DEVELOP AND ENHANCE AN AUTOMATED FLOW (OPEN
DEBUG (OD)) FOR THE PERIODIC SYSTEM MANAGEMENT
INTERRUPT (PSMI) WHEN A FAILURE IS CAPTURED BY
OPEN DEBUG (OD) USING PYTHON

NG SHIN HUAN

MASTER OF ENGINEERING (ELECTRONIC SYSTEMS)

FACULTY OF ENGINEERING AND GREEN TECHNOLOGY
UNIVERSITI TUNKU ABDUL RAHMAN

August 2023



DEVELOP AND ENHANCE AN AUTOMATED FLOW (OPEN DEBUG (OD)) FOR
THE PERIODIC SYSTEM MANAGEMENT INTERRUPT (PSMI) WHEN A
FAILURE IS CAPTURED BY OPEN DEBUG (OD) USING PYTHON

By

NG SHIN HUAN

A thesis submitted to
Faculty of Engineering and Green Technology,
Universiti Tunku Abdul Rahman,
in partial fulfilment of the requirements for the degree of
Master of Engineering (Electronic Systems)

August 2023



ABSTRACT

DEVELOP AND ENHANCE AN AUTOMATED FLOW (OPEN DEBUG (OD)) FOR
THE PERIODIC SYSTEM MANAGEMENT INTERRUPT (PSMI) WHEN A
FAILURE IS CAPTURED BY OPEN DEBUG (OD) USING PYTHON

NG SHIN HUAN

Consistency, reliability and accuracy of any implemented machine products are highly
demanded by everyone in this world no matter which level of the workplace the user is. In
order to achieve this goal, various advanced technologies are introduced with automated
technique which is aimed to replace the traditional manual method — manpower. This applies
the same in the post-Si environment. The debugger needs to understand the behaviour of that
particular failure, hence PSMI tool is needed to capture it. However, this tool is needed to be
used manually by every debugger. In order to automate it, this project will summarise the flow
and that automated system will be inserted into a flow named Open Debug (OD). This has
aimed to reduce the time taken and effort needed to capture the PSMI trace. In Literature
Review, various fields are introduced with automated methods in order to achieve time and
effort saving goal and at the same time increasing the efficiency and effectiveness of the results
produced as compared to manual method. To design the automated way for PSMI capture,
Python script is utilised. In Methodology, the design of the automated flow of the PSMI capture
in the OD flow is explained in detailed as well as in the flow chart manner. For this developed
Python script to be triggered, a failure has to be detected at the first stage. The trigger point
used in the PSMI capture is mainly the memory trigger. This method is basically to detect the
offset 0x28 of the error block address associated with the specific data depending on the error
code. 4 projects are selected to test the developed script by comparing the manual method (the
common way that all debuggers will use) and the automated way (using the implemented
Python script that is inserted in the OD flow). The manual method time estimation for PSMI
capture is computed based on survey from debuggers while the automated method time
computation for PSMI capture is the average analysis from each of the project using the
developed Python script. Based on the results obtained, using automated technique can greatly
save 55% to 84% of the time used over the manual technique in capturing PSMI. In conclusion,
by using automated approach for PSMI capture in the OD flow, it is proven that the time and

effort can be effectively saved as compared to the manual approach.



ACKNOWLEDGEMENT

The accomplishment of this thesis involves many important people because they provide me a
lot of guidance, supports and assistances throughout the thesis. They have played crucial roles

in leading me the direction to succeed in complete this thesis within a fixed duration of time.

First and foremost, | would like to express my grateful thankfulness to all my family members.
This is because they have supported me all the way in every moment of my life even though
they may not be having any knowledge on this project. Special thanks to them of the
encouragements and financial supports throughout the whole life in study in Universiti Tunku
Abdul Rahman (UTAR).

Other than that, | also would like to thank to my supervisor, Ts Dr Lee Han Kee, from the
Faculty of Engineering and Green Technology. Dr. Lee is very patient in answering all my
questions and helping me to curb all the doubts | face without rushing. His non-stop
supervisions, advices and assistances has directed me to achieve success in this project.

Undeniably, with his fully supports, my thesis is able to complete on time.

Moreover, | would like to take this opportunity as well to thank to Dr Joshua in UTAR. Dr
Joshua has led me the way to overcome the obstacles faced in thesis report writing previously
during the process of doing this project. His detailed explanations are easily to understand,

allowing me to complete the writing process smoothly.

Lastly, 1 would like to thanks my classmates, friends and colleagues who have helped me
throughout the entire project. They assist me in providing me their ideas and viewpoints,

leading me to have better point of view in this project.



APPROVAL SHEET

This thesis entitled “DEVELOP _AND ENHANCE AN AUTOMATED FLOW (OPEN
DEBUG (OD)) FOR THE PERIODIC SYSTEM MANAGEMENT INTERRUPT (PSMI)
WHEN A FAILURE IS CAPTURED BY OPEN DEBUG (OD) USING PYTHON” was
prepared by NG SHIN HUAN and submitted as partial fulfilment of the requirements for the

degree of Master of Engineering (Electronic Systems) at Universiti Tunku Abdul Rahman.

Approved by:

(Ts Dr Lee Han Kee) Date: ......18/8/2023......

Supervisor

Department of Electronic Engineering
Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman



Faculty of Engineering and Green Technology
Universiti Tunku Abdul Rahman

Date: 18-8-2023

SUBMISSION OF THESIS

It is hereby verified that NG SHIN HUAN (ID No: 21AGM06717) has completed this thesis
entitled “DEVELOP AND ENHANCE AN AUTOMATED FLOW (OPEN DEBUG (OD))
FOR THE PERIODIC SYSTEM MANAGEMENT INTERRUPT (PSMI) WHEN A
FAILURE 1S CAPTURED BY OPEN DEBUG (OD) USING PYTHON” under the

supervision of Ts Dr Lee Han Kee from the Department of Electronic Engineering, Faculty of

Engineering and Green Technology.

| understand that the University will upload softcopy of my thesis in pdf format into UTAR

Institutional Repository, which may be made accessible to UTAR community and public.

Yours truly,

Huan

(NG SHIN HUAN)



DECLARATION

I, NG SHIN HUAN, hereby declare that the thesis is based on my original work except for
quotations and citations which has been duly acknowledged. | also declared that it has not been

previously or currently submitted for any other degree at UTAR or other institutions.

Huan

(NG SHIN HUAN)

Date: 18-8-2023

Vi



ABSTRACT

TABLE OF CONTENTS

ACKNOWLEDGEMENTS
APPROVAL SHEET
SUBMISSION SHEET
DECLARATION

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

CHAPTER
1.0 INTRODUCTION
1.1  Background
1.2 Problem Statements
1.3 Objectives
1.4  Research Scopes
1.5  Layout of the thesis
2.0 LITERATURE REVIEW
2.1  Background
2.1.1 Automated Method Versus Manual Method
2.2 Prior Works
2.2.1 Automated Regression Testing and Data Analytics
using Python
2.2.2 Study on Real-Time Test Script in Automated Test
Equipment
2.2.3 Automating ETL Process with Scripting Technology
2.2.4 Manual and Automated Penetration Testing. Benefits

and Drawbacks. Modern Tendency
2.2.5 Pattern System Design: An Approach to Automating
the Design of Automated Test Equipment

vii

Page

Vi

Xi

Xiii

A R W W R R

7

10

11



2.2.6

2.2.7

2.2.8

2.2.9

2.2.10

2.2.11

2.2.12

2.2.13

2.2.14

2.2.15

2.2.16

2.2.17
2.2.18

2.2.19
2.2.20

2221
2.2.22

Verification of Set-Top Box Media Player
Functionality Using Automated Test System
Automated Marks Entry Processing in Handwritten
Answer Scripts using Character Recognition
Techniques

An Automated Test Generation Technique for
Software Quality Assurance

An Automated System to Calculate Marks from
Answer Scripts

Comparing the effort and effectiveness of automated
and manual tests (An industrial case study)
Automated Question Generation Tool for Structured
Data

Semi automated and manual methods for counting cells
expressing p75 receptor in endometriotic lesions
Research on Automated Testing Framework for Multi-
platform Mobile Applications

Automated Exam Paper Marking System for
Structured Questions and Block Diagrams

loT based Automated Examination Management
System with Biometric Portal

Fully Automated Regression Tool for Post Silicon
Validation

Automated Testing of the Medical Device

Developing Reference Help Documents Automatically
by Using Scripting Methods

Automated Programming Assignment Marking Tool
Automated Mechanical Simulation System for
Microelectronic Packaging

NLP-based Automatic Answer Evaluation

AutoEval: An NLP Approach for Automatic Test

Evaluation System

viii

12

13

15

16

16

18

19

19

21

22

24

25
27

28
30

31
33



2.2.23 A New Marking Technique in Semi-Automated

Assessment

2.2.24 Automation of Reflectarrays in HFSS Using Visual

Basic Scripting

2.2.25 Automated Assessment of Multi-Step Answers for

Mathematical Word Problems

2.3 Summary of prior works

3.0 METHODOLOGY

3.1  Overall project flow

3.2 Design of the automated flow of the PSMI capture in the OD flow

3.3 Design of trigger point

3.4 Python Scripting for the PSMI capture flow in the OD flow

40 RESULTS AND DISCUSSION

4.1  Manual method time estimation for PSMI capture and data collections

4.2  Automated method time computation for PSMI capture and data

collections

4.3  Comparison between Manual method and automated method for

PSMI capture in term of time

50 CONCLUSION,
RECOMMENDATIONS
51 Conclusion
5.2  Limitations

53 Future Recommendations

REFERENCES

APPENDICES
Appendix A Work Schedule

Appendix B Full Python coding for the PSMI capture flow in the OD flow

LIMITATIONS

39

41
41

43
44

53
55
55

56

60
60



LIST OF TABLES

Figure Page
3.1 Type of failing signature and its specific value notation 43
4.1 Defined functional variables in “flows.ini”” for PSMI capture process 50

4.2 Average manual method time estimation and average automated method 52

time computation for PSMI capture process



LIFT OF FIGURES

Figure Page
2.1 Ideal and measured voltage values 6

2.2 Process block diagram of the developed automated system using the test 7

script
2.3 Test case flow use for the test script 7
2.4 Performances collected based on different test items 8
2.5 General idea of the script technique in ETL process 9
2.6 Test case being used to generate a script 9
2.7 Summary of using manual and automated ways 10
2.8 Example of 1/O patterns in the pattern library 11
2.9 Overview of the proposed automated system 12
2.10 Automatic test (right) versus Manual test (left) results 13
2.11 Block diagram of the image acquisition 14
2.12 Comparison between marks counting between OCR and manual ways 14
2.13 Context diagram of MISTA 15
2.14 Summary of the developed automated mark calculation system 16

2.15 Effort required in developing script (top — creation time, bottom — execution 17
time) between manual and automated ways

2.16 Number of failures detected by automated (left) and manual (right) ways 17

2.17 Designed system flow diagram for the automated question generator system 18

2.18 Summary of MATF framework 20

2.19 Marks allocation between the designed system and the examiner for block 21
diagram questions

2.20 Marks allocation between the designed system and the examiner for logic 21
circuit questions

2.21 Flow chart of the designed automated examination management system 22

2.22 Results obtained for fingerprints enrolment between the manual technique 23
(based on the examiners) and the automated technique (using the proposed

system)
2.23 Flow chart of the designed automated tool 24
2.24 Output statuses for every test case run using the designed automated tool 25

Xi



2.25

2.26

2.27
2.28
2.29
2.30

2.31
2.32

2.33
2.34
2.35
2.36
2.37
2.38
2.39
2.40

3.1
3.2
3.3
4.1
4.2
4.3

Flow chart of the proposed automated system for stress testing in the
medical device

Comparison between the manual and automated testing of the medical
device in term of speed

Summary of the proposed flow for scripting method

The comparison of the manual method versus the automated method
Overall flow diagram of the automated assignment marking tool
Comparison scoring results between human being (invigilator) and grading
model (proposed automated tool)

Overview flow of the AutoSim tool

Simulation time comparison between Drop, TC and Warpage in the manual
and automated methods

Designed automated system for the answer script evaluation

Overview of the block diagram of AutoEval

Overview of the proposed semi-automated marking system

Steps for the automation of reflectarrays in HFSS

Flow chart of the automated mathematical questions grading system
Grading technique used to evaluate question 01

Grading technique used to evaluate question 02

Tabulated summary on types of fields, techniques and programming
language used by every prior work

Flow chart of the overall project

Flow chart of the automated flow of the PSMI capture in the OD flow
Flow chart of the Python Scripting for the PSMI capture flow

Manual time estimation for PSMI capture process across 4 different projects
3 analyses time and average analysis time for projects A, C and D

50 analyses time and average analysis time for project B

Xii

26

26

27
28
29
29

30
31

32
33
35
36
37
38
38
39

41
42
44
49
51
51



LIST OF ABBREVIATIONS

ATE Automated test equipment

BFS Breadth first search

DFS Depth first search

DUT Device under test

ESSTE Embedded software simulation testing environment
ETL Extraction, transformation, loading

HFSS High frequency structure simulator

loT Internet of Things

MATF Multi-platform automatic testing framework
MISTA Model-based integration and system test automation
NLP Natural language processing

OCR Optical character recognition

oD Open Debug

OTL Online teaching and learning

PSMI Periodic system management interrupt
RHG Reference help guide

RTL Register transfer level

RTOS Real time operating system

SUT System under test

uusS Unit under test

VB Visual basic

VM Virtual machine

Xiii



CHAPTER 1 INTRODUCTION

1.1 Background

Consistency, reliability and accuracy of any implemented machine products are highly
demanded by everyone in this world no matter which level of the workplace the user is. This
phenomenon undeniably introduces countless challenges to all machine tools’ developers and
engineers in order to implement these cost-effective tools so that they are able to operate under
extreme conditions effectively and efficiently. Therefore, various advanced technologies are
introduced especially with most of the machines controlled and operated by manpower being
gradually replaced by automated machines.

Open Debug (OD) is an automated process, which also consists of many sub-processes and is
used to generate important folders and files for future debug usage when a failure is captured
based on scripts written in Python. With OD, it does help debuggers to streamline and bucketize

the failures captured known as screening process (Intel Wiki - OD).

PSMI is abbreviated from Periodic System Management Interrupt. The intended audiences who
are always using are Post-Silicon (Post-Si) Debug teams. For validation team, the main purpose
is to root-cause the bugs (reasons of the failures) before the product is released to the customers.
The failures are usually found during testing flow. PSMI is one of the tools for debuggers to
root-cause the failures at the RTL (register transfer level). PSMI is defined as a debug tool to
reproduce the processor behaviour in a simulator model. It helps to provide a full view of the
behaviour of the processor named as a PSMI trace such as how an instruction is executed in a
microarchitecture behaviour or in the form of waveforms. The main advantage of using this
debug tool is to eliminate the confusions as the reasons of the failures vary and understand in
depth the microarchitecture behaviour (Intel Wiki - PSMI).

Based on the research done by Pravisha, Rupesh and Sonia (2019), they applied modified
python scripts into the Regression Testing in the format of Python to automate this process.
Indirectly, the usage of manpower was eliminated, thus significantly boosting the testing
process. Another research team, Chongwu, Bin, Yongfeng and Chang (2009), conducted an
experiment in real-time system known as Embedded software simulation testing environment
(ESSTE) using test script. This has proven that the designed test script in Python has benefits
over manual method because of its simplicity, controllability, portability, flexibility, reusability

and expandability. With this, the time taken for the developing process was greatly minimised

1



especially in real-time operating system. Radhakrishna, SravanKiran and Ravikiran (2012)
boosted the ETL (Extraction, Transformation, Loading) process system by inserting a
command-based script to this system to automate the processes. These automations can greatly
improve the overall performances such as having faster data processing in data and quality and

reliability as compared to manual processes.

The automated penetration testing was carried out by Yaroslav, Andraian and Roman (2016)
by utilising a developed script applied in UNIX environment. By this way, a safer and simpler
method was created to carry out all the tasks related to the penetration testing. Unquestionably,
using automated way in this system can improve the performances because this technique can
eliminate most of the problems caused by the human factors. A solo researcher, named Roy
Walker (2019), used a scripting method on the automated test equipment (ATE). The main
rationales of designing this method were to automate the process, ease the building process and
lastly speed up the validation process. Other than this, scripting way was cost-effective and the
risk-low system design. The flexibility and the commonality of the programs would be
minimised for different test assets. More importantly, 3Rs (repurpose, reduce and reuse) could
be taken in order to apply for other systems. According to the research by B. Kovacevic, M.
Kovacevic, D. Stefanovic and M. Loncarevic (2015), they conducted an automated verification
test of set-top box media player functionality — performances, stress and functional tests. This
test was aimed to reduce the time-consuming manual verification method. This proposed
automated way testing indirectly boosted the testing accuracy, reduced the time taken needed
and reduced manpower needed as compared to the manual way testing. Moreover, test reports

were also generated through the automation so that monitoring can be performed easily.



1.2 Problem Statements

The automated processes in Open Debug (OD) do ease the debuggers to gather the same issues
found based on screening process. However, this screening process is only able to understand
the first-level debug. This is a debug process to understand the failing signature and the possible
failing point when a failure is gathered. To understand the failure in depth, PSMI is still needed
(Intel Wiki - OD). Unquestionably, PSMI is the main debug tool used by the Post-Silicon (Post-
Si) debuggers to debug a failure in RTL level. However, the main drawback of using this debug
tool is the debuggers have to use a manual way in order to capture the PSMI trace. This means
that the debuggers have to at least understand the basic steps such as understanding the
behaviour of that particular failure and how PSMI is able to communicate to the failure before
proceeding to capture the PSMI trace. This communication is known as trigger point. Moreover,
the steps to capture the PSMI trace is time-consuming as the debuggers need to wait for the
installation flows to complete. Trial-and-error method may be needed for special cases, leading
to have an effort-consuming issue. Besides, there are some environment issues that may happen
around the silicon system, resulting in taking a longer period of time to wait for the issues
solved before proceeding to PSMI capture. This includes the silicon board gets into shutdown
due to unexpected error such as power shutdown, wire loose in connections and temperature
increase in the silicon board. (Intel Wiki - PSMI).

1.3 ODbjectives

i) To design an automated flow (Open Debug) for the PSMI when a failure is captured by
Open Debug (OD) using Python.

i) Toanalyse the performance in term of time of this PSMI OD flow when different failing
signatures such as exception, memory mismatch, VM Exit Error and register mismatch
are captured using the developed Python script.

iii) To compare the performance in term of time of this designed automated PSMI flow in

the OD with the manual approach used by the debuggers.



1.4 Research Scopes

The scopes of the research-based thesis are listed in the following:

)] The programming language used to develop the script of the automated flow of the
PSMI capture is Python.

i) The written script of the automated flow of the PSMI capture will be inserted into
the Open Debug (OD) flow.

iii) The failing signatures will be used for testing with the designed automated flow
comprises exception, memory mismatch, VM EXxit Errors and register mismatch.

iv) Same PSMI interval used throughout the research. Special case such as the failure
that passes with PSMI installation will be excluded from the test.

V) Automated time period for PSMI captured starts when the OD starts the PSMI
capture flow until the completion of the PSMI capture as stated in Chapter 3.4.

Vi) Manual time period for PSMI captured starts when the debugger starts the initial
process to understand the failure’s behaviour until the completion of the PSMI
capture.

vii)  The heartbeat used or the minimum time required to run the test is 300,000ms or 5

minutes.

1.5 Layout of the thesis

Chapter 1 has discussed the introduction, problem statements, objectives and the research
scopes (limitations). In Chapter 2, literature review is presented alongside with the prior works
done using automated technique and the summary of the prior works. After that, Chapter 3
discusses the methodology which includes the overall project flow, the design of the automated
flow of the PSMI capture in the OD flow, the design of the trigger point and the Python
Scripting for the PSMI capture flow in the OD flow. Next. in chapter 4, 2 different techniques
known as manual method (manpower) and automated method (developed in the OD using
Python scripting) are compared with discussions. Lastly, Chapter 5 presents the conclusion of
the thesis, limitations of the experiment and the recommended future works. References and

Appendices are also included after that as well.

In the next chapter, the literature review as well as prior works and their summary will be

presented.



CHAPTER 2 LITERATURE REVIEW

2.1 Background

This chapter is to discuss the general viewpoints and concepts of the automated and manual
techniques used. Other than this, the previous works done by different researchers in different
fields will be taken account into in the following section. After the discussion of previous works,
a small summary will be made to generate some perspectives for this project. In the next section,

the general ideas of the automated method versus the manual method will be conversed.

2.1.1 Automated Method Versus Manual Method

In this modern world, every developed software system is aimed to be fast, high quality with
high efficiency and effectiveness. This creates many challenges to all developers. Hence, test
stage is usually rejected because this stage takes a lot of time and cost, resulting in time and
effort wasting. As a result, due to the lack of testing, the quality of the product will be reduced
(Chaini, 2015). Other than the company, in other fields such as examination or assessments,
manual technique that is marking the submitted manually will be a tedious job if the questions
are subjective-based such as long essay questions without any unique answers or programming-
based questions. Even there are similar answers provided, if the number of students is a lot, say
1000, the time taken and the effort spent by the teachers will be incredibly high. According to
Jayawardena (2018), the accuracy of the marking standard will decrease due to the exhaustion
by the teacher when he or she is marking the paper over a long period of time. For programming
questions, as stated by Vimalaraj (2022), to provide a good evaluation process, if the examiner
examines the codes by observing the inputs and the respective outputs, this is not ample since
the overall coding could be out of scope. This will result in inconsistent checking, hence having
a lower accuracy. On the other hand, if the codes are checked one line by one line, it is
obviously spending a lot of time and effort. Furthermore, Sinha (2022) also mentions that the
performance evaluation could be not precise if being evaluated manually because the examiner
may be in a bad mood or there is a special relationship between the examiner and the examinee.
By gathering all the above aspects, it is undeniably that introducing automated flow will bring
many benefits in many fields in order to increase the efficiency (more work done in a given
time) and effectiveness (save time). Based on recent trends and researches, the test stage is of
utmost importance and it is almost impossible without the any tool support (Chaini, 2015 and
Roja 2017). The next section will discuss the previous works done by different researchers.



2.2 Prior Works

Many researchers have carried out experiments with the automated script to test the
performances of a particular system. The next section is to discuss the previous works that were
done by different researchers or teams. The method used, applications applied, the strengths
and the weaknesses of that proposed scripts on that application by the researcher will also be

discussed.

2.2.1 Automated Regression Testing and Data Analytics using Python

An experiment was done by Pravisha, Rupesh and Sonia (2019). They carried out an automated
process by modifying the current scripts so that the automated regression testing would be able
to perform in a variety of test environments. For instance, humidity of the environment, various
temperatures including extreme ones, different variations and more were tested. During testing
phase, the behaviour of the tested device will be gathered and analysed by using the computer.
Since this was an automated system flow, the usage of manpower was eliminated, thus greatly
boosting the testing process. Moreover, the modified scripts would be able to be altered to
follow the requirements needed for the tester. The block diagram for this tester was classified
into 3 parts: hardware module, software module and support packages. These were connected
to the device under test (DUT) and the master computer. Figure 2.1 below shows the results of
the ideal and measured voltage values.

deal vs Measured

=il |lcieal_I1
SO0 4 Measured 11

Fak
23 e

-

-
-

0D 1

Measurad Valye

- - - - -
10 15 F0 ., =
= 1

Figure 2.1 Ideal and measured voltage values (Pravisha, Rupesh and Sonia, 2019)

Based on Figure 2.1, it can be seen that the differences between the ideal and measured voltage
values are almost zero or can be said the minimum difference. Undeniably, using automated
script in performing this regression test has greatly improved the overall efficiency as the usage

of manpower can be reduced to minimum.



2.2.2 Study on Real-Time Test Script in Automated Test Equipment

Chongwu, Bin, Yongfeng and Chang (2009) conducted research by performing some testing
(Embedded software simulation testing environment, ESSTE) in the real-time embedded
software system using test script. The objectives of using the designed test script in Python
were because of its simplicity, controllability, portability, flexibility, reusability and
expandability. With this, the time taken for the developing process was greatly reduced
especially in real-time system. Figure 2.2 below shows the process block diagram of the

developed automated system using the test script.

Models of runt ime

A
y

en¥iroment

[ SUT |

Figure 2.2 Process block diagram of the developed automated system using the test
script (Chongwu, Bin, Yongfeng and Chang, 2009)

A test case was then injected into this designed script to check for the performances. Figure 2.3
shows the flow of the test cases used. Figure 2.4 shows the performances obtained based on

test case in Figure 2.3.

1) Execute a test case named “takeoff airline”, to make UAV
fly along the airline preinstalled;

2) Confirm the aircraft’s status, if it’s not flying airline,
record this test case failed;

3) From the testing began between 120s to 720s, make
communication failure(Set the fault flag of remote control
to 1);

4) During communication failure, check the status of the
aircraft per second, UAV should make a left circled
flight(The roll angle should be held at -5 degree);

5) 10 minutes later from communication failure, confirm
whether the plane returns to base (Flag
“return to base flag” should be set to 1, which can be
watched from telemetry);

6) At 730s, recover the communication (Set the fault tlag of
remote control to 0);

7) Send a command of “hold height at 2000 meters” to
FCMS through remote control;

8) At 800s, confirm if the height of UAV is held at 2000m
(The error is less than 20m). If the height is not in the
correct range, record this test case failed.

Figure 2.3 Test case flow use for the test script (Chongwu, Bin, Yongfeng and Chang,
2009)

7



execution

Test item ;
fime

100 sequential order statements
(No conditional statement, no loop statement, | 3.368 ms
no function call)

1000 sequential order statements
(No conditional statement, no loop statement, | 19.841 ms
no function call)

2000 loops
(Each loop implement a simple statement)

2.342 ms

150 conditional statements 7.341 ms

100 function calls
{The function is simple with one formal 2.637 ms
parameter and one return value)

Figure 2.4 Performances collected based on different test items (Chongwu, Bin,
Yongfeng and Chang, 2009)

Based on the figures, using test script in Python language is able to achieve the goals for real-
time operating system (RTOS). Furthermore, it can be observed that the execution time for
every test is just measured in millisecond which is very effective and efficient in RTOS. To
wrap up, Python is a world-wide use language in test script and the open source is available
anywhere due to its simplicity, controllability, portability, flexibility, reusability and
expandability.

2.2.3 Automating ETL Process with Scripting Technology

Research was carried out by a team member including Radhakrishna, SravanKiran and
Ravikiran (2012). They enhanced the ETL (Extraction, Transformation, Loading) process
system by injecting a command-based script to this system to automate the processes. The
purpose of proposing this automated flow into ETL system was to reduce the manual handling
of those processes as well as develop a tool so that ETL process was able to support the script
to automate the processes. Figure 2.5 shows the general idea of the command-based technique
to automate the ETL process. Figure 2.6 shows the example of the test case being used for

generating a script.



Data Sources

Qperational
System

ETL PROCESS

Cperalional
ystem

i

Fil Fies

Figure 2.5 General idea of the script technique in ETL process (Radhakrishna,
SravanKiran and Ravikiran, 2012)

Data [
Warehouse Countryserver
Countryserver

B Countryserver
regional server regonlsener
regional server

branch
senver

Server s
m terminal terminal

Figure 2.6 Test case being used to generate a script (Radhakrishna, SravanKiran and
Ravikiran, 2012)

Based on Figure 2.6, as time went, the overall organization would grow bigger and bigger. A

CIE

main problem here would be how to manage the business data as the data could be in different
kind of formats and very difficult to be sent to all servers with only single platform. In order to
accomplish this, this team developed an automated flow by processing numerous data from
different areas and storing them in a warehouse which allowed the branch servers to get the
data easily. As a conclusion, future tools such as automations can greatly improve the overall
performances such as having faster data processing in data and quality and reliability as
compared to manual processes.



2.2.4 Manual and Automated Penetration Testing. Benefits and Drawbacks.

Modern Tendency

A research team from Ukraine, Yaroslav, Andraian and Roman (2016), carried out an
experiment between a manual (customized approach) and an automated penetration testing.
The automated penetration testing was using a developed script applied in UNIX environment.
The main aim of doing this experiment was to create a safer and simpler method to carry out
all the tasks related to the penetration testing. Figure 2.7 (left and right) shows the performances

comparison between the traditional (manual) method and python script (automated) method.

High cost of
customization;

Manual Automated
Testing Manual, non-standard Fast, standard
Process process; process;

Labor and capital Easily

intensive; repeatable tests;

Vulnerabilit | Maintenance of Attack database Cleanup The tester has to Automated
v/ Attack database 1s manual; 1s maintained manually undo the testing products
Database Need to rely on public and updated; changes to the system offer clean-up
Manage- database: Attack codes every time solutions;
ment Need re-write attack are written for a vulnerabilities found;
code for functioning variety of Training Testers need to learn Training for
across different platforms; non-standard ways of automated tools
platforms; testing; is easier than
Reporting Requires collecting the Reports are Training can be manual testing.
data manually: automated and customized and 1s time
customized; consuming.

Figure 2.7 Summary of using manual and automated ways (Yaroslav, Andraian and
Roman, 2016)

Based on Figure 2.7, it is very obvious that an automated technique being used in penetration
testing does bring more benefits as compared to a traditional technique. Undeniably, using
automated way in this system can improve the overall performances effectively and efficiently
because this method can eliminate most of the problems caused by the human factors. However,
the users have to at least understand the programming language as well as the system structure

in depth before applying the automated way in this system.

10



2.2.5 Pattern System Design: An Approach to Automating the Design of
Automated Test Equipment

A researcher named Roy Walker (2019) used an automated approach (scripting method) on the
automated test equipment (ATE). The main rationales of designing this method were to
automate the process, ease the building process and lastly speed up the validation process. To
design this, the researcher used the original 1/0 patterns, routing modes and cabling schemas
and then injected the system by using Unit Under Test (UUT) I/O equipment. One of the
advantages here was the current testing method was good to be applied, this could be
reconfigured for a brand-new test based on requirements of the new system. The example of

the 1/0O system used by the researcher is shown in Figure 2.8.

¥ 4 A P e
- . > s
y .-_/' oo e
o
i e
X =R =
-~
\ .
\ | | c
\
\ - .
\\‘ ------
\
\\
\
\I
\
\
\\
\ ‘5
\
\

Figure 2.8 Example of 1/0O patterns in the pattern library (Roy Walker, 2019)

There were three benefits proven of applying the automated system into ATE as compared to
using a traditional way method. Firstly, it was cost-effective and the risk-low system design.
Secondly, the flexibility and the commonality of the programs would be minimised for
different test assets. Lastly, 3Rs (repurpose, reduce and reuse) could be taken in order to apply

for other systems.

11



2.2.6 Verification of Set-Top Box Media Player Functionality Using Automated
Test System

A research team including B. Kovacevic, M. Kovacevic, D. Stefanovic and M. Loncarevic
(2015) conducted an automated verification test using Python scripting of set-top box media
player functionality — performances, stress and functional tests. This test was aimed to reduce
the time-consuming manual verification method which lasted for at least 20 working days.
They split this procedure into 3 parts which consisted of creating test cases, executing tests
automatically as well as collecting and analysing results for future use. Figure 2.9 below shows
the system overview. It was a simulation purpose when the user inputted the commands to the
media player and the media player responded this with an output shown. Figure 2.10 showed

the test results (based on bugs found) based on automatic and manual tests.

Device under testing

A/V capture device
LAN

= USB/PCI

stream

— usb |[DLNA kd card

* Remote contol emulators

Figure 2.9 Overview of the proposed automated system (B. Kovacevic, M. Kovacevic, D.
Stefanovic and M. Loncarevic, 2015)

12



500
450
400
350
300 +
250

200
150 M Bugs (Automatic)

M Bugs (Manual)

Number of bugs found

100 -
50

0 T T T
20. 21. 22. 23. 24. 25. 26.

Execution runs in different software releases

Figure 2.10 Automatic test (right) versus Manual test (left) results (B. Kovacevic, M.
Kovacevic, D. Stefanovic and M. Loncarevic, 2015)

Based on Figure 2.10, it can be seen that using either method can produce almost the same

bugs. This has proven that both tests were equally in testing the media players.

In conclusion, the proposed method (automated way testing) did boost the testing precision,
save a lot of time and reduce manpower needed as compared to the manual way testing. Test
reports including the graphs plotted in this proposed system were also generated through the
automation so that any issue happened while running the test cases can be monitored easily.
This paper recommended to have a less time-consuming during the generation of multimedia

files.

2.2.7 Automated Marks Entry Processing in Handwritten Answer Scripts using
Character Recognition Techniques

3 researchers from the team (Koushik, Chengappa and Chendan, 2022) utilized a unique tool
namely optical character recognition (OCR) to automatically count the marks of the online
examinations papers or assessments gathered from schools or universities using Python
language. As we know, it is the Covid-19 outbreak starting period. Almost whole world had
carried out an online teaching-learning (OTL) method. Undeniably, all coursework and
examinations were also conducted online. As the number of students increases, the number of
papers needed to be marked also increases, this leads to the amount of time needed to count the
marks obtained by each student to be increasing significantly. Therefore, this team invented an
automated marks entry processing system by scanning the image of the handwritten sheet. The
key point here is the person who marks the papers has to use red pens as the system operates
to detect the red-coloured digits including fractions. After that, all the red-digits numbers are

13



scanned, a sum of the marks will be generated. Figure 2.11 shows the block diagram of the
system proposed by this team of researchers. Figure 2.12 shows the comparison between marks
counting between OCR and manual (M) ways. IWR, ICR and CNN are the various kind of
OCR methods.

: IMAGE NUMERICAL
DAGE ACQUISITION PREPROCESSING DETECTION

( ACT
OUTPUT OF THE CALCULATION \:"‘:‘"‘\"\':m\
TOTAL MARKS 'q ;

Figure 2.11 Block diagram of the image acquisition (Koushik, Chengappa and
Chendan, 2022)

M| OCR | M| OCR | M OCR
(IWR) (ICR) (CNN)

5 5 3 3 2 2

4 4 9 1 1 1

2 2 5 5 6 6

7 7 1 1 3 3

1 1 6 6 2 2
M = Manual Counting
O = OCR Counting

Figure 2.12 Comparison between marks counting between OCR and manual ways
(Koushik, Chengappa and Chendan, 2022)

Based on Figure 2.12, it is obvious that most of the automated ways (OCR) were able to
duplicate the same counted marks as the manual way. According to the research, the time taken
to count the marks were relatively shorter. In summary, this proposed OCR system not only
saves the length of time needed to calculate the scores obtained, but also increasing the degree
of accuracy such as the detection of fractions. Hence improving the overall efficiency.
Furthermore, some tools from Python are used as well to analyse the captured images and then

match the marks obtained based on the database invented by the team for the final results.

14



2.2.8 An Automated Test Generation Technique for Software Quality Assurance
An automated test was conducted and presented by a group of researchers (Dianxiang, Weifeng
Michael, Lijo and Linzhang, 2015). This test or system was known as Model-based Integration
and System Test Automation (MISTA). This was aimed to examine the software security and
integrated functional systems. This method was using system under test (SUT) to automate the
test generation by emphasising on the main features to be examined instead of gathering all
behaviours of the software systems especially in term of fault detection. The main function of
MISTA was to translate the test cases generated from the test model (software system) into the
executable test code. MISTA varied in scripting languages such as Java, C language (including
C++ and HTML. Figure 2.13 shows the context diagram of MISTA.

MID P& Test Model

Coverage
Criterion

Access Control
Model

Y

Figure 2.13 Context diagram of MISTA (Dianxiang, Weifeng Michael, Lijo and
Linzhang, 2015)

To wrap up, the implementation of MISTA has greatly improved the efficiency and the
effectiveness in detecting the fault in the software systems. Next, this implementation was able
to produce executable test cases according to the criteria needed in the test models. MISTA
also supports various kind of programming languages such as C language and Java. This
method is also an extensible architecture (flexible), making it easily to introduce a brand-new

test based on the requirements needed.

15



2.2.9 An Automated System to Calculate Marks from Answer Scripts

A group of 5 researchers from University of Bangladesh (Rizvee, Arefin, Khan, Islam and
Rabbi, 2022) did an exclusive system for teachers who have to calculate the total score of the
marked assessments manually. This literature was mainly to implement an automated script to
sum up the handwritten marks using recognition Python tool to detect the handwritten
characters. In other words, this proposed system eased the tasks of the teachers in counting the
total scores obtained by each assessment. After identifying the red handwritten marks (or red
pixel images), the identified marks (input) will be passed via a machine learning architecture
(database provided by the researchers) in order to report the most precise marks. Figure 2.14
shows the summary concept or flow diagram of the developed automated mark calculation
system.

Connected Feed into Prediction
Answer ; Machine Generation for
Scr'[PT I‘EQIGH[_S] Learning each connected

detection Architecture region

Figure 2.14 Summary of the developed automated mark calculation system (Rizvee,
Arefin, Khan, Islam and Rabbi, 2022)

As a summary, this developed system which automatically count the total marks of the papers

has dramatically improved the efficiency and accuracy in calculation and at the same time
reducing the time taken needed. Other than this, this proposed system is having high flexibility.
In other words, this system may be modified for future use such as detecting colours other than
red or detecting other kind of characters such as alphabets or Latin.

2.2.10 Comparing the effort and effectiveness of automated and manual tests (An
industrial case study)

A comparison experiment was done by Dobles, Martinez and Lopez (2019) between manual
tests and automated tests. The main comparisons between these 2 methods were the effort such
as test time consumption including the construction of codes and test execution time as well as
effectiveness such as number of faults found during the test execution. The chosen software
under test (SUT) is the set of Java web applications. Figure 2.15 and Figure 2.16 show the
effort required and the number of failures detected by the way between automated test and

manual test respectively.

16



u Script/report creation time # Test execution time

4:48

w
w
(=]

252 |
“

Automated Manual

Testing approach

Effort (hh:mm)
B2

2

Figure 2.15 Effort required in developing script (top — creation time, bottom — execution
time) between manual and automated ways (Dobles, Martinez and Lopez, 2019)

& Automated Manual

Amount of defects
& [, [+ 3
w
"
~

~N
N
J

Sev2 Sev3 Sevd
Severity of defects

Figure 2.16 Number of failures detected by automated (left) and manual (right) ways
(Dobles, Martinez and Lopez, 2019)

Based on the Figure 2.15, it is obvious that the time required to make the script for the
automated way is longer than the manual way because of the coding knowledge criteria.
However, this costs only in the creation time (for similar usage, only modification is needed,
high flexibility). Once it is successfully developed, this “drawback” will be useful for
regression runs especially in bug-hunting as compared to manual method. This is because
manual testing required manpower which means he/she will get tired after working for a long
period of time. As a result, the focus will be dropped due to exhaustion, indirectly
unintentionally reject the test which could lead to a defect. As a summary, automated testing

technique is much more effective and efficient than manual technique.

17



2.2.11 Automated Question Generation Tool for Structured Data

Shirudem Totala and Nikhar (2015) carried out a research tool to automatically generate
questions for assessments or examinations based on structured data using Natural Language
Processing (NLP). For any school, college or university, the teachers or lecturers have to
brainstorm to set the questions for examinations or coursework for their students. This would
take a couple of time and effort as well as cost as time goes because the question pools that
would be thought of by the question writers will become limited. Thus, this research was aimed
to implement an automatic question generation system which mainly focused in generating
questions in English Language form in any type such as objective questions, subjective
questions, data analyses and more given a scope of data. Once obtaining the domain of the data,
the data will be pre-processed, then these data will be used as the template to generate the
questions based on the criteria needed. Two main aspects were concerned in this research, that
are Matched (questions that are the same as question writers) and Missed (questions that are
different from question writers). Figure 2.17 shows the overall designed system flow diagram

for the automated question generator system.

Input Table

Preprocessing

- g Entity Updation
Entity Recognizer ITentity not ty . s
LU Entity Addition

If entity recognized

l‘— - I'

Tuple Generator

Question Generator

Figure 2.17 Designed system flow diagram for the automated question generator system
(Shirudem Totala and Nikhar, 2015)

In conclusion, according to their research, this automatic question generations system did boost
the compatibility and robustness of the questions without the needing of the brain effort from
the question provider. The time taken to produce the same number of questions in a given time
is obviously shorter than self-preparation method. In other word, the efficiency to generate the
questions will be higher. The only issue faced here was just the grammatical error.

18



2.2.12 Semi automated and manual methods for counting cells expressing p75
receptor in endometriotic lesions

A total of 7 researchers (Agung, Xiaoyan, Jozsef, Rudolf, Anneliese, Ludwig and Beata, 2018)
in a team conducted an experiment to compare the semi-automated way using a tool and manual
way observed by different observers in counting the cell receptors in endometriotic lesions.
The semi-automated cell analysis program tool that was used was the HistoQuest software
while the manual way was to seek for 2 independent observers to calculate the cells
quantitatively. The settings used for running both methods were the same, which consisted of

exposure time and signal amplifications.

Based on the results gathered from this experiment, it has proven that semi-automated
technique brought more advantages as compared to the manual observed technique. If the shape
of nuclei is regular, the software can detect it very easily without any issue. However, if the
shape of nuclei is irregular with colours overlapping, it leads to a failed result. For manual way,
the observers were still able to detect it but not 100%, resulting in a poorer result. Nonetheless,
the automatic method can save more time in detection and provide more precise as well as

accurate result in a shorter period of time.

2.2.13 Research on Automated Testing Framework for Multi-platform Mobile
Applications

Research was carried out by Da Zun, Tao Qi and Liping (2016) on automated testing
framework by introducing a new framework for multi-platform mobile applications known as
MATF (Multi-platform Automatic Testing Framework). As the name mentioned, it was an
automatic method which utilised the keyword driven test technology. Hence, this did not
require any manpower to brainstorm test scripts, indirectly lowering the price needed for testing.
Other than this, it did save the effort and time spent to think of the scripts who must be
corresponding to the test cases. Undeniably, this could help to reduce any false failure found
from test scripts. In term of costs saving, this proposed framework was implemented to target
different test scenarios or platforms, here it was targeted to iOS and Android platforms.
Therefore, the testing costs were decreased, the test cycles were also decreased as well as

boosting the rate of production. Figure 2.18 shows the summary of MATF framework.

19



Presentation layer

( TestCase Input j ( Test result output j

- [ = vy
.

= L 1 |
s Lt

Business layer

~

System Business Layer

TestCase TestScript TestScript

storage Tarser execute
TestPlan TestScript Test result
storage Generator storage

. S
~

Basic Business Layer

(: TestCase Parser ) ( TestCase Script Merge )

(: TestCase Dispatcher :) ( Script Element Inspect )

( TestCase Header Script _:) C TestCase Script Log _)

( TestCase Operate Script ) ( Script Execution Supply )

'\\‘ !_! 1 [ ‘/JJ'
= 11
Data Access AP1
1L N ]

Data layer APl Support

Result

Element

Script

data

data

data Appium server

_/
Figure 2.18 Summary of MATF framework (Da Zun, Tao Qi and Liping, 2016)

To sum up the information provided, this MATF framework was developed so that it would be
applied in the different mobile platforms by only using this test script. Consequently, this had
saved the time taken to write the test script, the effort needed to think of the possible steps and
outcomes for the designed test script and the costs needed when being applied in the different
fields as compared to the manual technique. In short, this had greatly increased the
effectiveness by using the automated testing. However, with complex test in the mobile

applications, this would lead to a failure.

20



2.2.14 Automated Exam Paper Marking System for Structured Questions and
Block Diagrams

As a teacher or a lecturer, marking examination papers or assessments could be very time-
consuming and effort exhaustion if the number of papers is a lot. Therefore, a research team
including P. Jayawardena, Thiwanthi, Suriyaarachchi, Withana and C. Jayawardena (2018)
conducted an experiment to automate the marking system for structured questions (typically
essay questions) and block diagrams. Natural Language Processing (NLP) was utilised to check
the essay questions. To target diagram type answers, Depth First Search (DFS) and Breadth
First Search (BFS) will be used. For flow charts and logic circuits, they will be converted to
Python programs for marking purpose. All of these structures will be embedded to the proposed
system. Figure 2.19 and Figure 2.20 show the comparison of marks allocation between the
proposed system and the examiner for block diagram and logic circuit questions respectively.
Range of difference means the difference of score obtained which is marked by the examiner
and the designed system.

| Range of Difference (in marks) | Number of Answers
0 (same mark) 13
0.5
1 <mark <=2
3 <mark <=5
5 <mark <=7
Mark =7

Do W

Figure 2.19 Marks allocation between the designed system and the examiner for block
diagram questions (P. Jayawardena, Thiwanthi, Suriyaarachchi, Withana and C.
Jayawardena, 2018)

Range of Difference (in marks) | Number of Answers
0 (same mark) 47
0 <mark <=1
1 <mark <=2
2 <mark <=3
3 <mark <=5
5 <mark <=7

Mark >7

= - L]

Figure 2.20 Marks allocation between the designed system and the examiner for logic
circuit questions (P. Jayawardena, Thiwanthi, Suriyaarachchi, Withana and C.
Jayawardena, 2018)

Based on Figure 2.19 and Figure 2.20, it is convinced that there was not much difference of the
scores obtained with only minute difference between the automated system and the examiner
(manual way) even though the accuracy was not 100%. Subsequently, the final results provided
by the automated system are almost the same as the manual method but the time taken to mark
all the samples will be lesser. Since the number of samples in this research is less, the effort

consumption is not a lot.

21



2.2.15 10T based Automated Examination Management System with Biometric
Portal

Research was carried out by Tabassum, Ahsan, Chowdhury and Basu (2022). They designed
an automated system for examination management such as schedules of the examination,
seating as well as location allocations, in-charged invigilators and more. In other words, the
main aim was to reduce the time taken for providing the information aforementioned manually,
thus increasing the efficiency of this practice. This was a combination of the automated practice
as well as the 10T (Internet of Things). The front-end consisted of NodeMCU Microcontroller
which was assembled with a Fingerprint module for biometric data and a motorised script
system. While for the back-end, a local host server was needed to be embbeded on Xampp
using PHP and MySQL languages to save the biometric data of the students who would sit for
the examination, hence producing an examination script for them. Figure 2.21 shows the flow
chart of the proposed automated examination management system. Figure 2.22 shows the
results obtained for fingerprints enrolment between the manual technique (based on the

examiners) and the automated technique (using the proposed system).

Start Start
v h—
Acquire Biometric
Fingerprint Entry
l N e Fingerprint
Binar . Recognition
Encription ~ ¢
Send data to . % Data Matched? —/
Web Server . 2 No
. s )
2 Actuator
Cloud *t°***° ) Operation
Storage i

Script Delivery

Figure 2.21 Flow chart of the designed automated examination management system
(Tabassum, Ahsan, Chowdhury and Basu, 2022)

22



Tests
Method - -
Average time taken Inconvenience No. of attempts
Manual 10-12 minutes 3-4 times 15
Using
our 2-3 minutes Once 15
Device

Figure 2.22 Results obtained for fingerprints enrolment between the manual technique
(based on the examiners) and the automated technique (using the proposed system)
(Tabassum, Ahsan, Chowdhury and Basu, 2022)

According to the results gathered as shown in Figure 2.22, it is proven that the time taken can
be greatly decreased by 4 times if the automated system is utilised for enrolling the fingerprints
of the examinees given the number of attempts for both techniques are the same. In term of
reliability, the inconvenienced caused is just once for automated system as compared to the
manual way. To conclude this, the proposed automated examination management system
brings a lot of benefits for all examinations such as high accuracy, high efficiency, high

robustness, high modularity and high effectiveness (time taken is shorter).

23



2.2.16 Fully Automated Regression Tool for Post Silicon Validation

As time passes, the semiconductor industry invents the chips with the size as small as it could
be and making the design to be more complex. As we know, it is not easy to validate the
designed chip in a short period of time. In order to meet this criterion, a research team with 3
design engineers (Kansal, Sinha and Jaiswal, 2017) implemented an automated regression tool
in the post silicon validation environment. Python scripting was selected in this case. This
proposed tool required only a single click in order to kick start the automation aforementioned.
This was aimed to fully replace the manual technique used nowadays and simultaneously save
the time needed starting from code compilation, followed by test execution and lastly results
consolidation. Figure 2.23 shows the flow chart of the designed automated tool while Figure

2.24 shows the output statuses for every test case run using the designed automated tool.

Start
\

Generate lauterbach ;){3:2'(& SC“W Pick |® code conm from excel
for J» L\Qotmg (Oﬂﬂg structure

Configure code for I* code config

i
Load binary of ™ code config
Compile code

l
Give 3 reset and run test cases 2

All code config
done ?
Wail for test complete Y
Compiles resuft and capture status in Pick up all compded binary fles
xis, Move all Jogs to common

Jocation

Move all binary fies from code
directory 1o Regression sefup
directory

Pick J® booting config from excel
All booting config : structure
done ?

Compilation ol

Figure 2.23 Flow chart of the designed automated tool (Kansal, Sinha and Jaiswal,
2017)

24



Configuration_{

Test_name |Clocking mode _status| Power_mode_status | Executing core_status |  Test_Case_status Overall_status | Log_link
1 Test Case 1 PASS PASS PASS PSS PASS LINK 1
1 Test Case PASS PASS FAIL PAES LINE 2
3 Test Case 3 PASS PASS PASS TIMEQUT LINK_3
§ Test Case & FAIL FAIL FaIL FAIL Ling_4

Figure 2.24 Output statuses for every test case run using the designed automated tool
(Kansal, Sinha and Jaiswal, 2017)

According to Figure 2.24, if the test case running environment i.e. internal regulation mode is
different from what it is supposed to be i.e. external regulation mode, the final output will be
stated as FAIL based on configuration checks. TIMEOUT will be an extra configuration under

the status if the regression hung at somewhere else in an unpredictable scenario.

As a summary, this proposed automated regression tool bring useful advantages over the
manual technique. First of all, the automated way can the effort spent by the designer and
shorten the time to figure out the corner cases as compared to the manual way. Next, it is
flexible, meaning the written script can be used across other projects without any much
modifications. Few clicks are only needed to modify the current configurations such as feature
enabling or disabling with one click only. As a result, the automated technique becomes an

easy way with detailed analyses provided including checks performed.

2.2.17 Automated Testing of the Medical Device

Roja and Sarala (2017) conducted an experiment to design the automated stress testing of the
medical device. They used the LabVIEW software to implement the switches which functioned
automatically of the medial device. In order to operate the designed automated medical device,
Python was chosen for test scripting. To manually press the switches for stress testing, it would
squander time and tedious. This was because it could not be confirmed that the force used to
press the button would be consistent over a specific time. Furthermore, to rapidly toggle the
button, it would cost a lot of effort and patience if it was done manually since constant speed
was the minimum requirement for the stress testing. Inevitably, automated method was much
recommended. Figure 2.25 shows the flow chart of the proposed automated system for stress
testing in the medical device. Figure 2.26 shows the comparison between the manual and

automated testing of the medical device in term of speed.

25



Send Keypress

l

Import Libraries

N Get the present value
R R
Calculate the rotations
¥ of knob (N) required to
get user defined value
Change the state of (R_U)
device from Standby l
Rotate the knob by

sending keypress
A

Call Server l
Get the resultant value
(R_R) from debug file

L

Change the mode of
Operation

Figure 2.25 Flow chart of the proposed automated system for stress testing in the
medical device (Roja and Sarala, 2017)

Mumber of Manual testing speed Automated testing
lterations (sec) speedisec)
10 100 50
100 1000 S00
1oy 1ouw AU
10000 100000 S0000

Figure 2.26 Comparison between the manual and automated testing of the medical
device in term of speed (Roja and Sarala, 2017)

Based on the results obtained from Figure 2.26, it is found out that the automated testing
requires lesser speed (around 2 times lesser) than the manual testing speed given a constant
number of iterations performed. In short, there are more pros over cons in automated testing.
This includes high effectiveness (less time-consuming), high flexibility (can be applied for
other medical testing with small modifications), lower cost, minimum erroneous data produced
and high reliability. The only problem faced here is this requires knowledge and skills in

implementing the test scripts such as medical feature and Python programming language.

26



2.2.18 Developing Reference Help Documents Automatically by Using Scripting
Methods

Kulkarni and Madhavi (2016) developed Reference Help documents in an automatic way
through the use of HTML scripting methods. This was aimed to reduce the effort consumption
while scanning the Reference Help Guides (RHG) by the users. They performed a flow of tasks
in order to implement the RHG. Firstly, extracting the required and related information from a
source. Next, processing the data information gathered and formatting them by enhancing these
with a test script, a Java script, such as sorting the information and a searching tool. Lastly, the
users could select any format they wished to have through the execution of the scripts. The
scripts that were chosen here is the Perl scripts. The summary of the flow is shown in Figure
2.27. Figure 2.28 shows the comparison of the manual method versus the automated method

(or scripting method).

Emtract InfTormatesm { MSL) it em g

= .-‘-F”-.-’“"ﬂw"m — -H

et warnce o Toatiare s

Procsting Aatch of fde

Multigpbes Input Tikes ¢ B Muliphe Output Tiles |

‘ Fimal Publs g
T

M sitiaple Ot peat fikes
Frioen Batch

: [T
ProsCeviing |

Figure 2.27 Summary of the proposed flow for scripting method (Kulkarni and
Madhavi, 2016)

27



Manual Effort Scripting Method
Time More time consuming Less time
Accuracy Prone to errors Quality output
Resources Multiple writers One writer
Dependency High Low
[[{Z:rl:g:fl Reviews mandatory Not mandatory
E:;::rience Difficult to enhance Can be enhanced

Figure 2.28 The comparison of the manual method versus the automated method
(Kulkarni and Madhavi, 2016)

In conclusion, based on the comparison as shown in Figure 2.28, it is obvious that scripting or
automated method are more powerful than the manual method in developing the RHG. Other
than this, the automated method is also applicable to most of the systems because it could save
a lot of manpower, cost and time, leading to have a higher output produced, indirectly
increasing the efficiency. Erroneous data could be decreased because the false failure could be

due to the exhaustion in the human beings.

2.2.19 Automated Programming Assignment Marking Tool

A team of IT engineers (Vimalaraj, Thenuwara, Wijekoon, Sathurjan. Reyal. Kuruppu,
Tharmaseelan, 2022) from Sri Lanka conducted research on automated programming
assignment marking tool. Nowadays, the registrations of students to the programming course
have increased from time to time. Indirectly, the number of programmes coded by students has
also increased. Hence, the lecturer in-charge has to spend his/her time to evaluate the students’
modules. The usual way would be running the script written by the students but this way was
not ample in evaluating the marks for students. For much better efficiency, the lecturer would
have to read the codes line-by-line. However, this manual evaluation might be very tedious,
time-consuming as well as tiring, leading to an inaccurate and less precise marking. Therefore,
this team proposed an automated technique to mark the assignments automatically in order to
reduce the burden bear by the lecturers in Java script. Figure 2.29 shows the overall flow
diagram of the automated assignment marking tool in which DB stands for database while
Figure 2.30 shows the comparison scoring results between human being (invigilator) and

grading model (proposed automated tool).

28



Lecturer upload
answers

Student Upload
Answers

]

A—l)—fa

A—llj—bo

5 i3 23 5
S o B
2T 23 T 2T
e @ o ® e o @ v
> ® = = a
®» o % cy '3 =
22 e = 86 e —
=2 ® ° a =2 c
e 8 . . ®® 83
o8 «—— — o2 2o
=00 e . Bs
o= g g
=e 3¢ 2 2
< c
w w o
S Save to DB Save to DB =

> <
Save to DB | | Save to DB
= 4 l
=
xg :3; @0
(% = =8 s 59
£ ;‘00 o> «—
o3 g%; §S
a = @ (S 5
=29 @
wes u.
=
B

AN
6 B B

Feedback Mg;z:g . Plagiarism
Report

Report Report

Figure 2.29 Overall flow diagram of the automated assignment marking tool
(Vimalaraj, Thenuwara, Wijekoon, Sathurjan. Reyal. Kuruppu, Tharmaseelan, 2022)

Marks assigned by Marks predicted by the

human grading model
S z S =
g5 £ 5 = = = =

5z | %z | g g = g 2=
%] i = =

1 1 80 80 78 79

1 2 76 75 67 69

1 3 70 80 70 79

1 4 73 80 72 80

1 5 75 75 78 80

1 6 70 70 64 66

1 7 75 75 71 80

1 8 15 80 72 75

1 9 73 75 17 77

1 10 75 75 74 80

Figure 2.30 Comparison scoring results between human being (invigilator) and grading
model (proposed automated tool) (Vimalaraj, Thenuwara, Wijekoon, Sathurjan. Reyal.
Kuruppu, Tharmaseelan, 2022)

29



The summary of the flows of this implemented tool by the research team as shown in Figure
2.29 would be (1) Coding conversion to parse trees. (2) Features extraction and feature vectors
generation, (3) Comparison between them from part (#2) and lastly (4) Marks allocation and
plagiarism report generation. According to Figure 2.30, it can be concluded that the deviation
between the marks allocated by the examiner and the designed tool is very low. This means
that the automated tool has a very high accuracy for this feature. Other than this, this designed
system prepares plagiarism level checks between all answer sheets, making this system to be
more powerful. In other words, the lecturer does not need to spend the time and effort in

marking and comparing all the programmed scripts.

2.2.20 Automated Mechanical Simulation System for Microelectronic Packaging

An experiment was conducted by Jianfei and Jianwei (2015). They constructed an automated
mechanical simulation system for microelectronic packaging using HyperWorks and Tcl/Tk
scripts known as AutoSim. This designed system allowed the users to key in required
parameters in the GUI. After that, the system was able to ran some simulation testing
automatically which consisted of geometry model implementation, meshing, properties of
materials, loading applications and post-processes. Figure 2.31 shows the overview flow of the

AutoSim tool.

| Altair HyperWorks |

y Y
[ HyperMesh ‘ |Process Manager }

!

Drop
Warpage
TC

geometn Input L4 .
parameters | ——> GUI Interface ] t°s¥cla/'}yKManaged
y Tc program

[Create Geometry Model]

]

data sets — | Material & Property |
Input

Loads & BCs ,

[ Step Parametersj

Output FEA model file
(.inpfile)

CeSTEgTRe
| Call ABAQUS Solver >

Figure 2.31 Overview flow of the AutoSim tool (Jianfei and Jianwei, 2015)

30



Figure 2.32 shows the comparison results between 3 simulated evaluation processes: Drop, TC
(temperature cycling) and Warpage in the automated way and manual way in term of

simulation time. The reduction time is also calculated between these 2 ways for easier

comparison.

Simuleton | o[ Cremte Modol 2 Ml | Losd 2808 | Goke | T TiMe
Process Reduced
Manual 8-16hrs 0.5-1hrs 8-10hrs
D -

rop Auto 0.15-0.5hrs 8-10hrs 50%-~60%
8-16h 5- K
TIC Manual rs [ 0.5-1hrs 8-10hrs 50%~60%
Auto 0.15-0.5hrs 8-10hrs
Manual 3-6hrs [ 0.5-1hbrs 4-8hrs
W ]
SEaeE Auto 0.15-0.5hrs 4-8hrs 40%~60%

Figure 2.32 Simulation time comparison between Drop, TC and Warpage in the manual
and automated methods (Jianfei and Jianwei, 2015)

Based on Figure 2.32, it is shown that using the automated technique in any of the process will
greatly decrease the time taken for microelectronic packaging by approximately half. In other
words, this does increase the effectiveness and efficiency while doing the packaging process
since the volume of the packaging will be at least thousand. In summary, the automated process
will be undeniably recommended due to its fast-job process and cost-effective feature when

dealing with a huge volume of packages.

2.2.21 NLP-based Automatic Answer Evaluation

Sinha, Yadav and Nerma (2022) conducted research on Natural Language Processing (NLP)
based automatic answer evaluation. The purpose of conducting this was aimed to reduce the
time needed and avoid the tedious process when marking the answer scripts by the teachers.
As stated in the research, the marks allocation for an examinee not only came from the answer
script, but it could have a small chance due to the current mood of the examiner as well as the
relationship between the examiner and the examinee. To be worse, this could have led to an
unavoidable mark deduction by a student and most of the time he or she did not have any idea
why this score was obtained. Thus, this team came out this idea to convert this manual
technique into more advanced way, that is an automated system. Figure 2.33 shows the

designed automated system for the answer script evaluation.

31



Acquisition and study of
dataset

Cleaning/Pre Processing
text

Identification of the
visible pattern

Generalization and picking
up features

Analysing the metrics for
evaluation

Application of NLP based
algorithm

Selections of Threshold
Levels

Regression Model/Rule
based marks allocation

Final hyper-tunning of
Metrics

Project Summary

Figure 2.33 Designed automated system for the answer script evaluation (Sinha, Yadav
and Nerma, 2022)

The summary of the flow would be firstly, all the handwritten or typed answers in the script
will be scanned and extracted. Then, these answers will be used to compare between the correct
answers which was initially saved in the database. While running the comparison flow, marks
would be given at the same time. Lastly, the final score would be produced and a summary will

be generated based on the keywords that were captured in the answers.

As a summary, this proposed automated system has proven that the scores obtained by each
answer script similar to the one which is marked by the teacher. This means the automated
system has a very high accuracy in doing this feature, in subjective question form. Furthermore,
this designed system has also quickened the process of evaluating the answers, allowing the

examiner to spend a lesser time to checks all the answer scripts.

32



2.2.22 AutoEval: An NLP Approach for Automatic Test Evaluation System

4 researchers from India (Agarwal, Kalia, Bahel and Thomas, 2021) developed an automated
approach for automatic test evaluation system known as AutoEval. As a teacher or a lecturer,
it is very difficult to evaluate the assessments if the number of students is large because he or
she has to spend the time and effort, in short manpower, to mark the answer scripts and give
the marks based on the marking scheme. Other than this, some external factors such as the
examiner may be in a bad mood behaviour or there is a unique relation between the examiner
or the examinee, resulting in the marks allocation to have an unfair result. Hence, this group of
researchers proposed an automated technique system so that this would replace this repetitive
manual evaluation method in the future. A common method known as MLP (Natural
Processing Language) was utilised in this system. It not only could evaluate the answer scripts
based on the theory but also check for grammar, syntactic analyses and similarities between

the submitters. Figure 2.34 shows the overview of the block diagram of AutoEval.

View student

Question Answers
Paper
g Processing of
Teachers > Login data View student |le—| Admin
—»{ Database < Result
Sample
Answer Paper
—= View Data sets

Enters Checks

Iy
Answer |  Answer
Student —» Login

View Result

Similarity
Check

—> Using NLP

Answer

Camparison > Using ANN

Figure 2.34 Overview of the block diagram of AutoEval (Agarwal, Kalia, Bahel and
Thomas, 2021)

33



In order to run the AutoEval, here is the steps. Firstly, the students have to submit their answers
by uploading to the system. Next, a comparison will be made between the uploaded answer
and the answer provided by the teacher saved in the database. Evaluation of the answers starts
next to check the similarities and hence the score allocation. Lastly, the final mark can be

viewed at the last page.

According to this research, a basic output was prepared between the manual assessment by the
teacher and the assessment evaluated by the system (also known as automated way). The
manual technique took about 1 minute while the designed automated technique needed only 15
seconds respectively to respond a response. In other words, 3 times of the times was saved by
using the proposed automated system, hence increasing the overall effectiveness and efficiency
in evaluating the assessment. Subsequently, the manpower can be obviously saved because
using the manual technique, the teacher needs some time to think before evaluating the
response. Maintenance cost of this proposed system is minimum as it is only single time
investment and the overall cost is cheaper since a system can function at all time while a human

being cannot.

2.2.23 A New Marking Technique in Semi-Automated Assessment

Across most of the researches, almost half of them discussed about the automated marking
method in evaluating the assessment using Python tool. For this research, the researchers
(Buyrukoglu, Batmaz and Lock, 2017) did the same field. They introduced a semi-automated
approach in the assessment marking system for program codes which was aimed to save the
time and effort spent by the marker. The reason behind to implement a semi-automated
technique over manual technique and fully-automated technique was because this will provide
detailed feedbacks while the examiner was evaluating the assessment rather than providing a
general comment based on the assessment. In short, the examiner was able to reuse the previous
comments for the similar works, thus decreasing the time needed and reducing the workload.
The first stage was the segmentation process. This was aimed to collect the program codes. The
next step was the codifying process. As the name mentioned, this stage was to normalise the
code by following the general programming rules. This was also to increase the similarity of
the various codes gathered. After that, it was the grouping process in which comparing all the
codes collected based on the similarities. This was of utmost importance process because this

was a preparation stage for the marking stage so that the feedback can be provided in a

34



consistent way. The last stage was the marking stage. It was obvious to be an assessment
evaluation as well as providing comments for the assessment. By and large, this proposed semi-
automated marking system was satisfied by 75% of the participants. For the feedback system,
it was 17% higher. This has proven that not all system has to be fully-automated, it can be just
a semi-automated but still depending on the field specified. Figure 2.35 shows the overview of

the proposed semi-automated marking system.

Segmentation Codifying Grouping Marking

Process Process Process Process

Segment

T

Components Segments

Figure 2.35 Overview of the proposed semi-automated marking system (Buyrukoglu,
Batmaz and Lock, 2017)

As a summary, the existed detailed feedback system can greatly help to reduce the workload
faced by the examiner, indirectly saving his or her time in evaluating the assessment and
increasing overall efficiency of marking the assessment. However, some issues that are found
here consists of sequence of marking the assessment between the manual and automated
technique, challenges in grouping process due to variables used different and reusable

comments which may not be correct even for the similar codes.

2.2.24 Automation of Reflectarrays in HFSS Using Visual Basic Scripting

A researcher named Tariq (2018) conducted research to automate the reflectarrays in HFSS
(high frequency structure simulator) using Visual Basic (VB) scripting method. To satisfy the
demands by the clients in the aspects of greater volume and coverage, high gain reflectarrays
are required. However, for huge reflectarrays, approximately thousands of elements are needed.
It is almost impossible to manually locate all the elements due to the dimension of each element
is not exactly the same with each other in the simulation process for prediction prior to
fabrication stage. In order to curb this issue, Tariq implemented this automated system using

VB script technique. Figure 2.36 show the steps for the automation of reflectarrays in HFSS.

35



Design of unit element for reflectarray

Calculation of reflection phase range Vs variation of
parameter/s for unit cell element

Calculation of required phase for each element based on
eq. (1)

Selection of dimensions for each element corresponding
to the reflection phase and storing it in VB code

Invoking VB script to draw all the elements of reflectarray
and reiterating / optimizing the results if needed

Figure 2.36 Steps for the automation of reflectarrays in HFSS (Tariq, 2018)
In summary, the designed automated system has greatly eliminated the tedious work needed to

draw the elements manually in order to obtain a realised gain of reflectarrays for application
usages. Other than this, the VB script is flexible to most of the software with few modifications

needed but the minimum requirement for that software is it has to recognise the script.

2.2.25 Automated Assessment of Multi-Step Answers for Mathematical Word

Problems

3 researchers (Kadupitiya, Ranathunga and Dias, 2016) from University of Moratuwa, Sri
Lanka carried out research in implementing a system that would evaluate the mathematic field
questions automatically. This designed system was aimed to boost the efficiency in grading the
answers submitted in XML form by the students especially in shortening the time and effort
needed while evaluating the answers. Other than this, this proposed system has a unique feature
whereby if the answer marked is wrong, this system can locate the place and provide the
guidelines on the ways to answer that question correctly. In other words, the students were able
to check on the steps in answering the past year papers. For this system, it comprises 4 modules
namely schema file handling module, expression validation module, unit validation module
and lastly grading module. Figure 2.37 shows the flow chart of the proposed automated system.
Figure 2.38 and Figure 2.39 show the grading method used between manual and automatic

techniques to evaluate question 01 and question 02 in graphical form.

36



Load Student’s Answer

Load Marking Scheme

Find each marking sets
which have marks

Grade student answer for
the valwe

No Is Unit
Correst

Awurd Award
0 Marks Marks

Award
 Marks

Find the nsaximum mark out of all the marking sets

Are all marking
$CT5 Over

Figure 2.37 Flow chart of the automated mathematical questions grading system
(Kadupitiya, Ranathunga and Dias, 2016)

37



Testing data set 1

Figure 2.38 Grading technique used to evaluate question 01 (Kadupitiya, Ranathunga
and Dias, 2016)

Testing data set 2

Lo A 2 2 A A A A A A A A A A A A A A\ A A

Figure 2.39 Grading technique used to evaluate question 02 (Kadupitiya, Ranathunga
and Dias, 2016)

Based on two figures above, it can be seen that only 1 student is marked differently between
manual and automated way. This means this designed automated system has a very high
accuracy in grading the mathematical question automatically. As a conclusion, an automated
system is having a higher accuracy as well as efficiency than the manual way. In this research,
it can reduce manpower because one system works more than a teacher that can provide due to

time and effort limitation.

In the next section, a tabulated summary will be presented on types of fields, techniques and

programming languages used by every prior work.

38



2.3 Summary of prior works

Fields

Authors (numberings are based on Chapter 2.2)

9

10

11 | 12

13

14

15

16

17

18

19

21

22

23

Testing

v

v

v

v

Process

Papers Evaluation

Questions setup

Medieal

Fingerprint

Documentation

Types

Techni

ues described

Automated

v

v

v

Manual

v

v

Semi-automated

Types

Programming Language usage

Python

v

UNIX

Java

NLP

HistoQuest

HTML

HyperWorks

Visual Basic

XML

Combination

v

v

Others

v

v

|\JL~»—A|—A»—A|—Ab—AJAIbe—AooI»—~

Figure 2.40 Tabulated summary on types of fields, techniques and programming language used by every prior work

Legends:

NLP — Natural Programming Language

39



This section is to discuss the summary of all the prior works that are presented in the previous
section 2.2 and Figure 2.40. According to all 25 researches, there are a total of 12 researches
performing a comparison between automated technique (usually implemented in a system or a
tool) and manual technique (usually manpower like human being) in their experiments. The
rest of the researches, which a number of 13, directly utilise the automated way or semi-
automated way over the manual way while conducting the experiment. From this result, this
has proven that the automated method brings a lot of benefits while performing specific tasks.
The advantages are shown below in point form:

I Save more time and effort because the manual way is usually in the form of manpower
which leads to tiredness after a long period of time while working, hence increasing the
overall efficiency.

ii. Higher accuracy system due to the existence of the database system. Direct comparison
is performed between the prepared ones and the submitted ones, therefore increasing
overall effectiveness. For the manual method, he or she may accidentally miss out some
small parts of the work.

iii. Higher flexibility because the automated method usually consists of a script and then it
is implemented in a system or a tool (software). The written script is not unique to a
software but just a few modifications are needed then the modified script can work well
in other software. Since it can work in a number of software, thus the cost is lower
comparatively.

iv. Higher reliability because the automated process performs consistently over a period of
time. In the manual way, like discussed in the prior works, some teachers may be in a
bad mood or have a special relationship with the student, the marks allocated to that

student could be not tally as expected, leading to have a lower reliability.

In term of field, there is also a huge coverage because the automated system is not only
applicable to factory usage such as test stage and processes but also for the study field due to
its valuable benefits. In term of programming language, different researchers used different
kind of them. This is due to its flexibility of the scripting. To wrap up, the automated technique
does more benefits over the manual technique as aforementioned. Therefore, in this project, an
automated flow named as Open Debug (OD) flow for the Periodic System Management
Interrupt (PSMI) will be implemented in Python when a failure is captured by the OD will be
presented in Chapter 3 (Methodology).

40



CHAPTER 3 METHODOLOGY

3.1 Overall project flow

Problem statements,
objectives and scopes
1dentification

Y

Liferature review

Y

Pvthon scripting of
the automated flow

~

Iz the result
obtamned
expected?

Data collection of the
performances

h 4

Results, discuszion on
the performances
collected

Performances analyses

h 4

&~

Conclusion, limitations
and future
recommendations

o | Iianual stability testing
"|of the developed scripts

Figure 3.1 Flow chart of the overall project

Figure 3.1 shows the flow chart of the overall project flow. The problem statements, objectives

and scopes have been discussed in Chapter 1 while the literature review has been presented in

Chapter 2. After the literature review, the designing part starts here. Python scripting consists

2 parts: the PSMI capture flow and the failing signatures of failures captured. The steps of

designing these scripts will be discussed at the later sections. After designing the script, a

manual stability testing will be run in order to confirm the stability and analyse the

performances (automated PSMI trace capture) with the data gathered. Next, results and

discussion as well as the conclusion sections will be presented after the Chapter of

Methodology. In the next section, the design of the automated flow of the PSMI capture in the

OD flow will be presented.

41




3.2 Design of the automated flow of the PSMI capture in the OD flow

@ Python scripting for all
failing signatures except
test hung
[y

4

h 4

Python seripting for Performances analyzing 5“;",“]“5 fesing f_or
i = o o i 2 PSMI trace capturing
» PSMI trace capturing for a series of failures = T
B ™ T flow with all failing
flow injection E I
2 siEnatures

Performances analysing
during real time system

L 4
Stability testing for
PSMI trace capturing
flow without any trigges
point

A

Iz the result
obtained
expected?

Iz the result
obtained
expected?

Yes

Real time system

Is the result application

obtained
expected?

Stability testing for
PSMI trace capturing
flow with exception
failing signature Performances analysing
v 4 for a series of failures
injection

A

Python scripting for
exception failing
sipnature

Figure 3.2 Flow chart of the automated flow of the PSMI capture in the OD flow

Figure 3.2 shows the design of the automated flow of the PSMI capture in the OD flow. For
this proposed project, the scripts will be written in Python. Firstly, the overall PSMI trace
capturing flow will be automated and designed using Python and is applied into OD flow. It is
then followed by a manual testing without any failure injection in order to test for stability.
Once it is working, the next step will be designing a script with a trigger point (a failing
signature). This is then being tested for stability manually. After confirming the flow, a series
of failures will be input to test for stability of the designed script. The failing signatures includes
exception, memory mismatch, VM EXxits Error and register mismatch will be developed into a
script and will be tested manually as well. Data collection will be further gathered

simultaneously.

The next section will discuss the design of the trigger point.

42



3.3 Design of trigger point

The communication between the failure and the PSMI is known as the trigger point. A trigger
point is used to stop the PSMI at a particular point of the instruction given a particular PSMI
interval (user-defined). There are many trigger points which can be used to capture a failure.
However, not every trigger point suits every failure. Sometimes it can be used, but more effort

is needed especially when performing trial-and-error methods, leading to time-consuming.

Therefore, in order to make use of the methods of capturing the PSMI, a universal method is
introduced. This method is a memory trigger method, which is described as capturing a
particular address, known as the error block address, with a specific data depending on the
types of failing signatures. The failing signatures that are used to be tested are exception,
memory mismatch, VM EXxit Error and register mismatch. Those failing signatures are denoted

by a specific value in hex form as shown in Table 3.1 below.

Table 3.1 Type of failing signature and its specific value notation

Failing signatures Specific Value in hex form
Exception 0x08
VM Exit Error 0x09
Memory mismatch 0x02
Register mismatch O0x0A

For the error block address, it is always having an offset of 0x24 with a range of 0x100 bytes.
The lowest byte 0x24 is denoted as the internal loop, which could be different for every run
and every test. In other word, it is a randomised value. For the range from 0x25 to 0x28, which
are 4-byte in size, it is a constant value once the failing signature is determined. Hence, the
designed automated system can use this fixed and most significant hex value (offset 0x28) to
capture the PSMI as shown in Table 3.1. As a summary, once the full error block address for
the aforementioned failing signature is determined, the universal method can be used. The

example is shown below:

e Address: Ox 28 (Error block address which excludes internal loop)

e Data: 0x08 or 0x8 (if the failing signature is an exception)

In the next section, the Python Scripting for the PSMI capture flow in the Open Debug (OD)
flow will be presented.

43



3.4 Python Scripting for the PSMI capture flow in the OD flow

PSMI exportation

-~

Variables initialization: ] ]
PSMI_data =0 Test execution
PSMI_interval = 50
PSMI_data_size = 1
PSMI_Pend = True

A

PSMI execution

-~

¥
Obtaining a failure path/folder Trigger point
known as regen folder insertion

£

» PSMI importation (&
v
*
Determining 3 information:

* obj file

error code

Error block address + 4
PSMI_data = 0x2 PSMI_data = 0x8 PSMI_data = 0x9 PSMI_data = OxA
Y Y Y Y

Does error code equal to
Dx2 or 0x8 or 0x9 or 0xA?2

error code ==
0x27

error code ==
0287

error code ==
0x9?

Figure 3.3 Flow chart of the Python Scripting for the PSMI capture flow

44



Figure 3.3 shows the flow chart of the Python Scripting for the PSMI capture in the Open

Debug (OD) flow. The scripting method used here is Python only. Each of the step stated in

the flow chart shown in Figure 3.3 will be discussed individually. In order to run this script, a

normal regression is kicked started. Once a failure is detected, the flow chart in Figure 3.3 will

be triggered.

1)

2)

3)

4)

Variables initialization
Similar to most of the projects, some variables will be initialized including some libraries
importation. Here, there are 4 variables being used:
e PSMI_data which is used for trigger point usage during PSMI capture flow.
e PSMI_interval, a user-defined time period, which is used for PSMI to capture a
number of cycles of the trace.
e PSMI_data_size which is used for trigger point usage during PSMI capture flow.
e PSMI_Pend, a bool variable, which is also used for PSMI capture flow.
Obtaining the failure path named as regen folder
Once a failure is detected, a regen folder will be regenerated automatically in the steps prior
to PSMI capture flow in the OD flow. This is necessary because 3 important information
have to be prepared and gathered before going to the next step. For this, the method here to
obtain the path is to use the pre-defined libraries that are used before PSMI capture flow in
the OD flow.
Determining *.obj file, error code and error block address
e Files grepping
In order to obtain these 3 information, 3 files in the regen folder are needed to be
found. Hence, “glob” library is utilized here. For *.obj file, it is used to run the test
during PSMI capture flow in the OD flow.
e Information grepping from a file
For error code and error block address, the data are found inside the specific files.
Therefore, “re.search” technique is performed here and return the values obtained
as variables. A note to be taken here is the error block address gathered will be
added by ‘4’ as discussed in Chapter 3.3.
PSMI_data decision based on error code
After collecting the information, the flow will go into a decision path to check whether the
error code read is 0x2, 0x8, 0x9 or OXA. If it is none of them, the PSMI capture flow in the
OD flow will end directly due to undefined error code specified in the flow.

45



5) PSMI capture flow

There are 5 stages of PSMI capture flow All stages use the built-in Python commands. The first
3 stages are very simple and direct. The fourth stage is to perform the test execution while the
last stage is to save the information in the common path. Each stage is discussed respectively

in point form as shown below:

i) PSMI Importation

The first stage of the PSMI capture is known as the PSMI importation. This stage requires
the user to import all the essential files needed during PSMI capture which comprise types
of the project that is running, the communication between the project and the user and the
fixes to the bug found previously. Once the user prompts the code, the system will enter a
halted state, allowing the user to key in the trigger point which is needed in the second
stage.

i) Trigger point insertion

The second stage of the PSMI capture is the user has to command the trigger point which
is to stop the PSMI at a particular point of the instruction given a user-defined particular
PSMI interval. This stage has already been discussed in the previous section 3.3.

iii) PSMI execution

The third stage of the PSMI capture is the PSMI execution. This includes the user-defined
PSMI interval to be commanded simultaneously. Once this is commanded, the PSMI starts
running counting from zero and the system will go back to the operation mode. At this
period, it is time to run the test.

iv) Test execution

The fourth stage of the PSMI capture is to run the test. The PSMI will stop the test whenever
it detects the trigger point that is set previously in stage 2 or it is called as “trigger”. Once
the PSMI capture flow gets a “trigger”, the test will enter halted mode again.
v) PSMI exportation

The last stage of the PSMI capture is to export the captured trace to a common path which
is used for debug purpose. At this period, the PSMI capture process is completed

successfully.

The full Python coding will be attached at the Appendix B/Full Python coding for the PSMI
capture flow in the OD flow.

The next chapter, Chapter 4, will present the Results and Discussion.

46



CHAPTER 4 RESULTS AND DISCUSSION

In this chapter, the manual method time estimation for the PSMI (Periodic System Management
Interrupt) capture process will be collected and discussed. This is to compare with the
automated PSMI capture flow which has been implemented in the OD (Open Debug) flow. In
the next section 4.1, the manual method time estimation for the PSMI capture will be discussed.

4.1 Manual method time estimation for PSMI capture and data collections

In this section, the survey for the manual time estimation for the PSMI capture process will be
collected across 4 different projects. Those gathered information is collected from the
colleagues whose have performed at least one manual PSMI capture. There is a total of 7 steps,
starting from a time period when the debugger starts the initial process to understand the
failure’s behaviour until the completion of the PSMI capture, as mentioned in Chapter 1.4 (vi).

Each step will be explained briefly with valid assumptions made in point form as shown below:

1) Understanding a failure.
» Assumption: A fresh failure is assigned to a debugger.
2) PSMI trigger type selection.
» Assumption: Only 4 kind of failing signatures which are Exception, VM Exit Error,
Memory mismatch and register mismatch.
3) Select and lock a system.
» Assumption: The selected system is undergoing operations and there is no ongoing
process in the OD flow.
4) Reboot the selected system to initial configuration.
> Assumption: The debugger is able to boot the system successfully without facing any
environment errors.
5) Testing selected PSMI trigger type.
» Assumption: The debugger is able to get a “trigger” after the testing stage.
6) Reboot the selected system once again.
» Assumption: The debugger is able to boot the system successfully without facing any
environment errors.
7) Starting the process of PSMI capture.
» Assumption: Including all the steps mentioned in Chapter 3.4. The debugger is also

able to complete the PSMI capture process successfully.

47



The survey for the manual time estimation for the PSMI capture process is summarised in
Figure 4.1 with an average value computed based on every step per project in an ideal case.
There are 2 assumptions being made. In order to make the calculations more easily, all the time
estimated in every step will be standardised in MINUTES form. Next, the minimum time
required for each step will be set as 1 minute. Every one column means capturing the PSMI

trace for 1 failure only.

Across 4 different projects, it is observed that with the increasing number of cores, the time
required to capture the PSMI trace manually is increased with the exception between Project
A and Project B due to the maturity of the PSMI capture process. This is because when the
number of cores increases, the system will need to operate more cores including understanding
the failure (step 1) and rebooting the system (steps 4 and 6). Other than that, the time taken will
be consumed more if there is any unpredictable environment issue occurring or the failure is
having a special characteristic, making the PSMI trace fail to capture. Both steps 2 (PSMI
trigger type selection) and 3 (Select and lock a system) may not consume much time since the
debugger can direct decide what they need to use. For step 5 (testing process), this consumes
lesser time as the importation of the PSMI is not needed here, leaving with only first 3 steps
are needed (based on Chapter 3.4). Lastly, for step 7 (PSMI capture), as aforementioned after

Project A, is almost consistent across the other 3 projects due to maturity issue.

48



Projects Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Total time (minutes)
Project A 20 1 1 5 15 5 20 67
b f =
number of cores =x 3 1 2 5 5 5 30 7
Average 17.5 1.0 1.5 5.0 15.0 5.0 25.0 70.0
30 1 1 10 5 10 10 67
Project B 20 1 1 5 5 5 15 52
number of cores = 2x 20 1 1 3 10 8 20 68
20 1 2 3 2 8 10 57
20 1 2 7 10 7 15 62
Average 22.0 1.0 1.4 7.0 7.0 7.0 14.0 0l.2
Project C 30 1 1 13 5 13 10 73
number of cores = 3x 25 1 2 12 10 12 15 77
25 1 2 13 10 13 15 79
Average 26.7 1.0 1.7 12.7 83 12.7 13.3 76.3
» 2 5 2 5
Project D 40 1 1 23 5 23 5 o8
number of cores =12x 35 1 2 20 10 20 15 103
35 1 1 22 5 22 10 96
Average 36.7 1.0 1.3 21.7 6.7 21.7 10.0 00.0

Figure 4.1 Manual time estimation for PSMI capture process across 4 different projects

In order to compare the manual method time estimation for the PSMI capture process with the time computation of the automated PSMI capture

flow which is developed in the OD flow, the discussion on the automated method time computation will be presented in the next section.

49



4.2 Automated method time computation for PSMI capture and data collections

The automated time period for PSMI captured starts when the OD detects a failure and triggers
the PSMI capture flow until the completion of the PSMI capture, as mentioned in Chapter 1.4
(v) as well as in Chapter 3.4. In order to allow the developed script to be run, it is required to
add the written script into a folder named as “flows.ini”” with some defined functional variables
as shown in Table 4.1. This is a built-in folder to run any written script in the Open Debug (OD)

flow.

Table 4.1 Defined functional variables in “flows.ini” for PSMI capture process

Defined functional variables Data
flow /<path to the python script/.../PSMI_final.py
timeout 1800
enabled 1

Based on Table 4.1, there are 4 defined functional variables being used for PSMI capture
process. The variable “flow” is to allow the OD to run the stated python file, in this case is
PSMI_final.py, when all the conditions are met. The variable “timeout” is to set a maximum
time allocated for this flow in the OD, in this case it is 1800s (or 30 minutes). This is to make
sure the OD will not hang forever in this flow and quit this flow after reaching the timeout
value. This may happen due to environment issues or special tests. Lastly, the variable “enabled”
is an on/‘1’ or off/0’ bit. If the user wants the OD to run the particular script, the variable

“enabled” has to be set to ‘1, else this script will be ignored by the OD.

Before computing the automated method time required for the PSMI capture, there is one
aspect to be taken into consideration, that is the test execution in the PSMI capture process. For
every test in any project, there is a minimum time required for the test to execute known as
“heartbeat”. Here, it is set as 300,000ms (or 5 minutes). This is to avoid any false failure which

requires a longer period of time to pass.

50



Projects

Analyses Time Collections (hour, minute, second)

Average Analysis Time (hour, minute, second)

Lt 00:29:45 00:32:02 00:31:31 00:31:06
Number of cores =x
Project B 00:13:15 00:12:19 00:16:56 00:14:10
Number of cores = 2x
Project D
00:15:33 00:14:59 00:16:02 00:15:31
Number of cores = 12x

Figure 4.2 3 analyses time and average analysis time for projects A, C and D respectively

Projects Analyses Time Collections (hour, minute, second)
00:13:03 | 00:13:25 | 00:15:12 | 00:15:42 | 00:15:11 | 00:14:12
00:15:53 | 00:14:31 | 00:14:11 | 00:14:25 | 00:14:59 | 00:14:06
00:15:48 | 00:13:34 | 00:14:52 | 00:13:05 | 00:13:35 | 00:14:09
Project C 00:15:11 | 00:14:22 | 00:15:19 | 00:14:19 | 00:14:29 | 00:13:45
Number of cores = 3x 00:14:01 | 00:14:25 | 00:14:27 | 00:13:40 | 00:14:32 | 00:14:51
00:14:49 | 00:15:34 | 00:15:44 | 00:13:59 | 00:13:12 | 00:13:57
00:15:25 | 00:14:59 | 00:13:40 | 00:15:51 | 00:14:53 | 00:13:07
00:13:52 | 00:13:43 | 00:14:02 | 00:13:35 | 00:15:40 | 00:14:23
00:14:32 | 00:14:05 - -
Average f&nalysm Time (hour, 00:14:27
minute, second)

51

Figure 4.3 50 analyses time and average analysis time for project B
Figure 4.2 shows the 3 analyses time (hour, minute, second) and average analysis time for projects A, B and D respectively. The Python coding

shown in Appendix B is not compatible in these 3 projects. According to Figure 4.2, only 3 analyses time are collected for projects A, B and D
because there are limited systems for these 3 projects to test for the written script for the automated PSMI capture. For project A. this project is an
old project and the current PSMI capture for this project is not mature. For projects B and D, both are on-going projects which are prioritized to
achieve the goals. Hence, only 3 captures are done for projects A, B and D respectively during testing process. Figure 4.3 shows the 50 analyses
time (hour, minute, second) and average analysis time for project B. The Python coding in Appendix B is basically for Project B only. Based on
Figure 4.3, more data are captured in project B comparatively is because of the project systems person in-charge ownership. In the next section,
the manual method and the automated method to capture PSMI will be compared and discussed in term of time.




4.3 Comparison between Manual method and automated method for PSMI
capture in term of time

For a better view and comparison, the manual method time estimation for PSMI capture and
the average analysis time of the automated method time computation for PSMI capture (or the
Python Scripting for the PSMI capture in the Open Debug (OD) flow) for projects A, B, C and
D will be tabulated in Table 4.2.

Table 4.2 Average manual method time estimation and average automated method time
computation for PSMI capture process

Average manual (M) Average automated (A) % Improvement
Projects method time estimation method time computation = (JM-A|/M)*100%
(hour, minute, second) (hour, minute, second) (%)
Project A 01:10:00 00:31:06 55.57%
Project B 01:01:12 00:14:10 76.85%
Project C 01:16:18 00:14:27 81.06%
Project D 01:39:00 00:15:31 84.33%

Table 4.2 shows the average manual method time estimation, average automated method time
computation for PSMI capture process as well as the percentage improvement. The term
“percentage improvement” here means how much time is saved when performing PSMI
capture using automated method or Python scripting over manual method. Undeniably, based
on Table 4.2, it is proven that using automated method to capture PSMI can save more than
55% to 84% time as compared to manual method. This is because automated method can help
to eliminate the steps 1 to 6 as discussed in Chapter 4.1. With this, the debugger is able to save
a lot of time to search for system to use as well as avoiding any environment issue. With the
help of the PSMI process in the OD, once the failure is detected, the PSMI can be captured
directly without needing the effort from debuggers to triage and proceed the following steps.

In the next Chapter, Conclusion, limitations and future recommendations will be presented.

52



CHAPTER 5 CONCLUSION, LIMITATIONS AND FUTURE
RECOMMENDATIONS

In this chapter, 3 sections will be discussed in the sequence namely conclusion, limitations and
future recommendations of the proposed and developed automated flow of the PSMI capture

in the OD flow will be discussed. In the next section, the conclusion will be presented first.

5.1 Conclusion

As a conclusion, in this era of globalisation, the automated systems are widely used in various
kind of fields such as engineering, learning, examination and more around the world. This trend
has become an inevitable aspect in the life of human beings. Even though manual methods still
exist, but nowadays, semi-automated or even fully-automated systems are gradually replacing
the traditional methods known as the manual method or manpower due to its fast-process, high
reliability, high effectiveness and high efficiency features.

As discussed in the Literature review, many researchers utilised automated tools or systems in
their researches in the specific fields. The performances of the automated systems showed that
they had many advantages over the manual techniques. This has also proven that the automated

flow has been fully embedded in the root of the life.

In this project, in order to design the proposed automated system known as the automated PSMI
flow in the Open Debug (OD), Python programming language is utilised. The failing signatures
that are going to be tested in this developed flow are the exception, memory mismatch, VM
Exit Errors and register mismatch. The failure of each of the failing signature is inserted in this
flow to check for stability. The trigger point design basically is using a memory trigger,
meaning the PSMI will be stopped (and this is known as a “trigger”) once it detects the pre-
selected address, in this case is the error block with offset 0x28, and the pre-selected data. In
this case, depending on the types of the error code (memory mismatch is 0x2, exception is 0x8,
VM Exit error is 0x9 and register mismatch is 0xA). After understanding the design phase of
the trigger point, the Python Scripting for the PSMI capture flow in the OD flow is designed
on the next step, a total of 5 steps. First, it will be the common step known as variables
initialization. After that, it is necessary to obtain the failure path named as regen folder. Inside
the regen folder, by using Python coding, *.obj file, error code and error block address are
required to be determined before undergoing PSMI capture flow. Next, it is the PSMI_data

decision based on error code, basically this is the step comes from the design of the trigger

53



point. Last but not least, the final step is the PSMI capture flow which comprises 5 steps —
PSMI importation, trigger point insertion, PSMI execution, test execution and PSMI

exportation.

In this proposed technique, 2 methods are carried out separately namely manual method and
automated method for PSMI capture. In order to compare both methods, the time consumed
between them are taken into considerations. For manual method time estimation for PSMI
capture, it is defined as the manual time period for PSMI captured starts when the debugger
starts the initial process to understand the failure’s behaviour until the completion of the PSMI
capture. To collect data for this method, a survey is done from different debuggers that have
completed the PSMI capture at least once in any of the 4 projects. Based on Figure 4.1 and
Table 4.2, it is observed that at least one hour is needed to capture PSMI for any manual method
in any project. For automated method time computation for PSMI capture, it is defined as the
automated time period for PSMI captured starts when the OD starts the PSMI capture flow
until the completion of the PSMI capture. In order to gather data for this method, few attempts
haven been done in projects A, B and D (due to limited systems) while 50 attempts have been
done in project C. According to Figure 4.2, Figure 4.2 and Table 4.2, it can be seen that at the
maximum of half an hour is needed to complete the PSMI capture in automated technique. By
comparing both approaches, undeniably, for about 55% to 84% time has been saved if utilising
automated approach over manual approach. In other words, the automated technique consumes

lesser time and efforts as compared to the manual technique in PSMI capture.

In the next 2 sections, the limitations and the future recommendations of the proposed and

developed automated flow of the PSMI capture in the OD flow will be presented.

54



5.2 Limitations

For this proposed project, there are some limitations and they will be discussed respectively in

point form as shown below.

1)

2)

3)

Limited error codes detection and project specific

As mentioned in previous chapters, for this automated PSMI capture in the OD flow, it will
only detect 4 kinds of the failing signatures known as exception, memory mismatch, VM
Exit Errors and register mismatch. Other failing signatures will be ignored. The command
in Appendix B is only applicable for project B. Modifications are needed for other projects.
Capturing multiple failures with the same root-caused issue

For this project, the Python scripting for the PSMI capture flow in the OD flow will be
always triggered when a failure is detected. Since the failing signature could be different
or the same, after being root-caused, they are the same, leading to waste time and effort.
Affect regression run rate

For the Python scripting for the PSMI capture flow in the OD flow, when it is triggered,
the regression will be forced to stopped because the system cannot run multiple tests
simultaneously. Since in the PSMI capture flow, it is required to run the failure, indirectly

affecting the regression run rate.

5.3 Future Recommendations

In

order to solve the aforementioned limitation found in this proposed project, some

recommendations are stated here.

1)

2)

3)

Enhance the current script to be more flexible by understanding how failures are reported
and allowing the script to be applied to all projects which support PSMI. The method
suggested here for first limitation is to use port out 0xf8, a built-in code for most of the
failing signatures.

Enhance the current script by connecting it with a new feature known as Quark signature

which can help to filter the failure at the surface level. This can help to avoid capturing
PSMI trace of the failures with the same root-caused issue.

Develop a batch file to include the current script such as PSMI.bat. This is to allow the
debuggers to run the PSMI capture automatically without affecting the regression run rate.

55



REFERENCES

1. Intel Wiki - oD, Open Debug [online]. Available at:
https://wiki.ith.intel.com/display/Hexa3/OpenDebug. [Accessed at: 13 October 2022]

2. Intel Wiki — PSMI, Periodic System Management Interrupt [online]. Available at:
https://wiki.ith.intel.com/display/DebugEncyclopedia/PSMI. [Accessed at: 13 October
2022]

3. C.Jiang, B. Liu, Y. Yin and C. Liu, "Study on real-time test script in automated test
equipment,” 2009 8th International Conference on Reliability, Maintainability and Safety,
Chengdu, China, 2009, pp. 738-742, doi: 10.1109/ICRMS.2009.5270090.

4. V. Radhakrishna, V. SravanKiran and K. Ravikiran, "Automating ETL process with
scripting technology,” 2012 Nirma University International Conference on Engineering
(NUICONE), Ahmedabad, India, 2012, pp. 1-4, doi: 10.1109/NUICONE.2012.6493217.

5. A. Shirude, S. Totala, S. Nikhar, V. Attar and J. Ramanand, "Automated Question
Generation tool for structured data,” 2015 International Conference on Advances in
Computing, Communications and Informatics (ICACCI), Kochi, India, 2015, pp. 1546-
1551, doi: 10.1109/ICACCI.2015.7275833.

6. B. Kovacevic, M. Kovacevic, D. Stefanovic and M. Loncarevic, "Verification of Set-Top
box media player functionality using automated test system,"” 2015 IEEE 1st International
Workshop on Consumer Electronics (CE WS), Novi Sad, Serbia, 2015, pp. 68-71, doi:
10.1109/CEWS.2015.7867158.

7. D. Xu, W. Xu, M. Kent, L. Thomas and L. Wang, "An Automated Test Generation
Technique for Software Quality Assurance," in IEEE Transactions on Reliability, vol. 64,
no. 1, pp. 247-268, March 2015, doi: 10.1109/TR.2014.2354172.

8. J. Long and J. Zhou, "Automated mechanical simulation system for microelectronic
packaging,” 2015 16th International Conference on Electronic Packaging Technology
(ICEPT), Changsha, China, 2015, pp. 51-55, doi: 10.1109/ICEPT.2015.7236543.

9. A. Kulkarni and Madhavi E, "Developing Reference Help documents automatically by
using scripting methods," 2016 International Conference on Computation System and
Information Technology for Sustainable Solutions (CSITSS), Bengaluru, India, 2016, pp.
428-429, doi: 10.1109/CSITSS.2016.7779399.

56



10.

11.

12.

13.

14.

15.

16.

17.

D. Zun, T. Qi and L. Chen, "Research on automated testing framework for multi-platform
mobile applications,” 2016 4th International Conference on Cloud Computing and
Intelligence  Systems  (CCIS), Beijing, China, 2016, pp. 82-87, doi:
10.1109/CCIS.2016.7790229.

J. C. S. Kadupitiya, S. Ranathunga and G. Dias, "Automated assessment of multi-step
answers for mathematical word problems,” 2016 Sixteenth International Conference on
Advances in ICT for Emerging Regions (ICTer), Negombo, Sri Lanka, 2016, pp. 66-71,
doi: 10.1109/ICTER.2016.7829900.

Y. Stefinko, A. Piskozub and R. Banakh, "Manual and automated penetration testing.
Benefits and drawbacks. Modern tendency,” 2016 13th International Conference on
Modern Problems of Radio Engineering, Telecommunications and Computer Science
(TCSET), Lviv, Ukraine, 2016, pp. 488-491, doi: 10.1109/TCSET.2016.7452095.

A. Kansal, R. Sinha and R. Jaiswal, "Fully automated regression tool for post silicon
validation,” 2017 8th International Conference on Computing, Communication and
Networking Technologies (ICCCNT), Delhi, India, 2017, pp. 1-4, doi:
10.1109/ICCCNT.2017.8203924.

G. P. Roja and S. M. Sarala, "Automated testing of the medical device,"” 2017 2nd IEEE
International Conference on Recent Trends in Electronics, Information & Communication
Technology  (RTEICT), Bangalore, India, 2017, pp. 217-220, doi:
10.1109/RTEICT.2017.8256589.

S. Buyrukoglu, F. Batmaz and R. Lock, "A new marking technique in semi-automated
assessment,” 2017 12th International Conference on Computer Science and Education
(ICCSE), Houston, TX, USA, 2017, pp. 545-550, doi: 10.1109/ICCSE.2017.8085551.

A. Dewanto et al., "Semi-Automated and Manual Methods for Counting Cells Expressing
P75 Receptor in Endometriotic Lesions,” 2018 4th International Conference on Science
and Technology (ICST), Yogyakarta, Indonesia, 2018, pp. 1-6, doi:
10.1109/1CSTC.2018.8528285.

R. R. A. M. P. Jayawardena, G. A. D. Thiwanthi, P. S. Suriyaarachchi, K. 1. Withana and
C. Jayawardena, "Automated Exam Paper Marking System for Structured Questions and

Block Diagrams,” 2018 IEEE International Conference on Information and Automation

57



18.

19.

20.

21.

22.

23.

24,

25.

for Sustainability (ICIAfS), Colombo, Sri Lanka, 2018, pp. 1-5, doi:
10.1109/1CIAFS.2018.8913351.

S. Tarig, "Automation of reflectarrays in HFSS using visual basic scripting,” 2018 Texas
Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA,
2018, pp. 1-4, doi: 10.1109/WMCaS.2018.8400640.

I. Dobles, A. Martinez and C. Quesada-Lopez, "Comparing the effort and effectiveness of
automated and manual tests,” 2019 14th Iberian Conference on Information Systems and
Technologies (CISTD), Coimbra, Portugal, 2019, pp. 1-6, doi:
10.23919/CISTI.2019.8760848.

P. Dinesh Divsekar, R. Porob and P. S. Kuwelkar, "Automated Regression Testing and
Data Analytics using Python," 2019 4th International Conference on Recent Trends on
Electronics, Information, Communication & Technology (RTEICT), Bangalore, India,
2019, pp. 95-99, doi: 10.1109/RTEICT46194.2019.9016774

R. Walker, "Pattern System Design: An Approach to Automating the Design of Automated
Test Equipment,” 2019 IEEE AUTOTESTCON, National Harbor, MD, USA, 2019, pp. 1-
4, doi: 10.1109/AUTOTESTCON43700.2019.8961047.

M. Agarwal, R. Kalia, V. Bahel and A. Thomas, "AutoEval: A NLP Approach for
Automatic Test Evaluation System,"” 2021 IEEE 4th International Conference on
Computing, Power and Communication Technologies (GUCON), Kuala Lumpur,
Malaysia, 2021, pp. 1-6, doi: 10.1109/GUCON50781.2021.9573769.

H. Vimalaraj et al., "Automated Programming Assignment Marking Tool," 2022 IEEE 7th
International conference for Convergence in Technology (12CT), Mumbai, India, 2022, pp.
1-8, doi: 10.1109/12CT54291.2022.9824339.

K. S. Koushik, B. U. Sourav Chengappa and R. P. Chendan, "Automated Marks Entry
Processing in Handwritten Answer Scripts using Character Recognition Techniques,"”
2022 3rd International Conference on Electronics and Sustainable Communication
Systems (ICESC), Coimbatore, India, 2022, pp. 728-733, doi:
10.1109/ICESC54411.2022.9885493.

N. Tabassum, M. S. Ahsan, I. Chowdhury and U. Basu, "loT based Automated
Examination Management System with Biometric Portal,” 2022 International Conference

58



26.

217.

on Innovations in Science, Engineering and Technology (ICISET), Chittagong,
Bangladesh, 2022, pp. 52-55, doi: 10.1109/ICISET54810.2022.9775923.

R. A. Rizvee, M. F. Arefin, M. R. Khan, M. N. Islam and K. F. Rabbi, "An Automated
System to Calculate Marks from Answer Scripts,” 2022 IEEE 13th Annual Information
Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver,
BC, Canada, 2022, pp. 0048-0054, doi: 10.1109/IEMCON56893.2022.9946626.

S. K. Sinha, S. Yadav and B. Verma, "NLP-based Automatic Answer Evaluation,” 2022
6th International Conference on Computing Methodologies and Communication (ICCMC),
Erode, India, 2022, pp. 807-811, doi: 10.1109/ICCMC53470.2022.9754052.

59



APPENDICES

Appendix A Work Schedule

Gantt Chart of Research Project

First Trimester (Weeks)

Second Trimester (Weeks)

1/2]3]4]s5]6|7][8]0]10]11]22

13]14]15]16]17]18|10]20]21[22]23]24

No. |Aspects
Preparation of Thesis
1 |Introduction
2 |Literature Review
3 |Research Methodology
4 |Design Methodology
5 |Resulis and Discussions
6 | Conclusion
Design Flow
7 | Pvthon scripting for PSMI trace capturing flow
8 |Stability testing for PSMI trace capturing flow without any trigger point
9 |Pyihon scripting for exception failing signature
Stability testing for PSMI trace capturing flow with a trigger point on exception
10 |failing signature
11 |Performances analysing for a series of failures injection
12 |Python scripting for all failing signatures except test hung (universal method)
Stability testing for PSMI trace capturing flow with a trigger point for all failing
13 |signatures except test hung
14 |Performances analysing for a series of failures injection
15 | Apply into real time system
16 |Performances analysing during real time system

60




Appendix B Full Python coding for the PSMI capture flow in the OD flow

o

B import os

3 import os.path

4 import re

5 import sys

[ import glob

7 from evtar.lotus.open debug.base.framework.core import action

2

10 F L B T Py P e P P e e PP TP Re:
11 # Initialisation

12 R KRR AR KRR KRR AR AR R AR AR AR KRR K KRR KKK KK KKK KKK KKK KA KRR R AR AR R AR AR KRR AR AR K AR A KA Aok
13

14 # Initialise variables

15 L

16

17 P5MI_data = 0

18 BSMI_interval = 50 # user-defined

PSMI_data_size = 1
PSMI_Pend = True

# To get a failure path/folder
"
#

failure path = action.test.get_regenerate_folder()

# To get *.obj file for test execution
"

#
obj_file = "VER_*.obkj'
obj_path = glob.glob(failure_path + "\\*'" + obj_file)

# To read error code

parsed error file
parsed error_path = glob.glob(failure_path + "\\*" + parsed error_file)

2 [Hldef get_srror_code (parsed_error_path):

39

40 = if os.path.exists(parsed_srror_path):

41 = with open({failure_path, 'r') as error_code_file:

42 = for line in error_code_file:

43 = if 'ERROR CODE' in linme 0x0%
44 result = re,search(':\ 1+1", line)
45 break

48

47 error_code_subf = int(result.group(’

43 return error_code_subf

50

=il # To read error block address

52 #

53 cfg file = "VER *.

54 cfg_path = glob.glob{failure_path + "\\*" + cig file)

55

56 [Cldef g=t_srror_block_address (cfg_path):

57

538 = if os.path.exists({cfg_path):

G5 = with open(failure_path, 'r') as error_block_address_file:

80 [ for line in error_block_address_file:

61 [ if 'Star 33" in line: # Starcthddress3 = 0x74024

62 result = re.search('=\s*{ ess»[0-%a <]+) ", line)
63 break

64

65 error_block address_subf = int({result.group('=a

&6 return hex(error_block address_subf)

61



@

m
[r |

=}

e e e e e o
Mo W R e

=
wom -

=

[T

WD W W0 WD WD WD W W D D D 0 (0 00 00 C0 (D 00 ]
[T = R R o R R Y

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
142
145
126
147
128
149
150
151
152
153
154
155
156
157

# Main function
‘hhhhhj1hhhhhhhhj]hhhhhhhhj]]hhhhhhhjj]hhhhhhhhjlhhhhhhhhj]lhhhhhhhj11hhhhhhhAAlhhhhhhhhj]hhhhhhhhh11hhhhhhhhhlhhhhhhhjjlhhhhhhhhjlhhh

Eldef run flow():

o

action.log("Entered PSMI:run flow(}™)
error_code_main = get_error code() # decimal
error_block address main = get_error block address({) + 4 # hexadecimal and addre

if (error_code_main == 2 or error_code_main == § or error_code_main = 9 or erro

if (error_code_main = 2): # memory mismatch
action.log("Procesding to capture PSMI on Memor
PSMI_data = 2
return hex (PSMI_data)

)

if (error_code main == Z): # exception error
action.log("Procesding to capture PSMI on Exception Error.”)
BSMI_data = 2
return hex({PSMI_data)

if (error_code_main = 5): # VM Exit error
action.log("Procesding to capturs PSMI
PSMI data = &
return hex(FSMI_data)

if (error_code_main = 10): # register mismatch or Ox0R
action.log("Procesding to capture PSMI on Register Mismatch.™)
PSMI_data = 10
return hex (FSMI_data)

P e e e e e e e e S P SR E P

4 PSMI importation
‘hhhhhhhj]hhhhhhhhjllhhhhhhhAAlhhhhhhhhj]hhhhhhhhj11hhhhhhhh]]hhhhhhhhh]hhhh

sys.path.append (c"C:\pythonsv\grandridge") # By project
from psmi.atom psmi_for grr import psmi # run in pythonSV

S  E E L T T e e P e SRR P s

# Trigger point insertion
P R R R R e e P e SRS e P PRSP

S3+d

r_code_main == 10):

 E R e R e e TS S SRR TS SR R

 E R e R e e TS S SRR TS SR R

R T ST S T e T T SR

g  E E T e T SRR TP

psmi.cmc_domain.trigger.on memory address(addr=error_block_address_main, data=PSMI_data, size=PSMI_data_size)

RR AR RS ARAR AR AAR KRR RS ER R AR R RN RRE AR AR AR AR RRRAARR 0D R R NR RN AAARR A4S

# PSMI execution
BN AR KRR RN H AR R AR AR AR AR AR LSRR R AR RN RN TR LSRR RN AR AR LRSS AR R N AR TR L

pomi.go (PSMI_interval, pend=PSMI_Pend)

L T T

# Erint messages
L T L LT ST Tr T T

code

message_error_code — £"The = this

action.log(message_srror_code)

ilure is Ox(hex (error_code_main)}.”

message_error_block_address = £"The =
action.log (message_error_block_address)

re is Ox[error_block_address main}."

the me

message_PSMI_memory_trigger = £"The command is: pami.cmt_

action.log(message_PSMI_memory_trigger)

ain. Trigs

message _PSMI_execution = f"BSMI 13 executed with PSMI [BSMI_intervaljms.”

action.log(messags_PSMI_execurion)

message_test_execution = £'Failure is running no
action.log (message_test_execution)

waiting the trigger.”

L L ST TT)

# Test execution
B AAAR AR R AR AR AR A0S AR AR KA AR R AR AR KRRk A A bR ARk A AR 0 kKA Ak A

from pysvtools.psii.Common.memory import xmonkpi
sys.path.append(r am Files\Intel\XMon\acripts\remote",
from testrunner_client import TestrunnerClient

tc = TestrunnerClient()

*1 = xmonApi (tc)
*1._exec_xmon_cmd("run -init

y {ob3_path}~)

# save the info in a temporary folder
pami.export ()

# PSMI capture is skipped for other failing signatures
else:

action.log("Skipping BSMI capture due to other failing signatures.”)

# Call the main function

o

neme__ = "_run_flow_":

62

x(error_block_address_main], data

[PSMI_data), siz

P R e e e S R e e e E SR E R E s

BSMI_data_size))."



