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ABSTRACT 

The field of robotics has seen an increased interest in multi-robot systems, 

which bring a new set of challenges to the table. One of the key aspects in 

multi-robot systems is the path planning problem, which involves finding 

collision-free paths for each robot to reach their respective destinations while 

optimizing various performance metrics. This report focusses on developing a 

novel multi-robot path planning algorithm based on the Modified Particles 

Swarm Optimization (MPSO) algorithm for dynamic environments. The 

MPSO algorithm introduces a new path planning scheme for determining 

robot’s waypoints. Unlike the normal PSO algorithm which initializes the 

particle swarm at the robot’s starting position and iteratively determining each 

waypoint until a completed path is generated, MPSO algorithm initializes the 

particle swarm within a predefined search space and searches for the global 

best position within it to determine a specific robot waypoint through iteration 

updates. Moreover, to cope with dynamic environments, a combination of 

global and local path planning methods is introduced. The PSO algorithm 

functions as a global path planner, determining the complete path for each 

robot, whereas a sensor-based obstacle avoidance algorithm serves as a local 

planner to avoid collision with dynamic obstacles during navigation. In this 

project, this sensor-based algorithm is known as the Obstacle Avoidance 

Algorithm. The simulations conducted using MATLAB demonstrate the 

superiority of the MPSO algorithm over the PSO algorithm in terms of average 

path length and execution time of all robots in all three proposed scenarios: 16 

meter shorter and 7.1 seconds faster in the first scenario, 17.89 meters shorter 

and 6.14 seconds faster in scenario 2, and 6.18 meters shorter and 8.47 

seconds faster in scenario 3. The impact of the MPSO parameters on the 

simulation results is also studied to determine the best PSO parameters that 

achieve the best performance. It was found that the number of populations set 

to 75 and dynamically adjusts the value of inertial weight, the cognitive and 

social parameter provides the best performance in terms of shortest path length 

and execution time. In conclusion, this project shows that the MPSO algorithm 

is capable of generating a better path compared to the normal PSO algorithm 

in terms of average path length and execution time, making it a promising 

algorithm for multi-robot path planning in dynamic environments. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Catastrophic events such as hurricanes, tsunamis, volcanic eruption, 

earthquake, storm, floor, and droughts are classified as natural disaster. Over 

the past 2 decades, the world has witnessed a significant number of natural 

disasters that have had a monumental impact, resulting in the loss of millions 

of lives globally (Prasad and Francescutti, 2017). For instance, the Indian 

Ocean tsunami happened in 2004 that claimed the lives of over 225, 000 

people across a dozen countries (Britannica, 2022), Haiti earthquake in 2010 

that caused approximately 220, 000 deaths (United Nation, 2022) and the 

serious Tohoku tsunami and earthquake happened in 2011 that claimed over 

15, 500 lives (Becky Oskin, 2022). These examples are just a few among 

hundreds of natural disasters that occur every year, resulting in loss of lives 

and damage to economics. Despite the fact that natural disasters are a natural 

part of the planet’s functioning, they are unavoidable.  

In recent years, natural disasters have garnered much attention, and 

people are increasingly concerned about their frequency and severity. 

According to Intergovernmental Panel on Climate Change (IPCC), experts 

indicated that the global temperature is steadily increasing over the years, and 

it is significantly impacting the number and frequency of natural hazards and 

to some extent over the last decade, we have seen just that even in Malaysia 

(Zurich, 2022). Floods have occurred a lot more frequently and more intense 

in Malaysia over the past few years that resulting in loss of life and affecting 

more than hundred thousand citizens. It is expected that there will be more 

severe natural hazards such as storms, droughts, and wildfires in the future, 

and it is impossible to avoid them on our dynamic planet. With the world 

bracing for this increased rate of disaster events and to lower down the number 

of casualties caused by these natural disaster or natural hazards, search and 

rescue team plays a vital role in disaster recovery. 
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1.1.1 Search and Rescue (SAR) 

During large-scale crises, such as Tohuku earthquake as mentioned previously, 

a well-designed and efficient search and rescue operations are crucial in saving 

lives. A simple SAR mission consists of a range of tasks which include 

searching, locating, rescuing and providing medical assistance to victims that 

are trapped inside a hazardous space (Doroftei, Matos and de Cubber, 2014). 

As such, SAR operations are of great importance in reducing casualties caused 

by disaster events. Given the life-threatening conditions faced by victims, 

including exposure to radiation, poisonous gases, and extreme temperature, it 

is vital for SAR teams to quickly find and rescue survivors, otherwise, the 

likelihood of finding victim alive will drops substantially (Siobhan Grayson, 

2014). Traditional SAR operations rely heavily on human resources to perform 

these tasks, which can be challenging and demanding. The longer it takes to 

find and rescue victims, the lower their chances of survival. Therefore, 

reducing the time required for SAR operations is critical in minimizing 

casualties caused by natural disasters. 

Besides that, SAR missions are often intricate, and disaster-prone 

environments pose a significant challenge as they are hazardous and 

challenging to navigate for human workers. Additionally, the crisis managers 

themselves are at risk of losing their lives in such environments. Consequently, 

robotics technology has been incorporated in SAR operations as a solution to 

these issues. 

 

1.1.2 Mobile Robot 

Robotics technology is increasingly being used in SAR operations due to the 

dangerous and complex nature of such missions. Unlike human rescuers, 

robots are able to bypass danger and can be deployed immediately to search 

for victims. Besides, robots are also capable of reaching areas that may be too 

dangerous or inaccessible for human workers, such as narrow spaces and 

unstable structure (Siobhan Grayson, 2014). At the same time, in addition to 

reducing the risk of human rescuers being exposed to hazardous environments, 

the use of robots can also increase the speed of response.  

Implementing robotics in SAR operation presents both a challenging 

and promising solution to augment human rescuers in various ways and is a 
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fascinating area of research. Throughout the years, different types of robots 

have been employed in SAR operations across different environments such as 

on the ground, in the air, on the water surface, and underwater. For instance, 

drones have been utilized to search for missing people, providing situation 

awareness, create real-time maps, monitor, and analyse disasters (altigator, no 

date). To date, most rescue robots used are teleoperated, meaning that they are 

controlled by human operators from a distance. However, as the SAR 

operations become more intricate, a single teleoperated robot has a lot of 

drawbacks. A single robot result in a single point of failure, making it 

impossible to complete the mission if the robot is damaged, disabled, or 

trapped. Furthermore, a single robot often having complex design to navigate 

through all kind of terrain and perform all kind of tasks, resulting in the cost of 

one single robot being very high. In order to address this limitation, research 

has been extended by implementing multi-robot system into SAR operations 

with robots equipped with varying degrees of autonomy to minimize the 

workload of human operators in high-pressure disaster scenarios. 

 

1.1.3 Multi-robot System (MRS) 

Several factors make multi-robot system (MRS) particularly attractive in the 

context of SAR. The introduction of MRS results in faster responses and 

increased robustness due to the fact that extremely large areas can be 

effectively explored and each of the robot becomes dispensable. Besides 

searching for victims in needs, responses such as network infrastructure 

installation and map generation could also benefit from having multiple robots 

working together simultaneously (Drew, 2021). Furthermore, the issue of high 

cost of designing a single robot can be addressed. Instead of integrating all 

necessary hardware and capabilities on a single robot, it is more economical to 

distribute the necessary hardware such as sensor and actuators among multiple 

different robots (Queralta et al., 2020). For instance, as shown in Figure 1.1, 

multiple robots can be used with each equipped or designed with different 

hardwares, some robots can be equipped with gripper to move obstacles, some 

robots can be equipped with camera to detect victims and some robots can be 

used to carry victims out from hazardous areas. Moreover, collaborative 
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efforts between different types of robots can also be leveraged to tackle 

complex tasks that are beyond the capabilities of a single robot. 

 

 

Figure 1.1: MRS for Search and Rescue (Drew, 2021) 

 

1.2 Importance of the Study 

The current era of Industry 4.0 has led to significant advancements in robotics 

technology, opening up opportunities for automation in various industries 

including engineering, medicine, entertainment, and more. One crucial area of 

research in robotics is the study of MRS, which involves a group of robots 

working together to accomplish a task. In such a sense, a manufacturing line 

which consist of several robotics arm manipulators, mobiles robots and CNC 

machines can be considered as a MRS. In the context of SAR operations, the 

use of MRS has become increasingly important as natural disasters become 

more frequent and severe due to climate change. According to Petteri Taalas 

who is the Secretary-General of World Meteorological Organization (WMO), 

the increment in the number and severity of climate, water and weather 

extremes around the world are the result of climate change, and this also 

means that there will be more weather-related natural hazards in the future 

such as drought, forest fire, heatwaves and so on (United Nation, 2021).  

The primary objective of SAR operations is to save lives as quickly as 

possible. MRS has high potential to significantly improve the efficiency of 

SAR personnel by improving response times, aiding in initial assessments, and 

mapping disaster areas. Besides that, MRS can reduce the risk of injury to 

rescuers by performing hazardous tasks. Currently, a single teleoperated robot 

is mostly used in SAR operation and the MRS are still not mature enough for 

widespread deployment in SAR operations (Drew, 2021; Chitikena, Sanfilippo 

and Ma, 2023). However, progresses are being made consistently over the past 
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two decades. Until today, researchers are still focusing on confronting the 

challenges of simulation-to-reality transfer and on realistic evaluation of 

constituent technologies in hope that the gap between the current capabilities 

and those required in a real disaster response can be reduced. According to 

Springer handbook of robotics, published field report data shows that there 

were a lot of documents related to robot-assisted response SAR operation, very 

few of them are involving three or more robots and none of the robots are fully 

autonomous (Bruno Siciliano and Oussama Khatib, 2007). Besides, from a 

graph presented in (Drew, 2021) as shown in Figure 1.2, the graph shows that 

total number of publications related to MRS used in search and rescue is far 

less than that of publications related to rescue robot alone. Therefore, while 

there are a lot of research done in rescue robot, the research on MRS is still 

lacking and successful cases of MRS deployment in SAR operations are scarce. 

Although MRS holds great promise for SAR, bridging the gap between 

academic interest and practical implementation in the field remains a 

significant challenge.  

 

 

Figure 1.2: Total number of publications per topic based on keyword search 

(Drew, 2021) 
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1.3 Problem Statement 

Despite the potential benefits of using MRS in SAR operations, it is a complex 

task to integrate them effectively. There are numerous factors to consider in 

designing an effective MRS, such as the architecture of MRS, centralized or 

decentralized; the ability of robots to recognized other robots; the task 

allocation for each of the robot; coalition formation; middleware support; the 

human-robot interaction; the collaboration among robots; the communication 

modalities and more (Gautam and Mohan, 2012).  

Apart from that, the navigation of robots is also a crucial aspect that 

requires attention when implementing MRS, particularly in SAR operations. 

To successfully complete a navigation task, the robot must know its position in 

the environment and the position of its goal as well as the method for it to 

reach the goal position from initial position. The navigation of robot includes 

three primary functions which are localization, mapping, and path planning. 

However, in this research project, we will be concentrating solely on path 

planning. Path planning of a robot is just simply means to find the optimal 

path for the robot from its starting location to goal location. The complexity 

and robustness of the path planning algorithm dictate the time distance 

required for the robots to travel from starting location to the goal location 

which is where the victims located. As the victims might be trapped in a 

hazardous environment, the path planning algorithm need to be well designed 

so that the robots can reach its destination with the quickest route in the 

shortest time possible. 

Humans are able to perform path planning effortlessly, such as 

avoiding obstacles that were not present before (Tzafestas, 2014). However, 

robots lack the same level of intelligence as humans because it needs to 

consider collision avoidance when planning their path from the starting 

location to the goal location. A good path planning algorithm takes into 

account both the static and dynamic obstacles to ensure that all robots can 

reach their destination quickly and without any damage. By incorporating 

collision avoidance into the path planning algorithm, robots can efficiently 

navigate through the environment while avoiding any obstacles. 

In fact, MRS particularly multi-robot path planning (MRPP) is not a 

new concept and has been an interesting research topic over the past two 
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decades with numerous studies being conducted especially during this era of 

industrial 4.0. In the literature, there are a lot of research being done in 

designing a path planning algorithm and this number has continued to increase 

over the years. Therefore, it is a challenging task to identify which approach of 

designing a MRPP algorithm is appropriate for SAR operations as there are 

too many available approaches out there ranging from graph-based algorithm 

such as A* Algorithm to biologically inspired algorithm such as Genetic 

Algorithm (Debnath et al., 2021). Moreover, even though path planning of 

MRS is relatively mature in highly structured environments, it remains 

difficult to construct an algorithm that works in situations similar to disaster 

areas, such as environments with dynamic obstacles or complex geometries, or 

in fluctuating environmental conditions like smoke. Not only that, building an 

algorithm that works in such dynamic and complex environments requires 

high computational speed and high response time, which poses another 

significant challenge.  

 

1.4 Aim and Objectives 

This project aims to explore the approaches and algorithms used for multi-

robot path planning in search and rescue. By achieving the aim, the optimal 

path planning algorithm which able to generate shortest path with collision 

avoidance for each of the robots will be developed. The specific objectives of 

this project are listed as shown below: 

1) To explore, evaluate and compare pros and cons of existing multi-robot 

path planning algorithms. 

2) To develop an efficient MRPP algorithm to generate an optimal or 

shortest path with collision avoidance for each single robot between 

start position to destination position (position of survivors). 

3) To demonstrate and evaluate the performance of the search and rescue 

mission through MATLAB simulation. 

 

1.5 Scope and Limitation of the Study 

As mentioned in the problem statement, constructing an MRS is a challenging 

task. This project’s scope will be focusing on building a multi-robot point-to-

point path planning algorithm and simulate the SAR operations using 
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MATLAB. In order to simplify the simulation and decrease the computational 

complexity, other aspects of MRS such as task allocation, collaboration among 

robots and communication between robot will be disregarded. At the same 

time, instead of heterogeneity system where different types of robots are 

implemented, a homogeneous system is to be designed where all the robots 

used in simulation are two-wheels robot. Besides, since this project is expected 

to be carried out for only within one year and to further simplify this project, 

the SAR simulation environment is assumed to be a known environment or 

partially known environment where the location of statics obstacles, starting 

location of robots and location of victims are already known. 

 

1.6 Contribution of the Study 

This project outlines the existing path planning algorithm used to solve the 

multi-robot path planning problem. Each existing path planning algorithm is 

evaluated, and a path planning algorithm will be selected and developed with 

the aims to generate the shortest path with shortest execution time in a 

cluttered environment. The proposed algorithm was modified and fine-tuned to 

improve the final simulation results. 

 

1.7 Outline of the Report 

This report is divided into five chapters. In Chapter 1, the introduction of the 

whole project is discussed. The introduction consists of multiple sections such 

as the general introduction on search and rescue and application of multi-robot 

system in search and rescue mission, the importance of the study, problem 

statement, aims and objectives, scopes and limitation of the study, contribution 

of the study, and the outline of the whole report. 

 Chapter 2 provides a literature review of the project. The optimization 

criteria for solving a path planning problem are discussed. Besides that, the 

existing path planning methods and algorithms such as the classical and 

heuristic path planning algorithms are discussed and evaluated.  

 Chapter 3 outlines the methodology and work plan for the whole 

project. The methodology of the proposed MPSO algorithm is explained step 

by step. The mathematical formula of the proposed algorithm is also discussed 
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in this chapter to have a deeper understanding. Moreover, Gantt chart for the 

whole project is also included. 

 Chapter 4 presents the results and discussion. The result generated 

with the proposed MPSO algorithm and the PSO algorithm are evaluated in 

three different scenarios, and the performance for both the algorithms are 

compared to each other to determine the superior algorithm among the two 

algorithms. Additionally, the impact of the PSO parameters on the simulation 

result is also assessed in this chapter. 

 Chapter 5 discusses the conclusion of the report. The limitations of 

the whole project are discussed and the recommendation for future works are 

also included in this chapter. 

 

 

 

 

 



10 

CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

Multi-robot path planning plays a vital role in the development of MRS as it 

enables robots to navigate from the starting location to the destination point in 

a given SAR mission with the shortest distance and minimum computation 

time, thereby conserving energy and minimizing potential hazards. In SAR, it 

is crucial for a path planning to produce the optimal path and should also hold 

the completeness criteria which ensure that at least one path can be found if 

that exists. However, there is still chances that the robot could not find a path 

to its destination due to all the paths being blocked by obstacles. In this case, 

the robot will never be able to reach the destination and can get stuck during 

the navigation. 

As illustrated in Figure 2.1, the overall mobile robot path planning 

can be categorized into two categories which are the classical and heuristic 

methods (Patle et al., 2019). The classical method was widely used before 

artificial intelligent techniques were developed. However, the major drawback 

of classical approach is that they do not perform well in dynamic environment 

or do not respond well to any uncertainties in the environment such as the 

behaviours of dynamic obstacles, weather condition and sudden changes of 

terrain due to collapsed building. Additionally, it incurs a high computational 

cost. In order to overcome this inefficiencies of classical method, heuristic 

method was developed. Heuristic method on the other hand has great ability in 

handling any uncertainties that present in the environment and thus more 

suitable to be used in dynamic environment and real time application (Patle et 

al., 2019). 
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Figure 2.1: Classification of multi-robot path planning (Lamini, Fathi and 

Benhlima, 2017) 

 

Besides, this MRPP problem can be solved using two techniques 

which are known as global and local path planning techniques. Some of the 

path planning methods or algorithms can be implemented in local environment 

and they are known as local path planning algorithm, some of them can be 

implemented in global environment which is known as global path planning 

algorithm. Furthermore, some algorithms can also be implemented in both 

local and global environment. Global path planning refers to the approach 

where the robots have prior knowledge of the environment before planning the 

optimal path, and it is also associated with offline path planning (Koubaa et al., 

2018). On the other hand, local path planning assumes that the robots lack the 

information about its environment, and they need to navigate in partially 

known or unknown environment. Consequently, the robots need to sense the 

location for obstacles in real time when searching for the optimal path to avoid 

clashing with the obstacles. Local path planning is associated with online path 

planning (de Almeida et al., 2020). Some of the path planning approaches or 

algorithm for local and global environments are illustrated in Figure 2.2. 
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Figure 2.2: Classification of MRPP Based on Local and Global Environment 

(Zhang, Lin and Chen, 2018) 

 

Other than that, in 2018, the number of papers related to mobile robot 

path planning retrieved using the Engineering Village database is shown in 

Figure 2.3 (Zhang, Lin and Chen, 2018). From the figure, we can observe that 

a lot of research have been done on path planning using various type of 

algorithms and Genetic Algorithm is the most popular one used in 2018. 

 

 

Figure 2.3: Total Number of Paper Retrieved from the Database of 

Engineering Village (Zhang, Lin and Chen, 2018)  
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Furthermore, the mobile robot path planning algorithm can be 

executed in the centralized or decentralized manners. In centralized manner, 

all the interactions between the robots are considered using a central path 

planner. On the other hand, under decentralized scenario, independent path 

planner is assigned to each of the robots and each of them will generate its 

own path in its own configuration space (Tang et al., 2020). 

There have been a lot of path planning algorithms introduced by other 

research which aim to solve path planning problem for MRS. In this chapter, 

different types of algorithms will be discussed, evaluated, and compared. 

 

2.2 Optimization Criteria 

In order to generate the optimal path for all the robots, there are a lot of 

aspects that must be considered in the optimization criteria when planning 

multi-robot paths and this often refers to multi-objective path planning 

problem (MRPP). Generally, the standard multi-robot multi-objective path 

planning optimization criteria are path length, smoothness of the path, total 

execution time, path safety and total energy consumption (Atiyah, Adzhar and 

Jaini, 2021). The path length optimization is basically referred to finding a 

path which has the shortest length between starting and goal locations. 

Secondly, the generated path can be considered smooth if the path has very 

low changes in the degree of direction. Thirdly, the generated path can be 

considered safe if the path always satisfies the safety margin with respect to 

the obstacles. Fourthly, the energy consumption is lesser when minimum 

number of robot’s rotation is required for it to reach its destination.  

Aggregating these objectives together, it will result in a multi-robot 

multi-objective path planning problem. We can determine whether the paths 

generated are optimal by checking whether any of the criteria had been 

satisfied. The idea is to obtain a feasible and optimal or near-optimal path if 

the path generated can satisfies two or more optimization criteria such as 

having the shortest path while free from any collision and so on.  

 

2.3 Multi-robot Path Planning Algorithm 

As mentioned, there are various type of MRPP algorithms that had been 

researched and used by many researchers and they can be divided into two 
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methods which are the classical method and the heuristic method. In the 

following subsection, the commonly used classical and heuristic approaches 

and algorithms will be researched, discussed, evaluated, and compared. 

 

2.3.1 Classical Method 

The classical path planning methods either find a solution or determine that no 

solution exists. Besides that, these methods often get stuck in local optimum 

which searching for path. As mentioned earlier, the disadvantages of the 

classical method are the high computational intensity and its inability to cope 

with uncertainty. This implies that the common classical methods are not 

suitable to be used in real life application due to its natural characteristic that is 

unpredictable and uncertain. Example of classical methods are sampling-based 

method, potential field method and probabilistic roadmap method. 

 

2.3.1.1 Artificial Potential Field (APF) Method 

The potential field algorithm also known as the virtual force field method is 

one of the most traditional algorithm used for path planning problem.  It is a 

real time obstacles avoidance approach that was introduced in 1986 by Khatib 

(1986).  

In the method of potential field, the environment space is assumed to 

be filled with virtual potential field. The overall idea of APF is to control the 

motion or movement of robots in the environment using virtual potential field 

as shown in Figure 2.4. The robots, target point and obstacles in the 

environment are given different potential. The goal position or the target point 

is treated as low potential points while the obstacles and the robots are treated 

as high potential point. The goal point in the environment which have low 

potential produce an attractive force to pull the robots to approach the goal 

point while the obstacles and other robots which have high potential produce 

repulsive force to prevent collision between robots and obstacles (Wu, Su and 

Li, 2019). Besides, the magnitude of the repulsive force is inversely 

proportional to the robot-to-obstacle distance. This means that whenever the 

robot is far away from the obstacles, the robot will not be affected by the 

repulsive force and only if the robot enters the influence area, it will be 

repelled away from the obstacles (Matoui et al., 2017a). The resultant force of 
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the combined forces will generate a field with direction and magnitude as 

shown in Figure 2.4 which influence the robot to move toward the goal while 

avoiding collision with obstacles and other robots.  

 

 

Figure 2.4: Combination of Attractive Force and Repulsive Force (Matoui et 

al., 2017) 

 

 Due to the model’s simplicity and high safety factor, multiple 

research projects on potential-based path planning had been done in various 

research. At the same time, APF has high flexibility and not only suitable to be 

used in static environment but also in dynamic environment where obstacles 

and goal location changes from time to time. APF had been used for many 

years and it is one of the mature approaches in solving a path planning 

problem for single robot. However, according to Borenstein and Koren (1989), 

the main drawback of APF is local minimum problem, where the robot might 

get stuck at the local minima before attaining the goal configuration. In year 

1991, the limitations and shortcomings of APF method were further identified 

by Borenstein and Koren (1989). According to this Borenstein and koren, it 

was found out that APF has four significant problems such as (1) the local 

minima trapping problem, (2) inability to duel with arbitrarily shaped 

obstacles, (3) the problem where no passage can be found between closely 

arranged obstacles, and (4) path oscillation problem with the presence of 

obstacles or in narrow passages. A local minimum as shown in Figure 2.5 

refers to the situation where the attractive force generated by the goal position 

on the robot is balanced with the repulsive force generated by the obstacles on 

the robot. This causes the robot loses its ability to move and could not reach 

the goal position without any other external force (Sun et al., 2019). A path 
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oscillation problem as shown in Figure 2.6 occurs when the angle between 

repulsive and attractive force is close to 180 degrees. In this case, when the 

robot come close to an obstacle, the repulsive force acting on the robot which 

is larger than the attractive force repels the robot. However, after moving away 

from the obstacle, the attractive force would become greater than the repulsive 

force and attract the robot toward the obstacle. This phenomenon will be 

repeated until the angle become smaller and it will only be solved once the 

angle between the repulsive and attractive force become smaller (Wu, Su and 

Li, 2019). 

 

 

Figure 2.5: Illustration of Local Minimum Cases (Abdalla, Abed and Ahmed, 

2017) 

 

 

Figure 2.6: Illustration of Path Oscillation Case (Jing Ren, McIsaac and Patel, 

2006) 

 

 To date, some efforts had been made in research to solve these 

limitations for single mobile robot. In recent research, Zhu, Yan and Xing 

(2006) proposed hybrid approach by implementing APF with simulated 

annealing (SA). In this paper, the APF is mainly used to drive the robot toward 

the goal position while the SA algorithm is used for the robot to escape local 

minima. From the result, it was shown that by applying SA together with APF, 

the robot could avoid local minima problem as shown in Figure 2.7. However, 
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the experiment was only done with simple-shaped obstacles, and the ability of 

the robot to escape local minimum trapping problem in complex obstacles 

environment such as trapping inside U-shaped obstacles was not discussed in 

the paper. 

 

 

Figure 2.7: (a) Simulation with APF Which Local Minimum Occurs, (b) 

Simulation with APF and SA Where SA Able to Help the Robot to 

Escape Local Minimum. (Zhu, Yan and Xing, 2006) 

 

 In the case of implementing APF in a MRS, repulsive field was set 

between the robots to avoid collision between robots. Wu, Su and Li (2019) 

proposed an Improved APF by introducing a new gain constraint and a random 

factor which respectively suppressed the path oscillation problem and avoid 

local minimum. In Wu, Su and Li’s research, four robots were implemented, 

and these robots were required to travel from different starting location to a 

same goal location without colliding with obstacles. As mentioned earlier, the 

path oscillation mostly likely to occur when the angle between repulsive force 

and attractive force is close to 180 degrees. To solve the path oscillation 

problem, the gain constraint was added to reduce the angle between the 

repulsive force and attractive force so that the oscillation problem can be 

suppressed. On the other hand, a random factor or an extra random force with 

random direction and magnitude was added into the resultant force of the 

robots. This extra force relieves the robot from local minimum trapping 

problem. Other than that, to further alleviate the path oscillation problem and 

optimized the path, B-spline curve optimization method was used to further 

smoothen the path.  
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 In their simulation result as shown in Figure 2.8, three different 

results using different algorithms were simulated. The first result was obtained 

by implementing the original APF method, the second result was obtained by 

implementing the Improved APF method and the third result was obtained by 

implementing the Improved APF method with B-spline curve optimization. 

The result shows that a much smoother path can be generated by implementing 

B-spline curve optimization into the Improved APF algorithm. However, as 

reported by the authors, the oscillation could not be fully eliminated and there 

was still certain degree of oscillation. Besides, the research was conducted to 

simulate the scenario where multiple robots travel to the same location, and 

the ability and performance of the Improved APF for multiple robots travelling 

to different goal locations was not tested. 

 

 

Figure 2.8: Path Planning of the three Algorithms (Wu, Su and Li, 2019) 

 

 In another research paper, Matoui et al. (2017) proposed an APF 

algorithm for wheeled robot with decentralized architecture. The proposed 

APF algorithm was used due to the possibility of implementing it in real time 

and dynamic environment. Decentralized architecture was used to allow 

cooperation between robots and to increase the flexibility and scalability of the 

MRS. Three Pioneer 3DX robots were used to navigate between different start 

location to different goal location and each of these robots plan its own 

trajectory according to the trajectories of other robots. By looking at their 
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result as shown in Figure 2.9, all three robots were able to reach its goal 

locations respectively without colliding with other obstacles or robots. The 

authors also mentioned by implementing the decentralized architecture, a 

greater number of robots can be added into the environment. However, based 

on the results, the paths generated were not the optimal path in terms of the 

path’s length even though the robots were able to reach the goal locations 

without collision. 

 

 

Figure 2.9: Cooperation of three Robots with The Present of Static Obstacles 

(Matoui et al., 2017) 

 

 In general, APF approach is a mature path planning algorithm that 

was used for decades but mostly on single robot navigation, and it can be used 

in either static or dynamic environment. However, it has poor performance 

when being used in dynamic environment compared to other heuristic 

algorithms. Besides that, the original APF algorithm has a lot of shortcomings 

such as local minimum problem, path oscillation problem and the problem 

where no passage can be generated between two closely spaced obstacles. 

These limitations of the algorithm make it troublesome and complex to be 

solved as all limitations are difficult to be solved at once.  
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2.3.1.2 Rapidly Exploring Random Tree (RRT) Approach 

A sampling-based approach is an approach that construct a graph or tree by 

randomly sampling in the state space. It is very popular in path planning 

problem due to the advantages of low computational cost, better performance 

in complex problem, the ability to find a path in a very short time and the 

ability to solve high dimensional problems (Tim Chinenov, 2019). Some path 

planning algorithms like the famous Dijkstra’s algorithm need a pre-build 

graph for it to search for path using the graph. Unlike Dijkstra’s algorithm, 

RRT approach could generates a graph and finds a path using the graph. It 

generates a graph and search for the feasible path by growing a tree that fill the 

entire configuration space. This tree is rooted at the starting point or starting 

node of the robot and a random node is generated at each iteration or each 

incremental expansion of the tree-grow. A simple RRT algorithm involves 

three steps. The first step is to randomly sample a state in state space, second 

step is to select the nearest node of the random tree and the third step is to 

grow the tree from the nearest neighbour sampling point to a random node 

(Wu et al., 2021). Besides that, each time a node is generated, a check must be 

done to ensure that the node does not lies inside an obstacle to prevent 

collision. This expansion of the tree stops once certain rules are met such as 

when the expansion of node has reached the goal location, or the maximum 

iteration has been met. After that, RRT will return a feasible path as shown in 

Figure 2.10. 

 

 

Figure 2.10: Illustration of RRT Path Planning Algorithm (Lee, Lee and Shim, 

2017) 
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 In general, RRT is an efficient path planning approach that is used to 

solve single robot path planning problem and various research had been done 

for single robot navigation problem such as the research done by Melchior and 

Simmons (2007) and Lee, Lee and Shim (2017).  However, that is not the case 

in MRS. The research done on MRPP problem are still lacking today. Besides 

that, the simple RRT approach has some shortcomings such as low 

convergence speed and low search efficiency. Furthermore, the path produced 

by the traditional RRT algorithm is often suboptimal and lacks convergence to 

an optimal path because of the random generation of nodes. Regardless of its 

shortcoming, numerous improvements have been carried out by researchers. 

Several common enhancements involve effectively combining the RRT 

algorithm with other algorithms or implementing the optimized RRT* 

algorithm, which offers improved performance (Ge et al., 2021). 

 Yang Li et al. (2013) proposed a MRPP approach using RRT* 

algorithm which at the same time taken into consideration of robot motion 

constraints and collision between robots. In contrast to the traditional RRT, 

RRT* able to sample a random state and generate an optimal extended state. 

RRT* has the working principle as the traditional RRT but with two additional 

processes namely “near vertices” and “rewire”. RRT* not only has the 

advantage of finding an initial path very quickly, it also keeps on optimizing 

the initial path as the number of iteration increases. The fundamental concept 

behind RRT* algorithm is to improve the connectivity of nodes in the trees 

and expedite the discovery of the goal state by employing a target-biased 

approach in sampling state generation. This approach aims to minimize the 

zigzag path behaviour commonly observed in traditional RRT, as depicted in 

Figure 2.11. 
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Figure 2.11: (a) Comparison of RRT and (b) RRT* Algorithm (Bohács, 

Gyimesi and Rózsa, 2016) 

 

 In Yang Li et al.’s research, two robots were implemented to navigate 

through an environment with three static obstacles from different starting point 

to different goal point as shown in Figure 2.13. As the robots are treated as 

moving obstacles, two different types of algorithms were developed to detect 

both static and dynamic obstacles. From the result, it shows that throughout 

the whole simulation, the minimum distance between the robots is larger than 

3.5m which indicate that collision will not happen between the robot as the 

safety distance between robots was set to 1m as shown in Figure 2.12. 

 

 

Figure 2.12: The Distance Between Robots using RRT* (Yang Li et al., 2013) 
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Figure 2.13: Path Generated Using RRT* for Two Mobile Robots (Yang Li et 

al., 2013) 

 

 In another recent research presented by Connell and Manh La (2018), 

the ability of RRT* algorithm was tested in dynamic environment for multiple 

robots through planning and replanning of path. Moreover, the performance 

and the differences between the traditional RRT algorithm and the RRT* 

algorithm were further compared and evaluated by running two simulations 

with different algorithms in the same environment as shown in Figure 2.14. In 

the figure, the blue line indicates the best path found while the black line 

indicates the initial path found by RRT algorithm. As shown in Figure 2.14, 

the result with RRT* shows an obvious improvement in finding the optimal 

path comparing to the path generated by the traditional RRT. Besides that, it 

was found that the path length using RRT is 117 units while the path generated 

with RRT* is shorter by 14 units. This result further proved that RRT* could 

generate better optimal path compared to traditional RRT. 
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Figure 2.14: Result of RRT (a) and RRT* (b) Using 5000 Nodes (Connell and 

Manh La, 2018) 

 

 Besides that, to improve the ability of this algorithm working in 

dynamic environment, the authors also presented a dynamic replanning 

method for a mobile robot to avoid collision with any dynamic obstacles. This 

path replanning technique utilizes the rewire function, which is employed to 

modify the search tree by ensuring that internal vertices do not introduce 

unnecessary steps in any existing path when dynamic obstacles are detected. 

From the result, it shows that the robots were able to dynamically modify its 

course of action to avoid any dynamic obstacles as shown in Figure 2.15. 

 

 

Figure 2.15: (a) Initial Position of Moving Obstacle. (b) Final Position of 

Moving Obstacles. (c) Result of RRT* Algorithm. (d) Final 

Obstacles Position and Executed Path (Connell and Manh La, 

2018) 
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 Additionally, a MRPP method was also developed by sharing nodes 

generated in the tree. The result shows that the proposed MRPP method with 

all the robots sharing the nodes can be executed with shorter amount of time 

compared to building multiple individual search tree for each of the robot. 

 Despite the fact that RRT* can quickly generate an initial path and 

produce an asymptotically optimal path compared to the conventional RRT 

algorithm, there is a trade-off in reaching this optimal path which is the 

execution time and the number of nodes needed. As shown in Figure 2.16, the 

execution time of RRT is slowly increasing as the number of nodes increases 

but the execution of RRT* increase exponentially as the number of nodes 

increases. This implies that a longer execution time and iterations are needed 

to obtain the optimal path. 

 

 

Figure 2.16: Execution time of RRT and RRT* (Connell and Manh La, 2018) 

 

2.3.2 Heuristic Method 

Due to the fact that classical path planning methods often encounter issues 

with local minimum trapping and exhibit high computational requirement, 

there are ill-suited for dynamic or complex obstacle environment. Thus, some 

heuristic path planning approach will be discussed in the subsequent sections. 

Some of the popular heuristic approaches are Genetic Algorithm (GA), 

Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and so 

on (Kim and Khosla, 1992). 
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2.3.2.1 Ant Colony Optimization (ACO) 

Optimization problem is one of the important problems in various fields such 

as industrial, engineering, and scientific areas. For instance, some of the real 

time examples for optimization problems are travelling salesman problems, 

portfolio optimization, vehicle routing and timetable scheduling. To date, a lot 

of optimization algorithms had been developed to solve these optimization 

problems and Ant Colony Optimization is one of the examples of optimization 

algorithm (Awan-Ur-Rahman, 2020). Ant Colony Optimization (ACO) is a 

swarm intelligent algorithm that implement swarm behaviour and it is a 

probabilistic technique in finding optimal path. Initially, ACO was used in 

solving the travelling salesman problem. Today, ACO is also used to handle 

navigation problem for mobile robots to generate an effective path with 

obstacle avoidance.  

 ACO is inspired by an analogy on behaviour of an ant colony when 

sourcing food as shown in Figure 2.17. Essentially, the communication 

between the ants enables them to locate the shortest route between the food 

source to their nest. To obtain the optimal path with the shortest distance, the 

communications of ants are done by the means of pheromone trails (Patle et al., 

2019). As the ant travel, some amount of pheromone is dropped on the path. 

As the pheromone evaporates, the shortest path that the ant travel will leave a 

higher density of pheromone deposited on the ground. At the same time, the 

more ants travel using a certain trail, the more attractive this trail become, 

causing even more ant to follow it due to high density of pheromone. 

Eventually, the optimal path can be obtained by evaluating the amount of 

pheromone deposited on a certain path (Mac et al., 2016). However, according 

to Mac et al. (2016), the traditional ACO has disadvantage of long time to 

reach optimal solution when used in large size problem. 
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Figure 2.17: Illustration of ACO (Patle et al., 2019) 

 

 TAN (2007) proposed an optimal path planning based on ACO and 

Dijkstra algorithm for real time application. The Dijkstra algorithm was 

employed to identify a sub-optimal path while considering collision avoidance, 

and subsequently, the ACO algorithm was applied to optimize this sub-optimal 

path, resulting in the generation of a globally optimal path. The result in 

Figure 2.18 shows that ACO indeed effective to be implemented in real time 

application. Additionally, the performances of ACO and GA were compared, 

it was verified that ACO has better performance compared to GA in terms of 

convergence speed, dynamic convergence behaviour and computational 

efficiency as shown in Table 2.1. For instance, ACO algorithm only took 

average of 0.00059 seconds for one iteration and the total number of iterations 

needed was only 175 iterations. On the contrary, GA algorithm took 0.00067 

seconds per iteration and the number of iterations required was a lot more than 

ACO around 912 iterations. 

 

Figure 2.18: (a) Sub-optimal Path Using Dijkstra Algorithm, (b) Globally 

Optimal Path with ACO (TAN, 2007) 
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Table 2.1: Comparison of Computation Efficiency of ACO and GA (TAN, 

2007) 

 

 

 In Liu, Mao and Yu (2006), a path planning algorithm based on ACO 

was proposed to solve MRPP problem. In Liu, Mao, and Yu’s paper, a 

collision avoidance strategy was adopted for various robots to avoid collision 

with each other in a static environment. In ACO algorithm, deadlock is one of 

the problems that occur in the traditional ACO. Deadlock refers to the scenario 

where the robot is stuck and losses its moveable possibility. Deadlock problem 

as shown in Figure 2.19 normally occur when an ant enters a location that is 

surrounded by obstacles when searching for a path. This scenario causes the 

ant to lose its capability to go forward and this is known as the deadlock 

problem. As such, a special penalty function was introduced by Liu, Mao, and 

Yu to solve the deadlock problem. Whenever an ant finds a dead corner, a 

penalty function was used to decrease the phenomenon intensity of the edges 

around the dead corner. Thus, the other ants will ignore those edges in the 

coming iteration and deadlock could be avoided.  

 

 

Figure 2.19: Illustration of Dead Corner and Route Deadlock (Liu, Mao and 

Yu, 2006) 

 

 Besides that, the algorithm was executed in distributed manner where 

each of the robot plan its own path from its start location to its goal. The 

performance and the planned trajectory of two mobile robots using two 

different approaches which are the ACO, and GA were compared, and it was 
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found that a more reasonable path can be generated using the proposed ACO 

algorithm. The experiment was conducted in two different environments 

where more obstacle was added in one of them. From the result shown in 

Figure 2.20 and Table 2.2, the path generated using ACO is observed to be 

much shorter than the one generated by GA. 

 

 

Figure 2.20: (a) Environment I and (b) Environment II (Liu, Mao and Yu, 

2006) 

 

Table 2.2: Comparison of Path Length Generated Using ACO and GA (Liu, 

Mao and Yu, 2006) 

 

 

2.3.2.2 Particle Swarm Optimization (PSO) 

Like ACO, Particle Swarm Optimization is also one of the biologically 

inspired algorithms. It is a meta-heuristic optimization algorithm which is 

inspired by the natural behaviour of creatures such as flock of birds or school 

of fishes, developed in 1995 by Eberhard and Kennedy (Eberhart and Kennedy, 

no date). PSO mimic the social behaviour of animals but unlike the real natural 

behaviour of animals which normally require a leader within a group to do 

certain task or to reach certain target, PSO does not require any leader within 
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the group. For instance, when a flock of birds go to source for food, they do 

not go with a certain leader but tend to go with the members which are nearest 

to the food location. PSO uses the concept of social and cognitive behaviour of 

animal group where sharing of information is done among the group of 

animals to increase the survival advantages. Taking an example of a bird 

searching for food, the chance of finding food will increase if the bird works 

with the flock where there is mutual sharing of the best information among the 

flock which then help the flock to locate the best place to hunt. Similarly, the 

concept of social interaction of animals in PSO is implemented to search for 

optimal path for multi-robot navigation and it is gaining more popularity in 

solving complex problem such as multi-robot navigation problem in real time 

application due to its advantages of fast searching speed, few parameters to 

adjust, easy implementation, and simple structure. However, when used in 

path planning problem, PSO has a few disadvantages such as low convergence 

precision, reduced particle diversity and local optima trapping issue (Li et al., 

2020).  

In PSO, the problem’s working space is initially populated with 

random particles, where a swarm of particles is assigned random positions and 

velocities. These particles then explore the space iteratively, updating their 

position in search of the optimal solution.  Particles will move in the search 

space based on their respective velocity and this velocity is dependent on 

several variables such as inertial, its previous velocity, personal best solution, 

and global best solution as shown in Figure 2.21. In every iteration, each of the 

particles are updated with two best values. The first best value indicates the 

best solution obtained by the particle until the current iteration which refer to 

the personal best (pBest) On the other hand, the second-best value is the best 

value obtained by any particles until the current iteration and it is referred to 

global best (gBest). These two best values affect the next position for each of 

the particles. The velocity or movement of each of the particles are affected by 

some factors such as random factors, inertial constant and constriction factor. 

These factors are responsible on the exploration and exploitation of the swarm 

(Das and Jena, 2020). 
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Figure 2.21: Illustration of PSO (Iran Macedo, 2018) 

 

Maryam Yarmohamadi and Hossein Erfani (2011) presented a PSO 

path planning algorithm as a feasible approach for self-organized control of a 

single mobile robot to avoid colliding with obstacles during the trajectory. In 

their work, the initial position (xr,yr) of that one robot is initialized in a random 

coordinate at time (t) and the next position of the robot (xr’,yr’) in the next 

iteration time (t+1) is calculated using PSO. The next position of the robot will 

be calculated in every iteration until the robot reach its goal. In their work, the 

implementation of PSO involves the initial population of random particles 

being generated around the current position of the robot. At the end of the 

algorithm for that iteration, the particle with the best position or gBest will be 

chosen to be the next position of the robot. The objective function of their 

work is to calculate the shortest distance between the current location to the 

goal location using Euclidean distance. Besides that, an objective function will 

be developed by adding a penalty function to avoid the obstacle. If the robot 

seen an obstacle in front of it during the trajectory, the robot will decide the 

direction and rotate either left or right. During the experiment, a single robot 

was employed to navigate an environment containing static and dynamic 

obstacles, as depicted in Figure 2.22. The starting location was indicated by a 

blue dot, the goal location by a red dot, dynamic obstacles by green circles, 

static obstacles by white circles, and the generated path was represented by a 

line. From the simulation result, it was found that the robot can successfully 

navigate from start location to the goal location without any collision and it 
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prove that PSO can be effectively implemented in complex and dynamic 

environment. 

 

 

Figure 2.22: (a) In Start Time, (b) In Middle Time, (c) In End Time (Maryam 

Yarmohamadi and Hossein Erfani, 2011) 

 

 As the number of robots used in a MRS increase, the control of the 

MRS become infeasible and unreliable. Swarm behaviour-based approach has 

been used to effectively solve this problem thanks to its properties of 

robustness, scalability, and flexibility.  Ayari and Bouamama (2017) proposed 

a distributed or decentralised MRPP algorithm using Dynamic Distributed 

Particle Swarm Optimization (D2PSO). In their work, the authors address the 

main drawback of traditional PSO which is the local optimal problem and to 

solve this problem, they introduced two new parameters into the classic PSO 

which are the Local Optima Detector for gbest and Local Optima Detector for 

pbest. These two parameters are employed to track the number of consecutive 

iterations in which there is no improvement in pbest and gbest position. This 

indicates that particles that fail to improve their pbest will no longer contribute 

to gbest. Thus, it also means that the particles are saturated and need extra 

thrust. When a gBest is not improving for a predefined successive iteration, it 

might be due to local optima trapping problem. D2PSO proposed in their paper 

is to give that extra thrust to push the trapped particles in local optimal out 

from the local optima position by heading particles toward a better and 

unexplored region. In their experiment, ten robots were used in a known 

environment and the D2PSO algorithm was run with 200 iterations as shown in 

Figure 2.23. Additionally, the performance of the D2PSO was compared to the 

Distributed PSO algorithm. The result in Table 2.3 shows that the D2PSO 
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perform better in escaping local optima and it can be used for large number of 

robots. Besides, it also shows that D2PSO can generate shorter path than 

Distributed PSO using population size, M of 300 in general. 

 

 

Figure 2.23: Result Obtained using D2PSO (Ayari and Bouamama, 2017) 

 

Table 2.3: Path Length Comparison of D2PSO and DPSO (Ayari and 

Bouamama, 2017) 

 

 

 Biswas, Anavatti and Garratt (2017) proposed an obstacles avoidance 

method for MRPP using Simultaneous Replanning Vectorized Particle Swarm 

Optimization (SRVPSO) that focus on effective and deficient obstacle 

avoidance. The concept of simultaneous replanning was implemented into the 

MRPP in order to avoid collision. In their algorithm, the robots used in the 

environment considered each other as dynamic obstacles and collision 

avoidance strategy was then implemented. The collision avoidance method 
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they used are divided into two steps. If the particles initialized by PSO 

algorithm are within a collision zone, a very high cost will be assigned to the 

fitness function or the objective function of the particles and this is the first 

step. As a result, the velocity of those particles that are within the collision 

zone will be rapidly increased which make the particles to leave the collision 

zone and increment in the velocity is the second step. In addition, their 

research utilizes Vectorized PSO, which differs from the classical PSO in 

terms of evaluating the objective function. In vectorized PSO, the objective 

function evaluates all points in the search space simultaneously, whereas in the 

classical PSO, the objective function evaluates one point at a time. The 

vectorized PSO is used instead of the classic PSO to reduce the programming 

code as it does not require the code to be run in loops which make it run faster 

than the classic PSO which require loop. Other than that, the distance between 

the particles and the obstacles which denoted as 𝐷𝑜𝑏𝑠 
𝑎 were calculated and 

evaluated at each iteration to maintain a collision free path and this distance 

must be bigger than 0 to avoid collision. Whenever this distance is calculated 

to be negative, a high cost will be assigned into the objective function of the 

particles and these particles will not be considered as the best fitness function 

to avoid collision. In simulation as shown in Figure 2.24 and Figure 2.25, two 

robots were used in an environment filled with static and dynamic obstacles. 

The results demonstrate that the SRVPSO algorithm effectively generates 

paths with a high level of safety by avoiding obstacles, while also optimizing 

the paths efficiently. 

 

𝐷𝑜𝑏𝑠 
𝑎 ≤  0 

 

 

Figure 
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Table 

 

2.4 Summary 

In 

 

Table 

Classical 

Rapidly 

- Able to generate the optimum path or 

the shortest path with increase of 

iterations. 

- The number of iterations required, 

and execution time increase 

exponentially in solving MRPP 

problem. 

- Increase computational cost with 

increased number of robots. 

- Lack of research done for MRPP 

problem. 

Artificial 

- Good performance in obstacle 

avoidance in both static and dynamic 

environment. 

- Local optimum trapping problem. 

- Path oscillation problem. 

- Weak in finding path between closely 

arranged obstacles. 
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- Lack of research done for MRPP 

problem. 

Heuristic 

Ant 

- Effective in finding global optima. 

- Suitable to be implemented in 

dynamic environment. 

- Slow convergence. 

- High memory usage. 

Particle 

- Fast convergence. 

- Simple implementation as there is 

only a few parameters need to be 

adjusted. 

- Prone to trapping in local optima 

 

 Based 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This 

 

3.2 Proposed Multi-robot Path Planning Algorithm 

Based 

 

3.2.1 Assumptions 

The 

 

• Starting position, current position, and destination for all the robots are 

known in each reference coordinate system. 

• Position of static obstacles are known in each reference coordinate 

system. 

• Each robot computes its complete path from starting position to its 

destination before the navigation. 

• All robot used is assumed to be differential drive robot and each of 

them are identical to each other. 

 

3.2.2 Classical PSO Algorithm (PSO) 

As mentioned in Chapter 2, PSO is an optimization algorithm based on social 

behaviour of group of animals. It performs path planning by first initializing a 

population of random particles which distributed uniformly around the robot 

search space and these particles are assigned with random velocity initially 

and they constantly change its velocity and position dynamically during the 

optimization process until they reach the goal position. At every iteration, the 

particles change their position by updating their velocity and this velocity are 

influence by several factors such as the particles’ experience, particle current 

motion, influence of the whole swarm as shown in Figure 2.21. Each particles 

update its position and velocity in every iteration based on equations 𝑉𝑖(t +
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1)  =  𝑉𝑖(𝑡) + 𝑐1𝜑1(𝑥𝑃𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡))  +  𝑐2𝜑2(𝑥𝐺𝐵𝑒𝑠𝑡 −  𝑥𝑖(𝑡)) (3.1) 

and 𝑥𝑖(t + 1) =  𝑥𝑖(𝑡) +  𝑉𝑖(𝑡 + 1) (3.2). The velocity component in 

the equation provides a track on previous direction that the particles travelled. 

The cognitive element then compares the current particles’ performance with 

the previous best performance. Lastly, the social element compares the current 

particles’ performance with the previous global best performance of the swarm.  

 

Particle’s Velocity Equation: 

𝑉𝑖(t + 1)  =  𝑉𝑖(𝑡) + 𝑐1𝜑1(𝑥𝑃𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡))  +  𝑐2𝜑2(𝑥𝐺𝐵𝑒𝑠𝑡 −  𝑥𝑖(𝑡)) (3.1) 

 

 

where 

𝑉𝑖(𝑡 + 1) = Velocity of ith particle for next iteration, t+1 

𝑉𝑖(𝑡)  = Current velocity of ith particle at current iteration, t 

 𝑥𝑖(𝑡)  = Current position of ith particle at current iteration, t 

𝑥𝑃𝐵𝑒𝑠𝑡𝑖   = (𝑥𝑖(𝑡), 𝑦𝑖(𝑡)) is the current personal best position of ith 

      particle 

𝑥𝐺𝐵𝑒𝑠𝑡   = (𝑥𝐺𝐵𝑒𝑠𝑡(𝑡), 𝑦𝐺𝐵𝑒𝑠𝑡(𝑡)) is the current global best position 

        achieved by the swarm. 

𝑐1  = Cognitive parameter 

𝑐2  = Social parameter 

𝜑1, 𝜑2  = Independent variables uniformly distributed in [0,1] 

 

Particle’s Position Equation: 

 𝑥𝑖(t + 1) =  𝑥𝑖(𝑡) +  𝑉𝑖(𝑡 + 1) (3.2) 

where 

𝑥𝑖(𝑡 + 1) = Position of ith particle for next iteration, t+1 

 𝑥𝑖(𝑡)  = Current position of ith particle at current iteration, t 

𝑉𝑖(𝑡 + 1) = Velocity of ith particle for next iteration, t+1 

 

Velocity Cognitive Element Social Element 
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3.2.3 Modified PSO Algorithm (MPSO) 

Until today, different version of the PSO algorithm have been suggested by 

researchers to improve its effectiveness, as discussed in Chapter 2. According 

to research done by Das, Behera and Panigrahi (2016), balancing the 

exploration and exploitation of the algorithm is crucial for enhancing its 

performance. This can be achieved by including an inertial weight factor, 

designated as 𝜔, in the original particle’s velocity equation as shown in 

Equation 𝑉𝑖(t + 1)  =  𝜔𝑉𝑖(𝑡) +  𝑐1𝜑1(𝑥𝑃𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡))  +  𝑐2𝜑2(𝑥𝐺𝐵𝑒𝑠𝑡 −

 𝑥𝑖(𝑡) (3.3). The value of the 𝜔 coefficient plays a significant role in 

balancing the exploration and exploitation of the particles, and it greatly 

influences the convergence behavior of the PSO algorithm. Adjusting the 𝜔 

value dynamically can modify the searching capability of the algorithm. 

 

𝑉𝑖(t + 1)  =  𝜔𝑉𝑖(𝑡) +  𝑐1𝜑1(𝑥𝑃𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡))  +  𝑐2𝜑2(𝑥𝐺𝐵𝑒𝑠𝑡 −  𝑥𝑖(𝑡) (3.3) 

 

 

Where 

𝜔  = Inertial weight factor 

 

 

According to equation 𝑉𝑖(t + 1)  =  𝜔𝑉𝑖(𝑡) +  𝑐1𝜑1(𝑥𝑃𝐵𝑒𝑠𝑡𝑖 −

𝑥𝑖(𝑡))  +  𝑐2𝜑2(𝑥𝐺𝐵𝑒𝑠𝑡 −  𝑥𝑖(𝑡) (3.3), there are three problem dependent 

parameters which need to be tuned to get the desired result. These parameters 

are the inertial weight factor (𝜔), and the acceleration coefficient tied to the 

cognitive (c1) and the social (c2) parameters. 𝜔 is important in balancing the 

global exploration and exploitation or local exploration ability of the particles. 

𝜔 greatly influence the convergence behaviour of the PSO algorithm. It is 

important as it serves to balance between the exploration and exploitation or 

the local exploration ability of the particles. A well-balanced local exploration 

ability enables the robot to find the optimal path accurately and rapidly. 

According to researches done by Shi and Eberhart (n.d.), Das, Behera and 

Panigrahi (2016), a large value of 𝜔 able to provides a wide or global search 

while a small value of 𝜔 facilitates fine or local search. It was found that the 

Inertial Cognitive Element Social Element 
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searching ability of the algorithm can be dynamically adjusted by changing the 

value of 𝜔 . It was proved that by gradually decreasing 𝜔  throughout the 

optimization process would improve the particles’ ability between local and 

global exploration. Based on the aforementioned research paper, the best value 

for maximum and minimum 𝜔 is 0.95 and 0.4 respectively. Therefore, in this 

project, a linearly decreasing 𝜔 technique will be adopted, varying from start 

to end of the algorithm at 0.4 and 0.95, respectively. The value for the 𝜔 can 

be determined using the equation 𝜔 =  𝜔𝑆𝑡𝑎𝑟𝑡  −  
𝜔𝑆𝑡𝑎𝑟𝑡−𝜔𝐸𝑛𝑑

𝐾
 𝑘 (3.4). 

 

 𝜔 =  𝜔𝑆𝑡𝑎𝑟𝑡  −  
𝜔𝑆𝑡𝑎𝑟𝑡−𝜔𝐸𝑛𝑑

𝐾
 𝑘 (3.4) 

 

where 

𝜔𝑆𝑡𝑎𝑟𝑡  = Start value of inertial weight, (e.g 0.95) 

𝜔𝐸𝑛𝑑  = End value of inertial weight, (e.g 0.4) 

K  = Maximum number of iterations 

k  = Current iteration 

 

Besides that, the acceleration coefficient c1 and c2 also have great 

effect on the performance of the algorithm. A higher c1 attracts the particle 

toward its personal best position while a higher c2 attracts the particle toward 

the global best position. Some researchers adjust these parameters by trial-and-

error technique until a desired output is achieved. However, based on Das, 

Behera and Panigrahi (2016), a large value of c2 compared to c1 will lead the 

particle to local optimum prematurely and a high c1 compare with c2 will result 

in the particles wandering within the search space. They also proved that the 

quality of the solution can be further improved by gradually decreasing the 

cognitive element and gradually increasing the social element as the iteration 

increase. This tunning can be done using equations 𝑐1 =  𝑐1𝑖 − (
𝑐1𝑖−𝑐1𝑓

𝐾
)  𝑘

 (3.5) and 𝑐2 = 𝑐2𝑖 + (
𝑐2𝑖−𝑐2𝑓

𝐾
)  𝑘 (3.6). 

 

 𝑐1 =  𝑐1𝑖 − (
𝑐1𝑖−𝑐1𝑓

𝐾
)  𝑘 (3.5) 



43 

 𝑐2 = 𝑐2𝑖 + (
𝑐2𝑖−𝑐2𝑓

𝐾
)  𝑘 (3.6) 

 

where 

𝑐1𝑖  = Initial value for cognitive component 

𝑐1𝑓  = Final value for cognitive component 

𝑐2𝑖  = Initial value for social component 

𝑐2𝑓  = Final value for social component 

 

3.2.3.1 New Path Planning Scheme Implemented in MPSO 

In most of the existing path planning problem that utilize the PSO algorithm, 

the particles swarm is first initialized around the robot starting location, and 

the particles’ velocity and position are updated in each iteration. In each of the 

iteration, one robot’s waypoint will be determined by the algorithm based on 

the global best position found by the particle swarm. This process is repeated 

until all the particles have converged to the robot’s target position. This means 

that if a robot’s trajectory requires ten waypoints from its starting position to 

its target position, the PSO algorithm is executed for one execution of 10 

iterations, and it will be terminated after 10 iterations are completed. In this 

report, a new PSO path planning scheme inspired by the works of the authors 

in Das et al. (2016) is introduced into the algorithm. Instead of determining 

one waypoint of the robots in each iteration of the PSO algorithm, which is 

done in most of the research papers, this project proposes a new path planning 

scheme where the algorithm is run once with a few iterations to determine one 

waypoint of the robots. For a robot’s complete path from starting location to 

its destination, consisting of five waypoints, the PSO algorithm will be 

executed five times. In contrast to the normal PSO approach, the proposed 

PSO employs a different strategy where the particles’ swarm is not initialized 

at the robot starting location, but rather initialized within a predefined search 

space. This algorithm with the new path planning scheme is called the 

modified PSO algorithm (MPSO). 

 

3.2.3.2 Objective Functions 
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Creating an appropriate fitness function is essential in finding the best path for 

each robot while fulfilling environmental requirements like minimizing energy 

consumption, execution time, and overall path length. In response to this, two 

main objective functions are considered to tackle the path planning problem. 

The first objective function aims to generate the shortest possible path between 

the robot initial position and the goal position while the second objective 

function ensures that there is no collision between robot and static obstacles. 

The determination of the successive waypoints for the robots is 

contingent on the particles’ ability to search and convergence to a global 

optimum position, while the global optimum position is the position found by 

the particles swarm within the local search space which has the minimum 

distance to the target position. This can be accomplished by utilizing the first 

fitness function, F1, expressed in equation 𝐹1= 

∑ √(xj
next- x

j

goal
)
2
+ (y

j
next- y

j

goal
)
2

nr
j=1  (3.7), which determine the successive 

waypoint with the minimum distance to the destination of the robot by 

calculating the Euclidean distance between each of the particle’s location and 

the goal location. The particle with the minimum distance will be considered 

as the next waypoint for the robot.  

 

 𝐹1= ∑ √(xj
next- x

j

goal
)
2
+ (y

j
next- y

j

goal
)
2

nr
j=1  (3.7) 

 

 

nr   = number of robots 

xj
next  = x-coordinate of successive waypoint for jth robot  

  (x-coordinate of particle with minimum Euclidean distance) 

y
j
next  = y-coordinate of successive waypoint for jth robot  

  (y-coordinate of particle with minimum Euclidean distance) 

xj

goal
  = x-coordinate of target position for jth robot 

y
j

goal
  = y-coordinate of target position for jth robot 
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 In terms of collision avoidance, the distance between the particles and 

the obstacles must not be too close to each other when determining the 

waypoint for the robots. In each iteration of the algorithm, the particles aim to 

converge toward a global optimum position within the local search space 

while avoiding any overlapping with obstacles. Each particle that overlaps 

with any obstacles are reinitialized to a new position until it is no longer 

overlapping with any obstacles. To avoid any particle getting too close to any 

of the obstacle, the second fitness function, F2, can be implemented as shown 

in equation 𝐹2= ∑ {
1

√(xj
next- xj

obs)
2
+ (y

j
next- y

j
obs)

2
}nr

j=1  (3.8). The fitness 

function for obstacle avoidance can be expressed as a Euclidean distance 

function of the distance between the particles and static obstacles. The closer 

the particle is to the obstacles, the larger the fitness value. Thus, the position of 

the particle near any obstacle will not be considered as the global optimum 

point.   

 In addition, it should be noted that any particle with a location where 

the path is blocked by an obstacle as illustrated in Figure 3.1, will be deemed 

as infeasible point. When this happen, the fitness function will be assigned a 

value of infinity and the position of that particle will not be considered as the 

global best position. 

 

 

Figure 3.1: Infeasible Path When Obstacle Blocks Path 

 𝐹2= ∑ {
1

√(xj
next- xj

obs)
2
+ (y

j
next- y

j
obs)

2
}nr

j=1  (3.8) 
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 The overall objective function is obtained by summing the two 

objective functions as shown in equation 𝐹 = λ1F1 +λ2F2 (3.9), where the 

λ1 and λ2 are the weights factors of both the fitness functions. The λ1 and λ2 

values are adjusted in the simulation to get obtain the desired result by trial 

and error. Higher λ1 indicate that F1 is more important than and vice versa 

Thus, the optimal path can be achieved by reducing the total fitness value as 

represented in equation 𝐹 = λ1F1 +λ2F2 (3.9). 

 

 𝐹 = λ1F1 +λ2F2 (3.9) 

 

3.2.4 Dynamic Obstacle Avoidance 

The proposed MPSO algorithm utilized in this project deviates from the 

normal PSO path planning approaches that employ local path planning 

methods, which determine paths incrementally as the robot progresses towards 

its goal. Instead, the proposed MPSO algorithm adopts a global path planning 

approach, wherein it plans complete paths for all robots prior to their 

navigation within a pre-existing simulated environment. During navigation, an 

sensor-based obstacle avoidance algorithm is implemented as the local path 

planner to avoid collision with dynamic obstacle. This algorithm is known as 

the Obstacle Avoidance Algorithm in this project. The algorithm is based on 

sensor data generated from sensor such as LIDAR sensor to avoid dynamic 

obstacles within the robot’s sensing range. The algorithm uses multiple 

sensors attached to each robot as shown in Figure 3.2 to detect obstacles in the 

environment. Upon detection of dynamic obstacle, the robot adjusts its path to 

avoid colliding with the obstacle. The robots also treat each other as dynamic 

obstacles, allowing them to detect and avoid possible collisions with each 

other. In the simulation, three sensors are affixed to each robot, with a 

combined sensor angle coverage of 180 degrees. Each individual sensor covers 

60 degrees of the robot’s surroundings. When a sensor detects a dynamic 

obstacle during navigation, the sensor will be assigned with a logic value of 1 

indicating that the sensor detects obstacle, and the robot adjusts its path to 

avoid the obstacle and will not travel in the direction of the obstructed sensor. 

If the sensors did not detect obstacle, the robot travels toward the direction of 
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the sensor that provide minimum distance between the robot’s current position 

to the next waypoints. 

 

 

Figure 3.2: Sensor Angle Coverage of Robot 
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3.2.5 Flowchart of MPSO Path Planning Algorithm 

Figure 3.3 illustrates the flow chart of PSO path planning algorithm for a single robot. This flowchart will be implemented on all the robots in the 

MRS. The pseudocode for MPSO algorithm is provided in the Appendix PseudocodeA-1. 

 

 

Figure 3.3: Flowchart PSO Path Planning Algorithm 
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3.2.6 Flowchart of Obstacle Avoidance Algorithm 

Figure 3.4 illustrates the flow chart of Obstacle Avoidance Algorithm for a single robot. This flowchart will be implemented on all the robots in 

the MRS. The pseudocode for MPSO algorithm is provided in the Appendix PseudocodeA-2. 

 

 

Figure 3.4: Flowchart for Obstacle Avoidance Algorithm 
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3.3 Computer Simulations 

The multi-robot path planning will be carried out in three different scenarios as 

shown in Figure 3.5, Figure 3.6, and Figure 3.7 where three robots are 

initialized in different starting location, and they need to navigate through an 

environment filled with obstacles to reach their goal location respectively. 

These simulations will be conducted in MATLAB R2022a on a Windows 

laptop with 8th Generation Intel Core i5-8250U@1.6Ghz microprocessor with 

8GB RAM. Each of the robots will consider other robots as dynamic obstacles. 

To simplify the simulation, some assumptions are to be made. For instance, 

due to the complex shape of a real robot and obstacles in real life, the 

simulation will be conducted with three robots in a 2-dimensional workspace 

where all the robots are enclosed with circle and all the obstacles are 

represented with simple shapes. Furthermore, the robot’s movement is 

assumed to be holonomic, and the velocity of robot are assumed to be the 

same at 2 m/s. At the end of the simulation, the number of steps taken, 

trajectory path length and time required for each robot will be evaluated. The 

simulations are done with both basic PSO algorithm and MPSO algorithm to 

compare the performance of both algorithms. 

 

 

Figure 3.5: Scenario 1 (Simulation Environment with four Circular obstacles) 
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Figure 3.6: Scenario 2 (Simulation Environment with Seven Circular 

Obstacles) 

 

 

Figure 3.7: Scenario 3 (Simulation Environment with Multiple Vertical and 

Horizontal Obstacles) 
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3.4 Planning and Managing of Project Activities 

This section describes the whole planning process in completing this 1-year 

project using two Gantt Charts as shown in Table 3.1and Table 3.2. The 

project was divided into two parts, spanning two semesters, to aid in its 

successful completion. Besides that, for a better personal progress tracking, a 

more detailed Gantt chart was constructed for part I by using Gantt Project 

software. Both part I and part II of the project was done within 28 weeks in 

total. This project had not involved any cost because only software was used. 

 

3.4.1 Project Part I 

The part I of this project was conducted in 14 weeks, and it consists of four 

major activities to be accomplished. As shown in Table 3.1, the activities to be 

completed in part I were project formation and project planning, literature 

review, methodology research and progress report preparation. The first task 

of the whole project begins with project formation and project planning which 

was started at the beginning of project part I. Besides that, the background 

study was done on the FYP title to have general understanding on the title 

during the first two weeks. Not only that, the general Gantt chart for the whole 

project which includes the part I and part II of the project were prepared as 

shown in Table 3.1 and Table 3.2. Additionally, the more detail Gantt chart 

was also created as shown in Appendix GanttChartC-1 and GanttChartC-3 

using a software named Gantt Project in the first three weeks of the project to 

have a better progress tracking for personal used. After that, a comprehensive 

literature reviews were conducted on the multi-robot path planning algorithms 

based on two main path planning approaches which are the classical 

approaches and heuristic approaches. In the classical approaches. RRT 

algorithm and APF algorithm were discussed by reviewing current papers 

published on single robot and multi-robot path planning. Besides. The 

heuristic algorithms such as ACO and PSO algorithm were also investigated. 

After the literature review, the different algorithm used in multi-robot path 

planning problem were compared and a suitable algorithm was chosen. Based 

on the chosen algorithm, the methodology for this project was designed and 

constructed. In-deep research on the chosen algorithm for deeper 

understanding on the mathematical models and a suitable platform, 
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programming language and robot for the simulation were also chosen. In this 

project, the simulations were mainly done with MATLAB. Besides that, a 

progress report was prepared to document all the research’s results and the 

report preparation was started from week 3 together with literature review and 

it was submitted in week 14. 

 

3.4.2 Project Part II 

On the other hand, the part II of this project consists of five major tasks which 

are the PSO algorithm development and MATLAB simulation, result and 

discussion, conference paper preparation, poster preparation and final report 

preparation. The part II of this project focused on hands on development of the 

MRPP algorithm using MPSO in MATLAB software and the aim of this part 

is to investigate the performance of MRPP task in a simulated SAR operation 

in simulation. At the start of part II, the PSO algorithm was first developed in 

MATLAB software to evaluate the performance of the proposed algorithm in 

different scenarios such as the total time taken, the minimum path length, the 

safety factor and so on. After that, all the result gathered from the simulation 

were discussed, tabulated and documented in the report. At the same time, a 

conference paper was prepared and submitted for review using the result 

generated. At the end of part II, a poster was prepared for poster competition 

while at the same time, a final report was prepared to conclude the part I and 

part II of this project and this report was submitted in week 14 of part II. After 

that, this project was concluded with an oral presentation in week 14
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Table 3.1: Gantt Chart (Part I) 
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Table 3.2: Gantt Chart (Part II) 
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3.4.3 Summary 

This chapter provides a detailed explanation of the MPSO algorithm, which is 

an improved version of the classical PSO algorithm. Unlike the PSO algorithm, 

the MPSO algorithm incorporates a new path planning scheme that determines 

each waypoint of the robot by running the entire MPSO algorithm, rather than 

determining one waypoint in each iteration in one run of the algorithm. 

Additionally, the inertial weight and learning factors of the MPSO algorithm 

are dynamically updated to balance the exploration and exploitation capability 

of the algorithm.  

 In this project, the combination of global path planning approach and 

local path planning approach is considered. MPSO algorithm is implemented 

as the global path planner to search for the complete path for all robots. To 

avoid obstacle during navigation, a sensor-based obstacle avoidance algorithm 

which known as Obstacle Avoidance Algorithm in this project is employed as 

a local path planner to help the robot reactively avoid any dynamic obstacles 

during navigation.  

 The performance for both PSO and MPSO algorithms were evaluated 

using MATLAB simulations in three different scenarios, with the same 

starting and goal locations for all scenarios, the settings of the scenarios are 

also discussed in this chapter. The first scenario is populated with four circular 

obstacles with different size, the second scenario is population with seven 

circular obstacles with the same size and the third scenarios is populated with 

multiple vertical and horizontal obstacles. The complexity of the robot’s 

environment increases from the first scenario to the third scenario. All the 

scenarios were designed using binary occupancy map function provided in 

MATLAB. Furthermore, project planning and management were carefully 

executed, and Gantt chart were generated to ensure that all project activities 

were completed on time. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

This chapter focus on presenting and discussing the result obtained for all 

multi-robot scenarios using the proposed Modified Particle Swarm 

Optimization (MPSO) algorithm. This chapter involves the result comparison 

between PSO algorithm and MPSO algorithm in section 4.2 and the discussion 

on effect of PSO parameter on the simulation result in section 4.3. 

 

4.2 Comparison Between PSO and MPSO Algorithms 

In this section, the results obtained with the PSO algorithm and MPSO 

algorithms under all three scenarios are presented. Both algorithms were 

implemented with global path planning approach and the dynamic collision 

avoidance during the navigation of the robots was implemented using the 

Obstacle Avoidance Algorithm to help robot avoid any dynamic obstacles. 

The basic PSO algorithm was implemented without the proposed path 

planning scheme. In PSO algorithm, the particles will be initialized at the 

robot starting positions, and the particles iteratively update their position and 

velocity using the velocity and position equations shown in equation 𝑉𝑖(t +

1)  =  𝜔𝑉𝑖(𝑡) +  𝑐1𝜑1(𝑥𝑃𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡))  +  𝑐2𝜑2(𝑥𝐺𝐵𝑒𝑠𝑡 −  𝑥𝑖(𝑡) (3.3) 

and 𝑥𝑖(t + 1) =  𝑥𝑖(𝑡) +  𝑉𝑖(𝑡 + 1) (3.2). In each of the iterations, one 

waypoint of the robot will be determined by evaluating the fitness value for 

each particle and determining the global best solution. Besides that, based on 

the velocity equation for the classical PSO in equation 𝑉𝑖(t + 1)  =  𝑉𝑖(𝑡) +

𝑐1𝜑1(𝑥𝑃𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡))  +  𝑐2𝜑2(𝑥𝐺𝐵𝑒𝑠𝑡 −  𝑥𝑖(𝑡)) (3.1), the inertial weight 

is not considered, and the social and cognitive learning factors are not 

dynamically updated instead they are set with a value of 2 throughout the 

whole simulation as the maximum cognitive and social learning factors used in 

this project is 2. When both cognitive and social learning factors are equal, 

they both exert an equal level of influence on the algorithm’s performance. On 

the other hand, the MPSO algorithm implemented with the new path planning 
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scheme where the particles are first initialized within a predefined search 

space, and they iteratively search for a global best position within the search 

space. The algorithm stops once the global best position is determined and this 

global best position will be set as one of the waypoints of the robot. A new 

MPSO algorithm is then reiterated again by first initialising the particles 

within a predefined search space around the previous generated waypoint and 

determine the next waypoint by searching for the global best position within 

the search space. These processes are repeated until a complete path is 

generated. 

In order to compare the performance of both algorithms, both 

algorithms were simulated with five times for each scenario, and they were 

evaluated in terms of average path length and execution time using the similar 

set of PSO parameters as shown in Table 4.1. Besides that, all three scenarios 

having the same dimension which is 100 meters x 100 meters and the robots in 

all three scenarios are having their own respective starting and goal position as 

shown in Table 4.2. 

 

Table 4.1: PSO Parameters 

Parameters Value 

Swarm Size 100 

Maximum Iteration, itertotal 30 

Maximum Inertial Weight, max 0.95 

Minimum Inertial Weight, min 0.4 

Maximum Cognitive Parameter, c1max 2.0 

Minimum Cognitive Parameter, c1min 0.5 

Maximum Social Parameter, c2max 2.0 

Minimum Social Parameter, c2min 0.5 

Particle’s Maximum Velocity, Vmax 8 

Particle’s Minimum Velocity, Vmin 2 

 

Table 4.2: Starting and Goal Position for Each Robot 

 Starting Points (x, y) Target Points (x, y) 
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Robot 1 10 10 90 90 

Robot 2 10 50 90 50 

Robot 3 10 90 90 10 

 

4.2.1 Scenario 1 (Four Circular Obstacles) 

In the first scenario as shown in Figure 3.5, four static obstacles are considered 

(same shape, different size).  Each robot is starting from different starting 

position and targeted to reach different goal position. 

 

4.2.1.1 PSO Algorithm Result 

Figure 4.1 illustrates the particles position and the robot’s waypoints generated 

in each iteration. Each coloured point represents a particle and the particles 

with the same coloured represents the particles in the same iteration.  
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Figure 4.1: Particles’ Position and Waypoints in Scenario 1 With PSO 

Algorithm: (a) Robot 1; (b) Robot 2; (c) Robot 3  

 After each robot path is generated using the PSO algorithm, the 

robots start navigating toward the target position following the generated path. 

The trajectory for each of the robot from respective starting position to goal 

position are shown in Figure 4.2.  During the navigation of the robots, robot 1 

and robot 3 sensed each other with their sensor in simulation step 5 as shown 

in Figure 4.3. Once the robot sensed any dynamic obstacle in its sensing range, 

the robot triggers the Obstacle Avoidance Algorithm in order to help the robot 

adjusts its navigation and avoid colliding with other robot as shown in 

simulation step 8 in Figure 4.4. From the simulation, both of the robots 

successfully avoid collision with the help of the Obstacle Avoidance 
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Algorithm. To have a better understanding on the simulation, the whole 

simulation result is provided in the Appendix SimulationB-1. 

 

 

Figure 4.2: Trajectory of Robots in Scenario 1 With PSO Algorithm 

 

 

Figure 4.3: Dynamic Obstacle Detection of Robot 1 and Robot 3 in Scenario 1 

(Simulation Step 5) 
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Figure 4.4: Collision Avoidance Algorithm Triggered to Avoid Collision in 

Scenario 1 (Simulation Step 8) 

 

 Moreover, it is possible to calculate the total best fitness of all three 

robots in each iteration using equation 𝐹 = λ1F1 +λ2F2 (3.9), and a 

graph displaying the global best fitness over the course of the iterations can be 

generated as illustrated in Figure 4.5. According to the plotted graph, it 

illustrates that the path for all robots can be obtained after 16 iterations, and it 

shows a gradual decrease in fitness values from iteration 1 until iteration 16. 

Furthermore, the maximum global best fitness was achieved in iteration 1 with 

a value of 339.61, while the minimum global best fitness was attained in 

iteration 16 with a value of 32.33 as shown in Table 4.3 and Figure 4.5. 

 

Table 4.3: Global Best Fitness of Each Iteration in Scenario 1 With PSO 

No of Iterations Global Best Fitness 

1 339.61 

2 315.65 

3 297.90 

4 271.08 

5 250.32 

6 217.23 

7 188.35 

8 170.71 
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9 155.51 

10 129.00 

11 96.64 

12 77.32 

13 61.06 

14 47.16 

15 36.70 

16 32.33 

 

 

 

Figure 4.5: Graph of Global Best Fitness vs Iteration for Scenario 1 With PSO 

Algorithm 

 

4.2.1.2 MPSO Algorithm Results 

Figure 4.6 illustrates the waypoints for each of the robot generated with MPSO 

algorithm. At the same time, the position of the particles in the last run of 

MPSO algorithm is shown in the figure. The particles with the same colour 

represent the particle in the same iteration. From the figure, we can observe 

that the particles were initialized within a predefined search space around the 

previous generated waypoint. In order to determine the next waypoint, the 

particles iteratively update its velocity and position with equations 𝑉𝑖(t +

1)  =  𝜔𝑉𝑖(𝑡) +  𝑐1𝜑1(𝑥𝑃𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡))  +  𝑐2𝜑2(𝑥𝐺𝐵𝑒𝑠𝑡 −  𝑥𝑖(𝑡) (3.3) 

and 𝑥𝑖(t + 1) =  𝑥𝑖(𝑡) +  𝑉𝑖(𝑡 + 1) (3.2)to search for the global best 
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position within the search space. The algorithm was terminated when the 

global best position is no longer updated. 

 

Figure 4.6: Particles’ Position and Waypoints in Scenario 1 With MPSO 

Algorithm: (a) Robot 1; (b) Robot 2; (c) Robot 3 

 

 The trajectory generated for each robot with MPSO algorithm is 

shown in Figure 4.7. Based on the figure, it can be observed that the path 

planned by the algorithm successfully avoid collision with any obstacle. The 

detailed simulation process can be observed in Appendix SimulationB-2 for 

deeper understanding. 
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Figure 4.7: Trajectory of Robots in Scenario 1 With MPSO Algorithm 

 

 Similarly, the total best fitness for all three robots in each iteration 

can be calculated and a graph displaying the global best fitness over the course 

of the iterations is shown in Figure 4.8. It can be observed that only four 

iterations are required to compute all robots’ path. Besides that, the maximum 

global best fitness found in iteration 1 is 339.61 while the minimum global 

best fitness found in iteration 4 is 31.05 as illustrated in Figure 4.8 and Table 

4.4. 

 After running through the simulation with both PSO and MPSO 

algorithms for five times, the performance of both algorithms in scenario 1 can 

be evaluated and tabulated in terms of average path length and execution time 

as shown in Table 4.5.  

 

Table 4.4: Global Best Fitness of Each Iteration in Scenario 1 With MPSO 

No of Iterations Global Best Fitness 

1 339.61 

2 214.04 

3 100.49 

4 31.05 
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Figure 4.8: Graph of Global Best Fitness vs Iteration for Scenario 1 With 

MPSO Algorithm 

 

Table 4.5: Result Obtained with PSO and MPSO Algorithms in Scenario 1 

 
Start 

Point 

Target 

Point 

Total Number 

of Iterations 

Average Path 

Length 

(meters) 

 Average 

Execution 

Time (s) 

PSO MPSO PSO MPSO PSO MPSO 

Robot 

1 
(10,10) (90,90) 

16 4 

131.86 122.28 98.46 96.43 

Robot 

2 
(10,50) (90,50) 91.84 81.69 68.52 62.36 

Robot 

3 
(10,90) (90,10) 138.94 113.44 96.97 83.59 

 

 Based on the result in Table 4.5, it can be observed that the average 

path length and the average execution time obtained by MPSO for all three 

robots is shorter compared to that of the PSO algorithm. Thus, it can be said 

that the MPSO algorithm outperform the PSO algorithm in terms of average 

path length and execution time in scenario 1. 
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4.2.2 Scenario 2 (Seven Circular Obstacles) 

In the second scenario as shown in Figure 3.6, the number of static obstacles 

increased from three to seven where the environment is populated with seven 

obstacles (same shape, same size). This is to evaluate the performance of the 

algorithms in an environment pack with obstacles.  

 

4.2.2.1 PSO Algorithm Results 

Figure 4.9 illustrates the particles position and the robot’s waypoints generated 

in each iteration in scenario 2 using the PSO algorithm. 

 

 

Figure 4.9: Particles’ Position and Waypoints in Scenario 2 With PSO 

Algorithm: (a) Robot 1; (b) Robot 2; (c) Robot 3 
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  Besides that, the trajectory generated for all robots in scenario 2 

using PSO algorithm can be observed in Figure 4.10. From the simulation 

result obtained in Figure 4.10 and the Appendix SimulationB-3, it can be 

observed that the path planned by the algorithm successfully avoid collision 

with any obstacle. 

 

 

Figure 4.10: Trajectory of Robots in Scenario 2 With PSO Algorithm 

 

 Moreover, the graph of global best fitness over the course of 

iterations are displayed in Figure 4.11. From the graph, it can be observed that 

the total number of iterations required to generate all robots’ path are 18 

iterations. The maximum global best fitness in iteration 1 is 339.61 while the 

minimum global best fitness in iteration 18 is 34.45 as shown in Table 4.6 and 

Figure 4.11.  

 

Table 4.6: Global Best Fitness of Each Iteration in Scenario 2 With PSO 

No of Iterations Global Best Fitness 

1 339.61 

2 316.49 

3 299.83 

4 271.58 

5 245.44 

6 227.54 
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7 198.07 

8 180.09 

9 152.50 

10 126.31 

11 112.19 

12 100.90 

13 89.50 

14 82.74 

15 59.02 

16 45.92 

17 37.87 

18 34.45 

 

  

Figure 4.11: Graph of Global Best Fitness vs Iteration for Scenario 2 With 

PSO Algorithm 

 

4.2.2.2 MPSO Algorithm Result 

The waypoints generated by the MPSO algorithm for scenario 2 are depicted 

in Figure 4.12. From the finding illustrated in Figure 4.12 (c), it is noticeable 

that Robot 3 successfully created a path between two obstacles that were 

located closely to each other, leading to a reduced overall path length. In 

comparison to the trajectory produced by the PSO and MPSO algorithms for 

Robot 3, the PSO algorithm failed to generate a path between obstacles with 
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narrow gap as shown in Figure 4.9 (c) which result in an increased overall path 

length. 

 

 

Figure 4.12: Particles’ Position and Waypoints in Scenario 2 With MPSO 

Algorithm: (a) Robot 1; (b) Robot 2; (c) Robot  

 

 The trajectory of the robots is illustrated in Figure 4.13. From the 

result, the Obstacle Avoidance Algorithm was not triggered throughout the 

entire navigation process as the robots did not detect any dynamic obstacles 

within its sensing range. The entire simulation process of the algorithm in 

scenario 2 is illustrated in Appendix SimulationB-4 for deeper understanding. 
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Figure 4.13: Trajectory of Robots in Scenario 2 With MPSO Algorithm 

 

 Furthermore, the graph of global best fitness over the course of 

iterations for scenario 2 with MPSO algorithm is displayed in Figure 4.14. The 

entire MPSO algorithm was simulated for a total of five times repeatedly to 

generate the path for all robots. Besides, it can be observed that the maximum 

global best fitness found in iteration 1 is 339.61 while the minimum global 

best fitness found in iteration 5 is 33.31 as shown in Table 4.7 and Figure 4.14. 

 After running the simulations for both PSO and MSPO algorithms in 

scenario 2 for five times, the performance for both algorithms are evaluated 

and compared in terms of average path length and execution time. The results 

are tabulated in Table 4.8. 

 

Table 4.7: Global Best Fitness of Each Iteration in Scenario 2 With MPSO 

No of Iterations Global Best Fitness 

1 339.61 

2 237.11 

3 109.86 

4 50.26 

5 33.31 
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Figure 4.14: Graph of Global Best Fitness vs Iteration for Scenario 2 With 

MPSO Algorithm 

 

Table 4.8: Result Obtained with PSO and MPSO Algorithms in Scenario 2 

 
Start 

Point 

Target 

Point 

Total Number 

of Iterations 

Average Path 

Length 

(meters) 

 Average 

Execution 

Time (s) 

PSO MPSO PSO MPSO PSO MPSO 

Robot 

1 
(10,10) (90,90) 

18 5 

136.16 126.76 91.87 90.31 

Robot 

2 
(10,50) (90,50) 98.40 79.83 70.22 65.21 

Robot 

3 
(10,90) (90,10) 147.11 121.41 103.13 91.28 

  

 The data presented in Table 4.8 indicates that the MPSO algorithm 

performs better than the PSO algorithm in scenario 2 in regard to average path 

length and execution time. As the PSO algorithm was unable to generate a 

path between two obstacles with narrow gap, the path length produced for 

Robot 3 with the PSO algorithm was approximately 25 meters longer than the 

path generated by the MPSO algorithm. Therefore, the MPSO algorithm’s 

capability to find a path through closely arranged obstacles enabled it to 

produce a shorter path.  
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4.2.3 Scenario 3 (Multiple Long walls) 

In the third scenario as shown in Figure 3.7, the algorithms were tested in an 

environment populated with multiple vertical and horizontal obstacles to 

evaluate the performance of the algorithms in environment populated with 

vertical and horizontal obstacles. 

 

4.2.3.1 PSO Algorithm Results 

Figure 4.15 illustrates the particles’ position and the robot’s waypoints for 

each iteration of PSO algorithm in scenario 3.  

 

 

Figure 4.15: Particles’ Position and Waypoints in Scenario 3 With PSO 

Algorithm: (a) Robot 1; (b) Robot 2; (c) Robot 3 
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 The trajectory for all the robots in scenario 3 can be observed in 

Figure 4.16. During the robots’ navigation, Robot 2 and Robot 3 detects each 

other at simulation step 6 as shown in Figure 4.17. Once the robot detects any 

dynamic obstacle within its sensing range. The robot, subsequently, will avoid 

the dynamic obstacle by activating the Obstacle Avoidance Algorithm as 

shown in Figure 4.18. The result illustrates that the collision between Robot 2 

and Robot 3 is successfully avoided. The detailed simulation processes are 

illustrated in the Appendix SimulationB-5. 

 

 

Figure 4.16: Trajectory of Robots in Scenario 3 With PSO Algorithm 

 

 

Figure 4.17: Dynamic Obstacle Detection of Robot 2 and Robot 3 in Scenario 

3 (Simulation Step 6) 
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Figure 4.18: Collision Avoidance Algorithm Triggered to Avoid Collision in 

Scenario 3 (Simulation Step 7) 

 

 The graph of global best fitness over the course of iterations in 

scenario 3 using PSO algorithm is illustrated in Figure 4.19. It can be observed 

that the total number of iterations required to compute all robots’ path is 16 

iterations. The maximum global best fitness found in iteration 1 is 339.61 

while the minimum global best fitness found in iteration 16 is 34.75 as shown 

in Table 4.9 and Figure 4.19. 

 

Table 4.9: Global Best Fitness of Each Iteration in Scenario 3 With PSO 

No of Iterations Global Best Fitness 

1 339.61 

2 320.81 

3 299.18 

4 287.35 

5 274.25 

6 256.68 

7 238.85 

8 231.13 

9 191.23 

10 165.59 
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11 135.90 

12 106.89 

13 91.69 

14 66.87 

15 48.11 

16 36.34 

17 34.75 

 

  

Figure 4.19: Graph of Global Best Fitness vs Iteration for Scenario 3 With 

PSO Algorithm 
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4.2.3.2 MPSO Algorithm Results 

Figure 4.20 illustrates the robot waypoints generated with MPSO algorithm in 

scenario 3.  

 

 

Figure 4.20: Particles’ Position and Waypoints in Scenario 3 With MPSO 

Algorithm: (a) Robot 1; (b) Robot 2; (c) Robot 3 

 

 The trajectory of all robots in scenario 3 using MPSO algorithm is 

illustrated in Figure 4.21. From the result in Figure 4.21 and Appendix 

SimulationB-6, the path planned by the algorithm successfully avoid collision 

with any obstacle. 
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Figure 4.21: Trajectory of Robots in Scenario 3 With MPSO Algorithm 

 

 Error! Reference source not found. shows the plot of global best 

fitness against the number of iterations. It is observed that the calculation of 

paths for all robots requires five iterations. The global best fitness value 

decreases quickly from iteration 1 to iteration 4, and the decrement from 

iteration 4 to iteration 5 is very minimal as Robot 1 and Robot 2 have already 

reached their target position in iteration 4 and the global best fitness for Robot 

1 and Robot 2 are already at the minimal value. The maximum global best 

fitness found in iteration 1 is 339.61 while the minimum global best fitness 

found in iteration 5 is 34.75 as shown in Table 4.10 and Error! Reference 

source not found.. 

 Upon conducting the simulations five times each for PSO and MPSO 

algorithms in scenario 3, their performance was evaluated and compared in 

terms of average path length and execution time as shown in Table 4.11  

 

Table 4.10: Global Best Fitness of Each Iteration in Scenario 3 With MPSO 

No of Iterations Global Best Fitness 

1 339.61 

2 238.63 

3 134.75 

4 40.18 

5 34.34 
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Figure 4.22: Graph of Global Best Fitness vs Iteration for Scenario 3 With 

MPSO Algorithm 

 

Table 4.11: Results Obtained with PSO and MPSO Algorithms in Scenario 3 

 
Start 

Point 

Target 

Point 

Total Number 

of Iterations 

Average Path 

Length 

(meters) 

 Average 

Execution 

Time (s) 

PSO MPSO PSO MPSO PSO MPSO 

Robot 

1 
(10,10) (90,90) 

16 5 

144.03 132.50 107.1 95.95 

Robot 

2 
(10,50) (90,50) 98.00 96.45 81.28 67.73 

Robot 

3 
(10,90) (90,10) 126.2 120.74 89.90 89.18 

 

 The findings presented in Table 4.11 show that, in scenario 3, the 

MPSO algorithm continues to outperform the PSO algorithm in terms of 

average path length and execution time. While the average path lengths and 

execution times for Robot 2 and Robot 3 are comparable between the two 

algorithms, the path generated with MPSO is noticeably straighter than the 

path generated with PSO algorithm. This implies that the robot will have to 
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make fewer rotations to alter its direction during the navigation, leading to 

reduced energy consumption. 

 Upon analysing and comparing the performance of both PSO and 

MSPO algorithms across all three scenarios, it can be inferred that the MPSO 

algorithm proves to be more effective and efficient than the PSO algorithm. 

Thus, the MPSO algorithm can be deemed superior to the PSO algorithm in all 

three scenarios. 
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4.3 MPSO Parameters 

This section discusses the effect of PSO parameter on the simulation result. 

There are several parameters that need to be tuned for better performance in 

multi-robot path planning such as population size, inertial weight, cognitive 

learning factor, and social learning factor. The choice of PSO parameter can 

significantly affect the performance of the multi-robot path planning algorithm, 

thus, the parameters need to be chosen wisely. In order to find the suitable 

PSO parameter, scenario 1 as shown in Figure 4.23 is used to evaluate the 

effect of the parameters on the simulation result. 

 

 

Figure 4.23: Scenario 1 Used to Evaluate the Effect of PSO Parameters 

 

4.3.1 Population Size 

In multi-robot path planning using PSO algorithm, population size or the 

particle swarm size is an important parameter that affects the performance of 

the algorithm. Population size refers to the number of particles or number of 

candidate solution present in a swarm that are generated and evaluated in each 

iteration of the algorithm. Since each of the particle in the swarm represents a 

candidate solution, increasing the population size able to improve the 

performance of the PSO by increasing the exploration capability of the 

algorithm when searching for solution. At the same time, the particles will also 

have lower chances in getting stuck in local optimum. However, even though 

the performance and solution might get improved with increment in population 

size, the computation cost of the algorithm can also increase significantly as 

the particles will need to be evaluated in every iteration. On the other hand, 
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decreasing the population size can result faster execution time but it decreases 

the exploration capability of the algorithm in searching for solution which may 

result in premature convergence and lower quality solution. In the worst-case 

scenario, the particles might get stuck in local optimum and fail to find the 

global optimum solution. Therefore, the choice of population size in multi-

robot path planning using PSO involves a trade-off between convergence 

speed and solution quality, as well as the computational resource available for 

the simulation. Careful tuning of the population size is necessary to balance 

the convergence speed and the solution quality in order to achieve the best 

performance of the PSO algorithm. 

 The effect of the population size on the simulation result is tested by 

comparing the result obtained with different population size of 20, 50, 100, 

and 200. The simulation is repeated for each population size and the effect of 

the population size is evaluated in terms of the average path length and 

average execution time of all robots.  

 

Table 4.12: Simulation results with different population sizes 

Population Size Average path lengths (m) Average execution time (s) 

20 113.22 53.07 

50 109.84 59.04 

75 107.75 59.42 

100 107.80 71.27 

200 107.83 108.23 

 

 

Figure 4.24: Simulation Results Obtained for Different Population Size 
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The result presented in Table 4.12 and Figure 4.24 indicate that as the 

population size increases from 20 to 200, there is a gradual decrease in the 

average path length, from 113.22m to 107.83m. Notably, the average path 

length obtained with a population size of 75 is very close to that obtained with 

a population size of 100 and 200, indicating that further improvement in path 

length may be unlikely. However, as the population size increases, the average 

execution time increases substantially. Specifically, the results show that when 

a population size of 100 or 200 is used, the execution time increases from 

71.27 seconds to 108.23 seconds while the average path length remains similar 

to that obtained with a population size of 75. Thus, it can be inferred that an 

excessively large population size is not necessarily beneficial in improving the 

solution, and instead, it increases the computational power required. 

 

4.3.2 Inertial Weight 

The inertial weight is a parameter that controls the trade-off between the 

searching ability and convergence speed of the algorithm, it is a crucial 

parameter that balance between global and local search ability of the algorithm. 

The inertial weight determines the influence of the particle’s previous velocity 

on its new velocity where a high value of the inertial weight causes the 

particles to move towards their current best position, allowing for faster 

convergence, but it also reduces the exploration ability of the MPSO algorithm. 

In the context of multi-robot path planning, the inertial weight can also have 

significant impact on the simulation result as it affects the searching process 

by the rate of convergence and exploration of the swarm. A high value of 

inertial weight allows the particles to move more freely and explore the search 

space which at the same time increase the chance in finding better solution. 

However, it should be noted that higher inertial weight may cause the particles 

to overshoot the optimal solution time and increase the number of iterations 

required to reach the optimum solution as well as the convergence time. On 

the other hand, a low value of inertial weight can lead to faster convergence 

but has higher risk in converging to local optimum and trap in local optimum.  
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4.3.3 Cognitive and Social Learning Factor 

Cognitive and social learning factor are two other important parameters in 

PSO algorithm. These two parameters are crucial in determining the ability of 

the PSO algorithm in exploring the search space and converge toward the 

global optimum solution. The cognitive learning factor determine how much 

the particles learn from its personal best solution while the social learning 

factor determines how much the particles learn from the global best solution 

found by the particle swarm.  

 When high cognitive learning factor is used, the particles rely more 

on its own personal best solution to adjust its velocity and position. On the 

other hand, when higher social learning factor is used, the particles rely more 

on the global best solution found by the particles swarm to adjust its velocity 

and position. When the cognitive learning factor is dominating, the algorithm 

may tend to explore the search space more widely due to the fact that the 

position of the particles relies more on the personal best solution. When the 

social learning factor is more dominating, the algorithm may tend to converge 

toward a local optimum solution and this local optimum solution may not be 

the global optimum solution. 

 In order to test the effect on the cognitive and social learning factor 

on the simulation result, different combination of cognitive and social learning 

factors was used. In the first simulation, the cognitive learning factor is set to 2 

while the social learning factor is set to 0 which means that the algorithm 

solely relies on the personal best solution found by each particle to determine 

the position for each particle. The second simulation was done by setting the 

cognitive learning factor to 0 while the social learning factor is set to 2 which 

means that the algorithm will be solely rely on the global best solution found 

by the particles swarm to determine the position for each particle. All the 

simulations were done by setting the inertial weight to be 0.4 as the minimum 

inertial value used in this project is 0.4 to observe the result obtained with 

different value of cognitive and social learning factors. 

 In the first simulation as shown in Figure 4.25 where the cognitive 

learning factor is set to 2 while the social learning factor is set to 0, it can be 

observed that the particles were first initialized within a predefined search 

space around the robot’s starting position. In each iteration, the particles try to 
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update its position depending on the personal best solution found thus far by 

the particles. It can be observed that the position of the particles is not 

converging toward a global optimum solution, instead, the particle stays at 

their own initialized position due to the fact that they only rely on their own 

personal best solution. 

 

 

Figure 4.25: Result Obtained with different learning factor for 30 iterations 

(Cognitive Learning Factor = 2, Social Learning Factor = 0) 

 

 In the second simulation as shown in Figure 4.26 where the cognitive 

learning factor is set to 0 while the social learning factor is set to 0, similarly, 

the particles were first initialized within a pre-defined search space around the 

robot’s starting position and the position of the particles are updated iteratively 

to search for a global best solution within the search space. The particles with 

the same colour represent the particles in the same iteration. From the result, it 

can be observed that the particles can converge toward a solution by solely 

relying on the global best solution found by the particles swarm to update their 

position.  
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Figure 4.26: Result obtained for 30 iterations with cognitive learning factor = 

0 and social learning factor = 2) 

 

 Therefore, it is suggested in Das, Behera and Panigrahi (2016) to 

dynamically update the cognitive and social learning factor in order to balance 

the exploration and exploitation ability of the algorithm.  

 

4.4 Summary 

The performance for both PSO and MPSO algorithms are evaluated in terms 

on average path length and execution time in three different scenarios. The 

biggest difference between MPSO and PSO algorithm is that MPSO algorithm 

incorporates a new path planning scheme, which PSO algorithm lacks. From 

the result obtained, it is indicated that the MPSO algorithm outperforms the 

PSO algorithm in all three scenarios, as it generates shorter average path 

length and execution time. Besides that, the impact of PSO parameters on the 

simulation results are examined. It reveals that MPSO algorithm has the best 

performance in terms of shorter path length and execution time with 

population size of 75. Additionally, it has been suggested that updating the 

inertial weight and learning factors dynamically can help maintain a balance 

between exploration and exploitation capability of the algorithm. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

This project aimed to address the challenge of multi-robot path planning in 

cluttered environments, particularly in search and rescue missions. To achieve 

this, a modified version of the classical PSO algorithm, called MPSO 

algorithm, was proposed. Unlike the classical PSO algorithm which determine 

each of the robot’s waypoint in each iteration of the algorithm, the MPSO 

algorithm incorporates a new path planning scheme that determines one 

robot’s waypoint by running the entire algorithm once. In addition, a 

combination of global and local path planning approaches was employed to 

address the multi-robot path planning problem in dynamic environments. The 

PSO algorithm served as the global path planner to determine the complete 

path for each robot from respective starting position to respective goal position, 

while the Obstacle Avoidance Algorithm served as the local path planner to 

avoid collisions with dynamic obstacles during robot navigation. 

 Simulation was conducted using both PSO and MPSO algorithms in 

three scenarios for five times each, and the results showed that the MPSO 

algorithm outperformed the PSO algorithm in terms of average path length and 

execution time in all three scenarios. Moreover, the impact of the PSO 

parameters on the simulation results was also evaluated, and it was found that 

dynamically updating the inertial weight and learning factors could help 

maintain a balance between the exploration and exploitation capability of the 

algorithm. Furthermore, it was also found that the MPSO algorithm able to 

achieve the best performance with a population size of 75. Overall, the 

findings of this project suggest that the MPSO algorithm can generate better 

paths than the classical PSO algorithm in terms of average path length and 

execution time, and the proposed solution can effectively address the multi-

robot path planning problem in dynamic environments.  
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5.2 Recommendations for Future Work 

This project can be improved in many ways due to the project’s limitation. it is 

important to note that the algorithm overlooks the smoothness aspect of the 

path generated. Consequently, the resultant path may exhibit abrupt directional 

changes, making it less smooth and challenging for the robot to navigate. 

Robot halting and rotation upon any change in direction is necessary due to 

lack of path smoothness, leading to increased travel time and higher energy 

consumption. There are a few options to enhance the smoothness of the path, 

such as adding a penalty function in the fitness function that penalizes sudden 

direction change when identifying the next waypoint or utilizing path 

smoothing techniques like spline interpolation or other smoothing algorithm 

after generating the path with MPSO (Das, Behera and Panigrahi, 2016c; Xu, 

Song and Cao, 2021).   

 Besides that, optimization algorithms, like the PSO algorithm, often 

encounter the issue of local optimum trapping. This happens when the 

algorithm converges to a solution that appears optimal within a particular 

region of the search space but is far from the true global optimum. The local 

optimum problem frequently arises when a complex-shaped obstacle is present 

in the environment, and the robot may become stuck at the obstacle and unable 

to escape the local optimum solution. Unfortunately, this project does not offer 

a solution to tackle the local optimum trapping problem, and the robot may 

become trapped in a more complex environment. 

 Moreover, the algorithm’s performance in a physical environment 

remains untested, as it has only been evaluated in simulations. Thus, the 

performance of the algorithm can be further evaluated in the physical 

environment with Robotics Operating System (ROS). Furthermore, it is 

important to note that an efficient multi-robot system need to considered 

multiple aspects such as path planning, formation control, task allocation and 

so on. In this project, only the path planning problem is considered due to time 

constraint.  

 Therefore, future work could involve introducing path smoothing 

technique in the path planning algorithm, solving the local optimum trapping 
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problem, and extending the algorithm to physical experiments using Robotics 

Operating System (ROS) to validate its performance in a real-world scenario. 
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APPENDICES 

 

Appendix A: Pseudocode 

PseudocodeA-1: Pseudocode for Path Planning using MPSO. 

Algorithm 1: Pseudocode for Path Planning using MPSO 

Input: (xj
𝑠𝑡𝑎𝑟𝑡,y

j
𝑠𝑡𝑎𝑟𝑡), (xj

target
,y

j

𝑡𝑎𝑟𝑔𝑒𝑡
) are the initial position and target position 

for n number of robots where 1 ≤ j ≤ n 

Output: Optimum trajectory path for each robot connecting each waypoint, wp
j
 

from (xj
curr,y

j
curr) to (xj

target
,y

j

𝑡𝑎𝑟𝑔𝑒𝑡
) 

Initialize PSO parameters: SwarmSize, itertotal, DimensionNo, c1max, c1min, 

c2max, c2min, max, min, Vmax, Vmin 

For j = 1: no_of_robots 

 (xj
curr,y

j
curr) = (xj

start,y
j
start); wp

j
=[(xj

curr,y
j
curr)]; 

End for 

For each robot j = 1: RobotNo 

 While (xj
curr,y

j
curr) −  (xj

target
,y

j

𝑡𝑎𝑟𝑔𝑒𝑡
) > tolerance  do 

  For i = 1: SwarmSize 

   Initialize ith particle with random position and random velocity within a 

predefined search space; 

  End For 

  For iterctr = 1: itertotal 

   For n = 1: DimensionNo 

    For i = 1: SwarmSize 

     Evaluate fitness value for ith particle; 

     If (fiti > fit (Pibest)) 

      fit (Pibest) = fiti; 

      Current position of ith particle = Pibest; 

     End If 

     If (fit (Pibest) > fit (Gbest)) 

      fit (Gbest) = fit (Pibest); 

      Gbest = Pibest; 

     End If 

    End For 

   End For 

   Update the velocity and position of ith particle; 

   Update , c1 and c2 using equations; 

   If Gbest is not updated for three times 

Break; 

   End If 

  End For 

  (xj
curr,y

j
curr) = Gbest; 

wp
j
=[waypoint

j
 ; (xj

curr,y
j
curr)]; 

 End While 

End For 
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PseudocodeA-2: Pseudocode for Obstacle Avoidance Algorithm. 

Algorithm 2: Pseudocode for Obstacle Avoidance Algorithm 

Input: Robot’s position, (Robots(j).pos), position of  dynamic obstacles, 

sensing range 

Output: Robot’s position, (Robots(j).pos) 

For j = 1: RobotNo 

 While Robots(j). reached ~= true 

  Reset sensors’ value to 0, Robots(j).sensor_value(k) = 0; 

  For m = 1: number of dynamic obstacles 

   If distance between obstacle(m) and Robots(j).pos < sensing_range 

    theta = angle between Robots(j).pos and the position of dynamic 

obstacle; 

    For k = 1: number of sensors 

     If theta within Robots(j).sensing_range(k) 

      Robots(j).sensor_value(k) = 1; 

     End If 

    End For 

   End If 

  End For 

  For k = 1: SensorNo 

   If Robots(j).sensor_value(k) = 1 

    Sensor_pos(k).x = x-coordinate of possible next position based on 

direction of kth sensor; 

    Sensor_pos(k).y = y-coordinate of possible next position based on 

direction of kth sensor; 

    Distance(k) = distance between sensor_pos(k) and robot’s next 

waypoint; 

   Else  

    Distance(k) = inf; 

   End If 

  End For 

  index = index of sensor with minimum Distance(k); 

  Robots(j).pos.x = sensor_pos(index).x; 

  Robots(j).pos.y = sensor_pos(index).y; 

 End While 

End For 
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Appendix B: Simulations 

 

 

SimulationB-1: PSO Simulation in Scenario 1 From Simulation Step 1 in (a) 

to Step 10 in (m) 
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SimulationB-2: MPSO Simulation in Scenario 1 From Simulation Step 1 in (a) 

to Step 12 in (k) 
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SimulationB-3: PSO Simulation in Scenario 2 From Simulation Step 1 in (a) 

to Step 9 in (i) 
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SimulationB-4: MPSO Simulation in Scenario 2 From Simulation Step 1 in (a) 

to Step 10 in (j) 
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SimulationB-5: PSO Simulation in Scenario 3 From Simulation Step 1 in (a) 

to Step 13 in (m) 
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SimulationB-6: MPSO Simulation in Scenario 3 From Simulation Step 1 in (a) 

to Step 13 in (m) 
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Appendix C: Gantt Chart 

 

GanttChartC-1: Gantt Chart Using GanttProject (Part I) 
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GanttChartC-2: Description of Gantt Chart Using GanttProject (Part I) 
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GanttChartC-3: Gantt Chart Using GanttProject (Part II) 
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GanttChartC-4: Description of Gantt Chart Using GanttProject (Part II) 




