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ABSTRACT 

 

In recent years, as entered the era of 5G and the Internet-of-things (IoT), 

significant developments have been made in human-machine interfaces (HMIs) 

that enable more intuitive interactions between humans and the digital world. 

However, the current glove-based HMI solutions available in the market have 

limitations due to non-conformal sensor integration, which constrains finger 

movement. To address this issue, this project proposes a haptic-feedback glove-

based HMI with a graphene thread sensor, ESP-NOW for wireless connection, 

a haptic actuator, and MPU6050 accelerometers. The graphene thread exhibits 

a sensitivity of 700 Ω/° and the graphene thread sensors show no deterioration 

for 100 cycles. Furthermore, in this project, the detection of multidirectional 

bending events in virtual space using the piezoresistive signals for various 

degrees of freedom on the human hand has been demonstrated. This project also 

perform haptic mechanical stimulation via motor vibration to realize the 

augmented HMI. Through the integrated demonstration of multidimensional 

manipulation and haptic feedback, our glove shows its potential as a promising 

solution for advanced human-machine interaction. It can benefit diversified 

areas, including entertainment, home healthcare, sports training, and the 

medical industry. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

 General Introduction 

In the fourth industrial revolution, the Internet of Things (IoT) emerged as a 

major exploration, development, and implementation trend. IoT is an advanced 

system comprising elements such as computing devices, digital machines, 

mechanical devices, objects, and people, each with unique identities (UIDs). 

With IoT, the elements and components in a system can send data across a 

network without human involvement (Alexander, n.d.). Due to IoT, numerous 

wearable sensors have been designed and developed, which can be used in 

various industrial areas such as gaming, fitness, entertainment, security, defense, 

and healthcare. These wearable sensors can also be incorporated into human-

machine interfaces (HMI) to monitor and collect essential data for future 

processes. 

For hand rehabilitation purposes, a data glove, also known as a 

cyberglove or wired glove, has been designed and developed. The leading 

players in the data glove market include Nansense, ProGlove, HaptX, Manus, 

AiQ Synertial, IBM, Gest, Virtual Motion Labs, and others. Meanwhile, the 

leading commercialized data gloves in the market include 5DT, CyberGlove III, 

X-IST, DG5 VHand 2.0, NuGlove, GoGlove, Manus VR, Dexmo VR, and 

others (Manual, 2021). 

Due to the state-of-the-art technology and lack of universal 

standardization, data gloves have a slightly high price ranging from a few 

hundred to a few thousand dollars. Therefore, in this project, a self-made data 

glove will be fabricated and combined with elements such as VR environments 

and haptic actuators through microprocessors and wireless communication to 

provide users with a better experience in hand rehabilitation. 

 

 Importance of the Study 

The importance of this project is to create a wearable glove for virtual reality 

applications that can benefit patients who require rehabilitation, such as stroke 

patients. Traditionally, stroke patients must always travel to the hospital for 
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rehabilitation, and their family members may need to sacrifice more time to 

accompany and transport them. Additionally, the high demand for 

physiotherapists can result in high costs for hiring them to assist in the 

rehabilitation process.  

 To overcome this problem, the development of a wearable glove for 

VR applications enables patients to undergo the rehabilitation process at home. 

This can help them save costs, save their family members' time, and 

simultaneously improve the patient's psychological and emotional state. 

 

 Problem Statement 

According to the New Straits Times (2022), in less than 20 years, there will be 

three senior citizens aged 65 and above for every 20 Malaysians, and this 

number is projected to keep increasing. By 2040, the number of senior citizens 

is expected to triple from today's two million to over six million. The aging 

population comes with the prevalent health issues of the elderly, such as 

hypertension, high cholesterol, diabetes, and others, which can lead to an 

increased risk of stroke. After the stroke, patients usually experience a 

functional barrier in the cerebral cortex, which means they require ongoing 

rehabilitation training to avoid physical function degeneration (Hwang et al., 

2012). This process can take one or more years to show results, resulting in high 

demand for clinicians and therapists. Moreover, equipment such as the FEI 13-

1168 Kinetec Maestra CPM and MediTouch BalanceTutor, used during the 

rehabilitation process, is expensive and has a large scale. This can pose a 

problem for small hospitals that may not have enough space for such equipment. 

Therefore, researchers are constantly seeking ways to balance the effectiveness, 

simplicity, and convenience of the rehabilitation process. 

 

 Aim and Objectives 

The main objectives of this project are to design and develop a wearable glove 

integrated with haptic feedback and a VR environment that will enable users to 

engage in games while undergoing rehabilitation. Specifically, the project aims 

to: 

i. To design and develop a wearable glove with haptic actuators. 

ii. To integrate the glove to provide feedback to users. 
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iii. To apply the developed glove in a virtual environment. 

 

 Scope and Limitation of the Study 

This project will review various methods for creating a wearable glove and VR 

environment, including analyzing and comparing different types of wearable 

sensors and haptic actuators. The necessary hardware and software, such as the 

DOIT ESP32 DEV KIT V1, MPU-6050 Module, Arduino IDE, Blender, and 

Unity Editor, will also be well-studied to ensure the success of the project. 

However, one limitation of the proposed system is that the user cannot 

feel the structure and shape of virtual objects in the virtual environment. 

Additionally, the VR experience will be non-immersive, providing less visual 

and sound immersion for the user. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

 Introduction 

In this literature review, existing data glove types, wearable sensors, virtual 

reality, tools in constructing VR environments and hand models, data glove 

accessories, and haptic technology will be reviewed. 

 

 Data Glove Introduction 

A well-characterized and systemized data glove facilitates tactile sensing and 

fine-motion control in robotics and virtual environments. Data gloves are 

considered one of several electromechanical devices used in haptic applications 

(TechTarget, 2016). They are comfortable to wear, environmentally friendly, 

and do not restrict the user's hand movements. The initial concept for a hand-

based device was proposed more than four decades ago in 1978 (Sabatini, et al., 

2008). Since then, researchers have explored different methods and approaches 

to utilizing data gloves in various industries. Data gloves can be categorized into 

several types, which are summarised in Table 2.1 and Figure 2.1, along with 

their respective characteristics. 

 

Table 2.1: Types of Data Glove with Respective Characteristics (Caeiro-

Rodríguez, et al., 2021) 

Glove Types Characteristics 

Exoskeleton Some strings or rigid links are 

attached to the finger, which provide 

kinaesthetic feedback. 

Fabric Fabric covers the hand and fingers in 

its entirety. Several sensors and 

actuators are embedded throughout 

the fabric to enable the desired 

capabilities. 

Strips of fabric, plastic or other 

materials. 

This glove doesn’t cover the whole 

fingers and hand but just the sensor 
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and actuator's location. This type of 

glove may accommodate a variety of 

hand and finger shapes and sizes. 

Open fingertips This glove doesn’t cover the finger 

tips to use in the application such 

that the sense of touch is important. 

 

 

Figure 2.1: Types of Data Glove (Caeiro-Rodríguez, et al., 2021) 

 

The sensors used in the data glove can be further classified into several 

classes, such as accelerometer type, flex-sensor type, hall-effect sensor type, 

magnetic sensor type, and stretch-sensor type (Hasan, et al., 2019)  

 

  

 



6 

 Wearable Sensor 

2.3.1 Piezo-electric Sensor 

The piezoelectric sensor, shown in Figure 2.2, is suitable for developing data 

gloves due to its electromechanical properties. Piezoelectric ceramics such as 

PZT ceramics and single-crystal materials like quartz are the two main sensing 

materials used for piezoelectric sensors. The working principle of piezoelectric 

sensors is based on the piezoelectric effect. When a force is applied to a 

piezoelectric material, it generates an electric charge proportional to the applied 

force across the material. This effect was first discovered by Pierre Curie and 

Jacque Curie in 1880, while the converse effect was mathematically proven by 

Lippman in 1881 and confirmed by the Curie brothers in 1882 (Manbachi & 

Cobbold, 2011). Typically, a charge amplifier is combined with the 

piezoelectric sensor to convert the charge signal into voltage. Piezoelectric 

sensors have several advantages, such as not requiring an external power supply 

to output a signal, having a wide frequency bandwidth, a high signal-to-noise 

ratio, and a simple structure. However, they also exhibit some limitations. For 

example, when pressure and temperature increase, sensitivity may be reduced 

due to twin formation, and they may crack if overstressed (Basel, 2021). 

 

Figure 2.2: Piezo-electric Sensor (Variohm Eurosenosr, 2019) 

 

2.3.2 Half-Effect Sensor 

The hall-effect sensor is a magnetic sensor, and the material usually used to 

fabricate the sensor are semi-conductors such as Indium Antimonide (InSb), 

Gallium Arsenide (GaAs), and Indium arsenide (InAs). The sensor's operating 

concept is based on the hall effect, which Edwin Hall discovered in the 1870s. 

Figure 2.3 shows when a hall element experiences a magnetic field, the 

magnetic flux produced will cause the particles of the element, such as charge 

carriers, electrons, and holes, to deflect to either side of the semiconductor slab. 
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Then, a certain amount of Hall Voltage, VH will be output when the magnetic 

flux density surrounding the sensor reaches a threshold value. The amount of 

this Hall voltage is directly proportional to the strength of the magnetic field 

passed through the semiconductor materials. Nevertheless, the Hall Voltage 

produced is normally very small such that only a few microvolts. Thus, the 

Hall-effect sensor is normally manufactured with a built-in DC amplifier to 

improve the sensor’s performance, such as sensitivity, hysteresis, and output 

voltage.  

The advantages of a Hall-effect sensor are that it has a robust structure, 

can be miniaturized for surface mount applications, offers fast response with no 

contact bounce, is extremely durable, and its performance is not significantly 

affected by dust or dirt, unlike optical sensors. Additionally, it also has some 

drawbacks, such as requiring a magnet for operation, limited output voltage, and 

vulnerability to magnetic fields. 

 

 

 

Figure 2.3: Hall Effect Sensor (Electronics Tutorials, n.d.) 

 

2.3.3 Piezoresistive Sensor 

The popular materials for piezoresistive sensors include graphene, carbonized 

melamine, polypyrrole, silicon, and germanium. The working principle of a 

piezoresistive sensor is based on the piezoresistive effect, which was discovered 

by Lord Kelvin in 1856 (Sir William Thomson, Belfast, 1824–1907). The 

development of piezoresistive sensors progressed rapidly since the discovery of 

the effect in Silicon (Si) and Germanium (Ge) in 1954. The piezoresistive effect 

causes a change in electrical resistance when an external force is applied to a 
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semiconductor. This alteration solely impacts the electrical resistivity of the 

material. Unlike the piezoelectric effect, this phenomenon cannot be exploited 

to create a voltage across a device. Figure 2.4 shows the structure of 

piezoresistive sensor. When an applied force alters the material's band structure, 

it makes it easier for electrons to be stimulated into the conduction band. As a 

result, the density of current carriers varies, as does the material's resistance. 

The advantages of the piezoresistive sensor include stable electrical 

and mechanical characteristics, high-resolution measurement, strong resistance 

to shock, vibration, and dynamic pressure change, and lower cost compared to 

other sensors. However, the sensor's output is reliant on temperature change. 

The resistance decreases, and power consumption increases as its size is 

reduced.  

 

Figure 2.4: Structure of Piezoresistive Sensor (Jonathan, et al., 2016) 

 

2.3.4 Optical Sensor 

An optical sensor, shown in Figure 2.5, consists of a solid-state light source, a 

photodetector, and an optical fiber. The working principle of the optical fiber is 

to measure the strength of the light source. The light source, such as an LED, is 

detected by the photodetector and converted into an electrical signal. It can be 

used as a wearable sensor in a data glove because hand motions such as bending 

and twisting can cause some paths of light transmission in the optical fiber to be 

blocked, reducing the power generated. To ensure wearability, the fibers have 

been made of flexible and stretchable elastomers such as a polyurethane rubber 

core with silicone composite cladding (Zhao et al., 2016) or a 

polydimethylsiloxane core with gold nanoparticles and a cured 
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polydimethylsiloxane with a lower refractive index as cladding (Guo et al., 

2019). 

The advantages of an optical sensor are that the materials used in optical sensors 

are chemically inert, allowing them to be applied in highly reactive 

environments. Additionally, they are less sensitive to electromagnetic waves 

and have high linearity of performance. However, optical sensors also have 

some disadvantages, such as slower response times and sensitivity to ambient 

light. 

 

Figure 2.5: Optical Sensor (David, 2020) 

 

 

2.3.5 Capacitive Bend Sensor 

A capacitive sensor comprises two layers of comb-shaped conductive polymer 

separated by a dielectric, as shown in Figure 2.6. The degree of bending of the 

sensor causes a change in the overlapped electrode surface, resulting in a change 

in capacitance. Increasing the deformability of the dielectric layer is crucial to 

enhancing the sensor's sensitivity. Elastomeric materials with high 

compressibility and low Young's modulus can build up the dielectric layer, 

substantially increasing the sensor's sensitivity while eliminating the hysteresis 

effect caused by viscoelastic behavior. 

Capacitive bend sensors have advantages such as high sensitivity, less 

sensitivity to the surrounding temperature, less sensitivity to drift, and lower 

energy consumption. According to Anderson (2019), capacitive sensors exhibit 

linearity of change in capacitance when subjected to strain, but only up to a 

certain strain point (Amjadi et al., 2016). Capacitive sensors consume less 
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power as no real power is consumed (DeHennis et al., 2016). However, they are 

sensitive to temperature due to the thermo-mechanical strain caused by the 

difference in thermal expansion between silicon and Pyrex (Blasquez et al., 

2000; Beddiaf et al., 2016). 

 

Figure 2.6: Structure of Capacitive Bend Sensor (Alapati et al., 2017) 

 

2.3.6 Triboelectric Sensor 

The triboelectric nanogenerator has many advantages, such as being self-

powered, inexpensive, high output range, and stable and lightweight. These 

advantages make it a preferred choice of researchers for adapting it to industry 

applications (Chen et al., 2020). The TENG was first built for energy harvesting 

in 2012 due to its ability to convert mechanical force to electricity. 

The working principle of the triboelectric sensor is based on the 

triboelectric effect (shown in Figure 2.7). The dielectric surfaces, such as 

EcoFlex - human skin (An et al., 2020) or PET - Kapton (Wang et al., 2018), 

come into contact and separate to produce a static electrical charge. The amount 

of charge produced is dependent on the relative displacement of the materials in 

the triboelectric series, where materials located farther apart from each other 

result in more charge being transferred between materials (Fan et al., 2012). 

The triboelectric sensor has several advantages, such as not requiring 

an external power source due to its self-powering mechanism. Additionally, it 

is lightweight, flexible, and has a simple construction. However, the 

triboelectric sensor also exhibits some drawbacks, such as being sensitive to 

temperature due to the change in mechanical properties of materials at various 

temperatures, which affects the effective friction between the materials (Wen et 

al., 2014). It is also sensitive to humidity, with more electrical charge produced 

in lower humidity (Nguyen & Yang, 2013). 
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Figure 2.7: Working Principle of Triboelectric Sensor (Kim et al., 2020) 

 

 

 Virtual Reality 

Virtual Reality (VR) is an advanced system that comprises computer modeling 

and simulation to create a virtual environment that can interact with humans. 

Various devices, such as VR goggles, headsets, gloves, and body suits, receive 

input from users and simulate human senses to make VR more immersive. VR 

has gained the attention of investors and the general public over the past five 

years, especially since Mark Zuckerberg's $2 billion acquisition of Oculus in 

2014 (Castelvecchi, 2016). Major players in VR include HTC Vive, Oculus Rift, 

and PlayStation VR (PSVR). Initially, VR was used in computer graphics, but 

technological advancements have implemented it in many other industries and 

fields (Choi et al., 2015). For example, Moser evaluated the usage of VR, 

emphasizing its significance in clinical treatment and research (Minderer et al., 

2016). Although the definition of VR may vary from person to person and from 

different perspectives, they all share three characteristics: immersion, the 

impression of being present in a world, and interactivity with that environment 

(Sundar et al., 2010). 

 

2.4.1 Level of Immersion 

VR immersion is defined as the degree of involvement of a user in the virtual 

environment. A highly immersive VR system provides a lot of stimuli to 

simulate the user's senses such as sound, smell, touch, and others. There are 

three levels of immersion systems: non-immersive, semi-immersive, and 
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immersive. A non-immersive system is the simplest and least expensive system 

with the fewest stimuli. Normally, a non-immersive system uses a desktop to 

reproduce the image. For semi-immersive, the system starts to use more 

advanced gadgets such as stereographic glasses to display some stereo images 

of a virtual environment, such as Fish Tank VR. For immersive systems, it 

involves more devices to provide more stimuli to human senses, for example, 

VR goggles stimulate the user's vision, VR earphones provide sound stimulation, 

and haptic actuators stimulate the user's touch sense. A high-level immersion 

system can create the illusion of technological non-mediation and a sensation of 

'being-in' or being present in the virtual environment for the user. 

 

2.4.2 VR Technology 

The devices used in VR can be separated into two parts: input and output 

(Burdea et al., 2003). Input devices, such as trackers, capture motion input from 

the user and display the corresponding motion in the virtual environment. For 

example, bend-sensing gloves capture the finger motion of users and display it 

in the virtual environment. VR motion platforms capture the walking motion of 

the user for video games. 

Output devices allow the user to sense everything in the virtual 

environment through sight, sound, taste, touch, and smell. There is a vast 

selection of output devices, ranging from the least immersive, such as a 

computer monitor, to the most immersive, such as VR goggles, helmets, HMD, 

CAVE systems, VR earphones, haptic actuators, and others. 

 

2.4.3 Application of VR Combined with Glove System 

Nowadays, many VR applications exist in different industries, such as military 

training, gaming, education, architectural design, simulation of surgeons, and 

others (Freeman et al., 2017). There are numerous ways that virtual reality 

technology can be used as a stimulus, taking the place of actual stimuli and 

accurately duplicating experiences that are hard to achieve in the real world. For 

this reason, virtual reality (VR) is commonly used in research on innovative 

psychological training or therapeutic techniques, such as for phobia-related 

difficulties (Botella et al., 2017). It can also improve the current rehabilitation 

methods (Borrego et al., 2016) by creating games that ease the tasks. The 
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application of VR combined with glove system can be further classified into two 

groups: classical application and recent application. 

 

2.4.3.1 Classical Application  

Design and manufacturing is one of the classic applications of VR. With VR, 

manufacturers and designers can visualize their products in a virtual 

environment before the construction or manufacturing process, thus eliminating 

costly mock-ups. Users can view 3-D graphical models built in the virtual 

environment and perform design testing, improving, and changing processes 

without altering the real-world product beforehand. For example, Daimler-Benz 

developed a VR system for product testing and design, allowing users to select 

different options and models for furnishing the interior of Mercedes using the 

Data Glove. Another example is Boeing, an aircraft manufacturer, which carries 

out design and maintenance tasks for the military aircraft Joint Strike Fighter 

with Cyberglove by 'walking' around the virtual aircraft. 

Art and entertainment are also classic applications of VR. The 

entertainment industry has combined with VR for a long time. Gloves have been 

utilized in video games, computer-animated characters (Muses, 2002), and 

movie production (Minoh, 2007). A glove system enables applications that 

require control of many degrees of freedom, such as robotic and musical 

performance (Singh, 2002). An example of musical entertainment using VR is 

Sound Sculpting, prototyped by Mulder and Fels. There are also games that 

promote exercise, such as controlling a 3-D virtual basketball while wearing two 

CyberGloves. Hand motions can be used to change the position and orientation 

of the virtual basketball, which links to changes in acoustic parameters. 

 

2.4.3.2 Recent Application 

Medicine and healthcare are the most popular recent applications of data gloves 

in combination with VR. They have been used for motor rehabilitation, motor 

performance analysis, ergonomics, medical education, and training. In the area 

of motor rehabilitation, researchers are exploring the possibility of using data 

gloves as a tool for hand-functional assessment. Hand functional assessment 

requires a wide range of data, such as hand strength and, most importantly, the 

range of motion of hand joints, to make further decisions. Formerly, mechanical 
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or electronic goniometers measured these parameters manually, as shown in 

Figure 2.8. 

 

 

Figure 2.8: Goniometer (IndiaMart, n.d.) 

 

This method has some disadvantages. Even when conducted by a 

skilled therapist, the procedure is time-consuming and restricted in its precision 

(Hellebrandt et al., 1949). Using the data glove to undergo hand assessment can 

ultimately resolve these problems. The glove system can automatically and 

simultaneously measure the range of motion of each joint and finger with 

specific commands and tasks, thus reducing the time consumed and increasing 

accuracy. Some groups have used sensorized gloves to build a more complex 

quantitative system for hand assessment and rehabilitation (Thalmann et al., 

2007). For example, Greenleaf Medical System has created the Wrist System 

for quantitative evaluation of upper extremity function. The system measured 

wrist flexion, extension, radial, and ulnar motion using a data glove with a 

custom-fitted sensor (Greenleaf, 1996). In addition to the Greenleaf Medical 

System, Burdea and colleagues also developed a workstation consisting of two 

subsystems: a diagnosis subsystem and a therapy subsystem for hand motion-

disabled patients. The diagnosis subsystem records the patient's hand motion 

with a glove system and transmits it to the computer to assess the patient's hand 

capability and plan therapy accordingly. In the therapy subsystem, Burdea has 

implemented Rutgers Master I haptic glove, which can provide force feedback 

to the user (Burdea et al., 1992). 

In the field of ergonomics, data gloves are utilized to enhance the 

design of goods, tasks, and settings in order to adhere to ergonomic principles. 

For instance, Protomic of the Netherlands utilized CyberGlove to gather data to 

fine-tune the design of their DataStealth ergonomic keyboard, which aims to 
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increase user comfort and decrease the danger of repetitive strain injury. Using 

CyberGlove, they recorded the motion of the user's fingers while they typed on 

the DataStealth and other conventional keyboards. The data collected was then 

used to evaluate a biomechanical model from the perspective of the impact of 

stresses and strains on the soft tissues of the hand to analyze which design 

minimized the users' effort the most. 

In the area of medical education and training, VR and data gloves have 

been used to simulate rare cases or surgeries for medical training. This brings 

along some advantages, such as cost-reducing and also making mistakes on a 

virtual organ instead of the real human organ. Delp and Rosen, for instance, 

built a tendon transplant simulator that allows inexperienced surgeons to explore 

and become familiar with the structure of the lower limb skeleton through VR 

goggles and data gloves. Surgeons could analyze the effect of changing the 

insertion locations of tendons to plan a procedure to repair individuals with gait 

disorders, and the gait could be predicted with the simulator (Delp et al., 1992). 

 

 Tools to Construct VR Environment and Model 

2.5.1 Blender 

 

Figure 2.9: Blender Logo (Blender, n.d.) 

 

Blender (shown in Figure 2.9) is an open-source 3D computer graphics 

toolkit developed by the Dutch non-profit Blender Foundation. Blender is 

generally used to make animated movies, cinematography, artwork, 3D-printed 

models, demo reel, interactive 3D applications, virtual reality and video games. 

Blender contains several functions with varied functions. Table 2.2 summarizes 

all the features with their corresponding functions. 
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Table 2.2: Summary of Features of Blender (Blender, n.d.) 

Feature Function 

Modelling Advanced polygon modelling system 

accessible via edit mode, with supported 

features like extrusion, beveling, and 

subdividing. It supports several geometric 

primitives, including polygon mesh, 

metaballs, icospheres, text, and others. 

Modifiers Support rending and exporting function, 

which can apply non-destructive effects. 

Sculpting  Simplify models for exporting purposes, for 

example, exporting models as game assets.  

Simulation Simulate effects, including fire, rainfall, dirt, 

fabric, fluid, fur, and rigid bodies. 

Animation Allow users to manipulate elements such as 

inverse kinematics, armatures, hooks, curve- 

and lattice-based deformations, shape keys, 

non-linear animation, constraints, and vertex 

weighting. 

Plugins and scripts Allow integration with several external 

render engines via plugins and add-ons. 

Import and Export Allow users to export and import file in 

different formats such as  Alembic, 3D 

Studio (3DS), FBX, DXF, SVG, STL, 

UDIM, USD, VRML, WebM, X3D, 

and OBJ 

 

 

 

 

https://en.wikipedia.org/wiki/Alembic_(computer_graphics)
https://en.wikipedia.org/wiki/Autodesk_3ds_Max
https://en.wikipedia.org/wiki/Autodesk_3ds_Max
https://en.wikipedia.org/wiki/FBX
https://en.wikipedia.org/wiki/AutoCAD_DXF
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/Universal_Scene_Description
https://en.wikipedia.org/wiki/VRML
https://en.wikipedia.org/wiki/WebM
https://en.wikipedia.org/wiki/X3D
https://en.wikipedia.org/wiki/Wavefront_.obj_file
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2.5.2 Unity Editor 

 

Figure 2.10: Unity Logo (Unity, 2023) 

 

Unity Editor (Figure 2.10) is a game engine that controls the motion of 

certain models by using scripts with languages such as C#, C, C++, Rust, Iron 

Python, and Lua. Scripting is an essential element in all games used to create 

visual effects, control motion, or even apply a self-trained AI system for 

characters in the virtual environment. Unity Editor provides graphic features 

such as lighting, cameras, shaders, particle systems, visual effects, mesh 

components, texture components, rendering components, and others. Unity 

Editor obeys physics and can be separated into 3D physics and 2D physics. The 

Unity Editor provides audio settings, including clips, sources, listeners, 

importing, and sound settings. The Unity Editor also comes equipped with a 

navigation system. The navigation system allows the creation of intelligently 

moving characters in the game world. The navigation system reasons about the 

surroundings using navigation meshes, which are generated automatically from 

Scene geometry. Dynamic barriers provide rerouting of characters in runtime, 

while off-mesh linkages enable the user to construct specialized actions, such as 

opening doors or falling off a cliff. In creating a game, models should be 

imported as assets and then utilized as GameObjects in scripts. Assets can be 

imported to the project by moving the model file into the "Assets" in the Finder. 

Then, users can simply drag the asset file from the Project View window into 

the Hierarchy or Scene View. Whenever an asset file is updated, it will 

automatically reflect in the game.  

 

 3D Tracker 

A 3-D tracker is a device that tracks the motion of a data glove in 3 axes of 

translation and 3-axis of rotation in real-time and transforms it into the virtual 

reality (VR) environment. With the advancements in technology, various types 
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of trackers have been developed with different key performance parameters 

such as accuracy, jitter, drift, and latency. Initially, 3-D trackers were mainly 

mechanical, but these trackers were visually obtrusive and expensive. 

Therefore, non-contact trackers are now widely used to replace mechanical 

trackers. These non-contact trackers feature kinematic structures composed of 

sensorized linkages that are less burdensome and do not restrict the user's 

mobility. Some examples of non-contact trackers include magnetic-based, 

ultrasonic-based, optical-based, and inertial-based trackers. 

A magnetic non-contact tracker employs a magnetic field generated by 

a stationary transmitter to identify the location of a moving receiver device. 

Magnetic trackers are cheap and have acceptable accuracy, and most 

importantly, they do not require a direct line of sight between the transmitter 

and receiver as long as the receiver is under the effect of the magnetic field. 

However, magnetic trackers are sensitive to ferromagnetic materials and 

magnetic fields and should always be kept away from metallic objects as they 

might affect their accuracy. 

An ultrasonic non-contact tracker employs an ultrasonic signal 

generated by a stationary transmitter to pinpoint the location of a moving 

receiver. Unlike magnetic trackers, it is not affected by metallic interference, 

but it is susceptible to echoes from hard surfaces and requires a direct line of 

sight between the transmitter and receiver with no obstacles between them; 

otherwise, the signal might be lost. Additionally, it has a slightly slower 

updating rate than magnetic trackers. 

An optical non-contact tracker employs optical sensing to identify the 

location or orientation of an object in real-time. Optical trackers, like ultrasonic 

trackers, require a direct line of sight between the transmitter and receiver and 

are not affected by metallic interference. However, optical trackers have a 

higher update rate and larger work envelopes than ultrasonic trackers. 

Nevertheless, optical trackers are sensitive to the reflected light, which might 

decrease their accuracy. 

An inertial tracker is a type of tracker that is self-equipped with sensors 

that measure the rate of change of an object's orientation and translation 

velocity. It has advantages, including sourceless operation with theoretically 

unlimited range, no line-of-sight limits, and extremely low sensor distortion. 
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However, the output of inertial trackers must be integrated to derive an object's 

orientation and position. 

 

 Haptic Technology 

2.7.1 Introduction 

Haptic technology is defined as kinaesthetic communication or 3D touch that 

can generate force, vibration, or motion to the user through the sense of touch 

as part of an interface. Nowadays, many applications have already embedded 

haptic actuators to enhance the user's experience. For example, smartphones 

provide different strengths of vibration depending on the caller, vibration 

feedback when playing video games through a joystick, and tangible feedback 

when using a touchscreen. There are several types of haptic implementations, 

such as force feedback, air vortex ring, ultrasound, and vibration. 

Force feedback haptic technology uses devices such as motors to 

simulate the sensation of holding objects in a virtual environment for the user. 

Figure 2.11 illustrates the implementation of force feedback haptic technology. 

 

 

Figure 2.11: Illustration of Force Feedback Haptic (Christian et al., 2019) 

 

The Direct-drive wheels introduced in 2013 implemented the force feedback by 

stimulating force to turn the steering wheel when cornering a real vehicle by 

servomotor.  

Air vortex rings are circular air pockets made up of concentrated gusts 

of air. The air created has proven can create stimuli and sense to humans such 

that it can blow out a candle. Both Microsoft Research (AirWave)(Gupta et al., 

2013) and Disney Research (AIREAL)(Sodhi et al., 2013) have implemented 
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air vortex rings in their system to create non-contact haptic feedback for their 

user to better users’ experience (Shtarbanov et al., 2018). Figure 2.12 illustrates 

the implementation of air vortex rings.  

 

Figure 2.12: Illustration of Air Vortex Ring (Kirn, 2013) 

 

The ultrasound haptic technology enables users to have a focused 

pressure sense with any actual contact. The location of pressure feeling 

generated can be adjusted to our desired location or point by manipulating the 

strength and phase of an ultrasound transducer. Figure 2.13 illustrates the 

implementation of ultrasound haptic technology.  

 

 

Figure 2.13: Illustration of Ultrasonic Haptic Technology (Lisa, 2017) 

 

The ultrasound haptic also enables the user to feel the virtual 3D object 

(Benjamin et al., 2014) through the sensation of vibration (Heather et al., 2018) 

and also can use to gather information on surface texture.   

 

2.7.2 Vibration Haptic Technology 

Vibration haptic technology is the most popular used haptic in electronic 

applications. It offers vibration feedback for a better user experience. There are 

several vibration haptic actuators such as Eccentric Rotating Mass actuators 
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(ERM), Linear Resonant Actuators (LRA) and Piezo Haptic actuators. Each of 

them has a different structural design and operation but similarly, each provides 

vibration feedback to the user. Since the vibration haptic actuator is suitable for 

our project, the three vibration haptic actuators will be introduced and explained 

in the following section. 

 

2.7.2.1 Eccentric Rotating Mass Actuator (ERM) 

Eccentric Rotating Mass (ERM) actuators are miniature DC motors that spin an 

eccentric, unbalanced mass to produce the necessary vibration. The function of 

the ERM is realized by equipping a DC motor with a non-symmetric mass 

attached to the shaft. Therefore, when the motor rotates, a resulting net 

centrifugal force is generated due to the presence of the non-symmetric mass. 

When it rotates at a constantly high speed, the motor will be constantly displaced 

and moved by these asymmetric forces. When the process is repeated again and 

again, the vibration is created. The frequency of the vibration can be controlled 

by the DC voltage. This is because the rotational speed is directly proportional 

to the DC voltage, and the frequency. Figure 2.14 shows the structure of the 

ERM.   

 

Figure 2.14: Structure of ERM (Jason et al., 2018) 
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ERM's advantages include inexpensive cost, widespread availability, 

established technology, a wide variety of specifications, and easy usage and 

design. While it has several disadvantages, such as vibration signal amplitude 

being dependent on driving frequency and requiring much power, it has a 

delayed reaction when beginning and stopping.  

 

2.7.2.2 Linear Resonant Actuator (LRA) 

A Linear Resonant Actuator is an AC-driven actuator that functions based on 

the theory of a spring-mass system. The moving mass of the actuator moves 

back and forth under the action of a voice coil, producing a desired strength of 

vibration that is similar to that of a speaker. Figure 2.15 shows an exploded view 

of an LRA. 

 

Figure 2.15: Exploded View of LRA (Haptics, 2013) 

 

From the exploded view of the LRA, there are components such as a wave 

spring, moving mass, magnet, voice coil, and others. The function of the LRA, 

which creates the sensation of vibration, mainly depends on the four 

components mentioned above. The combination of the moving mass and the 

magnet acts as a part, followed by the wave spring and then the voice coil in 

sequence from outer to inner. As the AC drives the voice coil, it provides the 

motive force to the cone by the reaction between the magnetic field and the 

current passing through it, or the so-called electromagnetic force. Then, the 

moving mass and wave spring will be moved linearly under the effect of the 

electromagnetic force produced by the voice coil, creating a back-and-forth 
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displacement and, therefore, a vibration motion. The process is repeated, and 

the vibration reaches its maximum when the frequency of the AC supplied 

matches the resonant frequency of the spring. 

LRA has advantages such as easy amplitude modulation, less power 

consumption compared to ERM, shorter response time, smaller size, more 

acceleration than the same size of ERM, reliability, and high Q. However, it also 

exhibits some drawbacks, such as vibrating only in one axis, different resonant 

frequencies between each LRA, and a narrow operating bandwidth, which 

causes lower vibration amplitude outside the resonant frequency. 

  

 

2.7.2.3 Piezo Haptic Actuator 

Piezo Haptic actuators work based on the piezoelectric effect, which generates 

a certain amount of electric charge in response to applied mechanical stress. The 

operation is reversible. Piezo Haptic actuators are usually made up of ceramics, 

crystals, bone, and other materials. Figure 2.16 shows some designs of piezo 

haptic actuators.  

 

 

Figure 2.16: Design of Piezo Haptic Actuator (TDK, n.d.) 

 

When an AC source is supplied to the actuator, the material expands 

and contracts, causing the element to stretch upwards and downwards, as shown 

in Figure 2.17, producing a vibrational motion. 
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Figure 2.17: Illustration of Vibration Motion of Piezo Haptic Actuator (TDK, 

n.d.) 

 

Piezo Haptic Actuators are more accurate than ERMs or LRAs because 

they are capable of vibrating at a wide range of frequencies, and the amplitude 

can be adjusted independently. The applications of piezo haptic actuators 

include sounders in audio systems, linear drives, autofocus systems, laser tuning, 

and others. The advantages of the piezo haptic actuator include being non-

magnetic, not requiring holding power, having a quick response time, 

consuming low power, being smaller in size, and having high precision, among 

others. However, it also exhibits disadvantages, such as being non-linear and 

sensitive to electrical overdrive. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

 Introduction 

The project begins with the fabrication of the graphene thread sensor, followed 

by the connection of the sensor with the microprocessor. The hardware 

components can be divided into three parts: two-way communication and 

electronic gadgets such as 2 MPU-6050 modules, 2 DOIT ESP32 DevKit V1, 5 

DC motor vibrations, 5 graphene thread sensors, and a mini LiPo battery. The 

first part involves obtaining input from the graphene thread sensors and MPU-

6050 modules attached to the glove. The graphene thread sensors track the user's 

finger bending motion, while the MPU-6050 modules track the 6 degrees of 

freedom (DOF) movement of the entire hand. Additionally, there will be some 

signal output from ESP32 in the first part to control the vibration of the haptic 

actuator. 

The second part includes data processing using ESP32, and the third 

part involves outputting the processed data to the hand model and game in the 

virtual environment of Unity Editor. The process starts with the graphene 

sensors well-attached to the surface of the glove. Then, the terminal of the 

sensors on each finger and MPU-6050 modules is connected to the ESP32. The 

characterization process begins with serial communication to analyze the output 

response of each sensor under different bending angles to create a mathematical 

model equation to represent it. The equation is then inserted into the Arduino 

Script to convert the analog reading to an angle value. All the data, including 

finger and hand motion data, is then sent to the Unity game through wireless 

and serial communication to control the model motion to play games in the 

virtual environment. 

In reverse, after some set conditions, a signal will be sent to ESP32 to 

control the vibration of the haptic actuator. To make the whole circuit neater, 

some soldering work is also done to combine every gadget on a PCB board. 

After that, packaging will be done to cover and equip the whole PCB board on 

the user's hand. Figure 3.1 shows the work plan of the project. 
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An interactive and interesting game is designed using Unity Editor and 

Blender software. Blender is used to export the hand model to Unity Editor. 

Then, C# script will be coded in the Unity Editor for game design. The user can 

play the game while doing the rehabilitation process.  

 

 

Figure 3.1: Flowchart of Work Plan 

 

 Fabrication of Data Glove 

This project uses a graphene thread sensor as the main component that senses 

finger motion. Figure 3.2 shows the graphene thread sensor. 

 

 

Figure 3.2: Graphene Thread Sensor 

 

The graphene thread sensor was created using various chemical 

processes on a regular polyester thread. Graphene conductive ink was used to 
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coat the polyester threads and consists of graphene nanoplatelets, PEDOT: PSS, 

and DMSO. Graphene nanoplatelets serve as the active sensing materials in ink 

and provide conductivity to the threads by forming a conductive coating through 

Van der Waals forces between the GnPs and polyester threads. DMSO is the 

primary solvent used to disperse GnPs, as it has high solvation power to dissolve 

GnPs due to its aprotic nature. DMSO contains hydrophilic and hydrophobic 

parts, and the hydrophobic parts form weak Van der Waals forces with GnPs to 

disperse GnPs in an aqueous medium. To further enhance the ink's conductivity, 

PEDOT: PSS was added as a co-solvent, as it is a naturally conductive polymer. 

PEDOT: PSS is highly compatible with DMSO and can effectively wash away 

the non-conductive PSS shell of PEDOT: PSS, increasing the ratio of 

conductive PEDOT in the ink. This improves the overall conductivity of the 

solution. Figure 3.3 illustrates the steps in processing the graphene thread from 

a regular polyester thread. 

 

 

Figure 3.3: Illustration of Graphene Thread Processing Steps 

 

First, a normal polyester thread is immersed into 0.5 wt% graphene conductive 

ink, as shown in Figure 3.4.  

 

 

Figure 3.4: Graphene Conductive Ink 

 

Next, the entire bottle was placed in an ultrasonic bath set at 50 degrees 

Celsius and sonicated for 30 minutes to agitate the particles in the solvent, 
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resulting in a better coating. The thread was then removed from the bottle and 

placed into the vacuum oven at 130 degrees Celsius for 20 minutes to 

completely dry the graphene thread. The ultrasonic bath can be seen in Figure 

3.5, the vacuum oven in Figure 3.6, and the resultant graphene thread 

immediately after being removed from the vacuum oven in Figure 3.7. 

 

Figure 3.5: Ultrasonic Bath 

 

 

Figure 3.6: Vacuum Oven 

 

 

Figure 3.7: Resultant Graphene Thread 

 

The graphene thread is now ready to undergo processes such as plaiting 

and covering with copper tape to increase its strength and sensitive. 

 

 Characterisation and Calibration of Data Glove 

The process of Characterisation and Calibration involves finding the output 

response pattern by using Arduino IDE and serial communication to map the 
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output data with their corresponding bending angle by creating a mathematical 

model equation. In this project, the ESP32 is the main hardware component used 

to process the data input from the graphene thread sensor. Figure 3.8 shows the 

hardware structure of the DOIT ESP32 DEV KIT V1.  

 

 

Figure 3.8: Hardware Structure of DOIT ESP32 DEV KIT V1 

 

There are three ways to activate the ESP32: by connecting a power supply to 

the Micro-USB port, through the Vin pin, or through the 3.3V pin. Due to its 

internal LDO voltage regulator, the ESP32 outputs a constant 3.3V, regardless 

of the input supply voltage. However, it is recommended to supply the ESP32 

with a voltage in the range of 3.3V to 5V to balance its lifespan and activation. 

The ESP32 has 15 ADC pins that enable it to read analog input. The ADC input 

channels have 12-bit resolution, which means analog readings range from 0 to 

4095. A reading of 0 corresponds to 0V, while 4095 corresponds to 3.3V. 

Additionally, there are two 8-bit DAC pins that enable the ESP32 to convert 

digital signals into analog voltage signals for output. All pins can be set to input 

or output, except GPIO36, GPIO39, GPIO34, and GPIO35, which can only be 

used as input pins due to a lack of internal pull-up or pull-down resistors. Nine 

touch pins enable the ESP32 to sense variations in electrical charges, such as 

those produced by human skin. SCL and SDA pins enable the I2C protocol, 

which allows the ESP32 to communicate with multiple slave devices in half 

duplex. The SPI pins enable communication with only one slave device at a time 

and in a full duplex. RTC pins are used to wake up the ESP32 in deep sleep 

mode, saving power consumption. 
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For this project, the required pins include ADC pins for input analog 

readings and output voltage, SCL and SDA pins for the I2C protocol, the 3.3V 

pin for activating the ESP32, and GND pins. To calibrate and characterize the 

self-plaiting and graphene thread sensors, 5 ADC input pins will be needed, and 

their connections are shown in Figure 3.9. 

 

 

Figure 3.9: Connection of Voltage Divider Circuit to ESP32 

 

3.3.1 Data Collection from Finger Sensor 

To enhance the graphene thread sensor's connectivity, strength, and sensitivity, 

two copper tapes with jumper wires soldered onto them have been used and 

attached to both ends of the graphene thread sensor. One end of the jumper wire 

will connect to a power source, while the other will connect to a 22k ohm 

resistor and ground, as shown in Figure 3.9. These can be connected to either 

end because there is no polarity difference between the ends of the graphene 

thread sensor, forming a voltage divider circuit. Then, connect the voltage 

output port of the voltage divider circuit to GPIO 32, GPIO 34, GPIO 35, GPIO 

36, and GPIO 39 pins for the 5 thread sensors, respectively. The GPIO 32 to 39 

pins act as input pins to read the analog value input from the voltage divider. 
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The reason for selecting a 22k ohm resistor as the fixed resistor in the 

voltage divider circuit is that the output resistance of fabricated graphene thread 

sensors in the optimum condition is between 30k to 100k ohm when stretched 

and released, which is close to 22k ohm.  

 

 

Figure 3.10: Voltage Divider 

 

As shown in Figure 3.10, two undesired conditions will not occur: when the 

fixed resistance (R2) is too high, changes in Rsensor will not cause obvious 

changes in Vout, and when the fixed resistance (R2) is too low, the Vout will be 

close to 0. As finger bending causes the stretching of the graphene thread sensor, 

it changes its resistance and, consequently, in the Vout. The input analog reading 

of the ESP32, the finger bending angle, can be mapped from the input analog 

reading. The analog reading corresponding to different bending angles of the 

finger can be called out and displayed on the serial monitor, as shown in Figure 

3.11.  
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Figure 3.11: Analog Reading Vs Bending Angle 

 

After that, the bending angle can be mapped from the analog value by 

forming a quadratic equation, θ = Ax2 + Bx + C, where x represents the input 

analog reading and θ represent the angle data. Then, the angle data can be sent 

out through wireless connection algorithms to the game environment. Figure 

3.12 shows the flowchart for the data collection from the graphene thread sensor. 

 

 

Figure 3.12: Flowchart of  Data Collection of Graphene Thread Sensor 
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 MPU-6050 Module 

 

 

Figure 3.13: MPU-6050 Module 

 

The MPU-6050 Module (Figure 3.13) is used to detect the orientation 

of the real-world hand and control the motion of the hand model in the virtual 

environment based on the motion of the real-world hand, with the aid of the 

ESP32. The MPU-6050 Module is a 6-axis motion tracking device that includes 

a 3-axis gyroscope and a 3-axis accelerometer. The gyroscope tracks the 

rotational gravity, while the accelerometer tracks the gravitational creation. The 

MPU-6050 Module also has a built-in integrated DMP, which provides high 

motion-related computational power. The module uses the I2C protocol for bi-

directional communication between the module and external devices via the 

SDA and SCL ports. For this project, two MPU-6050 Modules will be used, and 

their connections are shown in Figure 3.14. 

 

 

Figure 3.14: Connection of MPU6050 to ESP32 
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3.4.1 Data Collection from MPU6050 

Both MPU6050 modules act as slaves to the ESP32 and have duplex 

communication with it. Each of them serves a different purpose and function in 

the project. The first MPU6050 is used to detect and collect quaternion rotation 

data of the user's hand, while the second MPU6050 is used to detect and collect 

acceleration in the vertical and horizontal directions of the user's hand.  

As shown in Figure 3.14, the SCL pin of the MPU6050 is connected to 

the SCL pin of the ESP32, which is GPIO 22, while the SDA pin of the 

MPU6050 is connected to the SDA pin of the ESP32, which is GPIO 21. To 

enable communication between the two MPU6050s and the ESP32 

simultaneously, the I2C protocol is used. To enable the I2C protocol, the GPIO 

2 and GPIO 4 pins are set as output pins to provide power to the MPU6050s. 

The Vcc pin of the first MPU6050 is connected to GPIO 2 and powered to high, 

while the AD0 pin of the second MPU6050 is connected to GPIO 4 and powered 

to high. Both GND pins of the MPU6050s are connected to the GND pin of the 

ESP32. After finishing the connection of the MPU6050s to the ESP32, coding 

for them is taking place. First, the I2C address for both of them is set; one is 

0x68, the default address for the I2C protocol, while the other is 0x69 for the 

MPU6050 with the AD0 pin high. Then, the function class is defined to tell the 

MPU6050 to output values corresponding to desired parameters. For this project, 

function classes are set to <OUTPUT_READABLE_QUATERNION> to get 

quaternion orientation and <OUTPUT_READABLE_WORLDACCEL> to get 

horizontal and vertical acceleration. The offset is then set and calibrated by 

setting the offset value to the MPU6050s to eliminate the zero error. After that, 

both MPU6050 are initialized by checking the functionality of the DMP (Digital 

Motion Processor) and getting the initial DMP FIFOPacketSize for later 

comparison and calculation. The process is repeated by checking whether the 

DMP is ready. If so, the current DMP FIFOPacketSize is obtained to compare 

with the previous one to output the parameter values corresponding to the 

current motion. Then, the data is sent out through the wireless algorithm of the 

ESP32. Figure 3.15 shows the overall MPU6050 process flow. 
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Figure 3.15: MPU6050 Process Flow 

 

In this project, there are total of 7 parameters value will be output by 

two of the MPU6050 as shown in Table 3.1. 

 

Table 3.1: MPU6050 Output Parameters 

MPU6050 Output Parameter Represent 

First q.w Quaternion Scaler 

 q.x Quaternion vector in X 

 q.y Quaternion vector in Y 

 q.z Quanternion vector in Z 

Second aaWorld.x World acceleration in X 

 aaWorld.y World acceleration in Y 

 aaWorld.z World acceleration in Z 
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 Haptic Actuator 

 

 

Figure 3.16: Haptic Actuator 

A haptic actuator (Figure 3.16) was added to the glove to enhance the user's 

experience and interaction with the game. An ERM (Eccentric Rotating Mass) 

type of DC motor vibration haptic actuator has been selected because it is small 

and lightweight and functions with DC voltage input, which is easier to control 

by the ESP32 since it outputs DC voltage. The ERM haptic actuator operates at 

a rated DC voltage of 3V and creates vibration when supplied with DC voltage. 

When certain criteria are met, a signal can be sent to the ESP32 to output DC 

voltage and activate the ERM haptic actuator. Figure 3.17 shows how the DC 

motor vibration is connected to the ESP32. 

 

Figure 3.17: Circuit Connection of DC Motor Vibration to ESP32 
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3.5.1 Haptic Actuator Signal 

In this project, five haptic actuators have been used for each finger. In the game 

environment, when a certain condition is met, a signal will be sent from the 

game environment to the ESP32, which will then control the vibration of the 

DC motor vibrations. To achieve this, GPIO 14, GPIO 25, GPIO 26, GPIO 27, 

and GPIO 33 have been set as output pins to supply voltage to the five DC motor 

vibrations. For example, when the player grabs the boom balloon in the game 

environment, a signal 'a' will be sent from the game environment to the ESP32. 

When the ESP32 detects the signal 'a', it will control the five GPIO pins that are 

initially low by setting them high for 0.5 seconds and then turning them low 

again. Figure 3.18 illustrates this process. 

 

 

Figure 3.18: Flowchart of Haptic Actuator Process 

 

 Setup in Arduino IDE 

 

Figure 3.19: Arduino Logo 
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The Arduino IDE (Figure 3.19) is a software tool based on the C++ language, 

which allows users to write and upload code to the Arduino hardware chip 

through a USB cable. Certain essential steps must be followed to ensure proper 

functioning. For example, the board setting in the Arduino IDE must match the 

Arduino hardware used. This setting can be configured through Tools >> 

Board >> Board Manager. In Board Manager, various board types are available, 

and the user must select the appropriate one based on the hardware type. 

However, there may be some problems in this step, such as when the 

downloaded version of Arduino IDE is too new or old to have a board type that 

matches the Arduino hardware type. In such cases, the user should add an online 

source through File >> Preferences >> Additional Boards Manager URLs. The 

source URLs can be copied and inserted to solve this problem. Additionally, the 

corresponding library must be included in the code if a particular function needs 

to be realized. For example, if the 'WiFi' function needs to be included in the 

application, the 'WiFi' library must be included by following the step (Sketch >> 

Include Library >> Manage Libraries) to find the particular library in the Library 

Manager and install it. If the library is not available in the Library Manager, the 

user should download its zip file online and add it to the Arduino IDE through 

(Sketch >> Include Library >> Add .ZIP Library). Once the codes are written 

in the Arduino IDE, they can be uploaded to the chip through a USB cable and 

do not need to be uploaded again unless some part of the code needs to be 

changed. The Arduino IDE also provides some features, such as the Serial 

Plotter, which helps to plot the outcome of serial communication. In this project, 

the Doit ESP32 DevKit V1 board needs to be installed, and an extra library, 

such as 'elapsedMillis', must be added from an online source. 

 

3.6.1 Data Transmission through Wireless and Serial Communication 

In this project, two types of communication were used to transmit data which 

are wireless and serial communication. Figure 3.20 shows the data transmission 

process. 
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Figure 3.20: Data Transmission Process 

 

In the first DOIT ESP32 DEV KIT V1, all electronic gadgets and sensors will 

be connected and coded to obtain the desired data for use in the game 

environment. The data will then be transmitted wirelessly to the second DOIT 

ESP32 DEV KIT V1. The second DOIT ESP32 DEV KIT V1 will be connected 

to a computer through a USB port and will receive data wirelessly from the first 

DOIT ESP32 DEV KIT V1, which will be transmitted to the computer through 

serial communication. Conversely, signals from the game environment can be 

transmitted to the second DOIT ESP32 DEV KIT V1 through serial 

communication and then to the first DOIT ESP32 DEV KIT V1 through 

wireless communication, activating the haptic actuators to provide haptic 

feedback to the user. For this reason, a wireless data glove that can interact with 

the game environment and provide haptic feedback can be fabricated. 

The wireless communication algorithm used in this project is called 

ESP-NOW, which is one of the reasons why DOIT ESP32 DEV KIT V1 has 

been selected as the main microprocessor used in this project. ESP-NOW is a 

fast wireless communication protocol that allows users to exchange small 

messages of up to 250 bytes between ESP32 boards without using Wifi. ESP-

NOW can be set up as one-way or two-way communication, depending on the 

setup and application. In this project, two-way communication is set up to 

transmit signals and data between electronic gadgets and the game environment. 

To set up two-way communication of ESP-NOW, some libraries, such as 

esp_now.h and WiFi.h, need to be included in the Arduino script. WiFi.h is not 

used to transmit data through Wifi but is used to get the unique MAC address 

of each DOIT ESP32 DEV KIT V1 and set them as a standalone wifi station to 

send data through their internal antenna. Each ESP32 board has its own unique 

1 2 
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MAC address. Figure 3.21 shows an example of a MAC address that has been 

called out and displayed in the serial monitor of the Arduino IDE. 

 

 

Figure 3.21: MAC Address Displayed in Serial Monitor 

 

Once the MAC addresses of each ESP32 board have been obtained, 

they are set as the data receiver for each other. The MAC address of the second 

ESP32 is set as the data receiver address in the first ESP32 Arduino script, and 

vice versa. Then, a structure that contains all the variables needed to be sent and 

received between the two ESP32s is created. A callback function can be 

optionally created to notify the user whether the message has been sent 

successfully. All the data from the electronic gadgets and sensors are then 

assigned to variables defined in the message structure. The message structure is 

then sent and received between the two ESP32s using the OnDataSent and 

OnDataRecv commands through the internal antenna of ESP32. Figure 3.22 

shows the process flow of wireless communication.  
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Figure 3.22: Process Flow of Wireless Communication 

 

After the second ESP32 receives all the data from the first ESP32 

through wireless communication, the data will be sent to the computer and game 

environment via serial communication. Conversely, when there is data from the 

game environment, data will be sent from the game environment to the second 

ESP32 via serial communication and wireless communication to the first ESP32. 

Figure 3.23 shows the process involved in the second ESP32. 

 

 

Figure 3.23: Process Flow Involving in Second ESP32 

 

 Power Source 

In this project, a wireless connection is applied, thus causing the ESP32 cannot 

be directly powered up by the computer through a USB port. For that, a mini in 
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size, light in weight, and portable battery, as shown in Figure 3.24 has been 

introduced.  

 

 

Figure 3.24: LiPo Battery 

 

The battery capacity selected for this project is 600 mAh, which means 

it can supply a current of 600 mA for 1 hour at the nominal voltage of 3.7 V. 

This is because the power consumption of the ESP32 in ESP-NOW mode is 

about 20 mA, the MPU6050 will draw about 10 mA each, and the haptic 

actuator will draw about 60 mA in the 3V voltage supply each. Therefore, the 

total current required is about 340 mA. The 600 mA current supply of the LiPo 

battery is more than enough and can continuously power the whole prototype 

for about 1.5 hours before recharging is needed. The positive terminal of the 

LiPo battery will be connected to the 3.3V pin of the first ESP32, as well as one 

end of the Graphene Thread Sensor, and the negative terminal will be connected 

to the GND pin of the first ESP32. 

 

 Overall Hardware Design 

Figure 3.25 shows the complete circuit for the first ESP32 project. 

 

 

Figure 3.25: Overall Hardware Connection for First ESP32 
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Figure 3.26 shows the overall process flow of the first ESP32, and 

Figure 3.27 shows the overall process flow of the second ESP32 

 

 

Figure 3.26: Overall Process Flow of First ESP32 
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Figure 3.27: Overall Process Flow of Second ESP32 

 

 Build Up a Virtual Environment and Hand Model 

3.9.1 Blender 

 

Figure 3.28: Blender Logo 

 

To build up the virtual hand model, the software used are such as 

Blender(Figure 3.28) and Unity Editor. The Blender is mainly used to get the 

hand model. The Blender will be cooperated with Sketchfab to import online 

open-source hand models to the Blender. The Sketchfab can be added-on to the 

Blender with the step (Edit >> Preferences >> Add-ons). Then will need to 

register a Sketchfab account. After that, log in to Sketchfab account to select a 

suitable hand model and import it into Blender. In Blender, the armature will be 

added to the hand model following the pattern of model’s finger and then set the 

relationship between the armature and hand model as parent-children. Therefore, 

the hand model will move simultaneously when the armature is moving. Table 

3.2 shows the structure and design of the selected hand model, and Table 3.3 

shows the design of the armature attached from a different perspective. 
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Table 3.2: Hand Model 

Perspective Hand Model 

Bottom View 

 

Front View 

 

Side View 
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Top View 

 

 

Table 3.3: Armature 

Perspective Armature 

Bottom View 

 

Front View 
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Side View 

 

Top View 

 

 

Figure 3.29 shows the hand model's grabbing motion by manually 

controlling the armature after they have been successfully set as the parent-

children relationship. 

 

 

Figure 3.29: Grabbing Motion of Hand Model 
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3.9.2 Unity Editor 

After the hand model has been created and attached to an armature, the file was 

exported in FBX format to the Unity Editor. Unity Editor is a game engine that 

enables users to create their own games using custom design models and 

controls their motion using C# scripts. The Unity Editor will treat the exported 

hand model from Blender and the C# script as assets. In this step, a mathematical 

model equation to represent the motion of the hand model's fingers and MPU-

6050 module can be inserted into the C# script to control the motion of the hand 

model in the virtual world based on the real-world motion with the aid of ESP32 

through wireless and serial communication. In Unity Editor, some games will 

be created for the patient to play during the rehabilitation process. Some haptic 

feedback will be sent back to the patient in a set condition as vibration from the 

haptic actuators. 

 

 VR Game Design 

Four scenes were designed in the VR game environment, including the main 

menu, game selection, difficulty selection, and in-game scene. The data from 

the second ESP32 will be sent to the game environment via serial 

communication and will be bound to their respective parts in the game 

environment. For example, the data from the finger sensor will be bound to each 

finger of the hand model, while the data from the MPU6050 was bound to the 

hand model's body. Algorithms were also implemented to detect the grabbing 

and colliding motion of the hand model with game objects to make decisions in 

the game. Additionally, background music, sound and visual effects, a timer, a 

score manager, and other features will be introduced to make the game more 

engaging and enjoyable.     

 

3.10.1 Grabbing and Colliding Motion 

Hand model finger orientation fully depends on angle data senses from the 

graphene thread sensor. If the angle data is 90, the hand model will be presented 

as grabbing motion, and if the data decrease, the hand model finger bending 

angle will also decrease until 0. The grabbing and colliding motion is the 

important motion which need to be detected in game environment as a lot of 

decision making is mainly depends on them. To detect the grabbing motion, the 
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algorithms can be set to detect whether the angle data is 90 or near to 90 as the 

hand model motion is fully depending on angle data. For colliding motion, some 

function in the Unity Editor has been used to detect it such are OnTriggerEnter(), 

OnTriggerStay() and OnTriggerExit(). They are used to detect the hand model 

first collide with a certain game object, stay colliding with a certain game object 

and move away from colliding a certain game object respectively. To enable the 

three functions above, 3D collider need to be added to game object and hand 

model such that when the collider is collided then can be captured by code 

algorithm. There are many type of collider in Unity Editor, but the capsule 

collider has been selected as capsule collider can let user freely adjust the size 

and coverage of the collider. Figure 3.30 and Figure 3.31 show the example of 

capsule collider which attaches on a game object and hand model. 

 

 

Figure 3.30: Capsule Collider on Game Object 

 

 

Figure 3.31: Capsule Collider on Hand Model 
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 To make a decision in the game, the user must simultaneously move 

the hand model to collide with the desired game object and perform the grabbing 

motion. Two Boolean variables, bool2, and value, are assigned to detect 

grabbing motion and collision, respectively. The decision can only be made 

when bool2 and value are both true. For example, if a user wants to play a 

particular game in the game station, they can move the hand model to collide 

with the game object or button corresponding to that game and perform the 

grabbing motion to make the selection. If the game algorithms do not detect the 

hand model performing the grabbing motion or the hand model does not collide 

with a particular game object, no decision will be made.     

 

3.10.2 Game Scene 

The main menu scene had two buttons: the play button and the exit button, 

which the user could select. To select the game station, the user can grab the 

play button, and to exit, the user can grab the exit button. If the user selects the 

play button, the scene manager will change the scene from the main menu to the 

game selection scene. In the game selection scene, the user can select their 

desired game by grabbing the corresponding button. Additionally, the user can 

choose to go back to the main menu scene by grabbing the back button. Once 

the user selects their desired game, three difficulty buttons will appear in the 

difficulty selection scene, which is easy, medium, and hard. Similarly, if the 

user wants to change the game, they can grab the back button, and the scene 

manager will take them back to the game selection scene. If the difficulty level 

is selected, the scene manager will change the scene to the in-game scene. For 

now, only one game, called Balloon Pop, has been designed. In Balloon Pop, 

balloons of different colors keep moving upwards at different speeds, depending 

on the difficulty level selected. For instance, the balloons move slowly on the 

easy level and quickly on the hard level. Figure 3.32 shows the design of the 

balloons in the game. 
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Figure 3.32: Balloon Design 

 

In Balloon Pop, the user was given 60 seconds to play the game, and the highest 

score in history will be displayed for reference. During these 60 seconds, the 

user can freely move around and grab the normal balloons, and one point will 

be added to the score regardless of the balloon's color. If the user grabs the boom 

balloon, a punishment of 5 seconds will be deducted from the timer, and a signal 

'a' will be sent out through serial and wireless communication to activate the 

haptic actuator. 

To prevent cheating, algorithms have been designed to detect whether 

the user continuously holds the grabbing gesture without releasing it. A Boolean 

variable (bool1) has been assigned to detect whether the angle data is less than 

20, indicating that the user has performed the hand opening motion. 

After the time is up, the score will be compared with the highest score in history. 

If the score exceeds the highest score, it will be recorded as the new highest 

score. The user will then be given three options: press (R) to restart the game, 

press (G) to go back to the game selection scene to choose another game, or 

press (Esc) to exit the game station entirely. Figure 3.33 shows the overall game 

logic. 

 

Normal 

Balloon 
Boom 

Balloon 
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Figure 3.33: Overall Game Logic 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

 Introduction 

In the following section, the fabricated graphene thread sensors result, the 

combined prototype on the PCB board, the VR Game design, and the 

effectiveness of serial and wireless communication will be evaluated and 

discussed.  

 

 Graphene Thread Sensor Result 

Five graphene thread sensors have been well-fabricated and glued on the glove, 

as shown in Figure 4.1.  

 

 

Figure 4.1: Graphene Thread Sensor on Glove 

 

Figure 4.2 to Figure 4.6 show the graph of resistance change of each 

graphene thread sensor when the bending angle changes from 0° to 90°. 
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Figure 4.2: Resistance Change of Graphene Thread Sensor on Index  

 

 

Figure 4.3: Resistance Change of Graphene Thread Sensor On Middle 
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Figure 4.4: Resistance Change of Graphene Thread Sensor On Thumb 

 

 

 

Figure 4.5: Resistance Change of Graphene Thread Sensor on Pinky 
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Figure 4.6: Resistance Change of Graphene Thread Sensor on Ring 

 

Figure 4.2 to Figure 4.6 show that although the resistance range of the graphene 

thread sensors is different, they follow the same pattern where the resistance 

decreases as the bending angle increases. This is because the thread sensors are 

plaited from several processed single threads. When the sensor is stretched, the 

stretching force applied to it reduces the gaps between every single thread, 

causing the connectivity to increase and the resistance to decrease. 

The different resistance ranges among the sensors may be due to human 

involvement in the sensor fabrication process. In each process, there may be 

some contamination or unavoidable scraping down of some graphene particles, 

which are coated on the thread during the plaiting and reclaiming process, 

further causing the intensity of graphene particles on each sensor to be slightly 

different. This condition might differ the connectivity and sensitivity of each 

sensor. However, this will not affect the sensing result of finger bending angle 

as it follows the pattern of decreasing resistance with increasing bending angle. 
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To further compare the five sensors, a normalized data graph has been plotted 

and is shown in Figure 4.7. 

 

 

Figure 4.7: Normalized Data of Sensors 

 

The normalized data is calculated by dividing the resistance data by their 

respective highest data value in each sensor, with bending angles ranging from 

90° to 0° degrees, to put them in the same data range for better comparison. 

From the normalized data graph above, the ring and index finger sensors have 

steeper slopes than others. Thus, we can conclude that they are more sensitive 

to force applied on them, have less contamination, and have less human error 

during fabrication processes. Figure 4.8 shows the resistance change of the 
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graphene thread sensor under the bending and releasing motion of the finger for 

100 cycles. 

 

Figure 4.8: Resistance Change under Bending and Releasing of Finger 

 

The equation in Table 4.1 maps the analog reading of the input pin of the ESP32 

to the corresponding finger-bending angle data. This data is used to control the 

motion of the hand model in the game environment. Figure 4.7 illustrates the 

relationship between the analog reading and finger bending angle data for all 

five fingers. The figure shows that the angle data increases as the analog reading 

decreases. It is important to note that the equation may vary slightly for each 

sensor due to the differences in resistance range and sensitivity of each sensor. 
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Therefore, calibration may be required to ensure accurate finger bending angle 

data. 

 

Table 4.1: Equation to Calculate Angle Data 

Finger Equation 

Thumb θ = 0.00015x2 - 0.555x + 495 

Index θ = 0.00060x2 - 0.510x + 900 

Middle θ = 0.00500x2 - 0.070x -123.75 

Ring θ = 0.00075x2 - 1.275x + 540 

Pinky θ = 0.00080x2 - 1.144x  +424.29 

 

 Prototype Soldering and Combining Result 

After the characterization and calibration of graphene thread sensor, all the 

components have been soldered on a PCB board using a solder gun. Figure 4.9 

and Figure 4.10 show the result of a combined prototype on one PCB board. 

 

 

Figure 4.9: Top View of Combined Prototype 
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Figure 4.10: Bottom View of Combined Prototype 

 

The board has a total of 26 jumper wires that were soldered onto it. Ten 

of these wires are used to connect the two end terminals of the five graphene 

thread sensors. Another ten wires are used to connect the positive and negative 

terminals of the five haptic actuators. Two wires are used to connect the positive 

and negative terminals of the LiPo battery, and four are used to connect the AD0 

pin, GND pin, SCL pin, and SDA pin of one of the MPU6050 sensors. 

Additionally, another MPU6050 sensor is directly soldered onto the board 

underneath the ESP32 to reduce the space occupied by the components, as 

shown in Figure 4.11. 

 

 

Figure 4.11: MPU6050 Soldered on Board 
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Five 22k ohm resistors are also soldered onto the board to act as fixed 

resistors in the voltage divider circuit. In addition, two covers were designed 

and 3D printed. One is used to cover the combined prototype on the PCB board, 

while the other is used to cover the other MPU6050 to prevent the user from 

getting injured by physical pins of parts when equipping it on the hand. Figure 

4.12 and Figure 4.13 show the results. 

 

Figure 4.12: Top View of Prototype with Cover 

 

 

Figure 4.13: Bottom View of Cover 

 

The cover of ESP32 is purposely made thicker to allocate LiPo battery together, 

as shown in Figure 4.14. Figure 4.15 shows the whole prototype in the user's 

hand. 
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Figure 4.14: Cover with LiPo Baterry 

 

 

 

Figure 4.15: Prototype on User Hand 
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 VR Game Environment 

4.4.1 Main Menu Scene 

 

 

Figure 4.16: Main Menu Scene 

 

Figure 4.16 shows the design of the main menu scene in the game 

station. There are two buttons, Play, and Exit, to be selected by the user. If the 

Exit is grabbed, the game will be exit; if the Play is grabbed, the scene will be 

changed to Game Selection Scene. 

 

4.4.2 Game Selection Scene 

 

 

Figure 4.17: Game Selection Scene 

 

Figure 4.17 depicts the design of the Game Selection Scene in the game 

station. Currently, only one game, Balloon Pop, is available, but more games 

can be added. The user can select between the Balloon Pop button and the Back 

Play  Exit  

Balloon Pop 

Back 
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button. The scene will change to the Main Menu Scene if the Back button is 

selected. On the other hand, if the Balloon Pop button is selected, the scene will 

change to the Difficulty Selection Scene. 

 

4.4.3 Difficulty Selection Scene 

 

 

Figure 4.18: Difficulty Selection Scene 

 

Figure 4.18 shows the Difficulty Selection Scene. There are 4 button 

to be selected by the user: Easy button, Medium button, Hard button, and Back 

button. If the Easy button is grabbed, the moving speed of the balloon in the 

Balloon Pop game will be the slowest, medium speed for the Medium button, 

and fastest for the Hard button. If the user grabs the Back button, the scene will 

change back to the game selection scene to select other desired games. 
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4.4.4 In-Game Scene 

 

 

Figure 4.19: In-Game Preparation Time 

 

Before the game starts, the user is provided with 3 seconds of 

preparation time, as shown in Figure 4.19. 

 

 

Figure 4.20: In-Game Scene 

 

Figure 4.20 depicts the In-Game Scene that appears when the game 

starts. The user can grab two types of balloons - Normal Balloons and Boom 

Balloons. One point is added to their score when the user grabs a Normal 

Balloon. However, if the user grabs a Boom Balloon, they will be punished with 

a deduction of 5 seconds. The game also features a timer, a history of high scores, 

Boom 

Balloon 

Normal 

Balloon 

Points 

Timer 
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and sound and visual effects. At the end of the game, the user's score is 

compared to the history of high scores. If the user's score is higher, it will 

overwrite the previous high score and remain in the record until the next high 

score is broken. The sound and visual effects make the game more interesting 

and engaging, notifying the user whenever a balloon is grabbed and popped. 

The accompanying figures (Figure 4.21 and Figure 4.22) showcase these effects. 

 

 

Figure 4.21: Boom Balloon Effect 

 

 

Figure 4.22: Normal Balloon Effect 



67 

 

As shown in Figure 4.21, when the Boom Balloon is grabbed, the timer 

will deduct 5 seconds, as seen in the figure where the timer goes from 60 to 55 

seconds left. The visual effect will be accompanied by a short ‘boom’ sound 

effect and a signal ‘a’ will be sent out to activate the haptic actuator to notify 

the user that the Boom Balloon has been popped. On the other hand, as seen in 

Figure 4.22, when a Normal Balloon is grabbed, one point will be added to the 

point record regardless of the balloon color. The particle visual effect with a 

color corresponding to the grabbed balloon color and a short ‘pop’ sound effect 

will be played to notify the user that the Normal Balloon has been popped. An 

ending menu will pop out when the time is up, as shown in Figure 4.23. 

 

 

Figure 4.23: Ending Menu 

 

After the game is over and the ending menu is displayed (as shown in 

Figure 4.23), the user has several options. They can go back to the Game 

Selection Scene to play another game (if available) by pressing G, restart the 

game by pressing R, or exit the game by pressing ESC. 

 

 Serial and Wireless Communication Result 

In this project, there are 12 data values: 5 for data values from the graphene 

thread sensor to control finger motion, 4 data values from the first MPU6050 to 

control the quaternion orientation of the hand model, and 3 data values from the 

second MPU6050 to control the acceleration of the X, Y, and Z axis. These data 

values need to be sent out forward, from the first ESP32 to the second ESP32 

through wireless communication and eventually to the computer and game via 
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serial communication. In reverse way, there is 1 data value that needs to be sent 

out as a signal to control the vibration of the haptic actuator via serial 

communication from the computer and game to the second ESP32. Figure 4.24 

(a)- (d) show the result of the two communications. 

 

 

Figure 4.24(a): Finger Motion Control via Communications 
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Figure 4.25(b): Finger Motion Control via Communications 

 

 

Figure 4.26(c): Finger Motion Control via Communications 
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Figure 4.27(d): Finger Motion Control via Communications 

 

 

Figure 4.28(a): Hand Model Control via Communications 
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Figure 4.29(b): Hand Model Control via Communications 

 

 

Figure 4.30(c): Hand Model Control via Communications 
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Figure 4.31(d): Hand Model Control via Communications 

 

As shown in Figure 4.28(a) - (d), the user was able to control the hand 

model in the VR game environment through serial and wireless communication. 

By bending and releasing his fingers one by one, the user was able to control 

the bending and releasing of the fingers in the hand model in the game. 

Moreover, the user could control the hand model's motion by rotating and 

moving his hand wherever he wanted. Figure 4.32 and Figure 4.33 show the in-

game condition. 
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Figure 4.32: In-Game Condition 1 
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Figure 4.33: In-Game Condition 2 

 

 Figure 4.32 and Figure 4.33 show that the user was able to control the 

hand model in the game environment to move around and perform grabbing and 

releasing motions as desired. The graph beside it shows the analog reading 

changes caused by the bending and releasing of the graphene sensor every time 

the user performs the grabbing and releasing motion. The haptic actuators also 

successfully received signals sent from the game environment every time the 

Boom Balloon was grabbed and provided haptic feedback to the user. 

 

 

Grabbing  

Releasing  
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 Summary 

The fabricated graphene thread sensor is capable of sensing the user's finger 

bending and releasing motion, and the user successfully controls the quaternion 

and acceleration motion via the MPU6050. All hardware components have been 

combined and soldered onto one PCB, following the desired hardware algorithm 

design. The VR game, with numerous fascinating and fancy features, has been 

designed to make the rehabilitation process more interesting. The serial and 

wireless communication algorithm successfully and smoothly transmits all data 

values throughout the project bi-directionally. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

 Conclusions 

Throughout this project, a graphene thread sensor has been produced and 

fabricated from normal polyester thread by using graphene conductive ink. 

Electronic gadgets such as MPU6050, DOIT ESP32 DEV KIT V1, LiPo Battery, 

and DC motor vibration have been studied thoroughly. Coding algorithms, such 

as wireless and serial communication, have been integrated into the glove for 

data transmission. Game design coding was used to design a fancy, interesting, 

and bug-free game. Applications and tools, such as Blender, Unity Editor, 

Arduino, SolidWorks, solder gun, ultrasonic machine, vacuum oven, Cura, and 

others, have been utilized to complete the project. 

 

 Recommendations for future work 

The power source selected to power up the ESP32 for wireless connection is a 

LiPo battery, as it is rechargeable, compact and lightweight. However, it has 

some drawbacks, such as its voltage range fluctuating from 4.2V when fully 

charged to 3.0V when fully discharged, despite its nominal voltage being 3.7V. 

This fluctuation can affect the angle data mapped from the analog reading of the 

output voltage of the voltage divider rule, which is controlled by the graphene 

thread sensor powered by the LiPo battery. To address this issue, it is 

recommended to build and install an external voltage regulator of 3.3V after the 

LiPo battery to ensure the stability of the voltage output from the LiPo battery. 

Secondly, it has been observed that the graphene thread sensor absorbs 

moisture from the surrounding air, causing changes in its resistance range. This 

is undesirable, particularly when the mapped angle data highly depends on the 

resistance of the graphene thread sensor. To solve this issue, it is recommended 

to add insulation at the outer layer of the sensors or explore a suitable chemical 

to add to the graphene conductive ink to prevent the graphene from absorbing 

moisture from the surrounding air. Furthermore, automating the production 
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process of the graphene thread sensor is recommended to ensure the stability 

and consistency of the sensors. 

Thirdly, to make the entire game station more complete and engaging, 

adding more games in the future is recommended. The game should be designed 

to be easy to use, allowing the patient or user to get started quickly. 
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APPENDICES 

 

Appendix A: Overall Arduino Code of First ESP32 
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Appendix B: Overall Arduino Code of Second ESP32 
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Appendix C:  Code to Control Finger Bending and Releasing motion, 

Quaternion and Acceleration of Hand Model and Haptic Actuator Signal 

 

using System.IO.Ports; 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

using System.Linq; 

 

public class FingerMotion : MonoBehaviour 

{ 

    SerialPort stream = new SerialPort("COM5", 115200); 

    public static FingerMotion Boom; 

    public string strReceived; 

    public string[] strData = new string[12]; 

    public string[] strData_received = new string[12]; 

    public float qw, qx, qy, qz, aax, aay, aaz; 

    public float Speed = 10f; 

    public float speedFactor = 15.0f; 

    public static bool bool1; 

    public Vector3 rotationOffset; 

    public GameObject Sphere; 

    public GameObject Rectangle; 

    public Vector3 LastFramePos; 

    public Transform Thumb_Root; 

    public Transform Index_Root; 

    public Transform Middle_Root; 

    public Transform Ring_Root; 

    public Transform Pinky_Root; 

 

    public Transform Thumb_1; 

    public Transform Thumb_2; 

 

    public Transform Index_1; 

    public Transform Index_2; 

    public Transform Index_3; 

 

    public Transform Middle_1; 

    public Transform Middle_2; 

    public Transform Middle_3; 

 

    public Transform Ring_1; 

    public Transform Ring_2; 

    public Transform Ring_3; 

 

    public Transform Pinky_1; 

    public Transform Pinky_2; 

    public Transform Pinky_3; 

     

    public float F1, F2, F3, F4, F5;  

 

    public GameObject Thumb_2_end; 

    public GameObject Index_3_end; 

    public GameObject Middle_3_end; 



93 

 

    public GameObject Ring_3_end; 

    public GameObject Pinky_3_end; 

      

 

    // Start is called before the first frame update 

    void Awake() 

    { 

        Boom = this; 

    } 

    void Start() 

    { 

        //Start Streaming 

        stream.Open(); 

 

        //Record current position of hand 

        LastFramePos = transform.position; 

         

    } 

 

    // Update is called once per frame 

    void Update() 

    { 

        strReceived = stream.ReadLine(); 

 

        strData = strReceived.Split(','); 

         

         

 

        F1 = converter(strData[1]); 

        F2 = converter(strData[1]); 

        F3 = converter(strData[1]); 

        F4 = converter(strData[1]); 

        F5 = converter(strData[1]); 

 

        if(F1 < 20 && F2 < 20 && F3 < 20 && F4 < 20 && F5 < 20) 

        { 

            bool1 = true; 

        } 

 

 

        if(F1 > 70 && F2 > 70 && F3 >70 && F4 > 70 && F5 > 70 

&& bool1) 

        { 

            Exit.bool2 = true; 

            SceneSwitcher.bool2 = true; 

            B2.bool2 = true; 

            SwitchSceneB1.bool2 = true; 

            Level1.bool2 = true; 

            Level2.bool2 = true; 

            Level3.bool2 = true; 

            Difficulty.bool2 = true; 

            DestroyBalloon.bool2 = true; 

            DestroyBoom.bool2 = true; 

        } 

        else 

        { 
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            Exit.bool2 = false; 

            SceneSwitcher.bool2 = false; 

            B2.bool2 = false; 

            SwitchSceneB1.bool2 = false; 

            Level1.bool2 = false; 

            Level2.bool2 = false; 

            Level3.bool2 = false; 

            Difficulty.bool2 = false; 

            DestroyBalloon.bool2 = false; 

            DestroyBoom.bool2 = false; 

        } 

 

        //update transform variable of all segment of fingers 

//localEulerAngles = store rotation of game object to parent 

coordinate system in the form of Vector 3 structure 

 

        Thumb_1.localEulerAngles = new Vector3(-F1, 

Thumb_1.localEulerAngles.y, Thumb_1.localEulerAngles.z); 

        Thumb_2.localEulerAngles = new Vector3(-F1, 

Thumb_2.localEulerAngles.y, Thumb_2.localEulerAngles.z); 

 

        Index_1.localEulerAngles = new 

Vector3(Index_1.localEulerAngles.x, Index_1.localEulerAngles.y, 

F2); 

        Index_2.localEulerAngles = new 

Vector3(Index_2.localEulerAngles.x, Index_2.localEulerAngles.y, 

F2); 

        Index_3.localEulerAngles = new 

Vector3(Index_3.localEulerAngles.x, Index_3.localEulerAngles.y, 

F2); 

 

        Middle_1.localEulerAngles = new 

Vector3(Middle_1.localEulerAngles.x, 

Middle_1.localEulerAngles.y, F3); 

        Middle_2.localEulerAngles = new 

Vector3(Middle_2.localEulerAngles.x, 

Middle_2.localEulerAngles.y, F3); 

        Middle_3.localEulerAngles = new 

Vector3(Middle_3.localEulerAngles.x, 

Middle_3.localEulerAngles.y, F3); 

 

        Ring_1.localEulerAngles = new 

Vector3(Ring_1.localEulerAngles.x, Ring_1.localEulerAngles.y, 

F4); 

        Ring_2.localEulerAngles = new 

Vector3(Ring_2.localEulerAngles.x, Ring_2.localEulerAngles.y, 

F4); 

        Ring_3.localEulerAngles = new 

Vector3(Ring_3.localEulerAngles.x, Ring_3.localEulerAngles.y, 

F4); 

 

        Pinky_1.localEulerAngles = new 

Vector3(Pinky_1.localEulerAngles.x, Pinky_1.localEulerAngles.y, 

F5); 
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        Pinky_2.localEulerAngles = new 

Vector3(Pinky_2.localEulerAngles.x, Pinky_2.localEulerAngles.y, 

F5); 

        Pinky_3.localEulerAngles = new 

Vector3(Pinky_3.localEulerAngles.x, Pinky_3.localEulerAngles.y, 

F5); 

 

        LastFramePos = transform.position; 

 

         

        if (strData[5] != "" && strData[6] != "" && 

strData[7] != "" && strData[8] != "" && strData[9] != "" && 

strData[10] != "" && strData[11] != "") 

        {  

            strData_received[5] = strData[5]; 

            strData_received[6] = strData[6]; 

            strData_received[7] = strData[7]; 

            strData_received[8] = strData[8]; 

            strData_received[9] = strData[9]; 

            strData_received[10] = strData[10]; 

            strData_received[11] = strData[11]; 

 

            qw = float.Parse(strData_received[5]); 

            qx = float.Parse(strData_received[6]); 

            qy = float.Parse(strData_received[7]); 

            qz = float.Parse(strData_received[8]); 

            aax = float.Parse(strData_received[9]); 

            aay = float.Parse(strData_received[10]); 

            aaz = float.Parse(strData_received[11]); 

 

            Rectangle.transform.localRotation = Quaternion.Lerp 

(Rectangle.transform.localRotation, new Quaternion(qy, -qz, -

qx, qw), Time.deltaTime* speedFactor); 

            Sphere.transform.localPosition += new Vector3 

(aay/20, -aaz/15, 0) * Time.deltaTime; 

 

        }   

        Rectangle.transform.parent.transform.eulerAngles = 

rotationOffset; 

 

    } 

 

     float converter (string angle) 

     { 

        float converter_angle; 

 

        converter_angle = float.Parse(angle); 

        if (converter_angle < 0) 

        { 

            converter_angle = 0; 

        } 

        else if(converter_angle > 90) 

        { 

            converter_angle = 90; 

        } 
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        return converter_angle; 

     } 

 

      public void HapAc() 

     { 

        stream.WriteLine("a"); 

        print("a"); 

     } 

 

     

} 
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Appendix D:  Exit Button Code 

 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

 

public class Exit : MonoBehaviour 

{ 

     bool value; 

     public GameObject Camera; 

     public static bool bool2; 

 

    void OnTriggerEnter(Collider other) 

    { 

        value = true; 

        Debug.Log(value); 

    } 

 

    void OnTriggerStay(Collider other) 

    { 

        value = true; 

        Debug.Log(value); 

    } 

 

    void OnTriggerExit(Collider other) 

    { 

        value = false; 

        Debug.Log(value); 

    } 

 

    void Update() 

    {    

        if(bool2 && value == true) 

        { 

 

            Camera.SetActive(false); 

            value = false; 

            bool2 = false; 

        }    

    } 

} 
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Appendix E:  Play Button Code/ Scene Switcher 

 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

using UnityEngine.SceneManagement; 

 

public class SceneSwitcher : MonoBehaviour 

{ 

 

    bool value; 

    public static bool bool2; 

     

    void OnTriggerEnter(Collider other) 

    { 

        value = true; 

        Debug.Log(value); 

    } 

 

    void OnTriggerStay(Collider other) 

    { 

        value = true; 

        Debug.Log(value); 

    } 

 

    void OnTriggerExit(Collider other) 

    { 

        value = false; 

        Debug.Log(value); 

    } 

 

    void Update() 

    {    

        if(bool2 && value == true) 

        { 

 

            

SceneManager.LoadScene(SceneManager.GetActiveScene().buildIndex 

+ 1); 

            value = false; 

            bool2 = false; 

        }    

    } 
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Appendix F:  Code to Ensure Hand Model Not Destroyed 

 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

 

public class DontDestroy : MonoBehaviour 

{ 

    public static DontDestroy Instance; 

    void Start() 

    { 

        if(Instance != null) 

        { 

            Destroy(this.gameObject); 

            return; 

        } 

 

        Instance = this;  

        GameObject.DontDestroyOnLoad(this.gameObject); 

    } 
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Appendix G:  Back Button Code 

 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

using UnityEngine.SceneManagement; 

 

public class SwitchSceneB1 : MonoBehaviour 

{ 

    // Start is called before the first frame update 

    bool value; 

    public static bool bool2; 

    // Start is called before the first frame update 

    void OnTriggerEnter(Collider other) 

    { 

        value = true; 

        Debug.Log(value); 

    } 

 

    void OnTriggerStay(Collider other) 

    { 

        value = true; 

        Debug.Log(value); 

    } 

 

    void OnTriggerExit(Collider other) 

    { 

        value = false; 

        Debug.Log(value); 

    } 

 

    void Update() 

    {    

        if(bool2 && value == true) 

        { 

            

SceneManager.LoadScene(SceneManager.GetActiveScene().buildIndex 

- 1); 

            bool2 = false; 

        }    

    } 

} 
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Appendix H:  Difficulty Level Selection Code 

 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

 

public class Selection : MonoBehaviour 

{ 

    public static bool selection1; 

    public static bool selection2; 

    public static bool selection3; 

    public static float MoveBalloonSpeed; 

    public static float SpawnInterval; 

    // Start is called before the first frame update 

 

    // Update is called once per frame 

    void Update() 

    { 

        if(selection1) 

        { 

            MoveBalloonSpeed = 2.0f; 

            SpawnInterval = 3.0f; 

            ScoreManager.HgSc1 = true; 

            ScoreManager.HgSc2 = false; 

            ScoreManager.HgSc3 = false; 

        } 

        if(selection2) 

        { 

            MoveBalloonSpeed = 5.0f; 

            SpawnInterval = 1.5f; 

            ScoreManager.HgSc1 = false; 

            ScoreManager.HgSc2 = true; 

            ScoreManager.HgSc3 = false; 

        } 

        if(selection3) 

        { 

            MoveBalloonSpeed = 9.0f; 

            SpawnInterval = 1.0f; 

            ScoreManager.HgSc1 = false; 

            ScoreManager.HgSc2 = false; 

            ScoreManager.HgSc3 = true; 

        } 

    } 

} 
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Appendix I:  Code to Spawn Balloon 

 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

 

 

public class BalloonSpawner : MonoBehaviour 

{ 

    public Transform[] SpawnPoints; 

    public GameObject[] BalloonPrefabs; 

 

 

    public float Interval; 

 

    void Start() 

    { 

        Interval = Selection.SpawnInterval; 

        InvokeRepeating("Spawn",0.0f,Interval); 

    } 

     

 

    void Spawn() 

    { 

  

        int randBalloon = Random.Range(0, 

BalloonPrefabs.Length); 

        int randSpawnPoint = Random.Range(0, 

SpawnPoints.Length); 

 

        Instantiate(BalloonPrefabs[randBalloon], 

SpawnPoints[randSpawnPoint].position, transform.rotation); 

 

 

             

 

    } 

} 
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Appendix J:  Code to Define the Balloon Moving Speed 

 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

 

public class MoveBalloon : MonoBehaviour 

{ 

    public static float speed; 

     

    // Update is called once per frame 

    void Start() 

    { 

        speed = Selection.MoveBalloonSpeed; 

    } 

    void Update() 

    { 

        GetComponent<Rigidbody>().velocity = new Vector3 (0, 

speed, 0); 

    } 

} 
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Appendix K:  Code to Restrict Movement of Hand Model in Frame     

 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

 

public class Restrict : MonoBehaviour 

{ 

    // Start is called before the first frame update 

  void Update() 

    { 

        // transform.Translate(Input.GetAxis("Horizontal") * 

Time.deltaTime *15f,0f,0f); 

        // transform.Translate(0f,Input.GetAxis("Vertical") * 

Time.deltaTime *15f,0f); 

 

        if (transform.position.x > 32) 

        { 

            transform.position = new Vector3(32, 

transform.position.y, transform.position.z); 

        } 

 

        if (transform.position.x < 7) 

        { 

            transform.position = new Vector3(7, 

transform.position.y, transform.position.z); 

        } 

 

        if (transform.position.y > -46) 

        { 

            transform.position = new 

Vector3(transform.position.x, -46, transform.position.z); 

        } 

 

        if (transform.position.y < -55) 

        { 

            transform.position = new 

Vector3(transform.position.x, -55, transform.position.z); 

        } 

        if(transform.position.z != -24) 

        { 

            transform.position = new 

Vector3(transform.position.x, transform.position.y, -24); 

        } 

    } 

} 

 

 

 

 

 



105 

 

Appendix L:  Timer Code 

 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

using UnityEngine.UI; 

using TMPro; 

 

public class Timer : MonoBehaviour 

{ 

    public static Timer timer; 

    [SerializeField] private Image Fill; 

    [SerializeField] private TextMeshProUGUI Text; 

 

    public int Duration; 

    public int remainingDuration; 

    public AudioClip TimesUp; 

    public GameObject Ending; 

 

    public void Awake() 

    { 

        timer = this; 

    } 

 

 

    // Start is called before the first frame update 

    private void Start() 

    { 

        Being(Duration); 

    } 

 

    // Update is called once per frame 

    public void Being(int Second) 

    { 

        remainingDuration = Second; 

        StartCoroutine(UpdateTimer()); 

    } 

 

 

    public IEnumerator UpdateTimer() 

    { 

        yield return new WaitForSeconds(3f); 

        while(remainingDuration >= 0) 

        { 

            Text.text =$"{remainingDuration % 60:00}" ; 

            Fill.fillAmount = Mathf.InverseLerp(0, Duration, 

remainingDuration); 

            remainingDuration--; 

            yield return new WaitForSeconds(1f);  

        } 

        OnEnd(); 

    } 

 

    public void OnEnd() 

    { 
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        Text.text = "Time's Up"; 

        AudioSource.PlayClipAtPoint(TimesUp, new 

Vector3(0,0,0)); 

        

GameObject.Find("Background").GetComponent<AudioSource>().enabl

ed = false; 

        Ending.SetActive(true); 

        Time.timeScale = 0f; 

    } 

         

    public void SubstractTime() 

    { 

 

        remainingDuration -= 4; 

 

    }  

 

 

     

} 
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Appendix M:  Score Manager Code 

 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

using UnityEngine.UI; 

using TMPro; 

 

 

public class ScoreManager : MonoBehaviour 

{ 

    public static ScoreManager instance;  

    public TextMeshProUGUI ScoreText; 

    public TextMeshProUGUI HighScoreText; 

    public static bool HgSc1; 

    public static bool HgSc2; 

    public static bool HgSc3; 

 

 

    public int Score1 = 0; 

    public int Score2 = 0; 

    public int Score3 = 0; 

    public int HighScore1 = 0; 

    public int HighScore2 = 0; 

    public int HighScore3 = 0; 

 

    public void Awake() 

    { 

        instance = this; 

    } 

 

    // Start is called before the first frame update 

    void Start() 

    { 

 

        if(HgSc1) 

        { 

            HighScore1 = PlayerPrefs.GetInt("HighScoreLv1", 0); 

            ScoreText.text = Score1.ToString() + " POINTS"; 

            HighScoreText.text = "HIGHSCORE LV1: " + 

HighScore1.ToString(); 

 

        } 

 

        if(HgSc2) 

        { 

            HighScore2 = PlayerPrefs.GetInt("HighScoreLv2", 0); 

            ScoreText.text = Score2.ToString() + " POINTS"; 

            HighScoreText.text = "HIGHSCORE LV2: " + 

HighScore2.ToString(); 

 

        } 

 

        if(HgSc3) 

        { 
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            HighScore3 = PlayerPrefs.GetInt("HighScoreLv3", 0); 

            ScoreText.text = Score3.ToString() + " POINTS"; 

            HighScoreText.text = "HIGHSCORE LV3: " + 

HighScore3.ToString(); 

 

        } 

    } 

 

    // Update is called once per frame 

    public void AddPoint() 

    { 

        if(HgSc1) 

        { 

            Score1 += 1; 

            ScoreText.text = Score1.ToString() + " POINTS"; 

            if (HighScore1<Score1) 

            { 

                PlayerPrefs.SetInt("HighScoreLv1", Score1); 

            } 

        } 

 

        if(HgSc2) 

        { 

            Score2 += 1; 

            ScoreText.text = Score2.ToString() + " POINTS"; 

            if (HighScore2<Score2) 

            { 

                PlayerPrefs.SetInt("HighScoreLv2", Score2); 

            } 

        } 

 

        if(HgSc3) 

        { 

            Score3 += 1; 

            ScoreText.text = Score3.ToString() + " POINTS"; 

            if (HighScore3<Score3) 

            { 

                PlayerPrefs.SetInt("HighScoreLv3", Score3); 

            } 

        } 

    } 

} 
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Appendix N:  Code for In-Game Preparation Count Down 

 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

using TMPro; 

 

public class CountDown : MonoBehaviour 

{ 

 

    public GameObject countDown; 

    public TextMeshProUGUI CountDownManager; 

    public AudioClip CountDownSound; 

 

 

    // Start is called before the first frame update 

    private void Start() 

    { 

        StartCoroutine(CountDownCoroutine()); 

    } 

 

    // Update is called once per frame 

    IEnumerator CountDownCoroutine() 

    { 

        yield return new WaitForSeconds(0.5f); 

        CountDownManager.text = "3"; 

        AudioSource.PlayClipAtPoint(CountDownSound, new 

Vector3(0, 0, 0)); 

        countDown.SetActive(true); 

 

        yield return new WaitForSeconds(1.0f); 

        // countDown.SetActive(false); 

        CountDownManager.text = "2"; 

        AudioSource.PlayClipAtPoint(CountDownSound, new 

Vector3(0, 0, 0)); 

        // AudioSource.PlaySound(CountDownSound); 

        countDown.SetActive(true); 

 

        yield return new WaitForSeconds(1.0f); 

        // countDown.SetActive(false); 

        CountDownManager.text = "1"; 

        AudioSource.PlayClipAtPoint(CountDownSound, new 

Vector3(0, 0, 0)); 

        countDown.SetActive(true); 

 

        yield return new WaitForSeconds(1.0f); 

        countDown.SetActive(false); 

        

GameObject.Find("Background").GetComponent<AudioSource>().enabl

ed = true; 

        

GameObject.Find("Spawner").GetComponent<BalloonSpawner>().enabl

ed = true; 

    } 

} 
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Appendix O:  Destroy Normal Balloon Code 

 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

 

public class DestroyBalloon : MonoBehaviour 

{ 

    public AudioClip clip; 

    public GameObject Effect; 

    bool value = false; 

    public static bool bool2; 

 

    // Start is called before the first frame update 

    void OnTriggerEnter(Collider other) 

    { 

        value = true; 

        Debug.Log(value); 

    } 

 

    void OnTriggerStay(Collider other) 

    { 

        value = true; 

        Debug.Log(value); 

    } 

 

    void OnTriggerExit(Collider other) 

    { 

        value = false; 

        Debug.Log(value); 

    } 

 

    void Update() 

    {    

        if(bool2 && value == true) 

        { 

            Instantiate(Effect, new 

Vector3(transform.position.x-5 ,transform.position.y -3, 

transform.position.z +4), Quaternion.identity); 

            Destroy(gameObject); 

            PlaySound(); 

            ScoreManager.instance.AddPoint(); 

            bool2 = false; 

        }    

    } 

 

 

    void PlaySound() 

    { 

        AudioSource.PlayClipAtPoint(clip, transform.position); 

    } 

 

} 
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Appendix P:  Destroy Boom Balloon Code 

 

using System.IO.Ports; 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

using System.Linq; 

 

public class DestroyBoom : MonoBehaviour 

{ 

    public AudioClip BoomSound; 

    public GameObject BoomEffect; 

    bool value = false; 

    public static bool bool2; 

 

    void OnTriggerEnter(Collider other) 

    { 

        value = true; 

        Debug.Log(value); 

    } 

 

    void OnTriggerStay(Collider other) 

    { 

        value = true; 

        Debug.Log(value); 

    } 

 

    void OnTriggerExit(Collider other) 

    { 

        value = false; 

        Debug.Log(value); 

    } 

 

    // Update is called once per frame 

    void Update() 

    {    

        if(bool2 && value == true) 

        { 

            Instantiate(BoomEffect, new 

Vector3(transform.position.x-5 ,transform.position.y -3, 

transform.position.z +4), Quaternion.identity); 

            Destroy(gameObject); 

            PlaySound(); 

            Timer.timer.SubstractTime(); 

            FingerMotion.Boom.HapAc(); 

            bool2 = false; 

            Cube.bool1 = false; 

        }    

    } 

     void PlaySound() 

    { 

        AudioSource.PlayClipAtPoint(BoomSound, new Vector3(19,-

51,-14)); 

    } 

} 
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Appendix Q:  Ending Menu Code 

 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

using TMPro; 

using UnityEngine.SceneManagement; 

 

public class Ending : MonoBehaviour 

{ 

    public TextMeshProUGUI Greeting; 

    public TextMeshProUGUI Quit; 

    public TextMeshProUGUI GameSelection; 

    public TextMeshProUGUI Restart; 

    public GameObject Camera3; 

    // Start is called before the first frame update 

 

    // Update is called once per frame 

    void Update() 

    { 

        Greeting.text = "Game Over"; 

        Quit.text = "Exit (Esc)"; 

        GameSelection.text = "Game Selection (G)"; 

        Restart.text = "Restart (R)"; 

 

        if(Input.GetKeyDown("r")) 

        { 

            Time.timeScale = 1f; 

            

SceneManager.LoadScene(SceneManager.GetActiveScene().buildIndex

); 

        }  

 

        if(Input.GetKeyDown("g")) 

        { 

            Time.timeScale = 1f; 

            

SceneManager.LoadScene(SceneManager.GetActiveScene().buildIndex 

- 1); 

            Selection.selection1 = false; 

            Selection.selection2 = false; 

            Selection.selection3 = false; 

        } 

 

        if(Input.GetKeyDown(KeyCode.Escape)) 

        { 

            Camera3.SetActive(false); 

        }  

 

    } 

} 
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Appendix R:  ESP32 Holder 
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Appendix S:  MPU6050 Holder 

 

 


