

DEVELOPMENT OF A SMART EDGE

DEVICE FOR FIRE DETECTION

NG WEI YUAN

UNIVERSITI TUNKU ABDUL RAHMAN

DEVELOPMENT OF A SMART EDGE DEVICE FOR FIRE

DETECTION

NG WEI YUAN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Mechatronics Engineering

with Honours

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2023

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Signature :

Name : Ng Wei Yuan

ID No. : 1801391

Date : 9/8/2022

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “DEVELOPMENT OF A SMART

EDGE DEVICE FOR FIRE DETECTION” was prepared by NG WEI

YUAN has met the required standard for submission in partial fulfilment of

the requirements for the award of Bachelor of Mechatronics Engineering

with Honours at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Ir. Dr. Mun Hou Kit

Date :

Signature :

Co-Supervisor :

Date :

19/5/2023

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be

made of the use of any material contained in, or derived from, this report.

© 2023, NG WEI YUAN. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful

completion of this project. I would like to express my gratitude to my research

supervisor, Ir. Dr. Mun Hou Kit for his invaluable advice, guidance and his

enormous patience throughout the development of the research.

In addition, I would also like to express my gratitude to my loving

parents and friends who had helped and given me encouragement for

completing this project.

v

ABSTRACT

Conventional fire detection systems based on smoke and flame sensors have

been shown to be unreliable in terms of accuracy, response time, and false

alarms. This project proposes a smart edge fire detection system that

overcomes the limitations of conventional fire warning systems by utilizing

deep learning models and edge computing. The system is based on an object

detection model for fire detection using the Improved YOLOv5s algorithm,

which integrates BiFPN and an additional prediction layer for detecting small

targets of fire. The system is designed to be deployed on edge devices,

specifically the Jetson Nano B01, and includes a user-friendly interface

accessible via Telegram. The workflow of the project is divided into three

sections: Google Colab, a workstation, and the Jetson Nano B01. The Google

Colab section is used to train the models and generate the Improved YOLOv5s

model, while the workstation is used to download the trained model weights

and generate the Flask server and MQTT client. The Jetson Nano B01 section

is used to install the dependencies, set up the system, optimize the trained

model with TensorRT and TorchScript, and connect the Flask server to Node-

RED. The final system is capable of starting with user input and sending alerts

to Telegram when the fire is detected, with end users able to access the system

via Telegram to receive alerts and view the video stream. The results show

that the Improved YOLOv5s model is the best option, with an average FPS of

10.5 and a high recall of 0.5, indicating a high capture rate of fire, although

with lower precision of 0.541. The latency of the edge computing system is

554ms, making it an efficient and reliable option for detecting fires in real

time. Future works could explore the use of a larger dataset and ensemble

models to increase accuracy, optimize the model for devices with constrained

resources, and improve the user interface and messaging service integration.

Overall, this project contributes to the development of efficient and reliable

fire detection systems that can be deployed in various settings.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiv

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 2

1.4 Aim and Objectives 3

1.5 Scope and Limitations of the Study 4

1.6 Contributions of the Study 5

1.7 Outline of the Report 5

2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Indoor Fire Cycle 7

2.3 Data preparation 8

2.4 Fire detection using Edge Computing 13

2.4.1 General Approaches of Fire Detection

System with Edge Computing Framework 13

2.5 Fire detection using Object Detection 19

2.5.1 One Stage Detectors 19

2.5.2 Two Stage detectors 25

vii

2.6 Deep Learning Framework 29

2.6.1 TensorFlow 29

2.6.2 PyTorch 29

2.6.3 Summary of deep learning framework 30

2.7 Edge Device 31

2.8 Summary 32

3 METHODOLOGY AND WORK PLAN 34

3.1 Introduction 34

3.2 Project Activities Planning 34

3.2.1 Project Part I 34

3.2.2 Project Part II 35

3.3 Tools to use 37

3.3.1 Training Platform 37

3.3.2 Ngrok 39

3.3.3 Mosquitto Message Queuing Telemetry

Transport 40

3.3.4 Node- RED 41

3.3.5 Flask server 43

3.3.6 Model Optimizer 44

3.3.7 OpenCV 46

3.3.8 Roboflow 47

3.3.9 ClearML 47

3.4 Data Preparation 47

3.4.1 Datasets Used 47

3.4.2 Data Augmentation 48

3.5 Improvement On YOLOv5s 49

3.5.1 Overview 49

3.5.2 Addition of Bidirectional Feature Pyramid

Network Concat 50

3.5.3 Addition of prediction layer 50

3.6 Training the model 51

3.6.1 Batch Selection 51

3.6.2 Transfer Learning Approach 52

viii

3.7 Conversion of the Trained Model into

Intermediate Representation to load in Inference

Engine 53

3.8 System Architecture 54

3.9 Experimental setup 55

3.10 Workflow 57

3.11 Summary 59

4 RESULTS AND DISCUSSION 61

4.1 Introduction 61

4.2 Evaluation Metric 61

4.3 Summary 75

5 CONCLUSIONS AND RECOMMENDATIONS 77

5.1 Conclusions 77

5.2 Recommendations for future work 77

REFERENCES 79

APPENDICES 82

ix

LIST OF TABLES

Table 2.1: Comparison Between Data Preparation Methods Proposed

By Various Studies 10

Table 2.2: Comparison Between Proposed Method For Fire Detection

With Edge Computing 15

Table 2.3: Comparison Between Proposed Method For Fire Detections

With One Stage Detectors 20

Table 2.4: Comparison between proposed methods for fire detection

with two stage detectors 26

Table 2.5: Comparison between TensorFlow and PyTorch 30

Table 2.6: Comparison between Raspberry Pi 4B 4GB and Jetson Nano

B01 31

Table 3.1: Comparison between GC and Workstation 39

Table 3.2: Functions of OpenCV used in this project. 46

Table 3.3: Allocation of Fire and Non-Fire images in the custom dataset 48

Table 3.4: Allocation of Images after performing data augmentation on

custom dataset. 49

Table 3.5: Type of setting during training for both YOLOv5s and

YOLOv8s 52

Table 4.1: Comparison of Improved YOLOv5s, YOLOv5s and

YOLOv8s on Jetson Nano B01 64

Table 4.2: Testing environment for Latency 72

Table 4.3: Comparison with other studies on mAP, P, R, F1 Score , FPS

and Latency 73

x

LIST OF FIGURES

Figure 2.1: The Lifecycle of A Fire (Ottawa Fire Services, 2021, cited

in J. Pincott .et .al, 2022, pg 3) 8

Figure 2.2: Possible Fire Lifecycle Response to Controlled Airflow

(Ottawa Fire Services, 2021, cited in J. Pincott .et .al,

2022, pg 3) 8

Figure 2.3: SB112 smart building sensor system (Maltezos, E, et al.,

2022) 17

Figure 2.4: DECIoT architecture (Maltezos, E, et al., 2022) 17

Figure 2.5: Proposed CPSS Architecture (Avgeris et al., 2019) 18

Figure 2.6: Proposed SMOKE Framework (Avgeris et al., 2019) 18

Figure 2.7: The design of the proposed Real-Time Fire Detection and

Localization Framework (Li et al., 2023) 18

Figure 2.8: Architecture of deep separable convolution (Zhao, et

al. ,2022) 23

Figure 2.9: Improved YOLOv5 convolution layers with dynamic

convolution (An et al. ,2022) 23

Figure 2.10: The structure of SPPF (Xue et al., 2022) 23

Figure 2.11: The structure of SPPFP (Xue et al., 2022) 24

Figure 2.12: (a) The structure of the channel attention module. (b) The

structure of the spatial attention module. (c) The structure

of the CBAM attention module (Xue et al., 2022) 24

Figure 2.13: Backbone network after adding scSE module (Yang et

al.,2023) 25

Figure 2.14: HSV color conversion of flame image. (a) original images;

(b) HSV color conversion in the specified range. 28

Figure 2.15: Illustration of MCCL Feature module. (Huang et al., 2023) 28

Figure 2.16: Jetson Nano B01 (Cytron Technologies, n.d.). 32

Figure 3.1:Gantt chart for part I of this project 35

Figure 3.2: Gantt chart for part II of this project 37

xi

Figure 3.3:MQTT Process (BasuMallick, 2022) 41

Figure 3.4: Node-RED Flow 42

Figure 3.5: Dashboard UI produced using Node-RED when fire not

detected. 42

Figure 3.6: Dashboard UI produced using Node-RED when fire is

detected. 43

Figure 3.7:Comparison of speed and accuracy on COCO datasets

(Jocher, n.d) 49

Figure 3.8: The structure of (a) PANet & (b) BiFPN (Xue et al., 2022) 50

Figure 3.9: Additional prediction layer in the highlighted red box on top

of original YOLOv5s model (Yang et al., 2023) 51

Figure 3.10: System Architecture 54

Figure 3.11: Experimental Setup (Isometic view) 56

Figure 3.12: Experimental Setup (side view) 56

Figure 3.13: Flowchart of workflow 59

Figure 4.1: TP in both dark and light environment in YOLOv5s (Top)

Improved YOLOv5s(bottom) 67

Figure 4.2: FP on car’s back light in both YOLOv5s (Top) and

Improved YOLOv5s (Bottom) 68

Figure 4.3: TN on sunset in both YOLOv5s (Top) and Improved

YOLOv5s (Bottom) 69

Figure 4.4: YOLOv5s(Left) compared to Improved YOLOv5s (Right) 70

Figure 4.5: YOLOv5s(Left) compared to Improved YOLOv5s (Right) 70

Figure 4.6: YOLOv5s(Left) compared to Improved YOLOv5s(Right) 71

xii

LIST OF SYMBOLS / ABBREVIATIONS

RM Malaysian Ringgits

IoT Internet of Things

IP Internet Protocol

YOLO You Only Look Once

BiFPN Bidirectional Feature Pyramid Network

Faster R-CNN Faster Region-based Convolutional Neural Network

HTTP Hypertext Transfer Protocol

FPS Frame Per Second

mAP mean Average Precision

UI User Interface

AWS Amazon Web Services

CCTV Closed Circuit Television

SMS Short Message Service

VPN Virtual Private Network

HD High Definition

DECIoT Distributed Edge Computing Internet of Things

NG112 Next Generation 112

CPSS Cyber-Physical Social System

QoS Quality of Service

SMOKE Scalable edge coMputing framewOrK for early firE

 detection

SSD Single Shot Multi Box Detection

CNN Convolutional Neural Network

SPPFP Spatial Pyramid Pooling-Fast-Plus

SPPF Spatial Pyramid Pooling-Fast

CBAM Convolutional Block Attention Module

VST Very-Small-Target detection layer

PANet Path Aggregation Network

SGD Stochastic Gradient Descent

ReLU Rectified Linear Unit

HSV Hue, Saturation, Value

MCCL Multi-scale Context Contrasted Local Feature module

DPPM Dense Pyramid Pooling module

xiii

GPU Graphics Processing Unit

CUDA Compute Unified Device Architecture

ONNX Open Neural Network Exchange

FYP Final Year Project

GC Google Collaboratory

TPU Tensor Processing Units

NAT Network Address Translation

MQTT Message Queuing Telemetry Transport

MO Model Optimizer

IR Intermediate Representation

OpenCV Open-Source Computer Vision

FPGA Field Programmable Gate Arrays

IoU Intersection over Union

NMS Non-Max Suppression

FP32 Single-Precision Floating-Point

FP16 Half-Precision Floating-Point

% Percentage

s second

ms millisecond

mbps Megabits per second

YAML Yet Another Markup Language

xiv

LIST OF APPENDICES

APPENDIX A: Programme codes 82

APPENDIX B: model Yet Another Markup Language format i

APPENDIX C: Custom Dataset ii

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Fire has existed since prehistoric times and fire-related accidents always

follow suit with human activities. Even when technological advancement has

provided humanity with a way to reduce the risk of fire outbreaks in this

modern era, many fire-related accidents still occurred around the globe and

leading to losses, injuries, and casualties. According to Statistics on Fire

Breakouts in Malaysia from 2000 to 2019, the cumulative number of fire

accidents from 2000 to 2019 in Malaysia reach an astounding number of

602271 cases with 3410 deaths, 9950 injuries, and a loss of

RM64,213,600,000 worth of assets (Atikah, 2021).

 To cope with the occurrence of fire outbreaks, humanity has

developed numerous safety measures for fire accidents. One of the key

components of fire safety measures is a fire detection system. Fire detection

systems mainly function to detect early signs of fire and give out alerts to

notify the people nearby and also the firefighting agency. By detecting the fire

early on, the damages done to the property are significantly reduced, and also

maximize the fire control effort. Thus, a fire detection system is vital in

countering fire outbreaks.(Shokouhi et al., 2019)

In recent studies, Edge computing has recently gained more attention

in various Internet of Things (IoT) Applications. This situation is due to the

characteristics of Edge computing being responsive, latency independent and

data privacy compared to Cloud computing. The incorporation of edge

computing in fire detection systems provides a more efficient, reliable, and

cost-effective approach to fire safety measures. By detecting fires early,

providing real-time alerts, and enabling predictive maintenance, edge

computing ensures that potential fire hazards are identified and addressed

promptly, minimizing the risks of fire incidents and their associated damages.

It is an ideal computing paradigm for designing a fire detection system where

an IoT sensing device like an Internet Protocol (IP) camera is used and fast

response is required to detect early fire. Thus, a smart edge fire detection

system is proposed.

2

1.2 Importance of the Study

The result of this project is significant for several reasons.

 The YOLOv5-based model proposed in this project is a valuable

contribution to the advancement of deep learning fire detection systems by

integrating both Bidirectional Feature Pyramid Network (BiFPN) and

additional prediction layer into the YOLOv5s model, which is part of the You

Only Look Once (YOLO) one stage object detection family.

 Both YOLOv5s and YOLOv8s are YOLO's family object detection

deep learning models. While there have been various methods proposed using

YOLOv5s architecture for fire detection (Ahn et al., 2023) (An et al., 2022)

(Xue et al., 2022) (Yang et al., 2023). However, currently, there is no detailed

comparison between YOLOv8s and YOLOv5s in small target fire detection on

edge devices. Thus, this project fulfilled the void in the present studies.

 A dataset with numerous optimisations and hundreds of actual cases

involving fires has been created. Noise images from a comparable

environment to the test site were also included to increase the trained model's

accuracy and robustness. We also added unfavorable samples, like those from

the sun, the setting sun, reflections, and fluorescent lighting, among others, to

lessen the effect of environmental influences on the model.

1.3 Problem Statement

Despite being frequently employed in high-rise buildings and public spaces,

conventional fire warning systems based on smoke and flame sensors have

been shown to be unreliable in terms of accuracy and response time.

According to Pincott et al. (2022), the limitations of the present fire detection

system include the inability to detect the exact position of the fire or provide

detailed information on its size or spread pattern. As a result, locating the fire's

origin becomes difficult because the sensors only detect a general region

rather than a specific location, such as a kitchen or bedroom. As a result, the

lack of precise information on the fire's origin and behavior hinders the

effectiveness of fire control operations.

 Furthermore, false alarms are also an acute issue with conventional

systems because they have poor accuracy and could provide building

occupants with a false sense of security. False alarms also cause individuals to

3

become less attentive to the fire alarm, thereby raising the danger of accidents

and fatalities.

In addition, the conventional system has a slow response time, which prevents

the detection of fire during the ignition stage, when it is small and controllable.

This issue is compounded by the fact that most fire outbreaks are only

detected if there are people near the site who can contact the firefighting

agency, resulting in slower response times and increased difficulty in saving

lives and property.

 Various deep learning models like YOLOv3 models and Faster

Region-based Convolutional Neural Networks (Faster R-CNN) have been

proposed for fire detection by various studies. For instance, Faster R-CNN,

despite its ability to detect objects of varying sizes accurately, does not

perform well on edge devices due to its complex architecture. YOLOv3 and

YOLOv4 models while having a high detection rate of fire, have a large model

size. Making it hard for both models to be implemented on edge devices where

storage is limited.

 Cloud computing is another computing paradigm considered for fire

detection systems, but it also has its limitations. Cloud-based fire detection

systems have high computational power and can process vast amounts of data,

but they require a stable internet connection and can be prone to latency issues.

Even though, IoT can benefit from cloud computing's scalability, elasticity,

multitenancy, storage capacity, and resource sharing, among other advantages.

It is anticipated that the unreliable connection between the cloud and mobile

devices will prohibit IoT devices from operating at their peak

capability.(Maltezos, E, et al., 2022).

 Therefore, there is a need for a smart edge fire detection system that

can address the limitations of conventional systems and deep learning models

while providing accurate, real-time fire detection with the use of edge

computing.

1.4 Aim and Objectives

This project aims to develop a fire detection system deployed with deep

learning models on edge computing framework that are capable to detect small

target fires and send alerts and footage to users.

 Based on the aim, several objectives can be outlined as follows:

4

a) To develop an Improved YOLOv5s object detection model that

performs can detect the small target of fire in real-time.

b) To develop a deep learning edge framework architecture system to

send fire alerts and display real-time video streams.

c) To evaluate the performance of the proposed system and model in

terms of accuracy, speed, and latency.

1.5 Scope and Limitations of the Study

The scope of this project is development of a deep learning-based fire

detection system on an edge computing platform and also the development of

an Improved YOLOv5s model. The system takes input from IP camera nodes

and produces output through a Flask server with Hypertext Transfer Protocol

(HTTP) stream. The system is designed to detect both small and large fire

targets in daytime and nighttime. The performance of the system will be

evaluated using metrics such as Frame Per Second (FPS), mean Average

Precision (mAP), and confusion matrix. Additionally, the system utilizes

Node-RED to generate a User Interface (UI) dashboard that takes HTTP

stream from Flask server as input. Ngrok is used to expose the Flask server to

the internet for remote access to the Node-RED dashboard. Lastly, Node-RED

is also used to generate an alert system when fire is detected and sends an alert

through Telegram. The Improved model utilize YOLOv5s as base model and

add in BiFPN block and additional prediction layer to improve detection on

small target of fire.

Different restrictions are imposed for this project in order to focus on

improving specific system features. This project is restricted to utilising

Node-RED to create a UI dashboard and an alarm system when fire is detected.

In this study, other dashboard and alerting systems like Grafana or Slack are

not taken into consideration.

Moreover, this project did not utilize cloud services such as Amazon

Web Services (AWS) or Google Cloud, which limits the system to the edge

computing platform of Jetson Nano B01. Furthermore, the project is focused

solely on detecting fires and cannot detect gas leakage. The project is also

limited to the use of IP camera nodes as the input source for the system, and

other sources such as Closed-Circuit Television (CCTV) cameras or thermal

5

cameras are not considered in this study. The project is limited to the use of

Flask server with HTTP stream as the output mechanism for the system, and

other output mechanisms such as Short Message Service (SMS) notifications

or email alerts are not considered in this study. The project is limited to the use

of Ngrok for exposing the server to the internet, and other methods of remote

access such as port forwarding, or Virtual Private Network (VPN) are not

considered in this study.

1.6 Contributions of the Study

In this project, a working fire detection system will be implemented on an

edge device in a real-world setting, together with an object detection model

based on YOLOv5s for fire detection. The contributions of this project are

listed below.

 This project discussed prior research on object detection and edge

computing-based fire detection systems.

 Other than that, this project also developed a YOLOv5s based model

which integrate BiFPN and additional prediction layer to detect small target of

fire.

 Moreover, a user-friendly user interface that can be accessed from

telegram and also issue command to the system from telegram is also

proposed in this project.

 Lastly, this project proposed a live streaming fire detection system

utilizing Flask Server.

1.7 Outline of the Report

There are five chapters in this report. The information in each chapter

will be sufficient for the readers. Below is a description of each chapter's

outline to give the reader a fundamental grasp of the project,

 Chapter 1 describes its background, aims, and objectives, as

well as its scope and limitations and the contribution of the study.

The previous research on the related subject is reviewed in Chapter 2

which includes the indoor fire cycle, data preparation, fire detection using

edge computing, fire detection using object detection, deep learning

framework, and edge device.

6

The project's technique is described in Chapter 3. Starting with the

planning of project activities, moving on to the tools necessary to duplicate

this project, and then into the processes necessary to create comparable custom

datasets used for training as well as the improved model proposed in this

project. This chapter also covers the workflow, system architecture, and model

optimizer. The project can be replicated by the readers by following the

directions in this chapter.

Chapter 4 describes the evaluation procedures and displays the

project's results. The outcomes of the proposed model and the original model

as well as models from other studies are then compared and analysed.

This project is concluded in Chapter 5, which also offers ideas for

additional research.

7

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

The goal of this research is to provide an edge computing fire detection system

and object detection model for small target fire detection. As a result, this

chapter will begin with a review of the literature on the indoor fire cycle, data

preparation, and then fire detection using two key techniques: (i) edge

computing and (ii) object detection. Moreover, this chapter will also review

Deep Learning Framework as the platform for deep learning development for

fire detection. Lastly, Edge Device will be reviewed later in this chapter as the

device for real-world deployment of the proposed system.

2.2 Indoor Fire Cycle

According to J. Pincott et al. (2022), all fires follow a similar life cycle

consisting of four stages, as illustrated in Figure 2.1. The first stage is

inception, during which the fire may be extinguished if there are fire retardants

or insufficient fuel (J. Pincott et al. ,2022). If conditions are favorable, the fire

progresses to the growth stage, where a feedback loop of burning fuel leads to

increasing heat and further fuel consumption (Ottawa Fire Services, 2021,

cited in J. Pincott .et .al, 2022, pg 3). This stage is crucial because it

determines the rate of propagation, which depends on factors such as fuel type,

quantity, and airflow (J. Pincott et al. ,2022). Fast detection of a fire in the

growth stage is important to minimize damage and prevent loss of life.

 Once the fire has developed enough, a flashover occurs, where the

temperature becomes high enough to ignite exposed surfaces and the fire

spreads rapidly. This is the most hazardous stage for firefighters, but a vision-

based system could provide information about the fire's stage and location,

reducing the risk to firefighters and helping them make informed decisions.

After the flashover, the fire burns steadily as long as there is sufficient fuel

and air supply. Eventually, the decay phase sets in as the heat and smoke

reduce the oxygen supply. This phase leads to extinguishment unless more

fuel or air becomes available. Vision-based systems could also be used to aid

in the response to fires, particularly through controlled ventilation systems,

8

which can accelerate the decay phase. Figure 2.2 illustrates the normal fire

development (solid line) and the potential divergent paths if uncontrolled

ventilation or controlled ventilation is in place (dotted lines), as cited from

Ottawa Fire Services (2021) by J. Pincott et al. (2022).

w

Figure 2.1: The Lifecycle of A Fire (Ottawa Fire Services, 2021, cited in J.

Pincott .et .al, 2022, pg 3)

Figure 2.2: Possible Fire Lifecycle Response to Controlled Airflow (Ottawa

Fire Services, 2021, cited in J. Pincott .et .al, 2022, pg 3)

In this project, we mainly focus on the detection of fire during the ignition and

growth stage to achieve early fire detection.

2.3 Data preparation

To train a object detection model for indoor fire detection, datasets regarding

indoor fire must be prepared. According to Ahn et. al, there still lacking in

research on indoor fire detection. Only limited research papers have proposed

methods regarding the data optimization and image transformation method on

9

datasets to achieve better recall and precision of indoor fire objects. The

following Table 2.1 have shown all the papers reviewed for indoor fire

datasets.

 Among all these studies regarding fire image datasets, one of the

most notable study is the one by Pincott, J. et al. (2022), All stages of ignition,

propagation, and flashover within the fire images are covered in the datasets

by Pincott, J. et al. (2022). This optimization allows the trained model to be

able to detect all stage of fire more accurately and also increased the recall of

fire detection.

Another optimization that are seen in Pincott, J. et al. (2022), Ahn et al.

(2023) and Jain & Srivastava (2022)’s datasets are the addition of images

containing region of possible error. These images include reflections and light

fitting which easily mistaken as fire. With the addition of these images, a more

robust model that can detect fire in all types of lighting environments can be

trained (Pincott, J. et al, 2022).

Other than that, both Pincott, J. et al. (2022) and Jain & Srivastava

(2022) also have included images of varying image pixel densities or direction

to the datasets. These addition helps images to be less sensitive to image focus

and also distance. These additions also help to increase the robustness of the

final trained model, which further increase the accuracy and recall of the

model during testing.

Lastly, both Norkobil Saydirasulovich et al. (2023) and Li et al. (2023) have

been seen using data augmentation during the generation of datasets. Data

augmentation is the most efficient way to increase the quantity of dataset

photos and raise the final accuracy rate, claimed Norkobil Saydirasulovich et

al. (2023). The quantity and resolution of the training image datasets have an

impact on the performance of trained models.

10

Table 2.1: Comparison Between Data Preparation Methods Proposed By Various Studies

 Reference Year Dataset (Indoor) Main Highlights

1 Pincott, J. et al. 2022 • The images also include items and scenes

found in the inside of various buildings,

including workplaces.

• Number of images

o 480 Training

o 120 Testing

• Number of Labels

o 628 Training

o 156 Testing

• The use of technique based on TensorFlow Object

Detection API workflow process to eliminate duplicate

images.

• The use of images with a wide range of pixel densities,

ranging from 1080p High Definition (HD) to lower than

typical CCTV resolutions.

• Images were taken throughout the various stages of a fire,

such as flashover, propagation, and igniting.

• Reflections and light fixtures were present in several

training images in places that can lead to mistakes by

model.

• Bounding boxes were assigned to images that included

smoke and fire in close vicinity and overlapped one

another.

2 Li et al. 2023 • Small image frames in indoor environments • Apply geometric transformation of flipping of images only.

11

like labs or rooms

• Number of images

o 92 images Training

o 20 images Testing

• Apply saturation, brightness and contrast enhancement.

• Apply data normalization.

• Images used as the training input were sized to 320 320

3 Jain &

Srivastava

2022 • fire and non-fire images collected from

different location of private spaces

(residential area).

• Images at 640 × 480

• Image dataset at Privacy Level 4,

• Images collected with varying distances and directions.

• Images converted into grayscale.

• Include non -fire images easily mistaken as fire.

4 Ahn et al. 2023 • 10,163 photos in total met the requirements

for early fires and indoor fires.

• 2 class of flame and smoke were used

• Include non -fire images easily mistaken as fire.

5 Norkobil

Saydirasulovich

et al.

2023 both diurnal and nocturnal fire images:

• Fire Images:

o 7700 Training

o 2300 Testing

• Non-Fire Images:

o 2300 Training

• Apply geometric transformations such as flipping and

rotation of images.

• Apply only brightness and contrast enhancement.

• Apply data normalization

12

6 Jin et al. 2023 • natural fire scenes and web video

screenshots

• negative samples that cause possible of

error such as sun and lighting

• Total images

o 13,843 Training

o 1061 Validating

• 116,709 target objects of fire and

smoke were discovered overall.

• Apply Data Augmentation:

o random rotation

o random scaling

o random cropping

o random fusing

o change of saturation and chromaticity

13

2.4 Fire detection using Edge Computing

The current trend of the computing paradigm is cloud computing and edge

computing. Edge Computing, being one of the distributed computing models

aims to offer scalable and real-time resources near the data sources. Edge

computing is typically implemented on the same hardware that gathers the

data.

 In contrast, cloud computing is another style of computing paradigm

in which real-time scalable resources are accessed via the Internet with Web

Browser. Edge computing is particularly useful for areas with unreliable

connectivity and restricted bandwidth as most of the data processing is carried

out at the edge.

 There are presently multiple methods being proposed by various

studies for fire detection in indoor environments. This section will discuss the

general approaches for Indoor Fire Detection and their advantages and

limitation.

2.4.1 General Approaches of Fire Detection System with Edge

Computing Framework

As mentioned before in section 1.1, a fire detection system is crucial and act as

a vital role in countering fire outbreaks, especially indoors. As mentioned

above, edge computing provides a lot of convenience and advantages over

cloud computing and even conventional systems. Up until the time of this

study, there are multiple implementations of edge computing in fire detections

but not limited to indoor fires only. Table 2.1 show all the papers reviewed

and their main highlight.

 Among the edge computing framework reviewed, the most notable

methods that are proposed are by Li et al., (2023) and Maltezos, E, et al.,

(2022). By using Jetson Nano, Li et al., (2023) are able to deploy a custom

fully convolutional one-stage object detection framework which uses YOLO

architecture, which shows the possibility of deployment of newer versions of

YOLO object detection model such as YOLOv5, YOLOv6 and YOLOv7 on

Jetson Nano B01.

Whereas for Maltezos, E, et al., (2022), the introduction of IoT sensor

nodes to detect fire, smoke and gas leakage to the edge framework eliminates

14

the limited detection range of sensors and the need for wired connections, in

turn, provided insight into the deployment of IoT camera nodes which are

wireless near the edge device can be an advantage when detecting a fire and

during deployment as seen in Figure 2.3.

Another notable point is the use of latency for the evaluation of edge

computing framework in Maltezos, E, et al. (2022) and ZHAO et al. (2022).

15

Table 2.2: Comparison Between Proposed Method For Fire Detection With Edge Computing

Reference Year Main Highlight Type of

detectors

Latency Alert System

Maltezos,

E, et al.

2022 • The study combines NG112 emergency call function, edge computing

framework, and sensor-node detection approach.

• The system can publish geolocated raw sensor values and real-time fire and

gas leak alarms.

• The study proposes DECIoT, an open-source architecture called Distributed

Edge Computing Internet of Things, built on EdgeXFoundry. DECIoT is

scalable, secure, adaptable, controllable, and potentially interoperable and

modular.

Sensors

Nodes

32 NG112

emergency

call

Avgeris

et al.

2019 • The study proposes a three-level CPSS for early fire detection to assist public

authorities in recognizing and addressing emergency situations, such as forest

fires.

• It suggests the SMOKE Framework, a scalable edge framework for early fire

detection. It dynamically allocates resources, supports edge-to-edge and edge-

to-cloud applications, manages containerized applications, and maintains

IoT Sensor

Nodes

- -

16

Quality of Service (QoS).

• It employs a horizontal scaling mechanism that activates and deactivates edge

servers based on performance criteria, preventing a loss in QoS.

Li et al. 2023 • Deployed on Jetson Nano

• A fully convolutional one-stage object detection framework for real-time

surveillance films used in fire detection is presented in this paper.

• Utilises two cameras as part of the system to locate the fire inside a building

YOLOv5s -

ZHAO et

al.

2022 • multi-sensor-assisted detection is used to solve image detection errors and

missed detections caused by poor underground lighting conditions, dust, and

camera angles in coal mines.

• Utilized improved YOLOv5s model

YOLOv5-

as

(Improved

YOLOv5s)

238 (edge)

338(cloud)

Conventional

Fire Alarm

17

Figure 2.3: SB112 smart building sensor system (Maltezos, E, et al., 2022)

Figure 2.4: DECIoT architecture (Maltezos, E, et al., 2022)

18

Figure 2.5: Proposed CPSS Architecture (Avgeris et al., 2019)

Figure 2.6: Proposed SMOKE Framework (Avgeris et al., 2019)

Figure 2.7: The design of the proposed Real-Time Fire Detection and

Localization Framework (Li et al., 2023)

19

2.5 Fire detection using Object Detection

In this section, object detectors using state-of-the-art convolutional neural

network (CNN) models proposed by various studies to detect fire are reviewed.

Object detection involves both object classification and localisation processes,

where the object is classified as a specific class and localise the object in an

image using bounding boxes respectively. There are currently 2 types of object

detector models, one stage and two-stage.

2.5.1 One Stage Detectors

A One Stage Detector applies a single neural network to the entire image CNN

for object detection inferred in a single pass (Cantero, Esnaola-Gonzalez,

Miguel-Alonso and Jauregi, 2022). This form of architecture allows higher

computational speed but lower accuracy than Two Stage Detectors. The most

commonly found One Stage Detectors are YOLO and Single Shot Multi Box

Detection (SSD). In this section, relevant works involving fire detection with

One Stage Detector are reviewed and displayed in Table 2.2. The reviews are

not limited to indoor fire scenarios but also include forest fires due to the

limited studies.

20

Table 2.3: Comparison Between Proposed Method For Fire Detections With One Stage Detectors

 Reference Year Detector Main Highlights

1 Zhao, et al. 2022 Fire-YOLO

a) Based on YOLOv3

• A model for small target fire object detection

• Uses Improved EfficientNet instead of DarkNet-53 as the backbone.

o Depthwise separable convolution utilised in MBConv allows the depth wise

separable convolution to extract small target features at various granularities

while requiring less computation.

o Achieved improvement in feature extraction ability for small target detection

and model size minimization

2 Norkobil

Saydirasulovich

et al.

2023 YOLOv6 • To evaluate the system's ability to recognise fire-related objects, multi-class object

identification utilising random forests, k-nearest neighbours, support vector, logistic

regression, naive Bayes, and XGBoost was done on the SFSC dataset.

• XGBoost classifier provides the highest accuracy when attempting to identify objects

3 Li et al. 2023 Fully Convolutional

One-Stage

Object Detection

• tested with

different

• They proposed their own propose fully convolutional one-stage object detection

framework based on YOLO architecture.

• Include a fire localization framework that can calculate the position of fire in the

image.

21

backbones:

a) EfficientNet

b) ShuffleNet

c) RepVGG

d) CSPNet

4 Mukhiddinov et

al.

2022 Improved YOLOv4 • A Convolutional block attention module is added.

• A H-swish activation function is used to ensure the elimination of gradient explosion

5 Ahn et al. 2023 YOLOv5 • The suggested "video image fire detector" in UL 268 B was used to test the EFDM's

ability to detect fire.

• The ISO 7240 test standard for fire detection and alarm systems was used to compare

the EFDM's detection time to that of conventional fire detectors.

6 An et al. 2022 YOLOv5

• With dynamic

convolution

• The clustering of anchor boxes is optimised using the K-mean++ technique, which

results in a significantly lower classification error rate.

• Network heads are pruned to improve detection speed.

• Applicable for both short-range indoor fire identification and long-range outdoor fire

detection

7 Xue et al. 2022 YOLOv5 • The study developed the SPPFP module by modifying the SPPF module of YOLOv5.

22

This enhancement enables the model to gather global data about miniature forest fire

targets.

• The model was further improved by incorporating the CBAM attention module to

enhance the identification of small forest fire targets.

• To enhance the detection of extremely small forest fire targets, the model includes a

very-small-target detection layer (VST) and adjusts the PANet in the BiFPN.

• Transfer Learning is used in the study.

8 Yang et al. 2023 KPE-YOLOv5 • The model is assisted in learning the characteristics of small targets by an additional

prediction layer that has fewer downsampling times and improved resolution of small

targets.

• scSE attention module was added, which increases the network's capacity to learn

crucial features by summing the channel- and spatial-level information from the input

feature maps to increase their excitation.

• The clustering of anchor boxes is also optimised using the K-mean++ technique,

which results in a significantly lower classification error rate.

23

Figure 2.8: Architecture of deep separable convolution (Zhao, et al. ,2022)

Figure 2.9: Improved YOLOv5 convolution layers with dynamic convolution

(An et al. ,2022)

Figure 2.10: The structure of SPPF (Xue et al., 2022)

24

Figure 2.11: The structure of SPPFP (Xue et al., 2022)

Figure 2.12: (a) The structure of the channel attention module. (b) The

structure of the spatial attention module. (c) The structure of the

CBAM attention module (Xue et al., 2022)

25

Figure 2.13: Backbone network after adding scSE module (Yang et al.,2023)

Among all one stage detectors, one of the methods used most is the use of K-

mean++ algorithm to optimize anchor box to reduce classification error by

both Yang et al. (2023) and An et al. (2022). With this optimization they can

reduce error when detecting small target object.

 Another notable method is the adjustment of the PANet to the BiFPN

by Xue et al., (2022). This change allows simpler and rapid multi-scale feature

fusion.

 Lastly, the way of Yang et al. (2023) creating a prediction layer is

also highly noteworthy. By having additional prediction layer, the model has

fewer downsampling times and improved resolution of small targets.

2.5.2 Two Stage detectors

A Two Stage Detector are made up of 2 stages. At the initial stage, region

proposals for object detection are generated. Following that, computes each

proposed region is computed and both the classification result and the

bounding boxes is extracted at the second stage (Cantero, Esnaola-Gonzalez,

Miguel-Alonso and Jauregi, 2022). In contrast to One Stage detector, Two

Stage Detector have higher accuracy but also lower computational speed than

one stage model. Faster R-CNN is one of the most popular among Two Stage

Detectors.

26

Table 2.4: Comparison between proposed methods for fire detection with two stage detectors

Reference Date Detector Main Highlight

Khan & Khan 2022 FFireNet

• The model utilizes the pre-

trained convolutional base of the

MobileNetV2 architecture.

• Adding fully connected layers on

top of the convolutional base

• The model makes use of the

feature extraction capabilities of

its first layers, which were taught

generic features using the

ImageNet dataset.

• Used the Stochastic Gradient Descent (SGD) as an optimizer

• Used the sigmoid and rectified linear unit (ReLU) as

activation functions

Pincott et al. 2022 • Faster R-CNN with InceptionV2

• SSD MobileNet V2

• Both detectors were tested on videos that included a

simulated bedroom and living room as well as a CCTV video

of an office space in order to assess the efficacy of the

method.

• SSD MobileNet V2 model showed lower missed detection

27

results but also lower accuracy than Faster R-CNN with

InceptionV2

Ryu & Kwak 2022 a) Inception-v3 model (CNN model) • The image is preprocessed using Hue, Saturation, Value

(HSV) color conversion and Harris corner detector before

object detection.

• The motion of smoke is detected using optical flow algorithm

based on Lucas -Kanade Method.

 Huang et al. 2023 deformable End-to-End Object

Detection with Transformers

(deformable DETR)

a) Based on R-CNN

• A Multi-scale Context Contrasted Local Feature module

(MCCL) and a Dense Pyramid Pooling module (DPPM) were

integrated to improve the feature extraction process in order

to better detect small or undetectable smoke features.

• To create precise bounding boxes that completely enclose the

smoke object, a unique iterative bounding box combination

method was presented.

• Detect both forest fire and smoke

28

Figure 2.14: HSV color conversion of flame image. (a) original images; (b)

HSV color conversion in the specified range.

Figure 2.15: Illustration of MCCL Feature module. (Huang et al., 2023)

The most notable methods among the two stage detectors are the use of SGD

as an optimizer by Khan & Khan (2022). Another popular optimizer being

29

Adam. Adam is a more complex optimization algorithm than SGD and able to

handle complex models like YOLOv5 and YOLOv8, but it has more

hyperparameters that need to be tuned. While SGD show faster convergence

and more memory efficient, still more sensitive to learning rate and higher

variance.

 Another notable method is the use of pre-processing before inputting

into the model, which allow higher accuracy and recall rate as the object in the

image

2.6 Deep Learning Framework

2.6.1 TensorFlow

Unquestionably, TensorFlow is one of the most widely used deep learning

frameworks. The Google Brain team started working on it, and it now supports

wrapper libraries and a number of programming languages, such as Python,

C++, and R. Both desktop and mobile platforms can access TensorFlow. It

also comes loaded with top-notch documentation and walkthroughs to guide

you.

TensorFlow is designed to be more scalable and optimized for

production use cases that require high performance and distributed training

across multiple Graphics Processing Unit (GPU)s and even multiple machines.

TensorFlow also provide visualization toolkit, TensorBoard, which allow

effective data visualization of network modeling and performance.

However, TensorFlow has a static computation graph that requires

developers to define the structure of a model upfront, which can be more

challenging for beginners. TensorFlow also use more memory than PyTorch

as TensorFlow stores the entire computation graph in memory. This make

TensorFlow less memory efficient and can lead to longer training times,

especially when working with large models and datasets.

2.6.2 PyTorch

Torch is a framework for scientific computing that offers a wide range

of support for machine learning techniques. It is a framework for deep

learning built on the Lua programming language. On the other hand, PyTorch

is a modern Torch implementation that is based on the Python programming

language. This suggests that users of PyTorch who have a basic understanding

of Python can start creating deep learning models.

30

PyTorch, being implementation of torch, also employs Compute

Unified Device Architecture (CUDA) along with C/C++ libraries for the

processing on GPUs PyTorch is designed to take advantage of the parallel

processing capabilities of GPUs, which can significantly speed up the training

and inference of deep neural networks.

PyTorch is also designed to be scalable, flexible and user-friendly,

making it well-suited for a variety of use cases, from research to production. It

provides a range of powerful tools and libraries for building and training deep

neural networks. Tools such as automatic differentiation, dynamic

computation graphs, and distributed training across multiple GPUs and

machines allow users to build complex models with ease, while having a short

training time. One of the powerful libraries that PyTorch offers is the

TorchVision library, which provides a collection of datasets, model

architectures, and image processing utilities for computer vision tasks.

Still, PyTorch have limited visualization for the results of trained

models and require third parties integration with TensorBoard.

2.6.3 Summary of deep learning framework

Table 2.5: Comparison between TensorFlow and PyTorch

 TensorFlow PyTorch

Compatibility Compatible with most embedded device

Learning Curve Steep learning curve Reasonable learning curve

User Friendly No Yes

Community

Support

Excellent documentation and community support

GPU /CPU

Support

Strong support for GPUs

Training Time Long Short

Visualization
Graph visualization and

queues using TensorBoard

Limited visualization

(require 3rd party

integration for

TensorBoard)

Optimization o TensorFlow Lite

o Open Neural Network

o TorchScript

31

available Exchange (ONNX) o ONNX

Thus, PyTorch deep learning framework are considered using in this project

due to its more reasonable learning curve, user friendliness and short training

time.

2.7 Edge Device

Currently in the market, there are currently 2 edge devices for consideration,

which are Jetson Nano B01 and Raspberry Pi 4B.

Table 2.6: Comparison between Raspberry Pi 4B 4GB and Jetson Nano B01

 Raspberry Pi 4B 4GB Jetson Nano B01

Processor Broadcom BCM2711

quad-core Cortex-A72

(ARM v8) 64-bit

Central Processing Unit

(CPU). @ 1.5GHz

Quad-Core ARM

Cortex-A57 64-bit @

1.43 GHz.

Memory 4GB SDRAM 4-GB LPDDR4 RAM

GPU VideoCore VI GPU @

500MHz

128-core NVIDIA

Maxwell GPU @

921MHz

Ethernet Gigabit Ethernet Bluetooth and Wi-Fi

Although Raspberry Pi 4B is more energy efficient in comparison to Jetson

Nano due to its low computation GPU on aboard, Jetson Nano have 2

advantages over Raspberry Pi.

One of the key advantages of Jetson Nano is the GPU. As opposed to

the Raspberry Pi, which uses a low-performance GPU (Cortex A72 @

700MHz), the Jetson Nano uses a high-performance GPU (Maxwell-128 core

@ 912MHz), resulting in it being more suited to executing high-end

applications in the fields of AI, ML, robotics, and other technologies. The

Maxwell GPU could be utilised for deep learning and offers complete support

for graphic content. It is equipped with the capacity to handle up to 1080p

32

video feeds at once while processing numerous video streams efficiently. On

the other hand, the Raspberry Pi's on-chip Cortex GPU lacks the processing

capacity necessary to handle complex computational tasks.

Another advantage of Jetson Nano over Raspberry Pi 4B is being

compatible with various deep learning tools developed by Nvidia, which

include TensorRT and CUDA. These tools allow the deep learning task to be

done more efficiently. Thus, in this project Jetson Nano B01 is chosen as the

edge device as seen in Figure 2.16.

Figure 2.16: Jetson Nano B01 (Cytron Technologies, n.d.).

2.8 Summary

Based on the review from J. Pincott .et .al, (2023), fire is the easiest to stop

during inception stage, when the fire is just started and weak. Thus, the

proposed system must be capable to detect small fire. There aren't many works

in the field of fire detection that combine deep learning and edge computing.

Thus, a fire detection model using deep learning and edge computing will be

developed.

 Besides, based on the study reviewed, it can be seen that the custom

dataset used must include images containing region of possible error to reduce

the possibilities of false positive and also uses data augmentation during the

generation of datasets to ensure higher accuracy.

 In addition, the uses of YOLO architecture in Jetson Nano B01 by

also show possibility of deploying newer model such as YOLOv5 and

YOLOv8 models.

 Among the studies reviewed regarding deep learning CNN models, a

choice is made to implement both addition of concat BiFPN layer by Xue et al.

33

(2022), additional prediction layer by Yang et al. (2023), the use of SGD

optimizer by Khan & Khan (2022) on proposed model.

Furthermore, in between PyTorch and TensorFlow framework,

PyTorch is chosen due to its user friendliness and faster training time.

Lastly, after reviewing the edge device available, Jetson Nano B01 is

chosen.

34

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

In this chapter, the methodology of the project will be explained. The details

such as tools to be used, data preparation and preprocessing, model

architecture, system architecture, evaluation matrix, and training of the models

required to replicate this project and obtain reproducible results will also be

discussed in this chapter. Through careful planning and managing, project

activities and the budget used needed to accomplish the objectives will also be

discussed and justified.

3.2 Project Activities Planning

The whole project is being divided into 2 parts (Project Part I and II) with a

period of 2 long semesters. In this semester, only Project Part I, which

consisted of 4 major activities will be completed.

3.2.1 Project Part I

First and foremost, at the beginning of the project, a detailed discussion with

the Final Year Project (FYP) supervisor, Ir. Dr. Mun Hou Kit was conducted

to have a better understanding of the requirements and expected outcomes of

this project. Through this discussion, possible problems encountered, and

project duration are also being identified, while the Gantt chart shown in

Figure 3.1 is being completed.

 Following the discussion, a thorough literature review was

carried out to incorporate ideas from other researchers in order to innovate on

the currently available proposed method for the project. Multiple works that

cover object localization relevant to fire detection as an input model as well as

the implementation of edge computing were included and analysed

professionally. In the literature review, these works are being reviewed in

depth while all necessary aspects such as advantages and limitations are being

35

highlighted. The literature review started right after the first meeting with Dr.

Mun, and a time period of eight weeks was spent to accomplish it.

Following a thorough investigation of the works of other researchers,

the methodology and work plan for this project were brainstormed. The

project's methodology, programming environment, and types of hardware and

software were all suggested. Moreover, every component used in the project

had gone through a series of filtering before being proposed. The standard for

filtering in this project includes the power consumption, price-to-performance

ratio and size. To confirm the suitability of the project's use of the components,

preliminary testing was also conducted. It took six weeks to reach this

milestone.

Throughout part I of the project, many explored ideas and concepts

have been approved and criticised. Those ideas and concepts that went through

the screening were then documented in this proposal. Since this proposal only

constitutes a portion of the whole project, only brief information is provided

for the methodology and preliminary result sections. To ensure that there are

no grammatical errors, this report was revised multiple times before

submission. The report writing process took five weeks in total. In order to

communicate the project's main idea and the most recent developments in

project part I, an oral presentation was given during the final week of that

component.

Figure 3.1:Gantt chart for part I of this project

3.2.2 Project Part II

Project part II will be carried out within 14 weeks of January semester 2023.

In project part II, six activities are to be accomplished.

Firstly, the software development and prototype building will be carried out

starting from the first week. The works done in activity 1 include adopting

36

deep learning models on Jetson Nano B01, setting up UI with Node-RED and

building a prototype. As software development requires a long time period,

five weeks are given, and this activity is expected to be done on 3 March 2023.

Following activity 1, research methodology was carried out from the second

week to the tenth week to determine possible improvements to fill up the

technological gaps. Along with researching methodology, labelling datasets

and training object detection models will be carried out from the third week to

the ninth week. By labelling datasets and training models, the model's

performance can be evaluated, and the problems can be recognized earlier.

Also, the model can be improved to overcome the problems encountered and

boost the prototype’s performance. The training also helps to improve the

methodology proposed.

 Right after labelling datasets and training the model, an experiment is

carried out and the result is obtained starting in the eighth week. A discussion

is then made on the obtained results to analyse the fire detection system’s

performance. Besides, an evaluation of the adopted algorithm performance

was carried out in this activity. The performance of YOLOv5 will be

evaluated in terms of mAP and FPS. This activity was conducted until the

twelfth week as the prototype may be modified or improved, which may affect

the performance. All the results will be obtained before 7 April 2023. The

deadline for the submission of the poster is week 12. The final design of the

poster will be done on 21 April 2023 as well before the due date.

 Finally, the report writing started in the seventh week to ensure the

time is sufficient to complete the report properly. Along with the final report,

the presentation slides also be prepared. The report and oral presentation are

expected to be done on 25 April 2023, completing the project flow. All the

activities mentioned will be shown in Figure 3.2 below.

37

Figure 3.2: Gantt chart for part II of this project

3.3 Tools to use

3.3.1 Training Platform

The model's training and development will be done on two different platforms:

a workstation and Google Collaboratory (GC). This section will define the

difference between both platforms.

3.3.1.1 Google Collaboratory

GC is a free web-based interactive computing platform developed by Google

Research. Without having to set up a local development environment, it is

intended to give researchers, teachers, and developers a means to write and run

Python code in a web-based environment through their Jupyter Notebook-

based interface. GC also provide computer resources like GPU and Tensor

Processing Units (TPUs), which are essential for training and testing machine

learning algorithms such as deep learning and object detection.

 GC also includes several other features that are useful for

developers and researchers, including a visualization function for analyzing

the results of trained models through Tensorboard and ClearML. It also allows

us to mount our google drive to store model weight files, and results and gain

access to personal datasets. Different GPU models, including Nvidia K80s,

T4s, P4s, P100s, and Tesla V100s, can be accessed via GC. However, the

availability of GC resources cannot be relied upon, and they are not limitless.

To continue offering its service without charging, GC must be able to change

the hardware's availability to support more customers and offer the required

computing power (Google, 2023b). Free tier GC only provides runtime

38

containing all the computing resources needed for deep learning for only 12

hours a day, the runtime will be halted and generated files are deleted if not

saved in google drive.

GC Pro and GC Pro+ are the two premium variations of GC that

Google also provides. Access to faster GPUs and TPUs, more memory, and

longer runtimes are the main advantages of these commercial editions (Google,

2023a). There is no guarantee as to the kind of GPU offered, even though

better GPUs are only available to paying users. Additionally, only 24 hours, or

roughly twice as long as the free version, is the maximum runtime for paid

versions. Any GC version may experience problems when storing the

generated result CSV file and model weight file if the session is not

continuous. However, the majority of well-known Python packages and

dependencies are easily accessible in GC, so we'll keep the training epoch

count at 50 for this project. Thus, training of deep learning models will be

performed in GC as the model weight will be stored in google drive

immediately.

3.3.1.2 Workstation

Although GC have the benefits of high computational power and user friendly

interface, it is incapable to access the local network or storage in your

workstation. Every files that are not stored in Google Drive is delected after

runtime stopped. Thus, the workstation is used for testing the IP camera and

the algorithm.

The advantages of a workstation include continuous runtime and

precise hardware specs. We used a workstation with a GeForce GTX 1650

graphics card as the GPU for this project. The onboard Random Access

Memory (RAM) is 8GB, while the GPU has 4 GB of memory. The

workstation's Solid State Disc (SSD) has a capacity of 250GB, which is

sufficient for storing all the required datasets and software dependencies.

Python, C++ and Java environments can be deployed on workstations without

compatibility issues.

In this project, we will be generating a Python script using Pycharm, a

Node-RED flow and also testing the functionality of the proposed system in

39

the workstation. After downloading the necessary dataset and

programmes' dependencies, 200 GB of drive space remains.

Since there is no time limit restriction, validation and testing of the

proposed system will be done on the workstation.

Table 3.1: Comparison between GC and Workstation

 GC Workstation

GPU Nvidia Tesla V100 GTX1650 4GB

Available storage size Roughly 77GB Roughly 520GB

Advantages • Fast training speed

• No computational

burden on the host

• Unlimited runtime

• Have support for

libraries and

software needed.

• No upload required,

directly access

webcam and

storage for testing

Limitation • A limited runtime

of 12 hours a day

• Runtime will be

stopped after idling

for more than 4

hours.

• Unable to access

host’s webcam or

storage, require file

to be uploaded to

google drive.

• Required to

download

dependencies

manually.

• Local storage is

occupied.

3.3.2 Ngrok

With the use of Ngrok, a secure server tunnelling service, developers can

expose their locally hosted servers to the public internet through secure

tunnels, even when they are behind NATs and firewalls. Developers can

distribute their web applications, APIs, and webhooks with others for testing

40

and development while eliminating the need to configure port forwarding or

firewall restrictions.

 Ngrok offers both free and paid plans that come with different

features and capabilities. The paid plans offer advanced features like custom

domains, reserved IP addresses, and additional tunnel endpoints. This tool is

particularly useful for developers who need to test their applications in a

production-like environment before deploying them to a live server.

 In this project, we will be used generating a Dashboard UI with

Node-RED that is running locally. In order to allow end users to access the

dashboard anywhere with internet connections. The dashboard’s internet

protocol (IP) is encrypted and expose to the internet through the use of Ngrok.

This addition of Ngrok server allow the privacy of the end users to be ensured

while providing services.

3.3.3 Mosquitto Message Queuing Telemetry Transport

IoT and machine-to-machine (M2M) applications benefit greatly from the use

of the messaging protocol Message Queuing Telemetry Transport(MQTT).

MQTT is intended to be compact and effective, making it appropriate for

usage in circumstances with constrained resources. Messages are exchanged

via MQTT through a broker, an intermediary. Publishers deliver their

communications to the broker, who then shares them with subscribers.

MQTT operates on a publish/subscribe messaging model, which

involves devices being divided into two groups: publishers and subscribers.

Publishers are responsible for sending messages to the broker, while

subscribers receive the messages from the broker. This model enables efficient

communication between devices, as messages are only sent to those devices

that have expressed an interest in receiving them. Overall, MQTT's

lightweight design and efficient messaging model make it an attractive choice

for IoT and M2M applications.

Mosquitto MQTT is an open-source message broker that implements

the MQTT protocol. It is a widely used messaging system that enables

efficient communication between devices. Mosquitto MQTT offers various

features, such as message persistence, authentication, access control, and

41

SSL/TLS (Secure Sockets Layer/Transport Layer Security) encryption, which

enhance the security and reliability of the messaging system.

The combination of MQTT and Mosquitto MQTT provides developers

with a lightweight, efficient, and secure messaging system that facilitates real-

time communication between devices. This combination is particularly useful

for IoT and M2M applications, including home automation, industrial

automation, healthcare, and transportation.

As both Flask and Node-RED can be configured to act as MQTT

clients that can publish and subscribe to MQTT topics on an MQTT broker.

This allows simple integration of Mosquitto MQTT as the bridge between the

flask server and Node-RED flows.

Figure 3.3:MQTT Process (BasuMallick, 2022)

3.3.4 Node- RED

Node-RED is a flow-based development tool that allows users to bridge

connections between hardware devices, application programming interface

(API) and online services as part of IoT. Node-RED also provides a web

browser-based flow editor, which can be used to create JavaScript functions as

a node. In order to use Node-Red, JavaScript runtime environment, Node.js

must be preinstalled.

In this project, Node-RED will be set to receive processed video

footage and alert from Flask Server onboard Jetson Nano B01 through

Mosquito MQTT. If an alert is received, Node-RED will send an alert to the

end users through telegram and stream the footage on the UI dashboard.

42

Figure 3.4 show the Node-RED flow used in this project. The injection node at

the left-hand side function to initiate the system.

Figure 3.4: Node-RED Flow

A dashboard-like User Interface will also be made with Node-RED to show

the video footage and also the message “fire detected” when a fire is detected.

The Dashboard UI produced using Node-RED can be shown in Figure 3.5.

Figure 3.5: Dashboard UI produced using Node-RED when fire not detected.

43

Figure 3.6: Dashboard UI produced using Node-RED when fire is detected.

3.3.5 Flask server

Flask is a Python web framework that allows developers to build web

applications quickly and easily. Flask provides a built-in development server

that can be used to run and test web applications on a local machine.

 The Flask development server is lightweight and simple, making it

suitable for development and testing purposes; Flask is also an ideal choice for

beginners who are new to web development. Moreover, Flask is also a flexible

web framework that allows developers to choose the tools and libraries they

want to use in their projects, giving them more control over the development

process. Flask server also has a large community base, which has a large and

active community of developers, thus large quantity of resources and libraries

are available to help with development and problem-solving.

 However, it is not designed to be used in production environments, as

it lacks the performance, security, and scalability features required for serving

web applications to a large number of users. While a more robust server is

needed in production environments, the Flask development server is still

useful for testing locally.

 In this project, the Flask server is used to generate an HTTP stream

server for object detection results and the output stream can be requested by

Node-RED through the “GET” function..

44

3.3.6 Model Optimizer

A tool dubbed the Model Optimiser (MO) allows it to be simpler to transfer a

deep learning model from a training environment to a deployment

environment. It can transform a model that has been trained using a well-

known framework, such as PyTorch, into an Intermediate Representation (IR)

format, such as the ONNX format, and then into TensorRT format.

Additionally, MO analyses static models in order to prepare them for effective

execution on the intended hardware.

3.3.6.1 TorchScript

A PyTorch model can be serialised and saved in a format that can be loaded

and operated in a different environment with TorchScript. The serialized

TorchScript allow PyTorch models to be deployed in contexts without

PyTorch. This is helpful for delivering models to the production environment

or executing them on limited-resource devices like the Jetson Nano B01.

 PyTorch models can perform far more efficiently when

optimized using TorchScript, especially when used in production or on low-

powered hardware. This is because TorchScript transforms PyTorch models

into a highly optimised format for faster execution.

Thus, for our trained models, TorchScript can be used to optimize the

models for deployment on the Jetson Nano B01, improving inference speed

and reducing memory usage.

3.3.6.2 Open Neural Network Exchange

Microsoft and Facebook collaboratively created the open-source ONNX deep

learning ecosystem, which acts as a framework for easy platform switching.

Its key benefit is the prevention of framework lock-in by making hardware

optimisation easy to acquire and allowing the exchange of deep learning

models between other frameworks.

 Popular deep learning frameworks including The Microsoft Cognitive

Toolkit, Caffe2, MXNet, and PyTorch all natively accept ONNX models. It is

also made simpler for developers to connect models across several platforms

by the availability of converters for several machine learning frameworks,

including TensorFlow, CoreML, Keras, TensorRT, and Scikit-learn. Using

45

ONNX, pre-trained models of the different frameworks can be compiled into a

file, which can then be merged with required applications.

 In this project, the ONNX framework acts as an intermediate

framework for the trained PyTorch model. After converting to ONNX, the

model will be converted into TensorRT optimized engine.

3.3.6.3 TensorRT

TensorRT is a high-performance deep learning inference optimizer and

runtime library developed by NVIDIA for use on their GPUs, including the

Jetson Nano B01. It is designed to optimize trained neural network models for

deployment in production environments, allowing them to run with maximum

efficiency on NVIDIA GPUs.

 In Jetson Nano B01, TensorRT can be used to accelerate the

execution of deep learning models on the device's GPU, allowing for faster

and more efficient inference performance. This is particularly useful in

applications such as object detection, image classification, and natural

language processing, where the speed and accuracy of inference are critical.

TensorRT achieves this optimization by fusing multiple layers of the network

into a single operation, minimizing data movement and memory usage, and

applying precision calibration to reduce computational overhead.

To use TensorRT with the models, the trained models need to be

exported to the ONNX format and then optimized using the TensorRT API.

This process involves configuring the TensorRT engine, parsing the ONNX

model, and applying optimizations such as layer fusion, precision calibration,

and dynamic tensor memory allocation. Once the TensorRT engine has been

built, it can be loaded onto the Jetson Nano B01 and used for inference with

the CNN model.

Thus, for the trained models, TensorRT can be used to optimize the

models for deployment on the Jetson Nano B01, improving inference speed

and reducing memory usage.

46

3.3.7 OpenCV

Open-Source Computer Vision (OpenCV) is a free and open-source computer

vision and machine learning software library. It was originally developed by

Intel and is now maintained by the OpenCV community.

 OpenCV has support for multiple platforms and operating systems, as

it can be used with various programming languages such as C++, Python, Java,

and MATLAB on platforms such as Windows, Linux and MacOS, and it

provides tools and libraries for image and video processing, object detection

and tracking, machine learning, real-time processing capabilities, easy

integration with other libraries and tools, and support for popular hardware

platforms such as GPUs, Field Programmable Gate Arrays (FPGA)s, and

embedded devices.

 Object detection using CNNs often involves preprocessing and

postprocessing steps to analyze images, extract features, and identify objects

of interest. OpenCV provides a convenient and powerful set of tools for these

tasks, including image loading and manipulation, colour space conversion,

feature extraction, and object tracking. Additionally, OpenCV's integration

with deep learning frameworks like TensorFlow and PyTorch allows for easy

deployment of CNN models for object detection and recognition.

 In this project, OpenCV is used for image preprocessing and post-

processing during model inferencing. OpenCV functions that are used by this

project included in Table 3.2.

Table 3.2: Functions of OpenCV used in this project.

Function Uses

cv2.resize Used to resize the input and output image size.

cv2.flip: Flip image either vertically or horizontally. In this

project image is flipped before inputting into model to

generate 0° image and increase accuracy.

cv2.cvtColor Convert image from 1 color model to another. As

OpenCV convert RGB image to BGR image during

processing, in order to convert back to RGB image, this

function is used.

47

cv2.imencode Used to encode the image into simpler data to be

transmit though http stream

cv2.VideoCapture To capture the input from IP Webcam

3.3.8 Roboflow

For an object detection model to train on image datasets, every image in the

datasets must be annotated to generate a label. A label allows the object

detection model to identify the class of a specific object or region. In this

project, Roboflow will be used as an annotation tool. Roboflow is a platform

that provides tools and services for managing, annotating, and transforming

image data for machine learning applications, including object detection,

segmentation, and classification. It’s had support for all popular models and

formats, from YOLO’s family to Faster R-CNN and PASCAL VOC format.

Other than that, data augmentation also be conducted on this platform as it

provide a variety of data augmentation such as flipping, contrast, exposure and

brightness variation.

3.3.9 ClearML

For data science teams around the world, ClearML is an open-source platform

created to streamline and automate the creation and maintenance of machine

learning solutions. It allows user to manage their datasets, models and

workflow directly on their local server. By integrating ClearML into the GC’s

training notebook, we will be using it to track the accuracy and runtime of the

trained models for each run in this project.

3.4 Data Preparation

3.4.1 Datasets Used

There are many fire detection-related datasets from various studies. However,

the dataset contains some outdoor wildfires, which do not suit small fire

detection requirements. Thus, a custom dataset is proposed in this study.

In order to train a model that could detect small fires in both outdoor & indoor

scenarios, we need to have a large number of images with outdoor & indoor

scenarios. Fire and Smoke BBox COCO Dateset, BoW Datasets and

Robmarkcole datasets have been chosen as they have contained a large

48

number of indoor fire images. However, low-resolution images and forest fire

images must be filtered out to ensure accurate results on indoor fires.

 Similar to Pincott et al. (2022), this research uses training images from

Google and Flickr that include locations of potential inaccuracy, such as

reflections in screens and light fixtures. By exposing the model to demanding

data during training, the inclusion of these regions aims to increase the

robustness of the model. To lessen the frequency of false positives, non-fire

photos of indoor environments from the MIT indoor collection are also

included.

 To ensure high mAP is achieved in the test environment, a few noise

images that are captured in the testing environment have been added to the

training and valid sets. It is not added to the test set as it will make the testing

unbiased. Currently, the total of images is shown in Table 3.3.

Table 3.3: Allocation of Fire and Non-Fire images in the custom dataset

 Train Valid Test

Fire images 546 150 85

Non-Fire images 364 115 44

Total 910 265 129

Unfortunately, the training set have 910 images, which is below the

recommended number of 1000 training images by Jocher (n.d). Thus, data

augmentation is used to increase the number of training images.

3.4.2 Data Augmentation

In considering the fact that custom datasets contain a finite number of images,

Li et al., (2022), Norkobil Saydirasulovich et al., (2022), and Jin et al., (2023)

advocate using data augmentation to enhance the dataset's training image

count.

The training images were horizontally flipped with a probability of 0.5

during the data augmentation stage. Additionally, the images' exposure and

brightness were changed by up to 25% in order to increase the model's

resistance to changes in camera settings and lighting. In order to improve the

model's durability, the saturation of the photos was changed by up to 40%.

49

The images were then given a random Gaussian blur effect of up to 1px to

assist the model in better adapting to changes in camera focus. The resulting

dataset is in Table 3.4.

Table 3.4: Allocation of Images after performing data augmentation on custom

dataset.

 Train Valid Test

No. of Images 2700 265 129

Ratio (%) 87 8 4

Thus, the custom dataset has fulfilled the requirement for training and is ready

for training in GC.

3.5 Improvement On YOLOv5s

3.5.1 Overview

YOLOv5 proposed by Jocher (n.d) unlike its predecessors like YOLOv4 and

YOLOv3, uses a PyTorch framework instead of the Darknet framework.

YOLOv5 has four different model sizes, which are YOLOv5s, YOLOv5m,

YOLOv5l, and YOLOv5x, YOLOv5s is the smallest with the fastest inference

speed but lowest accuracy, while YOLOv5x is the largest with slowest

inference speed but most accurate. In this project, YOLOv5n is used due to the

low computational power of edge devices.

Figure 3.7:Comparison of speed and accuracy on COCO datasets (Jocher, n.d)

50

3.5.2 Addition of Bidirectional Feature Pyramid Network Concat

In the proposed model, a 1 BiFPN block is integrated into the YOLOv5s

model at the P4 layer. In the classic YOLOv5s model, PANet is used instead

of BiFPN, which is a variant of FPN as shown in Figure 3.8.

 For identifying small targets like fire, the addition of a BiFPN block

enhances the model's accuracy by more effectively integrating data from

various scales and levels of abstraction. Even though the BiFPN block adds

more calculations and parameters, its effect on the model's overall

computational needs is minimal, especially when contrasted with growing the

number of layers or the size of the feature maps.

 By incorporating a single block of BiFPN into the PANet of YOLOv5,

the model's performance on tiny item recognition tasks can be improved

without noticeably boosting the computing requirements.

Figure 3.8: The structure of (a) PANet & (b) BiFPN (Xue et al., 2022)

3.5.3 Addition of prediction layer

In the YOLOv5 PyTorch Hub repo, it has implemented an addition of a neck

layer in YOLOv5p6.yaml to extract data from a larger image. However, in this

project, we are required to detect small targets of fire.

 Due to the smaller size of these targets and the greater down-sampling

factor utilised in the model, YOLOv5 may not detect little flames efficiently in

the context of fire detection. The feature maps' resolution is decreased

51

throughout the downsampling process, making it difficult for the model to

pick up on the particular characteristics of little flames. To solve this problem,

an extra prediction layer can be added to shallower feature maps with better

resolution in order to find these targets according to the method of Yang et al.

(2023). The model is able to better capture the important properties of little

flames for precise detection because of the additional layer, which lowers the

downsampling ratio (Yang et al., 2023).

Figure 3.9: Additional prediction layer in the highlighted red box on top of

original YOLOv5s model (Yang et al., 2023)

The model YAML script of the improved model is in appendix, and it is tested

for YOLOv5s model. Application on other YOLOv5 model such as YOLOv5x

or YOLOv5m required manual tweaking. This also applies to newer version of

YOLOv5, currently tested YOLOv5 version is YOLOV5 p5 model.

3.6 Training the model

3.6.1 Batch Selection

YOLOv5 and YOLOv7 have a considerably large size. The largest batch size

that can be utilised for training deep learning models depends on how much

memory is allotted to the model. The workstation used for this project's model

training has enough CPU and GPU RAM to support training batches larger

than 32. However, YOLOv7 are unable to train at a batch size of 32 due to

52

limited CUDA memory, while a batch size of eight is not optimal and will

result in a slow training rate, as most training of object detection models

usually requires at least a batch size of 32. Thus, a batch size of sixteen is

chosen for YOLOv5 and YOLOv7 models.

Table 3.5: Type of setting during training for both YOLOv5s and YOLOv8s

Type of setting

Batch 16

Epochs 50

Training Image

Size

640x640

Learning Rate 0.01

Intersection over

Union (IoU)

0.4

Conf threshold 0.2

Optimizer SGD

3.6.2 Transfer Learning Approach

Transfer learning involves taking a pre-trained model on a large dataset and

using it as a starting point to train a new model on a smaller, more specific

dataset. YOLOv5 and YOLOv7 are pre-trained on a COCO dataset, which

contains thousands of images of various objects. The transfer learning with the

pre-trained model is employed in this project for improving performance due

to the marginal number of images in the custom fire dataset.

There are 3 strategies to transfer the learning approach. The first

strategy trained the entire model which was applied the most. Strategy 2 freeze

the backbone layer and train the head. Strategy 3 freezes all the convolutional

layers and uses them as the image feature extractor.

Since the COCO dataset does not have a fire object class, strategy 1 is

used, which uses the pre-trained model as a feature extractor and trains a new

classifier on top of the extracted features. Taking this strategy, the pre-trained

model's ability to extract useful features is exploited while training a new

classifier that is specific to the custom fire dataset. As the transfer learning

53

method is integrated with YOLOv5 and YOLOv7 to train the model, it can

directly be used in GC to perform the transfer learning.

3.7 Conversion of the Trained Model into Intermediate

Representation to load in Inference Engine

In this project, the MO is used to (i) optimize the PyTorch model into the

respective format, (ii) Reduce the model's floating-point precision from single

precision (FP32) to half precision (FP16), (iii) add Non-Max Suppression

(NMS) technique into the model and (iv) reduce IoU and Confidence

threshold.

 Intersection over Union (IoU) is a metric that compares two sets of

data, such as the predicted bounding box and the actual ground truth bounding

box of an object in an image, to determine the similarities between both data.

Higher IoU indicates a better match between the predicted and ground truth

bounding boxes.

 The confidence threshold is a figure that is used to exclude

predictions with low confidence scores. A confidence score is the probability

that an object is, in fact, present in the projected bounding box in object

detection tasks. The confidence threshold is used to manage the trade-off

between recall and precision, whereby lowering the threshold results in higher

recall but poorer precision, and vice versa.

The intial model modifications reduces the model size by a factor of

two and speeds up inference.. Whereas the second is a technique used mainly

in object detection that aims at selecting the best bounding box out of a set of

overlapping boxes. By using this technique, the overlapping of bounding

boxes on the same object can be eliminated. Lastly, the latter model

adjustment reduce

The output files from the fire detection model's conversion into IR are

then imported into the inference engine (IE), in this case, TensorRT.

TensorRT is specifically made to optimize and accelerate deep learning

inference on a particular hardware platform, in contrast to MO, which

optimizes the model based on its complexity to improve memory and compute

times. It optimizes and accelerates inference for CNN models on specific

Nvidia GPUs. The supported devices for TensorRT includes all Nvidia

54

hardware, including all Jetson device line and Workstation. Furthermore,

TensorRT supports Nvidia CUDA which comes on board Jetsons Device and

Workstation, thus allowing the use of CUDA libraries to accelerate deep

learning inference, the use of high memory bandwidth that can significantly

improve the speed of data transfer between the CPU and GPU and lastly using

the massive parallel computing platform provided by CUDA to accelerate

computations by utilizing the thousands of processing cores available on the

Nvidia GPU.

In this project, TensorRT will optimize the YOLOv5 and YOLOv7

models for Nvidia GPU on Jetson Nano B01. The optimization must be made

on the edge device for the optimization to be compatible with the hardware

specification. The resulting file will be the TensorRT engine for FP32 and

FP16.

3.8 System Architecture

Figure 3.10: System Architecture

The proposed system has three unique layers, including four main components

of the sensing, processing, and visualising units. The IP camera that is

responsible for collecting video inputs represents the sensing unit of the

system. The sensing unit is situated in the input layer, where the source is

located.

To achieve minimum latency, the edge device, also the processing unit

is situated at the edge layer, where it is close to the source but still able to

55

access the cloud. As the processing unit, Jetson Nano B01 is responsible for

controlling the operation of the whole system. In the Jetson Nano B01, Flask

Application, Mosquitto MQTT and Node-RED are installed and deployed.

The video footage from the IP camera is sent to the Flask server via HTTP to

be separated into frames and waiting to be processed by YOLOv5. The trained

YOLOv5 model from GC is imported into Jetson Nano B01 and optimized

with TensorRT to generate TensorRT Engine. By serializing the engine, the

frames are processed, and bounding boxes are generated for each frame. In the

Flask application, the processed data is then encoded and streamed via HTTP

through the Flask server.

Lastly, the visualising unit is Node-RED. With Node-RED, a

dashboard UI is deployed that can be accessed through both browser and

phone. In the dashboard UI, the end user can observe the fire outbreak footage.

In order to protect the privacy of end users, before sending out the HTTP

address of the dashboard UI, the address goes through encryption in the Ngrok

cloud server.

3.9 Experimental setup

The experiment uses test split from the custom dataset mentioned in section

3.4. In this experiment, the improved YOLOv5s, the original YOLOv5s, and

the YOLOv8s versions of YOLO are employed for fire detection. The V380

IP camera was chosen because it can record crystal-clear, HD footage at a

distance of 107 cm (42 inches), even in low light. The camera is positioned to

see the entire area of interest where fires may develop and are mounted 200

cm above the base level. The experimental setup is shown in Figure 3.11 and

3.12.

56

Figure 3.11: Experimental Setup (Isometic view)

Figure 3.12: Experimental Setup (side view)

 Starting with the fire's origin and continuing through its growth and

extinguishment, the V380 IP camera records a continuous video stream. About

five minutes should be allotted for the recording. To evaluate the system's

57

capability to identify flames from hazy images or small fire targets, a second

test video is also captured.

 In the testing site, a table is placed in front of the camera to partially

impede the view of the fire, and the second test video is purposefully blurred

to imitate occlusion and other noise and disruption in the video stream. These

circumstances are intended to test the fire detection system's robustness in

real-world situations when environmental influences could impair fire

detection.

 The lights are turned on and off during the recording to represent

nighttime and daytime situations, respectively, to replicate changes in lighting

conditions. To test the fire detection system's performance in various lighting

environments, the time and length of the illumination changes are changed.

There is enough oxygen flowing through the area where the experiment is

being conducted, and all combustible objects have been removed from the area.

 Finally, all three versions of YOLO are used to analyse the video

streams in order to spot any potential fires and take the necessary precautions

to put them out. The testing data are utilised to assess the precision and

effectiveness of the many YOLO iterations and to improve the fire detection

system.

3.10 Workflow

The workflow of this project is separated into 3 sections, one on GC, one on

the workstation and another on Jetson Nano B01. This step is taken to reduce

the workload of Jetson Nano B01 by pushing most computational power

needed for the training model onto the cloud and workstation. Moreover,

training of the model does not require real-time 24-hour streaming of data,

thus GC is fully capable of carrying out this task.

At the start of the first section, the environment will be set up in GC to

train the models. Although google collab are used , repositories and libraries

must be imported. One of the crucial libraries is PyTorch as both YOLOv5s

& YOLOv8s are based on the PyTorch framework. PyTorch can be directly

imported into GC because GC is GPU enabled and uses a Python environment.

Another item to be set up is the repository of YOLOv5 and YOLOv8, which

can be cloned directly from GitHub onto GC (Jocher, G., n.d). After cloning, a

58

custom YAML file is produced to generate an Improved YOLOv5s model.

After setting up the environment in google collab, we will compile a custom

fire dataset from Fire and Smoke BBox COCO, BoW and Robmarkcole

datasets, while filtering out low-resolution images as well as smoke and forest

fire images. To increase the detection rate in the testing environment, noise

image from the testing ground is added to the datasets. In RoboFlow, the

images in the dataset are then annotated with bounding boxes for each fire

object and marked null images for non-fire images. To increase the number of

training images, data augmentation mentioned in 3.4.2 is used. After data

augmentation, the dataset is uploaded into GC and starts training YOLOv5s

and YOLOv8s models according to the parameter in section 3.6.1 as well as

Improved YOLOv5s with custom.YAML file. The result can then be

displayed on ClearML for comparison. If the model is not satisfying, the data

augmentation step will be repeated until a satisfying model is determined. The

trained model weight is downloaded directly from ClearML into the

workstation.

Now entering section 2, a Python script containing the MQTT client

and Flask framework setup is generated with Pycharm. With the script, the

usability of the Flask server HTTP stream is tested. If the HTTP stream can be

accessed locally on the browser, then the Python script as well as the trained

model will be imported into Jetson Nano B01.

In section 3, Jetson Nano B01 is installed with JetPack for ease of use.

After setting up OS, the PyTorch framework and OpenCV library required for

running the Python script as well as Node.js required for running Node-RED

are installed. With these dependencies installed, YOLOv8 and YOLOv5

repository is cloned from Github. Following that, Mosquitto MQTT and Node-

RED are installed and set up. IP Camera is also set up and connected to WiFi.

Using the Node-RED, a dashboard UI is developed that is capable to display

the HTTP stream from the Flask server and also allows the end user to start

the system as well as send an alert to the end user when a fire is detected. With

the UI completed, we will start optimizing the trained model with ONNX then

TensorRT as well as TorchScript to generate the engine file and TorchScript

file. By installing the MQTT library and node in Jetson Nano and Node-Red

59

respectively, a client and broker relationship is set up between the Python

script and Node-RED.

Finally, the experiment will start here. The custom dataset is first

imported into Jetson Nano B01. Using benchmarks.py provided by YOLOv5

and YOLOv8 repositories, results can be obtained and saved for each format

of the model.

For real-life deployment, the user can start the system by typing “/flask”

in the firefighterbot. If no fire is detected, there will be no changes. However,

if a fire is detected by the Improved YOLOv5s model, an alert will be sent to

Node-RED via Mosquitto MQTT. The alert is then forwarded to the end users

through Telegram. Users can choose to access the UI with the video stream by

typing “/ngrok”. A WIFI module is installed on the Jetson Nano B01 to bridge

the connection between IP Camera, User’s phone and Jetson Nano B01.

Figure 3.13: Flowchart of workflow

3.11 Summary

In this section, the project activities planned are shown and the tools used in

this project are defined. Moreover, the system architecture is proposed, and the

methodology is generated. The Improved YOLOv5s for small target fire

60

detections is designed based on PyTorch Framework. The custom dataset is

generated and used to train the models. The GC, Workstation and Jetson Nano

B01 are used as platforms for the project. Google Collab, is used to train the

Improved YOLOv5s, YOLOv5s and YOLOv8s models. While for Jetson

Nano B01, the system is configured to be the testing platform for the project,

whereas the workstation is used for testing the Python script. Lastly,

TensorRT and TorchScript are used to optimize the trained model and deploy

it on Jetson Nano B01.

61

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, the fire detection systems have been taken for testing to

determine whether the method proposed is usable and results are obtainable.

The testing will be using the same custom datasets used in training but will be

using the test split that has unbiased data. The testing will be done on

YOLOv5s, YOLOv8s and Proposed YOLOv5s models. Finally, the

performance of the Proposed YOLOv5s, YOLOv5, and YOLOv8 models on

the Jetson Nano B01 will be tested and discussed. As there are no publicly

available detection datasets for fire benchmarking, a comparison will solely be

made with other studies on their performance on respective datasets.

4.2 Evaluation Metric

Since the fire detection models were trained using an exclusive dataset, there

is no benchmark against which to measure how effectively they performed.

 In this project, the performance of the proposed system instead is

evaluated using mAP, confusion matrix, precision (P), recall (R), FPS, F1

score and Latency.

 The level of precision indicates how accurate the model's forecasts

are, whereas Recall is a metric for how well a model can identify all

occurrences of positive data. Equation 4.1 and Equation 4.2 show the

calculation of precision and recall respectively. False Positive (FP) refers to

the proportion of occurrences where the model misclassifies a situation as

positive. The quantity of cases that the model properly classifies as positive is

known as True Positive (TP). The number of instances that the model

misclassifies as negative is known as False Negative (FN). The number of

cases that the model correctly classifies as negative is known as True Negative

(TN).

62

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4.1)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4.2)

Where:

TP = True Positive

FP = False Positive

FN = False Negative

An object detection model's overall accuracy across all classes is measured by

mAP. It is calculated by averaging the average precision (AP) values of all

classes in a dataset. On the other hand, AP is a measure of the accuracy of the

model for a specific class. Based on Precision and Recall, the AP can be

expressed as the integral of function Precision of Recall, as shown in Equation

4.3. However, since this project only include 1 class, both mAP and AP are the

same.

 𝑚𝐴𝑃(𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑙𝑎𝑠𝑠) = 𝐴𝑃 = ∫ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑒𝑐𝑎𝑙𝑙)𝑑(𝑅𝑒𝑐𝑎𝑙𝑙)
0

1
(4.3)

There are 2 variations of mAP, which are mAP50 and mAP50-95. The mAP

calculated at an IoU threshold of 0.5 is known as mAP50, whereas the mAP

calculated over the 0.5 to 0.95 IoU threshold range with a 0.05 step size is

known as mAP50-95. When objects are relatively small or have little overlap

with the ground truth boxes, the mAP50 can be used to assess how effectively

the model is functioning. mAP50-95 on the other hand is a metric that takes

consideration of the model's performance across various IoU thresholds and

shows an overall performance. In this project, mAP50 is given the primary

focus compared to mAP50-95 as we are focusing on detecting small target

fires.

 The F1 score calculates the balance between precision and recall and

evaluates the performance of the model. If the F1 score is high, precision and

recall are high, and vice versa. The equation is shown in Equation 4.4.

63

 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4.4)

Only a model with a higher FPS than 10 FPS is required to calculate the F1

score as the F1 score does not consider FPS in its metric.

 The performance evaluation was conducted using 2 test videos

featuring flames, as well as images separated from the datasets that feature

both fire and non-fire images. According to Ryu & Kwak (2022), when

detecting using optical flow, the performance of the model should be

evaluated through a video, or in our case a live stream, the image should never

be static. Thus, following their example, in this project, we also included 30

frames from the test video that we will be inferencing to calculate the result.

We also are evaluating the FPS of both models. FPS indicate the time require

for a model to process and analyse a video frame in real-time. As a fire

detection system needs to be able to execute timely and accurate detections of

fire in real-time, by having a higher FPS can allow faster detection of fire and

minimize the damages caused by fire.

.

64

Table 4.1: Comparison of Improved YOLOv5s, YOLOv5s and YOLOv8s on Jetson Nano B01

Where:

PyT is PyTorch

TRT is TensorRT engine.

TrS is TorchScript

Improved

v5s

Framework
PyT TrS

TRT

(FP32)

TRT

(FP16)

v5s

PyT TrS
TRT

(FP32)

TRT

(FP16)

v8s

PyTorch TrS
TRT

(FP32)

TRT

(FP16)

FPS 4.7 4.794 6.58 10.6 6.01 6.22 9.04 13.5 5.409 5.598 8.654 12.3

mAP (50) 0.514 0.515 0.515 0.508 0.571 0.572 0.572 0.564 0.454 0.452 0.452 0.452

Precision (P) 0.542 0.541 0.541 0.541 0.667 0.666 0.666 0.666 0.926 0.926 0.926 0.926

Recall (R) 0.5 0.502 0.502 0.5 0.4 0.386 0.386 0.385 0.29 0.29 0.29 0.29

Model Size

(MB)
15.5 30.9 35 17.1 14.1 28.1 31.8 15.6 22 43.8 49.6 24.6

F1 Curve 0.52 0.479 0.444

Increase in FPS

compared to

PyTorch

0 0.02 0.4 1.25 0 0.03 0.5 1.26 0 0.03 0.6 1.28

65

From the Table 4.1, it can be seen that YOLOv5s show higher overall

performance then YOLOv8s and even Improved YOLOv5s when trained

on identical custom dataset and also during testing. However, Improved

YOLOv5s and YOLOv8s shown highest Recall rate and Precision

respectively.

 Another notable observation in Table 4.1 is the difference between

the FPS of optimized model and their PyTorch counterparts. In Table 4.1, the

models are optimized using TorchScript, ONNX and TensorRT mentioned in

3.3.6 are compared using the performance before and after optimization.

Overall, TorchScript optimization show average of 2.7% increase in FPS,

while TensorRT at FP32 and FP16 show average increase of 50 % and 126%

respectively. YOLOv8s show the largest increase in FPS when optimized with

TensorRT, followed by YOLOv5s and lastly Improved YOLOv5s. The

improved YOLOv5s show lower FPS because of added complexity in the

model.

 With a recall of 0.5, the lowest FPS of 10.6 and a precision of 0.541,

improved YOLOv5s has a marginal FPS, a good recall, but a lower accuracy,

which implies it might generate more false alarms. Due to its average recall, it

only missed half of the fires.

 While having a mediocre FPS of 12.15, YOLOv8 has the highest

precision of 0.926, which means it generates very few false alarms. Of the

three models, it has the lowest recall of 0.29, which means it missed 71% of

fires.

 As opposed to Improved YOLOv5s, YOLOv5s has a greater

precision of 0.666, a recall of 0.385, and the highest FPS of 13.5. This

indicates that it has a greater fire detection range than YOLOv8 and generates

fewer false alarms than Improved YOLOv5s. Due to its lower recall compared

to Improved YOLOv5s, it still failed to detect 61% of fires.

 In the context of fire detection, both recall and precision are more

important than mAP, as high recall rate ensure that all instances of fire are

detected, while precision minimize the instances of false alarm and ensure that

only actual fires are detected. Still, the cost of missed fire detection is larger

than the cost of false alarms in fire detection as false alarm only resulted in

66

more notification, while missed fire detections mean damage of property in a

indoor fire detection. Thus, recall is taken priority over precision.

 F1 score for the 3 models, are 0.520, 0.479 and 0.444 for Improved

YOLOv5s, YOLOv5s and YOLOv8s respectively. By focusing just on

precision and recall in this test, Improved YOLOv5s have the highest F1 score

and with a difference of 8.55% and 17% difference from YOLOv5s and

YOLOv8s.

 Nevertheless, FPS is also a vital parameter when evaluating a fire

detection on edge Devices. In Fire detection on edge device such as Jetson

Nano B01, FPS will affect the latency of the system and latency further affect

the responsiveness towards fire outbreak. Having higher FPS means faster

respond from user. Still, having an FPS higher than 10 is sufficient for

household indoor used as this project is targeting indoor fire detection in

residential area instead of industrial area where responsiveness is taken

priority then fire capture rate.

 After taking consideration of all the evaluation criteria, among the 3

models, Improved YOLOv5s is the best option, which has an average FPS of

10.5 while having lower precision of 0.541 but higher recall of 0.5. This

indicates that it has a marginal level of accuracy and detection speed but have

a high capture rate of fire which is crucial for fire detection.

67

Figure 4.1: TP in both dark and light environment in YOLOv5s (Top)

Improved YOLOv5s(bottom)

68

Figure 4.2: FP on car’s back light in both YOLOv5s (Top) and Improved

YOLOv5s (Bottom)

69

Figure 4.3: TN on sunset in both YOLOv5s (Top) and Improved YOLOv5s

(Bottom)

70

Figure 4.4: YOLOv5s(Left) compared to Improved YOLOv5s (Right)

Figure 4.5: YOLOv5s(Left) compared to Improved YOLOv5s (Right)

71

Figure 4.6: YOLOv5s(Left) compared to Improved YOLOv5s(Right)

Based on Figure 4.1 to 4.6, we can conclude that both Improved YOLOv5s

and YOLOv5s can detect fire in light and non-light condition making them

viable in daytime and nighttime for fire detection as seen in Figure 4.1, both

models also did not show false positive on sunset in Figure 4.3. Sunset is one

the image with high possibility of FP added according to Pincott, J. et al.

(2022), Ahn et al. (2023) and Jain & Srivastava (2022)’, which is easily

mistaken as fire. However, Improved YOLOv5s show better robustness as it

can detect fire in blurry images and also small flame of fire better than

YOLOv5s as seen in Figure 4.4, 4.5 and 4.6. Thus, showing the robustness of

Improved YOLOv5s. However, both models show FP on the car backlight in

Figure 4.2, which means that, the models still lack training on background

images.

72

Latency in this project refers to the amount of time it takes for IP camera to send input, process input by fire detection model and send the result

to end user. The testing enevironemtn with parameters as shown in Table 4.2:

 Table 4.2: Testing environment for Latency

Telegram

latency (s)

Ip Camera’ s

Output

Forward time

(s)

Decode time(s) Inference FPS Output

Image

WiFi

Download/Upload

speed (mbps)

MQTT send time (s)

0.15 1080p 0.094 0.047 10.6 640 x

640

34 /27 0.001

Input image size: 1600x1200 (1080p)

Input size = 1600 x 1200 x 3 (RGB image)

Output size = 640 x 640 x 3 (RGB image)

Latency = (Input size / Upload speed) + (Output size / Download speed) + Forward time + Decode time + MQTT send time + Telegram send

time Latency = (1600 x 1200 x 3) / (27 x 10^6) + (640 x 640 x 3) / (34 x 10^6) + 0.094 + 0.047 + 0.001 + 0.150

Latency = 0.232 + 0.030 + 0.094 + 0.047 + 0.001 + 0.150

Latency = 0.554 s or 554ms

Therefore, the total latency is approximately 554ms.

As currently there are no benchmark for fire detection. We will be comparing purely with results generated by various researchers in their studies.

73

Table 4.3: Comparison with other studies on mAP, P, R, F1 Score , FPS and Latency

Reference mAP/AP

(50)

P R F1 FPS Latency

(ms)

Detector Edge Device Remark

Maltezos, E, et al. (2022) - - - - - 23 Sensors Raspberry Pi 4 Using Edge

Computing

Zhao, et al. (2022) 80.23 91.5 59.62 73 - - Fire-YOLO PC

Norkobil Saydirasulovich et al.

(2023)

39.5 93.48 28.29 - - - YOLOv6 PC

Li et al. (2023)

95.4 - - - 14.28 - EfficientNet

Jetson Nano

Using Edge

Computing 96.2 - - - 14.28 - ShuffleNet

94.8 - - - 14.28 - RepVGG

94.1 - - - 14.28 - CSPNet

Mukhiddinov et al. (2022) 72.6 - - - - 1320 Improved

YOLOv4

PC Using Cloud

Computing

An et al. (2022) 96.3 95.2 99 48.5 55.56 - Improved &

Pruned

YOLOv5

PC

Ahn et al. (2023) 96 91 93 - - - YOLOv5s PC

74

Proposed system 50.8 54.1 50 53 10.6 554 Improved

YOLOv5s

Jetson Nano Using Edge

Computing

75

Based on the comparison above in Table 4.2, the proposed system achieved

mediocre results than other methods. An et al. (2022) achieved the highest

recall rate of 99% and precision of 95.2%. The high recall rate and precision

of An et al., (2022) is due to the introduction of dynamic convolution into

YOLOv5s model. To produce adaptive dynamic convolution, attention

dynamically modifies the weight of each convolution kernel in accordance

with the input, allowing the model to capture small object in an image easily

(An et al., 2022).

 Although unable to achieve better results than the highest in each

aspect, the Improved YOLOv5s still perform better than YOLOv6 in small

target fire detection, achieving better mAP and recall rate. The reason is

because an additional prediction layer allow prediction on higher resolution of

small target.

 The system proposed by Maltezos, E, et al. (2022) saw the lowest

latency of 23ms, which is the proposed system is able to achieve the lower

latency of 554ms than the system proposed in the study by Mukhiddinov et al.

(2022) which has a latency of 1320ms. The reason for the proposed system to

achieve lower latency is because Mukhiddinov et al. (2022) is using a cloud

computing network where the data is sent to an AI server for computation

instead of using an edge device. Thus, we can see the advantages of edge

computing when performing fire detections.

4.3 Summary

In conclusion, regardless of the training approach applied, the suggested

system architecture is equivalent to existing benchmarked methods for

detecting small fires. The capacity of the model to identify small fire targets

has been successfully enhanced by the addition of BiFPN and an additional

prediction layer. These two improvements outperformed YOLOv5s trained

only on a custom dataset, while inference speed can still be improved.

Furthermore, it was demonstrated that the suggested system outperformed a

cloud-based system in terms of latency, demonstrating the value of edge

computing for fire detection. The Jetson Nano B01's on-board GPU was used

to significantly accelerate the inference speed of the multi-task model using

post-training quantization with TensorRT.Together, the three components

76

(Improved YOLOv5s, Edge Computing and TensorRT) complete the training

and deployment cycle.

77

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This project has successfully developed an Improved YOLOv5s model and

designed an edge computing system architecture for small target fire

detections in residential areas. The model is trained with custom datasets that

utilized data augmentation. Based on the results, it is shown that BiFPN and

additional prediction layers are recommended for increasing the detection rate

of small targets of fire. While the proposed model underperformed in terms of

FPS and precision against the original YOLOv5s model, it still provides a

comparable result, with a higher recall rate and F1 score.

 Although the proposed method is unable to outperform other studies

with the highest score, it is able to outperform several studies in terms of

latency and Recall rate. The best model could achieve a 0.52 F1 score and a

0.5 recall rate for small target fire detections, while the system is able to carry

out fire detection at a latency of 554ms. TensorRT is also shown to be capable

of increasing the inferencing speed of the trained models by twice, with a

small performance trade-off.

5.2 Recommendations for future work

This project has a lot of room for development. First, a larger dataset could be

utilised to train the YOLOv5s-based model, and an ensemble model that

incorporates the results of several models could be employed to potentially

increase the accuracy of fire detection. The model can be further optimised for

use on devices with constrained resources by investigating various

architectures, training methods, and deployment options beyond TensorRT,

including TensorFlow Lite.

 Adding extra capabilities to the Node-RED dashboard to provide more

specific information about discovered fires as well as seeking other messaging

services besides Telegram for alerting users can both enhance the user

interface. Furthermore, the inference speed, mAP, and precision can be greatly

78

increased by optimising the model using the Tensor Cores of the Jetson Nano

B01 or by using a more compact and effective model architecture or

backbones like MobileNet or ShuffleNet. Overall, these suggestions can

improve the fire detection system's functionality and usability for tiny fire

detections.

79

REFERENCES

Ahn, Y., Choi, H. and Kim, B.S., 2022. Development of early fire detection

model for buildings using computer vision-based CCTV. Journal of Building

Engineering, 65, p.105647.

An, Q. et al., 2022. A Robust Fire Detection Model via Convolution Neural

Networks for Intelligent Robot Vision Sensing. Sensors, 22(8), p.2929.

Avgeris, M. et al., 2019. Where There Is Fire There Is SMOKE: A Scalable

Edge Computing Framework for Early Fire Detection. Sensors, 19(3), p.639.

BasuMallick , C., 2022, What Is MQTT (MQ Telemetry Transport)? Working,

Types, Importance, and Applications | [Online]. Available at:

https://www.spiceworks.com/tech/iot/articles/what-is-mqtt/ [Accessed: 1 May

2023].

Cytron, Official NVidia Jetson Nano B01 Kits [Online]. Available at:

https://my.cytron.io/p-jetson-nano-b01-kits [Accessed: 1 May 2023].

David Valverde Cantero, Iker Esnaola-Gonzalez, Miguel-Alonso, J. and E.

Jauregi, 2022. Benchmarking Object Detection Deep Learning Models in

Embedded Devices. Sensors, 22(11), pp.4205–4205.

Google, 2023a, Choose the Colab plan that’s right for you [Online]. Available

at: https://colab.research.google.com/signup [Accessed: 1 May 2023].

Google, 2023b, Colaboratory - Frequently Asked Questions [Online].

Available at: https://research.google.com/colaboratory/faq.html [Accessed: 1

May 2023].

He, L. et al., 2021. Efficient attention based deep fusion CNN for smoke

detection in fog environment. Neurocomputing, 434, pp.224–238.

Huang, J. et al., 2023. A Small-Target Forest Fire Smoke Detection Model

Based on Deformable Transformer for End-to-End Object Detection. Forests,

14(1), pp.162–162.

80

Jain, A. and Srivastava, A., 2022. Privacy-Preserving Efficient Fire Detection

System for Indoor Surveillance. IEEE Transactions on Industrial Informatics,

18(5), pp.3043–3054.

Jocher, G., 2020, ultralytics/yolov5 [Online]. Available at:

https://github.com/ultralytics/yolov5 [Accessed: 24 October 2023].

Khan, S. and Khan, A., 2022. FFireNet: Deep Learning Based Forest Fire

Classification and Detection in Smart Cities. Symmetry, 14(10), p.2155.

Li, Y. et al., 2023. Real-Time Early Indoor Fire Detection and Localization on

Embedded Platforms with Fully Convolutional One-Stage Object Detection.

Sustainability, 15(3), p.1794.

Maltezos, E. et al., 2022. A Smart Building Fire and Gas Leakage Alert

System with Edge Computing and NG112 Emergency Call Capabilities.

Information, 13(4), p.164.

Mukhiddinov, M., Abdusalomov, A.B. and Cho, J., 2022. Automatic Fire

Detection and Notification System Based on Improved YOLOv4 for the Blind

and Visually Impaired. Sensors, 22(9), p.3307.

NUR ATIKAH , B.Z., 2021, Statistics On Fire Breakouts, Malaysia -

MAMPU [Online]. Available at:

https://www.data.gov.my/data/en_US/dataset/statistics-on-fire-breakouts-

malaysia [Accessed: 24 October 2023].

Pincott, J., Tien, P.W., Wei, S. and Calautit, J.K., 2022. Indoor fire detection

utilizing computer vision-based strategies. Journal of Building Engineering,

61, p.105154. Available at:

https://www.sciencedirect.com/science/article/pii/S2352710222011615

[Accessed: 24 October 2022].

Ryu, J. and Kwak, D., 2022. A Study on a Complex Flame and Smoke

Detection Method Using Computer Vision Detection and Convolutional

Neural Network. Fire, 5(4), p.108.

81

Saydirasulov Norkobil Saydirasulovich et al., 2023. A YOLOv6-Based

Improved Fire Detection Approach for Smart City Environments. Sensors,

23(6), pp.3161–3161.

SHARMA, A., 2020, Coco csv format fire object detection [Online]. Available

at: https://www.kaggle.com/datasets/ankan1998/coco-csv-format-fire-object-

detection [Accessed: 1 May 2023].

Shokouhi, M. et al., 2019. Preventive measures for fire-related injuries and

their risk factors in residential buildings: a systematic review. Journal of

Injury and Violence Research, 11(1).

Silva, J. et al., 2022. EdgeFireSmoke: A Novel Lightweight CNN Model for

Real-Time Video Fire–Smoke Detection. IEEE Transactions on Industrial

Informatics, 18(11), pp.7889–7898.

Xue, Z., Lin, H. and Wang, F., 2022. A Small Target Forest Fire Detection

Model Based on YOLOv5 Improvement. Forests, 13(8), p.1332.

Yang, R. et al., 2023. KPE-YOLOv5: An Improved Small Target Detection

Algorithm Based on YOLOv5. Electronics, 12(4), p.817.

Zhao, L., Zhi, L., Zhao, C. and Zheng, W., 2022. Fire-YOLO: A Small Target

Object Detection Method for Fire Inspection. Sustainability, 14(9), p.4930.

ZHAO, D. et al., 2022. Coal mine external fire detection method based on

edge intelligence. Journal of Mine Automation, 48(12), pp. 108–115.

82

APPENDICES

APPENDIX A: Programme codes

Programming code 5.1: Main.py

83

84

i

APPENDIX B: model Yet Another Markup Language format

ii

APPENDIX C: Custom Dataset

https://app.roboflow.com/ds/VdUEWrsEUB?key=zhgAMBqSN3

https://app.roboflow.com/ds/VdUEWrsEUB?key=zhgAMBqSN3

