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ABSTRACT 

 

The coordination of mobile robots is a crucial component in a variety of 

applications, including search and rescue, environmental monitoring, and 

transportation. It is essential that the robots work together to achieve a common 

goal efficiently and safely. In this project, the focus was on the rendezvous task, 

which involves bringing multiple robots to a common location. To accomplish 

this task, a coordinating algorithm was developed that allows the robots to work 

together in a distributed manner. Each robot has a limited view of the 

environment, and they communicate with their neighbouring robots to share 

information about their current position. The proposed algorithm was developed 

using MATLAB and implemented within ROS2, which are widely used in the 

robotics industry. The algorithm ensures that all robots converge to the 

rendezvous point while avoiding collisions with each other. It achieves this by 

selecting a leader or multiple leaders and then having all other robots converge 

towards the position of the leader, based on the information received from 

neighbouring robots. Overall, the proposed algorithm provides an efficient 

solution for the coordination of mobile robots in the rendezvous task, where the 

algorithm is capable of handling different group scenarios and is coordinate-free. 

It has the potential to be used in a wide range of applications, such as flocking 

control, making it a valuable contribution to the field of robotics. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

As technology advances in robotics, countless opportunities for useful 

applications in diverse domains are emerging. While some applications can 

utilize a single robot to complete a task, there are scenarios that require multiple 

robots to accomplish what is impossible for a single robot. 

A Multi-Robot System (MRS) can be understood as the application of 

multiple robots working together to achieve a certain objective (Jawhar et al., 

2018). MRS architectures offer different trade-offs in terms of reliability, 

scalability, and coordination (Jawhar et al., 2018). The centralized architecture 

provides a centralized decision-making process but is prone to single point 

failures and scalability limitations. On the other hand, hierarchical architecture 

allows for scalability but can suffer from reduced reliability when failures occur 

at higher levels of the hierarchy. Decentralized architecture, being the most 

common category, offers robustness and adaptability to failures but poses 

challenges in maintaining synchronization and coordinating actions when 

mission objectives change. Ultimately, the choice of architecture depends on the 

specific requirements of the MRS application, balancing factors such as system 

reliability, scalability, and coordination complexity (Jawhar et al., 2018). 

 Numerous robots with different abilities can work together to deal with 

complex tasks, and if one or more robots fail, it will not affect the completion 

of the task. MRS has been used in several domains for applications such as 

warehousing, search-and-rescue, environmental monitoring, and exploration. 

MRS can be made up of teams of homogeneous or heterogeneous robots. Teams 

of homogeneous robots have the same individual capability, whereas 

heterogeneous robot teams have different capabilities of robots. 

Multi-robot systems have attracted the attention of researchers due to 

their potential for various applications. However, utilizing MRS comes with 

difficulties such as task division, synchronization, and coordination. Practical 

considerations of mobile robots further contribute to the complexity of multi-

robot systems compared to single robots. 
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1.1.1 Mobile Robot 

Mobile robots are becoming increasingly important in a variety of industries, 

from manufacturing and logistics to agriculture and healthcare. The ability to 

move autonomously from one place to another makes mobile robots versatile 

and adaptable to different environments and tasks. The types of environments 

where mobile robots operate can vary greatly, from the air to the ground and 

even underwater. In terrestrial environments, wheeled mobile robots (WMRs) 

and legged mobile robots (LMRs) are common. WMRs, in particular, are widely 

used in applications such as warehouse logistics, material handling, and 

transportation. They can be configured with different numbers of wheels, 

ranging from two-wheeled robots like the E-Puck 2 and Khepera-IV as shown 

in Figure 1.1 and Figure 1.2, to four-wheeled and even six-wheeled robots.  

The selection of a configuration is dependent on the particular demands 

of the task and the surroundings in which the robot will function. For example, 

two-wheeled robots are more manoeuvrable but less stable than four-wheeled 

robots, while six-wheeled robots are better suited for rough terrain. Overall, the 

use of mobile robots, and in particular, wheeled mobile robots, is growing 

rapidly, and they are expected to play a significant role in the future of 

automation and robotics (Javaid et al., 2021). 

 

 

Figure 1.1: E-Puck 2 (GCtronic, no date).  

 

 

Figure 1.2: Khepera IV (Khepera IV New - K-Team Corporation, 2021) 
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Industry 4.0 technology enables factories to integrate autonomous 

mobile robots (AMRs) into their assembly lines without relying on external 

localization systems. Equipped with sensors and cameras, AMRs can 

autonomously navigate their environments. As AMRs continue to evolve, they 

will transform from simple management systems to predictive data systems, 

enabling manufacturers to make informed decisions during plant development 

(Javaid et al., 2021). The acceptance of Industry 4.0 is increasing due to the 

widespread presence of enhanced computing capacity and automation, which 

many consider as the next industrial revolution. 

 

1.1.2 Rendezvous Problem 

Rendezvous is a crucial concept in many areas, including mobile robots, where 

it refers to the meeting of two or more people at a predefined place and time. 

This concept is fundamental to the field of the cooperative mobile robots, where 

it is referred as the rendezvous problem or the consensus problem (Potop-

Butucaru, Raynal and Tixeuil, 2011).  

The rendezvous problem has been well studied in the game theory, 

where it is introduced as a search robot (Alpern, 2011). A well-known example 

is that the princess and monster game, where a group of robots needs to find the 

hidden target while avoiding a mobile opponent. The game highlights the 

importance of the rendezvous problem, as it requires the robot to converge in a 

single location or position to achieve their goal. 

In a multi-robot system, one of the most basic coordination tasks is 

multi-robot rendezvous. In a network of robot, rendezvous problem is where the 

distributed robot needs to converge at a same location either based on consensus 

or immediate goals (Lin, Morse and Anderson, 2004). The objective of the 

rendezvous problem is to achieve an agreement over the potential rendezvous 

point, which can be referred as landmark, with limited information flow 

described in the model of the network. The model of network involved a set of 

distributed mobile robots. Achieving this goal can be challenging, as robots 

often have limited information about the positions and movements of their peers. 

However, there are many different techniques that can be used to solve the 

rendezvous problem, including consensus algorithms, distributed optimization, 

and decentralized control. 
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Ultimately, the key to successfully solving the rendezvous problem is 

effective communication and coordination between robots. By interacting with 

each other and sharing information, robots can work together to achieve a 

common goal and accomplish tasks that would be impossible for a single robot 

to complete alone. 

 

1.2 Importance of the Study 

In multi-robot systems, the rendezvous task is important because it enables robot 

coordination and cooperation to complete challenging tasks. The task helps to 

efficiently manage resources such as energy, bandwidth, and processing power. 

It is adaptable and scalable, enabling multi-robot systems to adapt various 

environments and tasks.  

For multi-robot systems to perform to their full capacity in a variety of 

applications, including search and rescue operations, exploration of uncharted 

territory, surveillance, and transportation, the rendezvous task must be 

implemented successfully. Therefore, the rendezvous task is a critical 

component of multi-robot systems that enables robots to work together towards 

a common goal. 

 

1.3 Problem Statement 

In multi-robot rendezvous, the sensing capability of mobile robots is a critical 

consideration. Most rendezvous control algorithms assume that each robot can 

measure the relative position of its neighbours by utilizing global localization 

systems, such as GPS, for external navigation. However, such methods may not 

be applicable in communication-denied environments like indoors or hostile 

areas.  

An alternative approach is to use onboard sensors, which offer the 

advantage of being passive and not requiring wireless communication. These 

sensors can include cameras, LIDAR, and other range sensors, which enable the 

mobile robots to perceive their environment and detect other nearby robots 

without relying global localization systems. By utilizing onboard sensors 

capabilities, multi-robot rendezvous can better operate autonomously and 

without interruption. 
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However, simply relying on onboard sensors may not be enough to 

guarantee safe and efficient rendezvous in complex environments. There may 

be obstacles or other environmental factors that block the mobile robots' 

movement and increase the risk of collisions. Therefore, additional algorithms, 

such as collision avoidance, should be implemented to ensure safe navigation 

and successful rendezvous. These algorithms can use data from onboard sensors 

to detect and avoid obstacles, allowing the robots to navigate effectively in 

complex environments while avoiding collisions. 

 

1.4 Aim and Objectives 

This project aims to develop a coordinating algorithm for the rendezvous task 

for mobile robots. The detailed objectives are:  

- To conduct a literature search on the existing coordinating algorithm for 

rendezvous task of mobile robots. 

- To develop a coordinating algorithm in a decentralized approach for 

rendezvous task. 

- To simulate the proposed algorithm and evaluate the scalability and 

performance of the proposed algorithm. 

- To implement the developed algorithm in ROS2 and integrate it with the 

control and communication of the mobile robots. 

 

1.5 Scope and Limitation of the Study 

The scope of this project is to develop and implement a coordinating algorithm 

for rendezvous tasks for mobile robots. The project will focus on developing the 

rendezvous control law on the MATLAB platform and implementing it within 

ROS2.  

However, this study has some limitations. We will be using a single 

integral model to represent the mobile robot, and kinematic constraints of the 

mobile robot will be ignored during the algorithm development phase. 

Additionally, within the simulation, the mobile robots are capable of 

recognizing each other, and have their own number tag within their system. 
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1.6 Contribution of the Study 

The contribution of the study is introducing a novel control framework that 

enables robots to gather in different groups, facilitating efficient coordination 

and collaboration among them. 

 

1.7 Outline of the Report 

The report is divided into five chapters. Chapter 1 provides a general 

introduction to mobile robots and the rendezvous task, along with the problem 

statement and objectives. Additionally, the chapter provides a detail overview 

of the scope of the study inform the reader that the project is limited to certain 

events. 

Chapter 2 provides a literature review on the type of rendezvous 

consensus algorithm and the overall structure of ROS and ROS2. This chapter 

includes detailed research, selection of solution, and literature review. 

In Chapter 3, the methodology to achieve the objectives of this project 

is demonstrated from start to finish. The methodology includes the proposed 

solution for the rendezvous control, as well as the toolboxes used in MATLAB 

and ROS2. 

Chapter 4 presents the results obtained through simulations during the 

development phase in MATLAB and compares the performance with state-of-

the-art algorithms. Additionally, the chapter presents results obtained during the 

implementation phase in ROS2. Lastly, Chapter 5 concludes the project and 

provides recommendations for future work. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

The development of mobile robots is crucial as they can replace human presence 

in extreme environments. In many scenarios, multiple robots with different 

capabilities are required to accomplish complex tasks. With the advancement in 

computing capacity and the abilities of mobile robots, extensive research has 

been conducted on the coordination and control of multiple mobile robots and 

has been applied in various applications. Coordination of multiple robots can 

include motion planning, formation control, and trajectory generation. However, 

this project will focus specifically on the rendezvous task for mobile robots. 

 

2.1.1 Coordinated Control of Multi-Robot System 

Coordination and control of multi-robot systems are essential since there are 

numerous robots in a system, and an algorithm for coordination between them 

is needed to control their cooperative actions (Verma and Ranga, 2021). In 

cooperation, robots need to not only achieve their own goals but also be aware 

of their partners' urgent tasks.  

Therefore, an effective coordinating mechanism can assist each robot in 

selecting its actions to maximize the system's efficiency, taking into account 

sensing, information sensing, physical and environmental constraints, and 

inherent limitations. Coordinating approaches can be classified based on 

different parameters, and one possible classification is shown in Figure 2.1. 
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Figure 2.1: Classification of Coordination in MRS (Verma and Ranga, 2021) 

  

Many multi-robot systems develop their coordination control using 

either strongly centralized control or decentralized control (Ke Xu, 2010). 

Strongly centralized control coordination can be achieved by using a single 

coordinating robot, which can be referred to as a server or leader. The server is 

responsible for making decisions for all the robots in the system. Global 

information, such as the environment and the location of the mobile robot, is 

shared. Strongly centralized control is typically used for a small number of 

robots within well-structured environments and is not suitable for dynamic 

environments because the control is not robust enough and may cause 

communication failures. 

Decentralized control can be further classified into distributed 

approaches and hierarchical approaches, which are locally centralized. In 

distributed approaches of MRS, each robot executes its own algorithm 

completely autonomously (Verma and Ranga, 2021). There are no leaders 

within the architecture, and the system has all equal robots with respect to 

control. The advantages of distributed approaches are that they provide more 

robustness to failure; however, it is more complex to achieve coordination 

among the team of robots. Therefore, hierarchical approaches come into play, 

where the process of coordination is locally centralized. This is different from 

centralized control coordination in that the follower robot is not controlled by a 

single leader. The application of hierarchical approaches in MRS allows a group 

of robots to work on different tasks after being divided into a few groups. These 
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approaches are less robust than distributed approaches but have less complexity 

and cost. 

In order for a multi-robot system to be successfully implemented, 

various distributed control strategies have been developed to organize the robots 

while working or solving problems using local interaction rules. To meet the 

constraints required for a distributed multi-robot coordination algorithm to be 

implemented, the algorithm must satisfy several requirements (Cort&eacute;s 

and Egerstedt, 2017). 

The first constraint is that the algorithm must be local, meaning that each 

individual robot can only act on the information it can access through its sensing 

capabilities or its active communication network. The second constraint is that 

the algorithm must be scalable and decentralized, meaning that it can be 

implemented in both small and large teams of robots. 

The third constraint is that the algorithm must ensure safety. After the 

robots are deployed for their mission, the algorithm must prevent collisions 

between robots and with the environment. Lastly, the algorithm must be 

emergent, which means that global properties should emerge from the local 

interaction rules. 

 

2.2 Rendezvous Control Strategy 

The following section will discuss and introduce a few well-known rendezvous 

control strategies. The common objective of all algorithms is that the mobile 

robots to meet at a common location, but they have no information at first where 

the meeting location is at. 

 

2.2.1 Hierarchical Consensus Algorithm 

Hierarchical Consensus, can also be known as leader-follower consensus, 

consists of one or multiple leaders within the mobile robot network. There are 

multiple applications of leader in the network of robots, where one of the 

common uses is by setting the coordinate or the dynamics of the leader. This 

means that the leader robots, or robot, take on the responsibility of defining the 

desired position or motion pattern for the entire group. The follower robots in 

the network then adjust their movement or behaviours based on the information 

provided by the leader. 
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With a leader present, practical applications such as herding, which 

define the path for the entire group, can be achieved. The selection of a leader 

depends on various algorithms. However, leader robots are chosen when their 

capabilities far surpass those of the follower robots, such as advanced sensing 

systems, functional capabilities, coordination with external systems, or even the 

ability to handle complex scenario. By having these superior capabilities, the 

leader robot can efficiently navigate through obstacles, maintain the desired 

formation, and adapt to changing condition. 

A Multi-Point Rendezvous Strategy, proposed by Parasuraman et al. 

(2020), is an efficient hierarchical rendezvous algorithm that begins by creating 

a local neighbour set using the local sensors of each robot to sense its 

neighbouring robots. Then, each mobile robot shares its list with its neighbours 

and constructs a global connectivity graph using a distributed algorithm in the 

network. The leader robot is selected based on its capabilities or function, such 

as recharging stations, or it could be chosen using Dijkstra’s algorithm from the 

global connectivity graph to optimize the shortest route travelled for the mobile 

robot in the rendezvous task. Sub-graphs are also constructed using the global 

connectivity graph to reduce computational load. To build the shortest path trees, 

the distance cost from every node to the root node is optimized. Each tree node 

can have a parent or children, with leaf nodes being nodes that do not have any 

children. The hierarchical rendezvous algorithm allows each follower robot in 

the tree to move towards the root node to rendezvous. The researchers simulated 

five different scenarios to demonstrate the effectiveness of their developed 

rendezvous strategy, which performs better than the standard consensus and 

circumcenter-based consensus. 

A bearing-aided hierarchical tracking method proposed by Luo et al.  

(2019), which uses bearings of robots and is coordinate-free. The algorithm 

starts by building a shortest path tree from the leader robot using Dijkstra’s 

algorithm. The rendezvous strategy begins with the children nodes moving 

towards their parents. The process repeats until all robots reach the highest 

parent, the leader robot, where they rendezvous. Thus, the rendezvous task is 

completed by using iterative tracking movement from the leaf nodes of the 

generated tree to the root node. Their field experiment and simulation are 

noteworthy in that, even with mobility and communication faults in one node, 
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the mobile robot is still able to rendezvous at the desired point, demonstrating 

the scalability of their algorithm in the simulation. 

Kan et al. (2017), have developed decentralized time-varying controllers 

for nonholonomic robots that rely only on local sensing feedback from their 

neighbouring robots to achieve rendezvous. The algorithm can stabilize the 

mobile robots at the specified location and is capable of preserving the 

connectivity network and implementing collision avoidance along the way. A 

small portion of robots is equipped with advanced sensors, which can be 

identified as leaders, while the others only have a limited range sensor that can 

provide local feedback on the relative trajectory of neighbouring robots. The 

global objective, which is the rendezvous point, is known only by the leader 

robot, while the followers coordinate their motion by using local information 

from immediate neighbours. Numerical simulations are done to demonstrate the 

effectiveness of the algorithm and are illustrated in Figure 2.2. This work is 

noteworthy in that the algorithm does not require inter-agent communication to 

achieve consensus. 

 

 

Figure 2.2: Numerical Simulation with Trajectory Line of Leader and Follower 

Robot (Kan et al., 2017). 

 

2.2.2 Deterministic Algorithm 

Deterministic algorithm is a type of algorithm that only depends on its input, 

and there will be no randomness within the model. With the same input, the 

algorithm will always produce the same output. However, the main problem that 
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deterministic algorithm needs to face is that the algorithm needs to break the 

symmetry.  

This can be explained by giving a highly symmetrical network, such as 

an oriented ring, where the port can be labelled as follow: 0 as clockwise port 

and 1 as anti-clockwise port. Two identical mobile robot runs the same 

deterministic algorithm inside the oriented ring. If the agents are unable to mark 

any labels within their pathway, it can be said that the mobile robot will always 

use the same port and their distance will always be the same (Pelc, 2012). 

Therefore, randomization is required to break the symmetry as it can change 

how the robots determine their next port. Breaking the symmetry can be 

accomplished by either marking nodes or labelling the robot. 

Ozsoyeller et al. (2022), proposed a deterministic rendezvous search 

algorithm which is m-RP. In the algorithm m-RP, we can identify two distinct 

roles in mobile robots, which one is active robots, and another is passive robots. 

m-RP algorithm labels each mobile robot to use the passive robot to break the 

symmetry, thereby achieving deterministic rendezvous. The algorithm does not 

require a connectivity graph to be built, which decreases the sensor range. The 

m-RP algorithm is practically promising since simulations demonstrate 

successful rendezvous even in asynchronous cases, where robots may not start 

searching simultaneously. The algorithm commences with an exploration stage 

consisting of two phases. In the first phase, the active robot starts searching for 

the waiting robot by drawing concentric circles, as shown in Figure 2.3. In the 

second phase, the active robot visits all waiting robots it has found. In phase 1, 

if mobile robot has not found any waiting robot, then the mobile robot will start 

the second round searching for waiting robot. The second stage is the 

rendezvous stage, where one leader robot terminates the exploration stage. The 

leader will select each foreign parent representative, which is the first waiting 

robot where other leader robots meet. This will inform another leader to end the 

exploration stage. Next, the leader robot will designate the rendezvous location 

as the center of a circle whose diameter corresponds to the distance between the 

farthest parent representative robot pair within the environment. The rendezvous 

task will be considered complete when all robots have arrived at the rendezvous 

location. 
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Figure 2.3: Active mobile robot executing m-RP (Ozsoyeller, Özkasap and 

Aloqaily, 2022) 

 

 Ozsoyeller & Tokekar (2022) developed a symmetric rendezvous 

algorithm that involves randomized and deterministic search. As identical 

mobile robots initiate with the deterministic algorithm simultaneously, the 

adjacent distance between two mobile robots will be the same, and thus the 

rendezvous task will not be complete. Therefore, randomization is needed to 

break the symmetric search at the start of the algorithm. The algorithm starts 

with every robot in a single condition and executes a randomized search mode 

that starts by flipping a coin at the beginning of the round.  

In the event that the coin toss results in tails, the robot will proceed to move to 

the right in both phase-1 and phase-2. Once a single robot encounters another 

single robot, both robots will switch to deterministic search mode. The direction 

of the deterministic search is dependent on the robot's current phase, with 

opposite directions assigned if the robots meet during phase-1 and the same 

direction assigned if they meet during phase-2. Figure 2.4 depicts one possible 

iteration of robot j when implementing the MSR, where the starting point is 

represented by a square icon and the end point by a circular icon. 



14 

 

Figure 2.4: Possible Iteration of Robot j when executing MSR (Ozsoyeller and 

Tokekar, 2022) 

 

Ando et al. (1999) proposed a deterministic and localized algorithm that 

uses a vision sensor attached to a mobile robot. The algorithm focuses on the 

mobile robot observing the relative positions of its visible neighbour robots in 

each step. It then moves towards its new position based on the observation using 

the computed algorithm, and then moves towards the location. The authors 

claimed that the algorithm is self-stabilizing, which means the robot is capable 

of starting from any initial position when no error occurs. With limited visibility 

of the robot, it can only see other robots within a distance of V, with no other 

robot between them. The algorithm is memoryless because the next moves of 

the robot are dependent only on what the robot can see at that moment. The 

algorithm is described as follows: At each round, the robot sends its own 

position and receives its neighbour’s position. The robot then computes the 

circumcenter of the position between itself and its neighbour, and the robots 

move towards the circumcenter position while maintaining connectivity. 

 

2.2.3 Bearing-only or Range-only Strategy 

A control strategy that involves bearing-only and range-only measurements has 

been developed by Zheng and Sun (2014) for multiple nonholonomic wheeled 

robots to achieve rendezvous. The presented work includes four different 

controllers, with two being bearing-only controllers and two being range-only 
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controllers, which have been verified using Monte Carlo simulations. The 

applicability and performance of the controllers are illustrated using e-puck 

robots in the experimental platform. A collision avoidance algorithm is also 

used in the experimental platform, which enables the controller to have a more 

practical design for realistic scenarios. The rendezvous strategy starts after the 

global connectivity graph is built. It is interesting to note that the authors use 

only one type of measurement in their controller: bearing-only measurement, 

where each robot can only measure the bearing angle of the detectable robot in 

their local frame, and range-only measurement, where a mobile robot can only 

measure the distance between the other robot that it can detect. Figure 2.5 shows 

the bearing angle of the simulated mobile robot.  

 

Figure 2.5: Bearing angle of the mobile robot (Zheng and Sun, 2014). 

 

2.2.4 Multi-Group Rendezvous 

An early multi-group rendezvous algorithm was introduced by Krishnanand & 

Ghose (2008), based on the theoretical principles of the glow-worm swarm 

optimization (GSO) algorithm. The algorithm allows swarm agents with 

restricted sensing ranges to divide into separate subgroups with the maximum 

luciferin value determined by the objective function pre-defined at the robots' 

distributed locations. In their simplified GSO model, they restricted their 

analysis to the local convergence of agents to a leader, similar to the hierarchical 

consensus algorithm. However, what differs is that the leader is chosen when 

they have the peak value of luciferin, and multiple peaks may produce multiple 

leaders. The goals of the rendezvous are also different, as the goal for GSO is to 
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achieve the position of the local optimum of the objective function, such as 

luciferin, whereas the hierarchical consensus algorithm normally rendezvous at 

the dynamic leader. 

 

2.3 Robot Operating System (ROS) and ROS2 

ROS (Robot Operating System) is middleware that is open-source and has been 

rapidly developed and extensively used for robotics applications. It was created 

and maintained by Willow Garage and the Open-Source Robotics Foundation 

(OSRF) starting from 2007 (Quigley et al., 2009). ROS is designed to promote 

code sharing among the robotics community with the intention of making 

progress faster by allowing researchers and developers to replicate and extend 

the results of other research groups. The following is a list of basic ROS 

components and terminology: 

 

i. Nodes – ROS nodes serve as the fundamental building blocks of a ROS 

application and are responsible for running programs or processes. 

 

ii. Messages – Messages are the medium between nodes, where nodes send 

messages to each other, either in standard format or application specific. 

 

iii. Topics – Topics are channel that nodes used to exchanges messages. 

 

iv. Services – Services enable synchronous communication between nodes 

by facilitating a request/response model. A server node only responds to 

requests made by a service client node, which is capable of sending 

requests and receiving responses. After the request and response have 

been fulfilled, the connection between the nodes is terminated. 

 

v. Action – An action involves an action client sending a request to an 

action server, which then executes the requested action and provides 

ongoing feedback to the client during the process. This approach is 

typically employed when a response is expected to take a considerable 

amount of time, like services. 
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ROS operates by establishing a distributed system of nodes that can 

interact with one another using messages. The communication is facilitated 

through a publish-subscribe messaging system, where nodes broadcast 

messages to topics, and other nodes can subscribe to those topics to receive the 

message. Figure 2.6 shows an example of the basic structure of a ROS node.  

 

 

Figure 2.6: Basic Structure of ROS (Clearpath Robotics, 2014). 

 

Despite its many benefits, ROS does have some centralized features, 

such as the ROS Master. Due to its centralized network configuration, there 

exists a central controller responsible for naming and registration services - this 

controller is known as the ROS master. Its primary objective is to facilitate the 

location of other ROS nodes on the network and enable communication between 

them in a peer-to-peer manner. However, this approach has its limitations, 

particularly in situations where the network's nodes are distributed across 

multiple computers, as it can be less robust. Another limitation of ROS is that it 

is not suitable for real-time control applications since it does not guarantee 

process synchronization and timing control (Reke et al., 2020). Therefore, 

ROS2 has been developed to overcome these limitations. 

The initial distribution of ROS2 was launched in 2017 with the objective 

of accommodating multiple robots working in teams, small and embedded 

platforms, real-time control, suboptimal networks, and multi-platform support 

(including Linux, Windows, and RTOS). Therefore, structural changes have 

been made, and new technologies such as Data Distribution Services have been 
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adapted. The Figure 2.7 shows the differences in architecture between ROS2 

and ROS. 

 

 

Figure 2.7: Architecture of ROS and ROS2 (Maruyama, Kato and Azumi, 

2016). 

 

 There are notable differences between ROS and ROS2. While ROS is 

primarily geared towards Linux-based operating systems, ROS2 is more 

portable and can be implemented across various operating systems, such as 

Linux, Mac, Windows, and RTOS. Data transport in ROS is facilitated by 

TCPROS/UDPROS, and communication is governed by the ROS Master. In 

contrast, ROS2 leverages the DDS (Data Distribution Service) standard for 

communication, which boosts fault tolerance capabilities. Moreover, ROS2 

offers flexible parameter settings through QoS (Quality-of-Service) control, 

enabling the reliability of communication to be adjusted. Additionally, in ROS2, 

every topic possesses the ability to store historical message data. Lastly, intra-

process communication in ROS2 provides a better transmission mechanism 

compared to ROS (Maruyama, Kato and Azumi, 2016). 

 A novel addition to ROS2 is the Lifecycle Nodes component, which 

facilitates the proper startup and teardown of ROS2 nodes by utilizing state 

machine transitions. These nodes possess four distinct states: Unconfigured, 

Inactive, Active, and Finalized. This new feature guarantees the correct 

initialization of all nodes prior to system execution during system startup. 
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Additionally, the ability to perform online node restarting or replacement is 

made possible with Lifecycle Nodes, which is crucial for enhancing navigation 

applications within the Navigation Stack. 

 

2.4 ROS2 Navigation Stack (Nav2) 

Nav2 is a fresh implementation of the navigation toolbox in ROS2 that is 

comparable to the navigation metapackages found in ROS but features a new 

architecture, as illustrated in Figure 2.8. 

 

 

Figure 2.8: Nav Stack (Macenski et al., 2020). 

 

 Nav2 provides perception, planning, control, localization, visualization, 

and more to build highly sophisticated and reliable autonomous systems. It is 

capable of modelling a complete simulated environment based on sensor data, 

which leads to dynamic path planning. Nav2's modular and reconfigurable core 

allows for the inclusion of features like historical message data storage. The core 

includes a Behavior Tree (BT) navigator and also task-specific asynchronous 

servers that facilitate this functionality (Macenski et al., 2020). 

 

2.4.1 Behavior Tree (BT) Navigator 

BT Navigator uses a behavior tree to have a formal structure for navigation logic.  

This refers to a task arrangement in the form of a tree structure, in contrast to a 
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finite state machine (FSM) that may comprise numerous states and transitions. 

However, BT provides better reactivity and modularity in comparison to FSM.  

Nav2 utilize the BT navigator upon BehaviorTree CPP V3 as the 

behavior tree library. The reason for this is that users are able to generate node 

plugins that can be assembled into a tree structure within the BT Navigator. 

These node plugins are loaded into the BT, and upon parsing the XML file of 

the tree, the designated names are linked together. This simplifies the building 

of complex navigation behaviours starting from the most basic ones. 

  

2.4.2 Navigation Servers 

The Planner, Controller, Smoother, and Recovery servers are action servers 

within Nav2. These action servers utilize several algorithm plugins to complete 

the assigned task. Typically, the Planner module is responsible for calculating a 

valid and, possibly, the optimal path from the current position to the goal 

position, while the Controller module is responsible for determining a control 

effort that enables the robot to follow the global planning based on the 

environmental representation. For example, numerous controllers anticipate the 

robot's trajectory and determine a path that is locally achievable at each update 

iteration. Recovery behaviours are a mainstay of fault-tolerant systems, which 

are utilized by the BT when a possible navigation failure occurs. Lastly, the 

Smoother is utilized to decrease the unevenness of a path and alleviate sudden 

rotations, all while increasing the distance from obstacles and elevated regions. 

This is achievable as the smoothers have access and utilized the global 

environmental representation (Macenski et al., 2020). 

 

2.4.3 Environmental Representation and Costmap2D 

Environment representation is how a robot perceives its surrounding 

environment (Macenski et al., 2020). Moreover, it serves as a central hub for 

different algorithms and data sources to merge their data into a unified space. 

This depiction is subsequently employed by controllers, recoveries, and 

planners to carry out their duties in a safe and efficient manner. 

In ROS2, the existing environmental representation takes the form of a 

costmap. This costmap consists of a standardized 2D grid cells that have been 

assigned costs based on their classification as unknown, free, occupied, or 
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inflated regions. The generated costmap is then utilized to calculate a global 

plan or sampled to determine local control efforts. 

   

2.5 Summary 

In conclusion, coordinate control for the rendezvous task can take different 

forms, either distributed or hierarchical in the case of decentralized control. In 

this project, we will be referring to the hierarchical consensus algorithm due to 

its simplicity and scalability. Due to its hierarchical structure and capability to 

handle faults and failures, the algorithm is a promising approach for 

coordinating large-scale systems with multiple agents. The ultimate objective of 

the project is to demonstrate the algorithm's effectiveness and practical 

applicability in a decentralized control scenario by successfully implementing 

it. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This chapter will discuss about the methodology and the workplan of this 

research. The methodology will be describing the rendezvous algorithm and the 

simulation setup in MATLAB and ROS2. The workplan which includes the 

planning and managing of the project will be illustrated through a Gantt Chart.  

 

3.2 Rendezvous Control Proposed Solution 

3.2.1 Rendezvous Problem Setting 

The rendezvous problem begins when mobile robots are deployed in an 

unknown environment without knowledge of their neighbouring robots' 

coordinates. The mobile robots are required to rendezvous with a pre-

determined leader robot or an optimally chosen leader robot determined by the 

algorithm. 

 

3.2.2 Multi-Point Rendezvous Control Law 

At the start of the rendezvous task, each of the robots will build the global 

connectivity graph in a distributed manner by using Algorithm 1. If the number 

of points, M to rendezvous have been set, the connectivity graph will then have 

decomposed into M shortest tree path where the leader robot is the root of the 

tree graph. After that, Algorithm 2 is then applied to each tree separately and 

simultaneously to start the rendezvous task. If there is no pre-determined leader 

among the mobile robots, Algorithm 3 will be utilized to choose the best leader 

robots from the leader robots’ candidate. 

 

3.2.3 Assumption and Definition  

Few assumptions and definition will be introduced to drive the rendezvous 

control law. Let 𝑞𝑖 ∈  𝑅2 which denote the position of the robot 𝑖, where 𝑅2 

refers to the two-dimensional Euclidean space, which consists of ordered pairs 

of position of N mobile robots. Single Integrator Model will be used to describe 

the dynamics of mobile robot at first, where �̇�𝑖(𝑡) =  𝑣𝑖(𝑡), 𝑖 ∈ 𝑉 = [ 1, … , 𝑁].  
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𝑣𝑖(𝑡) denotes as the velocity for robot 𝑖 at the instant time of t, and N is the 

number of mobile robots. 

 Firstly, we will assume that each of the mobile robot can only use their 

local sensor on board to detect and identify their neighbouring robots. No global 

localization which is centralized control or coordinate reference system is 

available for the mobile robots. The information which robot sense their 

neighbouring robots will share across the network and will be used to build and 

update the network topology. 𝑆𝑅 will be defined as the maximum sensing range 

of the mobile robot, and 𝑆𝑆𝑅𝑖 as the safe sensing range of mobile robot 𝑖, to 

enable the mobile robot to move freely as long as their neighbour is within the 

𝑆𝑆𝑅. 

By following graph theory (West, 2018), let 𝐺 = (𝑉, 𝐸, 𝑊) denote as an 

unidirected weighted graph, which contains vertex set V and edge set E. Every 

edge, e ∈ in 𝐸 is weight by a positive value and is defined as 𝑊(𝑒): → 𝑍+. Two 

vertices are said to be connected when there is a path between them 

{(𝑖, 𝑗) ∈ 𝐸| 𝑗 ∈  𝑁𝑖}, where 𝑁𝑖 denotes as the neighbour sets for the robot 𝑖. The 

set of vertices give rise to subgraph of G where 𝑆 ⊆ 𝑉 is the graph (𝑆, 𝐸𝑆, 𝑊𝑆), 

where 𝐸𝑆 =  {(𝑖, 𝑗) ∈ 𝐸| 𝑗 ∈  𝑆}. 

 A tree graph is a type of connected graph without cycles where a rooted 

tree has a root node as the highest hierarchy of the graph as shown in Figure 3.1. 

We define a rooted tree 𝑇 = (𝑉𝑇 , 𝐸𝑇 , 𝑊𝑇), where node in the rooted tree has a 

parent-child relationship with its neighbouring nodes which depends on the 

hierarchy. In the rooted tree, we define 𝑝(𝑣), as the parent of the robot 𝑣, 𝑐(𝑣) 

as the children set of 𝑣. In the tree graph, leaf is a node that have no child.  
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Figure 3.1: Rooted Tree Graph (West,2001). 

 

 Let 𝐺(𝑘) = (𝑉𝑘, 𝐸𝑘, 𝑊𝑘) denotes as the connectivity/interaction graph 

where k is the iteration steps. In the graph G, every node in V represent a mobile 

robot, and each edge (𝑖, 𝑗) in 𝐺(𝑘) indicates that two mobile robots 𝑖 and 𝑗, are 

neighbours. The weight of the edge, (𝑖, 𝑗) ∈ 𝐸𝐺(𝑘) , is the relative distance 

between two robots 𝑖 and 𝑗.  

The rendezvous problem requires mobile robots to rendezvous into M 

number of groups, with a predetermined final rendezvous point. We will further 

assume that M number of leaders will be assigned as the leader of each group, 

where the leader will be the root of each graph, where 𝐷 ⊆ 𝑉. The number of 

leaders will be denoted as 𝐷𝑀 ∈ 𝐷.  Let 𝑈 = 𝑉 − 𝐷  denote as the subset of 

mobile robot which are not leader robot and each mobile robot in 𝑈 will be 

assigned to one leader from 𝐷 . Let  𝑅(𝑢𝑖) ∈  𝐷  denote as the leader robot 

assigned to a robot 𝑢𝑖 ∈  𝑈. 

 The goal of the rendezvous algorithm is to have every mobile robot in 𝑈 

to meet their leader, D, i.e., when lim
𝑡→∞

‖𝑞𝐷 − 𝑞𝑖‖ = 0,  ∀𝑖 ∈ 𝑉(𝐺) − 𝐷. 

 

3.2.4 Building the Connectivity Graph (Algorithm 1) 

The rendezvous task starts with every mobile robot sense their neighbour robots 

with their local sensor and create a local neighbour set 𝐿𝑖. Every mobile robot 

will then share its list with neighbours and construct a global connectivity graph 

by using Algorithm 1 from the local neighbour set 𝐿 . This graph provides 

information regarding the edge and nodes for the mobile robot network. The 

flow chart of the algorithm is shown in Figure 3.2. 
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Figure 3.2: Building a Global Connectivity Graph (Algorithm 1). 

 

3.2.5 Creating Multiple Group 

The set of leaders can be selected either based on their advanced capabilities in 

comparison to the follower or using the Algorithm 3 by using the connectivity 

graph to optimize the traversal distance by the mobile robot in the rendezvous 

process. 

 As the purpose is to have all follower mobile robot to meet with the 

leader with the minimum amount of energy and time spent, we denote each 

mobile robot  𝑢𝑖 ∈  𝑈  to select a potential leader robot 𝑅(𝑢𝑖) ∈  𝐷  and 

optimizing the objective function below.  

 

𝑅(𝑢𝑖) = arg min 𝑑𝐺(𝐾)(𝑢𝑖, 𝐷𝑚)   (3.1) 

where 

𝑑𝐺(𝐾)(𝑢𝑖, 𝐷𝑚) is the sum of the path distance between robot 𝑖 and other robot 

within the shortest path by using the Dijkstra’s algorithm. 
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 By using the initial global connectivity graph, 𝐺(0), M number of sub-

graph will be constructed 𝐺𝑀 = (𝑉𝑀, 𝐸𝑀 , 𝑊𝑀) . By using the sub-graph, M-

shortest path tress 𝑇𝑀 = (𝑉𝑀, 𝐸𝑇𝑀
, 𝑊𝑇𝑀

)  with the root nodes 𝐷𝑀  will be 

constructed by optimizing the cost of distance from each node to the root node. 

Each of the node 𝑢𝑖 within the graph tree will be assigned to a parent 𝑝(𝑢𝑖) and 

children c(𝑢𝑖) if there is any. Please take note that nodes without children is 

named as leaf nodes. 

 

3.2.6 Hierarchical Rendezvous Algorithm (Algorithm 2) 

The purpose of this algorithm is to ensure that all mobile robots in the rooted 

tree, 𝑇𝑚 converge at their root 𝐷𝑚. The algorithm works as follows. Firstly, all 

non-root robot will move towards their selected immediate parents in the 

hierarchical tree which the leader is the root node. The mobile robot which has 

children can move towards their immediate parents if only all of their children 

is within their safe sensing range, SSR. If not, the robot will then wait until all 

of their children reach its SSR. After the children robot meet their immediate 

parent, the children robot will then update their parent to the parent of their 

parents by updating the edge of the tree from (𝑢, 𝑝(𝑢)) to (𝑢, 𝑝(𝑝(𝑢))) in the 

𝑇𝑚.  

The iteration will then continue until all non-root’s robots gathered at 

the root robot which is the leader robot. The algorithm also includes the parent 

𝑢, can only move when all their children are within 𝑆𝑆𝑅𝑢. Figure 3.3 illustrate 

the flow chart of the Algorithm 2. 
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Figure 3.3: Hierarchical Rendezvous Control Algorithm (Algorithm 2). 

 

3.2.7 Choosing Leader Robots (Algorithm 3) 

In situation where no leader robot is predetermined based on their function, this 

algorithm will be utilized to choose M number of leader robots among the 

mobile robots in the network. At first, we will utilize the initial connectivity 

graph, 𝐺(0) to create a table 𝑇𝑏, that contains a N-by-N matrix which contains 

the information of the shortest path distance between each of the robot pair, with 

each row represent one source/potential leader robot. By using 𝑇𝑏 , we can 

choose M number of leader robots from out of N robots. 

As for determining which mobile robot will be suitable for the role of 

the leader, we should relate to the goal of rendezvous, which is to achieve 

rendezvous in the shortest time possible. Therefore, by minimizing the 

maximum distance travelled from neighbour robots to the leader robot, we are 

able to use this concept to create a cost function. The cost function that will be 

used to find the optimal leader is as below 

 

𝐶(𝐷) =  
𝑚𝑎𝑥

∀𝐷𝑚 ∈ 𝐷 
𝑚𝑖𝑛

∀𝑢 ∈ 𝑉𝑚
𝑑𝐺(𝑘)(𝑢, 𝐷𝑚)  (3.2) 
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The cost function is constraints by 

 

𝐿𝑚 ≤ |𝑉𝑚| ≤ 𝑈𝑚    (3.3) 

 

and   

 

𝑑𝐺(0)(𝑢, 𝑅(𝑢)) ≤ 𝑇𝐷 , ∀𝑢 ∈ (𝑉 − 𝐷)  (3.4) 

 

The first constraint, (3.3) is to balance of all the group size of M whereas 

the second constraints, (3.4) is to restrict the maximum travelled by any robot 

in the rendezvous task. Other than that, we will be utilizing Brute-Force Search 

solution to go through which maximum distance from the neighbour robots are 

the smallest with the following equation. 

 

𝐷∗ =  
arg 𝑚𝑖𝑛

𝐷𝑚 ∈ 𝐷𝑝𝑙 
 𝐶(𝐷)   (3.5) 

 

where 

𝐷𝑝𝑙 = (
𝑉𝑝𝑙

𝑀
) is the set of every robot’s solution for D, and D* is the optimal set 

of leader robots. Potential leader is denoted as 𝑝𝑙. 

 

 Figure 3.4 shows the flow chart of the Algorithm 3, which is to calculate 

𝐷∗  to determine the suitable leader robot with the number of groups 

predetermined. Take note that the number of groups is the same of the number 

of leader robot selected. 
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Figure 3.4: Choosing Leader Robots (Algorithm 3). 

 

3.3 Environmental Setup 

This project will be utilizing MATLAB 2022a as the programming platform for 

the development of the proposed rendezvous algorithm and ROS2 for the 

implementation and validation of the proposed algorithm. 

MATLAB is one of the most used programming platforms for 

simulation of different kind of systems and it is capable of simulating robotics 

systems. The strength of MATLAB is that there are toolboxes which target their 

own specific field and particular topics. Toolboxes may be available from 

MathWorks, third parties’ company or individuals. This project will be utilizing 

Robotics System Toolbox and Navigation Toolbox created by MathWorks, and 

Mobile Robotics Simulation Toolbox by the MathWorks Student Competitions 

Team. Other than that, MATLAB offers a wide range of built-in functions for 
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mathematical computations and simulations, making it suitable for algorithm 

development. 

Aside from MATLAB, ROS2 is a flexible and powerful framework that 

enables the creation of distributed and modular robotics applications. With 

ROS2, robot behavior can be simulated and tested in a virtual environment 

before deploying on physical hardware, which provides a safe and cost-effective 

way to validate algorithms and optimize system performance.  

Therefore, the combination of MATLAB and ROS2 offers a potent 

platform for the development, simulation, and validation of robotic systems and 

algorithms, making it possible to implement the proposed rendezvous algorithm 

efficiently and effectively using MATLAB's toolboxes and built-in functions 

along with ROS2's simulation tools and packages. 

 

3.4 MATLAB Toolbox 

This section will briefly introduce the toolbox used during the simulation in 

MATLAB. 

 

3.4.1 Robotics System Toolbox 

The Robotics Toolbox offers a comprehensive collection of functions that are 

essential for various robotics applications, covering areas such as kinematics, 

dynamics, and trajectory generation. Additionally, the Robotics System 

Toolbox includes algorithms that are specifically designed for mobile robots, 

encompassing tasks such as mapping, planning, and control. With the Robotics 

Toolbox, developers can easily access a wide range of pre-built functions and 

algorithms to develop complex robotics systems, speeding up the development 

process and improving the overall performance of the system. 

 

3.4.2 Navigation Toolbox 

The Navigation Toolbox in MATLAB is mainly used for creating, loading and 

visualising map which is used for navigation task for mobile robots. Maps are 

essential components within this project, as they provide a representation of the 

environment that the robot used for localization, path planning, and navigate. 
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3.4.3 Mobile Robotics Simulation Toolbox 

This toolbox is capable of providing utilities for robot simulation and algorithm 

development. This toolbox is selected mainly because of the capabilities of 

configurating LIDAR and robot detector simulators within the occupancy grid 

maps, which is required to build the connectivity graph at the start of the 

algorithm. Other than that, it is also used for the 2D kinematics models for robot 

geometrics such as differential drive. 

 

3.5 ROS2 

This section will briefly introduce the toolboxes used in the simulation and 

workflow in ROS2.  

 

3.5.1 Gazebo 

Gazebo is a widely used multi-robot simulator that is fully open-source and 

supports a vast array of sensors and objects. Its design allows for the accurate 

reproduction of the dynamics of complex environments that robots may 

encounter, making it an excellent tool for testing and validating robot behavior 

in a simulated environment. Gazebo's versatility and extensibility make it a 

popular choice among researchers and developers working on various robotics 

applications, from simple single-robot simulations to complex multi-robot 

systems. By using Gazebo, developers can reduce the time and cost associated 

with physical testing and gain valuable insights into the behavior and 

performance of their robotic systems.  

To simulate the rendezvous task of multi robots in Gazebo, an 

environment and a robot model is built which is shown in Figure 3.5 and Figure 

3.6 respectively. The robot model is built with a differential drive control, which 

consist of 2 main wheels, and a chassis wheel. The robot model also consists of 

a LIDAR sensor to detect nearby object. 
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Figure 3.5: Obstacle-Rich Environment. 

 

 

Figure 3.6: Differential Drive Mobile Robot. 

 

3.5.2 ROS2 Navigation Stack (Nav2)  

The costmap layer, controller, planner, behavior tree, and behavior plugins are 

among the plugin interfaces available to users for developing their own 

customized applications or algorithms. The navigation plugins used is tabulated 

in Table 3.1. 

 

Table 3.1: List of Navigation Plugins Used. 

Navigation Plugins Plugin Name 

Behavior-Tree Navigator “Navigation To Pose With Consistent 

Replanning And If Path Becomes 

Invalid”. 

Costmap Layers Voxel Layer, Inflation Layer, Static 

Layer 

Controller DWB Controller 

Planner NavFn Planner 

Smoother Simple Smoother 
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3.5.3 SLAM Toolbox 

The SLAM Toolbox used is developed by Steven Macenski, which is a set of 

tools and capabilities for 2D SLAM (Macenski and Jambrecic, 2021). By using 

the SLAM Toolbox, mapping can be done which mainly uses the sensor data 

and the odometry of the mobile robot. The map generated is known as global 

costmap, which will be stored in the map server. Therefore, in a multi-robot 

simulation setup, all mobile robots including the leader robot will share a 

common map server, but will have their own individual local costmap, which is 

generated by their own real-time sensor data. 

 

There are four types of mapping mode in SLAM Toolbox. Online 

asynchronous mode is chosen because when running the SLAM algorithm, the 

sensor data are processed asynchronously as they arrive, rather than waiting for 

a complete set of datasets before processing. In comparison to offline mode, the 

entire dataset is processed at once, which can be computationally expensive and 

time-consuming. Asynchronous mode is preferred as it allow SLAM algorithm 

to update the map and estimate the robot’s pose in real-time. 

 

3.5.4 Transform Library 2 (tf2) 

A robotics system typically uses multiple 3D coordinate frames, including the 

base frame and joint frame, that will change over time. Tf2 is a tool that can 

keep track of all these frames , and it can work within a distributed system. 

Therefore, ROS components on any computer within the system can access 

information about the coordinate frames of a robot. This is useful because we 

are able to determine the coordinate of each mobile robot and the distance 

between each robot which is required in our algorithm, and also implement 

additional formation control during the rendezvous task.  

 

3.5.5 Workflow in ROS2     

In this project, Linux Ubuntu 22.04 operating system was installed and used. 

Following the instructions on the official documentation website, ROS2 

Humble which is one of the latest distributions, has been installed from the 

Debian packages. Three workspaces have been set up to maintain organized 
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management of the source code, and Python has been used to create the 

packages. Within the Python package, package.xml file contain meta 

information about the package, setup.py containing instruction for how to install 

the packages, and setup.cfg is required when a package has executables. 

 

i. beta_desc – Within this workspace, it contains the URDF model of the 

differential drive mobile robot and the obstacle-rich environment, 

together with the launch file which is responsible for spawning multiple 

robots in Gazebo. The tree directory of the workspace beta_desc is 

shown in Figure 3.7. 

 

Figure 3.7: Tree Directory of beta_desc. 

 

ii. beta_mapping – This workspace contains the parameter used for the 

SLAM Toolbox, and the launch file of the online asynchronous SLAM. 

The tree directory of the workspace beta_mapping is shown in Figure 

3.8. 
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Figure 3.8: Tree Directory of beta_mapping. 

 

iii. beta_nav – In the beta_nav workspace, it contains maps which is 

generated by the SLAM Toolbox, parameters of the Nav2 plugins for 

each of the mobile robot, launch file of localization (AMCL) and 

Nav2, behavior tree plugin, and the rendezvous controller named as 

simple_formation2.py and dijkstra.py. The tree directory of the 

workspace beta_nav is shown in Figure 3.9. 

 

 

Figure 3.9: Tree Directory of beta_nav. 

 

Unlike the simulation in MATLAB, many preparations needed to be 

done before implementing the rendezvous control algorithm within the multi-

robot system. Figure 3.10 shows the workflow of overall process. 
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Figure 3.10: Workflow of Overall Process. 

 

 The rendezvous controller is built by writing a Python script. Within the 

python script, a node named /goal_publisher is built. The node is firstly 

subscribed to the tf node, which is used to determine the coordinate of each of 

the mobile robot and the distance between each of them. Dijkstra’s algorithm is 

then implemented to determine which mobile robot is suitable to become the 

leader. After that, by publishing the coordinate of the leader to a topic named 

/goal_pose to each follower robot, the follower robot will then follow the path 

built by Nav2 to rendezvous with the leader. As the follower robot move 

towards the safe sensing range of the leader, then the /goal_publisher will then 

send the coordinate of the final goal to the leader by publishing to /goal_pose. 

Figure 3.11 illustrate the node graph of /goal_publisher. A terminal is used to 

run the rendezvous controller, shown in Figure 3.12. The python script will log 

the process of the rendezvous task along the way. 

 

 

Figure 3.11: Node graph of /goal_publisher. 
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Figure 3.12: Terminal of Rendezvous Controller. 

 

 A simple formation control strategy is implemented within the 

rendezvous controller. When the rendezvous task begins and the selection leader 

is done, position of follower robot is set behind the leader robot, which is shown 

in Figure 3.13. 

 

 

Figure 3.13: Position for Follower Robot. 

 

3.6 Planning and Managing of Project Activities 

This section describes the planning of project with the consideration of 

resources and time. Table 3.2 shows the Gantt Chart of the FYP 1 and Table 3.3 

shows the Gantt Chart of the FYP 2. 
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Table 3.2: Gantt Chart of Project Part I. 

No Week 

Project Activities 
W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 

1 Problem Statement and Project Planning ✓ ✓             

2 Literature Review  ✓ ✓ ✓ ✓          

3 Analysis of Methodology of Project   ✓ ✓ ✓ ✓ ✓ ✓       

4 Report Writing        ✓ ✓ ✓ ✓ ✓ ✓  

5 Simulation and Coding          ✓ ✓ ✓ ✓ ✓ 

6 Presentation and Report Submission              ✓ 
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Table 3.3: Gantt Chart of Project Part II. 

No Week 

Project Activities 
W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 

1 Simulation of Project ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓      

2 Report Writing        ✓ ✓ ✓ ✓ ✓ ✓  

3 Preparation of FYP Poster          ✓ ✓    

4 FYP Presentation and Report Submission              ✓ 
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3.7 Summary 

The rendezvous task of the mobile robot will be simulated using MATLAB as 

the programming platform. First, a connectivity graph will be built after the 

mobile robot is deployed randomly without knowing their initial location. Then, 

based on the predetermined number of groups set, a rooted tree graph is built 

with the leader as the root node. Each of the rooted tree graphs will then start 

the rendezvous process, where the leaf node (the follower) starts to meet its 

immediate parent. The process ends when every follower robot meets with the 

leader robot. The proposed algorithm will then be implemented in ROS2 by 

coding out the rendezvous controller. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSIONS 

 

4.1 Introduction 

In this section, we present several simulation scenarios of the rendezvous task, 

along with the evaluation metrics used for the proposed algorithm. We then 

describe each scenario and discuss the achieved results. 

 

4.2 Simulation in MATLAB 

There are three scenarios used to verify and demonstrate the performance of the 

proposed rendezvous algorithm. 

1. Single-Point Rendezvous 

2. Multi-Point Rendezvous 

3. Herding  

Scenario 1 is used to verify the performance of the proposed algorithm in 

terms of scalability and convergence and compared to the other rendezvous 

algorithm. In Scenario 2, the capability of the multi leader function of the 

proposed algorithm is demonstrated and in Scenario 3, it shows that herding 

behaviour which the leader robots lead their follower robots to the final 

rendezvous location. 

 

4.2.1 Scenario 1 – Single-Point Rendezvous 

In this scenario, we investigate the performance and convergence properties of 

the algorithm when the number of leaders (M) is 1 and the number of follower 

robots (N) is varied between 10, 20, and 30. Additionally, we compare the 

performance of the proposed algorithm against the circumcenter algorithm 

mentioned in the literature review. The initial positions of the robots and the 

corresponding connectivity graph are shown in Figures 4.1, 4.2, and 4.3. 
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Figure 4.1: Initial Position of Mobile Robots with N =10 (Left) and Initial 

Connectivity Graph (Right). 

  

 

Figure 4.2: Initial Position of Mobile Robots with N = 20 (Left) and  Initial 

Connectivity Graph (Right). 

   

 

Figure 4.3: Initial Position of Mobile Robots with N = 30 (Left) and Initial 

Connectivity Graph (Right).  
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The results of the metrics are tabulated in Table 4.1, which includes total 

distance travelled and the time taken for the rendezvous task to finish. From 

Table 4.1, we can see that the proposed algorithm’s total distance travelled is 

much better than the circumcenter algorithm, and the trajectory shown in Figure 

4.4 (a), (c) and (e) is much smoother than the circumcenter algorithm illustrated 

in Figure 4.4 (b), (d) and (f). This is mainly because the proposed algorithm 

requires the root robot to rendezvous with their immediate parents and continue 

to rendezvous at the selected leader robot as shown in Figure 4.5. In contrast,  

for the circumcenter algorithm, each robot will compute a centre location to 

move by using their neighbour location, resulting in different points in different 

iterations, and hence leads to rougher trajectory. However, the time taken for 

the proposed algorithm is slightly slower than the circumcenter algorithm, 

which is mainly because the immediate parents need to wait for their child robot 

to reach to their safe sensing range before moving to their own immediate 

parents. 

 Overall, the proposed algorithm guarantees connectivity maintenance of 

connectivity graph, resulting in a high convergence rate which is similar to the 

circumcenter algorithm. 

 

Table 4.1: Results of the Metrics in Scenario 1. 

Algorithm Metric N = 10 N = 20 N = 30 

Proposed 

Algorithm 

(M = 1) 

Total 

Distance (m) 

76.65 234.00 293.58 

Time (s) 51.4 76.7 59.5 

Circumcenter 

Algorithm 

Total 

Distance (m) 

79.68 274.80 354.33 

Time (s) 36.4 58.4 54.1 
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    (a)                 (b) 

           

    (c)                (d) 

           

    (e)      (f) 

 

Figure 4.4: The results of Scenario 1 is presented – Proposed rendezvous 

algorithm (left) is compared to the circumcenter algorithm (right) with different 

numbers of mobile robots. The first row of figure, (a) and (b), displays the final 

trajectory when N = 10. The second row (c) and (d) displays the final trajectory 

when N = 20, and the third row (e) and (f) illustrates the final trajectory when 

N = 30.  
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Figure 4.5: Rooted Tree of Proposed Algorithm (N=30). 

 

4.2.2 Scenario 2 – Multi-Point Rendezvous 

The performance of the multi-point rendezvous with N = 30 is tested with 

different numbers of rendezvous points (M=2, 3, 4) to demonstrate how the 

proposed algorithm scales with the number of rendezvous points. Table 4.2.3 

shows the trajectory of the mobile robots and the rooted tree. When the number 

of groups, M = 2, the two groups have sizes of 12 and 18 mobile robots, 

respectively. When M = 3, the groups had 10, 13, and 7 mobile robots, and the 

number of groups is set as M = 4, the number of mobile robots in each group 

were 5, 7, 8, and 10. The trajectory of all the mobile robots is smooth, similar 

to when M = 1, and they converge towards their leader robots. The number of 

followers within these groups varies in these scenarios. This is because the 

algorithm focuses on minimizing the cost function to have the least total 

distance travelled possible.  

In Table 4.2, it can be observed that as the value of M increases, the total 

distance travelled, and the time taken to complete the rendezvous task decrease. 

Figure 4.7 shows that the convergence rate is significantly faster with M being 

2 or higher compared to the circumcenter algorithm. Therefore, depending on 

the situation, it is advantageous to utilize a higher number of groups with 

ensured connectivity maintenance. The main reason for the decrease in total 

distance travelled is that follower robots have a shorter distance to the selected 

leader robot, which serves as the rendezvous point. Consequently, the 

rendezvous location varies in each scenario, and with a lower value of M, the 

rendezvous location tends to be closer to the center of the connectivity graph. 
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       (a)       (b) 

       

       (c)      (d) 

        

          (e)      (f) 

 

Figure 4.6: Results of Scenario 2 – Multi-point rendezvous where N = 30. At 

the first row, (a) show the final trajectory of mobile robots and (b) shows the 

initial rooted tree. At the second row, (a) show the final trajectory of mobile 

robots and (b) shows the initial rooted tree. 
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Figure 4.7: Overall Comparison of Objective Function (N=30). 

 

Table 4.2: Results of the Metrics in Scenario 2. 

Metric M=2 M=3 M=4 

D (m) 226.3200 180.75 148.71 

Time (s) 64.8 51.9 42.3 

 

 

4.2.3 Scenario 3 – Herding  

In this scenario, the proposed algorithm will demonstrate the capability of the 

robot leaders of showing herding behaviour by providing two specific goals that 

are visualized as a red mark in the environment. The leader robots are expected 

to lead their followers towards the end goals. The scenario is simulated with N 

= 16 and M =2 as shown in Figure 4.8.  

Figure 4.9 shows the steps of trajectory step in Scenario 3. The herding 

behaviour are achieved by setting up a Pure Pursuit Controller to the leaders 

which is provided by the Navigation Toolbox. The leader robots will start to 

move as their immediate children is within their safe sensing range. In Figure 

4.9 (a) and (b), which demonstrate the leader robots (4,8) starts to herd and move 

to the final goal. As shown in Figure 4.9 (c), the mobile robots achieved 

rendezvous while herding to the final goal. 
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Figure 4.8: Initial Position of Mobile Robots with N = 16 (Left) and Initial 

Connectivity Graph (Right). 

 

       

     (a)  t = 35         (b) t = 80  

 

      

                         (c) t = 560 

Figure 4.9: Trajectory of Mobile Robots during Herding at iterations (a) t = 35, 

(b) t = 80, (c) t = 580. 
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4.3 Simulation in ROS2 

The proposed algorithm is then implemented in ROS2. Two scenarios are used 

to verify and validate the performance of the algorithm. 

1. Obstacle-Free Environment 

2. Obstacle-Rich Environment 

Two scenarios are presented in this project. In Scenario 1, mobile robots are 

deployed in an obstacle-free environment to perform a proposed algorithm that 

achieves a specific task. The proposed algorithm is evaluated by comparing the 

scenario with and without formation control. The formation control enables the 

robots to maintain a desired formation while performing the task. In Scenario 2, 

the capability of the mobile robots to navigate around static obstacles while 

performing the rendezvous task is demonstrated. The rendezvous task requires 

the robots to meet at a specific location. Similar to Scenario 1, both with and 

without formation control are implemented, and the proposed algorithm is 

evaluated. The results of the evaluation provide insights into the effectiveness 

of the proposed algorithm in different scenarios. 

 

4.3.1 Scenario 1 – Obstacle-Free Environment 

In Scenario 1, the mobile robots are expected to meet with the leader robot, 

where the leader robot are selected using the Dijkstra’s algorithm. When all the 

follower robot reaches the safe sensing range of the leader robot, the leader will 

start leading the follower robot to the final location. Two different approaches 

have been simulated within this scenario: one is without formation control, and 

other with formation control. The differences are clearly shown after the 

rendezvous at the leader’s position. The result of the simulation is shown in 

Figure 4.10 and Figure 4.11. 
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      (a)                (b) 

             

      (c)                (d) 

              

      (e)                 (f) 

 

Figure 4.10: Results of Scenario 1 without Formation Control with different   

time stamped, (a) t = 0s, (b) t = 2s, (c) t = 75s, (d) t = 105s, (e) t = 150s,        

(f) t = 170s. 
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     (a)         (b) 

             

      (c)      (d) 

             

      (e)      (f) 

Figure 4.11: Results of Scenario 1 with Formation Control with different time 

stamped, (a) t = 0, (b) t = 2s, (c) t = 75s, (d) t = 105s, (e) t = 150s, (f) t = 170s. 

 

By comparing both Figure 4.10 and Figure 4.11, it become clear that the 

rendezvous position of the follower robot differ, as indicated based on the path 

visualized by RVIZ2. This is mainly because without formation control within 

the algorithm, and consequently, the follower mobile robots are expected to 

move to the position of the leader robot, while ignoring the presence of the 

leader. This behaviour may result in a cluster of follower robot  around the 

leader robot, blocking the path of the leader robot after finishing the rendezvous 

and impeding the task need to be done. 
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Other than that, in Figure 4.10 (d) and (e), it can be observed that the 

path of the follower mobile robots overlaps, which could potentially result in 

collision them. Even though each simulated mobile robot is equipped with a 

Nav2 local planner that utilizes LIDAR sensors to build a local costmap, it is 

important to take note that the refresh rate is only 5Hz. This refresh rate may 

not be sufficient for the mobile robots to dynamically avoid obstacles or even 

other mobile robots, especially when the robots are required to change direction 

frequently.  

By implementing formation control within the proposed algorithm, this 

will enable the follower robots to rendezvous at the leader position with an 

expected formation, which is capable of avoiding clustering around the leader 

robot and ensure a smoother transition to the next task with minimizing any 

potential delays. Other than that, implementation of formation control ensures 

that the follower robots maintain a specific formation while moving to the final 

goal. It ensures the mobile robots can navigate safely without the risk of 

colliding with each other. 

 

4.3.2 Scenario 2 – Obstacle-Rich Environment 

In Scenario 2, an obstacle-rich environment is created to test the ability of the 

mobile robots to navigate around static obstacles while performing the 

rendezvous task. With the help of the LIDAR sensors, the mobile robots can 

detect the obstacles and utilize the pre-built map to path around them. The result 

of the simulation is shown in Figure 4.12. 
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  (a)       (b) 

             

  (c)      (d) 

             

  (d)      (f) 

 

Figure 4.12: Results of Scenario 2 with Formation Control with different time  

stamped, (a) t = 0, (b) t = 2s, (c) t = 75s, (d) t = 105s, (e) t = 150s, (f) t = 170s. 

  

 In Figure 4.12 (c) and (d), this scenario highlights of the importance of 

formation control and careful path planning in the obstacle-rich environment. In 

this scenario, the leader navigates along a narrow pathway between the obstacles. 

As the follower robots navigate around the obstacle, the follower robot spread 

out to avoid the obstacle. When their expected goal is within the obstacle, the 

follower robot will stop moving, and wait after the goal is outside the obstacle, 

then the follower robot will navigate around the obstacle. Without formation 

control, the follower mobile robots might collide as shown in the figure below.  
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Figure 4.13: Collision among follower mobile robots. 

 

 

4.4 Summary 

The Hierarchical Rendezvous Control Algorithm has been successfully 

developed in MATLAB and implemented in ROS2. The proposed algorithm 

was then compared to the state-of-the-art rendezvous algorithm (circumcenter 

algorithm) in terms of convergence rate and performance, and it outperformed 

the latter in terms of total distance travelled. Furthermore, it required a similar 

amount of time to finish the rendezvous task. Additionally, formation control 

during herding was introduced during the simulation in ROS2. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In summary, all four objectives of the project have been successfully achieved. 

The Hierarchical Rendezvous Control has been developed using MATLAB to 

gather robots in a different number of groups and enable to coordinate the 

multiple robot’s movement and action, ensuring they meet at a specific location 

and time. 

Through different scenarios of simulation and experiments, the 

properties of the algorithm such as convergence rate and connectivity 

maintenance have been demonstrated. Performance and scalability were 

compared with the circumcenter algorithm. The proposed algorithm has also 

been applied in a potential application, which is the multi-group herding of a 

multi-robot system. 

Moreover, the proposed algorithm has been implemented within a multi-

robot scenario in ROS2. A formation control strategy has also been added to the 

proposed algorithm to ensure that mobile robots do not collide with each other 

while navigating during the rendezvous task. 

 

5.2 Future Recommendation 

In future work, real-time experiments could be included to further validate the 

proposed algorithm, as the current project only involved simulations. 

Additionally, the proposed algorithm was developed and tested on 

homogeneous robots. However, in reality, robot teams may consist of 

heterogeneous robots with different capabilities and characteristics. Therefore, 

further work could explore the possibilities of experimenting with the 

effectiveness of the proposed algorithm on heterogeneous robots. Moreover, the 

application domains of the proposed algorithm could be extended by 

investigating its applicability in other areas such as search and rescue missions 

and environmental monitoring. Lastly, integrating machine learning within the 

proposed algorithm to find optimal parameters could improve its effectiveness.  
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APPENDICES 

 

APPENDIX A: Link for Code for MATLAB and ROS2 

 

Link - https://github.com/jinsiang120/FYP/tree/main 

 

 


