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ABSTRACT 

 

Attendance management system is an indispensable practice in which every 

institution or organisation adopts to mark the attendance of their employees or 

members. The manual process of marking attendance by using a paper-based 

or file-based system is riddled with flaws such as the risk of information loss, 

falsification or disasters. The current norm delineates the deployment of smart 

attendance system using RFID tags, fingerprints, iris scans, voice recognition, 

etc. Nowadays, technological developments propagate the practical utilisation 

of face recognition approach for a more efficient attendance management 

system. The face recognition-based attendance system is convenient with  

additional advantages that it can avoid human intervention and thus assisting 

to control the spread of viruses. In this project, a real-time attendance 

management system that employs face recognition approach is proposed to 

recognize individuals. Two face recognition models were developed: the first 

model used Deep Neural Network (DNN) for face detection, FaceNet for 

feature extraction, and Support Vector Machine (SVM) for face classification, 

and the second model utilised Convolutional Neural Network, specifically the 

trained VGG16 model, with the ImageNet dataset as its pretrained weights. 

Transfer learning was employed to apply the pretrained network for 

recognizing faces. The proposed systems’ effectiveness was demonstrated 

through a comparison of both face recognition models, and the first model 

with testing accuracy of 97.62 % was integrated into a designated graphical 

user interface (GUI). In conclusion, the project’s aim and objectives were 

successfully accomplished, which included developing a facial recognition 

system designed specifically for attendance tracking and conducting a 

literature review covering current approaches and results in facial recognition 

algorithms. Furthermore, the GUI with essential features such as creating new 

databases, face recognition, and attendance monitoring for users was 

developed to ease attendance monitoring for end-users. The system’s 

performance and usability were analyzed to provide insights for future 

enhancements. 

 

  



vi 

TABLE OF CONTENTS 

 

 

 

DECLARATION i 

APPROVAL FOR SUBMISSION ii 

ACKNOWLEDGEMENTS iv 

ABSTRACT v 

TABLE OF CONTENTS vi 

LIST OF TABLES ix 

LIST OF FIGURES x 

LIST OF SYMBOLS / ABBREVIATIONS xii 

LIST OF APPENDICES xiv 

 

 

CHAPTER 

1  INTRODUCTION 1 

1.1  General Introduction 1 

1.2  Importance of the Study 3 

1.3  Problem Statement 4 

1.4  Aim and Objectives 5 

1.5  Scope and Limitation of the Study 5 

1.6  Contribution of the Study 6 

1.7  Outline of the Report 6 

2  LITERATURE REVIEW 7 

2.1  Smart Attendance System 7 

2.2  Face Detection 8 

2.3  Face Recognition 11 

2.3.1  Multi-level Face Recognition Taxonomy 11 

2.3.2  Face Structure 12 

2.3.3  Feature Extraction 14 

2.3.4  Local Approach 17 

2.3.5  Holistic Approach 20 

2.3.6  Learning-based Approach 23 



vii 

2.3.7  Transfer Learning 29 

2.4  Evaluation Metrics 29 

2.5  Database 31 

2.6  Comparison between Traditional Approaches and 

Deep Learning Approaches 33 

3  METHODOLOGY AND WORK PLAN 37 

3.1  Introduction 37 

3.2  Project Planning 37 

3.3  Project Development 38 

3.4  Resources 42 

3.4.1  Hardware 42 

3.4.2  Software 43 

3.5  First Approach 43 

3.5.1  Face Detection 43 

3.5.2  Feature Extraction 44 

3.5.3  Face Classification 45 

3.6  Second Approach 46 

3.6.1  Model Architecture 47 

3.6.2  Data Augmentation 47 

3.6.3  Training 47 

3.7  Attendance Update 48 

3.8  User Interface Design 48 

3.9  Problems and Solutions 48 

4  RESULTS AND DISCUSSION 51 

4.1  Introduction 51 

4.2  Face Detection Evaluation 51 

4.2.1  Labeled Faces In The Wild 51 

4.2.2  Performance Evaluation 52 

4.3  Face Recognition Evaluation 55 

4.3.1  Face Datasets 56 

4.3.2  Parameters 57 

4.3.3  Evaluation Metrics 58 

4.4  Smart Attendance System 64 

4.4.1  Graphical User Interface 64 



viii 

4.5  Summary 68 

5  CONCLUSIONS AND RECOMMENDATIONS 69 

5.1  Conclusions 69 

5.2  Recommendations for Future Work 70 

REFERENCES 72 

APPENDICES 82 

 

 

 

 

  



ix 

LIST OF TABLES 

Table 2.1:  Comparison of Different Approaches for Attendance 
System. 8 

Table 2.2:  Comparison Between CNN, SSD and YOLO (Srivastava 
et al.,   2021). 28 

Table 2.3:   Performance Comparison for SVM and Deep learning. 34 

Table 2.4:  Comparison Between Conventional and Deep Learning 
Approach. 36 

Table 3.1:  Specifications of Benewy Full HD Webcam. 42 

Table 4.1:  Confusion Matrix for the Performance Evaluation of 
Face Detectors. 52 

Table 4.2:  Face Detection Approaches on Image Datasets. 53 

Table 4.3:  Comparison of Accuracy and Speed on LFW datasets. 54 

Table 4.4:  Face Detection Approaches on Webcam for Frontal 
Faces. 54 

Table 4.5:  Face Detection Approaches on Webcam for Side Faces. 54 

Table 4.6:  Face Detection Approaches on Webcam in Low-light 
Environment. 55 

Table 4.7:  Evaluation Comparison between Two Models. 59 

Table 4.8:  Test Accuracy On Different Classifiers. 59 

Table 4.9:  Classification Report for DNN, FaceNet and SVM. 62 

Table 4.10:  Classification Report for VGG16 Transfer Learning 
Model. 63 

 

 

 

 

  



x 

LIST OF FIGURES 

Figure 2.1:  Testing Results on Each Face Detection Algorith (Arora, 
Naithani and Areeckal, 2022). 10 

Figure 2.2:  Existing Multi-level Face Recognition Taxonomy 
(Sepas- Moghaddam, Pereira and Correia, 2020). 12 

Figure 2.3:  Global Representation (Sepas-Moghaddam, Pereira and 
Correia, 2020). 13 

Figure 2.4:  Component and Structure Representation (Sepas-
Moghaddam, Pereira and Correia, 2020). 13 

Figure 2.5:  Component Representation (Sepas-Moghaddam, Pereira 
and Correia, 2020). 13 

Figure 2.6:  Local Spatial Support (Sepas-Moghaddam, Pereira and 
Correia, 2020). 14 

Figure 2.7:  FaceNet Model Structure (Schroff and Philbin, n.d.). 15 

Figure 2.8:  Comparison Between Conventional and Deep Learning 
Approach on RMFRD Dataset (Bharat Chandra and 
Karthikeya Reddy, 2020). 16 

Figure 2.9:   LBP Calculation (Chang-yeon, 2008). 18 

Figure 2.10:  Comparison of Performances for HOG Approach and 
LBP  Approach (Amraee, Chinipardaz and Charoosaei, 
2022). 20 

Figure 2.11:  Recognition Rate for PCA and KPCA Approaches 
(Anon.,  2014). 23 

Figure 2.12:  Comparison Graph of Different CNN Models (Gwyn, 
Roy  and Atay, 2021). 24 

Figure 2.13:  Framework of SSD (Shi, Bao and Tan, 2019). 25 

Figure 2.14:  YOLO Algorithm Based on DarkNet Architecture (Weng,  
2018). 26 

Figure 2.15:  Comparison of Different Versions of YOLO Model  
(Francesco and Solawetz, 2023). 28 

Figure 2.16:  ROC and Inverted Precision-Recall Curves (Nguyen  
Meidine et.al., 2018). 30 



xi 

Figure 2.17:  Performance of Various Techniques on ORL Database  
(Singhal et al., 2021). 35 

Figure 3.1:  Project Gantt Chart. 38 

Figure 3.2:  Workflow for Face Recognition Approaches. 39 

Figure 3.3:  Block Diagram for Smart Attendance System. 40 

Figure 3.4:  Flowchart of Smart Attendance System. 41 

Figure 3.5:  Asus VivoBook S15 S510U Laptop. 43 

Figure 3.6:  VGG16 Model Architecture (Bansal, 2020). 46 

Figure 4.1:  Transfer Learning VGG16 Model Accuracy at Each 
Epoch. 60 

Figure 4.2:  Transfer Learning VGG16 Model Loss at Each Epoch. 61 

Figure 4.3:  Confusion Matrix for DNN, FaceNet and SVM. 64 

Figure 4.4:  Confusion Matrix for VGG16. 64 

  

 

 

 

 

  



xii 

LIST OF SYMBOLS / ABBREVIATIONS 

 

 

3D  three-dimensional 

ANN  Artificial Neural Network 

CMC  cumulative match characteristic 

CNN  Convolution Neural Network 

COVID  corona-virus disease 

CPU  Central Processing Unit 

DET  Detection Error Tradeoff 

DET  Detection Error Tradeoff 

DNN  Deep Neural Network 

DOM  Document Object Model  

EER  Equal Error Rate 

FAR  False Accept Rate 

FAR  False Alarm Rate 

FCNN  Fully Convolutional Neural Network 

FN  False Negative 

FP  False Positive 

FPR  False Positive Pate 

FPS  frames per second 

FRR  False Reject Rate 

GLM  Generalized Linear Model 

GUI  graphic user interface 

HOG                    Histogram of Oriented Gradients 

IoT  Internet of Things 

KPCA  Kernel Principal Component Analysis 

LBP                     Local Binary Patterns 

LDA                    Local Binary Patterns 

LFW  Labeled Faces in the Wild 

MAE  Mean Absolute Error 

mAP  mean Average Precision 

MSE  Mean Squared Error 

MTCNN Multi-Task Cascaded Convolutional Neural Networks 



xiii 

OpenCV Open Source Computer Vision 

PCA  Principal Component Analysis 

RAM  random access memory 

RFID  Radio-frequency identification 

RMS  Root Mean Square 

ROC  Receiver Operating Characteristic 

ROI  regions of interest 

SIFT  scale-invariant feature transform 

SSD  Single-shot Multibox Detector 

SSD  solid-state drive 

SVM   Support Vector Machine 

TAR  True Acceptance Rate 

TN   True Negative 

TP  True Positive 

VGG                    Visual Geometry Group  

YOLO  You Only Look Once 

 

 

 

 

  



xiv 

LIST OF APPENDICES 

 

Appendix A: Face Detector 82 

Appendix B: Feature Extractor 83 

Appendix C: Smart Attendance System 84 

Appendix D: User Interface Configuration Files 109 

Appendix E: Evaluation for Two Different Models 110 
 

 

 



1 

CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Attendance is illustrated as the action of frequently being present at an 

occasion (Akshaya et al., 2021). It is an indispensable system for many 

organisations or institutions, such as schools, universities, factories or 

government working places to keep track of the performance and monitor the 

quality of their members. In educational institutions such as schools, 

universities or colleges, it is mandatory to mark the presence of the students by 

respective lecturers, whereas in the industrial sector, the attendance 

management system is adopted by companies to evaluate the day-to-day 

monitoring, leave records and overtime calculations of the employees for the 

facilitation of payroll systems. 

Many institutes still utilise paper-based or file-based approaches for 

attendance management, and these manual systems are riddled with flaws such 

as the risk of information loss, lack of consideration, falsification, or disasters 

such as floods or fire outbreaks. Concurrently, some organisations have 

implemented automated attendance system strategies based on biometric 

techniques such as fingerprints, iris, voice recognition, or face recognition. 

However, face recognition remains a major area of research due to its non-

invasive nature and its status as the primary means of identification used by 

humans (Abdalkarim and Akgün, 2022). 

Face recognition is defined as a biometric technology that can identify 

or recognise someone from an image or a continuous image frame from a 

video (Sabeenian et al., 2020). The first implementation of face recognition 

started in the 1960’s with a semi-automated system. A person’s facial features 

will be automatically identified by the recognition equipment. This technology 

comprises face detection, face position, image pre-processing, image 

enhancement and face recognition. The algorithm involves the process of 

scanning the entire image of a person by finding out the coordinate system of 

all faces in the image, followed by the output of the face recognition algorithm 

with shapes such as rectangular or square. The DeepMind team developed an 
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Artificial Intelligence (AI) product called AlphaGo Zero in 2017 with its great 

performance of finding the ideal solution on the chessboard with the essence 

of face recognition by beating the No.1 player, Ke Jie at Go level (Li et al., 

2020). 

On top of that, the market for facial recognition systems is expected to 

reach a value of 8.5 billion U.S. dollars by 2025, indicating significant growth 

potential of this technology. Several industries across Southeast Asia have 

already implemented facial recognition systems. For example, in Singapore, 

citizens use facial recognition technology to access government services, 

public transportation, and even for election voting. The Singapore government 

has positioned itself at the forefront of this technology, allowing citizens to 

access government services in a contactless and efficient manner (Raj, 2021). 

Additionally, it was confirmed that the COVID-19 pandemic will result 

in long-term effects on the aviation sector eventhough the vaccine had been 

globally accessible at the end of 2021 (Madzou, 2020). In this context, there is 

an increasing demand on face recognition technology in order to ensure 

contactless passenger check-in process while avoiding virus transmission. In 

Malaysia, physical travel documents such as tickets and boarding passes were 

also being slowly replaced with facial recognition at the Kuala Lumpur 

International Airport (Raj, 2021). It is significant that the application of this 

sub-domain of computer vision has emerged as a vast business around the 

world. 

Face recognition systems have been successfully embedded in various 

application areas owing to the requirements such as high acceptability, 

collectability, and universality. Several vendors have integrated face 

recognition into many applications. In this context, Amazon had developed a 

system to allow users to make payments by using face recognition systems 

with the introduction of “Amazon Rekognition Image” and “Amazon 

Rekognition Video” which were built for analysing images and videos 

respectively (Bally, 2002). Besides, Apple had provided a state-of-the-art face 

authentication system with an advanced TrueDepth camera to accurately map 

the face geometry of an individual by projecting and analyzing thousands of 

invisible dots to create a depth map of the face for unlocking users’ devices. 

The Face ID can automatically adapt to the changes in appearance such as 
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growing facial hair and wearing cosmetic makeup and it works in indoors or 

outdoors and even in total darkness (Apple, 2017). 

Face recognition itself can be integrated with deep learning in order to 

show its strength and accuracy in handling vast quantities of data. Nowadays, 

deep learning is the main framework for image recognition process with the 

use of neural networks in which multiple layers are used for feature extractions. 

The conventional features extraction process involves using varied image 

descriptors such as scale-invariant feature transform (SIFT), histogram of 

oriented gradients (HOG) or a hybrid descriptor which are more time 

consuming as compared to modern approach with the implementation of deep 

learning which automates the selection of filters to extract best features from 

an image to produce better accuracy (Othman Hammadi, Abdulkarim Dawah 

Abas, 2018). 

With the advancement of technology and deep learning, the 

performance of these face recognition algorithms has significantly increased, 

and thus allowing its commercial use in modern life. This project proposes a 

smart attendance system with face recognition using deep learning approach to 

overcome shortcomings of the conventional methods that are more time 

consuming and complex. 

 

1.2 Importance of the Study 

The conventional attendance system includes biometrics, cards, or iris systems. 

In recent years, biometric-based techniques have emerged as a useful approach 

for recognizing individuals, instead of relying on virtual or physical domains 

such as passwords, smart cards, keys, and tokens. For instance, the magnetic 

cards may become unreadable or be stolen by others, whereas the passwords 

can be easily hacked or guessed by third parties. The card system complies 

with the risk of misplacement of attendance records, in which fake attendance 

can be taken by third parties. These approaches are accompanied with the risks 

of being misplaced, forgotten or duplicated, which has caused the inefficiency 

of the attendance system (Parmar and Mehta, 2014). 

 However, an individual’s biological traits are impossible or hard to 

duplicate by others. The biological traits, which include face, fingerprints, iris, 

palm, and voice, involve interactions by the user, except for the face 
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recognition approach, which can be completed passively by the user from a 

distance by a camera or video recorder. In this context, the face recognition 

algorithm is utilised for identification purposes, in which an unknown 

individual’s image will be processed by comparing the image of the person 

with a database of known individuals’ images (Zeng, Veldhuis and 

Spreeuwers, 2021). The face recognition technology is slowly evolving into a 

universal biometric solution as it requires zero effort from the users compared 

with other biometric solutions, and many industries are already reaping its 

advantages by deploying it in the current markets. 

            There are a few applications in which face recognition can be applied, 

as the technology is not limited to attendance management. Firstly, it is widely 

used for security at airports, seaports, border checkpoints, building access, 

network security, or electronic devices. Its second significant application is 

surveillance, which can be used for tracking offenders or criminals with the 

installation of CCTVs. Existing security and surveillance cameras that are 

embedded with deep learning and computer vision can be deployed with face 

recognition augmentation for security purposes (Wang and Deng, 2021). 

Nowadays, identity verification for newborns, national identities, 

passports, or driving licences has been normalised with face recognition 

technology. Additionally, the technology aids the investigations in cases 

involving missing individuals, immigrants, forensics, and many more 

scenarios. Although there are concerns about privacy raised by the public, it 

cannot be denied that the deployment of facial recognition technology has 

brought convenience, efficiency, and security to the public.  

 

1.3 Problem Statement 

The management of attendance systems is a mandatory task in many 

organisations, such as universities, factories, companies, or government 

working places. Although manual attendance taking can be performed by 

humans, the human memory is less adaptable at memorising a substantial 

dataset of faces, and the task is tedious and time-consuming. Besides, there are 

potentials for errors in manual data entry and difficulties in verifying 

attendance data across multiple locations or departments (Chatrati, Naidu and 

Prasad, 2013). This leads to the rapid development of automatic face 
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recognition systems, which could bring about transformations such as real-

time attendance tracking with promising accuracy. 

With the conventional method of clocking in and out using a card 

system or a biometric system such as a fingerprint, the user tends to make 

physical contact with the devices. Unlike other biometric systems, the face 

recognition-based attendance system is convenient and safe as it can avoid 

human intervention. Direct contact with an infected individual and indirect 

contact with the surfaces in the environment or with the object will result in 

the transmission of the diseases virus (Higuera, 2011). Therefore, it is the right 

time to switch the contact-based attendance system to an indirect contact 

approach by face recognition so that the spread of diseases can be controlled in 

the event of the devastating COVID-19 pandemic or other infectious disease 

outbreaks. 

 

1.4 Aim and Objectives 

This project aims to develop an IoT-based face recognition smart attendance 

system using the deep learning approach.  

 

The objectives of this project are: 

(i) To conduct a literature review covering current methods and 

results in facial recognition algorithm. 

(ii) To design and implement a facial recognition system that is 

suitable for attendance tracking. 

(iii) To develop a software for the ease of attendance monitoring 

by the end-user. 

(iv) To evaluate the performance and usability of the developed 

system. 

 

1.5 Scope and Limitation of the Study 

This project is mainly focused on face recognition systems for updating 

attendance records with the integration of machine learning and deep learning. 

The developed system is designed for an indoor environment in which 

excessive exposure to light in the outer environment may affect the 

performance of the system. The proposed algorithm may not cover holistic 
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factors such as illumination, pose variation, occlusion, and facial expression. 

Additionally, there is no cloud server for storing image databases, and as a 

result, there is a lack of flexibility, a low level of security, and a fear of data 

recovery for this smart attendance system. 

 

1.6 Contribution of the Study 

This study can prove that recent developments in deep learning and neural 

networks have the possibility of yielding promising results in varied fields 

such as image processing and pattern recognition. The integration of face 

recognition systems and deep learning architectures will boost performance by 

facilitating the learning process and increasing the efficiency of the existing 

models. While there are concerns regarding privacy and accuracy, the benefits 

of the technology cannot be denied. There are lots of potentials with the use of 

face recognition technology to create a convenient and efficient attendance 

management system and other applications. 

 

1.7 Outline of the Report 

This report is divided into five main chapters, including an introduction, 

literature review, methodology and work plan, results with discussion, and 

conclusions with recommendations. 

Chapter 1 presents an overview of the project by including a general 

introduction, problem statement, aim and objectives, study scope and 

limitations, and the contribution of the study and report outline. While the 

previous relevant research will be presented in Chapter 2. Chapter 3 illustrates 

the whole development of the smart attendance system using face recognition 

approaches. Next, Chapter 4 interprets the results obtained, which include face 

detection, face recognition, and a graphical user interface for the attendance 

system. Lastly, the conclusion and recommendations for future work are 

discussed under Chapter 5. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Smart Attendance System 

Attendance tracking plays a critical role in many organizations including 

educational institution, corporations or government. In higher education 

systems, there may be a requirement for students to maintain a certain level of 

attendance in order to be eligible to sit for final exams. The attendance system 

becomes a mandatory process in ensuring academic integrity and students’ 

success. In this context, there are still many manual and paper-based 

attendance systems that come with a lot of issues. With the advancement of 

technology, various authors have proposed automated attendance marking 

systems as a promising solution to eliminate the conventional attendance 

taking approach. 

A study implemented by Chatrati, Naidu and Prasad (2013) on 

attendance tracking systems was conducted using RFID readers for lecturers to 

monitor students’ attendance in Indian educational institutions. However, its 

major drawbacks include inappropriate attendance marking, as students can 

cheat by taking others attendance, and there are risks of missing the RFID tags. 

Dey et al. (2014) also proposed another attendance system that makes use of a 

speech recognition biometric feature. However, the system’s inefficiency due 

to the surrounding environment in crowded areas such as educational 

institutions or companies, where sound recognition can be mimicked to 

pretend to be fake attendance marking, has been highlighted. 

On top of that, another biometric approach using fingerprints has been 

proven to be successful in eliminating fake attendance systems, but it also 

engages contact between the users in the organisations (Mohamed and Raghu, 

2012). Furthermore, Amirulloh et al. (2020) investigated an attendance 

monitoring system using QR code with the Android platform, which had a 

100 % success rate for functional testing of the system. However, this 

implementation is accomplished with the risk of manipulating attendance 

manipulation and a waste of time and energy. 



8 

Additionally, a research had integrated the use of Convolutional Neural 

Network (CNN) to recognise individuals’ faces as conventional approaches, 

such as Fisher Faces or Eigen Faces are more sensitive to issues such as light, 

illumination, posture, noise, and obstruction (Arya, Mesariya and Parekh, 

2020) . Another proposed system used FaceNet model for face recognition and 

Support Vector Machine (SVM) classifier for attendance records, achieving an 

accuracy of 99.6 % for multi-face recognition. The experimental results 

display that the performance of FaceNet model and SVM is better than 

VGG16 model (Nyein and Oo, 2019). 

Therefore, considering the limitations displayed by the attendance 

systems mentioned earlier, face recognition techniques have become 

increasingly popular in recent years, making it a viable option for automated 

attendance marking systems. Table 2.1 illustrates a comparison of different 

attendance system approaches that are commonly used by the public. 

 

Table 2.1: Comparison of Different Approaches for Attendance System. 

Method Hardware Main 
Advantages 

Main 
Disadvantages 

References 

Biometric 
Attendance 

Fingerprint 
Reader, 

Retina Scan 
Machine 

Automatic Cost of machine, 
Maintenance 

issue 

(Mohamed 
and Raghu, 

2012) 

RFID RFID 
Reader, 

RFID Tag 

Automatic Risk of losing 
RFID Tag, Fake 

attendance 

(Chatrati, 
Naidu and 

Prasad,  
2013) 

QR Code Smartphone 
Camera, 
Barcode 
Scanner 

Sub-
automatic, 

cheap 

Fake attendance (Amirulloh 
et al., 
2020) 

Facial 
Recognition 

Camera, 
Server 

Automatic Maintenance (Nyein and 
Oo, 2019) 

 

2.2 Face Detection 

Face detection serves as a fundamental component for all facial analysis 

algorithms such as face alignment, face recognition, facial expression 

detection, and gender recognition. In 2001, Paul Viola and Michael Jones 

introduced a learning-based algorithm for detecting faces in images (Hazim et 
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al., 2016). This Viola-Jones object detection framework is notable for its 

powerful performance in real-time face detection with impressive speed. 

According to Deshpande and Ravishankar (2016), the detector has illustrated 

its efficiency on frontal images of faces in which it can cope with 45 degree of 

face rotation in both vertical and horizontal axis. 

However, a study has displayed that the Viola-Jones algorithm has 

limitations when it comes to face detection under poor lighting conditions. A 

study implemented by Chaudhari et al. (2018) with the use of the Viola Jones 

algorithm only obtained a success rate of 78.6 % due to poor lighting 

conditions and high false detection rate. To address these issues, Deshpande 

and Ravishankar (2016) presented an efficient face detection and recognition 

system using a fusion of Viola-Jones, Principal Component Analysis (PCA) 

and Artificial Neural Network (ANN), achieving an accuracy of 94 %. 

Furthermore, the combination of the Viola-Jones algorithm and neural network 

obtained an accuracy of 90.31 % as proposed by Da’San, Alqudah and Debeir 

(2015). Both studies were implemented using a similar database named Bio 

ID-Face-Database.  

Apart from that, a component-based face detector with the use of 

Support Vector Machine (SVM) classifiers was implemented by Kukenys and 

McCane (2008) to detect eyes in grayscale images. However, this detector 

misses some eyes in the evaluation set due to the skipping of the image 

pyramid over the scale at which eyes would be detected. As SVM classifiers 

highly depend on training data, it is necessary to have sufficient variations in 

the training samples to cover different possible angles, lighting conditions, and 

partial occlusions in each detected image. 

Another study carried out by Goyal, Agarwal and Kumar (2017) for 

the detection of faces in HD video was built with OpenCV and Haar-like 

features. The Haar classifier face detector uses a single feature to define a 

certain image as a face or not. However, the writer concluded that the Viola 

and Jones detectors are more efficient for real-time detection due to their 

shorter time duration and fewer CPU resource requirements. 

Furthermore, the boosting algorithm named Adaboost was proposed 

by Schapire to enhance the accuracy of a given learning algorithm. It adjusts 

the training set and combines the weak classifier to form a strong classifier  (Li 



10 

et al., 2020). The challenge of this classifier can be investigated through the 

work of  Meynet  (2003) as it misclassified roughly 13 % of the example sets 

and the error rate rose quickly until more than 40  for the last selected features. 

In a recent paper by Arora, Naithani and Areeckal (2022), 

performance analysis was conducted on four different face detection 

algorithms, namely Deep Neural Network (DNN), Multi-task Cascaded 

Convolutional Neural Network (MTCNN), Haar Cascade Classifier, and 

Histogram of Gradient-based (HOG) frontal face detector. The Haar Cascade 

Classifier works as fast as a basic CNN model by extracting multiple features 

and using Adaboost to select the most significant features and reduce their size. 

On the other hand, the HOG-based frontal face detector focuses on face 

landmark detection. The MTCNN, introduced by Kaipeng Zhang in 2016, 

comprises a three-stage cascade structure of CNN. OpenCV’s deep neural 

network module includes DNN, which is a Caffe model that employs a 

ResNet-10 architecture for its operation. 

After testing five images with four different face detection algorithms 

as shown in Figure 2.1, the results reveal that DNN performed the best, 

followed by MTCNN, in good lighting conditions. However, the HOG-based 

face detector is unable to detect small or extremely large faces, and the Haar 

Cascade fails to detect faces in most of the images with occlusions. DNN and 

MTCNN have been proven to be more robust in poor lighting conditions and 

images with occlusion. In conclusion, deep learning algorithms such as DNN 

and MTCNN have displayed better performance in various environmental 

setups. 

 

 

Figure 2.1: Testing Results on Each Face Detection Algorith (Arora, Naithani 

and Areeckal, 2022). 
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2.3 Face Recognition 

Face recognition has been developed primarily for two crucial tasks: 

verification and identification. In this context, the verification refers to one-to-

one matching in determining whether the individual claims to be when 

presenting with a face image of an unknown individual. The latter refers to 

one-to-many matching, in which an individual’s identity is determined by 

comparing with a database of images of known individuals (Zeng, Veldhuis 

and Spreeuwers, 2021). 

 The study of face recognition has become prominent since the 

introduction of the historical Eigenface approach in the early 1990s. Many 

holistic approaches were introduced, but they failed to account for 

uncontrolled facial changes. This led to the development of local-feature-based 

face recognition in the early 2000s. However, these approaches suffered from 

a lack of compactness and distinctiveness. Thus, learning-based descriptors 

were then introduced in the face recognition field. The major evolution 

occurred when the deep learning approach emerged in 2012, when AlexNet 

won the ImageNet competition using convolutional neural networks (Wang 

and Deng, 2021). 

 Despite the advancements in face recognition technology, there are 

still many challenges to overcome. One of the main concerns with a face 

recognition system is that all images of the same face are heterogeneous. 

Sometimes, the detected face is unfocused and too small, resulting in a failure 

of the recognition process. Other issues include posing variation, lighting 

illuminations, occlusion, and makeup during the comparison of individuals’ 

images with the database (Solomon, Meena and Kaur, 2021). Therefore, a 

multitude of face recognition systems using different algorithms have been 

proposed in recent years to solve the problems and achieve promising results 

in addressing the challenges posed by unconstrained environments. 

 

2.3.1 Multi-level Face Recognition Taxonomy  

The multi-level face recognition taxonomy, as proposed in Figure 2.2, serves 

as an effective tool for organising and planning face recognition solutions. It is 

aimed at guiding researchers to understand the technological landscape in this 
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field, apart from exploring new possible solutions in the creation of more 

effective face recognition systems. The taxonomy encompasses three key face 

structures, namely global representation, component and structure 

representation, and component representation. The global representation is a 

face recognition approach that represents the whole face as a single entity and 

outputs feature extraction from the entire face region. Next, feature support 

considers the selection of an approach based on facial structure and the spatial 

support region for feature extraction. While the feature extraction level 

comprises a more complete set of classes and a more profound technological 

landscape in feature extraction (Sepas-Moghaddam, Pereira and Correia, 2020). 

 

 

Figure 2.2: Existing Multi-level Face Recognition Taxonomy (Sepas- 

Moghaddam, Pereira and Correia, 2020). 

 

2.3.2 Face Structure  

In the context of face recognition, the face structure level refers to how 

different aspects of the face are handled by the facial recognition system. At

the global level, the system focuses on the face as a whole entity, considering 
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its overall shape and features, as illustrated in Figure 2.3. However, facial 

recognition systems also need to consider the component structure of the face, 

which involves the different facial features such as the eyes, mouth, and nose, 

as well as their relationships to each other. This can be seen in Figure 2.4, 

where each feature is represented separately. In certain conditions, the 

recognition system may need to select a specific facial component without 

considering the others. This is referred to as component representation, as 

shown in Figure 2.5. This level of detail is crucial for accurate facial 

recognition, as different facial components can provide valuable information 

for identifying an individual. 

 

 

Figure 2.3: Global Representation (Sepas-Moghaddam, Pereira and Correia, 

2020). 

 

 

Figure 2.4: Component and Structure Representation (Sepas-Moghaddam, 

Pereira and Correia, 2020). 

 

 

Figure 2.5: Component Representation (Sepas-Moghaddam, Pereira and 

Correia, 2020). 
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 In addition to the global and component structure levels, the face 

structure level can be further divided into global feature support and local 

feature support. In global feature support, the entire selected facial structure 

area is considered  a region of support for feature extraction. This can be either 

the entire face or a full-face component, and the system extracts features from 

this larger region of support. On the other hand, local feature support refers to 

a smaller portion of either the whole face or the face component that is used to 

extract features. This smaller region of support may vary in terms of 

topological standard, size, and overlapping characteristics. To achieve this, the 

partitioning task is accomplished by dividing the face components into squares, 

as shown in Figure 2.6. Overall, the division of the face into varied support 

regions, either globally or locally, is one of the key aspects of the face 

recognition process. 

 

 

Figure 2.6: Local Spatial Support (Sepas-Moghaddam, Pereira and Correia, 

2020). 

 

2.3.3 Feature Extraction 

Feature extraction is an indispensable stage in data mining and pattern 

recognition. It aims to shorten the machine learning duration and complexity 

of space by reducing irrelevancy and redundancy in the image to achieve the 

dimension reduction. In this context, the input data is converted into a set of 

features that consist of the critical information from the original data by using 

feature extraction algorithms. By eliminating the greatest number of irrelevant 

features, feature extraction maintains acceptable classification accuracy 

(Sufyanu et al., 2016).  
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As illustrated in Figure 2.7, a group of Google researchers proposed a 

deep learning model for face recognition namely FaceNet to produce a vector 

embedings of 128 numbers for each single person’s face. This model deploys a 

technique known as one-shot training, in which small embeddings or arrays 

from a couple of faces are sufficient to classify new faces. In other words, 

fewer photos are required to train the network with promising results. Its 

notable performance had been benchmarked on several famous face 

recognition datasets, such as Labeled Faces in the Wild (LFW), YouTube 

Faces (YTF), and MegaFace.  

 

 

Figure 2.7: FaceNet Model Structure (Schroff and Philbin, n.d.). 

  

FaceNet achieved 99.63 % accuracy on the LFW dataset, which 

consists of 13,000 face images from 5,700 individuals. On the YTF dataset, 

which contains videos of people speaking in unconstrained settings, FaceNet 

achieved 95.12 % accuracy. On the MegaFace dataset, which contains over 1 

million images of over 690,000 individuals, FaceNet obtained an accuracy of 

98.87 % when comparing 1 million pairs of faces and an accuracy of 99.83 % 

when comparing 10,000 pairs of faces, setting a new record in face recognition 

performance (Schroff and Philbin, n.d.). 

To enhance the recognition performance, MTCNN was initially used 

for face detection and then its results were used as the input of FaceNet for 

face recognition (Jin et al., 2021). The authors also mentioned that FaceNet is 

able to retain face alignment and directly make use of CNN to train end-to-end 

after face alignment, but another deep learning model such as DeepFace is not 

feasible. An accuracy of over 99 % was obtained through the combination of 

FaceNet and K-Nearest Neighbors (KNN) as the face classifier. The proposed 

system was tested on self-collected datasets containing a total of 35 people 

with different facial expressions (Lei, Oo and Oo, 2019). 
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From the studies done by Brandon Amos, Bartosz Ludwiczuk (2016), 

another highly accurate face recognition model using deep learning techniques 

such as CNN was developed out namely OpenFace. One of its advantages over 

other models is that it had been optimized to run on mobile devices, enabling 

real-time face recognition on such platforms. The system’s performance had 

been evaluated on image pairs in the LFW dataset, achieving an accuracy of 

92.92 %. Another deep neural network model, DeepFace, was developed by 

Facebook researchers and trained with 4 million images from over 4000 

people, obtaining an accuracy of 97.47 %. 

Figure 2.8 provides further analysis of the performance of these deep 

learning models on masked face images from the RMFRD dataset, which 

consists of 5000 images. The analysis shows that VGG Face achieved the 

highest accuracy with 68.17 %, followed by FaceNet with an accuracy of 

67.48 %, while OpenFace obtained an accuracy of 63.18 %. However, it was 

concluded that none of these pre-trained models had a great performance on 

masked face images, but their performance could be improved through transfer 

learning and fine-tuning (Bharat Chandra and Karthikeya Reddy, 2020). 

 

 

Figure 2.8: Comparison Between Conventional and Deep Learning Approach 

on RMFRD Dataset (Bharat Chandra and Karthikeya Reddy, 

2020). 

 

This feature extraction process can be further separated into three 

common approaches: local, holistic or appearance-based, and learning-based. 

Some famous techniques for each approach include Histogram of Oriented 

Gradients (HOG) and Local Binary Patterns (LBP) under local approaches, 
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Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), 

and Kernel Principal Component Analysis (KPCA) under holistic approaches, 

and CNN, Yolo, and SSD under deep learning approaches. These techniques 

will be discussed in the next few sessions. 

 

2.3.4 Local Approach 

In feature extraction, the local approach refers to an approach that focuses on 

local features or pattern within an image or dataset instead of considering the 

whole image or data as a whole. One prominent approach in local feature 

extraction is the Histogram of Oriented Gradients (HOG) descriptor, originally 

proposed by Dalal and Triggs, which has evolved from the scale invariant 

feature transform (Tan, Yang and Ma, 2014). HOG is a sophisticated 

framework that emphasizes facial features by using 68 facial focus descriptors 

that remain unaffected by changes in illumination and rotation. At the initial 

stage of objects detection, HOG was widely recognized as a prominent method. 

The fundamental theory behind HOG features is that the distribution of 

local intensity gradients or edge orientations can represent local object 

appearance and shape, even in the absence of precise knowledge of matching 

gradients or edge placements. For each key point in an image, the HOG 

features are produced by partitioning the neighboring area into multiple evenly 

spaced cells and computing a histogram of edge orientations for each cell. A 

local one-dimensional histogram of gradient directions is then accumulated 

over all pixels in the cell’s adjacent area around each key point (Shu, Ding and 

Fang, 2011). 

Numerous studies have shown the effectiveness of using HOG 

features in combination with other classifiers for various applications. As 

proposed by Dadi and Mohan Pillutla (2016), a designated face recognition 

with the combination use of HOG features and Support Vector Machine (SVM) 

classifier had achieved an improved rate of 8.75 % when compared with 

Principal Component Analysis (PCA) on the ORL database. Furthermore, on 

the F-MNIST dataset, the combination of HOG features with SVM achieved 

an accuracy of 86.53 %, whereas another model using HOG features, Local 

Binary Pattern (LBP), and SVM obtained an accuracy of 87.4 % (Greeshma, 

College and Gripsy, 2020).  
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Furthermore, the combination of HOG, Adaboost, and SVM were 

deployed for real-time vehicle detection on the GTI vehicle datasets, and the 

results show that the combination of HOG and AdaBoost achieved a higher 

accuracy of 97.24 % compared to approaches using HOG and SVM classifier 

with a recognition rate of 96.89 % (Singhal et al., 2021). The use of HOG 

features in combination with other classifiers has proven to be effective in 

various applications, demonstrating the potential of the local approach in 

feature extraction. 

Apart from that, the second local approach to be discussed is Local 

Binary Pattern (LBP), which has good performance in varied applications such 

as image retrieval, texture classification and segmentation, and surface 

inspection (Chang-yeon, 2008). The working principle of LBP is very easy. 

Originally, the LBP operator labels the image pixel by performing a threshold 

on the 3 × 3 neighbourhood of each pixel and comparing it with the centre 

pixel value. If the neighbouring value is greater than the centre value, a binary 

number of one will be produced. Conversely, a binary number of zero will be 

assigned to a value that is smaller than the centre value. Figure 2.9 displays the 

basic calculation for LBP. 

 

 

Figure 2.9:  LBP Calculation (Chang-yeon, 2008). 

 

 The LBP code is computed for every pixel in the image, and the 

frequency of each possible pattern is recorded. These pattern frequencies are 

used as labels to construct a histogram, which forms a feature vector and 

serves as a representation of the image texture. This allows for the 

measurement of similarity between different images (Wahid, 2013).   

 From the research studied by Dalali and Suresh (2016), LBP was used 

to reduce the information in given images by comparing results of images with 
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noises and images without noise on MIT face dataset. As a result, the images 

without noise reached up to 99.3 % of accuracy and the images with noise 

obtained an accuracy of 98.28 %. Additionally, LBP had been widely used 

with the integration of PCA and SVM and achieved good recognition rate. 

 In the context of facial recognition, LBP has several advantages, 

including its great computational efficiency and the ability to handle grayscale 

and colour images. These advantages make LBP an ideal choice for measuring 

similarities between images in facial recognition, object detection, and image 

segmentation applications. To further enhance its performance in texture 

classification, LBP has been expanded to accommodate more complex texture 

features, such as rotation-invariant LBP and uniform LBP. Recent studies have 

shown that the combination of LBP and other deep learning techniques can 

further enhance its capabilities in image processing tasks. 

 Histograms of Oriented Gradients (HOG) and Local Binary Pattern 

(LBP) are both recognised as effective descriptors for facial recognition. Both 

methods utilise gradients around a pixel to compute histograms for matching 

the similarity between images. HOG is known for capturing image edges and 

corners, while LBP is complementary for capturing local patterns. Moreover, 

LBP makes use of all eight directions for each image pixel compared to HOG, 

which only requires one direction for each image pixel, but this can cause LBP 

to lose information compared to HOG. 

 Based on the ROC curve with Support Vector Machines (SVM) 

classifier as displayed in Figure 2.10, the combination of HOG and LBP 

algorithms yielded the highest rate of 99.1 %, whereas the HOG algorithm 

itself outperformed LBP with a rate of 0.01 (Amraee, Chinipardaz, and 

Charoosaei, 2022). Furthermore, another research in 2021 conducted by 

Lakshmi and Ponnusamy (2021) had merged the HOG approach with LBP and 

SVM, and it achieved an accuracy of 90.83 % and 97.66 % on JAFFE and 

CK+ datasets, respectively. 
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Figure 2.10: Comparison of Performances for HOG Approach and LBP 

 Approach (Amraee, Chinipardaz and Charoosaei, 2022). 

 

In conclusion, HOG and LBP are both effective descriptors for facial 

recognition, with HOG capturing image edges and corners, and LBP being 

better at capturing local patterns. While HOG is more efficient than LBP, the 

combination of both approaches outperforms the algorithm alone. 

 

2.3.5 Holistic Approach 

The holistic approach makes use of global information from an individual’s 

face to carry out face recognition. In this context, global information is 

represented by features which are directly extracted from the face image pixels 

(Karamizadeh and Abdullah, 2013). The holistic approach is further divided 

into linear and non-linear approaches.  

 The Principal Component Analysis (PCA) or eigenface approach is a 

linear holistic approach and is being introduced as one of the most effective 

techniques for image recognition and compression. It was proposed by 

Pearson and Hotelling in the early 20th century (Huang, 2012). This approach 

aimed to reduce the dimensionality of the data space to the smaller intrinsic 

dimensionality of the feature space. PCA converts the large one-dimensional 

vector of pixels constructed from a two-dimensional facial image into the 

principal components of the feature space. It has advantages over other 

techniques due to its simplicity, speed, and insensitivity to mild or progressive 

changes in the face. 

    PCA considers a grayscale image as an M × N matrix of pixels and 

transforms it into a high-dimensional vector. The principal components are 

then calculated for the ‘k’ faces of the population, resulting in the minimum 

distance between the new image and any of the ‘k’ library images. This 
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approach retains variance information for analyzing images based on 

similarities and differences and is widely used in face recognition. Although 

PCA has benefits such as lack of data redundancy, smaller database 

representation, noise reduction, and reduced complexity in image grouping, it 

has limitations in capturing the simplest invariance unless the required 

information is provided by training data, and the covariance matrix evaluation 

process is difficult (Karamizadeh et al., 2013). 

Linear Discriminant Analysis (LDA), also known as Fisher’s 

Discriminant Analysis, is another technique for dimensionality reduction in 

face recognition. LDA identifies a linear transformation to create feature 

clusters through scatter matrix analysis. It combines independent features 

linearly to produce the greatest mean difference between desired classes, with 

the goal of minimizing the within-class scatter matrix measure while 

maximizing the between-class scatter matrix measure. This approach has been 

proven effective in improving face recognition accuracy (Toygar and Acan, 

2003). 

Traditionally, the PCA algorithm is incorporated with the LDA 

framework, in which PCA is used as a preprocessing step for dimensionality 

reduction and LDA is implemented in a lower-dimensional PCA subspace (Lu, 

Plataniotis and Venetsanopoulos, 2003). The main difference between LDA 

and PCA is that LDA focuses on data classification, while PCA focuses on 

feature classification. While PCA changes the shape and location of original 

datasets when transforming them to a different space, the location remains 

unchanged in LDA (Hese and Banwaskar, 2013). 

When solving problems related to pattern classification, LDA 

outperforms PCA, but its separability characteristics do not directly 

correspond to the classification accuracy in the output space. According to a 

research carried out by Patil, the performance of LDA was better than PCA, 

with a recognition rate of 86.07 % and 66.07 %, respectively, based on the 

ORL database (Patil, 2014). Another study using MATLAB found that LDA 

outperformed PCA with a larger training set, but PCA had better performance 

with a smaller training set. However, for the same number of samples, LDA 

generally had a higher recognition rate than PCA (Suganya and Menaka, 2014). 
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The standard PCA approach only supports linear dimensionality 

reduction. Therefore, if the data deals with more complex features that are not 

suitable for linear representation, the PCA technique will not be useful.  

However, the introduction of Kernel PCA (KPCA) allows the evolution of 

PCA to non-linear dimensionality reduction (Wang, 2012). 

According to Cover’s theorem, with the transformation of the input 

space into a high-dimensional feature space in the KPCA approach, the non-

linear separable patterns transform into ones that are linearly separable. In 

other words, KPCA is the non-linear form of PCA. Although computing 

vector products in high-dimensional feature space is complicated, it is possible 

to carry out computation in low-dimensional input space by using a kernel 

function in KPCA. The kernel approach can solve the non-linearity problem 

by mapping the input face images into a higher dimensional space with 

simplified face linearity (Peter, Minoi and Hipiny, 2019). 

By utilising the TOAM database consisting of 40 individuals, the 

KPCA outperformed the PCA with recognition accuracy of 80.0 % and 72.5 %, 

respectively (Niyi, Alagbe and Wuraola, 2019). Besides, the KPCA approach 

is utilized for feature extraction from the input images. The combination of 

KPCA and SVM had better performance with an average recognition rate of 

99.05 %  as compared to SVM alone which displayed an accuracy of 95.04 %  

based on the VISIO Multiview Face database (Timotius, Setyawan and 

Febrianto, 2010).  

In face recognition, KPCA excels in extracting more powerful features 

as compared to PCA. Figure 2.11 illustrates the comparison of recognition 

rates for both PCA and KPCA in FERET, ORL, UMIST, and AT&T databases. 

The KPCA technique outperformed the PCA technique with an accuracy of 

81 % to 91 % from four of the databases. It has been demonstrated that the 

KPCA approach is more effective in extracting low-level features of face 

images, which is a crucial requirement for successful face recognition (Anon., 

2014). 
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Figure 2.11: Recognition Rate for PCA and KPCA Approaches (Anon., 

 2014).  

 

2.3.6 Learning-based Approach 

To improve the performance of face recognition technologies in real-life 

applications, different deep-learning approaches have been introduced lately. 

In the early 2010s, learning-based local descriptors reshaped the application of 

face recognition, in which local filters are enhanced with better performance 

and more compact encoding (Wang and Deng, 2021). In this section, a 

comparative analysis of the Convolutional Neural Network (CNN), Single 

Shot Multibox Detector (SSD), and YOLO will be discussed below. 

The Convolutional Neural Network (CNN) belongs to a type of neural 

network that is known for image classification and can be applied to face 

recognition. To distinguish an input image from other images, CNN tweaks 

the network weights based on the input image and consequently, CNN is able 

to recognize different faces by identifying important features in their own after 

training the model (Lecun et al., 1998).  

In late 1998, the first popular CNN was developed for the development 

of handwritten digits and was applied to banking services in automated teller 

machines (Gopalakrishan, Arun and Sasikumar, 2021). Since 2012, scientists 

have concentrated on enhancing the usefulness of CNN’s architecture and 

methodologies, including layer design, activation function, and regularization 

as well as investigating the functionality in many sectors. 

The introduction of Fast R-CNN as an object detection model makes 

use of CNN in the target detection field and has been studied by Ren et al. 

(2016). Kim et al. (2018) implemented a CNN-based study to create a
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framework for finding moving objects with Closed Circuit Television (CCTV) 

cameras by adding a background subtraction algorithm to the framework. 

The major breakthrough of CNN was made by AlexNet with an error 

rate of just 15.3 % in the ILSVR challenge in 2012, and this achievement is 

impressive as the technology relies on truly deep learning with great 

computational power (Krizhevsky, Sutskever and Hinton, n.d.). From 2014 to 

2020, architectural innovations were made with many CNN-based 

architectures, such as improved versions of RCNN and Faster RCNN, which 

were introduced in the subsequent years. Researchers have come up with 

different CNN models for face recognition. These models show the realm of 

image classification with different CNN models, as illustrated in Figure 2.12. 

 

 

Figure 2.12: Comparison Graph of Different CNN Models (Gwyn, Roy 

 and Atay, 2021).  

 

A study conducted by Gwyn, Roy, and Atay (2021) compared various 

CNN variants, including AlexNet, Xception, Inception, ResNet, and VGG, 

using the Labelled Faces In The Wild (LFW) image dataset, which consisted 

of 4788 images from 423 individuals. The results showed that VGG-16 

performed the best, followed by VGG-19, with an accuracy of 84 %. However, 

although VGG-16 and VGG-19 excel in image classification and object 

localization, their training process is slow due to their robustness.  

To improve performance and accuracy with more complex features, 

ResNet, a prominent type of CNN, was proposed by He et al. (n.d.) with an 

accuracy of 72 %. Although AlexNet is the standard object recognition model 

in CNN, it faces challenges when applied to higher resolution images. 
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Inception v2 or Inception v3, on the other hand, makes use of advancements in 

deep learning, with more deeply stacked convolution layers. The Xception 

model is a transformation of the Inception model, with similar architecture and 

parameters but deeper separable convolutions. However, it had the lowest 

accuracy of 52 % among the models tested (Gwyn, Roy and Atay, 2021). 

A crucial consideration in the detection pipeline is the speed of the 

object detection model. However, increasing the speed may lead to a decrease 

in accuracy. To address this challenge, the Single Shot Multibox Detector 

(SSD) was introduced in 2016 by utilizing VGG as the backbone of the 

network (Liu et al., 2016). Compared to other single-shot detectors like YOLO 

and R-CNN, SSD is faster and more accurate. In addition to VGG, SSD 

employs multiple convolutional layers for detecting smaller targets, and its 

deeper layers are used for detecting larger objects, as illustrated in Figure 2.13. 

 

 

Figure 2.13: Framework of SSD (Shi, Bao and Tan, 2019). 

 

 SSD differs from other models as it does not involve pixel or feature 

sampling for bounding box hypotheses, making it easy to train and embed into 

a system for object detection. Based on a research done by Tai et al. (2018), 

the training process for SSD is straightforward, and alternative models such as 

SSD-7, SSD-300, and SSD-500 can easily balance between accuracy and 

speed. 

When compared to R-CNN, SSD demonstrated better performance on 

PASCAL VOC and COCO datasets while being three times faster during 

computation. Furthermore, SSD excels in object localization as it directly 

learns to classify object categories, avoiding the use of two separate processes 

that can lead to more localization errors in R-CNN. Moreover, SSD 
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outperformed YOLO, with an input image running at 59 FPS, demonstrating 

higher efficiency and accuracy than YOLO (Zhao et al., 2019).  

 The Face-SSD approach is a novel method for face recognition that 

uses a single shot face-related task analysis approach. It integrates a Fully 

Convolutional Neural Network (FCNN) as the backbone and builds upon the 

Single Shot Multibox Detector (SSD) method. This approach is capable of 

detecting multiple faces in real-time. Researchers found that it achieved a 

95.76 % accuracy for smile detection and 90.26 % for attribute prediction, 

with a reported RMS error of 0.44, indicating high accuracy and reliability of 

the results  (Jang, Gunes and Patras, 2019). 

As shown in Figure 2.14, YOLO, or You Only Look Once, uses the 

Darknet architecture as its backbone and replaces Softmax classification loss. 

It uses neural networks to store information about people’s appearance and 

class, with parallel bounding boxes used as detectors in images. The input 

image is divided into S × S grids, and object detection is successful if the 

object’s centre points fall within the grid cell. The performance of YOLO is 

analyzed by estimating the prediction of the bounding box and confidence 

score for each grid cell, with a confidence score of zero indicating no object 

within the grid cell (Rana, 2022). 

 

 

Figure 2.14: YOLO Algorithm Based on DarkNet Architecture (Weng, 

 2018). 

 

With its fast and accurate performance, YOLO gains significant 

popularity upon its first release in 2015. The architecture improvements are 
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continuing to advance in the field of computer vision with innovation in each 

version of the algorithm.  

 In 2020, the YOLO-v4 algorithm was updated to incorporate the 

CSPDarkNet 53 and PANet architectures for object detection, leading to 

improved face detection, even with masks. The algorithm features reduced 

parameters for feature extraction and increased information fusion. However, 

the YOLO-v4 algorithm required more frames per second (FPS) at 23.83 s as 

compared to YOLO-v3, which only required 21.39 s for processing the same 

picture during speed calculation (Yu and Zhang, 2021). 

Another distinct work was implemented by researchers in Shenzhen, 

China by introducing YOLO5face, based on the YOLO-v5 object detector. 

This approach resulted in improved speed and mean-average precision 

performance. By testing the model on the WiderFace dataset, it achieved a 

mean average precision of 96.67 %, demonstrating the significant performance 

of the YOLO algorithm (Qi et al., 2021). 

In 2022, Wang, Bochkovskiy and Liao (2022) had released the 

official YOLOv7 with a paper named “YOLOv7: Trainable bag-of-freebies 

sets new state-of-the-art for real-time object detectors”. This model was 

declared to be the fastest and most precise real-time object detection model for 

computer vision. 

Additionally, the latest object detection model, YOLOv8, has recently 

been released with new features and enhancements, with a strong focus on 

accuracy, speed, and size. In this context, there are five types of YOLOv8 

models, namely YOLOv8n, YOLOv8s, YOLOv8I, and YOLOv8x. YOLOv8x 

has the highest accuracy but is the slowest among them, while YOLOv8 Nano 

is the smallest and fastest. Figure 2.15 shows that YOLOv8 significantly 

outperforms older versions of the YOLO model on COCO datasets (Francesco 

and Solawetz, 2023). 
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Figure 2.15: Comparison of Different Versions of YOLO Model 

 (Francesco and Solawetz, 2023). 

 

The Table 2.2 lists out the major differences between CNN, SSD and 

YOLO in terms of accuracy, speed, advantages and disadvantages. 

 

Table 2.2: Comparison Between CNN, SSD and YOLO (Srivastava et al.,   

2021). 

 CNN SSD YOLO 

Accuracy Accuracy is the 
highest among 
three models. 

Accuracy is 
lesser as 

compared to 
CNN family. 

Accuracy is the 
lowest as compared 
to CNN family and 

SSD. 

Speed Slower than SSD 
and YOLO. 

Faster than 
CNN family 
but slower 

than YOLO. 

Fastest among three 
algorithms. 

Main 
Advantages 

Reduced chance 
of overfitting due 

to fewer 
parameters to 

learn. 

Can be trained 
end-to-end to 

improve 
accuracy. 

Good for real-time 
processing. Can be 

trained end-to-end to 
improve accuracy. 

Main 
Disadvantages 

Requires lots of 
samples to 

construct a depth 
model. 

Not suitable 
for small 
objects. 

Difficult to detect 
objects that are 

small and close to 
one another. 

 



29 

2.3.7 Transfer Learning 

Transfer learning is an indispensable concept in deep learning as a small 

amount of data is sufficient to train deep neural networks. In this context, a 

pre-trained model for face recognition serves as a good starting point as it has 

already been trained for learning low-level features such as shapes, textures, 

and edges. By fine-tuning the pre-trained model on a new dataset, the need for 

extensive training data and time is reduced, making it more robust and 

accurate in real-world scenarios. This approach is useful when applied to new 

faces or changing environmental conditions, such as changes in lighting or 

pose, making it more robust and accurate in real-world scenarios. 

Several related works have made use of transfer learning in face 

recognition, such as the application of VGG16 for feature extraction and 

classification using a Softmax layer. The VGG16 model was trained on the 

ImageNet dataset, resulting in an accuracy of 83.11 % in an experiment 

involving 15 subjects, each with 11 images (Singh, Kansari and Sinha, 2022). 

Additionally, a transfer learning-based CNN model achieved an accuracy of 

98.7 % and 100 % on the Yale and AT&T datasets, respectively (Meena 

Prakash, Thenmoezhi and Gayathri, 2019). Another work accomplished by 

Atabansi et al. (2021) successfully applied transfer learning in combination 

with the pre-trained VGG-16 network architecture to the Oulu-CASIA NIR 

dataset, achieving an average test accuracy of 98.11 % in facial expression 

recognition. These findings underscore the potential of transfer learning for 

improving the accuracy and robustness of face recognition in real-world 

scenarios.  

  

2.4 Evaluation Metrics 

To evaluate the performance of a proposed face recognition system, it is 

essential to consider several metrics. Four prominent metrics were discussed 

by Harakannanavar et al. (2019) namely False Accept Rate (FAR), False 

Reject Rate (FRR), Receiver Operating Characteristic (ROC) and Equal Error 

Rate (EER). 

FAR refers to the system’s probability of incorrectly matching an input 

pattern to a template that does not match in the database, while FRR refers to 

the system’s failure to detect a match between the input pattern and a matching 
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template in the database. The ROC curve is an useful visualization tool that 

displays the trade-off between FRR and FAR, while EER can be determined 

from the ROC curve. 

In the CNN architecture, different performance metrics were utilised 

for face and head detection as proposed by Nguyen-Meidine et al. (2018). A 

ROC curve is used to measure accuracy, with the true positive rate (TPR) 

plotted against the false positive rate (FPR). The TPR refers to the proportion 

of target face regions of interest (ROI) precisely detected as faces over the 

entire region of interest. 

For video surveillance applications, the Precision-Recall space is more  

appropriate for measuring detector performance under imbalanced data. Based  

on the FDDB dataset, three region-based CNNs, Faster R-CNN, R-FCN, and  

PVANET, had provided higher accuracy levels than SSD, while SSD showed  

more competitive performance in the Precision-Recall space, as illustrated in  

Figure 2.16 (Nguyen Meidine et al., 2018). 

 

 

Figure 2.16: ROC and Inverted Precision-Recall Curves (Nguyen 

 Meidine et.al., 2018). 

 

 Aside from that, Masi et al. (2019) utilized the ROC curve for 

verification and the True Acceptance Rate (TAR) at precision cutoff points 

and False Alarm Rate (FAR) to evaluate performance on the IJB dataset. The 

cumulative match characteristic (CMC) curve was also used to analyse the 

recognition rate at multiple ranks. The Detection Error Tradeoff (DET) curve, 

which is similar to the ROC, was used to measure quality identification. 
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Additionally, another study by Srivastava et al. (2021) used the average 

precision and F1 score as the performance metrics for the face detection model 

using deep learning approaches. 

Next, another study on face detection by deep learning carried out by 

Chaves et al. (2020) utilized a regression model for the prediction of face 

detector speed and evaluated the model using Mean Absolute Error (MAE), 

Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). In 

addition, by using mean Average Precision (mAP) and the F1 score for the 

WIDER Face and UFDD datasets, it was found that MTCNN is the fastest but 

least accurate detector. Additionally, the writer also evaluated performance by 

using Generalized Linear Models (GLMs) for the estimation of processing 

time and F1 score of face detectors, as GLMs are flexible linear regression 

models that take into account metrics such as processing time and F1 score.  

In short, evaluation metrics are essential to assess the performance of 

the face recognition system. In addition to testing the accuracy of the system, 

the metrics also facilitate the comparison and selection of the most suitable 

face recognition techniques for specific applications. 

 

2.5 Database 

The selection of a suitable face database is crucial for developing and 

evaluating robust face recognition systems. It is essential to have sufficient 

data and variability in the database to cover controlled variables such as 

illumination, pose, expression, occlusion, age, and ethnicity (Gross, 2005). For 

deep learning-based face recognition systems, having a large training dataset is 

particularly crucial to learn complex features from images. For instance, 

ImageNet with 14 million images significantly enhanced the development of 

precise deep learning object detection models. 

The ORL (Olivetti Research Laboratory) face database is one of the 

oldest face databases, consisting of 400 face images taken between April 1992 

and April 1994. This database was created for the face recognition project, and 

all images were taken against a dark homogeneous background, leading to 

inconsistent illumination conditions (Roure and Faundez-Zanuy, 2005). 

Another well-known face database is YALE dataset, which includes 165 

grayscale images of 15 individuals. However, this database has limitations, 
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such as a small number of individuals, and environmental factors such as the 

presence and absence of ambient light are not indicated (Kriegman, n.d.). 

Different databases used for similar recognition approaches will affect 

the performance of the face recognition system. In the examples of studies 

carried out by Du, Su and Cai (2009) and Xie (2009) on the ORL Faces 

database and Yale Faces database, an accuracy of 96 % and 97.78 % was 

achieved respectively, using the Support Vector Machine (SVM) classifier. 

Furthermore, the PCA technique was applied to the ORL face database by Yi, 

Lei, and Li (2015) and to the Yale database by Chai, Shan, and Gao (2003). 

An accuracy of 70 % and 93 % was achieved, respectively. 

A more recent database, ELA5 was introduced by Alexiadis et al. 

(2010) for the main purpose of experimentation within the face recognition 

domain. The database covers pose and illumination variation, different facial 

occlusions and expressions, and consists of a total of 1260 images from ten 

individuals. Some techniques, such as PCA, MPCA, and LDA, were used to 

simulate real-world conditions. When MPCA and LDA were used together in 

the first experiment, 95 % of the images were recognized. This shows that 

traditional PCA techniques are sensitive to changes in lighting conditions. 

Other recently added face databases include the Basel Face Database, 

which consists of forty individuals with fourteen variations of each of them 

displaying different personalities (Walker et al., 2018). Another distinct face 

database, Labeled Faces in the Wild (LFW) is well-known as a public 

benchmark for face realism and consists of 13233 images. This database was 

specifically designed for studying unconstrained face recognition problems. 

The constraints include poor lighting, extreme poses, occlusions, and many 

groups are not represented properly, such as lack of ethnicity, few children, no 

babies, and people over the age of 80 (Zhang and Deng, 2016). 

There are several factors that affect the quality of a face database. 

Firstly, the pose variance may affect the success of the face recognition system 

due to the inconsistency of individuals when taking a picture, as people may 

pose differently and there is no standardisation for photo taking. Hence, the 

pose variance may degrade the performance of face recognition systems due to 

their inflexible imaging conditions.  



33 

Secondly, occlusion refers to any obstacles in an image, such as hands, 

hair, sunglasses, or other items. Partial occlusion refers to occlusion that is less 

than 50 % of the face. Additionally, factors such as shadows can also 

contribute to the category of occlusion. These can be problematic for face 

recognition systems as they obstruct parts of the face that are important for 

accurate recognition.  

Lastly, lighting is an essential consideration that depends on whether 

the photos were taken in a controlled environment with a homogeneous 

background. Illumination can greatly affect the face appearance and lead to 

inconsistencies between images. These factors highlight the importance of 

having a sufficient and diverse face database for training and testing a robust 

face recognition system  (Lal et al., 2018).  

In summary, the selection of a suitable face database is essential for 

developing a robust face recognition system. A large training dataset with 

sufficient variability can enhance the accuracy of deep learning-based face 

recognition systems. 

 

2.6 Comparison between Traditional Approaches and Deep Learning 

Approaches 

The field of face recognition has undergone significant transformation over the 

years. Initially, conventional approaches relied on edge and texture descriptors 

combined with machine learning techniques such as Support Vector Machines 

(SVM), Principal Component Analysis (PCA), and Linear Discriminant 

Analysis (LDA). However, these traditional techniques were not robust when 

facing variations in unconstrained environments. In recent years, deep learning 

approaches based on convolutional neural networks (CNNs) have been 

successfully adapted for image dimensional reduction and recognition due to 

their outstanding accuracy and fast computation. 

The first CNN approach for face recognition that utilized a high-

capacity model, namely Facebook’s DeepFace, achieved an accuracy of  

97.35 % on the LFW datasets with an error reduction of 27 % (Trigueros, 

Meng and Hartnett, 2018). Additionally, based on a research implemented by 

Setiowati et al. (2017) with the YALE dataset showed that the non-deep 
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learning algorithm can achieve up to 90.6 % for low-high complexity and 

94.67 % in the deep learning approach for low to high complexity. 

Most studies comparing conventional and deep learning approaches to 

face recognition show that the latter provides greater performance. Jayaswal 

and Dixit (2020) implemented the first approach by using the Viola Jones 

approach for image detection, followed by the Local Binary Pattern for 

extracting features by recognising the face. However, the real-time system 

took only 300 datasets and achieved an accuracy of just 50 %. 

Subsequently, the deep learning approach was carried out by initially 

resizing the images with the MTCNN algorithm, followed by the FaceNet 

model to extract high-quality images. As a result, it has been proven that deep 

learning is suitable for models that embed larger datasets, as the accuracy 

obtained was 96 %. Furthermore, by applying low to high complexity to the 

YALE dataset, the CNN approach and the LBP approach achieved recognition 

rates of 93.3 % and 85.75 %, respectively (Setiowati et al., 2017). Table 2.3 

summarises the comparison of SVM and deep learning approaches on MNIST 

datasets. 

 

Table 2.3:  Performance Comparison for SVM and Deep learning. 

Approach SVM Deep Learning 

Operating time 46.54 minutes 11 hours and 50.41 
minutes 

Accuracy in training set 94.09 % 100 % 
Accuracy in testing set 93.92 % 98.85 % 
Means for extracting 

features 
Manually and 

subjective 
Automatically and 

objective 
Means for processing 

data 
Turn images into 

vector 
Directly using images 

References (Lai, 2019) (Lai, 2019) 
 

On top of that, a research from Singhal et al. (2021) compared 

traditional and deep learning approaches for face recognition on the ORL 

database. According to Figure 2.17, the combination of CNN and LBP 

approaches achieved a 100 % recognition rate, while the PCA with Neural 

Network achieved approximately 97 % accuracy. In contrast, the traditional 

approach, which used HOG and SVM techniques, achieved the lowest 

accuracy of 90 %. These results suggest that a combination of deep learning 
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and traditional approaches can lead to better performance compared to other 

models. 

 

 

Figure 2.17: Performance of Various Techniques on ORL Database 

 (Singhal et al., 2021). 

 

 Overall, deep learning approaches have better performance in terms 

of accuracy and robustness compared to traditional approaches for face 

recognition. This is due to its capabilities of learning high-level features 

directly from raw data, which makes it easier to adapt to different image 

variations. Additionally, large datasets are easier to handle with deep learning 

approaches, making them a suitable option for the development of face 

recognition. 

Aside from good performance in terms of accuracy in most 

experiments, deep learning is associated with some weaknesses. The first issue 

is high complexity, which makes it difficult for deep learning to encounter 

situations such as varied facial poses, lighting and illumination, facial 

expressions, or partial occlusions. Next, the build-up of a deep learning 

approach consumes more training time and computing resources in order to 

achieve better generalisation ability and prediction accuracy. 

The optimised solution is by integrating both conventional and deep 

learning approaches into the system in order to obtain results of high accuracy 

and low complexity. For instance, the LBP approach implemented on the ORL 

dataset achieved an accuracy of 97 %, whereas another experiment that 

integrated with the CNN technique and the LBP approach applied on a similar 
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dataset obtained a recognition rate of 100 % (Singhal et al., 2021c). Table 2.4 

illustrates the comparison between conventional approaches such as HOG, 

LBP or PCA and deep learning approaches such as CNN, SSD or YOLO. 

 

Table 2.4: Comparison Between Conventional and Deep Learning Approach. 

Conventional Approach Deep Learning Approach 
Lower Accuracy Higher accuracy 

Consume lesser training time Requires larger training datasets with 
longer training time 

Used for simpler application Solve complex problems 
 

In conclusion, while deep learning approaches have shown superior 

performance in face recognition, there are still limitations, such as high 

complexity and resource consumption. The viable solution to these limitations 

is to integrate traditional approaches with deep learning to further advance the 

face recognition field. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

In this chapter, clear and proper planning of the entire project activities will be 

explained in order to keep track the progress and ensure the project running 

successfully. Additionally, detailed methodology was covered in clear manner 

to ensure the results compatible with project aim and objectives. The 

methodology will be explained parts by parts which consist of project planning, 

development process, face recognition approaches followed by design of the 

user interface for the whole smart attendance system, and lastly, the solutions 

to the difficulties faced during the development process. 

 

3.2 Project Planning 

The whole project was separated into two stages which are Final Year Project 

1 and Final Year Project 2. Each of them took about 14 weeks. At the 

beginning of the project, the project scope, problem statement and objectives 

were clearly stipulated to ensure the whole project aligned with the targets. 

Besides, a literature review was conducted to discuss on the background and 

few techniques leading the implementation of the project apart from providing 

clear perspective about the project to the audience. Research was conducted 

before proposing the methodology or possible solutions followed by 

preliminary testing and results analysis.  

In FYP2, a fully working prototype was developed with performance 

evaluation. The initial prototype was accomplished on Week 4 as planned. 

Then, field test was carried out to analyse the performance of the recognition 

system and further enhance the prototype. Some useful features were updated 

in order to enhance user’s experience. On Week 14, the whole project was 

accomplished. The project’s Gantt Chart was displayed in Figure 3.1. 
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Figure 3.1: Project Gantt Chart. 

 

3.3 Project Development 

Two different face recognition approaches were tested to determine the most 

suitable technique for integration into the smart attendance system. The first 

approach combined DNN, FaceNet, and an SVM classifier, while the second 

approach used transfer learning with a VGG16 model. Figure 3.2 below 

provides a general overview of both recognition techniques. 
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Figure 3.2: Workflow for Face Recognition Approaches. 
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The designed smart attendance system is composed of three primary 

features: face detection, feature extraction, and face recognition, which 

collectively form the backbone of the system.  The proposed system design is 

displayed in the block diagram in Figure 3.3 whereas the implementation of a 

more detailed flowchart is illustrated in Figure 3.4. The input image can be 

captured from a variety of environments such as university, company or 

industry by using a webcam or any video streaming device. The captured 

images will then be preprocessed and saved in the local files as the database. 

When a new face is added to the database, the model is trained to extract face 

encodings for the new user and associate them with their respective names. 

Next, face recognition takes place by classifying if the face encodings of an 

individual from real-time video streaming matched with the saved face 

encodings. If the comparison results are right, the individual’s name will be 

displayed on the frame and the attendance excel sheet will be updated 

accordingly. 

 

 

Figure 3.3: Block Diagram for Smart Attendance System. 
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Figure 3.4: Flowchart of Smart Attendance System. 
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3.4 Resources 

3.4.1 Hardware 

The chosen webcam for the proposed system is Benewy Full High-definition 

(HD) webcam which can support full HD ranged from 272 pixels up to 1440 

pixels with a maximum of 30 fps and 2 Megapixels. This plug and play 

webcam adapts advanced H.264 compression technology. Besides, it has built-

in microphone and automatic focusing mode. It is being chosen as it fits the 

basic requirements of the face recognition system and the price is affordable. 

These crucial elements are considered before embedding the device to the 

proposed system. The specifications of this video-streaming webcam are listed 

out in Table 3.1. 

 

Table 3.1: Specifications of Benewy Full HD Webcam. 

 Specifications 

Image 

 
Model Number U01 

Maximum Resolution 2560 × 1440 pixels 
Pixels 2 Mega 

Frame Speed 30 fps 
Image Sensor CMOS 
Sensor Pixel 2 million 

  

The developed system is processed using an Asus VivoBook S15 

S510U laptop, equipped with an Intel i5-8250U CPU running at 1.60GHz and 

8GB of installed Random-access memory (RAM) as shown in  Figure 3.5. 
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Figure 3.5: Asus VivoBook S15 S510U Laptop. 

 

3.4.2 Software 

Python is the main programming language for the entire development of the 

smart attendance system. The development environment used is VS Code, an 

open-source code editor developed by Microsoft.  

 

3.5 First Approach 

3.5.1 Face Detection 

Face detection is a preliminary step before proceeding into face recognition 

part. There are several algorithms and techniques that can be used for face 

detector. In this study, three widely recognized face detectors, namely 

OpenCV’s Deep Neural Network (DNN) module, Multi-Task Cascaded 

Convolutional Networks (MTCNN), and Haar Cascade, were evaluated to 

determine the most appropriate one for the task at hand. 

 Firstly, OpenCV was installed as the requirements for the face 

detectors to work. It provides sets of useful tools for object detection and 

recognition. In this context, DNN makes use of ‘prototxt’ file and ‘caffe’ 

model as input to create a deep learning model for face detection. The 

architecture of the network including layers and configurations was specified 

in the ‘prototxt’ file whereas the weights for the network was defined in the 

‘caffe model’ which can be found in Appendix A. For MTCNN, it can simply 

work by installing the MTCNN Library. To run Haar Cascade, the Haar 

Cascade XML file consisting of the face detection model was loaded to the 

system. Each detection technique has their own strengths and weakness and 

the results of comparison were analyzed in Chapter 4. 

The three face detectors were compared and the most suitable one, 

DNN face detector was integrated into the smart attendance system. In the 
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Graphical User Interface (GUI), a “VideoStream” object was initialized to 

read frames from the camera source. The camera source was defined by a 

global variable named “CAMERA_INDEX” in which the user can easily 

change the camera source by setting “CAMERA_INDEX” to ‘1’ for external 

webcam or ‘0’ for the laptop’s built-in camera. In this context, a webcam was 

used to enhance the robustness of the system, as the webcam can produce a 

maximum of 2560 × 1440 pixels video stream at 25 fps whereas the built-in 

laptop web camera has a maximum resolution of 640 × 480 pixels.  

The “start_detection()” function is called by a timer every 10 

milliseconds to detect faces in the video stream. When the video stream is 

initialized, the frame will be resized to a width of 800 pixels. The height and 

width of the resized frame will be extracted out and converted to a blob, which 

matches the requirement for the processing of deep learning model. The blob 

is then passed through a pre-trained face detection model for detection. The 

confidence level of the current detection is extracted and if the confidence 

level is greater than the threshold which was preset using a variable named 

“CONFIDENCE_LEVEL”, the coordinates of the bounding box around the 

detected face will be computed. The extracted face will be saved in specific 

folder that is created using user’s name by using the “save_detected_face” 

function. Besides, the images are saved in JPEG format at maximum quality in 

order to preserve the sharpness and details of the image. 

The timer is initialized when the video stream starts and stops when 

20 faces have been captured. Collecting multiple frames of an individual’s 

face helps in enhancing the accuracy of the face recognition system by 

providing variations in lighting, angle, pose, and facial expressions. After few 

runs of tests, 20 frames were considered as the optimal number of frames to 

collect for creating a face database as it provides a good balance between 

capturing sufficient variation and does not overburden the system with too 

much data.  

 
3.5.2 Feature Extraction 

A deep learning model, FaceNet was deployed for face extraction and face 

recognition purpose. It takes an image of an individual’s face as input and 

outputs a vector of 128 numbers that represent the face embeddings. It was 
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trained on the Tensorflow framework on a large dataset of face images for the 

use of face recognition. The FaceNet model and its weights are initially loaded 

and then compiled using the “compile” function. The model’s filepath and its 

corresponding weights can be found in Appendix B. 

After collecting 20 face images of the user, “switch_to_main()” 

releases the stream from a video object, creates an instance of 

“EncodingThread” with a batch size of 32, and starts the thread. The batch size 

is utilized in the “encode” method in order to loop through all collected images 

in batches instead of processing all the images at once. By using batches, the 

framework can optimize the computation graph for the specific batch size used. 

This can enhance memory efficiency and allow faster processing. 

 Face encodings will be generated from a set of training images that 

were saved earlier during the face detection process. Lists will be created to 

store the encodings and their respective names, followed by normalization of 

the image’s pixel value. The images will be resized to 160 × 160 pixels and its 

dimensions will be expanded to fit the model. Predictions will be made on the 

batch of images by using the loaded FaceNet model and then the encodings 

and names will be appended to the lists. Lastly, the encoded data will be saved 

as a pickle file. 

            Furthermore, the face image encoding process is executed in a separate 

thread which means that the encoding process does not block the main thread 

of the application. By running the encoding process in a separate thread, the 

GUI remains responsive and the user can interact with the application or 

access other features while the encoding is in progress. In short, the encoding 

process was designed in a separate thread for better responsiveness and user 

experience without blocking the main thread of the ongoing application. 

 

3.5.3 Face Classification 

The “trainClassifier” function is called to load the encodings file path and 

Support Vector Machine (SVM) classifier from scikit-learn’s “joblib” module 

to carry out face recognition. It then loads a dictionary of known face 

encodings and their respective names from a pickle file named 

“face_encoding.pickle”. The known encodings and names are assigned to 

numpy arrays and the SVM classifier is trained on these known encodings and 
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names. The trained classifier is then stored in “self.clf”. The “kernel” 

parameter in the SVM is set to “rbf” and the “tol” parameter was tuned to a 

value of 0.001 as stopping criterion. The regularization parameter was set with 

a value of 5. These parameters give the best performance for the system. 

In this context, the SVM classifier was selected instead of other 

classifiers such as K-Nearest Neighbors (KNN), Random Forest and Decision 

Tree due to its simplicity, precision and speed.  

 After training on the known face encodings and their respective 

names, the SVM classifier is used to predict the name of new face encodings. 

Prediction of the name of each encoding is done by calling the “predict” 

method on the “clf” object. After that, the face encodings detected in the 

current frame is stored in the “face_encodings” variable whereas the predicted 

name is stored in the “predictions” variable. The predicted name will be 

displayed on the frame when the video is streaming. 

 The task of the real-time face recognition is performed in separate 

thread from the main GUI thread to prevent GUI from freezing easily. When 

the application is closed by user, the “stop()” method is called to stop the 

thread by setting the “ThreadActive” flag to False and thus quitting the thread. 

 

3.6 Second Approach 

The model architecture for VGG16 model is illustrated in Figure 3.6. The 

VGG16 model, originally developed by the Visual Geometry Group (VGG), is 

commonly used for image classification tasks. It consists of 16 layers and is 

often employed in transfer learning approaches for tasks such as face detection, 

feature extraction, and face recognition (Bansal, 2020). In this study, the pre-

trained VGG16 model’s weights were frozen, and only additional layers were 

trained specifically for face detection and face recognition purposes. 

 

 

Figure 3.6: VGG16 Model Architecture (Bansal, 2020). 
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3.6.1 Model Architecture 

The VGG16 model was loaded with pre-trained weights from the “imagenet” 

dataset, which comprises over 1.2 million images. The Keras functional API 

was used to add a new top layer to the VGG16 model. This top layer consists 

of a series of fully connected layers with an increasing number of units (256, 

512, and 1024) and ReLU activation function. The final output layer was 

added with a number of units equal to the number of classes in the dataset, and 

softmax activation function was used for classification. The model was then 

compiled with “categorical_crossentropy” loss function, “adam” optimizer, 

and accuracy as the evaluation metric. 

 

3.6.2 Data Augmentation 

The “ImageDataGenerator” class was utilised for data augmentation on the 

training dataset to increase its size by applying various transformations to the 

images. For the training, validation and testing dataset, the images were 

rescaled in which each pixel value in the images is divided by 255, resulting in 

pixel values scaled down to the range of 0 to 1. Additionally, rotation range, 

width shift range, and height shift range were set to 20, 0.5, and 0.5 

respectively. The horizontal flipping was set to “True” so that images can be 

horizontally flipped during training. “Nearest” mode was set to “fill_mode” 

such that empty pixels will be filled with the value of the nearest neighboring 

pixel.  

 

3.6.3 Training 

The model was trained using the “fit_generator()” function, which takes the 

training and validation data generators as inputs. During training, the weights 

of the pre-trained VGG16 model were frozen, so they were not updated. Only 

the weights of the new layers added for face recognition were trained. For the 

self-collected dataset, the number of epochs was set to 30 with a batch size of 

16.  

Overall, transfer learning with the VGG16 model, combined with pre-

processing, model architecture, data augmentation, and training techniques, 

can enable effective face detection and recognition tasks. The evaluation 
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results are analyzed in Chapter 4 to provide insights into the performance and 

effectiveness of the trained model. 

 

3.7 Attendance Update 

If the individual’s face is being recognized, an instance of the “Attendance” 

class will be created followed by the “mark_attendance” method. This step is 

carried out to mark attendance in the excel file named 

“Attendance_Records.xlsx”. In this context, the “xlsxwriter” library is used for 

creating and writing an Excel file whereas the “openpyxl” library is used for 

reading an existing Excel file. The “face_names_str” that is stored earlier 

during the face recognition process will be passed to the “mark_attendance” 

method followed by the “checkPreviousAttendance” method to check if a 

given “face_name_str” is already present in the Excel file within the last one 

minute. If the same name of an individual appeared within the last one minute, 

the name will not be recorded down. Otherwise, the name will be recorded in 

the Excel sheet with the timestamp. 

 

3.8 User Interface Design 

For the Graphical User Interface (GUI), PyQt5 was chosen to implement the 

smart attendance system due to its versatility, simplicity and powerful features 

that match with the objectives of this project. It provides a rich set of toolkits, 

widgets and other components to ease the design of a graphical user interface. 

For the developed smart attendance system, the GUI was designed using a 

variety of modules imported from PyQt5 libraries such as QPushButton, 

QDialog, QTableWidget, QTableWidgetItem, QLabel, and QStackedWidget. 

 

3.9 Problems and Solutions 

When running the initial prototype of the GUI, the system easily crashed, 

causing the GUI to become unresponsive. This is mainly due to bugs or coding 

errors in the application and insufficient resources as the GUI consumes too 

much memory and CPU. In the initial approach, the models were loaded 

separately in each class which resulted in loading similar models multiple 

times. This approach is not efficient as more memory is consumed and the 
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processing time increases. Therefore, the codes were reviewed and few 

changes were made to enhance the robustness of the system. 

One of the major enhancements that had been made was that all the 

required models for the smart attendance system are loaded once the GUI is 

initialized. The “models()” function is called to load FaceNet model with its 

pre-trained weight and the Caffe model and it ensures that all the required 

models are loaded and compiled successfully. In this context, when the user 

wants to access other features in multiple times, the models are not required to 

reload and this can save the processing time. As compared to initial approach 

of loading models in each class, the time to load all the required models had 

improved from 10 seconds to around 3.7 seconds. 

Apart from that, the initial design of the system lacked of threading, 

which meant that operations had to be accomplished before proceeding to the 

next task. For instance, after the user captures images for creating a face 

database, the encoding operation must be completed before the user can access 

other program features. Therefore, threading is introduced to the system to 

allow the system become more responsive and efficient. Using threads enables 

the parallel processing of different tasks. By implementing threads, both tasks 

can be performed simultaneously so that after face capturing is completed, the 

user can still access other features such as face recognition or managing 

attendance records while the encoding process is carried out in a separate 

thread. 

To implement threading, the signal-slot mechanism in PyQt was used 

to facilitate communication between different threads. A thread can emit a 

signal to the main thread, which can then respond to the signal by executing a 

slot function. This enables the main thread to be responsible for updating the 

GUI, while the worker thread is responsible for performing the long-running 

task. In short, threading is used for the execution of long-running tasks in the 

background, while keeping the GUI responsive and allowing the user to keep 

interacting with the application. 

Additionally, the frames per second (FPS) of the webcam was fixed at 

30 fps which induces less flexibility to the system. Adjustment of the FPS 

through coding was not working due to the limited capabilities of the webcam 

itself. Consequently, the attendance of an individual will be kept recorded 
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based on every collected frames and this is not practical for an attendance 

system. To address this issue, the “checkPreviousAttendance” function is used 

to check if a similar name has appeared within the last minute in the 

attendance file. It will not create a new entry if the similar person has already 

checked in within the last minute. This is a good practice as it prevents 

duplicate records and avoiding errors so that the attendance records is up-to-

date. 

In short, these enhancements have greatly enhanced the system’s 

robustness and efficiency. By loading all required models at the initialization 

of GUI, implementing threading for the encoding and face recognition process 

and code optimization, the system can effectively handle the long-running 

tasks in the background while keeping the GUI responsive and thus providing 

a great user experience. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

The proposed systems’ face recognition capabilities were tested on self-

collected face datasets to evaluate their performance. A comparison was made 

between two approaches to choose the most suitable one for the attendance 

system. The face datasets were also used to fine-tune the parameters of the face 

recognition system. Testing the recognition system on face datasets allowed 

for the evaluation of metrics such as accuracy, precision, recall, F1 score, 

classification report, and confusion matrix. This process helped identify any 

limitations and possibilities in the system’s ability to recognize faces for 

attendance records. 

The graphical user interface of the smart attendance system was 

successfully developed using PyQT5. Face detection was performed using 

OpenCV’s Caffe model, specifically the “Single Shot Detector” (SSD) 

framework. The system then used the pre-trained FaceNet model for feature 

extraction. The Support Vector Machine (SVM) classifier was applied to 

classify face encodings into names, and attendance was recorded in an Excel 

sheet if the user’s face was successfully recognized.  

 

4.2 Face Detection Evaluation 

Face detection is an essential part of the whole recognition system, as it helps 

to detect face regions in the video frame so that later the recognition system 

can provide reliable recognition results. In this context, three famous face 

detector techniques, namely OpenCV Haar Cascades, OpenCV DNN, and 

MTCNN, had been tested out to analyze their performances in both Labeled 

Faces in the Wild (LFW) image datasets and real-time video captured from the 

webcam. 

 

4.2.1 Labeled Faces In The Wild  

LFW is a benchmark face recognition dataset that consists of more than 13000 

images of faces from 5749 individuals collected from online website. The 



52 

datasets are accomplished with a wide range of sizes and resolutions and 

variation in terms of pose, lighting and occlusion. The creation of this LFW 

dataset had been used in the field of face recognition by many researchers and 

studies because it reflected real-world scenarios where images were captured 

in uncontrolled environment. Each image from this LFW dataset had been 

detected and centered using the OpenCV with the implementation of the Viola-

Jones face detector (Zhang and Deng, 2016). For the purpose of evaluating 

face recognition performance, a total of 300 images were randomly selected 

from the LFW dataset. 

 

4.2.2 Performance Evaluation 

The testing results for the face detectors are described in Table 4.1 to provide 

insights on the best face detector algorithms. The face detectors were tested on 

both LFW datasets and webcam. There are four different outcomes possible: 

true positive, true negative, false positive, and false negative. A true positive is 

achieved when all the faces in an image are correctly detected, while a true 

negative occurs when non-face images are correctly identified as such. False 

positive happens when the detection system flags an image or region as 

containing a face when it does not, and false negative occurs when a face is 

missed or not detected in the image or frame. 

 

Table 4.1: Confusion Matrix for the Performance Evaluation of Face Detectors. 

  Actual Conditions 

  
Faces detected Faces not 

detected 

Predicted 

Conditions 

Predicted faces 

detected 

True Positive 
(TP) 

False Positive 
(FP) 

Predicted non-

faces detected 

False Negative 
(FN) 

True Negative 
(TN) 
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The accuracy of the results were evaluated with the following formula: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      (4.1) 

 

where  

𝑇𝑃 = True Positive 

𝑇𝑁 = True Negative 

𝐹𝑃 = False Positive 

𝐹𝑁 = False Negative 

 

The speed of each detector was determined by measuring the elapsed 

time between two points: the start of model loading and the completion of 

image collection. The performance comparison in terms of accuracy and speed 

of three different approaches on the LFW dataset and laptop webcam for frontal 

faces, side faces, and low light environments is illustrated in Table 4.2, 4.3, 4.4, 

4.5, and 4.6, respectively. 

 

Table 4.2: Face Detection Approaches on Image Datasets. 

Approaches 
Test 

Image 
Example 

Detected 
Image 

Example 
TP TN FP FN 

Open 
CV Haar 
Cascade 

  

274

300
 

0

300
 

21

300
 

5

300
 

OpenCV 
Deep Neural 

Network 

  

296

300
 

0

300
 

2

300
 

2

300
 

Multi-Task 
Cascaded 

Convolutional 
Neural 

Networks   

286

300
 

0

300
 

14

300
 

0

300
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Table 4.3: Comparison of Accuracy and Speed on LFW datasets. 

Approaches Accuracy Speed 

Open CV Haar Cascade 0.91 10.97 s 
Open CV DNN 0.99 50.94 s 

MTCNN 0.95 142.20 s 
 

Table 4.4: Face Detection Approaches on Webcam for Frontal Faces. 

 

Table 4.5: Face Detection Approaches on Webcam for Side Faces. 

 

 

Approaches Detected Image Sample Accuracy Speed 

OpenCV Haar 
Cascade 

 

1.0 9 s 

OpenCV Deep 
Neural Network 

 

1.0 14.39 s 

Multi-Task 
Cascaded 

Convolutional 
Neural Networks 

 

1.0 12.80 s 

Approaches Detected Image Sample Accuracy Speed 

OpenCV Haar 
Cascade 

  

0.97 11.75 s 

OpenCV Deep 
Neural Network 

  

1.0 14.88 s 

Multi-Task 
Cascaded 

Convolutional 
Neural Networks 

  

1.0 16.30 s  
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Table 4.6: Face Detection Approaches on Webcam in Low-light Environment. 

 

From the analysis of the above results, the OpenCV Haar Cascade 

classifier yielded the worst results with an accuracy of 91 % when tested on the 

LFW dataset. On the other hand, the DNN approach outperformed the other 

two face detection techniques in terms of both accuracy and computational 

speed. The DNN module achieved 100 % accuracy in real-time webcam 

streaming applications, even when faced with different angles of faces and 

lighting conditions. When applied to the LFW dataset, the DNN module 

achieved an accuracy of 99 % with an average execution time of 50.94 s. 

Although MTCNN could perform well with good accuracy, its computational 

resource consumption was a constraint. Furthermore, the DNN module 

demonstrated its ability to detect individuals in unconstrained environments 

that varied in terms of lighting, pose, occlusion, and other factors, including 

cases where individuals were wearing face masks. Therefore, for a smart 

attendance system where real-time performance is critical, the DNN module 

was chosen as the face detector for the smart attendance system. 

 

4.3 Face Recognition Evaluation 

The purpose of carrying out the evaluation using face datasets was to evaluate 

the performance and accuracy of the designated face recognition system. In 

real-time face recognition, the system continuously processes video stream and 

Approaches Detected Image Sample Accuracy Speed 

OpenCV Haar 
Cascade 

 

0.82 6.23 s 

OpenCV Deep 
Neural Network 

 

1.0 14.18 s 

Multi-Task 
Cascaded 

Convolutional 
Neural Networks 

 

0.95 18.01 s 
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makes predictions of the individual’s name but it is impossible to determine 

whether the correct label of the person is being recognized. The challenge 

faced is that human operators have to manually verify the recognition results. 

Therefore, evaluation on different datasets could help identify strengths and 

weaknesses of the system apart from measuring its performance.    

During the evaluation process, two different models were used on 

similar self-collected face datasets to ensure a fair comparison between the 

performance of the face recognition system. The first model is a combination 

of OpenCV DNN, FaceNet model, and SVM classifier. The second model is a 

VGG16 transfer learning model, which was pre-trained on a large dataset of 

images and fine-tuned on the face recognition task. 

 

4.3.1 Face Datasets 

The face datasets were collected with a total of 280 images from 14 subjects in 

an indoor environment using the video stream. The frames were resized to a 

width of 800 pixels for each image and then converted to a blob using the 

“cv2.dnn.blobFromImage()” method. The blob was passed through a deep 

learning model to detect faces in the frame, and only those with a confidence 

level greater than 0.9 were saved. The collected datasets were then separated 

into training, validation, and testing sets with ratios of 0.7, 0.15, and 0.15, 

respectively. 

For the first approach, face detection was applied to all sets, and the 

loaded FaceNet model was used to extract encodings.  This process resulted in 

the creation of three separate files containing the encoding information for the 

face datasets. For the training sets, data augmentation was applied to enhance 

system robustness by exposing the face images to a wider range of face 

variations. In this context, a rotation degree of 25, minimum scale of 0.6, and 

maximum scale of 1.0 were applied to the face images. The encodings were 

flattened and padded with zeros to ensure that all samples had the same 

number of features. The names of the face images were encoded using 

‘LabelEncoder’ to transform categorical data into numerical data that machine 

learning models can process. The training sets’ encodings, validation sets’ 

encodings, and testing sets’ encodings with their respective names were stored 

as ‘trainX’, ‘trainY’, ‘testX’, ‘testY’, ‘valX’, and ‘valY’, respectively.  



57 

The encodings and labels were reshaped to ensure the correct format 

for the machine learning algorithm to process. The SVM classifier expects 

labels to be in a specific shape of a one-dimensional array, so the label arrays 

were reshaped to have one column and as many rows as necessary. Similarly, 

the feature arrays were flattened to have one column and as many rows as 

necessary. Mean imputation was performed on the data to replace missing 

values with the mean of the feature column. The ‘fit_transform’ method was 

applied to the training data to compute the mean and replace missing values 

with it. The transform method was then used on the validation and test data to 

replace missing values with the same mean value calculated from the training 

data. The imputation was done separately on the training, validation, and test 

sets to avoid data leakage. 

For the VGG16 transfer learning model, the image datasets were 

initially preprocessed by resizing each input shape of the images to 224 × 224 

pixels with three channels RGB before being fed into the model. Data 

normalization was then performed to rescale the pixel values of the input 

images between zero and one using the rescale parameter in 

ImageDataGenerator. This step is important for better performance and faster 

convergence. Finally, data augmentation was performed on the training images 

by applying random transformations to the images with a rotation range of 20, 

width and height shift values of 0.5, and horizontal flip. 

 

4.3.2 Parameters  

The selection and tuning of model parameters are crucial aspects of building 

and training for machine learning and deep learning models.  

In the first approach, face detection was initially performed, and the 

confidence threshold was adjusted to balance the trade-off between precision 

and recall. A low threshold could result in identifying non-faces as faces, while 

a high threshold could lead to missing some faces. To ensure consistency in 

performance evaluation between datasets and real-time face recognition, a 

confidence threshold of 0.9 was set, indicating that only faces with a 

confidence score above 0.9 were considered valid. 

Regarding the SVM classifier, few parameters were tuned as the 

classifier’s performance heavily relied on their values. The ‘C’ value was set to 
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5, which controlled the trade-off between classification error minimization and 

maximization. Setting it to a higher value than 5 could lead to overfitting and 

reduced classifier accuracy. Additionally, the ‘kernel’ parameter was set to the 

radial basis function (RBF) kernel, which had been shown to provide better 

classifier performance. The tolerance rate was set to 0.001, and the ‘probability’ 

parameter was set to ‘True’ to enable probability estimates for each predicted 

class. This is a useful feature that provides additional information about the 

classifier’s confidence in its predictions. 

For the second approach, which utilized the VGG16 transfer learning 

model, two key parameters were identified: batch size and epoch, which had a 

significant impact on the model’s performance. Batch size is the number of 

training examples utilized in one forward or backward pass. In this VGG16 

model, the batch size was set to 16. From the few experiments of setting 

different values of batch size, it was found that a larger batch size allows for 

faster training and better accuracy. Conversely, smaller batch sizes yield faster 

computation but also indicate fewer updates per training iteration. 

The term epoch refers to going through the complete training dataset 

once. Increasing the number of epochs could result in better accuracy but 

carried with the risk of overfitting such that the model performs well on 

training sets but poorly on unseen data. In this case, the VGG16 model was 

trained for 30 epochs, and after each epoch, the model was evaluated on a 

separate validation set. To prevent overfitting, the “EarlyStopping” callback 

function was utilized to stop the training early if the monitored metric stopped 

improving. The validation accuracy was set as the “monitor” parameter for 

early stopping. Additionally, the model was checkpointed after each epoch to 

ensure that the best performing model was saved. For this self-collected face 

datasets, the training was stopped at epoch 25, and the model was saved. 

 

4.3.3 Evaluation Metrics 

The first metric that needs to be evaluated is the accuracy of the recognition 

system. Accuracy represents the percentage of correctly classified instances 

out of all instances in the dataset. To measure the accuracy of the classifier, the 

‘accuracy_score’ function from the scikit-learn library was imported. This 
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function takes the true target labels and the predicted classes as inputs and 

returns the accuracy of the classifier. 

 After evaluating the combined models of DNN, FaceNet, and SVM 

on the self-collected datasets, the training accuracy, validation accuracy, and 

testing accuracy were found to be 98.98 %, 100 %, and 97.62 %, respectively. 

The high accuracy on the training sets suggests that the SVM classifier learned 

the training data very well and could predict the correct class for the majority 

of the training instances. The validation accuracy of 100 % indicates that the 

model was performing perfectly on the validation dataset without any errors or 

misclassifications. However, a higher accuracy on validation set than training 

accuracy and testing accuracy could be explained by less noise in samples due 

to small size of the validation samples used. The overall evaluation comparison 

between the two models is presented in Table 4.7. 

 

Table 4.7: Evaluation Comparison between Two Models. 

 DNN, FaceNet and 
SVM 

VGG16 Transfer 
Learning Model 

Training Accuracy  0.9898 0.8622 

Validation Accuracy  1.0 0.9762 
Testing Accuracy  0.9762 0.9762 

Training Loss - 0.3733 

Validation Loss - 0.0916 
Testing Loss - 0.0844 

Precision 0.9821 0.9821 

Recall 0.9762 0.9762 
F1 Score 0.9755 0.9755 

 

Apart from SVM, other machine learning algorithms such as K-

Nearest Neighbors (KNN) and Random Forest were tested to get a comparison 

of the accuracy score as illustrated in Table 4.8. 

 

Table 4.8: Test Accuracy On Different Classifiers. 

Classifier Test accuracy (%) 

Support Vector Machine (SVM) 97.62 
K-Nearest Neighbors (KNN) 95.24 

Random Forest Classifier 95.24 
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 Among the three tested classifiers, SVM had exhibited superior 

performance in term of test accuracy. It had better accuracy of 97.62 %. On the 

other hand, KNN and Random Forest Classifier obtained an accuracy of 

95.24 %. Therefore, it had been decided that SVM would be the optimal choice 

for the current face recognition project as it was suitable for multi-class 

classification tasks and its ability to handle high-dimensional data.  

During the training process, the VGG16 model calculated the 

accuracy and loss at each epoch. Accuracy refers to the percentage of images 

that the model correctly classifies, while loss is a metric for measuring model 

performance during training. The goal of training was to minimize loss and 

maximize accuracy. The accuracy graph in Figure 4.1 shows that accuracy 

increased as the number of epochs increased, indicating the model improved its 

ability to predict class labels. While the Figure 4.2 displays the model loss on 

training set and validation set for each epoch. The model was trained for 30 

epochs, but the training process stopped at the 25th epoch. The model achieved 

a training accuracy of 0.8622 and a training loss of 0.3733. Validation data was 

evaluated after each epoch, and the best validation loss achieved was 0.07984, 

but it did not improve at the 25th epoch, so the training was stopped early to 

prevent overfitting. The model achieved a validation loss of 0.0916 and a 

validation accuracy of 0.9762. The test accuracy of 0.9762 indicates that the 

model predicted well on new, unseen data.  

  

 

Figure 4.1: Transfer Learning VGG16 Model Accuracy at Each Epoch. 
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Figure 4.2: Transfer Learning VGG16 Model Loss at Each Epoch. 

 

 The reason why validation accuracy and test accuracy are higher than 

train accuracy is due to the validation set, which is too small to adequately 

represent the probability distribution of the data. Besides, a smaller splitting 

ratio of validation and testing ratios may cause this, as the model could 

perform prediction easily on the unseen data. Another reason is the data 

augmentation techniques such as rotation, flipping, and scaling used to 

increase the dataset’s size, which helped the model generalize better on new 

data. 

 Apart from that, the classification report was used to provide a 

summary of the precision, recall and F1 score for each sample in the datasets. 

The metrics were measured using the true positive (TP), false positive (FP), 

true negative (TN), and false negative (FN) values for each class. The 

classification report for both models are displayed in Table 4.9 and Table 4.10. 

From the analysis, the first model achieved a good accuracy of 0.9762 

However, it had low scores for some classes, particularly for class 2, which 

had a precision of 0.75 and f1-score of 0.86. Class 5 also obtained a recall 

score of 0.67 and f1-score of 0.80. On the other hand, all the classes in VGG16 

transfer learning model had perfect precision, recall, and F1-score, except for 

class 7 and class 12, which had slightly lower scores. Class 7 obtained 

precision score of 0.75 and f1-score of 0.86 whereas Class 12 had a recall 
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score of  0.67 and f1-score of 0.80. Therefore, the model appeared to perform 

very well in this classification task. 

 Overall, the differences in the comparison of results were not 

significant, the classification report suggested that both had the similar average 

accuracy of 0.98. 

 

Table 4.9: Classification Report for DNN, FaceNet and SVM. 

Name labels precision recall f1-score support 

0 1 1 1 3 

1 1 1 1 3 

2 075 1 0.86 3 

3 1 1 1 3 

4 1 1 1 3 

5 1 0.67 0.80 3 

6 1 1 1 3 

7 1 1 1 3 

8 1 1 1 3 

9 1 1 1 3 

10 1 1 1 3 

11 1 1 1 3 

12 1 1 1 3 

13 1 1 1 3 

accuracy - - 0.98 42 

macro avg 0.98 0.98 0.98 42 

weighted avg 0.98 0.98 0.98 42 
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Table 4.10: Classification Report for VGG16 Transfer Learning Model. 

Name labels precision recall f1-score support 

0 1 1 1 3 

1 1 1 1 3 

2 1 1 1 3 

3 1 1 1 3 

4 1 1 1 3 

5 1 1 1 3 

6 1 1 1 3 

7 0.75 1 0.86 3 

8 1 1 1 3 

9 1 1 1 3 

10 1 1 1 3 

11 1 1 1 3 

12 1 0.67 0.80 3 

13 1 1 1 3 

accuracy - - 0.98 42 

macro avg 0.98 0.98 0.98 42 

weighted avg 0.98 0.98 0.98 42 

 

The resulting heatmap, as displayed in Figure 4.3 and Figure 4.4 

showcases the confusion matrix generated by the SVM classifier and VGG16 

classification model on the face dataset. The rows and columns in the heatmap 

represent the actual and predicted class labels, respectively. The diagonal 

matrix indicates that the number of instances that were correctly classified for 

each class, while the off-diagonal values indicated misclassified instances. The 

confusion matrix included 14 classes (0 to 13), and the labels were displayed in 

numeric form due to their encoding using the ‘Label Encoder’ method. Figure 

4.3 reveals that the SVM model accurately classified all instances except for 

class 6. For instance, one instance that actually belonged to class 6 was 

misclassified as class 3. In contrast, the VGG16 classification model had 

correctly classified all instances in each class, except for class 13 as shown in 

Figure 4.4. One instance that belonged to class 13 was predicted as class 8. 

The results indicate that both the VGG16 model and the SVM model 

performed well on this dataset. However, it is possible that the dataset used to 
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generate this confusion matrix was very small, which causes the possibility 

that it may not be representative of the entire population. 

 

     

 

 

 

 

 

 

 

Figure 4.3: Confusion Matrix for DNN, FaceNet and SVM. 

 

 

Figure 4.4: Confusion Matrix for VGG16. 

 

4.4 Smart Attendance System 

When initializing the GUI, the smart attendance system required 

approximately 7 seconds to load the necessary models such as FaceNet and 

OpenCV’s Deep Neural Network module for its operation for the first time. 

After the initial load, the average loading time decreased to 3.8 seconds. 

 

4.4.1 Graphical User Interface 

The Figure 4.5 displays an User Interface (UI) which was designed to associate 

with three main features which are creating new face database or identity, face 

recognition and attendance monitoring. It can be accessed on the main window 
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screen named “WelcomeScreen”. It was implemented using a stacked widget 

to switch between different screens. Buttons were used to connect to different 

screens or implement the methods. For instance, the “pushButton”, 

“pushButton_2” and “pushButton_3” buttons were defined in the 

“HomeScreen.ui” file and connected to the “gotoadd”, “gotoadd2” and 

“gotoadd3” methods, respectively, using the “clicked.connect” method. The 

methods will prompt screen switching or events triggering. In the homescreen, 

the “pushButton”, “pushButton_2” and “pushButton_3” buttons were linked to 

“CreateIDScreen”, “FaceRecogScreen” and “AttendanceScreen” respectively.  

 

 

Figure 4.5: UI Design for Main Screen. 

 

 As shown in Figure 4.6, the ‘CreateIDScreen’ class was used to input 

the user’s name for creating new database and it was defined using the 

‘QDialog’ widget. It was equipped with two ‘QPushButton’ widgets, one to 

proceed to the next screen and the other to return to the main screen. On top of 

that, the ‘Next’ button was connected to the ‘check_name_input’ function, 

which checks if the name is valid or not. A warning message, ‘Please enter 

name to proceed’ will be displayed if the user does not enter any alphabet and 

just presses the button to proceed, whereas a warning message of ‘Name 

already exists’ will be shown if the input name is duplicate. 
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Figure 4.6: Create ID Screen 

 

If the input informations are valid, the program will prompt the user 

to switch to the screen for capturing their image and extracting their face 

encodings. Once the first face is detected, a timer will start running and will 

stop once the 20th face is captured. While 20 images may be considered a small 

number for a face recognition system, it can still be sufficient to recognize an 

individual and help to reduce storage requirements. A message will indicate 

that the face has been captured, and the screen will switch to the main window 

where the face encodings process will be initiated. On average, it takes 

approximately 12 seconds to train 20 images with face encodings. 

The second feature of the GUI is the face recognition system as 

displayed in Figure 4.7. In order to implement this, the code was structured 

into two classes named “FaceRecogScreen” which is responsible for setting up 

the GUI and managing the video stream and “StartThread” for processing the 

video stream and recognizing the faces. The face recognition process is 

continuous until the “Cancel” button is pressed by the user to stop the video 

stream and it will prompt the screen to return to the main window. 
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Figure 4.7: Face Recognition Screen. 

  

 In the GUI,  the “update_date_time” method was called to update the 

current date and time in the format of  “YYYY-MM-DD HH:MM:SS” on a 

text label widget. By displaying the timestamp on the user interface, it provides 

transparency to the system user, allowing users to verify whether the system is 

functioning properly and capturing the attendance information in a timely 

manner. Furthermore, the user can easily check the current time without 

accessing it through external devices such as a smartphone or watch. 

 The third main feature was implemented on the “Attendance Screen” 

in which user gets to view the attendance records as shown in Figure 4.8. A 

“QTableWidget” object from the “PyQt5.QtWidgets” module was used to 

represent the table for displaying data. This feature provides convenience to 

the user or admin to visualize and manage the attendance data. Furthermore, 

necessary changes or edits can be made by just accessing the excel sheet if 

required. It would be helpful in reports generation or data analyzing for the 

organisations that implement the smart attendance system. 
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Figure 4.8: Attendance Screen. 

  

4.5 Summary 

Both the combined model consisting of a DNN module, FaceNet, and SVM 

classifier, and the VGG16 transfer learning model, exhibited excellent results 

with the testing accuracy of 97.62 % and 97.619 % respectively on the self-

collected face dataset. The minimal difference between the two models 

suggested that pre-trained models could be effectively utilized to achieve 

outstanding performance for face recognition tasks. On top of that, the deep 

learning model would require retraining to recognize a new individual’s face if 

a new database was created. This could be a time-consuming process, 

especially for larger organizations that regularly add many new faces to their 

attendance system. Therefore, the recognition task utilized a combination of 

SSD, FaceNet, and SVM and integrated them into the designated GUI for the 

smart attendance system. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In conclusion, all the project’s aim and objectives were successfully 

accomplished, which included developing a facial recognition system designed 

specifically for attendance tracking. A comprehensive literature review 

covering current approaches and results in facial recognition algorithms was 

conducted. Furthermore, an intuitive GUI with essential features was created to 

simplify attendance monitoring for end-users. Finally, the system’s 

performance and usability were analyzed, providing insight for future 

enhancements to enhance the system’s robustness. 

 The study proposed and tested three different face detection 

approaches, which are OpenCV Haar cascades, OpenCV DNN, and MTCNN. 

Their performances were evaluated on both the Labeled Faces in the Wild 

(LFW) image datasets and real-time video captured from the webcam. The 

results showed that the DNN approach outperformed the other two techniques 

with an accuracy of 99 % and computational time of 57.94 s. As a result, it was 

chosen as the face detector for the face recognition system. To enable face 

recognition, two distinct models were utilized in which the first model 

combined OpenCV DNN, FaceNet model, and SVM classifier, while the 

second model is a VGG16 transfer learning model. The evaluation results 

showed minimal differences between the two models with test accuracies of 

97.62 % and 97.619 % respectively, indicating that pre-trained models and the 

use of machine learning algorithms, such as SVM, can achieve outstanding 

performance for face recognition tasks. Finally, the recognition task was 

implemented using a combination of DNN, FaceNet, and SVM, which were 

integrated into a designated GUI with features such as creating a new database, 

taking attendance, and monitoring attendance. 
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5.2 Recommendations for Future Work 

Although the presented testing accuracy of the face recognition system is high, 

it is important to note that the self-collected dataset used to train and test the 

system is small. Therefore, it is possible that the system’s performance may 

not generalize well to other datasets. To address this limitation, future work 

could involve collecting more diverse and large training datasets to evaluate 

the scalability and generalizability of the system’s performance. Additionally, 

the robustness of the face recognition system can be enhanced for future work, 

enabling it to recognize faces under different conditions, such as varying 

illumination, occlusion, pose, and masked faces. 

Ensemble learning and adaptive learning techniques can be 

effectively employed to enhance the accuracy and robustness of a face 

recognition system. By using ensemble learning, multiple models can be used 

to improve the system’s ability to learn from the strengths and weaknesses of 

each model. Conversely, adaptive learning can be integrated into the system to 

ensure that recognition remains effective even as the user ages. Furthermore, 

incremental learning can be applied to deep learning models, enabling them to 

continuously learn from data and adapt to changes in that data over time. 

On top of that, the ethical issues surrounding face recognition 

technology should be considered to protect users privacy and information. 

Therefore, collaborating with experts in related fields such as social science, 

government, and police and having a great understanding of the law 

concerning humanity’s privacy can provide valuable insight into these ethical 

concerns. 

For the attendance system, the current work involves saving new 

users databases into local files. One way to improve the system’s effectiveness 

and data security is to upload the users databases to a centralised cloud server. 

For instance, Amazon Web Services (AWS), which supports MySQL and 

Oracle, Microsoft Azure, which supports Microsoft SQL Server, and Firebase, 

which enables the storing of real-time data. All of these cloud server options 

guarantee high levels of security, ensuring that only authorised personnel can 

access the database (Rashid, 2022). Additionally, this can facilitate data 

sharing and management for the attendance monitoring of an organisation. 
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Finally, the current graphical user interface for the attendance system 

was developed using PyQt5, which is suitable for desktop applications. To 

enhance the efficient use of the smart attendance system at public 

organizations, other frontend frameworks such as Angular and React can be 

utilized. Angular, developed by Google, offers a range of features that make it 

convenient for building complex applications. React, developed by Facebook, 

allows for an efficient user interface with a virtual Document Object Model 

(DOM) that updates only the necessary components, resulting in faster 

performance (Patel and Tere, 2014). Both frameworks provide a wide range of 

useful features that are suitable for developing an efficient smart attendance 

system.
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APPENDICES 

 

Appendix A: Face Detector 

 

i. Haar Cascade Files 

haar-cascade-files/haarcascade_frontalface_default.xml atmaster · an

austinbeing/haar-cascade-files · GitHub 

 

ii. OpenCV DNN Model Configuration File 

https://github.com/aakashjhawar/face-

detection/blob/master/res10_300x300_ssd_iter_140000.caffemodel 

 

iii. OpenCV DNN Model’s Weights 

https://github.com/aakashjhawar/face-

detection/blob/master/deploy.prototxt.txt 

 

 

 

 

 

 

 

 



83 

 

Appendix B: Feature Extractor 

 

i. FaceNet Model File 

https://drive.google.com/file/d/1PZ_6Zsy1Vb0s0JmjEmVd8FS99zoM

CiN1/view?usp=share_link 

 

ii. FaceNet Weights File 

https://drive.google.com/file/d/1e6PHRlIeayAsvRGpYUwvstklvJy-

3H5B/view?usp=share_link 
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Appendix C: Smart Attendance System 

 

i. Main Code 

 

""" 

Libraries 

""" 

import cv2 

import os 

import time 

import numpy as np 

 

from os import listdir, path, mkdir 

from sys import argv, exit 

from datetime import datetime 

from numpy import asarray, expand_dims, vstack, array 

from pickle import dumps, load 

from openpyxl import load_workbook 

from sklearn.impute import SimpleImputer 

from sklearn.preprocessing import LabelEncoder 

 

from PyQt5 import uic 

from PyQt5.QtGui import QPixmap, QImage, QFont 

from PyQt5.QtCore import QTimer, pyqtSignal, QThread, Qt, QSize 

from PyQt5.QtWidgets import ( 

    QApplication, 

    QPushButton, 

    QDialog, 

    QTableWidget, 

    QTableWidgetItem, 

    QLabel, 

    QStackedWidget,) 
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from sklearn import svm 

from tensorflow.keras.models import load_model 

 

from imutils import paths, resize 

from imutils.video import VideoStream 

 

from Attendance import Attendance 

 

 

""" 

Configurations 

""" 

CAMERA_INDEX = 1  # set 0 for laptop default webcam 

NUM_FRAMES = 20 

CONFIDENCE_LEVEL = 0.9 

 

 

""" 

File paths 

""" 

 

MODEL_PATH = ".\\models\\FaceNetModel.h5" 

WEIGHTS_PATH = ".\\models\\facenet_keras_weights.h5" 

ENCONDINGS_PATH = ".\\models\\face_encoding.pickle" 

PROTOTXT_PATH = ".\\models\\deploy.prototxt.txt" 

CAFFE_MODEL = ".\\models\\res10_300x300_ssd_iter_140000.caffemodel" 

TRAINING_FOLDER = ".\\Detected images" 

ATTENDANCE_SHEET = "Attendance_Records.xlsx" 

 

 

"""- 

UI paths 

""" 
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HomeScreen = ".\\UI\\HomeScreen.ui" 

FaceRecog_Screen = ".\\UI\\FaceRecog.ui" 

Camera_Sreen = ".\\UI\\Camera.ui" 

CreateUserID_Screen = ".\\UI\\CreateUserID.ui" 

Attendance_Screen = ".\\UI\\Attendance.ui" 

 

EMBED_MODEL = "" 

DETECT_MODEL = "" 

 

 

""" 

Function to load all models 

""" 

def models(): 

    print("[INFORMATION] Loading models....") 

    global EMBED_MODEL, DETECT_MODEL 

    EMBED_MODEL = load_model(MODEL_PATH) 

    EMBED_MODEL.load_weights(WEIGHTS_PATH) 

    DETECT_MODEL = cv2.dnn.readNetFromCaffe(PROTOTXT_PATH, 

CAFFE_MODEL) 

    print("[INFORMATION] Models loaded successfully") 

    print("[INFORMATION] Compiling models....\n") 

    EMBED_MODEL.compile() 

    end_time = time.time() 

    # calculate elapsed time 

    elapsed_time = end_time - start_time 

    print('Time to load all models: {:.2f} seconds\n'.format(elapsed_time)) 

    print("[INFORMATION] Models compiled successfully") 

    print("[INFORMATION] Starting application....") 

 

 

""" 
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Main Screen 

""" 

 

class WelcomeScreen(QDialog): 

    def __init__(self): 

        super(WelcomeScreen, self).__init__() 

        uic.loadUi(HomeScreen, self) 

 

        self.setMinimumSize(QSize(400, 300)) 

        flags = Qt.WindowFlags(Qt.Window) 

        self.setWindowFlags(flags) 

 

        self.pushButton.clicked.connect(self.gotoadd) 

        self.pushButton_2.clicked.connect(self.gotoadd2) 

        self.pushButton_3.clicked.connect(self.gotoadd3) 

 

    def gotoadd(self): 

        pushButton = CreateIDScreen() 

        widget.addWidget(pushButton) 

        widget.setCurrentIndex(widget.currentIndex() + 1) 

 

    def gotoadd2(self): 

        pushButton_2 = FaceRecogScreen() 

        widget.addWidget(pushButton_2) 

        widget.setCurrentIndex(widget.currentIndex() + 1) 

 

    def gotoadd3(self): 

        pushButton_3 = AttendanceScreen() 

        widget.addWidget(pushButton_3) 

        widget.setCurrentIndex(widget.currentIndex() + 1) 
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""" 

Create User ID Screen 

Allow user to input name 

""" 

 

class CreateIDScreen(QDialog): 

    def __init__(self): 

        super(CreateIDScreen, self).__init__() 

        uic.loadUi(CreateUserID_Screen, self) 

 

        # Connect buttons to functions 

        self.nextbutton.clicked.connect(self.check_name_input) 

        self.pushButton_back.clicked.connect(self.back_to_main) 

 

    # Check input name 

    def check_name_input(self): 

        i = 5 

        j = 0 

 

        while i > j: 

            # Retrieve the input name from user 

            self.get_name() 

 

            if not self.name: 

                # Display warning message if name is not being input 

                self.label_warning.setVisible(True) 

                self.label_warning.setStyleSheet("color: red") 

                self.label_warning.setFont(QFont("Yu Gothic UI Semibold", 12)) 

                self.label_warning.setText("Please enter name to proceed") 

                return  # Return to wait for valid input 

 

            elif self.check_duplicate(): 

                # If name already exists, loop back to get valid input 
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                j += 1 

                continue 

 

            else: 

                # If name is input and valid, proceed to next screen 

                self.duplicate_warning.setVisible(False) 

                self.label_warning.setVisible(False) 

                self.nextfunction() 

                # Exit the loop 

                break 

 

    # Retrieve name from user 

    def get_name(self): 

        self.name = self.name_input.text() 

 

    # Check if the input name is duplicate 

    def check_duplicate(self): 

        # Display warning message if name already exists 

        for file in listdir("Detected images"): 

            if file == self.name: 

                self.duplicate_warning.setVisible(True) 

                self.duplicate_warning.setStyleSheet("color: blue") 

                self.duplicate_warning.setFont(QFont("Yu Gothic UI Semibold", 

12)) 

                self.duplicate_warning.setText("Name already exists") 

                return True  # Return True to indicate duplicate name found 

        return False  # Return False to indicate no duplicate name found 

 

    # Proceed to next screen 

    def nextfunction(self): 

        nextbutton = CreateIDScreen2(self.name) 

        widget.addWidget(nextbutton) 

        widget.setCurrentIndex(widget.currentIndex() + 1) 
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    # Return to main screen 

    def back_to_main(self): 

        pushButton_back = WelcomeScreen() 

        widget.addWidget(pushButton_back) 

        widget.setCurrentIndex(widget.currentIndex() + 1) 

 

 

""" 

Screen for capturing user image 

As Database for Training Purpose 

""" 

 

class CreateIDScreen2(QDialog): 

    def __init__(self, name): 

        super(CreateIDScreen2, self).__init__() 

        uic.loadUi(Camera_Sreen, self) 

 

        self.counter = 0  # number of face captured 

        self.ctr = 0  # sample face counter 

 

        self.name = name  # name of the user 

        self.encoding_thread = EncodingThread(self)  # thread for encoding the 

face 

        self.encoding_thread.encodingFinished.connect(self.encoding_finished) 

 

        # load imported webcam 

        print("[INFORMATION] Start Video Stream....") 

        self.video = VideoStream(src=CAMERA_INDEX).start() 

 

        # Create a timer to trigger face detection function 

        # start_detection function, which will be triggered every 10 milliseconds 

when the timer is started 
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        self.timer = QTimer(self) 

        self.timer.timeout.connect(self.start_detection) 

        self.timer.start(10) 

 

        # Initialize variables to store the start and end times for capturing 20 

images 

        self.start_time = None 

        self.end_time = None 

        self.end_time_encoding = None 

 

    def start_detection(self): 

        # read frame from video stream 

        frame = self.video.read() 

 

        # resize frame 

        frame = resize(frame, width=800) 

 

        # grab frame and convert it to bloob 

        (h, w) = frame.shape[:2] 

 

        # convert image to required format 

        blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300, 

300), (104, 177, 123)) 

 

        # pass blob through the network and obtain detections and predictions 

        DETECT_MODEL.setInput(blob) 

        detections = DETECT_MODEL.forward() 

 

        # look for face with confidence level bigger than 0.5 

        for i in range(0, detections.shape[2]): 

            confidence = detections[0, 0, i, 2] 

            if confidence > CONFIDENCE_LEVEL: 

                # compute the coordinates of the bounding box for the face 
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                box = detections[0, 0, i, 3:7] * array([w, h, w, h]) 

                (startX, startY, endX, endY) = box.astype("int") 

                face = frame[startY:endY, startX:endX] 

 

                # save extracted face 

                self.save_detected_face(face) 

                self.ctr += 1 

                self.counter += 1 

 

        if self.counter == 1: 

            # Start the timer when the first face is detected 

            self.start_time = time.time() 

 

        if self.ctr >= NUM_FRAMES and self.counter == NUM_FRAMES: 

            # Stop the timer when 20 faces are captured 

            self.end_time = time.time() 

            elapsed_time = self.end_time - self.start_time 

            print(f"Time to capture 20 images: {elapsed_time:.2f} seconds\n") 

 

            # break 

            self.video.stop() 

            self.timer.stop() 

 

            # show message after face is captured 

            self.msg.setVisible(True) 

            self.msg.setText("Face Captured") 

            self.msg.setStyleSheet("color: white") 

            self.msg.setFont(QFont("Yu Gothic UI Semibold", 16)) 

 

            # switch to main screen after 1ms 

            QTimer.singleShot(1, lambda: self.switch_to_main()) 

 

    def save_detected_face(self, face): 
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        # create new folder by naming with input name 

        new_folder = path.join(TRAINING_FOLDER, self.name) 

 

        # avoid FileExistsError Error 

        if not path.exists(new_folder): 

            mkdir(new_folder) 

            print("Directory ", new_folder, " Created \n") 

            # write detected image to created folder 

            # set jpeg quality to highest and save 

            cv2.imwrite( 

                path.join(new_folder, f"{self.name}_{self.ctr}.jpg"), 

                face, 

                [int(cv2.IMWRITE_JPEG_QUALITY), 100], 

            ) 

        else: 

            cv2.imwrite( 

                path.join(new_folder, f"{self.name}_{self.ctr}.jpg"), 

                face, 

                [int(cv2.IMWRITE_JPEG_QUALITY), 100], 

            ) 

 

        # create QImage object to RGB format 

        rgb_image = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) 

 

        # obtain height, width, and number of channels in the image 

        h, w, ch = rgb_image.shape 

        bytesPerLine = ch * w 

        convertToQtFormat = QImage(rgb_image.data, w, h, bytesPerLine, 

QImage.Format_RGB888) 

 

        # store image data as variable p, resize to fit the size of label widget, and 

set as pixmap on label widget 
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        p = convertToQtFormat.scaled(self.label_cam.width(), 

self.label_cam.height(), Qt.KeepAspectRatio) 

        self.label_cam.setPixmap(QPixmap.fromImage(p)) 

        # keep the aspect ratio of image during scaling 

        self.label_cam.setScaledContents(True) 

 

    # switch to main screen and generate encodings from trained images 

    def switch_to_main(self): 

        self.video.stream.release() 

 

        # show encoding in progress message 

        self.msg_encode.setVisible(True) 

        self.msg_encode.setText("Encoding in progress..") 

        self.msg_encode.setStyleSheet("color: white") 

        self.msg_encode.setFont(QFont("Yu Gothic UI Semibold", 12)) 

 

        self.encoding_thread = EncodingThread(parent=self, batch_size=32) 

        self.encoding_thread.start() 

        self.encoding_thread.encodingFinished.connect(self.encoding_finished) 

 

    def encoding_finished(self): 

        # switch to the welcome screen 

        widget.addWidget(WelcomeScreen()) 

        widget.setCurrentIndex(widget.currentIndex() + 1) 

 

        # print the time it took to capture 20 images with encodings 

        self.end_time_encoding = time.time() 

        elapsed_time_encoding = self.end_time_encoding - self.start_time 

        print(f"Time to capture 20 images with encodings: 

{elapsed_time_encoding:.2f} seconds\n") 

        print("Encoding finished.") 
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""" 

generate encodings from trained images in seperate thread 

""" 

 

class EncodingThread(QThread): 

    encodingFinished = pyqtSignal() 

 

    def __init__(self, parent=None, batch_size=32): 

        super(EncodingThread, self).__init__(parent) 

        self.batch_size = batch_size 

 

    def run(self): 

        # Load existing encodings 

        if os.path.exists(ENCONDINGS_PATH): 

            with open(ENCONDINGS_PATH, "rb") as f: 

                data = load(f) 

            knownEncodings = data["encodings"] 

            knownNames = data["names"] 

            existingName = set(knownNames) 

        else: 

            knownEncodings = [] 

            knownNames = [] 

            existingName = set() 

 

        # Get list of images in training folder 

        imagepaths = list(paths.list_images(TRAINING_FOLDER)) 

 

        # Loop through images in batches 

        for i in range(0, len(imagepaths), self.batch_size): 

            batch_paths = imagepaths[i: i+self.batch_size] 

            batch_images = [] 

            batch_names = [] 
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            # Loop through images in the batch 

            for imagepath in batch_paths: 

                name = imagepath.split(path.sep)[-2] 

                if name in existingName: 

                    continue  # Skip if person's images have been added 

                image = cv2.imread(imagepath) 

                # Convert to RGB format 

                image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) 

                # Normalize pixel values 

                pixels = asarray(image) 

                cv2.normalize(image, None, 0, 1.0, 

                              cv2.NORM_MINMAX, dtype=cv2.CV_32F) 

                # Resize image to 160x160 

                image = cv2.resize(image, (160, 160)) 

                # Expand dimension to fit the model 

                pixels = expand_dims(image, axis=0) 

                # Add image and name to batch lists 

                batch_images.append(pixels) 

                batch_names.append(name) 

 

            # Make prediction on batch of images 

            if not batch_images: 

                continue  # If no new images to encode 

            batch_images = vstack(batch_images) 

            batch_encodings = EMBED_MODEL.predict(batch_images) 

 

            # Append encodings and names to lists 

            for encoding, name in zip(batch_encodings, batch_names): 

                knownEncodings.append(encoding) 

                knownNames.append(name) 

                existingName.add(name) 

 

        # Write encoding data as pickle file 
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        data = {"encodings": knownEncodings, "names": knownNames} 

        with open(ENCONDINGS_PATH, "wb") as f: 

            f.write(dumps(data)) 

            print("Encoding complete.\n") 

 

        self.encodingFinished.emit() 

 

 

""" 

Face Recognition Screen 

     

""" 

 

class FaceRecogScreen(QDialog): 

    def __init__(self): 

        super(FaceRecogScreen, self).__init__() 

        uic.loadUi(FaceRecog_Screen, self) 

 

        # initialize the clf variable 

        self.clf = None   

 

        # define fram that showing video stream as qlabel 

        self.label_cam = QLabel() 

        self.label_cam = self.findChild(QLabel, "label_cam") 

 

        # stop the thread if 'cancel' button is pressed 

        self.pushButton_cancel = self.findChild( 

            QPushButton, "pushButton_cancel") 

        self.pushButton_cancel.clicked.connect(self.stop_video) 

 

        # define label for date and time 

        self.label_datetime = self.findChild(QLabel, "label_datetime") 
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        # initialize the video stream with thread 

        self.thread = StartThread(clf=self.clf) 

        self.thread.start() 

        self.thread.ImageUpdate.connect(self.ImageUpdateSlot) 

 

        # define timer to update date and time 

        self.update_date_time() 

 

    def ImageUpdateSlot(self, Image): 

        self.label_cam.setPixmap(QPixmap.fromImage(Image)) 

 

    def stop_video(self): 

        self.thread.stop() 

        self.back_to_main() 

 

    def back_to_main(self): 

        pushButton_cancel = WelcomeScreen() 

        widget.addWidget(pushButton_cancel) 

        widget.setCurrentIndex(widget.currentIndex() + 1) 

 

    def update_date_time(self): 

        date_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") 

        self.label_datetime.setText(date_time) 

 

 

class StartThread(QThread): 

    ImageUpdate = pyqtSignal(QImage) 

 

    def __init__(self, clf): 

        super().__init__() 

        self.clf = clf 

        self.label_encoder = None 

        self.video = None 
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    def run(self): 

        self.ThreadActive = True 

        # load the face embedding model 

        with open(ENCONDINGS_PATH, "rb") as f: 

            data = load(f) 

 

        # load encodings and names 

        encodings = data["encodings"] 

        names = data["names"] 

 

        # convert class labels to numeric labels using LabelEncoder 

        self.label_encoder = LabelEncoder() 

        self.label_encoder.fit(names) 

        numeric_labels = self.label_encoder.transform(names) 

 

        # convert encodings and names to numpy arrays 

        knownEncodings = np.array(encodings) 

        knownNames = np.array(numeric_labels) 

 

        # replace NaN values with mean 

        imputer = SimpleImputer(strategy='mean') 

        knownEncodings = imputer.fit_transform(knownEncodings) 

 

        # flatten encodings 

        knownEncodings = knownEncodings.reshape(knownEncodings.shape[0], 

-1) 

 

        # pad the training encodings with zeros to ensure all training samples 

have the same number of features 

        max_features = knownEncodings.shape[1] 

        knownEncodings = np.pad(knownEncodings, (( 

            0, 0), (0, max_features - knownEncodings.shape[1])), mode='constant') 
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        # train the classifier using known encodings and names 

        clf = svm.SVC(kernel='rbf', C=5, tol=0.001, probability=True) 

        clf.fit(knownEncodings, knownNames) 

        self.clf = clf 

 

        # initialize video stream 

        video = cv2.VideoCapture(CAMERA_INDEX) 

        video.set(cv2.CAP_PROP_FPS, 60) 

 

        while self.ThreadActive: 

            ret, frame = video.read() 

            if ret: 

                (h, w) = frame.shape[:2] 

 

                # Pass the input frame to the face detection model 

                blob = cv2.dnn.blobFromImage( 

                    cv2.resize(frame, (300, 300)), 

                    1.0, 

                    (300, 300), 

                    (104.0, 177.0, 123.0), 

                ) 

                DETECT_MODEL.setInput(blob) 

                detections = DETECT_MODEL.forward() 

                 

                # initialize predicted_names outside the loop 

                predicted_names = []  

 

                # record start time 

                self.start_time = time.time() 

 

                # Loop over the detected faces 

                for i in range(0, detections.shape[2]): 



101 

 

 

                    confidence = detections[0, 0, i, 2] 

 

                    # Only consider detections above a certain confidence level 

                    if confidence > CONFIDENCE_LEVEL: 

                        # Get the coordinates of the detected face 

                        box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) 

                        (startX, startY, endX, endY) = box.astype("int") 

 

                        # Extract the face from the input frame 

                        face = frame[startY:endY, startX:endX] 

                        face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) 

                        cv2.normalize(face, None, 0, 1.0, cv2.NORM_MINMAX, 

dtype=cv2.CV_32F) 

 

                        # Resize the face to the input size of the embedding model 

                        face_resized = cv2.resize(face, (160, 160)) 

                        pixels = np.expand_dims(face_resized, axis=0) 

 

                        # Use Facenet to predict 

                        face_encodings = EMBED_MODEL.predict(pixels) 

 

                        # Use the self.clf classifier to predict face names 

                        predicted_names = clf.predict(face_encodings) 

                        predicted_names = 

self.label_encoder.inverse_transform(predicted_names) 

 

                        # Draw bounding box and label around face 

                        y = startY - 10 if startY - 10 > 10 else startY + 10 

                        cv2.rectangle(frame, (startX, startY),(endX, endY), (0, 255, 0), 

2) 

                        cv2.putText( 
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                            frame, predicted_names[0], (startX, y), 

cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2) 

 

                        # mark attendance 

                        self.attendance = Attendance(interval=1, 

attendance_file=ATTENDANCE_SHEET) 

                        self.attendance.mark_attendance(predicted_names[0]) 

 

                # record end time 

                self.end_time = time.time() 

                elapsed_time_attendance = self.end_time - self.start_time 

                print("\nTime taken for whole recognition process: {:.3f} 

seconds\n".format( 

                    elapsed_time_attendance)) 

 

                # convert frame to QImage to display video stream 

                Image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 

                FlippedImage = Image.copy() 

                ConvertToQtFormat = QImage( 

                    FlippedImage.data, 

                    FlippedImage.shape[1], 

                    FlippedImage.shape[0], 

                    QImage.Format_RGB888, 

                ) 

                Pic = ConvertToQtFormat.scaled( 

                    800, 520, Qt.KeepAspectRatio) 

                self.ImageUpdate.emit(Pic) 

 

    def stop(self): 

        self.ThreadActive = False 

        self.quit() 
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""" 

Attendance Screen 

""" 

 

class AttendanceScreen(QDialog): 

    def __init__(self): 

        super(AttendanceScreen, self).__init__() 

        uic.loadUi(Attendance_Screen, self) 

 

        # Initialize instance variables 

        self.workbook = None 

        self.sheet = None 

 

        # Find the table widget in the UI and store a reference to it 

        self.tableWidget = self.findChild(QTableWidget, "tableWidget") 

        # Load the attendance workbook and populate the table 

        self.load_workbook() 

        self.label_attendance_3 = QLabel() 

 

        # Connect the back button to the back_to_main function 

        self.pushButton_back.clicked.connect(self.back_to_main) 

 

    def load_workbook(self): 

        # Load the attendance workbook and get the sheet 

        self.workbook = load_workbook(ATTENDANCE_SHEET) 

        self.sheet = self.workbook["Sheet1"] 

 

        # Get the number of rows and columns 

        rows = self.sheet.max_row 

        columns = self.sheet.max_column 

 

        # Set the number of rows and columns in the table 

        self.tableWidget.setRowCount(rows) 
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        self.tableWidget.setColumnCount(columns) 

 

        # Iterate over each cell in the sheet and add the value to the table 

        for row in range(1, rows + 1): 

            for col in range(1, columns + 1): 

                value = self.sheet.cell(row=row, column=col).value 

                item = QTableWidgetItem(str(value)) 

                self.tableWidget.setItem(row - 1, col - 1, item) 

 

        # Update the table in the workbook 

        self.workbook.save(ATTENDANCE_SHEET) 

        # Update date and time 

        self.update_date_time() 

 

    def update_date_time(self): 

        # Get the current date and time 

        date_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") 

        self.label_attendance_3.setText(date_time) 

 

        # Update the date and time in the table 

        self.timer = QTimer() 

        self.timer.timeout.connect(self.update_date_time) 

        self.timer.start(100) 

 

    def back_to_main(self): 

        # Return to the main welcome screen 

        pushButton_back = WelcomeScreen() 

        widget.addWidget(pushButton_back) 

        widget.setCurrentIndex(widget.currentIndex() + 1) 

 

 

# Main 

if __name__ == "__main__": 
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    start_time = time.time() 

    models() 

    app = QApplication(argv) 

    window = WelcomeScreen() 

    widget = QStackedWidget() 

    widget.addWidget(window) 

    widget.setFixedWidth(1143) 

    widget.setFixedHeight(798) 

    widget.setWindowTitle("Smart Attendance System") 

    widget.show() 

    try: 

        exit(app.exec_()) 

    except: 

        print("Exiting") 

 

 

The entire code for this main program is also accessible at the link below: 

 

https://drive.google.com/file/d/1jfwyXvYptoHwIhiXP0x2G2WHDbtEyhhZ/vi

ew?usp=share_link 
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ii. Attendance Marking Code 

 

import datetime 

import openpyxl 

import xlsxwriter 

 

class Attendance: 

    def __init__(self, interval=1, attendance_file=""): 

        # Create a workbook and add a worksheet. 

        self.workbook = xlsxwriter.Workbook(attendance_file) 

        self.worksheet = self.workbook.add_worksheet() 

        self.date_time = datetime.datetime.strptime("2023-01-10", "%Y-%m-%d") 

        self.interval = interval 

        self.attendance_file = attendance_file 

 

        # Start from the first cell below the headers. 

        self.row = 0 

        self.col = 0 

 

    def checkPreviousAttendance(self, face_name_str): 

        # Check if the face_names_str is already in the excel file within the last 1 

minute 

        self.workbook = openpyxl.load_workbook(self.attendance_file) 

        self.worksheet = self.workbook.active 

 

        for i in range(1, self.worksheet.max_row + 1): 

            if self.worksheet.cell(i, 3).value == face_name_str: 

                # if exists, get the date and time of the last attendance 

                self.date_time = datetime.datetime.strptime( 

                    self.worksheet.cell(i, 1).value, "%d/%m/%Y" 

                ) 

                self.time = datetime.datetime.strptime( 

                    self.worksheet.cell(i, 2).value, "%H:%M:%S" 
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                ) 

                # check if the last attendance is within the last 1 minute 

                if datetime.datetime.now() - datetime.timedelta( 

                    minutes=self.interval 

                ) < datetime.datetime.combine(self.date_time, self.time.time()): 

                    return True 

        return False 

 

    def mark_attendance(self, face_names_str): 

        if self.checkPreviousAttendance(face_names_str): 

            return 

        # mark attendance on excel 

        self.workbook = openpyxl.load_workbook(self.attendance_file) 

        self.worksheet = self.workbook.active 

        # Write some data headers. 

        self.worksheet.cell(1, 1).value = "DATE" 

        self.worksheet.cell(1, 2).value = "TIME" 

        self.worksheet.cell(1, 3).value = "NAME" 

        # get current date 

        date = datetime.datetime.now().strftime("%d/%m/%Y") 

        # get current time 

        time = datetime.datetime.now().strftime("%H:%M:%S") 

        # get the row number 

        self.row = self.worksheet.max_row 

        # get the column number 

        self.col = self.worksheet.max_column 

        # write date, time and name in excel 

        self.worksheet.cell(self.row + 1, 1).value = date 

        self.worksheet.cell(self.row + 1, 2).value = time 

        self.worksheet.cell(self.row + 1, 3).value = face_names_str 

        # save the excel file 

        self.workbook.save(self.attendance_file) 
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The entire code for this attendance marking script is accessible at the link 

below: 

 

https://drive.google.com/file/d/17Fx5uyyO0bSzDDJV9ge7p7_RNkbVgMJL/v

iew?usp=share_link 

 

The up-to-date attendance records excel sheet is accessible at the link below: 

 

https://docs.google.com/spreadsheets/d/1Wj7PYMPT9-

MvynNJp6i_C8r0Ni4ovdzP/edit?usp=share_link&ouid=10964331426771579

3484&rtpof=true&sd=true 
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Appendix D: User Interface Configuration Files 

 

i. Homescreen  

https://drive.google.com/file/d/1TG8rJSJiHm9OS6SE3J1qY914H7D8

nmsV/view?usp=share_link 

 

ii. Create User ID First Screen 

https://drive.google.com/file/d/1TwrmVmXPGYWcShQyhfrhqDWAb

9IupcVe/view?usp=share_link 

 

iii. Create User ID Second Screen 

https://drive.google.com/file/d/1oDbv4Um40PNesogAs313Guzi5XqFx

ovc/view?usp=share_link 

 

iv. Face Recognition Screen 

https://drive.google.com/file/d/116ExDYvz4fVEx3nyQ92MG0fYaYO

wJmok/view?usp=share_link 

 

v. Attedance Monitoring Screen 

https://drive.google.com/file/d/1KreD3JiSRqFeaAWSTWdYFsxBSiN

bPuAT/view?usp=share_link 
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Appendix E: Evaluation for Two Different Models 

 

i. Collected Images Used for Models Evaluation 

https://drive.google.com/drive/folders/13JxuxAe3FBQl19nxHQsgF9gj

eriZpeR9?usp=share_link 

 

ii. Code to Split Datasets into Train, Validation and Test Datasets 

https://drive.google.com/file/d/1PGx3_ul8nfhqVoFXaftP27inkVjTIAJ

W/view?usp=share_link 

 

iii. Feature Extraction using FaceNet Code for Training Datasets 

https://drive.google.com/file/d/14cxTW5CpV2IWt0h_9rLAosrx3HY3

9xdW/view?usp=share_link 

 

iv. Feature Extraction using FaceNet Code for Validation and Testing 

Datasets 

https://drive.google.com/file/d/1yVBq0JJeIoTaJ2fHS9pF76755sJdOcF

K/view?usp=share_link 

 

v. VGG 16 Model File 

https://drive.google.com/file/d/1ZEEPRYzoOyOYORuzYnQa-

TW4aqPl0BZQ/view?usp=share_link 

 

vi. Evaluation Code for DNN, FaceNet and SVM  

https://drive.google.com/file/d/16U_-lrdwYcwlwUXq50SJQqU-9vsno-

n5/view?usp=share_link 

 

vii. Evaluation Code for VGG16 

https://drive.google.com/file/d/1MA7srMjtwSxaIgMFZVL6qv9zaglcs

FIz/view?usp=share_link 
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