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ABSTRACT

The Corona Virus Disease-2019 (COVID-19) has had a profound impact on
the world and thus creates awareness of the need for a fast and accurate
diagnosis if a similar outbreak occurs again. Chest X-Ray (CXR) is widely
used to detect COVID-19 manually, but it is time-consuming and prone to
errors, especially when the outbreak is severe. Deep Learning (DL) algorithms,
i.e., Convolutional Neural Networks (CNNs), have shown promising results in
automatically detecting COVID-19. This project used (i) single CNNs, (ii)
incrementally learned CNNs, and (iii) incrementally learned multiple CNNs
with majority voting to extract features from CXR images. Then, an XGBoost
classifier was used with each of these CNNs to detect COVID-19. A dataset
consisting of 22,900 images was used for training (66.67%), validation
(16.67%), and testing (16.67%). The results show that using XGBoost
classifier with incrementally learned and incrementally learned multiple CNNs
gave good and comparable detection accuracy (94.56% and 94.58%). The best
performer — incrementally learned multiple CNNs with majority voting used
ResNet152, DenseNet201, and VGG16.
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CHAPTER 1

INTRODUCTION

The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a
devastating effect on the health and well-being of the global population,
caused by the infection of individuals by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). A critical step in the fight against
COVID-19 is effective screening of infected patients, such that those infected
can receive timely treatment and care, as well as be isolated to prevent the
virus from spreading. The primary screening method used for detecting
COVID-19 cases is reverse transcriptase-polymerase chain reaction (RT-PCR)
testing, which can detect SARS-CoV-2 ribonucleic acid (RNA) from
respiratory specimens (collected through a variety of means such as
nasopharyngeal or oropharyngeal swabs) (Wang et al., 2020). While RT-PCR
testing is the gold standard as it is highly specific, it is a very time-consuming,
tedious, and complicated manual process that is in short supply. Besides, the
sensitivity of RT-PCR testing is highly variable and has yet to be reported in a
clear and consistent manner, and preliminary findings in China show rather
poor sensitivity (West et al., 2020; Fang et al., 2020). Furthermore, subsequent
findings showed highly variable positive rates depending on how the specimen
was collected as well as decreasing positive rates with time after symptom
onset (Yang et al., 2020; Wikramaratna et al., 2020).

Radiography examination is an alternative screening method that has
also been used for COVID-19 screening, where radiologists conduct and
analyse chest radiography imaging (e.g., chest X-ray (CXR) or computed
tomography (CT) imaging) to look for visual indicators associated with SARS-
CoV-2 viral infection. Early investigations discovered that patients with
COVID-19 infection have anomalies in chest radiography images, with some
suggesting that radiography examination could be utilised as a primary tool for
COVID-19 screening in epidemic areas (Ng et al., 2020; Huang et al., 2020;
Guan et al., 2020; Ai et al., 2020). Motivated by this and inspired by the open
source and open access efforts of the research community and intrigued in

exploring the efficacy of Al systems leveraging the more readily available and



accessible CXR imaging modality, in this project | develop deep convolutional
neural network models tailored for the detection of COVID-19 cases from
chest X-ray (CXR) images that is open source and available to the general
public. Thus, this project initiative finally contributes to the national
development planning in terms of Shared Prosperity Vision (SPV) 2030 and
10-10 MySTIE. In the view of SPV 2030, the development of an automated Al
screening system is in line with KEGA 3: Fourth Industrial Revolution (IR
4.0), which includes big data, artificial intelligence, augmented reality (AR)
and machine learning. In the view of 10-10 MySTIE, this project clearly
contributes to both Science & Technology Drivers and Socio-Economic
Drivers on Advanced Intelligent Systems and Medical & Healthcare,
respectively. In the international view, this project aligns with Sustainable
Development Goals (SDGs), a universal call to achieve a better and more
sustainable future for all. Through the lens of SDG, this project aligns with
SDG Goal #3: Good Health and Well-being by providing a technological
solution to the health issue — the spread of communicable disease. It also has
an education dimension (SDG 4) to the reader on how deep learning is helping
to fight COVID-19.

1.1 Problem Statement

1.1.1  Limited X-ray images related to COVID-19

Deep learning techniques require a large amount of data for training and
testing. Deep learning models trained on limited datasets are not generalized,
and thus, such models are not reliable (Alzubaidi et al., 2021). Most existing
approaches for classifying COVID-19 cases depend on pre-trained deep
classification networks like ResNet50, InceptionV3, etc. One of the main
issues with these approaches is that they do not consider the limited dataset of
COVID-19 cases (Calli et al., 2021). In addition, these off-the-shelf models
are prone to over-fitting issues in a limited dataset regime which is the case for
the task of properly detecting COVID-19 from existing (limited) lung CT/X-

ray images. Such an issue arises in deep learning-based models when the



capacity of the networks (number of trainable parameters) is much larger than
the amount of information at hand (Bejani and Shatee, 2021).

However, acquiring datasets for training deep learning models is not
easy, as no high-quality public database of X-ray images for COVID-19
patients is currently available. Considering the fast growth of the disease,
public high-quality and well-annotated datasets are non-existent at this point
(Cohen et al., 2020). In fact, even in private or hospital-owned cases where
datasets are compiled, the datasets are very limited and still under
development. This is exacerbated by the limited number of studies and
expertise in properly labelling and annotating the existing data, which in turn
directly affects the performance of the underlying model in both the training
and testing phase, making it difficult to train a high-capacity network and to
properly assess its performance in real-world applications (Robinson et al.,
2021). As a result, model-based or domain-knowledge-aware methods must be
considered to cope with such dataset scarcities as well as deficiencies. Thus, in
this project, | collect a large-scale multi-class dataset from various online
sources comprising 33,920 chest X-ray images: 11,956 images from confirmed
COVID-19 cases, 11,263 images with confirmed bacterial or viral pneumonia

cases, and 10,701 images of healthy people.

1.1.2  Slow detection by medical experts

The outbreak of COVID-19 has placed immense pressure on imaging
departments, which are tasked with reading thousands of cases daily. Typically,
patients and clinicians must wait for hours to receive imaging results, making
it difficult to immediately screen and diagnose suspected patients, particularly
in settings with limited medical resources (Rubin et al., 2020). Therefore, the
development and deployment of automated screening tools that can accelerate
large-scale screening and improve clinical diagnosis efficiency are crucial.
Computational imaging-based procedures, such as chest X-ray, can provide
more rapid diagnosis and limit the spread of COVID-19, especially since test
Kit results are not instant (Jacofsky et al., 2020). Thus, advanced Al-aided

chest X-ray diagnosis systems are urgently needed to accurately confirm



suspected cases, conduct virus surveillance, and screen patients for further
diagnosis and treatment (Song et al., 2021).

The manual screening process for COVID-19 is further complicated
by the fact that some features are difficult to detect by human eyes. This is
where deep learning models can play a critical role, as they can identify
complex patterns and subtle features that are not easily discernible by humans.
The development of various deep learning models for chest X-ray image
analysis can help radiologists in triaging, analysing, and assessing cases
associated with the disease, ultimately enhancing the efficiency of clinical

diagnosis.

1.1.3  Limited computing resources for training deep learning models

using large datasets

Training deep learning models on large datasets can be a challenging task,
primarily due to the significant computational resources required. The process
can be excessively expensive and time-consuming, particularly for researchers
or organizations with limited resources.

Moreover, the process of training a deep learning model on a large
dataset is iterative, requiring multiple passes through the entire dataset to
optimize the model's performance. This process can take days, weeks, or even
months, making it difficult to iterate quickly and efficiently.

Another challenge is that the memory requirements for training deep
learning models on large datasets can be substantial. This can limit the size of
the model or the size of the dataset that can be used, leading to suboptimal
performance or biased results.

Overall, the main challenges in training deep learning models on
large datasets are the high computational cost and time required, as well as the
potential limitations in model size and complexity. Thus, in this project, |
proposed an approach to overcome these challenges by breaking down the
dataset into subsets and incrementally training the deep learning model while
leveraging the power of majority voting to combine their outputs. This allows
for more efficient use of computational resources while also providing a more

robust representation of the data.



1.2 Aim and Objectives

The project aims to propose a deep learning solution for automated COVID-19
detection to reduce the burden on healthcare systems and professionals.

The objectives of the project are as follows:

- to collect a minimum of 30,000 x-ray images related to COVID-19 from
various online datasets.

- to train deep learning models: single models, incrementally learned single
models, and incrementally learned multiple models with majority voting, using
the collected x-ray images.

- to evaluate the deep learning models and select the best performer using

performance metrics such as accuracy, precision, recall, and F1 score.

1.3 Scope and Limitation of Study

This project served as a comprehensive guide for researchers, healthcare
professionals, and developers involved in the development of deep learning
solutions for automated COVID-19 detection using chest X-ray (CXR) images.
It focused on exploring different training techniques in deep learning models
for COVID-19 detection, specifically: (i) single CNNSs, (ii) incrementally
learned single CNNs, and (iii) incrementally learned multiple CNNs with
majority voting.

This project contributed to the understanding of training techniques
and their impact on the accuracy and effectiveness of deep learning models for
automated COVID-19 detection. By analyzing and evaluating the performance
of these approaches using performance metrics such as accuracy, precision,
recall, and F1 score, the study aimed to identify the most effective approach
for automated COVID-19 detection. The insights gained from this study
served as a guide for researchers and practitioners in making informed
decisions when developing accurate and reliable COVID-19 detection systems
using CXR images.

In summary, this project provided an exploration of different training

techniques in deep learning models for automated COVID-19 detection using



CXR images. By evaluating their performance and discussing their capabilities,
the study aimed to facilitate informed decision-making in the development of
accurate and efficient COVID-19 detection systems.



CHAPTER 2

LITERATURE REVIEW

The World has experienced outbreaks of coronavirus infections during the last
two decades: (i) the severe acute respiratory syndrome (SARS)-CoV outbreak
in 2002-2003 from Guangdong, China; (ii) the Middle East respiratory
syndrome (MERS)-CoV outbreak in 2011 from Jeddah, Saudi Arabia; and (iii)
coronavirus disease 2019 (COVID-19) or SARS-CoV-2 outbreak from Wuhan,
China, in December 2019. According to the Centers for Disease Control and
Prevention (CDC), SARS was first reported in Asia in February 2003. The
illness spread to 29 countries, where 8,096 people got SARS and 774 of them
died (10%). The SARS global outbreak was contained in July 2003. MERS is
a viral respiratory disease that was first reported in Saudi Arabia in September
2012 and has since spread to 27 countries. According to the World Health
Organization (WHO), as of March 2023, there are 604 confirmed MERS cases
and 36% (936) of these patients have died. Even though all three diseases are
from the same family of coronavirus, the genomic sequence of COVID-19
showed similar but distinct genome composition from its predecessors SARS
and MERS (Prompetchara, Ketloy and Palaga, 2020; Kumar et al., 2020).
Despite a lower fatality rate of COVID-19, i.e., around 3%, when compared to
SARS (10%) and MERS (36%), as depicted in Table 1, COVID-19 has
resulted in many fold deaths (> 6.3 million already) than combined deaths of
MERS and SARS (Mahase, 2020). The recent outbreak of COVID-19 was and
still is an extremely infectious disease that has spread all over the World,
forcing the WHO to declare it a pandemic on 11th March 2020.

Table 2.1: Details of coronavirus.

CoV Year Origin Mortality rate
SARS 2002 Guangdong 10%
province, China
MERS 2013 Saudi Arabia 34%
COVID-19 2019 Wuhan, China 3.4%




Among the causing pathogens for respiratory diseases, CoV has
become the most dangerous one because of its serial interval (5 to 7.5) and
reproductive rate (2 to 3) (Nishiura, Linton and Akhmetzhanov, 2020). The
CoV belongs to single-stranded RNA viruses (+ssRNA) family mostly
observed in animals (Perlman and Netland 2009; Chan et al., 2013). However,
they can be transmitted to humans, which can cause severe and often fatal
respiratory diseases in their new host. Severe cases of coronavirus disease
result in acute respiratory distress syndrome (ARDS) or complete respiratory
failure, which requires support from mechanical ventilation and an intensive-
care unit (ICU). People with a compromised immune system or the elderly are
more likely to develop serious illnesses, including heart and kidney failures
and septic shock (Pormohammad et al., 2020). In general, COVID-19 spreads
more quickly than SARS and has symptoms like other coronaviruses. Figure
2.1 shows the distribution of COVID-19 cases and deaths worldwide, as of 3rd
July 2022 (European Centre for Disease Prevention and Control, 2022).

240.000,000 7

220.000,000
210.662.894

200,000,000 T

180,000,000 7
169.111.253
164.223.256

160,000,000
140,000,000 1

120.000.000

Number of cases

100.000,000
$0.000,000 7
60,000,000
40,000,000

N J
20.000.000 | 15 440 515 10.564.754

256.414 1.443.039 2.807.139 1.864.870 15.130

o0
Africa Asia America Europe Ocenia

- Cases Deaths

Figure 2.1: COVID-19 cases and deaths worldwide, as of 17th July 2022.

The diagnostic tools to detect COVID-19 are currently reverse
transcription of polymerase chain reaction (RT-PCR) assays and chest imaging

techniques, such as Computed Tomography (CT) and X-ray imaging.
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Primarily, RT-PCR has become the gold standard in the diagnosis of COVID-
19 (Kakodkar, Kaka and Baig, 2020; Li et al., 2020). However, RT-PCR
arrays have a high false alarm rate which may be caused by the virus
mutations in the SARS-CoV-2 genome, sample contamination, or damage to
the sample acquired from the patient (Tahamtan and Ardebili, 2020; Xia et al.,
2020). In fact, it is shown in hospitalized patients that RT-PCR sensitivity is
low, and the test results are highly unstable (Li et al., 2020; Xiao, Tong and
Zhang, 2020; Yang et al., 2020; World Health Organization, 2020). Therefore,
it is recommended to perform chest CT imaging initially on the suspected
COVID-19 cases since it is a more reliable clinical tool in the diagnosis with
higher sensitivity compared to RT-PCR (Salehi et al., 2020). Hence, several
studies suggest performing CT on the negative RT-PCR findings of the
suspected cases (Salehi et al., 2020; Fang et al., 2020; Ai et al., 2020).
However, there are several limitations of CT scans. Their sensitivity is limited
in the early COVID-19 phase groups, and they are limited to recognising only
specific viruses, slow in image acquisition, and costly (Bernheim et al., 2020;
Li and Xia, 2020). On the other hand, X-ray imaging is faster, cheaper, and
less harmful to the body in terms of radiation exposure compared to CT (Narin,
Kaya and Pamuk, 2021; Brenner and Hall, 2007). Moreover, unlike CT
devices, X-ray devices are easily accessible; hence, reducing the risk of
COVID-19 contamination during the imaging process (Rubin et al., 2020).
Currently, Chest X-ray (CXR) imaging is widely used as an assistive tool in
COVID-19 prognosis, and it has been reported to have a potential diagnosis
capability in recent studies (Shi et al., 2020).

In order to automate COVID-19 detection from CXR images, many
studies have proposed to use deep learning, especially Convolutional Neural
Networks (CNNs) (Narin, Kaya and Pamuk, 2020; Chowdhury, Rahman and
Kabir, 2020; Pham, 2021; Chowdhury et al., 2020; Apostolopoulos and
Mpesiana, 2020; Hall et al., 2020; Wang, Lin and Wong, 2020; Sethy and
Behera, 2020; Zhang et al., 2020; Afshar et al., 2020). However, the main
limitation of these studies is that the data is scarce for the target COVID-19
class. Such a limited amount of data degrades the learning performance of the
deep networks. Thus, in the following section, I will discuss how a large-scale

multi-class dataset is collected from various online sources in our project.
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2.1 Dataset

The dataset used to train and test the proposed deep learning models comprises
33,920 CXR images with 11,956 COVID-19 cases, 11,263 non-COVID
infections (viral or bacterial pneumonia) cases, and 10,701 Normal (healthy)
cases. To generate the dataset, | combined nine different publicly available
data repositories: (1) COVID-19 image data collection, (2) SIRM COVID-19
DATABASE, (3) BIMCV-COVID-19+ (Spain), (4) COVID-19 Image
Repository, (5) RSNA pneumonia detection challenge dataset, (6) Chest X-
Ray Images (pneumonia), (7) PadChest dataset, (8) Montgomery County chest
X-ray dataset, and (9) Shenzhen chest X-ray dataset.

The choice of these nine datasets from which to create the dataset is
guided by the fact that all nine datasets are open source and fully accessible to
the research community and the general public. Section 2.1.1 overviews
COVID-19 oriented datasets, whereas Section 2.1.2 overviews non-COVID-19

oriented datasets.

2.1.1  Chest X-ray datasets containing COVID-19 samples

2.1.1.1 COVID-19 Image Data Collection

The COVID-19 Image Data Collection is a collection of anonymized COVID-
19 images acquired from websites of medical and scientific associations and
research papers (Cohen et al., 2020; Giovagnoni, 2020; Societa Italiana di
Radiologia Medica e Interventistica, 2020). The dataset was created by
researchers from the University of Montreal with the help of the international
research community to ensure that it will be continuously updated. Nowadays,
the dataset includes 646 X-ray images of patients affected by COVID-19 and
other diseases, such as MERS, SARS, and ARDS. Each image is assigned a
diagnosis of respiratory disease, with a strong focus on COVID-19 (currently
468 out of 646) and very few cases of no finding (20). Additionally, the
dataset contains global severity scores for 100 images created in a post hoc

analysis of images according to a severity scheme (Cohen et al., 2020).
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2.1.1.2 Italian Society of Medical and Interventional Radiology (SIRM)
COVID-19 DATABASE

The SIRM COVID-19 database reports 384 COVID-19 positive radiographic
images (CXR and CT) with varying resolutions. Out of 384 radiographic
images, 94 are chest X-ray images, and 290 are lung CT images. This database
is updated in a random manner and until 10" May 2020, there were 71
confirmed COVID-19 cases were reported in this database.

2.1.1.3 BIMCV-COVID-19+ (Spain)

BIMCV COVID-19+ (Spain) is a large dataset from the Valencian Region
Medical ImageBank (BIMCV) containing chest X-ray images CXR (CR, DX)
and computed tomography (CT) imaging of COVID-19+ (positive) patients
along with their radiological findings and locations, pathologies, radiological
reports (in Spanish) and other data (Vaya et al., 2020). The images provided
are 16 bits in png format. The new iteration of the database includes 7,377 CX,
9,463 DX and 6,687 CT studies from 1,311 COVID-19+ patients. | am using a
total of 11,177 COVID-19 chest X-ray images from this dataset.

2.1.1.4 COVID-19 Image Repository

This dataset is from the Institute for Diagnostic and Interventional Radiology
(Hannover, Germany), contains 240 chest-Xray images (CR, DX) from 71
patients at different timepoints in the course of COVID-19 (Winther et al.,
2020). It contains metadata including scanning view (AP vs PA), patient
master data, laboratory data and longitudinal information on admission, ICU-
admission, and death. The dataset contains raw, unprocessed, gray value image
data as Nifti files.
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2.1.2  Chest X-ray datasets without COVID-19 samples

2.1.2.1 RSNA Pneumonia Detection Challenge Dataset

The RSNA Pneumonia Detection Challenge is a competition that aims to
locate lung opacities on chest radiographs (Radiological Society of North
America, 2020). This dataset is a subset of 30k images from the ChestXray-
NIH dataset with an enrichment of images with a Pneumonia related diagnosis.
This dataset offers images for two classes: Normal and Pneumonia (non-
normal). All images are 8-bit grayscale with 1024 x 1024 resolution in
DICOM format. | am using a total of 8,311 images from this dataset, of which
4,954 are from the normal class and 3,357 are from the pneumonia class.

2.1.2.2 Chest X-Ray Images (pneumonia)

Kaggle chest X-ray database is a very popular database, which has 5,247 chest
X-ray images of normal, viral and bacterial pneumonia with resolution varying
from 400p to 2000p (Kermany et al., 2018). Out of 5,247 chest X-ray images,
3,906 images are from different subjects affected by pneumonia (2,561 images
for bacterial pneumonia and 1,345 images for viral pneumonia) and 1,341

images are from normal subjects.

2.1.2.3 PadChest Dataset

The PadChest dataset has 160,868 CXRs from 109,931 studies and 67,000
patients (Bustos et al., 2020). The dataset includes six different position views
of CXR and additional information regarding image acquisition and patient
demography. The images are stored as 16-bit grayscale images with full
resolution. 27,593 of the reports were manually labelled by physicians. Using
these labels, an RNN was trained and used to label the rest of the dataset from
the reports. The reports were used to extract 174 findings, 19 differential
diagnoses, and 104 anatomic locations. The labels conform to a hierarchical
taxonomy based on the standard Unified Medical Language System (UMLS)
(Bodenreider, 2004).
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2.1.2.4 Montgomery County Chest X-ray Dataset (MC)

This pre-COVID-19 pandemic dataset contains 138 frontal chest images
collected in the department of health and human services, Montgomery
Country, Maryland, USA (Jaeger et al., 2014). To each image, a short
radiological report and a disease diagnosis are assigned (58 images with
tuberculosis manifestations and 80 normal), as well as a lung segmentation
annotation automatically generated under the supervision of a radiologist using
anatomical landmarks (Candemir et al., 2013). The images themselves contain
written markings of the scanning view (AP and PA) and there is additional
metadata about gender and age.

2.1.2.5 Shenzhen Chest X-ray Dataset

This dataset, released together with the Montgomery dataset, and the CXR
images are collected from Shenzhen No.3 Hospital in Shenzhen, Guangdong
province, China in September 2012. It contains 662 frontal X-rays, of which
326 are normal and 336 contain TB manifestations. The images, including
some pediatric images, are distributed as 8-bit grayscale with full resolution
and are annotated for signs of tuberculosis. Additionally, metadata includes

sex, age, and a short radiological description (Jaeger et al., 2014).

2.1.3 Summary

To summarise, | created this dataset by combining nine separate publicly
available data repositories, as depicted in table 2. In this study, only posterior-
to-anterior (PA) or anterior-to-posterior (AP) chest X-rays were considered, as
this view of radiography is preferred and widely used by the radiologist,
whereas a lateral image is usually taken to complement the frontal view. Thus,
they were excluded from this study. This dataset was created by utilizing nine
publicly available datasets and repositories, all of which are scattered, and
with varying formats. The quality of the dataset was ensured through a
rigorous quality control process where duplicates, extremely low-quality, and

over-exposed images were identified and removed. The resulting dataset thus
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comprises images of high interclass dissimilarity with few varying resolutions,

quality, and signal-to-noise ratio (SNR) levels.

Table 2.2: Summary of the datasets used, mainly focusing on COVID-19,

Pneumonia, and Normal. Other classes are stated in the

remark.
Dataset COVID-19 | Pneumonia | Normal | Total Remarks
Name
COVID-19 | 468 - - 468 Other
Image Data classes:
Collection MERS,
SARS,
ARDS, and
Normal
SIRM 71 - - 71 Other
COVID-19 classes:
DATABAS Normal
E
BIMCV- 11,177 - - 11,177 | Other
COVID- classes:
19+ N/A
COVID-19 | 240 - - 240 Other
Image classes:
Repository N/A
RSNA - 3,357 4,954 |8,311 Other
Pneumonia classes:
Detection N/A
Challenge
Chest  X-|- 3,906 1,341 | 5,247 Other
Ray Images classes:
(pneumonia N/A  Viral
) and
bacterial
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2.2 Deep Learning

2.2.1  From Traditional Machine Learning to Deep Learning

In recent years, machine learning has become more and more popular in
research and has been incorporated into a large number of applications,
including multimedia concept retrieval, image classification, video
recommendation, social network analysis, text mining, and so forth. Among
various machine learning algorithms, “deep learning,” also known as
representation learning, is widely used in these applications (Deng, 2014). The
explosive growth and availability of data and the remarkable advancement in
hardware technologies have led to the emergence of new studies in distributed
and deep learning. Deep learning, which has its roots in conventional neural
networks, significantly outperforms its predecessors. It utilizes graph
technologies with transformations among neurons to develop many-layered
learning models. Many of the latest deep learning techniques have been
presented and have demonstrated promising results across different kinds of
applications, such as Natural Language Processing (NLP), visual data
processing, speech and audio processing, and many other well-known
applications (Yan et al., 2017; Yan et al., 2015).

Traditionally, the efficiency of machine-learning algorithms highly
relied on the goodness of the representation of the input data. A bad data
representation often leads to lower performance compared to a good data
representation. Therefore, feature engineering has been an important research
direction in machine learning for a long time, which focuses on building
features from raw data and has led to lots of research studies. Furthermore,
feature engineering is often very domain specific and requires significant
human effort. For example, in computer vision, different kinds of features
have been proposed and compared, including Histogram of Oriented Gradients
(HOG), Scale Invariant Feature Transform (SIFT), and Bag of Words (BoW)
(Dalal and Triggs, 2005; Lowe, 2019). Similar situations have happened in
other domains including speech recognition and NLP.

Comparatively, deep learning algorithms perform feature extraction

in an automated way, which allows researchers to extract discriminative
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features with minimal domain knowledge and human effort (Najafadabi et al.,
2015). These algorithms include a layered architecture of data representation,
where the high-level features can be extracted from the last layers of the
networks while the low-level features are extracted from the lower layers.
These kinds of architectures were originally inspired by Artificial Intelligence
(Al) simulating its process of the key sensorial areas in the human brain. Our
brains can automatically extract data representations from different scenes.
The input is the scene information received from the eyes, while the output is
the classified objects. This highlights the major advantage of deep learning,
i.e., it mimics how the human brain works.

In conclusion, deep learning is currently a popular research direction
that utilizes convolutional neural networks to extract relevant features through
convolution, pooling, and fully connected layers. These basic structures allow
the network to learn and improve its performance. Many software industries
and relevant areas of research are moving towards deep learning due to its
strong feature extraction ability and learning ability not acquired by traditional
machine learning methods. This feature provides many conveniences for many
studies, eliminating the need for a very complex modelling process. In
addition, deep learning is now showing substantial results and advances in
image classification, object detection, image segmentation, and other areas.
The depth and versatility of learning applications can continue to be expanded

to other applications.

2.2.2  Deep Convolutional Neural Network Architecture

Deep learning techniques have become the main parts of various state-of-the-
art multimedia systems and computer vision (Ha et al., 2015). More
specifically, CNNs have shown significant results in different real-world tasks,
including image processing, object detection, and video processing. This
section discusses the deep CNN architectures with top-5 error rates proposed
over the past few years for visual data processing.

In 1998, LeCun et al. presented the first version of LeNet-5 (LeCun et
al., 1998). LeNet-5 is a conventional CNN that includes two convolutional

layers along with a subsampling layer and finally ends with a full connection
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in the last layer, as depicted in Figure 2.2. Although, since the early 2000s,
LeNet-5 and other CNN techniques were greatly leveraged in different
problems, including the segmentation, detection, and classification of images,
they were almost forsaken by data mining and machine-learning research
groups. More than one decade later, the CNN algorithm started its prosperity
in computer vision communities. Specifically, AlexNet is considered the first
CNN model that substantially improved the image classification results on a
very large dataset (e.g., ImageNet) (Krizhevsky, Sutskever and Hinton, 2012).
Figure 2.3 depicts the architecture of the model. It was the winner of the
ILSVRC 2012 and improved on the best results from the previous years by
almost 10% regarding the top five test errors. To improve the efficiency and
the speed of training, a GPU implementation of CNN is utilized in this
network. Data augmentation and dropout techniques are also used to
substantially reduce the overfitting problem. Nevertheless, there are two major
drawbacks of this model: 1) it requires a fixed resolution of the image; 2) there

is no clear understanding of why it performs so well.
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Figure 2.2: Architecture of LeNet-5.
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Figure 2.3: Architecture of AlexNet.

Since then, a variety of CNN methods have been developed and
submitted to the ILSVRC competition. In 2014, two influential but different
models were presented that mostly focused on the depth of neural networks.
The first one, known as VGGNet, includes a very simple 16-layer CNN, as
shown in Figure 2.4 (Simonyan and Zisserman, 2014). In this network, at each
layer, the spatial size of the input is reduced, while the depth of the network is
increased to achieve a more effective and efficient model. Although VGGNet
was not the winner of the ILSVRC 2014, it still shows a significant
improvement (7.3% top five error) over the previous top models that came
from its two major specifications: simplicity and depth. In contrast to VGGNet,
GoogleNet, the winner of this competition (6.7% error), proposed a new
complex module named “Inception,” allowing several operations (pooling,

convolutional, etc.) to work in parallel (Szegedy et al., 2014).



20

conv1

conv2

conv3
conv4

. convi
fch fcT fcd
g 1% 1x 4096 1% 1% 1000
- 14x14% 512 T
28x28x%512 %7 %512
56 x 56 x 256
convolutional + RelLU
112 % 112% 128 (—f) max pooling

@ fully connected + ReLU

softmax

224 x 224 x84

Figure 2.4: Architecture of VGG16.

The Microsoft deep residual network (known as ResNet) took the
lead in the 2015 competitions including ILSVRC 2015 and in COCO detection
and segmentation tasks by introducing the residual connections in CNNs and
designing an ultra-deep learning model (50 to 152 layers) (He et al., 2016).
This model achieved an incredible performance (3.6% top five error), which
means, for the first time, a computer model could beat human brains (with 5%
to 10% error) in image classification. Contrary to the extremely deep
representation of ResNet, it can handle the vanishing gradients as well as the
degradation problem (saturated accuracy) in deep networks by utilizing
residual blocks (Glorot and Bengio, 2010).

STAGE 1 STAGE 2 STAGE 3 STAGE 4
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Figure 2.5: Architecture of ResNet-50.
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In the last few years, several variations of ResNet have been proposed.
The first group of methods tried to increase the number of layers more and
more. Current CNN models may include more than 1,000 layers (Huang et al.,
2016). Finally, in 2017, ResNeXT was proposed as an extension of ResNet
and VGGNet (Xie et al., 2017). This simple model includes several branches
in a residual block, each performing a transformation that is finally aggregated
by a summation operation. This general model can be further reshaped by
other techniques such as AlexNet. ResNeXT outperforms its original version
(ResNet) using half of the layers and also improves the Inception-v3 as well as
Inception-ResNet networks on the ImageNet dataset. Figure 2.6 demonstrates
the revolution of depth and performance in image classification (e.g.,
ImageNet) over time. The problem of supervised image classification is
regarded as “solved” and the ImageNet classification challenge concluded in
2017.
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Figure 2.6: The network top five errors (%) and layers in the ImageNet

classification over time.

2.2.3  Training

Forward and backward propagation are two important processes in training the

neural network. In general, feedforward means moving forward with provided
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input and weights (assumed in 1st run) till the output. And, backward
propagation, as the name suggests, is moving from output to input. In
backward propagation, | reassign weights based on the loss and then forward
propagation runs. These two processes are independent for the training of the
model.

2.2.3.1 Forward Propagation

In terms of Neural Networks, forward propagation is important, and it will
help to decide whether assigned weights are good to learn for the given
problem statement. There are two major steps performed in forward
propagation technically:

1. Sum the product
It means multiplying weight vectors with the given input
vector (X * w). And then, it keeps going on till the final layer,
where the decision is made.

2. Pass the sum through an activation function
The sum of the product of weight and input vector is passed in
each layer and applies an activation function to produce the
output. The output of one layer becomes the input of the next
layer to be multiplied with weight vectors in that layer. This

process goes on till the output layer activation function.

hidden hidden

output

Figure 2.7: Feedforward Neural Network.
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2.2.3.2 Backward Propagation

In neural networks, backward propagation is one of the important algorithms
for training the feed-forward network. Once passing through the forward
network, the predicted output is obtained to compare with the target output.
Based on this, the total loss can be calculated and concluded whether the
model is good to go or not. If not, the loss value is used to recalculate weights
again for the forward pass. This weight re-calculation process is made simple
and efficient using back-propagation.

In other words, backward propagation is the practice of fine-tuning
the weights of a neural net based on the error rate (i.e., loss) obtained in the
previous epoch (i.e., iteration). Proper tuning of the weights helps us to ensure
lower error rates and make the model reliable by increasing its generalization.

As discussed above, there are two important processes involved in the
training of any neural network: (1) Forward Propagation: Receive input data,
process the information, and generate output. (2) Backward Propagation:
calculate errors and update the parameters of the network. The following

diagram explains how the forward and backpropagation algorithm works.

hidden layer (s)

output

Difference in
desired values

Backprop output layer

Figure 2.8: Forward and Backward Propagation in Neural Network.

1. Inputs X, arrive through the preconnected path.
2. Input is modelled using real weights W. The weights are

usually randomly selected.
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3. Calculate the output for every neuron from the input layer to
the hidden layers, to the output layer.

4. Calculate the error in the outputs:
ErrorB = Actual Output — Desired Output

5. Travel back from the output layer to the hidden layer to adjust
the weights such that the error is decreased.

6. Keep repeating the process until the desired output is achieved.

2.2.4  Hyper-parameter Tuning

Deep learning algorithms are widely applied to various areas, like computer
vision, natural language processing, and machine translation since they have
had great success solving many types of problems. Common types of deep
learning architectures include deep neural networks (DNNs), feedforward
neural networks (FFNNs), deep belief networks (DBNs), convolutional neural
networks (CNNs), recurrent neural networks (RNNs) and many more (Yin et
al., 2017). All these deep learning models have similar hyper-parameters since
they have similar underlying neural network architecture. Compared with
other machine learning models, deep learning models benefit more from
hyperparameter tuning (HPO) since they often have many hyper-parameters
that require tuning.

The first set of hyper-parameters is related to the construction of a
deep learning model. Hence, named model design hyper-parameters. Since all
neural network models have an input layer and an output layer, the complexity
of a deep learning model mainly depends on the number of hidden layers and
the number of neurons in each layer, which are two main hyper-parameters to
build deep learning models (Koutsoukas et al., 2017). These two hyper-
parameters are set and tuned according to the complexity of the datasets or the
problems. Deep learning models need to have enough capacity to model
objective functions (or prediction tasks) while avoiding over-fitting.

On the other hand, some other hyper-parameters are related to the
optimization and training process of deep learning models; hence, they are
categorized as optimizer hyper-parameters. The learning rate is one of the

most important hyper-parameters in deep learning models (Ozaki, Yano and
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Onishi, 2017). It determines the step size at each iteration, which enables the
objective function to converge. A large learning rate speeds up the learning
process, but the gradient may oscillate around a local minimum value or even
cannot converge. On the other hand, a small learning rate converges smoothly,
but will largely increase model training time by requiring more training epochs.
An appropriate learning rate should enable the objective function to converge
to a global minimum in a reasonable amount of time. Another common hyper-
parameter is the dropout rate. Dropout is a standard regularization method for
deep learning models proposed to reduce over-fitting. In dropout, a proportion
of neurons are randomly removed, and the percentage of neurons to be
removed should be tuned.

Batch size and the number of epochs are the other two deep learning
hyper-parameters that represent the number of processed samples before
updating the model, and the number of complete passes through the entire
training set, respectively (Soon et al., 2017). Batch size is affected by the
resource requirements of the training process and the number of iterations. The
number of epochs depends on the size of the training set and should be tuned
by slowly increasing its value until validation accuracy starts to decrease,
which indicates over-fitting. On the other hand, deep learning models often
converge within a few epochs, and the following epochs may lead to
unnecessary additional execution time and over-fitting, which can be avoided
by the early stopping method. Early stopping is a form of regularization
whereby model training stops in advance when validation accuracy does not
increase after a certain number of consecutive epochs. The number of waiting
epochs, called early stop patience, can also be tuned to reduce model training
time.

Apart from traditional deep learning models, transfer learning is a
technology that obtains a pre-trained model on the data in a related domain
and transfers it to other target tasks (Han, Liu and Fan, 2018). To transfer a
deep learning model from one problem to another problem, a certain number
of top layers are frozen, and only the remaining layers are retrained to fit the
new problem. Therefore, the number of frozen layers is a vital hyper-

parameter to tune if transfer learning is used.
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2.2.5 Validation and Testing

In the context of neural networks, the ultimate goal of training a neural
network is to find a set of neural network weights and bias values so that the
input data generates output values that best match the target values. A
simplistic approach would be to use all the available data items to train the
neural network. However, this approach would likely find weights and bias
values that match the data extremely well. In fact, probably with 100 per cent
accuracy. But when presented with a new, previously unseen set of input data,
the neural network would likely predict very poorly. This phenomenon is
called over-fitting. To avoid over-fitting, the idea is to separate the available
data into a training data set (typically 80 per cent to 90 per cent of the data)
that is used to find a set of good weights and bias values, and a test set (the
remaining 10 per cent to 20 per cent of the data) that is used to evaluate the
quality of resulting neural network.

The simplest form of cross-validation randomly separates the
available data into a single training set and a single test set. This is called hold-
out validation. But the hold-out approach is somewhat risky because an
unlucky split of the available data could lead to an ineffective neural network.
One possibility is to repeat hold-out validation several times. This is called
repeated sub-sampling validation. But this approach also entails some risk
because, although unlikely, some data items could be used only for training
and never for testing, or vice versa.

For this reason, some suggest using the K-Fold cross-validation
scheme to accurately describe the predictive performance of neural networks.
K-Fold is a validation technique in which the data is split into K-subsets and
the holdout method is repeated K-times where each K subsets is used as the
test set and the other K-1 subsets are used for the training purpose. Then the
average error from all these K trials is computed, which is more reliable as
compared to the standard handout method. So, with this technique, there is no
need to be concerned about how the data is actually divided. The images

below, i.e., Figure 2.9 and Figure 2.10, give better insights into how it works.
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Figure 2.9: Pie chart represents how data is split in the holdout method.
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Figure 2.10: K-Fold cross-validation.

In K-Fold cross-validation, i.e., Picture 10, the dataset is divided into
five subsets, i.e., K = 5. Each time, one of the subsets or folds is selected as the
testing set, while the remaining folds are used as the training set. Each
iteration represented above is nothing but a holdout method with different
training and testing data. As a result, the advantage of K-fold cross-validation
is that all observations or patterns in the available sample are used for testing
and most of them are also used for training the model. The cross-validation
analysis will yield valuable insights into the reliability of the neural networks

with respect to sampling variation.
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2.2.6  Summary

This section has highlighted how deep learning is getting more popular owing
to its powerful feature extraction and learning abilities that traditional machine
learning methods do not have. It also discussed the deep CNN architectures
with the lowest error rates, beginning from the LeNet model to the ResNeXT
model. The two common methods to learn during training neural networks,
forward and backward propagation, were also covered. Following that, the
section discussed several hyper-parameters that needed to be tuned, including
model design hyper-parameters, function type hyper-parameters, optimizer
hyper-parameters, batch size, number of epochs, and the number of frozen
layers when using transfer learning. Finally, the section introduced the K-Fold

cross-validation method for validation and testing in neural networks.

2.3 Deep Learning Models for COVID-19 Related X-ray

2.3.1 InstaCovNet-19

InstaCovNet-19 is a deep convolutional architecture (DCNN) used for the
detection of patients with COVID-19 using chest Xray images (Gupta, Gupta
and Katarya, 2021). Transfer Learning and multiple pre-trained DCNNSs are
used, like Inceptionv3, MobileNetV2, ResNet101, NASNet and Xception.
These models were first imported with their pre-trained weights matrix (on
ImageNet). Then these models were fine-tuned for the dataset. The fine-tuned
models were then combined using the Integrated Stacking technique, making
the stacked model a larger and more robust model. Two image pre-processing
techniques are used i) fuzzy colour image enhancement ii) stacking.
DATASET: i) COVID19 Radiography database by Kaggle ii) ChestXray
dataset

ACCURACY: 99.08%, SENSITIVITY: 99.00%
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Figure 2.11: Architecture of InstaCovNet-19 Integrated stacked model.

2.3.2 COVID-AID

COVID-AID: COVID-19 Al detector, a novel deep neural network-based
model to triage patients for appropriate testing (Mangal et al., 2020). This
model contains pretrained CheXnet with 121-layer Densenet. DenseNet is
quite similar to ResNet with some differences. ResNet uses an additive method
which merges the previous layer (identity) with the future layer, whereas
DenseNet concatenates the output of the previous layer with the future layer
(Agarwal et al., 2022). An output of the previous layer acts as an input of the
second layer by using composite function operation. This composite operation
consists of the convolution layer, pooling layer, batch normalization, and non-
linear activation layer. These connections mean that the network has L(L+1)/2
direct connections. L is the number of layers in the architecture. Deep CNN
backbone followed by fully connected layer.

A two-stage training is used:

1. Densenet’s backbone weights are frozen and only the final
connected layer is trained. Batch size=16, Number of
epochs=30 and the lowest validation loss is selected for the
next stage.

2. In the second step, network weights are initialized from above,

but the whole network is trained end to end.
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DATASET: 1) Covid chest Xray images 2) Chest Xray pneumonia.
ACCURACY: 90.50%, SENSITIVITY: 100%

3x224x224
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2.3.3  DetraC Deep Model

Visualization
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Figure 2.12: Architecture of CovidAID model.

DeTraC method of image classification is used, which consists of three phases
(Abbas, Abdelsamea and Gaber, 2021). First phase: Train the pretrained CNN
model (AlexNet, VGG19, ResNet, GoogLeNet, SqueezeNet) to extract deep

local features from images. Second phase: Training is accomplished using a

sophisticated gradient descent optimization method. Third phase: Composition

layer to refine the final classification layer of images. This method can detect

irregularities in the dataset by investigating class boundaries using class

decomposition. For the decomposition of classes K-mean clustering method is

used (Wu et al., 2008).

DATASET: i) 80 samples from the Japanese Society of Radiological

Technology ii) COVID-19 Image data collection

MODELS ACCURACY SENSITIVITY
AlexNet 95.66% 97.53%
VGG19 97.35% 98.23%
ResNet 95.12% 97.91%
GoogLeNet 94.71% 97.88%
SqueezeNet 94.90% 95.70%
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Figure 2.13: Architecture of DeTraC model.

2.3.4 CoroDet

CoroDet is a Novel CNN model which uses chest X-ray images to detect
COVID-19. It is a new 22-layer CNN model (Hussain et al., 2021). It consists
of 9-layer Conv2d followed by Maxpooling2D, 9-layer Conv2d followed by
Max Pooling and at last Flatten layer followed by a Dense layer. Adam
optimizer has been used. Training is carried out for 50 epochs with a learning
rate=0.0001.

DATASET: COVID-R dataset has been used, which consists of 2843 COVID-
19 images, 3108 Normal images, 1439 Pneumonia images

ACCURACY: 94.20%
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Chest X-Ray
Image

Figure 2.14: Architecture of the proposed 22-layer CNN model.

2.3.5 DeepCoroNet

Deep coronet is a new approach based on the deep Long Short-Term Memory
(LSTM) model (Demir, 2021). Instead of a transfer-learning approach, the
deep LSTM model is designed from scratch. Pre-processing of images is done
using the sobel gradient and Marker-Controlled Watershed Segmentation
(MCWS) are applied to raw images followed by a deep LSTM model, which
increases classification performance (Huang, Li and Chen, 2018). Deep LSTM
model consists of sequence data creating block and LSTM network sequence
data creating block consists of convolution operation, Batch Normalization,
Relulayer. The LSTM model is a modified version of recurrent neural
networks (Yu et al., 2019). This layer is followed by a fully connected layer,
Relu and dropout fully connected, which gives output to the SoftMax layer,
which give probable scores of classes.

DATASETS: COVID-19 and Normal CXR images are taken from the Kaggle

repository
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ACCURACY:: 100%, SENSITIVITY: 100%
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Figure 2.15: Architecture of DeepCoroNet.
2.3.6 CVDNet

CVDNET, a deep CNN model used to classify COVID-19 images from
normal and other pneumonia cases using Chest X-ray images (Ouchicha,
Ammor and Meknassi, 2020). It is based on a residual neural network and uses
two parallel levels with different kernel sizes to capture the local and global
features of the input. This architecture was trained on a small dataset but
achieved promising results. For the convolution, it employs the concept of

residual technigue, which enhances the performance of this model.
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DATASET: Kaggle Covid 19 Radiography database. The total number of
images are 2,905. Out of which Normal (1341 images), COVID-19 (219
images), and Viral Pneumonia (1345 images) are used.

ACCURACY: 96.69%, SENSITIVITY: 96.84%
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Figure 2.16: Architecture of the proposed CVDNet model.
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2.3.7 EDL-COVID

Ensemble deep learning is a hybrid learning paradigm that can produce
effective results by combining various machine learning models intelligently
(Polikar, 2012). The combined strength of models offsets individual model
variances and biases and provides a composite prediction where the final
accuracy is better than the accuracy of the individual model. In EDL-COVID,
instead of taking multiple models for ensembling, multiple model snapshots of
a deep learning network, COVIDNet have been taken. COVIDNet network is
used with its multiple snapshots and the cosine annealing learning rate is used
to change the learning rate aggressively but systematically to generate
different model weights over training epochs by allowing the learning rate to
start high and decrease to a minimum value of zero at the relatively rapid
speed (Tang et al., 2021).

COVIDX DATASET: It is a combination of five different datasets: Actual
med covid 19 dataset, Covid19 Image data collection, Covid19 radiography
database collection, Covidl9 CXR dataset Initiative, RSNA pneumonia
detection challenge.

ACCURACY: 95.00%, SENSITIVITY: 95.23%

COVID-Net

CXR images Snapshot Model 1's

Architecture *| Model 1 > o +
Prediction
= Snapshot ’ 4
PR | Model 2 " M°‘_ie|_2 L+ waE— E.nsgmble
.H Prediction P Prediction Result
S S hot : : *
napsho ,
> | Model M » MOd?' _M
Prediction
]
Y y
Snapshot Model Training Model Ensembling

Figure 2.17:Overall flow for EDL-COVID ensemble model training. It
consists of two phases, namely, snapshot model training, and

model ensembling.
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2.3.8  Summary

The comparison of the above-described deep learning models is shown in
Table 2.3. Seven different deep learning models for COVID-19 related X-rays
are surveyed, and their performance is analyzed on the basis of two parameters:
Accuracy and Sensitivity.

Table 2.3: Comparison of the above-described deep learning models.

MODELS ACCURACY SENSITIVITY
InstaCovNet-19 99.08% 99.00%
COVID-AID 90.50% 100%

DeTraC 97.35% 98.23%
CoroDet 94.20% NA
DeepCoroNet 100% 100%

CVDNet 96.69% 96.84%
EDL-COVID 95.00% 95.23%

2.4 Training Techniques

With the advent of deep learning techniques, feature extraction can be done
automatically rather manually and thus achieves recognition accuracy at a
higher level than ever before. Deep learning employs a convolutional neural
network (CNN) which performs feature extraction. A CNN convolves learned
features with input data and uses a 2D convolutional layer, making this
architecture suitable for processing 2D images. CNN learned to detect
different features of an image by using tens or hundreds of hidden layers
(Ouchicha, Ammor and Meknassi, 2020). The relevant features are not
pretrained; they are learned while the network trains on a collection of images
(Mangal et al., 2020). The two most common techniques researchers used to

train a network architecture are: training from scratch and transfer learning.
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2.4.1  Training from Scratch

Training a deep architecture from scratch, requires a very large, labelled data
set. A newly designed network architecture will learn the features from the
dataset and is tested for its performance. This proves beneficial when a new
algorithm is used for designing the layered architecture (Jain et al., 2021). This
is a less common approach because with the large amount of data and rate of
learning, these networks typically take days or weeks to train, and it is not

economical.

2.4.2  Transfer Learning

Most researchers prefer to use the transfer learning approach in training a deep
architecture. It is a process that involves fine-tuning a pretrained model
(Pambudi, Widayanti and Edastama, 2021). In this, a model developed for a
particular task is reused as the starting point for a model on a second task, such
as the AlexNet CNN model is trained on the Image Net database but by
applying the transfer learning approach, it can be used for other classification
problems. Transfer learning performs best in situations where the training
examples are insufficient for training a model from scratch. Tajbakhsh et al.
demonstrated that a pre-trained CNN with adequate fine tuning might
outperform or perform as well as a CNN trained from scratch.

After reviewing several related articles, the reviewed works that
utilized transfer learning can be categorized into four groups. In the first group,
a pre-trained CNN on a large-scale natural image dataset was used to initialize
the weights of a new network that will be trained on the target data. When
performing transfer learning, the last layer of the pretrained model architecture
is replaced with a fully connected layer with the same number of classes as the
new dataset. The architecture is retrained to use the model for the new dataset
(Chakraborty et al, 2021). This method is based on the fact that the early layer
features are more generic (e.g., edges), whereas the later-layer features are
more specific to a particular task or dataset (‘Yamashita et al., 2018).

The second group is similar to the first in that the last layer of the

architecture is replaced and redefined. The only difference is that in the first
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group, only the last layer is retrained, whereas in this group, some layers can
be redefined and retrained according to the context (Cai and Peng, 2021). One
major disadvantage of these methods is that the size of the input image cannot
be changed. Therefore, if the pretrained model uses a smaller image dimension
and transfer learning has to be conducted on a dataset with a larger image
dimension, resizing the image is compulsory. Resizing a large image to a
smaller image can affect the performance of the model in some cases.

In the third group of studies, a pretrained model is used to extract the
deep features of the images of a prepared custom dataset. Then, the extracted
deep features are input into a linear machine learning classifier such as support
vector machine (SVM) for classification. For example, Sethy and Behera used
eleven established model architectures that are pretrained on the ImageNet
dataset to extract the deep features: AlexNet, DenseNet201, GoogleNet,
InceptionV3, ResNetl8, ResNet50, ResNetl01, VGG16, VGG19,
XceptionNet, and InceptionResNetV2. A slightly different approach is applied
by Ozkaya et al. for the classification of X-ray images. Similarly, features are
extracted from three networks, namely, VGG-16, GoogleNet and ResNet-50,
for the classification of CT images. The features are fused, and to reduce the
redundancy of the features, the t-test method is used to rank the features based
on frequency. The final constructed feature vector is input into a binary SVM
classifier for classification.

In the last group, transfer learning was implemented using a model
pre-trained on a similar target domain. For example, Afshar et al. trained a
model on a radiography dataset of patients with and without pneumonia. They
then trained the model further on COVID-19 CXR images. The studies in this
group claimed that the use of models trained on ImageNet is not the best
option for medical applications because the source (natural images) and target
domains (e.g., CXR images) are different (Basu, Mitra and Saha, 2020; Afshar
et al., 2020). However, the results of a comparative study by Cheplygina did
not fully support this assumption; the study examined 12 articles that
compared the use of medical images to natural images in transfer learning in
medical imaging research. The goal of the study was to determine which
source images are better in medical transfer learning tasks: natural images

such as ImageNet or medical images. Among the 12 articles examined, the
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study found that six articles supported each claim, i.e., each claim is supported
equally; therefore, the study concluded that the selection of the model and
source data depends on the task at hand among other factors.

243 Summary

In short, there are two main methods for training a deep architecture model:
training from scratch and transfer learning. However, due to the duration of
development and the amount of data required, training from scratch is not
considered in our project. Instead, the project will use the transfer learning
technique.

There are mainly four strategies that gradually evolved when using
transfer learning to train models. Initially, the first group of studies used
different state-of-the-art pretrained CNN models to initialize the weights of a
new network that will be trained on the target data. The early layers of the
network model were frozen, and their weights were kept unchanged while the
final layer was fine-tuned. The final layer of the pretrained model architecture
is replaced with a fully connected layer with the same number of classes as the
new dataset. The second group of studies then began to redefine and retrain
some layers based on the context in order to increase model accuracy and
extract more features to supply additional information to the fully connected
layer in a CNN. Different hyper-parameters are fine-tuned, and some or all
CNN layers are unfrozen to be retrained during the training process.

Nevertheless, while the transfer learning approach helps achieve
better results with a smaller data set than training from scratch, it still needs a
rather large, labelled dataset. One of the main issues in the first and second
groups of studies is that they do not consider the limited dataset of COVID-19
cases when using CNN for training and classification. It leads to a question
mark about the robustness of the classification model because deep learning
models trained on limited datasets are not generalized, and thus, such models
are not reliable. Moreover, when CNN is used for classification, it takes a lot
of time for training. To get good enough results, it is necessary to fine-tune the
CNN parameters during training. As a result, the computational complexity

grows, as does the execution time. So, rather than using a pre-trained network
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as a classifier in the transfer learning strategy to detect COVID-19, the third
group of studies used a machine learning algorithm as the classifier. The
machine learning algorithm uses deep features extracted from the fully
connected layer of the pre-trained network to classify X-ray images of
COVID-19 patients, pneumonia patients, and healthy people.

Finally, the fourth group of studies claimed that using ImageNet-
trained models for medical applications is not the ideal solution because the
source (natural images) and target domains (e.g., CXR images) are different.
As a result, transfer learning was implemented using a model pre-trained on a
similar target domain. However, a research study did not fully support this
claim and concluded that the selection of model and source data is dependent

on the task at hand, among other considerations.

Table 2.4: Comparison of Transfer Learning Techniques.

Pros Cons In-Text Citation
First e Require lesser | @ Limited state-of- | (Chakraborty et
group - training time and the-art CNN | al, 2021; Wang
fine tune computational learning  ability, | et al., 2020;
last layer costs as compared thus poor | Khan et al,
to second group, performance than | 2020)
because it retains second group.

the useful feature | ¢ Performance can

extractors trained be limited because
during the initial CNN models' pre-
stage. training is

performed  based
on natural images
(ImageNet dataset).
e The internal logic
of CNN is not
explicitly  known
and require other

techniques for
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visual
interpretation  of
CNN

making.

decision-

Second

group —
fine tune
some or

all layers

Tailored design of
CNN model can
extract unique
feature  entirely.
Thus, performance
is better than first
group if the model

is tuned properly.

Image resizing is
compulsory.  This
can affect the
performance of the
model in some
cases.

Training time and
computational
costs are the
highest among the
discussed
techniques because
specific
modifications such
as architecture
adjustments  and
parameter  tuning
need to be applied
to the pre-trained
model.

Require a relatively
large amount of
data to be
advantageous  as
the new trainable
parameters are
inserted into the
network.

Performance can

(Apostolopoulos
and Mpesiana,
2020; Cai and
Peng, 2021;
Khan et al,
2020)




43

be limited because
CNN models' pre-
training IS
performed  based
on natural images
(ImageNet dataset).
The internal logic
of CNN is not
explicitly  known
and require other
techniques for
visual

interpretation ~ of
CNN

making.

decision-

Third
group -
CNN
with
machine

learning

Require lesser
amount of data as

compared to other

techniques as
traditional
machine learning

classifier is not as
data hungry as
CNN classifier.

Require lesser
training time and
computational

costs as compared
to second group,
because it retains
the useful feature
extractors trained

during the initial

Performance  can
be limited because
CNN models' pre-
training is
performed  based
on natural images

(ImageNet dataset).

(Sethy and
Behera, 2020)
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stage.

e The decision-
making of
traditional
machine learning
classifiers IS

explainable  and
interpretable.

Fourth
group -
TL with
similar
target

domain

CNN  models'

training is performed

pre-

based on same target

domain. Thus, the
model is able to
extract intricate

features specific to the
target.

Lack of publicly
available
pretrained  CNN
model on same
domain.

Robustness of the
publicly available
CNN

same

pre-trained
model on
domain is  not
proven.

The internal logic
of CNN is not
explicitly  known
and requires other
techniques for
visual

interpretation  of
CNN

making.

decision-

(Basu, Mitra
and Saha, 2020;
Afshar et al,
2020; Khobahi
et al., 2020)
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25 Evaluation Metrics

Evaluation metrics adopted within deep learning tasks play a crucial role in
achieving the optimized classifier (Hossin and Sulaiman, 2015). They are
utilized to optimize the classification algorithm during the training stage. This
means that the evaluation metric is utilized to discriminate and select the
optimized solution. For the time being, the evaluation metric is also utilized to
measure the efficiency of the created classifier, e.g., as an evaluator, within the
model testing stage using hidden data. As given in Eq. 1, true negative (TN)
and true positive (TP) are defined as the number of negative and positive
instances, respectively, which are successfully classified. In addition, false
negative (FN) and false positive (FP) are defined as the number of
misclassified positive and negative instances, respectively. Next, some of the

most well-known evaluation metrics are listed below.

1. Accuracy: Calculates the ratio of correct predicted classes to

the total number of samples evaluated (Eq. 1).

p _ TP + TN
U = TP ¥TN + FP+ FN
2. Sensitivity or Recall: Utilized to calculate the fraction of

positive patterns that are correctly classified (Eq. 2).

. TP
Sensitivity = TP+ FN

3. Specificity: Utilized to calculate the fraction of negative

patterns that are correctly classified (Eq. 3).

TN
SpGCifiCity = FP+—T]V

4. Precision: Utilized to calculate the positive patterns that are

correctly predicted by all predicted patterns in a positive class

(Eq. 4).
L TP
Precision = TP+ FP
5. F1-Score: Calculates the harmonic average between recall and

precision rates (Eg. 5).
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Precision x Recall
Flscore =

* Precision + Recall
6. False Positive Rate (FPR): This metric refers to the possibility

of a false alarm ratio as calculated in (Eqg. 6).
FPR = 1 — Specificity

7. Area Under the ROC Curve (AUC): AUC is a common
ranking type of metric. It is utilized to conduct comparisons
between learning algorithms, as well as to construct an
optimal learning model. In contrast to probability and
threshold metrics, the AUC value exposes the entire classifier
ranking performance. The following formula is used to
calculate the AUC value for a two-class problem (Eq. 7)

Sy, — ny(ny, +1) /2
npnn

8. Mean Absolute Error (MAE): MAE is a simple way to

AUC =

measure error magnitude. It consists of the average of the
absolute differences between the predictions and the observed
values. (Eg. 8).
Xizalyi — xl

n
9. Root Mean Squared Error (RMSE): RMSE measures the

quadratic mean of the differences between the predictions

MAE =

made by a model and the actual values (residuals) (Eqg. 9).

RMSE = \/2{-\’:1(9&' - J?i) 2

N

In conclusion, this project will quantify the model’s classification
performance using nine evaluation metrics outlined above. These metrics
include accuracy, sensitivity, specificity, precision, F1-Score, False Positive
Rate, AUC, MAE, and RMSE.
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2.6 Prior Works

This project assessed the significance and uniqueness of several publications
and their associated datasets using a range of methods, including developing
models and frameworks from scratch, as well as leveraging transfer learning in
combination with specialized feature extraction techniques. The table below

summarized the key findings from the assessment.
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CHAPTER 3

METHODOLOGY

This section discusses the proposed method for accurately predicting COVID-

19 using CXR images, which consists of a deep feature learning model for

feature extraction and a machine learning classifier for classification.
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Figure 3.1:

The workflow of the
proposed method to
demonstrate the process
from beginning to end.
Details on each step are

given below.
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Step 1: Collecting Dataset

During this step, data for some predefined categories were collected from
various publicly available online sources. In particular, in the case of detecting
COVID-19 from chest radiography imaging, a dataset consisting of not only
COVID-19 cases but also healthy cases, as well as cases of viral pneumonia-
like cases, was prepared. Such a comprehensive dataset enables the model to
distinguish properly between cases, resulting in a more accurate classification.

Step 2: Data Augmentation

One possible solution to increase the amount of available data and avoid
overfitting issues is data augmentation techniques. Data augmentation
incorporates a collection of methods that improve the attributes and size of
training datasets. Thus, deep learning models can perform better when these
techniques are employed. There are a number of image augmentation
techniques.

1. Flipping: Flipping the horizontal axis is more commonly used
than flipping the vertical axis. Flipping has been verified as
valuable on datasets like ImageNet and CIFAR-10
(Krizhevsky and Hinton, 2009; Deng et al., 2009). Moreover,
it is highly simple to implement. Flipping is label-preserving

except for text.

2. Rotation: Rotation augmentations can be obtained by rotating
an image left or right within 0 to 360 degrees around the axis.
The rotation degree parameter greatly determines the
suitability of the rotation augmentations. However, the data
label cannot be preserved post-transformation when the

rotation degree increases.

3. Translation: To avoid positional bias within the image data, a
very useful transformation is to shift the image up, down, left,
or right. For instance, it is common that the whole dataset
images are centred. Moreover, the tested dataset should be

entirely made up of centred images to test the model. The
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spatial dimensions of the image post-augmentation are

preserved using this padding.

Step 3, 4, 5: Image resizing, Normalization, Train test split
The acquired CXR images have variable shapes and sizes, which makes
effective classification difficult. Image pre-processing was performed to
ensure effective classification. The CXR images were resized to meet the input
requirements of different CNNs. For instance, SqueezeNet requires images
resized to 227 x 227 pixels while MobileNetV2, ResNet18, ResNetl101,
VGG19, and DenseNet201 require images resized to 224 x 224 pixels.
InceptionV3 requires images resized to 299x%299 pixels. All images were
resized according to the pre-trained model standards.

After that, the dataset was normalized within a range of 0 and 1.
Every pixel of images present in the dataset was multiplied by a factor of
1/255. This has been done to make the dataset consistent in terms of pixel
intensity. Before proceeding to the next phase, the dataset was split into three
parts: the training set (66.67%), the validation set (16.67%), and the testing set
(16.67%).

Steps 6, 7: Select and Initialize Pre-trained CNN model, Replace Last
Fully Connected Layer

This project evaluated eleven pre-trained CNN models, including five
comparatively shallow networks (ResNet50V2, MobileNetV2, VGG16,
Xception, and DenseNet121) and six deep networks (ResNet152, InceptionV3,
Inception ResNetV2, VGG19, DenseNet201, and NasNetLarge). After pre-
processing the data, a pre-trained CNN model was selected to instantiate the
model's convolutional base, retaining both its initial architecture and all
learned weights. The model's hyper-parameters were initialized, including the
optimizer, learning rate, batch size, epoch, and dropout rate. The last fully
connected layer of the pre-trained CNN was replaced with a new fully
connected layer with three prediction classes, and only the fully connected

layer was trained while the remaining layers' weights were frozen.
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Step 8: Hyperparameter Tuning for CNN model using K-Fold Cross
Validation

To overcome the limitations of computing resources, the training set of 14,400
images was divided into four subsets, each containing 3,600 images. Then, the
deep learning model was trained and fine-tuned on the first subset of 3,600
images. To optimize the model's hyperparameters, a 5-fold cross-validation
approach was used. The first subset was randomly divided into 5 folds, where
4 out of the 5 folds were used for training the CNN model, and the other fold
was used for validation. This approach of validation was repeated 5 times by
shifting the validation and training folds. The average result was calculated
based on the result of each individual fold, and the configuration with the
highest validation accuracy was considered the optimum set of

hyperparameters.

Step 9: Compile CNN Model

After fine-tuning and optimizing the hyperparameters of the deep learning
model on the first subset, the model was compiled with the optimal set of
hyperparameters and was saved for the next round of training with the second
subset of 3,600 images. Steps 8 and 9 were repeated for the remaining subsets
of the training set, each compiled with their respective optimal set of

hyperparameters.

Steps 10, 11: Feature Extraction, Pass Feature Vectors to Machine
Learning Classifier

After finishing the training of the deep learning model on all four subsets of
the training set, the model was used to extract features in the CXR images. The
final feature representation obtained was interpreted as a one-dimensional
vector. These acquired feature vectors were then fed into a machine learning
predictive classifier to perform the classification task. For this purpose, the
XGBoost classifier was utilized to classify the CXR images into three

categories: COVID-19, Normal, and Pneumonia.



79

Step 12: Training and Performance Evaluation

During this step, the XGBoost classifier was tested on CXR images that had
not been shown to the model during previous training steps. The performance
of the model in predicting new cases was examined, and the generalization
ability was investigated. To evaluate the efficacy of the model, the confusion
matrix, along with Area under Curve (AUC), were estimated to gain an
understanding of the proposed methodology and its potential for detailed
classification. Different metrics, such as accuracy, sensitivity, specificity,
precision, F1-Score, False Positive Rate, AUC, MAE, and RMSE, were used

to measure the usefulness and productivity of the classification model.

Step 13: Repeat Step 6 — 12 for other DL Models
Repeated the steps outlined in Step 6 through 12 for all the remaining deep

learning models.

Step 14: Select Top 3 DL Model and Apply Majority Voting Approach
Selected the top three deep learning models based on their accuracy and
applied a majority voting approach to their predictions to obtain the final

prediction.
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Performance Evaluation of the Best Performing Model for Each

Approach

The performance metrics of the best performing model from each approach
were evaluated in the following aspects.

4.1.1  Accuracy Evaluation

Eleven deep learning models were trained using three approaches, i.e., single
deep learning model approach, incrementally learned single deep learning
model approach, and incrementally learned multiple deep learning models
with majority voting approach. Table 4.1 presents the prediction accuracy for
the best-performing models for each approach. It shows that the incrementally
learned multiple deep learning models with majority voting approach using
ResNet152V2, DenseNet201, and VGG16 outperformed the single deep
learning model approach by about 3.22% and performed relatively better than
the incrementally learned single deep learning model approach by about
0.02%.

Table 4.1: Overall Prediction Accuracy.

Best Performing Model Accuracy (%)
Single model:

91.36
ResNet152V2 + XGBoost
Incremental learned model:

94.56
ResNet152V2 + XGBoost
Voting:
i) ResNet152V2 + XGBoost

94.58

ii) DenseNet201 + XGBoost
iii) VGG16 + XGBoost
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However, for a multiclass problem, judging a model's effectiveness
solely on higher accuracy is insufficient. It is necessary to consider the other
two important class-level metrics, namely, sensitivity and positive predictive

value (PPV) as well.

4.1.2  Sensitivity Evaluation

In medical analysis, the sensitivity of a disease can be interpreted as the
proportion of people with a certain disease that have been successfully
identified. Taking COVID-19, for example, achieving a high sensitivity is
quite important since no affected people should be omitted during COVID-19
testing; otherwise, the affected people who have been omitted cannot receive
immediate treatment, and they can affect others. Table 4.2 gives a sensitivity
analysis of the best-performing model for each approach concerning each class
type. It can be observed that it is seldom to have a model that works best for
all three classes. For example, the incrementally learned single deep learning
model has the highest sensitivity in the Normal class but not for two other
class types. In comparison, the incrementally learned multiple deep learning
models with majority voting obtained the highest sensitivities for both the
Pneumonia and COVID-19 classes, although its sensitivity for the Normal
class is not the best across all models. From a practical point of view, there is
no doubt to consider the voting approach since highly sensitive screening for

infectious diseases such as COVID-19 is very important.

Table 4.2: Sensitivities of the Best Performing Model for Each Approach

in Each Class.
Sensitivity (%)
Best Performing Model Normal Pneumonia COVID-19
Single model: 91.00 93.00 86.00
ResNet152V2 + XGBoost
Incremental learned model: 97.00 92.00 88.00
ResNet152V2 + XGBoost
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Voting: 96.00 97.00 89.00
1) ResNet152V2 + XGBoost
ii) DenseNet201 + XGBoost
i) VGG16 + XGBoost

4.1.3 PPV Evaluation

Positive predictive value (PPV) denotes the probability of positive results that
are true positive results in diagnostic tests. If this value is low, there are many
false positives, and follow-up testing is required for a more reliable result. For
COVID-19 screening, if a model's PPV is low, it cannot be judged or
confirmed that a person with a positive test result is a true COVID-19 case,
and additional accurate testing is necessary. Table 4.3 presents the PPV
analysis for the best-performing model of each approach on each class type.
Still, no model performs the best for all class types. The incrementally learned
single deep learning model has the highest PPV for the pneumonia class, while
the majority voting approach achieves the highest PPVs for the Normal and
COVID-19 classes.

Table 4.3: PPV of the Best Performing Model for Each Approach in Each

Class.
Positive Predictive Value (%)

Best Performing Model Normal Pneumonia COVID-19
Single model: 86.00 92.00 93.00
ResNet152V2 + XGBoost
Incremental learned model: 94.00 97.00 86.00
ResNet152V2 + XGBoost
Voting: 97.00 89.00 96.00
i) ResNet152V2 + XGBoost
ii) DenseNet201 + XGBoost
iii) VGG16 + XGBoost
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In summary, although no model outperformed others on all metrics
for all class types, the incrementally learned multiple deep learning models
with majority voting approach is the best choice for COVID-19 case detection
since it performs relatively better than others on accuracy, sensitivity, and PPV
for the COVID-19 class type.

4.2 Further Performance Evaluation of Incrementally Learned
Multiple Deep Learning Models with Majority Voting Approach

In this section, the incrementally learned multiple deep learning models with
majority voting approach was further evaluated from various perspectives,

including confusion matrix, ROC curves, and training and validation loss.

4.2.1 Confusion Matrix

Figure 4.1 presents the confusion matrix for the proposed approach analysing
the test dataset, which consists of CXR images of 1200 COVID-19 cases, 1200
pneumonia cases, and 1200 normal cases. For COVID-19 testing, only 124 out
of 1200 CXR images of COVID-19 were not detected correctly, and 15 out of
3600 CXR images were mistakenly identified as COVID-19. This indicates
that the error ratio is relatively small compared to the total number of CXR

images.
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- 1000

Actual Results
Pneumonia Normal

Covid-19

Normal Pneumonia Covid-19
Predicted Results

Figure 4.1: The Confusion Matrix for the Incrementally Learned Multiple
Deep Learning Models with Majority Voting on the test
dataset containing 1200 normal cases, 1200 pneumonia cases,
and 1200 COVID-19 cases.

4.2.2 ROC Curves

To show the detection capability of the incrementally learned multiple deep
learning models with majority voting approach, ROC curves were generated to
depict its prediction on the test dataset with respect to each class type, as
shown in Figure 4.2. A larger area under the ROC curve indicates a better
prediction ability. It can be observed that the ROC area for each class under
COVID-19 is much closer to the maximum value of one, indicating that the

proposed method has a good prediction capability for COVID-19 in practice.
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Figure 4.2:ROC curves of the Incrementally Learned Multiple Deep
Learning Models with Majority VVoting approach for
Prediction on the Test Dataset with Respect to Each Class

Type.
4.2.3  Training and Validation Loss

The proposed approach with ResNet152, DenseNet201, and VGG16 (the
combination of the best performer) has shown good learning curves, as can be
observed from Figure 4.3, 4.4, and 4.5, which depict the training and
validation loss for each individual model. The learning curves provide insight
into how the learning performance changes over the number of epochs and
help diagnose any problems that can lead to an underfit or an overfit model.
The training and validation loss gradually decrease over the number of epochs
and reach a point of stability, indicating good fits. Moreover, the
generalization gap between the training and validation loss learning curves is
minimal (nearly zero in an ideal situation), indicating that the model is not
overfitting the data and can generalize well to new, unseen data. These

findings suggest that the proposed approach is highly promising and could
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perform exceptionally well in real-world scenarios. As such, this model can be
confidently tested in actual environments, and it can be expected to produce
favourable outcomes.

Training and Validation Loss

0.5 4 — Training Loss

—— Validation Loss

0.4 1

0.3 1

Loss

0.2 4

0.1 1

0.0 4

Epoch

Figure 4.3: Training and Validation Loss for ResNet152.

Training and Validation Loss

—— Training Loss
—— Validation Loss
0.4 4
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0.0 1

Epoch

Figure 4.4: Training and Validation Loss for DenseNet201.
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CHAPTER 5

CONCLUSIONS

The COVID-19 coronavirus is a recent virus that leads to pneumonia, which
can be detected using CXR images. This paper investigated the use of (i)
single CNNs, (ii) incrementally learned single CNNs, and (iii) incrementally
learned multiple CNNs with majority voting to extract features from CXR
images. Then, an XGBoost classifier was used with each of these CNNs to
detect COVID-19. The proposed model addressed the limitations of computing
resources by using an incrementally learned approach and provided a robust
solution for detecting COVID-19 from CXR images. Additionally, the use of
majority voting approach slightly improved the detection accuracy. The
dataset used in this research consisted of 22,900 CXR images with three
categories: Normal, Pneumonia, and COVID-19. The dataset is split into 66.67%
for training, 16.67% for validation, and 16.67% for testing. Through the paper,
eleven pretrained CNNs (ResNet50V2, ResNet152, DenseNetl121,
DenseNet201, VGG16, VGG19, MobileNetV2, Inception ResNetV2,
InceptionV3, Xception, NasNetLarge) were selected as deep transfer learning
models. The results show that using the XGBoost classifier with incrementally
learned single CNN and incrementally learned multiple CNNs gave good and
comparable detection accuracy (94.56% and 94.58%). The best performer was
the incrementally learned multiple CNNs with majority voting, which used
ResNet152, DenseNet201, and VGG16. These results demonstrate the
effectiveness of our proposed method in detecting COVID-19 from CXR

images and its potential for clinical applications.
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