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ABSTRACT 

 

BACK END DESIGN (AUTOMATIC PLACE AND ROUTE) OF RISC-V 

PROCESSOR USING IC COMPILER 

 

Loh Jing En 

 

 

This research paper focuses on the development of an Automatic Place and Route (APR) 

methodology for the RISC-V processor design using the IC Compiler tool. The proposed 

methodology is aimed at achieving good Quality of Results (QoR) for different technology 

nodes, including 32nm and 90nm. The paper provides a detailed analysis of the QoR obtained 

for each technology node and compares the results obtained with each other. On top of that, 

the effect of clock period on the design quality is also analyzed. The methodology used for the 

design flow and the physical implementation process of the design using IC Compiler are all 

explained in detail. The experimental results demonstrate the effectiveness of the proposed 

methodology in achieving good QoR for RISC-V processor designs. 

Keywords: RISC-V, processor, technology node, physical implementation, IC Compiler 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

1.1.1 Processor 

Microprocessors are the fundamental building blocks of modern computing systems, 

powering everything from smartphones and laptops to servers and supercomputers. A 

microprocessor is an integrated circuit that contains a central processing unit (CPU) and other 

components, such as memory and input/output interfaces, all on a single chip. Microprocessors 

have evolved significantly since their introduction in the early 1970s. The first microprocessors, 

such as the Intel 4004, were simple devices with limited functionality. Over time, 

microprocessors became more powerful and sophisticated, with the introduction of features 

such as pipelining, multiple cores, and hyperthreading (David & Andrew, 2019). 

1.1.2 RISC-V ISA 

An instruction set architecture (ISA) can be understood as an abstract model of a 

computer. It basically describes the supported instructions, data types, registers, the hardware 

support for managing main memory, fundamental features (such as the memory consistency, 

addressing modes, virtual memory), and the input/output model. RISC-V (reduced instruction 

set computer, 5th generation) is an ISA that was originally created to enable computer 

architecture education and research but is now poised to become an industry standard open 

architecture (Waterman, et al., 2014), which does not require fees to use. 

Users have high customization and specialization options with RISC-V architecture. 

Generally, there are three main categories of RISC-V ISA: 

• RV32I: A base integer instruction set with 32-bit instruction length 
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• RV64I: A base integer instruction set with 64-bit instruction length 

• RV128I: A base integer instruction set with 128-bit instruction length 

This paper will focus on RV32I, which contains a fixed length of 32-bit instructions, 

held by 31 general-purpose registers x1-x31. Each register holds integer values, and the register 

x0 is hard-wired so that it always contains value 0. There is one additional user-visible register, 

which is the program counter, that holds the address of the current instruction. There are also 

extensions that enable variable-length instructions,  as long as it is aligned on 16-bit boundaries 

(able to be divided by 16).  

RISC-V ISA has 6 base instruction formats including immediate variants, which is 

shown in Figure 1.1. 

Figure 1.1: Base instruction formats of RISC-V (Andrew & Krste, 2017) 

The opcode consists of 7 bits, which partially specifies which of the 6 types of 

instruction format listed above. funct3 and funct7 which consists of 10 bits, specifies the 

operation to be performed (examples are AND, OR, XOR). rs1, rs2 and rd consists of 5-bits, 

which specifies the index of source register 1, source register 2 and destination register,  

respectively. imm is a constant operand or offset added to base address. 

In semiconductor designs, the common goal is to achieve optimum combination of 

power, performance, area and cost (PPAC). PPA characterizes the physical limits and available 
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resources of integrated circuits manufactured on that process node, while lower cost means 

more profit to the business. Different tradeoffs among the three variables enable various circuit 

improvements. For example, TSMC 16/12 nm process is said to be 50% faster and consumes 

60% less power at the same speed compared to its own 20nm process (Anon., n.d.). This 

enhancement gives an edge in terms of performance and power consumption for next-

generation high-end mobile computing, network communication, consumer, and automotive 

electrical applications.  

One of the major impacts of RISC-V ISA is that RISC-V is available under open-source 

license, which means that anybody may contribute to its development, and it is free to use. 

Open-source nature of RISC-V is crucial because it allows smaller developers and 

manufacturers to design and build hardware without the cost of licensing proprietary ISAs and 

paying royalties. Research done by Gartner (2020) shows that by 2025, 40% of application-

specific integrated circuits (ASICs) will be designed by OEMs, up from around 30% today. 

RISC-V is also known for its simplicity and flexibility. In general, RISC-V serves as a 

descriptive framework for how software interacts with processors and offers a definition of 

how processor architecture should work. The capability to develop new processors is made 

possible by RISC-V. This is because instruction set is a combination of the processor and other 

design factors rather than being established at the ISA level only. In order to create processors 

for next-generation workloads, engineers and producers can therefore swiftly implement a 

minimum instruction set combined along with well-defined and custom extensions. In terms of 

performance and simplicity, RISC processors only use simple instructions that can be executed 

within one clock cycle. Because each instruction requires only one clock cycle to execute, the 

entire program can be executed in lesser number of instruction cycles. Case study done by Min 

(2022) shows speedup of 40 times when implementing custom RISC-V extensions, compared 

to pure C code. These RISC "reduced instructions" require less transistors of hardware space 
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than the complex instructions, leaving more room for general purpose registers. Because all of 

the instructions execute in a uniform amount of time (i.e. one clock), pipelining is possible. 

1.1.3 Back End Design  

The backend design of a microprocessor is a critical stage in the overall design process. 

It involves the physical design of the microprocessor, including the placement and routing of 

the components on the silicon die. The goal of backend design is to optimize the 

microprocessor for performance, power consumption, and area efficiency.  

Modern day Integrated Circuit (IC) design is split up into Front-end Design using HDLs 

and Back-end Design (also known as Physical Implementation or Layout Design). The inputs 

to physical design are netlist, library information on the basic devices in the design, and a 

technology file containing the manufacturing constraints. Physical design is usually concluded 

by Layout Post Processing, in which amendments and additions to the chip layout are 

performed. This is followed by the Fabrication or Manufacturing Process where designs are 

transferred onto silicon dies which are then packaged into ICs. 

A general back-end design flow and brief explanation is listed in Figure 1.2 and Table 

1.1. 

Figure 1.2: Back-end design flow 
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Table 1.1: Back-end design flow description 

Stage Description 

Data Setup 

The activities performed in data setup includes: 

• Specifying the appropriate logic libraries 

• Creating a Milkyway design library which contains technology file 

information, pointers to physical or reference libraries and initial 

design cell once netlist is loaded 

• Loading the netlist, constraints and RC parasitic models 

• Applying timing and optimization controls 

• Performing checks on libraries, RC parasitic models, constraints 

and timing 

Design Planning 
• Involves identifying which structures should be placed near others, 

taking into account area restrictions, speed, and the various 

constraints required by components. 

Placement 

• Before the start of placement optimization all Wire Load Models 

(WLM) are removed. Placement uses RC values from Virtual Route 

(VR) to calculate timing. VR is the shortest distance between two 

pins. VR RCs are more accurate than WLM RCs. 

• Determines the locations of each component or block on the die, 

considering timing and interconnect length. 

• The gates in the netlist are assigned to nonoverlapping locations on 

the die area. 

Clock Tree 

Synthesis 
• Inserting buffers or inverters such that the clock is distributed evenly 

to sequential elements in a design, minimizing skew and latency 

Routing 

• Determines the paths of interconnects, including standard cell and 

macro pins. This stage completes all connections defined in the 

netlist, ideally in the most efficient way and without violating timing 

constraints. 

Layout 

Verification 

Layout Verification checks the correctness of the generated layout 

design. This includes verifying that the layout: 

• complies with all technology requirements – Design Rule Checking 

(DRC) 

• is consistent with the original netlist – Layout vs. Schematic (LVS) 

• has no antenna effects – Antenna Rule Checking 

• complies with all electrical requirements – Electrical Rule Checking 

(ERC) 

Design for 

Manufacturability 

The design is modified, where possible, to make it as easy and efficient 

as possible to produce. This is achieved by adding extra vias or adding 

dummy metal/diffusion/poly layers wherever possible while complying 

to the design rules set by the foundry. 

Generate Output 
The final output of the physical design process is typically GDSII, a 

data format representing layout information 
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1.2 Problem Statement 

The design of microprocessors using the RISC-V ISA is gaining popularity due to its 

open-source nature and flexibility in customization. Survey done by Semico predicts the market 

will consume 62.4 billion RISC-V CPU cores by 2025, a 146.2% compound annual growth 

rate (CAGR) from 2018 to 2025, while industrial sector leading with about 16.7 billion cores 

(Research, 2019). This means that RISC-V has a high potential in becoming popular and 

gaining more market sharing in near future. Therefore, it is necessary to understand the process 

of RISC-V processor design from RTL to GDS format that is used in fabrication process.  

The design of processors requires specialized tools and expertise in order to achieve 

optimal performance and area efficiency. Physical Implementation or Back-End Design is one 

of the key components in processor design, which is handled by structural design engineers. 

During this step, the actual layout of the interconnected shapes that implement all the required 

circuit elements on the silicon wafer are created. It is important for engineers to explore and 

develop optimization techniques on improving power, performance and area of IC design, 

especially in back-end design where clocks are built, and routing occurs. 

Current APR tools face several challenges when designing RISC-V processors, such as 

the increasing complexity of processor designs, the need to minimize power consumption, and 

the need to meet timing constraints. Additionally, there is a need to optimize the performance 

of the design while maintaining its area and power efficiency. Therefore, there is a need for 

research that addresses these challenges by developing new techniques and methodologies for 

the back-end design of RISC-V processors using APR tools. 

The advancement in microelectronics technology has led to the development of 

microprocessors with increasing complexity and performance. The use of different technology 

nodes in microprocessor design allows for greater performance, power efficiency, and density. 
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A new technology node typically releases every 2 years. The semiconductor industry started 

with 10um technology node in 1971. As of 2022, Taiwanese chip manufacturer TSMC plans 

to put a 3 nm, semiconductor node termed N3 into volume production by the second half of 

2022 (TSMC, 2022).  

Current microprocessor design methodologies and tools are limited in their ability to 

optimize and maintain design consistency across different technology nodes. The existing 

design methodologies are based on a specific technology node and may not be directly 

applicable to other technology nodes. This leads to additional design efforts and costs when 

migrating the design to a new technology node. Therefore, there is a need for research that 

addresses these challenges and develops new methodologies for designing microprocessors 

using different technology nodes. 

1.3 Objectives 

• To identify the procedure for taking synthesized netlist through physical 

implementation to produce a GDS (graphic data system) file. 

• To develop backend design methodology that provides satisfactory quality of results 

(QoR) in timing, power and area using different technology nodes. 

• To compare and analyse the quality of results (QoR) of 90nm and 32nm technology 

library in backend design, and investigate how clock period affect design QoR. 
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CHAPTER 2 

LITERATURE REVIEW 

The success of this Instruction Set Architecture (ISA) design is demonstrated by the 

large number of RISC-V processor and framework implementations that are currently being 

developed. Numerous implementations can be adopted in both academic and industrial 

applications thanks to its free and open-source nature. 

2.1 Performance of RISC-V Cores 

The paper by Pasquale, et al. (2017) presents 2 novel RISC-V cores, ZERO-RISCY and 

MICRO-RISCY for Internet-of-Things (IoT) applications. The two cores are compared with 

the open-source RISCY core. The RISCY core is a simple, in-order 5-stage pipeline processor, 

with a single-precision floating-point unit. The ZERO-RISCY core is a more advanced 

processor with an out-of-order execution engine, a branch predictor, and a hardware divider. 

The MICRO-RISCY core is designed to be ultra-low-power, with a 2-stage pipeline, limited 

instruction set, and a small register file. The authors evaluate these cores based on their 

performance, power consumption, and area utilization. They use an open-source simulation 

environment to conduct the evaluation.  

The results show that RISCY core is the most energy efficient when it comes to data-

intensive tasks, while ZERO-RISCY us more efficient in arithmetic-control tasks. MICRO-

RISCY outshines the other two core in pure control. Overall, the paper concludes that the 

choice of processor core should be made based on the specific requirements of the IoT 

application, taking into consideration the trade-off between power consumption, performance, 

and area. 
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2.2 Power, Timing and Area at Back End Design 

As RISC-V is gaining its popularity among silicon developers, research has been made 

to explore the possibility to achieve optimum design in power, area and timing for various 

applications. 

Moreno (2019) outlined the steps of designing a RISC processor from a register transfer 

level (RTL) design to the graphic database system (GDS) phase using 32nm library. The paper 

highlights the importance of each step in the design and fabrication process and discusses the 

challenges that arise during each step. The authors also provide a detailed description of the 

design decisions made at each stage and the trade-offs between power consumption, 

performance, and area. Useful commands and tips are provided in both front end and back-end 

design. The paper provides the QoR in different stages of IC design, which can be used as a 

guideline for this project. 

Table 2.1: Design QoR in each design stage (Moreno, 2019)) 

Stage Cell Area (um2) Cell Count 
Critical Path Slack (ns) 

Setup Hold 

Initial Synthesis 45941.05 7807 24.67 N/A 

Synthesis with 

DFT 
59481.86 N/P 24.65 N/A 

Post-placement 62010.60 7903 24.51 N/A 

Post-CTS 62140.85 7916 24.43 0.07 

Post-routing 62140.85 7916 24.47 0.07 

*N/P = not provided, N/A = not applicable for this stage 

Ho, et al. (2021) presents a back-end implementation of a Dual-core 64-bit RISC-V 

using digital ASIC design flow with hardware construction language Chisel. The technology 

library used is 7nm FinFET from TSMC. From the study, back-end design is done using 

Cadence Genus and Innovus, with clean physical verification and timing verification results. 

The work shows that total dissipation switching power before CTS was low, because the clock 

elements, which consumed the most power in design, was not built. Post-CTS, the switching 
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power increased by 1.9 times. In terms of timing, setup timing is met, but hold timing is violated 

by 13ps in terms of worst negative slack (WNS). However, the hold time violation values are 

still within the allowable margin of 2% clock cycle which is 2ns, with clock frequency of 

500MHz. The work achieved die dimension of 1.17 mm × 1.17 mm, die area is around 1.38 

𝑚𝑚2. The core may consume 493.7mW dissipation power at 500MHz. 

Aradhya, et al. (2021) shows the design process of Harvard Structure RISC Processor 

from RTL to GDSII. It is found that Harvard structure 4-stage pipelined architecture processor 

increases the speed of the operation as compared to the Von-Neumann architecture. RISC 

architecture uses separate data and address buses for both instruction and data to fetching from 

the main memory system to reduce the delay for the circuit. The QoR of each design stage is 

presented, which focus on timing, area and power. After optimization, the end results are timing 

9.236ps, power 531.55682mW and area 17067.7584µ𝑚2. 

Table 2.2: Design QoR in each design stage (Aradhya, et al., 2021) 

Stage 
Cell Area 

(um2) 

Setup 

Slack (ns) 

Power (W) 

Internal Switching Leakage Total 

Synthesis 17097.70 5.951 0.677 0.269 0.058 1.004 

Pre-CTS 17067.76 7.559 0.409 0.143 0.056 0.608 

Post-CTS 17067.76 10.811 0.398 0.077 0.056 0.532 

 

Kanase & Nithin (2021) introduce a work of implementing RTL to GDSII flow for the 

RISC-V system core for medical applications. Due to trade-offs in power, performance and 

area, the work targeted in timing and power optimization, as medical applications require 

power and timing for reliability. The optimized design achieved total power consumed by 

circuit 3.793mW, total area consumed by circuit 72409.1µ𝑚2 and optimized arrival time of 

circuit is 9.868ps. 
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Table 2.3: Design QoR in each design stage (Kanase & Nithin, 2021) 

Stage 
Cell Area 

(um2) 

Setup 

Slack (ps) 

Power (mW) 

Internal Switching Leakage Total 

Synthesis 53489 0.005 N/P 5.483 0.285 5.768 

Pre-CTS 72395.7 0.011 2.853 0.649 0.293 3.795 

Post-CTS 72409.1 0.0 2.853 0.647 0.293 3.793 

 

Khan, et al. (2022) proposes a way for converting comprehensive open-source digital 

tools, ISA, IPs, and manufacture-able PDKs to tape out a minimalist RISC-V-based SoC, 

named GHAZI. The authors used the RISC-V ISA and implemented a 32-bit processor core 

with 5-stage pipeline and basic peripherals such as UART, GPIO, SPI, and Timer. The ASIC 

design was performed using standard cell libraries and the backend design flow included 

synthesis, placement and routing, and static timing analysis. The authors also provided a 

detailed analysis of the power, performance, and area of the GHAZI SoC. Although the paper 

does not provide the design post-routing QoR, it does report the timing and power analysis of 

the final synthesized design, which is able to operate at maximum frequency of 170 MHz and 

consume 216 mW of power. The authors have also provided the layout of the GHAZI SoC, 

which has a die area of 13.69mm2. The results showed that the GHAZI SoC achieved 

competitive performance with low power consumption and small area. 

The Post-routing QoR of aforementioned papers are summarized in Table 2.4. A 

variation between datasets can be observed across the research papers. This is because the 

design of IC is impacted by a lot of factors, include - but not limited to - technology node, EDA 

tool used, design constraints, design complexity and routing topology.  

 

Table 2.4: Summary of Literature (Post-Routing data) 

Literature 
Area 

(𝒎𝒎𝟐) 

WNS Timing 

(ps) 

Clock 

frequency 

(MHz) 

Power (mW) Technology 

Library / Tool 
Setup Hold Leakage Internal Switching Total 

(Moreno, 

2019) 
0.0621 24.47 0.07 20 0.883 N/P N/P N/P 

32nm /  

IC Compiler 

(Ho, et al., 

2021) 
1.3800 0 13.5 500 0.061 193.2 234.9 493.7 

7nm FinFET / 

Cadence Innovus 
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(Aradhya, 

et al., 

2021) 

0.0171 10.8 N/P N/P 56.3 398.4 76.8 531.6 
180nm / 

Cadence Innovus 

(Kanase & 

M, 2021) 
0.0724 0 N/P N/P 0.293 2.853 0.647 3.793 

180nm / 

Cadence Innovus 

*N/P = not provided 

 

2.3 Technology node in PPA 

The technology node (also known as process node, process technology or simply node) 

refers to a specific semiconductor manufacturing process and its design rules. Different nodes 

often imply different circuit generations and architectures. Generally, the smaller the 

technology node means the smaller the feature size, producing smaller transistors which are 

both faster and more power efficient. 

Melikyan, et al. (2018) presents a comparison of power and delay of the ORCA 

processor based on the 14 nm and 32 nm technology nodes. The study used the Cadence 

Virtuoso tool to simulate the designs and analyzed the power consumption, delay, and energy 

efficiency of the ORCA processor at different operating frequencies. The authors found that 

the 14 nm ORCA design achieved better performance and energy efficiency compared to the 

32 nm design 

Table 2.5: Design QoR in each technology node (Melikyan, et al., 2018) 

Technology Node 
Frequency 

(MHz) 

Setup Slack 

(ns) 
Total Area (um2) 

Total power 

(mW) 

32nm 200 3.11 705825.31 78.78 

14nm 400 2.42 239894.807 27.77 

 

Standard cell libraries for advanced 7nm FinFET technology node is developed in Xie 

et al. (2015). The standard cell libraries facilitated circuit synthesis, power and timing analysis 

to further extend Moore’s law into deeply scaled processes. The libraries support multiple 

supply voltages and threshold voltages devices, which enables voltage and frequency scaling 
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and multi-threshold technology. When compared to conventional 14nm and 45nm CMOS 

circuits, the 7nm FinFET circuit has 5 times and 600 times lesser power consumption in super 

threshold voltage. While in high threshold voltage regime, the 7nm FinFET circuit has 10 times 

and 1000 times lesser power consumption, compared to 14nm and 45nm CMOS circuits 

respectively. When operating in the near-threshold regime, the 7-nm FinFET devices with 

normal and high threshold voltage can improve the energy efficiency by 7 times and 16 times 

on average, against the 14-nm bulk CMOS technology, respectively.  

In terms of circuit speed, 7nm FinFET technology shows significant improvement over 

14nm and 45nm CMOS circuits. In super threshold regime, 7nm FinFET circuit operates  3 

times and 15 times faster than 14nm and 45nm CMOS circuits respectively. This is due to 

smaller gate size and parasitic capacitance in 7nm FinFET technology. Table 2.6 summarizes 

the QoR between 7nm, 14nm and 45nm technology node. The data is based on 16-bit adder 

operation.  

Table 2.6: Design QoR in each technology node (Xie, et al., 2015) 

Technology 

node 
Vdd (V) 

Clock 

period 

(ps) 

Frequency 

(MHz) 

Energy 

Consumption 

per operation 

(fJ) 

Power (uW) 

Dynamic Leakage 

FinFET 7nm 0.30 163.3 6123 0.251 1.34 0.2 

CMOS 14nm 0.55 450.7 2219 0.762 1.28 0.41 

CMOS 45nm 1.10 1010 990 495.8 489.2 1.65 

 

With similar design constraints, Jim´enez (2021) reported that 22nm technology gives 

additional bandwidth in area and timing compared to 65nm technology. The design fitted easily 

in the same area with a wide margin for 22nm, which enables additional low power techniques 

to be added to the design for power optimization, without causing significant degradation to 

timing. Moreover, low power cell libraries are more complete in 22nm technology libraries, 
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giving more optimization opportunities and better results. Respect to timing, 22nm technology 

enables increment of operating frequency from the original 200MHz at 65nm to 625MHz. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1 Flow of Research Methodology 

Figure 3.1 shows the proposed research methodology flow. The effort will be mostly 

focusing on back-end design.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Research Methodology Flowchart 
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The main components of research methodology are elaborated below: 

Step 1: RTL Design  

Register-transfer level (RTL) design will be formulated with Verilog coding. Testbench 

will be used to test out functionality of RTL design. ModelSim-Intel® FPGA Edition will be 

used for RTL simulation and verification. 

Step 2: Logic Synthesis 

Once the RTL code has been obtained and it has been verified, the synthesis can begin. 

For this project Synopsys Design Compiler is the application being used to perform the 

synthesis. In synthesis the clock will be generated as well as any operating conditions being set 

based on the requirements of the chip. Logic Equivalence Check (LEC) will be done on the 

synthesized netlist against RTL design, to make sure it is matching with RTL coded. 

Step 3: Physical Implementation 

The major focus of this report is the Synopsys IC Compiler, which is an EDA tool for 

automated place and route (PnR). Synthesized design from Design Compiler will be imported 

and environment setup will be performed. In this project, Standard Cell Library of 90nm and 

32nm technology node will be used. Floorplan will be generated based on the synthesized 

netlist and design constraints. The floorplan is then used to place all the cells from the netlist 

into the space of the chip so that they are all able to fit. Once cell placement is done, the clock 

tree is added. After the clock tree generation, all the cells are then routed, and all the 

connections are made. The process of floorplanning to routing is an iterating process to achieve 

satisfactory quality of results (QoR).  
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Step 4: Layout Verification 

To verify the functional design throughout the design flow and make sure that design 

changes such as tools error, human error, mapping, optimization, and ECO changes do not 

affect the functionality of the RTL source code, the final step before taping out is layout 

verification. Layout verification is made to ensure the accuracy of an electrical circuit, to check 

design rules, to improve yield and to provide workable designs.  

• Layout verification includes the following: 

• Design Rule Check (DRC) 

• Layout Versus Schematic (LVS) 

• Electrical Rule Check (ERC) 

• Layout Equivalence Check (LEQ) 

• Layout Parasitic Extraction (LPE or PEX) 

Step 5: Generate Output 

The graphic data system II (GDSII) file format is generated for the use of fabrication. 

3.2 Electronic Design Automation (EDA) tools 

EDA tools are software applications used in the design, simulation, verification, and 

implementation of electronic systems. EDA tools are critical for the design and development 

of integrated circuits (ICs), printed circuit boards (PCBs), and system-on-chip (SoC) devices. 

They are used by design engineers to create, test and optimize electronic designs, and are an 

essential part of the electronics design process. In this project, tools below are used to simulate 

RTL script, perform synthesis and APR.  
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3.2.1 ModelSim-Intel® FPGA Edition – RTL simulation 

One popular EDA tool for digital simulation is ModelSim-Intel® FPGA Edition, which 

is used for simulating and verifying designs for field-programmable gate arrays (FPGAs). It 

provides advanced debugging and verification features and supports the latest IEEE standards 

for hardware description languages (HDLs), such as Verilog and VHDL. ModelSim-Intel® 

FPGA Edition is commonly used in academic and research settings for teaching and research 

projects (Intel, 2019). 

3.2.2 Design Compiler - Synthesis 

Design Compiler is another EDA tool used for logic synthesis and optimization of 

digital designs. It takes a high-level register transfer level (RTL) design and generates a gate-

level netlist that is optimized for the target technology library. Design Compiler is widely used 

in industry and academia for optimizing designs in terms of area, timing, and power (Synopsys, 

2018). 

3.2.3 IC Compiler – Physical Design (APR) 

IC Compiler is a place-and-route (PNR) tool used for designing digital ICs. ICC takes 

input as a gate-level netlist, a detailed floorplan, timing constraints, physical and timing 

libraries, and foundry process data. It generates output either as a GDSII-format file of the 

layout or as a Design Exchange Format (DEF) file of placed netlist data ready for a third-party 

router. It is a is a single, convergent netlist-to-GDSII, chip-level physical implementation tool 

that includes placement and routing, clock tree synthesis, and optimization of timing and power. 

IC Compiler is used by chip designers to create high-performance, low-power, and area-

efficient IC designs (Synopsys, 2019).  
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a) Floorplanning 

The first major stage of physical design is floorplanning, where the die is initially 

created based on utilization targets and/or die size specifications. The size of die will be 

explored, as die size will ultimately contribute to production cost. Fast placement is performed 

on hard macros and standard cells, where initial validation and exploration of floorplan is 

performed.  

Once the initial placement has been refined, the next step is power network synthesis, 

where the power mesh is automatically generated based upon power consumption estimates 

and IR-drop targets for the design. After the power network synthesis is done power network 

analysis can be conducted to analyze the mesh; confirming that the mesh meets the IR-drop 

constraints. Floorplanning is an important starting milestone for physical design, as it 

determines whether design meet timing and reliability (IR drop, electromigration) requirements,  

as well as ensuring the routability of design in later stage. A few design considerations need to 

be taken care before proceeding to placement: 

• The area for core placement based upon the logic requirements of the logic, macros, 

memories and IP for the design 

• The partitioning and placement for all of the logic, macros, memories and IP for the design 

• Location and number of input/output pins and power/ground pins 

• The creation of a complete PG mesh including necessary PG rings around block; PG straps 

and connectivity to analog components and, the creation of power straps for the entire chip 

while allowing enough remaining routing resources for all signal nets in the design. 

• Density of P/G grid, whether it is sufficient  
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• The definition of hard blockage areas where cells must not be placed in order to reduce 

routing congestion to retain routability 

b) Placement 

The next major stage is placement. It is the process of placing standard cells in the 

design. IC Compiler determines the location of each standard cell and places them based on 

different criteria like timing driven, congestion driven and/or power optimization. Placement 

optimizes the design and also determines the design routability.  

Generally, placement is divided into two subtasks: Global (coarse) and Detailed. These 

tasks are solved consequently. The aim of coarse placement is to get approximate initial 

location of standard cells. The cells are not legally placed and have a high chance of 

overlapping. Global placement is able to produce a complete placement from a partial or non-

existent placement. It takes a negligible amount of computation time compared to detailed 

placement and provides a good starting point for them. The next step is detailed placement, 

where legalization of cell placement occurs. The cells in legalized placement will result in their 

legal orientation with no overlapping. Figure 3.2 shows the difference between coarse 

placement and detailed placement. 

Figure 3.2: Difference between coarse placement and detailed placement (Ahmed, 2021) 

A few design considerations need to be taken care before proceeding to CTS: 

• Check whether there is any unplaced or overlapping cells – should be none. 
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• Utilization of core area, generally the requirement is below 0.6. 

• Post-placement timing, whether it is met or violated. 

• Total design area 

While floorplan and placement seem to be two distinct stages, the objectives are same, 

that is to minimize area, minimizing timing paths, reduce wire length to enable better 

routability and reduce IR drop. In situations where tool is unable to meet placement 

requirements, it is necessary to revisit floorplanning stage and make modifications.  

c) Clock Tree Synthesis (CTS) 

Clock Tree Synthesis (CTS) is a process to ensure that the clock gets distributed evenly 

in order to balance the clock delay to all clock inputs in the IC. This stage determines the timing 

convergence and power of the design. In most cases, clocks will consume 30-40% of total 

power (Ahmed, 2021). Therefore, having an efficient clock architecture, clock gating and clock 

tree implementation will help to reduce power consumption, at the same time meeting timing 

requirements. 

Insertion of buffers along clock path is performed in CTS, with the goal of delivering 

clock to all sequential elements. The goal is to achieve minimum skew. Figure 3.3 shows the 

difference of clock path before and after CTS. As seen in Figure 3.3, before CTS, all clock pins 

are driven directly by a single clock source. After CTS is performed, buffers are added to 

balance the clock, forming a clock tree. The starting point for CTS is the clock source, which 

most of the time is a port, and ending point is the clock pins of sequential cells. 
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(a) Pre-CTS  (b) Post-CTS  

Figure 3.3: Pre-CTS and Post-CTS clock path (Ahmed, 2021) 

A few design considerations need to be taken care before proceeding to routing: 

• Both setup and hold timing, whether it is met or violated – group clock groups if necessary 

• Report insertion delay and skew to verify targets are achieved 

• Report fanout, capacitance and transition 

• Check whether all intended sink points are being reached by clock 

• Check DRC and routing constraints 

• Check power and area whether it meets requirements 

d) Routing 

As technology shrinks, the routing process in physical design becomes more important 

because it determines the final performance and power consumption of the design. Smaller 

technology nodes have smaller feature sizes, which means that there is less space for routing 

wires and vias. This makes it difficult to route the design and can lead to increased capacitance 

and resistance, which can affect the performance of the design. Additionally, smaller 

technology nodes have higher transistor densities, which leads to higher power consumption. 

Proper routing techniques can help minimize the power consumption of the design by reducing 

the length of the interconnect wires and minimizing the number of vias. Therefore, routing 
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plays a critical role in the success of a design in smaller technology nodes, and proper routing 

techniques are essential to achieve high performance and low power consumption. 

In the placement phase, the exact locations of circuit blocks and pins are determined. A 

netlist is also generated which specifies the required interconnections. Space not occupied by 

the blocks can be viewed as a collection of regions for routing. During the routing phase, 

physical connections between signal pins are achieved using metal layers and vias. The 

connections are defined by logical connections present in netlist. After CTS stage, the 

information of placed cells, blockages, clock tree and I/O pins are used to complete remaining 

connections. The aim of routing is to produce a design with minimum DRC violations, fully 

routed design with minimum LVS violations, minimum congestion or hotspot, setup and hold 

timings are met, and QoR is satisfactory. 

There are two types of routing methodology – global routing and detailed routing. 

During global routing, the routable path between pins is identified based on shortest distance, 

in order to achieve minimum delay. The tool routes the nets such that routing blockages, 

congested area and long detours are avoided. Routing layers are assigned to the nets, and net 

segments are allocated based on specific routable window known as Global Route Cell (GRC). 

Detailed routing continues the routing action done by global routing. It performs 

complete DRC aware and timing driven routing. The basic criterion of detailed routing is the 

minimum area of interconnect as stated in the design rules. The detail router places the actual 

wire segments within the region defined by the global router to complete the required 

connections between the ports. It is the final routing for the design built and the timing is freeze. 

After confirming that all timing and QoR is met, layout verification is performed before design 

tape out. 

 



24 
 

CHAPTER 4 

RESULTS AND DISCUSSION 

Chapter 4 will be focusing on three topics aligning to project objectives. Section 4.1 

will be discussing the process of bringing synthesized netlist (output from Design Compiler) 

to Physical Implementation. It involves data setup, floorplan, placement, clock tree synthesis 

and routing. Last but not least, the generated layout design is written as output in ddc and 

verilog format. The parasitics information (post-layout resistance and capacitance) are 

extracted into a SPEF file to be used in static timing analysis. 

On top of that, section 4.2 and 4.3 involves QoR comparison between tech nodes, and 

how will clock period affect the QoR. The comparison will be on i) 90nm tech node versus 

32nm tech node, both with 5ns period; and ii) 32nm tech node with 5ns period versus 2ns 

period.  

4.1 Physical Implementation with IC Compiler 

The steps for backend design are discussed in this section. All snapshots are based on 

90nm tech node, 5ns period design, and QoR reports will be shown in section 4.2 for 

comparison with 32nm tech node design. Before starting back-end design with using IC 

Compiler, setup file containing useful functions and variables is coded, snapshot is shown 

below. 

#Snapshot content of .synopsys_dc.setup 

 

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

# Logic Library settings 

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

lappend search_path ../ref/db ../ref/tlup 

set_app_var target_library "sc_max.db" 

set_app_var link_library "* sc_max.db io_max.db special_max.db ram16x128_max.db 

ram4x32_max.db ram8x64_max.db ram32x64_max.db" 

set_min_library sc_max.db -min_version sc_min.db 

set_min_library io_max.db -min_version io_min.db 

set_min_library special_max.db -min_version special_min.db 

set_min_library ram16x128_max.db -min_version ram16x128_min.db 

set_min_library ram4x32_max.db -min_version ram4x32_min.db 

set_min_library ram8x64_max.db -min_version ram8x64_min.db 

set_min_library ram32x64_max.db -min_version ram32x64_min.db 
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# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

# ORCA setup variables 

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

set my_mw_lib    riscv_pip_27.mw 

set mw_path      "../ref/mw_lib" 

set tech_file    "../ref/tech/cb13_6m.tf" 

set tlup_map     "../ref/tlup/cb13_6m.map" 

set tlup_max     "../ref/tlup/cb13_6m_max.tluplus" 

set tlup_min     "../ref/tlup/cb13_6m_min.tluplus" 

set top_design   "riscv_pip_27" 

set ddc_file "../design_data/design_90.ddc" 

set ctrl_file    "./scripts/data_setup/opt_ctrl.tcl" 

set derive_pg_file    "./scripts/data_setup/derive_pg.tcl" 

set libs         {sc io special ram4x32 ram8x64 ram32x64 ram16x128} 

set mw_ref_libs "" 

foreach lib $libs { 

        lappend mw_ref_libs $mw_path/$lib 

} 

 

4.1.1 Data Setup 

Gate-level netlist or synthesized netlist is provided by front-end design engineer as 

input for physical implementation. First, a Milkyway design library is created, and the gate-

level netlist generated from Design Compiler is sourced. TLU+ models are loaded for accurate 

parasitic modeling. Layout window popped up, indicating that design is linked, indicated in 

Figure 4.1. 

# Data Setup 

# 

file delete -force $my_mw_lib 

# 

############################################################ 

# Create Milkyway Design Library, Import design and Load TLU+ files 

############################################################ 

create_mw_lib $my_mw_lib -open -technology $tech_file \ 

 -mw_reference_library "$mw_ref_libs " 

 

import_designs $ddc_file \ 

 -format ddc \ 

 -top $top_design 

 

set_tlu_plus_files \ 

 -max_tluplus $tlup_max \ 

 -min_tluplus $tlup_min \ 

 -tech2itf_map  $tlup_map 
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Figure 4.1: Layout window in IC Compiler 

Sanity check is done to make sure all libraries are linked successfully, followed by 

power and ground connection. From the terminal, we can see that 7029 power and ground pins 

are connected successfully.  

 

Figure 4.2: Power and Ground pins connected 

check_library 

check_tlu_plus_files 

list_libs 

source $derive_pg_file 

check_mv_design -power_nets 

 

report_clock 

report_clock -skew 

set_route_mode_options -zroute true 

 

check_mv_design -power_nets > ./reports/data_setup_check_mv_design 

 

source $ctrl_file 

 

source scripts/data_setup/zic_timing.tcl 

exec cat zic.timing 

 

save_mw_cel -as riscv_90_data_setup 
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Front-end designer has set the clock period to 5ns alongside with some constraints. The 

report_clock command is used to verify the clock period. As shown in Figure 4.3, the clock 

period is 5ns, which matches the settings in Design Compiler earlier. Clock uncertainty of 0.1ns 

and max transition 0.05ns also matches information from front-end design. The design is then 

saved as input for floorplan stage. 

 

Figure 4.3: report_clock to verify clock period 

 

Figure 4.4: report_clock -skew to verify clock constraints 

4.1.2 Floorplan 

During floorplan stage, a chip level floorplan that contains block size, I/O pins locations 

and power network synthesis is created. The gates are roughly placed in this stage. The first 

step in floorplan stage is to create floorplan. The core utilization is being set to 0.3, and the 

distance between core area and terminals are set to one (1) microns. Next, power rings and 

power straps are created. METAL3 and META4 are chosen as the layer for VDD and VSS 

power rings. We can see that a rectangular floorplan is created, with the cells arranged on the 

right side of floorplan. The red and green mesh is the power straps, where power supply is 

connected to cells.  
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Figure 4.5: Initial floorplan 

############################################################ 

# Floorplan 

############################################################ 

 

source $derive_pg_file 

create_floorplan -core_utilization 0.3 -left_io2core 1 -bottom_io2core 1 -right_io2core 1 -

top_io2core 1 

source $derive_pg_file 

create_rectangular_rings  -nets  {VDD VSS}  -left_segment_layer METAL4 -right_segment_layer 

METAL4 -bottom_segment_layer METAL3 -top_segment_layer METAL3 

create_power_straps  -direction horizontal  -start_at 50.000 -nets  {VDD VSS}  -layer 

METAL4 -width 5 -configure groups_and_step  -num_groups 11 -step 50 

create_power_straps  -direction vertical  -start_at 50.000 -nets  {VDD VSS}  -layer METAL3 

-width 5 -configure groups_and_step  -num_groups 11 -step 50 

 

Coarse cell placement and routing is performed, followed by legality check to ensure 

cells are placed without violation. The reason of doing coarse placement is to avoid over 

utilization, which will be a potential issue for design to fail in placement stage. The QoR reports 

are printed to ensure floorplan quality. 
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Figure 4.6: Layout after coarse placement and routing 

The derive_pg_file is sourced in to make sure no connection is dropped during 

floorplanning and coarse placement and routing. Afterwards, design, QoR and timing reports 

are checked, and no violations are seen. The design is saved as input for placement stage.  

source $derive_pg_file 

 

create_fp_placement -timing_driven -no_hierarchy_gravity 

 

set_pnet_options -complete {METAL3 METAL4} 

 

source $derive_pg_file 

 

set_pnet_options -complete {METAL3 METAL4} 

 

preroute_standard_cells -remove_floating_pieces 

 

route_zrt_global 

 

report_qor > ./reports/floorplan_report_qor.rpt 

report_timing > ./reports/floorplan_report_timing.rpt 

report_area > ./reports/floorplan_report_area.rpt 

check_mv_design > ./reports/floorplan_check_mv_design.rpt 

 

save_mw_cel -as riscv_90_floorplan 

 

4.1.3 Placement 

In placement stage, detailed placement will be carried out. It is important to ensure cells 

are placed in optimized location as it is baseline for tool during routing stage. Pre-placement 

area is reported to compare with area after placement. 
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Figure 4.7: Pre-placement area 

Then, placement is done with place_opt -area_recovery -congestion -power. The 

place_opt command performs timing, congestion, area and power-driven placement and logic 

optimization onto the design. It can be observed that post-placement area is ~460 microns 

smaller than pre-placement design.  

 

Figure 4.8: Post-placement area 

 

Figure 4.9: Layout post-place_opt 

 

############################################################ 

# Placement 

############################################################ 

 

set_power_options -low_power_placement true 

set_separate_process_options -placement false 

 

place_opt -area_recovery -congestion -power 
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report_power > ./reports/init_placement_report_power.rpt 

report_qor > ./reports/init_placement_report_qor.rpt 

report_area > ./reports/init_placement_report_area.rpt 

report_timing > ./reports/init_placement_report_timing.rpt 

 

save_mw_cel -as riscv_90_init_placement 

 

Power optimization is performed with psynopt -area_recovery -power. From Figure 

4.10 and Figure 4.11, internal power has improved by 0.7uW. 

 

Figure 4.10: pre-psynopt 

 

 

Figure 4.11: post-psynopt 

After placement, legality of the design is reported, alongside with other QoR reports. 

The design is saved as input for clock tree synthesis stage. 

 

Figure 4.12: legality report post-placement 
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psynopt -area_recovery -power 

 

report_power > ./reports/placement_report_power.rpt 

report_qor > ./reports/placement_report_qor.rpt 

report_area > ./reports/placement_report_area.rpt 

report_timing > ./reports/placement_report_timing.rpt 

report_design -physical > ./reports/placement_report_design.rpt 

check_legality -verbose > ./reports/placement_report_legality.rpt 

 

save_mw_cel -as riscv_90_placement 

 

4.1.4  Clock Tree Synthesis (CTS) 

Before performing CTS, clock tree summary is reported to check the number of sinks 

from the clock port. From the report, it can be seen that clock has a total of 1517 sink points. 

 

Figure 4.13: clock tree summary pre-CTS 

First round of CTS is performed to provide initial data. Next, clock uncertainty is 

removed to allow calculation of actual clock skew during CTS. Hold-time fixing is also enabled. 

Global routing is performed on all clock nets. The “clock trees” are formed after CTS, shown 

in Figure 4.14. A total of 29 clock global drivers are highlighted in red. The 1517 sink points 

are distributed to these 29 global drivers. 

 

Figure 4.14: clock tree post-CTS 
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############################################################ 

# CTS 

############################################################ 

report_clocks > ./reports/pre_cts_report_clocks.rpt 

report_clock -skew -attributes > ./reports/pre_cts_report_clock_skew.rpt 

report_clock_tree -summary > ./reports/pre_cts_report_clock_tree.rpt 

 

set_clock_tree_options -target_skew 0.1 

set_clock_uncertainty 0.1 [all_clocks] 

set_delay_calculation -routed_clock arnoldi 

clock_opt -only_cts -no_clock_route 

save_mw_cel -as riscv_90_init_cts 

 

remove_clock_uncertainty [all_clocks] 

set_fix_hold [all_clocks] 

 

set physopt_area_critical_range 0.2 

extract_rc 

route_zrt_group -all_clock_nets -reuse_existing_global_route true 

 

source $derive_pg_file 

 

report_qor > ./reports/cts_report_qor.rpt 

report_area > ./reports/cts_report_area.rpt 

report_timing > ./reports/cts_report_timing.rpt 

report_power > ./reports/cts_report_power.rpt 

 

report_clocks > ./reports/cts_report_clocks.rpt 

report_clock -skew -attributes > ./reports/cts_report_clock_skew.rpt 

report_clock_tree -summary > ./reports/cts_report_clock_tree.rpt 

report_clock_timing -type skew -significant_digits 3 > 

./reports/cts_report_clock_timing.rpt 

 

save_mw_cel -as riscv_90_cts 

 

Then, Global Route Congestion (GRC) is calculated with report_congestion -grc_based 

-routing_stage global. From the results generated, there are no routing congestion concern on 

the design. Cell density is also checked using gui. There is no congested area in the design. The 

design is saved as input for routing stage. 

 

Figure 4.15: post-CTS GRC 
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Figure 4.16: post-CTS Cell density 

 

Figure 4.17: Layout post-CTS 

4.1.5 Routing 

Routing is the final stage for physical implementation where clock and signal are routed 

and optimized. Before routing, it is important to check for idedal nets and high fanout nets as 

it will affect routing quality. Nothing is returned, indicating that the design does not have any 

ideal or high fanout nets. Routing is performed with route_opt -effort high -area_recovery -

size_only, where post-routed layout is showed in Figure 4.19. 

 

Figure 4.18: Checking ideal or high fanout nets pre-routing 
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Figure 4.19: Port-routing layout design 

Routing is performed on the design using route_opt command. GRC, cell density and 

pin density check is done on the design. GRC and cell density looks fine, but a few hotspots is 

seen in pin density map. LVS check is then performed to ensure there is no shorts or opens due 

to high pin density in the region flagged red by pin density map. LVS returned clean results, 

indicating pin density didn’t cause issue to design. Power grid connection is verified to ensure 

no PG drop in design.  

 

Figure 4.20: post-routing GRC 
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Figure 4.21: post-routing cell density 

 

 

Figure 4.22: post-routing pin density 

 

 

Figure 4.23: post-routing LVS 
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Figure 4.24: post-routing verify_pg_nets 

 

The derive_pg_file is sourced in to make sure no connection is dropped during routing. 

The design is now optimized in terms of placement and routing. This is where the auto-place 

and route process end.  

##################### 

# Route Opt   

##################### 

 

all_ideal_nets 

all_high_fanout -nets -threshold 100 

check_legality 

route_opt -effort high -area_recovery -size_only 

 

source $derive_pg_file 

 

verify_lvs  

verify_pg_nets 

 

report_qor > ./reports/route_opt_report_qor.rpt 

report_area > ./reports/route_opt_report_area.rpt 

report_timing > ./reports/route_opt_report_timing.rpt 

report_power > ./reports/route_opt_report_power.rpt 

verify_lvs > ./reports/route_opt_LVS.rpt 

verify_pg_nets > ./reports/route_opt_verify_pg_net.rpt 

report_utilization > ./reports/route_opt_report_utilization.rpt 

 

save_mw_cel -as riscv_90_route_opt 

 

After checking all the reports generated and there are no concerned violations, the 

design is saved. The design was ready to proceed to static timing analysis phase. The generated 

layout design was written as output in ddc and verilog format. The parasitics information (post-

layout resistance and capacitance) were extracted into a SPEF file to be used in static timing 

analysis. 
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write -f ddc -hier -out ../design_data/riscv_90_5ns_postlayout.ddc 

write_verilog ../design_data/riscv_90_5ns_postlayout.v 

extract_rc 

write_parasitics -output ../design_data/riscv_90_5ns_postlayout.spef.gz 

 

4.2 Quality Of Results (QoR) Comparison Between 90nm and 32nm Technology Node 

In this section, QoR for 90nm design and 32nm is analyzed. Both designs have same 

constraints being set by front-end design engineer, shown below.  

reset_design 

 

create_clock -period 5 [get_ports clk] 

set_clock_uncertainty -setup 0.1 [get_clocks clk] 

set_clock_transition -max 0.05 [get_clocks clk] 

 

# Using default "Operating Conditions"  

# from the "slow corner" library: cb13fs120_tsmc_max 

 

set_input_delay -clock clk  -max 0.2 [get_ports reset] 

remove_input_delay [get_ports clk] 

 

remove_driving_cell [get_ports clk] 

 

set_input_delay -clock clk  -max 0.2 [get_ports reset] 

set_input_delay -clock clk  -max 0.1 [get_ports {InstrF[*] ReadDataM[*]}] 

remove_input_delay [get_ports clk] 

 

remove_driving_cell [get_ports clk] 

 

set_output_delay -clock clk  -max 0.2 [all_outputs] 

set_load -max 0.5 [all_outputs] 

set_max_area 500 

set_max_fanout 5 [get_ports -filter direction=~in] 

set_max_transition 10 [get_ports  -filter direction=~in] 

 

The operating condition of both technology library is compared as shown in Figure 4.25. 

Under same temperature, 32nm technology node is able to operate at lower voltage, resulting 

in lower power consumption and improved energy efficiency. 

  

Figure 4.25: operating condition comparison between 90nm (LHS) and 32nm (RHS) 
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4.2.1 QoR comparison in Data Setup stage 

As soon as design is loaded, an obvious comparison is seen in cell size. As expected, 

32nm technology library has smaller cell size compared to 90nm technology library. It is 

observed that 90nm has higher cell count compared to 32nm as well, with 90nm design having 

7029 cell count, and 32nm design having 6175 cell count, 12.15% reduction in cell count. This 

is because 32nm technology library contains more complex and advanced cell types with higher 

processing and calculation capability. 

  
Figure 4.26: cell size comparison between 90nm (LHS) and 32nm (RHS) 

In terms of pre-PnR timing, 32nm shows better timing slack. As mentioned in previous 

chapters, newer (or smaller) technology nodes have faster speed despite smaller cell size. This 

can be seen in data arrival time, where 90um takes 4.51ns, while 32nm takes 4.08ns. Library 

setup time is significantly faster in 35nm, with a value of 0.03ns. This is 0.15nm faster than 

90nm tech node. “clock clk (rise edge)” indicates the clock period, where both designs are 

having 5ns clock period. 

 

 

Figure 4.27: pre-PnR timing comparison between 90nm (LHS) and 32nm (RHS) 
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Table 4.1: Comparison between 90nm and 32nm in data setup stage 

Parameter / Tech Node 90nm 32nm 

Cell count 7029 6175 

Power pin count  14058 12350 

Critical Path Slack (ns) 0.21 (MET) 0.79 (MET) 

 

4.2.2 QoR comparison in Floorplan stage 

Both 90nm and 32nm design is constrained with core utilization of 30%, and I/O-to-

core distance of 1microns. Same metal layers are also used to create power rings.  

create_floorplan -core_utilization 0.3 -left_io2core 1 -bottom_io2core 1 -right_io2core 1 -

top_io2core 1 

 

#90nm 

create_rectangular_rings  -nets  {VDD VSS}  -left_segment_layer METAL4 -right_segment_layer 

METAL4 -bottom_segment_layer METAL3 -top_segment_layer METAL3 

 

#32nm 

create_rectangular_rings  -nets  {VDD VSS}  -left_segment_layer M4 -right_segment_layer M4 

-bottom_segment_layer M3 -top_segment_layer M3 

 

After floorplan is generated, the die size is compared with report_design -physical in 

both designs. 90nm design is 5 times bigger than 32nm design in terms of core size. 

  

Figure 4.28: physical design data comparison between 90nm (LHS) and 32nm (RHS) 

 

Figure 4.29 shows design data post coarse place and route during floorplan stage. 

Utilization % of 90nm is higher by ~7% due to bigger cell size, which can be proven by average 

standard cell width data – with 90nm design having 4.52um average width and 32nm design 

having 1.74um average width.  
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Figure 4.29: chip summary comparison between 90nm (LHS) and 32nm (RHS) 

In terms of timing, 90nm design has all timing met at this stage, while on the other hand 

32nm design has WNS of -0.66ns. This is due to 2 times more levels of logic in 32nm, causing 

cell delay to add up. Since this stage is performed with coarse placement and routing, -0.66ns 

is consider acceptable. 

  

Figure 4.30: timing QoR comparison between 90nm (LHS) and 32nm (RHS) 

Table 4.2: Comparison between 90nm and 32nm in floorplan stage 

Parameter / Tech Node 90nm 32nm 

Die dimension (um) 

(width x height) 
623.15 x 621.92 274.54 x 274.54 

Die area (um2) 387549.45 75370.02 

Total standard cell area (um2) 115759.54 22282.84 

Standard cell utilization (pre-

coarse PnR) (%) 

30 30 

Standard cell utilization (post-

coarse PnR) (%) 

51.33 44.60 

Average std cell width (um) 4.52 1.74 

Critical Path Slack (ns) 0.20 (MET) -0.66 (VIOLATED) 

Critical Path LoL 28 59 
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4.2.3 QoR comparison in Placement stage 

Both 90nm and 32nm design have placement optimization performed with commands 

shown below. Post -placement, both designs have 0 errors on legality, which means all cells 

are placed without overlapping. 

set_power_options -low_power_placement true 

set_separate_process_options -placement false 

place_opt -area_recovery -congestion -power 

#report_power 

psynopt -area_recovery -power 

# report_power 

 

Post-placement, it can be observed that total standard cell area for 32nm is 79% smaller 

than 90nm, which is expected as 32nm technology library contains smaller cell size. The 

shrinkage of cell size enables smaller chip to be fabricated, in this case we can see cell-to-core 

ratio of 32nm is slightly higher than that on 90nm. Although the ratio value in 32nm is slightly 

higher than the 30% core utilization constraint set in floorplan stage, the difference is small 

only 1.06% away from target.  

  

Figure 4.31: area and utilization QoR comparison between 90nm (LHS) and 32nm (RHS) 

 

Looking at cell density, the placement quality is good, where there is no hotspots seen 

in the design. Between range of 0.5-0.6, 90nm design has a slightly higher count than 32nm, 

due to bigger cell size.  
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Figure 4.32: Cell density comparison between 90nm (LHS) and 32nm (RHS) 

Table 4.3: Comparison between 90nm and 32nm in placement stage 

Parameter / Tech Node 90nm 32nm 

Number of Module Cells 6518 6180 

Standard cells utilization 49.13% 46.17% 

Cell-core ratio 28.77% 31.06% 

 

4.2.4 QoR comparison in CTS stage 

The clock constraints for both designs are the same, with period of 5ns, uncertainty of 

-0.1ns and max transition of 0.05ns. 

  

Figure 4.33: Clock constrains in both 90nm and 32nm design 

 

Looking at synthesized clock tree, 32nm design has lesser global drivers compared to 

90nm design, as 32nm technology library is more powerful and able to drive more cells with 

similar global skew. Clock buffer area is also reduced by 73% in 32nm design, due to lesser 

clock buffers with smaller size.  
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Figure 4.34: Clock tree QoR comparison between 90nm (Top) and 32nm (Bottom) 

  

Figure 4.35: Clock tree layout comparison between 90nm (LHS) and 32nm (RHS) 

 

In terms of timing QoR, both designs have setup and hold timing converged post-CTS. 

From Figure 4.36, it is observed that 32nm design has a bigger timing margin despite having 

longer LoL, with critical path slack of 0.12ns, compared to 90nm design which has critical path 

slack of  0.03ns. 

  

Figure 4.36: Timing QoR comparison between 90nm (LHS) and 32nm (RHS) 
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On top of that, 32nm design shows better performance in power consumption as well 

with total power of 3.3579mW, compared to 90nm design with total power of 4.6564mW. 

Smaller transistors in lower technology nodes have smaller gate capacitance, which means it 

takes less charge/discharge to switch the transistors on and off. This leads to lower dynamic 

power consumption during switching operations. 

 

Figure 4.37(a): Power QoR comparison (90nm) 

 

 

Figure 4.37(b): Power QoR comparison (32nm) 

Table 4.4: Comparison between 90nm and 32nm in CTS stage 

Parameter / Tech Node 90nm 32nm 

Clock buffer count 29 15 

Global skew (ns) 0.0425 0.0373 

Clock buffer area (um2) 567.3373 153.2488 

Critical path slack (ns) 0.03 0.12 

Critical path slack LoL 34 51 

Total Power (mW) 4.6564 3.3579 

Internal Power (mW) 2.4479 1.796 

Switching Power (mW) 2.1033 0.5472 

Leakage Power (mW) 0.1053 1.0146 
 

4.2.5 QoR comparison in routing stage 

Both 90nm and 32nm design have route optimization performed with command 

route_opt -effort high -area_recovery -size_only. This is the final stage for 
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backend design before inserting filler cells. Both designs are routed with zero DRC and LVS 

violation. 

 

Figure 4.38: DRC clean in both 90nm and 32nm design 

 

Figure 4.39: LVS clean in both 90nm and 32nm design 

 

From timing perspective, both designs have setup and hold timing converged, with 

32nmm has a bigger timing margin of 0.06ns, despite higher levels of logic. Both designs have 

utilization rate around 30%, but 32nm design has core size 80.71% smaller than 90nm design. 

Total standard cell area reduced significantly by 79.12% using 32nm technology library. 

Another consideration in VLSI design is power. 32nm design has total power of 3.4694mW, 

while 90nm design is slightly higher at 4.6557mW. 

  

Figure 4.40: Timing QoR comparison between 90nm (LHS) and 32nm (RHS) 
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Figure 4.41: Area and physical QoR comparison between 90nm (LHS) and 32nm (RHS) 

 

 

 

Figure 4.42: Power QoR comparison between 90nm (Top) and 32nm (Bottom) 

 

  

Figure 4.43: Cell count comparison between 90nm (LHS) and 32nm (RHS) 
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Both designs show satisfactory results in terms of cell density, pin density and global 

route congestion (GRC). It is observed that 90nm design has more hotspot in pin density, which 

is due to more combinational cell count in the design.  

  

Figure 4.44: Cell density comparison between 90nm (LHS) and 32nm (RHS) 

  

Figure 4.45: Pin density comparison between 90nm (LHS) and 32nm (RHS) 

  

Figure 4.46: GRC comparison between 90nm (LHS) and 32nm (RHS) 
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Table 4.5: Comparison between 90nm and 32nm in routing stage 

Parameter / Tech Node 90nm 32nm 

Timing (ns) 

Critical Path Slack - setup 0.03 0.06 

Critical Path Slack - hold 0.11 0.16 

Area (um2) 

Total std cell area 111366.08 23254.68 

Core area 385063.31 74275.87 

Power (mW) 

Total Power  4.6557 3.4694 

Internal Power  2.4471 1.7966 

Switching Power  2.1033 0.5684 

Leakage Power  0.1053 1.1044 

 

Based on all the data provided, it is clear that 32nm design shows better performance 

in terms of timing, area and power. The findings are aligning with results shown by Xie, et al. 

(2015) and Melikyan, et al. (2018), where better QoR is obtained with smaller technology node 

being used. 

4.3 Quality Of Results (QoR) Comparison Between 5ns and 2ns clock period 

In this section, 32nm technology node is taken for both designs, while the clock period 

varies from 5ns to 2ns. QoR of both designs with different clock period is analyzed.  

4.3.1 QoR comparison in Data Setup stage 

As soon as design is loaded, an obvious comparison is seen in cell size. Bigger cells are 

being chosen by the tool in 2ns clock period design. This is because clock period is very small, 

therefore tool tends to use faster cells in the design. Faster cells generally have bigger cell size.  

When the size of the transistors in a typical cell is increased, their drive strength is also 

enhanced. With this larger size, the transistors can more efficiently charge and discharge the 

capacitance at their output. Consequently, the time constant RC decreases due to a smaller 

resistance for the same output capacitance, resulting in faster charging and discharging of the 

output load and ultimately leading to a reduced cell delay (Bhaskar, et al., n.d.).  
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Other than that, is observed that 2ns clock period design has higher cell count compared 

to 5ns clock period design as well, with 2ns design having 6989 cell count, and 5ns design 

having 6175 cell count, 13% increase in cell count when clock period is reduced. By using 

more cells, tool can divide difficult processes into smaller sequential phases, allowing each cell 

to accomplish its action in the shorter time allowed by the shorter clock period.  

  

Figure 4.47: cell size comparison between 2ns period (LHS) and 5ns period (RHS) 

 

From report_clocks, the designs have clock period of 2ns and 5ns respectively, which 

other constraints remain the same. In terms of pre-PnR timing, 2ns design barely meet the 

timing requirement at 0.00ns. better timing slack. “clock clk (rise edge)” indicates the clock 

period, where it can be seen that 2ns and 5ns are being set respectively. 

  

Figure 4.48: clock comparison between 2ns (LHS) and 5ns (RHS) 



51 
 

  

Figure 4.49: pre-PnR timing comparison between 2ns (LHS) and 5ns (RHS) 

Table 4.6: Comparison between 2ns and 5ns in data setup stage 

Parameter / Tech Node 2ns  5ns 

Cell count 6989 6175 

Power pin count  13978 12350 

Critical Path Slack (ns) 0.00 (MET) 0.79 (MET) 

Critical Path LoL 33 59 

 

4.3.2 QoR comparison in Floorplan stage 

Both designs are constrained with core utilization of 30%, and I/O-to-core distance of 

1 micron. Same metal layers are also used to create power rings, and power straps have same 

width, step and groups (number of straps). 

create_floorplan -core_utilization 0.3 -left_io2core 1 -bottom_io2core 1 -right_io2core 1 -

top_io2core 1 

 

create_rectangular_rings  -nets  {VDD VSS}  -left_segment_layer M4 -right_segment_layer M4 

-bottom_segment_layer M3 -top_segment_layer M3 

 

create_power_straps  -direction horizontal  -start_at 23.000 -nets  {VDD VSS}  -layer M4 -

width 1.50 -configure groups_and_step  -num_groups 11 -step 23 

 

create_power_straps  -direction vertical  -start_at 23.000 -nets  {VDD VSS}  -layer M3 -

width 1.50 -configure groups_and_step  -num_groups 11 -step 23 

 

After floorplan is generated, the die size is compared with report_design -physical in 

both designs. 2ns design has 1.06 times bigger core size, compared to 5ns design. This is due 

to bigger area needed for faster yet bigger cells. 

  

Figure 4.50: physical design data comparison between 2ns (LHS) and 5ns (RHS) 
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Figure 4.51 shows design data post coarse place and route during floorplan stage, where 

2ns designs has bigger average standard cell width compared to 5ns design.  

  

Figure 4.51: chip summary comparison between 2ns (LHS) and 5ns (RHS) 

 

In terms of timing, each design has time violation at this stage, with 2ns design having 

worst negative slack of -1.43ns, failing almost 75% of clock period. Usually this indicates that 

the design constraints is too tight, which in this case is clock period being too short. 

  

Figure 4.52: timing QoR comparison between 90nm (LHS) and 32nm (RHS) 

Table 4.7: Comparison between 2ns and 5ns in floorplan stage 

Parameter / Tech Node 2ns 5ns 

Die dimension (um) 

(width x height) 
283.50 x 282.90 274.54 x 274.54 

Die area (um2) 80202.15 75370.02 

Total standard cell area (um2) 23774.92 22282.84 

Standard cell utilization (pre-

coarse PnR) (%) 

30.07 30.00 

Standard cell utilization (post-

coarse PnR) (%) 

44.10 44.60 

Average std cell width (um) 1.94 1.74 

Critical Path Slack (ns) -1.43 (VIOLATED) -0.66 (VIOLATED) 

Critical Path LoL 35 59 
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4.3.3 QoR comparison in Placement stage 

Both 2ns and 5ns design have placement optimization performed with commands 

shown below. Post -placement, both designs have 0 errors on legality, which means all cells 

are placed without overlapping. 

set_power_options -low_power_placement true 

set_separate_process_options -placement false 

place_opt -area_recovery -congestion -power 

#report_power 

psynopt -area_recovery -power 

# report_power 

  

Post-placement, it can be observed that total standard cell area for 2ns is bigger than 

90nm by about 3000um, which is expected as 2ns design uses bigger cells. The cell to core 

ratio for 2ns design is also higher, about 3.12% over our 30% core utilization target set in 

floorplan stage.  

  

Figure 4.53: area and utilization QoR comparison between 2ns (LHS) and 5ns (RHS) 

Looking at cell density, the placement quality is good, where there are no hotspots seen 

in both designs. Between range of 0.6-0.7, 2ns design has a slightly higher count than 5ns 

design, due to bigger cell size.  

  
Figure 4.54: Cell density comparison between 2ns (LHS) and 5ns (RHS) 
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Table 4.8: Comparison between 2ns and 5ns in placement stage 

Parameter / Tech Node 2ns 5ns 

Number of Module Cells 7664 6180 

Standard cells utilization 48.58% 46.17% 

Cell-core ratio 33.12% 31.06% 

 

4.3.4 QoR comparison in CTS stage 

The clock period is different for both designs, with 2ns and 5ns respectively. The other 

clock constraints are the same, with uncertainty of -0.1ns and max transition of 0.05ns. Both 

designs have same global driver count, which is 13 clock cells. The clock buffer area is bigger 

in 5ns design due to more cells used. However the area per clock buffer is bigger in 2ns design, 

as larger and faster clock cells are used.  

 

 

Figure 4.55: Clock tree QoR comparison between 2ns (Top) and 5ns (Bottom) 

  

Figure 4.56: Clock tree layout comparison between 2ns (LHS) and 5ns (RHS) 
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In terms of timing QoR, 2ns design failed to converge the setup timng, with total 

negative slack of –1.30ns. This is the result of having too tight of clock period. From Figure 

4.57, it is observed that 5ns design has a bigger timing margin despite having longer LoL, with 

critical path slack of 0.12ns, compared to 2ns design which has critical path slack of  -0.02ns. 

  

Figure 4.57: Timing QoR comparison between 2ns (LHS) and 5ns (RHS) 

 

On top of that, 5ns design shows better performance in power consumption as well with 

total power of 3.3579mW, compared to 2ns design with total power of 12.948 mW. Due to 

shorter clock period, switching activity of transistor is performed at a higher rate, which in this 

case causes the design to have almost 2.6 times higher switching power. The other power 

aspects are higher with shorter clock period as well, which results in almost 4 times higher in 

total power consumption.  

 

Figure 4.58(a): Power QoR comparison (2ns) 
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Figure 4.58(b): Power QoR comparison (5ns) 

Table 4.9: Comparison between 2ns and 5ns in CTS stage 

Parameter / Tech Node 2ns 5ns 

Clock buffer count 15 15 

Global skew (ns) 0.0481 0.0373 

Clock buffer area (um2) 138.7626 153.2488 

Critical path slack (ns) -0.02 0.12 

Critical path slack LoL 44 51 

Total Power (mW) 12.948 3.3579 

Internal Power (mW) 5.0413 1.796 

Switching Power (mW) 1.4145 0.5472 

Leakage Power (mW) 6.4919 1.0146 

 

4.3.5 QoR comparison in routing stage 

Both 2ns and 5ns design have route optimization performed with command 

route_opt -effort high -area_recovery -size_only. This is the final stage for 

backend design before inserting filler cells. At this stage, 2ns design has failed LVS check with 

1 open net. 

 

Figure 4.59: LVS violation in 2ns design 

 

From timing perspective, tool failed to converge the timing for 2ns design, with total 

negative slack of -7.31ns. Both designs have utilization rate around 30%, but 5ns design has 

core size 6.07% smaller than 2ns design. Total standard cell area reduced by 11.8% with clock 
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period of 5ns. Another consideration in VLSI design is power. 2ns design has total power of 

13.175mW, while 5ns design has a lower power, which is 3.4694mW. 

  

Figure 4.60: Timing QoR comparison between 2ns (LHS) and 5ns (RHS) 

  

Figure 4.61: Area and physical QoR comparison between 2ns (LHS) and 5ns (RHS) 

 

 

Figure 4.62: Power QoR comparison between 2ns (Top) and 5ns (Bottom) 
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Figure 4.63: Cell count comparison between 2ns (LHS) and 5ns (RHS) 

 

Both designs show satisfactory results in cell density, however 2ns design has more 

hotspot in terms of pin density and global route congestion (GRC). This is due to higher cell 

count and bigger cells being used in 2ns design.  

  

Figure 4.64: Cell density comparison between 2ns (LHS) and 5ns (RHS) 

  

Figure 4.65: Pin density comparison between 2ns (LHS) and 5ns (RHS) 
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Figure 4.66: GRC comparison between 2ns (LHS) and 5ns (RHS) 

Table 4.10: Comparison between 2ns and 5ns in routing stage 

Parameter / Tech Node 2ns 5ns 

Timing (ns) 

Critical Path Slack - setup -0.04 0.06 

Critical Path Slack - hold 0.11 0.16 

Area (um2) 

Total std cell area 26367.69 23254.68 

Core area 79073.35 74275.87 

Power (mW) 

Total Power  13.175 3.4694 

Internal Power  5.0552 1.7966 

Switching Power  1.4827 0.5684 

Leakage Power  6.6374 1.1044 

 

Based on all the data provided, it is clear that 5ns design shows better performance in 

terms of timing, area and power. This proves that clock period plays a significant role in 

determining design quality, thus the clock constraints need to be chosen carefully for digital 

circuit design. 
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CHAPTER 5 

GANTT CHART 

Year 2 Trimester 2 

Plan / Week 1 2 3 4 5 6 7 8 9 10 11 12 

Conduct research planning             

Literature review             

Experiment with simple RTL coding and logic 

synthesis 

            

Software exploration with IC Compiler             
 

Year 2 Trimester 3 

Plan / Week 1 2 3 4 5 6 7 8 9 10 11 12 

• Obtain synthesized netlist from front-end 

and begin data setup 

            

• Draft recipe for backend design – 

floorplan to routing stage 

            

• Floorplan             

• Placement             

• Clock Tree Synthesis             

• Routing             

• Layout Verification             

• Output Generation             

• Thesis writing             

• Thesis submission and presentation             
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

In conclusion, the back-end design of a RISC-V processor using IC Compiler involves 

several critical steps, including automatic floorplanning, placement, clock tree synthesis, 

routing, and layout verification. These steps are essential to ensure the design meets the timing, 

power, and area requirements while also ensuring the functional correctness of the design. By 

following best practices in the back-end design flow, designers can produce high-quality, low-

power RISC-V processors that meet the demands of modern computing applications. 

 Based on a thorough examination of the design data, it is clear that using smaller 

technology nodes in VLSI design results in considerable gains across numerous crucial 

performance parameters. Smaller technology nodes provide greater timing performance, as 

indicated by shorter propagation delays and faster signal switching times. Furthermore, they 

outperform in terms of area efficiency, thanks to lower transistor sizes. Furthermore, the use of 

smaller technological nodes results in significant advances in power efficiency, as indicated by 

lower dynamic and static power usage. These findings illustrate the compelling advantages of 

using smaller technology nodes, demonstrating their importance in developing the next 

generation of high-performance, low-power VLSI systems. 

On the other hand, the experiments with the 32nm technology node and various clock 

periods of 2ns and 5ns show that the 5ns clock period design surpasses the 2ns design in terms 

of timing, area, and power parameters. The findings emphasize the crucial role of the clock 

period in overall design excellence. The 5ns design has improved area efficiency as a result of 

a careful balance between circuit elements and chip area. Notably, the use of the 5ns clock 

period design leads to significant benefits in power efficiency, as evidenced by decreases in 

both dynamic and static power usage.  
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As for future work, more thorough optimization technique could be applied on design 

to further improve the PPA performance, one of the methods is by implementing Multi-Corner 

Multi-Mode (MCMM) mechanism. By providing numerous data routes and operational modes, 

the circuit can optimize its performance and power consumption for diverse activities, 

increasing energy efficiency and overall system performance. The implementation of muti-

voltage area design can also be used for power optimization. 
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