

DEVELOPMENT OF COORDINATING

ALGORITHM FOR RENDEZVOUS TASK OF

MOBILE ROBOTS

NG JIN SIANG

UNIVERSITI TUNKU ABDUL RAHMAN

DEVELOPMENT OF COORDINATING ALGORITHM FOR

RENDEZVOUS TASK OF MOBILE ROBOTS

NG JIN SIANG

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Mechatronics

Engineering with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2023

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare

that it has not been previously and concurrently submitted for any other degree

or award at UTAR or other institutions.

Signature :

Name : Ng Jin Siang

ID No. : 1804136

Date : 21/5/2023

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled DEVELOPMENT OF

COORDINATING ALGORITHM FOR RENDEZVOUS TASK OF

MOBILE ROBOTS was prepared by NG JIN SIANG has met the required

standard for submission in partial fulfilment of the requirements for the award

of Bachelor of Mechatronics Engineering with Honours at Universiti Tunku

Abdul Rahman.

Approved by,

Signature :

Supervisor : Dr. Shalini a/p Darmaraju

Date : 22/5/2023

Signature :

Co-Supervisor : Dr. Kwan Ban Hoe

Date : 22/5/2023

iii

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2023, Ng Jin Siang. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to everyone who contributed to

the successful completion of this project. First and foremost, I am grateful to my

research supervisor, Dr. Shalini a/p Darmaraju, and co-supervisor, Dr. Kwan

Ban Hoe for their invaluable advice, guidance, and enormous patience

throughout the development of this research.

I am also deeply thankful to my loving parents and friends, who provided

me with unwavering support and encouragement whenever I needed it. Without

their help, I would not have been able to complete my final year project with

such success.

v

ABSTRACT

The coordination of mobile robots is a crucial component in a variety of

applications, including search and rescue, environmental monitoring, and

transportation. It is essential that the robots work together to achieve a common

goal efficiently and safely. In this project, the focus was on the rendezvous task,

which involves bringing multiple robots to a common location. To accomplish

this task, a coordinating algorithm was developed that allows the robots to work

together in a distributed manner. Each robot has a limited view of the

environment, and they communicate with their neighbouring robots to share

information about their current position. The proposed algorithm was developed

using MATLAB and implemented within ROS2, which are widely used in the

robotics industry. The algorithm ensures that all robots converge to the

rendezvous point while avoiding collisions with each other. It achieves this by

selecting a leader or multiple leaders and then having all other robots converge

towards the position of the leader, based on the information received from

neighbouring robots. Overall, the proposed algorithm provides an efficient

solution for the coordination of mobile robots in the rendezvous task, where the

algorithm is capable of handling different group scenarios and is coordinate-free.

It has the potential to be used in a wide range of applications, such as flocking

control, making it a valuable contribution to the field of robotics.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xiii

LIST OF APPENDICES xiv

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.1.1 Mobile Robot 2

1.1.2 Rendezvous Problem 3

1.2 Importance of the Study 4

1.3 Problem Statement 4

1.4 Aim and Objectives 5

1.5 Scope and Limitation of the Study 5

1.6 Contribution of the Study 6

1.7 Outline of the Report 6

2 LITERATURE REVIEW 7

2.1 Introduction 7

2.1.1 Coordinated Control of Multi-Robot

System 7

2.2 Rendezvous Control Strategy 9

2.2.1 Hierarchical Consensus Algorithm 9

2.2.2 Deterministic Algorithm 11

vii

2.2.3 Bearing-only or Range-only Strategy 14

2.2.4 Multi-Group Rendezvous 15

2.3 Robot Operating System (ROS) and ROS2 16

2.4 ROS2 Navigation Stack (Nav2) 19

2.4.1 Behavior Tree (BT) Navigator 19

2.4.2 Navigation Servers 20

2.4.3 Environmental Representation and

Costmap2D 20

2.5 Summary 21

3 METHODOLOGY AND WORK PLAN 22

3.1 Introduction 22

3.2 Rendezvous Control Proposed Solution 22

3.2.1 Rendezvous Problem Setting 22

3.2.2 Multi-Point Rendezvous Control Law 22

3.2.3 Assumption and Definition 22

3.2.4 Building the Connectivity Graph

(Algorithm 1) 24

3.2.5 Creating Multiple Group 25

3.2.6 Hierarchical Rendezvous Algorithm

(Algorithm 2) 26

3.2.7 Choosing Leader Robots (Algorithm 3) 27

3.3 Environmental Setup 29

3.4 MATLAB Toolbox 30

3.4.1 Robotics System Toolbox 30

3.4.2 Navigation Toolbox 30

3.4.3 Mobile Robotics Simulation Toolbox 31

3.5 ROS2 31

3.5.1 Gazebo 31

3.5.2 ROS2 Navigation Stack (Nav2) 32

3.5.3 SLAM Toolbox 33

3.5.4 Transform Library 2 (tf2) 33

3.5.5 Workflow in ROS2 33

3.6 Planning and Managing of Project Activities 37

viii

3.7 Summary 40

4 RESULTS AND DISCUSSIONS 41

4.1 Introduction 41

4.2 Simulation in MATLAB 41

4.2.1 Scenario 1 – Single-Point Rendezvous 41

4.2.2 Scenario 2 – Multi-Point Rendezvous 45

4.2.3 Scenario 3 – Herding 47

4.3 Simulation in ROS2 49

4.3.1 Scenario 1 – Obstacle-Free Environment 49

4.3.2 Scenario 2 – Obstacle-Rich Environment 52

4.4 Summary 54

5 CONCLUSIONS AND RECOMMENDATIONS 55

5.1 Conclusions 55

5.2 Future Recommendation 55

REFERENCES 56

APPENDICES 59

ix

LIST OF TABLES

Table 3.1: List of Navigation Plugins Used. 32

Table 3.2: Gantt Chart of Project Part I. 38

Table 3.3: Gantt Chart of Project Part II. 39

Table 4.1: Results of the Metrics in Scenario 1. 43

Table 4.2: Results of the Metrics in Scenario 2. 47

x

LIST OF FIGURES

Figure 1.1: E-Puck 2 (GCtronic, no date). 2

Figure 1.2: Khepera IV (Khepera IV New - K-Team Corporation,

2021) 2

Figure 2.1: Classification of Coordination in MRS (Verma and Ranga,

2021) 8

Figure 2.2: Numerical Simulation with Trajectory Line of Leader and

Follower Robot (Kan et al., 2017). 11

Figure 2.3: Active mobile robot executing m-RP (Ozsoyeller, Özkasap

and Aloqaily, 2022) 13

Figure 2.4: Possible Iteration of Robot j when executing MSR

(Ozsoyeller and Tokekar, 2022) 14

Figure 2.5: Bearing angle of the mobile robot (Zheng and Sun, 2014). 15

Figure 2.6: Basic Structure of ROS (Clearpath Robotics, 2014). 17

Figure 2.7: Architecture of ROS and ROS2 (Maruyama, Kato and

Azumi, 2016). 18

Figure 2.8: Nav Stack (Macenski et al., 2020). 19

Figure 3.1: Rooted Tree Graph (West,2001). 24

Figure 3.2: Building a Global Connectivity Graph (Algorithm 1). 25

Figure 3.3: Hierarchical Rendezvous Control Algorithm (Algorithm

2). 27

Figure 3.4: Choosing Leader Robots (Algorithm 3). 29

Figure 3.5: Obstacle-Rich Environment. 32

Figure 3.6: Differential Drive Mobile Robot. 32

Figure 3.7: Tree Directory of beta_desc. 34

Figure 3.8: Tree Directory of beta_mapping. 35

Figure 3.9: Tree Directory of beta_nav. 35

Figure 3.10: Workflow of Overall Process. 36

xi

Figure 3.11: Node graph of /goal_publisher. 36

Figure 3.12: Terminal of Rendezvous Controller. 37

Figure 3.13: Position for Follower Robot. 37

Figure 4.1: Initial Position of Mobile Robots with N =10 (Left) and

Initial Connectivity Graph (Right). 42

Figure 4.2: Initial Position of Mobile Robots with N = 20 (Left) and

Initial Connectivity Graph (Right). 42

Figure 4.3: Initial Position of Mobile Robots with N = 30 (Left) and

Initial Connectivity Graph (Right). 42

Figure 4.4: The results of Scenario 1 is presented – Proposed

rendezvous algorithm (left) is compared to the

circumcenter algorithm (right) with different numbers of

mobile robots. The first row of figure, (a) and (b), displays

the final trajectory when N = 10. The second row (c) and

(d) displays the final trajectory when N = 20, and the third

row (e) and (f) illustrates the final trajectory when N = 30.

 44

Figure 4.5: Rooted Tree of Proposed Algorithm (N=30). 45

Figure 4.6: Results of Scenario 2 – Multi-point rendezvous where N =

30. At the first row, (a) show the final trajectory of mobile

robots and (b) shows the initial rooted tree. At the second

row, (a) show the final trajectory of mobile robots and (b)

shows the initial rooted tree. 46

Figure 4.7: Overall Comparison of Objective Function (N=30). 47

Figure 4.8: Initial Position of Mobile Robots with N = 16 (Left) and

Initial Connectivity Graph (Right). 48

Figure 4.9: Trajectory of Mobile Robots during Herding at iterations

(a) t = 35, (b) t = 80, (c) t = 580. 48

Figure 4.10: Results of Scenario 1 without Formation Control with

different time stamped, (a) t = 0s, (b) t = 2s, (c) t = 75s,

(d) t = 105s, (e) t = 150s, (f) t = 170s. 50

Figure 4.11: Results of Scenario 1 with Formation Control with

different time stamped, (a) t = 0, (b) t = 2s, (c) t = 75s,

(d) t = 105s, (e) t = 150s, (f) t = 170s. 51

xii

Figure 4.12: Results of Scenario 2 with Formation Control with

different time stamped, (a) t = 0, (b) t = 2s, (c) t = 75s,

(d) t = 105s, (e) t = 150s, (f) t = 170s. 53

Figure 4.13: Collision among follower mobile robots. 54

xiii

LIST OF SYMBOLS / ABBREVIATIONS

AUV Autonomous Underwater Vehicles

API Application Programming Interface

BFS Breath First Search

GPS Global Positioning System

LMR Legged Mobile Robot

MATLAB Matrix Laboratory

MRS Multi-Robot System

ROS Robot Operating System

RTOS Real Time Operating System

TF Transform Library

SSR Safe Sensing Range

UAV Unmanned Aerial Vehicle

WMR Wheeled Mobile Robot

xiv

LIST OF APPENDICES

APPENDIX A: Link for Code for MATLAB and ROS2 59

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

As technology advances in robotics, countless opportunities for useful

applications in diverse domains are emerging. While some applications can

utilize a single robot to complete a task, there are scenarios that require multiple

robots to accomplish what is impossible for a single robot.

A Multi-Robot System (MRS) can be understood as the application of

multiple robots working together to achieve a certain objective (Jawhar et al.,

2018). MRS architectures offer different trade-offs in terms of reliability,

scalability, and coordination (Jawhar et al., 2018). The centralized architecture

provides a centralized decision-making process but is prone to single point

failures and scalability limitations. On the other hand, hierarchical architecture

allows for scalability but can suffer from reduced reliability when failures occur

at higher levels of the hierarchy. Decentralized architecture, being the most

common category, offers robustness and adaptability to failures but poses

challenges in maintaining synchronization and coordinating actions when

mission objectives change. Ultimately, the choice of architecture depends on the

specific requirements of the MRS application, balancing factors such as system

reliability, scalability, and coordination complexity (Jawhar et al., 2018).

 Numerous robots with different abilities can work together to deal with

complex tasks, and if one or more robots fail, it will not affect the completion

of the task. MRS has been used in several domains for applications such as

warehousing, search-and-rescue, environmental monitoring, and exploration.

MRS can be made up of teams of homogeneous or heterogeneous robots. Teams

of homogeneous robots have the same individual capability, whereas

heterogeneous robot teams have different capabilities of robots.

Multi-robot systems have attracted the attention of researchers due to

their potential for various applications. However, utilizing MRS comes with

difficulties such as task division, synchronization, and coordination. Practical

considerations of mobile robots further contribute to the complexity of multi-

robot systems compared to single robots.

2

1.1.1 Mobile Robot

Mobile robots are becoming increasingly important in a variety of industries,

from manufacturing and logistics to agriculture and healthcare. The ability to

move autonomously from one place to another makes mobile robots versatile

and adaptable to different environments and tasks. The types of environments

where mobile robots operate can vary greatly, from the air to the ground and

even underwater. In terrestrial environments, wheeled mobile robots (WMRs)

and legged mobile robots (LMRs) are common. WMRs, in particular, are widely

used in applications such as warehouse logistics, material handling, and

transportation. They can be configured with different numbers of wheels,

ranging from two-wheeled robots like the E-Puck 2 and Khepera-IV as shown

in Figure 1.1 and Figure 1.2, to four-wheeled and even six-wheeled robots.

The selection of a configuration is dependent on the particular demands

of the task and the surroundings in which the robot will function. For example,

two-wheeled robots are more manoeuvrable but less stable than four-wheeled

robots, while six-wheeled robots are better suited for rough terrain. Overall, the

use of mobile robots, and in particular, wheeled mobile robots, is growing

rapidly, and they are expected to play a significant role in the future of

automation and robotics (Javaid et al., 2021).

Figure 1.1: E-Puck 2 (GCtronic, no date).

Figure 1.2: Khepera IV (Khepera IV New - K-Team Corporation, 2021)

3

Industry 4.0 technology enables factories to integrate autonomous

mobile robots (AMRs) into their assembly lines without relying on external

localization systems. Equipped with sensors and cameras, AMRs can

autonomously navigate their environments. As AMRs continue to evolve, they

will transform from simple management systems to predictive data systems,

enabling manufacturers to make informed decisions during plant development

(Javaid et al., 2021). The acceptance of Industry 4.0 is increasing due to the

widespread presence of enhanced computing capacity and automation, which

many consider as the next industrial revolution.

1.1.2 Rendezvous Problem

Rendezvous is a crucial concept in many areas, including mobile robots, where

it refers to the meeting of two or more people at a predefined place and time.

This concept is fundamental to the field of the cooperative mobile robots, where

it is referred as the rendezvous problem or the consensus problem (Potop-

Butucaru, Raynal and Tixeuil, 2011).

The rendezvous problem has been well studied in the game theory,

where it is introduced as a search robot (Alpern, 2011). A well-known example

is that the princess and monster game, where a group of robots needs to find the

hidden target while avoiding a mobile opponent. The game highlights the

importance of the rendezvous problem, as it requires the robot to converge in a

single location or position to achieve their goal.

In a multi-robot system, one of the most basic coordination tasks is

multi-robot rendezvous. In a network of robot, rendezvous problem is where the

distributed robot needs to converge at a same location either based on consensus

or immediate goals (Lin, Morse and Anderson, 2004). The objective of the

rendezvous problem is to achieve an agreement over the potential rendezvous

point, which can be referred as landmark, with limited information flow

described in the model of the network. The model of network involved a set of

distributed mobile robots. Achieving this goal can be challenging, as robots

often have limited information about the positions and movements of their peers.

However, there are many different techniques that can be used to solve the

rendezvous problem, including consensus algorithms, distributed optimization,

and decentralized control.

4

Ultimately, the key to successfully solving the rendezvous problem is

effective communication and coordination between robots. By interacting with

each other and sharing information, robots can work together to achieve a

common goal and accomplish tasks that would be impossible for a single robot

to complete alone.

1.2 Importance of the Study

In multi-robot systems, the rendezvous task is important because it enables robot

coordination and cooperation to complete challenging tasks. The task helps to

efficiently manage resources such as energy, bandwidth, and processing power.

It is adaptable and scalable, enabling multi-robot systems to adapt various

environments and tasks.

For multi-robot systems to perform to their full capacity in a variety of

applications, including search and rescue operations, exploration of uncharted

territory, surveillance, and transportation, the rendezvous task must be

implemented successfully. Therefore, the rendezvous task is a critical

component of multi-robot systems that enables robots to work together towards

a common goal.

1.3 Problem Statement

In multi-robot rendezvous, the sensing capability of mobile robots is a critical

consideration. Most rendezvous control algorithms assume that each robot can

measure the relative position of its neighbours by utilizing global localization

systems, such as GPS, for external navigation. However, such methods may not

be applicable in communication-denied environments like indoors or hostile

areas.

An alternative approach is to use onboard sensors, which offer the

advantage of being passive and not requiring wireless communication. These

sensors can include cameras, LIDAR, and other range sensors, which enable the

mobile robots to perceive their environment and detect other nearby robots

without relying global localization systems. By utilizing onboard sensors

capabilities, multi-robot rendezvous can better operate autonomously and

without interruption.

5

However, simply relying on onboard sensors may not be enough to

guarantee safe and efficient rendezvous in complex environments. There may

be obstacles or other environmental factors that block the mobile robots'

movement and increase the risk of collisions. Therefore, additional algorithms,

such as collision avoidance, should be implemented to ensure safe navigation

and successful rendezvous. These algorithms can use data from onboard sensors

to detect and avoid obstacles, allowing the robots to navigate effectively in

complex environments while avoiding collisions.

1.4 Aim and Objectives

This project aims to develop a coordinating algorithm for the rendezvous task

for mobile robots. The detailed objectives are:

- To conduct a literature search on the existing coordinating algorithm for

rendezvous task of mobile robots.

- To develop a coordinating algorithm in a decentralized approach for

rendezvous task.

- To simulate the proposed algorithm and evaluate the scalability and

performance of the proposed algorithm.

- To implement the developed algorithm in ROS2 and integrate it with the

control and communication of the mobile robots.

1.5 Scope and Limitation of the Study

The scope of this project is to develop and implement a coordinating algorithm

for rendezvous tasks for mobile robots. The project will focus on developing the

rendezvous control law on the MATLAB platform and implementing it within

ROS2.

However, this study has some limitations. We will be using a single

integral model to represent the mobile robot, and kinematic constraints of the

mobile robot will be ignored during the algorithm development phase.

Additionally, within the simulation, the mobile robots are capable of

recognizing each other, and have their own number tag within their system.

6

1.6 Contribution of the Study

The contribution of the study is introducing a novel control framework that

enables robots to gather in different groups, facilitating efficient coordination

and collaboration among them.

1.7 Outline of the Report

The report is divided into five chapters. Chapter 1 provides a general

introduction to mobile robots and the rendezvous task, along with the problem

statement and objectives. Additionally, the chapter provides a detail overview

of the scope of the study inform the reader that the project is limited to certain

events.

Chapter 2 provides a literature review on the type of rendezvous

consensus algorithm and the overall structure of ROS and ROS2. This chapter

includes detailed research, selection of solution, and literature review.

In Chapter 3, the methodology to achieve the objectives of this project

is demonstrated from start to finish. The methodology includes the proposed

solution for the rendezvous control, as well as the toolboxes used in MATLAB

and ROS2.

Chapter 4 presents the results obtained through simulations during the

development phase in MATLAB and compares the performance with state-of-

the-art algorithms. Additionally, the chapter presents results obtained during the

implementation phase in ROS2. Lastly, Chapter 5 concludes the project and

provides recommendations for future work.

7

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

The development of mobile robots is crucial as they can replace human presence

in extreme environments. In many scenarios, multiple robots with different

capabilities are required to accomplish complex tasks. With the advancement in

computing capacity and the abilities of mobile robots, extensive research has

been conducted on the coordination and control of multiple mobile robots and

has been applied in various applications. Coordination of multiple robots can

include motion planning, formation control, and trajectory generation. However,

this project will focus specifically on the rendezvous task for mobile robots.

2.1.1 Coordinated Control of Multi-Robot System

Coordination and control of multi-robot systems are essential since there are

numerous robots in a system, and an algorithm for coordination between them

is needed to control their cooperative actions (Verma and Ranga, 2021). In

cooperation, robots need to not only achieve their own goals but also be aware

of their partners' urgent tasks.

Therefore, an effective coordinating mechanism can assist each robot in

selecting its actions to maximize the system's efficiency, taking into account

sensing, information sensing, physical and environmental constraints, and

inherent limitations. Coordinating approaches can be classified based on

different parameters, and one possible classification is shown in Figure 2.1.

8

Figure 2.1: Classification of Coordination in MRS (Verma and Ranga, 2021)

Many multi-robot systems develop their coordination control using

either strongly centralized control or decentralized control (Ke Xu, 2010).

Strongly centralized control coordination can be achieved by using a single

coordinating robot, which can be referred to as a server or leader. The server is

responsible for making decisions for all the robots in the system. Global

information, such as the environment and the location of the mobile robot, is

shared. Strongly centralized control is typically used for a small number of

robots within well-structured environments and is not suitable for dynamic

environments because the control is not robust enough and may cause

communication failures.

Decentralized control can be further classified into distributed

approaches and hierarchical approaches, which are locally centralized. In

distributed approaches of MRS, each robot executes its own algorithm

completely autonomously (Verma and Ranga, 2021). There are no leaders

within the architecture, and the system has all equal robots with respect to

control. The advantages of distributed approaches are that they provide more

robustness to failure; however, it is more complex to achieve coordination

among the team of robots. Therefore, hierarchical approaches come into play,

where the process of coordination is locally centralized. This is different from

centralized control coordination in that the follower robot is not controlled by a

single leader. The application of hierarchical approaches in MRS allows a group

of robots to work on different tasks after being divided into a few groups. These

9

approaches are less robust than distributed approaches but have less complexity

and cost.

In order for a multi-robot system to be successfully implemented,

various distributed control strategies have been developed to organize the robots

while working or solving problems using local interaction rules. To meet the

constraints required for a distributed multi-robot coordination algorithm to be

implemented, the algorithm must satisfy several requirements (Cortés

and Egerstedt, 2017).

The first constraint is that the algorithm must be local, meaning that each

individual robot can only act on the information it can access through its sensing

capabilities or its active communication network. The second constraint is that

the algorithm must be scalable and decentralized, meaning that it can be

implemented in both small and large teams of robots.

The third constraint is that the algorithm must ensure safety. After the

robots are deployed for their mission, the algorithm must prevent collisions

between robots and with the environment. Lastly, the algorithm must be

emergent, which means that global properties should emerge from the local

interaction rules.

2.2 Rendezvous Control Strategy

The following section will discuss and introduce a few well-known rendezvous

control strategies. The common objective of all algorithms is that the mobile

robots to meet at a common location, but they have no information at first where

the meeting location is at.

2.2.1 Hierarchical Consensus Algorithm

Hierarchical Consensus, can also be known as leader-follower consensus,

consists of one or multiple leaders within the mobile robot network. There are

multiple applications of leader in the network of robots, where one of the

common uses is by setting the coordinate or the dynamics of the leader. This

means that the leader robots, or robot, take on the responsibility of defining the

desired position or motion pattern for the entire group. The follower robots in

the network then adjust their movement or behaviours based on the information

provided by the leader.

10

With a leader present, practical applications such as herding, which

define the path for the entire group, can be achieved. The selection of a leader

depends on various algorithms. However, leader robots are chosen when their

capabilities far surpass those of the follower robots, such as advanced sensing

systems, functional capabilities, coordination with external systems, or even the

ability to handle complex scenario. By having these superior capabilities, the

leader robot can efficiently navigate through obstacles, maintain the desired

formation, and adapt to changing condition.

A Multi-Point Rendezvous Strategy, proposed by Parasuraman et al.

(2020), is an efficient hierarchical rendezvous algorithm that begins by creating

a local neighbour set using the local sensors of each robot to sense its

neighbouring robots. Then, each mobile robot shares its list with its neighbours

and constructs a global connectivity graph using a distributed algorithm in the

network. The leader robot is selected based on its capabilities or function, such

as recharging stations, or it could be chosen using Dijkstra’s algorithm from the

global connectivity graph to optimize the shortest route travelled for the mobile

robot in the rendezvous task. Sub-graphs are also constructed using the global

connectivity graph to reduce computational load. To build the shortest path trees,

the distance cost from every node to the root node is optimized. Each tree node

can have a parent or children, with leaf nodes being nodes that do not have any

children. The hierarchical rendezvous algorithm allows each follower robot in

the tree to move towards the root node to rendezvous. The researchers simulated

five different scenarios to demonstrate the effectiveness of their developed

rendezvous strategy, which performs better than the standard consensus and

circumcenter-based consensus.

A bearing-aided hierarchical tracking method proposed by Luo et al.

(2019), which uses bearings of robots and is coordinate-free. The algorithm

starts by building a shortest path tree from the leader robot using Dijkstra’s

algorithm. The rendezvous strategy begins with the children nodes moving

towards their parents. The process repeats until all robots reach the highest

parent, the leader robot, where they rendezvous. Thus, the rendezvous task is

completed by using iterative tracking movement from the leaf nodes of the

generated tree to the root node. Their field experiment and simulation are

noteworthy in that, even with mobility and communication faults in one node,

11

the mobile robot is still able to rendezvous at the desired point, demonstrating

the scalability of their algorithm in the simulation.

Kan et al. (2017), have developed decentralized time-varying controllers

for nonholonomic robots that rely only on local sensing feedback from their

neighbouring robots to achieve rendezvous. The algorithm can stabilize the

mobile robots at the specified location and is capable of preserving the

connectivity network and implementing collision avoidance along the way. A

small portion of robots is equipped with advanced sensors, which can be

identified as leaders, while the others only have a limited range sensor that can

provide local feedback on the relative trajectory of neighbouring robots. The

global objective, which is the rendezvous point, is known only by the leader

robot, while the followers coordinate their motion by using local information

from immediate neighbours. Numerical simulations are done to demonstrate the

effectiveness of the algorithm and are illustrated in Figure 2.2. This work is

noteworthy in that the algorithm does not require inter-agent communication to

achieve consensus.

Figure 2.2: Numerical Simulation with Trajectory Line of Leader and Follower

Robot (Kan et al., 2017).

2.2.2 Deterministic Algorithm

Deterministic algorithm is a type of algorithm that only depends on its input,

and there will be no randomness within the model. With the same input, the

algorithm will always produce the same output. However, the main problem that

12

deterministic algorithm needs to face is that the algorithm needs to break the

symmetry.

This can be explained by giving a highly symmetrical network, such as

an oriented ring, where the port can be labelled as follow: 0 as clockwise port

and 1 as anti-clockwise port. Two identical mobile robot runs the same

deterministic algorithm inside the oriented ring. If the agents are unable to mark

any labels within their pathway, it can be said that the mobile robot will always

use the same port and their distance will always be the same (Pelc, 2012).

Therefore, randomization is required to break the symmetry as it can change

how the robots determine their next port. Breaking the symmetry can be

accomplished by either marking nodes or labelling the robot.

Ozsoyeller et al. (2022), proposed a deterministic rendezvous search

algorithm which is m-RP. In the algorithm m-RP, we can identify two distinct

roles in mobile robots, which one is active robots, and another is passive robots.

m-RP algorithm labels each mobile robot to use the passive robot to break the

symmetry, thereby achieving deterministic rendezvous. The algorithm does not

require a connectivity graph to be built, which decreases the sensor range. The

m-RP algorithm is practically promising since simulations demonstrate

successful rendezvous even in asynchronous cases, where robots may not start

searching simultaneously. The algorithm commences with an exploration stage

consisting of two phases. In the first phase, the active robot starts searching for

the waiting robot by drawing concentric circles, as shown in Figure 2.3. In the

second phase, the active robot visits all waiting robots it has found. In phase 1,

if mobile robot has not found any waiting robot, then the mobile robot will start

the second round searching for waiting robot. The second stage is the

rendezvous stage, where one leader robot terminates the exploration stage. The

leader will select each foreign parent representative, which is the first waiting

robot where other leader robots meet. This will inform another leader to end the

exploration stage. Next, the leader robot will designate the rendezvous location

as the center of a circle whose diameter corresponds to the distance between the

farthest parent representative robot pair within the environment. The rendezvous

task will be considered complete when all robots have arrived at the rendezvous

location.

13

Figure 2.3: Active mobile robot executing m-RP (Ozsoyeller, Özkasap and

Aloqaily, 2022)

 Ozsoyeller & Tokekar (2022) developed a symmetric rendezvous

algorithm that involves randomized and deterministic search. As identical

mobile robots initiate with the deterministic algorithm simultaneously, the

adjacent distance between two mobile robots will be the same, and thus the

rendezvous task will not be complete. Therefore, randomization is needed to

break the symmetric search at the start of the algorithm. The algorithm starts

with every robot in a single condition and executes a randomized search mode

that starts by flipping a coin at the beginning of the round.

In the event that the coin toss results in tails, the robot will proceed to move to

the right in both phase-1 and phase-2. Once a single robot encounters another

single robot, both robots will switch to deterministic search mode. The direction

of the deterministic search is dependent on the robot's current phase, with

opposite directions assigned if the robots meet during phase-1 and the same

direction assigned if they meet during phase-2. Figure 2.4 depicts one possible

iteration of robot j when implementing the MSR, where the starting point is

represented by a square icon and the end point by a circular icon.

14

Figure 2.4: Possible Iteration of Robot j when executing MSR (Ozsoyeller and

Tokekar, 2022)

Ando et al. (1999) proposed a deterministic and localized algorithm that

uses a vision sensor attached to a mobile robot. The algorithm focuses on the

mobile robot observing the relative positions of its visible neighbour robots in

each step. It then moves towards its new position based on the observation using

the computed algorithm, and then moves towards the location. The authors

claimed that the algorithm is self-stabilizing, which means the robot is capable

of starting from any initial position when no error occurs. With limited visibility

of the robot, it can only see other robots within a distance of V, with no other

robot between them. The algorithm is memoryless because the next moves of

the robot are dependent only on what the robot can see at that moment. The

algorithm is described as follows: At each round, the robot sends its own

position and receives its neighbour’s position. The robot then computes the

circumcenter of the position between itself and its neighbour, and the robots

move towards the circumcenter position while maintaining connectivity.

2.2.3 Bearing-only or Range-only Strategy

A control strategy that involves bearing-only and range-only measurements has

been developed by Zheng and Sun (2014) for multiple nonholonomic wheeled

robots to achieve rendezvous. The presented work includes four different

controllers, with two being bearing-only controllers and two being range-only

15

controllers, which have been verified using Monte Carlo simulations. The

applicability and performance of the controllers are illustrated using e-puck

robots in the experimental platform. A collision avoidance algorithm is also

used in the experimental platform, which enables the controller to have a more

practical design for realistic scenarios. The rendezvous strategy starts after the

global connectivity graph is built. It is interesting to note that the authors use

only one type of measurement in their controller: bearing-only measurement,

where each robot can only measure the bearing angle of the detectable robot in

their local frame, and range-only measurement, where a mobile robot can only

measure the distance between the other robot that it can detect. Figure 2.5 shows

the bearing angle of the simulated mobile robot.

Figure 2.5: Bearing angle of the mobile robot (Zheng and Sun, 2014).

2.2.4 Multi-Group Rendezvous

An early multi-group rendezvous algorithm was introduced by Krishnanand &

Ghose (2008), based on the theoretical principles of the glow-worm swarm

optimization (GSO) algorithm. The algorithm allows swarm agents with

restricted sensing ranges to divide into separate subgroups with the maximum

luciferin value determined by the objective function pre-defined at the robots'

distributed locations. In their simplified GSO model, they restricted their

analysis to the local convergence of agents to a leader, similar to the hierarchical

consensus algorithm. However, what differs is that the leader is chosen when

they have the peak value of luciferin, and multiple peaks may produce multiple

leaders. The goals of the rendezvous are also different, as the goal for GSO is to

16

achieve the position of the local optimum of the objective function, such as

luciferin, whereas the hierarchical consensus algorithm normally rendezvous at

the dynamic leader.

2.3 Robot Operating System (ROS) and ROS2

ROS (Robot Operating System) is middleware that is open-source and has been

rapidly developed and extensively used for robotics applications. It was created

and maintained by Willow Garage and the Open-Source Robotics Foundation

(OSRF) starting from 2007 (Quigley et al., 2009). ROS is designed to promote

code sharing among the robotics community with the intention of making

progress faster by allowing researchers and developers to replicate and extend

the results of other research groups. The following is a list of basic ROS

components and terminology:

i. Nodes – ROS nodes serve as the fundamental building blocks of a ROS

application and are responsible for running programs or processes.

ii. Messages – Messages are the medium between nodes, where nodes send

messages to each other, either in standard format or application specific.

iii. Topics – Topics are channel that nodes used to exchanges messages.

iv. Services – Services enable synchronous communication between nodes

by facilitating a request/response model. A server node only responds to

requests made by a service client node, which is capable of sending

requests and receiving responses. After the request and response have

been fulfilled, the connection between the nodes is terminated.

v. Action – An action involves an action client sending a request to an

action server, which then executes the requested action and provides

ongoing feedback to the client during the process. This approach is

typically employed when a response is expected to take a considerable

amount of time, like services.

17

ROS operates by establishing a distributed system of nodes that can

interact with one another using messages. The communication is facilitated

through a publish-subscribe messaging system, where nodes broadcast

messages to topics, and other nodes can subscribe to those topics to receive the

message. Figure 2.6 shows an example of the basic structure of a ROS node.

Figure 2.6: Basic Structure of ROS (Clearpath Robotics, 2014).

Despite its many benefits, ROS does have some centralized features,

such as the ROS Master. Due to its centralized network configuration, there

exists a central controller responsible for naming and registration services - this

controller is known as the ROS master. Its primary objective is to facilitate the

location of other ROS nodes on the network and enable communication between

them in a peer-to-peer manner. However, this approach has its limitations,

particularly in situations where the network's nodes are distributed across

multiple computers, as it can be less robust. Another limitation of ROS is that it

is not suitable for real-time control applications since it does not guarantee

process synchronization and timing control (Reke et al., 2020). Therefore,

ROS2 has been developed to overcome these limitations.

The initial distribution of ROS2 was launched in 2017 with the objective

of accommodating multiple robots working in teams, small and embedded

platforms, real-time control, suboptimal networks, and multi-platform support

(including Linux, Windows, and RTOS). Therefore, structural changes have

been made, and new technologies such as Data Distribution Services have been

18

adapted. The Figure 2.7 shows the differences in architecture between ROS2

and ROS.

Figure 2.7: Architecture of ROS and ROS2 (Maruyama, Kato and Azumi,

2016).

 There are notable differences between ROS and ROS2. While ROS is

primarily geared towards Linux-based operating systems, ROS2 is more

portable and can be implemented across various operating systems, such as

Linux, Mac, Windows, and RTOS. Data transport in ROS is facilitated by

TCPROS/UDPROS, and communication is governed by the ROS Master. In

contrast, ROS2 leverages the DDS (Data Distribution Service) standard for

communication, which boosts fault tolerance capabilities. Moreover, ROS2

offers flexible parameter settings through QoS (Quality-of-Service) control,

enabling the reliability of communication to be adjusted. Additionally, in ROS2,

every topic possesses the ability to store historical message data. Lastly, intra-

process communication in ROS2 provides a better transmission mechanism

compared to ROS (Maruyama, Kato and Azumi, 2016).

 A novel addition to ROS2 is the Lifecycle Nodes component, which

facilitates the proper startup and teardown of ROS2 nodes by utilizing state

machine transitions. These nodes possess four distinct states: Unconfigured,

Inactive, Active, and Finalized. This new feature guarantees the correct

initialization of all nodes prior to system execution during system startup.

19

Additionally, the ability to perform online node restarting or replacement is

made possible with Lifecycle Nodes, which is crucial for enhancing navigation

applications within the Navigation Stack.

2.4 ROS2 Navigation Stack (Nav2)

Nav2 is a fresh implementation of the navigation toolbox in ROS2 that is

comparable to the navigation metapackages found in ROS but features a new

architecture, as illustrated in Figure 2.8.

Figure 2.8: Nav Stack (Macenski et al., 2020).

 Nav2 provides perception, planning, control, localization, visualization,

and more to build highly sophisticated and reliable autonomous systems. It is

capable of modelling a complete simulated environment based on sensor data,

which leads to dynamic path planning. Nav2's modular and reconfigurable core

allows for the inclusion of features like historical message data storage. The core

includes a Behavior Tree (BT) navigator and also task-specific asynchronous

servers that facilitate this functionality (Macenski et al., 2020).

2.4.1 Behavior Tree (BT) Navigator

BT Navigator uses a behavior tree to have a formal structure for navigation logic.

This refers to a task arrangement in the form of a tree structure, in contrast to a

20

finite state machine (FSM) that may comprise numerous states and transitions.

However, BT provides better reactivity and modularity in comparison to FSM.

Nav2 utilize the BT navigator upon BehaviorTree CPP V3 as the

behavior tree library. The reason for this is that users are able to generate node

plugins that can be assembled into a tree structure within the BT Navigator.

These node plugins are loaded into the BT, and upon parsing the XML file of

the tree, the designated names are linked together. This simplifies the building

of complex navigation behaviours starting from the most basic ones.

2.4.2 Navigation Servers

The Planner, Controller, Smoother, and Recovery servers are action servers

within Nav2. These action servers utilize several algorithm plugins to complete

the assigned task. Typically, the Planner module is responsible for calculating a

valid and, possibly, the optimal path from the current position to the goal

position, while the Controller module is responsible for determining a control

effort that enables the robot to follow the global planning based on the

environmental representation. For example, numerous controllers anticipate the

robot's trajectory and determine a path that is locally achievable at each update

iteration. Recovery behaviours are a mainstay of fault-tolerant systems, which

are utilized by the BT when a possible navigation failure occurs. Lastly, the

Smoother is utilized to decrease the unevenness of a path and alleviate sudden

rotations, all while increasing the distance from obstacles and elevated regions.

This is achievable as the smoothers have access and utilized the global

environmental representation (Macenski et al., 2020).

2.4.3 Environmental Representation and Costmap2D

Environment representation is how a robot perceives its surrounding

environment (Macenski et al., 2020). Moreover, it serves as a central hub for

different algorithms and data sources to merge their data into a unified space.

This depiction is subsequently employed by controllers, recoveries, and

planners to carry out their duties in a safe and efficient manner.

In ROS2, the existing environmental representation takes the form of a

costmap. This costmap consists of a standardized 2D grid cells that have been

assigned costs based on their classification as unknown, free, occupied, or

21

inflated regions. The generated costmap is then utilized to calculate a global

plan or sampled to determine local control efforts.

2.5 Summary

In conclusion, coordinate control for the rendezvous task can take different

forms, either distributed or hierarchical in the case of decentralized control. In

this project, we will be referring to the hierarchical consensus algorithm due to

its simplicity and scalability. Due to its hierarchical structure and capability to

handle faults and failures, the algorithm is a promising approach for

coordinating large-scale systems with multiple agents. The ultimate objective of

the project is to demonstrate the algorithm's effectiveness and practical

applicability in a decentralized control scenario by successfully implementing

it.

22

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter will discuss about the methodology and the workplan of this

research. The methodology will be describing the rendezvous algorithm and the

simulation setup in MATLAB and ROS2. The workplan which includes the

planning and managing of the project will be illustrated through a Gantt Chart.

3.2 Rendezvous Control Proposed Solution

3.2.1 Rendezvous Problem Setting

The rendezvous problem begins when mobile robots are deployed in an

unknown environment without knowledge of their neighbouring robots'

coordinates. The mobile robots are required to rendezvous with a pre-

determined leader robot or an optimally chosen leader robot determined by the

algorithm.

3.2.2 Multi-Point Rendezvous Control Law

At the start of the rendezvous task, each of the robots will build the global

connectivity graph in a distributed manner by using Algorithm 1. If the number

of points, M to rendezvous have been set, the connectivity graph will then have

decomposed into M shortest tree path where the leader robot is the root of the

tree graph. After that, Algorithm 2 is then applied to each tree separately and

simultaneously to start the rendezvous task. If there is no pre-determined leader

among the mobile robots, Algorithm 3 will be utilized to choose the best leader

robots from the leader robots’ candidate.

3.2.3 Assumption and Definition

Few assumptions and definition will be introduced to drive the rendezvous

control law. Let 𝑞𝑖 ∈ 𝑅2 which denote the position of the robot 𝑖, where 𝑅2

refers to the two-dimensional Euclidean space, which consists of ordered pairs

of position of N mobile robots. Single Integrator Model will be used to describe

the dynamics of mobile robot at first, where �̇�𝑖(𝑡) = 𝑣𝑖(𝑡), 𝑖 ∈ 𝑉 = [1, … , 𝑁].

23

𝑣𝑖(𝑡) denotes as the velocity for robot 𝑖 at the instant time of t, and N is the

number of mobile robots.

 Firstly, we will assume that each of the mobile robot can only use their

local sensor on board to detect and identify their neighbouring robots. No global

localization which is centralized control or coordinate reference system is

available for the mobile robots. The information which robot sense their

neighbouring robots will share across the network and will be used to build and

update the network topology. 𝑆𝑅 will be defined as the maximum sensing range

of the mobile robot, and 𝑆𝑆𝑅𝑖 as the safe sensing range of mobile robot 𝑖, to

enable the mobile robot to move freely as long as their neighbour is within the

𝑆𝑆𝑅.

By following graph theory (West, 2018), let 𝐺 = (𝑉, 𝐸, 𝑊) denote as an

unidirected weighted graph, which contains vertex set V and edge set E. Every

edge, e ∈ in 𝐸 is weight by a positive value and is defined as 𝑊(𝑒): → 𝑍+. Two

vertices are said to be connected when there is a path between them

{(𝑖, 𝑗) ∈ 𝐸| 𝑗 ∈ 𝑁𝑖}, where 𝑁𝑖 denotes as the neighbour sets for the robot 𝑖. The

set of vertices give rise to subgraph of G where 𝑆 ⊆ 𝑉 is the graph (𝑆, 𝐸𝑆, 𝑊𝑆),

where 𝐸𝑆 = {(𝑖, 𝑗) ∈ 𝐸| 𝑗 ∈ 𝑆}.

 A tree graph is a type of connected graph without cycles where a rooted

tree has a root node as the highest hierarchy of the graph as shown in Figure 3.1.

We define a rooted tree 𝑇 = (𝑉𝑇 , 𝐸𝑇 , 𝑊𝑇), where node in the rooted tree has a

parent-child relationship with its neighbouring nodes which depends on the

hierarchy. In the rooted tree, we define 𝑝(𝑣), as the parent of the robot 𝑣, 𝑐(𝑣)

as the children set of 𝑣. In the tree graph, leaf is a node that have no child.

24

Figure 3.1: Rooted Tree Graph (West,2001).

 Let 𝐺(𝑘) = (𝑉𝑘, 𝐸𝑘, 𝑊𝑘) denotes as the connectivity/interaction graph

where k is the iteration steps. In the graph G, every node in V represent a mobile

robot, and each edge (𝑖, 𝑗) in 𝐺(𝑘) indicates that two mobile robots 𝑖 and 𝑗, are

neighbours. The weight of the edge, (𝑖, 𝑗) ∈ 𝐸𝐺(𝑘) , is the relative distance

between two robots 𝑖 and 𝑗.

The rendezvous problem requires mobile robots to rendezvous into M

number of groups, with a predetermined final rendezvous point. We will further

assume that M number of leaders will be assigned as the leader of each group,

where the leader will be the root of each graph, where 𝐷 ⊆ 𝑉. The number of

leaders will be denoted as 𝐷𝑀 ∈ 𝐷. Let 𝑈 = 𝑉 − 𝐷 denote as the subset of

mobile robot which are not leader robot and each mobile robot in 𝑈 will be

assigned to one leader from 𝐷 . Let 𝑅(𝑢𝑖) ∈ 𝐷 denote as the leader robot

assigned to a robot 𝑢𝑖 ∈ 𝑈.

 The goal of the rendezvous algorithm is to have every mobile robot in 𝑈

to meet their leader, D, i.e., when lim
𝑡→∞

‖𝑞𝐷 − 𝑞𝑖‖ = 0, ∀𝑖 ∈ 𝑉(𝐺) − 𝐷.

3.2.4 Building the Connectivity Graph (Algorithm 1)

The rendezvous task starts with every mobile robot sense their neighbour robots

with their local sensor and create a local neighbour set 𝐿𝑖. Every mobile robot

will then share its list with neighbours and construct a global connectivity graph

by using Algorithm 1 from the local neighbour set 𝐿 . This graph provides

information regarding the edge and nodes for the mobile robot network. The

flow chart of the algorithm is shown in Figure 3.2.

25

Figure 3.2: Building a Global Connectivity Graph (Algorithm 1).

3.2.5 Creating Multiple Group

The set of leaders can be selected either based on their advanced capabilities in

comparison to the follower or using the Algorithm 3 by using the connectivity

graph to optimize the traversal distance by the mobile robot in the rendezvous

process.

 As the purpose is to have all follower mobile robot to meet with the

leader with the minimum amount of energy and time spent, we denote each

mobile robot 𝑢𝑖 ∈ 𝑈 to select a potential leader robot 𝑅(𝑢𝑖) ∈ 𝐷 and

optimizing the objective function below.

𝑅(𝑢𝑖) = arg min 𝑑𝐺(𝐾)(𝑢𝑖, 𝐷𝑚) (3.1)

where

𝑑𝐺(𝐾)(𝑢𝑖, 𝐷𝑚) is the sum of the path distance between robot 𝑖 and other robot

within the shortest path by using the Dijkstra’s algorithm.

26

 By using the initial global connectivity graph, 𝐺(0), M number of sub-

graph will be constructed 𝐺𝑀 = (𝑉𝑀, 𝐸𝑀 , 𝑊𝑀) . By using the sub-graph, M-

shortest path tress 𝑇𝑀 = (𝑉𝑀, 𝐸𝑇𝑀
, 𝑊𝑇𝑀

) with the root nodes 𝐷𝑀 will be

constructed by optimizing the cost of distance from each node to the root node.

Each of the node 𝑢𝑖 within the graph tree will be assigned to a parent 𝑝(𝑢𝑖) and

children c(𝑢𝑖) if there is any. Please take note that nodes without children is

named as leaf nodes.

3.2.6 Hierarchical Rendezvous Algorithm (Algorithm 2)

The purpose of this algorithm is to ensure that all mobile robots in the rooted

tree, 𝑇𝑚 converge at their root 𝐷𝑚. The algorithm works as follows. Firstly, all

non-root robot will move towards their selected immediate parents in the

hierarchical tree which the leader is the root node. The mobile robot which has

children can move towards their immediate parents if only all of their children

is within their safe sensing range, SSR. If not, the robot will then wait until all

of their children reach its SSR. After the children robot meet their immediate

parent, the children robot will then update their parent to the parent of their

parents by updating the edge of the tree from (𝑢, 𝑝(𝑢)) to (𝑢, 𝑝(𝑝(𝑢))) in the

𝑇𝑚.

The iteration will then continue until all non-root’s robots gathered at

the root robot which is the leader robot. The algorithm also includes the parent

𝑢, can only move when all their children are within 𝑆𝑆𝑅𝑢. Figure 3.3 illustrate

the flow chart of the Algorithm 2.

27

Figure 3.3: Hierarchical Rendezvous Control Algorithm (Algorithm 2).

3.2.7 Choosing Leader Robots (Algorithm 3)

In situation where no leader robot is predetermined based on their function, this

algorithm will be utilized to choose M number of leader robots among the

mobile robots in the network. At first, we will utilize the initial connectivity

graph, 𝐺(0) to create a table 𝑇𝑏, that contains a N-by-N matrix which contains

the information of the shortest path distance between each of the robot pair, with

each row represent one source/potential leader robot. By using 𝑇𝑏 , we can

choose M number of leader robots from out of N robots.

As for determining which mobile robot will be suitable for the role of

the leader, we should relate to the goal of rendezvous, which is to achieve

rendezvous in the shortest time possible. Therefore, by minimizing the

maximum distance travelled from neighbour robots to the leader robot, we are

able to use this concept to create a cost function. The cost function that will be

used to find the optimal leader is as below

𝐶(𝐷) =
𝑚𝑎𝑥

∀𝐷𝑚 ∈ 𝐷
𝑚𝑖𝑛

∀𝑢 ∈ 𝑉𝑚
𝑑𝐺(𝑘)(𝑢, 𝐷𝑚) (3.2)

28

The cost function is constraints by

𝐿𝑚 ≤ |𝑉𝑚| ≤ 𝑈𝑚 (3.3)

and

𝑑𝐺(0)(𝑢, 𝑅(𝑢)) ≤ 𝑇𝐷 , ∀𝑢 ∈ (𝑉 − 𝐷) (3.4)

The first constraint, (3.3) is to balance of all the group size of M whereas

the second constraints, (3.4) is to restrict the maximum travelled by any robot

in the rendezvous task. Other than that, we will be utilizing Brute-Force Search

solution to go through which maximum distance from the neighbour robots are

the smallest with the following equation.

𝐷∗ =
arg 𝑚𝑖𝑛

𝐷𝑚 ∈ 𝐷𝑝𝑙
 𝐶(𝐷) (3.5)

where

𝐷𝑝𝑙 = (
𝑉𝑝𝑙

𝑀
) is the set of every robot’s solution for D, and D* is the optimal set

of leader robots. Potential leader is denoted as 𝑝𝑙.

 Figure 3.4 shows the flow chart of the Algorithm 3, which is to calculate

𝐷∗ to determine the suitable leader robot with the number of groups

predetermined. Take note that the number of groups is the same of the number

of leader robot selected.

29

Figure 3.4: Choosing Leader Robots (Algorithm 3).

3.3 Environmental Setup

This project will be utilizing MATLAB 2022a as the programming platform for

the development of the proposed rendezvous algorithm and ROS2 for the

implementation and validation of the proposed algorithm.

MATLAB is one of the most used programming platforms for

simulation of different kind of systems and it is capable of simulating robotics

systems. The strength of MATLAB is that there are toolboxes which target their

own specific field and particular topics. Toolboxes may be available from

MathWorks, third parties’ company or individuals. This project will be utilizing

Robotics System Toolbox and Navigation Toolbox created by MathWorks, and

Mobile Robotics Simulation Toolbox by the MathWorks Student Competitions

Team. Other than that, MATLAB offers a wide range of built-in functions for

30

mathematical computations and simulations, making it suitable for algorithm

development.

Aside from MATLAB, ROS2 is a flexible and powerful framework that

enables the creation of distributed and modular robotics applications. With

ROS2, robot behavior can be simulated and tested in a virtual environment

before deploying on physical hardware, which provides a safe and cost-effective

way to validate algorithms and optimize system performance.

Therefore, the combination of MATLAB and ROS2 offers a potent

platform for the development, simulation, and validation of robotic systems and

algorithms, making it possible to implement the proposed rendezvous algorithm

efficiently and effectively using MATLAB's toolboxes and built-in functions

along with ROS2's simulation tools and packages.

3.4 MATLAB Toolbox

This section will briefly introduce the toolbox used during the simulation in

MATLAB.

3.4.1 Robotics System Toolbox

The Robotics Toolbox offers a comprehensive collection of functions that are

essential for various robotics applications, covering areas such as kinematics,

dynamics, and trajectory generation. Additionally, the Robotics System

Toolbox includes algorithms that are specifically designed for mobile robots,

encompassing tasks such as mapping, planning, and control. With the Robotics

Toolbox, developers can easily access a wide range of pre-built functions and

algorithms to develop complex robotics systems, speeding up the development

process and improving the overall performance of the system.

3.4.2 Navigation Toolbox

The Navigation Toolbox in MATLAB is mainly used for creating, loading and

visualising map which is used for navigation task for mobile robots. Maps are

essential components within this project, as they provide a representation of the

environment that the robot used for localization, path planning, and navigate.

31

3.4.3 Mobile Robotics Simulation Toolbox

This toolbox is capable of providing utilities for robot simulation and algorithm

development. This toolbox is selected mainly because of the capabilities of

configurating LIDAR and robot detector simulators within the occupancy grid

maps, which is required to build the connectivity graph at the start of the

algorithm. Other than that, it is also used for the 2D kinematics models for robot

geometrics such as differential drive.

3.5 ROS2

This section will briefly introduce the toolboxes used in the simulation and

workflow in ROS2.

3.5.1 Gazebo

Gazebo is a widely used multi-robot simulator that is fully open-source and

supports a vast array of sensors and objects. Its design allows for the accurate

reproduction of the dynamics of complex environments that robots may

encounter, making it an excellent tool for testing and validating robot behavior

in a simulated environment. Gazebo's versatility and extensibility make it a

popular choice among researchers and developers working on various robotics

applications, from simple single-robot simulations to complex multi-robot

systems. By using Gazebo, developers can reduce the time and cost associated

with physical testing and gain valuable insights into the behavior and

performance of their robotic systems.

To simulate the rendezvous task of multi robots in Gazebo, an

environment and a robot model is built which is shown in Figure 3.5 and Figure

3.6 respectively. The robot model is built with a differential drive control, which

consist of 2 main wheels, and a chassis wheel. The robot model also consists of

a LIDAR sensor to detect nearby object.

32

Figure 3.5: Obstacle-Rich Environment.

Figure 3.6: Differential Drive Mobile Robot.

3.5.2 ROS2 Navigation Stack (Nav2)

The costmap layer, controller, planner, behavior tree, and behavior plugins are

among the plugin interfaces available to users for developing their own

customized applications or algorithms. The navigation plugins used is tabulated

in Table 3.1.

Table 3.1: List of Navigation Plugins Used.

Navigation Plugins Plugin Name

Behavior-Tree Navigator “Navigation To Pose With Consistent

Replanning And If Path Becomes

Invalid”.

Costmap Layers Voxel Layer, Inflation Layer, Static

Layer

Controller DWB Controller

Planner NavFn Planner

Smoother Simple Smoother

33

3.5.3 SLAM Toolbox

The SLAM Toolbox used is developed by Steven Macenski, which is a set of

tools and capabilities for 2D SLAM (Macenski and Jambrecic, 2021). By using

the SLAM Toolbox, mapping can be done which mainly uses the sensor data

and the odometry of the mobile robot. The map generated is known as global

costmap, which will be stored in the map server. Therefore, in a multi-robot

simulation setup, all mobile robots including the leader robot will share a

common map server, but will have their own individual local costmap, which is

generated by their own real-time sensor data.

There are four types of mapping mode in SLAM Toolbox. Online

asynchronous mode is chosen because when running the SLAM algorithm, the

sensor data are processed asynchronously as they arrive, rather than waiting for

a complete set of datasets before processing. In comparison to offline mode, the

entire dataset is processed at once, which can be computationally expensive and

time-consuming. Asynchronous mode is preferred as it allow SLAM algorithm

to update the map and estimate the robot’s pose in real-time.

3.5.4 Transform Library 2 (tf2)

A robotics system typically uses multiple 3D coordinate frames, including the

base frame and joint frame, that will change over time. Tf2 is a tool that can

keep track of all these frames , and it can work within a distributed system.

Therefore, ROS components on any computer within the system can access

information about the coordinate frames of a robot. This is useful because we

are able to determine the coordinate of each mobile robot and the distance

between each robot which is required in our algorithm, and also implement

additional formation control during the rendezvous task.

3.5.5 Workflow in ROS2

In this project, Linux Ubuntu 22.04 operating system was installed and used.

Following the instructions on the official documentation website, ROS2

Humble which is one of the latest distributions, has been installed from the

Debian packages. Three workspaces have been set up to maintain organized

34

management of the source code, and Python has been used to create the

packages. Within the Python package, package.xml file contain meta

information about the package, setup.py containing instruction for how to install

the packages, and setup.cfg is required when a package has executables.

i. beta_desc – Within this workspace, it contains the URDF model of the

differential drive mobile robot and the obstacle-rich environment,

together with the launch file which is responsible for spawning multiple

robots in Gazebo. The tree directory of the workspace beta_desc is

shown in Figure 3.7.

Figure 3.7: Tree Directory of beta_desc.

ii. beta_mapping – This workspace contains the parameter used for the

SLAM Toolbox, and the launch file of the online asynchronous SLAM.

The tree directory of the workspace beta_mapping is shown in Figure

3.8.

35

Figure 3.8: Tree Directory of beta_mapping.

iii. beta_nav – In the beta_nav workspace, it contains maps which is

generated by the SLAM Toolbox, parameters of the Nav2 plugins for

each of the mobile robot, launch file of localization (AMCL) and

Nav2, behavior tree plugin, and the rendezvous controller named as

simple_formation2.py and dijkstra.py. The tree directory of the

workspace beta_nav is shown in Figure 3.9.

Figure 3.9: Tree Directory of beta_nav.

Unlike the simulation in MATLAB, many preparations needed to be

done before implementing the rendezvous control algorithm within the multi-

robot system. Figure 3.10 shows the workflow of overall process.

36

Figure 3.10: Workflow of Overall Process.

 The rendezvous controller is built by writing a Python script. Within the

python script, a node named /goal_publisher is built. The node is firstly

subscribed to the tf node, which is used to determine the coordinate of each of

the mobile robot and the distance between each of them. Dijkstra’s algorithm is

then implemented to determine which mobile robot is suitable to become the

leader. After that, by publishing the coordinate of the leader to a topic named

/goal_pose to each follower robot, the follower robot will then follow the path

built by Nav2 to rendezvous with the leader. As the follower robot move

towards the safe sensing range of the leader, then the /goal_publisher will then

send the coordinate of the final goal to the leader by publishing to /goal_pose.

Figure 3.11 illustrate the node graph of /goal_publisher. A terminal is used to

run the rendezvous controller, shown in Figure 3.12. The python script will log

the process of the rendezvous task along the way.

Figure 3.11: Node graph of /goal_publisher.

37

Figure 3.12: Terminal of Rendezvous Controller.

 A simple formation control strategy is implemented within the

rendezvous controller. When the rendezvous task begins and the selection leader

is done, position of follower robot is set behind the leader robot, which is shown

in Figure 3.13.

Figure 3.13: Position for Follower Robot.

3.6 Planning and Managing of Project Activities

This section describes the planning of project with the consideration of

resources and time. Table 3.2 shows the Gantt Chart of the FYP 1 and Table 3.3

shows the Gantt Chart of the FYP 2.

38

Table 3.2: Gantt Chart of Project Part I.

No Week

Project Activities
W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14

1 Problem Statement and Project Planning ✓ ✓

2 Literature Review ✓ ✓ ✓ ✓

3 Analysis of Methodology of Project ✓ ✓ ✓ ✓ ✓ ✓

4 Report Writing ✓ ✓ ✓ ✓ ✓ ✓

5 Simulation and Coding ✓ ✓ ✓ ✓ ✓

6 Presentation and Report Submission ✓

39

Table 3.3: Gantt Chart of Project Part II.

No Week

Project Activities
W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14

1 Simulation of Project ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 Report Writing ✓ ✓ ✓ ✓ ✓ ✓

3 Preparation of FYP Poster ✓ ✓

4 FYP Presentation and Report Submission ✓

40

3.7 Summary

The rendezvous task of the mobile robot will be simulated using MATLAB as

the programming platform. First, a connectivity graph will be built after the

mobile robot is deployed randomly without knowing their initial location. Then,

based on the predetermined number of groups set, a rooted tree graph is built

with the leader as the root node. Each of the rooted tree graphs will then start

the rendezvous process, where the leaf node (the follower) starts to meet its

immediate parent. The process ends when every follower robot meets with the

leader robot. The proposed algorithm will then be implemented in ROS2 by

coding out the rendezvous controller.

41

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Introduction

In this section, we present several simulation scenarios of the rendezvous task,

along with the evaluation metrics used for the proposed algorithm. We then

describe each scenario and discuss the achieved results.

4.2 Simulation in MATLAB

There are three scenarios used to verify and demonstrate the performance of the

proposed rendezvous algorithm.

1. Single-Point Rendezvous

2. Multi-Point Rendezvous

3. Herding

Scenario 1 is used to verify the performance of the proposed algorithm in

terms of scalability and convergence and compared to the other rendezvous

algorithm. In Scenario 2, the capability of the multi leader function of the

proposed algorithm is demonstrated and in Scenario 3, it shows that herding

behaviour which the leader robots lead their follower robots to the final

rendezvous location.

4.2.1 Scenario 1 – Single-Point Rendezvous

In this scenario, we investigate the performance and convergence properties of

the algorithm when the number of leaders (M) is 1 and the number of follower

robots (N) is varied between 10, 20, and 30. Additionally, we compare the

performance of the proposed algorithm against the circumcenter algorithm

mentioned in the literature review. The initial positions of the robots and the

corresponding connectivity graph are shown in Figures 4.1, 4.2, and 4.3.

42

Figure 4.1: Initial Position of Mobile Robots with N =10 (Left) and Initial

Connectivity Graph (Right).

Figure 4.2: Initial Position of Mobile Robots with N = 20 (Left) and Initial

Connectivity Graph (Right).

Figure 4.3: Initial Position of Mobile Robots with N = 30 (Left) and Initial

Connectivity Graph (Right).

43

The results of the metrics are tabulated in Table 4.1, which includes total

distance travelled and the time taken for the rendezvous task to finish. From

Table 4.1, we can see that the proposed algorithm’s total distance travelled is

much better than the circumcenter algorithm, and the trajectory shown in Figure

4.4 (a), (c) and (e) is much smoother than the circumcenter algorithm illustrated

in Figure 4.4 (b), (d) and (f). This is mainly because the proposed algorithm

requires the root robot to rendezvous with their immediate parents and continue

to rendezvous at the selected leader robot as shown in Figure 4.5. In contrast,

for the circumcenter algorithm, each robot will compute a centre location to

move by using their neighbour location, resulting in different points in different

iterations, and hence leads to rougher trajectory. However, the time taken for

the proposed algorithm is slightly slower than the circumcenter algorithm,

which is mainly because the immediate parents need to wait for their child robot

to reach to their safe sensing range before moving to their own immediate

parents.

 Overall, the proposed algorithm guarantees connectivity maintenance of

connectivity graph, resulting in a high convergence rate which is similar to the

circumcenter algorithm.

Table 4.1: Results of the Metrics in Scenario 1.

Algorithm Metric N = 10 N = 20 N = 30

Proposed

Algorithm

(M = 1)

Total

Distance (m)

76.65 234.00 293.58

Time (s) 51.4 76.7 59.5

Circumcenter

Algorithm

Total

Distance (m)

79.68 274.80 354.33

Time (s) 36.4 58.4 54.1

44

 (a) (b)

 (c) (d)

 (e) (f)

Figure 4.4: The results of Scenario 1 is presented – Proposed rendezvous

algorithm (left) is compared to the circumcenter algorithm (right) with different

numbers of mobile robots. The first row of figure, (a) and (b), displays the final

trajectory when N = 10. The second row (c) and (d) displays the final trajectory

when N = 20, and the third row (e) and (f) illustrates the final trajectory when

N = 30.

45

Figure 4.5: Rooted Tree of Proposed Algorithm (N=30).

4.2.2 Scenario 2 – Multi-Point Rendezvous

The performance of the multi-point rendezvous with N = 30 is tested with

different numbers of rendezvous points (M=2, 3, 4) to demonstrate how the

proposed algorithm scales with the number of rendezvous points. Table 4.2.3

shows the trajectory of the mobile robots and the rooted tree. When the number

of groups, M = 2, the two groups have sizes of 12 and 18 mobile robots,

respectively. When M = 3, the groups had 10, 13, and 7 mobile robots, and the

number of groups is set as M = 4, the number of mobile robots in each group

were 5, 7, 8, and 10. The trajectory of all the mobile robots is smooth, similar

to when M = 1, and they converge towards their leader robots. The number of

followers within these groups varies in these scenarios. This is because the

algorithm focuses on minimizing the cost function to have the least total

distance travelled possible.

In Table 4.2, it can be observed that as the value of M increases, the total

distance travelled, and the time taken to complete the rendezvous task decrease.

Figure 4.7 shows that the convergence rate is significantly faster with M being

2 or higher compared to the circumcenter algorithm. Therefore, depending on

the situation, it is advantageous to utilize a higher number of groups with

ensured connectivity maintenance. The main reason for the decrease in total

distance travelled is that follower robots have a shorter distance to the selected

leader robot, which serves as the rendezvous point. Consequently, the

rendezvous location varies in each scenario, and with a lower value of M, the

rendezvous location tends to be closer to the center of the connectivity graph.

46

 (a) (b)

 (c) (d)

 (e) (f)

Figure 4.6: Results of Scenario 2 – Multi-point rendezvous where N = 30. At

the first row, (a) show the final trajectory of mobile robots and (b) shows the

initial rooted tree. At the second row, (a) show the final trajectory of mobile

robots and (b) shows the initial rooted tree.

47

Figure 4.7: Overall Comparison of Objective Function (N=30).

Table 4.2: Results of the Metrics in Scenario 2.

Metric M=2 M=3 M=4

D (m) 226.3200 180.75 148.71

Time (s) 64.8 51.9 42.3

4.2.3 Scenario 3 – Herding

In this scenario, the proposed algorithm will demonstrate the capability of the

robot leaders of showing herding behaviour by providing two specific goals that

are visualized as a red mark in the environment. The leader robots are expected

to lead their followers towards the end goals. The scenario is simulated with N

= 16 and M =2 as shown in Figure 4.8.

Figure 4.9 shows the steps of trajectory step in Scenario 3. The herding

behaviour are achieved by setting up a Pure Pursuit Controller to the leaders

which is provided by the Navigation Toolbox. The leader robots will start to

move as their immediate children is within their safe sensing range. In Figure

4.9 (a) and (b), which demonstrate the leader robots (4,8) starts to herd and move

to the final goal. As shown in Figure 4.9 (c), the mobile robots achieved

rendezvous while herding to the final goal.

48

Figure 4.8: Initial Position of Mobile Robots with N = 16 (Left) and Initial

Connectivity Graph (Right).

 (a) t = 35 (b) t = 80

 (c) t = 560

Figure 4.9: Trajectory of Mobile Robots during Herding at iterations (a) t = 35,

(b) t = 80, (c) t = 580.

49

4.3 Simulation in ROS2

The proposed algorithm is then implemented in ROS2. Two scenarios are used

to verify and validate the performance of the algorithm.

1. Obstacle-Free Environment

2. Obstacle-Rich Environment

Two scenarios are presented in this project. In Scenario 1, mobile robots are

deployed in an obstacle-free environment to perform a proposed algorithm that

achieves a specific task. The proposed algorithm is evaluated by comparing the

scenario with and without formation control. The formation control enables the

robots to maintain a desired formation while performing the task. In Scenario 2,

the capability of the mobile robots to navigate around static obstacles while

performing the rendezvous task is demonstrated. The rendezvous task requires

the robots to meet at a specific location. Similar to Scenario 1, both with and

without formation control are implemented, and the proposed algorithm is

evaluated. The results of the evaluation provide insights into the effectiveness

of the proposed algorithm in different scenarios.

4.3.1 Scenario 1 – Obstacle-Free Environment

In Scenario 1, the mobile robots are expected to meet with the leader robot,

where the leader robot are selected using the Dijkstra’s algorithm. When all the

follower robot reaches the safe sensing range of the leader robot, the leader will

start leading the follower robot to the final location. Two different approaches

have been simulated within this scenario: one is without formation control, and

other with formation control. The differences are clearly shown after the

rendezvous at the leader’s position. The result of the simulation is shown in

Figure 4.10 and Figure 4.11.

50

 (a) (b)

 (c) (d)

 (e) (f)

Figure 4.10: Results of Scenario 1 without Formation Control with different

time stamped, (a) t = 0s, (b) t = 2s, (c) t = 75s, (d) t = 105s, (e) t = 150s,

(f) t = 170s.

51

 (a) (b)

 (c) (d)

 (e) (f)

Figure 4.11: Results of Scenario 1 with Formation Control with different time

stamped, (a) t = 0, (b) t = 2s, (c) t = 75s, (d) t = 105s, (e) t = 150s, (f) t = 170s.

By comparing both Figure 4.10 and Figure 4.11, it become clear that the

rendezvous position of the follower robot differ, as indicated based on the path

visualized by RVIZ2. This is mainly because without formation control within

the algorithm, and consequently, the follower mobile robots are expected to

move to the position of the leader robot, while ignoring the presence of the

leader. This behaviour may result in a cluster of follower robot around the

leader robot, blocking the path of the leader robot after finishing the rendezvous

and impeding the task need to be done.

52

Other than that, in Figure 4.10 (d) and (e), it can be observed that the

path of the follower mobile robots overlaps, which could potentially result in

collision them. Even though each simulated mobile robot is equipped with a

Nav2 local planner that utilizes LIDAR sensors to build a local costmap, it is

important to take note that the refresh rate is only 5Hz. This refresh rate may

not be sufficient for the mobile robots to dynamically avoid obstacles or even

other mobile robots, especially when the robots are required to change direction

frequently.

By implementing formation control within the proposed algorithm, this

will enable the follower robots to rendezvous at the leader position with an

expected formation, which is capable of avoiding clustering around the leader

robot and ensure a smoother transition to the next task with minimizing any

potential delays. Other than that, implementation of formation control ensures

that the follower robots maintain a specific formation while moving to the final

goal. It ensures the mobile robots can navigate safely without the risk of

colliding with each other.

4.3.2 Scenario 2 – Obstacle-Rich Environment

In Scenario 2, an obstacle-rich environment is created to test the ability of the

mobile robots to navigate around static obstacles while performing the

rendezvous task. With the help of the LIDAR sensors, the mobile robots can

detect the obstacles and utilize the pre-built map to path around them. The result

of the simulation is shown in Figure 4.12.

53

 (a) (b)

 (c) (d)

 (d) (f)

Figure 4.12: Results of Scenario 2 with Formation Control with different time

stamped, (a) t = 0, (b) t = 2s, (c) t = 75s, (d) t = 105s, (e) t = 150s, (f) t = 170s.

 In Figure 4.12 (c) and (d), this scenario highlights of the importance of

formation control and careful path planning in the obstacle-rich environment. In

this scenario, the leader navigates along a narrow pathway between the obstacles.

As the follower robots navigate around the obstacle, the follower robot spread

out to avoid the obstacle. When their expected goal is within the obstacle, the

follower robot will stop moving, and wait after the goal is outside the obstacle,

then the follower robot will navigate around the obstacle. Without formation

control, the follower mobile robots might collide as shown in the figure below.

54

Figure 4.13: Collision among follower mobile robots.

4.4 Summary

The Hierarchical Rendezvous Control Algorithm has been successfully

developed in MATLAB and implemented in ROS2. The proposed algorithm

was then compared to the state-of-the-art rendezvous algorithm (circumcenter

algorithm) in terms of convergence rate and performance, and it outperformed

the latter in terms of total distance travelled. Furthermore, it required a similar

amount of time to finish the rendezvous task. Additionally, formation control

during herding was introduced during the simulation in ROS2.

55

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In summary, all four objectives of the project have been successfully achieved.

The Hierarchical Rendezvous Control has been developed using MATLAB to

gather robots in a different number of groups and enable to coordinate the

multiple robot’s movement and action, ensuring they meet at a specific location

and time.

Through different scenarios of simulation and experiments, the

properties of the algorithm such as convergence rate and connectivity

maintenance have been demonstrated. Performance and scalability were

compared with the circumcenter algorithm. The proposed algorithm has also

been applied in a potential application, which is the multi-group herding of a

multi-robot system.

Moreover, the proposed algorithm has been implemented within a multi-

robot scenario in ROS2. A formation control strategy has also been added to the

proposed algorithm to ensure that mobile robots do not collide with each other

while navigating during the rendezvous task.

5.2 Future Recommendation

In future work, real-time experiments could be included to further validate the

proposed algorithm, as the current project only involved simulations.

Additionally, the proposed algorithm was developed and tested on

homogeneous robots. However, in reality, robot teams may consist of

heterogeneous robots with different capabilities and characteristics. Therefore,

further work could explore the possibilities of experimenting with the

effectiveness of the proposed algorithm on heterogeneous robots. Moreover, the

application domains of the proposed algorithm could be extended by

investigating its applicability in other areas such as search and rescue missions

and environmental monitoring. Lastly, integrating machine learning within the

proposed algorithm to find optimal parameters could improve its effectiveness.

56

REFERENCES

Alpern, S. (2011) ‘A New Approach to Gal’s Theory of Search Games

on Weakly Eulerian Networks’, Dynamic Games and Applications, 1(2), pp.

209–219. Available at: https://doi.org/10.1007/s13235-011-0009-4.

Ando, H. et al. (1999) ‘Distributed memoryless point convergence algorithm

for mobile robots with limited visibility’, IEEE Transactions on Robotics and

Automation, 15(5), pp. 818–828. Available at:

https://doi.org/10.1109/70.795787.

Clearpath Robotics (2014) ROS 101: Intro to the Robot Operating System.

Available at: https://doi.org/10.1007/BF02891710.

Cortés, J. and Egerstedt, M. (2017) ‘Coordinated Control of Multi-

Robot Systems: A Survey’, SICE Journal of Control, Measurement, and System

Integration, 10(6), pp. 495–503. Available at:

https://doi.org/10.9746/jcmsi.10.495.

EPFL educational and research mini mobile robot VERSION 2 (no date)

GCtronic. Available at: https://www.gctronic.com/e-puck2.php

Javaid, M. et al. (2021) ‘Substantial capabilities of robotics in enhancing

industry 4.0 implementation’, Cognitive Robotics, 1, pp. 58–75. Available at:

https://doi.org/10.1016/j.cogr.2021.06.001.

Jawhar, I. et al. (2018) ‘Networking of Multi-Robot Systems: Architectures and

Requirements’, Journal of Sensor and Actuator Networks, 7(4), p. 52. Available

at: https://doi.org/10.3390/jsan7040052.

Kan, Z. et al. (2017) ‘Decentralized Rendezvous of Nonholonomic Robots With

Sensing and Connectivity Constraints’, Journal of Dynamic Systems,

Measurement, and Control, 139(2). Available at:

https://doi.org/10.1115/1.4034745.

Ke Xu (2010) ‘Integrating Centralized and Decentralized Approaches For

Multi-Robot Coordination’, Rutgers The State University of New Jersey - New

Brunswick ProQuest Dissertations Publishing [Preprint].

Khepera IV New - K-Team Corporation (2021) K. Available at:

http://www.kteam.com/khepera

Krishnanand, K.N. and Ghose, D. (2008) ‘Theoretical foundations for

rendezvous of glowworm-inspired agent swarms at multiple locations’,

Robotics and Autonomous Systems, 56(7), pp. 549–569. Available at:

https://doi.org/10.1016/j.robot.2007.11.003.

https://doi.org/10.1007/s13235-011-0009-4
https://doi.org/10.1109/70.795787
https://doi.org/10.1007/BF02891710
https://doi.org/10.9746/jcmsi.10.495
https://doi.org/10.1016/j.cogr.2021.06.001
https://doi.org/10.3390/jsan7040052
https://doi.org/10.1115/1.4034745
https://doi.org/10.1016/j.robot.2007.11.003

57

Lin, J., Morse, A.S. and Anderson, B.D.O. (2004) ‘The multi-agent rendezvous

problem - the asynchronous case’, in 2004 43rd IEEE Conference on Decision

and Control (CDC) (IEEE Cat. No.04CH37601). IEEE, pp. 1926-1931 Vol.2.

Available at: https://doi.org/10.1109/CDC.2004.1430329.

Luo, S. et al. (2019) ‘Multi-robot rendezvous based on bearing-aided

hierarchical tracking of network topology’, Ad Hoc Networks, 86, pp. 131–143.

Available at: https://doi.org/10.1016/j.adhoc.2018.11.004.

Macenski, S. et al. (2020) ‘The Marathon 2: A Navigation System’, in 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE, pp. 2718–2725. Available at:

https://doi.org/10.1109/IROS45743.2020.9341207.

Macenski, S. and Jambrecic, I. (2021) ‘SLAM Toolbox: SLAM for the dynamic

world’, Journal of Open Source Software, 6(61), p. 2783. Available at:

https://doi.org/10.21105/joss.02783.

Maruyama, Y., Kato, S. and Azumi, T. (2016) ‘Exploring the performance of

ROS2’, in Proceedings of the 13th International Conference on Embedded

Software. New York, NY, USA: ACM, pp. 1–10. Available at:

https://doi.org/10.1145/2968478.2968502.

Ozsoyeller, D., Özkasap, Ö. and Aloqaily, M. (2022) ‘m-RENDEZVOUS:

Multi-Agent Asynchronous Rendezvous Search Technique’, Future Generation

Computer Systems, 126, pp. 185–195. Available at:

https://doi.org/10.1016/j.future.2021.08.007.

Ozsoyeller, D. and Tokekar, P. (2022) ‘Multi-Robot Symmetric Rendezvous

Search on the Line’, IEEE Robotics and Automation Letters, 7(1), pp. 334–341.

Available at: https://doi.org/10.1109/LRA.2021.3126350.

Parasuraman, R. et al. (2020) ‘Multipoint Rendezvous in Multirobot Systems’,

IEEE Transactions on Cybernetics, 50(1), pp. 310–323. Available at:

https://doi.org/10.1109/TCYB.2018.2868870.

Pelc, A. (2012) ‘Deterministic rendezvous in networks: A comprehensive

survey’, Networks, 59(3), pp. 331–347. Available at:

https://doi.org/10.1002/net.21453.

Potop-Butucaru, M., Raynal, M. and Tixeuil, S. (2011) ‘Distributed Computing

with Mobile Robots: An Introductory Survey’, in 2011 14th International

Conference on Network-Based Information Systems. IEEE, pp. 318–324.

Available at: https://doi.org/10.1109/NBiS.2011.55.

Quigley, M. et al. (2009) ROS: an open-source Robot Operating System.

Available at: http://stair.stanford.edu.

https://doi.org/10.1109/CDC.2004.1430329
https://doi.org/10.1016/j.adhoc.2018.11.004
https://doi.org/10.1109/IROS45743.2020.9341207
https://doi.org/10.21105/joss.02783
https://doi.org/10.1145/2968478.2968502
https://doi.org/10.1016/j.future.2021.08.007
https://doi.org/10.1109/LRA.2021.3126350
https://doi.org/10.1109/TCYB.2018.2868870
https://doi.org/10.1002/net.21453
https://doi.org/10.1109/NBiS.2011.55
http://stair.stanford.edu/

58

Reke, M. et al. (2020) ‘A Self-Driving Car Architecture in ROS2’, in 2020

International SAUPEC/RobMech/PRASA Conference. IEEE, pp. 1–6. Available

at: https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020.

Verma, J.K. and Ranga, V. (2021) ‘Multi-Robot Coordination Analysis,

Taxonomy, Challenges and Future Scope’, Journal of Intelligent & Robotic

Systems, 102(1), p. 10. Available at: https://doi.org/10.1007/s10846-021-

01378-2.

Zheng, R. and Sun, D. (2014) ‘Multirobot rendezvous with bearing-only or

range-only measurements’, Robotics and Biomimetics, 1(1), p. 4. Available at:

https://doi.org/10.1186/s40638-014-0004-5.

https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020
https://doi.org/10.1007/s10846-021-01378-2
https://doi.org/10.1007/s10846-021-01378-2

59

APPENDICES

APPENDIX A: Link for Code for MATLAB and ROS2

Link - https://github.com/jinsiang120/FYP/tree/main

