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ABSTRACT 

 

Verification of Microprocessor without Interlocked Pipeline (MIPS) 

Processor using Self-Checking Testbench 

 

Teng Wen Jun 

 

MIPS stand for Microprocessor without Interlocked Pipeline Stages. It is a reduced 

instruction set computer (RISC) instruction set architecture (ISA). RISC is a well-

stablished architecture due to its efficiency and simplicity. Thus, it is widely used 

in the processor industry. However, verifying and validating the correctness of the 

processor if a complex work as it consists of about 111 total instructions 

(Stanford.edu, 2020). Various types of hazards might be arise due to the complexity 

of the pipeline structures. Thus, the verification process will be time consuming as 

validators need to verify the whole design by checking the waveforms after they 

make some minor changes. This project is to improve the efficiency of verification 

process of the current RISC32 5-stage pipeline processor that developed in 

Universiti Tunku Abdul Rahman which is under Faculty of Information 

Technology by developing a complete self-checking testbench using 

SystemVerilog to verify the functional correctness of the MIPS design at system 

level. 
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CHAPTER 1 

 

1.0 INTRODUCTION 

 

1.1 MIPS 

 

MIPS is the acronym for Microprocessor without Interlocked Pipeline 

Stages, representing an instruction set architecture (ISA) for reduced instruction set 

computers (RISC) that was formulated by MIPS Technologies. MIPS is mainly 

used as an embedded processor for the large market for embedded applications due 

to its simple design and high performance instead of the Intel 80x86 processor that 

is primarily “CISC” design with emphasis on backward compatibility which is lot 

more complex. Nowadays, MIPS architecture supports 64-bit addressing and 

operation and high-performance floating point. This is the reason why it is popular 

in the embedded systems implementation such as video game consoles. The MIPS 

architecture products include the MIPS32 and MIPS64. 

 

1.1.1 MIPS Instruction Format 

 

Instruction format is the layout of the instruction bits in field. There are 3 basic 

types of instruction formats. These instruction formats include: 
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⚫ I-format: for arithmetic, logic, data transfer and branch. 

⚫ J-format: for j and jal. 

⚫ R-format: for all other instructions. 

Figure 1.1 shows the instruction layout.  

 

Figure 1. 1: Instruction layout for MIPS  

 

1.1.2 MIPS Execution Cycle 

 

The execution of an instruction can be done in 5 basic stages and the execution 

of an instruction is partially completed with each stage. These 5 basic stages include: 

⚫ IF: Instruction fetch and update PC 

⚫ ID: Instruction decode and registers fetch 

⚫ EX: Execute 

⚫ MEM: For lw and sw instruction. Data will be written and read from data 

memory 

⚫ WB: Write back the result data into the register file 
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“Stages” implies datapath resources at each stage. Figure 1.2 shows the instruction 

execution cycles for lw instruction. Besides, the structural view for datapath is 

shown in Figure 1.2. 

 

 

 

Figure 1. 2: Instruction execution cycle for lw instruction 

 

 

Figure 1. 3: Structural view of datapath 

 

1.2 Pipelining 

 

Pipelining is a usage strategy whereby more than 1 instruction are overlapped 

during execution, and it exploits parallelism that exists among the actions expected 

to execute an instruction (Patterson and Hennessy, 2001, C-2). Performance is 
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improved by increasing throughput which is average instructions completed per 

clock cycle. The basic pipeline processor for RISC32 has only 5 stages. Figure 1.4 

illustrates the hardware components allocate in each pipeline stages of the 5-stage 

pipeline processor RISC32. 
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Figure 1. 4: Abstract view of 5-stage pipeline processor. (Kiat, 2018, p.49) 

 

1.3 RISC 

 

RISC, abbreviated as Reduced Instruction Set Computer, represents a 

microprocessor architecture that utilizes a highly optimized and small set of 

instructions. RISC has 5 design principles: 

▪ Simple instructions 

▪ Efficient, deep pipelining 

▪ Hard-wired control 

▪ Single-cycle execution 

▪ Load and store 

UC-Berkeley, Stanford, and IBM started the first RISC projects in the late 70s and 

early 80s. Nowadays, there are a lot of computer systems that take advantage of a 
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RISC processor. For examples, A16 Bionic, which integrated in iPhone 14 Pro 

models. 

 

1.4 Self-Checking Testbench 

 

It is a VHDL program responsible for independently validating the accuracy 

of the device under test without necessitating manual output inspection by a 

validator (Jensen, 2019). This self-checking testbench operates autonomously and 

produces messages, as defined by the validator at the end of the test. Within the 

industry, each VHDL module is typically accompanied by a dedicated self-

checking testbench for the ease of verifying all the modules have the intended 

behavior. 

 

 

1.5 Problem Statement 

 

The verification of MIPS processor is a time-consuming and complex process 

as MIPS instruction set consists of about 111 total instructions (Stanford.edu, 2020). 

Traditionally, verification is carried out through simulation and check the 

waveforms manually to make sure the behavior of the design is correct. This 

process is prone to human errors. If changes are made to the design, validators need 

to verify the whole design again due to its complexity of the pipeline structures by 



6 

 

checking the waveforms. A better and suitable approach is to write a self-checking 

testbench. 

1.6 Objectives 

The objectives of this project are as follow: 

i. To develop a complete self-checking testbench using SystemVerilog to 

verify the functional correctness of the MIPS design at system level. 

ii. To develop a function in SystemVerilog that will output a log file of the 

instruction execution flow for the ease of debugging. 

iii. To reduce the time spent in the validation process by utilizing the 

automation capabilities of the self-checking testbench. 

 

 

1.7 Contribution 

The main contributions of this project are: 

1) Development of a self-checking testbench methodology in system level. 

This testbench will focus on the pipeline of the processor by comparing the 

internal signals of the processor with the expected value and clock cycle. 

2) Detection of hazards and design flaws.  The self-checking testbench 

developed in this project will play a crucial role in detecting hazards and 

design flaws in MIPS processor. 
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1.8 Dissertation Organization 

The dissertation is organized as follows: 

 

 Chapter 2 discusses the existing methodologies, techniques, and tools used 

for microprocessor verification, with a specific focus on MIPS processors. 

 

 Chapter 3 discusses the methodology of the self-checking testbench for the 

verification of MIPS processors. 

 

 Chapter 4 discusses the results and findings of the projects. It also identifies 

limitations and potential areas for future improvement. 

 

 Chapter 5 discusses the conclusions of the project and provides 

recommendations for future project direction. 
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CHAPTER 2 

 

2.0 LITERATURE REVIEW 

 

2.1 Functional Verification Methodology of a 32-bit RISC Microprocessor 

(Zhenyu Gu et al., 2002) 

 

 Zhenyu Gu et al. (2002) verified a 32-bit RISC microprocessor by using a 

simulation-based functional verification methodology. In this project, handwriting, 

pipeline-focus and pseudo-random are the main method of the testbench generation. 

Figure 2.1.1 shows the verification environment of the processor. 

Figure 2. 1: Verification environment. (Zhenyu Gu et al., 2002) 
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With this verification environment, the efficiency and the automation of the 

verification process is great. However, there is no constraint that can be controlled 

by validator in the pseudo-random generator. Thus, a lot of redundant testbenches 

are generated as mentioned in the paper. Besides, there is no log file of the 

instruction execution flow is generated. Thus, validator still need to look at 

waveform from the beginning of the test to debug the failure. To further improve 

the efficiency, a log file that contains all the instruction execution flow should be 

generated. 
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2.2 Verification of a RISC processor IP Core using SystemVerilog 

(Sethulekshmi et al., 2016) 

 

 Sethulekshmi et al. (2016) verified their RISC CPU by using SystemVerilog 

Verification Methodology (OVM). In the verification process, a testbench that is 

both extensible and configurable is generated. The DUT and the verification 

environment are connected through boundary signals of the DUT. The boundary 

signals are grouped into interfaces. The testbench is split up into components and 

layers to resolve the complexity of the verification systems and the DUT as well as 

the reusability of the codes for future projects. Figure 2.2 shows the architecture of 

the testbench.  

Figure 2. 2: Architecture of the testbench. (Sethulekshmi et al., 2016) 

 



11 

 

The testbench developed in this project has self-checking functionality by 

comparing the predicted output with the monitored output. However, there is no 

log file of the instruction execution flow is generated. Thus, validator still need to 

look at waveform from the beginning of the test to debug the failure. To improve 

the efficiency, a log file that contains all the instruction execution flow should be 

generated. 
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2.3 Design & Verification of 16 Bit RISC Processor (Jung S.P. et al., 2008) 

 

 Jung S.P. et al. (2008) designed and verified a 16-bit RISC processor. In 

this project, the RISC processor is verified through 3 steps of test. First, a reference 

model to the processor is constructed by using an instruction set simulator. Figure 

2.3 shows the instruction set simulator.  

 Figure 2. 3: Instruction set simulator. (Jung S.P. et al., 2008) 

 

Secondly, a high complexity of algorithm test is accomplished to verify the 

processor by using the HDL simulator and the instruction set simulator. Lastly, 

manual inspection of the waveform is conducted. 
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The drawback of the verification method proposed in the system level is 

time consuming due to the testbench developed do not have self-checking 

functionality. Validator needs to verify the whole design at system level by 

checking the waveforms even though the design engineer makes a minor change at 

the module level. To reduce the time spent in the validation process, develop a self-

checking testbench is a better approach. 

 

 

2.4 HW/SW Co-Verification of a RISC CPU using Bounded Model Checking 

(Große et al., 2005) 

 

 Große et al. (2005) verified a RISC CPU through BMC, also known as 

Bounded Model Checking method, an inclusive method for formally verifying 

hardware and software components. BMC can simplify the challenge into a 

Boolean satisfiability problem by checking whether the design adheres to a 

temporal property. Figure 2.4 shows the implementation of BMC. The code snippet 

below shows the property will be evaluated when x=1, then y must be 2 in two 

clock cycles later. Figure 2.5 shows the implementation of BMC in ADD 

instruction.  

 

Figure 2. 4: Property test. (Große et al., 2005) 
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Figure 2. 5: Property ADD. (Große et al., 2005) 

 

All the hardware is verified formally by describing their behavior with 

temporal properties. However, there is no log file of the instruction execution flow 

is generated. Thus, validator still need to look at waveform from the beginning of 

the test to debug the failure. Besides, the design of the RISC processor is a single-

cycle design CPU. To improve the efficiency, a log file that contains all the 

instruction execution flow should be generated. 
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2.5 Verification of a 32-bit RISC Processor Core (Kasanko, T. and Nurmi, J., 

2004) 

 

 Kasanko, T. and Nurmi, J. (2004) verified COFFEE™ RISC Core which is 

developed in the Institute of Digital and Computer Systems at Tampere University 

of Technology. The RISC processor consists of a six-stage pipeline. Difference 

methods were used to make sure the design operates without any bug or error. The 

methods include FPGA prototyping, formal verification, and pseudo-random input 

generation. At system level verification, a precisely designed model emulates the 

system-level behavior and is created for the COFFEE™ core reference design. This 

model exclusively contains the instruction functionality without pipeline stages and 

make sure the proper functioning of the entire design. 

 

The drawback of the verification method proposed in the system level is 

time consuming due to the testbench developed do not have self-checking 

functionality. Validator needs to verify the whole design at system level by 

checking the waveforms even though the design engineer makes a minor change at 

the module level. To reduce the time spent in the validation process, develop a self-

checking testbench is a better approach. 

  



16 

 

CHAPTER 3 

 

3.0 METHODOLOGY 

 

3.1 Verification Methodology 

 

This project will focus on the use of formal verification techniques, 

including assertion and property in SystemVerilog to ensure the reliability and the 

correctness of the MIPS processor implementation. 

 

SystemVerilog will be used to develop the self-checking testbench. It is a 

Hardware Description Languages (HDL) that supports Bounded Model Checking 

(BMC). SystemVerilog is significantly superior to Verilog because it provides 

constructs such as constrained random testing, coverage, and assertions that can be 

used in BMC. 

 

Assertion is an expression or statement that define the behavior of a system 

that should be always true during simulation. Therefore, assertions are used to 

validate the behavior of a system defined as properties and can be used in functional 

coverage (ChipVerify, n.d.). If an assertion finds that a property of the design being 

examined does not behave as anticipated, it results in the failure of the assertion. 
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Property is similar to assertion, but it is used to specify requirements for 

specific scenarios within a bounded context. It checks for property within a finite 

number of clock cycles, making it particularly useful for bounded verification. 

 

To efficiently validate the MIPS processor design, Bounded Model 

Checking (BMC) in combination with assertion and property will be used to 

develop the testbench. BMC allows validator to explore the design space within a 

finite bound, and identity potential bugs in the design. Appropriate bounds based 

on the complexity of the MIPS processor design will be set. Through BMC, the 

MIPS processor design is systematically unrolled for a specific number of clock 

cycles and check the validity of the defined properties and assertions. 

 

 Figure 3.1.1 shows the abstract view of MIPS processor. The development 

of self-checking testbench will base on the design and will focus on the pipeline 

of the processor. 

Figure 3.1. 1: Abstract view of 5-stage pipeline processor. (Kiat, 2018, p.49)  
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property ADD; 

  int rs,rt,rd; 

  @(`PC_CLK) 

//assuming part 

  (`OPCODE == `OP_RTYPE && `FUNCT == `FN_ADD , 

   rs=`RS, 

   rt=`RT, 

   rd=`RD 

   ) 

//check no overflow is not happened in next cc 

   |-> `DELAY_ID_EX (~`OVERFLOW)  

//checking part 

   |-> `DELAY_EX_WB (`REG_RAM[rd] == (rs+rt)); 

endproperty 

 

Code snippet above shows the implementation of Bounded Model Checking for an 

arithmetic instruction – ADD. Same method will be implemented to the rest of the 

arithmetic instruction as well. Following are the explanations of the implementation 

of BMC: 

1. Three integer variables `rs`, `rt`, and `rd` are declared. `rs` and `rt` will be 

used to store the value of source register while `rd` will be used to store the 

destination register number. 

2. The `@(`PC_CLK)` is a clocking event, which means the property is 

evaluated on each rising edge of the clock signal. The property is checked 

and evaluated at specific points in the pipeline based on this clocking event. 

3. The "assuming" part defines the conditions under which this property is 

assumed to hold. It checks if the opcode is of the R-type and the function 

code corresponds to the addition operation (ADD). If these conditions are 

met, the property assumes that the instruction is an add instruction and 

assigns the values of rs, rt and rd to the corresponding variables. 
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4. The first checking part uses the implication operator |-> to check that the 

"assuming" part implies the "check" part. The check part verifies that no 

overflow occurs in the next clock cycle which is ID stage during the 

instruction execution. 

5. The second checking part also uses the implication operator |-> to check 

that the "check" part implies this second "check" part. The second check 

part verifies that the result of the addition operation (rs + rt) matches the 

value stored in the destination register rd after the delay in the 

`DELAY_EX_WB clock cycle. 

 

Lastly, to facilitate the tracing and analysis of the processor's instruction 

flow during simulation, a log file is generated using SystemVerilog. The log file 

captures the program counter (PC) value, the corresponding instruction in 

hexadecimal format, and a decoded string representation of the instruction. This log 

file provides valuable insights into the execution of different MIPS instructions in 

the processor pipeline. 

 

3.2 Design Tools 

 

ModelSim from Intel is the industry-leading simulation and debugging 

environment for HDL-based design in which its license can be obtained freely. 

Furthermore, ModelSim supports the SystemVerilog and other VHDL languages. 

This stimulator is also able to provide syntax error checking and waveform 
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simulation which play an important part in developing the project. The timing 

diagrams and the waveforms are very useful in verifying the model functionalities 

after writing the testbench. 

 

PCSpim is a Windows-based software stimulator that loads and executes 

assembly language program for the MIPS RISC architecture. It provides a simple 

assembler, debugger, and a set of operating services Thus, it is used for developing 

the MIPS test program for functional verification in this project. 
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CHAPTER 4 

 

4.0 RESULT & DISCUSSION 

 

 Bounded Model Checking (BMC) has been successfully implemented to the 

design by using assertion in SystemVerilog. Code snippet below shown the 

implementation of “add” instruction using assertion. 

property ADD; 

  int rs,rt,rd; 

  @(`PC_CLK) 

  (`OPCODE == `OP_RTYPE && `FUNCT == `FN_ADD , 

   rs=`RS, 

   rt=`RT, 

   rd=`RD 

   , $display("value of rs is %0h, value of rt is %0h, expected data at REG[%0h] 

is %0h",rs,rt,rd, (rs+rt)) 

   ) 

   |-> `DELAY_ID_EX (~`OVERFLOW) //check no overflow is not happened in 

next cc 

   |-> `DELAY_EX_WB (`REG_RAM[rd] == (rs+rt)); 

endproperty 

 

 

Table 4.1 below shows the instruction “add” that will be verified during 

simulation. 

Machine code Address Instruction 

01294820 0x004000F0 

 

add $t1, $t1, $t1 

Table 4. 1: Details of “add” instruction. 
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Figure 4.1 shows the simulation result of “add” instruction and the output of the 

transcript the incorrect behavior is found. 

 

 

Figure 4. 1: Simulation result of “add” instruction. 

 

1. In ID stage, the property will be evaluated if the test expression is 

evaluated to true. The value from the register file will be stored in 

the correspond variable that will be used in self-check. In this stage, 

the expected data can be evaluated. 

2. In the next clock tick, which is EX stage, overflow will be checked. 

3. In the next 2 clock ticks, which is MEM stage, expected data will be 

compared with the actual data. 

 

 

 

 

 

 

1 

2
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Figure 4.2 shows the counterexample’s output generated by BMC, which illustrate 

the scenarios where properties were violated. It violates `REG_RAM[rd] == (rs+rt) 

property where the expected data of reg_ram[9] is 4 but the actual data in reg_ram[9] 

is 3. 

 

Figure 4. 2: Counterexample’s output generated by BMC. 
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Bounded Model Checking (BMC) in combination with assertion and 

property has been implemented to most of the MIPS instruction to check the correct 

behavior of the instruction. Refer Appendix A for the full source code. 

 

However, there are some limitations to implement it in branch instructions. 

For this MIPS processor design, branch predictor is implemented in this design. 

The branch predictor operates using sophisticated algorithms and history 

information to make educated guesses about the direction of conditional branches. 

The challenge arises because the branch predictor introduces non-determinism into 

the microprocessor's behavior. The prediction made by the branch predictor 

determines the path taken by the processor during conditional branches, and this 

prediction is not explicitly determined by the processor's instruction set architecture. 

The non-deterministic behavior introduced by the branch predictor makes it 

difficult to explore all possible paths within a bounded context during BMC. 

 

 To facilitate the tracing and analysis of the processor's instruction flow 

during simulation, a log file has been generated using SystemVerilog. The log file 

captures the program counter (PC) value, the corresponding instruction in 

hexadecimal format, and a decoded string representation of the instruction. Refer 

Appendix B for the output of the log file and Appendix C for the function to 

generate the log file.  
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CHAPTER 5 

 

5.0 CONCLUSION 

 

 In a conclusion, the objectives of this project, which is the development of 

a self-checking testbench, development of the log file generator, and reduce the 

time spent in the validation process has been achieved. All objectives are achieved 

by implementing Bounded Model Checking (BMC) in combination with assertion 

and property. Through a comprehensive and rigorous verification process, these 

objectives are successfully accomplished, contributing to the field of 

microprocessor verification and reliability. 

 

 One of the key areas of future work for enhancing the verification process 

is the development of a random instruction generator. The random instructions 

generator would serve as a valuable addition to the self-checking testbench 

methodology, further diversifying the test scenarios and improving the verification 

coverage for the MIPS processor. 
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APPENDICES 

Appendix A: BMC Source Code 

 

property ADD; 

  int rs,rt,rd; 

  @(`PC_CLK) 

  (`OPCODE == `OP_RTYPE && `FUNCT == `FN_ADD , 

   rs=`RS, 

   rt=`RT, 

   rd=`RD 

   //, $display("value of rs is %0h, value of rt is %0h, expected data at REG[%0h] 

is %0h",rs,rt,rd, (rs+rt)) 

   ) 

   |-> `DELAY_ID_EX (~`OVERFLOW) //check no overflow is not happenned 

in next cc 

   |-> `DELAY_EX_WB (`REG_RAM[rd] == (rs+rt)); 

endproperty 

. 

. 

. 

sequence LB_WB (int rt); 

  int data; 

  @(`PC_CLK) 

  (~`RESET, data = `DCACHE_DATA 

  ) 

  `DELAY_MEM_WB (`REG_RAM[rt] == {{24{data[7]}},data[7:0]}); 

endsequence 

   

property LB;   

  int rt, data; 

  @(`PC_CLK or `ITL_PC_EN) 

  (`OPCODE == `OP_LB, 

   rt=`RT_REG 

   ) 

   //|-> `DELAY_ID_EX (`ITL_PC_EN) 

   //|-> (`ITL_PC_EN) 

   |-> `DELAY_ID_MEM LB_WB(rt) 

endproperty 
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Appendix B: Instruction Log 

 

  4500.0 ns      | 00400024   | jal 0x0100015       => PC:0x00400054        | User 

program code 

   4550.0 ns      | 00400028   | sll $r0, $r0, 0 / NOP                       | User program 

code 

   5350.0 ns      | 00400054   | addi $r16, $r0, 0x0014                      | User program 

code 

   5400.0 ns      | 00400058   | addi $r17, $r0, 0xfff8                      | User program 

code 

   5450.0 ns      | 0040005c   | addi $r8, $r17, 0x006c                      | User program 

code 

   6250.0 ns      | 00400060   | addiu $r18, $r17, 0x0002                    | User program 

code 

   6300.0 ns      | 00400064   | sub $r19, $r18, $r8                         | User program 

code 

   6350.0 ns      | 00400068   | subu $r20, $r18, $r8                        | User program 

code 

   6400.0 ns      | 0040006c   | addu $r21, $r19, $r19                       | User program 

code 

   6450.0 ns      | 00400070   | jr $r31                                     | User program code 

   6500.0 ns      | 00400074   | sll $r0, $r0, 0 / NOP                       | User program 

code 

   6550.0 ns      | 00400028   | sll $r0, $r0, 0 / NOP                       | User program 

code 

   6600.0 ns      | 0040002c   | and $r8, $r18, $r19                         | User program 

code 

   6650.0 ns      | 00400030   | andi $r9, $r8, 0x000f                       | User program 

code 

   6700.0 ns      | 00400034   | nor $r10, $r8, $r9                          | User program 

code 
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Appendix C: Log File Generation Function 

 

function automatic string decodeMIPSInstruction(input logic [31:0] pc, input 

logic [31:0] instruction); 

  logic [5:0] opcode; 

  logic [4:0] rs, rt, rd, shamt; 

  logic [15:0] imm; 

 

  opcode = instruction[31:26]; 

  rs = instruction[25:21]; 

  rt = instruction[20:16]; 

  rd = instruction[15:11]; 

  shamt = instruction[10:6]; 

  imm = instruction[15:0]; 

 

  case (opcode) 

    // R-type instructions 

    6'b000000: begin 

      case (instruction[5:0]) 

        6'b100000: return $sformatf("add $r%0d, $r%0d, $r%0d", rd, rs, rt); 

        6'b100001: return $sformatf("addu $r%0d, $r%0d, $r%0d", rd, rs, rt); 

        6'b100010: return $sformatf("sub $r%0d, $r%0d, $r%0d", rd, rs, rt); 

        6'b100011: return $sformatf("subu $r%0d, $r%0d, $r%0d", rd, rs, rt); 
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        6'b100100: return $sformatf("and $r%0d, $r%0d, $r%0d", rd, rs, rt); 

        6'b100101: return $sformatf("or $r%0d, $r%0d, $r%0d", rd, rs, rt); 

        6'b100110: return $sformatf("xor $r%0d, $r%0d, $r%0d", rd, rs, rt); 

        6'b000000: if (rd == 0) 

                    return $sformatf("sll $r%0d, $r%0d, %0d / NOP", rd, rt, shamt); 

                  else 

                    return $sformatf("sll $r%0d, $r%0d, %0d", rd, rt, shamt); 

        6'b000010: return $sformatf("srl $r%0d, $r%0d, %0d", rd, rt, shamt); 

        6'b000011: return $sformatf("sra $r%0d, $r%0d, %0d", rd, rt, shamt); 

        6'b001000: return $sformatf("jr $r%0d", rs); 

        6'b001001: return $sformatf("jalr $r%0d, $r%0d", rd, rs); 

        6'b001100: return "syscall"; 

        6'b010000: return $sformatf("mfhi $r%0d", rd); 

        6'b010001: return $sformatf("mthi $r%0d", rs); 

        6'b010010: return $sformatf("mflo $r%0d", rd); 

        6'b010011: return $sformatf("mtlo $r%0d", rs); 

        6'b011000: return $sformatf("mult $r%0d, $r%0d", rs, rt); 

        6'b011001: return $sformatf("multu $r%0d, $r%0d", rs, rt); 

        6'b100111: return $sformatf("nor $r%0d, $r%0d, $r%0d", rd, rs, rt); 

        6'b101010: return $sformatf("slt $r%0d, $r%0d, $r%0d", rd, rs, rt); 

        6'b101011: return $sformatf("sltu $r%0d, $r%0d, $r%0d", rd, rs, rt); 

        default: return "Unknown"; 

      endcase 
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    end 

    6'b010000: return $sformatf("mfc0 $r%0d, $r%0d", rt, rd); 

    6'b010001: return $sformatf("mtc0 $r%0d, $r%0d", rt, rd); 

     

    // I-type instructions 

    6'b001000: return $sformatf("addi $r%0d, $r%0d, 0x%h", rt, rs, imm); 

    6'b001001: return $sformatf("addiu $r%0d, $r%0d, 0x%h", rt, rs, imm); 

    6'b001100: return $sformatf("andi $r%0d, $r%0d, 0x%h", rt, rs, imm); 

    6'b001101: return $sformatf("ori $r%0d, $r%0d, 0x%h", rt, rs, imm); 

    6'b001110: return $sformatf("xori $r%0d, $r%0d, 0x%h", rt, rs, imm); 

    6'b001111: return $sformatf("lui $r%0d, 0x%h", rt, imm); 

    6'b000100: return $sformatf("beq $r%0d, $r%0d, 0x%h      => PC:0x%h", rs, 

rt, imm,convertBranchAddressToPC(imm, pc)); 

    6'b000101: return $sformatf("bne $r%0d, $r%0d, 0x%h      => PC:0x%h", rs, 

rt, imm,convertBranchAddressToPC(imm, pc)); 

    6'b000110: return $sformatf("blez $r%0d, 0x%h      => PC:0x%h", rs, 

imm,convertBranchAddressToPC(imm, pc)); 

    6'b000111: return $sformatf("bgtz $r%0d, 0x%h      => PC:0x%h", rs, 

imm,convertBranchAddressToPC(imm, pc)); 

    6'b001010: return $sformatf("slti $r%0d, $r%0d, 0x%h", rt, rs, imm); 

    6'b001011: return $sformatf("sltiu $r%0d, $r%0d, 0x%h", rt, rs, imm); 

    6'b001111: return $sformatf("lui $r%0d, 0x%h", rt, imm); 

    6'b100011: return $sformatf("lw $r%0d, %0d($r%0d)", rt, imm, rs); 
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    6'b101011: return $sformatf("sw $r%0d, %0d($r%0d)", rt, imm, rs); 

    6'b100001: return $sformatf("lh $r%0d, %0d($r%0d)", rt, imm, rs); 

    6'b100101: return $sformatf("lhu $r%0d, %0d($r%0d)", rt, imm, rs); 

    6'b101001: return $sformatf("sh $r%0d, %0d($r%0d)", rt, imm, rs); 

    6'b100000: return $sformatf("lb $r%0d, %0d($r%0d)", rt, imm, rs); 

    6'b100100: return $sformatf("lbu $r%0d, %0d($r%0d)", rt, imm, rs); 

    6'b101000: return $sformatf("sb $r%0d, %0d($r%0d)", rt, imm, rs); 

 

    // J-type instructions 

    6'b000010: return $sformatf("j 0x%h         => PC:0x%h", 

instruction[25:0],convertJumpAddressToPC(instruction, pc)); 

    6'b000011: return $sformatf("jal 0x%h       => PC:0x%h", 

instruction[25:0],convertJumpAddressToPC(instruction, pc)); 

 

 

    default: return "Unknown"; 

  endcase 

endfunction 

 

function automatic logic [31:0] convertJumpAddressToPC(input logic [31:0] 

jumpInstruction, input logic [31:0] currentPC); 

  logic [31:28] upperBits; 

  logic [25:0] lowerBits; 
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  logic [31:0] newPC ; 

  // Extracting the relevant bits from the jump instruction 

  upperBits = jumpInstruction[31:28]; 

  lowerBits = jumpInstruction[25:0]; 

 

  // Concatenating the upper bits with the current PC's upper bits 

 

  newPC= {currentPC[31:28], upperBits, lowerBits, 2'b00}; 

 

  return newPC; 

endfunction 

 

function automatic logic [31:0] convertBranchAddressToPC(input logic [15:0] 

imm, input logic [31:0] currentPC); 

 

  logic [31:0] newPC; 

 

  // Calculating the new PC value by adding the branch offset to the current PC 

  newPC = currentPC + 4 + {{16{imm[15]}},imm}*4 ; 

 

  return newPC; 

endfunction 
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function automatic string decodePC(input logic [31:0] pc); 

  if (pc >= 32'hBFC00000 && pc <= 32'hBFC01000) 

    return "Boot code"; 

  else if (pc >= 32'h00400000 && pc <= 32'h0041B400) 

    return "User program code"; 

  else if (pc >= 32'h00800180 && pc <= 32'h00804180) 

    return "Exception handler code"; 

  else 

    return "Unknown"; 

endfunction 

 


