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ABSTRACT 
 
 

A SCENE INVARIANT CONVOLUTIONAL NEURAL NETWORK 
FOR VISUAL CROWD COUNTING USING FAST-LANE AND  

SAMPLE SELECTIVE METHODS 
 
 

 Teoh Shen Khang  
 
 
 

 
 

Convolutional neural network (CNN) based crowd counting aims to estimate 

the number of pedestrians from the image. Existing research usually follow the 

training-testing protocol within a single dataset and the accuracy drops when 

conducting cross-dataset evaluation. Density map prediction methodology is 

widely used but it has drawbacks in ground truth generation and the use of Eu-

clidean distance results in low quality density map. Additionally, CNN models 

face the challenges of vanishing gradients and zero weights, leading to low ac-

curacy in predictions. This study uses global regression methodology and whole 

image-based training pattern to directly estimates the final count from image. 

The proposed model is designed with single column architecture using single 

filter size and max pooling size. Fast lane connection and sample selective al-

gorithms have been designed specifically to tackle the issue of vanishing gradi-

ent and enhance the quality of the model. The performance of the proposed 

model, which is scene-invariant, was assessed using the ShanghaiTech dataset, 

the UCSD dataset, and the Mall dataset. It achieved an average MAE of 2.75 

and a MSE of 3.65. As a result of the proposed method, the model performs 

well overall and exhibits improved generalisability to unseen scenes. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 

Visual surveillance systems are becoming common and their deploy-

ment is becoming more widespread as societies become more complex and the 

population continues to grow. The Population Division of Department of Eco-

nomic and Social Affairs (DESA) of the United Nations predicts that the world 

population will reach 8.5 billion in 2030 and 9.7 billion in 2050. Crowd can 

often be seen at airport, bus station, tourist attraction and public display. These 

are illustrated in Figure 1.1. The study of crowd analysis has received great at-

tention from researchers recently. The issue of public security practice has 

arisen with the exponential development of the world population, thereby re-

sulting in more frequent crowd gatherings in the recent years. In such scenarios, 

it is essential to analyse crowd behaviour for better management, safety and 

security. The essential part of crowd control is crowd counting and it has piqued 

the interest of many researchers. 
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(a) (b) 

  
(c) (d) 

 
Figure 1.1 :  Illustration of various crowd scenes. (a) Airport (b) Bus terminal 

(c) Tourist spot (d) Public exhibition. Occlusions, static and dy-
namic human objects and different perspective can be observed 
from the image. 

 

Crowd counting and density estimation aims to count and estimate the 

number of pedestrian or the density of crowds in a monitored area. Like any 

other computer vision problem, crowd counting presents many challenges, such 

as occlusions, static and dynamic object, uneven distribution of people and un-

even lighting, which complicates matters considerably (Sindagi and Patel, 2018; 

Khan, Menouar and Hamila, 2023). Some of the challenges are illustrated in 

Figure 1.1. With the implementation of Artificial Intelligence into the visual 

surveillance, automated crowd counting received much attention in manage-

ment of crowds for social safety.  

 

Early research on crowd counting focused primarily on detection-based 

approaches. This method aims to locate the exact position of each human object 

in the scene. Head detection and face detection is widely used trained detector 
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to locate human object. However, these approaches did not work well in a com-

plex scene such as perspective changes, different lighting and strong occlusion. 

Subsequently, researchers proposed regression-based approaches to either re-

gress the number of human objects straight from the image or to create a density 

map to predict the crowd size. A crowd density map illustrates the spatial ar-

rangement of the individual from the image that generated with Gaussian kernel. 

It is often used in density estimation, where an image of a crowd is mapped onto 

the corresponding density map, which indicates the number of people per pixel 

on the image (as illustrated in Figure 1.2). 

 

  
(a) (b) 

 
Figure 1.2 :  Illustration of density map estimation (Sindagi and Patel, 2018). 

(a) Input image (b) Corresponding density map with count. 
 

With the significant improvement of the convolutional neural network 

(CNN) in solving computer vision tasks, many researchers are motivated to ex-

ploit the potential to estimate the crowd size (Khan et al., 2020). CNN-based 

crowd counting methods can be generally categorised into density map predic-

tion and global regression. In practice, the method for generating the density 

maps is crucial for crowd counting. Improperly generated density maps may 

dramatically affect the counting performance. The typical design of density map 

prediction algorithm is divided into two steps. First, the ground-truth density 
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maps of crowd images are generated from the ground-truth dot maps (density 

map generation) by convolving with a Gaussian kernel. Second, deep learning 

models are designed to train on the generated density map and predict a density 

map from an input image. The crowd size is then estimate from the predicted 

density map. However, there are few issues in this methodology.  

 

According to (Wan and Chan, 2019), the Gaussian kernel bandwidth pa-

rameters used in the density map generation method are selected manually. The 

parameters of the kernel bandwidth or kernel shape used to generate the density 

map are often dataset dependent and such setting usually do not work across 

different dataset. Extra effort is needed to manually select the parameters again 

when working at another dataset. Another issue in the density map methodology 

is the quality of estimated crowd density maps. Many existing CNN-based ap-

proaches have several max-pooling layers in their networks compelling them to 

regress on down-sampled density maps. Lastly, most methods optimise over 

traditional Euclidean loss which is known to have certain disadvantages. Re-

gressing on down-sampled density maps using Euclidean loss results in low 

quality density maps and therefore decrease the accuracy (Fan et al., 2022). 

  

To address this issue, crowd estimation using global regression could 

provide better performance in term of estimation accuracy and execution speed 

compared to density map. Global regression can skip a step by estimating the 

final count directly from the images, whereas density estimation requires first 

predicting a density map, which is then summed to obtain the final count. More-

over, ground truth annotation to generate the density map is highly labour-
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intensive. This step cannot be skipped before the deep learning model training 

process can take place. According to (Ma et al., 2021), the entire annotation 

process of UCF-QNRF dataset involved 2,000 human-hours to its completion 

merely for 1,535 images. 

 

Although significant progress has been made, existing methods typically 

follow the training-testing protocol within a single dataset and suffer from sig-

nificant cross-data performance degradation (Ma et al., 2021). These works are 

scene-specific, that is, the models learned for a particular scene can only be ap-

plied to the same scene. Accuracy drops significantly when the models are ap-

plied to unseen datasets. Given an unseen scene, the model must be re-trained 

with new annotations. The poor generalisability of existing crowd counting 

models has seriously restricted their applications in the real scenario. Therefore, 

a scene invariant model that can be applied to various scenes and reduce de-

ployment cost is highly motivated. 

 

1.2 Application of CNN-based Crowd Counting Techniques 

 

 This section presents the possible applications of convolutional neural 

network-based crowd counting methods. These techniques covered a diverse 

range of applications include intelligent crowd analysis, health-care applica-

tions, disaster management and public-event management. 

 

 Crowd-counting techniques can be beneficial when used to gather infor-

mation for intelligent analysis and conclusions. For instance, the queue length 
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in front of a restaurant reception or billing reception. The management could 

observe and analyse this information accordingly to optimise the number of staff 

members, thus reducing the labour cost. Waiting times at traffic lights could be 

optimised in terms of traffic flow, especially during rush hours. In addition, ap-

propriate product placement in large shopping centres and shops can be done by 

analysing the crowd heat map. 

 

 Crowd counting techniques hold a vital role in health-care systems (So-

hail et al., 2021). It became significantly important when come to cancer early-

stage diagnosis where it is important to count a number of cancerous cells espe-

cially with patients suffering from cancer (Litjens et al., 2016). Moreover, (An-

dre et al., 2019) presented a deep learning architecture for histopathologic can-

cer diagnosis to increase the objectivity and efficiency of histopathology-slide 

analysis.  

 

 Crowd counting techniques can be applied in public exhibition, concert 

and sports event to count the number of people. Therefore, these events can be 

managed safely by counting and analysing the crowd to prevent disastrous sit-

uations. These techniques are also had advantages in managing available re-

sources such as optimising crowd movements and spatial capacity to minimise 

the life-threatening event when a portion of the crowd panics and charges in 

random directions resulting in huge numbers of people have died from suffoca-

tion in highly crowded areas. Therefore, early detection of overcrowding and 

better crowd management can be made possible by utilising and deploying the 

crowd counting techniques in the surveillance system. 
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1.3 Motivation and Research Objectives 

 

As described in section 1.1, the CNN-based density map estimation 

model reaches its limits when trained with an improperly created density map, 

and the quality of the predicted density map is caused by multiple max-pooling 

layers. Model optimisation over Euclidean loss also resulting in low quality den-

sity map prediction. Furthermore, existing methods usually applied the training-

testing protocol within a single dataset or scene specific. The counting perfor-

mance decreases drastically when the models are applied to unseen scene. It is 

important to address this issue for better generalisability and reduce the re-

striction to deploy the model in the real scenario. This study focused on origi-

nate a crowd counting CNN model using global regression methodology with 

effective training strategy to count the crowd in different unseen scene. 

 

The objective of this study is to design a convolutional neural network 

for crowd counting based on whole image-based inference methodology. This 

inference methodology benefited in reducing the training time. Second objec-

tive is to extend the capability of the proposed convolutional neural network 

when estimate the crowd size in unseen scene. The last objective is to optimise 

the performance of the proposed convolutional neural network through novel 

model training strategy. Experiments will be conducted in three datasets where 

one dataset is used for training and another two datasets are treated as unseen 

scene to the model. 
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1.4 Thesis Overview 

 

There are five chapters in this thesis. Chapter 1 gives a short introduction 

to the overview, applications, strengths and weaknesses of the crowd counting 

model. The motivation and research objective are included in the last section of 

chapter 1. Chapter 2 contains the literature survey of crowd counting methods 

and techniques. Chapter 3 focuses on the methodology used in the design of 

Scene Invariant CNN (SiCNN) model. This chapter explains the algorithm, 

technique, training strategy and dataset developed for this study. Chapter 4 pro-

vides the results and discussions on the experiments conducted to evaluate the 

SiCNN model performs in single and multi-different scene. The inference time 

of the proposed model is also evaluated in edge embedded platform for real time 

performance. Chapter 5 summarises and concludes the finding of this study. 

Future recommendations for future works are also given in this chapter.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Introduction 

 

This chapter starts with a review of existing crowd counting algorithm 

that involved the traditional approaches and CNN approaches. Its pros and cons 

are discussed next. After that, the inference methodology for training the model 

is reviewed. Lastly, the public available crowd datasets are also analysed and 

discussed.  

 

2.2 Traditional Crowd Counting Approaches 

 

As crowd counting received more attention, the challenge of estimating 

the crowd size from the image using computer vision has been addressed and 

approached from different angles. In general, the crowd counting method can 

be mainly classified into the following categories: detection-based approaches, 

regression-based approaches and CNN-based approaches. Comprehensive re-

view on CNN-based approaches is conducted in this section. Since this study 

focused on CNN-based approaches, for the sake of completeness this section 

briefly discusses detection-based and regression-based approaches with hand-

crafted features.  
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2.2.1 Detection-based Approaches 

 

Early research for crowd counting focussed on detection framework. A 

human detector is used to acquire the approximate location of each people in 

the scene and the detected humans are count together to indicate the crowd size. 

This framework usually performed detection in either whole body or partial 

body. Whole body detection approaches generally are hand-crafted detection 

methods which train a classifier such as Support Vector Machine (SVM), boost-

ing and random forest to detect human features such as Haar wavelet fea-

tures(Viola and Jones, 2004), histogram oriented gradients (Dalal and Triggs, 

2005), edgelet (Wu and Nevatia, 2005) and shapelet (Sabzmeydani and Mori, 

2007). Figure 2.1 illustrates the whole body detection approaches to determine 

the crowd size. Although these methods have proven effective to some degree 

in low crowd scenes, they are compromised by the presence of high density 

crowds.   

 

 

Figure 2.1 :  Illustration of fully body detection. There are total of 14 pedes-
trians in the image. (Ryan, 2010) 

 

 Researchers have attempted to address the limitation of full body detec-

tion issue by adopting part-based (partial body) detection approaches (Wu and 
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Nevatia, 2007; Felzenszwalb et al., 2010). The classifiers are boosted to detect 

specific body parts, for instance the head and shoulder. The detected part is then 

sum together. This method is slightly better than whole body detection. Among 

the literatures, head detection and face detection are widely used. The authors 

(Wu and Nevatia, 2007; Keju, Fuqiang and Zhipeng, 2009) trained a face de-

tector to identify the faces of the pedestrians when they entered the camera’s 

view and estimate the crowd size. Figure 2.2 illustrates the face detection 

method for crowd density estimation. These approaches have limitation when 

the face is not visible to the camera. As a summary, the detection-based ap-

proaches are mainly engaged by early researchers. These methods have draw-

backs in crowded and occluded environment where the human parts are not fully 

visible for detection (Saleh, Suandi and Ibrahim, 2015). 

 

 

Figure 2.2 :  Illustration of face detection. The classifier identified a total of 
25 pedestrian from the image. (Keju, Fuqiang and Zhipeng, 
2009) 

 

2.2.2 Regression-based Approaches 

 

 The part-based detection approaches were used to reduce the issues of 

occlusion; however, these methods were not effective in the presence of ex-

tremely dense crowds (Sindagi and Patel, 2018). To address these issues, 
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researchers proposed regression-based approaches where they attempted to re-

gress the count by learn a mapping between features extracted from image to 

the total number of people. The benefit of counting with regression is to avoid 

the relatively complex human detection process and avoid heavily rely on the 

learning classifier.  

 

The regression methodology contains two major components. The first 

component is low-level feature extraction. The features extraction involved 

global features and local features. Global features include foreground features 

extracted from the video using typical background subtraction technique and 

blob-based features such as perimeter and area perimeter ratio. Local features 

include texture such as histogram oriented gradients (HOG), size such as motion 

segment and edge/gradient features. These features have been used to further 

improve the results. The second component is regression model. Once the low-

level features are extracted, a variety of regression models such as neural net-

work (Kong, Gray and Tao, 2006), linear regression (Ryan, 2010) and support 

vector regression (Percannella et al., 2010) are used to learn the mapping from 

these global and local features to the number of people. (Ryan, 2010) mapped 

the total number of foreground pixels and the number of people in the scene 

approximately linear. Gaussian process regression is used to obtain the crowd 

density by model the relationship between foreground pixels and crowd size. 

Figure 2.3 illustrate the regression approach in estimating the crowd size. 
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Figure 2.3 :  Illustration of regression method using blob as local feature and 
Gaussian process regression as learning model to estimate the 
crowd size. (Ryan, 2010) 

 

2.3 CNN-based Crowd Counting Methods 

 

With the advent of deep learning and the success of CNNs in countless 

computer vision tasks, researchers have used the nonlinear features of CNNs for 

learning to estimate the corresponding density maps or counts. A diverse of 

CNN-based techniques have been proposed by the researchers. According to the 

training dataset used by the network and the output of the network, the CNN 

based crowd counting techniques can be generally categorised into detection-

based CNN and regression-based CNN. This section will broadly review these 

methods and further categorise them based on their network architecture and 

training pattern. Their strengths and limitations are review in this section. 

 

A detection-based CNN technique aims to accurately locate and count 

the objects in the image. (Stewart, Andriluka and Ng, 2016) introduced an end-

to-end training network structure. Using GoogLeNet, each image was trans-

formed into 1024-dimensional features, containing valuable location infor-

mation. Long short-term memory (LSTM) (Van Houdt, Mosquera and Nápoles, 

2020) was employed to map these features to a series of detection boxes, or-

dered by decreasing confidence. When LSTM fails to find any detection box 
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with confidence exceeding the predetermined threshold, the process stops. 

Crowd size is determined by summing all the bounding boxes. This method is 

suitable for situations where detection objects have minimal overlap, but its ef-

fectiveness diminishes significantly in high-overlap scenarios. (Li et al., 2020) 

proposed "HeadNet", an adaptive relational network designed to extract context 

information and mitigate missed human head detection. They employed Resnet-

101 as the feature extraction network to process input images and utilized local 

structured feature modules to enhance individual stability. The network then 

generated bounding boxes for each detected head, ultimately determining the 

crowd size. 

 

Among the CNN-based model, regression-based CNN methods are 

widely used for count and density estimation (Sindagi and Patel, 2018; Patwal 

et al., 2023). This method is trained utilising an image dataset through either 

unsupervised methods or being annotated by point (density map). During test-

ing, the network directly output the total number of people in the image or gen-

erates the density map corresponding to the image. According to the training 

dataset used by the network and the output of the network, these methods are 

divided into two categories: regression density map method and regression 

counting method. The regression density map methods train the network to pre-

dict a density map and then estimate the crowd density from it. In contrast, the 

regression counting method outputs the number of people in an image directly. 

Regardless of which regression method, the architecture of CNN crowd count-

ing can be subcategorised into basic CNN model and scale-aware CNN model. 
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Basic CNN model can be regarded as the pioneer of deep-learning meth-

ods for density estimation that can be applied to obtain a crowd count in real 

time due to the uncomplicated network architecture. CNN-based crowd count-

ing was first exploit by (Wang et al., 2015). The authors adopted the AlexNet 

network (Krizhevsky, Sutskever and Hinton, 2017) to design an end-to-end 

CNN regression model for total count estimation from extremely dense crowd. 

They replaced the last fully connected layer of 4096 neurons of AlexNet net-

work with a single neuron layer to predict the crowd size. In order to increase 

the prediction accuracy and reduce non-related background such as buildings 

and tress in the images, the authors added additional negative samples where 

the ground truth number was set to zero to enrich the training data.  

 

Instead of estimating the total count, (Fu et al., 2015) adopted Multi-

stage ConvNet (Sermanet, Chintala and Lecun, 2012) to classify the image into 

five classes of crowd density. These classes are very high density, high density, 

medium density, low density and very low density. The multi-stage network has 

better shift, scale and distortion invariance. Additional classifier is used to boost 

the accuracy by reclassify the rejected samples. In (Hu et al., 2016), the authors 

proposed a deep-learning approach to estimate mid-level and high-level crowds 

in an image. A regressor was used to estimate the number of individuals in a 

local area, while the total density was estimated by summing the estimated den-

sities of the local regions. In their work, a convolutional neural network archi-

tecture is learned to estimate crowds. (Zhao et al., 2016) proposed a CNN model 

to count the number of people crossing a line in surveillance videos. (Walach 

and Wolf, 2016) enhanced their CNN model with layer boosting and removing 
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negative samples to decrease processing time and improve counting accuracy. 

Layer boosting works by increasing the number trained network layers to itera-

tively train a classifier that is used to fix the errors of the previous one. Negative 

sample method is to minimise the impact of low-quality data during model train-

ing process.  

 

In contrast to the above methods that predict a density map, (Shang, Ai 

and Bai, 2016) proposed an end-to-end count estimation method using CNN 

architecture. The method takes the entire image as input and directly outputs the 

final number of people. Thus, computations in overlapping regions are per-

formed jointly by combining multiple processing stages, reducing complexity. 

The network simultaneously learns to estimate local counts, and contextual in-

formation is integrated into the network to ignore background noise for better 

performance. Figure 2.4 shows the architecture is designed with a pre-trained 

GoogleNet model, a Long-short time memory (LSTM) decoders, fully con-

nected layers and a single regressor node for the final count. The image contains 

crowd is input to the network the high-dimensional CNN feature maps are com-

putes using the GoogleNet network. The feature maps are then decoded into 

local count using the LSTM unit. The local counts are map to the fully con-

nected layers and the final count is output to the single regressor node. 
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Figure 2.4 :  Overview of the end-to-end counting method using CNNs. 
(Shang, Ai and Bai, 2016) 

 

Scale-aware CNN models are evolved from basic CNN models into 

more sophisticated models that were robust to variations in scale. (Zhang et al., 

2016) proposed a multi-column network with different convolution kernels size 

to predict a density map and the crowd estimation is performed next. Multi-

column network is widely used for image recognition before it is started to apply 

in crowd counting. The proposed method ensures robustness to large variations 

in object size by constructing a network of three columns corresponding to fil-

ters with different sized receptive fields. The multi-column network is shown in 

Figure 2.5.  

 

 
Figure 2.5 :  Overview of single image crowd counting via multi-column net-

work. (Zhang et al., 2016) 
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Inspired by the above approach, (Oñoro-Rubio and López-Sastre, 2016) 

first employed a deep fully convolutional neural network with six convolutional 

layers called Counting CNN (CCNN) as illustrated in Figure 2.6. The network 

is then extended into Hydra CNN that consists of 3 heads and a body with each 

head learning features for particular scale. Each head is constructed using the 

CCNN model, whose outputs are combined and passed to the body, which con-

sists of two fully-connected layers. The Hydra CNN is able to estimate object 

densities in a variety of crowded scenarios without explicit geometric infor-

mation of the scene. While the different heads extract image descriptors at dif-

ferent scales, the body learns a high-dimensional representation that merges the 

information provided by the heads at multiple scales. The final product is a 

18x18 density prediction. The crowd size is determined from the density map. 

 

 

 

Figure 2.6 :  Overview of Hydra-CNN network. (Oñoro-Rubio and López-
Sastre, 2016) 

 



 

 19 

 (Marsden et al., 2017a) made observation on the earlier scale aware 

models are difficult to optimise and are computationally complex. The authors 

proposed a single column fully convolutional network (Figure 2.7) to incorpo-

rate scale information using an effective and straightforward multi-scale aver-

aging step during prediction. The number of people is estimated for each scale 

and the final number is the average of all estimates. The training set in this work 

is contrast to the early methods that uses highly overlapping cropped patches. 

This technique constructed four image quadrants to ensure no overlap and avoid 

potential overfit when the network is continuously trained on the same set of 

pixels. Therefore, the generalisation performance of the network is improved. 

 

 

Figure 2.7 :  Overview of Fully Convolutional Network for crowd counting. 
(Marsden et al., 2017a) 
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2.4 Cross Scene Crowd Counting Methods 

 

 State-of-the-art crowd counting deep learning model usually fine-tune 

the pre-train deep neural network like AlexNet to determine the crowd size. De-

spite a lot of effort has been made, current approaches usually follow the train-

ing-testing protocol within a single dataset and suffer from significant cross-

dataset performance degeneration. In fact, the accuracy drops drastically when 

models are applied to unseen datasets or unseen scene. Models that did not have 

good generalisability are hardly to deploy their applications in the real scenario.  

 

The crowd counting methods described in the section 2.2 and section 2.3 

are scene-specific that the model learned for a particular scene can only work 

well in the same scene. The methods usually do not take a strategy to narrow 

the gaps between images and do not generalise well to unseen scene. The re-

searchers (Zhang et al., 2015; Ma et al., 2021; Zhang et al., 2023) analysed ex-

isting methods and found that their performance drops sharply when applied to 

a new scene that is different from the training dataset. Given the difficulty of 

training deep networks for new scenes, it would be important to explore how to 

benefit from models trained on existing sources. Most existing methods retrain 

their models for a new scene, which is not practical in real-world scenarios as it 

would be expensive to obtain annotations for each new scene. To the best un-

derstanding when this research work commences, there are limited research 

works to address the issue.  
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(Zhang et al., 2015) He tried to solve this problem by performing data-

driven training without the need for labelled data for new scenes. Their tech-

nique learns a mapping of images to crowds and adapts this mapping to new 

target scenes for cross-scene counting. To achieve this, they optimised the net-

work to alternately train on crowd counting and density estimation to achieve 

better local optima. Their network is adapted to new target scenes without the 

need for additional labelling information. In an another approach, (Liu and 

Vasconcelos, 2015) attempted to infuse transfer learning into crowd counting. 

A model adaptation technique for Gaussian process counting was introduced. 

The technique implementing the source model as a prior and the target dataset 

as a set of observations, the components are combined into a predictive distri-

bution that captures information in both the source and target dataset. However, 

the idea of data driven and transfer learning for crowd scenes are relatively un-

explored and is a nascent area of research. 

 

2.5 CNN Training Methodology 

 

Another factor that influences the prediction accuracy of the CNN model 

is the training methodology. The CNN training process is an essential part of 

building a robust network. The training loss is calculated during the training 

process and it will be used to update the network weights. Training methodol-

ogy can be generally classified into patch-based training and whole image-based 

training. These methodologies can be used to improve the prediction accuracy 

of the network or the quality of its density map. 
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2.5.1 Patch-based Training Methodology 

 

CNN model trained in patch-based methodology utilise patches cropped 

from the image and a sliding window that runs over the test image (Datta Gupta 

et al., 2023). Figure 2.8 illustrates the patch-based training architecture. This 

method is useful in applications where the resolution quality of the density map 

that cannot be ignored and it needs to enhance. For instance, in cancer diagnosis 

that both the affected cell count and the resolution of affected cells are essential 

information. As a result, this method is widely used to enhance and predict an 

accurate density map for crowd size estimation. The drawback for patch-based 

training is high computational cost due to every image need to process by the 

small sliding window (Sindagi and Patel, 2018). The reviewed literatures dis-

cussed in section 2.3 are using patch-based methodology to train their respective 

network to predict a crowd density map and eventually determine the crowd 

size.  

 

 

Figure 2.8 :  Architecture of patch-based training methodology. (Ilyas, Shah-
zad and Kim, 2020) 
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2.5.2 Whole Image-based Training Methodology 

 

In contrast to patch-based training methodology, whole image-based 

training methodology inputs an entire image into the CNN model and directly 

predicts the final count (Wang et al., 2023). Figure 2.9 illustrates the whole im-

age-based training architecture. This training pattern minimises the network 

computational cost which are very useful in real-time applications. These tech-

niques have applications in pedestrian counting, tracking person of interest and 

analyse passing pedestrian across CCTV. (Zhang, Shi and Chen, 2018) pro-

posed a scale-adaptive CNN architecture with a backbone of fixed small recep-

tive field. The network was trained on relative count loss and density map loss 

using whole image-based training approach to improve the network generalisa-

tion on crowd scenes. The authours (Marsden et al., 2017b) He proposed a 

multi-criteria method using residual deep learning to study crowd counting, vi-

olence detection and density classification. This kind of architecture can be gen-

erally named as multi-task CNN model. (Wilie, Cahyawijaya and Adiprawita, 

2018) redefined the crowd counting process by using a Xception network and 

fully connected layers. The Xception network is a pre-trained parameter used as 

transfer learning to learn to count. The fully connected layers are connected to 

a single node to predict the crowd size. Other than applying whole image-based 

training methodology in crowd counting, a CNN-based fruit-counting technique 

was proposed by (Rahnemoonfar and Sheppard, 2017) by using a deep-simu-

lated-learning algorithm. The network was trained on synthetic data and a mod-

ified version of the Inception-ResNet architecture (Szegedy et al., 2017) was 

used to count the fruits (tomatoes). The models discussed in this section 
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typically have limitation in missing of negative sampling and lack of data-driven 

approach. 

 

 

Figure 2.9 :  Architecture of whole image-based training methodology. (Ilyas, 
Shahzad and Kim, 2020) 

 

 

2.6 Activation Function in CNN 

 

In convolutional neural network literature, there is a significant interest 

in identifying and defining activation functions which can improve neural net-

work performance. Activation function helps the neural network to use im-

portant information while suppressing irrelevant data points during the feedfor-

ward propagation. In feedforward propagation, the activation function is a math-

ematical "gate" between the input to the neuron and its output to the next layer. 

When looking at any neural network architecture, activation function is one of 

the essential elements that generally applied in the hidden layer or the output 

layer.  

 

The activation function can be generally classified into linear activation 

function and non-linear activation function. This section focuses on reviewing 

the non-linear activation functions instead of the linear activation function, as 
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the linear activation function does not allow the model to create complex map-

pings between the inputs and outputs of the network (Nwankpa et al., 2018). A 

crowd image often contained complex scene and various illumination that the 

linear activation function is not able to perform the mapping.  

 

This section discussed six non-linear activation functions that most com-

monly used in recent years and their respective illustrations are shown in Figure 

2.10. They are sigmoid activation function, hyperbolic tangent (Tanh) activation 

function, rectified linear unit (ReLU) activation function, leaky ReLU (LReLU) 

activation function, Exponential Linear Unit (ELU) activation function and 

Swish activation function.  

 

The sigmoid activation function has a S-shape graph that takes any real 

value as input and outputs values in the range of 0 to 1 (Ding, Qian and Zhou, 

2018). The larger the input, the closer the output value to 1.0, whereas the 

smaller the input, the closer the output value to 0.0. The sigmoid activation 

function is commonly used for models to predict probability as an output due to 

the probability of anything exists only between the range of 0 and 1. The sig-

moid activation function is defined as follows: 

 

𝑓(𝑥) =  
1

1 + 𝑒ି௫
 (2.1) 

 

where x is the input to the activation function. The limitation is that the sigmoid 

activation function binds a large range of inputs to a small range between 0 and 

1. Therefore, it always produces a non-negative value as output and a large 



 

 26 

change to the input value leads to a small change to the output value, resulting 

into small gradient values as well. 

 

  The Tanh activation function is very similar to the sigmoid activation 

function, which has the same S-shape, but differs in the output range from -1 to 

1 (Ding, Qian and Zhou, 2018). In Tanh, the larger the input, the closer the 

output value to 1.0, whereas the smaller the input, the closer the output value to 

-1.0. The tanh activation function inherits all the valuable properties of the sig-

moid activation function where the formula is defined as follows: 

 

𝑓(𝑥) =  
1 −  𝑒ି௫

1 + 𝑒ି௫
 (2.2) 

 
where x is the input to the activation function. Based on the function, the range 

of possible outputs are expanded and zero-centered which includes negative, 

positive and zero outputs. Hence, the output values can be easily mapped as 

strongly negative, neural, or strongly positive. Tanh activation function is com-

putationally expensive because of the exponential function. Similar to sigmoid 

activation function, it binds a large range of input to a small range between -1 

and 1. Thus, a large change to the input value leads to small change to the output 

value. 

 

 Since the proposal by (Fukushima, 1975), the rectified linear unit 

(ReLU) activation function has been widely used in convolutional neural net-

work because of its efficient properties. The ReLU activation function is defined 

as: 
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𝑓(𝑥) = max(0, 𝑥) (2.3) 

 
 where x is the input to the activation function. Since ReLU is not an exponential 

function and it forces negative values to zero, it has low computational cost. 

These features make ReLU a better choice to be used in CNN as it provides 

better performance and generalisation when compared to the sigmoid and tanh 

function. However, the consequence of forcing the negative inputs to zero is the 

network will suffer from dead neuron problem. Therefore, the improved version 

of ReLU, called LReLU and ELU were introduced to solve the dead neuron 

problem. 

 

 The LReLU activation function is very similar to the ReLU function, 

with the difference that it has a small positive slope in the negative range (Ding, 

Qian and Zhou, 2018). The LReLU is defined as follows: 

 

𝑓(𝑥) = ൜
0.01𝑥       𝑓𝑜𝑟 𝑥 ≤ 0

𝑥               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.4) 

where x is the input to the activation function. Unlike ReLU, the LReLU acti-

vation function did not force the negative inputs to zero and allow to be passed 

on as outputs. Therefore, the dead neurons are no longer encountered. The draw-

back of this function is the prediction may not be consistent for negative input 

values because of the 0.01 derivative. 
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 ELU activation function is a variant of ReLU that modifies the slope of 

the negative part of the function that uses a log curve to define the negative 

values (Ding, Qian and Zhou, 2018). The ELU is defined as follows: 

 

𝑓(𝑥) = ൜
𝑥                     𝑓𝑜𝑟 𝑥 ≤ 0

𝛼(𝑒௫ − 1)     𝑓𝑜𝑟 𝑥 > 0
 (2.5) 

 
where x is the input to the activation function and α is the constant that defines 

function smoothness when inputs are negative. ELU is a strong alternative to 

ReLU because of the features to avoid dead neuron problem by introducing log 

curve for the negative values of input and helps the network nudge weights and 

biases in the right direction. The limitation of the ELU activation function is 

high computational time because of the exponential function. The illustration of 

the discussed activation function as graphs are shown in Figure 2.10. 

 

 
(a)  

 
(b)  

 
(c)  

 
(d)  

 
(e)  

 
Figure 2.10 :  The graph depiction of non-linear activation functions 

((Nwankpa et al., 2018); Ding, Qian and Zhou, 2018)). (a) Sig-
moid (b) Tanh (c) ReLU (d) LReLU (e) ELU 
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2.7 Weight Initialisation in CNN 

 

This section describes and discusses the weight initialisation strategies 

for convolutional neural network. Weight is the parameter that part of the neu-

ron set that consists of inputs and a bias value. As an input enters the node, it 

gets multiplied by a weight value and the resulting output is often passed to the 

activation function (described in section 2.6). The activation function will de-

termine the activation of the neuron, that is, to pass the multiplied value to the 

neuron output. Weight initialisation is a crucial step to implement before train-

ing any neural network. The weights of a network are initialised that define the 

starting point and then adjusted/optimised repeatedly while training the net-

work. The weight initialisation directly drives the convergence of a network 

where the loss converges to a minimum value and an ideal weight matrix is 

obtained. Therefore, the selection of an appropriate weight initialisation strategy 

becomes important for end-to-end training. Three weight initialisation strategies 

are selected from the literature and will be reviewed in this section. They are 

random weight initialisation, Xavier weight initialisation and He weight initial-

isation. 

 

Random weight initialisation is a strategy to randomly assigns random 

values except for zeros as weights to neuron paths (Narkhede, Bartakke and 

Sutaone, 2022). It was introduced in an attempt to overcome the limitation of 

zero weight initialisation. The zero weight initialisation assigned zero as initial 

value to the weights and it is highly ineffective as neurons learn the same feature 

during each iteration in the model training. The random weight initialisation 
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strategy tries to address the problems of zero weight initialisation since it pre-

vents neurons from learning the same features of their inputs. This strategy en-

sures the neuron learn different functions of its input and gives much better ac-

curacy than zero weight initialisation. However, assigning values randomly is 

highly prone to overfitting and vanishing gradient problem. 

 

The current standard strategy to initialise the weights of neural network 

layers is called Xavier weight initialisation (Glorot and Bengio, 2010). In Xa-

vier weight initialisation, the weights are initialised in such the way that the 

variance of the activations are the same across every layers. This constant vari-

ance is calculated by takes in the number of fan in (number of input paths to-

wards the neuron) and the number of fan out (number of output paths towards 

the neuron) into account to help prevent the gradient from exploding or vanish-

ing. The Xavier weight initialisation strategy is designed to work well with sig-

moid or tanh activation function. 

 

Xavier weight initialization performs effectively with sigmoid or tanh 

activation functions but demonstrates suboptimal performance when used with 

ReLU activation functions. The Xavier weight initialisation will cause the acti-

vations start to collapse to zero at the deeper layer of the neural network and 

caused no learning. To address this issue, a modified version of the strategy was 

developed specifically for ReLU activation. It is named as Kaiming weight ini-

tialisation or He weight initialisation (Kaiming et al., 2018). The Kaiming 

weight initialisation strategy is computed as a random number with a Gaussian 

probability distribution with a mean of 0.0 and a standard deviation of sqrt(2/n), 
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where n is the number of input paths to the neuron. This strategy will make the 

weights healthier for the ReLU as the mean of weight should have slightly in-

cremented layer by layer. More neurons will get activated and the neural net-

work learn better. Therefore, The Kaiming weight initialisation strategy is de-

signed to work well with ReLU activation function. 

 

2.8 Gradient Descent Algorithm 

 

Gradient descent is a standard optimisation algorithm frequently applied 

to train deep learning network and to minimise the cost function. A gradient is 

a mathematically measurement to quantify the direction of the ascent or descent 

of a line or curve and descent is the action of going downwards. In short, the 

gradient descent is the algorithm that facilitates the search of parameters values 

(weights and biases) that minimise the cost function towards a local minimum 

or optimal accuracy (Mustapha, Mohamed and Ali, 2020). It captures the local 

slope of the function, allowing the network to predict the effect of taking a small 

step from a point in any direction. It is one of the parameters to update the net-

work’s weight. Three gradient descent algorithms are reviewed in this section. 

They are Adaptive Gradient algorithm (Adagrad), Root Mean Square Propaga-

tion (RMSProp) algorithm and Adaptive Movement Estimation (ADAM) algo-

rithm. 

 

Adagrad algorithm (Duchi, Hazan and Singer, 2011) is an algorithm for 

gradient-based optimisation. It is a stochastic optimisation method that adapts 

the learning rate to the parameters. It performs smaller updates for parameters 
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associated with frequently occurring features and larger updates for parameters 

associated with infrequently occurring features. For this reason, it is suitable for 

dealing with sparse data, for example native language processing (NLP) and 

image recognition. Each parameter has its own learning rate that improves per-

formance on problems with sparse gradients. One of the benefits of using Adag-

rad algorithm is that it eliminates the need to manually tune the learning rate. 

Moreover, the network optimised using Adagrad algorithm is converge faster 

and more reliable. The limitation of the Adagrad algorithm is that the learning 

rate will starts to shrink end eventually become significantly small due to the 

accumulation of the squared gradients in the denominator(Sun et al., 2020). Ex-

tremely small learning rate will cause the network no longer able to learn addi-

tional knowledge. 

 

RMSProp algorithm is an unpublished optimisation algorithm designed 

for neural network proposed by Geoff Hinton (Vitaly Bushaev, 2018). The 

RMSProp algorithm tries to resolve Adagrad’s radically diminishing learning 

rates by using a moving average of the squared gradient. In RMSProp, the learn-

ing rate gets adjusted automatically and it chooses a different learning rate for 

each parameter. It divides the learning rate by the average of the exponential 

decay of squared gradients.  

 

ADAM algorithm is different to classical stochastic gradient descent 

where the stochastic gradient descent maintains a single learning rate for all 

weight updates and the learning rate does not change during training (Kingma 

and Ba, 2015). Instead, ADAM is an adaptive learning rate optimisation 
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algorithm that utilises both momentum and scaling. The author combines the 

advantage properties of Adagrad and RMSProp to tackle the sparse gradients 

and noise gradients. Instead of adapting the parameter learning rates based on 

the average mean as in RMSProp, the ADAM algorithm makes u se of the av-

erage of the uncentered variance of the gradients. Specifically, the algorithm 

calculates an exponential moving average of the gradient and the squared gra-

dient, and it control the decay rates of these moving averages. Due to ADAM 

algorithm is computationally efficient, has very little memory requirement and 

able to achieve good results fast, it is one of the popular algorithms in the field 

of deep learning (Sun et al., 2020). 

 

2.9 Datasets 

 

In recent decades, a large number of datasets have been created, allow-

ing researchers to develop models with better generalisation capabilities. The 

datasets contain images of low-density crowds, while the most recent ones focus 

on high-density crowds, which poses numerous challenges for the researcher, 

such as scale variations, clutter and heavy occlusion. The creation of these da-

tasets has motivated approaches to evolve from traditional methods to deep 

learning methods. In this section, three publicly available key datasets are re-

viewed.  
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2.9.1 Mall Dataset (Chen et al., 2012) 

 

The Mall dataset was collected by Chen using a surveillance camera in-

stalled in a mall. The dataset has different lighting conditions and people densi-

ties. In addition to the different density levels, there are also different activity 

patterns such as static and dynamic crowds. In addition, the dataset is challeng-

ing because it is heavily obscured by the objects in the scene, such as a house-

plant or a stall located along the walkway. The dataset consists of 2000 individ-

ual images of size 320x240 with 6000 marked pedestrians. When creating the 

dataset, the first 800 images were used for training and the remaining 1200 im-

ages for the evaluation. This dataset has the density crowd with the lowest of 13 

people in the image and the highest of 53 people in the image. 

 

2.9.2 UCSD Dataset (Chan, Liang and Vasconcelos, 2008) 

 

 The UCSD dataset was originally created for anomaly detection but later 

it is used by the researcher for counting people. The dataset was captured by a 

camera on an outdoor pedestrian walkway. The dataset consists of 2000 frames 

of a video sequence together with ground truth annotations. A region of interest 

is provided to ignore unnecessary moving objects. The dataset contained a total 

of 49,885 pedestrian annotations. The setting of the dataset used the first 800 

frames for training and the remaining 1200 frames used for testing. This dataset 

has the density crowd with the lowest of 11 people in the image and the highest 

of 46 people in the image. 
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2.9.3 Shanghai Tech Dataset (Zhang et al., 2016) 

 

 Zhang et al. presented a new large-scale crowd counting dataset consist-

ing of 1198 images with 330,165 labelled pedestrians. The dataset is one of the 

largest in terms of the number of labelled pedestrians. It consists of two parts: 

part A and part B. Part A contains a total of 482 images randomly selected from 

the internet. Part B consists of images taken on the streets of major cities in 

Shanghai. Part A has a much higher density compared to part B. The setting of 

part A has 300 frames for training and the remaining 182 frames used for testing. 

The setting of part B has 400 frames for training and the remaining 3316 frames 

used for testing. The crowd in part A is extremely congested scenes randomly 

chosen from the Internet while part B includes relatively sparse-crowd scenes 

taken in different scenes from the streets of metropolitan areas in Shanghai city. 

The dataset successfully attempts to create a challenging dataset with diverse 

scene types and varying density levels. part A has the density crowd with the 

lowest of 33 people in the image and the highest of 3139 people in the image, 

respectively, whereas part B has the density crowd with the lowest of 9 people 

in the image and the highest of 578 people in the image, respectively. 

 

 Sample images from the three datasets are shown in Figure 2.11. It can 

be observed that the UCSD and the Mall dataset have relatively low density 

images and less variations in illuminations. The Shanghai Tech dataset has sig-

nificant variations in the density levels and different perspectives across images. 
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(a) (b) (c) 

Figure 2.11 :  Sample images from various datasets. (a) Mall (b) UCSD (c) 
Shanghai Tech. 

 
 

2.10 Discussion 

 

 A variety of CNN-based methods have been investigated in section 2.2, 

section 2.3 and section 2.4. These methods can be generally categorise based on 

property of the networks and training approach. The categories for the network 

architecture are basic CNNs and scale-aware CNN models. Furthermore, the 

CNN training methodology can be classified into patch-based methodology and 

whole image-based methodology.  

 

 The techniques fall under the basic CNNs category are mainly focus on 

density estimation instead of crowd count. However, recent research on using a 

single regressor node at the last year enable basic CNNs to predict the actual 

count instead of estimating the crowd density. Approaches such as negative 

sample and data-driven are missing in this category. The speed of training and 
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inferencing can be enhanced by removing redundant samples. By iteratively re-

ducing errors in different network, error-rate probability can also be reduced. 

 

 The techniques fall under scale-aware CNNs category are mainly focus 

on predicting a density map and the crowd size is determine from the density 

map next. The key issue of this category is the quality of estimated crowd den-

sity maps. Many approaches have a number of max-pooling layers in their net-

work compelling them to regress on down-sampled density maps. Next, most 

methods optimise over traditional Euclidean loss which is known to have certain 

disadvantages. Regressing on down-sampled density maps using Euclidean loss 

results in low quality density maps and therefore decrease the accuracy. More-

over, ground truth annotation to generate the density map is highly labour-in-

tensive. This step cannot be skipped before the deep learning model training 

process can take place. As described in section 1.1, the entire annotation process 

of a big dataset is a high labour cost and it has the possibility to prone to error.  

 

 Patch-based methodology is useful in enhancing the resolution quality 

of the density map by using a sliding window to process through the image. 

However, the sliding window processing is the main cause in high computa-

tional cost due to many small patches need to process in each image. This meth-

odology is mainly used in post-processing rather than in real-time processing. 

In contrast, whole image-based methodology inputs an entire image into the 

CNN model and directly predicts the final count. This technique is not widely 

used in density map prediction due to less resolution quality. It is observed by 

the researchers that by using the whole image for inferencing and training, it 
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results in reduction of complexity as the computations shared on overlapping 

regions. Therefore, the whole image-based methodology minimises the network 

computational cost which are very useful in real-time applications.  

 

 As described in section 2.4, most of the current approaches in crowd 

estimation did not work well when the model is tested with unseen dataset. Spe-

cifically, the models usually follow the training-testing protocol within a single 

dataset and the model’s accuracy suffer from the unseen dataset that is not 

trained by the model. The models have to retrain on every new scene and it is 

impractical due to expensive training cost. To date, there are limited research 

works to address the issue. Therefore, this study is motivated to design a deep 

learning model that can perform the crowd counting in scene invariant where 

the model only needs to train once.   
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CHAPTER 3 

 

RESEARCH METHODOLOGY 

 

3.1 Introduction 

 

 In this chapter, the details on the design of CNN-based architecture for 

scene invariant crowd counting are discussed. The designed network chosen for 

this research is named as Scene Invariant CNN (SiCNN). The model’s name is 

motivated by the literatures discussed in section 2.10. The methodology in de-

signing the model will be discussed in detail in their respective sections later in 

this chapter. The SiCNN consists of a single backbone network with multiple 

residual blocks attached to it. The details for the design of the backbone network 

are described in section 3.2. Section 3.3 presents the methodologies used to train 

the proposed model. Section 3.4 covers the evaluation metrics used to evaluate 

the proposed model. The dataset used for training and testing the model is dis-

cussed in section 3.5. Section 3.6 and section 3.7 presented the strategies used 

to improve the counting accuracy. The results of each section will be discussed 

in chapter 4. 

 

3.2  Single Backbone Network – Scene Invariant CNN (SiCNN)  

 

Many state-of-the-art works adopted the multi-column architecture with 

different filter sizes to generate competitive density maps. The crowd size esti-

mation is determined from the density map. As mentioned in section 2.10, 
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multiple max pooling layers in the network and model training with Euclidean 

distance decreases the quality of the density map leads to accuracy dropped. 

Therefore, this research instead designed a Scene Invariant CNN (SiCNN) 

where the model uses a single backbone network with a single filter size. The 

full architecture of SiCNN is illustrated in Figure 3.1. The implementation de-

tails are explained in the subsequent parts.  

 

 

Figure 3.1 :  The structure of the Scene invariant Convolutional Neural Net-
work (SiCNN) for crowd counting. The convolutional layer’s 
parameters are represented as “Conv(layer number) (filter size x 
filter size x filter number)”. The fully connected layer’s parame-
ters are denoted as “Fc(layer number) (number of neurons)”. 
MP: max pooling layer. 
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The SiCNN model is designed based on the inspiration of the Visual 

Geometry Group architecture or better known as VGG-16 (Simonyan and Zis-

serman, 2015), which is a convolutional neural network model proposed by A. 

Zisserman and K. Simonyan from the University of Oxford. The VGG-16 is a 

standard deep CNN architecture with 16 convolutional layers and a ground-

breaking model that achieved top-5 accuracy in ImageNet competition where 

the dataset consisting of more than 14 million images belonging to 1000 classes. 

Instead of using large kernel size filters, the model replaced it with several 3x3 

kernel size filters, thereby reducing the computational time and complexity of 

the model. Part of the SiCNN model is motivated by the VGG-16 architecture 

due to its powerful generalisation capability. Generalisation of the CNN is abil-

ity to perform unseen data. It is an essential point to a crowd counting model 

that can handle different scene.  

 

The architecture of SiCNN model is forged with 13 convolutional layers 

and 6 fully connected layers. The backbone design followed the power of two 

network topology. Matrix multiplication is one of the central computations in 

deep learning. CPU and GPU are operating in Single Instruction Multiple Data 

(SIMD) (Choi and Lee, 2021) to process the data and information. Since the 

design of the physical processors are often a power of two, the SiCNN model is 

designed with power of two network topology can align properly with the num-

ber of physical processors. For example, a GPU with 512 physical cores can fit 

a fully connected layer with 512 neurons and each unit is able to process paral-

lelly in one cycle instead of process individually. Therefore, the model training 

time can be reduced. The number of filter channel in the convolutional layers 



 

 42 

are configured as 64, 128, 256 and 512 sequentially. The units in the fully con-

nected layers are configured as 4096 and 512 sequentially.  

 

The main processing in the convolutional neural network is convolution 

that basically a dot product of kernel or filter and patch of an image (local re-

ceptive field) of the same size. During the model training or learning process of 

CNN, different kernel sizes or filter sizes will affect the accuracy and the train-

ing time. In early research work, larger filter size such as 11x11 and 5x5 are 

widely used in image recognition and classification. In general, large filter size 

would reduce more noise from the image. However, at the same time, the larger 

filter will result in a loss of image detail (Camgozlu and Kutlu, 2020). Moreo-

ver, large filter size also increases the trainable parameters and cause the model 

training time to increase. For example, AlexNet (Krizhevsky, Sutskever and 

Hinton, 2017) CNN architecture was introduced in 2012, it used several 11x11 

and 5x5 filter sizes that consumed more than two weeks in training resulting in 

extremely large number of hyper-parameters to be trained and expensiveness. 

The SiCNN model instead focused on one single 3x3 filter size and one single 

maxpool layer size of 2x2 with stride 2.  

 

By studying the analysis of filter size in deep learning (Khanday, Dad-

vandipour and Lone, 2021) the 3x3 filter size produces better results in term of 

accuracy. This research work only utilised small filter size. First, most of the 

useful features in an image are usually local and it makes sense to take few local 

pixels at a time to apply convolutions. Second, these features may be found in 

more than one place in an image. Sliding a single small filter size all over the 
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image have advantage in extracting the useful features in different parts of the 

image. Lastly, small filter size added benefit of weight sharing and reduction in 

computational costs. Small filters preserve the spatial resolution of the input to 

enable building deeper network. “Deeper” has similar effect as “Wider” (multi-

column architecture) does in a network.  

 

To enhance the regularisation of the model and avoid overfitting, batch 

normalisation or commonly abbreviated as Batch Norm technique (Ioffe and 

Szegedy, 2015) is applied to the neurons’ output as pre-activation before apply-

ing the activation function. This technique normalises activations in a network 

across the mini-batch of definite size. For each feature, batch normalisation 

computes the mean and variance of that feature in the mini-batch. It then sub-

tracts the mean and divides the feature by its mini-batch standard deviation. A 

neuron with Batch Norm can be generally computed as follows: 

 

𝑧ே =  ൬
𝑧 − 𝑚௭

𝑠௭
൰ (3.1) 

 
where zN is the output of Batch Norm, z is the output of neuron before Batch 

Norm, mz is the mean of the neuron’s output and sz is the standard deviation of 

the neuros’ output.  

 

With the properties of Batch Norm, the research work exposed the intu-

itions of the most important reasons. Firstly, this technique normalised the 

layer’s inputs by re-centering and re-scaling into a similar range of values, thus 

speed up the learning. Secondly, in the original paper (Ioffe and Szegedy, 2015) 
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observed that Batch Norm reduces the internal covariate shift of the network. 

The internal covariate shift is a change in the input distribution of an internal 

layer of a Neural Network. Applying Batch Norm ensures that the mean and 

standard deviation of the layer inputs will always remain the same, thus the 

amount of change in the distribution of the input of layers is reduced. It eventu-

ally benefits the model can be trained stably.  

 

Activation function is one of the core elements in neural network. A 

neural network without an activation function will essentially act as a linear 

regression model. The activation function adds the non-linear transformation to 

the input making it capable to learn and perform more complex tasks. It gener-

ally applied in the hidden layer or the output layer. The primary role of the ac-

tivation function is to transform the summed weighted input from the node into 

an output value to be fed to the next hidden layer or as output. After analysed 

the literatures of the non-linear activation function (described in section 2.6), 

ReLU and ELU activation functions are chosen and applied to the SiCNN 

model. ReLU (Rectified Linear Units) activation is added to the convolutional 

layers whereas ELU (Exponential Linear Units) is added to the fully connected 

layers. ReLU has a derivative function and allows for backpropagation while 

simultaneously making it computationally efficient (Dubey, Singh and 

Chaudhuri, 2022). Since the neurons with positive values will only be activated, 

useful features from the image can be effectively highlighted. 

 

Despite the fact that the ReLU activation are widely used in both the 

convolutional layers and the fully connected layers, this research work observed 
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dying ReLU issue (described in section 2.6) in which the deactivated neurons 

make the gradient value zero and caused the weights are not updated. Subse-

quently decreases the model’s ability to train from the data properly. Instead, 

this problem is solved by utilised ELU (Clevert, Unterthiner and Hochreiter, 

2016) activation in the fully connected layers. ELU is a strong alternative for 

ReLU to avoid dead ReLU problem by introducing log curve for negative values 

of input. The ELU function helps the SiCNN model to have more flexibility 

when estimating the final count. The last fully connected layer is consisting of 

one neuron denoted as regression node to predict the final crowd size.  

 

3.3  SiCNN Model Training Methodology  

 

The proposed designed model is trained using the whole image-based 

training pattern with a whole image is treated as input to the model, as illustrated 

in Figure 3.1. The whole image-based training pattern is described in section 

2.5.2. The designed SiCNN model is trained in an end-to-end manner from 

scratch. By default, the network’s weights are initialised with small random 

numbers. These weights are used in the neuron to calculate a weighted sum of 

the inputs. Having a good weight initialisation prior to the model training can 

increase the model optimisation. The weight initialisation strategies are dis-

cussed in section 2.7. This research chosen Kaiming weight initialisation strat-

egy to initialise the network weights because it works well with ReLU and ELU 

activation function. The Kaiming method is calculated as a random number with 

a Gaussian probability distribution. It gives a good range of constant variance 

for ReLU and ELU activation.  
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As discussed in section 2.8, ADAM optimisation algorithm is computa-

tionally efficient and yet able to achieve good results fast when compared to 

Adagrad and RMSProp. Thus, the model is trained (gradient descent) using the 

Adaptive Movement Estimation (ADAM) optimisation algorithm. It is a re-

placement optimisation algorithm for stochastic gradient descent for training 

deep learning models. The algorithm can operates using less memory but still 

maintain efficiency. Intuitively, ADAM combines the best properties of the 

Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square Propagation 

(RMSProp) algorithm that can handle sparse gradients on noisy problems. Fur-

thermore, learning rate decay policy can also be used with ADAM. Generally, 

it is often useful to reduce learning rate as the training progresses during the 

model training. This method will prevent the model to skip the global minimum. 

The model training applied the exponential decay policy where the learning rate 

starts from 1e-4 and decays to 1e-6.  

 

To prevent the model from overfitting, a standard model validation tech-

nique named as k-Fold cross-validation is applied. This technique split the da-

taset into k equal parts. The first part will label as testing test and the remaining 

part will label as training set. The model will be trained based on this setting. In 

the second iteration, the 2nd part will label as testing test and the remaining part 

(including the first part) will label as training set. The iteration will go on until 

all the parts are involved as training/testing set. Each iteration will return an 

accuracy score and the final score is the average of the summed score. Five-fold 

cross-validation is chosen in this research work. Finally, the model is trained 

with a batch size of 5 and 200 epochs in total. Mean Absolute Error (MAE) loss 
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function is adopted to measure the loss between the ground truth and the esti-

mated count. The formula is defined as follows: 

 

𝑀𝐴𝐸 =  
1

𝑁
෍|𝑦௜ − 𝑦௜

ᇱ|

ே

ଵ

 (3.2) 

 
where 𝑁 is the number of test data, 𝑦௜ is the ground truth and 𝑦௜

ᇱ is the predicted 

result corresponding to the  𝑖௧௛ data. Further information on MAE is discussed 

in the following section. 

 

3.4  Evaluation Metrics  

 

Typically, the deep learning model trained to estimate the crowd density 

or directly predict the crowd size is classified as a regression model. The stand-

ard evaluation metrics used to evaluate a regression model are the Mean Abso-

lute Error (MAE) and the Mean Square Error (MSE). These metrics are conven-

ient mechanisms for evaluating the amount of deviation between the ground 

truth and the predicted values and they are widely used by the researchers, in 

particular in crowd counting (Saleh, Suandi and Ibrahim, 2015; Sindagi and Pa-

tel, 2018; Fan et al., 2022). A factor contributing to the widespread utilisation 

of these metrics is their simplicity in computation and typically having a low 

level of computational complexity. Furthermore, these metrics are usually used 

as benchmarks for comparison between CNN-based crowd-counting models 

and are also used to rank the model. The MAE and MSE are defined as: 
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𝑀𝐴𝐸 =  
1
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𝑀𝑆𝐸 =  ඩ
1
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 (3.4) 

 
where 𝑁 is the number of test data, 𝑦௜ is the ground truth and 𝑦௜

ᇱ is the predicted 

value corresponding to the  𝑖௧௛ data.  

 

MAE represents the average of the absolute difference between the 

ground truth and the predicted values in the dataset. MSE represents the average 

of the squared difference between the ground truth and predicted values in the 

dataset. In general, MAE denotes the accuracy of a visual crowd counting and 

MSE denotes the robustness of a visual crowd counting. Lower score of MAE 

and MSE indicate that the model has good counting performance. The proposed 

designed SiCNN model is evaluated with MAE and MSE so that the results can 

benchmark with other research works.  

 

Despite the fact that the MAE and MSE are the standard evaluation met-

rics for crowd counting model, this research discovered that the metrics did not 

give concrete performance of a model. The metrics did not measure the behav-

iour of the model in predicting the size of a crowd. For example, a crowd count-

ing model achieved a score of 2 MAE and a score of 10 MSE, the scores only 

reveal the accuracy of the model's predictions and do not show whether the 

model consistently overestimates or underestimates the crowd size or if there is 
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a balance between these two scenarios. It is a good indicator to include into one 

of the network properties. Therefore, this study employed an additional evalua-

tion method called error rate distribution to assess the model's performance in 

crowd counting. This method is described in section 4.3. 

 

3.5  Datasets  

 

In the world of deep learning, a dataset is a collection of data used to 

train the model. A dataset is used as an example to teach the deep learning al-

gorithm how to make predictions. The proposed designed SiCNN model is val-

idated on three different public available crowd counting datasets: Shang-

haiTech dataset, UCSD dataset and Mall dataset. 

 

The ShanghaiTech dataset (Zhang et al., 2016) consists of 1198 anno-

tated images with a total of 330,165 person. The number of annotated persons 

per image is range from 33 to 3,139. This dataset is split into two parts: Shang-

haiTech part A and ShanghaiTech part B. The crowd in ShanghaiTech part A is 

extremely congested scenes randomly chosen from the Internet while Shang-

haiTech part B includes relatively sparse-crowd scenes taken from the streets of 

metropolitan areas in Shanghai city. This research work selected ShanghaiTech 

part B for validation instead due to the multiple different scenes and it fulfil the 

objective of this research work. Following the training methodology explained 

in section 3.3, the ShanghaiTech part B applied five-fold cross-validation tech-

nique for model training and model testing. The dataset successfully attempts 

to create a challenging dataset with diverse scene types and varying density 
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levels. Some samples are shown in Figure 3.2. The validation results are dis-

cussed in chapter 4. 

 

   

    

    
 

Figure 3.2 :  Samples for the ShanghaiTech part B dataset. They consist of 
different scenes with medium to high density crowd. 

   

The UCSD dataset (Chan, Liang and Vasconcelos, 2008) was among the 

first datasets created to count people. It consists of 2,000 frames taken from a 

fixed video camera at a pedestrian walkway. The dataset contains a total of 

49,885 pedestrian instances and is divided into a training set and a test set. While 

the training set contains 800 images, the test set contains the remaining 1200 

images. The number of persons is from 11 to 46 per frame. As discussed in 

section 2.9.2, the dataset was captured from a single location and there are no 

differences in the perspective of the scene between the images. Some samples 

are shown in Figure 3.3. 
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Figure 3.3 :  Samples for the UCSD dataset. It was captured on a single static 
camera. 

 

Mall dataset was collected by (Chen et al., 2012) with diverse illumina-

tion conditions and crowd densities from a surveillance camera installed in a 

shopping mall. Along with having various density levels, it also has different 

activity patterns for instance static and moving crowds. Additionally, the scene 

contained in the dataset has severe perspective distortion resulting in large var-

iations in size and appearance of objects. The dataset has a total of 2000 frames 

of size 320 x 240 with 6000 instances of labelled human objects. In comparison 

to the UCSD dataset, the Mall dataset has relatively higher crowd density im-

ages. However, as discussed in section 2.9.1, the datasets do not have any vari-

ation in the scene perspective across images. Some samples are shown in Figure 

3.4. 

 

   

Figure 3.4 :  Samples for the Mall dataset. The images come from the same 
video sequence providing no variation in perspective across im-
ages. 

 

The proposed designed SiCNN model is trained and validated on Shang-

haiTech part B where it is rich of different crowd scenes. UCSD dataset and 

Mall dataset contain only single scene which will be used to validate the cross-
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scene crowd counting performance of the SiCNN model. It is worth mentioning 

that the SiCNN model did not train with UCSD dataset and Mall dataset. These 

two datasets are act as an out of sample or unseen data to SiCNN model. The 

cross-scene performance is discussed in chapter 4. 

 

3.6  Fast Lane Method  

 

Although deep CNN can represent very complex functions and excel in 

solving computer vision task, it was addressed by (He et al., 2016) there is a 

huge barrier to obtain the optimal local minimum due to degradation of the net-

work. Therefore, this research work conducted investigation for the SiCNN 

training process and discovered that the model has vanishing gradients and zero 

weight update. These issues are causing gradient descent prohibitively slow. 

The gradient descent formula can be generally defined as follows: 

 

𝑊௡௘௪ = 𝑊௢௟ௗ − 𝑙𝑟 ∗ 
𝑑

𝑑𝑊
𝑓(𝑥) (3.5) 

 

where W is the neuron’s weight. lr is the learning rate and the 
ௗ

ௗௐ
𝑓(𝑥) is the 

gradient.   

 

More specifically during gradient descent, the back propagation from 

final layer back to the first layer will multiply the weight matrix with the gradi-

ent. If the gradients are too small for multiple multiplication, the gradient can 

decrease exponentially quickly to zero. For instance, using equation 3.5 as a 

reference, assume the gradient has a value of 1x10-6, the Wold has a value of 10. 
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The Wnew value would be literally unchanged due to the gradient is significantly 

small. This problem results in vanishing gradient and the weight is not change. 

As the model iterates eventually, it will not converge to a global optimum. Fig-

ure 3.5 and Figure 3.6 shown the gradient from the one of the convolutional 

layers and fully connected layer respectively. It can be observed that the gradi-

ents are generally range between 10-5 and 10-7. They are relatively small and 

potentially caused the model hardly to train well. 

 

 

Figure 3.5 :  Gradient values from one of the convolutional layers. 
 

 

Figure 3.6 :  Gradient values from one of the fully connected layers. 
 

CNN can be a powerhouse for major machine learning algorithm. Typ-

ically, stack more layers to the network, that is, going deeper or increasing the 

depth could increase the performance because more number of neurons are 

available to learn the abstract features. Instead of increasing the number of lay-

ers which cause the network degradation, this research work improved the 
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SiCNN model to a wider network by introduced fast lane connections to link 

between the layers. This technique is inspired by the gated shortcut connections 

of Highway Network (Srivastava, Greff and Schmidhuber, 2015). The idea is 

origin from Long Term Short Memory recurrent network. These networks allow 

unimpeded information flow across many layers on information highways.  

 

In traditional neural network, each layer feeds into the next layer. The 

goal of the fast lane connection is to feed the output of the layer directly into the 

layer about few hops away. The algorithm allows the network to learn an iden-

tity function. The layers with fast lane connection are named as residual block. 

Figure 3.7 illustrated the fast lane connections in general. 

 

 

Figure 3.7 :  The diagram shown the network with fast lane connection (re-
sidual block). The connection is skipping three layers and the x 
value is summed with the output from the 3rd convolutional 
layer before input to the next layer. 

 

In Figure 3.7, the network is trying to learn the correct mapping, i.e. F(x) 

-> H(x), where x is the input, H(x) is the expected output and F(x) is the network 

try to fit to resembles H(x). With the fast lane connection, the equation of the 

residual block is updated as follows: 
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𝐻(𝑥) =  𝐹(𝑥) + 𝑥 (3.6) 

 
It has been observed that it is easier to learn residual of output and input, rather 

than only the input. Adding a large number of fast lane connection could in-

crease the execution time that leads to slow prediction. Therefore, to strike the 

balance between accuracy and execution speed, the SiCNN model is enhanced 

by adding 1 fast lane connection to the convolutional layers and 2 fast lane con-

nections to the fully connected layers. The new model is shown in Figure 3.8. 

 

 

Figure 3.8 :  The SiCNN model with fast lane connections. 
 

The first fast lane connection is connected from the output of conv3-3 

layer and combined with the output of conv4-3 before connects to conv5-1. This 

fast lane connection is named as a convolutional block where it consists of a 

convolutional layer of 512 channel of 3x3 kernel, batch normalisation and 

ReLU activation function. The convolutional block is illustrated in Figure 3.9.  
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Figure 3.9 :  Convolutional block. 
 

There are two additional fast lane connections in the fully connected 

layers. The first lane is connected from the output of Fc3 to the input of Fc5. 

The second lane is connected from the combined output to the input of Fc6. 

Unlike the convolutional block, which connects different convolutional layer 

dimensions, the fast lane connections in the fully connected layers link every 

input neuron to every output neuron, creating a single dimension without any 

dimension issues. With the new designed fast lane connection added to the 

model, the learned features from the earlier layers can be propagated to the later 

layer and avoid the information become too abstract to learn. Larger gradients 

from the initial layers can also propagate to the deep layer and beneficial for the 

model convergence. It is worth noting that training time is reduced because 

wider models take advantage of GPUs being more efficient in parallel compu-

tations. The new result is discussed in chapter 4.  

 

3.7  Sample Selective Method  

 

A dataset serves as an example to teach the algorithm how to make pre-

dictions. Selecting the correct dataset is one of the crucial steps of successfully 

developing a quality deep learning model. Other than mitigate the network 
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degradation, this section performed investigation on the dataset participation in 

the model training.  

 

Based on observations, there were samples where the model accurately 

or closely estimated the crowd size during the early stages of its training pro-

cess. Such samples are labelled non-essential samples. Allowing these samples 

to remain involved in the training even after the model has learned to make 

accurate predictions can introduce bias into the network, which can negatively 

impact its generalisation performance. Moreover, continuing to train on would 

also consume unnecessary training resources. Furthermore, the investigation re-

vealed that the presence of outlier samples is another factor that decreases train-

ing efficiency. Samples are referred to as outliers when the difference between 

the predicted crowd size and the actual crowd size is excessively large. These 

samples will not benefit the model’s performance and it will increase the train-

ing time.  

 

Inspired from (Wang et al., 2015) work where the authors have enriched 

the training data with negative samples, whose ground truth count is set to zero. 

Essentially, the authors removed negative samples from the model training to 

improve the accuracy of crowd estimation. In this study, a sample selective 

method is formulated to reduce the impact of non-essential samples and outlier 

samples by periodically reducing their participation in the training process. The 

algorithm engages the absolute difference to identify the sample’s quality. An 

absolute difference is the distance between two numeric values; the ground truth 

and the predicted crowd size, disregarding whether is a positive value or 
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negative value. A low distance value between the ground truth and the predicted 

value indicates a non-essential sample, while a high distance value indicates an 

outlier.  

 

To determine the non-essential sample and outlier sample, two thresh-

olds denote as prediction error, 𝑡௧௥௜ and 𝑡௢௨௧ are selected. Based on the initial 

cross validation tests performed on 30% of the training data of the ShanghaiTect 

part B dataset, a 𝑡௧௥௜ of 35 and a 𝑡௢௨௧ of 150 are properly determined. The train-

ing data that did not meet the threshold criteria are temporary removed from the 

training process for several epochs. Specifically, these samples “sleeps” for 

three times in the entire 200 epochs. The “sleeps” duration is five epochs. The 

sample selective algorithm is activated at epoch number 50, 100 and 150. Figure 

3.10 illustrates the sample selective activation time. During the sample selective 

activation time, the model is train on the samples without the non-essential sam-

ples and outlier samples. Conversely, when it is not within the sample selective 

activation period, the model is trained using the entire training dataset. From the 

observation, an average of 25% active samples are removed during the sample 

selective stage.  

 

 

Figure 3.10 :  Sample selective arrangement on the training data. AS: All Sam-
ples. SS: Sample Selective. 
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In contrast to (Wang et al., 2015) work where they permanently removed 

the negative samples to improve the accuracy, resulting in not all sample from 

the dataset are participated in the model training. This may create bias that their 

model only good in predicting the crowd size using good sample and it may not 

train with sufficient data. In contrast, the sample-selective algorithm performed 

a temporal elimination of samples rather than permanently removing them from 

the model training. This temporal elimination of noisy training samples has 

clear advantages in terms of training time and accuracy. The new result is dis-

cussed in chapter 4. 

 

3.8  Summary  

 

 In this chapter, a Scene Invariant Convolutional Neural Network 

(SiCNN) model for visual crowd counting is introduced. The model is designed 

with single backbone network methodology. It consisted of 13 convolutional 

layers and 6 fully connected layers. Optimisation techniques such as power of 

two network topology, single size filter, batch norm, ADAM optimiser and k-

fold cross-validation are applied to increase the training accuracy. Three da-

tasets are applied in the model training. ShanghaiTech part B dataset is used to 

train the model while UCSD dataset and Mall dataset are treated as unseen scene 

to evaluate the model’s cross-dataset performance.  

 

Vanishing gradient and zero weight update issues are found during the 

model training. These issues are addressed and solved by the fast lane connec-

tion method where this technique brought large gradients from the initial layers 
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to the deep layer to improve the model convergence. After conducted careful 

experimental work, three fast lane connections are attached to the SiCNN 

model. The participation performance of the dataset is evaluated during the 

model training stage, revealing low-quality samples. These samples include 

non-critical samples, where the model is able to accurately or closely predict the 

correct output during the early stages of its training process, and outlier samples, 

where the model's prediction deviates significantly from the actual output. Such 

samples waste training resources and are not beneficial to the model. Therefore, 

a sample selective algorithm is designed to temporary remove the low-quality 

samples from the model training process.   

 

MAE and MSE are the evaluation metrics used to evaluate the designed 

SiCNN model. These results will be presented and discussed in detail in chapter 

4. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1 Introduction 

 

This chapter focuses on the results and discussion from this study. Sec-

tion 4.2 focuses on the training and testing results obtained from the SiCNN 

model. The results for the SiCNN model enhanced with the fast lane (FL) 

method and the sample selective (SS) method are discussed in section 4.3. This 

section also covers the benchmark the SiCNN model with the existing research 

works. Section 4.4 presented the cross-dataset performance using the proposed 

designed model and the training strategy. Section 4.5 discusses the implemen-

tation and deployment of the SiCNN model on the Edge platform. The evalua-

tion of the inference speed is also presented in this chapter. The last section 

summarises the results achieved in this chapter. 

 

4.2 SiCNN Model Results and Analysis 

 

The proposed designed SiCNN model was trained and evaluated with 

the ShanghaiTech part B dataset. As discussed in section 3.5, ShanghaiTech 

part B was chosen for validation in this research because the dataset contains 

several different scenes. This dataset fulfils the objective of analysing the per-

formance of the model in scene invariant crowd prediction. The model was 

trained with the training methodology presented in section 3.3. The primary 
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evaluations were conducted on an Ubuntu 18.04 LTS (Long Term Support) 

computer using an AMD Ryzen Threadripper with 16 cores (2.0 GHz per core) 

and GeForce RTX 2080 Ti with 4352 CUDA core. The SiCNN model is imple-

mented in Python 3.7.5 using PyTorch v1.7.1 libraries. PyTorch is a machine 

learning framework based on the open-source Torch library that excel in creat-

ing deep neural networks. It is one of the preferred platforms for deep learning 

research. Five-fold cross-validation is deployed to evaluate the model using the 

MAE and MSE evaluation metrics (discussed in section 3.4). The variations in 

the MAE and MSE scores were recorded, beginning with high values at the 

initial epochs and eventually reaching convergence at 200 epochs. The MAE 

and MSE scores were obtained at each iteration of the five-fold cross-validation, 

yielding a total of five sets of scores. The final accuracy score of the SiCNN 

model was determined by averaging these scores. The results were verified and 

given in Table 4.1.  

 

Table 4.1: MAE and MSE results of the SiCNN model. 
 

Five-fold cross-valida-
tion MAE MSE 

1st iteration 14.6 22.3 
2nd iteration 13.6 21.3 
3rd iteration 13.5 20.8 
4th iteration 13.4 20.4 
5th iteration 13.1 20.9 

Average 13.6 21.1 
 
 

The SiCNN model crowd prediction accuracy is evaluated and achieved 

the MAE of 13.6 and MSE of 21.1. The scores were calculated by taking the 

average of the results from each iteration in the five-fold cross-validation. This 

is the baseline results for the SiCNN model. The recorded MAE score from each 
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iteration is between 13.1 and 14.6, while the recorded MSE score is between 

20.8 and 22.3. The results show that the prediction error of the model is approx-

imately ±13 counts from ground truth. As an example, if the actual number of 

people in a crowd image is 100, the model's prediction of the crowd size would 

typically fall within a range of 90 to 110 people. Some of the results are illus-

trated in Figure 4.1. 

 

 
GT: 23, C: 20 

 
GT: 92, C: 99 

 
GT: 54, C: 48 

 
GT:170, C: 181 

Figure 4.1 :  Some results on the ShanghaiTech part B dataset. GT is the 
ground truth of the image, and C is the predicted count by the 
SiCNN model. 

 

 

4.3 SiCNN Model using Fast Lane and Sample Selective Methods Re-

sults and Analysis 

 

Section 3.6 and 3.7 addressed and examined the network degradation 

and the issue with the dataset participation. The investigation revealed that the 

network performance was impacted by the vanishing gradients and low-quality 
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samples. Therefore, in chapter 3, the fast lane method (FL) and the sample se-

lective method (SS) were discussed to improve network performance.  

 

To assess the efficacy of the fast lane technique in enhancing network 

gradient, gradients from one of the convolutional layers were recorded prior to 

and after implementing the method. The changes are illustrated in Figure 4.2. 

 

 
(a) 

 

 
(b) 

  
Figure 4.2 :  The results of fast lane method deployment to the SiCNN model. 

(a) before deployment, (b) after deployment. 
 



 

 65 

From the Figure 4.2 (a), the distribution of the neurons contained small 

value of gradient are mainly gathered at the exponent of -6. There were approx-

imately 50,000 neurons with gradients exponentiating to -6, 20,000 neurons 

with gradients exponentiating to -5, 10,000 neurons with gradients exponentiat-

ing to -4, 7,000 neurons with gradients exponentiating to -3, and the remainder 

of the neurons had gradients exponentiating to -2. The observation indicated 

that when the gradient is extremely small, the network's weights are barely up-

dated to new values. Upon deployment of the fast lane method to the model, 

Figure 4.2 (b) displays a slight shift in the gradients away from exponent -6, 

with the gradients now primarily concentrated at exponent -5. The results 

demonstrate that the deployment of the fast lane method can improve the gradi-

ent values to a healthier (slightly larger) range, which allows the network to 

converge more effectively. The SiCNN model was retrained using the Shang-

haiTech part B dataset and the same training methodology (as described in sec-

tion 3.3) with the implementation of the fast lane method, and its performance 

was re-evaluated using the same evaluation metrics (outlined in section 3.4). 

This model is named as SiCNN + FL. The new results are presented in Table 

4.2. 

 

In order to reduce the participation of low-quality samples in the model 

training, a sample selective algorithm is introduced and discussed in section 3.7. 

The algorithm is designed to identify non-essential and outlier samples, which 

are then temporarily excluded from the model training. The model is retrained 

using the same methodology and is now referred to as SiCNN + FL + SS. To 

clearly showcase the performance of the algorithm, the training curves for the 
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SiCNN network, SiCNN + FL network, and the SiCNN + FL + SS network are 

illustrated in Figure 4.3. 

 

 

Figure 4.3 :  The contrast curves of the training error between the SiCNN 
model, SiCNN + FL model and SiCNN + FL + SS model. FL: 
Fast Lane. SS: Sample Selective 

 

As illustrated in the figure, it can be easily observed that the curve cor-

responding to the SiCNN network is more oscillating and its amplitude is larger 

in the early training stage. With the deployment of fast lane (FL) method, its 

amplitude is reduced and the overall training error is improved compared with 

the SiCNN network. The introduction of sample selective (SS) method where 

the curve corresponding to the SiCNN + FL + SS network indicate the method 

improves the stability and facilitates the network convergence. The performance 

of the proposed model is illustrated in Figure 4.4. Besides, the methods are com-

pared with the existing research works and the results are given in Table 4.2. 

Some of the results, using the same image index numbers as in Figure 4.1, are 

displayed in Figure 4.5.  
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Figure 4.4 :  Performance evaluation on ShanghaiTech Part B dataset. The 
MAE and MSE are clearly decreased from SiCNN to SiCNN + 
FL + SS model. 

 

Table 4.2: Comparison of performance (MAE and MSE) of the proposed ap-
proaches with the state-of-art CNN-based methods. 

 
Method MAE MSE 

Switching-CNN 
(Sam, Surya and Babu, 

2017) 
21.6 33.4 

BSAD 
(Huang et al., 2018) 

20.2 35.6 

Cascaded-MTL 
(Sindagi and Patel, 2017) 

20.0 31.1 

Multi-Scale CNN 
(Zeng et al., 2018) 

17.7 30.2 

DRSAN 
(Liu et al., 2018a) 

11.1 18.2 

Fully-CNN 
(Liu et al., 2018b) 

10.1 18.8 

LSC-CNN 
(Sam et al., 2021) 

8.1 12.7 

SiCNN (ours) 13.6 21.1 
SiCNN + FL (ours) 10.1 16.0 

SiCNN + FL + SS (ours) 8.8 13.7 
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SiCNN + FL - GT: 23, C: 22 

SiCNN + FL + SS - GT: 23, C: 24 

 

 
SiCNN + FL - GT: 92, C: 95 

SiCNN + FL + SS - GT: 92, C: 90 

 

 
SiCNN + FL - GT: 54, C: 52 

SiCNN + FL + SS - GT: 54, C: 54 

 

 
SiCNN + FL - GT: 170, C: 165 

SiCNN + FL + SS - GT: 170, C: 173 

 
Figure 4.5 :  Some results on the ShanghaiTech part B dataset. GT is the 

ground truth of the image, and C is the predicted count from the 
model respectively. 

 

As indicated in the table, the SiCNN model produced baseline results of 

a MAE of 13.6 and a MSE of 21.1. The errors obtained are lower compared to 

the results from previous studies by (Sam, Surya and Babu, 2017; Sindagi and 

Patel, 2017; Huang et al., 2018; Zeng et al., 2018), who employed a multi-col-

umn network design approach. The implementation of the fast lane connection 

technique leads to a reduction in the crowd estimation error, resulting in an im-

provement of 25.7% in MAE to 10.1 and 24.2% in MSE to 16.0. The reduction 

in error demonstrates that the fast lane connection method effectively addresses 

the problem of vanishing gradients, which was a contributing factor to the deg-

radation of the network.  

 

The introduction of the sample selective algorithm led to a further de-

crease in the MAE and MSE scores, with the scores now being 8.8 (a 12.9% 
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improvement) and 13.7 (a 14.4% improvement), respectively. Training with the 

removal of low-quality samples shows significant advantage in error reduction. 

The results were compared with research using the single-column design (Liu 

et al., 2018a; 2018b) and showed better accuracy. The SiCNN + FL + SS model 

exhibits slightly weak results compared to the LSC-CNN model, with a differ-

ence of 0.2-1.0 in the MAE and MSE scores between the two models. Their 

work uses a dense detection framework to detect heads of human. However, 

heavy annotation of the human head must be done for each new scene, leading 

to human error and a large amount of time spent on verification. In total, the 

SiCNN + FL + SS model showed a 35% and 39% reduction in MAE and MSE 

respectively, compared to the baseline SiCNN model.  

 

To analyse the concrete performance of the proposed model using the 

ShanghaiTech part B dataset, comparison between the estimated results and the 

ground truth on several images selected from the dataset is conducted. To pro-

vide a clearer and more intuitive comparison, 40 images from the dataset have 

been selected and divided into four categories based on crowd density. These 

categories are low density, medium density, high density and dynamic density. 

As described in section 3.4, the evaluation metrics MAE and MSE only indicate 

the prediction error of the model but not the predictive behaviour of the model. 

To thoroughly evaluate the performance of the model in estimating crowd den-

sity, an error rate distribution analysis is performed on the four crowd density 

categories. The formula for the error rate distribution is defined as follows: 
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𝐸௜ =  
𝑦௜

ᇱ −  𝑦௜

𝑦௜
  

 
(4.1) 

 
where 𝐸௜ represents the error rate of the ith image, 𝑦௜

ᇱ represents the estimated 

results of the ith image and 𝑦௜ represents the ground truth of the ith image. Anal-

ysis of the error rate distribution can measure how often the model underesti-

mates or overestimates the size of the crowd. The comparison between the esti-

mated results and the ground truth based on the four categories of crowd density 

are shown in Figure 4.6 (a), Figure 4.6 (c), Figure 4.6 (e) and Figure 4.6 (g) 

respectively. The error rate distribution for each group is depicted in Figure 4.6 

(b), Figure 4.6 (d), Figure 4.6 (f) and Figure 4.6 (h) in that order. The crowd 

density categories are ordered from low density to medium density, then to high 

density and finally to dynamic density.  
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
Figure 4.6 :  Performance of the SiCNN network on Shanghaitech part B da-

taset. (a), (c), (e) and (g) are the comparison of the estimated re-
sults and ground truth for crowd density of low, medium, high 
and dynamic respectively. (b), (d), (f) and (h) are the error rate 
distribution for crowd density of low, medium, high and dy-
namic respectively. 
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The comparison figures indicate that the estimated results are mostly 

aligned with the ground truth. The images with a crowd size less than 30 pedes-

trians are classified as low-density, while those with a crowd size ranging be-

tween 200 and 270 are categorized as medium-density. The images with a crowd 

size greater than 300 pedestrians are considered high-density. The dynamic den-

sity category contains images randomly selected from the ShanghaiTech part B 

dataset. The results show that there is some fluctuation in the crowd estimation 

as the crowd size increases. However, the model performs fairly well in predict-

ing the dynamic crowd size.  

 

From the distribution, it can be seen that the error rate in the four cate-

gories of crowd density lies in the interval of [-0.22, 0.14], [-0.05, 0.04], [-0.04, 

0.06] and [-0.15, 0.15] respectively. All the distribution are mainly centralised 

in the interval of [0, 0.1]. In fact, it can be deduced from this analysis that the 

model slightly overestimated the size of the crowd, given the difficult charac-

teristics of the ShanghaiTech part B dataset. Nevertheless, the proposed de-

signed model and methods have a preferable performance on this dataset. 

 

4.4 Cross-dataset Evaluation 

 

To show that the proposed model has better generalise to unseen scenes, 

cross-dataset evaluation is conducted. Instead of evaluating the quality of the 

model solely based on one dataset, cross-dataset evaluation is capable to evalu-

ate the model performance from a different angle. Model with better generali-

sation enables the ability to adapt properly to new, previously unseen data rather 
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than always retrain the model for a new scene which is often time consuming. 

In this experiment, the UCSD dataset and the Mall dataset are treated as unseen 

scenes for the SiCNN + FL + SS model. For cross-dataset evaluation, 40 sam-

ples are selected from each testing set and are evaluated using the proposed 

model. The evaluation is carried out using the MAE and MSE metrics.  

 

The experimental results are given in Table 4.3 and illustrated in Figure 

4.7. The cross-dataset evaluation is extended to benchmark with the state-of-art 

approaches. The benchmark results are given in Table 4.4 and Table 4.5 for 

UCSD dataset and Mall dataset respectively. Some of the results are illustrated 

in Figure 4.8. The error distribution was analysed again to evaluate the results, 

and the graphs are presented in Figure 4.9. Some of the comparison examples 

are illustrated in Figure 4.10. 

 

Table 4.3: Generalisation to unseen datasets. “S_B”, “U” and “M” are de-
noted as ShanghaiTech part B, UCSD and Mall. In “S_B→U” 
and “S_B→M” indicate ShanghaiTech part B is used for training, 
then test on UCSD and Mall. 

 
 

Method 
S_B→U 

MAE      MSE 
S_B→M 

MAE      MSE 
SiCNN 4.13       5.23 3.22       3.97 

SiCNN + FL 3.79       4.84 2.75       3.66 
SiCNN + FL + SS 3.29       4.21 2.21       3.09 
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Figure 4.7 :  Cross-dataset evaluation results of the proposed model. 
 

Table 4.4: Comparison of performance (MAE and MSE) of the cross-dataset 
evaluation results with the state-of-art methods tested in UCSD 
dataset. FL: Fast Lane. SS: Sample Selective. 

 

Method MAE MSE 
Weighted V-LAD 

(Sheng et al., 2018) 
2.86 3.61 

Switching-CNN 
(Sam, Surya and Babu, 

2017) 
1.62 2.10 

Cross-scene CC 
(Zhang et al., 2015) 

1.60 3.31 

DA-NET 
(Zou et al., 2018) 

1.03 1.31 

SiCNN (ours) 4.13 5.23 
SiCNN + FL (ours) 3.79 4.84 

SiCNN + FL + SS (ours) 3.29 4.21 
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Table 4.5: Comparison of performance (MAE and MSE) of the cross-dataset 
evaluation results with the state-of-art methods tested in Mall da-
taset. FL: Fast Lane. SS: Sample Selective. 

 

Method MAE MSE 
MoCNN 

(Kumagai, Hotta and Ku-
rita, 2018) 

2.75 3.66 

DRSAN 
(Liu et al., 2018a) 

1.72 2.10 

E3DNet 
(Zou et al., 2020) 

1.64 2.13 

SAANet 
(Hossain et al., 2019) 

1.28 1.68 

SiCNN (ours) 3.22 3.97 
SiCNN + FL (ours) 2.75 3.66 

SiCNN + FL + SS (ours) 2.21 3.09 
 

 

 
(a) 

 
(b) 

 
Figure 4.8 :  Cross-dataset evaluation results of the SiCNN + FL + SS net-

work on unseen dataset. (a) UCSD dataset (b) Mall dataset. 
 

 

 
(a) 

 
(b) 

 

Figure 4.9 :  Error distribution analysis of the SiCNN + FL + SS network on 
unseen dataset. (a) UCSD dataset (b) Mall dataset. 
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GT: 28, C: 30 

 

 
GT: 17, C: 17 

 

 
GT: 47, C: 48 

 

 
GT: 39, C: 37 

 
Figure 4.10 :  Some results on the UCSD dataset (top) and Mall dataset (bot-

tom). 
 

The SiCNN model showed results of MAE 4.13 and MSE 5.23 when 

evaluated on the UCSC dataset and MAE 3.22 and MSE 3.97 when evaluated 

on the Mall dataset, as indicated in the table. The SiCNN + FL + SS model 

further reduced the errors to 3.29 for MAE and 4.21 for MSE when evaluated 

using the UCSC dataset, and to 2.21 for MAE and 3.09 for MSE when evaluated 

using the Mall dataset. To summarize, the SiCNN + FL + SS model resulted in 

a 20.3% decrease in MAE and a 19.5% decrease in MSE for the UCSC dataset, 

and a 31.4% decrease in MAE and a 22.2% decrease in MSE for the Mall da-

taset. The results further demonstrated the proposed designed algorithms have 

advantages in improving the network’s performance. The estimated results 

shown in Figure 4.8 are mostly in line with the ground truth. While there are a 

few spikes present, the overall curve is relatively smooth. Based on the error 

distribution analysis, the model's crowd prediction behaviour is consistent with 
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previous results presented in Figure 4.6, with the model tending to overestimate 

crowd size in most cases.   

 

Benchmarking is a process to measure the quality and performance of 

the network with the existing work. It can determine the gap between the results 

and the existing state-of-art research works. To analyse the cross-dataset evalu-

ation performance, comparison between the results and the existing research 

works was conducted. From the comparison given in Table 4.4 and Table 4.5, 

the proposed model could not outperform the current state-of-art methods. Their 

methods have 13% to 40% better performance compared with the SiCNN + FL 

+ SS model. However, their research works are conducted using the training-

testing protocol. It is envisaged that their models generally cannot achieve good 

accuracy when testing on unseen scenes. Thus, their methods did not have better 

generalisation to previously unseen data. To adapt to a new scene, extra effort 

is needed to retrain the model for any new dataset which is time intensive.  

 

As of this point, the proposed designed model had been evaluated with 

the evaluation metrics and cross-dataset evaluation. The results were studied 

and discussed comprehensively in the previous section. Last but not least, this 

study conducted an evaluation to determine the minimum level of accuracy that 

is acceptable to the end user. To conduct the analysis, this research work utilised 

the mean relative error (MRE). The MRE was defined how large the error is 

relative to the actual value (ground truth). The definition of MRE is given as 

follows: 
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𝑀𝑅𝐸 =
1

𝑁
෍ ቤ

𝑦௜
ᇱ −  𝑦௜

𝑦௜
ቤ

ே

௜ୀଵ

 × 100%  
 

(4.2) 

 
where N is the number of test data, 𝑦௜ is the ground truth and 𝑦௜

ᇱ is the estimated 

results corresponding to the ith image. According to an internet study conducted 

by Regazzoni (Regazzoni, Tesei and Murino, 1993), “The end users accept a 

mean error of 20% with respect to the real number of people present in a scene”. 

Due to the study was carried out few decades ago, this research work hypothe-

sizes that nowadays with the advancement of technology and better algorithms, 

the end users can accept a mean error of 10% with respect to real number of 

people appear in a scene. A lower MRE value indicates a higher estimation pre-

cision. The same 40 samples selected from Shanghaitech part B dataset, UCSD 

dataset and Mall dataset were used to assess the level of acceptance by end-user. 

The proposed designed model achieved an average MRE of 7.8%. The achieve-

ment meets the minimum accuracy requirements of the system operator (end 

user). 

 

4.5 Inference Speed Analysis 

 

Developing a low-latency crowd counting model that can be leveraged 

in real time is another interesting question and rarely addressed by researchers. 

There is a contradiction between the inference speed and the accuracy. This is 

known by speed-accuracy trade-off (Huang et al., 2017). The hypothetical 

speed-accuracy trade-off curves is illustrated in Figure 4.11.  
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Figure 4.11 :  Hypothetical speed-accuracy trade-off curves of the network. 
 

According to the figure, a model with high accuracy may have a slow 

inference speed. While most existing methods have impressive accuracy, they 

tend to use deep model structures with a large number of layers. As the number 

of layers increases, more neurons must be processed, leading to a decrease in 

the inference speed. Since most research works did not evaluate the inference 

speed, it is speculated that their results do not meet the level of performance that 

would be acceptable to end users in terms of execution speed. 

 

It is important to assess the inference speed of the proposed model so 

that it meets the standards of acceptance by the end user. With the invention of 

an affordable and powerful edge embedded platform, many deep learning algo-

rithms are implemented on the edge side. The benefit of processing at the edge 

platform is to reduce the strain on network bandwidth by avoiding the transmis-

sion of large amounts of images to the server, which can cause lag issues. By 

performing crowd prediction at the edge, only the results are sent to the central 

server. Therefore, to better evaluate the inference speed, the proposed model is 

tested on the NVIDIA Tx2 board and the Intel Up board, both of which are 

specifically designed for edge processing. 



 

 80 

 

The specification of the NVIDIA Tx2 board consists of a quad-core 

2GHz ARM CPU, 8GB of RAM and 256 CUDA cores. The test was imple-

mented using the same computer setting mentioned in section 4.2, which con-

sists of an Ubuntu operating system, Python 3.7.5 and PyTorch v1.7.1 libraries. 

The inference of the model was configured to be executed using the CUDA 

cores where the memory allocation and the calculation in the CUDA cores being 

managed automatically by the PyTorch framework. Despite the limited re-

sources of the embedded board, the proposed model is capable of performing 

crowd estimation at an average inference speed of 2.51 seconds. 

 

On the other hand, the test on the Intel Up board was conducted using a 

quad-core 1.44GHz Atom CPU, 4GB of RAM and an integrated 500MHz Intel 

GPU. The testing was carried out using the same operating system and library 

settings as in the NVIDIA Tx2 board, but with the added use of the OpenVINO 

toolkit. The toolkit consists of two components: the model optimiser (MO) a.k.a. 

the trained model and the inference engine (IE). The proposed designed model 

was configured to be optimised by the MO and generates an IE for optimal per-

formance when running in the Intel GPU. A user application is programmed to 

interact with the IE to obtain the results. The OpenVINO architecture is illus-

trated in Figure 4.12. The proposed model can achieve an average inference 

speed of 3.43 seconds, which is slightly slower than the NVIDIA Tx2 board. 

This is because the CUDA core excels at matrix multiplication, and deep learn-

ing models heavily rely on this process. The results reiterate the suitability of 

the proposed model for practical applications. To ensure thoroughness, the 
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proposed model’s inference speed is measured using the computing specifica-

tions described in section 4.2. The model achieved an average inference speed 

of 31.7ms. 

 

 

Figure 4.12 :  OpenVINO architecture used in this research work. (Castro-
Zunti, Yépez and Ko, 2020) 

 
 
4.6 Summary 

 

 In this chapter, the proposed designed SiCNN model, labeled as the 

baseline model is evaluated using the evaluation metrics (MAE and MSE) 

through five-fold cross validation. The Shanghaitech part B dataset was used as 

a training and testing set. The results were recorded at 13.6 for MAE and 21.1 

for MSE. Some of the results are shown in Figure 4.1. To address the issue of 

network degradation causing vanishing gradients, the baseline model was fur-

ther improved by introducing the fast lane method, which facilitates the transfer 

of larger gradients from the early layers to the later layers. The verification of 

the method is given in Figure 4.2. The Fast Lane method has been proven to 

enhance the gradients to a more desirable value instead of a very small value. 

The baseline model was retrained to obtain a new set of results, leading to the 

creation of a new model named SiCNN + FL. The SiCNN + FL model achieved 
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a MAE of 10.1 and MSE of 16.0, resulting in a 25.7% improvement in MAE 

and a 24.2% improvement in MSE.  

 

 Further investigation of the dataset participation was conducted. Sample 

selective method was introduced to weight down the non-essential sample and 

outlier sample. These samples are temporary “sleep” for a few epochs during 

the training and “wake” to rejoin the training process. The sample selective 

method was successful in reducing the error to 8.8 MAE (an improvement of 

12.9%) and 13.7 MSE (an improvement of 14.4%) compared to the SiCNN + 

FL model. The new model is referred to as the SiCNN + FL + SS model. In 

total, the MAE and MSE of the SiCNN + FL + SS model improved by 35% and 

39% respectively from the baseline SiCNN model. Lastly, the model was bench-

marked with the current state-of-art research works. 

 

 Cross-dataset evaluation is conducted to assess the scene invariant per-

formance. The final model SiCNN + FL + SS was trained using the Shang-

haitech part B dataset while the UCSD dataset and Mall dataset were treated as 

unseen data. The evaluation of the model's scene invariant performance rec-

orded MAE values of 3.29 and 2.21 for the UCSD and Mall datasets respec-

tively, with corresponding MSE values of 4.21 and 3.09. These results were 

compared with those from previous works.  

 

 Finally, the final model was deployed on two edge computing platforms, 

the NVIDIA Tx2 board and Intel Up board. The inference speed was measured 

and recorded to be 2.51 seconds on the NVIDIA Tx2 board and 3.43 seconds 
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on the Intel Up board. The NVIDIA Tx2 board demonstrated better performance 

in terms of speed due to its strong ability in matrix multiplication, which is cru-

cial for deep learning models. 

 

 In conclusion, the results obtained were thoroughly analysed, verified, 

and discussed in detail in the respective sections of this chapter. 
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CHAPTER 5 

 

DISCUSSION AND CONCLUSION 

 

5.1 Introduction 

 

In the introduction to this thesis the problems associated with crowd 

counting were discussed in detail. The discussions pointed out that although 

significant improvements have been made in estimating the crowd density from 

a complex scene, the problem of the crowd counting model that can perform in 

different scene remains a concern. The existing models perform well when test-

ing with the dataset that is also used for training. Their accuracy drops drasti-

cally when models are applied to unseen datasets or unseen scene. Therefore, 

this thesis argues that this justifies putting efforts into research in scene invariant 

crowd counting. 

 

5.2 Traditional Crowd Counting Method Problem 

 

The discussions in section 1.1 highlighted the limitation of traditional 

crowd counting approaches. In the early stages of research, detection and re-

gression approaches utilising hand-crafted features were commonly used for 

crowd prediction. However, crowd scenes bring numerous challenges such as 

occlusions, objects that are both static and dynamic, non-uniform distributions 

of people, and uneven illumination, which limit the effectiveness of these ap-

proaches. As a result, the advent of CNNs in addressing computer vision 
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challenges has led to the implementation of CNN-based crowd counting in this 

field of research, replacing the previously used hand-crafted feature detection 

and regression methods which had limitations in handling occlusions, static and 

dynamic objects, non-uniform distribution of people, and non-uniform illumi-

nation in a crowd scene. The main purpose of this thesis was to analyse the 

capability of CNN methods and then design a new model suitable for uncom-

plicated implementation in crowd counting applications.    

 

5.3 Density Map Problem 

 

Another problem that is highlighted in the section 1.1 is the crowd esti-

mation based on density map. The difficulties lie in the creation of density maps 

and making predictions based on them. Prior to training a model to predict the 

density map, it is necessary to generate the ground truth density map from the 

dataset through the process of density map generation using a Gaussian kernel. 

However, the bandwidth parameters of the kernel are often selected manually 

and can be dependent on the specific dataset, meaning that the same parameters 

may not perform optimally on other datasets. It is a time-consuming process to 

manually select the parameters for each new dataset.  

 

Furthermore, the max-pooling layers employed in the network and the 

Euclidean loss used for optimisation have been recognised to be problematic, 

leading to a decrease in accuracy due to the resulting down-sampled density 

map. Therefore, this thesis chose to use global regression for crowd prediction, 

where the total crowd size is estimated directly from the image without relying 
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on the density map. This approach avoids the issues associated with training the 

model on low-quality density maps. 

 

5.4 Specific Scene Crowd Counting Problem 

 

Section 2.4's discussions emphasised the issue with the crowd counting 

model's limitation in only performing optimally in specific environments. The 

main goal of a deep learning model is able to achieve good generalisation abil-

ity. Current methods typically adopt the training-testing protocol within a single 

dataset and their accuracy declines when applied to unseen datasets. The major-

ity of existing methods require retraining on a new scene, which is not practical 

in real-world scenarios as it would be costly to obtain annotations for every new 

scene. Thus, the main motivation for this thesis was to develop a new model 

that generally only needs to be trained once and can perform crowd counting in 

diverse, previously unseen environments with a reasonable degree of accuracy.  

 

5.5 Designing a Scene Invariant Convolutional Neural Network Model 

 

This thesis has investigated and developed a Scene Invariant Convolu-

tional Neural Network (SiCNN) model, driven by the benefits of a CNN model 

capable of performing crowd counting in diverse scenarios. The SiCNN model 

is designed to carry out cross-scene crowd counting without the requirement of 

re-training the model specifically for each new scene. The methodology for de-

signing the SiCNN model is thoroughly discussed in Chapter 3. 
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The architecture of the SiCNN model is designed with 13 convolutional 

layers and 6 fully connected layers, inspired by the superior generalisation and 

success of the VGG-16 architecture. The selection of a 3x3 filter size as the 

kernel or filter size in this study brings advantages in terms of reduced trainable 

parameters while still preserving the image details. Batch Norm technique is 

applied as pre-activation to normalise the neurons’ output before the activation 

function to avoid overfitting. To effectively highlights the image features and 

facilitate flexible crowd size estimation, as reported in section 3.2, the ReLU 

activation function is utilised in convolutional layers and ELU activation func-

tion is employed in fully connected layers. As reported in section 2.7, Kaiming 

weight initialisation strategy is chosen to initialise the network weights because 

it works well with the chosen activation functions.  

 

Finally, the SiCNN model is trained using the ShanghaiTech part B da-

taset. As reported in section 4.2, ShanghaiTech part B dataset contains multiple 

different scenes that compliance the objective to support the proposed designed 

model learn to perform crowd counting across different scenes. The evaluation 

results revealed that the SiCNN model achieved a lower MAE and MSE score 

in comparison to the multi-column model, which is a commonly utilised method 

for density map prediction. The evaluation results also clearly indicate that fur-

ther error reduction could be accomplished by addressing the vanishing gradient 

problem in the network and the participation of low-quality samples in the 

model training. These problems were reported in section 4.3. 
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5.6 Solving the Vanishing Gradient Problem 

 

The network’s degradation problem that highlighted in section 3.6 is the 

vanishing gradient. This problem results in the difficulty of updating the net-

work’s weight to new values during model training when the gradient is very 

small. This leads to the network convergence reduction. The investigation re-

sults are reported in Figure 3.5 and Figure 3.6 where the very small gradient are 

found in the convolutional layers and fully connected layers. Therefore, the fast 

lane method is proposed to address this problem where it is designed as a 

“bridge” to connect the output of a layer into the layer about few hops away. 

The analysis reported in section 4.3 show that the fast lane method enables the 

learned features from the earlier layers to propagate to the later layer resulting 

in the gradient values are shifted to a healthy level that adequate to update the 

network’s weights. Therefore, this led to improved model convergence and a 

reduction in prediction error, resulting in the creation of the SiCNN + FL model. 

The details of this approach are documented in section 3.6. The results of im-

plementing the fast lane method are presented in Table 4.2.  

 

5.7 Solving the Low-quality Samples Problem 

 

Another concern in the model training process was the inclusion of low-

quality samples. The analysis reported in section 3.7 revealed the presence of 

samples that did not contribute to the learning of the model. These samples are 

either accurately predicted by the model early on or their predicted count con-

sistently deviates significantly from the ground truth. As a result, a sample 
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selection algorithm was developed to identify non-essential and outlier samples 

based on the prediction error using threshold values. These samples are tempo-

rarily removed from the training process, as indicated by the activation time 

shown in Figure 3.10. By down-weighting the low-quality samples, the model 

accuracy was improved and the prediction error was further reduced. This re-

sulting model is referred to as SiCNN + FL + SS. The detail of this method is 

documented in section 3.7. The result of sample selective algorithm is reported 

in table 4.2. 

 

5.8 Scene Invariant Performance 

  

The scene invariant performance of the proposed designed model 

(SiCNN + FL + SS) was evaluated and studied and the results are reported in 

section 4.4. This model was trained with the ShanghaiTech part B dataset where 

it is rich with different crowd scene. Two additional datasets, considered as un-

seen or untrained scenes, were then used to evaluate the proposed model. The 

scene-invariant performance was evaluated using the MAE and MSE metrics. 

The evaluation results of the SiCNN + FL + SS model show that it falls within 

an acceptable range for end-users. The evaluation results were compared with 

the state-of-art methods reported in section 4.4. Although the proposed designed 

model could not outperform them, it is envisaged that their models only work 

well in single dataset that used to train the respective model and have possibility 

could not perform well in another dataset.  
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To counteract the drawback of the MAE and MSE metrics outlined in 

section 3.4, error rate distribution is employed. The metric assesses the accuracy 

of the model in predicting the crowd size, both in cases of overestimation and 

underestimation. Further information can be found in section 4.3. The SiCNN 

+ FL + SS model performs well in crowd prediction regardless of the scene, 

with a tendency towards slightly overestimating the crowd size. The results are 

presented in section 4.3. 

 

To achieve a certain level of comprehensiveness in this research, the 

inference speed of the designed model, which is seldomly mentioned in other 

research, was evaluated. Despite the intricate design, the SiCNN model delivers 

inference speed that is suitable for end-users. The novelty of this study lies in 

the combination of techniques applied to the SiCNN model. As a result, a deep 

learning model for crowd counting has been developed that can perform well in 

various crowd scenes with an efficient inference speed. 

 

5.9 Contributions 

 

 This section describes the contributions made by this thesis. The contri-

butions are classified into main contributions based on the work carried out in 

this thesis and contribution based on previous work. This classification is, of 

course, subjective and represents the author’s opinion. The references in the pa-

renthesis refer to the corresponding sections in the thesis. 
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5.9.1 Main Contributions from this Thesis 

 

i. A convolutional neural network-based model for visual crowd 

counting was designed, developed and proven experimentally (sec-

tion 4.2). 

ii. An extended CNN-based crowd counting model for scene invariant 

crowd prediction was designed and tested (section 3.6 and section 

4.4) 

iii. A model optimisation strategy method for training has been pro-

posed and tested (section 3.7 and section 4.3). 

 

5.9.2 Other Contributions 

 

i. Created an activation schedule for sample selective method activa-

tion during model training (section 3.7).  

ii. Determined that the SiCNN + FL + SS model surpasses most of the 

CNN-based model designed with single-column, multi-column, den-

sity map prediction and crowd regression methods (section 4.3). 

iii. Revealed from the experimental results that evaluation metrics have 

limitation in reflecting the quality of the model (section 3.4).  

iv. Demonstrated from the measurement analysis that the proposed 

model meets the minimum accuracy requirement acceptable to the 

end-user (section 4.4). 
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v. Shown, with the aid of experimental work, the proposed model can 

attain an acceptable inference speed when executed on an edge plat-

form with limited processing capabilities (section 4.5). 

 

5.10 Limitation and Future Direction 

 

One limitation of the current study is the lack of spatial information. The 

proposed designed model is capable to predict the total crowd size within a rea-

sonable time frame. While the model results were studied and tested, the spatial 

information is absent. Spatial information can be valuable in determining the 

location of the crowd within an image. For example, the density map can iden-

tify the "hot spot" where the crowd gathers in a scene. This is particularly useful 

in crowd analysis applications. Despite its usefulness, generating density maps 

in real time is a complex task. The ability of the current model to predict the 

total crowd size in real time is expected to benefit the surveillance industry. The 

proposed designed model can be deployed in surveillance camera systems for 

real-time crowd prediction, reducing the strain on network bandwidth from 

transmitting images.  

 

Another limitation that can affect the robustness of this study is the poor 

quality of camera input. Low quality camera input may introduce noise, artifacts 

or distortions in the images. This can lead to false patterns in the data, making 

it difficult for the model to correctly learn and generalise from the input. More-

over, blurriness in the camera input can obscure essential details, impacting the 

model’s ability to highlight useful features that leads to disrupt the learning 
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process and cause the model lack of crucial context to predict the crowd. Lastly, 

the robustness of a CNN model can be affected by the poor-quality camera that 

struggle with variations in lighting conditions. This leads to inconsistent image 

brightness and contract. The model may fail to adapt to such changes, affecting 

its generalisation capabilities.  

 

Further studies should be conducted to minimize the crowd prediction 

error and enhance the model's performance in scene-invariant scenarios. The 

current results were not the best in terms of error compared to other research 

studies. A preliminary study on the use of transfer learning in crowd counting 

was recently conducted (Khalifa et al., 2022), however, it was only tested on the 

Mall dataset which is a relatively small evaluation scale. Further studies on lev-

eraging a trained model through transfer learning to perform cross-scene crowd 

prediction should be conducted. The results obtained from such studies are cru-

cial for improving the generalisation of the model. 

 

Another direction of further studies is the implementation of multi-task 

framework. This technique not only account for crowd counting but also for 

task like crowd segmentation and crowd density classification. It is important 

to further furnish the designed model with deeper understanding of the crowd 

scene. Although multi-task framework can assist each other task to increase the 

overall accuracy of the network, the employability for real time application will 

be reduced due to the network complexity. It is a nascent area of research to 

strike the balance between the accuracy and the inference speed. 
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Finally, this study showed the deployment of the designed model on the 

edge platform, which achieved an acceptable inference speed. The current de-

ployment used the default optimisation of the edge platform framework for ar-

ranging its resources during model inference. Further studies to create a cus-

tomised framework for managing resources, such as allocating processing 

cores, to enhance the execution time of the model should be conducted.   
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