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ABSTRACT 

 

Occupational health and safety considerations are key aspects of manufacturing 

firms, along with profitability. Implementing lean tools is a comprehensive 

method for continuously improving industrial processes. The primary focus of 

the study is to evaluate how lean tools affect Malaysia’s manufacturing firms’ 

safety performance. The objective of this study is to develop the conceptual 

framework of lean tools and safety performance and to examine the hypotheses 

and the relationship between lean tools and safety performance. The variables 

to be examined in this study are continuous flow (CF), total preventive 

maintenance (TPM), employee involvement (EI), and safety performance (SP). 

Despite the increasing adoption of lean principles and practises to improve 

operational efficiency, there remains a significant knowledge gap regarding 

their influence on safety performance. Furthermore, manufacturing companies 

may lack awareness of the specific lean tools that should be prioritised to 

enhance safety performance. This lack of knowledge can lead to the inefficient 

allocation of time and resources, hindering their ability to effectively improve 

safety outcomes. A total of 134 responses of questionnaires were collected from 

all of the manufacturing companies listed on the Federation of Malaysian 

Manufacturers (FMM) and Wesley Malaysia websites. The data is analysed 

using the PLS-SEM analytical method with SmartPLS 4 software. The findings 

of this study indicate that continuous flow, total preventive maintenance, and 

employee involvement all significantly improve safety performance. Employee 

involvement has the greatest impact on safety performance, with a beta 

coefficient of 0.304. Followed by continuous flow and total preventive 

maintenance with beta coefficients of 0.274 and 0.232, respectively. Moreover, 

Importance-performance Map Analysis (IPMA) indicates that EI is the most 

pertinent construct for managerial action. In addition, it suggests Malaysia’s 

manufacturing firms keep up their performance on CF. On the other hand, the 

industries may choose to maintain their existing performance on TPM or refocus 

on other constructs with high importance and performance. In conclusion, the 

findings of this study will contribute to filling the knowledge gap in the 

Malaysian context, providing evidence-based recommendations and guidance 

for Malaysia’s manufacturing firms. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

In the contemporary world, the competition rate in the manufacturing industry 

has increased in an exponential manner. This is due to the fact that globalisation 

affects manufacturing. Manufacturing and construction industries are classified 

as secondary sectors of the economy. In other words, the manufacturing industry 

plays a pivotal role in the economic growth and development of developing 

countries. In 2020, the contribution rate of Malaysia’s manufacturing industry 

to the economy is 22.9 % (DOSM, 2021). The manufacturing industry has 

experienced remarkable development in the past few decades. It is continually 

developing with an increasing integration of automation, from mass production 

via the employment of an intense labour force in production lines to the use of 

robotics to boost efficiency. The Fourth Industrial Revolution, often known as 

Industry 4.0, is the next stage of development (Chellam, 2019). 

Safety in manufacturing is very important to avoid or reduce the risk 

of injuries, diseases, and deaths in the workplace. Therefore, every manufacturer 

needs to establish a safe and protected working environment for its employees. 

In fact, no one wishes to get hurt at work, and no one wishes to be responsible 

for someone else being injured. Some common safety problems may occur in 

the manufacturing process that need to be taken care of, for instance, improper 

maintenance, tripping, slipping, and falling, electrical hazards, unrestricted 

access, etc (Peleg, 2021). The study showed that the number of occupational 

accidents in 2020 was 32674 (DOSM, 2021). A manufacturing industry requires 

to provide workers with health and safety training so as to improve productivity 

and speed up the sustainable development of the economy and society. In light 

of the fact that reducing the problem of injury may reduce the operating costs, 

strengthen the willingness and enthusiasm of the operator, and enrich the image 

of the industry. 

Lean tools focus on diminishing waste (or “muda”, which means waste 

in Japanese) in organisations and enhancing quality control, which is to say that 

lean tools are designed to abolish all worthless and unprofitable processes. The 
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waste within an organisation includes defects, overproduction, transportation, 

waiting, inventory, motion, and over-processing (7 Wastes of Lean, n.d.). Other 

than improving processes and reducing waste, lean tools can also raise the level 

of safety in manufacturing industries. Some lean tools may be more suitable to 

be used in manufacturing. In spite of that, 5S, poka-yoke, kaizen, kanban, just-

in-time (JIT), and value stream mapping (VSM) are among the most useful lean 

tools. Moreover, manufacturing industries should identify the problems and 

apply the correct and appropriate lean tools. Therefore, the properties, 

advantages and disadvantages, cost of implementation, and complexity of lean 

tools must be taken into account when selecting lean tools for the manufacturing 

process.  

One of the most commonly used lean tools, namely 5S, which refers to 

Seiri, Seiton, Seiso, Seiketsu, and Shitsuke in Japanese. They are translated into 

English as sort, set in order, shine, standardize, and sustain. Recently, the 

concept of safety has been added to the traditional 5S, making the traditional 5S 

become 6S with the addition of an extra S. The potentially hazardous incident 

has been lowered with the use of 5S (Ulewicz and Lazar, 2019). Moreover, 

manufacturing industries claimed that the implementation of the 6S 

methodology was able to boost productivity, provide employees with a better 

working environment and workplace safety, and thus ameliorate performance 

(Sukdeo, 2017). 

On top of that, in 1961, Shigeo Shingo, a Toyota Motor Corporation 

engineer, established the poka-yoke system (Dudek-Burlikowska and 

Szewieczek, 2009). The objective of this system is to identify and eradicate of 

aberrant circumstances that avert product failures. In other words, Poke-Yoke is 

a method for producing or assembling goods with few or no flaws by employing 

zero quality control. Additionally, poka-yoke allows for the elimination of 

numerous quality control inspections and the reduction of the time needed for 

staff training (Rewers, Trojanowska, and Chabowski, 2016). Some commonly 

implemented poka-yoke devices in manufacturing are sensors, vision systems, 

warning lights or buzzers, alarms, limit switches, etc (Poka-Yoke in 

Manufacturing, n.d.).  
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1.2 Importance of the Study 

The primary focus of the study is to evaluate how lean tools affect 

manufacturing companies’ safety performance. Worker safety is of utmost 

importance as it ensures the well-being and physical integrity of employees. 

Gaining insight into how lean tools impact safety performance may help to 

improve workplace safety procedures, reduce accidents, and safeguard workers 

(Demirkesen, 2019). Besides, workplace accidents and injuries can have a major 

economic impact. This study can shed light on how integrating lean concepts 

and practises can minimise accidents and costs by examining the influence of 

lean tools on safety performance. It could lead to better economic results by 

offering industrial companies evidence-based advice on how to improve safety 

performance while streamlining their processes. 

In addition, the effectiveness and productivity of lean techniques and 

technology in industrial processes are well known. The study can aid in 

determining how safety measures can be easily incorporated into lean processes 

by looking at the link between lean tools and safety performance. Through this 

integration, safety considerations are maintained while productivity is increased, 

creating a win-win situation for both employees and companies. A common 

issue in industrial companies is that when productivity increases, the health and 

safety of workers are threatened. The study demonstrated that overall business 

performance might be improved by combining operational enhancement with 

safety considerations (Hamja, Maalouf and Hasle, 2019).  

Apart from that, Malaysia’s economy suffers losses as a result of 

workplace accidents. According to statistics from the 2012 annual report of the 

Malaysia Social Security Organisation (SOCSO), the direct cost of accidents 

was estimated to be RM2.02 billion, accounting for around 0.5 % of Malaysia’s 

GDP. It is possible that indirect costs may be higher. Given the rise in 

compensation, it is clear that workplace safety has not considerable improved 

in Malaysia (Hong, Ramayah and Subramaniam, 2018). In 2020, a total of 

68,710 accident cases were reported. Among these, 38,092 accidents were 

classified as industrial accidents. It is important to note that the actual number 

of accidents may be higher, as not all incidents are reported or documented. In 

general, there tends to be a positive correlation between the number of accident 

cases and the overall cost of accidents. When the number of accident cases 
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increases, the potential for financial losses also rises. This is because a higher 

number of accidents typically leads to more injuries, damages, and costs 

(PERKESO, 2020). 

 Other than that, continuous improvement is emphasised in lean 

concepts. Research on the effect of lean technologies on safety performance 

might aid organisational development in manufacturing companies (Kumar et 

al., 2022). It can shed light on how well specific lean tools work to enhance 

safety outcomes and point out areas that still require improvement. As a result 

of this knowledge, companies may adjust and enhance their safety procedures 

over time. In short, it has the potential to guide manufacturing companies 

towards implementing effective safety measures while maintaining their 

commitment to lean principles, thereby promoting a safer and more effective 

working environment. 

 

1.3 Problem Statement 

Lean tools are a set of techniques and principles used in manufacturing 

operations to reduce waste and increase operational effectiveness. Many 

industrial companies in Malaysia have adopted lean tools to improve their 

production processes and reduce costs. However, even though lean tools are 

known to increase operational effectiveness, it is unclear how they will affect 

safety performance (Ulewicz & Lazar, 2019). The lack of study on the 

connection between lean tools and safety performance in Malaysia's 

manufacturing sectors is problematic since it creates uncertainty around the 

advantages of adopting lean tools. Manufacturing companies might not 

completely understand how lean tools might affect safety performance, which 

can result in missed opportunities to increase safety and save costs. Although 

there is research on safety and lean techniques, they might not explicitly address 

Malaysia’s context. The applicability of findings from studies conducted in 

other regions or countries might differ due to variations in regulatory 

frameworks and cultural factors.  

Furthermore, manufacturing companies might not be aware of which 

specific lean tools to prioritise when attempting to enhance safety performance, 

that can result in the inefficient use of time and resources. The existing literature 

may not provide a comprehensive understanding of the specific lean tools that 
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are most effective in improving safety performance. Moreover, when 

manufacturing companies adopt lean transformations, there will be serious 

safety issues, which need further research. An in-depth study is required to 

address these specific issues since the use of lean technologies could alter 

existing safety measures and generate new dangers. In addition, safety concerns 

have increased recently in Malaysia’s manufacturing companies. As a matter of 

fact, Malaysia experienced over 2700 industrial accidents that resulted in 

fatalities and disabilities in 2018 (Yeow, Ng, Tai and Chow, 2020). Hence, it is 

essential to carry out this research to assess how the implementation of lean 

tools has affected Malaysia’s manufacturing companies’ safety performance. 

 

1.4 Aim and Objectives 

1.4.1 Aim 

To evaluate the impact of lean tools on safety performance in Malaysia’s 

manufacturing firms. 

 

1.4.2 Objectives 

(i) To develop the conceptual framework of lean tools and safety 

performance. 

(ii) To examine the hypotheses and the relationship between lean 

tools and safety performance. 

(iii) To identify how lean tools affecting safety. 

 

1.5 Scope and Limitation of the Study 

In spite of the fact that lean tools are extensively used worldwide, many 

Malaysia’s organisations still have trouble implementing these tools due to 

factors such as limited funds, poor leadership skills, a lack of worker skills, and 

cultural differences. Factors that influence the adoption of lean tools are process, 

planning and controlling, interactions between client and vendor, human 

resource management, top management, and leadership. According to the 

research, the process was the primary determining factor since inefficient 

processes result in employees producing less work and squandering more 

resources (Chan et al., 2019). For successful lean tool adoption, these factors 

must be effectively managed to the greatest degree feasible. 
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On the other hand, due to several limitations or barriers, adopting lean 

tools in a third world nation like Malaysia is still seen as a significant challenge 

for manufacturing organisations. Adoption of lean tools is frequently hampered 

by a number of factors, including inadequate measurement systems, 

organisational cultures, a lack of practise and training, poor communication, and 

so on. However, a lack of understanding is the greatest barrier to effectively 

implementing lean tools in Malaysia since it necessitates new knowledge and 

cultural change throughout the transformation. To put it another way, a lack of 

skilled workers and a lack of knowledge are the biggest hindrances for 

Malaysian businesses implementing improvement projects. By way of 

illustration, due to a lack of sufficient guidance and rules from established 

companies and the government, certain sectors in Malaysia do not consider that 

a continuous programme can increase their productivity and cost control 

(Sahwan, Ab Rahman and Md Deros, 2012). 

 

1.6 Contribution of the Study 

There are several contributions that can be derived from this study. Firstly, this 

study makes a contribution by looking into how Malaysia’s safety performance 

is affected by lean tools, which is an area that has not been extensively studied 

in the literature. This study aimed to fill the knowledge gap by investigating 

how safety performance is impacted by the use of lean tools in Malaysia. The 

findings may be used to create effective strategies that can help reduce accidents 

and injuries, and ultimately improve the bottom line for companies. 

Furthermore, the contribution of this study lies in the development of 

a conceptual framework, which provides a theoretical basis for understanding 

the impact of lean tools on safety performance in Malaysia’s manufacturing 

industries. The framework can serve as a roadmap for further study and a point 

of reference for other sectors and regions where lean tools are applied to enhance 

safety performance. 

Additionally, the study makes a significant contribution by improving 

the public’s perception of the manufacturing industry. This study can contribute 

to a rise in trust in the industrial sector’s capability for responsible and safe 

operation by enhancing safety performance via the use of lean tools. This can 

have a positive impact on public opinion, attract investment, and create 
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employment opportunities in this industry. A positive view of the manufacturing 

industry can also contribute to Malaysia's overall economic growth because it 

can help attract more enterprises to invest in the country and stimulate growth 

in related sectors. 

 

1.7 Outline of the Report 

The report consists of five main chapters. Chapter 1 provides an introduction to 

the research, including background information, a clear problem statement, and 

the objectives of the study, along with the scope and limitations, and 

contribution of the study. Chapter 2 is dedicated to a comprehensive literature 

review, presenting an overview of the research area, key concepts and theories, 

previous studies, and identified gaps in the existing literature. Chapter 3 focuses 

on the methodology and work plan. Chapter 4 presents the results of the research, 

including the findings and their analysis and interpretation, along with a 

discussion comparing them to previous studies and exploring their implications 

and significance. Finally, chapter 5 presents the conclusions and 

recommendations derived from the research, summarising the key findings, 

drawing conclusions, and suggesting future research directions.
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 History of Lean Tools 

The Toyota Production System (TPS), which was developed in the middle of 

the 20th century, served as the foundation for the lean manufacturing and 

operations philosophy. Lean was first introduced by Henry Ford and Toyota in 

the 1900s; however, its origins may be found in Venice in the 1450s. In fact, a 

production technique known as “mass production,” which produces several 

standardised items in massive quantities, was first successfully implemented by 

Henry Ford. For the reason that there was a labour surplus and a substantial 

supply of goods to meet demand in the early stage of manufacturing 

development, manufacturers did not need to improve their efficiency. In spite 

of that, the manufacturing industry underwent a significant transformation in 

1908 with the introduction of Henry Ford's Model T and the philosophy of mass 

production. As a consequence of the proposed mechanism, considerably lower 

production costs could be achieved, as well as reduced final product costs, 

which ultimately resulted in higher quality products. This technique drives a 

number of European businesses to adapt and produce things in mass quantities 

(Ribeiro et al., 2019). 

The principle of Jidoka, developed in 1902 by Toyota founder Sakichi 

Toyoda, is the earliest element of the TPS. This principle relates to the idea of 

implementing quality into the production process and allowing the division of 

man and machine for effectively managing multiple processes. The Toyoda 

Spinning and Weaving Corporation, founded by Sakichi Toyoda, is where this 

idea first originated. A motor-driven loom with a unique mechanism designed 

to halt in the situation of the thread breaking off was created by Sakichi Toyoda, 

who was working in the textile industry at the time. Henceforth, the production 

capacity increased and the defection rate decreased. The mechanism served as 

the base for Jidoka, one of the two major pillars on which the Toyota Production 

System was formed. Later in 1924, Sakichi developed an automatic loom that 

allowed a single employee to control several different devices. Platt Brothers 

Ltd. in England eventually purchased the rights to produce the loom outside of 
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Japan. This funding was subsequently used in part to launch an automotive 

section that was subsequently spun off in 1937 as a distinct business and 

company under the leadership of Kiichiro Toyoda, Sakichi Toyoda's son.  

Over and above that, in terms of the production system, the Just-in-

Time pillar is the most well-known element of the TPS. Kiichiro Toyota 

invented the concept of “just-in-time” after the establishment of Toyota Motor 

Corporation in 1937. Due to its dire financial situation, the company was unable 

to afford to squander funds on extra machinery or supplies used during 

manufacturing. Everything was anticipated to arrive on time, not too early or 

too late. Takt time, standardised work, supermarket, and kanban were eventually 

added to the JIT framework in the 1950s. An historical practise in American 

supermarkets known as "pull-flow production" was introduced by Taiichi Ohno 

shortly after World War II. The pull-flow production enabled as many items to 

be manufactured as could be utilised in the subsequent phase. Consequently, it 

would make it easier to cut back on overproduction (Liker, n.d.). Figure 2.1 

shows the house of Toyota Production System. In sum, countless other tools and 

methods, including the 5S, poke-yoke, value stream mapping, kaizen, and so 

forth, were created by Toyota.  

 

 

Figure 2.1: House of Toyota Production System (Liker, n.d.). 
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2.2 Safety Performance in Manufacturing Industry in Global and 

Malaysia 

The manufacturing industry has typically been a major factor in the economic 

growth of developing countries. Owing the fact that the manufacturing sector is 

the primary driver of the country’s economic growth. According to economist 

Nicholas Kaldor, the growth of the country’s economic manufacturing 

industries was positively correlated with GDP growth (Libanio and Moro, 2007). 

Productivity in the manufacturing sectors was likewise favourably correlated 

with sector development. As an illustration, the manufacturing sector in the 

United States contributed an approximated 24 % of GDP in 2020, including 

direct and indirect value added (Thomas, 2020). However, due to the frequency 

of workplace accidents, the manufacturing sector is one of the highest risk 

sectors of the economy. In the United States, there were a total of 4,764 fatal 

workplace injuries in 2020. A total of 340 deaths, or 7.14 percent of all deaths 

during that time, were related to private manufacturing (A look at workplace 

deaths, injuries, and illnesses on Workers’ Memorial Day, 2022). 

In this day and age, Malaysia’s industrial development has been 

supported by the small and medium enterprises (SMEs) sector. The 

manufacturing industry plays a significant role in Malaysia's phase 

transformation into high value-added activities. Since Malaysia started its path 

towards industrialization, the manufacturing industry has been the driving force 

behind the country's economic growth. This has been demonstrated by the 

manufacturing sector's contribution of 22.9 % to Malaysia's GDP in 2020. 

Despite that, SMEs seem to be a sector that has the highest prevalence of 

workplace accidents, up to 60 % to 70 % (Zulkifly et al., 2021). 

The term “safety performance” often indicates the degree of safety as 

evaluated by industrial accidents, hospitalisations, and deaths (Mullen, 

Kelloway and Teed, 2017). In addition, it may be used to refer to two different 

concepts. Occasionally, the term "safety performance" may be used to describe 

an organisational statistic for safety outcomes, such as the annual number of 

injuries. On the other hand, a metric measuring a worker's safety-related 

behaviour may be referred to as safety performance (Christian, Bradley, 

Wallace and Burke, 2009).  
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Regarding safety performance, there are two generally held points of 

view: the old viewpoint and the new viewpoint. The old viewpoint holds that 

workplace accidents are caused by human error. In response to this viewpoint, 

accidents and injuries were frequently directly attributed to people. Based on 

this, the old viewpoint's primary indicators for evaluating safety performance 

were the numbers of accidents and injuries. The root causes of human behaviour 

are not addressed by human error. As a result, it is still unknown what causes 

accidents and injuries. This viewpoint has been proven to be ineffective at 

present. In contrast, the new viewpoint evaluates deeper underlying causes such 

as organisational issues, task characteristics, and working environments and 

treats human error as a symptom rather than a direct cause of accidents. At 

present, the holistic view offers a compelling justification for determining and 

controlling the causes of accidents, while the existing method fails to identify 

the primary variables that affect workplace accidents and injuries. Organisations 

might avoid frequent accidents with the use of this methodology. The new 

viewpoint has led to the development of several instruments and methodologies 

for measuring safety performance. A leading indicator is a commonly used 

indicator for analysing safety performance, whereas a lagging indicator is used 

to assess safety program effectiveness. These indications address the 

fundamental elements that have been hidden beneath human error (Mousavi, 

2018). 

An accident is described as a sudden, unexpected incident that causes 

disaster. According to the study, an industrial injury can be non-fatal or fatal. A 

non-fatal industrial injury is one that requires at least four days away from work 

but does not result in death. On the contrary, a fatal industrial injury is one that 

results in death. In order to reduce the frequency of workplace accidents in the 

industrial sector that result in death, permanent disability, or non-permanent 

disability, more knowledge on safety behaviour and precaution should be 

evaluated. Furthermore, workplace accidents cause loss of productivity and 

additional medical expenses, thus increasing the social cost.  

Workplace accidents are influenced by several factors. Research 

showed that environment, employee behaviour, employee selection practice, job 

satisfaction, and stress are the factors most frequently linked to work-related 

accidents. A related research indicates five key factors, including psychology, 
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environment, ergonomics, physical activity, and stress, as probable causes of 

accidents. Besides, according to safety experts in the manufacturing field, 

behavioural issues may be the cause of approximately 90 % of all workplace 

accidents. Understanding how behaviour affects safety performance is 

fundamental, and this cannot be overstated. The two primary causes of 

occupational accidents have usually been identified as internal cause variables 

and external cause variables, which also refer to worker dispositional 

characteristics and workplace characteristics, respectively (Gyekye, 2010). 

Unexpected hazards and unfortunate circumstances have killed the 

majority of qualified workers at several manufacturing companies in Nigeria 

that failed to adopt safety and health practices. Four independent parameters, 

including safety training, management commitment, safety awareness, and 

hazard exposure, are used as indicators of industrial safety and health. These 

parameters all have an impact on and affect employee performance in 

manufacturing industries in river state. The analysis’s findings showed that 

safety practices significantly affect workers’ productivity. To put it differently, 

low job satisfaction, which has also impacted organisational performance, is 

caused by a lack of or ineffective adoption of safety and health procedures. The 

research suggested some ways to overcome this problem. One way to decrease 

workplace accidents is to provide various types of personal protective 

equipment (PPE) to all employees. Moreover, the manufacturing company must 

ensure that all employees, including top, middle, and low-level employees, 

attend safety and health training. Additionally, a good production layout and the 

storage of potentially hazardous substances can also help to prevent workplace 

accidents (Nwachukwu, Akpuh, Samuel and Udeme, 2020). 

Furthermore, the rate of workplace accidents involving SMEs in 

Malaysia has risen in recent years. This study was conducted in the Malaysian 

manufacturing company in Klang, Malaysia. A strong relationship between 

safety management practices and safety behaviour has been reported in the 

literature. In order to reduce the frequency of workplace accidents in the 

manufacturing industries that result in death, permanent disability, or non-

permanent disability, more research on safety behaviours and precautions 

should be evaluated. The organisation may raise the degree of safety 

management practices in the manufacturing industry by conducting a number of 
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actions, including providing suitable personal protective equipment (PPE) for 

every employee, offering intensive training on all workplace health and safety-

related topics to every employee, and enforcing the idea that everyone should 

value safety as highly as they value productivity. Hence, the optimum safety 

practices that are adopted by management and staff are effective practical steps 

against workplace accidents and injuries (Saraih, Maniam, Norsyafawaty and 

Valquis, 2021). In short, safety performance increases with the decrease in the 

incidence of accidents and injuries in the manufacturing industries.  

More than 3000 significant injuries and nine fatalities happen every 

year within the manufacturing industry, making it one of the riskiest industries 

to work in statistically. As a matter of fact, every seven seconds, an employee 

being injured in the United States. As a case in point, a 53-year-old labourer had 

his arm broken while running a brick crushing machine. As a result of the 

inability of a Pennsylvania, the United States, manufacturer to install a guard on 

a brick-crushing machine. Further analysis showed that in the process of loading 

bricks into the machine, the injured labourer’s left hand and arm were trapped 

in and drawn into the whirling drums. Also, in accordance with the Occupational 

Safety and Health Administration’s (OSHA) finding, the organisation failed to 

set up guards to ensure that no worker’s body accidentally entered the danger 

zone while it was in use. A lack of warning signs and labels on machinery is 

another factor leading to accidents (Fluxman, 2022). 

In addition, in February 2022, a 25-year-old Ohio, the United States 

industrial worker needed medical attention after suffering severe arm burns. The 

investigation demonstrated that the employee was not given spark-resistant 

hand tools and proper personal protective equipment (PPE) by the organisation 

(Fluxman, 2022). Another industrial catastrophe that happened in Whyalla, 

South America, in the year 2020 involved a 20-year-old teen whose shirt got 

trapped in the machinery, dragging her arm into the roller. This industrial 

catastrophe occurred because no emergency stop button had been placed on the 

conveyor. Besides, there was no complete protection on the return roller 

conveyor (Cosic, 2022). 

Apart from that, there are also quite a significant number of workplace 

accidents happening in Malaysia from time to time. One of the examples is a 

victim who slipped and fell from an unprotected platform from a height of 15 
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metres onto the factory floor in a glove factory in Klang, Malaysia. Upon further 

examination, it was discovered that no proper personal protective equipment 

(PPE) was given to the victim (Renovation work ceased at glove factory after 

fatal accident, 2021). In addition, in the year 2022, a foreign general labourer 

was killed in Johor after being trapped between an iron plate and a gantry crane 

pole. According to the findings of the inquiry, the employer neglected to 

examine the equipment, which had a valid certificate of fitness, and the "single 

girder cantilever gantry crane" remote control was stored without any 

supervision from the employer. Other than that, an employee was killed after 

being crushed between two hoisting devices in Perak in the year 2020. 

According to the result of the investigation, the employer failed to set up a 

control system from the manufacture of wet bricks to the Drying Kiln section 

(DOSH, 2022). 

 

2.3 Types of Waste and Their Impact of Safety 

Waste is one of the primary impacts on profitability in any firm. Time, material, 

and labour are examples of lean waste. Nonetheless, it could also be connected 

to a lack of preparation and the misuse of certain skill sets. In this manner, the 

elimination of unnecessary waste within an industry is a key tenet of the lean 

technique. In view of the fact that any expenditure or effort that is made in lean 

manufacturing that does not result in the manufacture of a product that 

customers are willing to compensate for is considered waste. These seven 

different waste categories might compromise safety.  

First and foremost, defect is one of the wastes of lean manufacturing. 

The definition of a defect is the failure to satisfy customer expectations or 

comply with requirements. Simply explained, defects happen when a product is 

unfit for its intended use. As an illustration, it is considered wasteful to rework 

or scrap a product since these actions raise operating expenses while providing 

no benefit to the customer. It is frequently brought on by imperfect 

manufacturing systems, unsatisfactory parts, or inaccurate process mapping 

documentation. The additional wasted time and effort required to fix or replace 

a defective product may put employees’ safety at risk. 

Besides, overproduction happens when parts are manufactured before 

they are demanded by the subsequent downstream process. In other terms, 
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generating more, more quickly, or earlier than necessary are considered as 

overproduction. A manufacturer would incur a significant cost for 

overproduction because it interferes with the flow of resources, lowers product 

quality, and reduces overall productivity. Inaccurate demand and forecast 

information, as well as unreliable production schedules, are common causes of 

overproduction. Overexertion, additional handling, and unneeded machine 

contact are all risks associated with excessive material handling. 

In addition, transport waste comprises the unnecessary and 

unproductive movement of people, materials, stocks, equipment, or goods. 

Excessive material movement might result in faults and product damage. 

Furthermore, a lot of movement of people and products might result in extra 

effort, higher wear and tear, and tiredness. The movement and handling of goods 

during transit may not necessarily increase their worth, and too much movement 

and handling might harm the product. The product's quality can be damaged as 

a result of this. Lack of delivery route planning and poor plant design might 

result in transportation waste. Thus, whenever a product is transported, there is 

an increased chance of personnel danger.  

Moreover, waiting is another type of waste that occurs when a product 

or work-in-process item is not being moved or processed. This may refer to 

periods when employees are not working, when machinery is not being used, or 

to just unproductive time that costs money. It results in supply chain 

interruptions and delays, both of which constitute unneeded waste. Additionally, 

a significant portion of a product's life cycle is wasted waiting in batch-and-

queue production. This often happens when there is an inadequate flow of 

materials, an excessively long production cycle duration, and an excessively 

long distance between workstations. Waiting also happens when accidents take 

place. 

Next, the storing of excessive amounts of stock, raw materials, or 

equipment leads to inventory waste. In fact, one of the major expenses faced by 

industrial sites is the cost of keeping goods in inventory. Also, too much 

inventory can lengthen lead times, take up productive workspace, and prevent 

the problem from being identified instantly. It restricts the flow of funds for the 

company and possibly increases risk for the business. Inventory waste may 
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result from excessive procurement or inadequate forecasting and planning. In 

this way, injury risk increases with the continuous handling of stock. 

Apart from that, unnecessary or excess motion is another kind of waste 

in a manufacturing firm. For example, additional actions or steps performed by 

workers that result in laborious and unproductive operations. Any unneeded 

movement of people, objects, or machines is considered as waste in motion. 

Excessive physical movement or action, including bending, lifting, and 

stretching, is a waste of time and drives up prices. These motions induce further 

production delays, yet they could also put the workers’ health and safety at risk. 

In sum, laborious and unproductive operations are often dangerous for the 

workers in manufacturing industries. 

Last but not least, over-processing waste is the process of performing 

more effort than is required and includes repetitive work that does not enrich 

the outcome, such as repeated inspection, counting, or superfluous paperwork. 

This may result in processing that seems to be excessive or unnecessary, wasting 

manpower and equipment resources. On the other hand, this may also refer to 

employing costly manufacturing equipment when less costly tools will perform 

just as well. Some typical over-processing reasons are poor communications, 

human error, and poor project management. As workers will be required to 

complete additional processes and tasks, over-processing might potentially 

jeopardise their safety (Pestana and Gambatese, 2016). 

 

2.4 Implementation of Lean Tools 

The idea of minimising waste in the manufacturing process is the foundation of 

the lean manufacturing concept, which is a thorough method of continuous 

industrial improvement. The connection between lean tool implementation and 

other management techniques has emerged as a major subject of lean studies 

over the past few years. Additionally, lean is a multifaceted methodology that 

incorporates comprises a huge spectrum of operational and supervisory 

practices, such as just-in-time (JIT), continuous flow, total productive 

maintenance (TPM), employee involvement, etc (Fadly Habidin and Mohd 

Yusof, 2013).  

By effectively implementing lean principles, it is possible to achieve 

the production system's optimal outcome (Sundar, Balaji and Kumar, 2014). 
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Lean is a formidable tool for process improvement, waste reduction, and even 

enhancing safety in the manufacturing industries (James, Ikuma, Nahmens and 

Aghazadeh, 2013). In order to obtain a higher level of quality and adaptability 

at lower costs, the application of lean manufacturing principles and practices 

has become ubiquitous, even in the current background of rising labour demand 

(Tortorella, Fettermann, Piñeres and Gaiardelli, 2018). Numerous studies have 

emphasised the application of tools and techniques for the establishment of 

strategies to prevent and minimise the risk factors of work-related injuries, 

resulting in a massive effect on occupational health and safety management 

systems. In this manner, the effective application of an occupational risk 

management system in manufacturing industries contributes to reduce work-

related disorders and catastrophes. Therefore, this signifies that organisations 

must keep in touch with employees, enrolling them in training that will further 

prevent work-related incidents (Tortorella et al., 2020). 

The ability to maintain better housekeeping appears to be an essential 

capability for accomplishing assigned work, which can reduce workplace 

hazards, provide visual order, support employees, and improve quality and 

productivity (Becker, 2001). Another study showed that the key advantages of 

applying lean are the ability to better understand the processes and the ability to 

reduce lead times, stock levels, costs, and rework (Melton, 2005). Today, a 

number of graphical techniques exist that assist users in understanding the 

process flow and identifying wastes, such as value stream mapping (VSM) and 

the waste identification diagram (WID). For instance, the results of the study 

indicate that the reduction in stock levels, lead times, occupied space, and flow 

time in the electronics industry (Detty and Yingling, 2000). The development 

of a continuous flux in a manufacturing facility for metallic structures that 

reduced unnecessary movement, delays, transportation time, faults, and lead 

times (Carvalho, Lopes and Alves, 2011).   

SMEs’ adoption of lean has been extensively studied by scholars. A 

study found it challenging to deploy productivity enhancement methods, 

especially those related to lean manufacturing (April, Powell and Bart, 2010). 

In addition, SMEs encounter resource shortages compared to larger 

organisations, which achieve more since they have greater access to resources. 

Yet, by concentrating on production efficiency, SMEs might use soft 
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technologies like lean to achieve significant reductions in cost, quality, and time 

(Kumar et al., 2006). Another study has noted that the most important 

concerns for implementing lean manufacturing in the setting of SMEs tend to 

involve leadership, management, finance, organisational culture, skills, and 

knowledge (Achanga, Shehab, Roy and Nelder, 2006). In order to 

determine and get rid of waste while improving flexibility, lean manufacturing 

incorporates a set of tools and methodologies as continuous improvement tools 

(Mathur, Mittal and Dangayach, 2012). Among these tools and methodologies 

are value stream mapping (VSM), kanban, just-in-time (JIT), total preventive 

maintenance (TPM), 5S practices, kaizen, etc. 

 

2.4.1 Barrier to the Implementation of Lean Tools 

Similar to any other attempt aimed at boosting productivity, the implementation 

of lean principles is anticipated to pose significant challenges (Denton and 

Hodgson, 1997). It is difficult for SMEs to adapt to the transition of lean 

manufacturing from conventional manufacturing methods of production due to 

both internal and external issues (Godinho Filho, Ganga and Gunasekaran, 

2016). As reported by Shah and Ward (2002), the adoption of lean approaches 

is directly impacted by factors like the system's maturity. Another study by 

Bamber and Dale (2000) believed that the human aspect is essential for success. 

As mentioned in the literature review, examples of main barriers and challenges 

in developing a lean culture in SMEs include a lack of ability to evaluate 

benefits, worker behaviour, a lack of resources, a lack of commitment from 

senior management, a lack of training, internal opposition, the risk of 

operational disruption, and so on (Sahoo and Yadav, 2018). 

As mentioned in subsection 2.3, a fundamental principle of the lean 

technique is the removal of unnecessary waste within an industry. In other words, 

eliminating everything that does not improve the value of goods or services is 

one of the major objectives of executing lean techniques. On top of that, it has 

been demonstrated that not all lean manufacturing strategies can be applied by 

SMEs owing to the high cost of the technology investment (Mohd Yusof and 

Aspinwall, 2000). This can be seen from the fact that SMEs are more likely to 

experience financial, technical, and time restrictions. These challenges are 

exacerbated by a number of factors, including a lack of management and 
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technical knowledge and inadequate human resources (Achanga, Shehab, Roy 

and Nelder, 2006). SMEs occasionally believe that implementing lean may 

jeopardise their existing level of production and cause them to incur losses. 

 

2.4.2 Continuous Flow 

Traditional batch production has a number of drawbacks, including a high 

volume of work-in-progress (WIP), lengthy cycle times, and a high liability for 

faults. Contrary to batch production, continuous flow requires manufacturers to 

operate continuously and produce goods at a constant rate (Venkat Jayanth et 

al., 2020). Therefore, switching from batch production to small lot production 

is advised for businesses. Also, companies are encouraged to shorten cycle 

times, transportation, and work-in-progress (Breyfogle, 2007). The benefits of 

applying continuous flow strategy are to reduce or eliminate waste, reduce the 

work-in-progress, shorten cycle times, and improve the quality of the product. 

Rahani and al-Ashraf (2012) pointed out that a continuous flow 

strategy can effectively lower or get rid of WIP and keep the product of high 

quality. In view of the fact that every machine in a machining process has a 

standard or maximum WIP at the transfer line. As a result, at the end of the day, 

if the WIP exceeds the maximum allowable level, the production line will not 

be able to continue running in accordance with the organisation’s schedule and 

plan.  In this manner, waste is produced through waiting and overproduction. 

As a matter of fact, waiting frequently results from inadequate process design. 

Other than that, the product may be damaged by improper positioning 

and rejected as being of low quality. In essence, this might be caused by the 

different groups of products mixing together. Furthermore, incorrect product 

positioning might make workplace accidents more likely. Consequently, it is 

necessary to classify items into groups with similar processing and routing by 

implementing the continuous flow methodology. It is important to have a good 

and ergonomic design with adjustment features to reduce operator backache 

while running operations (Rahani and al-Ashraf, 2012). In addition, product 

classification and ergonomic design of equipment can also greatly reduce the 

worker’s motions, such as bending and stretching.  

Apart from that, continuous flow provides a good layout and factory 

design that can alleviate common health and safety threats. In particular, U-
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shaped production lines were designed as a way to reduce waste and make the 

best use of workers' abilities in lean manufacturing environments (Gil-Vilda et 

al., 2017). Additionally, a well-designed factory structure can greatly enhance 

the efficiency of the manufacturing line and minimise worker motion. On top of 

that, workplace safety can also be greatly affected by clutter. Shutoffs and other 

key controls will be easier to access if clutter is minimised. Also, employees 

will have sufficient space to work effectively if work areas and emergency exits 

are kept clear of obstructions. Therefore, a good structure of factory layout can 

ensure the employee is working in a safe environment. 

One machine's cycle time is determined by both man and machine time. 

Rahani and al-Ashraf’s (2012) study found that the operator's movement during 

the part-unloading process is what causes the lengthy man time. These actions 

waste the operator's time and extend the handling time beyond what is necessary. 

To put it another way, a good continuous flow of production lines can lower the 

possibility of workplace accidents involving manual and long-term material 

handling. 

 

2.4.3 Total Preventive Maintenance (TPM) 

The importance of maintenance in contemporary manufacturing systems is 

increasing due to organisations accepting maintenance as a revenue-generating 

business element. The pillars of TPM are usually regarded as the fundamental 

procedures for implementing TPM. Figure 2.2 shows the TPM idea is supported 

by eight pillars. 

 

 

Figure 2.2: Eight Pillars of TPM (Masud et al., 2008). 
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The involvement of all employees is the most fundamental TPM 

requirement in order to increase or strengthen equipment effectiveness, 

availability, performance, quality rate, overall equipment effectiveness (OEE), 

reliability, and safety. Besides, improved teamwork and communication are 

required to support autonomous maintenance teams (Chan et al., 2005). In this 

manner, employees tend to conduct preventive maintenance activities without 

the ask from the top management, according to the equipment maintenance 

records. Therefore, it is believed that publishing equipment maintenance records 

at the workplace will increase worker safety as well as maintain the quality of 

the products.  

According to Eti, Ogaji and Probert (2004), TPM is a method to 

maximise equipment efficiency, enhance quality, promote safety, minimise 

costs, and more importantly, boost team morale. In order to prevent machine 

failure or malfunctioning throughout production, TPM includes the approaches 

of operator ownership and preventive maintenance operations (Chand and 

Shirvani, 2000). Fostering an ownership culture and encouraging operator 

participation will help TPM achieve its main objectives, such as zero 

breakdowns, zero faults, and improved outputs. The application of TPM fosters 

a sense of employee responsibility for equipment and emphasises the 

significance of maintaining fundamental equipment conditions. According to 

Mad Lazim and Ramayah’s (2010) investigation, TPM is a resource-based 

method where all employees are accountable for preventing equipment wear and 

tear, breakdowns, failures, and stoppages.  

Employee training, employee involvement, teamwork, and preventive 

maintenance are cited as the four core TPM elements (Swanson, 2001). The 

main objective of preventive maintenance is to make sure that machinery is 

always in good condition for production. In this way, preventive maintenance 

can effectively lengthen the equipment’s lifespan, lower the risk of breakdown, 

boost customer satisfaction, and promote the health and safety of employees. In 

other words, injuries in the workplace can be reduced by routine maintenance. 

Also, an effective preventive maintenance program can help to improve the 

uptime of machines. 

In addition, TPM enhances various aspects of an organisation's 

performance, such as safety and cleanliness (Brah and Chong, 2004). In order 
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to achieve the goal of implementing TPM, for example, having zero accidents, 

zero health damage, and zero fires, a workplace safety training is essential to 

provide employees with the necessary knowledge and skills. For instance, 

proper PPE should be worn all the time in the workplace. A worker must learn 

how to use, maintain, and dispose of their PPE properly in order for it to perform 

as intended. Thereby, productivity and time can be improved, while 

safeguarding the health and safety of the employees. 

 

2.4.4 Employee Involvement in Lean 

In manufacturing companies, an effective employee involvement practice could 

lead to more attainable job satisfaction, quality enhancement, and productivity 

improvement. Employee involvement refers to the process by which employees 

participate in or hold the decision-making rights of an organisation. The 

productivity, accuracy, and job satisfaction of employees in the manufacturing 

processes are stated to be improved through employee involvment. Employee 

interaction and information exchange can raise standards of the outcomes and 

lower the possibility of work-related accidents. For instance, brainstorming 

sessions that encourage idea sharing among employees result in problem-

solving (Pun, Chin and Gill, 2001). 

Coffey (2000) demonstrated that the more committed an employee is, 

the more they will contribute to discovering and eliminating waste as goals. 

Effective participation implies that workers operate professionally at work and 

within their authority. Additionally, it offers practical solutions to work-related 

issues and problem-solving advice (Tseo and Ramos, 1995). The organisation 

can create a better and safer working environment with the assistance of 

problem-solving guidance and suggestions from employees. A high level of 

employee involvement can also result in product and process improvement. One 

of the interesting findings from Lawler, Mohrman and Ledford (1995) was that 

employee safety and health had improved for 60 % of the organisations 

employing employee involvement procedures.  

Cross-functional training is another essential element of employee 

involvement. A cross-functional training that results in multiskilling may raise 

employee awareness of production and machinery issues. As a result, the high 

awareness of employees can prevent or reduce the risk of injury, illness, and 
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death. Moreover, multiskilled workers can effectively reduce waste in terms of 

waiting, thereby improving production efficiency. 

 

2.5 Summary 

Lean tools are implemented due to their positive impact on safety performance 

in manufacturing firms. The type of lean tools that can be implemented to 

improve safety performance in Malaysia’s manufacturing firms, such as 

continuous flow, total preventive maintenance, and employee involvement. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

In this chapter of the report, the methodology section is divided into a few 

subsections, namely conceptual framework, hypothesis, research design, 

questionnaire development, flowchart, sampling design, method of data analysis, 

pre-test, data collection, data analysis, and pilot studies. 

 

3.2 Conceptual Framework 

Based on the proposed conceptual framework resulting from the previous 

literature review and in order to understand the relationship between lean tools 

and safety performance. The framework developed in this research is composed 

of several lean tools and safety performance. The components of lean tools 

include continuous flow, total preventive maintenance, and employee 

involvement. In this instance, the lean tools serve as the independent variable, 

while the safety performance serves as the dependent variable. The relationship 

between lean tools and safety performance was highlighted by conducting a 

thorough literature review. Despite that, the literature of early research reveals 

that there is a lack of evidence to show the connection between lean tools and 

safety performance in manufacturing firms, notably in Malaysia. Theoretically, 

based on the literature evaluation, the current research will deepen the 

understanding by evaluating how lean tools affect safety performance. 

Practically, this research is one of the first to analyse this connection among 

Malaysia’s manufacturing firms. Figure 3.1 shows the conceptual framework. 
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Figure 3.1: Conceptual Framework. 

 

The following hypotheses have been formulated based on conceptual 

framework: 

(i) Hypothesis 1 (H1): Continuous flow and safety performance 

are significantly correlated. 

(ii) Hypothesis 2 (H2): Total preventive maintenance and safety 

performance are significantly correlated. 

(iii) Hypothesis 3 (H3): Employee involvement and safety 

performance are significantly correlated. 

 

3.3 Research Design 

The main objective of conducting quantitative research is to determine the 

relationship between variables within a population, particularly independent and 

dependent variables. With the aid of the SmartPLS software programme, data 

can be computed and processed by a computer, saving a significant amount of 

energy and resources. Experimental and survey-based methods are among the 

methods used in quantitative research (Apuke, 2017). 

There are multiple common techniques for carrying out quantitative 

research. Descriptive research seeks to identify a phenomenon and its properties. 

In other words, this study is more interested in what occurred than in how or 

why it occurred. Hence, a descriptive research design with survey tools was 

carried out in this research. 
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3.4 Questionnaire Development 

The questionnaire was adopted and adapted from two journals: Defining and 

developing measures of lean production and The relationships between OHS 

prevention costs, safety performance, employee satisfaction and accident costs. 

The first part of the questionnaire is Section A, which includes 

company details and demographic data. The company details include the 

company location, company businesses size and type of businesses. On the other 

hand, the demographic data include gender, age, educational level, and working 

experience in the industry.  

In comparison to their male colleagues, female employees reported 

more positive and constructive opinions of workplace safety, exhibited higher 

levels of compliance with safety procedures, and had a lower incidence of 

accidents (Gyekye and Salminen, 2011). According to Siu, Phillips and Leung 

(2003), some older workers do in fact have more positive views about safety 

than younger workers. Therefore, this means that the worker’s age and gender 

have an impact on their performance in terms of safety. 

In the study of Gyekye and Salminen (2009), a positive correlation was 

found between education and safety perception. Higher educated employees had 

better perceptions of safety, higher levels of job satisfaction, greater compliance 

with safety protocols, and lower accident involvement rates. The high accident 

involvement rate among workers with less education, especially those with only 

a basic education, indicates the necessity for special safety programmes created 

just for them. Furthermore, Ayim Gyekye and Salminen (2010) demonstrated 

that the more experienced workers had a more positive view of safety. In other 

words, the working experience may affect the safety performance. In short, a 

worker’s educational level and working experience have a positive effect on 

safety performance. 

The questionnaire’s goal is to evaluate the impact of lean tools on 

safety performance in Malaysia’s manufacturing firms. The questionnaire 

consisted of 2 sections: lean tools and safety performance. The section on lean 

tools consisted of 12 statements, while the section on safety performance 

consisted of 5 statements. The lean tools section was separated into 3 different 

types of lean tools: continuous flow, total preventive maintenance, and 

employee involvement. A 5-points Likert scale is utilised in this questionnaire. 
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This is due to the fact that the Likert scale is easy to create and is expected to 

generate a highly reliable scale. 5-point Likert scale anchored with 1= “No 

implementation”, 2 = “Little implementation”, 3 = “Some implementation”, 4 = 

“Extensive implementation” and 5 = “Complete implementation” for 

independent variables. On the other hand, a 5-point Likert scale anchored with 

1= “Strongly disagree”, 2 = “Disagree”, 3 = “Neither agree nor disagree”, 4 = 

“Agree” and 5 = “Strongly agree” for the dependent variable. This scale ranges 

from 1 to 5. The questionnaire was conducted through Google Forms. Appendix 

A shows the questionnaire. 
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3.5 Flowchart of Methodology 

Figure 3.2 shows the flowchart of methodology. 

 

 

Figure 3.2: Flowchart of Methodology. 
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3.6 Sampling Design 

3.6.1 Sample Size 

Sampling is the process of choosing a sample from an individual or from a large 

population for a certain type of research purpose. Since it is not always feasible 

to get data from every unit of the population, sampling techniques are frequently 

required. Therefore, choosing a suitable sample size is essential to making 

reliable inferences from research findings. Generally, there are two main 

categories of sampling methods: random sampling and non-random sampling. 

Every item in the population has an equal chance of being included in the sample 

because it is done via random sampling, while case study research design and 

qualitative research are frequently linked with non-random sampling. In this 

study, simple random sampling and G*Power analysis were used to calculate 

the sample size. 

 

3.6.2 Simple Random Sampling 

In this method, every member of the population seems to have an equal chance 

of being chosen. According to the Federation of Malaysian Manufacturers 

(2022), there are a total of 3429 manufacturing companies, which indicate as 

the population in this study. Formulas below are adopted from Cochran (1977) 

and Yamane (1973). 

 

Cochran Formula: 

 

𝑛 =  
𝑝 (1−𝑝)

𝑒2

𝑧2+ 
𝑝 (1−𝑝)

𝑁

 (3.1) 

 

where  

𝑛 = sample size  

𝑁 = population size  

𝑒 = acceptable sampling error  

𝑝 = the population proportions 

𝑧 = significance level 
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By using the Cochran formula with a reliability level of 95 %, a 

significance level of 1.96, an acceptable sampling error of 0.05, a population 

size of 3513, and a population proportion of 0.5, the number of sample size 

obtained is equal to 346. 

 

Taro Yamane Formula: 

 

𝑛 =  
𝑁

1+ 𝑁𝑒2 (3.2) 

 

where  

𝑛 = sample size  

𝑁 = population size 

𝑒 = level of precision 

 

By using the Taro Yamane formula with a population size of 3513 and 

a level of precision of 0.05, the number of sample sizes obtained is equal to 359. 

In sum, the sample size determination in Yamane is suitable for survey research.  

On the other hand, the Cochran formula is depending on the size or number of 

inputs, statistical values, acceptable error, and population size. However, the 

results of the sample size are still high for both. 

 

3.6.3 Power Analysis 

A recent study suggests that power analysis should be used to decide sample 

size. The portion of a model with the greatest number of predictors is taken into 

consideration during power analysis to calculate the minimal sample size. To 

determine the minimal sample size required, power, effect size, and significance 

level information are required. In social science studies, a power value of 80 % 

or more is considered appropriate. The magnitude of the effect that each 

independent variable truly has on the dependent variable is measured by the 

term "effect size." Cohen (1988) recommended that the values of 0.02, 0.15, and 

0.35 be viewed as small, medium, and large effects, respectively. The 

percentage of rejecting the null hypothesis is related to the significance level 

(𝛼). The significance level is typically considered at 0.05 (5 %). It is possible to 
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perform power analysis using a variety of statistical programmes. Although any 

of these programmes can be used to estimate sample size, researchers frequently 

start with G*Power (Memon et al., 2020). 

A type 1 error is also called false-positive, which will occur if the null 

hypothesis that is actually true in the population is rejected. On the other hand, 

a type 2 error is also called false-negative, which will occur if the null hypothesis 

that is actually wrong in the population is accepted. As a matter of fact, the type 

1 error is also known as alpha, 𝛼, whereas the type 2 error is known as beta, 𝛽 

(Banerjee et al., 2009). 

 

3.6.4 G*Power 

In this report, G*Power was used to measure the sample size. When conducting 

a power analysis, an a priori analysis is applied since it offers a method for 

controlling type 1 and type 2 errors in order to prove the hypothesis (Kang, 

2021). For linear multiple regression analysis, the medium effect size (f2) of 

0.15 is used. In fact, the smaller the effect size, the harder it is to determine the 

degree of deviation from the null hypothesis in the quantitative unit of response. 

The significance level (𝛼) used is 0.05, and the power (1 – 𝛽) is 0.8. Figure 3.3 

shows the G*Power analysis with a total sample size of 77. 
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Figure 3.3: G*Power Analysis. 

 

3.7 Method of Data Analysis 

Structural Equation Modelling (SEM) is an approach for illustrating, calculating, 

and analysing a network of relationships between variables. SEM is a thorough 

statistical method for analysing relationships among latent and observable 

variables. To put it differently, SEM is a strong multivariate tool for testing and 

assessing multivariate causal connections. The fact that SEM examines the 

direct and indirect impacts on presumed causal connections sets it apart from 

other modelling techniques (Fan et al., 2016). Additionally, SEM makes a 

significant contribution by examining the direct, indirect, and moderating 

effects of many variables in complicated models (Shaheen et al., 2017). 

In general, there are two popular approaches for structural equation 

modelling (SEM), namely partial least square based SEM (PLS-SEM) and 

covariance based SEM (CB-SEM). CB-SEM is the proper approach if the 

purpose of the study is to test and verify theories. On the contrary, PLS-SEM is 

the proper approach if the purpose of the study is to develop predictions and 

theories. In other words, in particular where there is little prior understanding of 

causal relationships, PLS-SEM is the effective method when the study object 



33 

lacks a strong theoretical base. Essentially, PLS-SEM’s main goal is to increase 

the explained variance in the dependent constructs as well as assess the quality 

of the data based on the properties of the measurement model (Dash and Paul, 

2021).  

Moreover, PLS-SEM uses an iterative series of ordinary least squares 

regressions to estimate partial model associations in order to maximise the 

endogenous latent variables' explained variance, whereas CB-SEM estimates 

model parameters to minimise the difference between the estimated and sample 

covariance matrices. Additionally, Dash and Paul (2021) stated that PLS-SEM 

typically has greater item loadings than CB-SEM. In short, PLM-SEM will be 

utilised in this study to examine the relationship between lean tools and safety 

performance.  

The most popular tool for conducting PLS-SEM analysis is SmartPLS. 

In other words, SmartPLS is a useful tool for computing, developing, and 

validating models. The relationship between variables and indicators may be 

explained using the path model offered by SmartPLS. The purpose of the path 

models is to describe how several hypotheses affect one another. This path 

modelling technique has the advantage of a smaller sample size and the absence 

of distributional assumptions. The formulation of theories and exploratory 

research have both utilised SmartPLS. This implies that SmartPLS can be used 

for scientific work with a wide range of objectives. The ability to foresee and 

interpret non-standard data is what SmartPLS contributes most to (Sander and 

Teh, 2014). In this study, the measurement model includes continuous flow, 

total preventive maintenance, and employee involvement, whereas the structural 

model is safety performance. 

 

3.8 Pre-test 

A pre-test is very important for evaluating the research designs, data collection 

instruments, and experimental manipulations. Its primary objective is to 

discover and address potential issues, including errors or flaws in the design or 

instrument. For example, conducting a pre-test on a questionnaire can assist in 

detecting issues related to the phrasing, style, format, and organisation of the 

questionnaire. Furthermore, a pre-test ensures the clarity and accuracy of 

research questions or hypotheses, prevents harm to respondents, estimates 
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sample sizes, and validates the data collection instrument or manipulation. 

Besides, pre-testing is essential for improving the validity and reliability of the 

study’s results. During the pre-test phase, the questionnaire was distributed to a 

group of experts in the field in order to get their feedback and evaluation on 

various aspects of the questionnaire, including its language, tone, structure, 

design, and overall suitability for the research. After the pre-test phase, the 

questionnaire underwent modifications that were informed by the feedback and 

evaluation provided by a group of experts who had been given the questionnaire. 

Table 3.1 shows the summary of pre-test.
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Table 3.1: Summary of Pre-test. 

Suggestion Changes Modification 

Section A: Demographic Profile   

7. Setting a period of working experience in the sector to every five years is 

advised. 
Yes Accept suggestion.  

Section B: Measurement of Dependent and Independent Variable   

Continuous Flow   

2. Naming conventions are conflicting. Groups are classified into station / stage. No 
Since it was adopted, no changes have 

been made. 

Total Preventive Maintenance   

3. Add calibration date and record replacement date. We record and schedule all 

the equipment maintenance activities daily. 
No 

Since it was adopted, no changes have 

been made. 
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Table 3.2 (Continued) 

4. Less match. Need emendation. Employee would not see the records because 

it is for ISO auditor references. 
No 

Since it was adopted, no changes have 

been made. 

Employee Involvement   

1. Replace with production engineer employees are the key to problem solving 

team. 
No 

Since it was adopted, no changes have 

been made. 

2. Replace with industry engineer employees drive suggestion programs. No 
Since it was adopted, no changes have 

been made. 

Safety Performance   

1. Use reduced instead of improved. Yes Accept suggestion. 

2. Use reduced instead of improved. Yes Accept suggestion. 

5. Use reduced instead of improved. Yes Accept suggestion. 
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3.9 Data Collection 

The English-language questionnaire was prepared in a Google Form and 

distributed to Malaysia’s manufacturing companies. The Federation of 

Malaysian Manufacturers (FMM) website, which has a total of 3429 

manufacturing businesses listed on it, is where the manufacturing companies 

were discovered. In addition, around 250 Japanese companies operating in 

Malaysia were found on the Wesleynet Malaysia website. The companies’ 

details, such as company name, email address, contact, and office address, were 

provided on the FMM and Wesleynet Malaysia websites. Therefore, a Google 

Form link was included in an email that was sent in blind carbon copy (BCC) 

to every company listed on the FMM and Wesleynet Malaysia websites. BCC 

is frequently used to send emails to a large group of recipients without revealing 

their email addresses to each other. 

 

3.10 Data Analysis 

The G*Power analysis showed that a minimum sample size of 77 was required. 

However, the questionnaire survey received a total of 134 responses, above the 

minimum requirement. Based on the collected data, it was revealed that a 

majority of the responses were located in Selangor, which comprises 34.3 % of 

the total responses. Following Selangor, the next highest concentration of 

responses was found in Johor and Penang, comprising 20.9 % and 17.2 % of the 

total, respectively. Out of the 134 responses, only two were collected from 

Kuala Lumpur, making it the location with the least number of responses. 

Furthermore, the statistics also showed that 42.5 % of the respondents belonged 

to large-scale manufacturing companies, while 29.1 % and 28.4 % of the 

respondents were from medium-sized and small enterprises, respectively. 

Next, it was found that a large number of the manufacturing companies 

were from the metal industry, with a percentage of 16.4 %, followed by the food 

industry and chemical industry, which had percentages of 11.2 % and 10.4 %, 

respectively. In addition, in terms of gender, it was observed that the majority 

of the respondents were male, accounting for 66.4 % of the total. Moreover, it 

was shown that respondents aged 50 and older contributed the most responses, 

comprising 38.8 % of the total. This was followed by the age group between 41 
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and 50 years old, which accounted for 35.1 % of the responses. The age group 

with the least number of responses was between 21 and 30 years old.  

In terms of educational level, the data showed that 46.3 % of the 

respondents held a bachelor’s degree, 29.9 % held a master’s degree, 19.4 % 

held a diploma, and 4.5 % held a secondary education. Apart from that, it was 

found that more than half of the respondents, comprising 50.7 % of the total, 

had 20 or more years of experience in the industry. The remaining respondents 

had varying years of working experience in the industry, with 15.7 % having 1 

to 5 years of experience, 13.4 % having 11 to 15 years of experience, 11.2 % 

having 16 to 20 years of experience, and 7.5 % having 6 to 10 years of 

experience. According to the research, these demographic factors could have a 

potential impact on safety performance. Table 3.2 shows the email addresses of 

the responses. The confidentiality of personal information, including email 

addresses, in survey data must be ensured. Disclosure of email addresses can 

compromise privacy and breach data protection laws.
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Table 3.3: Email Addresses of the Responses. 

@enersys.com.my @newedgecorp.com @gmail.com @ctmind.com @cclind.com 

@dynapackasia.com @gmail.com @yahoo.com @gmail.com @gmail.com 

@gmail.com @entegris.com @hirata.com.my @dosb.com.my @klsmartin.com 

@gmail.com @yara.com @wellcall.com.my @chuanluck.com @wmisb.com.my 

@dankaffe.com @gmail.com @yahoo.com @transpak.com @unisyncmy.com 

@ngai-cheong.com @smctech.com.my @escatec.com @jinkosolar.com @gmail.com 

@gmail.com @everbest.my @gmail.com @live.com @yahoo.com 

@riverstone.com.my @venture.com.sg @innoglass.com.my @gmail.com @nippo.com.my 

@essexfurukawa.com @taisin.com.my @fibertexpersonalcare.com @dhl.com @mail.nabel.co.jp 

@hoya.com @triplus.com.my @bunge.com @hzgreenpulp.com @fmca.com.my 

@vsptech.com.my @fnbnutrition.com.my @gmail.com @fci.com @hotayi.com 

@mpm.com.my @kimhin.com.my @vsptech.com.my @nationgate.com.my @newbillion.com 

@trendtechnologies.com.sg @gasmalaysia.com @chinherr.com @gmail.com @gmail.com 

@kosel-group.com.my @ageng.com.my @pacs.com.my @soonsoongroup.com @gmail.com 

@seiko-mfg.sg @sissonspaints.com.my @gmail.com @ohtaprecision.com @ngeam.com.my 

@steris.com @gmail.com @watertec.biz @gmail.com @gmail.com 

@yahoo.com @scrubbermembrane.com @yahoo.cpm @mpisb.com @gbmarinegroup.com 

@mnametal.com.my @vacuumschmelze.com @gmail.com @gmail.com @hotayi.com 

@kookapaper.com @yahoo.com @gmail.com @uisb.com @k-one.com 

@toray-basf-pbt.com.my @tigercasting.com @morimatsu-dialog.com @chaoyuanind.com @qsrbrands.com.my 

@gmail.com @qsrbrands.com.my @m-mmotor.com @kzhgroup.com @tecomet.com 

@spiritaero.com @sekoplas.com.my @gmail.com @gmail.com @zeito.com.my 

@gmail.com @waterotec.com @toyopacksp.com @gmail.com @gmail.com 

@harristonchocolate.com @gcpat.com @chemstationasia.com @msmmgroup.com @hotmail.com 

@gmail.com @vishay.com @ghee-hiang.com @gmail.com @neujkf.asia 



40 

Table 3.4 (Continued) 

@gmail.com @gmail.com @shinyei.com.my @kaeser.com @gmail.com 

@contraves.com.my @gmail.com @excelmould.com.my @ntn.com.my  
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3.11 Pilot Studies 

In a research study, a pilot study is one of the fundamental stages. Pilot research 

is described as “small-scale research to test research methodologies, data 

collection tools, sample collection approaches, and other research 

methodologies in preparation for a broader study.” A practitioner-based pilot 

study was conducted to verify the validity of the data. In addition, it is also one 

of the crucial phases of a research project, which is performed to discover any 

possible issues and errors in the research tools and methodology before they are 

applied in the larger study (Hassan et al., 2006). 30 responses were used to 

conduct pilot studies via SmartPLS 4 software. These 30 responses were 

converted into comma-separated values (CSV) format, and the data file was 

imported into the SmartPLS 4 software. The CSV format is required since 

SmartPLS software can only recognise files in this format. After investigating 

and analysing the results of the pilot studies, the questionnaire was distributed 

for the larger study with minor modifications. The values of Cronbach's alpha 

and composite reliability during the pilot studies were more than 0.9 for 

continuous flow, total preventive maintenance, employee involvement, and 

safety performance. In the pilot studies, it was found that the average variance 

extracted (AVE) values for the measured constructs were greater than 0.5. Apart 

from that, the factor loading of the pilot studies was remarkably high, exceeding 

the threshold of 0.7 and indicating a significant correlation between the 

variables being measured. Figure 3.4 shows the values of Cronbach’s alpha, 

composite reliability (CR), and average variance extracted (AVE). 

 

 

Figure 3.4: The Values of Cronbach’s Alpha, Composite Reliability (CR), and 

Average Variance Extracted (AVE). 

 



42 

CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

In this chapter of report, the result section is divided into 4 main sections: 

measurement model, structural model, importance-performance map analysis, 

and discussion. The measurement model section includes internal consistency, 

convergent validity, and discriminant validity. The structural model section 

includes collinearity issues, path coefficient, coefficient of determination (𝑅2), 

effect size (𝑓2), predictive relevance (𝑄2), effect size (𝑞2), and Goodness-of-Fit 

(GoF).  

 

4.2 Measurement Model 

The functionality of SmartPLS 4 software was utilised to access both the 

measurement model, structural model, and importance-performance map 

analysis in the interim. The measurement model is a critical component of PLS 

path modelling in SmartPLS, as it contributes to establish the validity and 

reliability of the latent constructs being studied. The measurement model 

assessment includes internal consistency, convergent validity, and discriminant 

validity. 

 

4.2.1 Internal Consistency 

The reliability of a scale or instrument is frequently assessed using Cronbach’s 

alpha and composite reliability (CR), two measures of internal consistency 

reliability. Composite reliability yields higher values than Cronbach’s alpha. 

Cronbach's alpha and composite reliability values vary from 0 to 1, with higher 

values suggesting more internal consistency reliability. For preliminary research, 

values between 0.6 and 0.7 could be deemed adequate, whereas for further 

studies, values ranging from 0.7 to 0.9 might be viewed as acceptable (Kamis et 

al., 2020). In general, a value of 0.7 or above is seen to be suitable for research 

purposes. According to the rules of thumb, a Cronbach’s alpha value above 0.9 

denotes excellent internal consistency of the scale’s item (Gliem and Gliem, 

2003). Figure 4.1 shows the findings of internal consistency reliability. The 
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values of Cronbach’s alpha computed through SmartPLS 4 were 0.945 for 

continuous flow (CF), 0.909 for total preventive maintenance (TPM), 0.922 for 

employee involvement (EI), and 0.960 for safety performance (SP). Moreover, 

the composite reliability result values were 0.960 for CF, 0.936 for TPM, 0.945 

for EI, and 0.969 for SP. The values of the exogenous and endogenous 

constructs were substantially over the threshold of 0.70, indicating excellent 

degrees of internal consistency and reliability for all the constructs. These imply 

that the constructs are highly reliable and that the indicators employed to 

evaluate the underlying constructs are consistent. 

 

 

Figure 4.1: Findings of Internal Consistency Reliablity. 

 

4.2.2 Convergent Validity 

Convergent validity measures how well a construct converges to account for the 

variation in its elements. Ordinarily, the convergent validity of a measurement 

is evaluated by analysing the factor loading of the indicator, composite 

reliability, and average variance extracted (AVE). The PLS-SEM analysis was 

performed to evaluate the framework’s outer model. The term “outer loading” 

describes the relationship between a latent variable and its corresponding 

indicator variables. Outer loading is also referred to as factor loading. The factor 

loading values vary from 0 to 1. A high factor loading number is often defined 

as 0.7 and above, while a low factor loading value is defined as less than 0.7. If 

an indicator variable has a high factor loading value, it is a reliable measure of 

the construct it is supposed to represent. On the other hand, if an indicator 

variable has a low factor loading value, it might not accurately reflect the 

underlying construct. In some circumstances, indicator variables with low factor 

loading values might need to be discarded from the model (Ab Hamid et al., 

2017).  

Figure 4.2 shows the outer loadings of the constructs. All constructs’ 

outer loadings were significantly higher than the threshold value of 0.7, proving 
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that the indicators have a strong relationship with the latent construct. The 

indicator EI4 has the lowest outer loading value (0.824), while the indicator SP2 

has the highest outer loading value (0.953). Therefore, based on their outer 

loading values, the indicator EI4 has the lowest reliability with a value of 0.679 

(0.8242), while the indicator SP2 has the highest reliability with a value of 0.908 

(0.9532). The variance extracted from an item is expressed as the square of the 

corresponding outer loading of a standardised indicator, which signifies the 

amount of variation in an item that is explained by the underlying construct. In 

general, a recommended threshold for the variance extracted from an item is 0.5 

or higher (Hair et al., 2017). 

 

 

Figure 4.2: Outer Loadings of the Constructs. 

 

The average variance extracted (AVE) can be described as the grand 

mean value of the squared loadings of the indicators linked to the construct. In 

other words, the total of the squared loadings divided by the quantity of 

indicators. Thus, the AVE is identical to the communal variance of a construct. 

The range of AVE values is 0 to 1. A desirable AVE value is 0.5 or greater, 

which implies that the underlying construct accounts for at least 50 % of the 

variance of its constituent items (Hair et al., 2019). This indicates that the 

constructs being studied were able to account for more than 50 % of the variance 

observed in their constituent items. The following formula may also be used to 

get the value of AVE (Sudbury-Riley et al., 2017). 
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𝐴𝑉𝐸 =  
∑ 𝜆𝑖

2𝑛
𝑖=1

𝑛
 (4.1) 

 

where  

𝜆 = standardised factor loading 

𝑖 = number of items 

 

Figure 4.1 provides the experimental data on AVE. The AVE values of 

CF (0.858), TPM (0.787), EI (0.812), and SP (0.863) surpassed the minimum 

required threshold value of 0.5. Hence, it indicates that the constructs have a 

good level of convergent validity. 

 

4.2.3 Discriminant Validity 

Discriminant validity is a form of validity that evaluates how distinct a construct 

is from other constructs in a research model. Furthermore, it also measures the 

level of discrepancy between the intersecting constructs. There are several ways 

to evaluate the discriminant validity in SmartPLS. For instance, discriminant 

validity can be evaluated by using cross loadings, the Fornell-Larcker criterion, 

and the Heterotrait-monotrait ratio (HTMT). These techniques were developed 

particularly to assess the reflective constructs’ discriminant validity; as a result, 

they are unsuitable for evaluating formative constructs. As a matter of fact, 

discriminant validity is a crucial component of construct validity in SEM, and 

failing to appropriately disclose discriminant validity issues can result in biased 

structural parameter estimations and inaccurate interpretations about the 

connections between constructs.  

In a reflective measurement model, it is essential to examine the cross 

loading of the indicators to ensure that the indicators are accurately allocated to 

their intended construct. In particular, the factor loading of each indicator on its 

intended construct should be larger than its loading on all other constructs, 

provided that the factor loading surpasses the cutoff value of 0.7 (Ab Hamid et 

al., 2017). When an indicator’s loading value on other constructs is greater than 

its loading value on the intended construct, it implies that a possible problem 

with discriminant validity may exist (Kamis et al., 2020). Figure 4.3 shows the 

cross loadings of discriminant validity. It can be seen from the data in Figure 
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4.3 that the intended construct showed the highest cross loading value compared 

to all the other constructs. As a result, discriminant validity is established. 

 

 

Figure 4.3: Cross Loadings of Discriminant Validity. 

 

The Fornell-Larcker criterion is another way of evaluating the 

discriminant validity of a measurement model. This approach involves 

comparing the correlation coefficients between latent constructs with the square 

root of the AVE for each construct. In light of this, the Fornell-Larcker criterion 

recommends that the square root of the AVE of each construct should be greater 

than the correlations with other latent constructs. The diagonal elements 

represent the square root of the AVE of each construct, while the off-diagonal 

elements represent the correlations between the latent variables. The correlation 

matrix’s diagonal elements should be larger than its off-diagonal elements to 

establish discriminant validity (Hair et al., 2017). Figure 4.4 presents the 

Fornell-Larcker criterion of discriminant validity. Based on the data in Figure 

4.4, it is apparent that the correlation between the latent variables was smaller 

than the square root of the AVE for each construct. Moreover, the diagonal 
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elements in the EI, SP, and TPM constructs were compared with all the 

correlations in the respective rows and columns. In short, it indicates that 

discriminant validity has been recognised. 

 

 

Figure 4.4: Fornell-Larcker Criterion of Discriminant Validity. 

 

Nevertheless, simulation research found that the Fornell-Larcker 

criterion and cross loading evaluations are insufficient and have a limited ability 

to identify discriminant validity issues in variance-based SEM. Additionally, the 

research discovered that the sensitivity of these methods is unacceptably low, 

and the evaluation of cross loadings entirely fails to recognise problems with 

discriminant validity. In short, these methods are typically unable to spot the 

absence of discriminant validity, except in the case of heterogeneous loading 

patterns and large sample sizes (Henseler et al., 2015). 

An alternate method for evaluating discriminant validity in SEM called 

the Heterotrait-monotrait ratio (HTMT) was proposed. Henseler et al. (2015) 

carried out a Monte Carlo simulation to evaluate the performance of three 

different methods in assessing discriminant validity in SEM: cross loadings, the 

Fornell-Larcker criterion, and the Heterotrait-monotrait ratio (HTMT). The 

results demonstrated that, in comparison to the cross loadings (0.00 %) and the 

Fornell-Larcker criterion (20.82 %), the HTMT method had superior sensitivity 

and specificity rates (97 % to 99 %). Therefore, this indicates that HTMT is a 

more efficient method for evaluating discriminant validity in SEM. Moreover, 

if the HTMT value is higher than the cutoff, discriminant validity may be 

comprised. The initial study of Henseler et al. (2015) did not provide a specific 

threshold for the HTMT ratio. On the contrary, they have recommended that a 

value less than 0.9 would be indicative of acceptable discriminant validity. The 

threshold of 0.9 was proposed by Gold et al. (2001), and this threshold has been 
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widely adopted by researchers using SmartPLS software to evaluate 

discriminant validity. However, some of the researchers have recommended 

0.85 as a threshold value if the constructs are conceptually more distinct 

(Henseler et al., 2015).  

Figure 4.5 shows the HTMT ratio of discriminant validity. Every 

HTMT measurement fell within the 0.85 criterion, except for the relationship 

between TPM and EI, which has a value of 0.865. Although this value exceeds 

the threshold of 0.85, it is still within the acceptable cutoff of 0.9, which is a 

good indicator of discriminant validity. Therefore, it can be concluded that the 

data supports the establishment of discriminant validity. 

 

 

Figure 4.5: HTMT Ratio of Discriminant Validity. 

 

4.3 Structural Model 

The structural model is a statistical model that aims to describe the relationships 

between variables in a system. The structural model assessment includes 

collinearity issues, path coefficient, coefficient of determination (𝑅2), effect size 

(𝑓2), predictive relevance (𝑄2), effect size (𝑞2), and goodness of fit (GoF). 

 

4.3.1 Collinearity Issues 

In a structural model, the coefficients are estimated through a series of 

regression equations, but collinearity issues might make these estimates biased. 

The coefficients in these equations indicate the strength and direction of the 

relationships. Collinearity can result in biased coefficient estimates, and it tends 

to be challenging to correctly evaluate how the variables relate to one another. 

In each regression of the structural model, the construct scores of the predictor 

constructs are used to determine the variance inflation factor (VIF) values. 

Collinearity can exist at lower VIF values of 3 to 5, however, it is more likely 
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to exist at VIF value over 5, which indicate problems with predictor constructs. 

In other words, the higher the VIF values, the higher the degree of collinearity 

between the predictor variables (Becker et al., 2014). Hair et al. (2017) 

suggested ways to deal with collinearity problems, such as the removal of 

constructs, merging predictors into a single construct, or developing higher-

order constructs. 

Figure 4.6 illustrates the collinearity statistics of the inner model. All 

of the VIF values were shown to be below 3, except for TPM, which has a VIF 

value of 3.257. Despite the fact that the VIF value for TPM was slightly higher 

than the threshold of 3, it can still be considered acceptable since values below 

5 are generally acceptable for most studies. Thus, the structural model does not 

have a critical problem with collinearity among the predictor constructs. 

 

 

Figure 4.6: Collinearity Statistics of the Inner Model. 

 

4.3.2 Path Coefficient 

Since PLS-SEM is a non-parametric method, it makes no assumption about the 

data’s normality. Therefore, when the data is not normally distributed, 

parametric significance tests such as those used in regression analysis cannot be 

applied to test the significance of the outer weights, outer loadings, and path 

coefficients in PLS-SEM. In contrast, non-parametric bootstrap resampling 

methods are frequently applied in PLS-SEM to estimate the standard errors, t-

values, and p-values of the model coefficients.  

First, bootstrapping setup involved using subsamples with a size of 

5000 by following the general guidelines for PLS-SEM bootstrapping. Second, 

bias-correlated and accelerated (BCa) bootstrap was selected as the confidence 

interval method. In comparison to other bootstrap methods, the BCa method was 
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specially constructed to overcome problems with bias and skewness in the 

bootstrap distribution and to provide more accurate and precise confidence 

intervals. Third, the two-tailed test was selected as the test type, and the 

significance level was 0.05. For instance, the bootstrapping procedure may be 

used to obtain t-values for the indicator weights and other model parameters. In 

order to establish if the coefficients are statistically significant, these t-values 

may be contrasted with the critical values of the standard normal distribution. 

The critical values for significance levels of 1 % (𝛼 = 0.01), 5 % (𝛼 = 0.05), and 

10 % (𝛼 = 0.10) probability of error for a two-tailed test are 2.576, 1.96, and 

1.645, respectively. In other words, a t-value above 1.96 for a two-tailed test 

with a significance level of 5 % indicates the statistical significance of the path 

coefficient (Hair et al., 2021). Figure 4.7 shows the bootstrapping setup. 

 

 

Figure 4.7: Bootstrapping Setup. 

 

Path coefficients generally vary between -1 and +1, with readings 

closer to -1 denoting strong negative relationships and readings closer to +1 

denoting strong positive relationships. Due to extremely high levels of 

collinearity, it is conceivable to have a path coefficient outside of this range; 
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however, values greater than +1 or lower than -1 are unacceptable, and 

multicollinearity reduction techniques have to be applied to resolve this issue. 

Other than that, path coefficients in PLS-SEM are based on standardised data 

and depict the changes in an endogenous construct’s values that are correlated 

to one standard deviation unit change in a predictor construct while maintaining 

the remainder of the predictor constructs unchanged.  

Figure 4.8 displays the path coefficient of the structural model, and 

Figure 4.9 shows the graphical output of the framework. The findings of the 

bootstrapping validate the substantial correlations between the independent and 

dependent variables, where all t-values were over 1.96 and all p-values were 

below 0.05. The statistical significance suggests that the relationships are 

unlikely to occur by chance. Figure 4.8 demonstrates that there is an inverse 

correlation between the t-value and the p-values. Specifically, the p-values fall 

as the values of the t-statistics rise. Furthermore, the beta coefficients for the 

relationships between CF and SP, TPM and SP, and EI and SP were 0.274, 0.232, 

and 0.304, respectively, as shown in Figure 4.9. The presence of positive beta 

coefficients indicates that the variables have positive relationships that are 

statistically significant. In addition, the higher the beta coefficient of a construct, 

the greater the impact on the dependent variable. In this instance, employee 

involvement has the greatest impact on safety performance, with a beta 

coefficient of 0.304. Followed by continuous flow and total preventive 

maintenance with beta coefficients of 0.274 and 0.232, respectively. 

 

 

Figure 4.8: Path Coefficient of Structural Model. 
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Figure 4.9: Graphical Output of the Framework. 

 

4.3.3 Coefficient of Determination, 𝑹𝟐 

The coefficient of determination ( 𝑅2 ) represents the amount of variance 

explained in each of the endogenous (dependent) constructs. In essence, it 

provides an evaluation of the model’s explanatory power in relation to 

endogenous constructs (Shmueli and Koppius, 2011). Besides, 𝑅2  is often 

known as in-sample predictive power (McIntosh et al., 2014). The 𝑅2 has a 

range of 0 to 1. A 𝑅2 value of 0 demonstrates that the model does not explain 

any of the variance in the dependent variable, while a 𝑅2  value of 1 

demonstrates that the model explains all of the variance in the dependent 

variable. Consequently, a higher 𝑅2 value implies that the model fits the data 

more accurately and has a greater level of explanatory power.  

As a rule of thumb, 𝑅2 values of 0.75, 0.50, or 0.25 for endogenous 

latent variables in the structural model can be described as substantial, moderate, 

or weak, respectively (Hair et al., 2011). On the contrary, Falk and Miller (1992) 

suggested that a 𝑅2 value of 0.10 or higher should be considered to satisfactorily 

explain the variance in a given endogenous construct. However, an acceptable 

𝑅2  value depends on several factors, including the model’s complexity, the 

quantity of independent variables, the size and quality of the dataset, and the 

research field or discipline. 
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𝑅2 value is a frequently used metric for assessing how well a model 

fits. Nonetheless, it has certain limitations when comparing models with varying 

model specifications, such as those with different exogenous (independent) 

constructs that predict the same endogenous (dependent) constructs. Adding 

constructs that are not statistically significant but have little correlation with the 

endogenous latent variable to a structural model can increase the 𝑅2  value. 

Despite that, this can be deceptive, especially when the sample size is similar to 

the number of exogenous latent variables predicting the endogenous latent 

variable being studied. Relying solely on the 𝑅2 value to evaluate a model’s 

predictive power can create a tendency to favour models that have numerous 

exogenous constructs, even those with only weak relationships to the 

endogenous constructs. As a result, it is possible to have bias in the selection of 

models. In general, parsimonious models that effectively describe the data while 

utilising fewer exogenous elements are preferred by researchers (Hair et al., 

2017). 

The adjusted 𝑅2 value may be employed as a parameter to prevent bias 

towards complicated models, which is equivalent to multiple regression. 

Particularly, this parameter is adjusted in accordance with the sample size to 

exogenous construct ratio. The formula below can be used to determine the 

adjusted 𝑅2 value (Hair et al., 2017). 

 

 Adjusted 𝑅2 =  1 − (1 −  𝑅2)
(𝑛−1)

(𝑛−𝑘−1)
 (4.2) 

 

where  

𝑛 = sample size  

𝑘 = number of exogenous latent variables 

 

The range of the adjusted 𝑅2  value is 0 to 1, with higher values 

signifying that the model has a higher degree of fit with the data. As the number 

of predictors (exogenous constructs) increases, the adjusted 𝑅2  value will 

decrease unless the additional predictors considerably enhance the model’s fit. 

The reason is that the adjusted 𝑅2  value takes into account the number of 

predictors in the model and reduces the value of models containing irrelevant or 
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redundant predictors. By considering the quantity of exogenous constructs and 

the sample size used in the model, the adjusted 𝑅2 value will adjust the 𝑅2 value 

and generate a more conservative estimate of the prediction ability of the model. 

This is accomplished by lowering the 𝑅2 value as the number of exogenous 

constructs rises. Figure 4.10 illustrates the 𝑅2 value of the structural model. The 

𝑅2 value obtained was 0.544, which denotes that the independent variables in 

the model can account for 54.4 % of the variation in the dependent variable. 

According to the rules of thumb, the 𝑅2 value of SP can be considered moderate. 

On the other hand, the adjusted 𝑅2 value obtained was 0.533, which accounts 

for the quantity of predictors in the model and gives a more precise measurement 

of the model’s goodness-of-fit. 

 

 

Figure 4.10: 𝑅2 Value of the Structural Model. 

 

4.3.4 Effect Size, 𝒇𝟐 

The effect size (𝑓2) is a metric used to evaluate how an exogenous variable 

affects an endogenous variable in regression analysis. It precisely assesses the 

variation in the 𝑅2 value that occurs when a particular exogenous variable is 

omitted from the model. The use of effect size (𝑓2) is becoming more prevalent 

among journal editors and reviewers since it offers a more in-depth 

understanding of how exogenous variables affect endogenous variables in a 

regression model. The formula below may be used to compute the effect size 

(𝑓2) value (Hair et al., 2017). 
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 𝑓2 =  
𝑅𝑛𝑒𝑤

2 − 𝑅𝑜𝑙𝑑
2

1− 𝑅𝑛𝑒𝑤
2  (4.3) 

 

where  

𝑅𝑛𝑒𝑤
2  = 𝑅2 value obtained after removing a particular exogenous variable from 

the model 

𝑅𝑜𝑙𝑑
2  = 𝑅2 value obtained from the original model that includes the exogenous 

variable 

 

Both the path coefficient and effect size (𝑓2) provide information about 

the consequences of independent constructs in defining the dependent construct 

in a structural model. However, they offer different perspectives. The path 

coefficient shows the degree to which independent and dependent constructs are 

correlated. On the other hand, the effect size (𝑓2) measures the proportion of 

the dependent construct’s discrepancy that can be attributed to a specific 

independent construct. 

If the path coefficient and the effect size (𝑓2) are in the same rank order 

in explaining a related construct, then the effect size (𝑓2) may not provide any 

additional information beyond that already conveyed by the path coefficient. 

However, when the rank order between the path coefficient and effect size (𝑓2) 

is different, the effect size (𝑓2) can help identify which predictor construct is 

relatively more important in explaining the related construct (Hair et al., 2019). 

As a general guideline for interpreting effect size (𝑓2), values greater than 0.02, 

0.15, and 0.35 are indicative of small, medium, and large effects, respectively 

(Cohen, 1988). Figure 4.11 shows the effect size (𝑓2) of the structural model. 

The effect size (𝑓2) of the CF was 0.067, TPM was 0.036, and EI was 0.069. 

These indicate that CF and EI have a considerably greater effect on the 

endogenous construct compared to TPM. In spite of that, all the exogenous 

constructs have relatively small effects on the endogenous construct. Despite 

the effect size being relatively small, all exogenous variables exhibit a 

statistically significant effect on the endogenous variable. 
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Figure 4.11: Effect Size (𝑓2) of the Structural Model. 

 

4.3.5 Predictive Model Assessment 

In addition to 𝑅2 value, 𝑄2 value is also used to assess the PLS path model’s 

predictive accuracy (Geisser, 1974; Stone, 1974). The 𝑄2  metric is widely 

applied as a measure of the predictive relevance of the model or out-of-sample 

predictive power. As a matter of fact, the 𝑄2 metric incorporates aspects of both 

in-sample explanatory power and out-of-sample predictive power (Shmueli et 

al., 2016). The term “in-sample explanatory power” describes how well a model 

can explain the data used for parameter estimation, while “out-of-sample 

predictive power” describes the capability of the model to accurately predict 

new and unseen data. According to Hair et al. (2017), a 𝑄2  value above 0 

denotes that the model is predictively relevant for a particular dependent 

construct. 𝑄2  values greater than 0, 0.25, and 0.5 are generally regarded as 

indicating small, medium, and large predictive relevance of the PLS-SEM 

model, respectively. In other words, the model’s out-of-sample predictive power 

or predictive relevance increases as the 𝑄2 value increases.  

The blindfolding method is used in PLS-SEM to determine the 𝑄2 

metric for a given omission distance (d). The sample reuse method known as 

“blindfolding” involves omitting all dth data points from the indicators of the 

endogenous construct and estimating the model parameters from the remainder 

of the data points. The missing values are addressed appropriately by the PLS-

SEM method and are regarded as missing data points. Chin (1988) 

recommended using an omission distance between 5 and 10. Furthermore, it is 

recommended that the number of observations used in the model estimation 

divided by the omission distance (d) is not an integer. This is done to avoid the 

possibility of biased results and assure the model’s validity. The default 
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omission distance setting of 7 was utilised while setting up blindfolding in 

SmartPLS. Figure 4.12 shows the blindfolding setup. 

 

 

Figure 4.12: Blindfolding Setup. 

 

Cross-validated communality (CVC) and cross-validated redundancy 

(CVR) are two different forms of 𝑄2 value that are produced by the blindfolding 

process in PLS-SEM. Yet, the research model opted to use cross-validated 

redundancy (CVR), which is in line with the recommendation offered by Hair 

et al. (2017). The rationale is that the CVR value comprises the essential 

component of the path model, which is the structural model, in forecasting the 

omitted data points. Figure 4.13 reveals the 𝑄2 value of the structural model. 

The 𝑄2 value for the endogenous construct was over 0, therefore, predictive 

relevance is established. The 𝑄2 value of SP obtained was 0.459, indicating that 

the PLS-SEM model has medium predictive relevance. 
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Figure 4.13: 𝑄2 Value of the Structural Model. 

 

The effect size ( 𝑞2 ) enables evaluating the contribution of an 

exogenous construct to the 𝑄2 value of an endogenous construct. In other words, 

the degree of connection between the exogenous and endogenous constructs is 

assessed using the predictive relevance’s effect size. According to Cohen (1998), 

effect size (𝑞2) values of 0.02, 0.15, and 0.35 indicate small, medium, and large 

predictive relevance of an exogenous construct on an endogenous construct, 

respectively. The formula below may be used to compute the effect size (𝑞2) 

value (Hair et al., 2017).  

 

 𝑞2 =  
𝑄𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑

2 − 𝑄𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑
2

1− 𝑄𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑
2  (4.4) 

 

where  

𝑄𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑
2  = 𝑄2  value of at endogenous variable where all the exogenous 

variables are included in the model 

𝑄𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑
2  = 𝑄2 value of at endogenous variable where the selected exogenous 

variable is excluded from the model 

 

Table 4.1 shows the effect size of predictive relevance ( 𝑞2 ). The 

calculated effect size (𝑞2) for CF, TPM, and EI were 0.044, 0.026, and 0.052, 

respectively. According to Cohen (1998), the endogenous construct is only 

marginally predicted by each of the exogenous constructs. Nevertheless, all 

exogenous variables show a statistically significant effect on the endogenous 

variable. 
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Table 4.1: Effect Size of Predictive Relevance (𝑞2). 

  
Omitted Exogenous 

Construct 
𝑸𝒊𝒏𝒄𝒍𝒖𝒅𝒆𝒅

𝟐  𝑸𝒆𝒙𝒄𝒍𝒖𝒅𝒆𝒅
𝟐  𝒒𝟐 

Predictive 

Relevance 

1 Continuous Flow 0.459 0.435 0.044 

Small 

predictive 

effect 

2 
Total Preventive 

Maintenance 
0.459 0.445 0.026 

Small 

predictive 

effect 

3 
Employee 

Involvement 
0.459 0.431 0.052 

Small 

predictive 

effect 

 

Other than that, recent studies have suggested PLSpredict as a predictive 

model assessment in PLS-SEM. PLSpredict was created by Shmueli et al. (2016) 

to assess the predictive power of a PLS-SEM using a holdout-sample-based 

procedure. In particular, the holdout-sample-based procedure divides the dataset 

into a training sample and a holdout sample. The training sample is exploited to 

estimate the model, whereas the holdout sample is exploited to evaluate the 

predictive performance. The default fold number and repetition number of 10 

were applied in the PLSpredict setup, which is recommended by Shmueli et al. 

(2019). Figure 4.14 shows the PLSpredict setup. 
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Figure 4.14: PLSpredict Setup. 

 

Two prediction statistics were used to measure the predictive power of 

the model, such as root mean squared error (RMSE) and mean absolute error 

(MAE). The RMSE is the square root of the average of the squared 

discrepancies between the anticipated values and the actual observations. RMSE 

is very beneficial when big mistakes are not desired, for the reason that it gives 

greater weight to larger errors by squaring them before averaging. In contrast to 

the RMSE, the MAE is a statistic used to calculate the average amount of 

mistakes in a series of predictions, regardless of their direction. Additionally, 

the MAE assigns equal weight to all the individual variations between the 

predicted and actual values. Nevertheless, the RMSE is commonly 

recommended as the primary choice for evaluating the predictive power of the 

model, while the MAE may be appropriate if the distribution of the prediction 

error is significantly non-symmetric. In this case, a lengthy left or right tail in 

the prediction error distribution may be an indicator of a highly non-symmetric 

distribution.  
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Figure 4.15 shows the MV prediction summary. Since all indicators of 

𝑄𝑝𝑟𝑒𝑑𝑖𝑐𝑡
2  were larger than 0 and the prediction errors were highly symmetrically 

distributed, the values of the RMSE of the PLS-SEM analysis and naïve LM 

benchmark were compared. Each indicator of the dependent construct is linearly 

regressed against each indicator of the exogenous constructs in the PLS path 

model to obtain the LM benchmark values (Danks & Ray, 2018). According to 

the general guidelines, all metrics in the PLS-SEM analysis have lower RMSE 

values than naïve LM benchmark, indicating that the model has a high degree 

of predictive power (Shmueli et al., 2019).  

 

 

Figure 4.15: MV Prediction Summary. 

 

4.3.6 Goodness-of-Fit (GoF) 

A structural equation model’s overall performance is evaluated using the 

Goodness-of-Fit (GoF) metric. For endogenous constructs, it is derived as the 

geometric mean of the average variance extracted (AVE) and the average 

coefficient of determination (𝑅2) (Tenenhaus et al., 2005). Moreover, the GoF 

index can serve as a benchmark for globally evaluating complex PLS-based 

models. The GoF index has a value between 0 and 1, with a value nearer to 1 

demonstrating greater data and model fit (Akter et al., 2011). The GoF index 

may be divided into three categories according to its small, medium, and large 

validating powers, with values of 0.1, 0.25, and 0.36, respectively. The formula 

below can be applied to determine the Goodness-of-Fit (GoF) (Wetzels et al., 

2009). 

 

 

 



62 

 𝐺𝑜𝐹 =  √𝐴𝑉𝐸  ×  𝑅2  (4.5) 

 

where  

GoF = Goodness-of-Fit 

AVE = Average variance extracted 

𝑅2 = Coefficient of determination 

 

Table 4.2 shows the calculation of Goodness-of-Fit (GoF). The GoF 

metric of this research model was calculated to be 0.672. When compared to the 

baseline values, the calculated values clearly demonstrate that the empirical data 

has strong predictability and fits the model satisfactorily. 

 

Table 4.2: Calculation of Goodness-of-Fit (GoF). 

Constructs AVE 𝑹𝟐 

Continuous Flow 0.858 

0.544 
Total Preventive Maintenance 0.787 

Employee Involvement 0.812 

Safety Performance 0.863 

Average 0.830 0.544 

Square Root 0.911 0.738 

GoF 0.672 

 

4.4 Importance-performance Map Analysis (IPMA) 

The importance-performance map analysis (IPMA) is a valuable PLS-SEM 

approach that provides an extension to the standard reporting of path coefficient 

estimates. It adds a new dimension to the analysis by taking into account the 

average values of the latent variable scores. This analysis is often referred to as 

a priority map analysis, impact-performance analysis, or importance-

performance matrix analysis (Ringle and Sarstedt, 2016). More specifically, the 

average latent variable scores of the predecessor constructs (exogenous 

constructs) are compared to the total effects of the predecessor constructs on a 

target construct (endogenous construct). This makes it possible to evaluate the 

importance and performance of each predecessor construct in influencing the 
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target construct. The total effects of IPMA describe the significance of 

predecessor constructs in forming the target construct, while the average latent 

variable scores of the predecessor constructs show their performance. The main 

objective of IPMA is to determine the predecessor constructs that are 

significantly important in forming the target construct but, at the same time, 

have low performance (Hair et al., 2017). 

Other than that, there are two conditions that must be satisfied for the 

application of the IPMA. One of the conditions for applying the IPMA is that 

all indicator codings must have the same direction, with a low value signifying 

an unfavourable result and a high value signifying a favourable result. On the 

contrary, the interpretation of the IPMA results may be inaccurate if the 

indicator coding is inconsistent. In these circumstances, it is necessary to modify 

the indicator coding so that all indicators are in the same direction and the higher 

values always denote better performance. Secondly, it is necessary to make sure 

that the outer weights in the measurement model, whether formative or 

reflective, are not negative. The performance values will be scaled between 0 

and 100 when the outer weights are positive. In contrast, if the outer weights are 

negative, the performance values will not fall within this particular range but 

may vary, for instance, between -10 and 90. Indicator collinearity may result in 

negative weights. In this case, it may be appropriate to consider eliminating the 

problematic indicator. During the setup of IPMA, the “target construct” selected 

was safety performance, and “all predecessors of the selected target construct” 

were selected as the IPMA result. 

Figure 4.16 shows the IMPA setup, and Figure 4.17 shows the IPMA 

model. According to Figure 4.17, the performance values for CF, TPM, EI, and 

SP were 78.292, 71.224, 75.532, and 79.911, respectively. Therefore, in 

comparison to total preventive maintenance, predecessor constructs such as 

continuous flow and employee involvement exhibit comparatively good 

performance. Besides, Table 4.3 displays the importance and performance of 

predecessor constructs. The mean values of importance and performance were 

calculated to be 0.27 and 75.016, respectively. 
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Figure 4.16: IPMA Setup. 

 

 

Figure 4.17: IPMA Model. 

 



65 

Table 4.3: Importance and Performance of Predecessor Constructs. 

Predecessor Constructs Importance Performance 

Continuous Flow 0.274 78.292 

Total Preventive Maintenance 0.232 71.224 

Employee Involvement 0.304 75.532 

Average 0.27 75.016 

 

Figure 4.18 demonstrates the importance-performance map guideline. 

Importance and performance data are displayed graphically on two axes, with 

"importance" displayed along the Y-axis and "performance" displayed along the 

X-axis. The data are plotted in four quadrants (Quadrant I, Quadrant II, 

Quadrant III, and Quadrant IV) to identify areas for improvement. According to 

Martilla and James (1977), the four quadrants are illustrated as Q1 (keep up with 

the good work), Q2 (possible overkill), Q3 (low priority), and Q4 (concentrate 

here). The four quadrants of the IPMA are defined by means of importance and 

performance (Deng, 2007). The calculated mean values of importance and 

performance were 0.27 and 75.016, respectively, which delimited the 

importance-performance map into four quadrants. 

 

 

Figure 4.18: Importance-performance Map Guideline (Deng, 2007). 

 

Figure 4.19 shows the importance-performance map. Based on Figure 

4.19, CF and EI are recognised as key elements in explaining the target construct 
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of SP. The constructs appearing in the lower-right quadrant of the importance-

performance map show that they have high importance in influencing the target 

construct but exhibit low performance. This suggests that there is substantial 

potential to enhance the performance of the constructs in this region. In a ceteris 

paribus situation, an increase in EI performance of one unit leads to an increase 

in SP performance of 0.304 units. In particular, the EI’s performance will 

increase from 75.532 to 76.532, and the SP’s performance will increase by 0.304 

points, from 79.911 to 80.215. Meanwhile, the performance of EI is 

comparatively low, indicating a significant potential for enhancing its 

performance. As a result, the most relevant construct for managerial actions in 

the PLS path model is the EI construct, due to its comparatively high importance 

and low performance in explaining the target construct. As shown in Figure 4.19, 

the CF, TPM, and EI were located in Q1, Q2, and Q4, respectively. 

Moreover, the IPMA suggests that Malaysia’s manufacturing firms 

should maintain their performance on continuous flow (CF), as CF has high 

importance and high performance. On the other hand, TPM has relatively low 

importance but high performance. In this case, the firms may choose to maintain 

the performance on TPM or focus on other constructs with high importance and 

performance. Notwithstanding, the possible effects of enhancing performance 

on TPM must also be taken into account. Additionally, in the importance-

performance map, the construct with lower importance compared to other 

constructs is considered to have a lower priority for performance improvements. 
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Figure 4.19: Importance-performance Map. 

 

4.5 Discussion 

A structural equation modelling (SEM) analysis was conducted with SmartPLS 

software to investigate the hypothetical correlation between the study’s 

independent and dependent variables. In the meantime, the measurement model 

and structural model were accessed using the features of the SmartPLS software. 

Essentially, a measurement model is used to measure the reliability and validity 

of latent constructs in research. The evaluation of the measurement model 

involves internal consistency, convergent validity, and discriminant validity. All 

the internal consistency values were above the threshold, which implies that the 

constructs have an outstanding level of reliability and the indicators used to 

measure them are consistent. Besides, the substantial correlation between the 

indicators and the latent construct is demonstrated by the high value of outer 

loadings. Apart from that, the development of discriminant validity is supported 

by the results of cross loadings, the Fornell-Larcker criterion, and the HTMT 

ratio.  

Additionally, a structural model is also employed to illustrate how 

variables in a system relate to one another. The structural model assessment 

involves collinearity statistics, path coefficient, coefficient of determination 

(𝑅2), effect size (𝑓2), predictive model assessment, and goodness-of-fit. The 

result showed that the variables have positive relationships that are statistically 
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significant. Other than that, the predictive model assessment showed that the 

model has supportive predictive power.  

The hypotheses can be explained through the findings of bootstrapping. 

In this study, the two-tailed test was selected as the test type, and the 

significance level was 0.05. Therefore, the critical value for a two-tailed test 

with a significance level of 5 % probability of error is 1.96. In other words, the 

path coefficient is considered statistically significant when the t-value exceeds 

1.96. The hypothesis (H1) has been proved, as the t-value was 2.113 and the p-

value was 0.035. This indicates that the continuous flow has a positive impact 

on safety performance. A good design of facility layout can improve safety 

performance in manufacturing industries. For instance, a well-planned factory 

layout can help to avoid, prevent, or reduce certain types of risks, particularly 

to health and safety (Amri et al., 2016).  

The second hypothesis (H2) states that total preventive maintenance 

and safety performance are significantly correlated. The positive relationship 

between variables is supported by a t-value of 2.251 and a p-value of 0.024. The 

effective implementation of the pillars of TPM resulted in a rise in production 

output, as shown by the overall equipment effectiveness (OEE), which rose 

from 75.17 % to 85.25 % with no customer complaints and zero accidents 

(Kocher et al., 2012).  

Next, the third hypothesis (H3) demonstrates that employee 

involvement significantly affects safety performance. The hypothesis (H3) is 

supported by the t-value of 2.524 and the p-value of 0.012. Compared to 

continuous flow and total preventive maintenance, employee involvement has 

the greatest t-value and p-value; thus, it can be stated that employee involvement 

has the greatest impact on safety performance in manufacturing firms. Lawler, 

Mohrman and Ledford (1995) reported that 60 % of the organisations that 

exercised employee involvement procedures saw an improvement in workers’ 

safety and health.  

Other than that, the beta coefficient was evaluated to test the 

relationship between variables. The relationships between CF and SP, TPM and 

SP, and EI and SP were shown to have beta coefficients of 0.274, 0.232, and 

0.304, respectively. The independent and dependent variables are positively 

correlated, as indicated by the positive beta coefficients. Apart from that, the 
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higher the beta coefficient of a construct, the greater the impact on the dependent 

variable. Hence, in this instance, the EI has the greatest impact on the SP, 

followed by the CF and TPM. 

Furthermore, the importance-performance map analysis was conducted 

to evaluate the importance and performance of each predecessor construct in 

influencing the target construct. The importance-performance map was 

delimited into four quadrants by the calculated mean values of importance and 

performance, which were 0.27 and 75.016, respectively. The EI was shown to 

be located in Q4, which indicates that the EI is the most pertinent construct for 

managerial actions. In addition, the IPMA suggests Malaysia’s manufacturing 

companies keep up their performance on CF, as CF has high performance and 

importance. On the contrary, TPM was found to appear in Q2, in which the 

importance of TPM was relatively low but the performance was high. In this 

manner, the industries may choose to maintain their existing performance on 

TPM or refocus on other constructs with high importance and performance. 

However, the possible advantages of enhancing TPM performance must be 

considered as well. For example, improved uptime of machines, improved 

quality of the products, and improved equipment reliability. In short, all of the 

hypotheses are accepted, and the safety performance is positively impacted by 

each independent variable. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

The findings of the present study clearly show that the implementation of lean 

tools has improved the safety performance of Malaysia’s manufacturing firms. 

The occupational health and safety considerations are key aspects of 

manufacturing firms, along with profitability. The objectives of this study have 

been achieved, and all of the hypotheses are accepted. The values of Cronbach’s 

alpha and composite reliability of the exogenous and endogenous constructs 

were substantially over the threshold of 0.70, indicating an excellent degree of 

internal consistency reliability for all the constructs. This implies that the 

constructs are highly reliable, and that the indicators employed to assess the 

underlying constructs are consistent. In addition, the constructs’ AVE values 

exceeded the minimum required threshold of 0.5, showing that the construct has 

a good level of convergent validity. The bootstrapping findings seem to 

corroborate the substantial correlations among both dependent and independent 

variables, in which all t-values were over 1.96 and all p-values were below 0.5. 

It was concluded that employee involvement has the greatest impact on safety 

performance, with the highest beta coefficient of 0.304. It was followed by 

continuous flow and total preventive maintenance. The beta coefficients for the 

relationships between CF and SP, TPM and SP, and EI and SP were 0.274, 0.232, 

and 0.304, respectively. Besides, the t-value of 2.113 and the p-value of 0.035 

indicate that the variables have positive relationships that are statistically 

significant. Furthermore, the IPMA indicates that EI is the most relevant 

construct for managerial action. Lastly, the implementation of lean tools is 

believed to significantly improve the safety performance of Malaysia’s 

manufacturing firms. 
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5.2 Recommendations for future work 

Considering the limitations of this study, there are several recommendations for 

future studies aimed at obtaining more reliable and effective research outcomes. 

Many organisations do not take the issue of a safe working environment and 

safety and health standards seriously. This will lead to an increase in 

occupational accidents and injuries at work. Future research should focus on 

enhancing safety and health procedures in safe working environments for 

employees in order to reduce accidents and injuries at the workplace. Another 

recommendation for future work is that the researcher may examine the 

connection between the implementation of lean tools and safety performance 

outside of manufacturing. Instead, the relationship between variables in this 

study only focuses on manufacturing firms.  
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APPENDICES 

 

Appendix A: Questionnaire 

 

Section A: Demographic Profile 

INSTRUCTION: Please fill up the information below accordingly by placing a 

tick (✓) in the box of your answer. 

 

1. Company Location: 

 Johor 

 Kedah  

 Kelantan  

 Kuala Lumpur  

 Labuan  

 Melaka  

 Negeri Sembilan  

 Pahang  

 Perak  

 Perlis  

 Pulau Pinang  

 Putrajaya  

 Sabah  

 Sarawak  

 Selangor  

 Terengganu  

 

2. Company Businesses Size 

 Small Enterprise (Full time employee below 75)  

 Medium Enterprise (Full time employee between 75-200)  

 Large Scale Company (Full time employee more than 200)  

 

3. Type of Businesses 

 Chemical Industry 

 Metal Industry 

 Electronic Industry 

 Semiconductor Industry 

 Furniture Industry 

 Paper Industry 

 Food Industry 

 Leather Industry 

 Oil and Gas Industry 

 Rubber Industry 

 Plastic Industry 

 Other: __________________________ 

 

4. Gender 

 Male  

 Female 
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5. Age 

  < 20 

 21 – 30 

 31 – 40 

 41 – 50 

 > 50 

 

6. Educational Level 

 Primary education 

 Secondary education 

 Diploma 

 Bachelor’s degree 

 Master’s degree 

 PhD 

 

7. Working Experience in the Industry 

 < 1 year 

 1 – 5 years 

 6 – 10 years 

 11 – 15 years 

 16 – 20 years 

 > 20 years 
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Section B: Measurement of Dependent and Independent Variable 

This section and onwards are used to measure the dependent and independent 

variable in this study. 

INSTRUCTION: Please read the statements below attentively and pinpoint your 

agreement level by indicating the scale that best represent your judgement.  

Evaluation of the impact of Lean tools on safety performance in Malaysia’s 

manufacturing firms 

 

Continuous Flow 

Continuous flow requires manufacturers to operate continuously and produce 

goods at a constant rate, in contrast to traditional batch production. The 

implementation of continuous flow strategy can significantly reduce the work-

in-progress, shorten cycle times, improve the quality of the product and provide 

a safe working environment. 

1 = No implementation; 2 = Little implementation; 3 = Some 

implementation; 4 = Extensive implementation; 5 = Complete 

implementation 

 Continuous Flow 1 2 3 4 5 

1. Products are classified into groups with similar 

processing requirements 

     

2. Products are classified into groups with similar routing 

requirements 

     

3. Equipment is grouped to produce a continuous flow of 

families of products 

     

4. Families of products determine our factory layout      

Adopted from Shah, R. and Ward, P., 2007. Defining and developing measures 

of lean production. Journal of Operations Management, 25(4), pp.785-805. 

 

Total Preventive Maintenance 

TPM is a method to maximise equipment efficiency, to enhance quality, to 

promote safety, to minimise costs, and more importantly, to boost team morale. 

Implementing TPM aims at preventing all accidents, injuries, and fires. The 

practices of TPM helps to reduce the waste caused by unorganised working 
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environment and unexpected downtime and provide a safer working 

environment. 

1 = No implementation; 2 = Little implementation; 3 = Some 

implementation; 4 = Extensive implementation; 5 = Complete 

implementation 

 Total Preventive Maintenance 1 2 3 4 5 

1. We dedicate a portion of everyday to planned 

equipment maintenance related activities 

     

2. We maintain all our equipment regularly      

3. We maintain excellent records of all equipment 

maintenance related activities 

     

4. We post equipment maintenance records on shop 

floor for active sharing with employees 

     

Adopted from Shah, R. and Ward, P., 2007. Defining and developing measures 

of lean production. Journal of Operations Management, 25(4), pp.785-805. 

 

Employee Involvement 

An effective employee involvement practices could lead to higher job 

satisfaction, quality improvement, productivity improvement, and reduction of 

the possibility of work-related accidents. 

1 = No implementation; 2 = Little implementation; 3 = Some 

implementation; 4 = Extensive implementation; 5 = Complete 

implementation 

 Employee Involvement 1 2 3 4 5 

1. Shop-floor employees are key to problem solving teams      

2. Shop-floor employees drive suggestion programs      

3. Shop-floor employees lead product/process improvement 

efforts 

     

4. Shop-floor employees undergo cross functional training      

Adopted from Shah, R. and Ward, P., 2007. Defining and developing measures 

of lean production. Journal of Operations Management, 25(4), pp.785-805. 
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Safety Performance 

Safety performance indicators are used to evaluate operational safety 

performance through monitoring. Lagging indicators analyze historical accident 

records to evaluate an organization's accidents. Leading indicators analyze 

foregoing and forthcoming event to prevent and minimize the accident in the 

manufacturing firm. Accidents in workplaces can be prevented and reduced by 

studying safety performance. 

1 = Strongly disagree; 2 = Disagree; 3 = Neither agree nor disagree; 4 = 

Agree; 5 = Strongly agree 

 Safety Performance 1 2 3 4 5 

1. Accident frequency rate reduced      

2. Accident severity rate reduced      

3. Accidents involving death and/or loss of limb reduced      

4. Tangible losses reduced      

5. Near-miss rate reduced      

Adapted from Bayram, M., Ünğan, M. and Ardıç, K., 2016. The relationships 

between OHS prevention costs, safety performance, employee satisfaction and 

accident costs. International Journal of Occupational Safety and Ergonomics, 

23(2), pp.285-296. 

 

 

 

 



88 

 

Appendix B: Google Form Response 
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