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ABSTRACT 

 

CCTVs usually installed in a business establishment can yield additional 

customer information, providing valuable insights for marketing analysis. 

However, manually analyzing the sheer volume of videos can be taxing for 

humans. Therefore, this study endeavors to develop a computer-vision solution 

that automates customer analysis on CCTV videos. The proposed solution 

must be able to fulfil the requirements for customer counting, customer 

recognition and gender classification.  

This study aimed to improve the human detection model by 

eliminating the imperfections in existing models that have a high false rate in 

detecting the cartoons as humans. These cartoons may be human-like stickers 

that are placed around retail shops, and false detection may result in inaccurate 

customer analysis. To evaluate the performance of existing detection models, 

metrics such as accuracy, precision, recall, F1 score, false detection rate, 

model size, and parameters are used. To address the issue, the latest algorithms, 

such as YOLOv5, YOLOv8 and mobilenet ssd, were selected for retraining. 

The retraining process involved utilization of a dataset consists of 2 classes: 

human and cartoon, with 11k images per class. The instances in the dataset 

were well labelled before splitting into train, validation and test sets. Each 

selected model is then retrained, evaluated and compared to the existing 

models. The study found that the best model is the retrained YOLOv8n, which 

achieved a false detection rate of 8.16 %, outperforming all the pretrained 

models. Meanwhile, it has enhanced the accuracy and F1 score in human 

detection, improving by 5.38 % and 2.85 % respectively when compared to the 

best pretrained model, YOLOv8m. Hence, the retrained YOLOv8n has been 

selected as the human detection model for the proposed solution.  

When the retrained YOLOv8n detects a customer in the CCTV video, 

human tracking takes place to track the customer. When the customer passes 

through a counting line drawn by the system, customer counting occurs, and 

the system will crop their faces for facial recognition and gender classification. 

Due to time constraints, several components and algorithms could not 

be addressed in this study. Future work will focus on improving facial 

recognition and proposing new methods to explore different approaches. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Closed circuit television (CCTV), also known as video surveillance, is 

commonly used in retail shops for security purposes. It enables the monitoring 

of customer activity to prevent potential criminal activities. In addition to 

security, retail shops can utilize CCTV to gain valuable information about 

their customers. Demographics such as age and gender can be recorded from 

the footage to understand customer behavior and preferences. This information 

can help retail shops provide better products and services and increase market 

sales (Mora, Nalbach, and Werth, 2019). Unfortunately, it is not practical for 

human workers to continuously monitor the footage and record customer 

information due to fatigue. To address this issue, machine vision is employed 

on the CCTV system to perform customer analysis. 

Machine vision is a technology that mimics human sight to observe 

and analyze data with incredible speed and accuracy. It can detect and process 

minute details quickly, making it a valuable tool in various industries. In 

CCTV systems, machine vision technology comprises a camera, software, and 

output (Labudzki, Legutko, and Raos, 2014). 

Human detection, as one of the artificial intelligence techniques 

utilized for customer analysis, involves detecting the location of people in 

images or videos. It is used for a variety of applications, ranging from 

developing marketing strategies to personal security and even pedestrian 

detection in traffic. This technology is highly versatile and useful. In customer 

analysis with machine vision, human detection typically serves as the first 

process in a pipeline, leading to higher-level reasoning modules such as people 

counting, people identification, and gender classification (Davis James and 

Sharma, 2009). 

 

1.2 Importance of the Study 

Customer analytics plays a crucial role in helping retailers gather and analyze 

customer data, allowing them to make informed decisions for their business 
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plans. Without customer analysis, retailers would struggle to deliver relevant 

and personalized offerings to their customers, potentially leading to their 

eventual elimination from the marketplace. Therefore, it is significant for 

retailers to perform customer analysis to gain valuable insights into customers' 

demographics and behavior. By doing so, retailers can build better consumer 

relationships and create immersive shopping environments (Cutitoi, 2022). 

According to research by McKinsey (Palmatier and Martin, 2019), retailers 

that utilize customer analytics outperform their competitors in terms of sales 

growth and gross margins by more than 25%, demonstrating that the 

advantages of customer analysis outweigh the risks. More than 85% of 

organizations claim that extensive use of customer analytics has resulted in 

significant value contribution, including improved in-store shopping 

experiences, lower marketing costs, deeper customer understanding, and 

customer loyalty. 

Traditional retail shops have historically struggled to obtain customer 

information such as interests and demographics compared to online stores. 

Online stores can easily identify customer interests and recommend relevant 

items with the help of AI and big data. Thus, it is important for traditional 

retail shops to keep pace with online stores and improve by quickly analyzing 

customer needs to remain competitive. With the advancement of technology, 

machine vision solves the bottleneck of data collection and enables data-based 

innovations that assist physical retail shops in capturing customer data and 

optimizing behavior patterns (Bratu and Sabau, 2022). Therefore, retailers can 

formulate better business plans and enhance the shopping experience for their 

customers (Mora, Nalbach and Werth, 2019). As a result, retailers are able to 

strengthen their market position and avoid elimination from the marketplace. 

On the other hand, human detection is a crucial component of 

customer analytic systems. It enables businesses to detect the presence of 

humans, followed by implementing people counting, identification of 

individuals, etc. The valuable information such as people flow and customer 

demographic gained by the system will ultimately improve businesses 

performance. The goal of human detection is to enable a computer system to 

accurately locate humans in images or videos while producing as few false 

positives as possible (Davis James and Sharma, 2009). Despite its importance, 
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human detection remains a challenging task for computer systems, as the level 

of accuracy achieved by the human brain is difficult to replicate. To address 

this challenge, numerous algorithms and techniques have been developed, with 

recent attention focused on deep learning for computer vision applications 

(Bam, Choudhary and Bhoir, 2021). The key focus of automated human 

detection is to minimize false detections, in order to increase accuracy for 

customer analysis. 

 

1.3 Problem Statement 

To remain competitive in the market, retail shops must gain insights into their 

target customers, analyze this data, and learn from it. Membership card 

programs and customer surveys are commonly used to extract customer 

information, but these methods are often ineffective due to their slow speed 

and the fact that not every customer is willing to participate. Therefore, the 

easiest and most effective way to extract valuable customer information is 

through CCTV video footage. CCTV cameras can provide vital information 

for customer analysis, such as age, gender, shopping period, frequency of 

visits, customer behavior, and the areas/products that are most popular. 

However, manually analyzing the CCTV footage is not feasible due 

to the huge volume of videos that need to be watched in real-time. Human 

workers cannot keep an eye on all customers at the same time. One possible 

solution is to hire more workers to manually analyze the CCTV footage, but 

this is costly and impractical. Therefore, an automated computer vision 

solution that can perform customer analysis should be implemented. With 

advancements in technology, machine vision and artificial intelligence can be 

used to develop an algorithm that can provide real-time output analysis results. 

While automated computer vision solutions can save costs by replacing human 

workers, they may still face practical challenges such as occlusion by masks, 

variation in pose, and illumination. 

Human detection is a useful technique that serves as the first step in 

identifying all humans in video footage before passing data to other algorithms. 

However, the human detection model may encounter cases where cartoons or 

human-like stickers are mistakenly identified as humans due to similarities in 

structure. Possible scenarios where cartoon stickers appear include anime or 
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cartoon lovers decorating their retail shops with them, bunting banners 

promoting anime movies in front of movie theaters, and so on. False detections 

of cartoons can lead to imperfections in the human detection model, resulting 

in inaccurate customer analysis such as incorrect customer counting and facial 

recognition of cartoons. Furthermore, false detections also consume 

unnecessary algorithm resources. Therefore, a review to address this issue will 

be undertaken. 

 

1.4 Aim and Objectives 

The aim of the project is to develop a computer vision solution that can extract 

valuable information such as customers’ demographic through the CCTV 

videos. The project objectives are: 

1. To address the issue of false detecting cartoons as humans in human 

detection model.   

2. To perform human detection and tracking them to count the flow of 

customer within the retail shop. 

3. To perform customer analysis for recognizing the customers’ faces and 

classify their gender. 

4. To save the customers’ information in a database. 

 

1.5 Scope and Limitation of the Study 

To achieve real-time customer analysis through CCTV videos, it is essential to 

minimize the computational cost of the algorithm to ensure the smooth 

processing of the video, allowing it to be synchronized with real-time events. 

To maintain consistency, only the CPU will be used for running the algorithm, 

while the GPU will be utilized for training the model. However, the project is 

facing challenges in implementing the algorithm in practical situations due to 

various factors, including detecting cartoons as humans, people wearing masks, 

high customer traffic in the store, and varying illumination. As a result, the 

project will prioritize addressing issues such as improving human detection 

accuracy, reduce the false detections of cartoon as humans and improve 

processing video speed within the given time constraints and limitations. 

Window 11, AMD Ryzen 7 5700U with Radeon Graphics @ 1.80 

GHz, 8.0 GB RAM, x64-based processor, Python programming language, 
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Python Integrated Development Environment such as Pycharm, Python 

modules, pretrained model, retrained model and videos will be used to 

proposed the solution.   
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Human Detection 

Human detection is a computer vision technique that involves using algorithms 

to identify and locate all human beings present in an image. Figure 2.1 

provides an overview of the general process of human detection. Initially, the 

camera captures a video sequence that serves as the input for the algorithm. 

Next, object detection occurs, wherein the algorithm locates and identifies 

objects within the video sequence. Subsequently, the algorithm classifies the 

detected objects as either human or non-human (Ansari and Singh, 2021). 

 

 

Figure 2.1: General framework of human detection. (Ansari and Singh, 2021) 

 

According to Ansari and Singh (2021), there are four main types of 

human detection techniques based on different models. The first type is the 

face feature based module, which detects humans by identifying their faces in 

the image. The second type is the motion feature based module, which tracks 

moving pixels in successive frames to detect humans. The third type is the 

body appearance based algorithm, which classifies objects as human by 

analyzing their body shape, curves, and components. Finally, the fourth type is 

the deep learning based technique, which uses the power of graphic processing 

units (GPUs) to perform complex computational calculations and extract 

important features of objects to determine whether they are humans or not. 

 

2.1.1 Face Feature Based 

The face feature based technique can be subdivided into three main methods: 

skin color, face geometry, and face texture. Each of these methods uses 

distinct approaches to detect the human face. 
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2.1.1.1 Skin Color 

The skin color based technique is used to detect a human face by analyzing the 

skin pixels within an image. This algorithm maps every pixel in a color image 

to its corresponding color value and then assigns each pixel an intensity value 

of either '1' to indicate that it is a skin pixel or '0' to indicate that it is not a skin 

pixel, using a threshold value. The color space used plays an important role in 

determining the threshold value. Al-mohair, Mohamad-saleh, and Suandi 

(2013) found that the YIQ color space performs better than other color spaces 

when differentiating between skin and non-skin pixels. Ansari and Singh 

(2021) suggest that using multiple color spaces can yield better results than 

using a single color space for skin detection. Maheswari and Korah (2017) 

also noted that the Cb and Cr components in the YCbCr color space are 

effective in detecting skin pixels, regardless of skin color variation. However, 

skin color based methods still face challenges in dealing with issues such as 

illumination, occlusion, and reflection. 

 

2.1.1.2 Face Geometry  

The face geometry based module uses the Head Curve Geometry technique to 

extract geometric face parameters, including curves, points, and lines, from 

human faces. The algorithm performs point searching to identify various 

points within the image, such as the head point, right neck point, and mean 

point. It then draws curves to connect these points based on the previously 

searched points. According to Wong, et al. (2011), this technique achieves an 

accuracy score of up to 91.4%. However, this method only works well when 

detecting a single human face, and the face geometry-based algorithm still 

struggles when multiple humans are in the same frame. 

 

2.1.1.3 Face Texture  

The face texture based module detects human faces by utilizing spatial and 

textural information. Two techniques used in this module are Viola Jones and 

Local Binary Pattern Histogram (LBPH). The Viola Jones technique extracts 

textural information from the face using haar feature selection, followed by 

Adaboost training and Cascade classifier to improve detection accuracy. On 

the other hand, LBPH evaluates features and creates a histogram based on 
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them to build classifiers for human detection. According to Ahmed, et al. 

(2018), LBPH has a real-time detection speed of 15 fps. However, this method 

has limitations as it is effective only when the frontal face is clearly visible in 

the image. Although the face texture based module is faster, it still lacks 

accuracy. 

 

2.1.2 Motion Feature Based 

A motion feature based module utilizes four main techniques: frame 

differencing, histogram of oriented optical flow (HOOF), space geometry and 

optical flow, and motion vector. All of these techniques detect humans based 

on the concept of moving pixels. 

 

2.1.2.1 Frame Differencing 

Frame differencing techniques include both background subtraction and frame 

differencing methods. According to Piccardi (2004), the background 

subtraction technique is a simple algorithm that searches for moving pixels in 

a video sequence by subtracting the current frame from the background frame. 

Next, the pixels are classified as either moving or foreground pixels using a 

threshold value. Although this technique can detect moving objects, it cannot 

differentiate between humans and animals. The frame differencing technique 

works similarly to the background subtraction technique, but instead subtracts 

the current frame from the previous frame. The limitation of this algorithm is 

that if a moving object stops, it may be recognized as part of the background. 

 

2.1.2.2 Histogram of Oriented Optical Flow (HOOF) 

HOOF is a technique that can efficiently track moving objects (Hsu, Gubbi 

and Palaniswami, 2013). In addition to extracting motion information, HOOF 

produces a histogram derived from optical flow. The classifier is then used to 

determine whether the moving object is human or non-human. Dalal, Triggs, 

and Schmid (2006) suggest that combining visual HOOF with motion HOOF 

produces better accuracy. However, generating a histogram of optical flow 

using HOOF takes time and is therefore not suitable for real-time human 

detection. 
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2.1.2.3 Space Geometry 

Han and Tong (2013) proposed the space geometry technique for detecting 

humans, which uses region segmentation and classification based on optical 

flow and Bandelet transform. However, this algorithm has certain drawbacks 

as its performance can be negatively impacted by factors such as noise and 

varying lighting conditions. 

 

2.1.2.4 Optical Flow and Motion Vector 

The optical flow and motion vector technique is a popular method used for 

real-time video analysis to detect moving objects. Han and Tong (2013) 

explained that this method utilizes both optical flow and motion vector 

estimation to detect and track objects within a video frame sequence. 

 

2.1.3 Body Appearance Based 

The body appearance feature based module can be divided into four main 

methods, namely histogram of oriented gradient (HOG), census transform 

histogram (CENTRIST), edgelet based, and component based. These 

techniques rely on the natural appearance of the human body to extract 

information and detect the presence of humans. 

 

2.1.3.1 Histogram of Oriented Gradient (HOG)  

The HOG algorithm can detect human contours in a video by evaluating 

features and building a classifier through gradient computation, histogram 

generation, and normalization, as proposed by Dalal, Triggs, and Schmid 

(2006). The image is first divided into cells, and the algorithm calculates the 

gradient magnitude and orientation of edges. Based on these values, a 

histogram is generated. To account for variations in lighting conditions, 

normalization is used. 

 

2.1.3.2 Census Transform Histogram (CENTRIST) 

CENTRIST is a technique derived from the traditional Census transform, 

which addresses the limitations of the Census transform, such as incapability 

to match with high dimension sparse space and irregular histogram distribution 

(Chiachia, et al., 2011). CENTRIST is capable of providing better information 
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than the Census transform to detect the presence of humans. Wu, Geyer, and 

Rehg (2011) suggest that the CENTRIST descriptor is a fast and efficient way 

to detect humans, as it can extract human contours at 20 fps at a resolution of 

640 x 480. 

 

2.1.3.3 Edgelet Based 

The Edgelet based method is a robust algorithm that can detect humans 

without being affected by reflections and shadows (Bhuvaneswari and Rauf, 

2009). Wu and Nevatia (2007) suggest that edgelet features are effective in 

representing various body parts such as hands, legs, head, and body, and can 

be used with edgelet-based classifiers to improve human detection accuracy. 

However, this algorithm may not perform well in harsh environments, leading 

to decreased accuracy. 

 

2.1.3.4 Component Based 

Component-based algorithms are specialized in detecting different parts of the 

human body, such as the head, arms, and legs. They can handle variations in 

lighting and occlusion and are view-invariant, meaning that they can detect 

humans from different angles in images (Chakraborty, et al., 2007). However, 

this algorithm comes with a higher computational cost and is time-consuming, 

as it requires the detection of each body component separately. 

 

2.1.4 Deep Learning Based 

The deep learning approach is a modern method used for human detection. It 

utilizes convolutional neural network (CNN) based techniques to extract 

information from images and learn from them. However, to process the deep 

layers of CNN, powerful computational power is required. With the growth of 

GPU technology in recent years, it is now possible to support the large amount 

of computational power needed for this technique and speed up the algorithm. 

Compared to the traditional methods discussed in section 2.1.1, 2.1.2, and 

2.1.3, deep learning based CNN algorithms offer better accuracy for object 

detection in images and have become more popular. There are two subgroups 

of deep learning (CNN) based object detectors: double stage and single stage. 

The double stage detector is a two-stage framework that utilizes region 



11 

proposal network or selective search to extract a set of region proposals first 

before localizing the object’s position and classifying them. The R-CNN series 

family of algorithms is an example of this approach. On the other hand, a 

single stage detector only requires a single step that utilizes a single or 

multilayer neural network to predict the object locations and classify them. 

The YOLO series family and SSD-based algorithms are popular examples of 

this approach. 

 

2.1.4.1 R-CNN Series Family: R-CNN, Fast R-CNN, Faster R-CNN 

Girshick, et al. (2014) proposed a region-based convolutional neural network 

(R-CNN) that utilizes Selective Search to extract 2k regions from the colored 

input image in the first stage. These regions, also known as region proposals, 

are warped to a square-shaped block before being fed into a convolutional 

neural network to generate 4,096 feature vectors. These feature vectors are 

then fed into an SVM classifier to classify the object present within the 

corresponding region proposal and localize the bounding box. Figure 2.2 

provides a visual representation of the general framework of R-CNN. 

According to the authors, R-CNN was initially proposed to address the 

limitations of traditional approaches that select a large number of regions for 

object classification, resulting in time-consuming processing. Although R-

CNN is faster than traditional approaches, it still requires a significant amount 

of time (>10 s) to train the network. Therefore, it is not suitable for real-time 

video implementation. 

 

 

Figure 2.2: General framework of R-CNN. (Ansari and Singh, 2021) 

 

In 2015, Girshick (2015) proposed a new version of R-CNN, called 

Fast R-CNN, which aimed to address several drawbacks in the original R-

CNN framework. Fast R-CNN and R-CNN are similar in many aspects, but in 
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Fast R-CNN, the input colored image is fed directly to the CNN to produce a 

convolutional feature map, instead of feeding the region proposal to CNN in 

R-CNN. The region proposals are then extracted from the convolutional 

feature map and reshaped into fixed size blocks using the ROI pooling layer. 

The fixed size block is fed into a fully connected layer, and the proposed 

region's class and bounding box offset values are predicted from the ROI 

feature vector using the softmax and regression layers. Figure 2.3 illustrates 

the overall algorithm of Fast R-CNN. Compared to R-CNN, Fast R-CNN is 

faster because the convolution operation is performed once per image to 

generate the feature map. However, the selective search algorithm is still time-

consuming in proposing regions, and thus, the performance of Fast R-CNN is 

still considered slow and unsuitable for real-time implementation. 

 

 

Figure 2.3: Overall framework of Fast R-CNN. (Ansari and Singh, 2021) 

 

Both R-CNN and Fast R-CNN use selective search algorithms to 

extract region proposals, which is time-consuming. To address this issue, Ren, 

et al. (2015) proposed an improved framework called Faster R-CNN, which 

replaces selective search with a Region Proposal Network (RPN). Like Fast R-

CNN, the Faster R-CNN inputs the colored image directly to a CNN to 

produce a convolutional feature map. The RPN is then used to extract region 

proposals from the feature map. These proposals are reshaped into fixed-size 

blocks using ROI pooling, and the fixed-size blocks are passed to a fully 

connected layer. Finally, the softmax and regression layers are used to predict 

the class of the proposed region and the offset values for the bounding box. 

Figure 2.4 illustrates the overall workflow of Faster R-CNN. The author 

reports that Faster R-CNN is 10 times faster than Fast R-CNN and 250 times 
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faster than R-CNN. The Faster R-CNN can process images at a speed of 5 fps, 

but it is still not suitable for real-time human detection. Overall, the R-CNN 

family series is more accurate than traditional approaches, but its speed is still 

not sufficient for smooth real-time video processing. 

 

 

Figure 2.4: Overall workflow of Faster R-CNN. (Ansari and Singh, 2021) 

 

2.1.4.2 YOLO (You Only Look Once) Series Family: YOLOv1, YOLOv2, 

YOLOv3, YOLOv4, YOLOv5, YOLOv8 

In 2015, Redmon, et al. (2015) introduced YOLO, a single stage object 

detector that differs from the two-stage approach of the R-CNN family series. 

YOLO relies solely on a fully connected layer to perform all predictions. Once 

the input image is fed into the YOLO algorithm, it is divided into an SxS grid 

where each of the N grids serves as a bounding box responsible for detecting 

and localizing objects within it. Only detections with higher class probability 

values than the predefined threshold are classified to avoid duplicate 

predictions from multiple cells containing the same object with different 

bounding box predictions. Figure 2.5 illustrates the YOLO framework. YOLO 

v1 achieved 57.9% accuracy on the VOC 2012 dataset with a speed of 45 fps, 

according to the authors. 
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Figure 2.5: Overall framework of YOLO. (Ansari and Singh, 2021) 

 

In 2017, Redmon and Farhadi (2017) introduced an improved version 

of YOLO, called YOLO v2 or YOLO 9 000. The algorithm employed 

Darknet-19 as its model backbone and utilized anchor boxes to easily locate 

objects. To increase speed, extra features such as fine-grained features, a high-

resolution classifier, and multiscale training were added. According to the 

authors, YOLO v2 achieved an accuracy of 73.4 mAP on the VOC 2012 

dataset with a speed of 67 fps. 

In 2018, Redmon and Farhadi (2018) further enhanced YOLO with 

YOLO v3, which uses DarkNet-53 as its model backbone to replace DarkNet-

19 in YOLO v2. This architecture is more complex and accurate for extracting 

tiny features. The algorithm employs multiscale prediction to generate finely-

tuned information from feature maps. Logistic regression is then used to assign 

a score and binary cross-entropy loss is used to classify the object. YOLO v3 

is better at detecting smaller objects than YOLO v1 and YOLO v2. According 

to the authors, YOLO v3 achieved a 28.2 mAP at 45 fps when tested on the 

COCO dataset. 

In 2020, Bochkovskiy, et al. (2020) presented YOLOv4, which is not 

merely a new algorithm but rather a comprehensive investigation into ways of 

enhancing YOLO-style object detectors. The study includes extensive 

experiments involving hyperparameter tuning, resulting in various best 

practices for selecting the CNN architecture, activation functions, loss 

functions, data augmentation techniques, regularization methods, and 

normalization approaches. Additionally, the authors offer a comparison of 
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hyperparameters related to the training algorithm. As a result, the YOLOv4 

implementation achieved some crucial yet gradual enhancements in training 

time, accuracy, and inference time. 

In the same year, Ultralytics LLC introduced the YOLOv5 model as a 

novel approach to object detection (Ultralytics, 2020). YOLOv5 utilizes 

PyTorch and incorporates CSPDarknet53 as its backbone. The use of 

CSPDarknet53 enhances accuracy by integrating gradient changes into the 

feature map, thus resolving the redundancy of gradient information found in 

wide backbones. As a result, the model's inference speed is improved, and the 

number of parameters is reduced, leading to a smaller model size. YOLOv5 

also implements PANet, a path aggregation network that employs a feature 

pyramid network (FPN) with multiple bottom-up and top-down layers to 

enhance information flow. This improves the propagation of low-level features 

in the model and enhances the localization accuracy of detected objects, 

particularly at lower levels. In addition, the head of YOLOv5 has the same 

structure as that of YOLOv3, producing three separate feature maps to enable 

multi-scale prediction. The image is initially fed into the CSPDarknet53 

network, which extracts image features, and then into PANet for feature fusion. 

Finally, the YOLO layer generates the outputs, as shown in Figure 2.6. 

 

 

Figure 2.6: Network architecture of YOLOv5. (Xu, et al., 2021) 
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Ultralytics, the company behind the development of YOLOv5, recently 

released YOLOv8 in January 2023 (Ultralytics, 2023). YOLOv8 is the newest 

version of the YOLO series of detection models, which are recognized for 

their ability to perform joint detection and segmentation. Like YOLOv5, 

YOLOv8 features a backbone, head, and neck in its architecture. YOLOv8 

boasts an upgraded architecture, improved convolutional layers in the 

backbone, and a more advanced detection head, making it an ideal choice for 

real-time object detection. It also supports the latest computer vision 

algorithms, such as instance segmentation, enabling the detection of multiple 

objects in images or videos. The model utilizes the faster and more accurate 

Darknet-53 backbone network, which improves its precision and speed 

compared to the previous YOLO network. YOLOv8 employs an anchor-free 

detection head to predict bounding boxes. The model is more effective than its 

predecessors because of its larger feature map and enhanced convolutional 

network. Additionally, YOLOv8 incorporates feature pyramid networks to 

recognize objects of varying sizes. The model also has a user-friendly API, 

simplifying its implementation in various applications (Aboah, et al., 2023). 

 

2.1.4.3 SSD (Single Shot Detector) 

Prior to 2015, Faster R-CNN was the algorithm that provided high accuracy 

for object detection, but it was not fast enough for real-time processing. In 

2015, Liu, et al. (2015) proposed a new algorithm called SSD, which 

eliminated the use of region proposal networks to speed up the object detection 

process. Instead, SSD utilized default boxes and multi-scale features to recover 

the drop in accuracy caused by the elimination of RPN. These improvements 

allowed SSD to process the algorithm with lower resolution images, further 

enhancing its speed. The architecture of SSD consists of a base network, extra 

feature layers, and prediction layers, as illustrated in Figure 2.7. The base 

network of SSD uses VGG-16 as its model backbone, and extra feature layers 

extract useful information effectively at multiscale and shrink the input size. 

Lastly, the prediction layer predicts the classification scores for bounding 

boxes. 
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Figure 2.7: Architecture of SSD. (Ansari and Singh, 2021) 

 

Although the SSD algorithm is designed to balance the speed of 

YOLO and the accuracy of R-CNN, it may perform slowly on devices that 

lack a GPU. This makes it unsuitable for real-time applications that require 

fast response to constantly changing environments. 

 

2.1.4.4 SSDLITE 

In 2018, Sandler, et al. (2018) proposed a method which is SSDLite. SSDLite 

is a variant of SSD that uses separable convolutions, consisting of Depthwise 

and 1 × 1 projection, to replace all of the regular convolutions in the detection 

layer. This modification reduces the number of parameters and computational 

cost of the model, making it more suitable for deployment on embedded 

devices compared to the conventional SSD model. 

 

2.1.4.5 MobileNet SSD 

Howard, et al. (2017) proposed MobileNet SSD, a lightweight CNN network 

that uses depthwise convolution instead of standard convolution to 

significantly reduce the required number of parameters in SSD. According to 

Gao, Zhai, and Guo (2021), MobileNet SSD achieves accuracy comparable to 

that of SSD, with only a 0.9% decrease when tested on the ImageNet dataset. 

However, the computational cost of MobileNet SSD is reduced by 27 times 

and the number of parameters is reduced by 33 times, making it suitable for 

real-time video processing without the need for GPU acceleration. 
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2.1.4.6 RetinaNet 

Lin, et al. (2018) introduced the RetinaNet network in 2018 in their paper 

"Focal Loss for Dense Object Detection". This single-stage network is based 

on the ConvNext backbone network and generates a feature pyramid using the 

feature pyramid network (FPN) backbone, as illustrated in Figure 2.8. By 

using FPN, the network can create a rich and multi-scale convolutional feature 

pyramid, simplifying the network design and allowing for greater focus on the 

newly proposed focal loss. This focal loss reduces the accuracy gap between 

single-stage and two-stage networks, while maintaining high speed (Lechen, 

2022). 

 

 

Figure 2.8: Convolutional feature pyramid based on backbone network 

ConvNext. (Lechen, 2022) 

 

2.1.4.7 Mask R-CNN  

Mask R-CNN is an extension of the Faster R-CNN approach that adds a 

function for predicting instance masks. While Faster R-CNN focuses on 

bounding box detection, Mask R-CNN generates more detailed spatial 

information about detected objects by predicting masks at the pixel level. This 

is achieved through the addition of a fully connected convolutional network. 

When a region of interest (RoI) is passed through the post-processing branch, 

Mask R-CNN produces both bounding boxes and masks for each instance, as 

opposed to compressing the feature information into vectors as in the case of 

bounding box features (He, et al., 2020). 

 

2.1.4.8 FCOS 

Recent research has introduced a novel approach to object detection, FCOS, 

which adopts a per-pixel prediction strategy similar to semantic segmentation. 
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Unlike traditional methods, FCOS eliminates the need for anchor boxes and 

proposals. By removing anchor boxes, FCOS avoids complex calculations 

associated with overlapping boxes during training and eliminates anchor box 

hyper-parameters, which can negatively impact detection performance. FCOS 

simplifies the detection process, requiring only non-maximum suppression 

(NMS) as post-processing. However, the current version of FCOS is limited 

by its large, complex network structure, which hinders both efficiency and 

accuracy. Improvements are needed to address these challenges (Tian, et al., 

2019). 

 

2.2 Human Tracking 

Human detection is a useful technique to identify humans in a video, but it can 

be computationally expensive to perform in every frame. To address this issue, 

human detection is typically performed at regular intervals, with human 

tracking used to identify and track humans in subsequent frames. This 

technique helps to save computational resources and increase the speed of 

video processing. While many robust human tracking methods have been 

proposed, including MILTrack, GBDL, FragTrack and IVT, these techniques 

often involve complex algorithms that limit processing speed to 25 to 30 

frames per second, making them unsuitable for real-time applications. 

To overcome these limitations, Bolme, et al. (2010) proposed the 

Minimum Output Sum of Square Error (MOSSE) algorithm, which uses 

correlation filters to track objects in a video. MOSSE initializes the tracked 

target with a small tracking window and then uses correlation filters to track 

the target over the search window in the following frame. The target's new 

position is indicated by the maximum value in the correlation output. This 

method is robust enough to handle variation in pose, illumination, and non-

rigid transformation. Moreover, MOSSE uses the peak-to-sidelobe ratio (PSR) 

to measure the correlation peak, which helps to track occluded or missing 

humans when they reappear in the video frame with similar appearances. 

According to Bolme, et al., MOSSE has been tested on various datasets, such 

as car4, car11, davidin 300, dudek, fish, sylv, and trellis70, and has shown 

excellent performance in locating even the most challenging parts of the video. 

The MOSSE tracker is 20 times faster than traditional methods and can 
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process video at a speed of 669 frames per second. A part of the results is 

illustrated in Figure 2.9, demonstrating how the MOSSE tracker can track 

humans even in challenging situations. 

 

 

Figure 2.9: Demonstration of MOSSE tracker. (Bolme, et al., 2010) 

  

In 2012, Henriques, et al. (2012) proposed the CSK tracker, which 

has a similar baseline to the MOSSE algorithm-based tracker. The CSK 

tracker works by training a classifier using the kernelized least-squares of the 

target appearance. Like the MOSSE tracker, the CSK tracker can handle 

variations in illumination, pose, and occlusion, among others. However, both 

trackers have limitations when it comes to handling frames that involve 

significant scale variations. In 2014, Danelljan, et al. (2014) proposed an 

accurate scale estimation algorithm for human tracking. The algorithm is 

based on the MOSSE tracker's discriminative correlation filters and trains the 

classifier on a scale pyramid to estimate the target scale. Once the ideal 

translation has been found, the method can estimate the target scale 

independently. As the scale estimation algorithm is independent, it can be 

incorporated into other tracking frameworks that lack scale variation 

techniques. According to the author, the method can track the object at a frame 

rate 25 times faster. 
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2.3 Facial Recognition 

A face recognition system is composed of three main steps: face detection, 

feature extraction, and face recognition. In the first step, the face detection 

algorithm determines if a face is present in the image and its location is 

segmented out. Then, the segmented face goes through feature extraction to 

extract unique characteristics using a feature vector. Finally, verification or 

identification is used to match the extracted features with a database to 

recognize the face (Jayaraman, et al., 2020). 

Despite advancements in face recognition technology, it remains a 

challenging task as no system can recognize all faces perfectly. This is due to 

various factors that affect and degrade the accuracy of the algorithm, which 

can be classified as intrinsic and extrinsic factors. Intrinsic factors are those 

that depend on the physical state of the face, such as facial expression and age. 

Facial expressions are so unique that they can change the geometry of the face, 

making it difficult for the face recognition system to identify the same person. 

As for age, facial appearance can vary with aging. On the other hand, extrinsic 

factors are external factors that change the appearance of the face when the 

image is captured, such as illumination, noise, occlusion, pose, and resolution. 

Variations in illumination can affect the accuracy of the face recognition 

system as it may extract features differently under different lighting conditions. 

Figure 2.10 shows an example of a person captured under different lighting 

conditions. Noise in digital images, although sometimes minimal, can lead to 

poor detection. Occlusion occurs when the face is covered by something like a 

mask or sunglasses, which can affect the system's ability to work properly. 

Pose variation can make it difficult for the camera to capture certain parts of 

the face, leading to faulty results. Lastly, low-resolution images are difficult to 

compare with high-resolution images in the database (Anwarul and Dahiya, 

2020). 

 

 

Figure 2.10: Face image under lightning variation. (Adjabi, et al., 2020) 
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Face detection is a crucial step in locating and identifying faces 

within an image. In 2000, Viola and Jones (2004) introduced a method for face 

detection, which was the first to achieve satisfactory results at that time. The 

Viola Jones face detector is based on three main concepts, namely the integral 

image, classifier learning using AdaBoost, and an attentional cascade 

structure. These ideas enable the algorithm to run in real-time by quickly 

computing Haar-like features using the integral image, finding accurate 

hypotheses using AdaBoost, and rejecting negative sub-windows with the 

attentional cascade. However, Viola Jones has some limitations, as it is not 

suitable for detecting frontal and wild faces in a 24x24 image. To address 

these issues, several methods such as Histogram of Gradient (HOG), Scale 

Invariant and Feature Transform (SIFT), and Aggregated Channel Features 

(ACF) have been proposed. In 2009, King (2009) introduced Dlib, a popular 

method that utilizes a support vector machine (SVM) as a classifier to enhance 

the robustness of face detection. In 2016, Liao, Jain, and Li (2016) proposed 

Normalised Pixel Differencing (NPH) to distinguish between pixel intensities, 

which can be used in unconstrained face detectors.  

There have been numerous feature extraction and face recognition 

techniques proposed over the years. In 1964, Bledsoe (1964), an American 

researcher, introduced a semi-automated method for face recognition that 

required operators to manually enter twenty computer measures, such as the 

size of the eyes and mouth. In 1977, the method was improved by adding 

twenty-one additional markers, such as hair color and lip width. In 1991, Turk 

and Pentland (1991) proposed the first successful facial recognition 

technology called Principal Component Analysis (PCA). When a face is 

detected and cropped, the resulting 2D-face image matrix is converted into a 

1D vector and fed into a data matrix to compute the covariance matrix. The 

face is then represented as eigenpictures, which constitute the best coordinate 

system of the face. The Karhunen-Love transform is then applied to the 

cropped face images to represent them as a vector and compute the mean face 

vector for each face. Finally, the eigenvectors, which are the primary 

components that make up the facial image, are calculated. The PCA has been 

tested on a dataset and achieved an accuracy range of 64% while 
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accommodating varying illumination, size, and orientation (Turk and Pentland, 

1991). 

In 1997, Belhumeur, Hespanha, and Kriegman (1997) introduced a 

3D linear subspace method to address the issue of lighting conditions and 

changes in facial expressions. The method employs a projection technique to 

generate isolated classes in a low-dimensional subspace under different 

illumination and facial expression variations. In comparison to PCA, the 

method produced a lower error rate when tested on Harvard and Yale Face 

databases. Another method proposed in the same year was by Wiskott, et al., 

(1997) which employed elastic bunch graph matching based on Dynamic Link 

Structures. This method represents the human face using fiducial points and 

creates nodes for these points. Corresponding nodes are then joined through an 

edge to generate a face bunch graph as shown in Figure 2.11. The method 

obtained an accuracy of 89% when tested on the FERET database for manual 

positioning. In 1999, Li and Yang (1999) introduced a method to overcome the 

variability in light. The method used three images to calculate the covariance 

matrix obtained under various illumination conditions.   

 

 

Figure 2.11: Face bunch graph. (Adjabi, et al., 2020) 

 

In 2002, Bartlett, Movellan, and Sejnowski (2002) introduced 

independent component analysis (ICA) as a method for pattern recognition 

that utilizes high-order statistics derived from the high-arrange relationship 

among pixels. ICA has two different architectures. The first architecture treats 

the image as a set of random variables, and the pixels are the results. The 

second architecture treats the pixels as random variables, and the images are 

the results. The first architecture produces spatially local basis pictures for the 

faces, while the second architecture defines a fractional facial code. ICA 
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outperforms PCA, achieving an accuracy of 86% when tested on FERET 

databases. 

In 2002, Ojala, Pietikäinen, and Mäenpää (2002) introduced local 

binary patterns (LBP), a method that can represent facial images using local 

texture descriptors based on the micro-patterns of the face. LBP converts each 

image pixel into a corresponding grayscale value and assigns a binary value to 

each pixel by applying a threshold on its 3x3 neighborhood. Two years later, 

Ahonen, Hadid, and Pietikäinen (2004) improved LBP by combining its 

features using a histogram as a texture descriptor. They also introduced 

weights to certain facial features such as the eyes, which were deemed more 

important for face recognition. The weights were assigned based on the 

significance of the information in each region. Figure 2.12 illustrates the 

overview of the LBP method. LBP achieved an accuracy of 95% when tested 

on the FERET database.  

 

 

Figure 2.12: Example calculation of LBP. (Adjabi, et al., 2020)  

 

In 2002, Kim, Jung and Kim (2002) proposed kernel PCA (KPCA), 

which utilizes non-linear mapping to convert the input image into a feature 

space and applies PCA to it. This method generates a higher correlation 

between input pixels, thereby enhancing the analysis of facial images. The 

support vector machine (SVM) is then used to recognize the face based on the 

obtained features. KPCA has been proven to have better accuracy than PCA, 

with a recorded accuracy of 83.3% when tested on the Olivetti Research 
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Laboratory (ORL) database. In 2004, Yang, et al. (2004) proposed 2D-image 

principal component analysis (2D-IPCA), which differs from PCA in that the 

2D-face image matrix is not transformed into a 1D-vector. Instead, the original 

image matrices are directly used to build the covariance matrix. Once the 

feature vector for an image has been created, a nearest neighbor classifier is 

used to classify the image. According to experiments, 2D-IPCA achieved an 

accuracy of 84% on the ORL, Yale, and AR datasets, which is better than both 

PCA and KPCA.  

In 2005, Dalal and Triggs (2005) proposed the Histogram of Oriented 

Gradients (HOG) as a face recognition method that is invariant to scaling and 

2D rotation. This method segments the image into small cells and computes 

the histogram of edge orientations for each cell. The final HOG descriptor is 

represented by normalized histogram counts. HOG achieves an accuracy of 

around 95.5% when tested on the FERET database. In 2010, Wang, Jiang, and 

Li (2010) proposed linear techniques to extract features for face recognition, 

specifically the Discrete Cosine Transform (DCT) and the Discrete Wavelet 

Transform (DWT), which are typically used for feature selection and image 

compression. The facial image is first decomposed using 2D-DWT, followed 

by 2D-DCT to calculate the low-frequency image. Finally, the DCT 

coefficients are used for matching. The authors claimed that DCT and DWT 

showed better results compared to PCA when tested on ORL databases. 

In 2013, Benzaoui and Boukrouche (2013) proposed a one-

dimensional local binary pattern (1DLBP) for face recognition, which involves 

five main steps illustrated in Figure 2.13. Firstly, the input image was 

partitioned into multiple blocks of equal size. Next, each block was projected 

onto a one-dimensional space vertically. The projected block was then 

processed by the 1DLBP descriptor. Furthermore, a global vector was 

generated by combining the vectors produced by each block. Lastly, the global 

vector was reorganized using PCA to reduce its dimensionality while retaining 

relevant information. The similarity between faces was calculated using the 

Chi-square distance. When tested on an AR database, the method achieved an 

accuracy of 96.9%.   



26 

 

Figure 2.13: Steps of 1DLBP. (Adjabi, et al., 2020) 

 

In 2014, Taigman, et al. (2014) proposed DeepFace, an initial deep 

learning architecture that utilizes a 3D shape model for face alignment. The 

method involves a 9-layered convolutional neural network that derives facial 

representation. The last two layers of the architecture are fully connected 

layers, whose output passes to the softmax function for classifying K number 

of classes. According to the experiment, DeepFace achieves an accuracy of 

97.35% when tested on the LFW database. In 2015, Schroff, Kalenichenko, 

and Philbin (2015) suggested FaceNet, a model from Google that uses 128-

dimensional representations to represent face features. FaceNet applies deep 

CNN to train 200 million facial images using the triplet loss function in the 

last layer. The triplet comprises two facial images of the same person and one 

facial image of another person. The algorithm then adjusts the weights of the 

neural network such that the loss for the same face is minimal and higher from 

another different face. Therefore, the 128-dimensional representations for the 

same face are closest.  

In 2015, Abhishree, et al. (2015) proposed the use of Gabor filters 

(GFs) to enhance the functionality of face recognition systems by extracting 

features. The GFs utilize the orientation, frequency, and size of images 

through the Gaussian window to capture the facial characteristics. Aligned 

facial features at specific angles are then processed using GFs. A feature 

selection optimization technique is employed to identify the best feature space. 

The method has demonstrated good performance in dealing with challenges 



27 

such as pose variations, illumination changes, and expression variations. 

Experimental results showed its effectiveness when tested on the ORL and 

FERET databases. 

In 2018, Wu, et al. (2018) proposed a light CNN framework that 

utilizes large amounts of data with noisy labels to learn face representation. 

The framework introduces the Max- Feature Map (MPM) as a maxout 

activation to replace ReLU, which is used to separate the noisy labels from 

informative labels. To reduce computational costs, three networks are 

introduced to decrease parameter numbers. The method achieves an accuracy 

of 97.50% when tested on the LFW database. In 2020, Ling, et al. (2020) 

suggested an attention-based neural network (ACNN) for embedding 

discriminative facial features. The method aims to study global feature 

relationships of aligned facial images and eliminate unnecessary extra 

information. The attention module comprises two building blocks, namely, the 

spatial attention block and channel attention block.  

 

2.4 Gender Classification 

A gender classification system is utilized to identify the gender of a face as 

male or female. Determining the gender at the initial stage can help reduce the 

search time for recognized faces in the database by half, assuming an equal 

number of males and females in the database (Rai and Khanna, 2012). Over 

the past few decades, various studies have been conducted on this topic, and 

the approaches for gender classification can be categorized into two types: 

geometric-based and appearance-based methods. 

The geometric-based approach for gender classification is based on 

marking significant points on the face, known as facial landmarks. This 

approach utilizes only the geometric relationship between these points to 

perform gender classification (Ng, Tay, and Goi, 2015). In 1993, Brunelli and 

Poggio (1993) proposed a method that trains a hyper-function network 

classifier using 18 point-to-point distances. In 1997, Fellous (1997) proposed a 

semi-automated method that required human operators to manually select 40 

points from the facial image to calculate 22 horizontal and vertical fiducial 

distances. Gender can be classified by deriving the five dimensions using 

discriminant analysis. In 2008, Xu, Lu, and Shi (2008) proposed the Active 
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Appearance Model (AAM), which generates 3403 geometry features from 83 

landmarks on the face. However, only the ten most important features are 

chosen for gender classification after normalization. The 83 landmarks applied 

to the face image are shown in Figure 2.14.  

 

 

Figure 2.14: Example of landmarks applied. (Rai and Khanna, 2012) 

 

The appearance-based approach treats an image as a high dimensional 

vector and extracts useful features from its statistical data, without considering 

the subject matter of the image. This method is generally quicker than the 

geometric-based approach (Rai and Khanna, 2012). In 1991, Golomb, 

Lawrence, and Sejnowski (1991) proposed a method that uses a multi-layer 

neural network to train face images and classify gender. In 1995, Wiskott, et al. 

(1995) represented face images as graphs with topographical labels and 

regional templates, using a similar function to perform comparisons to 

recognize faces and classify gender. In 2002, Moghaddam and Yang (2002) 

used SVM directly on image intensities for gender classification. The 

AdaBoost classifier was also used to replace SVM for the same purpose. 

In 2007, Lian and Lu (2007) proposed the use of Local Binary Pattern 

(LBP) to extract facial features and Support Vector Machines (SVM) for 

gender classification. This approach achieved an accuracy of 94.81% as 

reported by Shan in 2012. In 2008, Cao, et al. (2008) introduced a part-based 

gender recognition (PBGR) method that used full body images, including front 

or back view images, to classify gender. This was the first method to utilize 
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static human body images for gender recognition, achieving an accuracy rate 

of 75%. Yuan, Pang and Li (2010) proposed a method that used footwear 

appearance for gender classification in 2010. The approach employed 

Histogram of Oriented Gradients (HOG) to represent the footwear image and 

non-linear SVM for gender classification. The method achieved an accuracy 

rate of 85.49%. 

In 2010, Jabid, Kabir, and Chae (2010) proposed a method called 

Local Directional Pattern (PCD), which acts as a texture descriptor to 

represent facial images and classify gender. This approach divides the face 

area into small regions and applies LDP to extract features into histograms, 

which are combined into a single vector for efficient representation of the face 

image. In the same year, Scale Invariant Feature Transform (SIFT) was 

introduced. This technique derives feature descriptors from important image 

points, as shown in Figure 2.15. SIFT has the advantage of being insensitive to 

illumination, image rotation, and scaling, allowing it to extract features from 

images captured from different views. Wang, et al. (2010) utilized SIFT 

descriptors and combined them with AdaBoost to classify gender.  

 

 

Figure 2.15: SIFT key points. (Ng, Tay and Goi, 2015) 

 

In 2012, Basha and Jahangeer (2012) suggested the use of continuous 

wavelet transform to extract useful features from images and linear kernel 

SVM to classify gender. Also in the same year, Won, et al. (2012) proposed a 

motion-based method that uses machine learning and gestures obtained from 

Microsoft Kinect to recognize gender. The results of the method showed an 
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accuracy of 83%, but it requires a significant amount of computational 

resources compared to other methods because it needs image sequencing to 

record movements, which takes approximately 10 seconds. In 2015, Linder, 

Wehner, and Arras (2015) proposed a depth-based tessellation learning 

strategy that can learn the best selection and scale of a set of simple point 

cloud characteristics, achieving an accuracy of 90%. 

In 2015, Levi and Hassncer (2015) proposed a simple convolutional 

neural network architecture for gender classification. This method is able to 

work effectively even with a limited amount of training data. The method 

consists of three convolutional neural networks and two fully connected 

layers, as shown in Figure 2.16. Prior to entering the neural network, the input 

image is scaled to 256 x 256 and cropped into 227 x 227. The first 

convolutional layer comprises 96 filters of 3x7x7 pixels, a ReLU operator, and 

a max-pooling of 3x3. The second and third layers are similar, except that the 

second layer consists of 256 filters of 96x7x7 pixels and the third layer 

consists of 384 filters of 256x3x3 pixels. Next, the output goes through two 

fully connected layers, each with 512 neurons, a ReLU operator, and a dropout 

layer. Finally, the output is fed to the softmax layer to generate probability 

scores and classify the gender. According to the authors, the method achieved 

an accuracy of 86.8% when tested on the Adience benchmark. This accuracy is 

considered high in real-world applications, as the Adience benchmark is 

designed to capture extreme variations in illumination conditions, head pose, 

and other factors. 

 

 

Figure 2.16: CNN architecture. (Levi and Hassncer, 2015) 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Improvement of Human Detection  

Figure 3.1 illustrates the general steps for improving human detection model to 

address the issue of identifying cartoons as humans.  

 

Figure 3.1: General steps for improving human detection model. 
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3.1.1 Testing Dataset 

The testing dataset was composed of 300 human images and 300 cartoon 

images. Each set of 300 images contained only one type of content, either 

human or cartoon, with no mixed images. The human images included only 

real humans and no cartoons, while the cartoon images contained only 

animated characters and no real humans. The human images were extracted 

from the Internet and various human datasets, while cartoon images were 

sourced from the iCartoonFace dataset available on Github (luxiangju, 2021). 

A portion of both the human and cartoon testing datasets was depicted in 

Figure 3.2 (a) and (b) respectively. 

 

    

Figure 3.2 (a)    Figure 3.2 (b) 

Figure 3.2: Portion of the human and cartoon testing dataset. 

 

The 300 human images contained a total of 427 instances of humans, 

while the 300 cartoon images contained 515 instances of cartoons. However, 

instances that appeared very small or where only a portion of the body was 

visible in the image were excluded from this count (427 instances and 515 

instances). The excluded instances would not have affected the result of the 

detection model. This approach ensured a fair comparison of the detection 

models, as these excluded instances were considered as difficult cases to detect. 

For example, in Figure 3.3 (a) and (b), only one human and one cartoon 

respectively, were counted as instances in the image using a red bounding box. 

The humans and cartoons that were excluded from the count of instances were 

shown using a green bounding box, for illustration purposes.  
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Figure 3.3 (a)    Figure 3.3 (b) 

Figure 3.3: Examples of counted instances and excluded instances. 

 

The ratio of the human images to cartoon images was 1: 1.21, which 

translated to a percentage distribution of 45.30 % and 54.70 % respectively.  

 

3.1.2 Pretrained Object Detection Models 

The pretrained object detection models must include human as one of their 

pretrained classes, so that the model could be utilized in the project to detect 

humans. The list of pretrained networks utilized to detect humans included 

models from YOLO family, and models that utilize PyTorch, TensorFlow 1.0, 

Caffe, OpenCV as backends to run respectively.   

The YOLO family models included YOLOv3, YOLOv4, YOLOv5n, 

YOLOv5s, YOLOv5m, YOLOv8n, YOLOv8s and YOLOv8m. For YOLOv5 

and YOLOv8 series, there are five standard variants: nano model (n), small 

model (s), medium model (m), large model (l) and xlarge model (x). As the 

model size increases from the n model to the x model, the accuracy improves 

but the inference speed slows down. Figure 3.4 illustrates the details of the 

YOLOv5 variant (Ultralytics, 2020).     

 

 

Figure 3.4: Details of YOLOv5 variant. (Ultralytics, 2020) 
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The n, s, and m models for YOLOv5 and YOLOv8 were included in 

the testing list, while the l and xl models were excluded due to their long 

inference time, which was not practical for real-life implementation without a 

GPU. Other models that were utilized included frcnn-resnet, retinanet, frcnn-

mobilenet, ssd_vgg16, ssdlite320_mobilenet_v3, fcos-resnet, maskrcnn-resnet, 

and keypointrcnn-resnet, which use pytorch as the backend, and frcnn-

inception_v2, maskrcnn-inception_v2, ssd-inception_v2, ssdlite_mobilenet_v2, 

and ssd_mobilenet_v2, which use tensorflow as the backend. Additionally, 

mobilenet-ssd which uses Caffe, and HOG method which is built-in in the 

opencv module, were also included. Table 3.1 provides a full list of the 

pretrained detection models included in the project. 

 

Table 3.1: List of pretrained detection models used for human detection. 

No Pretrained Model 

1 YOLOv3 

2 YOLOv4 

3 YOLOv5n 

4 YOLOv5s 

5 YOLOv5m 

6 YOLOv8n 

7 YOLOv8s 

8 YOLOv8m 

9 Mobilenet ssd 

10 HOG 

11 frcnn-resnet 

12 retinanet 

13 frcnn-mobilenet 

14 ssd_vgg16 

15 ssdlite320_mobilenet_v3 

16 fcos-resnet 

17 maskrcnn-resnet 

18 keypointrcnn-resnet 

19 frcnn-inception_v2 

20 maskrcnn-inception_v2 

21 ssd-inception_v2 

22 ssdlite_mobilenet_v2 

23 ssd_mobilenet_v2 
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3.1.3 Evaluation Metrics 

This section details the metrics that were used to assess the performance of 

human detection models. To evaluate the human detection task, various 

metrics were adopted from the traditional classification problem, including 

accuracy, precision, recall, F1 score (a harmonic mean of precision and recall), 

false detection rate and confusion matrix (Gonealves, et al., 2021). In addition, 

the project also employed metrics such as parameters and model size. Several 

fundamental concepts for evaluating performance were declared:  

 

True Positive (TP): defines the correct prediction which matches the ground 

truth.  

False Positive (FP): defines the wrong detection which does not matches the 

ground truth.  

False Negative (FN): defines ground truth is not detected, resulting in a 

negative prediction that should have been positive.  

True Negative (TN): defines the prediction is negative and the ground truth is 

negative.      

 

Accuracy: Measure the correct predictions over all the number of predictions.  

 

      Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁 
                                       (3.1)  

 

Precision: Measure how accurate the predictions are, finds the percentage of 

correct predictions over all positive predictions, the equation is given by as:  

 

  Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃 
                                              (3.2) 

 

Recall: Measure how good the model finding all the ground truth, the equation 

is given as:  

 

   Recall =  
𝑇𝑃

𝑇𝑃+𝐹𝑁 
                                                (3.3) 
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F1 score: Measure the harmonic mean between precision and recall, the 

equation is given as: 

 

     F1 score = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙 
                                     (3.4)  

 

Intersection over Union (IoU): It is used to measure the accuracy of the 

bounding box, depends on the similarity between the predicted bounding box 

and the ground truth bounding boxes. It is also known as Jaccard Index, the 

equation is given as below:                  

 

IoU = 
𝑎𝑟𝑒𝑎 (𝑏𝑜𝑥 (𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ) ∩  𝑏𝑜𝑥 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡))

𝑎𝑟𝑒𝑎 (𝑏𝑜𝑥 (𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ) ∪  𝑏𝑜𝑥 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡))
                      (3.5)  
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3.1.4 TP, FP and FN of Human 

 

Figure 3.5: Steps to acquire TP, FP and FN of human. 
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Each pretrained model was tested on 300 human images. To obtain accuracy, 

precision, recall, and F1 score of the human class, it was necessary to 

determine the total number of true positive, false negative, and false positive 

cases. Firstly, the input image was loaded into the pretrained model to obtain 

the detection results. To ensure that the detection results only contained human 

predictions, irrelevant predictions that based on other classes were filtered out. 

Next, the filtered detection results had to pass through a confidence check with 

a threshold of 0.5 score to filter out weak detections. 

The remaining detection results were human predictions that 

composed a list of predicted bounding boxes. For each of the predicted 

bounding boxes, it was compared with the ground truth bounding boxes to 

obtain the IoU score. For the highest IoU score in the comparison, if its IoU 

score is greater than 0.5 threshold, the predicted bounding box was considered 

a match with the ground truth bounding box. Since the criteria of 0.5 IoU score 

was met, the predicted bounding box was considered a true positive. The 

predicted bounding boxes and ground truth bounding boxes that had not match 

yet were further compared to find a match, provided they met the IoU 

threshold of 0.5. In the end of comparison, if there was ground truth bounding 

box that did not find a match with the predicted bounding box, it meant the 

ground truth was not detected. Hence, it was considered a false negative. On 

the other hand, the predicted bounding boxes that did not have a match with 

the ground truth were considered extra boxes predicted by the model. However, 

the extra bounding boxes would not directly be considered as false positive. 

This wa because, in the testing dataset, humans that appeared very tiny or had 

only a partial body view in the image were not considered as instances. 

However, some robust pretrained models could detect these difficult cases. 

Therefore, the extra predicted bounding boxes were drawn on the image and 

saved to a file location for manual checking of the false positive cases. Only 

the extra predicted bounding boxes that were totally unrelated to humans were 

considered false positives. 

The process was repeated for all 300 images to obtain the total 

number of true positive, false negative, and false positive cases. The results 

were then used to calculate the accuracy, precision, recall, and F1 score using 

the equations mentioned in section 3.1.3.  
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3.1.5  False Detection of Cartoons as Humans 

 

Figure 3.6: Steps to acquire false detection of cartoons as humans. 

 

Each pretrained model was tested on 300 cartoon images to obtain the total 

number of false detections where the algorithm predicted cartoons as humans. 

First, the image was loaded into the pretrained algorithm to obtain the 

predicted result. The prediction result went through class filtering and 

confidence checks to ensure the filtered prediction result consisted of predicted 

humans only, with a minimum confidence threshold of 0.5. The filtered 
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prediction result consisted of a list of predicted bounding boxes. The predicted 

bounding boxes were compared with each of the ground truth bounding boxes 

to obtain the IoU score. For the highest IoU score with the condition that met 

the minimum IoU threshold of 0.5, it meant the predicted bounding box 

matched the ground truth bounding box. Note that the predicted bounding 

boxes were the human prediction whereas the ground truth bounding boxes 

were the cartoon instance. Thus, if there was a match between the predicted 

bounding box with the ground truth bounding box, it was considered a false 

detection. The predicted bounding boxes and ground truth bounding boxes that 

had not match yet were further compared to find a match, provided they met 

the IoU threshold of 0.5. Since this section only calculated false detections, the 

remaining ground truth bounding boxes and extra predicted bounding boxes 

that contribute to false negatives and false positives were ignored. This was to 

ensure that false detections consisted of predictions that truly detected the 

cartoon as a human. The process was repeated for 300 cartoon images to 

obtain the total number of false detections.  
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3.1.6 Model Training 

Figure 3.7 illustrates the steps to perform model retraining.  

 

Figure 3.7: Steps for retraining a model. 

 

The retrained model included YOLOv5 series models, YOLOv8 series models 

and Mobilenet SSD, all of which were trained as two-class models 

distinguishing between humans and cartoons. To begin, a training dataset with 

two classes: human and cartoon was prepared. The human dataset was a 
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combination of the VOC dataset and a random pedestrian dataset that 

extracted from Roboflow platform (Dwyer and Nelson, 2022). On the other 

hand, the cartoon dataset was obtained from the iCartoonFace dataset, which 

could be found on Github (luxiangju, 2021). The ratio of human images to 

cartoon images was 1:1. Some examples of the dataset were illustrated in 

Figure 3.8 (a) and (b):  

 

   

Figure 3.8 (a)    Figure 3.8 (b) 

Figure 3.8: Examples of the training dataset. 

 

Next, the instances in the dataset were labelled using the Roboflow 

platform, with bounding boxes drawn to indicate the location of humans and 

cartoons in each image. Figure 3.9 shows examples of human instances and 

cartoon instances, with their corresponding bounding boxes.  

 

   

Figure 3.9 (a)    Figure 3.9 (b) 

Figure 3.9: Examples of labelled instances. 
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After labeling, data augmentation was performed to increase the 

model's robustness, which included techniques such as flipping, 90-degree 

rotation, and rotation. Figure 3.10 illustrates an example of an image that 

underwent data augmentation.  

 

 

Figure 3.10: Data that has undergone data augmentation. 

 

After performing data augmentation, the ratio of instances for human 

and cartoon was measured, as shown by Figure 3.11. The ratio of cartoons to 

humans was approximately 1:2.  

 

 

 

Figure 3.11: Number of instances for cartoon and human. 

 

The next step involved converting the bounding boxes into the 

required format for model retraining. For YOLOv5 and YOLOv8, the format 

required of class ID, center-x coordinate, center-y coordinate, width, and 

height. Meanwhile, MobileNet SSD required bounding boxes to be in XML 

cartoon human 
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format. Once the format of training dataset had been converted, it was ready 

for model training. Additionally, separate validation and testing datasets were 

prepared for humans and cartoons, but without undergoing data augmentation.  

 

3.1.6.1 Training Hardware 

The models were retrained using the Google Colab platform, which provides 

hardware specifications as shown in Table 3.2.  

 

Table 3.2: Hardware specifications of Google Colab platform provided. 

Type Model 

GPU Tesla T4 graphic card  

System RAM 12.7 GB 

GPU RAM 15.0 GB 

Programming language Bash, Python 

Framework Caffe, Pytorch 
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3.1.6.2 Training of YOLOv5 and YOLOv8 

 

Figure 3.12: Steps for YOLOv5/ YOLOv8 retraining. 

 

The training of YOLOv5 and YOLOv8 began by uploading the dataset into 

Google Colab. Then, the source code was downloaded from GitHub and 

compiled, followed by installing the required modules for the model. After 

that, the data.yaml file was configured to specify the pathway to the training, 
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validation, and testing images, the number of classes involved in the retrained 

model, and their respective class names. The training parameters were set to 

achieve the best possible results. For instance, the feed image size was set to 

640, the batch size was set to 32, and the number of epochs was set to 100. 

The model then started training by transfer learning from the respective model 

weights and fine-tuning into a 2-class problem: human and cartoon. The 

training epochs were run until completion. At the end of training, the best 

model file was saved for performance evaluation purposes. 

 

3.1.6.3 Training of Mobilenet SSD 

 

Figure 3.13: Steps for MobileNet SSD retraining.  
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The training process of MobileNet SSD began with the dataset being uploaded 

to Google Colab. To build MobileNet SSD, the SSD source code was 

downloaded and compiled. To run the SSD, Caffe needed to be built and all 

necessary packages installed. The required files, such as Makefile.config and 

caffe file, were modified to avoid errors while building Caffe. Once Caffe was 

installed, the class list in the labelmap_voc.prototxt was modified, and the 

LMDB file was created for the prepared dataset. The LMDB file was then fed 

into the MobileNet SSD training. Next, the source code of MobileNet was 

downloaded from GitHub, and the pathway to locate the LMDB file in the 

training and testing file was configured. A training prototxt was generated, 

consisting of three classes, two of which were human and cartoon, and the 

other one was the background. The training parameters, such as the number of 

epochs and learning rate, were set. The number of epochs was set to 10 000 

iterations, and the learning rate was 0.0002. The training process began by 

transfer learning from the original MobileNet SSD model weights, followed 

by fine-tuning it into a two-class problem, human and cartoon. The training 

process was waited until the epochs finished running, and the best model file 

was saved with the highest evaluation score on the testing set. 
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3.2 Overall Framework of Customer Analysis with Machine Vision 

Figure 3.14 illustrates the general flow of the proposed solution to perform 

customer analysis with machine vision.   

 

Figure 3.14: Process flow of the proposed solution. 
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The proposed solution initiates by capturing the real-time video frame 

from CCTV, which undergoes a series of image preprocessing steps, including 

resizing and conversion from BGR to RGB. Subsequently, the human 

detection and tracking phase commences to locate and track humans in 

subsequent frames. The customer counting increments by 1 if a detected 

human crosses the counting line. Otherwise, the algorithm will keep tracking 

the human until the human crosses the counting line. Upon detection, the 

algorithm captures and crops the customer's image to perform facial 

recognition and analysis. If the algorithm detects a face in the cropped image, 

it compares the face with the faces in the databases. The algorithm will extract 

the customer information if the same face is found. Else, the algorithm will 

label the human as a new customer. On the contrary, the human will be 

labelled as unknown if no face was found in the cropped image of that 

particular human. Since the customer databases do not have the information of 

new customers and unknown customers, they will go through a further step 

which is gender classification to determine their gender. After that, their 

information will register or record into the customer database. Finally, all of 

the customers’ information will be displayed and their in & out time will be 

recorded as well. The details of human detection, human tracking, customer 

counting, face detection, face recognition and gender classification will be 

further illustrated in section 3.2.1.1, 3.2.1.2 and 3.2.1.3, 3.2.2.1, 3.2.2.2 and 

3.2.2.3. 
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3.2.1 Human Detection, Tracking and Customer Counting 

Figure 3.15 illustrates the general flowchart of human detection, human 

tracking and customer counting.  

  

Figure 3.15: Process flow of human detection, tracking and customer counting. 

 

Before the video frame undergoes human detection and tracking, it 

undergoes image preprocessing to facilitate further analysis. Firstly, the frame 

is resized from its original size (usually 1920 x 1080 pixels) to a smaller ratio, 

ensuring that the maximum width of the frame does not exceed 500 pixels. 

This is done to reduce the computational cost of the algorithm while still 

maintaining an acceptable level of detail. Secondly, the resized frame 

undergoes color space conversion from BGR to RGB, as the Opencv function 

assumes the color order of the video frame to be BGR. 
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To begin the human detection and tracking phase, a CentroidTracker 

class is created and initialized to store all the trackable humans' information. 

During the human detection phase, the algorithm scans the video frame to 

determine if any human is present. Upon detection, a bounding box is drawn 

around the human, indicating start x-coordinate, start y-coordinate, end x-

coordinate and end y-coordinate of the detected human. The algorithm then 

applies a tracker to the detected human based on the bounding box coordinates 

for tracking purposes. All applied trackers are added to the tracker list, 

indicating the number of humans that need to be tracked in the human tracking 

phase. While human detection is essential for detecting humans, performing it 

in every frame is computationally expensive and can slow down the outcome 

video. Thus, the human detection process will run only once for every N 

frames to reduce the computational burden of the algorithm. In the meantime, 

human tracking takes place. The equation for determining the alternation 

between human detection and human tracking is defined below: 

 

totalFrames % skip_frames                                       (3.6) 

 

where totalFrames is the total frames that the algorithm is processing and 

skip_frames is the number of frames, N to undergo human detection. If the 

outcome of the equation is equal to zero, the algorithm will undergo human 

detection. Otherwise, the algorithm will perform human tracking. 

In the human tracking phase, the algorithm will update the latest 

position of each detected human from the tracker list to determine their current 

location in the video frame. The centroid of each human will then be 

calculated using the bounding box coordinates. The formula for calculating the 

centroid is as follows:  

 

       cX = 
𝑠𝑡𝑎𝑟𝑡𝑋+𝑒𝑛𝑑𝑋

2.0
                                                 (3.7) 

       cY =  
𝑠𝑡𝑎𝑟𝑡𝑌+𝑒𝑛𝑑𝑌

2.0
                                                 (3.8) 

 

where cX is the centroid coordinate in the x-axis, cY is the centroid coordinate 

in the y-axis, whereas startX, endX, startY and endY respectively represent 
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start x-coordinate, end x-coordinate, start y-coordinate and end y-coordinate of 

the bounding box. The next step in the algorithm is to compute the overall 

moving direction of the detected human to determine whether they are 

entering or leaving the shop. To count the customers, the algorithm will 

increment by 1 if the detected human fulfills three conditions. The first 

condition is that the human is moving downwards, which indicates that they 

are entering the shop instead of leaving it. The second condition is that they 

cross the counting line to ensure that they have entered the shop. Finally, a 

count flag is used to prevent the duplicate counting of the same human. 

 

3.2.1.1 Human Detection 

The algorithm utilized for human detection is retrained YOLOv8n, which is 

the best model evaluated from section 3.1. It was selected because it has the 

overall good performance considering its speed, its ability to detect the human 

accurately and not detecting cartoons as humans.  

Before feeding the video frame (resized frame) to the retrained 

YOLOv8 model, the video frame needs to append into a list. Next, the list with 

the video frame was fed to the YOLO model to obtain the detection result. The 

obtained detection result was filtered to have ‘human’ class only and the 

confidence values of 0.6 was set to filter out the weak detections.  

 

3.2.1.2 Human Tracking 

The proposed method for human tracking utilizes a correlation tracker based 

on Danelljan et al. (2014). This particular tracker was chosen for its ability to 

handle variations in illumination, occlusion, and human pose. Additionally, it 

excels in handling significant scale variation, which is essential for this project 

since video frames involve a lot of resizing to reduce computational cost. 

Unlike other correlation trackers, the chosen method can handle these 

variations well. Furthermore, its accessibility in the dlib library makes it easy 

to implement. 

Assume the correlation tracker iterates at every time step (t), the input 

is given as image (It), previous scale (st-1), previous target position (pt-1), 

previous scale model 𝐴𝑡−1
𝑠𝑐𝑎𝑙𝑒 , 𝐵𝑡−1

𝑠𝑐𝑎𝑙𝑒  and previous translation model 𝐴𝑡−1
𝑡𝑟𝑎𝑛𝑠 , 

𝐵𝑡−1
𝑡𝑟𝑎𝑛𝑠. To perform a robust translation estimation, the translation sample ztrans 
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is first obtained from It at st-1 and pt-1. Next, the correlation filter Hl is defined 

using the equation below: 

 

        Hl = 
�̅�𝐹𝑙

∑ 𝐹𝑘̅̅ ̅̅𝑑
𝑘=1 𝐹𝑘+     

                                               (3.9) 

 

where �̅� is the desired correlation output, Fl is the grayscale image, and 𝐹𝑘̅̅̅̅  is 

the complex conjugation and  is the parameter that controls the impact of the 

regularization term. However, the equation 3.9 is costly to solve which 

involving a d x d linear system of equations. Thus, the equation 3.9 that 

represent the correlation filter, Hl is separate into the numerator At and 

denominator Bt and updated accordingly to obtain a robust approximation. The 

formula of At and Bt is computed using the equation below: 

 

       At = (1- ) At-1 + 𝐺𝑡
̅̅ ̅Ft                                     (3.10) 

       Bt = (1- ) Bt-1 +  ∑ 𝐹𝑡
𝑘̅̅̅̅𝑑

𝑘=1 Ft
k                         (3.11) 

 

where n is the parameter for learning rate. By using the ztrans, At and Bt, the 

translation correlation ytrans is computed using the equation below:  

 

        y = F-1 {
∑ 𝐴𝑙̅̅ ̅𝑑

𝑙=1 𝑍𝑙

𝐵 +     
}                                              (3.12)  

 

where F-1 is the inverse discrete fourier transform operator and z is the feature 

map. Finally, the target position pt is set by maximizing the score y and the 

translation model 𝐴𝑡
𝑡𝑟𝑎𝑛𝑠 and 𝐵𝑡

𝑡𝑟𝑎𝑛𝑠 is updated. The steps above are repeated 

from the scale model 𝐴𝑡
𝑠𝑐𝑎𝑙𝑒  and 𝐵𝑡

𝑠𝑐𝑎𝑙𝑒  except that the scale sample zscale is 

obtained from It at st-1 and pt.     

 

3.2.1.3 Customer Counting 

The human tracking method discussed in section 3.2.1.2 is useful for tracking 

humans that have been detected in each frame of the video. However, this 

method does not recognise each human individually, as it only provides the 

coordinates of the bounding box. Therefore, in order to perform customer 
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counting, the algorithm needs to recognise each individual customer and 

ensure that they are not confused with one another. To achieve this, a 

CentroidTracker class will be created and initialised, which assigns a unique 

object ID to each detected human. The CentroidTracker will update the 

position of each human's centroid in every frame. Centroid tracking will then 

be performed using these object IDs and updated centroid positions. 

In Step 1 of the process, the algorithm first performs human tracking, 

which generates bounding box coordinates. These coordinates are then passed 

to the CentroidTracker, which uses Equation 3.7 and 3.8 defined earlier to 

calculate the centroids and assigns object IDs to each human. This is 

demonstrated in Figure 3.16.  

 

 

Figure 3.16: Object ID assigned to centroids. (Rosebrock, 2018) 

  

In the subsequent video frame, the algorithm repeats step 1 to 

calculate the latest centroids based on the current frame. At this point, both the 

latest centroids (yellow dots) and existing centroids (purple dots) will be 

present in the frame, as shown in Figure 3.17. However, the job of assigning 

IDs to the centroids will not be performed yet because some of the latest 

centroids and existing centroids might correspond to the same person. Figure 

3.17 shows that there are three centroid points in the current frame, indicating 

that an extra person has been detected. If there are two identical humans in the 

video frame, the algorithm will use Euclidean distance to recognize them as 

the same person.  
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Figure 3.17: Latest and existing centroids in the subsequent frame. (Rosebrock, 

2018) 

 

Based on Figure 3.17, the Euclidean distance will be calculated between each 

of the latest centroids and existing centroids. The equation for calculating 

Euclidean distance is defined below: 

 

       Ed = √(𝑥2 −  𝑥1)2 + (𝑦2 − 𝑦1)2        (3.13) 

 

where Ed represents Euclidean distance, x1 and y1 represent coordinate of first 

point and x2 and y2 represent coordinate of second point. Based on the 

calculations, the algorithm selects the centroid with the smallest Euclidean 

distance between the latest centroid and the existing centroid, assuming it is 

the same person. This is because humans are likely to move between 

subsequent frames, but the distance moved between the current and previous 

frames should be the smallest. The assumption made is illustrated in Figure 

3.18. To classify as the same person, the maximum distance allowed between 

subsequent frames is set to 50. This is because humans cannot move such a 

great distance in just one frame. If the distance is greater than 50, the centroid 

point will be classified as a new object. 

 

 

Figure 3.18: Object ID assumption. (Rosebrock, 2018) 
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Based on Figure 3.18, there is a latest centroid point still left out. 

Thus, the centroid point will be registered and assigned a new object ID as 

shown in Figure 3.19.  

 

 

Figure 3.19: ID assigned to new human. (Rosebrock, 2018) 

 

Regarding the case where a human has disappeared or left the view of 

the video frame, the centroid tracking algorithm should deregister the object 

ID. If the detected human is lost for 40 consecutive frames, the object ID will 

be deregistered in the algorithm. 

Since the centroid tracking algorithm can effectively recognize each 

human, customer counting can be done more efficiently. Normally, the 

customer will move back and forth around the entrance of the shop. To restrict 

the duplicate counting of the customer, a count flag will be initialised for each 

customer. Once the customer crosses the counting line, the count flag will be 

set to true. This ensures that the customer will not be counted again, even if 

they move back and forth across the counting line. In this algorithm, the 

counting line is set at the y-coordinate value of (H // 2 + 10), where H is the 

height of the video frame. Additionally, to ensure accurate counts, movement 

in only one direction will be considered for counting. The equation to 

determine the moving direction is defined as: 

 

      moving direction =   y_centroid - �̅�                               (3.14) 

 

where y_centroid is the y-coordinate of the customer’s centroid in the current 

frame and �̅� is the mean value of all the y-coordinate centroids in the previous 

frames. If the moving direction is positive (greater than 0), it indicates that the 

customer is moving towards the inside of the shop, and the counting condition 
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will be fulfilled. On the other hand, if the moving direction is negative or zero, 

the customer will be ignored for counting. 

 

3.2.2 Face Detection, Face Recognition and Gender Classification 

Figure 3.20 illustrates the general flowchart of face detection, facial 

recognition and gender classification.  

 

Figure 3.20: Flowchart of face detection, face recognition and gender 

classification. 

 

When the customer passes the counting line, the face of the customer 

will be immediately captured at the moment using the original frame instead of 

using the resized frame. This is to increase the quality of the image for better 



58 

analysis in face detection and facial recognition. To accurately locate the 

customer’s face in the original frame, the method first obtains the resized ratio 

using the following equation:  

 

   resize_ratio = frame.shape[1] / W      (3.15)  

 

where frame.shape[1] is to obtain the width of the original frame and W is the 

width of the resized frame. Next, to obtain the centroid of the customer in the 

original frame, the centroid of the customer in the resized frame is multiplied 

by the resize_ratio. Then, a bounding box coordinate is created from the 

customer centroid to roughly estimate the cropping zone that contains the 

customer's face. The equation used for creating the bounding box coordinate is 

defined:  

 

(s_x, e_x) = ((cent_x - 120), (cent_x + 90))                    (3.16) 

(s_y, e_y) = ((cent_y - 280), cent_y)                                 (3.17) 

 

Where s_x, e_x, s_y, and e_y represent the starting x-coordinate, ending x-

coordinate, starting y-coordinate, and ending y-coordinate of the bounding box, 

respectively. Meanwhile, cent_x and cent_y represent the x-coordinate and y-

coordinate of the customer's centroid, respectively.  

After cropping the image, the algorithm searches for any face present 

in the image using face detection. If a face is detected, the algorithm extracts 

its features and compares them with the known faces in the database. If a 

match is found, the customer's information is extracted. Otherwise, the 

customer is classified as a new customer and the gender model is used to 

determine their gender. The new customer's gender and facial features are then 

registered in the customer database, along with the cropped image for future 

reference. If the algorithm fails to detect a face, the customer is labeled as an 

unknown customer. Their image is still fed into the gender model for customer 

analysis. As the facial features are not available, the information of unknown 

customers is not registered into the customer database. However, the cropped 

image of unknown customers is still saved into the customer database for 

security purposes. 
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3.2.2.1 Face Detection 

The proposed method for face detection is using the HOG model in the face 

recognition module. The face recognition module consists of two methods to 

perform the face detection which are the HOG and CNN model. Although 

CNN model has a higher adaptation against the challenges such as pose 

variation and occlusion and result in higher accuracy to detect face, it is slower 

and not suitable for real-time scenarios. Hence, the HOG model is selected as 

it is less computationally demanding and faster to run in real-time. However, 

the HOG model has limitations in detecting faces that are not frontal. 

If a face is detected, the proposed method returns the bounding box of 

the human face in the image using the CSS style format, with the order of top, 

right, bottom, and left. 

 

3.2.2.2 Face Recognition 

The proposed solution for facial recognition is FaceNet, which was suggested 

by Schroff, Kalenichenko, and Philbin in 2015. This algorithm extracts the 

face features of an individual by embedding the face identity into 128-

dimensional representations, as shown in Figure 3.21. Since FaceNet method 

is being built into the face recognition module and the pre-trained network is 

trained by King (2017) with 3 million facial images, it is highly available and 

easy to access.  

 

 

Figure 3.21: 128 Measurements of Facial Image. (Geitgey, 2016) 
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3.2.2.3 Gender Classification 

The proposed solution for gender classification utilizes a simple CNN 

architecture developed by Levi and Hassncer (2015). This method was chosen 

because it has shown higher accuracy when tested on challenging datasets with 

variations in pose and lighting conditions. 

To implement gender classification, the cropped face image was first 

converted into a blob to perform mean subtraction and scaling. The mean 

subtraction was set to 127.5 and no scaling was performed, with the value set 

to 1. The blob was then passed through the CNN network to obtain the result. 

Based on the result, the face was classified as male or female, depending on 

the higher probability score for each gender.  

 

  



61 

CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Human Detection Improvement 

The result and performance of both the pretrained and retrained models will be 

discussed on the subchapter 4.1.1 and 4.1.2.  

 

4.1.1 Pretrained Models 

The pretrained detection models were evaluated on the testing dataset using a 

confidence threshold value of 0.5 and IoU score of 0.5. The result of the 

detections were classified as True Positive (TP), False Positive (FP) and False 

Negative (FN) for the human class while False Detection (FD) for the cartoon. 

Since the pretrained detection models does not have ‘cartoon’ as its pretrained 

class, the result of pretrained models was classified based on the human class 

only. Thus, True Negative (TN) was not considered in the result as it merely 

represents the background of the image that does not contribute any true 

negative to the result. Since the detection models were pretrained to recognize 

humans only, any cartoon detected as a human will be considered as a false 

detection. The results are presented in Table 4.1. 

 

Table 4.1: Result of the pretrained models. 

Pretrained Model TN FN FP FD 

YOLOV3 387 40 1 114 

YOLOV4 370 57 1 134 

YOLOV5n 224 203 0 68 

YOLOv5s 309 118 1 81 

YOLOv5m 366 61 2 128 

YOLOv8n 376 51 1 186 

YOLOv8s 387 40 1 193 

YOLOv8m 392 35 1 202 

Mobilenet ssd  389 38 1 247 

HOG 127 300 22 73 

frcnn-resnet 396 31 58 320 
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retinanet 387 40 6 193 

frcnn-mobilenet 378 49 5 230 

ssd_vgg16 357 70 2 229 

ssdlite320_mobilenet_v3 375 52 1 224 

fcos-resnet 395 32 21 240 

maskrcnn-resnet 416 11 28 280 

keypointrcnn-resnet 395 32 32 325 

frcnn-inception_v2 389 38 11 216 

maskrcnn-inception_v2 390 37 17 240 

ssd-inception_v2 367 60 6 189 

ssdlite_mobilenet_v2 363 64 2 144 

ssd_mobilenet_v2 355 72 3 135 

 

These results were further calculated to obtain accuracy, precision, 

recall, and F1 score for human detection, as well as the false detection rate for 

the cartoon. Additionally, the evaluation will include parameters and model 

size for each detection model. Table 4.2 illustrates the results. 

 

Table 4.2: Result of pretrained model. 

Pretrained Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

score 

(%) 

False 

Rate 

(%) 

Params 

(M) 

Model 

Size 

(MB) 

YOLOv3 90.42 99.74 90.63 94.97 22.14 61.9 242.20 

YOLOv4 86.45 99.73 86.65 92.73 26.02 64.3 251.68 

YOLOv5n 52.46 100.00 52.46 68.82 13.20 1.9 3.97 

YOLOv5s 72.20 99.68 72.37 83.85 15.73 7.2 14.46 

YOLOv5m 85.31 99.46 85.71 92.08 24.85 21.2 41.80 

YOLOv8n 87.85 99.73 88.06 93.53 36.12 3.2 6.38 

YOLOv8s 90.42 99.74 90.63 94.97 37.48 11.2 22.05 

YOLOv8m 91.59 99.75 91.80 95.61 39.22 25.9 50.90 

Mobilenet ssd  90.89 99.74 91.10 95.23 47.96 5.8 22.61 

HOG 28.29 85.23 29.74 44.10 14.17 3.3 3.78 

frcnn-resnet 81.65 87.22 92.74 89.90 62.14 41.8 163.58 

retinanet 89.38 98.47 90.63 94.39 37.48 34.0 149.54 

frcnn-mobilenet 87.50 98.69 88.52 93.33 44.66 19.4 76.02 

ssd_vgg16 83.22 99.44 83.61 90.84 44.47 35.6 139.25 

ssdlite320_mobilenet_v3 87.62 99.73 87.82 93.40 43.50 3.4 13.74 
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fcos-resnet 88.17 94.95 92.51 93.71 46.60 32.3 126.58 

maskrcnn-resnet 91.43 93.69 97.42 95.52 54.37 46.4 181.47 

keypointrcnn-resnet 86.06 92.51 92.51 92.51 63.11 59.1 231.48 

frcnn-inception_v2 88.81 97.25 91.10 94.07 41.94 13.3 55.82 

maskrcnn-inception_v2 87.84 95.82 91.33 93.53 46.60 92.4 65.57 

ssd-inception_v2 84.76 98.39 85.95 91.75 36.70 20.1 99.59 

ssdlite_mobilenet_v2 84.62 99.45 85.01 91.67 27.96 4.5 19.45 

ssd_mobilenet_v2 82.56 99.16 83.14 90.45 26.21 6.8 68.06 

 

4.1.1.1 Accuracy  

 

Figure 4.1: Graph of pretrained model vs accuracy. 

 

Figure 4.1 illustrates the accuracy of each pretrained model in detecting 

humans. According to the Figure 4.1, YOLOv8m achieved the highest 

accuracy of 91.59 %, followed by maskrcnn-resnet, YOLOv3, and YOLOv8s, 

which also attained a high accuracy of above 90 % in detecting 427 instances 

of humans. YOLOv4, YOLOv5m, YOLOv8n, retinanet, frcnn-mobilenet, 

ssdlite320_mobilenet_v3, fcos-resnet, keypointrcnn-resnet, frcnn-inception_v2, 

maskrcnn_inception_v2, and ssd-inception were also able to achieve human 

detection above 85 %. On the other hand, HOG had the lowest accuracy of 

28.29 % in detecting humans. This was attributed to its limitation as an older 

method, as it lacks the ability to capture intricate detaild compared to the deep-

learning based method.  
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4.1.1.2 Precision x Recall  

 

Figure 4.2: Graph of pretrained model vs precision & recall. 

 

In Figure 4.2, the precision and recall relationship for each pretrained model is 

shown. It was observed that these models were able to achieve high precision 

in capturing human instances, which indicated their abilities without making 

many errors in the positive predictions. Only HOG, frcnn-resnet, fcos-resnet, 

maskrcnn-resnet, and keypointrcnn-resnet recorded precision values below 

95%, with HOG recording the least precision at 85.23%. Regarding recall, the 

results for these pretrained models range from 29.74% to 94.72%. Maskrcnn-

resnet achieved the highest recall at 94.72%, which indicated its ability to 

return human instances and not irrelevant instances. However, it had a lower 

precision value at 93.69% than other pretrained models, suggesting more false 

positive predictions. From Figure 4.2, the pretrained models that achieved a 

precision above 95% and recall above 90% were YOLOv3, YOLOv8s, 

YOLOv8m, mobilenet ssd, retinanet, frcnn-inception_v2, and maskrcnn-

inception_v2. 
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4.1.1.3 F1 Score 

 

Figure 4.3: Graph of pretrained model vs F1 score. 

 

The F1 score is a combined metric that takes into account both precision and 

recall. Based on the results presented in Figure 4.3, YOLOv8m, MobileNet 

SSD, and Mask R-CNN ResNet were able to achieve an F1 score of around 

95 %. On the other hand, HOG had the lowest F1 score of 44.10 %. 

 

4.1.1.4 False Rate 

 

Figure 4.4: Graph of pretrained model vs false rate. 
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Figure 4.4 shows the false detection rate of each pretrained model in falsely 

identifying cartoons as humans. Only YOLOv5n, YOLOv5s, and HOG had 

false detection rates below 20 %. All other pretrained models had a false 

detection rate of at least 20 %, indicating that for every five cartoon instances, 

at least one would be incorrectly identified as human.  

 

4.1.1.5 Params x Model Size 

 

Figure 4.5: Graph of pretrained model vs params & model size. 

 

Figure 4.5 presents the parameters and model size for each pretrained model. 

The parameters and model size of a pretrained model typically reflect its 

required time to infer an image. Smaller parameters and model size typically 

have faster inference speed compared to those that have larger parameters and 

model size because it involves fewer matrix multiplications (Wulfert, et al., 

2022). Based on the Figure 4.5, YOLOv5n, YOLOv5s, YOLOv8n, YOLOv8s, 

mobilenet ssd, HOG, ssdlite320_mobilenet_v3, and ssdlite_mobilenet_v2 

were the pretrained models that had parameters and model size smaller than 25 

M and 25 MB, respectively. This provided a greater advantage for them to be 

implemented in real-time processing. 

0.0

25.0

50.0

75.0

100.0

125.0

150.0

175.0

200.0

225.0

250.0

275.0

300.0

P
ar

am
et

er
s 

(M
)

M
o

d
el

 S
iz

e 
(M

B
)

Pretrained model

Pretrained model vs Parameters & Model Size

Parameters (M) Model size (MB)



67 

4.1.1.6 Summary of the Pretrained Models 

Based on the results, it seems that there was no single pretrained model that 

was able to achieve the perfect combination of high accuracy, precision, recall, 

F1 score, and low false detection rate while also having small parameters and 

model size. Each pretrained model had its own strengths and weaknesses. 

For example, the mobilenet ssd model had a low parameters and 

model size, with an accuracy of 90.89 %, precision of 99.74 %, recall of 

91.10 %, and F1 score of 95.23 %. However, it also had a high false detection 

rate at 47.96 %. On the other hand, YOLOv5n, YOLOv5s, and HOG had low 

false detection rates, but they did not have high accuracy and F1 score 

compared to other pretrained models. 

In summary, when selecting a pretrained model, it is important to 

consider the specific needs and requirements of the application and weigh the 

trade-offs between accuracy, precision, recall, F1 score, false detection rate, 

and computational efficiency. 

 

4.1.2 Retrained Models 

The retrained models include YOLOv5n, YOLOv5s, YOLOv5m, YOLOv8n, 

YOLOv8s, YOLOv8m, and Mobilenet SSD. To enable a fair comparison with 

the pretrained models, the same classification of results were used for the 

retrained models. The results were classified into True Positive (TP), False 

Positive (FP), and False Negative (FN) for human, and False Detection (FD) 

for cartoon as shown in Table 4.3. 

 

Table 4.3: Result for retrained models. 

Retrain model TN FN FP FD 

YOLOv5n 295 132 1 13 

YOLOv5s 345 82 2 16 

YOLOv5m 368 59 0 18 

YOLOv8n 416 11 2 42 

YOLOv8s 414 13 2 40 

YOLOv8m 416 11 1 77 

Mobilenet ssd 322 105 1 20 
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The results were converted as usual into accuracy, precision, recall, and F1 

score for human detection, as well as the false detection rate for cartoon 

instances, as shown in Table 4.4. 

 

Table 4.4: Result for retrained models. 

Retrained 

Model 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 score 

(%) 

False Rate 

(%) 

Params 

(M) 

Model 

Size 

(MB) 

YOLOv5n 68.93 99.66 69.09 81.60 2.52 0.517 3.81 

YOLOv5s 80.42 99.42 80.80 89.15 3.11 1.971 14.10 

YOLOv5m 86.18 100.00 86.18 92.58 3.50 5.984 41.23 

YOLOv8n 96.97 99.52 97.42 98.46 8.16 - 6.09 

YOLOv8s 96.50 99.52 96.96 98.22 7.77 - 21.97 

YOLOv8m 97.20 99.76 97.42 98.58 5.24 - 50.79 

Mobilenet ssd  75.23 99.69 75.41 85.87 3.88 - 22.61 

 

4.1.2.1 Accuracy 

 

Figure 4.6: Graph of retrained model vs accuracy. 

 

From the given Figure 4.6, it was observed that the YOLOv8 series 

outperformed the YOLOv5 series and mobilenet ssd in terms of accuracy. 

Specifically, YOLOv8n, YOLOv8s, and YOLOv8m recorded accuracy rates 

of 96.97 %, 96.50 %, and 97.20 %, respectively. Conversely, YOLOv5n 

recorded the lowest accuracy among the retrain models, with an accuracy of 

68.73 %. 
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4.1.2.2 Precision x Recall 

 

Figure 4.7: Graph of retrained model vs precision & recall. 

 

The data presented in Figure 4.7 indicates that all the retrained models achieve 

high precision levels of at least 99 %. However, only the YOLOv8 series 

displayed high recall rates when compared to the other retrain models. 

Specifically, YOLOv8n, YOLOv8s, and YOLOv8m recorded recall of 

97.42 %, 96.96 %, and 97.42 %, respectively. On the other hand, YOLOv5n 

exhibited the least recall amongst the retrain models, which was 69.09 %. 

 

4.1.2.3 F1 Score 

 

Figure 4.8: Graph of retrained model vs F1 score. 
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From Figure 4.8, it was observed that YOLOv8 series had the highest F1 score 

among all the other retrained models. They were able to achieve an average F1 

score of 98 %. In comparison, mobilenet ssd had an F1 score of 85.87 %, 

while YOLOv5n, YOLOv5s, and YOLOv5m had F1 scores of 81.60 %, 

89.15 %, and 92.58 %, respectively. 

 

4.1.2.4 False Rate 

 

Figure 4.9: Graph of retrained model vs false rate. 

 

According to Figure 4.9, the YOLOv5 series models had the lowest false 

detection rate among the other retrained models, indicating that they were 

capable of not detecting cartoons as humans. YOLOv5n, YOLOv5s, and 

YOLOv5m had false detection rates of 2.52 %, 3.11 %, and 3.50 %, 

respectively. YOLOv8n recorded the highest false detection rate at 8.16 %. 
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4.1.2.5 Params x Model Size 

 

Figure 4.10: Graph of retrained model vs params & model size. 

 

Figure 4.10 shows the model size of each retrained model. The smallest model 

size was achieved by YOLOv5n at 3.81 MB, followed by YOLOv8n at 6.09 

MB, YOLOv5s at 14.10 MB, YOLOv8s at 21.97 MB, and mobilenet ssd at 

22.61 MB. Among the YOLO family, the medium models had the largest 

model sizes, with YOLOv5m at 41.23 MB and YOLOv8m at 50.79 MB. 

 

4.1.2.6 Summary of Retrained Models 

When considering the overall performance, YOLOv8n emerged as the best 

retrained model. It achieved an accuracy of 96.97 %, precision of 99.52 %, 

recall of 97.42 %, and F1 score of 98.46 %, which surpasses the YOLOv5 

series and mobilenet ssd. Although it had the highest false rate among the 

models at 8.16 %, the false rate was still acceptable, given that its model size 

was only 6.09 MB, indicating a faster inference speed. In contrast, YOLOv8s 

and YOLOv8m had similar performance with smaller false rates but their 

model sizes were almost 3 times and 8 times that of YOLOv8n, respectively, 

making them slower for real-time processing. 
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4.1.3 Summary of Pretrained and Retrained Models 

The retrained models performed significantly better than the pretrained models 

in not detecting cartoons as humans. The model with the highest false rate 

among the retrained models was YOLOv8n with a percentage of 8.16 % which 

was much lower than all the pretrained models. YOLOv5n, the pretrained 

model with the least false rate, had a percentage of 13.20 %. Moreover, 

retrained YOLOv8n outperformed all the pretrained models in terms of 

accuracy, recall, and F1 score. Its model size of 6.09 MB was only larger than 

that of pretrained YOLOv5n and the HOG method. Overall, retrained 

YOLOv8n is the best-performing model among all the pretrained models.  

 

4.1.4 Retrained Models: Classification of Result Based on 2 Classes  

In the previous section, the results were presented based on the detection of 

humans and the false detection rate of cartoons to allow a fair comparison with 

the pretrained models. However, the retrained models themselves can be 

evaluated based on two main classes, which were human and cartoon. For 

detection problems, ‘background’ class would also be considered as part of the 

result to provide a more comprehensive analysis of model performance. The 

background class was necessary as it accounted for instances where the model 

fails to predict the ground truth human or cartoon in the image. These 

unpredicted instances would classify as false negatives of the background. 

Additionally, if there were extra predicted bounding boxes by the model where 

the prediction was not related to cartoon or human instances, it would classify 

into the false positive of the background. To evaluate the models' performance, 

a confusion matrix were generated for each retrained model using a confidence 

threshold of 0.5 and an IOU score of 0.5. 

 

Table 4.5: Confusion Matrix of 2 classes detection for YOLOv5n. 

 

Predicted 

Human 295 13 1 

Cartoon  3 987 0 

Background  129 405 0 

  Human Cartoon Background 

  True 
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Table 4.6: Confusion Matrix of 2 classes detection for YOLOv5s. 

 

Predicted 

Human 345 16 2 

Cartoon  3 140 0 

Background  79 359 0 

  Human Cartoon Background 

  True 

 

Table 4.7: Confusion Matrix of 2 classes detection for YOLOv5m. 

 

Predicted 

Human 368 18 0 

Cartoon  3 188 0 

Background  56 309 0 

  Human Cartoon Background 

  True 

 

Table 4.8: Confusion Matrix of 2 classes detection for YOLOv8n. 

 

Predicted 

Human 416 42 3 

Cartoon  1 253 0 

Background  10 220 0 

  Human Cartoon Background 

  True 

 

Table 4.9: Confusion Matrix of 2 classes detection for YOLOv8s. 

 

Predicted 

Human 413 39 3 

Cartoon  7 269 2 

Background  7 207 0 

  Human Cartoon Background 

  True 
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Table 4.10: Confusion Matrix of 2 classes detection for YOLOv8m. 

 

Predicted 

Human 416 26 1 

Cartoon  0 285 4 

Background  11 204 0 

  Human Cartoon Background 

  True 

 

Table 4.11: Confusion Matrix of 2 classes detection for Mobilenet ssd.  

 

Predicted 

Human 312 19 1 

Cartoon  71 281 3 

Background  44 215 0 

  Human Cartoon Background 

  True 

 

The results from the confusion matrix were utilized to compute accuracy, 

precision, recall, F1 score, and combined accuracy for each class as shown in 

Table 4.12 below. The table presents the metric values for each class, as well 

as the overall combined accuracy of the retrained models at a 0.5 confidence 

threshold and 0.5 IoU score. 

 

Table 4.12: Result of the 2 classes detection. 

Retrain 

model 

Human Cartoon Combined 

Accuracy 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

score 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

score 

(%) 

YOLOv5n 84.52 95.47 69.09 80.17 55.36 97.00 18.83 31.54 41.57 

YOLOv5s 89.41 95.04 80.80 87.34 59.96 97.90 27.18 42.55 51.38 

YOLOv5m 91.83 95.34 86.18 90.53 64.97 98.43 36.50 53.25 59.02 

YOLOv8n 94.07 90.24 97.42 93.69 72.17 99.61 49.13 65.80 70.79 

YOLOv8s 94.09 90.77 96.72 93.65 73.07 96.76 52.23 67.84 72.02 

YOLOv8m 95.99 93.91 97.42 95.63 75.29 98.62 55.34 70.90 74.02 

Mobilenet 

ssd 

85.73 93.98 73.07 82.22 67.44 79.15 54.56 64.59 62.68 
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4.1.4.1 Human Class x Accuracy, Precision, Recall, F1 score  

 

Figure 4.11: Graph of retrained model’s human class vs accuracy, precision, 

recall & F1 score. 

 

Figure 4.11 illustrates the accuracy, precision, recall, and F1 score of the 

human class for each retrained model. The results in this section were different 

from the section 4.1.2 since the result in the section 4.1.2 was not influenced 

by another class, cartoon. The true negative, false positive, and false negative 

contributed by the cartoon class may have affected the results. According to 

the Figure 4.11, the YOLOv8 series showed a significant advantage in 

accuracy, recall, and F1 score compared to the YOLOv5 series and mobilenet 

ssd. Although the precision for the YOLOv8 series was lower than the 

YOLOv5 series and mobilenet ssd, the recall for YOLOv8 was significantly 

better than the YOLOv5 series and mobilenet ssd, leading to a higher F1 score 

for YOLOv8 series, which was 93.69 % for YOLOv8n, 93.65 % for YOLOv8s, 

and 95.63 % for YOLOv8m. In contrast, for the YOLOv5 series, the highest 

F1 score was YOLOv5m at 90.53 % and the lowest F1 score was YOLOv5n at 

80.17 %. The mobilenet ssd had an intermediate F1 score of 82.22 % between 

the YOLOv5 series. Based on the overall result, this matched the result in the 

previous section that the YOLOv8 series is the better retrained model than 

others. 
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4.1.4.2 Cartoon Class x Accuracy, Precision, Recall, F1 score 

 

Figure 4.12: Graph of retrained model’s cartoon class vs accuracy, precision,   

recall & F1 score. 

 

Figure 4.12 presents the accuracy, precision, recall, and F1 score for the 

cartoon class. As shown in Figure 4.12, YOLOv8m achieved the highest 

accuracy in detecting the cartoon class correctly at 75.29 %, followed by its 

variants, YOLOv8s at 73.07 % and YOLOv8n at 72.17 %. Although 

mobilenet ssd had a lower accuracy than YOLOv8 series, it still outperformed 

the YOLOv5 series, with an accuracy of 67.44 %. YOLOv5n had the lowest 

accuracy among all models at 55.36 %. Regarding precision, YOLOv5 series 

and YOLOv8 series performed similarly well, while mobilenet ssd had a 

precision of only 79.15 %. All retrain models exhibited low recall percentage, 

below 60 %. YOLOv5n had the lowest recall percentage at 18.83 %, while 

YOLOv5m achieved the highest recall at 36.50 % among the YOLOv5 series. 

YOLOv8m had the highest recall percentage at 55.34 %. Regarding the F1 

score, YOLOv8 series demonstrated the best performance, followed by 

mobilenet ssd and YOLOv5 series. YOLOv8n had an F1 score of 65.80 %, 

lower than its variants, YOLOv8s at 67.84 %, and YOLOv8m at 70.90 %. 
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4.1.4.3 Combined Accuracy  

 

Figure 4.13: Graph of retrained model vs combined accuracy. 

 

Figure 4.13 displays the combined accuracy for human and cartoon classes for 

each retrained model. Based on the results, the YOLOv8 series had a higher 

combined accuracy than the mobilenet ssd and YOLOv5 series. YOLOv8m 

had the highest combined accuracy at 74.02 % due to its higher accuracy in 

detecting human and cartoon. YOLOv8s was 2 % less combined accuracy, at 

72.02 % while YOLOv8n at 70.79 %. Mobilenet ssd had the intermediate 

combined accuracy in between YOLOv5 series and YOLOv8 series, which 

was 62.68 %. YOLOv5 series had the least combined accuracy, which was 

41.57 % for YOLOv5n, 51.38 % for YOLOv5s and 59.02 % for YOLOv5m.  

 

4.1.4.4 Summary 

After analyzing the classification results into two classes, it was observed that 

the retrained models have a higher ability to detect humans but a lower ability 

to detect cartoons accurately. However, the main objective of the project is to 

implement a human detection model that only detects humans and reduces the 

false detection of cartoons as humans. The model does not need to detect 

cartoons accurately, but rather to avoid detecting them as humans. Regardless 

of the classification method, whether one class or two classes, the YOLOv8 

series consistently outperforms the other retrained models. Therefore, the 

YOLOv8 series can be considered the best model among the retrained models. 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Combined Accuracy

Retrain Model vs Combined Accuracy

YOLOv5n YOLOv5s YOLOv5m YOLOv8n YOLOv8s YOLOv8m mobilenet ssd



78 

4.1.5 YOLOv8 series 

The retrained YOLOv8 series models were only be tested on the mixed dataset. 

The dataset comprises 75 images, all of which contain a combination of both 

humans and cartoons. The dataset contains a total of 146 instances of humans 

and 259 instances of cartoons, which account for 36.05 % and 63.95 %, 

respectively. Figure 4.14 displays some of the images in the dataset. 

 

 

Figure 4.14: Examples of the mix dataset. 

 

As the project's goal is solely to recognize humans and avoid falsely 

detecting cartoons as humans, the classification of results were based on the 

human class and the false detection rate of cartoons. The Table 4.13 displays 

the result. 

 

Table 4.13: Result of YOLOv8 series on mix dataset. 

Retrain Model TP FN FP FD 

YOLOv8n 127 19 0 15 

YOLOv8s 126 20 0 21 

YOLOv8m 126 20 0 13 

 

These results were further calculated to obtain accuracy, precision, 

recall, and F1 score for human detection, as well as the false detection rate for 

the cartoon. The results were shown as Table 4.14. 
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Table 4.14: Result of YOLOv8 series on mix dataset. 

Retrained Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 score 

(%) 

False 

Rate (%) 

YOLOv8n 86.99 100 86.99 93.04 5.79 

YOLOv8s 86.30 100 86.30 92.65 8.11 

YOLOv8m 86.30 100 86.30 92.65 5.02 

 

 

 

Figure 4.15:Graph of YOLOv8 series vs accuracy, precision, recall & F1 score. 

 

Based on the results shown in Figure 4.15, it was observed that the 

YOLOv8 series models had very similar performance on the dataset. The main 

difference in performance was the false detection rate of cartoons as humans. 

YOLOv8m had the smallest false detection rate at 5.02 %, followed by 

YOLOv8n at 5.79 % and YOLOv8s at 8.11 %. 

 

Figure 4.16 (a), (b), (c) and (d) depict the scenario of the human 

detection results. As shown in Figure 4.16 (a) and (b), the retrained YOLOv8n 

successfully detected all humans without producing any false detection of 

cartoons as humans. However, in Figure 4.16 (c) and (d), some of the cartoons 

were erroneously detected as humans, while all humans were accurately 

detected. 
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Figure 4.16 (a)    Figure 4.16 (b) 

  

Figure 4.16 (c)    Figure 4.16 (d) 

Figure 4.16: Examples of the scenario of human detection result. 

 

Among the retrained YOLOv8 series models, YOLOv8n was chosen 

for implementation in real-time processing. In terms of performance, the 

YOLOv8 series models did not exhibit significant differences. Although 

YOLOv8m achieved the best performance overall, its larger model size made 

it unsuitable for real-time processing. On the other hand, YOLOv8n had a 

smaller model size of 6.09 MB, making it faster to implement in real time. 

This represents a trade-off between accuracy and speed.  
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4.2 Overall Result 

This section discussed about the result of proposed solution for customer 

analysis with machine vision. The retrained human detection model, 

YOLOv8n was utilised as the human detection model in the proposed solution. 

 

4.2.1 Input Videos and Customer Database 

The proposed solution for customer analysis with machine vision was 

conducted on a set of real-life practical videos that were captured by a CCTV 

system. The dataset included both an entrance video and an exit video, as 

illustrated in figure 4.17.  

 

   

(a) Entrance Video    (b) Exit Video 

Figure 4.17: Real-life practical set videos. 

 

Figure 4.18 displays the facial images of the 17 known customers 

included in the customer database used for the real-life practical case study. 

Each customer was represented by their high-resolution frontal facial image, 

and their information, including their name, was encrypted and saved into the 

database. Similarly, Figure 4.19 shows a portion of the customer information, 

such as the 128-embedded point of the face and the respective name of each 

customer.  

 

 

Figure 4.18: Facial Image in the Customer Database. 
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Figure 4.19: Part of the customer information in customer database. 

 

4.2.2 Human Detection, Human Tracking and Customer Counting 

In Figure 4.20, (a) displays the video frame when a human first appears and 

has not yet been detected by the algorithm. In (b), the algorithm has detected 

the human and assigned an ID to them. Once the human crossed the counting 

line, as shown in (c), the customer count was incremented by 1, indicating that 

they have entered the shop. (d) illustrates how the algorithm performed human 

tracking, following the human assigned with the ID in (b) as they moved. 

 

   

Figure 4.20 (a)    Figure 4.20 (b) 

   

Figure 4.20 (c)    Figure 4.20 (d) 

Figure 4.20: Demonstration of human detection, tracking and customer 

counting. 
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From Figure 4.21, the algorithm was able to detect multiple humans 

at the same time as shown in Figure 4.21 (a) and tracked each of them 

correctly as shown in Figure 4.21 (b). 

 

  

     Figure 4.21 (a)    Figure 4.21 (b) 

Figure 4.21: Human detection and tracking in different frame. 

 

Throughout the case study, the algorithm successfully recorded the 

count of 13/13 humans in the entrance video and 15/16 in the exit video, 

resulting in an accuracy of 100% for the entrance video and 93.75% for the 

exit video. However, one human was not counted in the exit video as he was 

moving very quickly behind another human, making it difficult for the 

algorithm to detect him accurately before he passed the counting line. 

Therefore, the count was missed. Figure 4.22 illustrates this missed count of 

human. 

 

   

Figure 4.22: Missing count of human. 

 

4.2.3 Facial Recognition 

To perform facial recognition, the proposed algorithm cropped the image of 

the customer at the moment they crossed the counting line and checked if a 

face was present in the frame. If a human face was detected in the frame, the 

algorithm proceeds to feature extraction and face recognition. 
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4.2.3.1 Face Detection 

Table 4.15 and Table 4.16 demonstrate the ability of the algorithm to detect 

the face. 

 

Table 4.15: Result of Face Detection in Entrance Video. 

 Success Fail 

Face 

   

   

   

  

   

   

Total 7 4 

 

Table 4.16: Result of Face Detection in Exit Video. 

 Success Fail 

Face 
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Total 5 10 

 

According to Table 4.15 and Table 4.16, the algorithm was successful 

in detecting frontal faces, faces looking left, and faces looking downwards up 

to 30 °. However, the algorithm failed to detect faces wearing masks, faces 

looking downwards at an angle greater than 30 °, or faces facing backward. 

This was due to the algorithm's inability to capture and detect faces under 

these challenging conditions. Additionally, low image resolution may 

contribute to the algorithm's failure to detect faces accurately. The results 

showed that the algorithm successfully detected 7 out of 11 faces in the 

entrance video and 5 out of 15 faces in the exit video. Therefore, the success 

rate of the algorithm to detect faces in the entrance and exit videos was 63.63 % 

and 33.33 % respectively. 

 

4.2.3.2 Face Recognition 

The facial recognition results were relied on the faces detected by the 

algorithm in section 4.3.1. Currently, the customer database for the entrance 

video and exit video were independent to allow for better analysis of the facial 

recognition process. 

 

Table 4.17: Result of Face Recognition in Entrance Video. 

Customer Success Fail 

New customer 1 
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New customer 2 

 

 

 

 

 

Q 

 

  

  

Total 4 3 

 

Based on the results from section 4.2.3.1, seven faces were detected 

in the entrance video. The algorithm was able to recognise two faces from the 

initial customer database, while the other faces were registered as new 

customers and recognised based on the updated database. Out of the seven 

faces, four were recognised successfully, while three faces failed to be 

recognised from the customer database. Therefore, the accuracy of the 

algorithm in recognising faces is 57.14 %.  

 

Table 4.18: Result of Face Recognition in Exit Video. 

Customer Success Fail 

New customer 1 

 

 

  

 

 

New customer 2 

 

 

  

 

 

Total 4 1 

 

 



87 

Same technique was applied to the exit video. From the exit video, 

five faces were detected in the previous section. Based on it, the algorithm did 

not recognise any face from the initial customer database while registering two 

customers as new customers in the customer database. Out of the five faces, 

four faces were recognised successfully and one face was failed to recognise 

from the customer database. The recognition rate of the algorithm was 80 % 

for the exit video. 

 

4.2.3.3  Overall Result for Facial Recognition 

Facial recognition comprised the combination of face detection and face 

recognition. The combined result were classified in the Table 4.19 and Table 

4.20. 

 

Table 4.19: Overall Combined Result of Facial Recognition in Entrance Video. 

Customer Success Fail 

New customer 1 

 

  

 

  

 

New customer 2 

 

 

 

 

   

Q 

 

  

  

Total Detected 

Face 

4 3 

Total Undetected 

face 

0 4 

Total Face 4 7 
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Table 4.20: Overall Combined Result of Facial Recognition in Exit Video. 

Customer Success Fail 

New customer 1 

 

 

  

 

 

New customer 2 

 

 

  

 

  

Unknown 1 

 

  

  

  

Unknown 2 

 

  

  

Unknown 3 

 

  

 

Unknown 4 

 

  

 

Total Detected 

Face 

4 1 

Total Undetected 

face 

0 10 

Total Faces 4 11 
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According to Tables 4.19 and 4.20, the facial recognition algorithm's 

accuracy for the entrance and exit videos was 36.36 % and 26.67 %, 

respectively. The algorithm's low accuracy was primarily due to its inability to 

efficiently detect faces under challenging conditions.  

 

4.2.4 Gender Classification 

Table 4.21 and Table 4.22 summarized the result of gender classification in the 

entrance video and exit video.  

 

Table 4.21: Confusion Matrix of Gender Classification in Entrance Video. 

  Predicted Total 

  Male Female 

Actual Male 8 0 8 

Female 0 3 3 

Total 8 3 11 

 

 

Table 4.22: Confusion Matrix of Gender Classification in Exit Video. 

  Predicted Total 

  Male Female 

Actual Male 4 6 10 

Female 2 3 5 

Total 6 9 15 

 

Based on Table 4.21 and Table 4.22, the algorithm had an accuracy of 

100 % and 46.67 % for gender classification in the entrance and exit videos, 

respectively. The discrepancy in accuracy between the two videos may be 

attributed to the higher concentration of humans in the exit video, which could 

make it more difficult for the algorithm to accurately classify gender. 

Additionally, misclassification of gender during the initial registration process 

could lead to incorrect customer information being stored in the database, 

resulting in subsequent incorrect gender recognition. 
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4.2.5 Updated Customer Database 

Figure 4.23 (a) depicted the folders for new customers and unknown 

customers that were added or recorded in the customer database. If a 

customer's face was detected but not recognised by the algorithm, the 

customer will be registered as a new customer, as illustrated in Figure 4.23 (b). 

Conversely, if the algorithm failed to detect the face, the customer will be 

recorded as unknown, as shown in Figure 4.23 (c). 

 

 

Figure 4.23 (a) 

   

 Figure 4.23 (b)     Figure 4.23 (c) 

Figure 4.23: Updated customer database. 

 

4.2.6 Weakness of the Algorithm 

The algorithm consists of several major steps, including human detection and 

tracking, customer counting, facial recognition, and gender classification. 

However, most of the steps has its own limitations when facing certain 

situations, which can affect the overall performance of the algorithm.  

During the human tracking phase, the algorithm may encounter a 

weakness when tracking people who are standing very close or overlapping 

with each other. As depicted in Figure 4.25, if the people were too close, the 

algorithm may wrongly assign IDs to the wrong individuals, leading to 

incorrect tracking results. In Figure 4.25 (a), for example, the algorithm 

assigned ID 10 to the customer with the yellow shirt but failed to detect the 

human with the black shirt, who was occluded by the previous human due to 
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overlapping. In Figure 4.25 (b), ID 10 was tracking the wrong individual with 

the black shirt, instead of the correct human with the yellow shirt. This was 

due to the centroid tracking algorithm, which always assumed that the 

minimum Euclidean distance between centroids in subsequent frames should 

belong to the same human, leading to the wrong assignment of IDs.  

 

   

Figure 4.24 (a)    Figure 4.24 (b) 

Figure 4.24: Failure of human tracking. 

 

The face detection algorithm struggles to detect human faces in 

challenging situations, such as when faces are occluded by masks, when there 

are pose variations, and when faces are not looking directly at the camera. 

Section 4.2.3.1 highlighted that most of the algorithm's failures in detecting 

faces occured when the person was wearing a mask and looking downwards at 

an angle greater than 45°. When a face is obscured by a mask, the algorithm 

finds it challenging to determine if a face is present since most of the facial 

features are covered. Additionally, if a person looks downwards, important 

features of the face may also be obstructed. However, this issue may be caused 

by the location of the CCTV, which is typically installed at a high angle, 

resulting in the algorithm always capturing the customers' face image from 

above.  

 The face recognition algorithm's weakness lies in its difficulty in 

accurately identifying humans based on only one face image embedded into 

128 measurements in the customer database. The algorithm may have 

difficulty precisely differentiating between faces since one set of 128 

measurements for each human does not allow for much tolerance. As a result, 

the algorithm may make mistakes in the face recognition step. However, this 
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weakness is difficult to overcome in reality as humans move quickly in and 

out of retail shops.  

 The pre-trained gender classification network used in the proposed 

solution was based on the Adience benchmark, which includes various 

challenging face images from around the world. However, the gender 

classification algorithm used in this solution was only based on Malaysians. 

As a result, the gender classification model may not perform well for 

Malaysian citizens, resulting in a low accuracy rate of 46.67 % in the exit 

video.   
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

The YOLOv8 series models outperform all other detection models in terms of 

their ability to detect humans and minimize false detection of cartoons as 

humans. In addition, the YOLOv8n model stands out for its fast processing 

speed, small parameters, and model size compared to other detection models 

discussed in this paper. Therefore, the retrained YOLOv8n model is 

considered to be the best-performing model overall, achieving 96.97 % 

accuracy, 99.52 % precision, 97.42 % recall, 98.46 % F1 score, a false 

detection rate of 8.16 %, and a model size of 6.09 MB. However, false 

detections of cartoons as humans cannot be completely eliminated with either 

pretrained or retrained models. The false detection rate can only be 

significantly reduced by retraining the model using a dataset consisting of two 

classes: humans and cartoons. 

To perform customer analysis with machine vision, a combination of 

algorithms is utilized, including human detection, human tracking, centroid 

tracking, facial recognition, and gender classification. For human detection, 

the retrained YOLOv8n is used due to its high accuracy in detecting human, 

low false rate of detecting cartoons as humans and fast processing speed 

without GPU. The human tracking phase employs a scale estimation algorithm 

developed by Danelljan, et al. (2014) to track targets through scaling and 

translation. Centroid tracking assigns an ID to each human target to ensure 

accurate tracking. To count customers, a counting line is drawn in the video 

frame, with the algorithm recording an accuracy of 100 % and 93.75 % for the 

entrance and exit videos, respectively. The face detector used is the HOG 

model in the face recognition module in Python, which detects human faces 

with a success rate of 63.63 % and 33.33 % for the entrance and exit videos 

respectively. For facial recognition, the algorithm utilizes FaceNet which 

developed by Levi and Hassncer (2015), extracts 128 measurements for facial 

features, with an accuracy of 57.14 % and 80 % for the entrance and exit 
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videos respectively. Overall, facial recognition records an accuracy of 36.36 % 

and 26.67 % for the entrance and exit videos, respectively. Lastly, gender 

classification uses a simple CNN architecture method by Levi and Hassncer 

(2015), with an accuracy of 100 % and 46.67 % for the entrance and exit 

videos respectively. 

 

5.2 Recommendations for future work 

To improve the human detection algorithm, it is recommended to experiment 

with various combinations of learning parameters, so that it can achieve the 

optimal results. The learning parameters that can tune include number of 

epochs, batch size of images, fed-in image size, learning rate, etc. Furthermore, 

ensure that each instance in the dataset is labelled well to improve the quality 

of the dataset. It is also recommended to maintain a 1:1 ratio of human-to-

cartoon instances while keeping the ratio of images per class at 1:1. 

To enhance the algorithm's capabilities, it is recommended to lower 

the position of the CCTV and adjust its angle to capture frames that face the 

customer's frontal face. This adjustment would help reduce issues with face 

detection when customers look downwards and increase the algorithm's ability 

to detect faces. Additionally, a better CCTV with a higher resolution would be 

preferred, as the algorithm crops the face image of the customer when they 

cross the counting line, and sometimes, the cropped image may be blurry due 

to movement. With a higher quality image, the algorithm could capture and 

extract more precise face features for the face recognition phase. 

Another recommendation is to increase the number of face images 

with different postures and angles in the customer database for training 

purposes. In the case study, each person only uses a single frontal face image 

for training, so the algorithm doesn't adapt to recognize humans if there are 

any changes in their posture or facial angle. 
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