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ABSTRACT 

 

The Corona Virus Disease-2019 (COVID-19) has had a profound impact on 

the world and thus creates awareness of the need for a fast and accurate 

diagnosis if a similar outbreak occurs again. Chest X-Ray (CXR) is widely 

used to detect COVID-19 manually, but it is time-consuming and prone to 

errors, especially when the outbreak is severe. Deep Learning (DL) algorithms, 

i.e., Convolutional Neural Networks (CNNs), have shown promising results in 

automatically detecting COVID-19. This project used (i) single CNNs, (ii) 

incrementally learned CNNs, and (iii) incrementally learned multiple CNNs 

with majority voting to extract features from CXR images. Then, an XGBoost 

classifier was used with each of these CNNs to detect COVID-19. A dataset 

consisting of 22,900 images was used for training (66.67%), validation 

(16.67%), and testing (16.67%). The results show that using XGBoost 

classifier with incrementally learned and incrementally learned multiple CNNs 

gave good and comparable detection accuracy (94.56% and 94.58%). The best 

performer – incrementally learned multiple CNNs with majority voting used 

ResNet152, DenseNet201, and VGG16. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a 

devastating effect on the health and well-being of the global population, 

caused by the infection of individuals by the severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2). A critical step in the fight against 

COVID-19 is effective screening of infected patients, such that those infected 

can receive timely treatment and care, as well as be isolated to prevent the 

virus from spreading. The primary screening method used for detecting 

COVID-19 cases is reverse transcriptase-polymerase chain reaction (RT-PCR) 

testing, which can detect SARS-CoV-2 ribonucleic acid (RNA) from 

respiratory specimens (collected through a variety of means such as 

nasopharyngeal or oropharyngeal swabs) (Wang et al., 2020). While RT-PCR 

testing is the gold standard as it is highly specific, it is a very time-consuming, 

tedious, and complicated manual process that is in short supply. Besides, the 

sensitivity of RT-PCR testing is highly variable and has yet to be reported in a 

clear and consistent manner, and preliminary findings in China show rather 

poor sensitivity (West et al., 2020; Fang et al., 2020). Furthermore, subsequent 

findings showed highly variable positive rates depending on how the specimen 

was collected as well as decreasing positive rates with time after symptom 

onset (Yang et al., 2020; Wikramaratna et al., 2020). 

Radiography examination is an alternative screening method that has 

also been used for COVID-19 screening, where radiologists conduct and 

analyse chest radiography imaging (e.g., chest X-ray (CXR) or computed 

tomography (CT) imaging) to look for visual indicators associated with SARS-

CoV-2 viral infection. Early investigations discovered that patients with 

COVID-19 infection have anomalies in chest radiography images, with some 

suggesting that radiography examination could be utilised as a primary tool for 

COVID-19 screening in epidemic areas (Ng et al., 2020; Huang et al., 2020; 

Guan et al., 2020; Ai et al., 2020). Motivated by this and inspired by the open 

source and open access efforts of the research community and intrigued in 

exploring the efficacy of AI systems leveraging the more readily available and 
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accessible CXR imaging modality, in this project I develop deep convolutional 

neural network models tailored for the detection of COVID-19 cases from 

chest X-ray (CXR) images that is open source and available to the general 

public. Thus, this project initiative finally contributes to the national 

development planning in terms of Shared Prosperity Vision (SPV) 2030 and 

10-10 MySTIE. In the view of SPV 2030, the development of an automated AI 

screening system is in line with KEGA 3: Fourth Industrial Revolution (IR 

4.0), which includes big data, artificial intelligence, augmented reality (AR) 

and machine learning. In the view of 10-10 MySTIE, this project clearly 

contributes to both Science & Technology Drivers and Socio-Economic 

Drivers on Advanced Intelligent Systems and Medical & Healthcare, 

respectively. In the international view, this project aligns with Sustainable 

Development Goals (SDGs), a universal call to achieve a better and more 

sustainable future for all. Through the lens of SDG, this project aligns with 

SDG Goal #3: Good Health and Well-being by providing a technological 

solution to the health issue – the spread of communicable disease. It also has 

an education dimension (SDG 4) to the reader on how deep learning is helping 

to fight COVID-19. 

 

1.1 Problem Statement 

 

1.1.1 Limited X-ray images related to COVID-19 

 

Deep learning techniques require a large amount of data for training and 

testing. Deep learning models trained on limited datasets are not generalized, 

and thus, such models are not reliable (Alzubaidi et al., 2021). Most existing 

approaches for classifying COVID-19 cases depend on pre-trained deep 

classification networks like ResNet50, InceptionV3, etc. One of the main 

issues with these approaches is that they do not consider the limited dataset of 

COVID-19 cases (Calli et al., 2021). In addition, these off-the-shelf models 

are prone to over-fitting issues in a limited dataset regime which is the case for 

the task of properly detecting COVID-19 from existing (limited) lung CT/X-

ray images. Such an issue arises in deep learning-based models when the 
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capacity of the networks (number of trainable parameters) is much larger than 

the amount of information at hand (Bejani and Shatee, 2021). 

However, acquiring datasets for training deep learning models is not 

easy, as no high-quality public database of X-ray images for COVID-19 

patients is currently available. Considering the fast growth of the disease, 

public high-quality and well-annotated datasets are non-existent at this point 

(Cohen et al., 2020). In fact, even in private or hospital-owned cases where 

datasets are compiled, the datasets are very limited and still under 

development. This is exacerbated by the limited number of studies and 

expertise in properly labelling and annotating the existing data, which in turn 

directly affects the performance of the underlying model in both the training 

and testing phase, making it difficult to train a high-capacity network and to 

properly assess its performance in real-world applications (Robinson et al., 

2021). As a result, model-based or domain-knowledge-aware methods must be 

considered to cope with such dataset scarcities as well as deficiencies. Thus, in 

this project, I collect a large-scale multi-class dataset from various online 

sources comprising 33,920 chest X-ray images: 11,956 images from confirmed 

COVID-19 cases, 11,263 images with confirmed bacterial or viral pneumonia 

cases, and 10,701 images of healthy people. 

 

1.1.2 Slow detection by medical experts 

 

The outbreak of COVID-19 has placed immense pressure on imaging 

departments, which are tasked with reading thousands of cases daily. Typically, 

patients and clinicians must wait for hours to receive imaging results, making 

it difficult to immediately screen and diagnose suspected patients, particularly 

in settings with limited medical resources (Rubin et al., 2020). Therefore, the 

development and deployment of automated screening tools that can accelerate 

large-scale screening and improve clinical diagnosis efficiency are crucial. 

Computational imaging-based procedures, such as chest X-ray, can provide 

more rapid diagnosis and limit the spread of COVID-19, especially since test 

kit results are not instant (Jacofsky et al., 2020). Thus, advanced AI-aided 

chest X-ray diagnosis systems are urgently needed to accurately confirm 
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suspected cases, conduct virus surveillance, and screen patients for further 

diagnosis and treatment (Song et al., 2021). 

The manual screening process for COVID-19 is further complicated 

by the fact that some features are difficult to detect by human eyes. This is 

where deep learning models can play a critical role, as they can identify 

complex patterns and subtle features that are not easily discernible by humans. 

The development of various deep learning models for chest X-ray image 

analysis can help radiologists in triaging, analysing, and assessing cases 

associated with the disease, ultimately enhancing the efficiency of clinical 

diagnosis. 

 

1.1.3 Limited computing resources for training deep learning models 

using large datasets 

 

Training deep learning models on large datasets can be a challenging task, 

primarily due to the significant computational resources required. The process 

can be excessively expensive and time-consuming, particularly for researchers 

or organizations with limited resources. 

Moreover, the process of training a deep learning model on a large 

dataset is iterative, requiring multiple passes through the entire dataset to 

optimize the model's performance. This process can take days, weeks, or even 

months, making it difficult to iterate quickly and efficiently. 

Another challenge is that the memory requirements for training deep 

learning models on large datasets can be substantial. This can limit the size of 

the model or the size of the dataset that can be used, leading to suboptimal 

performance or biased results. 

Overall, the main challenges in training deep learning models on 

large datasets are the high computational cost and time required, as well as the 

potential limitations in model size and complexity. Thus, in this project, I 

proposed an approach to overcome these challenges by breaking down the 

dataset into subsets and incrementally training the deep learning model while 

leveraging the power of majority voting to combine their outputs. This allows 

for more efficient use of computational resources while also providing a more 

robust representation of the data. 
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1.2 Aim and Objectives 

 

The project aims to propose a deep learning solution for automated COVID-19 

detection to reduce the burden on healthcare systems and professionals. 

 

The objectives of the project are as follows: 

- to collect a minimum of 30,000 x-ray images related to COVID-19 from 

various online datasets. 

- to train deep learning models: single models, incrementally learned single 

models, and incrementally learned multiple models with majority voting, using 

the collected x-ray images. 

- to evaluate the deep learning models and select the best performer using 

performance metrics such as accuracy, precision, recall, and F1 score. 

 

1.3 Scope and Limitation of Study 

 

This project served as a comprehensive guide for researchers, healthcare 

professionals, and developers involved in the development of deep learning 

solutions for automated COVID-19 detection using chest X-ray (CXR) images. 

It focused on exploring different training techniques in deep learning models 

for COVID-19 detection, specifically: (i) single CNNs, (ii) incrementally 

learned single CNNs, and (iii) incrementally learned multiple CNNs with 

majority voting. 

This project contributed to the understanding of training techniques 

and their impact on the accuracy and effectiveness of deep learning models for 

automated COVID-19 detection. By analyzing and evaluating the performance 

of these approaches using performance metrics such as accuracy, precision, 

recall, and F1 score, the study aimed to identify the most effective approach 

for automated COVID-19 detection. The insights gained from this study 

served as a guide for researchers and practitioners in making informed 

decisions when developing accurate and reliable COVID-19 detection systems 

using CXR images. 

In summary, this project provided an exploration of different training 

techniques in deep learning models for automated COVID-19 detection using 
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CXR images. By evaluating their performance and discussing their capabilities, 

the study aimed to facilitate informed decision-making in the development of 

accurate and efficient COVID-19 detection systems. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

The World has experienced outbreaks of coronavirus infections during the last 

two decades: (i) the severe acute respiratory syndrome (SARS)-CoV outbreak 

in 2002–2003 from Guangdong, China; (ii) the Middle East respiratory 

syndrome (MERS)-CoV outbreak in 2011 from Jeddah, Saudi Arabia; and (iii) 

coronavirus disease 2019 (COVID-19) or SARS-CoV-2 outbreak from Wuhan, 

China, in December 2019. According to the Centers for Disease Control and 

Prevention (CDC), SARS was first reported in Asia in February 2003. The 

illness spread to 29 countries, where 8,096 people got SARS and 774 of them 

died (10%). The SARS global outbreak was contained in July 2003. MERS is 

a viral respiratory disease that was first reported in Saudi Arabia in September 

2012 and has since spread to 27 countries. According to the World Health 

Organization (WHO), as of March 2023, there are 604 confirmed MERS cases 

and 36% (936) of these patients have died. Even though all three diseases are 

from the same family of coronavirus, the genomic sequence of COVID-19 

showed similar but distinct genome composition from its predecessors SARS 

and MERS (Prompetchara, Ketloy and Palaga, 2020; Kumar et al., 2020). 

Despite a lower fatality rate of COVID-19, i.e., around 3%, when compared to 

SARS (10%) and MERS (36%), as depicted in Table 1, COVID-19 has 

resulted in many fold deaths (> 6.3 million already) than combined deaths of 

MERS and SARS (Mahase, 2020). The recent outbreak of COVID-19 was and 

still is an extremely infectious disease that has spread all over the World, 

forcing the WHO to declare it a pandemic on 11th March 2020. 

 

Table 2.1: Details of coronavirus. 

CoV Year Origin Mortality rate 

SARS 2002 Guangdong 

province, China 

10% 

MERS 2013 Saudi Arabia 34% 

COVID-19 2019 Wuhan, China 3.4% 
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Among the causing pathogens for respiratory diseases, CoV has 

become the most dangerous one because of its serial interval (5 to 7.5) and 

reproductive rate (2 to 3) (Nishiura, Linton and Akhmetzhanov, 2020). The 

CoV belongs to single-stranded RNA viruses (+ssRNA) family mostly 

observed in animals (Perlman and Netland 2009; Chan et al., 2013). However, 

they can be transmitted to humans, which can cause severe and often fatal 

respiratory diseases in their new host. Severe cases of coronavirus disease 

result in acute respiratory distress syndrome (ARDS) or complete respiratory 

failure, which requires support from mechanical ventilation and an intensive-

care unit (ICU). People with a compromised immune system or the elderly are 

more likely to develop serious illnesses, including heart and kidney failures 

and septic shock (Pormohammad et al., 2020). In general, COVID-19 spreads 

more quickly than SARS and has symptoms like other coronaviruses. Figure 

2.1 shows the distribution of COVID-19 cases and deaths worldwide, as of 3rd 

July 2022 (European Centre for Disease Prevention and Control, 2022). 

 

 

Figure 2.1: COVID-19 cases and deaths worldwide, as of 17th July 2022. 

 

The diagnostic tools to detect COVID-19 are currently reverse 

transcription of polymerase chain reaction (RT-PCR) assays and chest imaging 

techniques, such as Computed Tomography (CT) and X-ray imaging. 
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Primarily, RT-PCR has become the gold standard in the diagnosis of COVID-

19 (Kakodkar, Kaka and Baig, 2020; Li et al., 2020). However, RT-PCR 

arrays have a high false alarm rate which may be caused by the virus 

mutations in the SARS-CoV-2 genome, sample contamination, or damage to 

the sample acquired from the patient (Tahamtan and Ardebili, 2020; Xia et al., 

2020). In fact, it is shown in hospitalized patients that RT-PCR sensitivity is 

low, and the test results are highly unstable (Li et al., 2020; Xiao, Tong and 

Zhang, 2020; Yang et al., 2020; World Health Organization, 2020). Therefore, 

it is recommended to perform chest CT imaging initially on the suspected 

COVID-19 cases since it is a more reliable clinical tool in the diagnosis with 

higher sensitivity compared to RT-PCR (Salehi et al., 2020). Hence, several 

studies suggest performing CT on the negative RT-PCR findings of the 

suspected cases (Salehi et al., 2020; Fang et al., 2020; Ai et al., 2020). 

However, there are several limitations of CT scans. Their sensitivity is limited 

in the early COVID-19 phase groups, and they are limited to recognising only 

specific viruses, slow in image acquisition, and costly (Bernheim et al., 2020; 

Li and Xia, 2020). On the other hand, X-ray imaging is faster, cheaper, and 

less harmful to the body in terms of radiation exposure compared to CT (Narin, 

Kaya and Pamuk, 2021; Brenner and Hall, 2007). Moreover, unlike CT 

devices, X-ray devices are easily accessible; hence, reducing the risk of 

COVID-19 contamination during the imaging process (Rubin et al., 2020). 

Currently, Chest X-ray (CXR) imaging is widely used as an assistive tool in 

COVID-19 prognosis, and it has been reported to have a potential diagnosis 

capability in recent studies (Shi et al., 2020). 

 In order to automate COVID-19 detection from CXR images, many 

studies have proposed to use deep learning, especially Convolutional Neural 

Networks (CNNs) (Narin, Kaya and Pamuk, 2020; Chowdhury, Rahman and 

Kabir, 2020; Pham, 2021; Chowdhury et al., 2020; Apostolopoulos and 

Mpesiana, 2020; Hall et al., 2020; Wang, Lin and Wong, 2020; Sethy and 

Behera, 2020; Zhang et al., 2020; Afshar et al., 2020). However, the main 

limitation of these studies is that the data is scarce for the target COVID-19 

class. Such a limited amount of data degrades the learning performance of the 

deep networks. Thus, in the following section, I will discuss how a large-scale 

multi-class dataset is collected from various online sources in our project. 
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2.1 Dataset 

 

The dataset used to train and test the proposed deep learning models comprises 

33,920 CXR images with 11,956 COVID-19 cases, 11,263 non-COVID 

infections (viral or bacterial pneumonia) cases, and 10,701 Normal (healthy) 

cases. To generate the dataset, I combined nine different publicly available 

data repositories: (1) COVID-19 image data collection, (2) SIRM COVID-19 

DATABASE, (3) BIMCV-COVID-19+ (Spain), (4) COVID-19 Image 

Repository, (5) RSNA pneumonia detection challenge dataset, (6) Chest X-

Ray Images (pneumonia), (7) PadChest dataset, (8) Montgomery County chest 

X-ray dataset, and (9) Shenzhen chest X-ray dataset. 

The choice of these nine datasets from which to create the dataset is 

guided by the fact that all nine datasets are open source and fully accessible to 

the research community and the general public. Section 2.1.1 overviews 

COVID-19 oriented datasets, whereas Section 2.1.2 overviews non-COVID-19 

oriented datasets. 

 

2.1.1 Chest X-ray datasets containing COVID-19 samples 

 

2.1.1.1 COVID-19 Image Data Collection 

 

The COVID-19 Image Data Collection is a collection of anonymized COVID-

19 images acquired from websites of medical and scientific associations and 

research papers (Cohen et al., 2020; Giovagnoni, 2020; Società Italiana di 

Radiologia Medica e Interventistica, 2020). The dataset was created by 

researchers from the University of Montreal with the help of the international 

research community to ensure that it will be continuously updated. Nowadays, 

the dataset includes 646 X-ray images of patients affected by COVID-19 and 

other diseases, such as MERS, SARS, and ARDS. Each image is assigned a 

diagnosis of respiratory disease, with a strong focus on COVID-19 (currently 

468 out of 646) and very few cases of no finding (20). Additionally, the 

dataset contains global severity scores for 100 images created in a post hoc 

analysis of images according to a severity scheme (Cohen et al., 2020). 
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2.1.1.2 Italian Society of Medical and Interventional Radiology (SIRM) 

COVID-19 DATABASE 

 

The SIRM COVID-19 database reports 384 COVID-19 positive radiographic 

images (CXR and CT) with varying resolutions. Out of 384 radiographic 

images, 94 are chest X-ray images, and 290 are lung CT images. This database 

is updated in a random manner and until 10th May 2020, there were 71 

confirmed COVID-19 cases were reported in this database. 

 

2.1.1.3 BIMCV-COVID-19+ (Spain) 

 

BIMCV COVID-19+ (Spain) is a large dataset from the Valencian Region 

Medical ImageBank (BIMCV) containing chest X-ray images CXR (CR, DX) 

and computed tomography (CT) imaging of COVID-19+ (positive) patients 

along with their radiological findings and locations, pathologies, radiological 

reports (in Spanish) and other data (Vayá et al., 2020). The images provided 

are 16 bits in png format. The new iteration of the database includes 7,377 CX, 

9,463 DX and 6,687 CT studies from 1,311 COVID-19+ patients. I am using a 

total of 11,177 COVID-19 chest X-ray images from this dataset. 

 

2.1.1.4 COVID-19 Image Repository 

 

This dataset is from the Institute for Diagnostic and Interventional Radiology 

(Hannover, Germany), contains 240 chest-Xray images (CR, DX) from 71 

patients at different timepoints in the course of COVID-19 (Winther et al., 

2020). It contains metadata including scanning view (AP vs PA), patient 

master data, laboratory data and longitudinal information on admission, ICU-

admission, and death. The dataset contains raw, unprocessed, gray value image 

data as Nifti files. 
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2.1.2 Chest X-ray datasets without COVID-19 samples 

 

2.1.2.1 RSNA Pneumonia Detection Challenge Dataset 

 

The RSNA Pneumonia Detection Challenge is a competition that aims to 

locate lung opacities on chest radiographs (Radiological Society of North 

America, 2020). This dataset is a subset of 30k images from the ChestXray-

NIH dataset with an enrichment of images with a Pneumonia related diagnosis. 

This dataset offers images for two classes: Normal and Pneumonia (non-

normal). All images are 8-bit grayscale with 1024 x 1024 resolution in 

DICOM format. I am using a total of 8,311 images from this dataset, of which 

4,954 are from the normal class and 3,357 are from the pneumonia class. 

 

2.1.2.2 Chest X-Ray Images (pneumonia) 

 

Kaggle chest X-ray database is a very popular database, which has 5,247 chest 

X-ray images of normal, viral and bacterial pneumonia with resolution varying 

from 400p to 2000p (Kermany et al., 2018). Out of 5,247 chest X-ray images, 

3,906 images are from different subjects affected by pneumonia (2,561 images 

for bacterial pneumonia and 1,345 images for viral pneumonia) and 1,341 

images are from normal subjects. 

 

2.1.2.3 PadChest Dataset 

 

The PadChest dataset has 160,868 CXRs from 109,931 studies and 67,000 

patients (Bustos et al., 2020). The dataset includes six different position views 

of CXR and additional information regarding image acquisition and patient 

demography. The images are stored as 16-bit grayscale images with full 

resolution. 27,593 of the reports were manually labelled by physicians. Using 

these labels, an RNN was trained and used to label the rest of the dataset from 

the reports. The reports were used to extract 174 findings, 19 differential 

diagnoses, and 104 anatomic locations. The labels conform to a hierarchical 

taxonomy based on the standard Unified Medical Language System (UMLS) 

(Bodenreider, 2004). 
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2.1.2.4 Montgomery County Chest X-ray Dataset (MC) 

 

This pre-COVID-19 pandemic dataset contains 138 frontal chest images 

collected in the department of health and human services, Montgomery 

Country, Maryland, USA (Jaeger et al., 2014). To each image, a short 

radiological report and a disease diagnosis are assigned (58 images with 

tuberculosis manifestations and 80 normal), as well as a lung segmentation 

annotation automatically generated under the supervision of a radiologist using 

anatomical landmarks (Candemir et al., 2013). The images themselves contain 

written markings of the scanning view (AP and PA) and there is additional 

metadata about gender and age. 

 

2.1.2.5 Shenzhen Chest X-ray Dataset 

 

This dataset, released together with the Montgomery dataset, and the CXR 

images are collected from Shenzhen No.3 Hospital in Shenzhen, Guangdong 

province, China in September 2012.  It contains 662 frontal X-rays, of which 

326 are normal and 336 contain TB manifestations. The images, including 

some pediatric images, are distributed as 8-bit grayscale with full resolution 

and are annotated for signs of tuberculosis. Additionally, metadata includes 

sex, age, and a short radiological description (Jaeger et al., 2014). 

 

2.1.3 Summary 

 

To summarise, I created this dataset by combining nine separate publicly 

available data repositories, as depicted in table 2. In this study, only posterior-

to-anterior (PA) or anterior-to-posterior (AP) chest X-rays were considered, as 

this view of radiography is preferred and widely used by the radiologist, 

whereas a lateral image is usually taken to complement the frontal view. Thus, 

they were excluded from this study. This dataset was created by utilizing nine 

publicly available datasets and repositories, all of which are scattered, and 

with varying formats. The quality of the dataset was ensured through a 

rigorous quality control process where duplicates, extremely low-quality, and 

over-exposed images were identified and removed. The resulting dataset thus 
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comprises images of high interclass dissimilarity with few varying resolutions, 

quality, and signal-to-noise ratio (SNR) levels. 

 

Table 2.2: Summary of the datasets used, mainly focusing on COVID-19, 

Pneumonia, and Normal. Other classes are stated in the 

remark. 

Dataset 

Name 

COVID-19 Pneumonia Normal Total Remarks 

COVID-19 

Image Data 

Collection 

468 - - 468 Other 

classes:  

MERS, 

SARS, 

ARDS, and 

Normal 

SIRM 

COVID-19 

DATABAS

E 

71 - - 71 Other 

classes: 

Normal 

BIMCV-

COVID-

19+ 

11,177 - - 11,177 Other 

classes: 

N/A 

COVID-19 

Image 

Repository 

240 - - 240 Other 

classes: 

N/A 

RSNA 

Pneumonia 

Detection 

Challenge 

- 3,357 4,954 8,311 Other 

classes: 

N/A 

Chest X-

Ray Images 

(pneumonia

) 

- 3,906 1,341 5,247 Other 

classes: 

N/A Viral 

and 

bacterial 
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pneumonia 

are added as 

pneumonia. 

PadChest 

dataset 

- 4,000 4,000 8,000 Other 

classes: 18 

other 

differential 

diagnoses. 

Only AP 

and PA 

chest X-ray 

images are 

included. 

MC chest 

X-ray 

dataset 

- - 80 80 Other 

classes: 

Tuberculosi

s 

manifestatio

ns 

Shenzhen 

chest X-ray 

dataset 

- - 326 326 Other 

classes: 

Tuberculosi

s 

manifestatio

ns 

Total 11,956 11,263 10,701 33,920  
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2.2 Deep Learning 

 

2.2.1 From Traditional Machine Learning to Deep Learning 

 

In recent years, machine learning has become more and more popular in 

research and has been incorporated into a large number of applications, 

including multimedia concept retrieval, image classification, video 

recommendation, social network analysis, text mining, and so forth. Among 

various machine learning algorithms, “deep learning,” also known as 

representation learning, is widely used in these applications (Deng, 2014). The 

explosive growth and availability of data and the remarkable advancement in 

hardware technologies have led to the emergence of new studies in distributed 

and deep learning. Deep learning, which has its roots in conventional neural 

networks, significantly outperforms its predecessors. It utilizes graph 

technologies with transformations among neurons to develop many-layered 

learning models. Many of the latest deep learning techniques have been 

presented and have demonstrated promising results across different kinds of 

applications, such as Natural Language Processing (NLP), visual data 

processing, speech and audio processing, and many other well-known 

applications (Yan et al., 2017; Yan et al., 2015). 

 Traditionally, the efficiency of machine-learning algorithms highly 

relied on the goodness of the representation of the input data. A bad data 

representation often leads to lower performance compared to a good data 

representation. Therefore, feature engineering has been an important research 

direction in machine learning for a long time, which focuses on building 

features from raw data and has led to lots of research studies. Furthermore, 

feature engineering is often very domain specific and requires significant 

human effort. For example, in computer vision, different kinds of features 

have been proposed and compared, including Histogram of Oriented Gradients 

(HOG), Scale Invariant Feature Transform (SIFT), and Bag of Words (BoW) 

(Dalal and Triggs, 2005; Lowe, 2019). Similar situations have happened in 

other domains including speech recognition and NLP. 

 Comparatively, deep learning algorithms perform feature extraction 

in an automated way, which allows researchers to extract discriminative 
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features with minimal domain knowledge and human effort (Najafadabi et al., 

2015). These algorithms include a layered architecture of data representation, 

where the high-level features can be extracted from the last layers of the 

networks while the low-level features are extracted from the lower layers. 

These kinds of architectures were originally inspired by Artificial Intelligence 

(AI) simulating its process of the key sensorial areas in the human brain. Our 

brains can automatically extract data representations from different scenes. 

The input is the scene information received from the eyes, while the output is 

the classified objects. This highlights the major advantage of deep learning, 

i.e., it mimics how the human brain works. 

 In conclusion, deep learning is currently a popular research direction 

that utilizes convolutional neural networks to extract relevant features through 

convolution, pooling, and fully connected layers. These basic structures allow 

the network to learn and improve its performance. Many software industries 

and relevant areas of research are moving towards deep learning due to its 

strong feature extraction ability and learning ability not acquired by traditional 

machine learning methods. This feature provides many conveniences for many 

studies, eliminating the need for a very complex modelling process. In 

addition, deep learning is now showing substantial results and advances in 

image classification, object detection, image segmentation, and other areas. 

The depth and versatility of learning applications can continue to be expanded 

to other applications. 

 

2.2.2 Deep Convolutional Neural Network Architecture 

 

Deep learning techniques have become the main parts of various state-of-the-

art multimedia systems and computer vision (Ha et al., 2015). More 

specifically, CNNs have shown significant results in different real-world tasks, 

including image processing, object detection, and video processing. This 

section discusses the deep CNN architectures with top-5 error rates proposed 

over the past few years for visual data processing. 

 In 1998, LeCun et al. presented the first version of LeNet-5 (LeCun et 

al., 1998). LeNet-5 is a conventional CNN that includes two convolutional 

layers along with a subsampling layer and finally ends with a full connection 
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in the last layer, as depicted in Figure 2.2. Although, since the early 2000s, 

LeNet-5 and other CNN techniques were greatly leveraged in different 

problems, including the segmentation, detection, and classification of images, 

they were almost forsaken by data mining and machine-learning research 

groups. More than one decade later, the CNN algorithm started its prosperity 

in computer vision communities. Specifically, AlexNet is considered the first 

CNN model that substantially improved the image classification results on a 

very large dataset (e.g., ImageNet) (Krizhevsky, Sutskever and Hinton, 2012). 

Figure 2.3 depicts the architecture of the model. It was the winner of the 

ILSVRC 2012 and improved on the best results from the previous years by 

almost 10% regarding the top five test errors. To improve the efficiency and 

the speed of training, a GPU implementation of CNN is utilized in this 

network. Data augmentation and dropout techniques are also used to 

substantially reduce the overfitting problem. Nevertheless, there are two major 

drawbacks of this model: 1) it requires a fixed resolution of the image; 2) there 

is no clear understanding of why it performs so well. 

 

 

Figure 2.2: Architecture of LeNet-5. 
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Figure 2.3: Architecture of AlexNet. 

 

Since then, a variety of CNN methods have been developed and 

submitted to the ILSVRC competition. In 2014, two influential but different 

models were presented that mostly focused on the depth of neural networks. 

The first one, known as VGGNet, includes a very simple 16-layer CNN, as 

shown in Figure 2.4 (Simonyan and Zisserman, 2014). In this network, at each 

layer, the spatial size of the input is reduced, while the depth of the network is 

increased to achieve a more effective and efficient model. Although VGGNet 

was not the winner of the ILSVRC 2014, it still shows a significant 

improvement (7.3% top five error) over the previous top models that came 

from its two major specifications: simplicity and depth. In contrast to VGGNet, 

GoogleNet, the winner of this competition (6.7% error), proposed a new 

complex module named “Inception,” allowing several operations (pooling, 

convolutional, etc.) to work in parallel (Szegedy et al., 2014). 
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Figure 2.4: Architecture of VGG16. 

 

The Microsoft deep residual network (known as ResNet) took the 

lead in the 2015 competitions including ILSVRC 2015 and in COCO detection 

and segmentation tasks by introducing the residual connections in CNNs and 

designing an ultra-deep learning model (50 to 152 layers) (He et al., 2016). 

This model achieved an incredible performance (3.6% top five error), which 

means, for the first time, a computer model could beat human brains (with 5% 

to 10% error) in image classification. Contrary to the extremely deep 

representation of ResNet, it can handle the vanishing gradients as well as the 

degradation problem (saturated accuracy) in deep networks by utilizing 

residual blocks (Glorot and Bengio, 2010). 

 

 

Figure 2.5: Architecture of ResNet-50. 
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In the last few years, several variations of ResNet have been proposed. 

The first group of methods tried to increase the number of layers more and 

more. Current CNN models may include more than 1,000 layers (Huang et al., 

2016). Finally, in 2017, ResNeXT was proposed as an extension of ResNet 

and VGGNet (Xie et al., 2017). This simple model includes several branches 

in a residual block, each performing a transformation that is finally aggregated 

by a summation operation. This general model can be further reshaped by 

other techniques such as AlexNet. ResNeXT outperforms its original version 

(ResNet) using half of the layers and also improves the Inception-v3 as well as 

Inception-ResNet networks on the ImageNet dataset. Figure 2.6 demonstrates 

the revolution of depth and performance in image classification (e.g., 

ImageNet) over time. The problem of supervised image classification is 

regarded as “solved” and the ImageNet classification challenge concluded in 

2017. 

 

 

Figure 2.6: The network top five errors (%) and layers in the ImageNet 

classification over time. 

 

2.2.3 Training 

 

Forward and backward propagation are two important processes in training the 

neural network. In general, feedforward means moving forward with provided 
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input and weights (assumed in 1st run) till the output. And, backward 

propagation, as the name suggests, is moving from output to input. In 

backward propagation, I reassign weights based on the loss and then forward 

propagation runs. These two processes are independent for the training of the 

model. 

 

2.2.3.1 Forward Propagation 

 

In terms of Neural Networks, forward propagation is important, and it will 

help to decide whether assigned weights are good to learn for the given 

problem statement. There are two major steps performed in forward 

propagation technically: 

 

1. Sum the product 

It means multiplying weight vectors with the given input 

vector (x * w). And then, it keeps going on till the final layer, 

where the decision is made. 

2. Pass the sum through an activation function 

The sum of the product of weight and input vector is passed in 

each layer and applies an activation function to produce the 

output. The output of one layer becomes the input of the next 

layer to be multiplied with weight vectors in that layer. This 

process goes on till the output layer activation function. 

 

 

Figure 2.7: Feedforward Neural Network. 
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2.2.3.2 Backward Propagation 

 

In neural networks, backward propagation is one of the important algorithms 

for training the feed-forward network. Once passing through the forward 

network, the predicted output is obtained to compare with the target output. 

Based on this, the total loss can be calculated and concluded whether the 

model is good to go or not. If not, the loss value is used to recalculate weights 

again for the forward pass. This weight re-calculation process is made simple 

and efficient using back-propagation. 

 In other words, backward propagation is the practice of fine-tuning 

the weights of a neural net based on the error rate (i.e., loss) obtained in the 

previous epoch (i.e., iteration). Proper tuning of the weights helps us to ensure 

lower error rates and make the model reliable by increasing its generalization. 

 As discussed above, there are two important processes involved in the 

training of any neural network: (1) Forward Propagation: Receive input data, 

process the information, and generate output. (2) Backward Propagation: 

calculate errors and update the parameters of the network. The following 

diagram explains how the forward and backpropagation algorithm works. 

 

 

Figure 2.8: Forward and Backward Propagation in Neural Network. 

 

1. Inputs X, arrive through the preconnected path. 

2. Input is modelled using real weights W. The weights are 

usually randomly selected. 



24 

3. Calculate the output for every neuron from the input layer to 

the hidden layers, to the output layer. 

4. Calculate the error in the outputs: 

ErrorB = Actual Output – Desired Output 

5. Travel back from the output layer to the hidden layer to adjust 

the weights such that the error is decreased. 

6. Keep repeating the process until the desired output is achieved. 

 

2.2.4 Hyper-parameter Tuning 

 

Deep learning algorithms are widely applied to various areas, like computer 

vision, natural language processing, and machine translation since they have 

had great success solving many types of problems. Common types of deep 

learning architectures include deep neural networks (DNNs), feedforward 

neural networks (FFNNs), deep belief networks (DBNs), convolutional neural 

networks (CNNs), recurrent neural networks (RNNs) and many more (Yin et 

al., 2017). All these deep learning models have similar hyper-parameters since 

they have similar underlying neural network architecture. Compared with 

other machine learning models, deep learning models benefit more from 

hyperparameter tuning (HPO) since they often have many hyper-parameters 

that require tuning. 

 The first set of hyper-parameters is related to the construction of a 

deep learning model. Hence, named model design hyper-parameters. Since all 

neural network models have an input layer and an output layer, the complexity 

of a deep learning model mainly depends on the number of hidden layers and 

the number of neurons in each layer, which are two main hyper-parameters to 

build deep learning models (Koutsoukas et al., 2017). These two hyper-

parameters are set and tuned according to the complexity of the datasets or the 

problems. Deep learning models need to have enough capacity to model 

objective functions (or prediction tasks) while avoiding over-fitting.  

 On the other hand, some other hyper-parameters are related to the 

optimization and training process of deep learning models; hence, they are 

categorized as optimizer hyper-parameters. The learning rate is one of the 

most important hyper-parameters in deep learning models (Ozaki, Yano and 
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Onishi, 2017). It determines the step size at each iteration, which enables the 

objective function to converge. A large learning rate speeds up the learning 

process, but the gradient may oscillate around a local minimum value or even 

cannot converge. On the other hand, a small learning rate converges smoothly, 

but will largely increase model training time by requiring more training epochs. 

An appropriate learning rate should enable the objective function to converge 

to a global minimum in a reasonable amount of time. Another common hyper-

parameter is the dropout rate. Dropout is a standard regularization method for 

deep learning models proposed to reduce over-fitting. In dropout, a proportion 

of neurons are randomly removed, and the percentage of neurons to be 

removed should be tuned. 

 Batch size and the number of epochs are the other two deep learning 

hyper-parameters that represent the number of processed samples before 

updating the model, and the number of complete passes through the entire 

training set, respectively (Soon et al., 2017). Batch size is affected by the 

resource requirements of the training process and the number of iterations. The 

number of epochs depends on the size of the training set and should be tuned 

by slowly increasing its value until validation accuracy starts to decrease, 

which indicates over-fitting. On the other hand, deep learning models often 

converge within a few epochs, and the following epochs may lead to 

unnecessary additional execution time and over-fitting, which can be avoided 

by the early stopping method. Early stopping is a form of regularization 

whereby model training stops in advance when validation accuracy does not 

increase after a certain number of consecutive epochs. The number of waiting 

epochs, called early stop patience, can also be tuned to reduce model training 

time. 

 Apart from traditional deep learning models, transfer learning is a 

technology that obtains a pre-trained model on the data in a related domain 

and transfers it to other target tasks (Han, Liu and Fan, 2018). To transfer a 

deep learning model from one problem to another problem, a certain number 

of top layers are frozen, and only the remaining layers are retrained to fit the 

new problem. Therefore, the number of frozen layers is a vital hyper-

parameter to tune if transfer learning is used. 
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2.2.5 Validation and Testing 

 

In the context of neural networks, the ultimate goal of training a neural 

network is to find a set of neural network weights and bias values so that the 

input data generates output values that best match the target values. A 

simplistic approach would be to use all the available data items to train the 

neural network. However, this approach would likely find weights and bias 

values that match the data extremely well. In fact, probably with 100 per cent 

accuracy. But when presented with a new, previously unseen set of input data, 

the neural network would likely predict very poorly. This phenomenon is 

called over-fitting. To avoid over-fitting, the idea is to separate the available 

data into a training data set (typically 80 per cent to 90 per cent of the data) 

that is used to find a set of good weights and bias values, and a test set (the 

remaining 10 per cent to 20 per cent of the data) that is used to evaluate the 

quality of resulting neural network. 

The simplest form of cross-validation randomly separates the 

available data into a single training set and a single test set. This is called hold-

out validation. But the hold-out approach is somewhat risky because an 

unlucky split of the available data could lead to an ineffective neural network. 

One possibility is to repeat hold-out validation several times. This is called 

repeated sub-sampling validation. But this approach also entails some risk 

because, although unlikely, some data items could be used only for training 

and never for testing, or vice versa. 

For this reason, some suggest using the K-Fold cross-validation 

scheme to accurately describe the predictive performance of neural networks. 

K-Fold is a validation technique in which the data is split into K-subsets and 

the holdout method is repeated K-times where each K subsets is used as the 

test set and the other K-1 subsets are used for the training purpose. Then the 

average error from all these K trials is computed, which is more reliable as 

compared to the standard handout method. So, with this technique, there is no 

need to be concerned about how the data is actually divided. The images 

below, i.e., Figure 2.9 and Figure 2.10, give better insights into how it works. 
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Figure 2.9: Pie chart represents how data is split in the holdout method. 

 

 

Figure 2.10: K-Fold cross-validation. 

 

In K-Fold cross-validation, i.e., Picture 10, the dataset is divided into 

five subsets, i.e., K = 5. Each time, one of the subsets or folds is selected as the 

testing set, while the remaining folds are used as the training set. Each 

iteration represented above is nothing but a holdout method with different 

training and testing data. As a result, the advantage of K-fold cross-validation 

is that all observations or patterns in the available sample are used for testing 

and most of them are also used for training the model. The cross-validation 

analysis will yield valuable insights into the reliability of the neural networks 

with respect to sampling variation. 
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2.2.6 Summary 

 

This section has highlighted how deep learning is getting more popular owing 

to its powerful feature extraction and learning abilities that traditional machine 

learning methods do not have. It also discussed the deep CNN architectures 

with the lowest error rates, beginning from the LeNet model to the ResNeXT 

model. The two common methods to learn during training neural networks, 

forward and backward propagation, were also covered. Following that, the 

section discussed several hyper-parameters that needed to be tuned, including 

model design hyper-parameters, function type hyper-parameters, optimizer 

hyper-parameters, batch size, number of epochs, and the number of frozen 

layers when using transfer learning. Finally, the section introduced the K-Fold 

cross-validation method for validation and testing in neural networks. 

 

2.3 Deep Learning Models for COVID-19 Related X-ray 

 

2.3.1 InstaCovNet-19 

 

InstaCovNet-19 is a deep convolutional architecture (DCNN) used for the 

detection of patients with COVID-19 using chest Xray images (Gupta, Gupta 

and Katarya, 2021). Transfer Learning and multiple pre-trained DCNNs are 

used, like Inceptionv3, MobileNetV2, ResNet101, NASNet and Xception. 

These models were first imported with their pre-trained weights matrix (on 

ImageNet). Then these models were fine-tuned for the dataset. The fine-tuned 

models were then combined using the Integrated Stacking technique, making 

the stacked model a larger and more robust model. Two image pre-processing 

techniques are used i) fuzzy colour image enhancement ii) stacking. 

DATASET: i) COVID19 Radiography database by Kaggle ii) ChestXray 

dataset 

ACCURACY: 99.08%, SENSITIVITY: 99.00% 
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Figure 2.11: Architecture of InstaCovNet-19 Integrated stacked model. 

 

2.3.2 COVID-AID 

 

COVID-AID: COVID-19 AI detector, a novel deep neural network-based 

model to triage patients for appropriate testing (Mangal et al., 2020). This 

model contains pretrained CheXnet with 121-layer Densenet. DenseNet is 

quite similar to ResNet with some differences. ResNet uses an additive method 

which merges the previous layer (identity) with the future layer, whereas 

DenseNet concatenates the output of the previous layer with the future layer 

(Agarwal et al., 2022). An output of the previous layer acts as an input of the 

second layer by using composite function operation. This composite operation 

consists of the convolution layer, pooling layer, batch normalization, and non-

linear activation layer. These connections mean that the network has L(L+1)/2 

direct connections. L is the number of layers in the architecture. Deep CNN 

backbone followed by fully connected layer.  

A two-stage training is used: 

1. Densenet’s backbone weights are frozen and only the final 

connected layer is trained. Batch size=16, Number of 

epochs=30 and the lowest validation loss is selected for the 

next stage. 

2. In the second step, network weights are initialized from above, 

but the whole network is trained end to end. 
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DATASET: 1) Covid chest Xray images 2) Chest Xray pneumonia. 

ACCURACY: 90.50%, SENSITIVITY: 100% 

 

 

Figure 2.12: Architecture of CovidAID model. 

 

2.3.3 DetraC Deep Model 

 

DeTraC method of image classification is used, which consists of three phases 

(Abbas, Abdelsamea and Gaber, 2021). First phase: Train the pretrained CNN 

model (AlexNet, VGG19, ResNet, GoogLeNet, SqueezeNet) to extract deep 

local features from images. Second phase: Training is accomplished using a 

sophisticated gradient descent optimization method. Third phase: Composition 

layer to refine the final classification layer of images. This method can detect 

irregularities in the dataset by investigating class boundaries using class 

decomposition. For the decomposition of classes K-mean clustering method is 

used (Wu et al., 2008). 

DATASET: i) 80 samples from the Japanese Society of Radiological 

Technology ii) COVID-19 Image data collection 

 

MODELS ACCURACY SENSITIVITY 

AlexNet 95.66% 97.53% 

VGG19 97.35% 98.23% 

ResNet 95.12% 97.91% 

GoogLeNet 94.71% 97.88% 

SqueezeNet 94.90% 95.70% 
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Figure 2.13: Architecture of DeTraC model. 

 

2.3.4 CoroDet 

 

CoroDet is a Novel CNN model which uses chest X-ray images to detect 

COVID-19. It is a new 22-layer CNN model (Hussain et al., 2021). It consists 

of 9-layer Conv2d followed by Maxpooling2D, 9-layer Conv2d followed by 

Max Pooling and at last Flatten layer followed by a Dense layer. Adam 

optimizer has been used. Training is carried out for 50 epochs with a learning 

rate=0.0001. 

DATASET: COVID-R dataset has been used, which consists of 2843 COVID-

19 images, 3108 Normal images, 1439 Pneumonia images 

ACCURACY: 94.20% 
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Figure 2.14: Architecture of the proposed 22-layer CNN model. 

 

2.3.5 DeepCoroNet 

 

Deep coronet is a new approach based on the deep Long Short-Term Memory 

(LSTM) model (Demir, 2021). Instead of a transfer-learning approach, the 

deep LSTM model is designed from scratch. Pre-processing of images is done 

using the sobel gradient and Marker-Controlled Watershed Segmentation 

(MCWS) are applied to raw images followed by a deep LSTM model, which 

increases classification performance (Huang, Li and Chen, 2018). Deep LSTM 

model consists of sequence data creating block and LSTM network sequence 

data creating block consists of convolution operation, Batch Normalization, 

Relulayer. The LSTM model is a modified version of recurrent neural 

networks (Yu et al., 2019). This layer is followed by a fully connected layer, 

Relu and dropout fully connected, which gives output to the SoftMax layer, 

which give probable scores of classes. 

DATASETS: COVID-19 and Normal CXR images are taken from the Kaggle 

repository 
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ACCURACY: 100%, SENSITIVITY: 100% 

 

 

Figure 2.15: Architecture of DeepCoroNet. 

 

2.3.6 CVDNet 

 

CVDNET, a deep CNN model used to classify COVID-19 images from 

normal and other pneumonia cases using Chest X-ray images (Ouchicha, 

Ammor and Meknassi, 2020). It is based on a residual neural network and uses 

two parallel levels with different kernel sizes to capture the local and global 

features of the input. This architecture was trained on a small dataset but 

achieved promising results. For the convolution, it employs the concept of 

residual technique, which enhances the performance of this model. 
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DATASET: Kaggle Covid 19 Radiography database. The total number of 

images are 2,905. Out of which Normal (1341 images), COVID-19 (219 

images), and Viral Pneumonia (1345 images) are used. 

ACCURACY: 96.69%, SENSITIVITY: 96.84% 
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Figure 2.16: Architecture of the proposed CVDNet model. 
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2.3.7 EDL-COVID 

 

Ensemble deep learning is a hybrid learning paradigm that can produce 

effective results by combining various machine learning models intelligently 

(Polikar, 2012). The combined strength of models offsets individual model 

variances and biases and provides a composite prediction where the final 

accuracy is better than the accuracy of the individual model. In EDL-COVID, 

instead of taking multiple models for ensembling, multiple model snapshots of 

a deep learning network, COVIDNet have been taken. COVIDNet network is 

used with its multiple snapshots and the cosine annealing learning rate is used 

to change the learning rate aggressively but systematically to generate 

different model weights over training epochs by allowing the learning rate to 

start high and decrease to a minimum value of zero at the relatively rapid 

speed (Tang et al., 2021).  

COVIDX DATASET: It is a combination of five different datasets: Actual 

med covid 19 dataset, Covid19 Image data collection, Covid19 radiography 

database collection, Covid19 CXR dataset Initiative, RSNA pneumonia 

detection challenge. 

ACCURACY: 95.00%, SENSITIVITY: 95.23% 

 

 

Figure 2.17:Overall flow for EDL-COVID ensemble model training. It 

consists of two phases, namely, snapshot model training, and 

model ensembling. 
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2.3.8 Summary 

 

The comparison of the above-described deep learning models is shown in 

Table 2.3. Seven different deep learning models for COVID-19 related X-rays 

are surveyed, and their performance is analyzed on the basis of two parameters: 

Accuracy and Sensitivity. 

 

Table 2.3: Comparison of the above-described deep learning models. 

MODELS ACCURACY SENSITIVITY 

InstaCovNet-19 99.08% 99.00% 

COVID-AID 90.50% 100% 

DeTraC 97.35% 98.23% 

CoroDet 94.20% NA 

DeepCoroNet 100% 100% 

CVDNet 96.69% 96.84% 

EDL-COVID 95.00% 95.23% 

 

2.4 Training Techniques 

 

With the advent of deep learning techniques, feature extraction can be done 

automatically rather manually and thus achieves recognition accuracy at a 

higher level than ever before. Deep learning employs a convolutional neural 

network (CNN) which performs feature extraction. A CNN convolves learned 

features with input data and uses a 2D convolutional layer, making this 

architecture suitable for processing 2D images. CNN learned to detect 

different features of an image by using tens or hundreds of hidden layers 

(Ouchicha, Ammor and Meknassi, 2020). The relevant features are not 

pretrained; they are learned while the network trains on a collection of images 

(Mangal et al., 2020). The two most common techniques researchers used to 

train a network architecture are: training from scratch and transfer learning. 
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2.4.1 Training from Scratch 

 

Training a deep architecture from scratch, requires a very large, labelled data 

set. A newly designed network architecture will learn the features from the 

dataset and is tested for its performance. This proves beneficial when a new 

algorithm is used for designing the layered architecture (Jain et al., 2021). This 

is a less common approach because with the large amount of data and rate of 

learning, these networks typically take days or weeks to train, and it is not 

economical. 

 

2.4.2 Transfer Learning 

 

Most researchers prefer to use the transfer learning approach in training a deep 

architecture. It is a process that involves fine-tuning a pretrained model 

(Pambudi, Widayanti and Edastama, 2021). In this, a model developed for a 

particular task is reused as the starting point for a model on a second task, such 

as the AlexNet CNN model is trained on the Image Net database but by 

applying the transfer learning approach, it can be used for other classification 

problems. Transfer learning performs best in situations where the training 

examples are insufficient for training a model from scratch. Tajbakhsh et al. 

demonstrated that a pre-trained CNN with adequate fine tuning might 

outperform or perform as well as a CNN trained from scratch. 

 After reviewing several related articles, the reviewed works that 

utilized transfer learning can be categorized into four groups. In the first group, 

a pre-trained CNN on a large-scale natural image dataset was used to initialize 

the weights of a new network that will be trained on the target data. When 

performing transfer learning, the last layer of the pretrained model architecture 

is replaced with a fully connected layer with the same number of classes as the 

new dataset. The architecture is retrained to use the model for the new dataset 

(Chakraborty et al, 2021). This method is based on the fact that the early layer 

features are more generic (e.g., edges), whereas the later-layer features are 

more specific to a particular task or dataset (Yamashita et al., 2018). 

 The second group is similar to the first in that the last layer of the 

architecture is replaced and redefined. The only difference is that in the first 
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group, only the last layer is retrained, whereas in this group, some layers can 

be redefined and retrained according to the context (Cai and Peng, 2021). One 

major disadvantage of these methods is that the size of the input image cannot 

be changed. Therefore, if the pretrained model uses a smaller image dimension 

and transfer learning has to be conducted on a dataset with a larger image 

dimension, resizing the image is compulsory. Resizing a large image to a 

smaller image can affect the performance of the model in some cases. 

 In the third group of studies, a pretrained model is used to extract the 

deep features of the images of a prepared custom dataset. Then, the extracted 

deep features are input into a linear machine learning classifier such as support 

vector machine (SVM) for classification. For example, Sethy and Behera used 

eleven established model architectures that are pretrained on the ImageNet 

dataset to extract the deep features: AlexNet, DenseNet201, GoogleNet, 

InceptionV3, ResNet18, ResNet50, ResNet101, VGG16, VGG19, 

XceptionNet, and InceptionResNetV2. A slightly different approach is applied 

by Ozkaya et al. for the classification of X-ray images. Similarly, features are 

extracted from three networks, namely, VGG-16, GoogleNet and ResNet-50, 

for the classification of CT images. The features are fused, and to reduce the 

redundancy of the features, the t-test method is used to rank the features based 

on frequency. The final constructed feature vector is input into a binary SVM 

classifier for classification. 

 In the last group, transfer learning was implemented using a model 

pre-trained on a similar target domain. For example, Afshar et al. trained a 

model on a radiography dataset of patients with and without pneumonia. They 

then trained the model further on COVID-19 CXR images. The studies in this 

group claimed that the use of models trained on ImageNet is not the best 

option for medical applications because the source (natural images) and target 

domains (e.g., CXR images) are different (Basu, Mitra and Saha, 2020; Afshar 

et al., 2020). However, the results of a comparative study by Cheplygina did 

not fully support this assumption; the study examined 12 articles that 

compared the use of medical images to natural images in transfer learning in 

medical imaging research. The goal of the study was to determine which 

source images are better in medical transfer learning tasks: natural images 

such as ImageNet or medical images. Among the 12 articles examined, the 
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study found that six articles supported each claim, i.e., each claim is supported 

equally; therefore, the study concluded that the selection of the model and 

source data depends on the task at hand among other factors. 

 

2.4.3 Summary 

 

In short, there are two main methods for training a deep architecture model: 

training from scratch and transfer learning. However, due to the duration of 

development and the amount of data required, training from scratch is not 

considered in our project. Instead, the project will use the transfer learning 

technique. 

 There are mainly four strategies that gradually evolved when using 

transfer learning to train models. Initially, the first group of studies used 

different state-of-the-art pretrained CNN models to initialize the weights of a 

new network that will be trained on the target data. The early layers of the 

network model were frozen, and their weights were kept unchanged while the 

final layer was fine-tuned. The final layer of the pretrained model architecture 

is replaced with a fully connected layer with the same number of classes as the 

new dataset. The second group of studies then began to redefine and retrain 

some layers based on the context in order to increase model accuracy and 

extract more features to supply additional information to the fully connected 

layer in a CNN. Different hyper-parameters are fine-tuned, and some or all 

CNN layers are unfrozen to be retrained during the training process. 

 Nevertheless, while the transfer learning approach helps achieve 

better results with a smaller data set than training from scratch, it still needs a 

rather large, labelled dataset. One of the main issues in the first and second 

groups of studies is that they do not consider the limited dataset of COVID-19 

cases when using CNN for training and classification. It leads to a question 

mark about the robustness of the classification model because deep learning 

models trained on limited datasets are not generalized, and thus, such models 

are not reliable. Moreover, when CNN is used for classification, it takes a lot 

of time for training. To get good enough results, it is necessary to fine-tune the 

CNN parameters during training. As a result, the computational complexity 

grows, as does the execution time. So, rather than using a pre-trained network 
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as a classifier in the transfer learning strategy to detect COVID-19, the third 

group of studies used a machine learning algorithm as the classifier. The 

machine learning algorithm uses deep features extracted from the fully 

connected layer of the pre-trained network to classify X-ray images of 

COVID-19 patients, pneumonia patients, and healthy people. 

Finally, the fourth group of studies claimed that using ImageNet-

trained models for medical applications is not the ideal solution because the 

source (natural images) and target domains (e.g., CXR images) are different. 

As a result, transfer learning was implemented using a model pre-trained on a 

similar target domain. However, a research study did not fully support this 

claim and concluded that the selection of model and source data is dependent 

on the task at hand, among other considerations. 

 

Table 2.4: Comparison of Transfer Learning Techniques. 

 Pros Cons In-Text Citation 

First 

group – 

fine tune 

last layer 

 Require lesser 

training time and 

computational 

costs as compared 

to second group, 

because it retains 

the useful feature 

extractors trained 

during the initial 

stage. 

 Limited state-of-

the-art CNN 

learning ability, 

thus poor 

performance than 

second group. 

 Performance can 

be limited because 

CNN models' pre-

training is 

performed based 

on natural images 

(ImageNet dataset). 

 The internal logic 

of CNN is not 

explicitly known 

and require other 

techniques for 

(Chakraborty et 

al, 2021; Wang 

et al., 2020; 

Khan et al., 

2020) 
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visual 

interpretation of 

CNN decision-

making. 

Second 

group – 

fine tune 

some or 

all layers 

 Tailored design of 

CNN model can 

extract unique 

feature entirely. 

Thus, performance 

is better than first 

group if the model 

is tuned properly. 

 Image resizing is 

compulsory. This 

can affect the 

performance of the 

model in some 

cases. 

 Training time and 

computational 

costs are the 

highest among the 

discussed 

techniques because 

specific 

modifications such 

as architecture 

adjustments and 

parameter tuning 

need to be applied 

to the pre-trained 

model. 

 Require a relatively 

large amount of 

data to be 

advantageous as 

the new trainable 

parameters are 

inserted into the 

network.  

 Performance can 

(Apostolopoulos 

and Mpesiana, 

2020; Cai and 

Peng, 2021; 

Khan et al., 

2020) 
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be limited because 

CNN models' pre-

training is 

performed based 

on natural images 

(ImageNet dataset). 

 The internal logic 

of CNN is not 

explicitly known 

and require other 

techniques for 

visual 

interpretation of 

CNN decision-

making. 

Third 

group – 

CNN 

with 

machine 

learning 

 Require lesser 

amount of data as 

compared to other 

techniques as 

traditional 

machine learning 

classifier is not as 

data hungry as 

CNN classifier. 

 Require lesser 

training time and 

computational 

costs as compared 

to second group, 

because it retains 

the useful feature 

extractors trained 

during the initial 

 Performance can 

be limited because 

CNN models' pre-

training is 

performed based 

on natural images 

(ImageNet dataset). 

 

(Sethy and 

Behera, 2020) 
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stage. 

 The decision-

making of 

traditional 

machine learning 

classifiers is 

explainable and 

interpretable. 

Fourth 

group – 

TL with 

similar 

target 

domain 

CNN models' pre-

training is performed 

based on same target 

domain. Thus, the 

model is able to 

extract intricate 

features specific to the 

target. 

 Lack of publicly 

available 

pretrained CNN 

model on same 

domain. 

 Robustness of the 

publicly available 

pre-trained CNN 

model on same 

domain is not 

proven. 

 The internal logic 

of CNN is not 

explicitly known 

and requires other 

techniques for 

visual 

interpretation of 

CNN decision-

making. 

(Basu, Mitra 

and Saha, 2020; 

Afshar et al., 

2020; Khobahi 

et al., 2020) 
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2.5 Evaluation Metrics 

 

Evaluation metrics adopted within deep learning tasks play a crucial role in 

achieving the optimized classifier (Hossin and Sulaiman, 2015). They are 

utilized to optimize the classification algorithm during the training stage. This 

means that the evaluation metric is utilized to discriminate and select the 

optimized solution. For the time being, the evaluation metric is also utilized to 

measure the efficiency of the created classifier, e.g., as an evaluator, within the 

model testing stage using hidden data. As given in Eq. 1, true negative (TN) 

and true positive (TP) are defined as the number of negative and positive 

instances, respectively, which are successfully classified. In addition, false 

negative (FN) and false positive (FP) are defined as the number of 

misclassified positive and negative instances, respectively. Next, some of the 

most well-known evaluation metrics are listed below. 

 

1. Accuracy: Calculates the ratio of correct predicted classes to 

the total number of samples evaluated (Eq. 1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

2. Sensitivity or Recall: Utilized to calculate the fraction of 

positive patterns that are correctly classified (Eq. 2). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

3. Specificity: Utilized to calculate the fraction of negative 

patterns that are correctly classified (Eq. 3). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

4. Precision: Utilized to calculate the positive patterns that are 

correctly predicted by all predicted patterns in a positive class 

(Eq. 4). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

5. F1-Score: Calculates the harmonic average between recall and 

precision rates (Eq. 5). 
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𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 x 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

6. False Positive Rate (FPR): This metric refers to the possibility 

of a false alarm ratio as calculated in (Eq. 6). 

𝐹𝑃𝑅 = 1 − Specificity 

7. Area Under the ROC Curve (AUC): AUC is a common 

ranking type of metric. It is utilized to conduct comparisons 

between learning algorithms, as well as to construct an 

optimal learning model. In contrast to probability and 

threshold metrics, the AUC value exposes the entire classifier 

ranking performance. The following formula is used to 

calculate the AUC value for a two-class problem (Eq. 7) 

𝐴𝑈𝐶 =
𝑆𝑝 −  𝑛𝑝(𝑛𝑛 + 1) / 2

𝑛𝑝𝑛𝑛
 

8. Mean Absolute Error (MAE): MAE is a simple way to 

measure error magnitude. It consists of the average of the 

absolute differences between the predictions and the observed 

values. (Eq. 8). 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 −  𝑥𝑖|

𝑛
𝑖=1

𝑛
 

9. Root Mean Squared Error (RMSE): RMSE measures the 

quadratic mean of the differences between the predictions 

made by a model and the actual values (residuals) (Eq. 9). 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖 −  �̂�𝑖)

𝑁
𝑖=1

2

𝑁
 

 

In conclusion, this project will quantify the model’s classification 

performance using nine evaluation metrics outlined above. These metrics 

include accuracy, sensitivity, specificity, precision, F1-Score, False Positive 

Rate, AUC, MAE, and RMSE. 
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2.6 Prior Works 

 

This project assessed the significance and uniqueness of several publications 

and their associated datasets using a range of methods, including developing 

models and frameworks from scratch, as well as leveraging transfer learning in 

combination with specialized feature extraction techniques. The table below 

summarized the key findings from the assessment. 
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CHAPTER 3 

 

METHODOLOGY 

 

This section discusses the proposed method for accurately predicting COVID-

19 using CXR images, which consists of a deep feature learning model for 

feature extraction and a machine learning classifier for classification. 

 



75 

 

Figure 3.1: 

The workflow of the 

proposed method to 

demonstrate the process 

from beginning to end. 

Details on each step are 

given below. 
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Step 1: Collecting Dataset 

During this step, data for some predefined categories were collected from 

various publicly available online sources. In particular, in the case of detecting 

COVID-19 from chest radiography imaging, a dataset consisting of not only 

COVID-19 cases but also healthy cases, as well as cases of viral pneumonia-

like cases, was prepared. Such a comprehensive dataset enables the model to 

distinguish properly between cases, resulting in a more accurate classification. 

 

Step 2: Data Augmentation 

One possible solution to increase the amount of available data and avoid 

overfitting issues is data augmentation techniques. Data augmentation 

incorporates a collection of methods that improve the attributes and size of 

training datasets. Thus, deep learning models can perform better when these 

techniques are employed. There are a number of image augmentation 

techniques. 

1. Flipping: Flipping the horizontal axis is more commonly used 

than flipping the vertical axis. Flipping has been verified as 

valuable on datasets like ImageNet and CIFAR-10 

(Krizhevsky and Hinton, 2009; Deng et al., 2009). Moreover, 

it is highly simple to implement. Flipping is label-preserving 

except for text. 

 

2. Rotation: Rotation augmentations can be obtained by rotating 

an image left or right within 0 to 360 degrees around the axis. 

The rotation degree parameter greatly determines the 

suitability of the rotation augmentations. However, the data 

label cannot be preserved post-transformation when the 

rotation degree increases. 

 

3. Translation: To avoid positional bias within the image data, a 

very useful transformation is to shift the image up, down, left, 

or right. For instance, it is common that the whole dataset 

images are centred. Moreover, the tested dataset should be 

entirely made up of centred images to test the model. The 



77 

spatial dimensions of the image post-augmentation are 

preserved using this padding. 

 

Step 3, 4, 5: Image resizing, Normalization, Train test split 

The acquired CXR images have variable shapes and sizes, which makes 

effective classification difficult. Image pre-processing was performed to 

ensure effective classification. The CXR images were resized to meet the input 

requirements of different CNNs. For instance, SqueezeNet requires images 

resized to 227 × 227 pixels while MobileNetV2, ResNet18, ResNet101, 

VGG19, and DenseNet201 require images resized to 224 × 224 pixels. 

InceptionV3 requires images resized to 299×299 pixels. All images were 

resized according to the pre-trained model standards. 

After that, the dataset was normalized within a range of 0 and 1. 

Every pixel of images present in the dataset was multiplied by a factor of 

1/255. This has been done to make the dataset consistent in terms of pixel 

intensity. Before proceeding to the next phase, the dataset was split into three 

parts: the training set (66.67%), the validation set (16.67%), and the testing set 

(16.67%). 

 

Steps 6, 7: Select and Initialize Pre-trained CNN model, Replace Last 

Fully Connected Layer 

This project evaluated eleven pre-trained CNN models, including five 

comparatively shallow networks (ResNet50V2, MobileNetV2, VGG16, 

Xception, and DenseNet121) and six deep networks (ResNet152, InceptionV3, 

Inception ResNetV2, VGG19, DenseNet201, and NasNetLarge). After pre-

processing the data, a pre-trained CNN model was selected to instantiate the 

model's convolutional base, retaining both its initial architecture and all 

learned weights. The model's hyper-parameters were initialized, including the 

optimizer, learning rate, batch size, epoch, and dropout rate. The last fully 

connected layer of the pre-trained CNN was replaced with a new fully 

connected layer with three prediction classes, and only the fully connected 

layer was trained while the remaining layers' weights were frozen. 
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Step 8: Hyperparameter Tuning for CNN model using K-Fold Cross 

Validation 

To overcome the limitations of computing resources, the training set of 14,400 

images was divided into four subsets, each containing 3,600 images. Then, the 

deep learning model was trained and fine-tuned on the first subset of 3,600 

images. To optimize the model's hyperparameters, a 5-fold cross-validation 

approach was used. The first subset was randomly divided into 5 folds, where 

4 out of the 5 folds were used for training the CNN model, and the other fold 

was used for validation. This approach of validation was repeated 5 times by 

shifting the validation and training folds. The average result was calculated 

based on the result of each individual fold, and the configuration with the 

highest validation accuracy was considered the optimum set of 

hyperparameters. 

 

Step 9: Compile CNN Model 

After fine-tuning and optimizing the hyperparameters of the deep learning 

model on the first subset, the model was compiled with the optimal set of 

hyperparameters and was saved for the next round of training with the second 

subset of 3,600 images. Steps 8 and 9 were repeated for the remaining subsets 

of the training set, each compiled with their respective optimal set of 

hyperparameters. 

 

Steps 10, 11: Feature Extraction, Pass Feature Vectors to Machine 

Learning Classifier 

After finishing the training of the deep learning model on all four subsets of 

the training set, the model was used to extract features in the CXR images. The 

final feature representation obtained was interpreted as a one-dimensional 

vector. These acquired feature vectors were then fed into a machine learning 

predictive classifier to perform the classification task. For this purpose, the 

XGBoost classifier was utilized to classify the CXR images into three 

categories: COVID-19, Normal, and Pneumonia. 
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Step 12: Training and Performance Evaluation 

During this step, the XGBoost classifier was tested on CXR images that had 

not been shown to the model during previous training steps. The performance 

of the model in predicting new cases was examined, and the generalization 

ability was investigated. To evaluate the efficacy of the model, the confusion 

matrix, along with Area under Curve (AUC), were estimated to gain an 

understanding of the proposed methodology and its potential for detailed 

classification. Different metrics, such as accuracy, sensitivity, specificity, 

precision, F1-Score, False Positive Rate, AUC, MAE, and RMSE, were used 

to measure the usefulness and productivity of the classification model. 

 

Step 13: Repeat Step 6 – 12 for other DL Models 

Repeated the steps outlined in Step 6 through 12 for all the remaining deep 

learning models. 

 

Step 14: Select Top 3 DL Model and Apply Majority Voting Approach 

Selected the top three deep learning models based on their accuracy and 

applied a majority voting approach to their predictions to obtain the final 

prediction. 
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CHAPTER 4 

 

EXPERIMENTAL RESULTS 

 

4.1 Performance Evaluation of the Best Performing Model for Each 

Approach 

 

The performance metrics of the best performing model from each approach 

were evaluated in the following aspects. 

 

4.1.1 Accuracy Evaluation 

 

Eleven deep learning models were trained using three approaches, i.e., single 

deep learning model approach, incrementally learned single deep learning 

model approach, and incrementally learned multiple deep learning models 

with majority voting approach. Table 4.1 presents the prediction accuracy for 

the best-performing models for each approach. It shows that the incrementally 

learned multiple deep learning models with majority voting approach using 

ResNet152V2, DenseNet201, and VGG16 outperformed the single deep 

learning model approach by about 3.22% and performed relatively better than 

the incrementally learned single deep learning model approach by about 

0.02%. 

 

Table 4.1: Overall Prediction Accuracy. 

Best Performing Model Accuracy (%) 

Single model: 

ResNet152V2 + XGBoost 
91.36 

Incremental learned model: 

ResNet152V2 + XGBoost 
94.56 

Voting: 

i) ResNet152V2 + XGBoost 

ii) DenseNet201 + XGBoost 

iii) VGG16 + XGBoost 

94.58 
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However, for a multiclass problem, judging a model's effectiveness 

solely on higher accuracy is insufficient. It is necessary to consider the other 

two important class-level metrics, namely, sensitivity and positive predictive 

value (PPV) as well. 

 

4.1.2 Sensitivity Evaluation 

 

In medical analysis, the sensitivity of a disease can be interpreted as the 

proportion of people with a certain disease that have been successfully 

identified. Taking COVID-19, for example, achieving a high sensitivity is 

quite important since no affected people should be omitted during COVID-19 

testing; otherwise, the affected people who have been omitted cannot receive 

immediate treatment, and they can affect others. Table 4.2 gives a sensitivity 

analysis of the best-performing model for each approach concerning each class 

type. It can be observed that it is seldom to have a model that works best for 

all three classes. For example, the incrementally learned single deep learning 

model has the highest sensitivity in the Normal class but not for two other 

class types. In comparison, the incrementally learned multiple deep learning 

models with majority voting obtained the highest sensitivities for both the 

Pneumonia and COVID-19 classes, although its sensitivity for the Normal 

class is not the best across all models. From a practical point of view, there is 

no doubt to consider the voting approach since highly sensitive screening for 

infectious diseases such as COVID-19 is very important. 

 

Table 4.2: Sensitivities of the Best Performing Model for Each Approach 

in Each Class. 

Sensitivity (%) 

Best Performing Model Normal Pneumonia COVID-19 

Single model: 

ResNet152V2 + XGBoost 

91.00 93.00 86.00 

Incremental learned model: 

ResNet152V2 + XGBoost 

97.00 92.00 88.00 
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Voting: 

i) ResNet152V2 + XGBoost 

ii) DenseNet201 + XGBoost 

iii) VGG16 + XGBoost 

96.00 97.00 89.00 

 

 

4.1.3 PPV Evaluation 

 

Positive predictive value (PPV) denotes the probability of positive results that 

are true positive results in diagnostic tests. If this value is low, there are many 

false positives, and follow-up testing is required for a more reliable result. For 

COVID-19 screening, if a model's PPV is low, it cannot be judged or 

confirmed that a person with a positive test result is a true COVID-19 case, 

and additional accurate testing is necessary. Table 4.3 presents the PPV 

analysis for the best-performing model of each approach on each class type. 

Still, no model performs the best for all class types. The incrementally learned 

single deep learning model has the highest PPV for the pneumonia class, while 

the majority voting approach achieves the highest PPVs for the Normal and 

COVID-19 classes. 

 

Table 4.3: PPV of the Best Performing Model for Each Approach in Each 

Class. 

Positive Predictive Value (%) 

Best Performing Model Normal Pneumonia COVID-19 

Single model: 

ResNet152V2 + XGBoost 

86.00 92.00 93.00 

Incremental learned model: 

ResNet152V2 + XGBoost 

94.00 97.00 86.00 

Voting: 

i) ResNet152V2 + XGBoost 

ii) DenseNet201 + XGBoost 

iii) VGG16 + XGBoost 

97.00 89.00 96.00 
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In summary, although no model outperformed others on all metrics 

for all class types, the incrementally learned multiple deep learning models 

with majority voting approach is the best choice for COVID-19 case detection 

since it performs relatively better than others on accuracy, sensitivity, and PPV 

for the COVID-19 class type. 

 

4.2 Further Performance Evaluation of Incrementally Learned 

Multiple Deep Learning Models with Majority Voting Approach 

 

In this section, the incrementally learned multiple deep learning models with 

majority voting approach was further evaluated from various perspectives, 

including confusion matrix, ROC curves, and training and validation loss. 

 

4.2.1 Confusion Matrix 

 

Figure 4.1 presents the confusion matrix for the proposed approach analysing 

the test dataset, which consists of CXR images of 1200 COVID-19 cases, 1200 

pneumonia cases, and 1200 normal cases. For COVID-19 testing, only 124 out 

of 1200 CXR images of COVID-19 were not detected correctly, and 15 out of 

3600 CXR images were mistakenly identified as COVID-19. This indicates 

that the error ratio is relatively small compared to the total number of CXR 

images. 
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Figure 4.1: The Confusion Matrix for the Incrementally Learned Multiple 

Deep Learning Models with Majority Voting on the test 

dataset containing 1200 normal cases, 1200 pneumonia cases, 

and 1200 COVID-19 cases. 

 

4.2.2 ROC Curves 

 

To show the detection capability of the incrementally learned multiple deep 

learning models with majority voting approach, ROC curves were generated to 

depict its prediction on the test dataset with respect to each class type, as 

shown in Figure 4.2. A larger area under the ROC curve indicates a better 

prediction ability. It can be observed that the ROC area for each class under 

COVID-19 is much closer to the maximum value of one, indicating that the 

proposed method has a good prediction capability for COVID-19 in practice. 
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Figure 4.2: ROC curves of the Incrementally Learned Multiple Deep 

Learning Models with Majority Voting approach for 

Prediction on the Test Dataset with Respect to Each Class 

Type. 

 

4.2.3 Training and Validation Loss 

 

The proposed approach with ResNet152, DenseNet201, and VGG16 (the 

combination of the best performer) has shown good learning curves, as can be 

observed from Figure 4.3, 4.4, and 4.5, which depict the training and 

validation loss for each individual model. The learning curves provide insight 

into how the learning performance changes over the number of epochs and 

help diagnose any problems that can lead to an underfit or an overfit model. 

The training and validation loss gradually decrease over the number of epochs 

and reach a point of stability, indicating good fits. Moreover, the 

generalization gap between the training and validation loss learning curves is 

minimal (nearly zero in an ideal situation), indicating that the model is not 

overfitting the data and can generalize well to new, unseen data. These 

findings suggest that the proposed approach is highly promising and could 
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perform exceptionally well in real-world scenarios. As such, this model can be 

confidently tested in actual environments, and it can be expected to produce 

favourable outcomes. 

 

 

Figure 4.3: Training and Validation Loss for ResNet152. 

 

 

Figure 4.4: Training and Validation Loss for DenseNet201. 
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Figure 4.5: Training and Validation Loss for VGG16. 
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CHAPTER 5 

 

CONCLUSIONS 

 

The COVID-19 coronavirus is a recent virus that leads to pneumonia, which 

can be detected using CXR images. This paper investigated the use of (i) 

single CNNs, (ii) incrementally learned single CNNs, and (iii) incrementally 

learned multiple CNNs with majority voting to extract features from CXR 

images. Then, an XGBoost classifier was used with each of these CNNs to 

detect COVID-19. The proposed model addressed the limitations of computing 

resources by using an incrementally learned approach and provided a robust 

solution for detecting COVID-19 from CXR images. Additionally, the use of 

majority voting approach slightly improved the detection accuracy. The 

dataset used in this research consisted of 22,900 CXR images with three 

categories: Normal, Pneumonia, and COVID-19. The dataset is split into 66.67% 

for training, 16.67% for validation, and 16.67% for testing. Through the paper, 

eleven pretrained CNNs (ResNet50V2, ResNet152, DenseNet121, 

DenseNet201, VGG16, VGG19, MobileNetV2, Inception ResNetV2, 

InceptionV3, Xception, NasNetLarge) were selected as deep transfer learning 

models. The results show that using the XGBoost classifier with incrementally 

learned single CNN and incrementally learned multiple CNNs gave good and 

comparable detection accuracy (94.56% and 94.58%). The best performer was 

the incrementally learned multiple CNNs with majority voting, which used 

ResNet152, DenseNet201, and VGG16. These results demonstrate the 

effectiveness of our proposed method in detecting COVID-19 from CXR 

images and its potential for clinical applications. 
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