

Verification of Microprocessor without Interlocked Pipeline

(MIPS) Processor using Self-Checking Testbench

TENG WEN JUN

MASTER OF

ENGINEERING (ELECTRONIC SYSTEMS)

FACULTY OF ENGINEERING AND GREEN

TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

MAY 2023

Verification of Microprocessor without Interlocked Pipeline (MIPS) Processor

using Self-Checking Testbench

By

TENG WEN JUN

A dissertation submitted to the Faculty of Engineering and Green Technology,

Universiti Tunku Abdul Rahman, in partial fulfillment of the requirements for the

degree of Master of Engineering (Electronic Systems)

 May 2023

ii

ABSTRACT

Verification of Microprocessor without Interlocked Pipeline (MIPS)

Processor using Self-Checking Testbench

Teng Wen Jun

MIPS stand for Microprocessor without Interlocked Pipeline Stages. It is a reduced

instruction set computer (RISC) instruction set architecture (ISA). RISC is a well-

stablished architecture due to its efficiency and simplicity. Thus, it is widely used

in the processor industry. However, verifying and validating the correctness of the

processor if a complex work as it consists of about 111 total instructions

(Stanford.edu, 2020). Various types of hazards might be arise due to the complexity

of the pipeline structures. Thus, the verification process will be time consuming as

validators need to verify the whole design by checking the waveforms after they

make some minor changes. This project is to improve the efficiency of verification

process of the current RISC32 5-stage pipeline processor that developed in

Universiti Tunku Abdul Rahman which is under Faculty of Information

Technology by developing a complete self-checking testbench using

SystemVerilog to verify the functional correctness of the MIPS design at system

level.

iii

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Dr. Loh Siu Hong, my esteemed

supervisor, for his invaluable guidance, unwavering support, and expertise

throughout the duration of this project.

iv

APPROVAL SHEET

This dissertation entitled “Verification of Microprocessor without Interlocked

Pipeline (MIPS) Processor using Self-Checking Testbench” was prepared by

TENG WEN JUN and submitted as partial fulfillment of the requirements for the

degree of Master of Master of Engineering (Electronic Systems) at Universiti

Tunku Abdul Rahman.

Approved by:

______ _____________________

(Dr. Loh Siu Hong)

Date: 14/8/2023

Supervisor

Department of Electronic Engineering

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

v

FACULTY OF ENGINEERING AND GREEN TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: _____16-07-2023_____________

SUBMISSION OF DISSERTATION

It is hereby certified that TENG WEN JUN (ID No: _2106710) has completed this

dissertation entitled “Verification of Microprocessor without Interlocked Pipeline

(MIPS) Processor using Self-Checking Testbench” under the supervision of Dr. Loh

Siu Hong (Supervisor) from the Department of Electronic Engineering, Faculty of

Engineering and Green Technology.

I understand that University will upload softcopy of my dissertation in pdf format into

UTAR Institutional Repository, which may be made accessible to UTAR community and

public.

Yours truly,

(TENG WEN JUN)

vi

DECLARATION

I hereby declare that the dissertation is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it

has not been previously or concurrently submitted for any other degree at UTAR

or other institutions.

(TENG WEN JUN)

DATE: 16-07-2023

vii

TABLE OF CONTENTS

 Page

DECLARATION vi

TABLE OF CONTENTS vii

LIST OF TABLES ix

LIST OF FIGURES x

1.0 INTRODUCTION 1

1.1 MIPS 1

1.1.1 MIPS Instruction Format 1

1.1.2 MIPS Execution Cycle 2

1.2 Pipelining 3

1.3 RISC 4

1.4 Self-Checking Testbench 5

1.5 Problem Statement 5

1.6 Objectives 6

1.7 Contribution 6

1.8 Dissertation Organization 7

2.0 LITERATURE REVIEW 8

2.1 Functional Verification Methodology of a 32-bit RISC Microprocessor 8

2.2 Verification of a RISC processor IP Core using SystemVerilog 10

viii

2.3 Design & Verification of 16 Bit RISC Processor 12

2.4 HW/SW Co-Verification of a RISC CPU using Bounded Model Checking

 13

2.5 Verification of a 32-bit RISC Processor Core 15

3.0 METHODOLOGY 16

3.1 Verification Methodology 16

3.2 Design Tools 19

4.0 RESULT & DISCUSSION 21

5.0 CONCLUSION 25

REFERENCES 26

APPENDICES 28

Appendix A: BMC Source Code 28

Appendix B: Instruction Log 29

Appendix C: Log File Generation Function 30

ix

LIST OF TABLES

Table Page

4. 1 DETAILS OF “ADD” INSTRUCTION 21

x

LIST OF FIGURES

Figures Page

1. 1 INSTRUCTION LAYOUT FOR MIPS 2

1. 2 INSTRUCTION EXECUTION CYCLE FOR LW INSTRUCTION 3

1. 3 STRUCTURAL VIEW OF DATAPATH 3

1. 4 ABSTRACT VIEW OF 5-STAGE PIPELINE PROCESSOR 4

2.1 VERIFICATION ENVIRONMENT. (ZHENYU GU ET AL., 2002) 8

2. 2 ARCHITECTURE OF THE TESTBENCH. (SETHULEKSHMI ET AL.,

2016) 10

2. 3 INSTRUCTION SET SIMULATOR. (JUNG S.P. ET AL., 2008) ERROR!

BOOKMARK NOT DEFINED.2

2. 4 PROPERTY TEST. (GROßE D ET AL., 2005) ERROR! BOOKMARK

NOT DEFINED.

2. 5 PROPERTY ADD. (GROßE D ET AL., 2005) ERROR! BOOKMARK

NOT DEFINED.4

No table of figures entries found.4. 1 SIMULATION RESULT OF “ADD”

INSTRUCTION. ERROR! BOOKMARK NOT DEFINED.

FIGURE 4. 1: SIMULATION RESULT OF “ADD” INSTRUCTION. 22

FIGURE 4. 2: COUNTEREXAMPLE’S OUTPUT GENERATED BY BMC. 23

1

CHAPTER 1

1.0 INTRODUCTION

1.1 MIPS

MIPS is the acronym for Microprocessor without Interlocked Pipeline

Stages, representing an instruction set architecture (ISA) for reduced instruction set

computers (RISC) that was formulated by MIPS Technologies. MIPS is mainly

used as an embedded processor for the large market for embedded applications due

to its simple design and high performance instead of the Intel 80x86 processor that

is primarily “CISC” design with emphasis on backward compatibility which is lot

more complex. Nowadays, MIPS architecture supports 64-bit addressing and

operation and high-performance floating point. This is the reason why it is popular

in the embedded systems implementation such as video game consoles. The MIPS

architecture products include the MIPS32 and MIPS64.

1.1.1 MIPS Instruction Format

Instruction format is the layout of the instruction bits in field. There are 3 basic

types of instruction formats. These instruction formats include:

2

⚫ I-format: for arithmetic, logic, data transfer and branch.

⚫ J-format: for j and jal.

⚫ R-format: for all other instructions.

Figure 1.1 shows the instruction layout.

Figure 1. 1: Instruction layout for MIPS

1.1.2 MIPS Execution Cycle

The execution of an instruction can be done in 5 basic stages and the execution

of an instruction is partially completed with each stage. These 5 basic stages include:

⚫ IF: Instruction fetch and update PC

⚫ ID: Instruction decode and registers fetch

⚫ EX: Execute

⚫ MEM: For lw and sw instruction. Data will be written and read from data

memory

⚫ WB: Write back the result data into the register file

3

“Stages” implies datapath resources at each stage. Figure 1.2 shows the instruction

execution cycles for lw instruction. Besides, the structural view for datapath is

shown in Figure 1.2.

Figure 1. 2: Instruction execution cycle for lw instruction

Figure 1. 3: Structural view of datapath

1.2 Pipelining

Pipelining is a usage strategy whereby more than 1 instruction are overlapped

during execution, and it exploits parallelism that exists among the actions expected

to execute an instruction (Patterson and Hennessy, 2001, C-2). Performance is

4

improved by increasing throughput which is average instructions completed per

clock cycle. The basic pipeline processor for RISC32 has only 5 stages. Figure 1.4

illustrates the hardware components allocate in each pipeline stages of the 5-stage

pipeline processor RISC32.

Multiplier
Stage 2

I-CACHE

ALU

CP0 Multiplier
Stage 1

A
d

d
re

ss

D
ec

o
d

er

D-CACHE

Data and
Stack
RAM

SPI

UART

GPIO Register
File

Register
File

Branch
predictor

IF ID EX MEM WB

M
ai

n
 C

o
n

tr
o

l B
lo

ck

A
ri

th
m

et
ic

 L
o

gi
c

C
o

n
tr

o
l B

lo
ck

Forwarding block

Interlock block

PR
Controller

Boot
ROM

Branch
predictor

Figure 1. 4: Abstract view of 5-stage pipeline processor. (Kiat, 2018, p.49)

1.3 RISC

RISC, abbreviated as Reduced Instruction Set Computer, represents a

microprocessor architecture that utilizes a highly optimized and small set of

instructions. RISC has 5 design principles:

▪ Simple instructions

▪ Efficient, deep pipelining

▪ Hard-wired control

▪ Single-cycle execution

▪ Load and store

UC-Berkeley, Stanford, and IBM started the first RISC projects in the late 70s and

early 80s. Nowadays, there are a lot of computer systems that take advantage of a

5

RISC processor. For examples, A16 Bionic, which integrated in iPhone 14 Pro

models.

1.4 Self-Checking Testbench

It is a VHDL program responsible for independently validating the accuracy

of the device under test without necessitating manual output inspection by a

validator (Jensen, 2019). This self-checking testbench operates autonomously and

produces messages, as defined by the validator at the end of the test. Within the

industry, each VHDL module is typically accompanied by a dedicated self-

checking testbench for the ease of verifying all the modules have the intended

behavior.

1.5 Problem Statement

The verification of MIPS processor is a time-consuming and complex process

as MIPS instruction set consists of about 111 total instructions (Stanford.edu, 2020).

Traditionally, verification is carried out through simulation and check the

waveforms manually to make sure the behavior of the design is correct. This

process is prone to human errors. If changes are made to the design, validators need

to verify the whole design again due to its complexity of the pipeline structures by

6

checking the waveforms. A better and suitable approach is to write a self-checking

testbench.

1.6 Objectives

The objectives of this project are as follow:

i. To develop a complete self-checking testbench using SystemVerilog to

verify the functional correctness of the MIPS design at system level.

ii. To develop a function in SystemVerilog that will output a log file of the

instruction execution flow for the ease of debugging.

iii. To reduce the time spent in the validation process by utilizing the

automation capabilities of the self-checking testbench.

1.7 Contribution

The main contributions of this project are:

1) Development of a self-checking testbench methodology in system level.

This testbench will focus on the pipeline of the processor by comparing the

internal signals of the processor with the expected value and clock cycle.

2) Detection of hazards and design flaws. The self-checking testbench

developed in this project will play a crucial role in detecting hazards and

design flaws in MIPS processor.

7

1.8 Dissertation Organization

The dissertation is organized as follows:

 Chapter 2 discusses the existing methodologies, techniques, and tools used

for microprocessor verification, with a specific focus on MIPS processors.

 Chapter 3 discusses the methodology of the self-checking testbench for the

verification of MIPS processors.

 Chapter 4 discusses the results and findings of the projects. It also identifies

limitations and potential areas for future improvement.

 Chapter 5 discusses the conclusions of the project and provides

recommendations for future project direction.

8

CHAPTER 2

2.0 LITERATURE REVIEW

2.1 Functional Verification Methodology of a 32-bit RISC Microprocessor

(Zhenyu Gu et al., 2002)

 Zhenyu Gu et al. (2002) verified a 32-bit RISC microprocessor by using a

simulation-based functional verification methodology. In this project, handwriting,

pipeline-focus and pseudo-random are the main method of the testbench generation.

Figure 2.1.1 shows the verification environment of the processor.

Figure 2. 1: Verification environment. (Zhenyu Gu et al., 2002)

9

With this verification environment, the efficiency and the automation of the

verification process is great. However, there is no constraint that can be controlled

by validator in the pseudo-random generator. Thus, a lot of redundant testbenches

are generated as mentioned in the paper. Besides, there is no log file of the

instruction execution flow is generated. Thus, validator still need to look at

waveform from the beginning of the test to debug the failure. To further improve

the efficiency, a log file that contains all the instruction execution flow should be

generated.

10

2.2 Verification of a RISC processor IP Core using SystemVerilog

(Sethulekshmi et al., 2016)

 Sethulekshmi et al. (2016) verified their RISC CPU by using SystemVerilog

Verification Methodology (OVM). In the verification process, a testbench that is

both extensible and configurable is generated. The DUT and the verification

environment are connected through boundary signals of the DUT. The boundary

signals are grouped into interfaces. The testbench is split up into components and

layers to resolve the complexity of the verification systems and the DUT as well as

the reusability of the codes for future projects. Figure 2.2 shows the architecture of

the testbench.

Figure 2. 2: Architecture of the testbench. (Sethulekshmi et al., 2016)

11

The testbench developed in this project has self-checking functionality by

comparing the predicted output with the monitored output. However, there is no

log file of the instruction execution flow is generated. Thus, validator still need to

look at waveform from the beginning of the test to debug the failure. To improve

the efficiency, a log file that contains all the instruction execution flow should be

generated.

12

2.3 Design & Verification of 16 Bit RISC Processor (Jung S.P. et al., 2008)

 Jung S.P. et al. (2008) designed and verified a 16-bit RISC processor. In

this project, the RISC processor is verified through 3 steps of test. First, a reference

model to the processor is constructed by using an instruction set simulator. Figure

2.3 shows the instruction set simulator.

 Figure 2. 3: Instruction set simulator. (Jung S.P. et al., 2008)

Secondly, a high complexity of algorithm test is accomplished to verify the

processor by using the HDL simulator and the instruction set simulator. Lastly,

manual inspection of the waveform is conducted.

13

The drawback of the verification method proposed in the system level is

time consuming due to the testbench developed do not have self-checking

functionality. Validator needs to verify the whole design at system level by

checking the waveforms even though the design engineer makes a minor change at

the module level. To reduce the time spent in the validation process, develop a self-

checking testbench is a better approach.

2.4 HW/SW Co-Verification of a RISC CPU using Bounded Model Checking

(Große et al., 2005)

 Große et al. (2005) verified a RISC CPU through BMC, also known as

Bounded Model Checking method, an inclusive method for formally verifying

hardware and software components. BMC can simplify the challenge into a

Boolean satisfiability problem by checking whether the design adheres to a

temporal property. Figure 2.4 shows the implementation of BMC. The code snippet

below shows the property will be evaluated when x=1, then y must be 2 in two

clock cycles later. Figure 2.5 shows the implementation of BMC in ADD

instruction.

Figure 2. 4: Property test. (Große et al., 2005)

14

Figure 2. 5: Property ADD. (Große et al., 2005)

All the hardware is verified formally by describing their behavior with

temporal properties. However, there is no log file of the instruction execution flow

is generated. Thus, validator still need to look at waveform from the beginning of

the test to debug the failure. Besides, the design of the RISC processor is a single-

cycle design CPU. To improve the efficiency, a log file that contains all the

instruction execution flow should be generated.

15

2.5 Verification of a 32-bit RISC Processor Core (Kasanko, T. and Nurmi, J.,

2004)

 Kasanko, T. and Nurmi, J. (2004) verified COFFEE™ RISC Core which is

developed in the Institute of Digital and Computer Systems at Tampere University

of Technology. The RISC processor consists of a six-stage pipeline. Difference

methods were used to make sure the design operates without any bug or error. The

methods include FPGA prototyping, formal verification, and pseudo-random input

generation. At system level verification, a precisely designed model emulates the

system-level behavior and is created for the COFFEE™ core reference design. This

model exclusively contains the instruction functionality without pipeline stages and

make sure the proper functioning of the entire design.

The drawback of the verification method proposed in the system level is

time consuming due to the testbench developed do not have self-checking

functionality. Validator needs to verify the whole design at system level by

checking the waveforms even though the design engineer makes a minor change at

the module level. To reduce the time spent in the validation process, develop a self-

checking testbench is a better approach.

16

CHAPTER 3

3.0 METHODOLOGY

3.1 Verification Methodology

This project will focus on the use of formal verification techniques,

including assertion and property in SystemVerilog to ensure the reliability and the

correctness of the MIPS processor implementation.

SystemVerilog will be used to develop the self-checking testbench. It is a

Hardware Description Languages (HDL) that supports Bounded Model Checking

(BMC). SystemVerilog is significantly superior to Verilog because it provides

constructs such as constrained random testing, coverage, and assertions that can be

used in BMC.

Assertion is an expression or statement that define the behavior of a system

that should be always true during simulation. Therefore, assertions are used to

validate the behavior of a system defined as properties and can be used in functional

coverage (ChipVerify, n.d.). If an assertion finds that a property of the design being

examined does not behave as anticipated, it results in the failure of the assertion.

17

Property is similar to assertion, but it is used to specify requirements for

specific scenarios within a bounded context. It checks for property within a finite

number of clock cycles, making it particularly useful for bounded verification.

To efficiently validate the MIPS processor design, Bounded Model

Checking (BMC) in combination with assertion and property will be used to

develop the testbench. BMC allows validator to explore the design space within a

finite bound, and identity potential bugs in the design. Appropriate bounds based

on the complexity of the MIPS processor design will be set. Through BMC, the

MIPS processor design is systematically unrolled for a specific number of clock

cycles and check the validity of the defined properties and assertions.

 Figure 3.1.1 shows the abstract view of MIPS processor. The development

of self-checking testbench will base on the design and will focus on the pipeline

of the processor.

Figure 3.1. 1: Abstract view of 5-stage pipeline processor. (Kiat, 2018, p.49)

Multiplier
Stage 2

I-CACHE

ALU

CP0 Multiplier
Stage 1

A
d

d
re

ss

D
ec

o
d

er

D-CACHE

Data and
Stack
RAM

SPI

UART

GPIO Register
File

Register
File

Branch
predictor

IF ID EX MEM WB

M
ai

n
 C

o
n

tr
o

l B
lo

ck

A
ri

th
m

et
ic

 L
o

gi
c

C
o

n
tr

o
l B

lo
ck

Forwarding block

Interlock block

PR
Controller

Boot
ROM

Branch
predictor

18

property ADD;

 int rs,rt,rd;

 @(`PC_CLK)

//assuming part

 (`OPCODE == `OP_RTYPE && `FUNCT == `FN_ADD ,

 rs=`RS,

 rt=`RT,

 rd=`RD

)

//check no overflow is not happened in next cc

 |-> `DELAY_ID_EX (~`OVERFLOW)

//checking part

 |-> `DELAY_EX_WB (`REG_RAM[rd] == (rs+rt));

endproperty

Code snippet above shows the implementation of Bounded Model Checking for an

arithmetic instruction – ADD. Same method will be implemented to the rest of the

arithmetic instruction as well. Following are the explanations of the implementation

of BMC:

1. Three integer variables `rs`, `rt`, and `rd` are declared. `rs` and `rt` will be

used to store the value of source register while `rd` will be used to store the

destination register number.

2. The `@(`PC_CLK)` is a clocking event, which means the property is

evaluated on each rising edge of the clock signal. The property is checked

and evaluated at specific points in the pipeline based on this clocking event.

3. The "assuming" part defines the conditions under which this property is

assumed to hold. It checks if the opcode is of the R-type and the function

code corresponds to the addition operation (ADD). If these conditions are

met, the property assumes that the instruction is an add instruction and

assigns the values of rs, rt and rd to the corresponding variables.

19

4. The first checking part uses the implication operator |-> to check that the

"assuming" part implies the "check" part. The check part verifies that no

overflow occurs in the next clock cycle which is ID stage during the

instruction execution.

5. The second checking part also uses the implication operator |-> to check

that the "check" part implies this second "check" part. The second check

part verifies that the result of the addition operation (rs + rt) matches the

value stored in the destination register rd after the delay in the

`DELAY_EX_WB clock cycle.

Lastly, to facilitate the tracing and analysis of the processor's instruction

flow during simulation, a log file is generated using SystemVerilog. The log file

captures the program counter (PC) value, the corresponding instruction in

hexadecimal format, and a decoded string representation of the instruction. This log

file provides valuable insights into the execution of different MIPS instructions in

the processor pipeline.

3.2 Design Tools

ModelSim from Intel is the industry-leading simulation and debugging

environment for HDL-based design in which its license can be obtained freely.

Furthermore, ModelSim supports the SystemVerilog and other VHDL languages.

This stimulator is also able to provide syntax error checking and waveform

20

simulation which play an important part in developing the project. The timing

diagrams and the waveforms are very useful in verifying the model functionalities

after writing the testbench.

PCSpim is a Windows-based software stimulator that loads and executes

assembly language program for the MIPS RISC architecture. It provides a simple

assembler, debugger, and a set of operating services Thus, it is used for developing

the MIPS test program for functional verification in this project.

21

CHAPTER 4

4.0 RESULT & DISCUSSION

 Bounded Model Checking (BMC) has been successfully implemented to the

design by using assertion in SystemVerilog. Code snippet below shown the

implementation of “add” instruction using assertion.

property ADD;

 int rs,rt,rd;

 @(`PC_CLK)

 (`OPCODE == `OP_RTYPE && `FUNCT == `FN_ADD ,

 rs=`RS,

 rt=`RT,

 rd=`RD

 , $display("value of rs is %0h, value of rt is %0h, expected data at REG[%0h]

is %0h",rs,rt,rd, (rs+rt))

)

 |-> `DELAY_ID_EX (~`OVERFLOW) //check no overflow is not happened in

next cc

 |-> `DELAY_EX_WB (`REG_RAM[rd] == (rs+rt));

endproperty

Table 4.1 below shows the instruction “add” that will be verified during

simulation.

Machine code Address Instruction

01294820 0x004000F0

add $t1, $t1, $t1

Table 4. 1: Details of “add” instruction.

22

Figure 4.1 shows the simulation result of “add” instruction and the output of the

transcript the incorrect behavior is found.

Figure 4. 1: Simulation result of “add” instruction.

1. In ID stage, the property will be evaluated if the test expression is

evaluated to true. The value from the register file will be stored in

the correspond variable that will be used in self-check. In this stage,

the expected data can be evaluated.

2. In the next clock tick, which is EX stage, overflow will be checked.

3. In the next 2 clock ticks, which is MEM stage, expected data will be

compared with the actual data.

1

2

3

23

Figure 4.2 shows the counterexample’s output generated by BMC, which illustrate

the scenarios where properties were violated. It violates `REG_RAM[rd] == (rs+rt)

property where the expected data of reg_ram[9] is 4 but the actual data in reg_ram[9]

is 3.

Figure 4. 2: Counterexample’s output generated by BMC.

24

Bounded Model Checking (BMC) in combination with assertion and

property has been implemented to most of the MIPS instruction to check the correct

behavior of the instruction. Refer Appendix A for the full source code.

However, there are some limitations to implement it in branch instructions.

For this MIPS processor design, branch predictor is implemented in this design.

The branch predictor operates using sophisticated algorithms and history

information to make educated guesses about the direction of conditional branches.

The challenge arises because the branch predictor introduces non-determinism into

the microprocessor's behavior. The prediction made by the branch predictor

determines the path taken by the processor during conditional branches, and this

prediction is not explicitly determined by the processor's instruction set architecture.

The non-deterministic behavior introduced by the branch predictor makes it

difficult to explore all possible paths within a bounded context during BMC.

 To facilitate the tracing and analysis of the processor's instruction flow

during simulation, a log file has been generated using SystemVerilog. The log file

captures the program counter (PC) value, the corresponding instruction in

hexadecimal format, and a decoded string representation of the instruction. Refer

Appendix B for the output of the log file and Appendix C for the function to

generate the log file.

25

CHAPTER 5

5.0 CONCLUSION

 In a conclusion, the objectives of this project, which is the development of

a self-checking testbench, development of the log file generator, and reduce the

time spent in the validation process has been achieved. All objectives are achieved

by implementing Bounded Model Checking (BMC) in combination with assertion

and property. Through a comprehensive and rigorous verification process, these

objectives are successfully accomplished, contributing to the field of

microprocessor verification and reliability.

 One of the key areas of future work for enhancing the verification process

is the development of a random instruction generator. The random instructions

generator would serve as a valuable addition to the self-checking testbench

methodology, further diversifying the test scenarios and improving the verification

coverage for the MIPS processor.

26

REFERENCES

ChipVerify. (n.d.). SystemVerilog Tutorial. [online] Available at:

https://www.chipverify.com/systemverilog/systemverilog-tutorial.

ChipVerify. (n.d.). UVM Tutorial for Beginners. [online] Available at:

https://www.chipverify.com/uvm/uvm-tutorial.

Große, D., Kuhne, U. and Drechsler, R., 2005, November. HW/SW co-verification

of a RISC CPU using bounded model checking. In 2005 Sixth International

Workshop on Microprocessor Test and Verification (pp. 133-137). IEEE.

Gu, Z., Yu, Z., Shen, B. and Zhang, Q., 2002, June. Functional verification

methodology of a 32-bit risc microprocessor. In IEEE 2002 International

Conference on Communications, Circuits and Systems and West Sino

Expositions (Vol. 2, pp. 1454-1457). IEEE.

Jensen, J.J. (2019). How to create a self-checking testbench. [online] VHDLwhiz.

Available at: https://vhdlwhiz.com/how-to-create-a-self-checking-testbench/

[Accessed 16 Oct. 2022].

Jung, S.P., Song, S.W., Lee, D.H., Kim, K.J., Cho, K.S. and Park, J.S., 2008.

Design & verification of 16 bit RISC processor. In Proceedings of the IEEK

Conference (pp. 423-424). The Institute of Electronics and Information Engineers.

Kasanko, T. and Nurmi, J., 2004, November. Verification of a 32-bit RISC

processor core. In 2004 International Symposium on System-on-Chip, 2004.

Proceedings. (pp. 107-110). IEEE.

https://www.chipverify.com/systemverilog/systemverilog-tutorial
https://www.chipverify.com/uvm/uvm-tutorial

27

Kiat, W.P., 2018. The design of an FPGA-based processor with reconfigurable

processor execution structure for internet of things (IoT) applications (Doctoral

dissertation, UTAR).

Sethulekshmi, R., Jazir, S., Rahiman, R.A., Karthik, R. and Abdulla, M.S., 2016,

March. Verification of a RISC processor IP core using SystemVerilog. In 2016

International Conference on Wireless Communications, Signal Processing and

Networking (WiSPNET) (pp. 1490-1493). IEEE.

Stanford.edu. (2020). MIPS. [online] Available at:

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/mips/index.html.

28

APPENDICES

Appendix A: BMC Source Code

property ADD;

 int rs,rt,rd;

 @(`PC_CLK)

 (`OPCODE == `OP_RTYPE && `FUNCT == `FN_ADD ,

 rs=`RS,

 rt=`RT,

 rd=`RD

 //, $display("value of rs is %0h, value of rt is %0h, expected data at REG[%0h]

is %0h",rs,rt,rd, (rs+rt))

)

 |-> `DELAY_ID_EX (~`OVERFLOW) //check no overflow is not happenned

in next cc

 |-> `DELAY_EX_WB (`REG_RAM[rd] == (rs+rt));

endproperty

.

.

.

sequence LB_WB (int rt);

 int data;

 @(`PC_CLK)

 (~`RESET, data = `DCACHE_DATA

)

 `DELAY_MEM_WB (`REG_RAM[rt] == {{24{data[7]}},data[7:0]});

endsequence

property LB;

 int rt, data;

 @(`PC_CLK or `ITL_PC_EN)

 (`OPCODE == `OP_LB,

 rt=`RT_REG

)

 //|-> `DELAY_ID_EX (`ITL_PC_EN)

 //|-> (`ITL_PC_EN)

 |-> `DELAY_ID_MEM LB_WB(rt)

endproperty

29

Appendix B: Instruction Log

 4500.0 ns | 00400024 | jal 0x0100015 => PC:0x00400054 | User

program code

 4550.0 ns | 00400028 | sll $r0, $r0, 0 / NOP | User program

code

 5350.0 ns | 00400054 | addi $r16, $r0, 0x0014 | User program

code

 5400.0 ns | 00400058 | addi $r17, $r0, 0xfff8 | User program

code

 5450.0 ns | 0040005c | addi $r8, $r17, 0x006c | User program

code

 6250.0 ns | 00400060 | addiu $r18, $r17, 0x0002 | User program

code

 6300.0 ns | 00400064 | sub $r19, $r18, $r8 | User program

code

 6350.0 ns | 00400068 | subu $r20, $r18, $r8 | User program

code

 6400.0 ns | 0040006c | addu $r21, $r19, $r19 | User program

code

 6450.0 ns | 00400070 | jr $r31 | User program code

 6500.0 ns | 00400074 | sll $r0, $r0, 0 / NOP | User program

code

 6550.0 ns | 00400028 | sll $r0, $r0, 0 / NOP | User program

code

 6600.0 ns | 0040002c | and $r8, $r18, $r19 | User program

code

 6650.0 ns | 00400030 | andi $r9, $r8, 0x000f | User program

code

 6700.0 ns | 00400034 | nor $r10, $r8, $r9 | User program

code

30

Appendix C: Log File Generation Function

function automatic string decodeMIPSInstruction(input logic [31:0] pc, input

logic [31:0] instruction);

 logic [5:0] opcode;

 logic [4:0] rs, rt, rd, shamt;

 logic [15:0] imm;

 opcode = instruction[31:26];

 rs = instruction[25:21];

 rt = instruction[20:16];

 rd = instruction[15:11];

 shamt = instruction[10:6];

 imm = instruction[15:0];

 case (opcode)

 // R-type instructions

 6'b000000: begin

 case (instruction[5:0])

 6'b100000: return $sformatf("add $r%0d, $r%0d, $r%0d", rd, rs, rt);

 6'b100001: return $sformatf("addu $r%0d, $r%0d, $r%0d", rd, rs, rt);

 6'b100010: return $sformatf("sub $r%0d, $r%0d, $r%0d", rd, rs, rt);

 6'b100011: return $sformatf("subu $r%0d, $r%0d, $r%0d", rd, rs, rt);

31

 6'b100100: return $sformatf("and $r%0d, $r%0d, $r%0d", rd, rs, rt);

 6'b100101: return $sformatf("or $r%0d, $r%0d, $r%0d", rd, rs, rt);

 6'b100110: return $sformatf("xor $r%0d, $r%0d, $r%0d", rd, rs, rt);

 6'b000000: if (rd == 0)

 return $sformatf("sll $r%0d, $r%0d, %0d / NOP", rd, rt, shamt);

 else

 return $sformatf("sll $r%0d, $r%0d, %0d", rd, rt, shamt);

 6'b000010: return $sformatf("srl $r%0d, $r%0d, %0d", rd, rt, shamt);

 6'b000011: return $sformatf("sra $r%0d, $r%0d, %0d", rd, rt, shamt);

 6'b001000: return $sformatf("jr $r%0d", rs);

 6'b001001: return $sformatf("jalr $r%0d, $r%0d", rd, rs);

 6'b001100: return "syscall";

 6'b010000: return $sformatf("mfhi $r%0d", rd);

 6'b010001: return $sformatf("mthi $r%0d", rs);

 6'b010010: return $sformatf("mflo $r%0d", rd);

 6'b010011: return $sformatf("mtlo $r%0d", rs);

 6'b011000: return $sformatf("mult $r%0d, $r%0d", rs, rt);

 6'b011001: return $sformatf("multu $r%0d, $r%0d", rs, rt);

 6'b100111: return $sformatf("nor $r%0d, $r%0d, $r%0d", rd, rs, rt);

 6'b101010: return $sformatf("slt $r%0d, $r%0d, $r%0d", rd, rs, rt);

 6'b101011: return $sformatf("sltu $r%0d, $r%0d, $r%0d", rd, rs, rt);

 default: return "Unknown";

 endcase

32

 end

 6'b010000: return $sformatf("mfc0 $r%0d, $r%0d", rt, rd);

 6'b010001: return $sformatf("mtc0 $r%0d, $r%0d", rt, rd);

 // I-type instructions

 6'b001000: return $sformatf("addi $r%0d, $r%0d, 0x%h", rt, rs, imm);

 6'b001001: return $sformatf("addiu $r%0d, $r%0d, 0x%h", rt, rs, imm);

 6'b001100: return $sformatf("andi $r%0d, $r%0d, 0x%h", rt, rs, imm);

 6'b001101: return $sformatf("ori $r%0d, $r%0d, 0x%h", rt, rs, imm);

 6'b001110: return $sformatf("xori $r%0d, $r%0d, 0x%h", rt, rs, imm);

 6'b001111: return $sformatf("lui $r%0d, 0x%h", rt, imm);

 6'b000100: return $sformatf("beq $r%0d, $r%0d, 0x%h => PC:0x%h", rs,

rt, imm,convertBranchAddressToPC(imm, pc));

 6'b000101: return $sformatf("bne $r%0d, $r%0d, 0x%h => PC:0x%h", rs,

rt, imm,convertBranchAddressToPC(imm, pc));

 6'b000110: return $sformatf("blez $r%0d, 0x%h => PC:0x%h", rs,

imm,convertBranchAddressToPC(imm, pc));

 6'b000111: return $sformatf("bgtz $r%0d, 0x%h => PC:0x%h", rs,

imm,convertBranchAddressToPC(imm, pc));

 6'b001010: return $sformatf("slti $r%0d, $r%0d, 0x%h", rt, rs, imm);

 6'b001011: return $sformatf("sltiu $r%0d, $r%0d, 0x%h", rt, rs, imm);

 6'b001111: return $sformatf("lui $r%0d, 0x%h", rt, imm);

 6'b100011: return $sformatf("lw $r%0d, %0d($r%0d)", rt, imm, rs);

33

 6'b101011: return $sformatf("sw $r%0d, %0d($r%0d)", rt, imm, rs);

 6'b100001: return $sformatf("lh $r%0d, %0d($r%0d)", rt, imm, rs);

 6'b100101: return $sformatf("lhu $r%0d, %0d($r%0d)", rt, imm, rs);

 6'b101001: return $sformatf("sh $r%0d, %0d($r%0d)", rt, imm, rs);

 6'b100000: return $sformatf("lb $r%0d, %0d($r%0d)", rt, imm, rs);

 6'b100100: return $sformatf("lbu $r%0d, %0d($r%0d)", rt, imm, rs);

 6'b101000: return $sformatf("sb $r%0d, %0d($r%0d)", rt, imm, rs);

 // J-type instructions

 6'b000010: return $sformatf("j 0x%h => PC:0x%h",

instruction[25:0],convertJumpAddressToPC(instruction, pc));

 6'b000011: return $sformatf("jal 0x%h => PC:0x%h",

instruction[25:0],convertJumpAddressToPC(instruction, pc));

 default: return "Unknown";

 endcase

endfunction

function automatic logic [31:0] convertJumpAddressToPC(input logic [31:0]

jumpInstruction, input logic [31:0] currentPC);

 logic [31:28] upperBits;

 logic [25:0] lowerBits;

34

 logic [31:0] newPC ;

 // Extracting the relevant bits from the jump instruction

 upperBits = jumpInstruction[31:28];

 lowerBits = jumpInstruction[25:0];

 // Concatenating the upper bits with the current PC's upper bits

 newPC= {currentPC[31:28], upperBits, lowerBits, 2'b00};

 return newPC;

endfunction

function automatic logic [31:0] convertBranchAddressToPC(input logic [15:0]

imm, input logic [31:0] currentPC);

 logic [31:0] newPC;

 // Calculating the new PC value by adding the branch offset to the current PC

 newPC = currentPC + 4 + {{16{imm[15]}},imm}*4 ;

 return newPC;

endfunction

35

function automatic string decodePC(input logic [31:0] pc);

 if (pc >= 32'hBFC00000 && pc <= 32'hBFC01000)

 return "Boot code";

 else if (pc >= 32'h00400000 && pc <= 32'h0041B400)

 return "User program code";

 else if (pc >= 32'h00800180 && pc <= 32'h00804180)

 return "Exception handler code";

 else

 return "Unknown";

endfunction

