

SMART ATTENDANCE SYSTEM WITH IOT

BASED FACE RECOGNITION USING

DEEP LEARNING APPROACH

SEAH YOU

UNIVERSITI TUNKU ABDUL RAHMAN

SMART ATTENDANCE SYSTEM WITH IOT

BASED FACE RECOGNITION USING

DEEP LEARNING APPROACH

SEAH YOU

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Mechatronics

Engineering with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2023

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Signature :

Name : Seah You

ID No. : 18UEB03927

Date : 30th April 2023

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “SMART ATTENDANCE SYSTEM

WITH IOT BASED FACE RECOGNITION USING DEEP LEARNING

APPROACH” was prepared by SEAH YOU has met the required standard

for submission in partial fulfilment of the requirements for the award of

Bachelor of Mechatronics Engineering with Honours at Universiti Tunku

Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

Signature :

Co-Supervisor :

Date :

Kwan Ban Hoe

19 May 2023

Ng Oon-Ee

21 May 2023

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made

of the use of any material contained in, or derived from, this report.

© 2023, Seah You. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful

completion of this project. I would like to express my gratitude to my research

supervisor, Dr Kwan Ban Hoe and Dr Ng Oon-Ee for their invaluable advice,

guidance and enormous patience throughout the development of the research.

In addition, I would also like to express my gratitude to my loving

parents and friends who had helped and given me encouragement to complete

my prototypes and reports when I faced obstacles.

v

ABSTRACT

Attendance management system is an indispensable practice in which every

institution or organisation adopts to mark the attendance of their employees or

members. The manual process of marking attendance by using a paper-based

or file-based system is riddled with flaws such as the risk of information loss,

falsification or disasters. The current norm delineates the deployment of smart

attendance system using RFID tags, fingerprints, iris scans, voice recognition,

etc. Nowadays, technological developments propagate the practical utilisation

of face recognition approach for a more efficient attendance management

system. The face recognition-based attendance system is convenient with

additional advantages that it can avoid human intervention and thus assisting

to control the spread of viruses. In this project, a real-time attendance

management system that employs face recognition approach is proposed to

recognize individuals. Two face recognition models were developed: the first

model used Deep Neural Network (DNN) for face detection, FaceNet for

feature extraction, and Support Vector Machine (SVM) for face classification,

and the second model utilised Convolutional Neural Network, specifically the

trained VGG16 model, with the ImageNet dataset as its pretrained weights.

Transfer learning was employed to apply the pretrained network for

recognizing faces. The proposed systems’ effectiveness was demonstrated

through a comparison of both face recognition models, and the first model

with testing accuracy of 97.62 % was integrated into a designated graphical

user interface (GUI). In conclusion, the project’s aim and objectives were

successfully accomplished, which included developing a facial recognition

system designed specifically for attendance tracking and conducting a

literature review covering current approaches and results in facial recognition

algorithms. Furthermore, the GUI with essential features such as creating new

databases, face recognition, and attendance monitoring for users was

developed to ease attendance monitoring for end-users. The system’s

performance and usability were analyzed to provide insights for future

enhancements.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiv

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 3

1.3 Problem Statement 4

1.4 Aim and Objectives 5

1.5 Scope and Limitation of the Study 5

1.6 Contribution of the Study 6

1.7 Outline of the Report 6

2 LITERATURE REVIEW 7

2.1 Smart Attendance System 7

2.2 Face Detection 8

2.3 Face Recognition 11

2.3.1 Multi-level Face Recognition Taxonomy 11

2.3.2 Face Structure 12

2.3.3 Feature Extraction 14

2.3.4 Local Approach 17

2.3.5 Holistic Approach 20

2.3.6 Learning-based Approach 23

vii

2.3.7 Transfer Learning 29

2.4 Evaluation Metrics 29

2.5 Database 31

2.6 Comparison between Traditional Approaches and

Deep Learning Approaches 33

3 METHODOLOGY AND WORK PLAN 37

3.1 Introduction 37

3.2 Project Planning 37

3.3 Project Development 38

3.4 Resources 42

3.4.1 Hardware 42

3.4.2 Software 43

3.5 First Approach 43

3.5.1 Face Detection 43

3.5.2 Feature Extraction 44

3.5.3 Face Classification 45

3.6 Second Approach 46

3.6.1 Model Architecture 47

3.6.2 Data Augmentation 47

3.6.3 Training 47

3.7 Attendance Update 48

3.8 User Interface Design 48

3.9 Problems and Solutions 48

4 RESULTS AND DISCUSSION 51

4.1 Introduction 51

4.2 Face Detection Evaluation 51

4.2.1 Labeled Faces In The Wild 51

4.2.2 Performance Evaluation 52

4.3 Face Recognition Evaluation 55

4.3.1 Face Datasets 56

4.3.2 Parameters 57

4.3.3 Evaluation Metrics 58

4.4 Smart Attendance System 64

4.4.1 Graphical User Interface 64

viii

4.5 Summary 68

5 CONCLUSIONS AND RECOMMENDATIONS 69

5.1 Conclusions 69

5.2 Recommendations for Future Work 70

REFERENCES 72

APPENDICES 82

ix

LIST OF TABLES

Table 2.1: Comparison of Different Approaches for Attendance
System. 8

Table 2.2: Comparison Between CNN, SSD and YOLO (Srivastava
et al., 2021). 28

Table 2.3: Performance Comparison for SVM and Deep learning. 34

Table 2.4: Comparison Between Conventional and Deep Learning
Approach. 36

Table 3.1: Specifications of Benewy Full HD Webcam. 42

Table 4.1: Confusion Matrix for the Performance Evaluation of
Face Detectors. 52

Table 4.2: Face Detection Approaches on Image Datasets. 53

Table 4.3: Comparison of Accuracy and Speed on LFW datasets. 54

Table 4.4: Face Detection Approaches on Webcam for Frontal
Faces. 54

Table 4.5: Face Detection Approaches on Webcam for Side Faces. 54

Table 4.6: Face Detection Approaches on Webcam in Low-light
Environment. 55

Table 4.7: Evaluation Comparison between Two Models. 59

Table 4.8: Test Accuracy On Different Classifiers. 59

Table 4.9: Classification Report for DNN, FaceNet and SVM. 62

Table 4.10: Classification Report for VGG16 Transfer Learning
Model. 63

x

LIST OF FIGURES

Figure 2.1: Testing Results on Each Face Detection Algorith (Arora,
Naithani and Areeckal, 2022). 10

Figure 2.2: Existing Multi-level Face Recognition Taxonomy
(Sepas- Moghaddam, Pereira and Correia, 2020). 12

Figure 2.3: Global Representation (Sepas-Moghaddam, Pereira and
Correia, 2020). 13

Figure 2.4: Component and Structure Representation (Sepas-
Moghaddam, Pereira and Correia, 2020). 13

Figure 2.5: Component Representation (Sepas-Moghaddam, Pereira
and Correia, 2020). 13

Figure 2.6: Local Spatial Support (Sepas-Moghaddam, Pereira and
Correia, 2020). 14

Figure 2.7: FaceNet Model Structure (Schroff and Philbin, n.d.). 15

Figure 2.8: Comparison Between Conventional and Deep Learning
Approach on RMFRD Dataset (Bharat Chandra and
Karthikeya Reddy, 2020). 16

Figure 2.9: LBP Calculation (Chang-yeon, 2008). 18

Figure 2.10: Comparison of Performances for HOG Approach and
LBP Approach (Amraee, Chinipardaz and Charoosaei,
2022). 20

Figure 2.11: Recognition Rate for PCA and KPCA Approaches
(Anon., 2014). 23

Figure 2.12: Comparison Graph of Different CNN Models (Gwyn,
Roy and Atay, 2021). 24

Figure 2.13: Framework of SSD (Shi, Bao and Tan, 2019). 25

Figure 2.14: YOLO Algorithm Based on DarkNet Architecture (Weng,
2018). 26

Figure 2.15: Comparison of Different Versions of YOLO Model
(Francesco and Solawetz, 2023). 28

Figure 2.16: ROC and Inverted Precision-Recall Curves (Nguyen
Meidine et.al., 2018). 30

xi

Figure 2.17: Performance of Various Techniques on ORL Database
(Singhal et al., 2021). 35

Figure 3.1: Project Gantt Chart. 38

Figure 3.2: Workflow for Face Recognition Approaches. 39

Figure 3.3: Block Diagram for Smart Attendance System. 40

Figure 3.4: Flowchart of Smart Attendance System. 41

Figure 3.5: Asus VivoBook S15 S510U Laptop. 43

Figure 3.6: VGG16 Model Architecture (Bansal, 2020). 46

Figure 4.1: Transfer Learning VGG16 Model Accuracy at Each
Epoch. 60

Figure 4.2: Transfer Learning VGG16 Model Loss at Each Epoch. 61

Figure 4.3: Confusion Matrix for DNN, FaceNet and SVM. 64

Figure 4.4: Confusion Matrix for VGG16. 64

xii

LIST OF SYMBOLS / ABBREVIATIONS

3D three-dimensional

ANN Artificial Neural Network

CMC cumulative match characteristic

CNN Convolution Neural Network

COVID corona-virus disease

CPU Central Processing Unit

DET Detection Error Tradeoff

DET Detection Error Tradeoff

DNN Deep Neural Network

DOM Document Object Model

EER Equal Error Rate

FAR False Accept Rate

FAR False Alarm Rate

FCNN Fully Convolutional Neural Network

FN False Negative

FP False Positive

FPR False Positive Pate

FPS frames per second

FRR False Reject Rate

GLM Generalized Linear Model

GUI graphic user interface

HOG Histogram of Oriented Gradients

IoT Internet of Things

KPCA Kernel Principal Component Analysis

LBP Local Binary Patterns

LDA Local Binary Patterns

LFW Labeled Faces in the Wild

MAE Mean Absolute Error

mAP mean Average Precision

MSE Mean Squared Error

MTCNN Multi-Task Cascaded Convolutional Neural Networks

xiii

OpenCV Open Source Computer Vision

PCA Principal Component Analysis

RAM random access memory

RFID Radio-frequency identification

RMS Root Mean Square

ROC Receiver Operating Characteristic

ROI regions of interest

SIFT scale-invariant feature transform

SSD Single-shot Multibox Detector

SSD solid-state drive

SVM Support Vector Machine

TAR True Acceptance Rate

TN True Negative

TP True Positive

VGG Visual Geometry Group

YOLO You Only Look Once

xiv

LIST OF APPENDICES

Appendix A: Face Detector 82

Appendix B: Feature Extractor 83

Appendix C: Smart Attendance System 84

Appendix D: User Interface Configuration Files 109

Appendix E: Evaluation for Two Different Models 110

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Attendance is illustrated as the action of frequently being present at an

occasion (Akshaya et al., 2021). It is an indispensable system for many

organisations or institutions, such as schools, universities, factories or

government working places to keep track of the performance and monitor the

quality of their members. In educational institutions such as schools,

universities or colleges, it is mandatory to mark the presence of the students by

respective lecturers, whereas in the industrial sector, the attendance

management system is adopted by companies to evaluate the day-to-day

monitoring, leave records and overtime calculations of the employees for the

facilitation of payroll systems.

Many institutes still utilise paper-based or file-based approaches for

attendance management, and these manual systems are riddled with flaws such

as the risk of information loss, lack of consideration, falsification, or disasters

such as floods or fire outbreaks. Concurrently, some organisations have

implemented automated attendance system strategies based on biometric

techniques such as fingerprints, iris, voice recognition, or face recognition.

However, face recognition remains a major area of research due to its non-

invasive nature and its status as the primary means of identification used by

humans (Abdalkarim and Akgün, 2022).

Face recognition is defined as a biometric technology that can identify

or recognise someone from an image or a continuous image frame from a

video (Sabeenian et al., 2020). The first implementation of face recognition

started in the 1960’s with a semi-automated system. A person’s facial features

will be automatically identified by the recognition equipment. This technology

comprises face detection, face position, image pre-processing, image

enhancement and face recognition. The algorithm involves the process of

scanning the entire image of a person by finding out the coordinate system of

all faces in the image, followed by the output of the face recognition algorithm

with shapes such as rectangular or square. The DeepMind team developed an

2

Artificial Intelligence (AI) product called AlphaGo Zero in 2017 with its great

performance of finding the ideal solution on the chessboard with the essence

of face recognition by beating the No.1 player, Ke Jie at Go level (Li et al.,

2020).

On top of that, the market for facial recognition systems is expected to

reach a value of 8.5 billion U.S. dollars by 2025, indicating significant growth

potential of this technology. Several industries across Southeast Asia have

already implemented facial recognition systems. For example, in Singapore,

citizens use facial recognition technology to access government services,

public transportation, and even for election voting. The Singapore government

has positioned itself at the forefront of this technology, allowing citizens to

access government services in a contactless and efficient manner (Raj, 2021).

Additionally, it was confirmed that the COVID-19 pandemic will result

in long-term effects on the aviation sector eventhough the vaccine had been

globally accessible at the end of 2021 (Madzou, 2020). In this context, there is

an increasing demand on face recognition technology in order to ensure

contactless passenger check-in process while avoiding virus transmission. In

Malaysia, physical travel documents such as tickets and boarding passes were

also being slowly replaced with facial recognition at the Kuala Lumpur

International Airport (Raj, 2021). It is significant that the application of this

sub-domain of computer vision has emerged as a vast business around the

world.

Face recognition systems have been successfully embedded in various

application areas owing to the requirements such as high acceptability,

collectability, and universality. Several vendors have integrated face

recognition into many applications. In this context, Amazon had developed a

system to allow users to make payments by using face recognition systems

with the introduction of “Amazon Rekognition Image” and “Amazon

Rekognition Video” which were built for analysing images and videos

respectively (Bally, 2002). Besides, Apple had provided a state-of-the-art face

authentication system with an advanced TrueDepth camera to accurately map

the face geometry of an individual by projecting and analyzing thousands of

invisible dots to create a depth map of the face for unlocking users’ devices.

The Face ID can automatically adapt to the changes in appearance such as

3

growing facial hair and wearing cosmetic makeup and it works in indoors or

outdoors and even in total darkness (Apple, 2017).

Face recognition itself can be integrated with deep learning in order to

show its strength and accuracy in handling vast quantities of data. Nowadays,

deep learning is the main framework for image recognition process with the

use of neural networks in which multiple layers are used for feature extractions.

The conventional features extraction process involves using varied image

descriptors such as scale-invariant feature transform (SIFT), histogram of

oriented gradients (HOG) or a hybrid descriptor which are more time

consuming as compared to modern approach with the implementation of deep

learning which automates the selection of filters to extract best features from

an image to produce better accuracy (Othman Hammadi, Abdulkarim Dawah

Abas, 2018).

With the advancement of technology and deep learning, the

performance of these face recognition algorithms has significantly increased,

and thus allowing its commercial use in modern life. This project proposes a

smart attendance system with face recognition using deep learning approach to

overcome shortcomings of the conventional methods that are more time

consuming and complex.

1.2 Importance of the Study

The conventional attendance system includes biometrics, cards, or iris systems.

In recent years, biometric-based techniques have emerged as a useful approach

for recognizing individuals, instead of relying on virtual or physical domains

such as passwords, smart cards, keys, and tokens. For instance, the magnetic

cards may become unreadable or be stolen by others, whereas the passwords

can be easily hacked or guessed by third parties. The card system complies

with the risk of misplacement of attendance records, in which fake attendance

can be taken by third parties. These approaches are accompanied with the risks

of being misplaced, forgotten or duplicated, which has caused the inefficiency

of the attendance system (Parmar and Mehta, 2014).

 However, an individual’s biological traits are impossible or hard to

duplicate by others. The biological traits, which include face, fingerprints, iris,

palm, and voice, involve interactions by the user, except for the face

4

recognition approach, which can be completed passively by the user from a

distance by a camera or video recorder. In this context, the face recognition

algorithm is utilised for identification purposes, in which an unknown

individual’s image will be processed by comparing the image of the person

with a database of known individuals’ images (Zeng, Veldhuis and

Spreeuwers, 2021). The face recognition technology is slowly evolving into a

universal biometric solution as it requires zero effort from the users compared

with other biometric solutions, and many industries are already reaping its

advantages by deploying it in the current markets.

 There are a few applications in which face recognition can be applied,

as the technology is not limited to attendance management. Firstly, it is widely

used for security at airports, seaports, border checkpoints, building access,

network security, or electronic devices. Its second significant application is

surveillance, which can be used for tracking offenders or criminals with the

installation of CCTVs. Existing security and surveillance cameras that are

embedded with deep learning and computer vision can be deployed with face

recognition augmentation for security purposes (Wang and Deng, 2021).

Nowadays, identity verification for newborns, national identities,

passports, or driving licences has been normalised with face recognition

technology. Additionally, the technology aids the investigations in cases

involving missing individuals, immigrants, forensics, and many more

scenarios. Although there are concerns about privacy raised by the public, it

cannot be denied that the deployment of facial recognition technology has

brought convenience, efficiency, and security to the public.

1.3 Problem Statement

The management of attendance systems is a mandatory task in many

organisations, such as universities, factories, companies, or government

working places. Although manual attendance taking can be performed by

humans, the human memory is less adaptable at memorising a substantial

dataset of faces, and the task is tedious and time-consuming. Besides, there are

potentials for errors in manual data entry and difficulties in verifying

attendance data across multiple locations or departments (Chatrati, Naidu and

Prasad, 2013). This leads to the rapid development of automatic face

5

recognition systems, which could bring about transformations such as real-

time attendance tracking with promising accuracy.

With the conventional method of clocking in and out using a card

system or a biometric system such as a fingerprint, the user tends to make

physical contact with the devices. Unlike other biometric systems, the face

recognition-based attendance system is convenient and safe as it can avoid

human intervention. Direct contact with an infected individual and indirect

contact with the surfaces in the environment or with the object will result in

the transmission of the diseases virus (Higuera, 2011). Therefore, it is the right

time to switch the contact-based attendance system to an indirect contact

approach by face recognition so that the spread of diseases can be controlled in

the event of the devastating COVID-19 pandemic or other infectious disease

outbreaks.

1.4 Aim and Objectives

This project aims to develop an IoT-based face recognition smart attendance

system using the deep learning approach.

The objectives of this project are:

(i) To conduct a literature review covering current methods and

results in facial recognition algorithm.

(ii) To design and implement a facial recognition system that is

suitable for attendance tracking.

(iii) To develop a software for the ease of attendance monitoring

by the end-user.

(iv) To evaluate the performance and usability of the developed

system.

1.5 Scope and Limitation of the Study

This project is mainly focused on face recognition systems for updating

attendance records with the integration of machine learning and deep learning.

The developed system is designed for an indoor environment in which

excessive exposure to light in the outer environment may affect the

performance of the system. The proposed algorithm may not cover holistic

6

factors such as illumination, pose variation, occlusion, and facial expression.

Additionally, there is no cloud server for storing image databases, and as a

result, there is a lack of flexibility, a low level of security, and a fear of data

recovery for this smart attendance system.

1.6 Contribution of the Study

This study can prove that recent developments in deep learning and neural

networks have the possibility of yielding promising results in varied fields

such as image processing and pattern recognition. The integration of face

recognition systems and deep learning architectures will boost performance by

facilitating the learning process and increasing the efficiency of the existing

models. While there are concerns regarding privacy and accuracy, the benefits

of the technology cannot be denied. There are lots of potentials with the use of

face recognition technology to create a convenient and efficient attendance

management system and other applications.

1.7 Outline of the Report

This report is divided into five main chapters, including an introduction,

literature review, methodology and work plan, results with discussion, and

conclusions with recommendations.

Chapter 1 presents an overview of the project by including a general

introduction, problem statement, aim and objectives, study scope and

limitations, and the contribution of the study and report outline. While the

previous relevant research will be presented in Chapter 2. Chapter 3 illustrates

the whole development of the smart attendance system using face recognition

approaches. Next, Chapter 4 interprets the results obtained, which include face

detection, face recognition, and a graphical user interface for the attendance

system. Lastly, the conclusion and recommendations for future work are

discussed under Chapter 5.

7

CHAPTER 2

2 LITERATURE REVIEW

2.1 Smart Attendance System

Attendance tracking plays a critical role in many organizations including

educational institution, corporations or government. In higher education

systems, there may be a requirement for students to maintain a certain level of

attendance in order to be eligible to sit for final exams. The attendance system

becomes a mandatory process in ensuring academic integrity and students’

success. In this context, there are still many manual and paper-based

attendance systems that come with a lot of issues. With the advancement of

technology, various authors have proposed automated attendance marking

systems as a promising solution to eliminate the conventional attendance

taking approach.

A study implemented by Chatrati, Naidu and Prasad (2013) on

attendance tracking systems was conducted using RFID readers for lecturers to

monitor students’ attendance in Indian educational institutions. However, its

major drawbacks include inappropriate attendance marking, as students can

cheat by taking others attendance, and there are risks of missing the RFID tags.

Dey et al. (2014) also proposed another attendance system that makes use of a

speech recognition biometric feature. However, the system’s inefficiency due

to the surrounding environment in crowded areas such as educational

institutions or companies, where sound recognition can be mimicked to

pretend to be fake attendance marking, has been highlighted.

On top of that, another biometric approach using fingerprints has been

proven to be successful in eliminating fake attendance systems, but it also

engages contact between the users in the organisations (Mohamed and Raghu,

2012). Furthermore, Amirulloh et al. (2020) investigated an attendance

monitoring system using QR code with the Android platform, which had a

100 % success rate for functional testing of the system. However, this

implementation is accomplished with the risk of manipulating attendance

manipulation and a waste of time and energy.

8

Additionally, a research had integrated the use of Convolutional Neural

Network (CNN) to recognise individuals’ faces as conventional approaches,

such as Fisher Faces or Eigen Faces are more sensitive to issues such as light,

illumination, posture, noise, and obstruction (Arya, Mesariya and Parekh,

2020) . Another proposed system used FaceNet model for face recognition and

Support Vector Machine (SVM) classifier for attendance records, achieving an

accuracy of 99.6 % for multi-face recognition. The experimental results

display that the performance of FaceNet model and SVM is better than

VGG16 model (Nyein and Oo, 2019).

Therefore, considering the limitations displayed by the attendance

systems mentioned earlier, face recognition techniques have become

increasingly popular in recent years, making it a viable option for automated

attendance marking systems. Table 2.1 illustrates a comparison of different

attendance system approaches that are commonly used by the public.

Table 2.1: Comparison of Different Approaches for Attendance System.

Method Hardware Main
Advantages

Main
Disadvantages

References

Biometric
Attendance

Fingerprint
Reader,

Retina Scan
Machine

Automatic Cost of machine,
Maintenance

issue

(Mohamed
and Raghu,

2012)

RFID RFID
Reader,

RFID Tag

Automatic Risk of losing
RFID Tag, Fake

attendance

(Chatrati,
Naidu and

Prasad,
2013)

QR Code Smartphone
Camera,
Barcode
Scanner

Sub-
automatic,

cheap

Fake attendance (Amirulloh
et al.,
2020)

Facial
Recognition

Camera,
Server

Automatic Maintenance (Nyein and
Oo, 2019)

2.2 Face Detection

Face detection serves as a fundamental component for all facial analysis

algorithms such as face alignment, face recognition, facial expression

detection, and gender recognition. In 2001, Paul Viola and Michael Jones

introduced a learning-based algorithm for detecting faces in images (Hazim et

9

al., 2016). This Viola-Jones object detection framework is notable for its

powerful performance in real-time face detection with impressive speed.

According to Deshpande and Ravishankar (2016), the detector has illustrated

its efficiency on frontal images of faces in which it can cope with 45 degree of

face rotation in both vertical and horizontal axis.

However, a study has displayed that the Viola-Jones algorithm has

limitations when it comes to face detection under poor lighting conditions. A

study implemented by Chaudhari et al. (2018) with the use of the Viola Jones

algorithm only obtained a success rate of 78.6 % due to poor lighting

conditions and high false detection rate. To address these issues, Deshpande

and Ravishankar (2016) presented an efficient face detection and recognition

system using a fusion of Viola-Jones, Principal Component Analysis (PCA)

and Artificial Neural Network (ANN), achieving an accuracy of 94 %.

Furthermore, the combination of the Viola-Jones algorithm and neural network

obtained an accuracy of 90.31 % as proposed by Da’San, Alqudah and Debeir

(2015). Both studies were implemented using a similar database named Bio

ID-Face-Database.

Apart from that, a component-based face detector with the use of

Support Vector Machine (SVM) classifiers was implemented by Kukenys and

McCane (2008) to detect eyes in grayscale images. However, this detector

misses some eyes in the evaluation set due to the skipping of the image

pyramid over the scale at which eyes would be detected. As SVM classifiers

highly depend on training data, it is necessary to have sufficient variations in

the training samples to cover different possible angles, lighting conditions, and

partial occlusions in each detected image.

Another study carried out by Goyal, Agarwal and Kumar (2017) for

the detection of faces in HD video was built with OpenCV and Haar-like

features. The Haar classifier face detector uses a single feature to define a

certain image as a face or not. However, the writer concluded that the Viola

and Jones detectors are more efficient for real-time detection due to their

shorter time duration and fewer CPU resource requirements.

Furthermore, the boosting algorithm named Adaboost was proposed

by Schapire to enhance the accuracy of a given learning algorithm. It adjusts

the training set and combines the weak classifier to form a strong classifier (Li

10

et al., 2020). The challenge of this classifier can be investigated through the

work of Meynet (2003) as it misclassified roughly 13 % of the example sets

and the error rate rose quickly until more than 40 for the last selected features.

In a recent paper by Arora, Naithani and Areeckal (2022),

performance analysis was conducted on four different face detection

algorithms, namely Deep Neural Network (DNN), Multi-task Cascaded

Convolutional Neural Network (MTCNN), Haar Cascade Classifier, and

Histogram of Gradient-based (HOG) frontal face detector. The Haar Cascade

Classifier works as fast as a basic CNN model by extracting multiple features

and using Adaboost to select the most significant features and reduce their size.

On the other hand, the HOG-based frontal face detector focuses on face

landmark detection. The MTCNN, introduced by Kaipeng Zhang in 2016,

comprises a three-stage cascade structure of CNN. OpenCV’s deep neural

network module includes DNN, which is a Caffe model that employs a

ResNet-10 architecture for its operation.

After testing five images with four different face detection algorithms

as shown in Figure 2.1, the results reveal that DNN performed the best,

followed by MTCNN, in good lighting conditions. However, the HOG-based

face detector is unable to detect small or extremely large faces, and the Haar

Cascade fails to detect faces in most of the images with occlusions. DNN and

MTCNN have been proven to be more robust in poor lighting conditions and

images with occlusion. In conclusion, deep learning algorithms such as DNN

and MTCNN have displayed better performance in various environmental

setups.

Figure 2.1: Testing Results on Each Face Detection Algorith (Arora, Naithani

and Areeckal, 2022).

11

2.3 Face Recognition

Face recognition has been developed primarily for two crucial tasks:

verification and identification. In this context, the verification refers to one-to-

one matching in determining whether the individual claims to be when

presenting with a face image of an unknown individual. The latter refers to

one-to-many matching, in which an individual’s identity is determined by

comparing with a database of images of known individuals (Zeng, Veldhuis

and Spreeuwers, 2021).

 The study of face recognition has become prominent since the

introduction of the historical Eigenface approach in the early 1990s. Many

holistic approaches were introduced, but they failed to account for

uncontrolled facial changes. This led to the development of local-feature-based

face recognition in the early 2000s. However, these approaches suffered from

a lack of compactness and distinctiveness. Thus, learning-based descriptors

were then introduced in the face recognition field. The major evolution

occurred when the deep learning approach emerged in 2012, when AlexNet

won the ImageNet competition using convolutional neural networks (Wang

and Deng, 2021).

 Despite the advancements in face recognition technology, there are

still many challenges to overcome. One of the main concerns with a face

recognition system is that all images of the same face are heterogeneous.

Sometimes, the detected face is unfocused and too small, resulting in a failure

of the recognition process. Other issues include posing variation, lighting

illuminations, occlusion, and makeup during the comparison of individuals’

images with the database (Solomon, Meena and Kaur, 2021). Therefore, a

multitude of face recognition systems using different algorithms have been

proposed in recent years to solve the problems and achieve promising results

in addressing the challenges posed by unconstrained environments.

2.3.1 Multi-level Face Recognition Taxonomy

The multi-level face recognition taxonomy, as proposed in Figure 2.2, serves

as an effective tool for organising and planning face recognition solutions. It is

aimed at guiding researchers to understand the technological landscape in this

12

field, apart from exploring new possible solutions in the creation of more

effective face recognition systems. The taxonomy encompasses three key face

structures, namely global representation, component and structure

representation, and component representation. The global representation is a

face recognition approach that represents the whole face as a single entity and

outputs feature extraction from the entire face region. Next, feature support

considers the selection of an approach based on facial structure and the spatial

support region for feature extraction. While the feature extraction level

comprises a more complete set of classes and a more profound technological

landscape in feature extraction (Sepas-Moghaddam, Pereira and Correia, 2020).

Figure 2.2: Existing Multi-level Face Recognition Taxonomy (Sepas-

Moghaddam, Pereira and Correia, 2020).

2.3.2 Face Structure

In the context of face recognition, the face structure level refers to how

different aspects of the face are handled by the facial recognition system. At

the global level, the system focuses on the face as a whole entity, considering

13

its overall shape and features, as illustrated in Figure 2.3. However, facial

recognition systems also need to consider the component structure of the face,

which involves the different facial features such as the eyes, mouth, and nose,

as well as their relationships to each other. This can be seen in Figure 2.4,

where each feature is represented separately. In certain conditions, the

recognition system may need to select a specific facial component without

considering the others. This is referred to as component representation, as

shown in Figure 2.5. This level of detail is crucial for accurate facial

recognition, as different facial components can provide valuable information

for identifying an individual.

Figure 2.3: Global Representation (Sepas-Moghaddam, Pereira and Correia,

2020).

Figure 2.4: Component and Structure Representation (Sepas-Moghaddam,

Pereira and Correia, 2020).

Figure 2.5: Component Representation (Sepas-Moghaddam, Pereira and

Correia, 2020).

14

 In addition to the global and component structure levels, the face

structure level can be further divided into global feature support and local

feature support. In global feature support, the entire selected facial structure

area is considered a region of support for feature extraction. This can be either

the entire face or a full-face component, and the system extracts features from

this larger region of support. On the other hand, local feature support refers to

a smaller portion of either the whole face or the face component that is used to

extract features. This smaller region of support may vary in terms of

topological standard, size, and overlapping characteristics. To achieve this, the

partitioning task is accomplished by dividing the face components into squares,

as shown in Figure 2.6. Overall, the division of the face into varied support

regions, either globally or locally, is one of the key aspects of the face

recognition process.

Figure 2.6: Local Spatial Support (Sepas-Moghaddam, Pereira and Correia,

2020).

2.3.3 Feature Extraction

Feature extraction is an indispensable stage in data mining and pattern

recognition. It aims to shorten the machine learning duration and complexity

of space by reducing irrelevancy and redundancy in the image to achieve the

dimension reduction. In this context, the input data is converted into a set of

features that consist of the critical information from the original data by using

feature extraction algorithms. By eliminating the greatest number of irrelevant

features, feature extraction maintains acceptable classification accuracy

(Sufyanu et al., 2016).

15

As illustrated in Figure 2.7, a group of Google researchers proposed a

deep learning model for face recognition namely FaceNet to produce a vector

embedings of 128 numbers for each single person’s face. This model deploys a

technique known as one-shot training, in which small embeddings or arrays

from a couple of faces are sufficient to classify new faces. In other words,

fewer photos are required to train the network with promising results. Its

notable performance had been benchmarked on several famous face

recognition datasets, such as Labeled Faces in the Wild (LFW), YouTube

Faces (YTF), and MegaFace.

Figure 2.7: FaceNet Model Structure (Schroff and Philbin, n.d.).

FaceNet achieved 99.63 % accuracy on the LFW dataset, which

consists of 13,000 face images from 5,700 individuals. On the YTF dataset,

which contains videos of people speaking in unconstrained settings, FaceNet

achieved 95.12 % accuracy. On the MegaFace dataset, which contains over 1

million images of over 690,000 individuals, FaceNet obtained an accuracy of

98.87 % when comparing 1 million pairs of faces and an accuracy of 99.83 %

when comparing 10,000 pairs of faces, setting a new record in face recognition

performance (Schroff and Philbin, n.d.).

To enhance the recognition performance, MTCNN was initially used

for face detection and then its results were used as the input of FaceNet for

face recognition (Jin et al., 2021). The authors also mentioned that FaceNet is

able to retain face alignment and directly make use of CNN to train end-to-end

after face alignment, but another deep learning model such as DeepFace is not

feasible. An accuracy of over 99 % was obtained through the combination of

FaceNet and K-Nearest Neighbors (KNN) as the face classifier. The proposed

system was tested on self-collected datasets containing a total of 35 people

with different facial expressions (Lei, Oo and Oo, 2019).

16

From the studies done by Brandon Amos, Bartosz Ludwiczuk (2016),

another highly accurate face recognition model using deep learning techniques

such as CNN was developed out namely OpenFace. One of its advantages over

other models is that it had been optimized to run on mobile devices, enabling

real-time face recognition on such platforms. The system’s performance had

been evaluated on image pairs in the LFW dataset, achieving an accuracy of

92.92 %. Another deep neural network model, DeepFace, was developed by

Facebook researchers and trained with 4 million images from over 4000

people, obtaining an accuracy of 97.47 %.

Figure 2.8 provides further analysis of the performance of these deep

learning models on masked face images from the RMFRD dataset, which

consists of 5000 images. The analysis shows that VGG Face achieved the

highest accuracy with 68.17 %, followed by FaceNet with an accuracy of

67.48 %, while OpenFace obtained an accuracy of 63.18 %. However, it was

concluded that none of these pre-trained models had a great performance on

masked face images, but their performance could be improved through transfer

learning and fine-tuning (Bharat Chandra and Karthikeya Reddy, 2020).

Figure 2.8: Comparison Between Conventional and Deep Learning Approach

on RMFRD Dataset (Bharat Chandra and Karthikeya Reddy,

2020).

This feature extraction process can be further separated into three

common approaches: local, holistic or appearance-based, and learning-based.

Some famous techniques for each approach include Histogram of Oriented

Gradients (HOG) and Local Binary Patterns (LBP) under local approaches,

17

Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA),

and Kernel Principal Component Analysis (KPCA) under holistic approaches,

and CNN, Yolo, and SSD under deep learning approaches. These techniques

will be discussed in the next few sessions.

2.3.4 Local Approach

In feature extraction, the local approach refers to an approach that focuses on

local features or pattern within an image or dataset instead of considering the

whole image or data as a whole. One prominent approach in local feature

extraction is the Histogram of Oriented Gradients (HOG) descriptor, originally

proposed by Dalal and Triggs, which has evolved from the scale invariant

feature transform (Tan, Yang and Ma, 2014). HOG is a sophisticated

framework that emphasizes facial features by using 68 facial focus descriptors

that remain unaffected by changes in illumination and rotation. At the initial

stage of objects detection, HOG was widely recognized as a prominent method.

The fundamental theory behind HOG features is that the distribution of

local intensity gradients or edge orientations can represent local object

appearance and shape, even in the absence of precise knowledge of matching

gradients or edge placements. For each key point in an image, the HOG

features are produced by partitioning the neighboring area into multiple evenly

spaced cells and computing a histogram of edge orientations for each cell. A

local one-dimensional histogram of gradient directions is then accumulated

over all pixels in the cell’s adjacent area around each key point (Shu, Ding and

Fang, 2011).

Numerous studies have shown the effectiveness of using HOG

features in combination with other classifiers for various applications. As

proposed by Dadi and Mohan Pillutla (2016), a designated face recognition

with the combination use of HOG features and Support Vector Machine (SVM)

classifier had achieved an improved rate of 8.75 % when compared with

Principal Component Analysis (PCA) on the ORL database. Furthermore, on

the F-MNIST dataset, the combination of HOG features with SVM achieved

an accuracy of 86.53 %, whereas another model using HOG features, Local

Binary Pattern (LBP), and SVM obtained an accuracy of 87.4 % (Greeshma,

College and Gripsy, 2020).

18

Furthermore, the combination of HOG, Adaboost, and SVM were

deployed for real-time vehicle detection on the GTI vehicle datasets, and the

results show that the combination of HOG and AdaBoost achieved a higher

accuracy of 97.24 % compared to approaches using HOG and SVM classifier

with a recognition rate of 96.89 % (Singhal et al., 2021). The use of HOG

features in combination with other classifiers has proven to be effective in

various applications, demonstrating the potential of the local approach in

feature extraction.

Apart from that, the second local approach to be discussed is Local

Binary Pattern (LBP), which has good performance in varied applications such

as image retrieval, texture classification and segmentation, and surface

inspection (Chang-yeon, 2008). The working principle of LBP is very easy.

Originally, the LBP operator labels the image pixel by performing a threshold

on the 3 × 3 neighbourhood of each pixel and comparing it with the centre

pixel value. If the neighbouring value is greater than the centre value, a binary

number of one will be produced. Conversely, a binary number of zero will be

assigned to a value that is smaller than the centre value. Figure 2.9 displays the

basic calculation for LBP.

Figure 2.9: LBP Calculation (Chang-yeon, 2008).

 The LBP code is computed for every pixel in the image, and the

frequency of each possible pattern is recorded. These pattern frequencies are

used as labels to construct a histogram, which forms a feature vector and

serves as a representation of the image texture. This allows for the

measurement of similarity between different images (Wahid, 2013).

 From the research studied by Dalali and Suresh (2016), LBP was used

to reduce the information in given images by comparing results of images with

19

noises and images without noise on MIT face dataset. As a result, the images

without noise reached up to 99.3 % of accuracy and the images with noise

obtained an accuracy of 98.28 %. Additionally, LBP had been widely used

with the integration of PCA and SVM and achieved good recognition rate.

 In the context of facial recognition, LBP has several advantages,

including its great computational efficiency and the ability to handle grayscale

and colour images. These advantages make LBP an ideal choice for measuring

similarities between images in facial recognition, object detection, and image

segmentation applications. To further enhance its performance in texture

classification, LBP has been expanded to accommodate more complex texture

features, such as rotation-invariant LBP and uniform LBP. Recent studies have

shown that the combination of LBP and other deep learning techniques can

further enhance its capabilities in image processing tasks.

 Histograms of Oriented Gradients (HOG) and Local Binary Pattern

(LBP) are both recognised as effective descriptors for facial recognition. Both

methods utilise gradients around a pixel to compute histograms for matching

the similarity between images. HOG is known for capturing image edges and

corners, while LBP is complementary for capturing local patterns. Moreover,

LBP makes use of all eight directions for each image pixel compared to HOG,

which only requires one direction for each image pixel, but this can cause LBP

to lose information compared to HOG.

 Based on the ROC curve with Support Vector Machines (SVM)

classifier as displayed in Figure 2.10, the combination of HOG and LBP

algorithms yielded the highest rate of 99.1 %, whereas the HOG algorithm

itself outperformed LBP with a rate of 0.01 (Amraee, Chinipardaz, and

Charoosaei, 2022). Furthermore, another research in 2021 conducted by

Lakshmi and Ponnusamy (2021) had merged the HOG approach with LBP and

SVM, and it achieved an accuracy of 90.83 % and 97.66 % on JAFFE and

CK+ datasets, respectively.

20

Figure 2.10: Comparison of Performances for HOG Approach and LBP

 Approach (Amraee, Chinipardaz and Charoosaei, 2022).

In conclusion, HOG and LBP are both effective descriptors for facial

recognition, with HOG capturing image edges and corners, and LBP being

better at capturing local patterns. While HOG is more efficient than LBP, the

combination of both approaches outperforms the algorithm alone.

2.3.5 Holistic Approach

The holistic approach makes use of global information from an individual’s

face to carry out face recognition. In this context, global information is

represented by features which are directly extracted from the face image pixels

(Karamizadeh and Abdullah, 2013). The holistic approach is further divided

into linear and non-linear approaches.

 The Principal Component Analysis (PCA) or eigenface approach is a

linear holistic approach and is being introduced as one of the most effective

techniques for image recognition and compression. It was proposed by

Pearson and Hotelling in the early 20th century (Huang, 2012). This approach

aimed to reduce the dimensionality of the data space to the smaller intrinsic

dimensionality of the feature space. PCA converts the large one-dimensional

vector of pixels constructed from a two-dimensional facial image into the

principal components of the feature space. It has advantages over other

techniques due to its simplicity, speed, and insensitivity to mild or progressive

changes in the face.

 PCA considers a grayscale image as an M × N matrix of pixels and

transforms it into a high-dimensional vector. The principal components are

then calculated for the ‘k’ faces of the population, resulting in the minimum

distance between the new image and any of the ‘k’ library images. This

21

approach retains variance information for analyzing images based on

similarities and differences and is widely used in face recognition. Although

PCA has benefits such as lack of data redundancy, smaller database

representation, noise reduction, and reduced complexity in image grouping, it

has limitations in capturing the simplest invariance unless the required

information is provided by training data, and the covariance matrix evaluation

process is difficult (Karamizadeh et al., 2013).

Linear Discriminant Analysis (LDA), also known as Fisher’s

Discriminant Analysis, is another technique for dimensionality reduction in

face recognition. LDA identifies a linear transformation to create feature

clusters through scatter matrix analysis. It combines independent features

linearly to produce the greatest mean difference between desired classes, with

the goal of minimizing the within-class scatter matrix measure while

maximizing the between-class scatter matrix measure. This approach has been

proven effective in improving face recognition accuracy (Toygar and Acan,

2003).

Traditionally, the PCA algorithm is incorporated with the LDA

framework, in which PCA is used as a preprocessing step for dimensionality

reduction and LDA is implemented in a lower-dimensional PCA subspace (Lu,

Plataniotis and Venetsanopoulos, 2003). The main difference between LDA

and PCA is that LDA focuses on data classification, while PCA focuses on

feature classification. While PCA changes the shape and location of original

datasets when transforming them to a different space, the location remains

unchanged in LDA (Hese and Banwaskar, 2013).

When solving problems related to pattern classification, LDA

outperforms PCA, but its separability characteristics do not directly

correspond to the classification accuracy in the output space. According to a

research carried out by Patil, the performance of LDA was better than PCA,

with a recognition rate of 86.07 % and 66.07 %, respectively, based on the

ORL database (Patil, 2014). Another study using MATLAB found that LDA

outperformed PCA with a larger training set, but PCA had better performance

with a smaller training set. However, for the same number of samples, LDA

generally had a higher recognition rate than PCA (Suganya and Menaka, 2014).

22

The standard PCA approach only supports linear dimensionality

reduction. Therefore, if the data deals with more complex features that are not

suitable for linear representation, the PCA technique will not be useful.

However, the introduction of Kernel PCA (KPCA) allows the evolution of

PCA to non-linear dimensionality reduction (Wang, 2012).

According to Cover’s theorem, with the transformation of the input

space into a high-dimensional feature space in the KPCA approach, the non-

linear separable patterns transform into ones that are linearly separable. In

other words, KPCA is the non-linear form of PCA. Although computing

vector products in high-dimensional feature space is complicated, it is possible

to carry out computation in low-dimensional input space by using a kernel

function in KPCA. The kernel approach can solve the non-linearity problem

by mapping the input face images into a higher dimensional space with

simplified face linearity (Peter, Minoi and Hipiny, 2019).

By utilising the TOAM database consisting of 40 individuals, the

KPCA outperformed the PCA with recognition accuracy of 80.0 % and 72.5 %,

respectively (Niyi, Alagbe and Wuraola, 2019). Besides, the KPCA approach

is utilized for feature extraction from the input images. The combination of

KPCA and SVM had better performance with an average recognition rate of

99.05 % as compared to SVM alone which displayed an accuracy of 95.04 %

based on the VISIO Multiview Face database (Timotius, Setyawan and

Febrianto, 2010).

In face recognition, KPCA excels in extracting more powerful features

as compared to PCA. Figure 2.11 illustrates the comparison of recognition

rates for both PCA and KPCA in FERET, ORL, UMIST, and AT&T databases.

The KPCA technique outperformed the PCA technique with an accuracy of

81 % to 91 % from four of the databases. It has been demonstrated that the

KPCA approach is more effective in extracting low-level features of face

images, which is a crucial requirement for successful face recognition (Anon.,

2014).

23

Figure 2.11: Recognition Rate for PCA and KPCA Approaches (Anon.,

 2014).

2.3.6 Learning-based Approach

To improve the performance of face recognition technologies in real-life

applications, different deep-learning approaches have been introduced lately.

In the early 2010s, learning-based local descriptors reshaped the application of

face recognition, in which local filters are enhanced with better performance

and more compact encoding (Wang and Deng, 2021). In this section, a

comparative analysis of the Convolutional Neural Network (CNN), Single

Shot Multibox Detector (SSD), and YOLO will be discussed below.

The Convolutional Neural Network (CNN) belongs to a type of neural

network that is known for image classification and can be applied to face

recognition. To distinguish an input image from other images, CNN tweaks

the network weights based on the input image and consequently, CNN is able

to recognize different faces by identifying important features in their own after

training the model (Lecun et al., 1998).

In late 1998, the first popular CNN was developed for the development

of handwritten digits and was applied to banking services in automated teller

machines (Gopalakrishan, Arun and Sasikumar, 2021). Since 2012, scientists

have concentrated on enhancing the usefulness of CNN’s architecture and

methodologies, including layer design, activation function, and regularization

as well as investigating the functionality in many sectors.

The introduction of Fast R-CNN as an object detection model makes

use of CNN in the target detection field and has been studied by Ren et al.

(2016). Kim et al. (2018) implemented a CNN-based study to create a

24

framework for finding moving objects with Closed Circuit Television (CCTV)

cameras by adding a background subtraction algorithm to the framework.

The major breakthrough of CNN was made by AlexNet with an error

rate of just 15.3 % in the ILSVR challenge in 2012, and this achievement is

impressive as the technology relies on truly deep learning with great

computational power (Krizhevsky, Sutskever and Hinton, n.d.). From 2014 to

2020, architectural innovations were made with many CNN-based

architectures, such as improved versions of RCNN and Faster RCNN, which

were introduced in the subsequent years. Researchers have come up with

different CNN models for face recognition. These models show the realm of

image classification with different CNN models, as illustrated in Figure 2.12.

Figure 2.12: Comparison Graph of Different CNN Models (Gwyn, Roy

 and Atay, 2021).

A study conducted by Gwyn, Roy, and Atay (2021) compared various

CNN variants, including AlexNet, Xception, Inception, ResNet, and VGG,

using the Labelled Faces In The Wild (LFW) image dataset, which consisted

of 4788 images from 423 individuals. The results showed that VGG-16

performed the best, followed by VGG-19, with an accuracy of 84 %. However,

although VGG-16 and VGG-19 excel in image classification and object

localization, their training process is slow due to their robustness.

To improve performance and accuracy with more complex features,

ResNet, a prominent type of CNN, was proposed by He et al. (n.d.) with an

accuracy of 72 %. Although AlexNet is the standard object recognition model

in CNN, it faces challenges when applied to higher resolution images.

25

Inception v2 or Inception v3, on the other hand, makes use of advancements in

deep learning, with more deeply stacked convolution layers. The Xception

model is a transformation of the Inception model, with similar architecture and

parameters but deeper separable convolutions. However, it had the lowest

accuracy of 52 % among the models tested (Gwyn, Roy and Atay, 2021).

A crucial consideration in the detection pipeline is the speed of the

object detection model. However, increasing the speed may lead to a decrease

in accuracy. To address this challenge, the Single Shot Multibox Detector

(SSD) was introduced in 2016 by utilizing VGG as the backbone of the

network (Liu et al., 2016). Compared to other single-shot detectors like YOLO

and R-CNN, SSD is faster and more accurate. In addition to VGG, SSD

employs multiple convolutional layers for detecting smaller targets, and its

deeper layers are used for detecting larger objects, as illustrated in Figure 2.13.

Figure 2.13: Framework of SSD (Shi, Bao and Tan, 2019).

 SSD differs from other models as it does not involve pixel or feature

sampling for bounding box hypotheses, making it easy to train and embed into

a system for object detection. Based on a research done by Tai et al. (2018),

the training process for SSD is straightforward, and alternative models such as

SSD-7, SSD-300, and SSD-500 can easily balance between accuracy and

speed.

When compared to R-CNN, SSD demonstrated better performance on

PASCAL VOC and COCO datasets while being three times faster during

computation. Furthermore, SSD excels in object localization as it directly

learns to classify object categories, avoiding the use of two separate processes

that can lead to more localization errors in R-CNN. Moreover, SSD

26

outperformed YOLO, with an input image running at 59 FPS, demonstrating

higher efficiency and accuracy than YOLO (Zhao et al., 2019).

 The Face-SSD approach is a novel method for face recognition that

uses a single shot face-related task analysis approach. It integrates a Fully

Convolutional Neural Network (FCNN) as the backbone and builds upon the

Single Shot Multibox Detector (SSD) method. This approach is capable of

detecting multiple faces in real-time. Researchers found that it achieved a

95.76 % accuracy for smile detection and 90.26 % for attribute prediction,

with a reported RMS error of 0.44, indicating high accuracy and reliability of

the results (Jang, Gunes and Patras, 2019).

As shown in Figure 2.14, YOLO, or You Only Look Once, uses the

Darknet architecture as its backbone and replaces Softmax classification loss.

It uses neural networks to store information about people’s appearance and

class, with parallel bounding boxes used as detectors in images. The input

image is divided into S × S grids, and object detection is successful if the

object’s centre points fall within the grid cell. The performance of YOLO is

analyzed by estimating the prediction of the bounding box and confidence

score for each grid cell, with a confidence score of zero indicating no object

within the grid cell (Rana, 2022).

Figure 2.14: YOLO Algorithm Based on DarkNet Architecture (Weng,

 2018).

With its fast and accurate performance, YOLO gains significant

popularity upon its first release in 2015. The architecture improvements are

27

continuing to advance in the field of computer vision with innovation in each

version of the algorithm.

 In 2020, the YOLO-v4 algorithm was updated to incorporate the

CSPDarkNet 53 and PANet architectures for object detection, leading to

improved face detection, even with masks. The algorithm features reduced

parameters for feature extraction and increased information fusion. However,

the YOLO-v4 algorithm required more frames per second (FPS) at 23.83 s as

compared to YOLO-v3, which only required 21.39 s for processing the same

picture during speed calculation (Yu and Zhang, 2021).

Another distinct work was implemented by researchers in Shenzhen,

China by introducing YOLO5face, based on the YOLO-v5 object detector.

This approach resulted in improved speed and mean-average precision

performance. By testing the model on the WiderFace dataset, it achieved a

mean average precision of 96.67 %, demonstrating the significant performance

of the YOLO algorithm (Qi et al., 2021).

In 2022, Wang, Bochkovskiy and Liao (2022) had released the

official YOLOv7 with a paper named “YOLOv7: Trainable bag-of-freebies

sets new state-of-the-art for real-time object detectors”. This model was

declared to be the fastest and most precise real-time object detection model for

computer vision.

Additionally, the latest object detection model, YOLOv8, has recently

been released with new features and enhancements, with a strong focus on

accuracy, speed, and size. In this context, there are five types of YOLOv8

models, namely YOLOv8n, YOLOv8s, YOLOv8I, and YOLOv8x. YOLOv8x

has the highest accuracy but is the slowest among them, while YOLOv8 Nano

is the smallest and fastest. Figure 2.15 shows that YOLOv8 significantly

outperforms older versions of the YOLO model on COCO datasets (Francesco

and Solawetz, 2023).

28

Figure 2.15: Comparison of Different Versions of YOLO Model

 (Francesco and Solawetz, 2023).

The Table 2.2 lists out the major differences between CNN, SSD and

YOLO in terms of accuracy, speed, advantages and disadvantages.

Table 2.2: Comparison Between CNN, SSD and YOLO (Srivastava et al.,

2021).

 CNN SSD YOLO

Accuracy Accuracy is the
highest among
three models.

Accuracy is
lesser as

compared to
CNN family.

Accuracy is the
lowest as compared
to CNN family and

SSD.

Speed Slower than SSD
and YOLO.

Faster than
CNN family
but slower

than YOLO.

Fastest among three
algorithms.

Main
Advantages

Reduced chance
of overfitting due

to fewer
parameters to

learn.

Can be trained
end-to-end to

improve
accuracy.

Good for real-time
processing. Can be

trained end-to-end to
improve accuracy.

Main
Disadvantages

Requires lots of
samples to

construct a depth
model.

Not suitable
for small
objects.

Difficult to detect
objects that are

small and close to
one another.

29

2.3.7 Transfer Learning

Transfer learning is an indispensable concept in deep learning as a small

amount of data is sufficient to train deep neural networks. In this context, a

pre-trained model for face recognition serves as a good starting point as it has

already been trained for learning low-level features such as shapes, textures,

and edges. By fine-tuning the pre-trained model on a new dataset, the need for

extensive training data and time is reduced, making it more robust and

accurate in real-world scenarios. This approach is useful when applied to new

faces or changing environmental conditions, such as changes in lighting or

pose, making it more robust and accurate in real-world scenarios.

Several related works have made use of transfer learning in face

recognition, such as the application of VGG16 for feature extraction and

classification using a Softmax layer. The VGG16 model was trained on the

ImageNet dataset, resulting in an accuracy of 83.11 % in an experiment

involving 15 subjects, each with 11 images (Singh, Kansari and Sinha, 2022).

Additionally, a transfer learning-based CNN model achieved an accuracy of

98.7 % and 100 % on the Yale and AT&T datasets, respectively (Meena

Prakash, Thenmoezhi and Gayathri, 2019). Another work accomplished by

Atabansi et al. (2021) successfully applied transfer learning in combination

with the pre-trained VGG-16 network architecture to the Oulu-CASIA NIR

dataset, achieving an average test accuracy of 98.11 % in facial expression

recognition. These findings underscore the potential of transfer learning for

improving the accuracy and robustness of face recognition in real-world

scenarios.

2.4 Evaluation Metrics

To evaluate the performance of a proposed face recognition system, it is

essential to consider several metrics. Four prominent metrics were discussed

by Harakannanavar et al. (2019) namely False Accept Rate (FAR), False

Reject Rate (FRR), Receiver Operating Characteristic (ROC) and Equal Error

Rate (EER).

FAR refers to the system’s probability of incorrectly matching an input

pattern to a template that does not match in the database, while FRR refers to

the system’s failure to detect a match between the input pattern and a matching

30

template in the database. The ROC curve is an useful visualization tool that

displays the trade-off between FRR and FAR, while EER can be determined

from the ROC curve.

In the CNN architecture, different performance metrics were utilised

for face and head detection as proposed by Nguyen-Meidine et al. (2018). A

ROC curve is used to measure accuracy, with the true positive rate (TPR)

plotted against the false positive rate (FPR). The TPR refers to the proportion

of target face regions of interest (ROI) precisely detected as faces over the

entire region of interest.

For video surveillance applications, the Precision-Recall space is more

appropriate for measuring detector performance under imbalanced data. Based

on the FDDB dataset, three region-based CNNs, Faster R-CNN, R-FCN, and

PVANET, had provided higher accuracy levels than SSD, while SSD showed

more competitive performance in the Precision-Recall space, as illustrated in

Figure 2.16 (Nguyen Meidine et al., 2018).

Figure 2.16: ROC and Inverted Precision-Recall Curves (Nguyen

 Meidine et.al., 2018).

 Aside from that, Masi et al. (2019) utilized the ROC curve for

verification and the True Acceptance Rate (TAR) at precision cutoff points

and False Alarm Rate (FAR) to evaluate performance on the IJB dataset. The

cumulative match characteristic (CMC) curve was also used to analyse the

recognition rate at multiple ranks. The Detection Error Tradeoff (DET) curve,

which is similar to the ROC, was used to measure quality identification.

31

Additionally, another study by Srivastava et al. (2021) used the average

precision and F1 score as the performance metrics for the face detection model

using deep learning approaches.

Next, another study on face detection by deep learning carried out by

Chaves et al. (2020) utilized a regression model for the prediction of face

detector speed and evaluated the model using Mean Absolute Error (MAE),

Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). In

addition, by using mean Average Precision (mAP) and the F1 score for the

WIDER Face and UFDD datasets, it was found that MTCNN is the fastest but

least accurate detector. Additionally, the writer also evaluated performance by

using Generalized Linear Models (GLMs) for the estimation of processing

time and F1 score of face detectors, as GLMs are flexible linear regression

models that take into account metrics such as processing time and F1 score.

In short, evaluation metrics are essential to assess the performance of

the face recognition system. In addition to testing the accuracy of the system,

the metrics also facilitate the comparison and selection of the most suitable

face recognition techniques for specific applications.

2.5 Database

The selection of a suitable face database is crucial for developing and

evaluating robust face recognition systems. It is essential to have sufficient

data and variability in the database to cover controlled variables such as

illumination, pose, expression, occlusion, age, and ethnicity (Gross, 2005). For

deep learning-based face recognition systems, having a large training dataset is

particularly crucial to learn complex features from images. For instance,

ImageNet with 14 million images significantly enhanced the development of

precise deep learning object detection models.

The ORL (Olivetti Research Laboratory) face database is one of the

oldest face databases, consisting of 400 face images taken between April 1992

and April 1994. This database was created for the face recognition project, and

all images were taken against a dark homogeneous background, leading to

inconsistent illumination conditions (Roure and Faundez-Zanuy, 2005).

Another well-known face database is YALE dataset, which includes 165

grayscale images of 15 individuals. However, this database has limitations,

32

such as a small number of individuals, and environmental factors such as the

presence and absence of ambient light are not indicated (Kriegman, n.d.).

Different databases used for similar recognition approaches will affect

the performance of the face recognition system. In the examples of studies

carried out by Du, Su and Cai (2009) and Xie (2009) on the ORL Faces

database and Yale Faces database, an accuracy of 96 % and 97.78 % was

achieved respectively, using the Support Vector Machine (SVM) classifier.

Furthermore, the PCA technique was applied to the ORL face database by Yi,

Lei, and Li (2015) and to the Yale database by Chai, Shan, and Gao (2003).

An accuracy of 70 % and 93 % was achieved, respectively.

A more recent database, ELA5 was introduced by Alexiadis et al.

(2010) for the main purpose of experimentation within the face recognition

domain. The database covers pose and illumination variation, different facial

occlusions and expressions, and consists of a total of 1260 images from ten

individuals. Some techniques, such as PCA, MPCA, and LDA, were used to

simulate real-world conditions. When MPCA and LDA were used together in

the first experiment, 95 % of the images were recognized. This shows that

traditional PCA techniques are sensitive to changes in lighting conditions.

Other recently added face databases include the Basel Face Database,

which consists of forty individuals with fourteen variations of each of them

displaying different personalities (Walker et al., 2018). Another distinct face

database, Labeled Faces in the Wild (LFW) is well-known as a public

benchmark for face realism and consists of 13233 images. This database was

specifically designed for studying unconstrained face recognition problems.

The constraints include poor lighting, extreme poses, occlusions, and many

groups are not represented properly, such as lack of ethnicity, few children, no

babies, and people over the age of 80 (Zhang and Deng, 2016).

There are several factors that affect the quality of a face database.

Firstly, the pose variance may affect the success of the face recognition system

due to the inconsistency of individuals when taking a picture, as people may

pose differently and there is no standardisation for photo taking. Hence, the

pose variance may degrade the performance of face recognition systems due to

their inflexible imaging conditions.

33

Secondly, occlusion refers to any obstacles in an image, such as hands,

hair, sunglasses, or other items. Partial occlusion refers to occlusion that is less

than 50 % of the face. Additionally, factors such as shadows can also

contribute to the category of occlusion. These can be problematic for face

recognition systems as they obstruct parts of the face that are important for

accurate recognition.

Lastly, lighting is an essential consideration that depends on whether

the photos were taken in a controlled environment with a homogeneous

background. Illumination can greatly affect the face appearance and lead to

inconsistencies between images. These factors highlight the importance of

having a sufficient and diverse face database for training and testing a robust

face recognition system (Lal et al., 2018).

In summary, the selection of a suitable face database is essential for

developing a robust face recognition system. A large training dataset with

sufficient variability can enhance the accuracy of deep learning-based face

recognition systems.

2.6 Comparison between Traditional Approaches and Deep Learning

Approaches

The field of face recognition has undergone significant transformation over the

years. Initially, conventional approaches relied on edge and texture descriptors

combined with machine learning techniques such as Support Vector Machines

(SVM), Principal Component Analysis (PCA), and Linear Discriminant

Analysis (LDA). However, these traditional techniques were not robust when

facing variations in unconstrained environments. In recent years, deep learning

approaches based on convolutional neural networks (CNNs) have been

successfully adapted for image dimensional reduction and recognition due to

their outstanding accuracy and fast computation.

The first CNN approach for face recognition that utilized a high-

capacity model, namely Facebook’s DeepFace, achieved an accuracy of

97.35 % on the LFW datasets with an error reduction of 27 % (Trigueros,

Meng and Hartnett, 2018). Additionally, based on a research implemented by

Setiowati et al. (2017) with the YALE dataset showed that the non-deep

34

learning algorithm can achieve up to 90.6 % for low-high complexity and

94.67 % in the deep learning approach for low to high complexity.

Most studies comparing conventional and deep learning approaches to

face recognition show that the latter provides greater performance. Jayaswal

and Dixit (2020) implemented the first approach by using the Viola Jones

approach for image detection, followed by the Local Binary Pattern for

extracting features by recognising the face. However, the real-time system

took only 300 datasets and achieved an accuracy of just 50 %.

Subsequently, the deep learning approach was carried out by initially

resizing the images with the MTCNN algorithm, followed by the FaceNet

model to extract high-quality images. As a result, it has been proven that deep

learning is suitable for models that embed larger datasets, as the accuracy

obtained was 96 %. Furthermore, by applying low to high complexity to the

YALE dataset, the CNN approach and the LBP approach achieved recognition

rates of 93.3 % and 85.75 %, respectively (Setiowati et al., 2017). Table 2.3

summarises the comparison of SVM and deep learning approaches on MNIST

datasets.

Table 2.3: Performance Comparison for SVM and Deep learning.

Approach SVM Deep Learning

Operating time 46.54 minutes 11 hours and 50.41
minutes

Accuracy in training set 94.09 % 100 %
Accuracy in testing set 93.92 % 98.85 %
Means for extracting

features
Manually and

subjective
Automatically and

objective
Means for processing

data
Turn images into

vector
Directly using images

References (Lai, 2019) (Lai, 2019)

On top of that, a research from Singhal et al. (2021) compared

traditional and deep learning approaches for face recognition on the ORL

database. According to Figure 2.17, the combination of CNN and LBP

approaches achieved a 100 % recognition rate, while the PCA with Neural

Network achieved approximately 97 % accuracy. In contrast, the traditional

approach, which used HOG and SVM techniques, achieved the lowest

accuracy of 90 %. These results suggest that a combination of deep learning

35

and traditional approaches can lead to better performance compared to other

models.

Figure 2.17: Performance of Various Techniques on ORL Database

 (Singhal et al., 2021).

 Overall, deep learning approaches have better performance in terms

of accuracy and robustness compared to traditional approaches for face

recognition. This is due to its capabilities of learning high-level features

directly from raw data, which makes it easier to adapt to different image

variations. Additionally, large datasets are easier to handle with deep learning

approaches, making them a suitable option for the development of face

recognition.

Aside from good performance in terms of accuracy in most

experiments, deep learning is associated with some weaknesses. The first issue

is high complexity, which makes it difficult for deep learning to encounter

situations such as varied facial poses, lighting and illumination, facial

expressions, or partial occlusions. Next, the build-up of a deep learning

approach consumes more training time and computing resources in order to

achieve better generalisation ability and prediction accuracy.

The optimised solution is by integrating both conventional and deep

learning approaches into the system in order to obtain results of high accuracy

and low complexity. For instance, the LBP approach implemented on the ORL

dataset achieved an accuracy of 97 %, whereas another experiment that

integrated with the CNN technique and the LBP approach applied on a similar

36

dataset obtained a recognition rate of 100 % (Singhal et al., 2021c). Table 2.4

illustrates the comparison between conventional approaches such as HOG,

LBP or PCA and deep learning approaches such as CNN, SSD or YOLO.

Table 2.4: Comparison Between Conventional and Deep Learning Approach.

Conventional Approach Deep Learning Approach
Lower Accuracy Higher accuracy

Consume lesser training time Requires larger training datasets with
longer training time

Used for simpler application Solve complex problems

In conclusion, while deep learning approaches have shown superior

performance in face recognition, there are still limitations, such as high

complexity and resource consumption. The viable solution to these limitations

is to integrate traditional approaches with deep learning to further advance the

face recognition field.

37

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

In this chapter, clear and proper planning of the entire project activities will be

explained in order to keep track the progress and ensure the project running

successfully. Additionally, detailed methodology was covered in clear manner

to ensure the results compatible with project aim and objectives. The

methodology will be explained parts by parts which consist of project planning,

development process, face recognition approaches followed by design of the

user interface for the whole smart attendance system, and lastly, the solutions

to the difficulties faced during the development process.

3.2 Project Planning

The whole project was separated into two stages which are Final Year Project

1 and Final Year Project 2. Each of them took about 14 weeks. At the

beginning of the project, the project scope, problem statement and objectives

were clearly stipulated to ensure the whole project aligned with the targets.

Besides, a literature review was conducted to discuss on the background and

few techniques leading the implementation of the project apart from providing

clear perspective about the project to the audience. Research was conducted

before proposing the methodology or possible solutions followed by

preliminary testing and results analysis.

In FYP2, a fully working prototype was developed with performance

evaluation. The initial prototype was accomplished on Week 4 as planned.

Then, field test was carried out to analyse the performance of the recognition

system and further enhance the prototype. Some useful features were updated

in order to enhance user’s experience. On Week 14, the whole project was

accomplished. The project’s Gantt Chart was displayed in Figure 3.1.

38

Figure 3.1: Project Gantt Chart.

3.3 Project Development

Two different face recognition approaches were tested to determine the most

suitable technique for integration into the smart attendance system. The first

approach combined DNN, FaceNet, and an SVM classifier, while the second

approach used transfer learning with a VGG16 model. Figure 3.2 below

provides a general overview of both recognition techniques.

39

Figure 3.2: Workflow for Face Recognition Approaches.

40

The designed smart attendance system is composed of three primary

features: face detection, feature extraction, and face recognition, which

collectively form the backbone of the system. The proposed system design is

displayed in the block diagram in Figure 3.3 whereas the implementation of a

more detailed flowchart is illustrated in Figure 3.4. The input image can be

captured from a variety of environments such as university, company or

industry by using a webcam or any video streaming device. The captured

images will then be preprocessed and saved in the local files as the database.

When a new face is added to the database, the model is trained to extract face

encodings for the new user and associate them with their respective names.

Next, face recognition takes place by classifying if the face encodings of an

individual from real-time video streaming matched with the saved face

encodings. If the comparison results are right, the individual’s name will be

displayed on the frame and the attendance excel sheet will be updated

accordingly.

Figure 3.3: Block Diagram for Smart Attendance System.

41

Figure 3.4: Flowchart of Smart Attendance System.

42

3.4 Resources

3.4.1 Hardware

The chosen webcam for the proposed system is Benewy Full High-definition

(HD) webcam which can support full HD ranged from 272 pixels up to 1440

pixels with a maximum of 30 fps and 2 Megapixels. This plug and play

webcam adapts advanced H.264 compression technology. Besides, it has built-

in microphone and automatic focusing mode. It is being chosen as it fits the

basic requirements of the face recognition system and the price is affordable.

These crucial elements are considered before embedding the device to the

proposed system. The specifications of this video-streaming webcam are listed

out in Table 3.1.

Table 3.1: Specifications of Benewy Full HD Webcam.

 Specifications

Image

Model Number U01

Maximum Resolution 2560 × 1440 pixels
Pixels 2 Mega

Frame Speed 30 fps
Image Sensor CMOS
Sensor Pixel 2 million

The developed system is processed using an Asus VivoBook S15

S510U laptop, equipped with an Intel i5-8250U CPU running at 1.60GHz and

8GB of installed Random-access memory (RAM) as shown in Figure 3.5.

43

Figure 3.5: Asus VivoBook S15 S510U Laptop.

3.4.2 Software

Python is the main programming language for the entire development of the

smart attendance system. The development environment used is VS Code, an

open-source code editor developed by Microsoft.

3.5 First Approach

3.5.1 Face Detection

Face detection is a preliminary step before proceeding into face recognition

part. There are several algorithms and techniques that can be used for face

detector. In this study, three widely recognized face detectors, namely

OpenCV’s Deep Neural Network (DNN) module, Multi-Task Cascaded

Convolutional Networks (MTCNN), and Haar Cascade, were evaluated to

determine the most appropriate one for the task at hand.

 Firstly, OpenCV was installed as the requirements for the face

detectors to work. It provides sets of useful tools for object detection and

recognition. In this context, DNN makes use of ‘prototxt’ file and ‘caffe’

model as input to create a deep learning model for face detection. The

architecture of the network including layers and configurations was specified

in the ‘prototxt’ file whereas the weights for the network was defined in the

‘caffe model’ which can be found in Appendix A. For MTCNN, it can simply

work by installing the MTCNN Library. To run Haar Cascade, the Haar

Cascade XML file consisting of the face detection model was loaded to the

system. Each detection technique has their own strengths and weakness and

the results of comparison were analyzed in Chapter 4.

The three face detectors were compared and the most suitable one,

DNN face detector was integrated into the smart attendance system. In the

44

Graphical User Interface (GUI), a “VideoStream” object was initialized to

read frames from the camera source. The camera source was defined by a

global variable named “CAMERA_INDEX” in which the user can easily

change the camera source by setting “CAMERA_INDEX” to ‘1’ for external

webcam or ‘0’ for the laptop’s built-in camera. In this context, a webcam was

used to enhance the robustness of the system, as the webcam can produce a

maximum of 2560 × 1440 pixels video stream at 25 fps whereas the built-in

laptop web camera has a maximum resolution of 640 × 480 pixels.

The “start_detection()” function is called by a timer every 10

milliseconds to detect faces in the video stream. When the video stream is

initialized, the frame will be resized to a width of 800 pixels. The height and

width of the resized frame will be extracted out and converted to a blob, which

matches the requirement for the processing of deep learning model. The blob

is then passed through a pre-trained face detection model for detection. The

confidence level of the current detection is extracted and if the confidence

level is greater than the threshold which was preset using a variable named

“CONFIDENCE_LEVEL”, the coordinates of the bounding box around the

detected face will be computed. The extracted face will be saved in specific

folder that is created using user’s name by using the “save_detected_face”

function. Besides, the images are saved in JPEG format at maximum quality in

order to preserve the sharpness and details of the image.

The timer is initialized when the video stream starts and stops when

20 faces have been captured. Collecting multiple frames of an individual’s

face helps in enhancing the accuracy of the face recognition system by

providing variations in lighting, angle, pose, and facial expressions. After few

runs of tests, 20 frames were considered as the optimal number of frames to

collect for creating a face database as it provides a good balance between

capturing sufficient variation and does not overburden the system with too

much data.

3.5.2 Feature Extraction

A deep learning model, FaceNet was deployed for face extraction and face

recognition purpose. It takes an image of an individual’s face as input and

outputs a vector of 128 numbers that represent the face embeddings. It was

45

trained on the Tensorflow framework on a large dataset of face images for the

use of face recognition. The FaceNet model and its weights are initially loaded

and then compiled using the “compile” function. The model’s filepath and its

corresponding weights can be found in Appendix B.

After collecting 20 face images of the user, “switch_to_main()”

releases the stream from a video object, creates an instance of

“EncodingThread” with a batch size of 32, and starts the thread. The batch size

is utilized in the “encode” method in order to loop through all collected images

in batches instead of processing all the images at once. By using batches, the

framework can optimize the computation graph for the specific batch size used.

This can enhance memory efficiency and allow faster processing.

 Face encodings will be generated from a set of training images that

were saved earlier during the face detection process. Lists will be created to

store the encodings and their respective names, followed by normalization of

the image’s pixel value. The images will be resized to 160 × 160 pixels and its

dimensions will be expanded to fit the model. Predictions will be made on the

batch of images by using the loaded FaceNet model and then the encodings

and names will be appended to the lists. Lastly, the encoded data will be saved

as a pickle file.

 Furthermore, the face image encoding process is executed in a separate

thread which means that the encoding process does not block the main thread

of the application. By running the encoding process in a separate thread, the

GUI remains responsive and the user can interact with the application or

access other features while the encoding is in progress. In short, the encoding

process was designed in a separate thread for better responsiveness and user

experience without blocking the main thread of the ongoing application.

3.5.3 Face Classification

The “trainClassifier” function is called to load the encodings file path and

Support Vector Machine (SVM) classifier from scikit-learn’s “joblib” module

to carry out face recognition. It then loads a dictionary of known face

encodings and their respective names from a pickle file named

“face_encoding.pickle”. The known encodings and names are assigned to

numpy arrays and the SVM classifier is trained on these known encodings and

46

names. The trained classifier is then stored in “self.clf”. The “kernel”

parameter in the SVM is set to “rbf” and the “tol” parameter was tuned to a

value of 0.001 as stopping criterion. The regularization parameter was set with

a value of 5. These parameters give the best performance for the system.

In this context, the SVM classifier was selected instead of other

classifiers such as K-Nearest Neighbors (KNN), Random Forest and Decision

Tree due to its simplicity, precision and speed.

 After training on the known face encodings and their respective

names, the SVM classifier is used to predict the name of new face encodings.

Prediction of the name of each encoding is done by calling the “predict”

method on the “clf” object. After that, the face encodings detected in the

current frame is stored in the “face_encodings” variable whereas the predicted

name is stored in the “predictions” variable. The predicted name will be

displayed on the frame when the video is streaming.

 The task of the real-time face recognition is performed in separate

thread from the main GUI thread to prevent GUI from freezing easily. When

the application is closed by user, the “stop()” method is called to stop the

thread by setting the “ThreadActive” flag to False and thus quitting the thread.

3.6 Second Approach

The model architecture for VGG16 model is illustrated in Figure 3.6. The

VGG16 model, originally developed by the Visual Geometry Group (VGG), is

commonly used for image classification tasks. It consists of 16 layers and is

often employed in transfer learning approaches for tasks such as face detection,

feature extraction, and face recognition (Bansal, 2020). In this study, the pre-

trained VGG16 model’s weights were frozen, and only additional layers were

trained specifically for face detection and face recognition purposes.

Figure 3.6: VGG16 Model Architecture (Bansal, 2020).

47

3.6.1 Model Architecture

The VGG16 model was loaded with pre-trained weights from the “imagenet”

dataset, which comprises over 1.2 million images. The Keras functional API

was used to add a new top layer to the VGG16 model. This top layer consists

of a series of fully connected layers with an increasing number of units (256,

512, and 1024) and ReLU activation function. The final output layer was

added with a number of units equal to the number of classes in the dataset, and

softmax activation function was used for classification. The model was then

compiled with “categorical_crossentropy” loss function, “adam” optimizer,

and accuracy as the evaluation metric.

3.6.2 Data Augmentation

The “ImageDataGenerator” class was utilised for data augmentation on the

training dataset to increase its size by applying various transformations to the

images. For the training, validation and testing dataset, the images were

rescaled in which each pixel value in the images is divided by 255, resulting in

pixel values scaled down to the range of 0 to 1. Additionally, rotation range,

width shift range, and height shift range were set to 20, 0.5, and 0.5

respectively. The horizontal flipping was set to “True” so that images can be

horizontally flipped during training. “Nearest” mode was set to “fill_mode”

such that empty pixels will be filled with the value of the nearest neighboring

pixel.

3.6.3 Training

The model was trained using the “fit_generator()” function, which takes the

training and validation data generators as inputs. During training, the weights

of the pre-trained VGG16 model were frozen, so they were not updated. Only

the weights of the new layers added for face recognition were trained. For the

self-collected dataset, the number of epochs was set to 30 with a batch size of

16.

Overall, transfer learning with the VGG16 model, combined with pre-

processing, model architecture, data augmentation, and training techniques,

can enable effective face detection and recognition tasks. The evaluation

48

results are analyzed in Chapter 4 to provide insights into the performance and

effectiveness of the trained model.

3.7 Attendance Update

If the individual’s face is being recognized, an instance of the “Attendance”

class will be created followed by the “mark_attendance” method. This step is

carried out to mark attendance in the excel file named

“Attendance_Records.xlsx”. In this context, the “xlsxwriter” library is used for

creating and writing an Excel file whereas the “openpyxl” library is used for

reading an existing Excel file. The “face_names_str” that is stored earlier

during the face recognition process will be passed to the “mark_attendance”

method followed by the “checkPreviousAttendance” method to check if a

given “face_name_str” is already present in the Excel file within the last one

minute. If the same name of an individual appeared within the last one minute,

the name will not be recorded down. Otherwise, the name will be recorded in

the Excel sheet with the timestamp.

3.8 User Interface Design

For the Graphical User Interface (GUI), PyQt5 was chosen to implement the

smart attendance system due to its versatility, simplicity and powerful features

that match with the objectives of this project. It provides a rich set of toolkits,

widgets and other components to ease the design of a graphical user interface.

For the developed smart attendance system, the GUI was designed using a

variety of modules imported from PyQt5 libraries such as QPushButton,

QDialog, QTableWidget, QTableWidgetItem, QLabel, and QStackedWidget.

3.9 Problems and Solutions

When running the initial prototype of the GUI, the system easily crashed,

causing the GUI to become unresponsive. This is mainly due to bugs or coding

errors in the application and insufficient resources as the GUI consumes too

much memory and CPU. In the initial approach, the models were loaded

separately in each class which resulted in loading similar models multiple

times. This approach is not efficient as more memory is consumed and the

49

processing time increases. Therefore, the codes were reviewed and few

changes were made to enhance the robustness of the system.

One of the major enhancements that had been made was that all the

required models for the smart attendance system are loaded once the GUI is

initialized. The “models()” function is called to load FaceNet model with its

pre-trained weight and the Caffe model and it ensures that all the required

models are loaded and compiled successfully. In this context, when the user

wants to access other features in multiple times, the models are not required to

reload and this can save the processing time. As compared to initial approach

of loading models in each class, the time to load all the required models had

improved from 10 seconds to around 3.7 seconds.

Apart from that, the initial design of the system lacked of threading,

which meant that operations had to be accomplished before proceeding to the

next task. For instance, after the user captures images for creating a face

database, the encoding operation must be completed before the user can access

other program features. Therefore, threading is introduced to the system to

allow the system become more responsive and efficient. Using threads enables

the parallel processing of different tasks. By implementing threads, both tasks

can be performed simultaneously so that after face capturing is completed, the

user can still access other features such as face recognition or managing

attendance records while the encoding process is carried out in a separate

thread.

To implement threading, the signal-slot mechanism in PyQt was used

to facilitate communication between different threads. A thread can emit a

signal to the main thread, which can then respond to the signal by executing a

slot function. This enables the main thread to be responsible for updating the

GUI, while the worker thread is responsible for performing the long-running

task. In short, threading is used for the execution of long-running tasks in the

background, while keeping the GUI responsive and allowing the user to keep

interacting with the application.

Additionally, the frames per second (FPS) of the webcam was fixed at

30 fps which induces less flexibility to the system. Adjustment of the FPS

through coding was not working due to the limited capabilities of the webcam

itself. Consequently, the attendance of an individual will be kept recorded

50

based on every collected frames and this is not practical for an attendance

system. To address this issue, the “checkPreviousAttendance” function is used

to check if a similar name has appeared within the last minute in the

attendance file. It will not create a new entry if the similar person has already

checked in within the last minute. This is a good practice as it prevents

duplicate records and avoiding errors so that the attendance records is up-to-

date.

In short, these enhancements have greatly enhanced the system’s

robustness and efficiency. By loading all required models at the initialization

of GUI, implementing threading for the encoding and face recognition process

and code optimization, the system can effectively handle the long-running

tasks in the background while keeping the GUI responsive and thus providing

a great user experience.

51

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

The proposed systems’ face recognition capabilities were tested on self-

collected face datasets to evaluate their performance. A comparison was made

between two approaches to choose the most suitable one for the attendance

system. The face datasets were also used to fine-tune the parameters of the face

recognition system. Testing the recognition system on face datasets allowed

for the evaluation of metrics such as accuracy, precision, recall, F1 score,

classification report, and confusion matrix. This process helped identify any

limitations and possibilities in the system’s ability to recognize faces for

attendance records.

The graphical user interface of the smart attendance system was

successfully developed using PyQT5. Face detection was performed using

OpenCV’s Caffe model, specifically the “Single Shot Detector” (SSD)

framework. The system then used the pre-trained FaceNet model for feature

extraction. The Support Vector Machine (SVM) classifier was applied to

classify face encodings into names, and attendance was recorded in an Excel

sheet if the user’s face was successfully recognized.

4.2 Face Detection Evaluation

Face detection is an essential part of the whole recognition system, as it helps

to detect face regions in the video frame so that later the recognition system

can provide reliable recognition results. In this context, three famous face

detector techniques, namely OpenCV Haar Cascades, OpenCV DNN, and

MTCNN, had been tested out to analyze their performances in both Labeled

Faces in the Wild (LFW) image datasets and real-time video captured from the

webcam.

4.2.1 Labeled Faces In The Wild

LFW is a benchmark face recognition dataset that consists of more than 13000

images of faces from 5749 individuals collected from online website. The

52

datasets are accomplished with a wide range of sizes and resolutions and

variation in terms of pose, lighting and occlusion. The creation of this LFW

dataset had been used in the field of face recognition by many researchers and

studies because it reflected real-world scenarios where images were captured

in uncontrolled environment. Each image from this LFW dataset had been

detected and centered using the OpenCV with the implementation of the Viola-

Jones face detector (Zhang and Deng, 2016). For the purpose of evaluating

face recognition performance, a total of 300 images were randomly selected

from the LFW dataset.

4.2.2 Performance Evaluation

The testing results for the face detectors are described in Table 4.1 to provide

insights on the best face detector algorithms. The face detectors were tested on

both LFW datasets and webcam. There are four different outcomes possible:

true positive, true negative, false positive, and false negative. A true positive is

achieved when all the faces in an image are correctly detected, while a true

negative occurs when non-face images are correctly identified as such. False

positive happens when the detection system flags an image or region as

containing a face when it does not, and false negative occurs when a face is

missed or not detected in the image or frame.

Table 4.1: Confusion Matrix for the Performance Evaluation of Face Detectors.

 Actual Conditions

Faces detected Faces not

detected

Predicted

Conditions

Predicted faces

detected

True Positive
(TP)

False Positive
(FP)

Predicted non-

faces detected

False Negative
(FN)

True Negative
(TN)

53

The accuracy of the results were evaluated with the following formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4.1)

where

𝑇𝑃 = True Positive

𝑇𝑁 = True Negative

𝐹𝑃 = False Positive

𝐹𝑁 = False Negative

The speed of each detector was determined by measuring the elapsed

time between two points: the start of model loading and the completion of

image collection. The performance comparison in terms of accuracy and speed

of three different approaches on the LFW dataset and laptop webcam for frontal

faces, side faces, and low light environments is illustrated in Table 4.2, 4.3, 4.4,

4.5, and 4.6, respectively.

Table 4.2: Face Detection Approaches on Image Datasets.

Approaches
Test

Image
Example

Detected
Image

Example
TP TN FP FN

Open
CV Haar
Cascade

274

300

0

300

21

300

5

300

OpenCV
Deep Neural

Network

296

300

0

300

2

300

2

300

Multi-Task
Cascaded

Convolutional
Neural

Networks

286

300

0

300

14

300

0

300

54

Table 4.3: Comparison of Accuracy and Speed on LFW datasets.

Approaches Accuracy Speed

Open CV Haar Cascade 0.91 10.97 s
Open CV DNN 0.99 50.94 s

MTCNN 0.95 142.20 s

Table 4.4: Face Detection Approaches on Webcam for Frontal Faces.

Table 4.5: Face Detection Approaches on Webcam for Side Faces.

Approaches Detected Image Sample Accuracy Speed

OpenCV Haar
Cascade

1.0 9 s

OpenCV Deep
Neural Network

1.0 14.39 s

Multi-Task
Cascaded

Convolutional
Neural Networks

1.0 12.80 s

Approaches Detected Image Sample Accuracy Speed

OpenCV Haar
Cascade

0.97 11.75 s

OpenCV Deep
Neural Network

1.0 14.88 s

Multi-Task
Cascaded

Convolutional
Neural Networks

1.0 16.30 s

55

Table 4.6: Face Detection Approaches on Webcam in Low-light Environment.

From the analysis of the above results, the OpenCV Haar Cascade

classifier yielded the worst results with an accuracy of 91 % when tested on the

LFW dataset. On the other hand, the DNN approach outperformed the other

two face detection techniques in terms of both accuracy and computational

speed. The DNN module achieved 100 % accuracy in real-time webcam

streaming applications, even when faced with different angles of faces and

lighting conditions. When applied to the LFW dataset, the DNN module

achieved an accuracy of 99 % with an average execution time of 50.94 s.

Although MTCNN could perform well with good accuracy, its computational

resource consumption was a constraint. Furthermore, the DNN module

demonstrated its ability to detect individuals in unconstrained environments

that varied in terms of lighting, pose, occlusion, and other factors, including

cases where individuals were wearing face masks. Therefore, for a smart

attendance system where real-time performance is critical, the DNN module

was chosen as the face detector for the smart attendance system.

4.3 Face Recognition Evaluation

The purpose of carrying out the evaluation using face datasets was to evaluate

the performance and accuracy of the designated face recognition system. In

real-time face recognition, the system continuously processes video stream and

Approaches Detected Image Sample Accuracy Speed

OpenCV Haar
Cascade

0.82 6.23 s

OpenCV Deep
Neural Network

1.0 14.18 s

Multi-Task
Cascaded

Convolutional
Neural Networks

0.95 18.01 s

56

makes predictions of the individual’s name but it is impossible to determine

whether the correct label of the person is being recognized. The challenge

faced is that human operators have to manually verify the recognition results.

Therefore, evaluation on different datasets could help identify strengths and

weaknesses of the system apart from measuring its performance.

During the evaluation process, two different models were used on

similar self-collected face datasets to ensure a fair comparison between the

performance of the face recognition system. The first model is a combination

of OpenCV DNN, FaceNet model, and SVM classifier. The second model is a

VGG16 transfer learning model, which was pre-trained on a large dataset of

images and fine-tuned on the face recognition task.

4.3.1 Face Datasets

The face datasets were collected with a total of 280 images from 14 subjects in

an indoor environment using the video stream. The frames were resized to a

width of 800 pixels for each image and then converted to a blob using the

“cv2.dnn.blobFromImage()” method. The blob was passed through a deep

learning model to detect faces in the frame, and only those with a confidence

level greater than 0.9 were saved. The collected datasets were then separated

into training, validation, and testing sets with ratios of 0.7, 0.15, and 0.15,

respectively.

For the first approach, face detection was applied to all sets, and the

loaded FaceNet model was used to extract encodings. This process resulted in

the creation of three separate files containing the encoding information for the

face datasets. For the training sets, data augmentation was applied to enhance

system robustness by exposing the face images to a wider range of face

variations. In this context, a rotation degree of 25, minimum scale of 0.6, and

maximum scale of 1.0 were applied to the face images. The encodings were

flattened and padded with zeros to ensure that all samples had the same

number of features. The names of the face images were encoded using

‘LabelEncoder’ to transform categorical data into numerical data that machine

learning models can process. The training sets’ encodings, validation sets’

encodings, and testing sets’ encodings with their respective names were stored

as ‘trainX’, ‘trainY’, ‘testX’, ‘testY’, ‘valX’, and ‘valY’, respectively.

57

The encodings and labels were reshaped to ensure the correct format

for the machine learning algorithm to process. The SVM classifier expects

labels to be in a specific shape of a one-dimensional array, so the label arrays

were reshaped to have one column and as many rows as necessary. Similarly,

the feature arrays were flattened to have one column and as many rows as

necessary. Mean imputation was performed on the data to replace missing

values with the mean of the feature column. The ‘fit_transform’ method was

applied to the training data to compute the mean and replace missing values

with it. The transform method was then used on the validation and test data to

replace missing values with the same mean value calculated from the training

data. The imputation was done separately on the training, validation, and test

sets to avoid data leakage.

For the VGG16 transfer learning model, the image datasets were

initially preprocessed by resizing each input shape of the images to 224 × 224

pixels with three channels RGB before being fed into the model. Data

normalization was then performed to rescale the pixel values of the input

images between zero and one using the rescale parameter in

ImageDataGenerator. This step is important for better performance and faster

convergence. Finally, data augmentation was performed on the training images

by applying random transformations to the images with a rotation range of 20,

width and height shift values of 0.5, and horizontal flip.

4.3.2 Parameters

The selection and tuning of model parameters are crucial aspects of building

and training for machine learning and deep learning models.

In the first approach, face detection was initially performed, and the

confidence threshold was adjusted to balance the trade-off between precision

and recall. A low threshold could result in identifying non-faces as faces, while

a high threshold could lead to missing some faces. To ensure consistency in

performance evaluation between datasets and real-time face recognition, a

confidence threshold of 0.9 was set, indicating that only faces with a

confidence score above 0.9 were considered valid.

Regarding the SVM classifier, few parameters were tuned as the

classifier’s performance heavily relied on their values. The ‘C’ value was set to

58

5, which controlled the trade-off between classification error minimization and

maximization. Setting it to a higher value than 5 could lead to overfitting and

reduced classifier accuracy. Additionally, the ‘kernel’ parameter was set to the

radial basis function (RBF) kernel, which had been shown to provide better

classifier performance. The tolerance rate was set to 0.001, and the ‘probability’

parameter was set to ‘True’ to enable probability estimates for each predicted

class. This is a useful feature that provides additional information about the

classifier’s confidence in its predictions.

For the second approach, which utilized the VGG16 transfer learning

model, two key parameters were identified: batch size and epoch, which had a

significant impact on the model’s performance. Batch size is the number of

training examples utilized in one forward or backward pass. In this VGG16

model, the batch size was set to 16. From the few experiments of setting

different values of batch size, it was found that a larger batch size allows for

faster training and better accuracy. Conversely, smaller batch sizes yield faster

computation but also indicate fewer updates per training iteration.

The term epoch refers to going through the complete training dataset

once. Increasing the number of epochs could result in better accuracy but

carried with the risk of overfitting such that the model performs well on

training sets but poorly on unseen data. In this case, the VGG16 model was

trained for 30 epochs, and after each epoch, the model was evaluated on a

separate validation set. To prevent overfitting, the “EarlyStopping” callback

function was utilized to stop the training early if the monitored metric stopped

improving. The validation accuracy was set as the “monitor” parameter for

early stopping. Additionally, the model was checkpointed after each epoch to

ensure that the best performing model was saved. For this self-collected face

datasets, the training was stopped at epoch 25, and the model was saved.

4.3.3 Evaluation Metrics

The first metric that needs to be evaluated is the accuracy of the recognition

system. Accuracy represents the percentage of correctly classified instances

out of all instances in the dataset. To measure the accuracy of the classifier, the

‘accuracy_score’ function from the scikit-learn library was imported. This

59

function takes the true target labels and the predicted classes as inputs and

returns the accuracy of the classifier.

 After evaluating the combined models of DNN, FaceNet, and SVM

on the self-collected datasets, the training accuracy, validation accuracy, and

testing accuracy were found to be 98.98 %, 100 %, and 97.62 %, respectively.

The high accuracy on the training sets suggests that the SVM classifier learned

the training data very well and could predict the correct class for the majority

of the training instances. The validation accuracy of 100 % indicates that the

model was performing perfectly on the validation dataset without any errors or

misclassifications. However, a higher accuracy on validation set than training

accuracy and testing accuracy could be explained by less noise in samples due

to small size of the validation samples used. The overall evaluation comparison

between the two models is presented in Table 4.7.

Table 4.7: Evaluation Comparison between Two Models.

 DNN, FaceNet and
SVM

VGG16 Transfer
Learning Model

Training Accuracy 0.9898 0.8622

Validation Accuracy 1.0 0.9762
Testing Accuracy 0.9762 0.9762

Training Loss - 0.3733

Validation Loss - 0.0916
Testing Loss - 0.0844

Precision 0.9821 0.9821

Recall 0.9762 0.9762
F1 Score 0.9755 0.9755

Apart from SVM, other machine learning algorithms such as K-

Nearest Neighbors (KNN) and Random Forest were tested to get a comparison

of the accuracy score as illustrated in Table 4.8.

Table 4.8: Test Accuracy On Different Classifiers.

Classifier Test accuracy (%)

Support Vector Machine (SVM) 97.62
K-Nearest Neighbors (KNN) 95.24

Random Forest Classifier 95.24

60

 Among the three tested classifiers, SVM had exhibited superior

performance in term of test accuracy. It had better accuracy of 97.62 %. On the

other hand, KNN and Random Forest Classifier obtained an accuracy of

95.24 %. Therefore, it had been decided that SVM would be the optimal choice

for the current face recognition project as it was suitable for multi-class

classification tasks and its ability to handle high-dimensional data.

During the training process, the VGG16 model calculated the

accuracy and loss at each epoch. Accuracy refers to the percentage of images

that the model correctly classifies, while loss is a metric for measuring model

performance during training. The goal of training was to minimize loss and

maximize accuracy. The accuracy graph in Figure 4.1 shows that accuracy

increased as the number of epochs increased, indicating the model improved its

ability to predict class labels. While the Figure 4.2 displays the model loss on

training set and validation set for each epoch. The model was trained for 30

epochs, but the training process stopped at the 25th epoch. The model achieved

a training accuracy of 0.8622 and a training loss of 0.3733. Validation data was

evaluated after each epoch, and the best validation loss achieved was 0.07984,

but it did not improve at the 25th epoch, so the training was stopped early to

prevent overfitting. The model achieved a validation loss of 0.0916 and a

validation accuracy of 0.9762. The test accuracy of 0.9762 indicates that the

model predicted well on new, unseen data.

Figure 4.1: Transfer Learning VGG16 Model Accuracy at Each Epoch.

61

Figure 4.2: Transfer Learning VGG16 Model Loss at Each Epoch.

 The reason why validation accuracy and test accuracy are higher than

train accuracy is due to the validation set, which is too small to adequately

represent the probability distribution of the data. Besides, a smaller splitting

ratio of validation and testing ratios may cause this, as the model could

perform prediction easily on the unseen data. Another reason is the data

augmentation techniques such as rotation, flipping, and scaling used to

increase the dataset’s size, which helped the model generalize better on new

data.

 Apart from that, the classification report was used to provide a

summary of the precision, recall and F1 score for each sample in the datasets.

The metrics were measured using the true positive (TP), false positive (FP),

true negative (TN), and false negative (FN) values for each class. The

classification report for both models are displayed in Table 4.9 and Table 4.10.

From the analysis, the first model achieved a good accuracy of 0.9762

However, it had low scores for some classes, particularly for class 2, which

had a precision of 0.75 and f1-score of 0.86. Class 5 also obtained a recall

score of 0.67 and f1-score of 0.80. On the other hand, all the classes in VGG16

transfer learning model had perfect precision, recall, and F1-score, except for

class 7 and class 12, which had slightly lower scores. Class 7 obtained

precision score of 0.75 and f1-score of 0.86 whereas Class 12 had a recall

62

score of 0.67 and f1-score of 0.80. Therefore, the model appeared to perform

very well in this classification task.

 Overall, the differences in the comparison of results were not

significant, the classification report suggested that both had the similar average

accuracy of 0.98.

Table 4.9: Classification Report for DNN, FaceNet and SVM.

Name labels precision recall f1-score support

0 1 1 1 3

1 1 1 1 3

2 075 1 0.86 3

3 1 1 1 3

4 1 1 1 3

5 1 0.67 0.80 3

6 1 1 1 3

7 1 1 1 3

8 1 1 1 3

9 1 1 1 3

10 1 1 1 3

11 1 1 1 3

12 1 1 1 3

13 1 1 1 3

accuracy - - 0.98 42

macro avg 0.98 0.98 0.98 42

weighted avg 0.98 0.98 0.98 42

63

Table 4.10: Classification Report for VGG16 Transfer Learning Model.

Name labels precision recall f1-score support

0 1 1 1 3

1 1 1 1 3

2 1 1 1 3

3 1 1 1 3

4 1 1 1 3

5 1 1 1 3

6 1 1 1 3

7 0.75 1 0.86 3

8 1 1 1 3

9 1 1 1 3

10 1 1 1 3

11 1 1 1 3

12 1 0.67 0.80 3

13 1 1 1 3

accuracy - - 0.98 42

macro avg 0.98 0.98 0.98 42

weighted avg 0.98 0.98 0.98 42

The resulting heatmap, as displayed in Figure 4.3 and Figure 4.4

showcases the confusion matrix generated by the SVM classifier and VGG16

classification model on the face dataset. The rows and columns in the heatmap

represent the actual and predicted class labels, respectively. The diagonal

matrix indicates that the number of instances that were correctly classified for

each class, while the off-diagonal values indicated misclassified instances. The

confusion matrix included 14 classes (0 to 13), and the labels were displayed in

numeric form due to their encoding using the ‘Label Encoder’ method. Figure

4.3 reveals that the SVM model accurately classified all instances except for

class 6. For instance, one instance that actually belonged to class 6 was

misclassified as class 3. In contrast, the VGG16 classification model had

correctly classified all instances in each class, except for class 13 as shown in

Figure 4.4. One instance that belonged to class 13 was predicted as class 8.

The results indicate that both the VGG16 model and the SVM model

performed well on this dataset. However, it is possible that the dataset used to

64

generate this confusion matrix was very small, which causes the possibility

that it may not be representative of the entire population.

Figure 4.3: Confusion Matrix for DNN, FaceNet and SVM.

Figure 4.4: Confusion Matrix for VGG16.

4.4 Smart Attendance System

When initializing the GUI, the smart attendance system required

approximately 7 seconds to load the necessary models such as FaceNet and

OpenCV’s Deep Neural Network module for its operation for the first time.

After the initial load, the average loading time decreased to 3.8 seconds.

4.4.1 Graphical User Interface

The Figure 4.5 displays an User Interface (UI) which was designed to associate

with three main features which are creating new face database or identity, face

recognition and attendance monitoring. It can be accessed on the main window

65

screen named “WelcomeScreen”. It was implemented using a stacked widget

to switch between different screens. Buttons were used to connect to different

screens or implement the methods. For instance, the “pushButton”,

“pushButton_2” and “pushButton_3” buttons were defined in the

“HomeScreen.ui” file and connected to the “gotoadd”, “gotoadd2” and

“gotoadd3” methods, respectively, using the “clicked.connect” method. The

methods will prompt screen switching or events triggering. In the homescreen,

the “pushButton”, “pushButton_2” and “pushButton_3” buttons were linked to

“CreateIDScreen”, “FaceRecogScreen” and “AttendanceScreen” respectively.

Figure 4.5: UI Design for Main Screen.

 As shown in Figure 4.6, the ‘CreateIDScreen’ class was used to input

the user’s name for creating new database and it was defined using the

‘QDialog’ widget. It was equipped with two ‘QPushButton’ widgets, one to

proceed to the next screen and the other to return to the main screen. On top of

that, the ‘Next’ button was connected to the ‘check_name_input’ function,

which checks if the name is valid or not. A warning message, ‘Please enter

name to proceed’ will be displayed if the user does not enter any alphabet and

just presses the button to proceed, whereas a warning message of ‘Name

already exists’ will be shown if the input name is duplicate.

66

Figure 4.6: Create ID Screen

If the input informations are valid, the program will prompt the user

to switch to the screen for capturing their image and extracting their face

encodings. Once the first face is detected, a timer will start running and will

stop once the 20th face is captured. While 20 images may be considered a small

number for a face recognition system, it can still be sufficient to recognize an

individual and help to reduce storage requirements. A message will indicate

that the face has been captured, and the screen will switch to the main window

where the face encodings process will be initiated. On average, it takes

approximately 12 seconds to train 20 images with face encodings.

The second feature of the GUI is the face recognition system as

displayed in Figure 4.7. In order to implement this, the code was structured

into two classes named “FaceRecogScreen” which is responsible for setting up

the GUI and managing the video stream and “StartThread” for processing the

video stream and recognizing the faces. The face recognition process is

continuous until the “Cancel” button is pressed by the user to stop the video

stream and it will prompt the screen to return to the main window.

67

Figure 4.7: Face Recognition Screen.

 In the GUI, the “update_date_time” method was called to update the

current date and time in the format of “YYYY-MM-DD HH:MM:SS” on a

text label widget. By displaying the timestamp on the user interface, it provides

transparency to the system user, allowing users to verify whether the system is

functioning properly and capturing the attendance information in a timely

manner. Furthermore, the user can easily check the current time without

accessing it through external devices such as a smartphone or watch.

 The third main feature was implemented on the “Attendance Screen”

in which user gets to view the attendance records as shown in Figure 4.8. A

“QTableWidget” object from the “PyQt5.QtWidgets” module was used to

represent the table for displaying data. This feature provides convenience to

the user or admin to visualize and manage the attendance data. Furthermore,

necessary changes or edits can be made by just accessing the excel sheet if

required. It would be helpful in reports generation or data analyzing for the

organisations that implement the smart attendance system.

68

Figure 4.8: Attendance Screen.

4.5 Summary

Both the combined model consisting of a DNN module, FaceNet, and SVM

classifier, and the VGG16 transfer learning model, exhibited excellent results

with the testing accuracy of 97.62 % and 97.619 % respectively on the self-

collected face dataset. The minimal difference between the two models

suggested that pre-trained models could be effectively utilized to achieve

outstanding performance for face recognition tasks. On top of that, the deep

learning model would require retraining to recognize a new individual’s face if

a new database was created. This could be a time-consuming process,

especially for larger organizations that regularly add many new faces to their

attendance system. Therefore, the recognition task utilized a combination of

SSD, FaceNet, and SVM and integrated them into the designated GUI for the

smart attendance system.

69

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In conclusion, all the project’s aim and objectives were successfully

accomplished, which included developing a facial recognition system designed

specifically for attendance tracking. A comprehensive literature review

covering current approaches and results in facial recognition algorithms was

conducted. Furthermore, an intuitive GUI with essential features was created to

simplify attendance monitoring for end-users. Finally, the system’s

performance and usability were analyzed, providing insight for future

enhancements to enhance the system’s robustness.

 The study proposed and tested three different face detection

approaches, which are OpenCV Haar cascades, OpenCV DNN, and MTCNN.

Their performances were evaluated on both the Labeled Faces in the Wild

(LFW) image datasets and real-time video captured from the webcam. The

results showed that the DNN approach outperformed the other two techniques

with an accuracy of 99 % and computational time of 57.94 s. As a result, it was

chosen as the face detector for the face recognition system. To enable face

recognition, two distinct models were utilized in which the first model

combined OpenCV DNN, FaceNet model, and SVM classifier, while the

second model is a VGG16 transfer learning model. The evaluation results

showed minimal differences between the two models with test accuracies of

97.62 % and 97.619 % respectively, indicating that pre-trained models and the

use of machine learning algorithms, such as SVM, can achieve outstanding

performance for face recognition tasks. Finally, the recognition task was

implemented using a combination of DNN, FaceNet, and SVM, which were

integrated into a designated GUI with features such as creating a new database,

taking attendance, and monitoring attendance.

70

5.2 Recommendations for Future Work

Although the presented testing accuracy of the face recognition system is high,

it is important to note that the self-collected dataset used to train and test the

system is small. Therefore, it is possible that the system’s performance may

not generalize well to other datasets. To address this limitation, future work

could involve collecting more diverse and large training datasets to evaluate

the scalability and generalizability of the system’s performance. Additionally,

the robustness of the face recognition system can be enhanced for future work,

enabling it to recognize faces under different conditions, such as varying

illumination, occlusion, pose, and masked faces.

Ensemble learning and adaptive learning techniques can be

effectively employed to enhance the accuracy and robustness of a face

recognition system. By using ensemble learning, multiple models can be used

to improve the system’s ability to learn from the strengths and weaknesses of

each model. Conversely, adaptive learning can be integrated into the system to

ensure that recognition remains effective even as the user ages. Furthermore,

incremental learning can be applied to deep learning models, enabling them to

continuously learn from data and adapt to changes in that data over time.

On top of that, the ethical issues surrounding face recognition

technology should be considered to protect users privacy and information.

Therefore, collaborating with experts in related fields such as social science,

government, and police and having a great understanding of the law

concerning humanity’s privacy can provide valuable insight into these ethical

concerns.

For the attendance system, the current work involves saving new

users databases into local files. One way to improve the system’s effectiveness

and data security is to upload the users databases to a centralised cloud server.

For instance, Amazon Web Services (AWS), which supports MySQL and

Oracle, Microsoft Azure, which supports Microsoft SQL Server, and Firebase,

which enables the storing of real-time data. All of these cloud server options

guarantee high levels of security, ensuring that only authorised personnel can

access the database (Rashid, 2022). Additionally, this can facilitate data

sharing and management for the attendance monitoring of an organisation.

71

Finally, the current graphical user interface for the attendance system

was developed using PyQt5, which is suitable for desktop applications. To

enhance the efficient use of the smart attendance system at public

organizations, other frontend frameworks such as Angular and React can be

utilized. Angular, developed by Google, offers a range of features that make it

convenient for building complex applications. React, developed by Facebook,

allows for an efficient user interface with a virtual Document Object Model

(DOM) that updates only the necessary components, resulting in faster

performance (Patel and Tere, 2014). Both frameworks provide a wide range of

useful features that are suitable for developing an efficient smart attendance

system.

72

REFERENCES

Abdalkarim, B.A. and Akgün, D., 2022. A Literature Review on Smart
Attendance Systems. International Conference on Applied Engineering and
Natural Sciences A Literature Review on Smart Attendance Systems. [online]
Available at: <https://www.researchgate.net /publication/327019394_Attendance_
Management_System_for_Educational_Sector_Critical_Review> [Accessed
20 April 2023].

Akshaya, R.S., Devi, K., Juhidha, J., Priyanka, R. and Kanimozhi, R., 2021.
IOT based Face Recognition Smart Attendance System using ESP 32 cam.
International Journal of Innovative Research in Science, Engineering and
Technology, [e-journal] 10(5).
https://doi.org/10.15680/IJIRSET.2021.1005214.

Alexiadis, D., Syrris, V., Papastergiou, A., Hatzigaidas, A. and Mariuta, L.,
2010. A new face database and evaluation of face recognition techniques.
International Conference on Systems - Proceedings, pp.590–595.

Amirulloh, I., Iskandar, I.D., Apriyani, Y., Warnilah, A.I., Purnia, D.S. and
Surahman, M., 2020. Teacher Attendance Monitoring System Teaching with
QR-Code and Geo Location using Android Platform. Journal of Physics:
Conference Series, [e-journal] 1641(1), pp.1-2. https://doi.org/10.1088/1742-
6596/1641/1/012030.

Amraee, S., Chinipardaz, M. and Charoosaei, M., 2022. Analytical study of
two feature extraction methods in comparison with deep learning methods for
classification of small metal objects. Visual Computing for Industry,
Biomedicine, and Art, [e-journal] 5(1), pp.9-11.
https://doi.org/10.1186/s42492-022-00111-6.

Anon. 2014. Face Recognition Using Kernel PrincipalComponent Analysis.
Advances in Vision Computing: An International Journal, 1(1), pp.1–9.

Apple, 2017. Face ID Security. [online] Available at:
<https://www.apple.com/ca/business-docs/FaceID_Security_Guide.pdf> [Acc
essed 3 October 2022].

Arora, M., Naithani, S. and Areeckal, A.S., 2022. A web-based application for
face detection in real-time images and videos. Journal of Physics: Conference
Series, [e-journal] 2161(1), pp2-9. https://doi.org/10.1088/1742-
6596/2161/1/012071.

Arya, S., Mesariya, H. and Parekh, V., 2020. Smart Attendance System Usign
CNN. CoRR [e-journal] (1), pp.2–5.
https://doi.org/https://doi.org/10.48550/arXiv.2004.14289.

73

Atabansi, C.C., Chen, T., Cao, R. and Xu, X., 2021. Transfer Learning
Technique with VGG-16 for Near-Infrared Facial Expression Recognition.
Journal of Physics: Conference Series, [e-journal] 1873(1), pp.2-9.
https://doi.org/10.1088/1742-6596/1873/1/012033.

Bally, M., 2002. Technology trends. Glass Digest, 81(7–8), p.12.

Bansal, M., 2020. Face recognition using Transfer learning and VGG16 | by
Megha Bansal | Analytics Vidhya | Medium, [online] Available at:
<https://medium.com/analytics-vidhya/face-recognition-using-transfer-
learning-and-vgg16-cf4de57b9154> [Accessed 7 April 2023].

Bharat Chandra, Y. and Karthikeya Reddy, G., 2020. A Comparative Analysis
Of Face Recognition Models On Masked Faces. International Journal of
Scientific & Technology Research, [online] Available at: <www.ijstr.org>
[Accessed 3 October 2022].

Brandon Amos, Bartosz Ludwiczuk, M.S., 2016. Openface: uniwersalna
biblioteka rozpoznawania twarzy z aplikacjami mobilnymi. National Science
Foundation (NSF), [online] Available at: <http://reports-
archive.adm.cs.cmu.edu/anon/anon/usr0/ftp/2016/CMU-CS-16-118.pdf>[A
ccessed 3 October 2022].

Chai, X., Shan, S. and Gao, W., 2003. Pose normalization for robust face
recognition based on statistical affine transformation. ICICS-PCM 2003 -
Proceedings of the 2003 Joint Conference of the 4th International Conference
on Information, Communications and Signal Processing and 4th Pacific-Rim
Conference on Multimedia, [e-journal] pp.1413–1417.
https://doi.org/10.1109/ICICS.2003.1292698.

Chang-yeon, J., 2008. Face Detection using LBP features. Final Project
Report, 77, pp.1-4.

Chatrati, S., Naidu, S. and Prasad, C.R., 2013. RFID based student monitoring
and attendance tracking system. 2013 4th International Conference on
Computing, Communications and Networking Technologies, ICCCNT 2013,
[e-journal] pp.3. https://doi.org/10.1109/ICCCNT.2013.6726702.

Chaudhari, M.N., Deshmukh, M., Ramrakhiani, G. and Parvatikar, R., 2018.
Face Detection Using Viola Jones Algorithm and Neural Networks.
Proceedings - 2018 4th International Conference on Computing,
Communication Control and Automation, ICCUBEA 2018, [e-journal] pp.1-6.
https://doi.org/10.1109/ICCUBEA.2018.8697768.

Chaves, D., Fidalgo, E., Alegre, E., Alaiz-Rodríguez, R., Jáñez-Martino, F.
and Azzopardi, G., 2020. Assessment and estimation of face detection
performance based on deep learning for forensic applications. Sensors
(Switzerland), [e-journal] 20(16), pp.1–21. https://doi.org/10.3390/s20164491.

74

Da’San, M., Alqudah, A. and Debeir, O., 2015. Face detection using Viola and
Jones method and neural networks. 2015 International Conference on
Information and Communication Technology Research, ICTRC 2015, [e-
journal] (1), pp.40–43. https://doi.org/10.1109/ICTRC.2015.7156416.

Dadi, H.S. and Mohan Pillutla, G.K., 2016. Improved Face Recognition Rate
Using HOG Features and SVM Classifier. IOSR Journal of Electronics and
Communication Engineering, [e-journal] 11(04), pp.34–44.
https://doi.org/10.9790/2834-1104013444.

Dalali, S. and Suresh, L., 2016. Daubechives Wavelet Based Face Recognition
Using Modified LBP. Procedia Computer Science, [e-journal] 93, pp.344–
350. https://doi.org/10.1016/j.procs.2016.07.219.

Deshpande, N.T. and Ravishankar, S., 2016. Face Detection and Recognition
using Viola-Jones algorithm and fusion of LDA and ANN. IOSR Journal of
Computer Engineering, [online] Available at:
<https://pdfs.semanticscholar.org/c5cf/c1f5a430ad9c103b381d016adb4cba20c
e4e.pdf>.

Dey, S., Barman, S., Bhukya, R.K., Das, R.K., Haris, B.C., Prasanna, S.R.M.
and Sinha, R., 2014. Speech biometric based attendance system. 2014 20th
National Conference on Communications, NCC 2014, [e-journal] pp.1-6.
https://doi.org/10.1109/NCC.2014.6811345.

Du, G., Su, F. and Cai, A., 2009. Face recognition using SURF features and
SVM Classifier. MIPPR 2009: Pattern Recognition and Computer Vision, [e-
journal] 7496(1), p.749628. https://doi.org/10.1117/12.832636.

Francesco and Solawetz, J., 2023. What is YOLOv8? The Ultimate Guide.
[online] Available at: <https://blog.roboflow.com/whats-new-in-yolov8/>
[Accessed 7 April 2023].

Gopalakrishan, V., Arun, R. and Sasikumar, L., 2021. Handwritten Digit
Recognition for Banking System. International Journal of Scientific &
Technology Research, 9(5), pp.313–314.

Goyal, K., Agarwal, K. and Kumar, R., 2017. Face detection and tracking:
Using OpenCV. Proceedings of the International Conference on Electronics,
Communication and Aerospace Technology, ICECA 2017, [e-journal] pp.474–
478. https://doi.org/10.1109/ICECA.2017.8203730.

Greeshma, K. V, College, C. and Gripsy, J.V., 2020. Image Classification
using HOG and LBP Feature Descriptors with SVM and CNN. International
Journal of Engineering Research & Technology, 8(04), pp.4–7.

Gross, R., 2005. Face Databases. Handbook of Face Recognition, pp.301–327.

75

Gwyn, T., Roy, K. and Atay, M., 2021. Face recognition using popular deep
net architectures: A brief comparative study. MDPI, [e-journal] 13(7), pp.1–
15. https://doi.org/10.3390/fi13070164.

Harakannanavar, S.S., R, P.C., Kanabur, V., Puranikmath, V.I. and Raja, K.B.,
2019. Technical Challenges, Performance Metrics and Advancements in Face
Recognition System. International Journal of Computer Sciences and
Engineering, [e-journal] 7(3), pp.836–847.
https://doi.org/10.26438/ijcse/v7i3.836847.

Hazim, N., Sameer, S., Esam, W. and Abdul, M., 2016. Face Detection and
Recognition Using Viola-Jones with PCA-LDA and Square Euclidean
Distance. International Journal of Advanced Computer Science and
Applications, [e-journal] 7(5), pp.371-376.
https://doi.org/10.14569/ijacsa.2016.070550.

Hese, S.K. and Banwaskar, M.R., 2013. Performance Evaluation of PCA and
LDA for Face Recognition. International Journal of Engineering Research &
Technology, 2(2), pp.149–154.

Higuera, V., 2011. How Are Diseases Transmitted? Delaware Health and
Social Services, [online] Available at:
<https://www.healthline.com/health/disease-transmission> [Accessed 3
October 2022].

Huang, K., 2012. Principal Component Analysis in the Eigenface Technique
for Facial Recognition. [online] Available at:
<https://digitalrepository.trincoll.edu/cgi/viewcontent.cgi?article=1221&conte
xt=theses> [Accessed 23 October 2022].

Jang, Y., Gunes, H. and Patras, I., 2019. Registration-free Face-SSD: Single
shot analysis of smiles, facial attributes, and affect in the wild. Computer
Vision and Image Understanding, [e-journal] 182(0), pp.17–29.
https://doi.org/10.1016/j.cviu.2019.01.006.

Jayaswal, R. and Dixit, M., 2020. Comparative analysis of human face
recognition by traditional methods and deep learning in real-time environment.
Proceedings - 2020 IEEE 9th International Conference on Communication
Systems and Network Technologies, CSNT 2020, [e-journal] pp.66–71.
https://doi.org/10.1109/CSNT48778.2020.9115779.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S. and Darrell, T., 2014. Caffe : Convolutional Architecture for
Fast Feature Embedding Categories and Subject Descriptors∗. 22nd ACM
International Conference on Multimedia, [e-journal] pp.675–678.
https://doi.org/10.48550/arXiv.1408.5093.

Karamizadeh, S. and Abdullah, S.M., 2013. An Overview of Holistic Face
Recognition. International Journal of Research in Computer and
Communication Technology, 2(9), pp.738–741.

76

Karamizadeh, S., Abdullah, S.M., Manaf, A.A., Zamani, M. and Hooman, A.,
2013. An Overview of Principal Component Analysis. Journal of Signal and
Information Processing, [e-journal] 04(03), pp.173–175.
https://doi.org/10.4236/jsip.2013.43b031.

Kim, C., Lee, J., Han, T. and Kim, Y.M., 2018. A hybrid framework
combining background subtraction and deep neural networks for rapid person
detection. Journal of Big Data, [e-journal] 5(1), pp.1–24.
https://doi.org/10.1186/S40537-018-0131-X/TABLES/6.

Kriegman, D., n.d. Instructions : The Yale Face Database Recognition Using
Eigenfaces. pp.2–4.

Krizhevsky, A., Sutskever, I. and Hinton, G.E., n.d. ImageNet Classification
with Deep Convolutional Neural Networks. [online] Available at:
<http://code.google.com/p/cuda-convnet/> [Accessed 4 July 2022].

Kukenys, I. and McCane, B., 2008. Support vector machines for human face
detection. New Zealand Computer Science Research Student Conference,
NZCSRSC 2008 - Proceedings, pp.226–229.

Lai, Y., 2019. A Comparison of Traditional Machine Learning and Deep
Learning in Image Recognition. Journal of Physics: Conference Series,
1314(1). https://doi.org/10.1088/1742-6596/1314/1/012148.

Lakshmi, D. and Ponnusamy, R., 2021. Facial emotion recognition using
modified HOG and LBP features with deep stacked autoencoders. Association
for Computing Machinery, [e-journal] 82, p.103834.
https://doi.org/10.1016/j.micpro.2021.103834.

Lal, M., Kumar, K., Arain, R.H., Maitlo, A., Ruk, S.A. and Shaikh, H., 2018.
Study of face recognition techniques: A survey. International Journal of
Advanced Computer Science and Applications, [e-journal] 9(6), pp.42–49.
https://doi.org/10.14569/IJACSA.2018.090606.

Lecun, Y., Bottou, L., Bengio, Y. and Ha, P., 1998. LeNet. Proceedings of the
IEEE, pp.1–46.

Lei, S., Oo, M. and Oo, A.N., 2019. Child Face Recognition System with
FaceNet. MURC, (1), pp.2–5.

Li, L., Mu, X., Li, S. and Peng, H., 2020. A Review of Face Recognition
Technology. IEEE Access, [e-journal] pp.139110–139120.
https://doi.org/10.1109/ACCESS.2020.3011028.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y. and Berg,
A.C., 2016. SSD: Single shot multibox detector. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), [e-journal] pp.21–37.
https://doi.org/10.1007/978-3-319-46448-0_2.

77

Lu, J., Plataniotis, K.N. and Venetsanopoulos, A.N., 2003. Face recognition
using LDA-based algorithms. IEEE Transactions on Neural Networks, [e-
journal] 14(1), pp.195–200. https://doi.org/10.1109/TNN.2002.806647.

Masi, I., Wu, Y., Hassner, T. and Natarajan, P., 2019. Deep Face Recognition:
A Survey. Proceedings - 31st Conference on Graphics, Patterns and Images,
SIBGRAPI 2018, [e-journal] pp.471–478.
https://doi.org/10.1109/SIBGRAPI.2018.00067.

Meynet, J., 2003. Fast face detection using adaboost. University of Trier,
[online] Available at:
<https://dtpapers.googlecode.com/files/Meynet2003_923.pdf> [Accessed 3
April 2023].

Madzou, L., 2020. Facial recognition technology and travel after COVID-19 |
World Economic Forum. [online] Available at:
<https://www.weforum.org/agenda/2020/12/facial-recognition-technology-
and-travel-after-covid-19-freedom-versus-privacy/> [Accessed 5 September
2022].

Meena Prakash, R., Thenmoezhi, N. and Gayathri, M., 2019. Face Recognition
with Convolutional Neural Network and Transfer Learning. Proceedings of the
2nd International Conference on Smart Systems and Inventive Technology,
ICSSIT 2019, [e-journal] pp.861–864.
https://doi.org/10.1109/ICSSIT46314.2019.8987899.

Mohamed, B.K.P. and Raghu, C. V., 2012. Fingerprint attendance system for
classroom needs. 2012 Annual IEEE India Conference, INDICON 2012, [e-
journal] pp.433–438. https://doi.org/10.1109/INDCON.2012.6420657.

Solomon, M.M., Meena, M.S. and Kaur, J., 2021. Challenges in Face
Recognition Technique. Journal of University of Shanghai for Science and
Technology, [e-journal] 23(07), pp.1201–1204.
https://doi.org/10.51201/jusst/21/07253.

Nelson, J., 2021. Your Comprehensive Guide to the YOLO Family of Models,
[online] Available at: <https://blog.roboflow.com/guide-to-yolo-models/>
[Accessed 6 July 2022].

Nguyen-Meidine, L.T., Granger, E., Kiran, M. and Blais-Morin, L.A., 2018. A
comparison of CNN-based face and head detectors for real-time video
surveillance applications. Proceedings of the 7th International Conference on
Image Processing Theory, Tools and Applications, IPTA 2017, [e-journal],
pp.1–7. https://doi.org/10.1109/IPTA.2017.8310113.

Niyi, T., Alagbe, K. and Wuraola, Y.A., 2019. Performance Assessment of
Principal Component Analysis and Kernel Principal Component Analysis
Using TOAM Database. Asian Journal of Research in Computer Science, 3(2),
pp.1–10.

78

Nyein, T. and Oo, A.N., 2019. University Classroom Attendance System
Using FaceNet and Support Vector Machine. 2019 International Conference
on Advanced Information Technologies, ICAIT 2019, [e-journal] pp.171–176.
https://doi.org/10.1109/AITC.2019.8921316.

Othman Hammadi, Abdulkarim Dawah Abas, K.H.A., 2018. Face recognition
using deep learning methods a review. International Journal of Engineering
&Technology, [e-journal] 7(4), pp.6223–6228.
https://doi.org/10.14419/ijet.v7i4.23127.

Patel, S. and Tere, G., 2014. Analysis and Comparison of Different
Approaches. Manipal Institute of Technology, 5(10), pp.779–783.

Patil, S.A., 2014. Principle Component Analysis (PCA) and Linear
Discriminant Analysis (LDA) based Face Recognition. International Journal
of Computer Applications, pp.1–5.

Peter, M., Minoi, J.L. and Hipiny, I.H.M., 2019. 3D face recognition using
kernel-based PCA approach. Lecture Notes in Electrical Engineering, [e-
journal] 481, pp.77–86. https://doi.org/10.1007/978-981-13-2622-6_8.

Qi, D., Tan, W., Yao, Q. and Liu, J., 2021. YOLO5Face: Why Reinventing a
Face Detector. [online] Available at: <http://arxiv.org/abs/2105.12931>
[Accessed 3 April 2023].

Raj, A., 2021. Increasing demand for facial recognition system technology in
Malaysia, [online] Available at: <https://techwireasia.com/2021/10/increasing-
demand-for-facial-recognition-system-technology-in-malaysia/> [Accessed 22
June 2022].

Rana, A., 2022. Face Detection Using YOLO. International Journal of
Engineering and Techniques, 8(3), pp.36–39.

Rashid, B., 2022. (4) A Survey of Comparing Different Cloud Database
Performance: SQL and NoSQL | Bilal Rashid - Academia.edu, [online]
Available at:
<https://www.academia.edu/74820433/A_Survey_of_Comparing_Different_C
loud_Database_Performance_SQL_and_NoSQL> [Accessed 14 April 2023].

Ren, S., He, K., Girshick, R. and Sun, J., 2016. Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks. [online] Available at:
<http://image-net.org/challenges/LSVRC/2015/results> [Accessed 4 July
2022].

Roure, J. and Faundez-Zanuy, M., 2005. Face recognition with small and large
size databases. Proceedings - International Carnahan Conference on Security
Technology, [e-journal] pp.153–156.
https://doi.org/10.1109/ccst.2005.1594843.

79

Sabeenian, R.S., Aravind, S., Arunkumar, P., Harrish Joshua, P. and Eswarraj,
G., 2020. Smart attendance system using face recognition. Journal of
Advanced Research in Dynamical and Control Systems, [e-journal] 12(5
Special Issue), pp.1079–1084.
https://doi.org/10.5373/JARDCS/V12SP5/20201860.

Schroff, F., Kalenichenko, D. and Philbin, J., 2015. FaceNet: A unified
embedding for face recognition and clustering. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
[e-journal] pp.815–823. https://doi.org/10.1109/CVPR.2015.7298682.

Sepas-Moghaddam, A., Pereira, F.M. and Correia, P.L., 2020. Face
recognition: A novel multi-level taxonomy based survey. IET Biometrics, [e-
journal] 9(2), pp.58–67. https://doi.org/10.1049/iet-bmt.2019.0001.

Setiowati, S., Zulfanahri, Franita, E.L. and Ardiyanto, I., 2017. A review of
optimization method in face recognition: Comparison deep learning and non-
deep learning methods. 2017 9th International Conference on Information
Technology and Electrical Engineering, ICITEE 2017, [e-journal] pp.1–6.
https://doi.org/10.1109/ICITEED.2017.8250484.

Shi, W., Bao, S. and Tan, D., 2019. FFESSD: An accurate and efficient single-
shot detector for target detection. Applied Sciences (Switzerland), [e-journal]
9(20). https://doi.org/10.3390/app9204276.

Shu, C., Ding, X. and Fang, C., 2011. Histogram of the oriented gradient for
face recognition. Tsinghua Science and Technology, [e-journal] 16(2), pp.216–
224. https://doi.org/10.1016/S1007-0214(11)70032-3.

Singh, A., Kansari, J. and Sinha, V.K., 2022. Face Recognition Using Transfer
Learning by deep VGG16 model. 9(4), pp.121–127.

Singhal, N., Ganganwar, V., Yadav, M., Chauhan, A., Jakhar, M. and Sharma,
K., 2021. Comparative study of machine learning and deep learning algorithm
for face recognition. Jordanian Journal of Computers and Information
Technology, [e-journal] 7(3), pp.313–325. https://doi.org/10.5455/JJCIT.71-
1624859356.

Srivastava, S., Divekar, A.V., Anilkumar, C., Naik, I., Kulkarni, V. and
Pattabiraman, V., 2021. Comparative analysis of deep learning image
detection algorithms. Journal of Big Data, [e-journal] 8(1), pp.1-25.
https://doi.org/10.1186/s40537-021-00434-w.

Sufyanu, Z., Mohamad, F., Yusuf, A. and Nuhu, A., 2016. Feature Extraction
Methods for Face Recognition. International Journal of Applied Engineering
Research, [e-journal] 5(3), pp.5658–5668. Available at:
<https://www.researchgate.net/publication/313360566_FEATURE_EXTRAC
TION_METHODS_FOR_FACE_RECOGNITION>.

80

Suganya, S. and Menaka, D., 2014. Performance Evaluation of Face
Recognition Algorithms. International Journal on Recent and Innovation
Trends in Computing and Communication, 2(1), pp.135–140.

Tai, D.N., Kim, S., Lee, G., Yang, H., Na, I. and Oh, A., 2018. Tracking by
Detection of Multiple Faces using SSD and CNN Features. Smart Media
Journal, [e-journal] 7(4). https://doi.org/10.30693/SMJ.2018.7.4.61.

Tan, H., Yang, B. and Ma, Z., 2014. Face recognition based on the fusion of
global and local HOG features of face images. IET Computer Vision, [e-
journal] 8(3), pp.224–234. https://doi.org/10.1049/iet-cvi.2012.0302.

Timotius, I.K., Setyawan, I. and Febrianto, A.A., 2010. Face recognition
between two person using kernel principal component analysis and support
vector machines. International Journal on Electrical Engineering and
Informatics, [e-journal] 2(1), pp.53–61.
https://doi.org/10.15676/ijeei.2010.2.1.5.

Toygar, Ö. and Acan, A., 2003. Face Recognition Using PCA , LDA and ICA
Approaches on Colored Images. Journal of Electrical & Electronic
Engineering, 3(1), pp.735–743.

Trigueros, D.S., Meng, L. and Hartnett, M., 2018. Face Recognition: From
Traditional to Deep Learning Methods. CoRR [e-journal].
https://doi.org/10.48550/arXiv.1811.00116.

Wahid, T., 2013. Face Recognition using Local Binary Patterns (LBP) Face
Recognition using Local Binary Patterns LBP. Journal of Computer Science
and Technology Graphics & Vision, [online] Available at:
<https://globaljournals.org/GJCST_Volume13/1-Face-Recognition-using- Lo
cal.pdf> [Accessed 3 April 2023].

Walker, M., Schönborn, S., Greifeneder, R. and Vetter, T., 2018. The basel
face database: A validated set of photographs reflecting systematic differences
in big two and big five personality dimensions. PLoS ONE, [e-journal] 13(3),
pp.1–20. https://doi.org/10.1371/journal.pone.0193190.

Wang, M. and Deng, W., 2021. Deep face recognition: A survey.
Neurocomputing, [e-journal] 429, pp.215–244.
https://doi.org/10.1016/j.neucom.2020.10.081.

Wang, Q., 2012. Kernel Principal Component Analysis and its Applications in
Face Recognition and Active Shape Models. [online] Available at:
<http://arxiv.org/abs/1207.3538> [Accessed 3 April 2023].

Weng, L., 2018. Object Detection Part 4: Fast Detection Models | Lil’Log,
[online] Available at: <https://lilianweng.github.io/posts/2018-12-27-object-
recognition-part-4/> [Accessed 31 July 2022].

81

Xie, J., 2009. Face Recognition Based on Curvelet Transform and LS-SVM.
Proceedings of the International Symposium on Information Processing, 2,
pp.140–143.

Yi, D., Lei, Z. and Li, S.Z., 2015. Shared representation learning for
heterogenous face recognition. 2015 11th IEEE International Conference and
Workshops on Automatic Face and Gesture Recognition, FG 2015. [e-journal]
https://doi.org/10.1109/FG.2015.7163093.

Yu, J. and Zhang, W., 2021. Face mask wearing detection algorithm based on
improved yolo-v4. MDPI, [e-journal] 21(9).
https://doi.org/10.3390/s21093263.

Zeng, D., Veldhuis, R. and Spreeuwers, L., 2021. A survey of face recognition
techniques under occlusion. IET Biometrics, [e-journal] 10(6), pp.581–606.
https://doi.org/10.1049/bme2.12029.

Zhang, N. and Deng, W., 2016. Fine-grained LFW database. 2016
International Conference on Biometrics, ICB 2016, [e-journal] pp.1–11.
https://doi.org/10.1109/ICB.2016.7550057.

Zhao, Z.Q., Zheng, P., Xu, S.T. and Wu, X., 2019. Object Detection with
Deep Learning: A Review. IEEE Transactions on Neural Networks and
Learning Systems, [e-journal] 30(11), pp.3212–3232.
https://doi.org/10.1109/TNNLS.2018.2876865.

82

APPENDICES

Appendix A: Face Detector

i. Haar Cascade Files

haar-cascade-files/haarcascade_frontalface_default.xml atmaster · an

austinbeing/haar-cascade-files · GitHub

ii. OpenCV DNN Model Configuration File

https://github.com/aakashjhawar/face-

detection/blob/master/res10_300x300_ssd_iter_140000.caffemodel

iii. OpenCV DNN Model’s Weights

https://github.com/aakashjhawar/face-

detection/blob/master/deploy.prototxt.txt

83

Appendix B: Feature Extractor

i. FaceNet Model File

https://drive.google.com/file/d/1PZ_6Zsy1Vb0s0JmjEmVd8FS99zoM

CiN1/view?usp=share_link

ii. FaceNet Weights File

https://drive.google.com/file/d/1e6PHRlIeayAsvRGpYUwvstklvJy-

3H5B/view?usp=share_link

84

Appendix C: Smart Attendance System

i. Main Code

"""

Libraries

"""

import cv2

import os

import time

import numpy as np

from os import listdir, path, mkdir

from sys import argv, exit

from datetime import datetime

from numpy import asarray, expand_dims, vstack, array

from pickle import dumps, load

from openpyxl import load_workbook

from sklearn.impute import SimpleImputer

from sklearn.preprocessing import LabelEncoder

from PyQt5 import uic

from PyQt5.QtGui import QPixmap, QImage, QFont

from PyQt5.QtCore import QTimer, pyqtSignal, QThread, Qt, QSize

from PyQt5.QtWidgets import (

 QApplication,

 QPushButton,

 QDialog,

 QTableWidget,

 QTableWidgetItem,

 QLabel,

 QStackedWidget,)

85

from sklearn import svm

from tensorflow.keras.models import load_model

from imutils import paths, resize

from imutils.video import VideoStream

from Attendance import Attendance

"""

Configurations

"""

CAMERA_INDEX = 1 # set 0 for laptop default webcam

NUM_FRAMES = 20

CONFIDENCE_LEVEL = 0.9

"""

File paths

"""

MODEL_PATH = ".\\models\\FaceNetModel.h5"

WEIGHTS_PATH = ".\\models\\facenet_keras_weights.h5"

ENCONDINGS_PATH = ".\\models\\face_encoding.pickle"

PROTOTXT_PATH = ".\\models\\deploy.prototxt.txt"

CAFFE_MODEL = ".\\models\\res10_300x300_ssd_iter_140000.caffemodel"

TRAINING_FOLDER = ".\\Detected images"

ATTENDANCE_SHEET = "Attendance_Records.xlsx"

"""-

UI paths

"""

86

HomeScreen = ".\\UI\\HomeScreen.ui"

FaceRecog_Screen = ".\\UI\\FaceRecog.ui"

Camera_Sreen = ".\\UI\\Camera.ui"

CreateUserID_Screen = ".\\UI\\CreateUserID.ui"

Attendance_Screen = ".\\UI\\Attendance.ui"

EMBED_MODEL = ""

DETECT_MODEL = ""

"""

Function to load all models

"""

def models():

 print("[INFORMATION] Loading models....")

 global EMBED_MODEL, DETECT_MODEL

 EMBED_MODEL = load_model(MODEL_PATH)

 EMBED_MODEL.load_weights(WEIGHTS_PATH)

 DETECT_MODEL = cv2.dnn.readNetFromCaffe(PROTOTXT_PATH,

CAFFE_MODEL)

 print("[INFORMATION] Models loaded successfully")

 print("[INFORMATION] Compiling models....\n")

 EMBED_MODEL.compile()

 end_time = time.time()

 # calculate elapsed time

 elapsed_time = end_time - start_time

 print('Time to load all models: {:.2f} seconds\n'.format(elapsed_time))

 print("[INFORMATION] Models compiled successfully")

 print("[INFORMATION] Starting application....")

"""

87

Main Screen

"""

class WelcomeScreen(QDialog):

 def __init__(self):

 super(WelcomeScreen, self).__init__()

 uic.loadUi(HomeScreen, self)

 self.setMinimumSize(QSize(400, 300))

 flags = Qt.WindowFlags(Qt.Window)

 self.setWindowFlags(flags)

 self.pushButton.clicked.connect(self.gotoadd)

 self.pushButton_2.clicked.connect(self.gotoadd2)

 self.pushButton_3.clicked.connect(self.gotoadd3)

 def gotoadd(self):

 pushButton = CreateIDScreen()

 widget.addWidget(pushButton)

 widget.setCurrentIndex(widget.currentIndex() + 1)

 def gotoadd2(self):

 pushButton_2 = FaceRecogScreen()

 widget.addWidget(pushButton_2)

 widget.setCurrentIndex(widget.currentIndex() + 1)

 def gotoadd3(self):

 pushButton_3 = AttendanceScreen()

 widget.addWidget(pushButton_3)

 widget.setCurrentIndex(widget.currentIndex() + 1)

88

"""

Create User ID Screen

Allow user to input name

"""

class CreateIDScreen(QDialog):

 def __init__(self):

 super(CreateIDScreen, self).__init__()

 uic.loadUi(CreateUserID_Screen, self)

 # Connect buttons to functions

 self.nextbutton.clicked.connect(self.check_name_input)

 self.pushButton_back.clicked.connect(self.back_to_main)

 # Check input name

 def check_name_input(self):

 i = 5

 j = 0

 while i > j:

 # Retrieve the input name from user

 self.get_name()

 if not self.name:

 # Display warning message if name is not being input

 self.label_warning.setVisible(True)

 self.label_warning.setStyleSheet("color: red")

 self.label_warning.setFont(QFont("Yu Gothic UI Semibold", 12))

 self.label_warning.setText("Please enter name to proceed")

 return # Return to wait for valid input

 elif self.check_duplicate():

 # If name already exists, loop back to get valid input

89

 j += 1

 continue

 else:

 # If name is input and valid, proceed to next screen

 self.duplicate_warning.setVisible(False)

 self.label_warning.setVisible(False)

 self.nextfunction()

 # Exit the loop

 break

 # Retrieve name from user

 def get_name(self):

 self.name = self.name_input.text()

 # Check if the input name is duplicate

 def check_duplicate(self):

 # Display warning message if name already exists

 for file in listdir("Detected images"):

 if file == self.name:

 self.duplicate_warning.setVisible(True)

 self.duplicate_warning.setStyleSheet("color: blue")

 self.duplicate_warning.setFont(QFont("Yu Gothic UI Semibold",

12))

 self.duplicate_warning.setText("Name already exists")

 return True # Return True to indicate duplicate name found

 return False # Return False to indicate no duplicate name found

 # Proceed to next screen

 def nextfunction(self):

 nextbutton = CreateIDScreen2(self.name)

 widget.addWidget(nextbutton)

 widget.setCurrentIndex(widget.currentIndex() + 1)

90

 # Return to main screen

 def back_to_main(self):

 pushButton_back = WelcomeScreen()

 widget.addWidget(pushButton_back)

 widget.setCurrentIndex(widget.currentIndex() + 1)

"""

Screen for capturing user image

As Database for Training Purpose

"""

class CreateIDScreen2(QDialog):

 def __init__(self, name):

 super(CreateIDScreen2, self).__init__()

 uic.loadUi(Camera_Sreen, self)

 self.counter = 0 # number of face captured

 self.ctr = 0 # sample face counter

 self.name = name # name of the user

 self.encoding_thread = EncodingThread(self) # thread for encoding the

face

 self.encoding_thread.encodingFinished.connect(self.encoding_finished)

 # load imported webcam

 print("[INFORMATION] Start Video Stream....")

 self.video = VideoStream(src=CAMERA_INDEX).start()

 # Create a timer to trigger face detection function

 # start_detection function, which will be triggered every 10 milliseconds

when the timer is started

91

 self.timer = QTimer(self)

 self.timer.timeout.connect(self.start_detection)

 self.timer.start(10)

 # Initialize variables to store the start and end times for capturing 20

images

 self.start_time = None

 self.end_time = None

 self.end_time_encoding = None

 def start_detection(self):

 # read frame from video stream

 frame = self.video.read()

 # resize frame

 frame = resize(frame, width=800)

 # grab frame and convert it to bloob

 (h, w) = frame.shape[:2]

 # convert image to required format

 blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300,

300), (104, 177, 123))

 # pass blob through the network and obtain detections and predictions

 DETECT_MODEL.setInput(blob)

 detections = DETECT_MODEL.forward()

 # look for face with confidence level bigger than 0.5

 for i in range(0, detections.shape[2]):

 confidence = detections[0, 0, i, 2]

 if confidence > CONFIDENCE_LEVEL:

 # compute the coordinates of the bounding box for the face

92

 box = detections[0, 0, i, 3:7] * array([w, h, w, h])

 (startX, startY, endX, endY) = box.astype("int")

 face = frame[startY:endY, startX:endX]

 # save extracted face

 self.save_detected_face(face)

 self.ctr += 1

 self.counter += 1

 if self.counter == 1:

 # Start the timer when the first face is detected

 self.start_time = time.time()

 if self.ctr >= NUM_FRAMES and self.counter == NUM_FRAMES:

 # Stop the timer when 20 faces are captured

 self.end_time = time.time()

 elapsed_time = self.end_time - self.start_time

 print(f"Time to capture 20 images: {elapsed_time:.2f} seconds\n")

 # break

 self.video.stop()

 self.timer.stop()

 # show message after face is captured

 self.msg.setVisible(True)

 self.msg.setText("Face Captured")

 self.msg.setStyleSheet("color: white")

 self.msg.setFont(QFont("Yu Gothic UI Semibold", 16))

 # switch to main screen after 1ms

 QTimer.singleShot(1, lambda: self.switch_to_main())

 def save_detected_face(self, face):

93

 # create new folder by naming with input name

 new_folder = path.join(TRAINING_FOLDER, self.name)

 # avoid FileExistsError Error

 if not path.exists(new_folder):

 mkdir(new_folder)

 print("Directory ", new_folder, " Created \n")

 # write detected image to created folder

 # set jpeg quality to highest and save

 cv2.imwrite(

 path.join(new_folder, f"{self.name}_{self.ctr}.jpg"),

 face,

 [int(cv2.IMWRITE_JPEG_QUALITY), 100],

)

 else:

 cv2.imwrite(

 path.join(new_folder, f"{self.name}_{self.ctr}.jpg"),

 face,

 [int(cv2.IMWRITE_JPEG_QUALITY), 100],

)

 # create QImage object to RGB format

 rgb_image = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)

 # obtain height, width, and number of channels in the image

 h, w, ch = rgb_image.shape

 bytesPerLine = ch * w

 convertToQtFormat = QImage(rgb_image.data, w, h, bytesPerLine,

QImage.Format_RGB888)

 # store image data as variable p, resize to fit the size of label widget, and

set as pixmap on label widget

94

 p = convertToQtFormat.scaled(self.label_cam.width(),

self.label_cam.height(), Qt.KeepAspectRatio)

 self.label_cam.setPixmap(QPixmap.fromImage(p))

 # keep the aspect ratio of image during scaling

 self.label_cam.setScaledContents(True)

 # switch to main screen and generate encodings from trained images

 def switch_to_main(self):

 self.video.stream.release()

 # show encoding in progress message

 self.msg_encode.setVisible(True)

 self.msg_encode.setText("Encoding in progress..")

 self.msg_encode.setStyleSheet("color: white")

 self.msg_encode.setFont(QFont("Yu Gothic UI Semibold", 12))

 self.encoding_thread = EncodingThread(parent=self, batch_size=32)

 self.encoding_thread.start()

 self.encoding_thread.encodingFinished.connect(self.encoding_finished)

 def encoding_finished(self):

 # switch to the welcome screen

 widget.addWidget(WelcomeScreen())

 widget.setCurrentIndex(widget.currentIndex() + 1)

 # print the time it took to capture 20 images with encodings

 self.end_time_encoding = time.time()

 elapsed_time_encoding = self.end_time_encoding - self.start_time

 print(f"Time to capture 20 images with encodings:

{elapsed_time_encoding:.2f} seconds\n")

 print("Encoding finished.")

95

"""

generate encodings from trained images in seperate thread

"""

class EncodingThread(QThread):

 encodingFinished = pyqtSignal()

 def __init__(self, parent=None, batch_size=32):

 super(EncodingThread, self).__init__(parent)

 self.batch_size = batch_size

 def run(self):

 # Load existing encodings

 if os.path.exists(ENCONDINGS_PATH):

 with open(ENCONDINGS_PATH, "rb") as f:

 data = load(f)

 knownEncodings = data["encodings"]

 knownNames = data["names"]

 existingName = set(knownNames)

 else:

 knownEncodings = []

 knownNames = []

 existingName = set()

 # Get list of images in training folder

 imagepaths = list(paths.list_images(TRAINING_FOLDER))

 # Loop through images in batches

 for i in range(0, len(imagepaths), self.batch_size):

 batch_paths = imagepaths[i: i+self.batch_size]

 batch_images = []

 batch_names = []

96

 # Loop through images in the batch

 for imagepath in batch_paths:

 name = imagepath.split(path.sep)[-2]

 if name in existingName:

 continue # Skip if person's images have been added

 image = cv2.imread(imagepath)

 # Convert to RGB format

 image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

 # Normalize pixel values

 pixels = asarray(image)

 cv2.normalize(image, None, 0, 1.0,

 cv2.NORM_MINMAX, dtype=cv2.CV_32F)

 # Resize image to 160x160

 image = cv2.resize(image, (160, 160))

 # Expand dimension to fit the model

 pixels = expand_dims(image, axis=0)

 # Add image and name to batch lists

 batch_images.append(pixels)

 batch_names.append(name)

 # Make prediction on batch of images

 if not batch_images:

 continue # If no new images to encode

 batch_images = vstack(batch_images)

 batch_encodings = EMBED_MODEL.predict(batch_images)

 # Append encodings and names to lists

 for encoding, name in zip(batch_encodings, batch_names):

 knownEncodings.append(encoding)

 knownNames.append(name)

 existingName.add(name)

 # Write encoding data as pickle file

97

 data = {"encodings": knownEncodings, "names": knownNames}

 with open(ENCONDINGS_PATH, "wb") as f:

 f.write(dumps(data))

 print("Encoding complete.\n")

 self.encodingFinished.emit()

"""

Face Recognition Screen

"""

class FaceRecogScreen(QDialog):

 def __init__(self):

 super(FaceRecogScreen, self).__init__()

 uic.loadUi(FaceRecog_Screen, self)

 # initialize the clf variable

 self.clf = None

 # define fram that showing video stream as qlabel

 self.label_cam = QLabel()

 self.label_cam = self.findChild(QLabel, "label_cam")

 # stop the thread if 'cancel' button is pressed

 self.pushButton_cancel = self.findChild(

 QPushButton, "pushButton_cancel")

 self.pushButton_cancel.clicked.connect(self.stop_video)

 # define label for date and time

 self.label_datetime = self.findChild(QLabel, "label_datetime")

98

 # initialize the video stream with thread

 self.thread = StartThread(clf=self.clf)

 self.thread.start()

 self.thread.ImageUpdate.connect(self.ImageUpdateSlot)

 # define timer to update date and time

 self.update_date_time()

 def ImageUpdateSlot(self, Image):

 self.label_cam.setPixmap(QPixmap.fromImage(Image))

 def stop_video(self):

 self.thread.stop()

 self.back_to_main()

 def back_to_main(self):

 pushButton_cancel = WelcomeScreen()

 widget.addWidget(pushButton_cancel)

 widget.setCurrentIndex(widget.currentIndex() + 1)

 def update_date_time(self):

 date_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

 self.label_datetime.setText(date_time)

class StartThread(QThread):

 ImageUpdate = pyqtSignal(QImage)

 def __init__(self, clf):

 super().__init__()

 self.clf = clf

 self.label_encoder = None

 self.video = None

99

 def run(self):

 self.ThreadActive = True

 # load the face embedding model

 with open(ENCONDINGS_PATH, "rb") as f:

 data = load(f)

 # load encodings and names

 encodings = data["encodings"]

 names = data["names"]

 # convert class labels to numeric labels using LabelEncoder

 self.label_encoder = LabelEncoder()

 self.label_encoder.fit(names)

 numeric_labels = self.label_encoder.transform(names)

 # convert encodings and names to numpy arrays

 knownEncodings = np.array(encodings)

 knownNames = np.array(numeric_labels)

 # replace NaN values with mean

 imputer = SimpleImputer(strategy='mean')

 knownEncodings = imputer.fit_transform(knownEncodings)

 # flatten encodings

 knownEncodings = knownEncodings.reshape(knownEncodings.shape[0],

-1)

 # pad the training encodings with zeros to ensure all training samples

have the same number of features

 max_features = knownEncodings.shape[1]

 knownEncodings = np.pad(knownEncodings, ((

 0, 0), (0, max_features - knownEncodings.shape[1])), mode='constant')

100

 # train the classifier using known encodings and names

 clf = svm.SVC(kernel='rbf', C=5, tol=0.001, probability=True)

 clf.fit(knownEncodings, knownNames)

 self.clf = clf

 # initialize video stream

 video = cv2.VideoCapture(CAMERA_INDEX)

 video.set(cv2.CAP_PROP_FPS, 60)

 while self.ThreadActive:

 ret, frame = video.read()

 if ret:

 (h, w) = frame.shape[:2]

 # Pass the input frame to the face detection model

 blob = cv2.dnn.blobFromImage(

 cv2.resize(frame, (300, 300)),

 1.0,

 (300, 300),

 (104.0, 177.0, 123.0),

)

 DETECT_MODEL.setInput(blob)

 detections = DETECT_MODEL.forward()

 # initialize predicted_names outside the loop

 predicted_names = []

 # record start time

 self.start_time = time.time()

 # Loop over the detected faces

 for i in range(0, detections.shape[2]):

101

 confidence = detections[0, 0, i, 2]

 # Only consider detections above a certain confidence level

 if confidence > CONFIDENCE_LEVEL:

 # Get the coordinates of the detected face

 box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])

 (startX, startY, endX, endY) = box.astype("int")

 # Extract the face from the input frame

 face = frame[startY:endY, startX:endX]

 face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)

 cv2.normalize(face, None, 0, 1.0, cv2.NORM_MINMAX,

dtype=cv2.CV_32F)

 # Resize the face to the input size of the embedding model

 face_resized = cv2.resize(face, (160, 160))

 pixels = np.expand_dims(face_resized, axis=0)

 # Use Facenet to predict

 face_encodings = EMBED_MODEL.predict(pixels)

 # Use the self.clf classifier to predict face names

 predicted_names = clf.predict(face_encodings)

 predicted_names =

self.label_encoder.inverse_transform(predicted_names)

 # Draw bounding box and label around face

 y = startY - 10 if startY - 10 > 10 else startY + 10

 cv2.rectangle(frame, (startX, startY),(endX, endY), (0, 255, 0),

2)

 cv2.putText(

102

 frame, predicted_names[0], (startX, y),

cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2)

 # mark attendance

 self.attendance = Attendance(interval=1,

attendance_file=ATTENDANCE_SHEET)

 self.attendance.mark_attendance(predicted_names[0])

 # record end time

 self.end_time = time.time()

 elapsed_time_attendance = self.end_time - self.start_time

 print("\nTime taken for whole recognition process: {:.3f}

seconds\n".format(

 elapsed_time_attendance))

 # convert frame to QImage to display video stream

 Image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

 FlippedImage = Image.copy()

 ConvertToQtFormat = QImage(

 FlippedImage.data,

 FlippedImage.shape[1],

 FlippedImage.shape[0],

 QImage.Format_RGB888,

)

 Pic = ConvertToQtFormat.scaled(

 800, 520, Qt.KeepAspectRatio)

 self.ImageUpdate.emit(Pic)

 def stop(self):

 self.ThreadActive = False

 self.quit()

103

"""

Attendance Screen

"""

class AttendanceScreen(QDialog):

 def __init__(self):

 super(AttendanceScreen, self).__init__()

 uic.loadUi(Attendance_Screen, self)

 # Initialize instance variables

 self.workbook = None

 self.sheet = None

 # Find the table widget in the UI and store a reference to it

 self.tableWidget = self.findChild(QTableWidget, "tableWidget")

 # Load the attendance workbook and populate the table

 self.load_workbook()

 self.label_attendance_3 = QLabel()

 # Connect the back button to the back_to_main function

 self.pushButton_back.clicked.connect(self.back_to_main)

 def load_workbook(self):

 # Load the attendance workbook and get the sheet

 self.workbook = load_workbook(ATTENDANCE_SHEET)

 self.sheet = self.workbook["Sheet1"]

 # Get the number of rows and columns

 rows = self.sheet.max_row

 columns = self.sheet.max_column

 # Set the number of rows and columns in the table

 self.tableWidget.setRowCount(rows)

104

 self.tableWidget.setColumnCount(columns)

 # Iterate over each cell in the sheet and add the value to the table

 for row in range(1, rows + 1):

 for col in range(1, columns + 1):

 value = self.sheet.cell(row=row, column=col).value

 item = QTableWidgetItem(str(value))

 self.tableWidget.setItem(row - 1, col - 1, item)

 # Update the table in the workbook

 self.workbook.save(ATTENDANCE_SHEET)

 # Update date and time

 self.update_date_time()

 def update_date_time(self):

 # Get the current date and time

 date_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

 self.label_attendance_3.setText(date_time)

 # Update the date and time in the table

 self.timer = QTimer()

 self.timer.timeout.connect(self.update_date_time)

 self.timer.start(100)

 def back_to_main(self):

 # Return to the main welcome screen

 pushButton_back = WelcomeScreen()

 widget.addWidget(pushButton_back)

 widget.setCurrentIndex(widget.currentIndex() + 1)

Main

if __name__ == "__main__":

105

 start_time = time.time()

 models()

 app = QApplication(argv)

 window = WelcomeScreen()

 widget = QStackedWidget()

 widget.addWidget(window)

 widget.setFixedWidth(1143)

 widget.setFixedHeight(798)

 widget.setWindowTitle("Smart Attendance System")

 widget.show()

 try:

 exit(app.exec_())

 except:

 print("Exiting")

The entire code for this main program is also accessible at the link below:

https://drive.google.com/file/d/1jfwyXvYptoHwIhiXP0x2G2WHDbtEyhhZ/vi

ew?usp=share_link

106

ii. Attendance Marking Code

import datetime

import openpyxl

import xlsxwriter

class Attendance:

 def __init__(self, interval=1, attendance_file=""):

 # Create a workbook and add a worksheet.

 self.workbook = xlsxwriter.Workbook(attendance_file)

 self.worksheet = self.workbook.add_worksheet()

 self.date_time = datetime.datetime.strptime("2023-01-10", "%Y-%m-%d")

 self.interval = interval

 self.attendance_file = attendance_file

 # Start from the first cell below the headers.

 self.row = 0

 self.col = 0

 def checkPreviousAttendance(self, face_name_str):

 # Check if the face_names_str is already in the excel file within the last 1

minute

 self.workbook = openpyxl.load_workbook(self.attendance_file)

 self.worksheet = self.workbook.active

 for i in range(1, self.worksheet.max_row + 1):

 if self.worksheet.cell(i, 3).value == face_name_str:

 # if exists, get the date and time of the last attendance

 self.date_time = datetime.datetime.strptime(

 self.worksheet.cell(i, 1).value, "%d/%m/%Y"

)

 self.time = datetime.datetime.strptime(

 self.worksheet.cell(i, 2).value, "%H:%M:%S"

107

)

 # check if the last attendance is within the last 1 minute

 if datetime.datetime.now() - datetime.timedelta(

 minutes=self.interval

) < datetime.datetime.combine(self.date_time, self.time.time()):

 return True

 return False

 def mark_attendance(self, face_names_str):

 if self.checkPreviousAttendance(face_names_str):

 return

 # mark attendance on excel

 self.workbook = openpyxl.load_workbook(self.attendance_file)

 self.worksheet = self.workbook.active

 # Write some data headers.

 self.worksheet.cell(1, 1).value = "DATE"

 self.worksheet.cell(1, 2).value = "TIME"

 self.worksheet.cell(1, 3).value = "NAME"

 # get current date

 date = datetime.datetime.now().strftime("%d/%m/%Y")

 # get current time

 time = datetime.datetime.now().strftime("%H:%M:%S")

 # get the row number

 self.row = self.worksheet.max_row

 # get the column number

 self.col = self.worksheet.max_column

 # write date, time and name in excel

 self.worksheet.cell(self.row + 1, 1).value = date

 self.worksheet.cell(self.row + 1, 2).value = time

 self.worksheet.cell(self.row + 1, 3).value = face_names_str

 # save the excel file

 self.workbook.save(self.attendance_file)

108

The entire code for this attendance marking script is accessible at the link

below:

https://drive.google.com/file/d/17Fx5uyyO0bSzDDJV9ge7p7_RNkbVgMJL/v

iew?usp=share_link

The up-to-date attendance records excel sheet is accessible at the link below:

https://docs.google.com/spreadsheets/d/1Wj7PYMPT9-

MvynNJp6i_C8r0Ni4ovdzP/edit?usp=share_link&ouid=10964331426771579

3484&rtpof=true&sd=true

109

Appendix D: User Interface Configuration Files

i. Homescreen

https://drive.google.com/file/d/1TG8rJSJiHm9OS6SE3J1qY914H7D8

nmsV/view?usp=share_link

ii. Create User ID First Screen

https://drive.google.com/file/d/1TwrmVmXPGYWcShQyhfrhqDWAb

9IupcVe/view?usp=share_link

iii. Create User ID Second Screen

https://drive.google.com/file/d/1oDbv4Um40PNesogAs313Guzi5XqFx

ovc/view?usp=share_link

iv. Face Recognition Screen

https://drive.google.com/file/d/116ExDYvz4fVEx3nyQ92MG0fYaYO

wJmok/view?usp=share_link

v. Attedance Monitoring Screen

https://drive.google.com/file/d/1KreD3JiSRqFeaAWSTWdYFsxBSiN

bPuAT/view?usp=share_link

110

Appendix E: Evaluation for Two Different Models

i. Collected Images Used for Models Evaluation

https://drive.google.com/drive/folders/13JxuxAe3FBQl19nxHQsgF9gj

eriZpeR9?usp=share_link

ii. Code to Split Datasets into Train, Validation and Test Datasets

https://drive.google.com/file/d/1PGx3_ul8nfhqVoFXaftP27inkVjTIAJ

W/view?usp=share_link

iii. Feature Extraction using FaceNet Code for Training Datasets

https://drive.google.com/file/d/14cxTW5CpV2IWt0h_9rLAosrx3HY3

9xdW/view?usp=share_link

iv. Feature Extraction using FaceNet Code for Validation and Testing

Datasets

https://drive.google.com/file/d/1yVBq0JJeIoTaJ2fHS9pF76755sJdOcF

K/view?usp=share_link

v. VGG 16 Model File

https://drive.google.com/file/d/1ZEEPRYzoOyOYORuzYnQa-

TW4aqPl0BZQ/view?usp=share_link

vi. Evaluation Code for DNN, FaceNet and SVM

https://drive.google.com/file/d/16U_-lrdwYcwlwUXq50SJQqU-9vsno-

n5/view?usp=share_link

vii. Evaluation Code for VGG16

https://drive.google.com/file/d/1MA7srMjtwSxaIgMFZVL6qv9zaglcs

FIz/view?usp=share_link

	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 General Introduction
	1.2 Importance of the Study
	1.3 Problem Statement
	1.4 Aim and Objectives
	1.5 Scope and Limitation of the Study
	1.6 Contribution of the Study
	1.7 Outline of the Report

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Smart Attendance System
	2.2 Face Detection
	2.3 Face Recognition
	2.3.1 Multi-level Face Recognition Taxonomy
	2.3.2 Face Structure
	2.3.3 Feature Extraction
	2.3.4 Local Approach
	2.3.5 Holistic Approach
	2.3.6 Learning-based Approach
	2.3.7 Transfer Learning

	2.4 Evaluation Metrics
	2.5 Database
	2.6 Comparison between Traditional Approaches and Deep Learning Approaches

	CHAPTER 3
	3 METHODOLOGY AND WORK PLAN
	3.1 Introduction
	3.2 Project Planning
	3.3 Project Development
	3.4 Resources
	3.4.1 Hardware
	3.4.2 Software

	3.5 First Approach
	3.5.1 Face Detection
	3.5.2 Feature Extraction
	3.5.3 Face Classification

	3.6 Second Approach
	3.6.1 Model Architecture
	3.6.2 Data Augmentation
	3.6.3 Training

	3.7 Attendance Update
	3.8 User Interface Design
	3.9 Problems and Solutions

	CHAPTER 4
	4 RESULTS AND DISCUSSION
	4.1 Introduction
	4.2 Face Detection Evaluation
	4.2.1 Labeled Faces In The Wild
	4.2.2 Performance Evaluation

	4.3 Face Recognition Evaluation
	4.3.1 Face Datasets
	4.3.2 Parameters
	4.3.3 Evaluation Metrics

	4.4 Smart Attendance System
	4.4.1 Graphical User Interface

	4.5 Summary

	CHAPTER 5
	5 CONCLUSIONS AND RECOMMENDATIONS
	5.1 Conclusions
	5.2 Recommendations for Future Work

	REFERENCES
	APPENDICES

