

WEB AND MOBILE APP DEVELOPMENT FOR

SMART VEHICLE ENTRANCE & EXIT

ONG LIP WEI

UNIVERSITI TUNKU ABDUL RAHMAN

WEB AND MOBILE APP DEVELOPMENT FOR SMART VEHICLE

ENTRANCE & EXIT

ONG LIP WEI

A project report submitted in partial fulfilment of the requirements for

the award of Bachelor of Science (Honours) Software Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2023

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Signature :

Name : ONG LIP WEI

ID No. : 2000923

Date : 12/05/2023

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “WEB AND MOBILE APP

DEVELOPMENT FOR SMART VEHICLE ENTRANCE & EXIT” was

prepared by ONG LIP WEI has met the required standard for submission in

partial fulfilment of the requirements for the award of Bachelor of Science

(Honours) Software Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Dr Tham Mau Luen

Date : 12/05/2023

Signature :

Co-Supervisor : Dr Khor Kok Chin

Date : 15/05/2023

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made

of the use of any material contained in, or derived from, this report.

© 2023,Ong Lip Wei. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful

completion of this project. I would like to express my gratitude to my research

supervisors, Dr. Tham Mau Luen and Dr. Khor Kok Chin for their invaluable

advice, guidance and their enormous patience throughout the development of

the research.

In addition, I would also like to express my gratitude to my loving

parents and friends who had helped and given me encouragement to complete

my final year project.

v

ABSTRACT

The year 2023 is marked by a growing interest in the field of artificial

intelligence (AI), which offers new ways to address problems and enhance

efficiency. One area in need of a more efficient solution is the monitoring of

car access records and management of car owners, which currently involves

the manual processes by paper and pen. To address this, YOLOV4 model has

been deployed to detect car license plates, and real-time web and mobile

applications have been implemented to monitor car access logs and manage

car owners. The applications offer filter and search functions, making the

query process more manageable. Additionally, it includes role and permission

functions to restrict access to certain features for security purposes.

The web application is built using ExpressJS and Docker and deployed

on two AWS cloud servers. HTTPS encryption and AWS Application Load

Balancer are used to ensure security and reliability of web service.

Furthermore, Github Actions is used to promote continuous integration and

continuous deployment (CI/CD) flow. The React framework is utilized for the

web application while React Native framework is used for mobile application

development, both employing the Ant Design UI library to maintain

consistency across screens. The Firebase cloud database is used for storing

license plate pictures and providing real-time updates, while Algolia AI search

service is employed for advance search functions.

Finally, the project went through three testing processes, including unit

testing, system usability testing and onsite testing. The project used unit

testing to ensure that every function works properly, also 5 participants were

invited to conduct the usability test of the system. The SUS score of the web

application was 89%, and the SUS score of the mobile application was 89.5%,

both of which were higher than the average SUS score of 75%, demonstrating

good usability. Finally, the project also conducted onsite testing in a

residential area to ensure that the system can run stably in the working

environment.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES xi

LIST OF FIGURES xvi

LIST OF SYMBOLS / ABBREVIATIONS xxix

LIST OF APPENDICES xxx

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Problem Statements 3

1.2.1 Security Risk 3

1.2.2 High Cost 4

1.2.3 Unable To Monitor Vehicle Access 5

1.3 Aim and Objectives 5

1.4 Proposed Solution 6

1.5 Proposed Approach 8

1.6 Project Scope 9

1.6.1 Targeted User 9

1.6.2 Modules Covered 9

2 LITERATURE REVIEW 11

2.1 Introduction 11

2.2 Car Plate Detection and Character Recognition

Techniques 11

2.2.1 Edge Detection for Car Plate Position

Detection 11

vii

2.2.2 Neural network for car plate position

detection 14

2.2.3 Use of Texture and Color Features for Car

Plate Position Detection 15

2.2.4 Character Recognition 18

2.2.5 Summary 23

2.3 Applications of ALPR System 24

2.4 Previous work on car plate recognition 33

2.4.1 Introduction 33

2.4.2 Methodology 34

2.4.3 Conclusion 38

2.5 Software Development Methodology 39

2.5.1 Waterfall Methodology 39

2.5.2 Prototyping Methodology 40

2.5.3 DevOps Methodology 42

2.5.4 Conclusion 44

2.6 System Usability Testing 44

3 METHODOLOGY AND WORK PLAN 46

3.1 Introduction 46

3.2 Software Development Methodology 46

3.2.1 Plan 46

3.2.2 Code 47

3.2.3 Build 47

3.2.4 Test 48

3.2.5 Release and Deploy 48

3.2.6 Operate 48

3.2.7 Monitor 49

3.3 Project Planning and Scheduling 49

3.3.1 Work Breakdown Structure (WBS) 49

3.3.2 Gantt Chart 51

3.4 Technologies and Development Tools 58

3.4.1 React and React Native 58

3.4.2 NPM 58

3.4.3 React-Redux 58

viii

3.4.4 Android Studio 59

3.4.5 Firebase 59

3.4.6 Algolia 60

3.4.7 AWS Route53 60

3.4.8 AWS Load Balancer 60

3.4.9 AWS Certificate Manager 61

3.4.10 AWS EC2 61

3.4.11 AWS CloudWatch 61

3.4.12 AWS Budgets 61

3.4.13 ExpressJS 61

3.4.14 Docker 61

3.4.15 Git and GitHub 62

3.4.16 Github Actions 62

4 PROJECT SPECIFICATION 63

4.1 Introduction 63

4.2 Fact Finding 63

4.2.1 Observation 63

4.2.2 Questionnaire 64

4.3 Requirement Specification 70

4.3.1 Web Application Functional Requirements 70

4.3.2 Mobile Application Functional

Requirements 71

4.3.3 Non-Functional Requirements 73

4.4 Use Case Modelling 76

4.4.1 Web Application Use Case Diagrams 76

4.4.2 Mobile Application Use Case Diagram 82

4.5 Use Case Description 87

5 SYSTEM DESIGN 149

5.1 Introduction 149

5.2 Overview of System Architecture Design 149

5.3 The React Architecture 151

5.4 The Mobile Application Architecture 152

5.5 The Web Architecture 153

5.6 The Cloud Architecture 155

ix

5.7 Database design 157

5.7.1 Logical Entity Relationship Diagram 158

5.7.2 Physical Entity Relationship Diagram 158

5.7.3 Data Dictionary 159

6 SYSTEM IMPLEMENTATION 163

6.1 Introduction 163

6.2 Build React Native Application and Publish on

GitHub 163

6.3 Setup AWS Services. 168

6.3.1 Setup AWS EC2 instances. 168

6.3.2 Use AWS Amazon CloudWatch to Monitor

EC2 instances. 171

6.3.3 Use AWS Route53 to purchase domain

name. 172

6.3.4 Use AWS Certificate Manager to Secure

Domain Name with HTTPS. 174

6.3.5 Setup AWS Application Load Balancer. 176

6.3.6 Configure Route53 to Direct Traffic to

Load Balancer 186

6.3.7 Use AWS Budgets to Monitor Cost 189

6.4 Use Github Actions to Deploy ALPR Web

Application on EC2 Instances 193

6.5 Firestore, Algolia Functions and Custom

Functions Used in Project 199

6.6 Web Application Implementation 202

6.6.1 User Account 202

6.6.2 Car Access Log 207

6.6.3 Category Module 216

6.6.4 Person Module 220

6.6.5 User Module 234

6.6.6 Role Module 240

6.7 Mobile Application Implementation 244

6.7.1 User Account 244

6.7.2 Car Access Log 248

x

6.7.3 Category Module 257

6.7.4 Person Module 264

6.7.5 User Module 274

6.7.6 Role Module 281

7 SYSTEM TESTING 288

7.1 Introduction 288

7.2 Unit Testing 288

7.2.1 Web Application 288

7.2.2 Mobile Application 308

7.3 System Usability Testing 324

7.3.1 Test Scenario 324

7.3.2 System Usability Test Result 329

7.4 On Site Testing 330

8 CONCLUSION AND RECOMMENDATIONS 333

8.1 Conclusions 333

8.2 Limitations and Future Enhancement 334

REFERENCES 336

APPENDICES 340

xi

LIST OF TABLES

Table 2.1: Accuracy Analysis Table (adopted from Samantaray et

al., 2021). 13

Table 2.2: Comparison Between Popular Models (adopted from

Alborzi, Mehraban, Khoramdel and Ardekany, 2019). 14

Table 2.3: Results on Pascal VOC2007 Test for Popular Networks

and SSD (adopted from Alborzi, Mehraban, Khoramdel

and Ardekany, 2019). 14

Table 2.4: License Plate and Vehicle Detection Recall Performance

(adopted from Lee et al., 2018). 15

Table 2.5: Comparative Result of Locating License Plate (adopted

from Sun, Li, Xu and Wang, 2008) 16

Table 2.6: Performance Measures (%) of Detection and Localization

(adopted from Nooruddin, Sharna and Ahsan, 2020). 18

Table 2.7: Validation of Modules of the Automatic License Plate

Recognition System (adopted from Rusakov, 2020). 23

Table 2.8: Comparison of License Plate Location Detection

Algorithms 23

Table 2.9: Comparison of Character Recognition Algorithms 24

Table 2.10: Result of the Proposed System 31

Table 2.11: Common Pairs of Alphanumeric That Are Similar (TAN,

2021). 38

Table 2.12: Advantages and Disadvantages of Waterfall

Methodology. 40

Table 2.13: Advantages and Disadvantages of Prototyping

Methodology. 41

Table 2.14: Advantages and Disadvantages of DevOps Methodology. 43

Table 4.1: Mapping between Functional Requirement ID and Use

Case ID. 74

Table 4.2: Use Case Description of Login (Web application). 87

Table 4.3: Use Case Description of Logout (Web application). 88

xii

Table 4.4: Use Case Description of View Car Access Log (Web

application). 90

Table 4.5: Use Case Description of Basic Search on Car Access Log

(Web application) 91

Table 4.6: Use Case Description of Filter Search on Car Access Log

(Web application) 92

Table 4.7: Use Case Description of View Car Owner's Personal

Information (Web application) 94

Table 4.8: Use Case Description of View Category (Web

application). 95

Table 4.9: Use Case Description of Add Category (Web application).

 96

Table 4.10: Use Case Description of Edit Category (Web application) 97

Table 4.11: Use Case Description of Remove Category (Web

application). 99

Table 4.12: Use Case Description of View Car Owners' Personal

Information (Web application). 100

Table 4.13: Use Case Description of Register Car Owner (Web

application) 101

Table 4.14: Use Case Description of Edit Car Owner's Personal

Information (Web application). 103

Table 4.15: Use Case Description of Remove Car Owner (Web

application) 105

Table 4.16: Use Case Description of Search Car Owner (Web

application) 106

Table 4.17: Use Case Description of View all Created User Accounts

(Web application). 107

Table 4.18: Use Case Description of Create new User Account (Web

application) 108

Table 4.19: Use Case Description of Edit User Account (Web

application) 110

Table 4.20: Use Case Description of Remove User Account (Web

application) 112

xiii

Table 4.21: Use Case Description of View Roles (Web application) 113

Table 4.22: Use Case Description of Create new Role (Web

application) 114

Table 4.23: Use Case Description of Assign Pages to Role (Web

application) 116

Table 4.24: Use Case Description of Remove Role (Web application).

 117

Table 4.25: Use Case Description of Login (Mobile application) 118

Table 4.26: Use Case Description of Logout (Mobile application) 119

Table 4.27: Use Case Description of View Car Access Log (Mobile

application). 120

Table 4.28: Use Case Description of Basic Search on Car Access Log

(Mobile application) 121

Table 4.29: Use Case Description of Filter Search on Car Access Log

(Mobile application). 123

Table 4.30: Use Case Description of View Car Owner's Personal

Information (Mobile application). 124

Table 4.31: Use Case Description of View Category (Mobile

application) 125

Table 4.32: Use Case Description of Add Category (Mobile

application). 126

Table 4.33: Use Case Description of Edit Category (Mobile

application). 128

Table 4.34: Use Case Description of Remove Category (Mobile

application). 130

Table 4.35: Use Case Description of View Car Owners' Personal

Information (Mobile application). 131

Table 4.36: Use Case Description of Register Car Owner (Mobile

application) 132

Table 4.37: Use Case Description of Edit Car Owner's Personal

Information (Mobile application). 134

Table 4.38: Use Case Description of Remove Car Owner (Mobile

application). 135

xiv

Table 4.39: Use Case Description of Search Car Owner (Mobile

application). 136

Table 4.40: Use Case Description of View all Created User Accounts

(Mobile application). 138

Table 4.41: Use Case Description of Create new User Account

(Mobile application) 139

Table 4.42: Use Case Description of Edit User Account (Mobile

application) 140

Table 4.43: Use Case Description of Remove User Account (Mobile

application). 142

Table 4.44: Use Case Description of View Roles (Mobile application)

 143

Table 4.45: Use Case Description of Create new Role (Mobile

application). 144

Table 4.46: Use Case Description of Assign Pages to Role (Mobile

application). 146

Table 4.47: Use Case Description of Remove Role (Mobile

application) 147

Table 5.1: Data Dictionary (Category Collection). 159

Table 5.2: Data Dictionary (Registration Collection). 159

Table 5.3: Data Dictionary (Carpark Collection) 160

Table 5.4: Data Dictionary (Role Collection). 160

Table 5.5: Data Dictionary (User Collection). 161

Table 6.1: List of Function Endpoints. 200

Table 6.2: List of Firestore Native Functions 201

Table 6.3: Algolia Function. 202

Table 7.1: Unit testing of user account (web application). 289

Table 7.2: Unit testing of car access log module (web application). 291

Table 7.3: Unit testing of category module (web application). 295

Table 7.4: Unit testing of person module (web application). 298

xv

Table 7.5: Unit testing of user module (web application). 303

Table 7.6: Unit testing of role module (web application). 306

Table 7.7: Unit testing of user account (mobile application). 308

Table 7.8: Unit testing of car access log (mobile application). 310

Table 7.9: Unit testing of category module (mobile application). 312

Table 7.10: Unit testing of person module (mobile application). 315

Table 7.11: Unit testing of user module (mobile application). 319

Table 7.12: Unit testing of role module (mobile application). 322

Table 7.13: Usability Testing Scenario. 325

Table 7.14: SUS Score Intepretation (Bangor, Kortum and Miller,

2009). 329

Table 7.15: SUS Score of Web Application. 330

Table 7.16: SUS Score of Mobile Application. 330

Table 8.1: Limitations and Recommendations of the System. 334

xvi

LIST OF FIGURES

Figure 1.1: Four Stages of ALPR (Negassi, Goitom Araya,

Awawdeh and Faisal, 2018). 2

Figure 1.2: YOLO’s Object Detection Method (Agrawal, 2017). 3

Figure 1.3: Image Processing Step (Tham and Tan, 2021). 3

Figure 1.4: Interface of Google Firebase with Car Plate Information

(TAN, 2021). 3

Figure 1.5: Zento’s Pricing for ALPR Service (Malaysia license plate

recognition parking system with LPR camera ANPR

camera, 2023). 4

Figure 1.6: User Interface of Zento’s Car Management Software

(Malaysia license plate recognition parking system with

LPR camera ANPR camera, 2023) 5

Figure 1.7: System Overview 6

Figure 1.8: Price of Project’s Camera. 7

Figure 1.9: Price of Project’s Computer 7

Figure 1.10: DevOps Methodology (DevOps implementation roadmap

and advantages, 2023). 9

Figure 2.1: Image Preprocessing (adopted from Firasanti, Ramadhani,

Bakri and Zaki Hamidi, 2021). 12

Figure 2.2: Result with Canny Edge and Otsu Thresholding (adopted

from Firasanti, Ramadhani, Bakri and Zaki Hamidi,

2021). 12

Figure 2.3: Comparasion Between Canny Edge and Otsu

Thresholding (adopted from Firasanti, Ramadhani, Bakri

and Zaki Hamidi, 2021). 13

Figure 2.4: Result of Dilation (adopted from Sun, Li, Xu and Wang,

2008). 16

Figure 2.5: The Output of Red Channel Filter (adopted from Sun, Li,

Xu and Wang, 2008). 16

Figure 2.6: The Input Image and Extracted Features (adopted from

Nooruddin, Sharna and Ahsan, 2020). 17

xvii

Figure 2.7: The Detection and Localization Process (adopted from

Nooruddin, Sharna and Ahsan, 2020). 17

Figure 2.8: Dataset of Alphabets and Numbers (adopted from Suraj,

Sridhar, Jijesh and Shivashankar, 2018). 19

Figure 2.9: Extraction, Cropping and Resizing of First Character

(adopted from Suraj, Sridhar, Jijesh and Shivashankar,

2018). 19

Figure 2.10: Cropped License Plate Image (adopted from Firasanti,

Ramadhani, Bakri and Zaki Hamidi, 2021). 20

Figure 2.11: License Plate Character Identification (adopted from

Firasanti, Ramadhani, Bakri and Zaki Hamidi, 2021). 21

Figure 2.12: Samples of License Plates With High Accuracy (adopted

from Firasanti, Ramadhani, Bakri and Zaki Hamidi, 2021)

 21

Figure 2.13: The Scheme of the Symbol Detection Module (adopted

from Rusakov, 2020). 22

Figure 2.14: The Scheme of the Symbol Recognition Module (adopted

from Rusakov, 2020). 22

Figure 2.15: System stages for plate recognition (adopted from

Shkurti, Aliu and Kabashi, 2021) 25

Figure 2.16: The Login Page (Shkurti, Aliu and Kabashi, 2021). 26

Figure 2.17: Main Page Showing Entering Car (Shkurti, Aliu and

Kabashi, 2021). 26

Figure 2.18: Main Page Showing Exiting Car (Shkurti, Aliu and

Kabashi, 2021). 26

Figure 2.19: Main Page Showing Exiting Car (Shkurti, Aliu and

Kabashi, 2021). 27

Figure 2.20: Customer Page (Shkurti, Aliu and Kabashi, 2021). 27

Figure 2.21: Logbook of Car Access Records (Shkurti, Aliu and

Kabashi, 2021). 28

Figure 2.22: System Hardware Sketch (Tian et al., 2014). 29

Figure 2.23: Flowchart of Data Processing (Tian et al., 2014). 29

Figure 2.24: Video and Pictures at the Entrance (Tian et al., 2014). 30

xviii

Figure 2.25: Video and Pictures at the Exit (Tian et al., 2014). 30

Figure 2.26: Smart Car Plat Recognition System (Negassi, Goitom

Araya, Awawdeh and Faisal, 2018) 31

Figure 2.27: Recognition Interface (Negassi, Goitom Araya,

Awawdeh and Faisal, 2018) 32

Figure 2.28 The Home Page to Select Parking 33

Figure 2.29: Payment Page. 33

Figure 2.30: Labelling Vehicle Number Plate Using LabelImg

Software (TAN 2021). 35

Figure 2.31: Comparison of Speed and Accuracy Between YOLOv4

and YOLOv4-Tiny (Bochkovskiy, 2020). 36

Figure 2.32: Vehicle Entering Geofencing Area Represented by the

Blue Box (TAN, 2021). 36

Figure 2.33: Bounding Box Around the License Plate (TAN 2021). 37

Figure 2.34: Image Processing Processes (TAN, 2021). 37

Figure 2.35: Type of LPs in Malaysia- Long-Width LP and Short-

Width LP (TAN, 2021). 37

Figure 2.36: LP With Special Character “-” (TAN, 2021). 38

Figure 2.37: Input LP Array Used in Pooling Algorithm (TAN, 2021). 38

Figure 2.38: (A complete guide to the waterfall methodology, 2023). 39

Figure 2.39: Prototyping Methodology (Martin, 2022). 41

Figure 2.40: DevOps Methodology (DevOps implementation roadmap

and advantages, 2023). 43

Figure 2.41: System Usability Scale (What Every Client Should Know

about SUS Scores, 2022). 45

Figure 3.1: DevOps Methodology (DevOps implementation roadmap

and advantages, 2023). 46

Figure 3.2: Overview of Project Schedule. 51

Figure 3.3: Project Initialization Schedule. 52

Figure 3.4: System Development Schedule 53

xix

Figure 3.5: System Testing Schedule. 53

Figure 3.6: Project Closure Schedule. 54

Figure 3.7: Project Initializaiton Timeline. 55

Figure 3.8: System Development Timeline. 56

Figure 3.9: System Testing Timeline. 57

Figure 3.10: Project Closure Timeline. 57

Figure 3.11: Redux Workflow 59

Figure 3.12: React-Redux Workflow 59

Figure 3.13: Google Cloud Service Price 60

Figure 4.1: Role as a Security Guard. 65

Figure 4.2: Frequency to view car access log. 65

Figure 4.3: Information of Car Access Log. 66

Figure 4.4: Methods to access log records. 66

Figure 4.5: Difficulties in searching car access records. 67

Figure 4.6: Importance of registering car owners. 67

Figure 4.7: Information collected from new car owners. 68

Figure 4.8: Current Solution to categorize car owners. 68

Figure 4.9: Familiarity in using role and management system. 69

Figure 4.10: Benefits of using role and management features in the

applications. 69

Figure 4.11: User Account Use Case Diagram (Web Application). 76

Figure 4.12: Car Access Log Use Case Diagram (Web Application). 77

Figure 4.13: Category Module Use Case Diagram (Web Application). 78

Figure 4.14: Person Module Use Case Diagram (Web Application). 79

Figure 4.15: User Module Use Case Diagram (Web Application). 80

Figure 4.16: Role Module Use Case Diagram (Web Application). 81

xx

Figure 4.17: User Account Use Case Diagram (Mobile Application). 82

Figure 4.18: Car Access Log Use Case Diagram (Mobile Application).

 83

Figure 4.19: Category Module Use Case Diagram (Mobile

Application). 84

Figure 4.20: Person Module Use Case Diagram (Mobile Application). 85

Figure 4.21: User Module Use Case Diagram (Mobile Application). 86

Figure 4.22: Role Module Use Case Diagram (Mobile Application). 87

Figure 5.1: Overview of System Architecture Design. 149

Figure 5.2: React Architecture (ReactJS – architecture, 2023). 151

Figure 5.3: Mobile Application Architecture. 152

Figure 5.4: Web Architecture 153

Figure 5.5: Cloud Architecture 155

Figure 5.6: Logical Entity Relationship Diagram 158

Figure 5.7: Physical Entity Relationship Diagram. 158

Figure 6.1: Generate Key File. 164

Figure 6.2: Edit gradle.properties file. 164

Figure 6.3: Edit build.gradle File. 165

Figure 6.4: Generate Apk File. 166

Figure 6.5: Directory of Apk File. 166

Figure 6.6: GitHub Project Repository. 166

Figure 6.7: Edit Releases. 167

Figure 6.8: Upload Apk and Update Release. 167

Figure 6.9: AWS EC2 Homepage. 168

Figure 6.10: Provide Server name and Choose OS. 169

Figure 6.11: Choose Instance Type and Create Network Security

Group. 170

xxi

Figure 6.12: Set Storage and Launch Instance. 171

Figure 6.13: Create Status Check Alarm. 171

Figure 6.14: CloudWatch Alarm Action 172

Figure 6.15: Route53 Domain Page. 173

Figure 6.16: Purchase Project’s Domain Name. 173

Figure 6.17: Name Server Record in Route53. 174

Figure 6.18: AWS Certificate Manager Page. 174

Figure 6.19: Request Public Certificate for Domain Name 175

Figure 6.20: List of certificates 175

Figure 6.21: Validate Domain Name in Certificate Detail Page. 176

Figure 6.22: Load Balancer Page. 177

Figure 6.23: Create Application Load Balancer. 178

Figure 6.24: Provide a Load Balancer Name. 178

Figure 6.25: Select all the Subnet of VPC. 179

Figure 6.26: Choose to Create Security Group 179

Figure 6.27: Create a Security Group. 180

Figure 6.28: Click Create Target Group. 180

Figure 6.29: Create a Target Group. 181

Figure 6.30: Assign EC2 Instances to Target Group. 182

Figure 6.31: Load Balancer Forward HTTP Traffic to Target Group. 182

Figure 6.32: Click to Create Load Balancer. 183

Figure 6.33: Add HTTPS Listener. 183

Figure 6.34: Listen to Port 443 and Forward to the Target Group. 184

Figure 6.35: Add the SSL certificate from AWS Certificate Manager. 185

Figure 6.36: Select Rule of HTTP Listener. 185

xxii

Figure 6.37: Click Manage Rules. 186

Figure 6.38: Redirect HTTP traffic to HTTPS. 186

Figure 6.39: Create Record for Load Balancer 187

Figure 6.40: Choose Simple Routing Template. 187

Figure 6.41: Click Define Simple Record. 188

Figure 6.42: Route Traffic to the Load Balancer. 188

Figure 6.43: Click Create Budget Button. 189

Figure 6.44: Set Budget Limit. 190

Figure 6.45: Send Emails When Thresholds Are Met. 191

Figure 6.46: Stop EC2 Instances When Threshold Is Met. 192

Figure 6.47: EC2 Home Page. 193

Figure 6.48: Use SSH to Connect EC2 Instance. 193

Figure 6.49: EC2 Instance’s Command Line Interface. 194

Figure 6.50: Command to Install Docker. 194

Figure 6.51: GitHub Repository Runners Page. 195

Figure 6.52: Codes to Install, Configure and Run GitHub Runner. 196

Figure 6.53: Github Actions’s YML file. 197

Figure 6.54: Server.js file that Starts Express Server. 198

Figure 6.55: Dockerfile That Builds Docker Image. 198

Figure 6.56: docker-compose.yml to Configure Docker Service. 199

Figure 6.57: React and React Native Process Data Flow Design. 200

Figure 6.58: Login Validation Page. 203

Figure 6.59: System Alerts User to Try Again. 203

Figure 6.60: Ant-Design Form Validation. 204

Figure 6.61: Login Logic. 205

xxiii

Figure 6.62: Logout Modal. 206

Figure 6.63: Logout Action. 206

Figure 6.64: Admin Component Monitor User Info and Redirect to

Login Page. 207

Figure 6.65: Automatically Log Out User When User Account or Role

Changed. 207

Figure 6.66: Web Home Page. 208

Figure 6.67: Load First 10 Car Access Records. 208

Figure 6.68: Listen to Carpark's Collection in Real-time. 209

Figure 6.69: Load More in Home Page. 209

Figure 6.70: Load More Records. 210

Figure 6.71: Search for Car Access Record. 211

Figure 6.72: Function to Perform Basic Search. 212

Figure 6.73: Web Filter Search Page. 213

Figure 6.74: Perform Filter Search on Car Owners. 213

Figure 6.75: Perform Filter Search on Car Access Log. 214

Figure 6.76: View Car Owner's Information. 215

Figure 6.77: Show Car Owner's Information. 215

Figure 6.78: Load Car Owner Data When Loading Car Access Logs. 216

Figure 6.79: Category Page. 217

Figure 6.80: Load Category List. 217

Figure 6.81: Add Category Modal. 218

Figure 6.82: Perform Add Category 218

Figure 6.83: Update Category Modal. 219

Figure 6.84: Perform Update Category. 219

Figure 6.85: Remove Category Confirmation. 220

xxiv

Figure 6.86: Perform Delete Category. 220

Figure 6.87: Person Page Shows List of Car Owners. 221

Figure 6.88: View Car Owner's Detail Information. 222

Figure 6.89: Load Car Owner List. 223

Figure 6.90: Detect New Data in Registration Collection. 223

Figure 6.91: Detect Update on Registration Collection. 224

Figure 6.92: Detect Deletion on Registration Collection. 224

Figure 6.93: Navigate to Detail Page. 225

Figure 6.94: Person Detail Page Load Car Owner Information. 225

Figure 6.95: Person Detail Page Load Car Owner's Category. 225

Figure 6.96: Register Car Owner Page. 226

Figure 6.97: Click Registration Button Navigate to Registration Page. 226

Figure 6.98: Registration Form Validation. 227

Figure 6.99: Register Car Owner Function. 228

Figure 6.100: Edit Car Owner Page. 229

Figure 6.101: Load Car Owner Information. 229

Figure 6.102: Validate Input Fields. 230

Figure 6.103: Perform Update Car Owner Action. 231

Figure 6.104: Remove Car Owner Modal. 232

Figure 6.105: Perform Delete Car Owner Action. 232

Figure 6.106: Search Car Owner Page. 233

Figure 6.107: Perform Algolia Search on Car Owner. 233

Figure 6.108: User Page. 234

Figure 6.109: Load User Data to User Page. 235

Figure 6.110: Add User Modal. 236

xxv

Figure 6.111: Add User Form Validation. 236

Figure 6.112: Add User Account. 237

Figure 6.113: Update User Account Modal. 238

Figure 6.114: Initialize Input Field Data. 238

Figure 6.115: Perform Update User Account Action. 239

Figure 6.116: Remove User Account Confirmation Modal. 240

Figure 6.117: Perform Delete User Account Action. 240

Figure 6.118: Role Page. 241

Figure 6.119: Load Role List from Firestore. 241

Figure 6.120: Add Role Modal. 242

Figure 6.121: Add Role to Firestore. 242

Figure 6.122: Edit Role Modal. 243

Figure 6.123: Assign Pages to Role. 243

Figure 6.124: Remove Role Modal. 244

Figure 6.125: Remove Role from Firestore. 244

Figure 6.126: Login Page. 245

Figure 6.127: Login Page Validation Message. 245

Figure 6.128: Login Action. 246

Figure 6.129: Logout Alert Modal. 247

Figure 6.130: User Press Logout Button to Logout. 247

Figure 6.131: User Logout Automatically When User Account

Being .Modified or Removed 248

Figure 6.132: Home Page. 249

Figure 6.133: Load More Function in Home Page. 249

Figure 6.134: Load First 10 Car Access Logs. 250

Figure 6.135: Listen for New Car Access Log in Real-time. 251

xxvi

Figure 6.136: On Load More Function. 252

Figure 6.137: Searching by Car Plate Number. 253

Figure 6.138: Perform Basic Search. 253

Figure 6.139: Filter Search Drawer. 254

Figure 6.140: Perform Filter Search. 255

Figure 6.141: View Car Owner Information. 256

Figure 6.142: Drawer Containing Car Owner's information. 256

Figure 6.143: Load Car Owner Data When Loading Car Access

Records. 257

Figure 6.144: Category Page. 258

Figure 6.145: Load Category List. 258

Figure 6.146: Add Category Modal. 259

Figure 6.147: Perform Add Category. 260

Figure 6.148: Edit Button of Category. 261

Figure 6.149: Edit Category Modal. 261

Figure 6.150: Perform Edit Category. 262

Figure 6.151: Remove Button of Category. 263

Figure 6.152: Remove Category Confirmation. 263

Figure 6.153: Delete Category. 264

Figure 6.154: Person Page. 265

Figure 6.155: View Car Owner's Detail Information. 265

Figure 6.156: Load Car Owner List. 266

Figure 6.157: Detect New Data in Registration Collection. 267

Figure 6.158: Detect Update on Registration Collection. 267

Figure 6.159: Detect Deletion on Registration Collection. 268

Figure 6.160: Register Car Owner Page. 269

xxvii

Figure 6.161: Registration Form Validation. 269

Figure 6.162: Register Car Owner Function. 270

Figure 6.163: Edit Car Owner page. 271

Figure 6.164: Validate Input Fields. 271

Figure 6.165: Perform Update Car Owner Action. 271

Figure 6.166: Remove Car Owner Button. 272

Figure 6.167: Remove Car Owner Modal. 272

Figure 6.168: Perform Delete Car Owner Action. 273

Figure 6.169: Search Car Owner Page. 273

Figure 6.170: Perform Algolia Search on Car Owner. 274

Figure 6.171: User Page. 275

Figure 6.172: Load User Data to User Page. 275

Figure 6.173: Add User Modal. 276

Figure 6.174: Add User Form Validation. 276

Figure 6.175: Add User Account. 277

Figure 6.176: Edit User Button. 278

Figure 6.177: Update User Account Modal. 278

Figure 6.178: Initialize Form Data. 279

Figure 6.179: Perform Update User Account Action. 279

Figure 6.180: Remove User Button. 280

Figure 6.181: Remove User Account Confirmation Modal. 280

Figure 6.182: Perform Delete User Account Action. 281

Figure 6.183: Role Page. 282

Figure 6.184: Load Role List from Firestore. 283

Figure 6.185: Add Role Modal. 284

xxviii

Figure 6.186: Validation on Role Input Field. 284

Figure 6.187: Add Role to Firestore. 284

Figure 6.188: Edit Role Button. 285

Figure 6.189: Assign Pages to Role. 285

Figure 6.190: Assign Pages to Role. 286

Figure 6.191: Remove Role Button. 287

Figure 6.192: Remove Role Modal. 287

Figure 6.193: Remove Role from Firestore. 287

Figure 7.1: Conducting System Usability Test. 324

Figure 7.2: Installing Camera. 331

Figure 7.3: Tuning Bounding Box. 331

Figure 7.4: Perform System Usability Testing on Mobile Application 332

xxix

LIST OF SYMBOLS / ABBREVIATIONS

ALPR Automatic License Plate Recognition

CI/CD Continuous Integration and Continuous Deployment

AI Artificial Intelligence

RFID Radio Frequency Identification

YOLO You Only Look Once

OCR Optical Character Recognition

OpenCV Open Source Computer Vision Library

AWS Amazon Web Services

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

DNS Domain Name System

EC2 Elastic Compute Cloud

ALB Application Load Balancer

HTML HyperText Markup Language

CSS Cascading Style Sheets

JS JavaScript

JSX JavaScript XML

CRUD Create, Read, Update and Delete

URL Uniform Resource Locator

SUS System Usability Scale

WYSIWYG What You See Is What You Get

xxx

LIST OF APPENDICES

Appendix A: Conduct Observation at Site A 340

Appendix B: System Usability Test Results 341

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

The traditional approach to monitor car access to the apartment is to use the

Radio-frequency identification (RFID) parking system, which involves RFID

readers, RFID tags, and self-check stations. The RFID tag could be lost by the

resident, causing security risk, and a damaged or lost tag could cause

environmental pollution. Furthermore, one RFID tag costs around RM2 to

RM4 (A Look at RFID Parking Systems and Alternative Options (Expert

Guide), 2022). In addition, most security guards use paper and pen to

manually register visitors and new residents. In addition, the price of

automatic license plate recognition system (ALPR) solutions for consumers

currently on the market remains high, raising the bar to use.

Smart Vehicle Entrance and Exit System can solve the problem of

high cost, high security risk, and high pollution. The main physical facilities

are a camera placed at the entrance and a Linux computer to detect the license

plates and record the vehicle entry information. The virtual facilities include

cloud databases to store car plates and car owners’ information, two Amazon

Web Services (AWS) servers to host the web application, and an Android

mobile application for the manager to access the data easily.

Three main technologies are used to recognize license plates and

extract license plate text: You only look once (YOLO), Optical character

recognition (OCR), and Open-Source Computer Vision Library (OpenCV).

ALPR consists of four main processing stages, as shown in Figure 1.1.

2

Figure 1.1: Four Stages of ALPR (Negassi, Goitom Araya, Awawdeh and

Faisal, 2018).

In this project, there are 4 steps to detect and upload the license plate

information to the cloud database, each step is listed below:

(i) Monitor the entrance.

(ii) Recognize the license plate.

(iii) Use OpenCV to perform image processing

(iv) Upload car access information to Firebase

The initial task is to send video frames of the entrance to the

computer for image processing. The second step is to use the YOLO model to

recognize and crop the license plate image from the original video frame. The

process of the YOLO algorithm is shown in Figure 1.2. The third step is to use

OpenCV to perform a series of image processing on the license plate image,

the steps include image grayscale, image noise reduction, thresholding,

dilation, and lastly license plate segmentation. After the image processing, the

image is sent to OCR for character recognition. The process is shown in Figure

1.3.

After extracting the car plate number, the car plate image, the car

plate number, and the car owner information will be uploaded to Firebase’s

Firestore and Firebase’s Storage. The interface of Firebase’s storage with car

plate information is shown in Figure 1.4. Subsequently, user can view the car

access log through the web and mobile applications.

3

Figure 1.2: YOLO’s Object Detection Method (Agrawal, 2017).

Figure 1.3: Image Processing Step (Tham and Tan, 2021).

Figure 1.4: Interface of Google Firebase with Car Plate Information (TAN,

2021).

1.2 Problem Statements

1.2.1 Security Risk

The transferable nature of RFID makes it easy to use, but it comes with a high

security risk when RFID tags are robbed or stolen and can be used by

criminals to gain access to apartments. Users may also abuse the system by

sharing the RFID tags with family members.

4

1.2.2 High Cost

The price of the ALPR solution currently available on the market is too high.

This section discusses the prices of the products of two companies that

currently provide ALPR services. The first one is Zento company, Zento

provides a one-stop ALPR solution for license plates in Malaysia and it is

priced at 2,000 USD. The product includes a computer and camera to detect

license plates and a backend management software to monitor vehicle entry

and exit records (Malaysia license plate recognition parking system with LPR

camera ANPR camera 2023). Figure 1.5 and Figure 1.6 show the ALPR

product provided by Zento.

The second is Saskatchewan Government Insurance (SGI) which uses

ALPR technology to detect stolen cars or unregistered license plates. SGI

invested 5.1million in this technology and the price of each ALPR device is

around 25,000 USD (Sgi, 2023).

It can be found that the price of products using ALPR technology

available on the market is too high, which raises the bar to use.

Figure 1.5: Zento’s Pricing for ALPR Service (Malaysia license plate

recognition parking system with LPR camera ANPR camera,

2023).

5

Figure 1.6: User Interface of Zento’s Car Management Software (Malaysia

license plate recognition parking system with LPR camera ANPR

camera, 2023)

1.2.3 Unable To Monitor Vehicle Access

The current conventional apartment parking system in Malaysia is not able to

record vehicle access information well. When a visitor wants to enter a

compound, the traditional approach is to rely on the security guard to register

the visitor via handwriting. Not only it is time taxing, and the entry permit

document is hard to manage and store. Furthermore, RFID tags might be

shared by family or friends, making it difficult to record accurate vehicle

access information.

1.3 Aim and Objectives

The main aim of this project is to provide the manager with a system that

automatically records vehicle access and allows him to view car access

information easily. It can also facilitate the procedure of registering car owners.

Specifically, the objectives of this project are:

(i) To develop real-time web and mobile ALPR applications to

monitor car access log and manage car owners.

(ii) To utilize AWS cloud services to deploy web application.

6

(iii) To promote the continuous integration and continuous

deployment (CI/CD) flow by using Github Actions to

automatically deploy web application on AWS servers

(iv) To deploy the ALPR system at the security guard station.

(v) To use System Usability Scale to evaluate web and mobile

applications.

1.4 Proposed Solution

The proposed solution aims to solve the encountered problems stated above,

the camera will first capture the incoming video frame and send it to the Linux

computer. It is responsible for car plate identification and character

recognition. The processed result will then be uploaded to the Firebase cloud

database and synced to the Algolia database. Firebase and Algolia act as the

databases for the web and mobile applications. The web and mobile

applications provide functions for the manager such as viewing the logbook of

car access records and managing the car owners, and the manager can create a

new account with limited access to the staff. This project uses AWS service to

serve web application and uses Github Actions to promote CI/CD flow. The

system overview is presented in Figure 1.7.

Figure 1.7: System Overview

7

The project uses a KAYETON camera and a Dell OpiPlex 3060 computer to

complete the license plate recognition. The camera has a specification of 2.0

megapixels and supports 1080p video capturing and night detection. The

computer's CPU, memory and storage configurations are i5-8500t, 16gb ram

and 128gb m2.sata SSD. Figure 1.8 shows the price of the camera and Figure

1.9 shows the price of similar computer configurations. In this project, the cost

of the computer and video is around RM1,500.

Figure 1.8: Price of Project’s Camera.

Figure 1.9: Price of Project’s Computer

8

1.5 Proposed Approach

The project employs DevOps as the development approach, DevOps

emphasizes the automation and integration of various processes and tools that

support the delivery and deployment of software products. DevOps can benefit

the project in many ways, such as:

(i) Faster and more frequent releases.

DevOps enables the project to adopt a continuous delivery

approach, where software changes are delivered to customers

in small and frequent batches. This reduces the risk of errors,

bugs, and conflicts, and allows the project to respond to

customer feedback and market demands more quickly and

effectively.

(ii) Higher quality and reliability.

DevOps ensures that the software products are tested and

verified at every stage of the development cycle, from coding

to deployment. This reduces the chances of defects and

failures and improves the performance and functionality of the

software products. DevOps also enables the project to monitor

and troubleshoot issues in real-time, and to implement

corrective actions faster.

(iii) Reduced costs and waste.

DevOps helps the project optimize the use of resources and

infrastructure and eliminate unnecessary or redundant tasks.

DevOps also reduces the overhead and complexity of

managing multiple environments, tools, and platforms. Lastly,

DevOps enables the project to achieve more with less and to

deliver more value to customers.

DevOps is a beneficial practice that can help the project to achieve its

goals faster, better, and cheaper. DevOps can enhance the efficiency, quality,

agility, and innovation of the software development and delivery process. The

overview of software development methodology is displayed in Figure 1.10

9

Figure 1.10: DevOps Methodology (DevOps implementation roadmap

and advantages, 2023).

1.6 Project Scope

The project’s scope is to deploy the ALPR system at one residential area (here

after referred to as “Site A”) and to develop web and mobile applications of it

for the manager. The former student of Universiti Tunku Abdul Rahman

(UTAR) has developed the ALPR system. This project mainly focuses on

integrating the existing ALPR system with the web and mobile applications

created by React and React-native framework.

1.6.1 Targeted User

There is only one target user for this project, the manager of Site A. The

manager is responsible for managing the car owners and monitoring the car

access log. However, the system has role and permission functions, and the

manager can make some pages of the web and mobile applications available to

security guards or residence community members according to their needs.

1.6.2 Modules Covered

The list below states the modules covered in web and mobile applications:

(i) Car Access Log Module

10

After the user logs in to the application, the system will

monitor the car access. If there is a vehicle passing by, it will

present the new car access record to the user interface in real

time. User can also search the car access logbook according to

date, license plate number and car owner information.

(ii) Category Module

Users can create new categories to distinguish car owners. For

example, user can label the car owner as visitor or resident.

(iii) Person Module

Users can register and manage car owners in the person

module.

(iv) User Module

Manager can create an account in the user module for staff to

use and assign a role for it, and when the information of the

account is changed or the account is deleted, the staff that

using this account will be forced to log out from the

application automatically.

(v) Role Module

Manager can create a new role in the role module, manager

can also bind the application pages to the role, so the account

with this role can view the targeted system’s pages only.

11

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

Nowadays, automation is becoming increasingly prevalent, prompting a shift

from traditional parking systems to automated parking systems. In the

traditional parking system, individuals are required to register and obtain

RFID tags to verify their access to the compound or go through a handwriting

procedure to register them. But these RFID tags are at risk of being reused by

criminals, and as the number of vehicles increases, it becomes inconvenient to

manage them. There is an urgent need for automated system applications that

can automatically identify vehicles and generate tracking logs. These problems

can be solved by deploying an ALPR system.

The ALPR system is an application that automatically detects license

plates. First, it detects the area within the visual range through a camera, and

when a vehicle enters the bounding box, it automatically performs license

plate recognition and reads the license plate number. This information is then

uploaded to the cloud for the ALPR system-based applications. All these

procedures are automated, and no human intervention is required (Petiwala,

Shukla, Mishra and Saini, 2021).

2.2 Car Plate Detection and Character Recognition Techniques

2.2.1 Edge Detection for Car Plate Position Detection

Firasanti, Ramadhani, Bakri, and Zaki Hamidi (2021) proposed a comparison

between Canny Edge and Otsu Thresholding applied to license plate

localization, the authors first preprocessed the image, which includes image

graying, and blurring using bilateral filters. Figure 2.1 shows the result of the

grayscale process and applying a filter bilateral.

12

Figure 2.1: Image Preprocessing (adopted from Firasanti, Ramadhani, Bakri

and Zaki Hamidi, 2021).

The image graying reduces the complexity of the image and thus

saves computational resources while the blurring of the image reduces the

noise. After that, the authors used the Canny Edge and Otsu Thresholding

algorithms to find the edges of license plates and then intercept the license

plates in the edges. 30 samples were used for testing and the accuracy of

Canny Edge was 100%, while Otsu thresholding was only 70%. Figure 2.2

shows the result of images after applying canny edge method and Otsu

thresholding method. Figure 2.3 shows the comparison between canny edge

and Otsu thresholding.

Figure 2.2: Result with Canny Edge and Otsu Thresholding (adopted from

Firasanti, Ramadhani, Bakri and Zaki Hamidi, 2021).

13

Figure 2.3: Comparasion Between Canny Edge and Otsu Thresholding

(adopted from Firasanti, Ramadhani, Bakri and Zaki Hamidi,

2021).

In another study where a similar approach was used for license plate

segmentation, Samantaray and others (2021) Canny algorithm for segmenting

license plates. The authors' image preprocessing only generates grayscale

maps, and then the Canny Edge algorithm is used directly to recognize license

plates. The authors used 15 samples for testing and the accuracy was 93.34%.

Table 2.1 shows the accuracy result.

Table 2.1: Accuracy Analysis Table (adopted from Samantaray et al., 2021).

14

2.2.2 Neural network for car plate position detection

Currently, the mainstream feature extractors are MobileNet, GoogleNet,

VGG16, ZFNet, ResNet, DenseNet, and so on and object detection

frameworks are Faster R-CNN, YOLO, SSD.

Alborzi, Mehraban, Khoramdel and Ardekany (2019) used MobileNet

as its feature extractor with SSD framework for license plate recognition, and

the authors used 500 images for testing, and the accuracy was 82.60%. In

addition, the authors also compared Mobilenet with GoogleNet and VGG16

and the result is shown in Table 2.2. The authors highlight that MobileNet

achieves good accuracy with less computational resources than the above-

mentioned models. Also the authors show the comparison between MobileNet

based SSD and R- CNN, Fast YOLO, YOLO and find that the accuracy and

speed of the SSD exceeds Faster R-CNN and YOLOV1. It is very suitable to

use in embedded computers. The Table 2.3 shows the results.

Table 2.2: Comparison Between Popular Models (adopted from Alborzi,

Mehraban, Khoramdel and Ardekany, 2019).

Table 2.3: Results on Pascal VOC2007 Test for Popular Networks and SSD

(adopted from Alborzi, Mehraban, Khoramdel and Ardekany,

2019).

15

In addition to using SSD for license plate detection, Lee and the

others (2018) used YOLO9000 as the framework, which is based on YOLOV2

improvement, and its biggest feature is its ability to detect 9000 categories in

real time. The training model uses 2500 images, and the accuracy of

YOLO9000 is 93.20% while that of Faster RCNN is 93.90%. besides the

accuracy of YOLO9000 is similar to Faster RCNN, the detection speed is

several times faster. The Table 2.4 shows the comparison between faster R-

CNN and Yolo9000.

Table 2.4: License Plate and Vehicle Detection Recall Performance (adopted

from Lee et al., 2018).

2.2.3 Use of Texture and Color Features for Car Plate Position

Detection

Nooruddin, Sharna, and Ahsan (2020) used the texture and color features of

license plates for license plate segmentation as further processing of the edge

detection algorithm to further filter the image based on the license plate color

or texture. Sun, Li, Xu, and Wang (2018) found that after detecting the edges

using the sobel operator alone, dilation of the image to fill the license plate

cavity would cause sticking between the words of the license plate. By

restricting the red of the image RGB values to 0-50, 155-255 in to remove the

unnecessary pixels other than license plates. The image before and after

applying the red channel filter is shown in Figures 2.4 and 2.5. The authors

also compared the accuracy of the traditional method and the new method for

license plate location and proved that this new method is helpful for license

plate location. The table of results is shown in Table 2.5.

16

Figure 2.4: Result of Dilation

(adopted from Sun, Li,

Xu and Wang, 2008).

Figure 2.5: The Output of Red

Channel Filter (adopted from Sun, Li,

Xu and Wang, 2008).

Table 2.5: Comparative Result of Locating License Plate (adopted from Sun,

Li, Xu and Wang, 2008)

Different images

Successful cases

Apply color

filter

Without apply

color filter

100 blue LPs 98（98%） 92（92%）

40 yellow LPs 40（100%） 13（32.5%）

20 white LPs 18（90%） 3（15%）

20 black LPs 20（100%） 19（95%）

20 disturbed LPs 11（55%） 8（40%）

Total 200 LPs 187（93.5%） 135（67.5%）

Nooruddin, Sharna and Ahsan (2020) take a different approach by

extracting histogram features for each dimension of RGB for the image.

Pooling is used to reduce the dimensionality of the data, with minPool

highlighting the darker areas of the window and maxPool highlighting the

brighter areas of the window. The process is shown in Figure 2.6. After the

features are extracted, each feature is merged, and random forest machine

learning is used for training and application. The machine learning model can

frame the possible locations of license plates, and finally the composite result

17

is merged to form the final image output. Figure 2.7 shows the process of

detection and localization.

Figure 2.6: The Input Image and Extracted Features (adopted from Nooruddin,

Sharna and Ahsan, 2020).

Figure 2.7: The Detection and Localization Process (adopted from Nooruddin,

Sharna and Ahsan, 2020).

18

Performance is measured in different color spaces including RGB,

LAB and YCbCr. The performance measure of detection and localization is

shown in Table 2.6. In RGB color space, it achieves the highest precision.

Table 2.6: Performance Measures (%) of Detection and Localization (adopted

from Nooruddin, Sharna and Ahsan, 2020).

2.2.4 Character Recognition

Suraj, Sridhar, Jijesh and Shivashankar (2018) used OCR template matching

method for character recognition. First, the character dataset is prepared by

cropping each character from the license plate and resizing it to a uniform size.

The dataset is shown in Figure 2.8.

After that they performed character recognition on the license plate,

first detecting each character by contour, and then make each character framed

by a rectangle with the help of the contour. Each character image is sent into

the character dataset for template matching to obtain the maximum relevant

value and output the corresponding text. The flow of character extraction is

shown in Figure 2.9.

19

Figure 2.8: Dataset of Alphabets and Numbers (adopted from Suraj, Sridhar,

Jijesh and Shivashankar, 2018).

Figure 2.9: Extraction, Cropping and Resizing of First Character (adopted

from Suraj, Sridhar, Jijesh and Shivashankar, 2018).

In addition to manually writing the OCR template matching method,

OCR also provides a tesseract library. Tesseract is an open-source toolkit, the

recognition process is listed as below:

20

(i) Uploading images.

Convert the image into binary data and send it to the tesseract

program.

(ii) Page analysis

Determine whether the text is in horizontal or vertical

orientation.

(iii) Character block analysis

Search for small character blocks first and detect the area

around the block, if there is a connected area, it will redefine

the contour of the connected domain, if there is no other

character field nearby, it will be ignored as noise.

(iv) Character recognition

Each character in the character block is recognized and its

character data is given to the classifier for training to improve

the accuracy.

(v) Correction and output

The ambiguous spaces are corrected, and the text is exported.

Firasanti, Ramadhani, Bakri and Zaki Hamidi (2021) used OCR

tesseract for character recognition. Figure 2.10 shows the cropped input image

and Figure 2.11 shows the recognition result. From the 30 samples, the

average license plate character recognition rate is 72%. Figure 2.12 shows the

license plate samples and their recognition results.

Figure 2.10: Cropped License Plate Image (adopted from Firasanti,

Ramadhani, Bakri and Zaki Hamidi, 2021).

21

Figure 2.11: License Plate Character Identification (adopted from

Firasanti, Ramadhani, Bakri and Zaki Hamidi, 2021).

Figure 2.12: Samples of License Plates With High Accuracy (adopted

from Firasanti, Ramadhani, Bakri and Zaki Hamidi, 2021)

The first two methods used OCR for character recognition, next

Rusakov (2020) used ResNet neural network for character position recognition.

Firstly, different license plate datasets were used for training and to eliminate

the bounding rectangle distortion and symbol detection errors, so on the

dataset, negative samples were eliminated. The flow of character position

detection is shown in the following Figure 2.13.

22

Figure 2.13: The Scheme of the Symbol Detection Module (adopted from

Rusakov, 2020).

Character recognition consists of three ResNet neural networks, the

first module trains characters, the second module trains numbers, and the third

module trains regions, and the three modules are computed and merged into

one line of license plate numbers. The following Figure 2.14 shows the symbol

recognition module and Table 2.7 shows the accuracy of the car plate

detection module, symbol detection module, and symbol recognition module.

They achieved high accuracy with each of them at over 80%.

Figure 2.14: The Scheme of the Symbol Recognition Module (adopted

from Rusakov, 2020).

23

Table 2.7: Validation of Modules of the Automatic License Plate Recognition

System (adopted from Rusakov, 2020).

2.2.5 Summary

In summary, with several license plate location algorithms: Edge detection,

neural network, and method based on color and texture. Here we compare the

advantages and disadvantages of them. Table 2.8 compare the different license

plate location algorithms. As for character recognition, we have OCR template

matching, an OCR Tesseract toolkit, and neural network methods. The

advantages and disadvantages are shown in Table 2.9.

Table 2.8: Comparison of License Plate Location Detection Algorithms

License plate location

detection algorithms

Advantages Disadvantages

Edge detection method

Perform well in

high contrast with

clear edge of license

plate

Easily get influenced by

the environment.

Neural network

Good learning

ability and

adaptability, model

performance based

on training images.

Complex networks can

slow down recognition

24

Color and texture feature

Perform well in

high- contrast

environment

The computational

overhead is larger than

Edge detection and

sensitive to license plate

color.

Table 2.9: Comparison of Character Recognition Algorithms

Character recognition

algorithms

Advantages Disadvantages

OCR template matching

Recognition speed is

fast and quite

accurate

The characters skew

will affect the

recognition accuracy.

OCR tesseract toolkit

Recognitio speed is

fast and quite

accurate, easy to

deploy.

The computation is

slower than the OCR

template matching

Neural Network

Good learning

ability and

adaptability, high

fault tolerance

Complex networks can

slow down recognition

2.3 Applications of ALPR System

Shkurti, Aliu, and Kabashi (2021) propose a parking management system with

automatic license plate recognition. The associated hardware is a camera for

capturing vehicle photos and a Raspberry Pi as the computer for processing

and recognizing the images. The related software is OpenCV for image

processing, and OpenALPR library for license plate and character recognition,

developed using Flask. When a vehicle enters a designated area, the camera

will automatically scan the license plate and record its license plate number

and the time it entered the system. After that, the system will automatically

calculate the driver's parking fee and register it in the database. The detailed

flow chart is shown in Figure 2.15.

25

Figure 2.15: System stages for plate recognition (adopted from Shkurti,

Aliu and Kabashi, 2021)

The web application was developed using the Flask web framework

and provides the main functions of logging in, displaying vehicles entering the

parking lot, displaying vehicles exiting the parking lot, registering users,

providing payment services, and displaying access reports to the parking lot.

Figures 2.16-2.21 shows the information of the web page.

26

Figure 2.16: The Login Page (Shkurti, Aliu and Kabashi, 2021).

Figure 2.17: Main Page Showing Entering Car (Shkurti, Aliu and Kabashi,

2021).

Figure 2.18: Main Page Showing Exiting Car (Shkurti, Aliu and Kabashi,

2021).

27

Figure 2.19: Main Page Showing Exiting Car (Shkurti, Aliu and Kabashi,

2021).

Figure 2.20: Customer Page (Shkurti, Aliu and Kabashi, 2021).

28

Figure 2.21: Logbook of Car Access Records (Shkurti, Aliu and Kabashi,

2021).

This system recognizes the license plate with an accuracy rate of 85%,

but the system also has defects, that is, the camera can only be placed in a

fixed position and is sensitive to light. In the case of insufficient light, it

cannot identify the license plate. Tian and others (2014) proposed another

framework for smart parking, which includes a vehicle detection module, an

access control module, and a system management software module. Figure

2.22 shows a sketch of the system hardware design.

29

Figure 2.22: System Hardware Sketch (Tian et al., 2014).

The camera will automatically capture a photo of the car, which will

then be sent over to the computer for license plate recognition and verification.

Once the verification is passed, the barrier will be opened to allow the vehicle

to enter the parking lot. In addition, the barrier can also be operated by the

controller or software application. At the same time when that vehicle leaves,

the camera will take a picture of that vehicle and compare it with the picture at

the entrance. The overview of the system management software is shown in

Figure 2.23.

Figure 2.23: Flowchart of Data Processing (Tian et al., 2014).

30

The vehicle images are first collected by the video capture card, then

go through image pre-processing and license plate detection module, and

finally the recognized license plates are stored in the system database. The

author used QT framework developed in C++ to build the GUI application on

a Dell Vostro Desktops computer with Intel(R) Core(TM) E7200, 4GB

memory. Figures 2.24 and 2.25 are the screenshots of application.

Figure 2.24: Video and Pictures at

the Entrance (Tian et al.,

2014).

Figure 2.25: Video and Pictures

at the Exit (Tian et al.,

2014).

The system can be more than 95% accurate but can be affected by

light and environment, causing license plate recognition errors. The system

processes a car in an average time between 30ms and 100ms, which is very

fast. Table 2.10 shows the system accuracy test results.

31

Table 2.10: Result of the Proposed System

 Negassi, Goitom Araya, Awawdeh, and Faisal (2018) proposed the

architecture of the intelligent license plate recognition system, Figure 2.26

shows the process of the proposed system.

Figure 2.26: Smart Car Plat Recognition System (Negassi, Goitom Araya,

Awawdeh and Faisal, 2018)

The license plate number is detected by using Raspberry Pi, camera,

and communication module, and subsequently the main method of processing

the license plate using OCR template matching for character recognition,

deciding whether to give the current vehicle a pass or not based on the

predefined license plate information in the database, and the extracted license

plate text is compared with the prior data set and to save the log information to

send to the team. The graphical user interface is developed using Matlab and

Figure 2.27 shows the graphical interface of the ALPR system.

32

Figure 2.27: Recognition Interface (Negassi, Goitom Araya, Awawdeh

and Faisal, 2018)

Wong (2019) reported that there is an automatic license plate

recognition system in the Sunway pyramid where drivers can pre-register their

license plate number through an app and drive directly into the parking lot

once they are registered. JeiShun says that the current accuracy rate for

Malaysian license plates is 95%. Dason (2022) reported that Pay and Go Sdn

Bdn has integrated Sarawak Pay in its application Pay and Go and launched

LPR smart parking system in CityOne Mega Mall, Plaza Merdeka, The Spring

and other supermarkets in Kuching, Malaysia. When a vehicle enters the

parking lot, the camera automatically identifies the license plate and uploads it

33

to the cloud space. Users only need to access the GO App and enter their

license plate number before exiting the parking lot to pay with the e-wallet.

Figure 2.28 shows the initial page of the application to select parking and

Figure 2.29 shows the payment page when exiting the parking lot.

Figure 2.28 The Home Page to Select

Parking

Figure 2.29: Payment Page.

2.4 Previous work on car plate recognition

The project’s web and mobile applications need to integrate with Tan Wei

Kun’s ALPR system, so this section reviews his system to study his project

implementation.

2.4.1 Introduction

ALPR automatic license plate recognition system is based on the development

of artificial intelligence and computer vision technology. The use of image

pre- processing and the application of convolutional neural networks in ALPR

systems can improve recognition accuracy. Complex neural networks that

require powerful computing power are obviously not suitable for application in

IoT environment, so the author proposed a lightweight IoT-based ALPR

34

solution. The author obtained a dataset of 400 images Malaysian car plate

images and used it to train the YOLOv4-tiny model, migration learning is also

performed to achieve better result. After that, the author used OpenVino to

optimize the trained YOLOv4-tiny model.

The author then tuned the region of interest (ROI) so that license

plates are located within the ROI, circumventing the possibility of collecting

license plates from tilted angles. After the license plates are collected,

character recognition is then performed. First, the author used OpenCv to

segment each character and provide it to the Tesseract engine for character

recognition. Subsequently, the best license plate number is selected. The

author chose Up Squared and Ubuntu as the computer and operating system to

run the ALPR code. The result of the experiment achieved 99.02% accuracy

on the license plate recognition and 78.23% accuracy on the character

recognition (TAN, 2021).

2.4.2 Methodology

The first step was the preparation of the dataset. The author used the vehicle

dataset from the Plates Portal website, which has 400 images for training and

100 images for testing. The author also used LabelImg software to label the

parts with license plates and output them in YOLO format. Figure 2.30 shows

the labeling process.

35

Figure 2.30: Labelling Vehicle Number Plate Using LabelImg Software

(TAN 2021).

Although YOLOV4 is fast in detection, it has corresponding

requirements on the computer's computing speed, requiring a minimum of

8GB ram and a graphics card for training and detection. So, in contrast, the

yolov4-tiny model is a lightweight network that is more suitable to use in

embedded devices. Although the accuracy is only two-thirds of yoloV4, the

accuracy can be improved by implementing migration learning. Figure 2.31

shows the comparison of speed and accuracy between YOLOv4 and YOLOv4-

tiny.

36

Figure 2.31: Comparison of Speed and Accuracy Between YOLOv4 and

YOLOv4-Tiny (Bochkovskiy, 2020).

The author used geo-fencing and centroid tracking methods to frame

the areas where vehicles may appear in the video. When a license plate enters

this detection box, a license plate recognition operation is triggered, the

geofencing method is shown in Figure 2.32, and an updated ID is given for the

latest stationary video frame, this updated ID is used to ensure that the latest

video frame will eventually be fed into the neural network for recognition.

Figure 2.32: Vehicle Entering Geofencing Area Represented by the Blue

Box (TAN, 2021).

The video frame, after being processed by YOLOV4-tiny, the license

plate has already been located, and the result is shown in Figure 2.33. The

image is then preprocessed using OpenCV, which includes cropping,

grayscaling, blurring, thresholding, dilation, and finding contours, and the

37

image pre-processing process is shown in Figure 2.34. The purpose of image

preprocessing is to allow better character recognition.

Figure 2.33: Bounding Box

Around the License Plate

(TAN 2021).

Figure 2.34: Image Processing

Processes (TAN, 2021).

After image preprocessing, character recognition can be performed

directly using Tesseract OCR. Since there are long and short license plates in

Malaysia, as shown in Figure 2.35, the result of Tesseract OCR for short

license plates may be inaccurate, such as "1W9H0Y2" when it should be

recognized as "WHY1902". The solution is to sort the character position of the

result, move all the letters to the leftmost side, so that the left side must be all

letters, and the right side will be all numbers.

Figure 2.35: Type of LPs in Malaysia- Long-Width LP and Short- Width

LP (TAN, 2021).

Some license plates such as Figure 2.36 contain special characters '-',

which are not needed, so when using OpenCV for contour search, setting a

certain ratio of length to width to the contour will act as a filter to filter out this

unwanted character. Tesseract OCR sometimes misidentifies the characters of

license plates, and a common pair of very similar alphanumerics is shown in

38

Table 2.11. Through an empirical study, the first three characters of the license

plate are letters, and the rest are numbers. By fixing the first three characters of

license plate numbers as alphabets, the accuracy of recognition is greatly

increased.

Figure 2.36: LP With Special Character “-” (TAN, 2021).

Table 2.11: Common Pairs of Alphanumeric That Are Similar (TAN, 2021).

High Similarity in Alphanumeric Shape

1 I

7 T

9 g

Tesseract OCR will recognize the license plate six times and get six

results. The length of the string result is also a concern, the length of output

license plate text is not always 7 and the use of a pool of license plate numbers

can solve this problem. For example, if the input license plate array is like

Figure 2.37, this algorithm will iterate through each string license plate, set the

weight of 3 for the string length of 7 and 1 for the rest, and finally only the

license plate number with the maximum weight will be output. Finally, the

final license plate will be uploaded to Firebase.

Figure 2.37: Input LP Array Used in Pooling Algorithm (TAN, 2021).

2.4.3 Conclusion

The author used 400 images for training, where the accuracy of license plate

location recognition was 99.02% and the accuracy of character recognition

using 100 vehicle images was 78.23%. When using a series of methods such

39

as the geofencing technique, centroid tracking technique, and pooling

algorithm, the final character recognition accuracy of 100% can be achieved.

However, this system has the limitation, that it faces difficulty in recognizing

low-resolution images and very skewed images, and Tesseract OCR does not

recognize some characters that look alike very well.

2.5 Software Development Methodology

2.5.1 Waterfall Methodology

The waterfall methodology is a software development life cycle (SDLC)

model that consists of a linear and sequential flow of phases. Each phase

depends on the completion and verification of the previous one, and there is no

going back once a phase is done. The phases of the waterfall methodology are

Requirements, Analysis, Design, Implementation, Testing and Maintenance.

Figure 2.38: (A complete guide to the waterfall methodology, 2023).

The waterfall methodology is one of the oldest and most widely used

SDLC models in software engineering. Table 2.12 shows the advantages and

disadvantages of the waterfall methodology.

40

Table 2.12: Advantages and Disadvantages of Waterfall Methodology.

Advantages Disadvantages

• It is simple and easy to

understand and follow.

• It provides a clear structure

and milestones for project

management.

• It ensures high quality and

reliability of the software

product by emphasizing

thorough documentation and

testing.

• It is rigid and inflexible to

changing requirements or

customer feedback.

• It is slow and costly due to its

sequential nature and lack of

iteration.

• It delays testing and feedback

until late in the development

process, which can lead to

more errors and rework.

Therefore, the waterfall methodology may not be suitable for every

software development project. It may work well for projects that have fixed

and well-defined requirements that are unlikely to change, ample resources

and time available for development and stable and predictable technology

environment.

2.5.2 Prototyping Methodology

Prototyping methodology is a software development methodology that focuses

on the use of working models that are constantly refined based on feedback

from the end user. Prototyping is most used to develop systems with

significant end-user interaction and complex user interfaces. The phases of the

prototyping methodology are Requirements, Design, Build Prototype, User

Evaluation, Refining Prototype and Implement and Maintain.

41

Figure 2.39: Prototyping Methodology (Martin, 2022).

The main purpose of prototyping is to allow users of the software to

evaluate developers' proposals for the design of the eventual product by

actually trying them out, rather than having to interpret and evaluate the design

based on descriptions. Prototyping also provides an understanding of the

software's functions and potential threats or issues. Prototyping can help to

confirm that the software meets the user's needs and expectations, and that the

project estimates and deadlines are realistic.

The prototyping methodology combines the iterative system with a

trial-and-error approach. In this methodology, the developers build a

prototype, test it and refine it until it reaches an acceptable level of

functionality to demonstrate to the client. Table 2.13 shows the advantages and

disadvantages of the prototyping methodology.

Table 2.13: Advantages and Disadvantages of Prototyping Methodology.

Advantages Disadvantages

• It enhances user involvement

and satisfaction, as they can

see and influence the

development process and

outcome.

• It reduces risks and

uncertainties, as potential

problems and issues can be

identified and resolved early in

the project.

• It improves communication

• It can be time-consuming and

costly, as multiple iterations

and revisions may be required

to achieve a satisfactory

prototype.

• It can create unrealistic

expectations or confusion

among users, as they may

assume that the prototype is a

finished product or that all

features will be implemented

42

and collaboration among

stakeholders, as they can share

a common vision and

understanding of the software.

• It facilitates innovation and

creativity, as different ideas

and options can be explored

and experimented with.

as shown.

• It can compromise quality or

security, as some aspects of

the software may be

overlooked or neglected in

favor of speed or appearance.

Prototyping methodology is a flexible and user-centered software

development methodology that can help to create better software products that

meet user needs and expectations. However, it requires careful planning,

management, communication, evaluation, documentation throughout the

project lifecycle.

2.5.3 DevOps Methodology

DevOps is a methodology that aims to improve the collaboration and

communication between software development and IT operations teams.

DevOps also emphasizes the automation and integration of various processes

and tools that support the software development life cycle, such as planning,

coding, testing, deploying, monitoring and feedback.

The main goal of DevOps is to deliver software products faster and

more reliably, while reducing the risks and costs associated with traditional

software development methods. DevOps enables continuous delivery, which

means that software updates can be released frequently and incrementally,

rather than in large and infrequent batches. DevOps also fosters a culture of

learning and experimentation, where teams can test new ideas and learn from

failures quickly and safely.

43

Figure 2.40: DevOps Methodology (DevOps implementation roadmap

and advantages, 2023).

Table 2.14: Advantages and Disadvantages of DevOps Methodology.

Advantages Disadvantages

• Improved customer

satisfaction and loyalty, as

software products can meet

their needs and expectations

better and faster.

• Increased productivity and

efficiency, as teams can work

together more seamlessly and

leverage automation and

standardization to reduce

errors and waste.

• Enhanced innovation and

competitiveness, as teams can

experiment with new features

and technologies more easily

• Cultural and organizational

challenges, as teams may face

resistance to change and need

to adopt new mindsets and

skills.

• Technical and operational

complexities, as teams may

need to deal with multiple

tools and platforms and ensure

their compatibility and

interoperability.

• Resource and investment

constraints, as teams may need

to allocate more time and

money to implement DevOps

44

and respond to changing

market demands more agilely.

• Reduced costs and risks, as

teams can detect and fix issues

earlier in the development

process and avoid downtime

and security breaches.

practices and tools.

DevOps is not a one-size-fits-all solution, but rather a flexible and

adaptable approach that can vary depending on the context and goals of the

project. Therefore, teams should assess their current situation and needs,

identify their challenges and opportunities, define their vision and objectives,

and plan their strategy and roadmap for adopting DevOps. By doing so, teams

can reap the benefits of DevOps while minimizing its drawbacks.

2.5.4 Conclusion

Overall, each methodology has its own strengths and weaknesses, and the

choice of methodology depends on the specific requirements of the project.

Waterfall may be suitable for simple projects with well-defined requirements,

prototyping may be useful for projects with changing requirements, and

DevOps may be best for projects with a focus on speed and agility.

2.6 System Usability Testing

System Usability Scale (SUS) is a reliable tool to test the usability of a system,

and it is also "quick and dirty". The questionnaire consists of 10 questions,

each with five choices, from strongly agree to strongly disagree. We can use it

to evaluate a wide variety of products including but not limited to hardware,

software, mobile devices, websites, and applications. (Affairs, 2022). SUS has

several benefits, including the following:

i. SUS is suitable for small scale and the results are reliable.

ii. SUS can distinguish between usable and unavailable systems.

iii. SUS is easy to manage for participants.

45

The following points need to be kept in mind when using SUS:

i. Its scoring mechanism is a bit complicated.SUS can distinguish

between usable and unavailable systems.

ii. The scores are from 0-100, but cannot be treated as percentage

scores, otherwise they will be interpreted incorrectly.

iii. It requires normalization of scores to interpret results.

iv. SUS is designed to test ease of use, not diagnostic.

Figure 2.41 shows the questions of System Usability Scale, the

answering scale are from strongly disagree to strongly agree.

Figure 2.41: System Usability Scale (What Every Client Should Know

about SUS Scores, 2022).

46

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter begins by discussing each phase of the DevOps approach. In

addition, the project's Work Breakdown Structure (WBS) and Gantt Chart are

created so that the project can be successfully completed within schedule. The

chapter concludes with explanation of the development tools used.

3.2 Software Development Methodology

This project selects DevOps as the software development methodology as it

emphasizes automation and continuous delivery. DevOps aims to deliver high-

quality software faster and more reliably than traditional methods. Figure 1.6

illustrates the DevOps model phase.

Figure 3.1: DevOps Methodology (DevOps implementation roadmap and

advantages, 2023).

3.2.1 Plan

This project collects requirements through questionnaires and observations and

uses this information as input to formulate the functional and non-functional

47

requirements. Afterward, use case modeling can be performed according to the

functional requirements. The relevant development tools are also confirmed at

this stage. For example, this project uses React, ExpressJS, and Docker to

build the web application, while using React Native to build the mobile

application. In addition, Firebase is selected as the project’s database and

Algolia search is employed as the search service of the applications. Related

AWS and GitHub services such as Github Actions, AWS Route53, AWS

Application Load Balancer, AWS Certificate Manager, Elastic Compute Cloud

(EC2), AWS Cloudwatch, and AWS Budgets must also be identified to design

and implement the CI/CD process of the project. Finally, WBS and Gantt chart

are created to ensure that the project can be delivered within the stipulated

time.

3.2.2 Code

The code development phase of this project can be divided into 3 main parts.

The first part includes using React framework, Ant Design Library, ExpressJS

and Docker to develop and run web applications locally. In the second stage,

the project started to use AWS services and Github Actions to design the

entire CI/CD process, so that developer can redeploy the entire web project on

AWS EC2 servers only by using the command git push. The last part is to use

React Native framework and Ant Design UI library to develop mobile

application. The main modules of web and mobile applications such as car

access log module, category module, person module, user module and role

module are also developed at this stage.

3.2.3 Build

This web project uses ExpressJS as the backend server to serve the React web

application. The main build tools are npm, Docker and Github Actions. React

project will generate static resources such as HyperText Markup Language

(HTML), Cascading Style Sheets (CSS) and JavaScript (JS) after using the

npm run build command, and these static resources can be hosted on the

ExpressJS backend server. The ExpressJS server can then be built into a

docker image and run it inside a docker container by utilizing Dockerfile and

48

Docker Compose tool. To promote CI/CD flow, this project uses Github

Actions services to automate the building process, so as long as the developer

has a new code update in the GitHub repository, the GitHub workflow will be

automatically executed and build the web project into Docker image. In

addition to web applications, the project also uses tools such as npm and

gradlew to build the React Native project into an apk file.

3.2.4 Test

The testing phase includes unit testing, system usability testing and on-site

testing to ensure that the system meets the needs of user and runs smoothly in

the working environment.

3.2.5 Release and Deploy

In the release and deploy development phase, Github Actions and GitHub

runner is utilized to automatically build and deploy web projects. The specific

operation includes registering the two AWS EC2 servers as the GitHub

Runners, so that they can execute the workflow of the Github Actions. Next,

define a CI/CD pipeline by Github Actions, such as destroying all docker

images and docker containers on the host machine, and then use the new

project code to rebuild the docker image and run it in the docker container of

EC2. The user can access to the web application via inserting the project’s

domain name in the web browser. Furthermore, after using npm and gradlew

to build the React Native mobile application into an apk file, this apk file is

then uploaded to the Release section of the GitHub repository for user to

download and use.

3.2.6 Operate

AWS's CloudWatch service is employed to monitor the EC2 servers and the

infrastructure it runs on to ensure that everything is working as expected. If the

status check of the EC2 server fails, CloudWatch will try to reboot the failing

server.

49

3.2.7 Monitor

In the monitoring stage, data and feedback from the user is valuable to

continuously improve the applications. Furthermore, this project implements

AWS Budgets service to monitor the project’s cost, When the budget of the

project exceeds a certain threshold, an email will be sent to the developer and

the EC2 service will be suspended.

3.3 Project Planning and Scheduling

3.3.1 Work Breakdown Structure (WBS)

0.0 Web and Mobile Applications Development for Smart Vehicle

Entrance and Exit

1.0 Project Initializaiton

1.1. Preliminary Planning

1.1.1. Understanding Background of the Project

1.1.2. Identify problem of Current Conventional Solution

1.1.3. Determine Project Objectives

1.1.4. Define Project Proposed Solution

1.1.5. Confirm Project Approach

1.1.6. Define Project Scope

1.1.6.1. Identify Targeted User

1.1.6.2. Define Modules Covered

1.2. Literature Review

1.2.1. Review on ALPR Technology

1.2.2. Review Existing ALPR systems

1.2.3. Review Tan Wei Kun’s work

1.2.4. Review Software Development Methodology

1.2.5. Study System Usability Testing

1.3. Methodology and Work Plan

1.3.1. Explain Software Development Methodology

1.3.2. Develop Work Breakdown Structure

1.3.3. Develop Gantt Chart

1.3.4. Identify Software Development Tools

50

1.4. Requirement Identification

1.4.1. Requirement Gathering

1.4.1.1. Conduct Observation

1.4.1.2. Conduct Questionnaire

1.4.2. Requirement Specification

1.4.2.1. List Functional Requirements

1.4.2.2. List Non-Functional Requirements

1.4.3. UML Modeling

1.4.3.1. Create use case Diagram

1.4.3.2. Create use case Description

2.0 System Development

2.1. System Design

2.1.1. Database design

2.1.2. Web Application Architecture design

2.1.3. Cloud Architecture Design

2.1.4. Mobile Application Architecture Design

2.2. System Development

2.2.1. Web Application Development

2.2.1.1. Car Access Log Module

2.2.1.2. Category Module

2.2.1.3. Person Module

2.2.1.4. User Module

2.2.1.5. Role Module

2.2.2. Mobile Application Development

2.2.2.1. Car Access Log Module

2.2.2.2. Category Module

2.2.2.3. Person Module

2.2.2.4. User Module

2.2.2.5. Role Module

2.2.3. Create CI/CD Flow

2.2.4. Utilize AWS Service to Host Web Application

3.0 System Testing

3.1. Conduct Unit Testing

51

3.2. Conduct System Usability Testing

3.3. Conduct On-site Testing

4.0 Project Closure

4.1. System Deployment

4.2. System Monitoring

4.3. Finalize Report

3.3.2 Gantt Chart

Figure 3.2: Overview of Project Schedule.

52

Figure 3.3: Project Initialization Schedule.

53

Figure 3.4: System Development Schedule

Figure 3.5: System Testing Schedule.

54

Figure 3.6: Project Closure Schedule.

55

Figure 3.7: Project Initializaiton Timeline.

56

Figure 3.8: System Development Timeline.

57

Figure 3.9: System Testing Timeline.

Figure 3.10: Project Closure Timeline.

58

3.4 Technologies and Development Tools

3.4.1 React and React Native

React and React Native are both JavaScript frameworks used to develop web

and mobile applications, JavaScript XML (JSX) language is used in them,

which is an extension of the JavaScript syntax that looks a lot like XML. It is a

syntax that combines JavaScript and XML markup language, JSX is used to

declare elements in both React and React native development. The only

difference between them is the rendering interface. React is responsible for

rendering components to the web, while react-native renders the components

to the phone through the rendering interface of Objective-C (iOS platform) or

Java (Android platform). There are two main benefits of using React for

development, one is that React utilizes the DIFF algorithm when rendering,

which re-renders the page only when there is a change in the DOM node,

saving computational overhead. The second benefit is that React supports a

componentized coding scheme, which allows the developer to develop many

reusable components and thus save time.

3.4.2 NPM

NPM is a package manager, it is used primarily for installing and managing

packages, or software libraries, that can be easily integrated into Node.js

projects. NPM can also help to create a production-ready build of the React

and React Native applications.

3.4.3 React-Redux

Redux can store and manage the state of the application. Think of Redux as a

global variable that can be accessed and modified by React components. In

addition, when the state in the Redux is updated, all components that refer to

the state will be re-rendered. Redux has three main components: action

creators, store, and reducers, the relationships are illustrated in Figure 3.3.

The current mainstream and usage of redux is to use the React-Redux

library. React-redux separates the UI component from the redux, using a

container to wrap the UI component and let the component communicate with

the Redux through the container. React-redux workflow is shown in Figure 3.4.

59

Figure 3.11: Redux Workflow

Figure 3.12: React-Redux Workflow

3.4.4 Android Studio

Google android studio is an Android development environment with built-in

Android SDK and AVD manager to run Android emulator. The React-Native

project under development can be deployed to the Android emulator to view

the developed interface.

3.4.5 Firebase

Firebase’s Firestore and Firebase’s Storage act as the cloud database to store

the vehicle data and allowing the client to run Create, Read, Update and Delete

(CRUD) operations on the them. Firebase has Spark program and Blaze

program, Spark program is a free program, providing 1GB of free storage,

providing 20,000 times a day the number of documents writes, 50,000 times

60

the number of documents reads, and 20,000 times the number of document

deletions. The Blaze program is a pay-as-you-go price plan that includes the

services of the free solution, but requires payment when the free balance is

exceeded, including a charge of $0.108 per GiB when the free storage space

exceeds 1 GB. The prices for the number of documents writes, reads, and

deletes are shown in Figure 3.5.

Figure 3.13: Google Cloud Service Price

3.4.6 Algolia

Algolia is a search-as-a-service provider that helps to deliver fast and relevant

search results. Algolia provides a range of features that make it easy to

integrate search into the React and React Native applications. These include a

flexible API that allows the developer to control the search experience.

3.4.7 AWS Route53

AWS Route 53 is a cloud Domain Name System (DNS) provided by AWS. It

helps to translate domain names into IP addresses that can be used to route

traffic to various resources like Amazon EC2 instances, Elastic Load

Balancers, S3 buckets, and other AWS services.

3.4.8 AWS Load Balancer

AWS Application Load Balancer (ALB) is a highly available and scalable load

balancer service provided by AWS. It is used to distribute incoming traffic

61

across multiple targets, such as EC2 instances. It provides advanced features

like path-based routing and advanced health checks,

3.4.9 AWS Certificate Manager

AWS Certificate Manager (ACM) provides a simple and easy way to obtain

and manage SSL/TLS certificates for the website, which can encrypt the web

traffic using Hypertext Transfer Protocol Secure (HTTPS).

3.4.10 AWS EC2

EC2 enables the developer to create and manage virtual machines, in the cloud.

In this project, EC2 instances are used to host the web application.

3.4.11 AWS CloudWatch

In this project, AWS CloudWatch is used to monitor the health of EC2

instances. It can help to reboot the instance if any one of the instances did not

pass the status check.

3.4.12 AWS Budgets

AWS Budgets help to monitor AWS usage and costs. It allows the developer

to set custom cost and usage budgets, when the usage or costs exceed the

thresholds, it can help to alert the developer and stop the EC2 service, this is to

avoid unexpected costs.

3.4.13 ExpressJS

ExpressJS is a popular open-source web application framework for Node.js

that simplifies the process of building server-side web applications. It is used

to serve the React application in this project.

3.4.14 Docker

Docker is a platform that enables developers to package, distribute, and run

applications in a containerized environment. In this project, Docker is used to

62

run the ExpressJS web server in an isolated and reproducible environment,

which can make it easier to deploy and manage.

3.4.15 Git and GitHub

In this project, Git is employed to manage the changes in the code and GitHub

is used to host the project’s repositories. GitHub plays a significant role in this

project; it has a tool for continuous integration and provides a platform to

release this project’s mobile application.

3.4.16 Github Actions

Github Actions is a CI/CD platform that allows developers to automate

software development workflows, it helps to create custom workflows to

automate any task, including building and deploying applications. In this

project, Github Actions is employed to automatically deploy the web project

on the EC2 instances with the help of GitHub Runner.

63

CHAPTER 4

4 PROJECT SPECIFICATION

4.1 Introduction

This section discusses the use of observation and onsite survey to identify and

gather user requirements. The only user of this project is the manager of the

Site A’s condominium, so only he will be interviewed. Through the analysis of

the collected data, the requirement specification, use case diagram and use

case description are formulated. In addition, the requirements specification is

divided into functional and non-functional requirements in order to identify

user requirements more accurately.

4.2 Fact Finding

The fact-finding of this project will be carried out in the form of observation

and onsite questionnaire survey.

4.2.1 Observation

Using observation to collect data is an effective method because it can better

understand the needs of users, which will help to discover needs that cannot be

found through questionnaires.

A field investigation at Site A’s condominium was conducted. There

are security guard house and security gate at the entrance. Vehicles can enter

and exit through the entrance. There are unregistered and registered vehicles.

If the vehicle is registered, the security guard will open the security gate

allowing the vehicle directly to access without recording the entry and exit

time of the vehicle. If it is an unregistered visitor, the security guard will use

paper and pen to record the visitor's license plate number, owner's phone

number, and vehicle entry and exit time and fill in the remarks column. The

purpose of the remarks column is to record more information about the vehicle

such as whether the vehicle is a Grab vehicle.

Therefore, the behavior of the security guard can be divided into two

situations, encountering a registered vehicle and encountering an unregistered

64

visitor. When encountering a registered vehicle, the security guard will

perform the following actions:

i. Walk out from the security guard’shouse.

ii. Open the security gate.

iii. Allow the vehicle to access.

When encountering unregistered visitors, security guard will perform the

following actions:

i. Walk out from the security guard’shouse.

ii. Ask the car owner for the phone number.

iii. Record the visitor's license plate number, owner's phone

number, vehicle entry and remarks inside a book

iv. Open the security gate.

v. Allow the vehicle to access.

From the field observation, it can be found that the current method does not

record the entry and exit logs of registered vehicles and relies on the use of

paper and pen to record the personal information of visitors. Paper records are

easily damaged and difficult to manage, so this project will develop the user

specifications based on these pain points. Relevant photos of the onsite visit

are attached in the appendix part as Appendix A.

4.2.2 Questionnaire

This project uses Google Forms as a survey tool. The questionnaire has a total

of ten questions, which will be answered by Site A’s condominium manager.

65

Figure 4.1: Role as a Security Guard.

According to the bar chart in Figure 4.1, it can be found that the security guard

is only responsible for the range of the security gate, and is not responsible for

the management of the parking lot. Security guard is mainly responsible for

monitoring the entrance of the condominium.

Figure 4.2: Frequency to view car access log.

According to the pie chart in Figure 4.2, it can be found that the manager

needs to check the car access log every day.

66

Figure 4.3: Information of Car Access Log.

According to the bar chart in Figure 4.3, it can be found that the manager

needs to obtain vehicle information from the car access log, which includes the

license plate number, the name of the owner, and the time of entry and exit of

the vehicle.

Figure 4.4: Methods to access log records.

According to the bar chart in Figure 4.4, it can be found that manager use three

methods to view car access logs. The first is to use paper records, the second is

to use spreadsheets or databases on a computer, and the third is to use a mobile

app or web app to view records.

67

Figure 4.5: Difficulties in searching car access records.

According to the bar chart in Figure 4.5, it can be found that the manager did

not encounter any problems in searching the car access log. Although the

manager has no problems using the traditional search method, the manager

hopes to be able to monitor the vehicle entry and exit records in real time.

Figure 4.6: Importance of registering car owners.

Based on the bar chart in Figure 4.6, manager is required to rate the

importance of registering new car owners in the system on a scale of 1 to 5.

The result shows that the manager is very much in need of the ability to

register new car owners.

68

Figure 4.7: Information collected from new car owners.

According to the bar chart in Figure 4.7, it can be found that the manager

needs to collect personal information such as name, phone number, and email

address from the car owners. In addition, the manager also hopes to classify

the car owners, such as classifying them into resident or visitor categories.

Figure 4.8: Current Solution to categorize car owners.

According to the bar chart in Figure 4.8, it can be found that the manager still

obtains the classification of car owners from a paper-based registration list.

69

Figure 4.9: Familiarity in using role and management system.

Based on the bar chart in Figure 4.9, manager is asked to rate their confidence

in using the role and management functionality in the system on a scale of 1 to

5. The results show that manager is very confident that he can use the role and

management function well.

Figure 4.10: Benefits of using role and management features in the

applications.

According to the bar chart in Figure 4.10, it can be found that using the role

and management function has two benefits for manager. The first is that

people who use this system can read vehicle entry and exit records more safely.

The second is that people with different roles can be given different system

permissions.

70

4.3 Requirement Specification

Requirement specifications include functional and non-functional

requirements. In addition, the functional requirements of the project are

divided into web application functional requirements and mobile application

functional requirements.

4.3.1 Web Application Functional Requirements

4.3.1.1 User Account

WEB-1. The web application should allow user to log into their accounts by

username and password.

WEB-2. The web application should allow the user to logout from the account.

4.3.1.2 Car Access Log

WEB-3. The web application should allow the user to view the car access log

in real time.

WEB-4. The web application should allow users to do basic search on the car

access log based on a single search field such as search by car plate

number, car owner’s name, car owner’s phone no, car owner’s

category or car access type (Enter or Exit).

WEB-5. The web application should allow users to do advance filter search on

the car access log based on multiple selective search fields such as the

combination of car plate, car owner’s name, car owner’s phone no, car

owner’s category, car access type (Enter or Exit) and the date range.

WEB-6. The web application should allow the user to view the car owner’s

personal information from the car access log.

4.3.1.3 Category Module

WEB-7. The web application should allow the user to view categories.

WEB-8. The web application should allow the user to add a new category.

WEB-9. The web application should allow the user to edit category.

WEB-10. The web application should allow the user to remove category.

71

4.3.1.4 Person Module

WEB-11. The web application should allow the user to view the registered car

owners’ personal information.

WEB-12. The web application should allow the user to register new car owner.

WEB-13. The web application should allow the user to edit the registered car

owner’s personal information.

WEB-14. The web application should allow the user to remove the car owner.

WEB-15. The web application should allow the user to search the car owner by

name. car plate number or phone number.

4.3.1.5 User Module

WEB-16. The web application should allow the user to view all created

accounts that are able to assess the system.

WEB-17. The web application should allow the user to create a new user

account and assign a role for it.

WEB-18. The web application should allow the user to edit the user account.

WEB-19. The web application should allow the user to remove the user

account.

4.3.1.6 Role Module

WEB-20. The web application should allow the user to view all the role.

WEB-21. The web application should allow the user to create a new role.

WEB-22. The web application should allow the user to decide which web and

mobile pages this role can view.

WEB-23. The web application should allow the user to remove the role.

4.3.2 Mobile Application Functional Requirements

4.3.2.1 User Account

MB-1. The mobile application should allow user to log into their accounts by

username and password.

MB-2. The mobile application should allow the user to logout from the

account.

72

4.3.2.2 Car Access Log

MB-3. The mobile application should allow the user to view the car access log

in real time.

MB-4. The mobile application should allow users to do basic search on the car

access log by car plate number.

MB-5. The mobile application should allow users to do advance filter search

on the car access log based on multiple selective search fields such as

the combination of car plate, car owner’s name, car owner’s phone no,

car owner’s category, car access type (Enter or Exit) and the date

range.

MB-6. The mobile application should allow the user to view the car owner’s

personal information from the car access log.

4.3.2.3 Category Module

MB-7. The mobile application should allow the user to view the categories.

MB-8. The mobile application should allow the user to add a new category.

MB-9. The mobile application should allow the user to edit the category name.

MB-10. The mobile application should allow the user to remove the category.

4.3.2.4 Person Module

MB-11. The mobile application should allow the user to view the registered

car owners’ personal information.

MB-12. The mobile application should allow the user to register a new car

owner.

MB-13. The mobile application should allow the user to edit the registered car

owner’s personal information.

MB-14. The mobile application should allow the user to remove the car

owner.

MB-15. The mobile application should allow the user to search for the car

owner by name. car plate number or phone number.

4.3.2.5 User Module

73

MB-16. The mobile application should allow the user to view all created

accounts that are able to assess the system.

MB-17. The mobile application should allow the user to create a user new

account and assign role for it.

MB-18. The mobile application should allow the user to edit the user account.

MB-19. The mobile application should allow the user to remove the user

account.

4.3.2.6 Role Module

MB-20. The mobile application should allow the user to view all the roles.

MB-21. The mobile application should allow the user to create a new role.

MB-22. The mobile application should allow the user to decide which web

and mobile pages this role can view.

MB-23. The mobile application should allow the user to remove the role.

4.3.3 Non-Functional Requirements

1) Performance requirements

a) Any operation of the user on the webpage or mobile phone application

will return the result within four seconds.

b) The system must monitor the car access log in real time, and the new

car access log must be reflected to the user within one second.

c) When the user uses the system for the first time, the system must

render the page within four seconds.

2) Security requirements

a) When a user logs in, the system will verify the user's username and

password.

b) The system will render corresponding pages for users with different

permissions.

c) The webpage will be encrypted using HTTPS.

3) Usability requirements

a) The system must support the use of a single command to rebuild the

mobile application.

74

b) The system must support one-click redeployment of web applications

to cloud servers.

c) Web applications should be able to run on any host machine that only

has docker installed.

d) Mobile applications and web applications should allow users to be

proficient in using the functions within ten minutes.

4) Availability requirements

a) Mobile phone and web application services should be available to users

in 99.9% of the time.

5) Recoverability

a) The system must automatically restart the AWS server within 2

minutes, if the AWS cloud server crashes due to AWS internal reasons,

b) The system supports redeployment to the AWS server within 30

seconds if the web application crashes.

5) Portability

a) The web application should run on any host machine that supports

docker.

b) The mobile app can run on Android phones running Android 5.0 or

above.

Table 4.1 shows the mapping between the web and mobile application’s

functional requirements and their corresponding use case ID to facilitate the

construction of use case description.

Table 4.1: Mapping between Functional Requirement ID and Use Case ID.

Functional Requirement ID Use Case ID

WEB-1 1

WEB-2 2

WEB-3 3

WEB-4 4

WEB-5 5

WEB-6 6

75

WEB-7 7

WEB-8 8

WEB-9 9

WEB-10 10

WEB-11 11

WEB-12 12

WEB-13 13

WEB-14 14

WEB-15 15

WEB-16 16

WEB-17 17

WEB-18 18

WEB-19 19

WEB-20 20

WEB-21 21

WEB-22 22

WEB-23 23

MB-1 24

MB-2 25

MB-3 26

MB-4 27

MB-5 28

MB-6 29

MB-7 30

MB-8 31

MB-9 32

MB-10 33

MB-11 34

MB-12 35

MB-13 36

MB-14 37

MB-15 38

76

MB-16 39

MB-17 40

MB-18 41

MB-19 42

MB-20 43

MB-21 44

MB-22 45

MB-23 46

4.4 Use Case Modelling

4.4.1 Web Application Use Case Diagrams

4.4.1.1 User Account

Figure 4.11: User Account Use Case Diagram (Web Application).

77

4.4.1.2 Car Access Log

Figure 4.12: Car Access Log Use Case Diagram (Web Application).

78

4.4.1.3 Category Module

Figure 4.13: Category Module Use Case Diagram (Web Application).

79

4.4.1.4 Person Module

Figure 4.14: Person Module Use Case Diagram (Web Application).

80

4.4.1.5 User Module

Figure 4.15: User Module Use Case Diagram (Web Application).

81

4.4.1.6 Role Module

Figure 4.16: Role Module Use Case Diagram (Web Application).

82

4.4.2 Mobile Application Use Case Diagram

4.4.2.1 User Account

Figure 4.17: User Account Use Case Diagram (Mobile Application).

83

4.4.2.2 Car Access Log

Figure 4.18: Car Access Log Use Case Diagram (Mobile Application).

84

4.4.2.3 Category Module

Figure 4.19: Category Module Use Case Diagram (Mobile Application).

85

4.4.2.4 Person Module

Figure 4.20: Person Module Use Case Diagram (Mobile Application).

86

4.4.2.5 User Module

Figure 4.21: User Module Use Case Diagram (Mobile Application).

87

4.4.2.6 Role Module

Figure 4.22: Role Module Use Case Diagram (Mobile Application).

4.5 Use Case Description

Table 4.2: Use Case Description of Login (Web application).

Use Case Name: Login ID: 1 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to login and use the web application.

Use Case Description:

Describe how the manager login to his account to access the web

application.

88

Trigger: When a manager wants to access and use the application.

Relationships:

Association : Manager

Include : Verify Username and Password

Extend : Display Login Error Message

Generalization : -

Normal Flow of Events:

1. The manager opens chrome browser.

2. The manager access the “alprtech.link” website.

3. The manager logs in his account by typing username and password.

4. The system verifies the username and password.

If the username and password are not valid.

 Perform exceptional flow E-1.

5. The manager login to the web application successfully and will be

directed to the web application’s home page.

Sub-flows:

Alternate/Exceptional Flows:

E-1

1. The system displays the login error message.

2. The manager reenters the username and password.

Table 4.3: Use Case Description of Logout (Web application).

Use Case Name: Logout ID: 2 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

89

Stakeholders and Interests:

Manager –wants to logout from the web application.

Description:

Describes how the manager logout from the web application.

Trigger: When a manager wants to logout from the web application.

Relationships:

 Association : Manager

 Include: Clear Browser Local Storage

 Extend : -

 Generalization : -

Normal Flow of Events:

1. The manager clicks the logout button.

2. The system displays a confirmation message.

3. The manager confirms to logout.

4. The manager is logout from the web application and redirected to the

login page.

5. The system clears the browser local storage that store the user login

information.

Sub-flows:

Alternate/Exceptional Flows:

90

Table 4.4: Use Case Description of View Car Access Log (Web application).

Use Case Name: View Car Access Log ID: 3 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to view car access log.

Description:

Describes how the manager views the car access log.

Trigger: When a manager wants to view the car access log.

Relationships:

 Association : Manager

 Include:

 Extend : -

 Generalization : -

Normal Flow of Events:

1. The manager navigates to the home page of the web application.

2. The system displays a list of car access log.

3. The manager views all the displayed car access log.

Sub-flows:

Alternate/Exceptional Flows:

91

Table 4.5: Use Case Description of Basic Search on Car Access Log (Web

application)

Use Case Name: Basic Search on Car

Access Log

ID: 4 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to search the car access log.

Description:

Describes how the manager searches the car access log.

Trigger: When a manager wants to search the car access log.

Relationships:

Association : Manager

Include : Validate Input

Extend : Search by Car Plate Number, Search by Car

Owner’s Name, Search, by Car Owner's Phone Number, Search by

Car Access Type, Search by Car Owner's Category, Display

Validation Error Message

Generalization :

Normal Flow of Events:

1. The manager navigates to the home page of the web application.

2. The manager selects one of the search fields (search by car plate

number, name, phone number, access type or category).

3. The manager provides search data in the search field.

4. The manager clicks search button to perform search.

92

If the search field is empty.

 Perform exceptional flow E-1.

5. The system returns the search result.

Sub-flows:

Alternate/Exceptional Flows:

E-1

1. The system displays the validation error message.

2. The manager provides the search data again.

Table 4.6: Use Case Description of Filter Search on Car Access Log (Web

application)

Use Case Name: Filter Search on Car

Access Log

ID: 5 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to perform filter search on the car access log.

Description:

Describes how the manager performs filter search on the car access log.

Trigger: When a manager wants to perform filter search on the car access

log.

93

Relationships:

Association : Manager

Include : Search by Date Range, Validate Input

Extend : Search by Car Plate Number, Search by Car

Owner’s Name, Search, by Car Owner's Phone Number, Search by

Car Access Type, Search by Car Owner's Category, Display

Validation Error Message

Generalization :

Normal Flow of Events:

1. The manager navigates to the home page of the web application.

2. The manager clicks the filter button.

3. The system shows the filter drawer that consists of multiple search

fields.

4. The manager selects the start and end date.

5. The manager can selectively provide car plate number, car owner’s

name, car owner’s category, car owner’s phone number as input data

to perform filter search.

6. The manager clicks the search button.

 If the date range field is empty.

 Perform exceptional flow E-1.

7. The system returns the search result.

8. The manager closes the filter drawer.

Sub-flows:

Alternate/Exceptional Flows:

E-1

1. The system displays the validation error message.

2. The manager provides the date range again.

94

Table 4.7: Use Case Description of View Car Owner's Personal Information

(Web application)

Use Case Name: View Car Owner’s

Personal Information

ID: 6 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to view the car owner’s personal information from the car

access log.

Description:

Describe how the manager views the car owner’s personal information

from the car access log.

Trigger: When a manager wants to view the car owner’s personal

information from the car access log.

Relationships:

Association : Manager

Include :

Extend :

Generalization :

Normal Flow of Events:

1. The manager navigates to the home page of the web application.

2. The manager clicks the more button from the car access log list.

3. The system shows the drawer that consists of the car owner’s personal

information.

4. The manager views the car owner’s personal information.

5. The manager closes the drawer.

95

Sub-flows:

Alternate/Exceptional Flows:

Table 4.8: Use Case Description of View Category (Web application).

Use Case Name: View Category ID: 7 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to view categories

Description:

Describes how the manager views the categories

Trigger: When a manager wants to view the categories.

Relationships:

Association : Manager

Include :

Extend :

Generalization :

Normal Flow of Events:

1. The manager navigates to the category page of the web application.

2. The system displays a table listing the categories.

3. The manager navigates through the category list.

96

Sub-flows:

Alternate/Exceptional Flows:

Table 4.9: Use Case Description of Add Category (Web application).

Use Case Name: Add Category ID: 8 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to add a category.

Description:

Describes how the manager adds a category.

Trigger: When a manager wants to add a category.

Relationships:

Association : Manager

Include : Validate Input

Extend : Display Validation Error Message

Generalization :

Normal Flow of Events:

1. The manager navigates to the category page of the web application.

2. The manager clicks the add button.

3. The system shows a modal contains an input field asking for category

97

name.

4. The manager types a category name in the input field.

5. The manager clicks the ok button.

If the manager did not provide any category name.

 Perform exceptional flow E-1.

If the manager provides a duplicate category name.

 Perform exceptional flow E-2.

6. The system adds a new category.

7. The system shows a success message.

8. The system closes the modal.

Sub-flows:

Alternate/Exceptional Flows:

E-1

1. The system displays a validation error message.

2. The manager types the category name again.

E-2

1. The system alerts the manager that a same category name already

exists.

2. The manager types the new category name again.

Table 4.10: Use Case Description of Edit Category (Web application)

Use Case Name: Edit Category ID: 9 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to edit a category.

98

Description:

Describes how the manager edits a category.

Trigger: When a manager wants to edit a category.

Relationships:

Association : Manager

Include : Validate Input

Extend : Display Validation Error Message

Generalization :

Normal Flow of Events:

1. The manager navigates to the category page of the web application.

2. The manager clicks the edit button from the category list.

3. The system shows a modal contains an input field asking for a new

category name.

4. The manager types a new category name in the input field.

5. The manager clicks the ok button.

If the manager did not provide any category name.

 Perform exceptional flow E-1.

If the manager provides the same category name as before.

 Perform exceptional flow E-2.

If the manager provides the duplicate category name.

 Perform exceptional flow E-3.

6. The system updates the category name.

7. The system shows a success message.

8. The system closes the modal.

Sub-flows:

99

Alternate/Exceptional Flows:

E-1

1. The system displays a validation error message.

2. The manager types the category name again.

E-2

1. The system closes the modal.

E-3

1. The system alerts the same category name already exists.

2. The manager types the new category name again.

Table 4.11: Use Case Description of Remove Category (Web application).

Use Case Name: Remove Category ID: 10 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to remove a category.

Description:

Describes how the manager removes a category.

Trigger: When a manager wants to remove a category.

Relationships:

Association : Manager

Include : Display Alert Message

Extend :

Generalization :

100

Normal Flow of Events:

1. The manager navigates to the category page of the web application.

2. The manager clicks the remove button from the category list.

3. The system shows an alert modal to warn the manager.

4. The manager clicks the confirm button.

5. The system deletes the category.

6. The system shows a success message.

7. The system closes the alert modal.

Sub-flows:

Alternate/Exceptional Flows:

Table 4.12: Use Case Description of View Car Owners' Personal Information

(Web application).

Use Case Name: View Car Owners’

Personal Information

ID: 11 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to view the car owners’ personal information.

Description:

Describes how the manager view the car owners’ personal information.

Trigger: When a manager wants to view the car owners’ personal

information.

101

Relationships:

Association : Manager

Include :

Extend :

Generalization :

Normal Flow of Events:

1. The manager navigates to the person page of the web application.

2. The system displays a table listing all the registered car owners.

3. The manager clicks on the view button to view more detail

information.

4. The system navigates to the person detail page.

5. The system shows all the car owner’s detail information.

Sub-flows:

Alternate/Exceptional Flows:

Table 4.13: Use Case Description of Register Car Owner (Web application)

Use Case Name: Register Car Owner ID: 12 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to register a new car owner.

102

Description:

Describes how the manager registers a new car owner.

Trigger: When a manager wants to register a new car owner.

Relationships:

Association : Manager

Include : Validate Input

Extend : Display Validation Error

Generalization :

Normal Flow of Events:

1. The manager navigates to the person page of the web application.

2. The manager clicks on the register button.

3. The system navigates to the registration form page.

4. The manager provides the car owner’s name, car plate number, phone

number, category, and person detail in the form.

5. The manager clicks the submit button.

6. The system validates all the input fields.

If the manager provides invalid format of data

 Perform exceptional flow E-1.

If the manager did not fill all the necessary input fields.

 Perform exceptional flow E-2.

If the manager provides a duplicate car plate number.

 Perform exceptional flow E-3.

7. The system shows a loading message.

8. The system adds a car owner.

9. The system shows the success message.

10. The system navigates to the person page.

103

Sub-flows:

Alternate/Exceptional Flows:

E-1

1. The system shows an error message asking the manager to provide

correct data in the corresponding field.

2. The manager provides the data in correct format.

E-2

1. The system shows an error message asking the manager to fill all the

required fields.

2. The manager fills all the required input fields.

E-3

1. The system alerts the manager that the current car plate number

already exists.

2. The manager fills a new car plate number.

Table 4.14: Use Case Description of Edit Car Owner's Personal Information

(Web application).

Use Case Name: Edit Car Owner’s

Personal Information

ID: 13 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to edit the car owner’s personal information.

Description:

Describes how the manager edits the car owner’s personal information.

104

Trigger: When a manager wants to edit the car owner’s personal

information.

Relationships:

Association : Manager

Include : Validate Input

Extend : Display Validation Error

Generalization :

Normal Flow of Events:

1. The manager navigates to the person page of the web application.

2. The manager clicks on the edit button from the list of car owners.

3. The system navigates to the edit person page.

4. The manager provides the new car owner’s name, car plate number,

phone number, category, or person detail in the form.

5. The manager clicks the submit button.

6. The system validates all the input fields.

If the manager provides invalid format of data

 Perform exceptional flow E-1

If the manager leaves the necessary input fields empty.

 Perform exceptional flow E-2

If the manager provides a duplicate car plate number.

 Perform exceptional flow E-3

7. The system shows a loading message.

8. The system updates the car owner.

9. The system shows the success message.

10. The system navigates to the person page.

Sub-flows:

Alternate/Exceptional Flows:

105

E-1

1. The system shows an error message asking the manager to provide

correct data in the corresponding field.

2. The manager provides the data in correct format.

E-2

1. The system shows an error message asking the manager to fill all the

required input fields.

2. The manager fills all the required input fields.

E-3

1. The system alerts the manager that the current car plate number

already exists.

2. The manager fills a new car plate number.

Table 4.15: Use Case Description of Remove Car Owner (Web application)

Use Case Name: Remove Car Owner ID: 14 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to remove the car owner.

Description:

Describes how the manager removes the car owner.

Trigger: When a manager wants to remove the car owner.

106

Relationships:

Association : Manager

Include : Display Alert Message

Extend :

Generalization :

Normal Flow of Events:

1. The manager navigates to the person page of the web application.

2. The manager clicks on the remove button from the list of car owners.

3. The system displays a confirmation modal.

4. The manager clicks the ok button.

5. The system deletes the car owner.

6. The system shows the success message.

7. The system closes the confirmation modal.

Sub-flows:

Alternate/Exceptional Flows:

Table 4.16: Use Case Description of Search Car Owner (Web application)

Use Case Name: Search Car Owner ID: 15 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to search the car owner.

107

Description:

Describes how the manager searches the car owner.

Trigger: When a manager wants to search the car owner.

Relationships:

Association : Manager

Include :

Extend : Search by Name, Search by Car Plate Number,

Search by Phone Number

Generalization :

Normal Flow of Events:

1. The manager navigates to the person page of the web application.

2. The manager input the search data in the search field.

3. The system will perform query on the database.

4. The system returns the search result.

Sub-flows:

Alternate/Exceptional Flows:

Table 4.17: Use Case Description of View all Created User Accounts (Web

application).

Use Case Name: View all Created User

Accounts

ID: 16 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

108

Stakeholders and Interests:

Manager –wants to view all created user accounts.

Description:

Describes how the manager views all created user accounts.

Trigger: When a manager wants to view all created user accounts.

Relationships:

Association : Manager

Include :

Extend :

Generalization :

Normal Flow of Events:

1. The manager navigates to the user page of the web application.

2. The system displays table listing all the user accounts.

Sub-flows:

Alternate/Exceptional Flows:

Table 4.18: Use Case Description of Create new User Account (Web

application)

Use Case Name: Create new User Account ID: 17 Importance Level:

High

109

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to create a new user account.

Description:

Describes how the manager creates a new user account.

Trigger: When a manager wants to create a new user account.

Relationships:

Association : Manager

Include : Assign User Role, Validate Input

Extend : Display Validation Error Message

Generalization :

Normal Flow of Events:

1. The manager navigates to the user page of the web application.

2. The manager clicks the add button.

3. The system shows a modal containing a form, the form contains input

fields such as username, password, email, phone number and role.

4. The manager provides all the necessary data (username, password and

role)

5. The manager clicks the ok button.

If the manager did not provide all the required data.

 Perform exceptional flow E-1.

If the manager provides a duplicate username.

 Perform exceptional flow E-2.

6. The system created a new user account and assign the corresponding

role to it.

110

7. The system shows a success message.

8. The system closes the modal.

Sub-flows:

Alternate/Exceptional Flows:

E-1

1. The system shows the error message asking the manager to complete

all the required input fields.

2. The manager completes all the required input fields.

E-2

1. The system shows the alert message notify the manager that the same

username already exists.

2. The manager types a new username.

Table 4.19: Use Case Description of Edit User Account (Web application)

Use Case Name: Edit User Account ID: 18 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to edit the user account.

Description:

Describes how the manager edits the user account.

Trigger: When a manager wants to edit the user account.

111

Relationships:

Association : Manager

Include : Validate Input

Extend : Display Validation Error Message

Generalization :

Normal Flow of Events:

1. The manager navigates to the user page of the web application.

2. The manager clicks the edit button from list of user accounts.

3. The system shows a modal containing a form, the form contains

input fields such as username, password, email, phone number and

role.

4. The manager provides all the necessary data (username, password

and role)

5. The manager clicks the ok button.

If the manager did not provide any new data.

 Perform exceptional flow E-1.

If the manager did not provide all the required data.

 Perform exceptional flow E-2.

If the manager provides a duplicate username.

 Perform exceptional flow E-3.

6. The system updates the user account.

7. The system shows a success message.

8. The system closes the modal.

Sub-flows:

Alternate/Exceptional Flows:

E-1

1. The system closes the modal.

112

E-2

1. The system shows the error message asking the manager to complete

all the required input fields.

2. The manager completes all the required input fields.

E-3

1. The system shows the alert message notify the manager that the same

username already exists.

2. The manager types a new username.

Table 4.20: Use Case Description of Remove User Account (Web application)

Use Case Name: Remove User Account ID: 19 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to remove the user account.

Description:

Describes how the manager removes the user account.

Trigger: When a manager wants to remove the user account.

Relationships:

Association : Manager

Include : Display Alert Message

Extend :

Generalization :

113

Normal Flow of Events:

1. The manager navigates to the user page of the web application.

2. The manager clicks on the remove button from the list of user

accounts.

3. The system displays a confirmation modal.

4. The manager clicks the ok button.

5. The system deletes the user account.

6. The system shows the success message.

7. The system closes the confirmation modal.

Sub-flows:

Alternate/Exceptional Flows:

Table 4.21: Use Case Description of View Roles (Web application)

Use Case Name: View Roles ID: 20 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to view all the roles.

Description:

Describes how the manager views all the roles.

Trigger: When a manager wants to view all the roles.

114

Relationships:

Association : Manager

Include :

Extend :

Generalization :

Normal Flow of Events:

1. The manager navigates to the role page of the web application.

2. The system displays a table listing all the roles.

Sub-flows:

Alternate/Exceptional Flows:

Table 4.22: Use Case Description of Create new Role (Web application)

Use Case Name: Create new Role ID: 21 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to create a new role.

Description:

Describes how the manager creates a new role.

Trigger: When a manager wants to create a new role.

115

Relationships:

Association : Manager

Include : Validate Input

Extend : Display Validation Error Message

Generalization :

Normal Flow of Events:

1. The manager navigates to the role page of the web application.

2. The manager clicks the add button.

3. The system shows a modal asking the manager to input a role name.

4. The manager types a role name in the input field.

5. The manager clicks the ok button.

6. The system validates the input field.

If the manager leaves the input field empty.

 Perform exceptional flow E-1.

If the manager provides a duplicate role name.

 Perform exceptional flow E-2.

7. The system shows the success message.

8. The system closes the modal.

Sub-flows:

Alternate/Exceptional Flows:

E-1

1. The system shows a validation error message.

2. The manager types the role name again.

E-2

1. The system alerts the manager that the same role name already exists.

2. The manager types a new role name.

116

Table 4.23: Use Case Description of Assign Pages to Role (Web application)

Use Case Name: Assign Pages to Role ID: 22 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to assign pages to a role.

Description:

Describes how the manager assigns pages to a role.

Trigger: When a manager wants to assign pages to a role.

Relationships:

Association : Manager

Include :

Extend :

Generalization :

Normal Flow of Events:

1. The manager navigates to the role page of the web application.

2. The manager clicks the edit button from the list of roles.

3. The system displays a modal with checkboxes for the manager to

assign the pages this role has access to.

4. The manager clicks on the checkboxes.

5. The manager clicks the ok button.

If the checkboxes are the same.

 Perform exceptional flow E-1

6. The system assigns the pages to the role.

117

7. The system shows the success message.

8. The system closes the modal.

Sub-flows:

Alternate/Exceptional Flows:

E-1

1. The system closes the modal.

Table 4.24: Use Case Description of Remove Role (Web application).

Use Case Name: Remove Role ID: 23 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to remove a role.

Description:

Describes how the manager remove a role.

Trigger: When a manager wants to remove a role.

Relationships:

Association : Manager

Include : Display Alert Message

Extend :

Generalization :

118

Normal Flow of Events:

1. The manager navigates to the role page of the web application.

2. The manager clicks the remove button from the list of roles.

3. The system displays a confirmation modal.

4. The manager clicks the ok button.

5. The system deletes the role.

6. The system shows the success message.

7. The system closes the confirmation modal.

Sub-flows:

Alternate/Exceptional Flows:

Table 4.25: Use Case Description of Login (Mobile application)

Use Case Name: Login ID: 24 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to login and use the mobile application.

Description:

Describes how the manager login his account to access mobile application.

Trigger: When a manager wants to access and use the application.

119

Relationships:

Association : Manager

Include : Verify Username and Password

Extend : Display Login Error Message

Generalization : -

Normal Flow of Events:

1. The manager opens the application.

2. The manager logs in his account by typing username and password.

3. The system verifies the username and password.

If the username and password are not valid.

 Perform exceptional flow E-1.

4. The manager login to the mobile application successfully and will be

directed to the mobile application’s home page.

Sub-flows:

Alternate/Exceptional Flows:

E-1

1. The system displays the login error message.

3. The manager enters the username and password again.

Table 4.26: Use Case Description of Logout (Mobile application)

Use Case Name: Logout ID: 25 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to logout from the mobile application.

120

Description:

Describes how the manager logout from the mobile application.

Trigger: When a manager wants to logout from the mobile application.

Relationships:

 Association : Manager

 Include : Clear Local AsyncStorage

 Extend : -

 Generalization : -

Normal Flow of Events:

1. The manager clicks the logout from the navigation pane.

2. The system displays a confirmation message.

3. The manager confirms to logout.

4. The manager is logout from the mobile application and redirected to

the login page.

5. The system clears the local AsyncStorage that store the user login

information.

Sub-flows:

Alternate/Exceptional Flows:

Table 4.27: Use Case Description of View Car Access Log (Mobile

application).

Use Case Name: View Car Access Log ID: 26 Importance Level:

High

121

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to view car access log.

Description:

Describes how the manager view the car access log.

Trigger: When a manager wants to view the car access log.

Relationships:

 Association : Manager

 Include:

 Extend : -

 Generalization : -

Normal Flow of Events:

1. The manager navigates to the home page of the mobile application.

2. The system displays a list of car access log.

3. The manager views all the displayed car access log.

Sub-flows:

Alternate/Exceptional Flows:

Table 4.28: Use Case Description of Basic Search on Car Access Log (Mobile

application)

Use Case Name: Basic Search on Car

Access Log

ID: 27 Importance Level:

High

122

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to search the car access log.

Description:

Describes how the manager search the car access log.

Trigger: When a manager wants to search the car access log.

Relationships:

Association : Manager

Include :

Extend :

Generalization :

Normal Flow of Events:

1. The manager navigates to the home page of the web application.

2. The manager types the car plate number in the search field.

3. The manager hits the enter on keyboard.

4. The system returns the search result.

Sub-flows:

Alternate/Exceptional Flows:

123

Table 4.29: Use Case Description of Filter Search on Car Access Log (Mobile

application).

Use Case Name: Filter Search on Car

Access Log

ID: 28 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to perform filter search on the car access log.

Description:

Describes how the manager perform filter search on the car access log.

Trigger: When a manager wants to perform filter search on the car access

log.

Relationships:

Association : Manager

Include : Search by Date Range, Validate Input

Extend : Search by Car Plate Number, Search by Car

Owner’s Name, Search, by Car Owner's Phone Number, Search by

Car Access Type, Search by Car Owner's Category, Display

Validation Error Message

Generalization :

Normal Flow of Events:

1. The manager navigates to the home page of the web application.

2. The manager clicks the filter icon.

3. The system shows the filter drawer that consists of multiple search

fields.

4. The manager selects the start and end date.

124

5. The manager can selectively provide car plate number, car owner’s

name, car owner’s category, car owner’s phone number as input data

to perform filter search.

6. The manager clicks the submit button.

 If the date range field is empty.

 Perform exceptional flow E-1.

7. The system returns the search result.

8. The system closes the filter drawer.

Sub-flows:

Alternate/Exceptional Flows:

E-1

1. The system displays the validation error message.

2. The manager provides the date range again.

Table 4.30: Use Case Description of View Car Owner's Personal Information

(Mobile application).

Use Case Name: View Car Owner’s

Personal Information

ID: 29 Importance Level:

High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to view the car owner’s personal information from the car

access log.

Description:

Describes how the manager views the car owner’s personal information

from the car access log.

Trigger: When a manager wants to view the car owner’s personal

information from the car access log.

125

Relationships:

Association : Manager

Include :

Extend :

Generalization :

Normal Flow of Events:

1. The manager navigates to the home page of the web application.

2. The manager clicks the more button from the car access log list.

3. The system shows the drawer that consists of the car owner’s personal

information.

4. The manager views the car owner’s personal information.

5. The manager closes the drawer.

Sub-flows:

Alternate/Exceptional Flows:

Table 4.31: Use Case Description of View Category (Mobile application)

Use Case Name: View Category ID: 30 Importance Level: High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to view categories.

126

Description:

Describes how the manager views the categories

Trigger: When a manager wants to view the categories

Relationships:

Association : Manager

Include :

Extend :

Generalization :

Normal Flow of Events:

1. The manager navigates to the category page of the mobile application.

2. The system displays category list.

Sub-flows:

Alternate/Exceptional Flows:

Table 4.32: Use Case Description of Add Category (Mobile application).

Use Case Name: Add Category ID: 31 Importance Level: High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to add a category.

127

Description:

Describes how the manager adds category.

Trigger: When a manager wants to add category.

Relationships:

Association : Manager

Include : Validate Input

Extend : Display Validation Error Message

Generalization :

Normal Flow of Events:

1. The manager navigates to the category page of the mobile application.

2. The manager clicks the add button.

3. The system shows a modal contains an input field asking for category

name.

4. The manager types a category name in the input field.

5. The manager clicks the ok button.

If the manager did not provide any category name.

 Perform exceptional flow E-1.

If the manager provides the duplicate category name.

 Perform exceptional flow E-2.

6. The system adds a new category.

7. The system shows a success message.

8. The system closes the modal.

Sub-flows:

Alternate/Exceptional Flows:

E-1

128

1. The system displays a validation error message.

2. The manager types the category name again.

E-2

1. The system alerts the manager that same category name already exists.

2. The manager types the new category name again.

Table 4.33: Use Case Description of Edit Category (Mobile application).

Use Case Name: Edit Category ID: 32 Importance Level: High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to edit a category.

Description:

Describes how the manager edits a category.

Trigger: When a manager wants to edit a category.

Relationships:

Association : Manager

Include : Validate Input

Extend : Display Validation Error Message

Generalization :

129

Normal Flow of Events:

1. The manager navigates to the category page of the mobile application.

2. The manager clicks the more button from the category list.

3. The manager clicks the edit selection.

4. The system shows a modal contains an input field asking for a new

category name.

5. The manager types a new category name in the input field.

6. The manager clicks the ok button.

If the manager did not provide any category name.

 Perform exceptional flow E-1.

If the manager provides the same category name as before.

 Perform exceptional flow E-2.

If the manager provides duplicate category name.

 Perform exceptional flow E-3.

9. The system updates the category name.

10. The system shows a success message.

11. The system closes the modal.

Sub-flows:

Alternate/Exceptional Flows:

E-1

1. The system displays a validation error message.

2. The manager types the category name again.

E-2

1. The system closes the modal.

E-3

3. The system alerts the same category name already exists.

4. The manager types the new category name again.

130

Table 4.34: Use Case Description of Remove Category (Mobile application).

Use Case Name: Remove Category ID: 33 Importance Level: High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to remove a car owner’s category.

Description:

Describes how the manager removes a car owner’s category.

Trigger: When a manager wants to remove a car owner’s category.

Relationships:

Association : Manager

Include : Display Alert Message

Extend :

Generalization :

Normal Flow of Events:

1. The manager navigates to the category page of the mobile application.

2. The manager clicks the more button from the category list.

3. The manager clicks the remove selection.

4. The system shows an alert modal to warn the manager.

5. The manager clicks the confirm button.

6. The system deletes the category.

7. The system shows a success message.

8. The system closes the alert modal.

131

Sub-flows:

Alternate/Exceptional Flows:

Table 4.35: Use Case Description of View Car Owners' Personal Information

(Mobile application).

Use Case Name: View Car Owners’

Personal Information

ID: 34 Importance Level: High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to view the car owners’ personal information.

Description:

Describes how the manager view the car owners’ personal information.

Trigger: When a manager wants to view the car owners’ personal

information.

Relationships:

Association : Manager

Include :

Extend :

Generalization :

Normal Flow of Events:

1. The manager navigates to the person page of the mobile application.

2. The system displays the list of registered car owners.

3. The manager clicks on the one of the car owners.

132

4. The system navigates to the person edit page.

5. The system shows the car owner’s detail information.

6. The manager views the personal information.

Sub-flows:

Alternate/Exceptional Flows:

Table 4.36: Use Case Description of Register Car Owner (Mobile application)

Use Case Name: Register Car Owner ID: 35 Importance Level: High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to register a new car owner.

Description:

Describes how the manager registers a new car owner.

Trigger: When a manager wants to register a new car owner.

Relationships:

Association : Manager

Include : Validate Input

Extend : Display Validation Error

Generalization :

133

Normal Flow of Events:

1. The manager navigates to the person page of the mobile application.

2. The manager clicks on the add button.

3. The system navigates to the add page.

4. The manager provides the car owner’s name, car plate number, phone

number, category, and person detail in the form.

5. The manager clicks the submit button.

6. The system validates all the input fields.

If the manager did not fill all the necessary input fields.

 Perform exceptional flow E-1.

If the manager provides a duplicate car plate number.

 Perform exceptional flow E-2.

7. The system shows a loading message.

8. The system adds a car owner.

9. The system shows the success message.

10. The system navigates to the person page.

Sub-flows:

Alternate/Exceptional Flows:

E-1

1. The system shows an error message asking the manager to fill all the

required fields.

2. The manager fills all the required input fields.

E-2

1. The system alerts the manager that the current car plate number

already exists.

2. The manager fills a new car plate number.

134

Table 4.37: Use Case Description of Edit Car Owner's Personal Information

(Mobile application).

Use Case Name: Edit Car Owner’s

Personal Information

ID: 36 Importance Level: High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to edit the car owner’s personal information.

Description:

Describes how the manager edits the car owner’s personal information.

Trigger: When a manager wants to edit the car owner’s personal information.

Relationships:

Association : Manager

Include : Validate Input

Extend : Display Validation Error

Generalization :

Normal Flow of Events:

1. The manager navigates to the person page of the mobile application.

2. The system displays the list of registered car owners.

3. The manager clicks on the one of the car owners.

4. The system navigates to the person edit page.

5. The manager provides the new car owner’s name, car plate number,

phone number, category, or person detail in the form.

6. The manager clicks the submit button.

7. The system validates all the input fields.

135

If the manager leaves the necessary input fields empty.

 Perform exceptional flow E-1

If the manager provides a duplicate car plate number.

 Perform exceptional flow E-2

8. The system shows a loading message.

9. The system updates the car owner.

10. The system shows the success message.

11. The system navigates to the person page.

Sub-flows:

Alternate/Exceptional Flows:

E-1

1. The system shows an error message asking the manager to fill all the

required input fields.

2. The manager fills all the required input fields.

E-2

1. The system alerts the manager that the current car plate number

already exists.

2. The manager fills a new car plate number.

Table 4.38: Use Case Description of Remove Car Owner (Mobile application).

Use Case Name: Remove Car Owner ID: 37 Importance Level: High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to remove the car owner.

136

Description:

Describes how the manager removes the car owner.

Trigger: When a manager wants to remove the car owner.

Relationships:

Association : Manager

Include : Display Alert Message

Extend :

Generalization :

Normal Flow of Events:

1. The manager navigates to the person page of the mobile application.

2. The manager clicks the more button from the list of car owners.

3. The manager clicks on the remove selection.

4. The system displays a confirmation modal.

5. The manager clicks the ok button.

6. The system deletes the car owner.

7. The system shows the success message.

8. The system closes the confirmation modal.

Sub-flows:

Alternate/Exceptional Flows:

Table 4.39: Use Case Description of Search Car Owner (Mobile application).

Use Case Name: Search Car Owner ID: 38 Importance Level: High

137

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to search the car owner.

Description:

Describes how the manager searches the car owner.

Trigger: When a manager wants to search the car owner.

Relationships:

Association : Manager

Include :

Extend : Search by Name, Search by Car Plate Number,

Search by Phone Number

Generalization :

Normal Flow of Events:

1. The manager navigates to the person page of the mobile application.

2. The manager input the search data in the search field.

3. The system will perform query on the database.

4. The system returns the search result.

Sub-flows:

Alternate/Exceptional Flows:

138

Table 4.40: Use Case Description of View all Created User Accounts (Mobile

application).

Use Case Name: View all Created

User Accounts

ID: 39 Importance Level: High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to view all created user accounts.

Description:

Describes how the manager view all created user accounts.

Trigger: When a manager wants to view all created user accounts.

Relationships:

Association : Manager

Include :

Extend :

Generalization :

Normal Flow of Events:

1. The manager navigates to the user page of the mobile application.

2. The system displays listing of the user accounts.

3. The manager clicks on a user account from the list.

4. The system shows a model containing all the account’s information.

5. The manager closes the model.

Sub-flows:

139

Alternate/Exceptional Flows:

Table 4.41: Use Case Description of Create new User Account (Mobile

application)

Use Case Name: Create new User

Account

ID: 40 Importance Level: High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to create a new user account.

Description:

Describes how the manager creates a new user account.

Trigger: When a manager wants to create a new user account.

Relationships:

Association : Manager

Include : Assign User Role, Validate Input

Extend : Display Validation Error Message

Generalization :

Normal Flow of Events:

1. The manager navigates to the user page of the mobile application.

2. The manager clicks the add button.

3. The system shows a modal containing a form, the form contains input

fields such as username, password, email, phone number and role.

4. The manager provides all the necessary data (username, password and

140

role)

5. The manager clicks the ok button.

If the manager did not provide all the required data.

 Perform exceptional flow E-1.

If the manager provides a duplicate username.

 Perform exceptional flow E-2.

6. The system created a new user account and assign the corresponding

role to it.

7. The system shows a success message.

8. The system closes the modal.

Sub-flows:

Alternate/Exceptional Flows:

E-1

1. The system shows the error message asking the manager to complete

all the required input fields.

2. The manager completes all the required input fields.

E-2

1. The system shows the alert message notify the manager that the same

username already exists.

2. The manager types a new username.

Table 4.42: Use Case Description of Edit User Account (Mobile application)

Use Case Name: Edit User Account ID: 41 Importance Level: High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to edit the user account.

141

Description:

Describes how the manager edits the user account.

Trigger: When a manager wants to edit the user account.

Relationships:

Association : Manager

Include : Validate Input

Extend : Display Validation Error Message

Generalization :

Normal Flow of Events:

1. The manager navigates to the user page of the mobile application.

2. The manager clicks the more button from list of user accounts.

3. The manager clicks the edit selection.

4. The system shows a modal containing a form, the form contains input

fields such as username, password, email, phone number and role.

5. The manager provides all the necessary data (username, password and

role)

6. The manager clicks the ok button.

If the manager did not provide any new data.

 Perform exceptional flow E-1.

If the manager did not provide all the required data.

 Perform exceptional flow E-2.

If the manager provides a duplicate username.

 Perform exceptional flow E-3.

7. The system updates the user account.

8. The system shows a success message.

9. The system closes the modal.

142

Sub-flows:

Alternate/Exceptional Flows:

E-1

1. The system closes the modal.

E-2

1. The system shows the error message asking the manager to complete

all the required input fields.

2. The manager completes all the required input fields.

E-3

1. The system shows the alert message notify the manager that the same

username already exists.

2. The manager types a new username.

Table 4.43: Use Case Description of Remove User Account (Mobile

application).

Use Case Name: Remove User

Account

ID: 42 Importance Level: High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to remove the user account.

Description:

Describes how the manager removes the user account.

Trigger: When a manager wants to remove the user account.

143

Relationships:

Association : Manager

Include : Display Alert Message

Extend :

Generalization :

Normal Flow of Events:

1. The manager navigates to the user page of the mobile application.

2. The manager clicks on the more button from the list of user accounts.

3. The manager clicks on the remove selection.

4. The system displays a confirmation modal.

5. The manager clicks the ok button.

6. The system deletes the user account.

7. The system shows the success message.

8. The system closes the confirmation modal.

Sub-flows:

Alternate/Exceptional Flows:

Table 4.44: Use Case Description of View Roles (Mobile application)

Use Case Name: View Roles ID: 43 Importance Level: High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to view all the roles.

144

Description:

Describes how the manager views all the roles.

Trigger: When a manager wants to view all the roles.

Relationships:

Association : Manager

Include :

Extend :

Generalization :

Normal Flow of Events:

1. The manager navigates to the role page of the mobile application.

2. The system displays a table listing all the roles.

Sub-flows:

Alternate/Exceptional Flows:

Table 4.45: Use Case Description of Create new Role (Mobile application).

Use Case Name: Create new Role ID: 44 Importance Level: High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to create a new role.

145

Description:

Describes how the manager creates a new role.

Trigger: When a manager wants to create a new role.

Relationships:

Association : Manager

Include : Validate Input

Extend : Display Validation Error Message

Generalization :

Normal Flow of Events:

1. The manager navigates to the role page of the mobile application.

2. The manager clicks the add button.

3. The system shows a modal asking the manager to input a role name.

4. The manager types a role name in the input field.

5. The manager clicks the ok button.

6. The system validates the input field.

If the manager leaves the input field empty.

 Perform exceptional flow E-1.

If the manager provides a duplicate role name.

 Perform exceptional flow E-2.

7. The system shows the success message.

8. The system closes the modal.

Sub-flows:

Alternate/Exceptional Flows:

E-1

1. The system shows a validation error message.

146

2. The manager types the role name again.

E-2

1. The system alerts the manager that the same role name already exists.

2. The manager types a new role name.

Table 4.46: Use Case Description of Assign Pages to Role (Mobile

application).

Use Case Name: Assign Pages to

Role

ID: 45 Importance Level: High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to assign pages to a role.

Description:

Describes how the manager assigns pages to a role.

Trigger: When a manager wants to assign pages to a role.

Relationships:

Association : Manager

Include :

Extend :

Generalization :

Normal Flow of Events:

1. The manager navigates to the role page of the mobile application.

2. The manager clicks the more button from the list of roles.

3. The manager clicks the edit selection.

147

4. The system displays a modal with checkboxes for the manager to

assign the pages this role has access to.

5. The manager clicks on the checkboxes.

6. The manager clicks the ok button.

7. The system shows the loading message.

8. The system assigns the pages to the role.

9. The system shows the success message.

10. The system closes the modal.

Sub-flows:

Alternate/Exceptional Flows:

Table 4.47: Use Case Description of Remove Role (Mobile application)

Use Case Name: Remove Role ID: 46 Importance Level: High

Primary Actor: Manager Use Case Type: Detail, Real

Stakeholders and Interests:

Manager –wants to remove a role.

Description:

Describes how the manager remove a role.

Trigger: When a manager wants to remove a role.

148

Relationships:

Association : Manager

Include : Display Alert Message

Extend :

Generalization :

Normal Flow of Events:

1. The manager navigates to the role page of the mobile application.

2. The manager clicks more button from the list of roles.

3. The manager clicks the remove selection.

4. The system displays a confirmation modal.

5. The manager clicks the ok button.

6. The system shows the loading message.

7. The system deletes the role.

8. The system shows the success message.

9. The system closes the confirmation modal.

Sub-flows:

Alternate/Exceptional Flows:

149

CHAPTER 5

5 SYSTEM DESIGN

5.1 Introduction

In this chapter, an overview of the system architecture design for this project

will be discussed first. The system architecture can be divided into three parts,

namely mobile application architecture, web architecture and cloud services

architecture. After discussing the system architecture, the database design of

this project is also discussed. The database design is divided into three parts,

namely logical entity relationship diagram, physical entity relationship

diagram and data dictionary.

5.2 Overview of System Architecture Design

Figure 5.1: Overview of System Architecture Design.

This project architecture design mainly has four components, user,

developer, database, and cloud. In the database layer, it has the Firebase and

Algolia services, Firebase plays the most important role, it is responsible to

handle CRUD data operations and it supports real-time update functionality.

At the same time, Firebase has an extension plug-in, that is, Algolia. Algolia is

used as the search service of this project because Firebase's native data search

150

capabilities are not excellent, for example, Firebase does not support fuzzy

queries. Using Algolia can facilitate the project to query data and realize

paging functionality. The relationship between Firebase and Algolia is a

parent-child relationship. For example, when new data is inserted into the

Firebase collection, the data will be synchronized to the Algolia database. Any

operation on the data in the Firebase database will be reflected in the Algolia

database.

The mobile application of this project is built using the React Native

framework. User can directly access Firebase and Algolia services through the

mobile application to operate and retrieve data. The detailed architecture of

mobile applications will be discussed in Section 5.4.

The web application for this project is built using the React

framework, which then uses the Node.js Express framework to serve the React

application. In order to ensure that the web application can run in different

Linux environments, the project uses Docker to dockerize the Node.js web

application. Finally, the project's web application runs in Docker container on

the AWS servers. The detailed architecture of web applications will be

discussed in Section 5.5.

This project utilizes five main AWS cloud services, which are

Route53, Certificate Manager, AWS Load Balancer, EC2 and Cloud Watch

services. The web application of this project runs on the EC2 instances of

AWS, and user access the web application of the project by accessing the

instances. In addition, this project also uses Github Actions to promote CI/CD

flow. Any git push by the developer on the project will cause the project to be

redeployed on the AWS server. The detailed cloud architecture will be

discussed in Section 5.6.

151

5.3 The React Architecture

Figure 5.2: React Architecture (ReactJS – architecture, 2023).

At the core of React's architecture is the concept of components, which are

modular building blocks. Components can be composed together to form more

complex UIs, and they can also be reused across different parts of an

application. The React App is the root of the React application, the react

application starts with it. It typically consists of one or more components that

are responsible for rendering the UI of the application and it is often used to

manage the application state and to pass down data to the child components. A

React Component is a modular building block that encapsulates a piece of UI

functionality. It is typically reusable and can be composed together with other

components. React UI Components are pre-built components that can be used

to create the UI of the application. They typically handle common UI tasks

152

such as input validation, button click handling, and form submission. For

example, the buttons, forms, text inputs, and dropdowns are React UI

Component.

React Third-Party Components are components that are developed by

third-party developers and can be imported into a React application to provide

additional functionality. For example, the project uses Router Management

(React Router and React Navigator) to manage the navigation in React and

React Native Application, Animation Management (react-animations) is

responsible for adding animations to the project’s component. Other than that,

the State Management (Redux) helps to manage the state of the React and

React Native application, in this project, it is mainly used to store user

information so that the currently logged in user information is available in all

components. For the REST API Management (Firebase and Algolia), the

project use Firebase and Algolia native function to send request to the Firebase

and Algolia. It is often used in the React and React native applications to fetch

data from the servers and update the UI accordingly.

5.4 The Mobile Application Architecture

Figure 5.3: Mobile Application Architecture.

There are two main layers in the Mobile Application system architecture,

namely the presentation layer and the database layer. The React Native

Component of this project is responsible for business logic processing and

153

information display. By calling the native functions of Firebase and Algolia,

client can send requests and receive the response data. When the returned data

updates the state in the React native’s component, it will cause the component

to re-render and update information to the page. In addition, React Native can

also monitor the collections of Firebase. When the monitored collections

change, Firebase will push the changed data to the monitoring components.

Developer uses GitHub’s Release to publish the latest apk file, and

user download it through the GitHub link.

5.5 The Web Architecture

Figure 5.4: Web Architecture

The architecture design of this web project is mainly composed of react,

NodeJS, ExpressJS, docker and the database services (Firebase and Algolia).

The npm run build command in React project is to create a production

ready version of the application which consists of static html, css and

javascript and they are ready to be hosted on Express.js server. Server.js is a

JavaScript file that contains the code to start an Express.js server. The

express.static() method is used to serve static files. By running `npm run start`

154

command, it will start the Express.js server that runs on 8000 port and serve

the React application.

The Dockerfile is a text file that contains instructions for building a

Docker image, that is to build the Express.js web application to a docker

image in this project. Docker Compose is a tool for defining and running

multi-container Docker applications. It uses a YAML file, called docker-

compose.yml. Docker-compose.yml is used to define and configure Docker

services that run as a part of a Docker Compose application.

The Dockerfile to be run is specified in the docker-compose.yml file.

Docker Compose uses `docker compose up -d` command to package the

express.js web project into a docker image and run the docker image in the

docker container to provide services to users. In this project, it maps port 8000

in the container to port 80 on the host machine. This means that accessing port

80 of the host machine will access the Express.js web application running on

port 8000 in the docker container.

The entire web project runs in a docker container. This web project

mainly includes presentation layer and database layer, and React Component

is responsible for processing the corresponding business logic and information

display. After using npm to install related Firebase and Algolia’s library in the

React project, the React Web project can send requests to the database and

process the returned results by calling their respective functions. The returned

result will update the state of React Component. Once the state of React is

updated, the current component will be re-rendered to present the latest data to

the user. In addition, Firebase has the feature of real-time update. The React

web project can monitor the collections of Firebase. If the data in the

collection changes, Firebase will return the changed data to the corresponding

React Component.

155

5.6 The Cloud Architecture

Figure 5.5: Cloud Architecture

In the cloud architecture, the main components are Route53, Certificate

Manager, AWS Load Balancer, EC2, Amazon CloudWatch, AWS Budgets,

Developer and Github Actions. This section will first explain the purpose of

each cloud service, and then the entire project flow is presented.

Amazon Route 53 is a reliable DNS web service. Domain name for

this project is purchased from it, and it helps to convert domain names to IP

addresses. It can also configure traffic routing policies to direct traffic to the

servers where the project is running.

Certificate manager provides SSL/TLS certificates. SSL/TLS

certificates will ensure that the web pages are encrypted by HTTPS, which

will secure network communications and help protect sensitive information.

AWS ALB routes incoming traffic to backend servers, the backend

servers refer to the EC2 instances. It is designed to handle Hypertext Transfer

Protocol (HTTP) and HTTPS traffic and use round robin algorithms to

distribute traffic across the EC2 instances.

156

AWS Target Groups are a logical grouping of backend servers that

are registered with an ALB. The ALB routes the request to the appropriate

target group based on the routing rules defined in the load balancer

configuration.

AWS CloudWatch is a monitoring and observability service provided

by AWS. It can monitor the status checks of the EC2 instances and

automatically take action when status check fails. The status checks can detect

issues such as network connectivity problems, hardware issues, or software

configuration errors. The issues are AWS internal issues.

EC2 instance is a virtual server in the AWS cloud that can run

applications or services. Each instance runs on a physical host machine that is

located in one of the AWS data centers.

Github Actions is a powerful automation tool. In this project, it

allows the developer to build, test, and deploy web application directly from

the GitHub repository to the EC2 instances. It provides a way to automate the

entire software development workflow, from code changes to deployment, in a

single place.

AWS Budgets is a free service provided by AWS that helps to

manage AWS cost and usage. In this project, the budget is 12 USD per month.

When the cost exceeds the budget thresholds, it will send an email to the

developer and take corresponding actions on the EC2 instances.

Next, the entire cloud architecture process is discussed. First of all,

developer must establish connection with the two AWS's EC2 instances,

GitHub Runner is installed on the them so that Github Actions workflow can

be executed when there is a new git push on GitHub repository. Automate

tasks are defined in Github Actions. It will first stop and remove all docker

images and docker containers from the host machine and Github Actions will

execute docker compose up -d command to repackage Express.js web

application into docker image, and run it in host machine’s docker container.

This entire process will be executed on the two AWS EC2 instances. In this

way, the entire web project is redeployed on EC2 instances.

After that, the whole flow of users accessing web application in EC2

instances is discussed. By entering https://alprtech.link in the browser, the

157

traffic will be brought to the Route53 service. The Route53 of the project

defines that traffic pointing to the domain name alprtech.link is directed to

AWS Application Load Balancer. Application Load Balancer listens on port

80 and listens on port 443 with the help of AWS certificate manager. At the

same time, the traffic going toward the port 80 is redirected to port 443 to

ensure that the HTTPS encryption service is used. The main purpose of

Application Load Balancer in the project is to provide higher stability. By

bundling two EC2 instances into a Target Group, Application Load Balancer

can direct traffic to the EC2 instances. If one of the EC2 instances fails, at

least another server is still up and running.

Amazon CloudWatch is responsible for monitoring the health of EC2

instances. If the status check of EC2 instances failed. The Amazon

CloudWatch will try to reboot the failing instances. This project also uses the

AWS Budgets service to control costs, when the project cost reaches 12 USD,

AWS Budgets will send an email to the developer and stop the AWS EC2

service.

5.7 Database design

This section will discuss Logical Entity Relationship Diagram and Physical

Entity Relationship Diagram. These ERD diagrams show the relationship

between each collection in Firebase’s Firestore. In addition, this chapter also

discusses the data dictionary of each Firestore collection to show the attribute

and description of each field. Firestore uses the NoSQL method to store data.

This project has five collections, and all data is stored in these five collections.

158

5.7.1 Logical Entity Relationship Diagram

Figure 5.6: Logical Entity Relationship Diagram

5.7.2 Physical Entity Relationship Diagram

Figure 5.7: Physical Entity Relationship Diagram.

159

5.7.3 Data Dictionary

Table 5.1: Data Dictionary (Category Collection).

Field

Name
Data Type Description Key

FK

Reference

Collection

Nullable

id String Unique

Document ID

PK, AI - No

category String Category name - - No

createdAt Timestamp Datetime when

this document

was created

- - No

Table 5.2: Data Dictionary (Registration Collection).

Field Name Data Type Description Key

FK

Reference

Collection

Nullable

id String Unique

Document

ID

PK, AI - No

carPlate String Category

name

- - No

name String Car owner’s

name

- - No

phoneNumber String Car owner’s

phone

number

- - No

detail String Car owner’s

phone detail

- - Yes

category String Category

collection’s

document id

of this car

owner

FK category No

160

createdAt Timestamp Datetime

when this

document

was created

- - No

Table 5.3: Data Dictionary (Carpark Collection)

Field

Name
Data Type Description Key

FK

Reference

Collection

Nullable

id String Unique

Document ID

PK, AI - No

carPlate String Car plate

number

- - No

enterOrExit String Determine the

car access

type, it is

enter or exit

- - No

image String Car plate

image URL

link

- - No

ownerID String Registration

collection’s

document id

of this record

FK registration No

createdAt Timestamp Datetime

when this

document was

created

- - No

Table 5.4: Data Dictionary (Role Collection).

Field

Name
Data Type Description Key

FK

Reference

Collection

Nullable

161

id String Unique

Document ID

PK, AI - No

role String Role name - - No

authorizer String Which user

authorize this

role

- - No

authAt String Date time when

the user

authorizes this

role

- - No

menuList String The mobile and

web pages that

this role can

view

- - No

createdAt Timestamp Datetime when

this document

was created

- - No

Table 5.5: Data Dictionary (User Collection).

Field Name Data Type Description Key

FK

Reference

Collection

Nullable

id String Unique

Document

ID

PK, AI - No

username String Account’s

username

- - No

password String Account’s

password

- - No

email String User’s email - - Yes

phoneNumber String User’s

phone

number

- - Yes

162

role String Role

collection’s

document id

of this

account

FK role No

createdAt Timestamp Datetime

when this

document

was created

- - No

163

CHAPTER 6

6 SYSTEM IMPLEMENTATION

6.1 Introduction

This chapter discusses the implementation details of ALPR web and mobile

applications. It includes packaging React Native project into APK and

publishing them on GitHub release, setting up AWS services to host the ALPR

web application, and using Github Actions to automatically redeploy the web

project on EC2 instances. In addition, this chapter lists the Firestore, Algolia

functions and custom functions used by the project. Finally, all the pages and

functions of Mobile and Web applications will be displayed in detail and the

corresponding functions will be explained with section code.

6.2 Build React Native Application and Publish on GitHub

Android requires all applications to have a digital signature before they are

allowed to be installed on the user's mobile phone. The first step is to generate

an Android signature key, which can be achieved with the help of the JDK tool.

Navigate to the bin directory of jdk and execute the following command:

“keytool -genkeypair -v -keystore my-release-key.keystore -alias my-key-alias

-keyalg RSA -keysize 2048 -validity 10000”. This command requires the

password for the keystore and the corresponding key, as well as some

distribution-related information.After that, a my-release-key.keystore key file

will be generated in the current bin directory.

164

Figure 6.1: Generate Key File.

Move this key file to the android/app folder in the React Native

project. Then edit the gradle.properties under the project directory /android/,

and add variables in this file. The added code is shown in Figure 6.2.

Figure 6.2: Edit gradle.properties file.

Edit android/app/build.gradle in the project directory, and add the

signature configuration from Figure 6.3:

165

Figure 6.3: Edit build.gradle File.

After that, open a terminal and navigate to the root directory of the

React Native project. Execute the following command:

i. cd android

ii. gradlew assembleRelease

The first line of command means to enter the android directory. The

second line of commands means to execute the gradlew script file in the

current directory and package the react native project into an apk file. After

that, an apk file will be generated in the directory of

android/app/build/outputs/apk/release. This apk file is ready to be installed on

the user’s phone.

166

Figure 6.4: Generate Apk File.

Figure 6.5: Directory

of Apk File.

This apk file can then be uploaded to GitHub for users to download.

Figures 6.6, 6.7, and 6.8 shows the steps to upload apk to GitHub Release.

Figure 6.6: GitHub Project Repository.

167

Figure 6.7: Edit Releases.

Figure 6.8: Upload Apk and Update Release.

168

6.3 Setup AWS Services.

This section discussed the steps to setup AWS EC2 instances, use the Amazon

CloudWatch to monitor EC2 instances, use the Route53 services purchasing

project’s domain name, and use the AWS Certificates Manager to apply for a

certificate and secure the domain name with HTTPS encryption. Afterward,

the steps to setup the AWS Application Load Balancer and configuration of

Route53 to direct incoming traffic to the load balancer are discussed. In

addition, this part also discussed the use of AWS Budgets to monitor the cost

of the project and take corresponding measures when the threshold is exceeded.

6.3.1 Setup AWS EC2 instances.

First log in to the AWS account, navigate to the home page of EC2, and click

the launch instance button to start a server to host the ALPR web project.

Figure 6.9 shows the home page of the AWS EC2 service.

Figure 6.9: AWS EC2 Homepage.

Once AWS navigates to the page for configuring the EC2 instance,

provide a server’s name and select the Ubuntu version 22.04 LTS operating

system. Figure 6.10 shows the step of entering the server’s name and choosing

the operating system.

169

Figure 6.10: Provide Server name and Choose OS.

Choose the t2.micro configuration, which provides a CPU core and 1

GB of ram. Then choose to create a security group that accepts SSH, HTTPS,

and HTTP traffic. Figure 6.11 shows the steps to choose the instance type and

create a network security group.

170

Figure 6.11: Choose Instance Type and Create Network Security Group.

Finally, give this server an 8G storage space, and click the launch

instance button to start this server. Then repeat the same steps to start one

more instance. Figure 6.12 shows the steps to set the storage and launch

instance. The steps to install docker, GitHub runner and run the web project

will be discussed in Section 6.4.

171

Figure 6.12: Set Storage and Launch Instance.

6.3.2 Use AWS Amazon CloudWatch to Monitor EC2 instances.

First select the EC2 instance, click status check, and then create status check

alarm. Figure 6.13 shows the create status check alarm steps.

Figure 6.13: Create Status Check Alarm.

Then create a new alarm, select reboot for the alarm action, select five

minutes for the alarm thresholds period, and select 1 for the consecutive period,

so when the status check of this EC2 instance fails once within five minutes,

172

AWS CloudWatch will reboot this instance. Figure 6.14 shows the step to

create CloudWatch alarm action. Repeat the same steps for the second instance.

Figure 6.14: CloudWatch Alarm Action

6.3.3 Use AWS Route53 to purchase domain name.

First, navigate to the main interface of Route53, select the Registered Domain

page, and then click Register domain. Figure 6.15 shows the Route53 domain

page.

173

Figure 6.15: Route53 Domain Page.

Then search for the domain name of the project, click add to cart, and

then click the continue button to purchase the domain name. Figure 6.16

shows the step to purchase the project’s domain name.

Figure 6.16: Purchase Project’s Domain Name.

Navigate To Route53's hosted zones page, the domain name of the

project will be inserted into the record table of Route53 as a name server

record. Figure 6.17 shows the name server record in Route53.

174

Figure 6.17: Name Server Record in Route53.

6.3.4 Use AWS Certificate Manager to Secure Domain Name with

HTTPS.

First, navigate to the request certificate page of the AWS certificate manager.

Click to request a public certificate. Enter the domain name of the project,

select DNS validation, and click the request button.

Figure 6.18: AWS Certificate Manager Page.

175

Figure 6.19: Request Public Certificate for Domain Name

Figure 6.20 shows the page of the list of certificates, the project’s domain

name is still in the pending state. Click on the certificate ID to check the

certificate detail.

Figure 6.20: List of certificates

176

Click the Create Records in Route53 button, this step is to use the Route53

DNS to validate the domain name of the project. After validation, the status of

the certificate will change to success.

Figure 6.21: Validate Domain Name in Certificate Detail Page.

6.3.5 Setup AWS Application Load Balancer.

Navigate to the load balancer interface of EC2 and click the create load

balancer button, then choose to create an Application Load Balancer and give

the application load balance a name.

177

Figure 6.22: Load Balancer Page.

178

Figure 6.23: Create Application Load Balancer.

Figure 6.24: Provide a Load Balancer Name.

179

Select all subnets in the network mapping option, because the EC2

instances of the project run in different subnets, it is to ensure that every

subnet is within the scope of the load balancer.

Figure 6.25: Select all the Subnet of VPC.

Create a security group for this load balancer. This security group is

responsible for defining the inbound rule to ensure that the load balancer can

receive HTTP and HTTPS traffic.

Figure 6.26: Choose to Create Security Group

180

Figure 6.27: Create a Security Group.

After that, click the create a target group button, the purpose is to

include EC2 instances in the target group, so that the load balancer can direct

the traffic to the target group.

Figure 6.28: Click Create Target Group.

Select instances as the target type and give a target group name, keep

other settings as default, click next.

181

Figure 6.29: Create a Target Group.

182

At the target groups screen, add the two EC2 instances to the target

group.

Figure 6.30: Assign EC2 Instances to Target Group.

Navigate to the load balancer screen and select to forward the HTTP

traffic to the target group and lastly click the create load balancer button to

create this application load balancer.

Figure 6.31: Load Balancer Forward HTTP Traffic to Target Group.

183

Figure 6.32: Click to Create Load Balancer.

Navigate to the load balancer home page, select the alpr-lb load

balancer, and click add listener button to add another listener that listens to

HTTPS traffic.

Figure 6.33: Add HTTPS Listener.

184

Select to listen on Port 443, forward the traffic to the EC2 target

group, and then provide the SSL certificate which has been created by the

AWS certificate manager before, and finally click the add button. The load

balancer is now listening to Port 443 and Port 80, all the HTTP and HTTPS

traffic will be forwarded to the target group.

Figure 6.34: Listen to Port 443 and Forward to the Target Group.

185

Figure 6.35: Add the SSL certificate from AWS Certificate Manager.

On the listener screen of the load balancer, click the HTTP rule, then

click manage rules, and redirect the HTTP traffic to HTTPS. In this way, when

the user enters http://alprtech.link in the browser, it will automatically redirect

to https://alprtech.link.

Figure 6.36: Select Rule of HTTP Listener.

186

Figure 6.37: Click Manage Rules.

Figure 6.38: Redirect HTTP traffic to HTTPS.

6.3.6 Configure Route53 to Direct Traffic to Load Balancer

Create a record in Route53 to route the traffic to the Load Balancer of the

project. On the Route53 page, click the create record button, select to create a

simple routing template, and click the define simple record button.

187

Figure 6.39: Create Record for Load Balancer

Figure 6.40: Choose Simple Routing Template.

188

Figure 6.41: Click Define Simple Record.

Next, on the define simple record screen, select type A record, the

type A record can route traffic to load balancer. Select the load balancer

created before and click the define simple record button to let Route53 routes

the traffic this load balancer successfully. Now users can access the web

service on the EC2 instance through the Uniform Resource Locator (URL).

.

Figure 6.42: Route Traffic to the Load Balancer.

189

6.3.7 Use AWS Budgets to Monitor Cost

Navigate to AWS Budgets page, click the create budget button, provide a

budget name, and provide a monthly budget of 12 USD. When the budget

meets a certain threshold, an email will be sent to remind the usage of the

budget. Then select to stop EC2 instances on the action page when all budgets

are used up.

Figure 6.43: Click Create Budget Button.

190

Figure 6.44: Set Budget Limit.

191

Figure 6.45: Send Emails When Thresholds Are Met.

192

Figure 6.46: Stop EC2 Instances When Threshold Is Met.

193

6.4 Use Github Actions to Deploy ALPR Web Application on EC2

Instances

Only Docker is needed to run the web project, so use SSH to connect to the

two EC2 instances, install Docker, and start the Docker service in the

background.

Figure 6.47: EC2 Home Page.

Figure 6.48: Use SSH to Connect EC2 Instance.

194

Figure 6.49: EC2 Instance’s Command Line Interface.

Figure 6.50: Command to Install Docker.

195

After installing Docker, the next step is to connect the two EC2

instances with the GitHub Repository. The relevant installation and

configuration code of GitHub Runner can be found in GitHub Repository’s

setting, and then install GitHub Runner in the command line interface of EC2

instances and run the GitHub Runner service. So that when the developer

executes a git push to the project’s repository, GitHub will automatically copy

the entire project code to these EC2 instances and redeploy the web project

again.

Figure 6.51: GitHub Repository Runners Page.

196

Figure 6.52: Codes to Install, Configure and Run GitHub Runner.

197

Figure 6.53: Github Actions’s YML file.

198

Figure 6.54: Server.js file that Starts Express Server.

Figure 6.55: Dockerfile That Builds Docker Image.

199

Figure 6.56: docker-compose.yml to Configure Docker Service.

6.5 Firestore, Algolia Functions and Custom Functions Used in

Project

The implementation of web and mobile applications follows the Figure 6.57

design diagram for the most part. There are three layers: Presentation Layer,

Middle Layer, and Firestore Function Layer. Presentation is responsible for

displaying interface and processing business logic, the middle layer is

responsible for connecting the presentation layer and firebase function layer,

and it exposes a series of methods of operating Firestore to the presentation

layer. The Firestore function layer is a series of methods to operate the

database, such as creating, retrieving, updating, and deleting data. Tables 6.1,

6.2, and 6.3 show the functions used in the project.

200

Figure 6.57: React and React Native Process Data Flow Design.

Table 6.1: List of Function Endpoints.

Function Parameters Description

reqAllCarparkList - Get the list of car access

logs.

reqLimitCarparkList Get the first 10 car

access logs

reqCategoryList Get the list of

categories

reqRoleList Get the list of roles

reqUserList Get the list of users

reqCheckDuplicationCategory

List

data Check for duplicate

category names

reqCheckDuplicationPersonLis

t

data Check for duplicate car

plate numbers

reqCheckDuplicationUserList data Check for duplicate

usernames

reqCheckDuplicationRoleList data Check for duplicate role

names

reqUpdateCategory id, data Update the category

name

201

reqUpdateUser id, data Update the user account

reqUpdatePerson id, data Update the car’s owner

informationr

reqUpdateRole id, data Update the role

reqDeleteCategory id Delete the category

reqDeleteRole id Delete the role

reqDeleteUser id Delete the user account

reqDeletePerson id Delete the car owner

reqPersonById id Get the specific car

owner’s information

reqRoleById id Get the specific role’s

information

reqSearchUser searchData Search for the specific

user account

reqCategoryById id Get the specific

category’s information

reqAddPerson data Add a car owner

reqAddRole data Add a role

reqAddCategory data Add a category

reqAddUser data Add a user account

Table 6.2: List of Firestore Native Functions

Function Parameters Description

onSnapshot Collection,

call back

function

Listen to the collection in

real-time, when there is

update on the collection’s

document, the call back

function will be called.

query Collection,

rules

Set query rules on the

specific collection

getDocs Query Get the list of documents

based on the query rule

202

getDoc Document Get the specific document

addDoc Collection,

data

Add a document to the

collection

updateDoc Document,

data

Update the document with

the data

deleteDoc Document Delete the document

Table 6.3: Algolia Function.

Function Parameters Description

search search string, {

filters,

hitsPerPage,

page

}

Query the database based on search

string and filters. The hitsPerPage and

page parameters are used to do

pagination. It returns the result list.

6.6 Web Application Implementation

This section will display each web application page and explain the business

logic using section code.

6.6.1 User Account

The User Account module can be divided into login activity and logout

activity.

6.6.1.1 Login Activity

When the user logs in, the Ant-Design UI library will check whether the value

of the input box is legal, and if it is legal, the login button is disabled. When

the user submits the login form, it will enter the onFinish function. In this

function, it will go to the database to find the matching username and

password and check the user's role. If no user is found or the user's role is

empty, a warning box will pop up. If the username, password, and role are all

valid, the user data will be stored in React Redux and browser's local storage,

and the user will be directed to the home page.

203

Figure 6.58: Login Validation Page.

Figure 6.59: System Alerts User to Try Again.

204

Figure 6.60: Ant-Design Form Validation.

205

Figure 6.61: Login Logic.

6.6.1.2 Logout Activity

The user can click the Logout button on the homepage to log out, and a

confirmation message box will pop up to confirm whether the user wants to

log out. When the user the clicks ok button, the system deletes the user

206

information in Redux and browser's local storage and this will cause all React

components using the redux to re-render. The admin component monitors the

user info of Redux. When the user info is deleted, it will automatically direct

user to the login page. In addition, the system will automatically log out the

user when the information or role of the user account is changed in the

database.

Figure 6.62: Logout Modal.

Figure 6.63: Logout Action.

207

Figure 6.64: Admin Component Monitor User Info and Redirect to Login

Page.

Figure 6.65: Automatically Log Out User When User Account or Role

Changed.

6.6.2 Car Access Log

The Car Access Log Module can be divided into sections of viewing car

access records, performing basic search, performing filter search, and viewing

car owner information.

208

6.6.2.1 View Car Access Logs

When the user navigates to the homepage, it will fetch the first ten car access

logs from the Firestore. At the same time, the system will detect whether there

is a new car access record in real time, and if there is, it will append the new

car access log to the current list. User can click the load more button to load

ten more car access records.

Figure 6.66: Web Home Page.

Figure 6.67: Load First 10 Car Access Records.

209

Figure 6.68: Listen to Carpark's Collection in Real-time.

Figure 6.69: Load More in Home Page.

210

Figure 6.70: Load More Records.

211

6.6.2.2 Perform Basic Search

User can choose search by car plate, name, phone no, category or search by

enter or exit. After the user enters the search keyword, user clicks the search

button to search. Basic search functionality is done by using the Algolia search

function.

Figure 6.71: Search for Car Access Record.

212

Figure 6.72: Function to Perform Basic Search.

6.6.2.3 Perform Filter Search

Users can provide a variety of search data to perform filter search. The date

range is a required input field. After the user fills in the search data, click

submit button to search the car access logs. The filter search function utilizes

the Algolia search function to complete.

213

Figure 6.73: Web Filter Search Page.

Figure 6.74: Perform Filter Search on Car Owners.

214

Figure 6.75: Perform Filter Search on Car Access Log.

6.6.2.4 View Car Owner’s Information

If the car plate number is registered, a more button will appear on the right

side of the car access record, and after clicking, user can view the personal

information of the car owner.

215

Figure 6.76: View Car Owner's Information.

Figure 6.77: Show Car Owner's Information.

216

Figure 6.78: Load Car Owner Data When Loading Car Access Logs.

6.6.3 Category Module

Category Module can be divided into view category list, add a category, edit

category, and remove category section.

6.6.3.1 View Category List

When the user navigates to the category page, the system will load all

categories and monitor whether there is any change in the category collection

of Firebase. If there is a new change, the changes will be updated to the page.

217

Figure 6.79: Category Page.

Figure 6.80: Load Category List.

218

6.6.3.2 Add a Category

When the user clicks add button, the add category modal will pop up. After the

user enters the category name, the data in the input box will be verified, and

then check whether there are duplicate category names. If all the verifications

are passed, add the new category to Firestore.

Figure 6.81: Add Category Modal.

Figure 6.82: Perform Add Category

219

6.6.3.3 Update Category

The user can click the edit button of the category, and the update category

modal box will pop up. After the user enters the category name in the input

field, Ant-Design will verify the data, and the toUpdate function will also

checks whether the new category name is duplicated. If all verifications are

passed, the update category operation will be performed.

Figure 6.83: Update Category Modal.

Figure 6.84: Perform Update Category.

220

6.6.3.4 Remove Category

The user can click the remove button of the category, and the confirmation

modal will pop up. After the user clicks OK, the category will be deleted.

Figure 6.85: Remove Category Confirmation.

Figure 6.86: Perform Delete Category.

6.6.4 Person Module

The person module is divided into sections of viewing the car owner's personal

information, registering the car owner, editing the car owner, deleting the car

owner, and searching for the car owner.

6.6.4.1 View Car Owner’ Personal Information

The user navigates to the person page to view list of car owners, after that, the

system uses Algolia to search for the first 5 records of data and loads them on

the page. At the same time, the system will detect whether there is any change

in the car owner list in real time, and if so, it will present the updated data on

221

the user interface. User can click the view button to navigate to the person

detail page and find the detailed information of the car owner from Firestore

such as name, phone number, license plate, category, registration time, and

more personal information.

Figure 6.87: Person Page Shows List of Car Owners.

222

Figure 6.88: View Car Owner's Detail Information.

223

Figure 6.89: Load Car Owner List.

Figure 6.90: Detect New Data in Registration Collection.

224

Figure 6.91: Detect Update on Registration Collection.

Figure 6.92: Detect Deletion on Registration Collection.

225

Figure 6.93: Navigate to Detail Page.

Figure 6.94: Person Detail Page Load Car Owner Information.

Figure 6.95: Person Detail Page Load Car Owner's Category.

6.6.4.2 Register Car Owner

The user navigates to the person page, clicks the register button to enter the

registration page. User can enter the car owner's name, license plate number,

phone number, category, and more personal information. When the user

submits the form, the system will validate the data in the form and check for

duplicate license plate numbers. If all the validation passes, it will add this car

owner to Firestore, display the message of successfully registering the car

owner, and return to the previous page.

226

Figure 6.96: Register Car Owner Page.

Figure 6.97: Click Registration Button Navigate to Registration Page.

227

Figure 6.98: Registration Form Validation.

228

Figure 6.99: Register Car Owner Function.

6.6.4.3 Edit Car Owner

The user navigates to the person page and clicks the edit button to enter the

edit person page. The system will first load the car owner's data into the form,

and then the user can edit the car owner's name, license plate number, phone

number, category, and person detail. When the user clicks submit, the system

will validate the data in the form and check for duplicate license plate numbers.

If all the validations pass, it will update the data in Firestore, display the

message of successfully updating the car owner, and return to the previous

page.

229

Figure 6.100: Edit Car Owner Page.

Figure 6.101: Load Car Owner Information.

230

Figure 6.102: Validate Input Fields.

231

Figure 6.103: Perform Update Car Owner Action.

6.6.4.4 Remove Car Owner

After the user navigates to the person page and clicks the delete button, a

confirmation modal box will pop up. After the user confirms the deletion, this

record will be removed from Firestore, and the system will check whether the

change has been updated to the Algolia Database. If there is, system prompts

the deletion success message and close the modal box.

232

Figure 6.104: Remove Car Owner Modal.

Figure 6.105: Perform Delete Car Owner Action.

6.6.4.5 Search for Car Owner

User navigates to the person page, enters the license plate, name, or mobile

phone number in the search field to search for the car owner, and the user can

233

click the search button to search. System will use Algolia function to perform

search operation, the returned result will be presented to user.

Figure 6.106: Search Car Owner Page.

Figure 6.107: Perform Algolia Search on Car Owner.

234

6.6.5 User Module

The user module is divided into sections of viewing user account list, creating

a user account, editing the user account and deleting the user account.

6.6.5.1 View User Accounts

User navigates to the user page to view all user accounts. The system will

monitor the user collection of Firestore and return all user account information

to the user page.

Figure 6.108: User Page.

235

Figure 6.109: Load User Data to User Page.

6.6.5.2 Create User Account

User navigates to the user page and click the add button, the system will pop

up the add user modal box. After the user enters the username, password,

email address, mobile phone number and role, the system will verify the data

in the input fields and check if there are duplicate usernames. After all

validations pass, the system inserts a new piece of data into Firestore and

closes the modal.

236

Figure 6.110: Add User Modal.

Figure 6.111: Add User Form Validation.

237

Figure 6.112: Add User Account.

6.6.5.3 Edit User Account

The user can click the edit button after navigating to the user page, and the

system will pop up the update user modal box and initialize the data of all

input fields. After the user changes the username, password, email, mobile

phone number and role, the system will verify the data in the input fields and

check for duplicate usernames. After all validations pass, the system updates

the data in Firestore and closes the modal.

238

Figure 6.113: Update User Account Modal.

Figure 6.114: Initialize Input Field Data.

239

Figure 6.115: Perform Update User Account Action.

6.6.5.4 Remove User Account

The user can click the remove button after navigating to the user page, and the

system will pop up a confirmation modal. After the user confirms to delete the

user, the system will delete the user account from Firestore and close the

modal box.

240

Figure 6.116: Remove User Account Confirmation Modal.

Figure 6.117: Perform Delete User Account Action.

6.6.6 Role Module

The role module has 4 sections, namely view roles, create role, assign pages to

role and remove role.

6.6.6.1 View Roles

The user navigates to the role page to view the role list. The system will

monitor the role collection of Firestore and update the latest role list to user.

241

Figure 6.118: Role Page.

Figure 6.119: Load Role List from Firestore.

6.6.6.2 Create Role

The user can click the add button after navigating to the role page, and the

system will pop up the add role model. After the user enters the role name, the

242

system will verify the data in the input box and check that there are duplicate

role names. After all validations pass, the system inserts a new role into

Firestore and closes the modal.

Figure 6.120: Add Role Modal.

Figure 6.121: Add Role to Firestore.

6.6.6.3 Assign Pages to Role

After navigating to the role page, the user can click the edit button, and the

system will pop up the edit role modal. The user can decide which interface

243

the role can see, the system will update the role in Firestore after user clicks

the ok button and close the modal box afterward.

Figure 6.122: Edit Role Modal.

Figure 6.123: Assign Pages to Role.

6.6.6.4 Remove Role

244

The user can click the remove button after navigating to the role page, and the

system will pop up a confirmation modal. When the user confirms to delete the

role, the system will delete the role in Firestore and close the modal box.

Figure 6.124: Remove Role Modal.

Figure 6.125: Remove Role from Firestore.

6.7 Mobile Application Implementation

This section will display each mobile application page and explain the

business logic using section code.

6.7.1 User Account

The User Account module can be divided into login activity and logout

activity.

245

6.7.1.1 Login Activity

User can login by providing valid username and password. When the user

submits the login form, system will verify the user credential. It will go to the

Firestore to find the matching username and password and check the user's

role. If no user is found or the user's role is empty, an error message will pop

up. If the username, password, and role are all valid, the user data will be

stored in React Redux and the Async Storage, and the user will be directed to

the home page.

Figure 6.126: Login Page.

Figure 6.127: Login Page

Validation Message.

s

246

Figure 6.128: Login Action.

6.7.1.2 Logout Activity

The user can click the logout button from the navigation panel and a

confirmation message box will pop up to confirm whether the user wants to

log out. When the user the clicks ok button, the system deletes the user

information in Redux and async storage direct the user to sign in page. In

addition, the system will automatically log out the user when the information

or role of the user account is changed in the database.

247

Figure 6.129: Logout Alert Modal.

Figure 6.130: User Press Logout Button to Logout.

248

Figure 6.131: User Logout Automatically When User Account

Being .Modified or Removed

6.7.2 Car Access Log

The Car Access Log Module can be divided into sections of viewing car

access logs, performing basic search, performing filter search, and viewing car

owner information.

6.7.2.1 View Car Access Logs

When the user navigates to the home page, system will fetch the first ten car

access records from the Firestore. At the same time, the system will detect

whether there is a new car access record in real-time, and if there is, it will

append the new car access record to the current list. User can scroll to the

bottom to load more data.

249

Figure 6.132: Home Page.

Figure 6.133: Load More Function

in Home Page.

250

Figure 6.134: Load First 10 Car Access Logs.

251

Figure 6.135: Listen for New Car Access Log in Real-time.

252

Figure 6.136: On Load More Function.

6.7.2.2 Perform Basic Search

User can search car access log by car plate number. After the user enters the

search keywords, user pressed enter on the keyboard and the system will

return the result. Basic search functionality is done using the Algolia search

function.

253

Figure 6.137: Searching by Car Plate Number.

Figure 6.138: Perform Basic Search.

254

6.7.2.3 Perform Filter Search

Users can provide a variety of search data to perform filter search. The date

range is a required input field. After the user fills in the search data, clicks the

submit button to search the car access logs. The filter search function utilizes

the Algolia search function to complete.

Figure 6.139: Filter Search Drawer.

255

Figure 6.140: Perform Filter Search.

256

6.7.2.4 View Car Owner’s Information

If the car plate number is registered, a more button will appear on the right

side of the car access record, and after clicking, user can view the personal

information of the car owner.

Figure 6.141: View Car Owner

Information.

Figure 6.142: Drawer Containing

Car Owner's information.

257

Figure 6.143: Load Car Owner Data When Loading Car Access Records.

6.7.3 Category Module

Category Module can be divided into view category list, add a category, edit

category, and remove category section.

6.7.3.1 View Category List

When the user navigates to the category page, the system will load all the

categories and monitor whether there is any change in the category collection

of Firebase. If there is a new change, the changes will be updated to the page.

258

Figure 6.144: Category Page.

Figure 6.145: Load Category List.

259

6.7.3.2 Add a Category

When the user clicks add button, the add category modal will pop up. After the

user enters the category name, the data in the input box will be verified, and

then check whether there are duplicate category names. If all the verifications

are passed, add the new category to Firestore.

Figure 6.146: Add Category Modal.

260

Figure 6.147: Perform Add Category.

6.7.3.3 Update Category

The user can click the edit button of the category, and the update category

modal box will pop up. After the user enters the category name in the input

field, system will verify the input field, and the toUpdate function will also

checks whether the new category name is duplicated or not. If all verifications

are passed, the update category operation will be performed.

261

Figure 6.148: Edit Button of

Category.

Figure 6.149: Edit Category

Modal.

262

Figure 6.150: Perform Edit Category.

6.7.3.4 Remove Category

The user can click the remove button of the category, and the confirmation

modal will pop up. After the user clicks OK, the category will be deleted from

Firestore.

263

Figure 6.151: Remove Button of

Category.

Figure 6.152: Remove Category

Confirmation.

264

Figure 6.153: Delete Category.

6.7.4 Person Module

The person module is divided into sections of viewing the car owner's personal

information, registering the car owner, editing the car owner, deleting the car

owner, and searching for the car owner.

6.7.4.1 View Car Owner’ Personal Information

The user navigates to the person page to view list of car owners, after that, the

system uses Firebase to search for the first 10 records of data and loads them

on the page. At the same time, the system will detect whether there is any

change in the car owner list in real time, and if so, it will present the updated

data on the user interface. User can click one of the person cards to navigate to

the person edit page, the detailed information of the car owner from Firestore

such as name, phone number, license plate, category, registration time, and

more personal information will be loaded to the edit page.

265

Figure 6.154: Person Page.

Figure 6.155: View Car Owner's

Detail Information.

266

Figure 6.156: Load Car Owner List.

267

Figure 6.157: Detect New Data in Registration Collection.

Figure 6.158: Detect Update on Registration Collection.

268

Figure 6.159: Detect Deletion on Registration Collection.

6.7.4.2 Register Car Owner

The user navigates to the person page, clicks the add button to enter the

registration page. User can enter the car owner's name, license plate number,

phone number, category, and more personal information. When the user

submits the form, the system will validate the data in the form and check for

duplicate license plate numbers. If all the validation passes, it will add this car

owner to Firestore, display the message of successfully registering the car

owner, and return to the previous page.

269

Figure 6.160: Register Car

Owner Page.

Figure 6.161: Registration Form

Validation.

270

Figure 6.162: Register Car Owner Function.

6.7.4.3 Edit Car Owner

The user navigates to the person page and click one of the person cards to

enter the edit person page. The system will first load the car owner's data into

the form, and then the user can edit the car owner's name, license plate number,

phone number, category, and person detail. When the user clicks submit, the

system will validate the data in the form and check for duplicate license plate

numbers. If all the validations pass, it will update the data in Firestore, display

the message of successfully updating the car owner, and return to the previous

page.

271

Figure 6.163: Edit Car

Owner page.

Figure 6.164: Validate Input Fields.

Figure 6.165: Perform Update Car Owner Action.

272

6.7.4.4 Remove Car Owner

After the user navigates to the person page and clicks the remove button, a

confirmation modal box will pop up. After the user confirms the deletion, this

record will be removed from Firestore.

Figure 6.166: Remove Car Owner

Button.

Figure 6.167: Remove Car

Owner Modal.

273

Figure 6.168: Perform Delete Car Owner Action.

6.7.4.5 Search for Car Owner

User navigates to the person page, enters the license plate, name, or mobile

phone number in the search field to search for the car owner. System will use

Algolia function to perform search operation, the returned result will be

presented to user.

Figure 6.169: Search Car Owner Page.

274

Figure 6.170: Perform Algolia Search on Car Owner.

6.7.5 User Module

The user module is divided into sections of viewing user account list, creating

a user account, editing the user account, and deleting the user account.

6.7.5.1 View user accounts

User navigates to the user page to view all user accounts. The system will

monitor the user collection of Firestore and return all user account information

to the user page.

275

Figure 6.171: User Page.

Figure 6.172: Load User Data to User

Page.

276

6.7.5.2 Create user account

User navigates to the user page and click the add button, the system will pop

up the add user modal box. After the user enters the username, password,

email address, mobile phone number and role, the system will verify the data

in the input fields and check if there are duplicate usernames. After all

validations pass, the system inserts a new piece of data into Firestore and

closes the modal.

Figure 6.173: Add User

Modal.

Figure 6.174: Add User Form

Validation.

277

Figure 6.175: Add User Account.

6.7.5.3 Edit user account

The user can click the edit button after navigating to the user page, and the

system will pop up the update user modal box and initialize the data of all

input fields. After the user changes the username, password, email, mobile

phone number and role, the system will verify the data in the input fields and

check for duplicate usernames. After all validations pass, the system updates

the data in Firestore and closes the modal.

278

Figure 6.176: Edit User Button.

Figure 6.177: Update User

Account Modal.

279

Figure 6.178: Initialize Form Data.

Figure 6.179: Perform Update User Account Action.

6.7.5.4 Remove user account

280

The user can click the remove button after navigating to the user page, and the

system will pop up a confirmation modal. After the user confirms to delete the

user, the system will delete the user account from Firestore and close the

modal box.

Figure 6.180: Remove User

Button.

Figure 6.181: Remove User

Account Confirmation

Modal.

281

Figure 6.182: Perform Delete User Account Action.

6.7.6 Role Module

The role module has 4 sections, namely view roles, create role, assign pages to

role, and remove role.

6.7.6.1 View Roles

The user navigates to the role page to view the role list. The system will

monitor the role collection of Firestore and update the latest role list to user.

282

Figure 6.183: Role Page.

283

Figure 6.184: Load Role List from Firestore.

6.7.6.2 Create Role

The user can click the add button after navigating to the role page, and the

system will pop up the add role model. After the user enters the role name, the

system will verify the data in the input box and check that there are duplicate

role names. After all validations pass, the system inserts a new role into

Firestore and closes the modal.

284

Figure 6.185: Add Role Modal.

Figure 6.186: Validation on Role

Input Field.

Figure 6.187: Add Role to Firestore.

285

6.7.6.3 Assign Pages to Role

After navigating to the role page, the user can click the edit button, and the

system will pop up the edit role modal. The user can decide which interface

the role can see, the system will update the role in Firestore after user clicks

the ok button and close the modal box afterward.

Figure 6.188: Edit Role Button.

Figure 6.189: Assign Pages to

Role.

286

Figure 6.190: Assign Pages to Role.

6.7.6.4 Remove Role

The user can click the remove button after navigating to the role page, and the

system will pop up a confirmation modal. When the user confirms to delete the

role, the system will delete the role in Firestore and close the modal box.

287

Figure 6.191: Remove Role Button.

Figure 6.192: Remove Role

Modal.

Figure 6.193: Remove Role from Firestore.

288

CHAPTER 7

7 SYSTEM TESTING

7.1 Introduction

This chapter mainly discusses the testing method of the project. The testing of

this project includes the unit testing and using SUS to conduct system usability

testing. Finally, this project also conducts on site testing to ensure that the

applications can run well in a real working environment and meet the needs of

user.

7.2 Unit Testing

This project uses unit testing to test every function of the web and mobile

applications to ensure that the requirement specification is met. Unit testing is

divided into web application unit testing and mobile application unit testing.

7.2.1 Web Application

Web application has a total of 49 test cases.

289

7.2.1.1 User Account

Table 7.1: Unit testing of user account (web application).

Login Account

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC001 Enter valid user

account
1. Enter username

2. Enter password

3. Click login button

• Valid Username

• Valid Password

Redirected to home page Pass

TC002 Provide empty

input
1. Click login button

- Display validation error

message

Pass

TC003 Provide wrong

user account
1. Enter wrong username

2. Enter wrong password

3. Click login button.

• Wrong username

• Wrong password

Display account not found

error message

Pass

TC004 User’s role has

been removed
4. Remove the user role

5. Enter valid username

6. Enter valid password

7. Click login button

• Valid Username

• Valid Password

Display role has been

removed error message

Pass

TC005 User’s role has no

pages assigned to
1. Remove the user’s

role’s menu list

• Valid Username

• Valid Password

Display role has not been

initialized message

Pass

290

it
2. Enter valid username

3. Enter valid password

4. Click login button
Logout Account

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC006 Logout from

application
1. Click logout button

- • Delete Redux’s user

info

• Delete local storage’s

user info

• Redirected to login

page.

Pass

291

7.2.1.2 Car Access Log

Table 7.2: Unit testing of car access log module (web application).

View Car Access Logs

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC007 Display first 10 car

access logs
1. Navigate to home page

- Display first 10 car access

logs

Pass

TC008 Display next 10

car access logs
1. Navigate to home page

2. Click load more button

at the end of the list

- Display total of 20 car access

logs

Pass

Perform Basic Search on Car Access Logs

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC009 Search with car

plate number
1. Navigate to home page

2. Select search by car

plate

3. Provide car plate

number in search field

4. Click search button

• Car plate number • Display list of search

results

• Display success

message

Pass

292

TC010 Search with name
1. Navigate to home page

2. Select search by name

3. Provide name in search

field

4. Click search button

• Name • Display list of search

results

• Display success

message

Pass

TC011 Search with phone

number
1. Navigate to home page

2. Select search by phone

no

3. Provide phone number

in search field

4. Click search button

• Phone number • Display list of search

results

• Display success

message

Pass

TC012 Search with

category
1. Navigate to home page

2. Select search by

category

3. Select a category from

the selections.

4. Click search button

• Category • Display list of search

results

• Display success

message

Pass

TC013 Search with car

access type
1. Navigate to home page

2. Select search by enter

or exit

• Enter type • Display list of search

results

• Display success

message

Pass

293

3. Select enter from

selections

4. Click search button

TC014 Search with empty

field
1. Navigate to home page

2. Click search button

- • Display validation

error message

Pass

Perform Filter Search on Car Access Logs

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC015 Filter search with

car plate number,

name, category,

phone number, car

access type and

date range

1. Navigate to home page

2. Click filter button

3. Provide car plate

number, name,

category, phone

number, car access type

and date range

5. Click search button

• Car plate number

• Name

• Category

• Phone number

• Enter type

• Start date

• End date

• Display list of search

results

• Display success

message

Pass

TC016 Filter search with

empty search

fields

1. Navigate to home page

2. Click filter button

3. Click search button

- • Display error message

to alert user to provide

date range

Pass

View Car Owner’s Personal Information

TC ID Test Case Test Case Steps Test Data Expected Results Result

294

Summary

TC017 View car owner

personal

information from

car access log.

1. Navigate to home page

2. Click more button from

car access log

 • Display a drawer

containing the car

owner’s information

Pass

295

7.2.1.3 Category Module

Table 7.3: Unit testing of category module (web application).

View Categories

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC018 Display list of

categories
1. Navigate to category

page

- Display a table listing the

categories

Pass

Add a Category

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC019 Provide valid input
1. Navigate to category

page

2. Click add button

3. Provide a category

name

4. Click ok button

• Category name • Show success

message

• Close modal

• New category is

appended to the list

Pass

TC020 Provide empty

input
1. Navigate to category

page

2. Click add button

- • Display validation

error message

Pass

296

3. Click ok button

Edit Category

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC021 Provide valid input
1. Navigate to category

page

2. Click edit button

3. Provide a category

name

• Category name • Show success

message

• Close modal

• Updated category

name is shown in the

list

Pass

TC022 Provide empty

input
1. Navigate to category

page

2. Click edit button

3. Remove the data in the

input field

4. Click ok button

- • Display validation

error message

Pass

297

TC023 Provide same input

data
1. Navigate to category

page

2. Click edit button

3. Click ok button

• Same category

name

• Close the modal Pass

Remove Category

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC024 Remove category
1. Navigate to category

page

2. Click remove button

3. Click confirm button

- • Show success

message

• Close modal

• Remove the category

from the list

Pass

298

7.2.1.4 Person Module

Table 7.4: Unit testing of person module (web application).

View Car Owners

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC025 Display list of car

owners
1. Navigate to person page

- Display a table listing the car

owners

Pass

TC026 View a specific car

owner
1. Navigate to person page

2. Click view button

- Display the car owner’s

personal information

Pass

Register Car Owner

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC027 Provide valid input
1. Navigate to person page

2. Click register button

3. Provide valid name, car

plate number, phone

number, category,

person detail

4. Click submit button

• Name

• Car plate number

• Phone number

• Category

• Person detail

• Show success

message

• Navigate to person

page

• New person is

appended to the list

Pass

299

TC028 Provide empty

input
1. Navigate to person page

2. Click register button

3. Click submit button

- • Display validation

error message

Pass

TC029 Provide invalid

input
1. Navigate to person page

2. Click register button

3. Provide valid name, car

plate number, category,

person detail

4. Provide invalid phone

number

5. Click submit button

• Name

• Car plate number

• Invalid Phone

number

• Category

• Person Detail

• Display validation

error message

Pass

Edit Car Owner

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC030 Provide valid input
1. Navigate to person page

2. Click edit button

• Name

• Car plate number

• Phone number

• Category

• Show success

message

• Navigate to person

page

Pass

300

3. Provide valid name, car

plate number, category,

person detail

4. Click submit button

• Person detail • Updated information

shown in the list

TC031 Provide empty

input
1. Navigate to category

page

2. Click edit button

3. Remove the data in the

input fields

4. Click submit button

- • Display validation

error message

Pass

TC032 Provide invalid

input
1. Navigate to person page

2. Click edit button

3. Provide valid name, car

plate number, category,

person detail

4. Provide invalid phone

number

5. Click submit button

• Name

• Car plate number

• Invalid Phone

number

• Category

• Person detail

• Display validation

error message

Pass

301

Remove Car Owner

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC033 Remove car owner
1. Navigate to person page

2. Click remove button

3. Click ok button

- • Show success

message

• Close modal

• Remove the car owner

from the list

Pass

Search Car Owner

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC034 Search by car plate

number
1. Navigate to person page

2. Provide car plate

number in search field

3. Click search button

• Car plate number

• Display list of search

results

Pass

TC035 Search by car

owner’s name
1. Navigate to person page

2. Provide name in search

field

3. Click search button

• Name • Display list of search

results

Pass

302

TC036 Search by car

owner’s phone

number

1. Navigate to person page

2. Provide phone number

in search field

3. Click search button

• Phone number • Display list of search

results

Pass

303

7.2.1.5 User Module

Table 7.5: Unit testing of user module (web application).

View User Accounts

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC037 Display list of user

accounts
1. Navigate to user page

- Display a table listing the

user accounts

Pass

Create a User Account

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC038 Provide valid input
1. Navigate to user page

2. Click add button

3. Provide valid username,

password, email, phone

number and role

4. Click ok button

• Username

• Password

• Email

• Phone number

• Role

• Show success

message

• Close modal

• New user account is

appended to the list

Pass

TC039 Provide empty

input
1. Navigate to user page

2. Click add button

3. Click ok button

- • Display validation

error message

Pass

304

Edit User Account

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC040 Provide valid input
1. Navigate to user page

2. Click edit button

3. Provide valid username,

password, email, phone

number and role

4. Click ok button

• Username

• Password

• Email

• Phone number

• Role

• Show success

message

• Close modal

• Updated information

shown in the list

Pass

TC041 Provide empty

input
1. Navigate to user page

2. Click edit button

3. Remove the data from

the input fields

5. Click submit button

- • Display validation

error message

Pass

TC042 Provide same input

data
1. Navigate to user page

2. Click edit button

3. Click ok button

• Same username

• Same password

• Same email

• Same phone

number

• Same role

• Close modal Pass

Remove User Account

305

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC043 Remove user

account
1. Navigate to user page

2. Click remove button

3. Click confirm button

- • Show success

message

• Close modal

• Remove the user

account from the list

Pass

306

7.2.1.6 Role Module

Table 7.6: Unit testing of role module (web application).

View Roles

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC044 Display list of

roles
1. Navigate to role page

- Display a table listing the

roles

Pass

Create a role

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC045 Provide valid input
1. Navigate to role page

2. Click add button

3. Provide valid role name

4. Click ok button

• Role name • Show success

message

• Close modal

• New role is appended

to the list

Pass

TC046 Provide empty

input
1. Navigate to role page

2. Click add button

3. Click ok button

- • Display validation

error message

Pass

Assign pages to role

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

307

TC047 Provide input
1. Navigate to role page

2. Click edit button

3. Check the checkbox

4. Click ok button

• Menu list • Show success

message

• Close modal

• Update the role

Pass

TC048 Provide same input

data
1. Navigate to role page

2. Click edit button

3. Click ok button

• Same Menu list • Close modal Pass

Remove Role

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC049 Remove role
1. Navigate to role page

2. Click remove button

3. Click confirm button

- • Show success

message

• Close modal

• Remove the role from

the list

Pass

308

7.2.2 Mobile Application

Mobile application has a total of 43 test cases.

7.2.2.1 User Account

Table 7.7: Unit testing of user account (mobile application).

Login Account

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC050 Enter valid user

account
1. Enter username

2. Enter password

3. Click sign in button

• Valid Username

• Valid Password

Directed to home page Pass

TC051 Provide empty

input
1. Click sign in button

- Cannot click sign in button Pass

TC052 Provide wrong

user account
1. Enter wrong username

2. Enter wrong password

3. Click login button.

• Wrong username

• Wrong password

Display account not found

error message

Pass

TC053 User’s role has

been removed
1. Remove the user role

2. Enter valid username

• Valid Username

• Valid Password

Display role has been

removed error message

Pass

309

3. Enter valid password

4. Click login button

TC054 User’s role has no

pages assigned to

it

1. Remove the user’s

role’s menu list

2. Enter valid username

3. Enter valid password

4. Click login button

• Valid Username

• Valid Password

Display role has not been

initialized message

Pass

Logout Account

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC055 Logout from

application
1. Open navigation panel

2. Click logout button

- • Delete Redux’s user

info

• Delete Async

Storage’s user info

• Redirected to sign in

page.

Pass

310

7.2.2.2 Car Access Log

Table 7.8: Unit testing of car access log (mobile application).

View Car Access Logs

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC056 Display first 10 car

access logs
1. Navigate to home page

- Display first 10 car access

logs

Pass

TC057 Display next 10

car access logs
1. Navigate to home page

2. Scroll to the bottom of

the list

- Display total of 20 car access

logs

Pass

Perform Basic Search on Car Access Logs

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC058 Search with car

plate number
1. Navigate to home page

2. Provide car plate

number in search field

3. Hits enter from the

keyboard

• Car plate number • Display list of search

results

• Display success

message

Pass

Perform Filter Search on Car Access Logs

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

311

TC059 Filter search with

car plate number,

name, category,

phone number, car

access type and

date range

1. Navigate to home page

2. Click filter button

3. Provide car plate

number, name,

category, phone

number, car access type

and date range

4. Click submit button

• Car plate number

• Name

• Category

• Phone number

• Enter type

• Start date

• End date

• Display list of search

results

• Display success

message

Pass

TC060 Filter search with

empty search

fields

1. Navigate to home page

2. Click filter button

3. Click submit button

- • Display error message

to alert user to provide

start date and end date

Pass

View Car Owner’s Personal Information

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC061 View car owner

personal

information from

car access log.

1. Navigate to home page

2. Click more button from

car access log

 • Display a drawer

containing the car

owner’s information

Pass

312

7.2.2.3 Category Module

Table 7.9: Unit testing of category module (mobile application).

View Categories

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC062 Display list of

categories
1. Navigate to category

page

- Display a list of categories Pass

Add a Category

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC063 Provide valid input
1. Navigate to category

page

2. Click add button

3. Provide a category

name

4. Click ok button

• Category name • Show success

message

• Close modal

• New category is

appended to the list

Pass

TC064 Provide empty

input
1. Navigate to category

page

2. Click add button

- • Display validation

error message

Pass

313

3. Click ok button

Edit Category

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC065 Provide valid input
1. Navigate to category

page

2. Click edit button

3. Provide a category

name

• Category name • Show success

message

• Close modal

• Updated category

name is shown in the

list

Pass

TC066 Provide empty

input
1. Navigate to category

page

2. Click edit button

3. Remove the data in the

input field

4. Click ok button

- • Display validation

error message

Pass

314

TC067 Provide same input

data
1. Navigate to category

page

2. Click more button

3. Click edit button

4. Click ok button

• Same category

name

• Close the modal Pass

Remove Category

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC068 Remove category
1. Navigate to category

page

2. Click more button

3. Click remove button

4. Click confirm button

- • Show success

message

• Close modal

• Remove the category

from the list

Pass

315

7.2.2.4 Person Module

Table 7.10: Unit testing of person module (mobile application).

View Car Owners

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC069 Display list of car

owners
1. Navigate to person page

- Display a list of car owners Pass

TC070 View a specific car

owner
1. Navigate to person page

2. Click the person card

- Display the car owner’s

personal information

Pass

Register Car Owner

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC071 Provide valid input
1. Navigate to person page

2. Click add button

3. Provide valid name, car

plate number, phone

number, category,

person detail

4. Click submit button

• Name

• Car plate number

• Phone number

• Category

• Person detail

• Show success

message

• Navigate to person

page

• New person is

appended to the list

Pass

316

TC072 Provide empty

input
1. Navigate to person page

2. Click register button

3. Click submit button

- • Display validation

error message

Pass

Edit Car Owner

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC073 Provide valid input
1. Navigate to person page

2. Click the person card

3. Provide valid name, car

plate number, category,

person detail

4. Click submit button

• Name

• Car plate number

• Phone number

• Category

• Person detail

• Show success

message

• Navigate to person

page

• Updated information

shown in the list

Pass

TC074 Provide empty

input
1. Navigate to category

page

2. Click edit button

3. Remove the data in the

input fields

4. Click submit button

- • Display validation

error message

Pass

Remove Car Owner

TC ID Test Case Test Case Steps Test Data Expected Results Result

317

Summary

TC075 Remove car owner
1. Navigate to person page

2. Click more button

3. Click remove button

4. Click ok button

- • Show success

message

• Close modal

• Remove the car owner

from the list

Pass

Search Car Owner

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC076 Search by car plate

number
1. Navigate to person page

2. Provide car plate

number in search field

3. Hits enter from the

keyboard

• Car plate number

• Display list of search

results

Pass

TC077 Search by car

owner’s name
1. Navigate to person page

2. Provide name in search

field

3. Hits enter from the

keyboard

• Name • Display list of search

results

Pass

318

TC078 Search by car

owner’s phone

number

1. Navigate to person page

2. Provide phone number

in search field

3. Hits enter from the

keyboard

• Phone number • Display list of search

results

Pass

319

7.2.2.5 User Module

Table 7.11: Unit testing of user module (mobile application).

View User Accounts

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC079 Display list of user

accounts
1. Navigate to user page

- Display a list of user accounts Pass

TC080 View user account

detail
1. Navigate to user page

2. Click a user card

- Display a drawer containing

user account detial

Pass

Create a User Account

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC081 Provide valid input
1. Navigate to user page

2. Click add button

3. Provide valid username,

password, email, phone

number and role

4. Click ok button

• Username

• Password

• Email

• Phone number

• Role

• Show success

message

• Close modal

• New user account is

appended to the list

Pass

320

TC082 Provide empty

input
1. Navigate to user page

2. Click add button

3. Click ok button

- • Display validation

error message

Pass

Edit User Account

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC083 Provide valid input
1. Navigate to user page

2. Click edit button

3. Provide valid username,

password, email, phone

number and role

4. Click ok button

• Username

• Password

• Email

• Phone number

• Role

• Show success

message

• Close modal

• Updated information

shown in the list

Pass

TC084 Provide empty

input
1. Navigate to user page

2. Click edit button

3. Remove the data from

the input fields

4. Click submit button

- • Display validation

error message

Pass

TC085 Provide same input

data
1. Navigate to user page

2. Click edit button

3. Click ok button

• Same username

• Same password

• Same email

• Same phone

number

• Close modal Pass

321

 • Same role

Remove User Account

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC086 Remove user

account
1. Navigate to user page

2. Click more button

3. Click remove button

4. Click confirm button

- • Show success

message

• Close modal

• Remove the user

account from the list

Pass

322

7.2.2.6 Role Module

Table 7.12: Unit testing of role module (mobile application).

View Roles

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC087 Display list of

roles
1. Navigate to role page

- Display a list of roles Pass

TC088 View role detail
1. Navigate to role page

2. Click one of the role

cards

- Display a drawer containing

the information of pages that

this role can access.

Pass

Create a role

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC089 Provide valid input
1. Navigate to role page

2. Click add button

3. Provide valid role name

4. Click ok button

• Role name • Show success

message

• Close modal

• New role is appended

to the list

Pass

TC090 Provide empty

input
1. Navigate to role page

2. Click add button

3. Click ok button

- • Display validation

error message

Pass

323

Assign pages to role

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC091 Provide input
1. Navigate to role page

2. Click edit button

3. Check the checkbox

4. Click ok button

• Menu list • Show success

message

• Close modal

• Update the role’s

menu list

Pass

Remove Role

TC ID Test Case
Summary

Test Case Steps Test Data Expected Results Result

TC092 Remove role
1. Navigate to role page

2. Click the more button

3. Click remove button

4. Click confirm button

- • Show success

message

• Close modal

• Remove the role from

the list

Pass

324

7.3 System Usability Testing

This project uses SUS to evaluate the web and mobile applications. SUS is a

standardized questionnaire that can help evaluate the usability of a system. It is

a simple, reliable, and widely used tool that can be used to assess the

effectiveness, efficiency, and satisfaction of a system.

Five participants were invited to conduct a system usability test.

There are two main ways to conduct the usability testing, one is face-to-face

testing with the participants, and the other is using zoom meeting for online

testing. Figure 7.1 shows the developer conducting a system usability test with

the user.

Before the test, the host will introduce the background of the system,

and then read each test scenario to the participants, and the participants

complete the corresponding tasks according to the test scenario. After the

participants completed all the tasks, a google form link will be sent to them for

them to fill out.

Figure 7.1: Conducting System Usability Test.

7.3.1 Test Scenario

Table 7.13 contains the test scenarios used to conduct the system usability test.

325

Table 7.13: Usability Testing Scenario.

No
Test Scenario

Title
Description

1 Login the account Scenario:

• You want to access the application.

Task:

• Log in the admin account.

2 Logout from the

application

Scenario:

• You want to logout from the application.

Task:

• Perform logout action.

3 View list of car

access logs

Scenario:

• You want to view the list of car access

logs.

Task:

• View the car access logs.

4 Search for the car

access log

Scenario:

• You want to search for the car access logs

from 1 April to 15 April.

Task:

• Search according to preference.

5 View car owner’s

personal

information

Scenario:

• You want to check phone number of the

car owner from the car access log.

Task:

• View the car owner’s personal information

from home page.

6 View list of

categories

Scenario:

• You want to view all the categories that

326

can be assign to the car owner.

Task:

• View category list

7 Create a category Scenario:

• You want to create a new category for the

grab driver.

Task:

• Create a “Grab Driver” category.

8 Edit the category Scenario:

• You are not satisfied with the “Grab

Driver” category name, you wish to

change it to “Grab”.

Task:

• Change the “Grab Driver” category name

to “Grab”.

9 Remove the

category

Scenario:

• You do not want the “Grab” category to

exist anymore, you wish to remove it.

Task:

• Remove the “Grab” category.

10 View list of

registered car

owners

Scenario:

• You want to view all the car owners’

information that has been registered to the

system.

Task:

• View car owner list.

11 Register a car

owner

Scenario:

• You want to record a car owner’s

information in the system.

327

Task:

• Register a car owner.

12 Edit the car owner Scenario:

• The car owner changed his phone number

yesterday, you want to update his new

phone number to the system.

Task:

• Update the car owner’s phone number.

13 Remove the car

owner

Scenario:

• The car owner is no longer living in the

condominium, you want to remove his

record from the system.

Task:

• Remove the car owner.

14 Search the car

owner

Scenario:

• You want to search for the owner’s phone

number of the car that parks at

unauthorized area.

Task:

• Search for car owner’s information.

15 View user

accounts

Scenario:

• You want to view all user accounts that

has access to this system.

Task:

• View user accounts.

16 Create user

account

Scenario:

• You want to create a new account for the

security guard so that he can view car

access logs.

328

Task:

• Create an account and assign the specific

role to it.

17 Edit user account Scenario:

• The security guard wishes to have a simple

password, you want to edit his account to

change his password.

Task:

• Edit the security guard’s account.

18 Remove user

account

Scenario:

• The security guard quits his job, you want

to remove his account.

Task:

• Remove the security guard’s account.

19 View all the roles Scenario:

• You want to give a new role for the

security guard, you want to browse and

find the suitable role.

Task:

• Check role list.

20 Create a new role

and assign page to

the role

Scenario:

• You want to create a role that can only

access the home page, that is the user

account with this role can only view car

access logs.

Task:

• Create the role and assign home page to it.

21 Delete role Scenario:

• You found a role that is no longer used,

329

you want to remove it.

Task:

• Delete the role.

7.3.2 System Usability Test Result

The SUS score can be calculated based on the results in Appendix B. Sauro

(2011) listed the four main steps to calculate the SUS score. The four steps are:

i. For questions with odd numbers, subtract 1 from the score.

ii. For questions with even numbers, the score is subtracted by 5.

iii. Add the final scores of all questions together, and then multiply

by 2.5.

iv. The calculated result is the SUS usability score of the product.

Bangor, Kortum and Miller (2009) mapped the SUS score with the

adjective rating, as shown in Table 7.14. This project will apply the adjective

rating in Table 7.15 and Table 7.16.

Table 7.14: SUS Score Intepretation (Bangor, Kortum and Miller, 2009).

Adjective Rating SUS Score

Worst Imaginable 12.5

Awful 20.3

Poor 35.7

OK 50.9

Good 71.4

Excellent 85.5

Best Imaginable 90.9

330

Table 7.15: SUS Score of Web Application.

Participants
Usability Score per Questions

Total Percentage
1 2 3 4 5 6 7 8 9 10

Cheah Sung

Chai

4 4 3 1 3 4 3 3 4 4 33 82.5

Chang Hao Jie 4 4 3 4 3 3 4 4 4 4 37 92.5

Tong Kah Pau 3 4 4 3 4 4 4 3 4 4 37 92.5

Wong Tack

Hwa

4 3 4 4 3 3 4 4 4 4 37 92.5

Ooi Yun Xiang 3 3 4 3 4 4 3 3 4 3 34 85

Average SUS Score 89

Grade A

Adjective Rating Excellent

Table 7.16: SUS Score of Mobile Application.

Participants
Usability Score per Questions

Total Percentage
1 2 3 4 5 6 7 8 9 10

Cheah Sung

Chai

4 3 3 1 3 3 4 3 4 4 32 80

Chang Hao Jie 4 4 4 4 3 3 4 4 3 3 36 90

Tong Kah Pau 4 4 3 3 4 4 4 4 3 3 36 90

Wong Tack

Hwa

4 4 4 4 4 4 3 3 4 4 38 95

Ooi Yun Xiang 3 4 4 4 3 3 4 4 4 4 37 92.5

Average SUS Score 89.5

Grade A

Adjective Rating Excellent

7.4 On Site Testing

The project conducted onsite testing with the manager in Site A on April 7,

2023, this is to ensure that the applications run smoothly in a real working

environment. The activities include installing the camera, running the license

plate detection AI program on the Linux computer, and adjusting the boundary

box of the frame in OpenCV to ensure that the vehicle's license plate falls in

the blue boundary box for detection. The ability of web and mobile

331

applications to accept real time car access log updates was also tested. In

addition, the offline upload function of the program is also tested, this is to

ensure that the Python program can save the license plate information locally

when the network is interrupted, and once the network connection is restored,

it will be uploaded to the Firebase server immediately. Finally, the developer

also performs system usability testing with the manager.

Figure 7.2: Installing Camera.

Figure 7.3: Tuning Bounding Box.

332

Figure 7.4: Perform System Usability Testing on Mobile Application

333

CHAPTER 8

8 CONCLUSION AND RECOMMENDATIONS

8.1 Conclusions

In conclusion, this project took a total of ten months to complete. The main

purpose of the project is to use AI to replace the traditional monitor car access

log and register car owner processes. In order to obtain accurate user

requirements, on-site observation and questionnaire technique was used and

the valuable data is then formulated to the project’s objective and requirement

specification. The system development starts after this. To ensure the

portability, security, and stability of web applications, this project uses docker

to run the web application and uses HTTPS to encrypt the website. In addition,

AWS's load balancer and EC2 instances services are also used to ensure that

the project runs on two servers. If one server fails to serve, the other server

will take over the traffic. The project also uses the AWS Budgets service to

monitor costs and ensure that costs are within the allowable range.

After the system is developed, unit testing, system usability testing,

and most importantly onsite testing are carried out to ensure that the system

can run stably in the working environment. The average SUS score for the web

application was 89%, while the mobile application achieved 89.5%.

Furthermore, the five objectives shown in the list below were successfully

accomplished:

1. Develop real-time web and mobile ALPR application to monitor

car access log and manage car owners.

By using Firestore's real-update function in web and mobile

applications, user can monitor car access in real time. In addition, both

web and mobile applications use the Ant Design UI library to ensure

the uniformity of the interface, so that users can manage car owners

smoothly, thus abandoning the traditional process of using paper to

record car owners.

2. Utilizing AWS cloud services to deploy web application.

The AWS services used in this project include Route53, Load

334

Balancer, AWS Certificate Manager, EC2, Amazon CloudWatch and

AWS Budgets. These services ensure that user can access the reliable

project’s web application online and keep the cost under budget.

3. Promote CI/CD flow by using Github Actions to automatically

deploy web application on AWS servers.

By using Github Actions, the traditional development process is

optimized. Only one git push command is needed to deploy the latest

web project on the two servers of AWS. The redeployment of the

project only takes about 20 seconds, and the user can access the newly

updated web application online.

4. Deploy ALPR system at the security guard station.

On April 7, 2023, the developer and mentor went to the security guard

station in Site A for onsite testing to ensure that the entire system can

operate smoothly and ensure that the system can record vehicle entry

and exit information in offline environment.

5. Using system usability scale to evaluate web and mobile

applications.

This project invited five people to conduct the system usability test,

and the scores of most of the questions were between 4-3, which

means that the system has a good usability and has been accepted by

the target user during the onsite testing.

8.2 Limitations and Future Enhancement

The project still has some limitations and areas for improvement. Table 8.1

lists system limitations and improvement suggestions.

Table 8.1: Limitations and Recommendations of the System.

No Limitation Recommendation

1 Lack of data

visualization

capabilities

Use the E-chart library to make pie

charts or histograms for vehicle entry

and exit records

2 The current YOLO Use the transform function of OpenCV

335

model has poor

accuracy in recognizing

the license plate number

to correct the tilted license plate to a

frontal perspective and it is necessary to

use the license plate photos at night to

train the neural network to have good

detection accuracy in the night

environment.

3 When registering a new

car owner in the person

module, the system does

not support the user to

directly upload pictures

from the local photo

album.

• Develop a function that allows

users to upload pictures from the

local machine to the database, but

this will increase the operating

cost of the database.

• Use a cheap photo album hosting

platform. By uploading pictures

to the photo album hosting

platform, it will return the photo

link and user can insert it to the

What You See Is What You Get

(WYSIWYG) component of

person's detail to achieve custom

picture insertion function.

4 Applications only

support English.

Translate keywords into different

languages and package them into a

library, so that both web and mobile

applications use this language library to

provide different language such as Malay

or Chinese.

336

REFERENCES

Hanna, K., 2007. Adsorption of aromatic carboxylate compounds on the

surface of synthesized iron oxide-coated sands. Applied Geochemistry, 22, pp.

2045-2053.

Zhang, B., Cohen, J., Ferrence, R. and Rehm, J., 2006. The impact of tobacco

tax cuts on smoking initiation among Canadian young adults. American

Journal of Preventive Medicine, 30, pp. 474-479.

Affairs, A., 2022. System Usability Scale (SUS) | Usability.gov. [online]

Usability.gov. Available at: <https://www.usability.gov/how-to-and-

tools/methods/system-usability-scale.html> [Accessed 7 August 2022].

A complete guide to the waterfall methodology | indeed.com (2023). Available

at: https://www.indeed.com/career-advice/career-development/waterfall-

methodology (Accessed: April 26, 2023).

Agrawal, V., 2017. Improving Real-Time Object Detection with YOLO.

Available through: California in United States, Cube Dev, Inc. Retrieved from:

https://blog.statsbot.co/real-time-object-detection-yolo-cd348527b9b7

[Accessed 24 August 2021].

Alborzi, Y., Mehraban, T., Khoramdel, J. and Ardekany, A., 2019. Robust

Real time Lightweight Automatic License plate Recognition System for

Iranian License Plates. 2019 7th International Conference on Robotics and

Mechatronics (ICRoM), [online] Available at:

<https://ieeexplore.ieee.org/document/9071863> [Accessed 7 August 2022].

Bangor, A., Kortum, P. and Miller, J., 2009. Determining What Individual

SUS Scores Mean: Adding an Adjective Rating Scale. Journal of Usability

Studies, 4(3), pp. 114-123. [Accessed 20 April 2023]

Bentley.edu. 2022. What Every Client Should Know about SUS Scores. [online]

Available at: <https://www.bentley.edu/centers/user-experience- center/what-

every-client-should-know-about-sus-scores> [Accessed 24 August 2022].

Bochkovskiy, A., 2020. YOLOv4-tiny released: 40.2% AP50, 371 FPS (GTX

1080 Ti), 1770 FPS tkDNN/TensorRT. Available through: California in

United States, GitHub. Retrieved from:

https://github.com/AlexeyAB/darknet/issues/6067 [Accessed 18 August 2021].

DevOps implementation roadmap and advantages (2023) TatvaSoft Blog.

Available at: https://www.tatvasoft.com/blog/devops-implementation/

(Accessed: April 26, 2023).

Dason, C., 2022. Malls in Kuching use mobile app for parking payment |

KuchingBorneo. [online] KuchingBorneo. Available at:

<https://kuchingborneo.info/malls-in-kuching-use-mobile-app-for-parking-

337

payment/> [Accessed 7 August 2022].

Firasanti, A., Ramadhani, T., Bakri, M. and Zaki Hamidi, E., 2021. License

Plate Detection Using OCR Method with Raspberry Pi. 2021 15th

International Conference on Telecommunication Systems, Services, and

Applications (TSSA), [online] Available at:

<https://ieeexplore.ieee.org/document/9768252> [Accessed 7 August 2022].

Lee, Y., Yun, J., Hong, Y., Lee, J. and Jeon, M., 2018. Accurate License Plate

Recognition and Super-Resolution Using a Generative Adversarial Networks

on Traffic Surveillance Video. 2018 IEEE International Conference on

Consumer Electronics - Asia (ICCE-Asia), [online] Available at:

<https://ieeexplore.ieee.org/document/8552121> [Accessed 7 August 2022].

Malaysia license plate recognition parking system with LPR camera ANPR

camera (no date) Malaysia License Plate Recognition Parking System With

Lpr Camera Anpr Camera - Buy License Plate Recognition Software,Lpr

Camera,Anpr Camera Product on Alibaba.com. Available at:

https://www.alibaba.com/product-detail/Malaysia-License-Plate-Recognition-

Parking-system_60780988667.html (Accessed: April 28, 2023).

Martin, M., 2022. Prototyping Model in Software Engineering: Methodology,

Process, Approach. [online] Guru99. Available at:

<https://www.guru99.com/software-engineering-prototyping-model.html#5>

[Accessed 26 August 2022].

Negassi, I., Goitom Araya, G., Awawdeh, M. and Faisal, T., 2018. Smart Car

plate Recognition System. 2018 1st International Conference on Advanced

Research in Engineering Sciences (ARES), [online] Available at:

<https://ieeexplore.ieee.org/document/8723276> [Accessed 7 August 2022].

Nooruddin, S., Sharna, F. and Ahsan, S., 2020. A Bangladeshi License Plate

Detection System Based on Extracted Color Features. 2020 23rd International

Conference on Computer and Information Technology (ICCIT), [online]

Available at : <https://ieeexplore.ieee.org/document/9392672> [Accessed 7

August 2022].

Petiwala, F., Shukla, V., Mishra, V. and Saini, S., 2021. Smart Parking System

through Automation in License Plate Recognition. 2021 9th International

Conference on Reliability, Infocom Technologies and Optimization (Trends

and Future Directions) (ICRITO), [online] Available at:

<https://ieeexplore.ieee.org/document/9596554> [Accessed 7 August 2022].

ReactJS - architecture (no date) Tutorials Point. Available at:

https://www.tutorialspoint.com/reactjs/reactjs_architecture.htm (Accessed:

April 27, 2023).

Rusakov, K., 2020. Automatic Modular License Plate Recognition System

Using Fast Convolutional Neural Networks. 2020 13th International

Conference "Management of large-scale system development" (MLSD),

338

[online] Available at:

<https://ieeexplore.ieee.org/document/9247817/references#references>

[Accessed 7 August 2022].

Sauro, J., 2011. Measuring Usability with the System Usability Scale (SUS).

[online] Available at: <https://measuringu.com/sus/> [Accessed 21 April 2023]

Shkurti, L., Aliu, A. and Kabashi, F., 2021. ParkingKS: Parking Management

System Using Open Automatic License Plate Recognition. 2021 International

Conference on Electrical, Computer and Energy Technologies (ICECET),

[online] Available at: <https://ieeexplore.ieee.org/document/9698479>

[Accessed 7 August 2022].

Sun, G., Li, G., Xu, L. and Wang, J., 2008. A new method of vehicle license

plate location based on mathematical morphology and texture characteristics.

2008 3rd IEEE Conference on Industrial Electronics and Applications, [online]

Available at:

<https://www.researchgate.net/publication/251855376_A_new_method_of_ve

hicle_license_plate_location_based_on_mathematical_morphology_and_textu

re_characteristics> [Accessed 7 August 2022].

Suraj, S., Sridhar, N., Jijesh, J. and Shivashankar, 2018. Automatic Parking

Gateway using Character Recognition. 2018 3rd IEEE International

Conference on Recent Trends in Electronics, Information &

Communication Technology (RTEICT), [online] Available at:

<https://ieeexplore.ieee.org/document/9012222> [Accessed 7 August 2022].

Sgi (2023) Automated licence plate readers - SGI - SGI - liferay DXP PRD01,

SGI. Available at: https://sgi.sk.ca/alpr (Accessed: April 28, 2023).

TAN, W., 2021. IOT BASED CAR PLATE RECOGNITION SYSTEM. Kajang:

Universiti Tunku Abdul Rahman.

Tham, M. and Tan, W., 2021. IoT Based License Plate Recognition System

Using Deep Learning and OpenVINO. 2021 4th International Conference on

Sensors, Signal and Image Processing, [online] Available at:

<https://doi.org/10.1145/3502814.3502816> [Accessed 3 August 2022].

Tian, Q., Guo, T., Qiao, S., Wei, Y. and Fei, W., 2014. Design of Intelligent

Parking Management System Based on License Plate Recognition. Journal of

Multimedia, [online] 9(6). Available at:

<https://www.researchgate.net/publication/306407821_Design_of_Intelligent_

Parking_Management_System_Based_on_License_Plate_Recognition>

[Accessed 7 August 2022].

Wayleadr Blog. 2022. A Look at RFID Parking Systems and Alternative

Options (Expert Guide). [online] Available at:

<https://wayleadr.com/blog/rfid-parking-system-alternatives/> [Accessed 3

August 2022].

http://www.researchgate.net/publication/251855376_A_new_method_of_ve
http://www.researchgate.net/publication/251855376_A_new_method_of_ve
http://www.researchgate.net/publication/251855376_A_new_method_of_ve
http://www.researchgate.net/publication/306407821_Design_of_Intelligent_
http://www.researchgate.net/publication/306407821_Design_of_Intelligent_
http://www.researchgate.net/publication/306407821_Design_of_Intelligent_

339

Wong, A., 2019. Sunway Pyramid Smart Parking accepts eWallet and card

payments from Q1 2020 - SoyaCincau. [online] SoyaCincau. Available at:

<https://soyacincau.com/2019/10/29/sunway-pyramid-smart-parking-system-

lpr-2020/> [Accessed 7 August 2022].

340

APPENDICES

Appendix A: Conduct Observation at Site A

341

Appendix B: System Usability Test Results

System Usability Result (Web Application)

Name: Cheah Sung Chai

342

343

Name: Chang Hao Jie

344

345

Name: Tong Kah Pau

346

347

Name: Wong Tack Hwa

348

349

Name: Ooi Yun Xiang

350

351

System Usability Result (Mobile Application)

Name: Cheah Sung Chai

352

353

Name: Chang Hao Jie

354

355

Name: Tong Kah Pau

356

357

Name: Wong Tack Hwa

358

359

Name: Ooi Yun Xiang

360

