Bouamama, S., 2017. ‘A new multi-robot path planning

algorithm: Dynamic distributed particle swarm optimization’, in 2017 IEEE

International Conference on Real-time Computing and Robotics (RCAR).

IEEE, pp. 437–442. Available at:

https://doi.org/10.1109/RCAR.2017.8311901.

Becky Oskin, 2022. Japan earthquake & tsunami of 2011: Facts and

information.

Biswas, S., Anavatti, S.G. and Garratt, M.A., 2017. ‘Obstacle Avoidance for

Multi-agent Path Planning Based on Vectorized Particle Swarm Optimization’,

in, pp. 61–74. Available at: https://doi.org/10.1007/978-3-319-49049-6_5.

Borenstein, J. and Koren, Y., 1989. ‘Real-time obstacle avoidance for fast

mobile robots’, IEEE Transactions on Systems, Man, and Cybernetics, 19(5),

pp. 1179–1187. Available at: https://doi.org/10.1109/21.44033.

https://doi.org/10.3233/IFS-162205
https://doi.org/10.1007/s10846-020-01196-y
https://doi.org/10.1088/1742-6596/1988/1/012036
https://doi.org/10.1109/RCAR.2017.8311901
https://doi.org/10.1007/978-3-319-49049-6_5
https://doi.org/10.1109/21.44033

91

Britannica, T.E. of E., 2022. Indian Ocean tsunami of 2004.

Bruno Siciliano and Oussama Khatib, 2007. Springer Handbook of Robotics.

Berlin, Heidelberg: Springer-Verlag.

Chitikena, H., Sanfilippo, F. and Ma, S., 2023. ‘Robotics in Search and Rescue

(SAR) Operations: An Ethical and Design Perspective Framework for

Response Phase’, Applied Sciences, 13(3), p. 1800. Available at:

https://doi.org/10.3390/app13031800.

Connell, D. and Manh La, H., 2018. ‘Extended rapidly exploring random tree–

based dynamic path planning and replanning for mobile robots’, International

Journal of Advanced Robotic Systems, 15(3), p. 172988141877387. Available

at: https://doi.org/10.1177/1729881418773874.

Das, P.K. et al., 2016. ‘An improved particle swarm optimization for multi-

robot path planning’, in 2016 International Conference on Innovation and

Challenges in Cyber Security (ICICCS-INBUSH). IEEE, pp. 97–106.

Available at: https://doi.org/10.1109/ICICCS.2016.7542324.

Das, P.K., Behera, H.S. and Panigrahi, B.K., 2016. ‘A hybridization of an

improved particle swarm optimization and gravitational search algorithm for

multi-robot path planning’, Swarm and Evolutionary Computation, 28, pp. 14–

28. Available at: https://doi.org/10.1016/j.swevo.2015.10.011.

Das, P.K. and Jena, P.K., 2020. ‘Multi-robot path planning using improved

particle swarm optimization algorithm through novel evolutionary operators’,

Applied Soft Computing, 92, p. 106312. Available at:

https://doi.org/10.1016/j.asoc.2020.106312.

Debnath, S.K. et al., 2021. ‘Different Cell Decomposition Path Planning

Methods for Unmanned Air Vehicles-A Review’, in, pp. 99–111. Available at:

https://doi.org/10.1007/978-981-15-5281-6_8.

Doroftei, D., Matos, A. and de Cubber, G., 2014. ‘Designing Search and

Rescue Robots towards Realistic User Requirements’, Applied Mechanics and

https://doi.org/10.3390/app13031800
https://doi.org/10.1177/1729881418773874
https://doi.org/10.1109/ICICCS.2016.7542324
https://doi.org/10.1016/j.swevo.2015.10.011
https://doi.org/10.1016/j.asoc.2020.106312
https://doi.org/10.1007/978-981-15-5281-6_8

92

Materials, 658, pp. 612–617. Available at:

https://doi.org/10.4028/www.scientific.net/AMM.658.612.

Drew, D.S., 2021. ‘Multi-Agent Systems for Search and Rescue Applications’,

Current Robotics Reports, 2(2), pp. 189–200. Available at:

https://doi.org/10.1007/s43154-021-00048-3.

Eberhart, R. and Kennedy, J., n.d. ‘A new optimizer using particle swarm

theory’, in MHS’95. Proceedings of the Sixth International Symposium on

Micro Machine and Human Science. IEEE, pp. 39–43. Available at:

https://doi.org/10.1109/MHS.1995.494215.

Gautam, A. and Mohan, S., 2012. ‘A review of research in multi-robot

systems’, in 2012 IEEE 7th International Conference on Industrial and

Information Systems (ICIIS). IEEE, pp. 1–5. Available at:

https://doi.org/10.1109/ICIInfS.2012.6304778.

Ge, Q. et al., 2021. ‘Improved Bidirectional RRT <math id="M1"> <msup>

<mrow/> <mi>∗</mi> </msup> </math> Path Planning Method for Smart

Vehicle’, Mathematical Problems in Engineering, 2021, pp. 1–14. Available at:

https://doi.org/10.1155/2021/6669728.

Han, S., Zhou, X. and Chen, C., 2016. ‘Path planning for multi-robot systems

using PSO and Critical Path Schedule Method’, in 2016 IEEE 13th

International Conference on Networking, Sensing, and Control (ICNSC).

IEEE, pp. 1–6. Available at: https://doi.org/10.1109/ICNSC.2016.7478999.

Iran Macedo, 2018. Implementing the Particle Swarm Optimization (PSO)

Algorithm in Python.

Jing Ren, McIsaac, K.A. and Patel, R.V., 2006. ‘Modified Newton’s method

applied to potential field-based navigation for mobile robots’, IEEE

Transactions on Robotics, 22(2), pp. 384–391. Available at:

https://doi.org/10.1109/TRO.2006.870668.

Khatib, O., 1986. ‘Real-time obstacle avoidance for manipulators and mobile

robots’, in Proceedings. 1985 IEEE International Conference on Robotics and

https://doi.org/10.4028/www.scientific.net/AMM.658.612
https://doi.org/10.1007/s43154-021-00048-3
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1109/ICIInfS.2012.6304778
https://doi.org/10.1155/2021/6669728
https://doi.org/10.1109/ICNSC.2016.7478999
https://doi.org/10.1109/TRO.2006.870668

93

Automation. Institute of Electrical and Electronics Engineers, pp. 500–505.

Available at: https://doi.org/10.1109/ROBOT.1985.1087247.

Kim, J.-O. and Khosla, P.K., 1992. ‘Real-time obstacle avoidance using

harmonic potential functions’, IEEE Transactions on Robotics and Automation,

8(3), pp. 338–349. Available at: https://doi.org/10.1109/70.143352.

Koren, Y. and Borenstein, J., n.d. ‘Potential field methods and their inherent

limitations for mobile robot navigation’, in Proceedings. 1991 IEEE

International Conference on Robotics and Automation. IEEE Comput. Soc.

Press, pp. 1398–1404. Available at:

https://doi.org/10.1109/ROBOT.1991.131810.

Koubaa, A. et al., 2018. ‘Introduction to Mobile Robot Path Planning’, in, pp.

3–12. Available at: https://doi.org/10.1007/978-3-319-77042-0_1.

Lamini, C., Fathi, Y. and Benhlima, S., 2017. ‘H-MAS architecture and

reinforcement learning method for autonomous robot path planning’, in 2017

Intelligent Systems and Computer Vision (ISCV). IEEE, pp. 1–7. Available at:

https://doi.org/10.1109/ISACV.2017.8054978.

Lee, H., Lee, D. and Shim, D.H., 2017. ‘Receding Horizon-based RRT*

Algorithm for a UAV Real-time Path Planner’, in AIAA Information Systems-

AIAA Infotech @ Aerospace. Reston, Virginia: American Institute of

Aeronautics and Astronautics. Available at: https://doi.org/10.2514/6.2017-

0676.

Li, X. et al., 2020. ‘An Improved Method of Particle Swarm Optimization for

Path Planning of Mobile Robot’, Journal of Control Science and Engineering,

2020, pp. 1–12. Available at: https://doi.org/10.1155/2020/3857894.

Liu, S., Mao, L. and Yu, J., 2006. ‘Path Planning Based on Ant Colony

Algorithm and Distributed Local Navigation for Multi-Robot Systems’, in

2006 International Conference on Mechatronics and Automation. IEEE, pp.

1733–1738. Available at: https://doi.org/10.1109/ICMA.2006.257476.

https://doi.org/10.1109/ROBOT.1985.1087247
https://doi.org/10.1109/70.143352
https://doi.org/10.1109/ROBOT.1991.131810
https://doi.org/10.1007/978-3-319-77042-0_1
https://doi.org/10.1109/ISACV.2017.8054978
https://doi.org/10.2514/6.2017-0676
https://doi.org/10.2514/6.2017-0676
https://doi.org/10.1155/2020/3857894
https://doi.org/10.1109/ICMA.2006.257476

94

Mac, T.T. et al., 2016. ‘Heuristic approaches in robot path planning: A survey’,

Robotics and Autonomous Systems, 86, pp. 13–28. Available at:

https://doi.org/10.1016/j.robot.2016.08.001.

Maryam Yarmohamadi and Hossein Erfani, 2011. ‘Improvement of Robot

Path Planning Using Particle Swarm Optimization in Dynamic Environments

with Mobile Obstacles and Target’, Advanced Studies in Biology, 3(1), pp. 43–

53.

Matoui, F. et al., 2017. ‘Path planning of a group of robots with potential field

approach: decentralized architecture’, IFAC-PapersOnLine, 50(1), pp. 11473–

11478. Available at: https://doi.org/10.1016/j.ifacol.2017.08.1822.

Melchior, N.A. and Simmons, R., 2007. ‘Particle RRT for Path Planning with

Uncertainty’, in Proceedings 2007 IEEE International Conference on Robotics

and Automation. IEEE, pp. 1617–1624. Available at:

https://doi.org/10.1109/ROBOT.2007.363555.

Patle, B.K. et al., 2019. ‘A review: On path planning strategies for navigation

of mobile robot’, Defence Technology, 15(4), pp. 582–606. Available at:

https://doi.org/10.1016/j.dt.2019.04.011.

Prasad, A.S. and Francescutti, L.H., 2017. ‘Natural Disasters’, in International

Encyclopedia of Public Health. Elsevier, pp. 215–222. Available at:

https://doi.org/10.1016/B978-0-12-803678-5.00519-1.

Queralta, J.P. et al., 2020. ‘Collaborative Multi-Robot Search and Rescue:

Planning, Coordination, Perception, and Active Vision’, IEEE Access, 8, pp.

191617–191643. Available at: https://doi.org/10.1109/ACCESS.2020.3030190.

Shi, Y. and Eberhart, R., n.d. ‘A modified particle swarm optimizer’, in 1998

IEEE International Conference on Evolutionary Computation Proceedings.

IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

IEEE, pp. 69–73. Available at: https://doi.org/10.1109/ICEC.1998.699146.

Siobhan Grayson, 2014. ‘Search & Rescue using Multi-Robot Systems’.

https://doi.org/10.1016/j.robot.2016.08.001
https://doi.org/10.1016/j.ifacol.2017.08.1822
https://doi.org/10.1109/ROBOT.2007.363555
https://doi.org/10.1016/j.dt.2019.04.011
https://doi.org/10.1016/B978-0-12-803678-5.00519-1
https://doi.org/10.1109/ACCESS.2020.3030190
https://doi.org/10.1109/ICEC.1998.699146

95

Sun, J. et al., 2019. ‘Smart Obstacle Avoidance Using a Danger Index for a

Dynamic Environment’, Applied Sciences, 9(8), p. 1589. Available at:

https://doi.org/10.3390/app9081589.

TAN, G.-Z., 2007. ‘Ant Colony System Algorithm for Real-Time Globally

Optimal Path Planning of Mobile Robots’, ACTA AUTOMATICA SINICA,

33(3), p. 0279. Available at: https://doi.org/10.1360/aas-007-0279.

Tang, B. et al., 2020. ‘Multi-robot path planning using an improved self-

adaptive particle swarm optimization’, International Journal of Advanced

Robotic Systems, 17(5), p. 172988142093615. Available at:

https://doi.org/10.1177/1729881420936154.

Tim Chinenov, 2019. Robotic Path Planning: RRT and RRT*.

Tzafestas, S.G., 2014. ‘Mobile Robot Path, Motion, and Task Planning’, in

Introduction to Mobile Robot Control. Elsevier, pp. 429–478. Available at:

https://doi.org/10.1016/B978-0-12-417049-0.00011-0.

United Nation, 2021. Climate and weather-related disasters surge five-fold

over 50 years, but early warnings save lives - WMO report.

United Nation, 2022. UN marks anniversary of devastating 2010 Haiti

earthquake.

Wu, Z., Su, W. and Li, J., 2019. ‘Multi-robot path planning based on improved

artificial potential field and B-spline curve optimization’, in 2019 Chinese

Control Conference (CCC). IEEE, pp. 4691–4696. Available at:

https://doi.org/10.23919/ChiCC.2019.8865232.

Wu, Zhenping et al., 2021. ‘Fast-RRT: A RRT-Based Optimal Path Finding

Method’, Applied Sciences, 11(24), p. 11777. Available at:

https://doi.org/10.3390/app112411777.

Xu, L., Song, B. and Cao, M., 2021. ‘A new approach to optimal smooth path

planning of mobile robots with continuous-curvature constraint’, Systems

https://doi.org/10.3390/app9081589
https://doi.org/10.1360/aas-007-0279
https://doi.org/10.1177/1729881420936154
https://doi.org/10.1016/B978-0-12-417049-0.00011-0
https://doi.org/10.23919/ChiCC.2019.8865232
https://doi.org/10.3390/app112411777

96

Science & Control Engineering, 9(1), pp. 138–149. Available at:

https://doi.org/10.1080/21642583.2021.1880985.

Yang Li et al., 2013. ‘Multi-robot path planning based on the developed RRT*

algorithm’, in Proceedings of the 32nd Chinese Control Conference, pp.

7049–7053.

Zhang, H., Lin, W. and Chen, A., 2018. ‘Path Planning for the Mobile Robot:

A Review’, Symmetry, 10(10), p. 450. Available at:

https://doi.org/10.3390/sym10100450.

Zhu, Q., Yan, Y. and Xing, Z., 2006. ‘Robot Path Planning Based on Artificial

Potential Field Approach with Simulated Annealing’, in Sixth International

Conference on Intelligent Systems Design and Applications. IEEE, pp. 622–

627. Available at: https://doi.org/10.1109/ISDA.2006.253908.

Zurich, 2022. Is climate change making natural hazards worse?

https://doi.org/10.1080/21642583.2021.1880985
https://doi.org/10.3390/sym10100450
https://doi.org/10.1109/ISDA.2006.253908

97

APPENDICES

Appendix A: Pseudocode

PseudocodeA-1: Pseudocode for Path Planning using MPSO.

Algorithm 1: Pseudocode for Path Planning using MPSO

Input: (xj
𝑠𝑡𝑎𝑟𝑡,y

j
𝑠𝑡𝑎𝑟𝑡), (xj

target
,y

j

𝑡𝑎𝑟𝑔𝑒𝑡
) are the initial position and target position

for n number of robots where 1 ≤ j ≤ n

Output: Optimum trajectory path for each robot connecting each waypoint, wp
j

from (xj
curr,y

j
curr) to (xj

target
,y

j

𝑡𝑎𝑟𝑔𝑒𝑡
)

Initialize PSO parameters: SwarmSize, itertotal, DimensionNo, c1max, c1min,

c2max, c2min, max, min, Vmax, Vmin

For j = 1: no_of_robots

 (xj
curr,y

j
curr) = (xj

start,y
j
start); wp

j
=[(xj

curr,y
j
curr)];

End for

For each robot j = 1: RobotNo

 While (xj
curr,y

j
curr) − (xj

target
,y

j

𝑡𝑎𝑟𝑔𝑒𝑡
) > tolerance do

 For i = 1: SwarmSize

 Initialize ith particle with random position and random velocity within a

predefined search space;

 End For

 For iterctr = 1: itertotal

 For n = 1: DimensionNo

 For i = 1: SwarmSize

 Evaluate fitness value for ith particle;

 If (fiti > fit (Pibest))

 fit (Pibest) = fiti;

 Current position of ith particle = Pibest;

 End If

 If (fit (Pibest) > fit (Gbest))

 fit (Gbest) = fit (Pibest);

 Gbest = Pibest;

 End If

 End For

 End For

 Update the velocity and position of ith particle;

 Update , c1 and c2 using equations;

 If Gbest is not updated for three times

Break;

 End If

 End For

 (xj
curr,y

j
curr) = Gbest;

wp
j
=[waypoint

j
 ; (xj

curr,y
j
curr)];

 End While

End For

98

PseudocodeA-2: Pseudocode for Obstacle Avoidance Algorithm.

Algorithm 2: Pseudocode for Obstacle Avoidance Algorithm

Input: Robot’s position, (Robots(j).pos), position of dynamic obstacles,

sensing range

Output: Robot’s position, (Robots(j).pos)

For j = 1: RobotNo

 While Robots(j). reached ~= true

 Reset sensors’ value to 0, Robots(j).sensor_value(k) = 0;

 For m = 1: number of dynamic obstacles

 If distance between obstacle(m) and Robots(j).pos < sensing_range

 theta = angle between Robots(j).pos and the position of dynamic

obstacle;

 For k = 1: number of sensors

 If theta within Robots(j).sensing_range(k)

 Robots(j).sensor_value(k) = 1;

 End If

 End For

 End If

 End For

 For k = 1: SensorNo

 If Robots(j).sensor_value(k) = 1

 Sensor_pos(k).x = x-coordinate of possible next position based on

direction of kth sensor;

 Sensor_pos(k).y = y-coordinate of possible next position based on

direction of kth sensor;

 Distance(k) = distance between sensor_pos(k) and robot’s next

waypoint;

 Else

 Distance(k) = inf;

 End If

 End For

 index = index of sensor with minimum Distance(k);

 Robots(j).pos.x = sensor_pos(index).x;

 Robots(j).pos.y = sensor_pos(index).y;

 End While

End For

99

Appendix B: Simulations

SimulationB-1: PSO Simulation in Scenario 1 From Simulation Step 1 in (a)

to Step 10 in (m)

100

SimulationB-2: MPSO Simulation in Scenario 1 From Simulation Step 1 in (a)

to Step 12 in (k)

101

SimulationB-3: PSO Simulation in Scenario 2 From Simulation Step 1 in (a)

to Step 9 in (i)

102

SimulationB-4: MPSO Simulation in Scenario 2 From Simulation Step 1 in (a)

to Step 10 in (j)

103

SimulationB-5: PSO Simulation in Scenario 3 From Simulation Step 1 in (a)

to Step 13 in (m)

104

SimulationB-6: MPSO Simulation in Scenario 3 From Simulation Step 1 in (a)

to Step 13 in (m)

105

Appendix C: Gantt Chart

GanttChartC-1: Gantt Chart Using GanttProject (Part I)

106

GanttChartC-2: Description of Gantt Chart Using GanttProject (Part I)

107

GanttChartC-3: Gantt Chart Using GanttProject (Part II)

108

GanttChartC-4: Description of Gantt Chart Using GanttProject (Part II)

