

EVALUATION OF SECURITY METRIC FOR

ARTIFICIAL INTERNET OF THINGS SMART

LOCKING SYSTEM

SITI NUR HANANI BINTI MOHD RIZAL

UNIVERSITI TUNKU ABDUL RAHMAN

EVALUATION OF SECURITY METRIC FOR ARTIFICIAL INTERNET OF

THINGS SMART LOCKING SYSTEM

SITI NUR HANANI BINTI MOHD RIZAL

A project report submitted in partial fulfilment of the requirements for the
award of

Master of Engineering in Electronic System

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

August 2023

DECLARATION

I hereby declare that this project report is based on my original work except for
citations and quotations which have been duly acknowledged. I also declare that it has
not been previously and concurrently submitted for any other degree or award at
UTAR or other institutions.

Signature : ___________________________

Name : Siti Nur Hanani Binti Mohd Rizal

ID No : 21AGM06711

Date : 18/8/2023

Hanani Rizal

APPROVAL FOR SUBMISSION

I certify that this project report entitled “EVALUATION OF SECURITY METRIC
FOR ARTIFICIAL INTERNET OF THINGS SMART LOCKING SYSTEM”
was prepared by Siti Nur Hanani Binti Mohd Rizal has met the required standard for
submission in partial fulfilment of the requirements for the award of Master of
Engineering in Electronic System at Universiti Tunku Abdul Rahman.

Approved by,

Signature

Supervisor

Date

: ____________________

: Dr. Lee Han Kee

: 18/8/2023

The copyright of this report belongs to the author under the terms of the copyright
Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku Abdul
Rahman. Due acknowledgement shall always be made of the use of any material
contained in, or derived from, this report.

© 2023, Siti Nur Hanani Binti Mohd Rizal. All right reserved.

EVALUATION OF SECURITY METRIC FOR ARTIFICIAL INTERNET OF

THINGS SMART LOCKING SYSTEM

ABSTRACT

The increasing significance of delivering a smart lock system continues to grow.
Modern technologies are being explored and utilise to accomplish this objective.
Nonetheless, recent years have witnessed a noticeable surge in security breaches
targeting the IoT systems, raising concerns for consumers. Drawing attention to this
issue, the need to prioritise security should be considered during the development of
the system, rather than treating it as an afterthought.

The primary goal of this dissertation is to evaluate the security metric for IoT based
locking system and design an enhance smart locking system that leverages the
capabilities of Artificial Intelligence for facial recognition from the ground up. This
system employs the Raspberry Pi controller to grant access to a private premises
without relying on a physical keys like access cards. The designed smart lock system
incorporates smartphones, enabling the sending of emails to the owner upon detecting
a potential intruder. The SMTP protocol library is evaluated to enable the email
transactions features from the microcontroller. In terms of hardware implementation,
a microcontroller is chose, and a testing environment is established to explore and
enhances security measures.

This thesis outlines the architectural model of the smart locking system, the design of
the face recognition algorithm, and the development of face recognition reader using
the Raspberry Pi 3 model B microcontroller. Throughout this process, all developed
sub-hardware components are design to interact seamlessly between one another,
ensuring a functional and secure flow within the AIoT framework.

TABLE OF CONTENTS

DECLARATION iii
APPROVAL FOR SUBMISSION iv

ABSTRACT vi
TABLE OF CONTENTS vii

LISTS OF TABLES x
LISTS OF FIGURES x

LIST OF ABBREVIATIONS xii

CHAPTER

1 INTRODUCTION 1
1.1 Background 1

1.2 Objective 2

1.3 Problem Statement 3

1.4 Scope and Limitations of The Project 3

1.5 Organization of Report 3

2 LITERATURE REVIEW 4
2.1 Related Work 4

2.2 Security Concerns in Existing Work 7

2.3 Hardware Review 10

2.3.1 Smart Mobile Device 10

2.3.2 Microcontroller 10

3 METHODOLOGY 12
3.1 Proposed Smart Locking System 13

3.1.1 Face Recognition using CNN 14

3.2 Software Specification 16

3.2.1 Raspbian OS 16

3.2.2 Python IDE 17

3.2.3 Visual Studio Code IDE 17

3.3 Hardware Specification 18

3.3.1 Webcam 19

3.3.2 Raspberry Pi 3 Model B 19

3.3.3 Relay 19

3.3.4 Electromagnet Lock 20

4 SOFTWARE DEVELOPMENT AND IMPLEMENTATION 21

4.1 Software Setup 21

4.1.1 Raspbian OS 21

4.1.2 Python IDE 22

4.1.3 Gmail – Python Account 22

4.2 Software Development 22

4.2.1 Datasets Preparation Process 24

4.2.2 Model training and Face Recognition Process 25

4.2.3 Email Sending Process 26

4.3 Microcontroller Code Implementation 27

5 HARDWARE DEVELOPMENT AND IMPLEMENTATION 28

5.1 Bipolar Junction Transistor (BJT) Amplifier 28

5.1.1 Saturation Mode 29

5.1.2 Cut-off Mode 30

5.2 Hardware Configuration 31

6 RESULT AND DISCUSSION 32
6.1 Datasets Collection 32

6.2 System Testing 32

6.3 Alerting System 34

6.4 Challenges 34

6.5 Low Power Consumption Effort 35

6.5.1 Ultrasonic Sensor 35

6.5.2 Heatsink 36

6.6 Locking Mechanism Substitute 38

6.7 Final Product 39

7 CONCLUSION 40

7.1 Future Work 40

7.2 Project Reflection 41

REFERENCE 42

APPENDICES 46
APPENDIX A – Source Code – Main.py 46

APPENDIX B – Source Code – face_detection.py 47

APPENDIX C – Source Code – real_time_face_recognition.py 51

APPENDIX D – Source Code – gpio_utils.py 55

LISTS OF TABLES

TABLE TITLE PAGE

Table 2.1 Advantages, Disadvantages and Security Concerns in

Existing Research Works

7

Table 2.2
Comparison between Raspberry Pi 3 Model B and Arduino

UNO On Different Selection Criterias
10

Table 5.1 BJT Amplifier Design Criteria 28

Table 6.1
CNN Model Confidence Level Under Different Brightness

Condition
35

Table 6.2
Microcontroller Drawn Current and Temperature Based on

Different Scenarios
38

LISTS OF FIGURES

FIGURE TITLE PAGE

Figure 3.1 Project Methodology 12

Figure 3.2 High-Level Architecture of the Proposed System 13

Figure 3.3 Facial Recognition Mechanism of the Proposed System 15

Figure 3.4 Typical Desktop View of Raspbian OS 16

Figure 3.5 Python Software Foundation Logo 17

Figure 3.6 Visual Studio Code IDE Logo 17

Figure 3.7 High-Level Hardware Diagram 18

applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134474
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134474
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134475
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134475
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134476
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134476
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134477
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134477
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134478
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134478
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134479
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134479
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134480
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134480

Figure 3.8 Webcam Module 19

Figure 3.9 Raspberry Pi Model B Microcontroller 19

Figure 3.10 Relay Module 19

Figure 3.11 Electromagnetic Lock 20

Figure 4.1 Proposed System Software Flowchart 23

Figure 4.2 Transfer Learning Method for Datasets Preparation 24

Figure 4.3 Code Snippet for Frame Resizing and Face Detection 24

Figure 4.4 Code Snippet of Saving Image Captured 25

Figure 4.5 Face Recognition Development Method 25

Figure 4.6 Sending Email with Python Method 26

Figure 4.7 Code Snippet of Initializing Email Content 26

Figure 4.8 Code Snippet of Email Sending Process 26

Figure 4.9 Detailed Hardware-Software Communication Diagram 27

Figure 5.1 BJT Amplifier Circuit using NPN transistor. 29

Figure 5.2 Theoretical Graph Result of the Design Circuit 30

Figure 5.3
Hardware Pin Configuration of the Proposed Smart Lock
System 31

Figure 6.1 Datasets Collection 32

Figure 6.2 Screenshot of Authorized Personnel with Mask 33

Figure 6.3 Screenshot of Authorized Personnel Without Mask 33

Figure 6.4 Email Sent to Owner 34

Figure 6.5 HC-SR04 Ultrasonic Sensor 35

Figure 6.6 Ultrasonic Sensor Pin Configuration 36

Figure 6.7 Heatsink Placement on Microcontroller 37

Figure 6.8 Microcontroller Power Consumption Based on Different
Scenarios 37

Figure 6.9 Locking Mechanism Indicator Pin Configuration 38

Figure 6.10 Final Product Prototype 39

applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134481
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134481
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134482
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134482
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134483
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134483
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134484
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134484
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134485
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134485
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134486
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134486
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134487
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134487
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134488
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134488
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134489
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134489
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134490
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134490
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134491
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134491
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134492
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134492
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134493
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134493
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134494
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134494
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134495
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134495
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134496
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134496
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134496
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134497
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134497
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134498
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134498
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134499
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134499
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134500
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134500
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134501
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134501
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134502
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134502
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134503
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134503
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134504
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134504
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134504
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134505
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134505
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134506
applewebdata://CCC53082-4B1E-4FE4-BDC8-4DEBDBDB99DC/#_Toc143134506

LIST OF ABBREVIATIONS

IoT Internet of Things

AI Artificial Intelligence

AIoT Artificial Intelligence of Things

SMTP Simple Mail Transfer Protocol

OS Operating System

MitM Man-in-the-Middle

PIN Personal Identification Number

Wi-Fi Wireless Fidelity

NFC Near Field Communication

RFID Radio Frequency Identification

OTP One Time Password

IDE Integrated Development Environment

GCP Google Cloud Platform

CNN Convolutional Neural Network

API Application Programming Interface

GPIO General-purpose Input/Output

DC Direct Current

SD Secure Digital

IP Internet Protocol

SSL Secure Sockets Layer

BJT Bipolar Junction Transistor

LED Light Emitting Diode

1

CHAPTER 1

INTRODUCTION

1.1 Background

The convergence of Artificial Intelligence (AI) and the Internet of Things (IoT)

in smart lock system has significantly increasing in terms of the adoption, and while

the development is exciting, it has raised security concerns among the users. Provided

that, the security metrics of AIoT smart lock systems are vital to avoid the authorised

access against the unauthorised access and protect user privacy. The security metrics

can be evaluated based on several factors (Zhang et al, 2023):

1. Authentication and authorization: User authentication and access grant

being done based on their authorization level.

2. Confidentiality: User’s data and credentials should be encrypted to avoid

hacking attacks.

3. Integrity: System must ensure data is not modified or lost during

transmission or storage.

4. Availability: Responsive to user requests

5. Non-repudiation: System should provide evidence of user actions and

transactions to prevent unauthorised or false failure.

As technology progresses, people are demanding for new technologies that can

serve both purposes: conveniency and reliability. Technology like face recognition has

a strong presence in the market and highly compatible with various smartphone

operating systems (OS). As a result, a smartphone being used to do various tasks such

as phone screen lock, validation of user locations and identity, as well as approving

bank transactions.

2

For example, there are many bank applications in Malaysia such as HSBC,

CIMBClicks or Maybank2U app turn to biometrics like facial recognition as a form of

payment authentication, not just to better address the security issues, but also to make

people life easier by shortening the authentication process (Normalini et al, 2015).

The idea of this research is to understand and implement the complex

biometrics recognition to the existing door lock system that is available in the market.

A camera will be implemented to do the facial recognition. If facial features detected

is from registered personal based on the database, access will be granted, and the

controller triggers the electromagnet lock to be released. Otherwise, door remain

locked. It must also be noted that the facial recognition algorithm must be able to detect

faces either with or without the face mask on and map back to the facial features from

the database. To grant access, the controller request for authentication from the

database for the facial features being scanned. A smartphone will be integrated to the

lock system to allow owner to be notified when there are unauthorized faces at the

door.

As can be conclude, digital locks offer enhanced security and convenience,

especially with the growing reliability and accessibility of mobile technologies. This

research study suggests the development of a digital locking mechanism using AI-

driven facial recognition. The lock method chosen due to all facial features are unique

to one’s features, hence makes it complex for hackers. Other than that, the fact that

smartphone is already inserted in human’s daily life, adopting the smartphone for the

super user which is the owner makes system more user-friendly.

1.2 Objective

1. To design a smart locking system based on IoT

2. To design a face detection system which can detect both face that is covered

by mask and without the mask.

3. To generate an internet enabled locking system which can notify the owner

when there are unfamiliar faces.

3

1.3 Problem Statement

The security of the IoT has become an increasing pressing concern. Although

significant research has been dedicated to this subject, there is a noticeable absence of

effort in terms of practical implementation or standardise solutions to tackle this issue

(Zhang et al., 2023). There are several issues that were identified in the existing smart

lock system which include privacy problem, accuracy issues, vulnerability to hacking

and weak authentication mechanism. Apart from that, manufacturing companies are

treating security as an afterthought, as they focuses more on faster product release and

profit. In turn, it has caused the systems to be more vulnerable to attacks. As a result,

people stick to the normal mechanical-lock system using physical keys. Having said

that, the design on an IoT based door lock system should offer better-secured access,

more time-saving and accessible to everyone, aligned to the main purpose of

technology advancement, which is to make human lives easier.

1.4 Scope and Limitations of The Project

The scope of this project is to develop an AIoT framework encompassing a

locking system that is charactered by functionality, affordability, convenience, and

above all, robust security. The boundary of the project is limited to Python

programming language and the Raspbian Operating System (OS), along with the

ability to utilize cloud storage for the database.

1.5 Organization of Report

The introduction to project which includes background, scope, objective and

problem statement is presented in Chapter 1. On the other hand, Chapter 2 discuss and

reviews of the existing research cited in the project and thesis. The software and

hardware is also evaluated. Chapter 3 gives introduction to the product’s system

architecture, including descriptions of its features. This section also provides a list of

hardware and programming software utilised in the project. Chapter 4 and Chapter 5

presents the software of the proposed framework and physical implementation of the

proposed system presented in Chapter 3. Chapter 6 discuss about the results of the

completed AIoT framework. Chapter 7 concludes the project and provide insights for

future work and project reflection.

4

CHAPTER 2

 LITERATURE REVIEW

2.1 Related Work

The advancement of technology has allowed the development of smart door

lock system which replaces traditional keys with digital keys. This has been made

possible with the adoption of the IoT framework to the lock mechanism. Smart door

lock system has been widely adopted in the residency areas, business places as well as

university’s lecture rooms. The wide implementation is also because user data can be

collected and monitored, which is also known as the monitoring system controlled by

the administrative of the place. The smart door lock system must be reliable or “smart”

enough to safeguard restricted premises by being able to differentiate authorized

personals against the unauthorized ones.

Though it is no doubt that smart door lock system has made people’s lives

easier, this system can also be exposed to security vulnerability. Looking back at the

normal physical keys, the security concern is that the lock can be circumvented, or the

keys can be easily duplicated and use for mass usage. Hence, the smart door lock

system is innovated to overcome these problems. However, the security vulnerability

in the IoT can be hugely damaging. A breach in door lock system can cause security

threats such as replay attacks; identity and data theft; Man-in-the-Middle (MitM)

attacks and many more. Various research has been carried out to enhance the security

and reliability of smart door lock system.

5

Password based door lock system has garnered people’s attention ever since it

is first introduced. G. Sowmya et al. (2018, p.223) studied the usage of matrix keypad

to replace physical keys by having a predefined Personal Identification Number (PIN)

code for user to gain access. The proposed system is programmed in such way that the

password can be set or reset without having to use an external device. In research

conducted by Akshay K. et al. (2018) the authors have developed a password- based

door lock system with an anti-guess mechanism where the system is blocked after four

failed attempts. The system will have to be reset in order to re-enable the system,

Arduino microcontroller board is being used to integrate the system with an additional

Wi-Fi module to store data to cloud for monitoring the attempts made.

Y. Kim et al. (2021) presented an AIoT-based smart lock system that integrates

smart tags for access control. The lock is smart enough to detect smart tags that are

attached to objects such as keys or cards. It uses AI algorithms to recognize them and

grant access to users. Although the author claimed to offer advantages over traditional

locks, the smart tags could still be lost or stolen, leading to unauthorized access. . On

the other hand, research conducted by P. N. Narkar et al. (2017) uses the Near Field

Communication (NFC)-enabled tag to act as a key to perform action. This technology

needs Wi-Fi, Bluetooth and NFC enabled devices. NFC technology is based on the

Radio Frequency Identification (RFID) protocols where it works on short range

communication. NFC tags uses card emulation method where an NFC enabled devices

can be used to act as keys to perform transactions.

The One Time Password (OTP) technology is more commonly known in the

banking payment system. Seung-Soo Shin et al. (2013, p.436) have proposed this

method for university lab and classroom usage management. This requires a server to

store user information and generate the OTP seed which uses a cryptographic

technique to generate the number. This OTP Code is then sent to user’s phone and the

server will compare with the user input. Aggarwal (2017) on the other hand, studied

an OTP Based authentication method using Bluetooth transmission. The OTP Code is

generated at random, and it is sent via Bluetooth to user’s device with limited number

of attempts allowed.

In the recent years, door lock system uses biometric technology where an

individual’s physical characteristics are being used as the key for access. Akanbi et al.

6

(2020) and Rao et al. (2019) proposed a door lock system using fingerprints

technology for hotel room management and unlocking car door respectively. Both

proposed scenarios used a fingerprint sensor module to capture fingerprints patterns to

save and compare. In research conducted by S. Yedulapuram et al. (2020), they have

proposed facial recognition method to identify authorised personals using image

processing method in real time. In this proposed work, phone is integrated to notify

owner when doors opened or when unrecognised face is captured from the door.

In a previous study conducted by Waseem et al. (2020), face recognition is

used as a form of authentication for unlocking system. While the suggested system

successfully meets the need to remove the reliance on physical keys, it falls short in

terms of adaptability to identify individuals who are wearing mask during the

authentication process. As a result, authorized user is not able to be matched correctly

to the database causing no access. This demonstrates the system’s inefficiency and a

similar evident of this inefficiency is visible in research conducted by Khalimov et al.

(2020, pp 244). Moreover, the design described in this research lack the ability to

promptly notify the owner about granted or denied access to owner in real-time. This

causes security risk in which, attackers or unauthorized persons can enter the restricted

places without anyone noticing. This proves that the systems mentioned defeat the

security purposes as anyone that can bypass the systems is allowed to enter without

being flagged appropriately.

Furthermore, a token-based authentication has also been used in the smart lock

system where it relies on the use of tokens instead of passwords to make request

authorisation. The token is typically a unique string of characters that is generated by

the server and stored on the client-side. Siddique et al. (2019) proposed a token-based

home access control that implement mobile app usage to generate and manage the

tokens. For this proposed system, the lock device in this system communicates with

the mobile app over Bluetooth transmission. On the other hand, the research proposed

Gunasinghe et al. (2018), the authors implemented the usage of central server in order

to generate and manage the tokens. The system integrated the usage of IoT devices

that communicate with the server via standard IoT communication protocols.

7

While there are various kind of technologies used for door lock system, some

authors have also studied and proposed a combination of technologies to enhance the

security features. A. Hemalatha and G. Gandhimathi (2019) proposed three-factor

authentication by combining the RFID, password, and OTP technologies to unlock

doors. In this proposed system, user needs to present their RFID cards as the first level,

followed by password entry on keypad and OTP code send to the registered mobile

devices to be input to the keypad on the door. Each level of authentication must be

validated by the system before user can move to the next level. D. B. Mei Yin et al.

(2016, pp 1-8) in their research work have proposed a door lock system which uses

NFC and facial recognition technologies. This proposed system worked by capturing

user NFC sticker as their first level of authentication which then followed by a face

detection on the camera. In research conducted by Motwani et al. (2021, pp. 7973),

they have proposed a door lock system that uses the password and facial recognition

technologies for the door lock system. This system integrates keypad to input password

as their first level and facial recognition method as their second level of authentication.

2.2 Security Concerns in Existing Work

Table 2.1 summaries the advantages and the disadvantages in the existing

research done by other scholars, as well as the security concerns identified based on

the authentication method used.

Table 2.1 Advantages, Disadvantages and Security Concerns in Existing Research Works

Authenticati

on Method
Advantage Disadvantage Security Concerns

Passwords Key-less solution

Anyone with

password pin can

enter

• Vulnerable to

brute-force

attacks,

• Password reuse,

• Dictionary

attacks.

OTP Codes

• Key-less solution

• Integrates mobile

devices

Limited time

usage

• Replay attacks

• Man-in-the-

Middle (MitMs)

8

Attacks

• Weak PIN

Selections

Smart tags
Easier to use than

the physical keys

• Complex system

• Tags/cards can

be lost, stolen or

replicated for

mass usage

• Identity theft

• Data Theft

Biometric
• Key-less solution

• Convenient

• Big Storage

• Costly

• Need high

resolution

camera to get

accurate result

• Complex system

• Privacy risks

• Accuracy issues

• Increased

surveillance

• False

positive/negative

Token-

based

• Improvement in

user experience

• Scalable system

• Complex

• Maintenance is

costly and time

consuming

• Vulnerability to

spoofing,

• False

positives/negativ

es.

• Man-in-the-

Middle (MitMs)

Attacks

Multi-factor

• Multiple

authentication

method,

• Adding layers of

protection;

making it harder

for attackers to

decipher layers

• Complex,

• Lengthy process,

• Costly

• Device

vulnerabilities

• Insider threats

9

Several papers have been reviewed and they are connected to the research

purpose in terms of using the IoT framework in the proposed system. However, none

of the works had established a system that can tackle most of the security concerns

highlighted. The existing works in [9-13] have recognised the potential of biometric

technology as the authentication method for smart lock system. With regards to facial

recognition technology, several security vulnerabilities have been identified in the

existing works which include privacy risk, accuracy issues, vulnerability to hacking,

and the increased surveillance. Despite these concerns that facial recognition is a

relatively new method, it has the potential to enhance security and convenience in not

just smart lock context, but also others such as mobile devices and public spaces. To

achieve the objective, this project explores the development of a more accurate and

reliable facial recognition algorithms that are robust and more secured.

10

2.3 Hardware Review

The proposed system centres around three primary hardware modules: a mobile

device., microcontroller board, and face recognition reader.

2.3.1 Smart Mobile Device

A smartphone device is necessary to test out the email sending features when

developing the project. In general, any smartphone with stable Internet connection can

be used for this project. The Apple iPhone 11 is being utilised.

2.3.2 Microcontroller

A microcontroller module is an embedded system that is equipped with various

input and output pins, enabling its connection to components or modules required to

perform the required task. It enhances the door locking and unlocking process by

interpreting incoming signals to execute specific actions. Moreover, it’s crucial to

highlight that the microcontroller device must facilitate internet connectivity for

seamless communication with cloud storage. In the low-cost microcontroller category,

both Arduino and Raspberry Pi are being considered for this purpose. The comparison

between these two microcontrollers are tabulated in Table 2.2.

Table 2.2 Comparison between Raspberry Pi 3 Model B and Arduino UNO On Different Selection
Criterias

Criteria
Raspberry Pi 3 Model B

(Raspberry Pi Foundation, no
date)

Arduino UNO
(Arduino, 2019)

Processor Quad-core ARM Cortex A53 ATmega328P 8-bit
Memory 1GB RAM 2KB SRAM, 32KB Flash
Internet Connectivity Wi-Fi, Ethernet None
Power Consumption ~2.5 W ~0.5 W
Working
Temperature

0-50 °C -40-85 °C

Camera Module Compatible with webcam or Pi
camera

Not natively supported

Programming
Language

Python, C/C++ and more C/C++ (Arduino IDE)

Cost Around RM150 Around RM35

11

In conclusion, the selection of the suitable microcontroller holds immense

significance for the project. The Raspberry Pi emerges as a remarkable selection for

this endeavour although the price is slightly on a higher range, hence it will serve as

the primary controller for the smart locking system. This decision is also influenced

by past familiarity and expertise in microcontroller operations and programming

language offered. For this project, the Python programming language has been chosen

for the program development.

12

CHAPTER 3

 METHODOLOGY

This chapter delves into the methodologies and the foundation to carry out the

project execution. The primary stages for this project comprise research on existing

literature, hardware and software specifications selection, design development and

implementation, as well as experimental results as shown is Figure 3.1.

Figure 3.1 Project Methodology

13

In Chapter 2, the research reviews has been undertaken prior to designing the

project specification and executing the project. An adequate level of literature on the

primary topic and concerns of these works has been collected. Initially, the AIoT

within the smart locking system was conducted, accompanied by a discussion on

various locking mechanisms. This evaluation leads to the evaluation of facial

biometrics, which has been selected to symbolize the digital or biometric key for this

project. Given the extensive communication between devices exposing the system to

possibility of malicious attacks, it is necessary to focus on the face recognition

algorithm. Thus, the concerns on the existing work is tabulated to provide as a pre-

requisite that must be satisfied to develop an AIoT system.

The design specification incorporate insights from relevant research papers as

well as the highlighted security concerns. This includes the hardware finalization such

as choosing a well-suited microcontroller and face recognition reader that can adapt at

real-time video recording. Additionally, a cloud storage system selection is included

to enhance the security for managing the smart locking system.

3.1 Proposed Smart Locking System

A secured system architecture of the proposed project is as shown in Figure

3.2. There are two main components in the software implementation: Microcontroller

and Firebase storage. In this proposed system, microcontroller act as the image

collector, and database storage using the Firebase storage. Firebase storage are one of

many services offered by the Google Cloud Platform (GCP) (Google, no date).

Figure 3.2 High-Level Architecture of the Proposed System

14

The software architecture of the proposed system ensures a secure structure for

user authentication and validation, ensuring that only authorized users gain access after

receiving permission from the controller. While the project emphasis rests on security,

it’s crucial to consider the convenience and reliability for the users. Thus, in

conjunction with the security as the focus, the proposed design aims to mitigate finicky

design and difficult authorization process. This is to ensures that the potential of users

to deter the system can be avoided.

The Firebase Storage, will act as a database to store all the image collections

and dataset received. The cloud functions, which is a user defined function server have

the access to all the main entities of the system. The microcontroller unit is integrated

to the IoT system and will have two main functionalities – to receive the datasets from

the database and perform authorization which resulting to door being unlock in case

if user is authorised, and vice versa. Other than that, the microcontroller will also

interact with other sub -hardware components incorporated to the input and output

ports that forms the locking system. The system will adhere to a secure communication

protocols for acquiring the datasets from the database, and it will also dispatch

essential messages to the owner via email in the event of intruders being detected.

In terms of security, the microcontroller does not have direct access or

communication with the database. This is to ensure that any possible attacks can be

prevented or at least, delayed.

3.1.1 Face Recognition using Convolutional Neural Networks (CNNs)

The face recognition mechanism in this proposed system is as shown in Figure

3.3. The project aims to create a robust framework to allow scalability and re-training

of machine learning model. Thus, the algorithm will be divided into three main parts

– dataset generation, training model, facial recognition.

The dataset generation involves the image collection process where a set of

images containing faces of an individual person is pre-collected. These images are later

pre-process to enhance feature extraction experience in the later stage. The images are

later saved in a folder labelled by individual’s unique identifier. To attain the objective

of this stage, the proposed system will incorporate the OpenCV library, enabling the

microcontroller to process images taken by the face recognition reader.

15

Figure 3.3 Facial Recognition Mechanism of the Proposed System

At the training model stage, the dataset is loaded into the algorithm in order to

perform the face training. The project aims to adopt the Convolutional Neural

Networks (CNNs) model which is a deep learning model used for image classification

tasks (F. Li et al. 2015). To achieve this, additional python library which is TensorFlow

Keras package will be implemented. The TensorFlow is an open-source machine

learning framework that provides various Application Programming Interfaces (APIs).

Keras which is one of its API will be used in implementing the model training

algorithm as it helps to simplify the process of building, training, and deploying the

CNN model (Nath, J. 2021). The face recognition stage involves the process of loading

the trained model and perform a simple algorithm to send signal to other hardware

component on the locking mechanism.

16

3.2 Software Specification

3.2.1 Raspbian OS

Figure 3.4 Typical Desktop View of Raspbian OS

Figure 3.4 shows a typical desktop view of the Raspbian OS. Raspbian is the

free and foundation’s official supported operating system based on Debian optimized

for the raspberry pi hardware. Raspbian provide more than pure OS if compare to the

other operating system. It comes with over 35000 packages, pre- compiled software

bundled in a nice format for easy installation on Raspberry Pi. Software like Python

IDE, Scratch and more are included in this OS (Raspberry Pi Foundation, no date).

17

3.2.2 Python IDE

Figure 3.5 Python Software Foundation Logo

Python IDE is a free and open source programming software and also is an IDE

stand for integrated development environment for Python. In Raspbian OS, python

IDE is a built-in software and installed with python2 and pyhton3 (Raspberry Pi

Foundation, no date). Apart from that, Python supports a virtual environment which

is a tool that can isolate dependencies required for specific project usage (Python, no

date). This is to make sure no redundant libraries being run with the code that might

affect the code functionalities. In this project python IDE will be used to code most of

the program including the face recognition and face detection with the use of OpenCV

and TensorFlow library.

3.2.3 Visual Studio Code IDE

Figure 3.6 Visual Studio Code IDE Logo

Visual Studio Code, created by Microsoft, serve as a versatile coding tool for

scripting, debugging and refactoring. This helps the developers to develop code

efficiently and in a timely-manner. It also have multi-language support which includes

but not limited to Python, C#, C++, HTML and JavaScript (Visualstudio.com, 2016).

In this project Visual Studio Code will aid the software development process ensuring

a successful outcome.

18

3.3 Hardware Specification

Figure 3.7 High-Level Hardware Diagram

Figure 3.7 illustrates the hardware flowchart for the proposed design. The smart

locking system encompassed an electromagnet lock affixed to a door, and a camera

for gathering people images. These components are interconnected through a

Raspberry Pi 3 model B microcontroller. In project scope, a user can enter locked

premises by showing their face on the camera. The face recognition reader detects and

captures image collections and sends them to the microcontroller. The microcontroller

subsequently undertakes the face verification to determine the authentication status.

19

3.3.1 Webcam

Figure 3.8 Webcam Module

The webcam functions as a video camera, that

captures real-time video for facial recognition

task. It scans and gathers data which is the

image whenever an individual approaches the

camera. The acquired data is subsequently

transmitted to the controller for subsequent

task execution.

3.3.2 Raspberry Pi 3 Model B

Figure 3.9 Raspberry Pi Model B Microcontroller

The Raspberry Pi microcontroller act

as a main “runner” that retrieve

datasets from the database, make

decisions, and transmitting the

executing command to the relay that

governs an electromagnet lock.

3.3.3 Relay

Figure 3.10 Relay Module

A relay functions as a mechanical switch

that facilitate the transition from a low input

signal to a significantly higher output signal. For

the proposed system, direct connection between

electromagnet lock and microcontroller could

lead to damage on the controller. Hence a relay

will be used to bridge the GPIO voltage output to

the electromagnet Lock.

20

3.3.4 Electromagnet Lock

Figure 3.11 Electromagnetic Lock

An electromagnet lock operates on DC12V and

comprises a magnet, steel plate, and accompanying

mounting hardware. In this project, the

electromagnet locks waits a command from the

microcontroller. Upon receiving a “success” signal,

the power is disengaged, demagnetizing the

electromagnet lock and vice versa.

21

CHAPTER 4

 SOFTWARE DEVELOPMENT AND IMPLEMENTATION

4.1 Software Setup

4.1.1 Raspbian OS

Installing the Raspbian Operating System is required in order to use the

Raspberry Pi microcontroller. The Raspberry Pi has its own official OS imager tool

where developer can choose the OS type and version that is suited for the project. Upon

choosing, the imager can also perform write to the microSD. At the end, the microSD

can be slotted to the microcontroller and boot the system.

The initial set up includes setting up user name and password, followed by

connecting the Raspberry Pi to the Internet wirelessly. With the Internet access, the

operating system is updated to the latest version. In order to avoid the changing of

Raspberry Pi’s IP address while rebooting Router or Raspberry Pi, it’s a necessity that

we use a fixed IP address. The IP address has been set to a static address within the

network range. With this being fixed, the IP address can be used for the VNC viewer

from personal computer. Apart from that, as the project is using webcam instead of the

Pi-camera itself, there are additional library needed to be installed, which is fswebcam

(Debian Webmaster, 2012). This is required in order to properly operate the webcam.

The required library will be installed and stored in the virtual environment created for

the project.

22

4.1.2 Python IDE

Although Raspbian OS comes with a pre-installed python2 and python3, it must

be noted that the version can satisfy the project requirement such as the required

libraries and dependencies. For this project, the main additional libraries required are

TensorFlow and OpenCV. For ease of usage, the required dependencies will be

installed on a virtual environment configured solely for this project.

4.1.3 Gmail – Python Account

In order to enable email sending feature in the system, a Gmail account is needed. A

two-step verification must first be activated in order to generate a Python password

under application password for project usage. Once password is created, it can then be

copied and use in the project.

4.2 Software Development

A complete software code flowchart is as shown in Figure 4.1. The sensor

distance threshold is set at 20cm. This means that if an object detected is within 0 to

20 cm proximity from the sensor, the microcontroller with trigger the webcam to start

collecting the data, or images for facial recognition. The webcam will remain turn on

until the person’s face is evaluated or if the time is up. The time is adopted for cases

to ensure that the camera does not turn on forever that could cause a surge in current

drawn by the microcontroller. For this project, the camera timer is set to 20 seconds.

Within the timer range, The face recognition algorithm is being run to analyse

any face detected. The following sub-topics will explain in details on the face

recognition process.

23

Figure 4.1 Proposed System Software Flowchart

24

4.2.1 Datasets Preparation Process

Figure 4.2 Transfer Learning Method for Datasets Preparation

There are many face recognition standards and methods being used to develop

a face recognition system. Figure 4.2 shows the flow diagram of the datasets

preparation for this project, which is using the transfer learning method for face

detection. A pre-trained CNN model, which is a model pre-trained for face detection

is loaded to the system. From this model, the frame size required to properly detect

faces is obtained by using the TensorFlow library. Once frame sized is obtained, the

face detected on the image is performed and bounding boxes are placed on the dataset.

The dataset is then saved into a new form of datasets which only have the faces

detected.

Figure 4.3 Code Snippet for Frame Resizing and Face Detection

25

Figure 4.3 shows the code snippets of creating the new datasets. The dataset

frame is resize using the following the pre-trained image size requirement

(fmd.image). the face detection is performed with the new resize frame by passing the

image to inference model. The bounding boxes (bboxes) then return the rectangles

form of the face detected. Using the cv2 library the image is saved (cv2.imwrite) to

the specified path and naming (save_path), as shown in Figure 4.4.

Figure 4.4 Code Snippet of Saving Image Captured

4.2.2 Model training and Face Recognition Process

Figure 4.5 Face Recognition Development Method

 The model training includes using a pre-trained face recognition model to

reduce the heavy-duty of training simple features and the base weight of this model is

used to train new model. Figure 4.5 illustrates the training method being used for this

project. The pre-trained model is in Protobuf format (.pb) which contains the graph

definition as well as the weights of the model. When webcam module is running and

image is capture, the trained model is loaded and get the prediction value using

Tensorflow’s tf.session.run() function. The lower the prediction value, the higher the

rate of accuracy. This means lower error rate on recognition. For this project, the

prediction value threshold is set to 0.8.

26

4.2.3 Email Sending Process

Figure 4.6 Sending Email with Python Method

Function send_message_to_owner() is created and the process is as show in

Figure 4.6. Python IDE have built-in email sending library. The required packages

include OS, SSL, email and SMTP which comes pre-built with the installed python

IDE. The setup process includes initializing elements which is the sender email and

password, receiver email, and email content. The elements is then mapped and defined

for the EmailMessage() class. In order to add extra layer of security, the SSL library

is implemented to define the SSL certificate. Secure Sockets Layer (SSL) is a standard

internet protocols that helps to ensure that internet connection is kept secured and

safeguarding any sensitive data that is being sent between two system. In order to send

the email, the SMTP library is imported to login and define the email server. Then the

email can be sent through this SMTP server when an intruder is detected as shown in

the system design flowchart.

Figure 4.7 Code Snippet of Initializing Email Content

Figure 4.7 shows the code snippet of the setting content to send the email.

The set_content and add_attachement helps define the body content of the email

and the captured image respectively. Apart from that, ssl.create_default_context

helps to set the SSL certificate as shown in Figure 4.8. Once everything is convert,

login is done using smtp.login and email is send using smtp.send_mail().

Figure 4.8 Code Snippet of Email Sending Process

27

4.3 Microcontroller Code Implementation
Figure 4.9 represents the detailed sequence of the communication between the

microcontroller, database, SMTP mail provider and other hardware components.

Figure 4.9 Detailed Hardware-Software Communication Diagram

28

CHAPTER 5

 HARDWARE DEVELOPMENT AND IMPLEMENTATION

5.1 Bipolar Junction Transistor (BJT) Amplifier

An external controlling circuit is necessary to transmit the signal from

microcontroller GPIO pin to the relay’s IN pin. According to the datasheet, the relay

operates on an active-low logic, where it interprets a logic low signal as 0𝑉, and a

logic high as 5𝑉. The relay will then deleiver the recieved logic values from the BJT

amplifier circuit to the load, which is the electromagnet lock.

Referring to the microcontroller datasheet (Raspberry Pi Foundation, no date),

the GPIO pins ranges from 1.6– 3.3𝑉 for a logic high output, and less then 1𝑉 for a

logic low mode. However, the pull-in (trigger) voltage is above 3.75𝑉. Aligning the

GPIO pin’s output voltage range with the trigger voltage of the relay, the concept of

an inverter logic is used. In this project, an NPN transistor is reviewed for this purpose.

The deign specification for the BJT amplifier is as tabulated in Table 5.1 below.

Table 5.1 BJT Amplifier Design Criteria

Transistor

Operation
Input Voltage
Range (V)

Output Voltage

Range (V)
Transistor State

Cut-off Mode 0 – 1 3 – 5 Off (Open)

Saturated Mode 1.6 – 3.3 0 – 1 On (Close)

29

Figure 5.1 BJT Amplifier Circuit using NPN transistor.

5.1.1 Saturation Mode

Based on the NPN 2N2222A transistor datasheet (First Components

International, no date), the maximum voltage value for collector-emitter voltage 𝑉𝐶𝐸

and the based-emitter voltage 𝑉𝐵𝐸 are 0.3𝑉 and 1.2𝑉 respectively. By applying the

Kirchoff’s voltage law, 5.1 is deduced. To maintain control over the transistor, the

collector current must be sufficient while keeping power consumption low. It is also

crucial to note on the floating state, where the voltage acquired is unstable and causes

the relay to continuously switch between 5𝑉 and 0𝑉. This floating stage should be

minimised or eliminated.

Assuming a current of 0.5mA at 𝑅𝑐, the value calculated for 𝑅𝑐 is 9.4𝑘𝛺.

considering the standard resistor values, 10𝑘𝛺 is selected for 𝑅𝑐. This resistor

functions as a pull-up resistor, helping to guide the input to a high state when the

voltage is floating.

5𝑉 − 𝑉𝐶𝐸 = 𝐼𝐶𝑅𝐶 5.1

30

In order to counter the floating state and set it to a low state, a pull-down

resistor 𝑅𝑏𝑖𝑎𝑠 is utilised. Consequently, 10𝑘𝛺 for 𝑅𝑏𝑖𝑎𝑠 is placed. With NPN

transistor’s minimum beta value 𝐻𝐹𝑒 being 100, the base current of 5𝜇𝐴 required to

saturate the NPN transistor is verified using equation 5.2.

𝐼𝐶 = 𝐻𝐹𝑒𝐼𝐵 5.2

5.1.2 Cut-off Mode

The transistor cut-off mode denotes current not flowing thus, zero at base

current. Having this in mind and 𝑉𝐵𝐸 as 1.2𝑉 in saturated mode, the cut-off mode rules

are defined by the following bullets:

➢ Current draws at 𝑅𝑏 and 𝑅𝑏𝑖𝑎𝑠 is equivalent

➢ Voltage should be less than 1.2𝑉 across 𝑅𝑏𝑖𝑎𝑠

 Equation 5.3 is used to define the resistors value. Adhering to the design

criteria, the calculated value for 𝑅𝑏 is 2.5𝑘𝛺 when the input voltage is 1.5𝑉.

𝑉𝑖 − 𝑉𝐵𝐸

𝑅𝑏
=

𝑉𝐵𝐸

𝑅𝑏𝑖𝑎𝑠
 5.3

Prior to transferring the theoretical amplifier circuit design to a soldering board

for practical use, a simulation is performed using Ltspice. This simulation is crucial to

validate the design’s performance before the actual implementation to ensure that the

design criteria align with the desired outcome. This helps in minimizing the risk of

damage to both of the hardware component, Raspberry Pi microcontroller and the relay

module.

Figure 5.2 Theoretical Graph Result of the Design Circuit

31

The design of the amplifier circuit is simulated using Ltspice to observe its

output behaviour. As can be seen in Figure 5.2, when the input is at 1.6𝑉, the NPN

transistor becomes fully saturated, pulling the 5𝑉 to ground. This experimental result

demonstrates the successfully attained the logic high state for the design circuit.

Conversely, the supply voltage should be below 1𝑉 in order to yield 5𝑉 of output

voltage for the logic low state. As shown in the graph result using Ltspice simulator,

when the input voltage is approximately 1𝑉, the output voltage registers at 5𝑉. This

observation signifies the NPN transistor being powered off, which is entering the cut-

ff mode. As a result, the design circuit has achieved the intended objective in theory.

5.2 Hardware Configuration

Figure 5.3 Hardware Pin Configuration of the Proposed Smart Lock System

32

CHAPTER 6

 RESULT AND DISCUSSION

6.1 Datasets Collection

Figure 6.1 Datasets Collection

6.2 System Testing

The performance of the facial recognition execution is recorded using

save_video_recording() function created in the microcontroller to save the capturing

process to the computer screen. This leverages the use of cv2 python library as it has

already been integrated into the project. The system able to detect the person face with

and without mask within 2 seconds timeframe as shown in Figure 6.2 and Figure 6.3

respectively.

33

Figure 6.2 Screenshot of Authorized Personnel with Mask

Figure 6.3 Screenshot of Authorized Personnel Without Mask

34

6.3 Alerting System

The alerting system is tested to send email to owner when there’s unfamiliar face

being detected. As shown in Figure 6.4, image is captured and email is sent to the

owner’s registered email address.

Figure 6.4 Email Sent to Owner

6.4 Challenges

 The face recognition algorithm is tested on a personal computer with different

camera module before transferring to the Raspbian OS SD Card. Having said this, the

built-in laptop camera have different brightness compared to the webcam module

attach to the microcontroller under the same light condition. Due to this, the confidence

level are re-adjusted to accommodate to new default lighting condition. Table 6.1

summarised the working confidence level for the microcontroller. As can be since, the

confidence level need to be increased in order to correctly detects the person.

35

Table 6.1 CNN Model Confidence Level Under Different Brightness Condition

 Confidence Level Brightness

Webcam Module 0.8 High

Built-in laptop Module 0.5 Medium

 Apart from that, the system also faces issue on dealing with small diversity of

faces and datasets to train the model. This trade-off the accuracy level of the algorithm

to implement the tasks. That being said, a public contributed pre-trained model had

been used to further enhances the accuracy, robustness and efficiency of the algorithm

(Schroff et al., 2015)

6.5 Low Power Consumption Effort

The Raspberry Pi 3 Model B controller is not built-in with a sleep or hibernate

mode, hence the controller always remain active when powered on (Raspberry Pi

Foundation, no date). Moreover, the camera module also remained activated

throughout the process causing the controller to draws a lot of current at approximately

600mA and heat up fast. In order to fix this issue, the system had accommodate

additional installation to minimise the power consumption. This includes the ultrasonic

sensor and the heatsink.

6.5.1 Ultrasonic Sensor

Figure 6.5 HC-SR04 Ultrasonic Sensor

36

The HC-SR04 Ultrasonic sensor outputs 5V (Spark Fun Electronic, no date)

thus the voltage divider rule formula will be used to shift 5V to 3.3V. This is because,

the raspberry pi GPIO pins only accept 3.3V. By having this level shifter, it can prevent

the sensor from frying the microcontroller. According to the 6.1 where input voltage

𝑉𝑖𝑛 and output voltage 𝑉𝑜𝑢𝑡 are 5V and 3.3V respectively, the resistor R1 will be 1k

and resistor R2 will be approximately 2k.

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛
𝑅2

𝑅1𝑅2

6.1

The pin configuration for sensor connection and the microcontroller is as shown in

Figure 6.6.

Figure 6.6 Ultrasonic Sensor Pin Configuration

The software code of the system is modified to accommodate these changes.

Having this installed, the current draws is relatively smaller at about 590mA.

6.5.2 Heatsink

Figure 6.7 shows the heatsink being attached over the controller’s processer.

Having this installed, the microcontroller power consumption is relatively smaller at

approximately 550mA current drawn within a 10 minutes timeframe.

37

Figure 6.7 Heatsink Placement on Microcontroller

Graph shown in Figure 6.8 summarized the controller power consumption in four

difference scenarios within 10 minutes time frame. The scenarios include the

microcontroller without additional installation, microcontroller with ultrasonic sensor,

microcontroller with heatsink, and microcontroller installed with both heatsink and

ultrasonic sensor.

Figure 6.8 Microcontroller Power Consumption Based on Different Scenarios

As can be seen in Table 6.2, the last scenarios draw up the least current at

about 412mA and temperature of 56°C. Thus, the system remained with the

microcontroller with both components installed.

0 100 200 300 400 500 600 700 800

1

2

3

4

Current (mA)

Sc
en

ar
io

Pi Power Consumption

38

Table 6.2 Microcontroller Drawn Current and Temperature Based on Different Scenarios

Scenario Description (10 minutes run) Current(mA) Temperature
(°C)

1 Microcontroller 670 78

2
Microcontroller + Ultrasonic

Sensor
590 64

3 Microcontroller + Heatsink 550 60

4
Microcontroller + Heatsink +

Ultrasonic Sensor
412 56

6.6 Locking Mechanism Substitute

From the hardware configuration, it is noted that the relay and the electromagnet

lock will represent the locking mechanism. However for the implementation testing,

two LEDs are being used to reduce cost. When the door is unlocked, the green LED

lights up for 5 seconds, else red LED remains on to indicate that the door is locked.

Figure 6.9 shows the pin connection to the Raspberry Pi GPIO. Red LED is connected

to GPIO 6 whereas Green LED connected to GPIO 18.

Figure 6.9 Locking Mechanism Indicator Pin Configuration

39

6.7 Final Product

Figure 6.10 Final Product Prototype

40

CHAPTER 7

 CONCLUSION

The project effectively attains its initial aims and objective. A smart locking

system using an AIoT framework had been developed, leveraging the cost-effective

Raspberry Pi microcontroller and the python programming language. The face

recognition algorithm also proven to be able to detect a person with and without mask,

as well as notifying the owner via email when an intruder is detected. Notable

enhancements include a study on a low consumption effort to optimize the power

consumption of the system for long-term usage. In conclusion, the system’s

architecture is clearly presented, seamlessly integrating all platforms. Towards the end,

a complete system with a hardware prototype had been developed, all parts were

integrated, tested and validated.

7.1 Future Work

The subsequent phase of the development for this technology will involve its

expansion for use across various industries that necessitate locking system such as

libraries, condominium complexes and private parking areas. In cases where no further

feature expansion is needed but the controller is desired in multiple locations,

duplicating the storage media which is the MicroSD card, from the Raspberry Pi to a

new device can be achieved without concerns about the kernel or driver compatibility.

41

In terms of security, there are several improvements that could be implemented

to enhance the system by introducing data encryption for microcontroller and the

database. This modification aims to restrict the decoding of the information to only

designated controller. Apart from that, the face recognition reader could be upgraded

to an infrared camera, offering improved quality and immunity to varying light

conditions. Additionally, as the proposed system only logged or notify owner for

intruder detected, the system can also be upgraded to logged authorised entries for

owner to trace.

7.2 Project Reflection
As is common in most projects, there were instances of unexpected events

influencing milestones, either advancing or delaying them, and this project is no

exception. the project schedule has encountered a minor conflict on the hardware-

software development. However in the first half of the project schedule, the project

managed to complete 50% of the hardware design development by running a

simulation on the expected result and it is expected to be tested on physical circuit,

moving forward. To compensate on the delay, the project schedule has been adjusted

where the software code development is expected to run in parallel with the remaining

hardware testing. Ultimately, the project outcome have both hardware – software

design integrated and run seamlessly to achieve the main project objective. Overall,

the project has progressed well, and finished on time and within the scheduled

timeline.

42

REFERENCE

Zhang, F., Pan, Z. and Lu, Y., 2023. AIoT-enabled smart surveillance for personal data

digitalization: Contextual personalization-privacy paradox in smart home. Information

& Management, 60(2), p.103736.

Normalini, M.K. and Ramayah, T., 2015. Understanding security in consumer

adoption of internet banking: Biometrics technology implementation in the malaysian

banking context. In Banking, Finance, and Accounting: Concepts, Methodologies,

Tools, and Applications (pp. 685-698). IGI Global.

G. Sowmya, G. Divya Jyothi, N. Shirisha, K. Navya, and B. Padmaja, 2018 “IOT based

Smart Door Lock System,” International Journal of Engineering & Technology, vol.

7, no. 3.6, p. 223.

Akshay Krishnadas Bhat, Siddhesh Praveen Kini 2018, “Password Enabled Door

Locking System using Arduino and IoT,” International Journal of Engineering

Research & Technology (IJERT) , Vol. 7 Issue 5

Y. Kim, J. Choi, and J. Park, 2021 "An AIoT-based Smart Lock System with Smart

Tags for Secure and Convenient Access Control," IEEE Access, vol. 9, pp. 101501-

101511.

P. N. Narkar, R. Fernandes, R. Dmello, and J. Louis, 2017 “Study on Access Control

and Management Using NFC,” International Journal of Latest Engineering Research

and Applications (IJLERA), vol. 02, pp. 126–129.

Shin, S.S., Han, K.H. and Jin, K.Y., 2013. Digital door lock on the access control

system using otp-based user authentication. International Journal of Digital Content

Technology and its Applications, 7(11), p.436.

43

Aggarwal, M., 2017. Secure Electronic Lock Based on Bluetooth Based OTP System.

In Elins International Journal of Science Engineering and Management (Vol. 2, No.

1). Department of Electronics and Communication Engineering

Akanbi, C.O., Ogundoyin, I.K., Akintola, J.O. and Ameenah, K., 2020. A prototype

model of an iot-based door system using double-access fingerprint technique. Nigerian

Journal of Technological Development, 17(2).

Rao, S., Panguluri, M.A.H. and Sriharika, C., 2019. Automatic door unlock system

using IOT and RFID. International Journal of Innovative Technology and Exploring

Engineering, 8(5), pp.619-23.

Yedulapuram, S., Arabelli, R., Mahender, K. and Sidhardha, C., 2020, December.

Automatic door lock system by face recognition. In IOP Conference Series: Materials

Science and Engineering (Vol. 981, No. 3, p. 032036). IOP Publishing.

Waseem, M., Khowaja, S.A., Ayyasamy, R.K. and Bashir, F., 2020, October. Face

recognition for smart door lock system using hierarchical network. In 2020

International Conference on Computational Intelligence (ICCI) (pp. 51-56). IEEE.

Khalimov, R., Rakhimbayeva, Z., Shokayev, A., Kamalov, B. and Ali, M.H., 2020,

July. Development of intelligent door locking system based on face recognition

technology. In 2020 11th International Conference on Mechanical and Aerospace

Engineering (ICMAE) (pp. 244-248). IEEE.

M. Siddique, H. Sohail, and M. Sarwar, 2019 "A smart lock system based on token

authentication for home security," 2019 2nd International Conference on Computer

Applications & Information Security (ICCAIS), pp. 1-6,

doi: 10.1109/CAIS48617.2019.9031984.

C. Gunasinghe, S. K. Halgamuge, and P. M. A. Siriwardana , 2018 "Token-based

security for IoT home automation systems," 2018 IEEE International Conference on

Industrial Technology (ICIT), pp. 1225-1230.

44

Hemalatha, A. and Gandhimathi, G., 2019. RFID, Password and OTP based Door

Lock System using 8051 Microcontroller. International Journal of Engineering

Research & Technology (IJERT) CONFCALL, 7(11).

Mei Yin, D.B., Kamal, M.I., Azmanuddin, N.S., Ali, S.H.S., Othman, A.T. and Chik,

R.Z.W., 2016, January. Electronic door access control using MyAccess two-factor

authentication scheme featuring near-field communication and eigenface-based face

recognition using principal component analysis. In Proceedings of the 10th

International Conference on Ubiquitous Information Management and

Communication (pp. 1-8).

Motwani, Y., Seth, S., Dixit, D., Bagubali, A. and Rajesh, R., 2021. Multifactor door

locking systems: A review. Materials Today: Proceedings, 46, pp.7973-7979.

Arduino (2019). Arduino Uno Rev3. Available at Arduino.cc. Available at:

https://store.arduino.cc/usa/arduino-uno-rev3 (Accessed: 16 April 2023).

Raspberry Pi Foundation (no date). Raspberry Pi hardware - Raspberry Pi

Documentation. Available at:

https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md

(Accessed: 16 April 2023).

Google (no date). Google Cloud overview. Available at:

https://cloud.google.com/docs/overview. (Accessed: 16 April 2023).

F. Li, A. Karpathy, and J. Johnson (2015) "Convolutional Neural Networks for Visual

Recognition," Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 1-9.

Nath, J. (2021). Introduction to TensorFlow Keras. Medium. Available at:

https://towardsdatascience.com/introduction-to-tensorflow-keras-53aa859fcc93

(Accessed: 16 April 2023).

https://store.arduino.cc/usa/arduino-uno-rev3
https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md
https://cloud.google.com/docs/overview

45

Raspberry Pi Foundation (no date) Raspberry pi documentation, Raspberry Pi OS.

Available at: https://www.raspberrypi.com/documentation/computers/os.html

(Accessed: 16 April 2023).

Python (2023) Venv - creation of Virtual Environments, Python documentation.

Available at: https://docs.python.org/3/library/venv.html (Accessed: 17 August 2023).

Visualstudio.com, (2016). Documentation for Visual Studio Code. Available at

https://code.visualstudio.com/docs (Accessed: 16 April 2023).

Debian Webmaster, D.W. (2012) Package: Fswebcam, Debian. Available at:

https://packages.debian.org/sid/graphics/fswebcam (Accessed: 17 August 2023).

Ningbo Songle Relay Co. Ltd (2012) “Relay” SRD-05VDC-SL-C datasheet.

First Components International, no date "NPN General Purpose Transistor," 2N2222A

datasheet.

Schroff, F., Kalenichenko, D. and Philbin, J., 2015. Facenet: A unified embedding for

face recognition and clustering. In Proceedings of the IEEE conference on computer

vision and pattern recognition (pp. 815-823).

Spark Fun Electronic (no date) Ultrasonic ranging module HC - SR04 - SparkFun

Electronics, sparkfun. Available at:

https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf (Accessed: 16

April 2023).

https://code.visualstudio.com/docs

46

APPENDICES

APPENDIX A – Source Code – Main.py

from face_recognition.real_time_face_recognition import *

import time

def main():

 start_system()

def start_system():

 cam = 0

 while True:

 try:

 # Using ultra sonic distance sensor to measure the distance of object

 setup_gpio_pins()

 dist = measure_average()

 time.sleep(1)

 # Whenever you press ctrl+c script stop running

 except KeyboardInterrupt:

 GPIO.cleanup()

 break

 if object_detected(dist):

 print("HERE : ", dist)

 print("Starting Face Recognition")

 face_recognition(camera_source=cam, resolution="720", to_write=True,

save_dir="recording")

 unlock_door()

if __name__ == "__main__":

 main()

47

APPENDIX B – Source Code – face_detection.py

 def generate_anchors(self,feature_map_sizes, anchor_sizes, anchor_ratios, offset=0.5):

 anchor_bboxes = []

 for idx, feature_size in enumerate(feature_map_sizes):

 cx = (np.linspace(0, feature_size[0] - 1, feature_size[0]) + 0.5) / feature_size[0]

 cy = (np.linspace(0, feature_size[1] - 1, feature_size[1]) + 0.5) / feature_size[1]

 cx_grid, cy_grid = np.meshgrid(cx, cy)

 cx_grid_expend = np.expand_dims(cx_grid, axis=-1)

 cy_grid_expend = np.expand_dims(cy_grid, axis=-1)

 center = np.concatenate((cx_grid_expend, cy_grid_expend), axis=-1)

 num_anchors = len(anchor_sizes[idx]) + len(anchor_ratios[idx]) - 1

 center_tiled = np.tile(center, (1, 1, 2 * num_anchors))

 anchor_width_heights = []

 # different scales with the first aspect ratio

 for scale in anchor_sizes[idx]:

 ratio = anchor_ratios[idx][0] # select the first ratio

 width = scale * np.sqrt(ratio)

 height = scale / np.sqrt(ratio)

 anchor_width_heights.extend([-width / 2.0, -height / 2.0, width / 2.0, height / 2.0])

 # the first scale, with different aspect ratios (except the first one)

 for ratio in anchor_ratios[idx][1:]:

 s1 = anchor_sizes[idx][0] # select the first scale

 width = s1 * np.sqrt(ratio)

 height = s1 / np.sqrt(ratio)

 anchor_width_heights.extend([-width / 2.0, -height / 2.0, width / 2.0, height / 2.0])

 bbox_coords = center_tiled + np.array(anchor_width_heights)

 bbox_coords_reshape = bbox_coords.reshape((-1, 4))

 anchor_bboxes.append(bbox_coords_reshape)

 anchor_bboxes = np.concatenate(anchor_bboxes, axis=0)

 return anchor_bboxes

import numpy as np

from face_recognition.parameters import *

import tensorflow as tf

tf.compat.v1.disable_v2_behavior()

class FaceMaskDetection():

 def __init__(self,pb_path,margin=44,GPU_ratio=0.1):

 # ====generate anchors

 anchors = self.generate_anchors(feature_map_sizes, anchor_sizes, anchor_ratios)

 anchors_exp = np.expand_dims(anchors, axis=0)

 sess, tf_dict = get_sess_from_pre_trained_pb(pb_path, node_dict,GPU_ratio = GPU_ratio)

 tf_input = tf_dict['input']

 model_shape = tf_input.shape # [N,H,W,C]

 print("model_shape = ", model_shape)

 img_size = (int(tf_input.shape[2]),int(tf_input.shape[1]))

 print("img_size = ", tf_input.shape[2], tf_input.shape[1])

 detection_bboxes = tf_dict['detection_bboxes']

 detection_scores = tf_dict['detection_scores']

 # ----local var to global

 self.model_shape = model_shape

 self.img_size = img_size

 self.sess = sess

 self.tf_input = tf_input

 self.detection_bboxes = detection_bboxes

 self.detection_scores = detection_scores

 self.anchors_exp = anchors_exp

 self.conf_thresh = CONFID_THRES

 self.iou_thresh = IOU_THRES

 self.id2class = id2class

 self.margin = margin

48

 def decode_bbox(self,anchors, raw_outputs, variances=[0.1, 0.1, 0.2, 0.2]):

 anchor_centers_x = (anchors[:, :, 0:1] + anchors[:, :, 2:3]) / 2

 anchor_centers_y = (anchors[:, :, 1:2] + anchors[:, :, 3:]) / 2

 anchors_w = anchors[:, :, 2:3] - anchors[:, :, 0:1]

 anchors_h = anchors[:, :, 3:] - anchors[:, :, 1:2]

 raw_outputs_rescale = raw_outputs * np.array(variances)

 predict_center_x = raw_outputs_rescale[:, :, 0:1] * anchors_w + anchor_centers_x

 predict_center_y = raw_outputs_rescale[:, :, 1:2] * anchors_h + anchor_centers_y

 predict_w = np.exp(raw_outputs_rescale[:, :, 2:3]) * anchors_w

 predict_h = np.exp(raw_outputs_rescale[:, :, 3:]) * anchors_h

 predict_xmin = predict_center_x - predict_w / 2

 predict_ymin = predict_center_y - predict_h / 2

 predict_xmax = predict_center_x + predict_w / 2

 predict_ymax = predict_center_y + predict_h / 2

 predict_bbox = np.concatenate([predict_xmin, predict_ymin, predict_xmax, predict_ymax],

axis=-1)

 return predict_bbox

49

 def single_class_non_max_suppression(self,bboxes, confidences, conf_thresh=0.2, iou_thresh=0.5,

keep_top_k=-1):

 if len(bboxes) == 0: return []

 conf_keep_idx = np.where(confidences > conf_thresh)[0]

 bboxes = bboxes[conf_keep_idx]

 confidences = confidences[conf_keep_idx]

 pick = []

 xmin = bboxes[:, 0]

 ymin = bboxes[:, 1]

 xmax = bboxes[:, 2]

 ymax = bboxes[:, 3]

 area = (xmax - xmin + 1e-3) * (ymax - ymin + 1e-3)

 idxs = np.argsort(confidences)

 while len(idxs) > 0:

 last = len(idxs) - 1

 i = idxs[last]

 pick.append(i)

 # keep top k

 if keep_top_k != -1:

 if len(pick) >= keep_top_k:

 break

 overlap_xmin = np.maximum(xmin[i], xmin[idxs[:last]])

 overlap_ymin = np.maximum(ymin[i], ymin[idxs[:last]])

 overlap_xmax = np.minimum(xmax[i], xmax[idxs[:last]])

 overlap_ymax = np.minimum(ymax[i], ymax[idxs[:last]])

 overlap_w = np.maximum(0, overlap_xmax - overlap_xmin)

 overlap_h = np.maximum(0, overlap_ymax - overlap_ymin)

 overlap_area = overlap_w * overlap_h

 overlap_ratio = overlap_area / (area[idxs[:last]] + area[i] - overlap_area)

 need_to_be_deleted_idx = np.concatenate(([last], np.where(overlap_ratio > iou_thresh)[0]))

 idxs = np.delete(idxs, need_to_be_deleted_idx)

 return conf_keep_idx[pick]

50

 def inference(self,img_4d,ori_height,ori_width):

 # ----var

 re_boxes = list()

 re_confidence = list()

 re_classes = list()

 re_mask_id = list()

 y_bboxes_output, y_cls_output = self.sess.run([self.detection_bboxes, self.detection_scores],

 feed_dict={self.tf_input: img_4d})

 # remove the batch dimension, for batch is always 1 for inference.

 y_bboxes = self.decode_bbox(self.anchors_exp, y_bboxes_output)[0]

 y_cls = y_cls_output[0]

 # To speed up, do single class NMS, not multiple classes NMS.

 bbox_max_scores = np.max(y_cls, axis=1)

 bbox_max_score_classes = np.argmax(y_cls, axis=1)

 # keep_idx is the alive bounding box after nms.

 keep_idxs = self.single_class_non_max_suppression(y_bboxes, bbox_max_scores,

conf_thresh=self.conf_thresh,

 iou_thresh=self.iou_thresh)

 # ====draw bounding box

 for idx in keep_idxs:

 conf = float(bbox_max_scores[idx])

 #print("conf = ",conf)

 class_id = bbox_max_score_classes[idx]

 bbox = y_bboxes[idx]

 #print(bbox)

 xmin = np.maximum(0, int(bbox[0] * ori_width - self.margin / 2))

 ymin = np.maximum(0, int(bbox[1] * ori_height - self.margin / 2))

 xmax = np.minimum(int(bbox[2] * ori_width + self.margin / 2), ori_width)

 ymax = np.minimum(int(bbox[3] * ori_height + self.margin / 2), ori_height)

 re_boxes.append([xmin, ymin, xmax - xmin, ymax - ymin])

 re_confidence.append(conf)

 re_classes.append('face')

 re_mask_id.append(class_id)

 return re_boxes, re_confidence, re_classes, re_mask_id

51

APPENDIX C – Source Code – real_time_face_recognition.py

import cv2, os, time, math, csv

import numpy as np

from face_recognition.face_detection import FaceMaskDetection, get_sess_from_pre_trained_pb

from face_recognition.parameters import *

from face_recognition.message_sending_utils import *

from face_recognition.utils import *

from gpio_utils import *

import tensorflow as tf

tf.disable_v2_behavior()

import tensorflow.compat.v1.gfile as gfile

isWriteToCSV = 0

def get_cam_resolution_decision(resolution=DEFAULT_RESOLUTION):

 if resolution in resolution_dict.keys():

 width = resolution_dict[resolution][1]

 height = resolution_dict[resolution][0]

 else:

 width = DEFAULT_FRAME_WIDTH

 height = DEFAULT_FRAME_HEIGHT

 return width, height

def save_video_recording(to_write=False, resolution=DEFAULT_RESOLUTION,

save_dir=RECORDING_DIRECTORY):

 writer = None

 if to_write is True:

 fourcc = cv2.VideoWriter_fourcc(*'MP4V')

 date, time = get_date_time_now()

 save_path = f'video_capture_{date}_{time}.mp4'

 if save_dir is not None:

 save_path = os.path.join(save_dir,save_path)

 width, height = get_cam_resolution_decision(resolution)

 writer = cv2.VideoWriter(save_path, fourcc, 30, (int(width), int(height)))

 return writer

52

def video_init(camera_source=0,resolution="480",to_write=False,save_dir=None):

 cap = cv2.VideoCapture(camera_source)

 width, height = get_cam_resolution_decision(resolution)

 cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)

 cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)

 writer = save_video_recording(to_write, width)

 return cap,height,width,writer

def get_image_from_database(tf_sess, tf_embed, model_shape, feed_dict, tf_input):

 d_t = time.time()

 paths = [file.path for file in os.scandir(REFERENCE_DIRECTORY) if file.name[-3:] in img_format]

 len_ref_path = len(paths)

 if len_ref_path == 0:

 print("No images in ", REFERENCE_DIRECTORY)

 else:

 ites = math.ceil(len_ref_path / BATCH_SIZE)

 embeddings_ref = np.zeros([len_ref_path, tf_embed.shape[-1]], dtype=np.float32)

 for i in range(ites):

 num_start = i * BATCH_SIZE

 num_end = np.minimum(num_start + BATCH_SIZE, len_ref_path)

 batch_data_dim =[num_end - num_start]

 batch_data_dim.extend(model_shape[1:])

 batch_data = np.zeros(batch_data_dim,dtype=np.float32)

 for idx,path in enumerate(paths[num_start:num_end]):

 img = cv2.imread(path)

 if img is None:

 print("read failed:",path)

 else:

 print(img.shape,(type(model_shape[2]),model_shape[1]))

 img = cv2.resize(img,(int(model_shape[2]),int(model_shape[1])))

 img = img[:,:,::-1]#change the color format

 batch_data[idx] = img

 batch_data /= 255

 feed_dict[tf_input] = batch_data

 embeddings_ref[num_start:num_end] = tf_sess.run(tf_embed,feed_dict=feed_dict)

 d_t = time.time() - d_t

 return len_ref_path, embeddings_ref, paths

53

 def get_sess_from_pre_trained_pb(pb_path, node_dict,GPU_ratio=None, is_face_reg_pb = 0):

 tf_dict = dict()

 with tf.Graph().as_default():

 config = tf.ConfigProto(log_device_placement=True, #print out GPU or CPU is adopted

 allow_soft_placement=True, #allow tf to use alternative devices

)

 if GPU_ratio is None:

 config.gpu_options.allow_growth = True # The program can access as much resource as

possible

 else:

 config.gpu_options.per_process_gpu_memory_fraction = GPU_ratio # limit the GPU

resource

 sess = tf.Session(config=config)

 with gfile.FastGFile(pb_path, 'rb') as f:

 graph_def = tf.GraphDef()

 graph_def.ParseFromString(f.read())

 sess.graph.as_default()

 if is_face_reg_pb == 1:

 for node in graph_def.node:

 if node.op == 'RefSwitch':

 node.op = 'Switch'

 for index in range(len(node.input)):

 if 'moving_' in node.input[index]:

 node.input[index] = node.input[index] + '/read'

 elif node.op == 'AssignSub':

 node.op = 'Sub'

 if 'use_locking' in node.attr: del node.attr['use_locking']

 tf.import_graph_def(graph_def, name='') # import the calculation graph

 sess.run(tf.global_variables_initializer())

 for key, value in node_dict.items():

 node = sess.graph.get_tensor_by_name(value)

 tf_dict[key] = node

 return sess, tf_dict

54

def face_recognition(camera_source=0,resolution="480",to_write=False,save_dir=None):

 #----Video streaming initialization

 cap,height,width,writer = video_init(camera_source=camera_source, resolution=resolution, to_write=to_write, save_dir=save_dir)

 # ----face detection init

 fmd = FaceMaskDetection(FACE_MASK_MODEL_PATH, MARGIN, GPU_ratio=None)

 # ----face recognition init

 tf_sess, tf_dict = get_sess_from_pre_trained_pb(FACE_RECOGNITION_MODEL_PATH, tf_node_dict, GPU_ratio=None,

is_face_reg_pb=1)

 print(tf_dict)

 tf_input = tf_dict['input']

 tf_phase_train = tf_dict['phase_train']

 tf_embed = tf_dict['embeddings']

 model_shape = tf_input.shape.as_list()

 print("The mode shape of face recognition:",model_shape)

 feed_dict = {tf_phase_train: False}

 if 'keep_prob' in tf_dict.keys():

 tf_keep_prob = tf_dict['keep_prob']

 feed_dict[tf_keep_prob] = 1.0

 len_ref_path, embeddings_ref, paths = get_image_from_database(tf_sess, tf_embed, model_shape, feed_dict, tf_input)

 # ----tf setting for calculating distance

 if len_ref_path > 0:

 with tf.Graph().as_default():

 tf_tar = tf.placeholder(dtype=tf.float32, shape=tf_embed.shape[-1])

 tf_ref = tf.placeholder(dtype=tf.float32, shape=tf_embed.shape)

 tf_dis = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(tf_ref, tf_tar)), axis=1))

 # ----GPU setting

 config = tf.ConfigProto(log_device_placement=True,

 allow_soft_placement=True,

)

 config.gpu_options.allow_growth = True

 sess_cal = tf.Session(config=config)

 sess_cal.run(tf.global_variables_initializer())

 feed_dict_2 = {tf_ref: embeddings_ref}

 tic = time.time()

 # Activate camera

 while(cap.isOpened()):

 ret, img = cap.read()

 name = UNAUTHORIZED_PERSON

 isWearingMask = 1

 if ret is True:

 #---- image processing -----------

 img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

 img_rgb = img_rgb.astype(np.float32)

 img_rgb /= 255

 #---- face detection -------------

 img_fd = cv2.resize(img_rgb, fmd.img_size)

55

APPENDIX D – Source Code – gpio_utils.py

import time

import RPi.GPIO as GPIO

from face_recognition.parameters import GPIO_TRIGGER, GPIO_ECHO, GPIO_LED_GREEN,

GPIO_LED_RED, OBJECT_NEARBY_THRES

def measure():

 # This function measures a distance

 GPIO.output(GPIO_TRIGGER, True)

 time.sleep(0.00001)

 GPIO.output(GPIO_TRIGGER, False)

 start = time.time()

 while GPIO.input(GPIO_ECHO)==0:

 start = time.time()

 while GPIO.input(GPIO_ECHO)==1:

 stop = time.time()

 elapsed = stop-start

 distance = (elapsed * 34300)/2

 return distance

def measure_average():

 # This function takes 3 measurements and

 # returns the average.

 distance1=measure()

 time.sleep(0.1)

 distance2=measure()

 time.sleep(0.1)

 distance3=measure()

 distance = distance1 + distance2 + distance3

 distance = distance / 3

 return distance

def unlock_door():

56

 print("starting to unlock_door ")

 GPIO.output(GPIO_LED_RED, False)

 GPIO.output(GPIO_LED_GREEN, True)

 time.sleep(3)

 GPIO.output(GPIO_LED_GREEN, False)

 GPIO.output(GPIO_LED_RED, True)

57

def setup_sensor_gpio_pins():

 # Use BCM GPIO references

 # instead of physical pin numbers

 GPIO.setmode(GPIO.BCM)

 GPIO.setwarnings(False)

 # Set pins as output and input

 GPIO.setup(GPIO_TRIGGER,GPIO.OUT) # Trigger

 GPIO.setup(GPIO_ECHO,GPIO.IN) # Echo

def setup_LED_gpio_pins():

 GPIO.setwarnings(False)

 GPIO.setup(GPIO_LED_RED, GPIO.OUT)

 GPIO.setup(GPIO_LED_GREEN, GPIO.OUT)

 # Set trigger to False (Low)

 GPIO.output(GPIO_TRIGGER, False)

def setup_gpio_pins():

 setup_sensor_gpio_pins()

 setup_LED_gpio_pins()

def object_detected(distance):

 flag = False

 # ~ distance = measure_average()

 if distance <= OBJECT_NEARBY_THRES:

 flag = True

 return flag

	DECLARATION
	APPROVAL FOR SUBMISSION
	ABSTRACT
	TABLE OF CONTENTS
	LISTS OF TABLES
	LISTS OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1
	INTRODUCTION
	1.1 Background
	1.2 Objective
	1.3 Problem Statement
	1.4 Scope and Limitations of The Project
	1.5 Organization of Report

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Related Work
	2.2 Security Concerns in Existing Work
	2.3 Hardware Review
	2.3.1 Smart Mobile Device
	2.3.2 Microcontroller

	3 METHODOLOGY
	3.1 Proposed Smart Locking System
	3.1.1 Face Recognition using Convolutional Neural Networks (CNNs)

	3.2 Software Specification
	3.2.1 Raspbian OS
	3.2.2 Python IDE
	3.2.3 Visual Studio Code IDE

	3.3 Hardware Specification
	3.3.1 Webcam
	3.3.2 Raspberry Pi 3 Model B
	3.3.3 Relay
	3.3.4 Electromagnet Lock

	CHAPTER 4
	4 SOFTWARE DEVELOPMENT AND IMPLEMENTATION
	4.1 Software Setup
	4.1.1 Raspbian OS
	4.1.2 Python IDE
	4.1.3 Gmail – Python Account

	4.2 Software Development
	4.2.1 Datasets Preparation Process
	4.2.2 Model training and Face Recognition Process
	4.2.3 Email Sending Process

	4.3 Microcontroller Code Implementation

	CHAPTER 5
	5 HARDWARE DEVELOPMENT AND IMPLEMENTATION
	5.1 Bipolar Junction Transistor (BJT) Amplifier
	5.1.1 Saturation Mode
	5.1.2 Cut-off Mode

	5.2 Hardware Configuration

	CHAPTER 6
	6 RESULT AND DISCUSSION
	6.1 Datasets Collection
	6.2 System Testing
	6.3 Alerting System
	6.4 Challenges
	6.5 Low Power Consumption Effort
	6.5.1 Ultrasonic Sensor
	6.5.2 Heatsink

	6.6 Locking Mechanism Substitute
	6.7 Final Product

	7 CONCLUSION
	7.1 Future Work
	7.2 Project Reflection

	REFERENCE
	APPENDICES
	APPENDIX A – Source Code – Main.py
	APPENDIX B – Source Code – face_detection.py
	APPENDIX C – Source Code – real_time_face_recognition.py
	APPENDIX D – Source Code – gpio_utils.py

