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ABSTRACT 

 

DESIGN AND SIMULATE RISC-V PROCESOR USING VERILOG 

 

DAVID NGU TECK JOUNG 

 

In this project, RISC-V processor is designed and simulated using Verilog. The 

design of RISC-V processor provides an alternative for software and hardware 

design to the computer designers as it provides free and open instruction set 

architecture (ISA). Besides, the designed RISC-V processor will be using 5-

stage pipeline techniques to improve the overall performance of the processor. 

The project is started by implementing several main modules, such as alu, aludec, 

maindec, imem, dmem, regfile, pc_mux, result_mux, pipeline register (IF/ID, 

ID/IEx, IEx/IMem, and IMem/IW), forwardMuxA and forwardMuxB. Besides, 

hazard unit is implemented into the design to mitigate hazard conditions. The 

functionality of these modules were simulated and verified by using ModelSim 

software. Then, the modules were integrated into a main module to form a 

riscv_pip_27 module. A simple testbench is written to verify the functionality of 

the RISC-V processor. 

 

Keywords – RISC-V processor, Verilog, 5-stage pipeline, hazard  
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Chapter 1: Introduction 

 

1.1 Project Overview 

Very Large-Scale Integration (VLSI) design began in 1970s when 

semiconductor and communication technologies were being developed. It 

driven the revolution of microprocessors and the innovation of electronic 

computing systems. This scenario was further extended that extensive research 

fund was invested to explore the capabilities of the applications of computer in 

various fields such as aviation, medical, cell phones, and automobile industries. 

By 2030, more than 22.7 billion devices will be connected by IoT networks (W. 

Wang et al., 2021). These IoT devices lay as a foundation towards the 

accomplishment of future concepts such as smart city, self-driving cars, and 

space exploration technologies. 

VLSI is the process of creating an integrated circuit (IC) by combining 

thousands of transistors into a single chip. Before the introduction of VLSI 

technology, most ICs had limited set of functions that they could perform. VLSI 

allows IC designers to add all the components such as Central Processing Unit 

(CPU), Read-Only Memory (ROM), Random Access Memory (RAM), and 

other logics together into a chip. The current cutting-edge technologies such as 

high resolution and low-bit rate video and cellular communications provide the 

end-users a marvelous number of applications, processing power and 

portability. This trend is expected to grow rapidly with very important 

implications on VLSI design and system design. 
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The processor is the “brain” of the established electronic computer system 

today. It helps to communicate with other devices such as mouse, keyboard, 

speakers, and works on the information that is has acquired from them. Most 

of the processors nowadays are built in Complex Instruction Set Computing 

(CISC) or Reduced Instruction Set Computing (RISC) architecture. They 

proposed different design styles and circuit that differ in how the data flows or 

where the data and instructions were stored. Both CISC and RISC had their 

own advantages and disadvantages. Therefore, implementing and enhancing 

the advantages on existing ones is still impactful to both academic and 

industries. 

RISC-V is a free and open Instruction Set Architecture (ISA) based on 

established RISC architecture. It was founded in 2010 at the University of 

California, Berkeley. RISC-V started to gain attention from the industries 

because it provided open-source licenses that do not require fees to use. With 

this, it breaks down barriers in the semiconductor industries. RISC-V is 

fundamentally designed for modular approach. It only has 47 based instructions, 

and it can be modularly adjusting those extension based on the design 

requirement. RISC-V ISA does not define how a design must be implemented 

or which subsets it must contain. Therefore, many RISC-V computers might 

implement the compact extension to reduce power consumption, code size, and 

memory use. 

 



3 
 

1.2 Problem Statement 

Instruction Set Architecture (ISA) is part of the abstract model of a computer 

that defines how the CPU is controlled by the software. It acts as an interface 

between the hardware and the software. It also defined the supported data types, 

registers, memories, instruction to be executed, and features of a processor. 

Companies such as Intel, IBM and ARM uses their own ISAs in their products. 

Unfortunately, these ISAs were patterned to avert others from using them 

without a permit. Negotiations takes months and it tends to peak up the cost, 

which make it difficult for community apprehensive and small organizations. 

To overcome this issue, an open ISA should be found to attain sizable 

innovation. With shared open core designs, it helps some small organizations 

to compete in the market. This possesses a positive competitive atmosphere 

between them. Therefore, consumers can be benefit by purchasing affordable 

product with adequate performances.  

As stated in RISC-V organization webpage, “The worldwide interest in RISC-

V is not because it is a great new chip technology, the interest is because it is a 

common free and open standard to which software can be ported, and which 

allows anyone to freely develop their own hardware to run the software”. These 

properties of the RISC-V ISA make it ideal for our desire use. 

Efficiency of the processor is strongly affected by instruction implementation. 

Processors with single cycle design will execute the next instruction only when 

the current instruction is completed. The efficiency of the single-cycle 

processor will be greatly reduced when the complexity of the instructions 
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increases. Besides, the cycle time of the processor need to be designed to 

accommodate the slowest instruction. Therefore, the latency of the processor 

will be increased due to the length of the clock cycle being too long for the 

execution of each instruction. With pipeline design, this problem can be 

overcome by executing multiple instruction simultaneous in overlapped 

manner. 

1.3 Objective  

 

1. To understand the basic of RISC-V architecture 

2. To implement 5-stage pipeline design of the RISC-V processor in Verilog 

3. To verify the functionality of the design by performing testbench and 

simulation 
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Chapter 2: Literature Review 

2.1 Overview 

In this chapter, the implementation of difference architectures such as MIPS, 

RISC, and CISC by other authors will be discussed. 

2.2 Previous Work 

The design of a 32-bit RISC processor based on MIPS using VHDL coding was 

presented by (S. P. Pitpurkar et al., 2015). They argued that RISC CPU had 

more benefits than CISC such as higher speed, simpler structure, and easier 

implementation. They used pipeline design to describe the system and achieve 

fewer clock cycles per instruction. They verified the design through extensive 

simulations. They used Xilinx 13.li ISE Simulator to design, synthesize and 

simulate the RISC processor based on MIPS. Their results showed that the 

design had a combinational delay of 0.758 ns and a maximum operating 

frequency of 1.350 Ghz. 

Using Cadence, a software tool for electronic design automation, (Mohit N. 

Topiwala et al., 2014) designed and implemented a 32-bit processor based on 

MIPS. MIPS is a RISC architecture, which stands for reduced instruction set 

computer. RISC architectures aim to increase the speed of the processor by 

using a small set of simple and fast instructions. The authors stated that power 

consumption is a critical factor for embedded and portable applications. 

However, there is a trade-off between power, area, and delay in integrated 

circuits. For some applications, low power circuits are required, and the design 
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engineers have to sacrifice more area and delay. Therefore, they suggested a 

power reduction technique by skipping pipeline stages that cause unnecessary 

switching activities. They designed Hazard detection unit and Data forwarding 

unit for efficient implementation of the pipeline. They used Verilog-HDL to 

implement the design and Cadence RTL complier to synthesize it using typical 

libraries of TSMC 0.18 μm technology. 

Using Verilog HDL, (Shofiqul Islam et al., 2006) developed a high speed-

pipelined execution unit of 32-bit RISC processor. They arranged the block in 

different stages of pipeline so that the pipeline can operate at high frequency. 

The execution stage in a typical pipeline scheme consists of input data mux, 

operational block and output ALU mux. To increase the speed of the pipeline, 

they selected the data for the computational blocks in the execution stage one 

stage earlier in the data select stage. They also proposed a dependency resolver 

module to deal with a possible problem of consecutive data dependent 

instruction in the pipeline. This module handles both stalling and data 

forwarding. They synthesized the processor at 0.1 micron technology and 

achieved a working frequency of 714Mhz. 

(Animesh Kulshreshtha et al., 2021) compared the behavioural models of 16-

bit and 32-bit RISC processors and their different instruction sets. The 16-bit 

RISC processor was a non-pipeline CPU based on Harvard architecture, which 

had separate data memory and instruction memory. The 32-bit RISC processor 

was a pipelined CPU that followed the MIPS architecture. They aimed to study 

the differences between the models based on their instruction set and 
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performance factors such as speed and power consumption. They used an 

optimized Multiplier algorithm to improve the data path. In general, the 32-bit 

processor consumed about 60% more power than the 16-bit processor because 

of its higher operating frequency. However, the 32-bit processor was 70% faster 

than the 16-bit processor. These results were expected because the 32-bit 

processor can store more computational values and the pipelined architecture 

of the processor reduces the length of each instruction cycle, which increases 

the operating frequency and decreases the combinational delay. Based on their 

results, the maximum operating frequency for the 16-bit processor and the 32-

bit processor was 78.654 MHz and 139.438 MHz, respectively. The maximum 

combinational delay was 13.981 ns for the 16-bit processor and 7.028 ns for 

the 32-bit processor. 

Using Verilog HDL coding, (Shawkat S. Khairullah, 2022) designed and 

implemented a 16-bit RISC processor with 5 pipeline stages that was simulated 

using Xilinx ISE Design Suite 14.7 tool. They synthesized the design on device 

Xilinx XC3S200FT256 FPGA chip. They showed the experimental and timing 

diagram results that indicated that the execution unit hardware design used 2% 

of Spartan – FPGA XC3S2000 area with a maximum speed of 56.8 MHz. They 

also showed that the data memory unit hardware design used 8% of the same 

FPGA area with a maximum speed of 67.32 MHz. Moreover, they showed that 

the instruction unit hardware design used 6% of the same FPGA area with a 

maximum speed of 106 MHz. 
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Using VHDL, (Sarah M. Al-sudany et al., 2021) designed and implemented a 

multicore RISC processor on FPGA. They used 32-bit MIPS processor with 

three main components: 32-bit data path, control unit, and hazard unit. They 

divided the single cycle MIPS system into five pipeline stages to create the 

pipeline MIPS processor. They also solved the data hazard, control hazard, and 

structural hazard in their design. They developed the MIPS using Xilinx ISE 

14.7 design suite and successfully implemented it on Xilinx Virtex-6 

XC6VLX240T-1FFG1156 FPGA. The multicore MIPS processor consumed 

3.422 watt of power and had an operating frequency of 136.444 MHz. 
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Table 2.1: Implementation and design of various processor from previous 

works 

Author Description 

S. P. Pitpurkar et al., 

2015 

• Implement a design of 32-bit RISC based MIPS 

processor using VHDL coding  

• RISC has more advantages, such as faster 

speed, simplified structure, and easier to be 

implemented as compared to CISC 

• Xilinx 13.li ISE Simulator was used to the 

design, synthesis and simulation  

• Achieved combinational delay of 0.758ns and 

maximum operating frequency of 1.350 GHz 

Mohit N. Topiwala et 

al., 2014 

• Implemented a 32-bit MIPS based processor 

using Cadence 

• Power is the most important parameter for 

embedded and portable applications 

• Proposed a power reduction technique through 

by-passing pipeline stages that cause 

unnecessary switching activities. 

• Hazard detection unit and Data forwarding unit 

were designed for efficient implementation of 

the pipeline 
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• Implemented using Verilog-HDL and 

synthesized using Cadence RTL complier using 

typical libraries of TSMC 0.18 𝜇𝑚 technology 

Shawkat S. 

Khairullah, 2022 

• Presented hardware realization of 5 pipeline 

stages of a 16-bit RISC processor 

• Processor is simulated using Xilinx ISE Design 

Suite 14.7 tool 

• Synthesis process of the proposed system is 

realized on device Xilinx XC3S200FT256 

FPGA chip 

• Execution unit uses 2% of Spartan – FPGA 

XC3S2000 area with maximum allowable 

speed of 56.8 MHz. 

• Data memory unit uses 8% of Spartan – FPGA 

XC3S2000 area with maximum allowable 

speed of 67.32 MHz 

• Instruction unit uses 6% of the same FPGA ship 

area with maximum allowable speed of 106 

MHz 

Shofiqul Islam et al., 

2006 

• Designed a high speed-pipelined execution unit 

of 32-bit RISC processor 

• Data selection for the computational blocks in 

Execution stage is performed one stage ahead  
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• Dependency Resolver module were proposed to 

solve consecutive data dependent instruction in 

the pipeline 

• Basically, the module handles both stalling as 

well as data forwarding 

Animesh Kulshreshtha 

et al., 2021 

• Analysed behavioural model of 16-bit and 32-

bit RISC processor and their independent 

instruction sets 

• 16-bit RISC processor was a non-pipeline 

Harvard architecture-based CPU 

• 32-bit RISC was a pipelined processor from 

MIPS architecture 

• Total power consumption for 32-bit processor 

was about 60% more than 16-bit processor due 

to higher operating frequency 

• 32-bit processor was 70% faster than 16-bit 

processor 

• Maximum operating frequency for 16-bit 

processor and 32-bit processor is 78.654 MHz 

and 139.438 MHz 

• Maximum combinational delay for 16-bit 

processor and 32-bit processor is 13.981 ns and 

7.028 ns 
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Sarah M. Al-sudany et 

al., 2021 

• Studied for multicore RISC processor 

implemented on FPGA 

• MIPS was developed using Xilinx ISE 14.7 

design suite and were implemented 

successfully on Xilinx Virtex-6 

XC6VLX240T-1FFG1156 FPGA 

• 32-bit MIPS processor was designed using 

VHDL with 3 main structures: 32-bit data path, 

control unit and hazard unit 

• Total power analysis of multicore MIPS 

processor is 3.422 watt, and the operating 

frequency is 136.444 MHz 
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Chapter 3: Methodology 

3.1  Background Theories 

3.1.1  Instruction Set Architecture 

Instruction Set Architecture (ISA) is a term that refers to the set of instructions that 

a computer processor can execute. It is a fundamental aspect of computer 

architecture that determines the capabilities and limitations of a processor. 

An ISA is composed of a set of instructions that define the operations that a 

processor can perform, as well as the format and meaning of each instruction. Each 

instruction typically includes an opcode, which specifies the operation to be 

performed, and one of more operands, which specify the data on which the 

operation is to be performed. Figure xxx shows the example of opcode and operand 

for a MOV instruction. 

 

Figure 3.1 Opcode and Operand of a MOV instruction 

From Figure 3.1, the opcode is the MOV instruction. The other parts are called the 

operands. Operands are manipulated by the opcode. In this example, the operands 

are the register named AL and the value 34 hex. 

ISAs can be classified into 2 main categories: Reduces Instruction Set Computing 

(RISC) and Complex Instruction Set Computing (CISC). RISC ISAs have a smaller 
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set of simple instructions that can be executed quickly, whereas CISC ISAs have a 

larger set of more complex instructions that can perform multiple operations in a 

single instruction. The RISC approach is generally favored in modern processors 

because it allows for faster execution times and simpler processor designs. However, 

CISC architectures are still used in certain specialized applications where the 

additional complexity is justified by the increased functionality. 

One example of a CISC ISA is the x86 architecture, which is used in many personal 

computers and servers. The x86 ISA includes a large set of instructions which are 

quite complex and can perform multiple operations in a single instruction. For 

example, MOV instruction from CISC ISA can transfer data between two memory 

locations or between a register and a memory location in a single instruction. 

Besides, the x86 ISA also includes a variety of specialized instructions for 

performing common tasks such as string manipulation, input/output operations, and 

floating-point arithmetic. x86 ISA is known for its complexity and backward 

compatibility. However, this complexity can make it difficult to optimize for 

performance or energy efficiency. Hence, it is more challenging to write software 

that runs efficiently on different processor with different implementations of the 

ISA. 

One example of a RISC ISA is the ARM architecture, which is used in a wide range 

of device including smartphones, tables, and embedded systems. The ARM ISA 

includes a relatively small set of simple instructions which can be executed faster. 

For example, the MOV instruction from RISC ISA only copies data from one 

register to another. Besides, ARM ISA also includes a variety of specialized 
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instruction such as loading and storing multiple registers at once, performing 

conditional instructions, and performing arithmetic operations on multiple data 

types. The ARM ISA is known for its simplicity and energy efficiency. The 

simplicity of the ISA also makes it easier to optimize for performance and make it 

easier to write software on different processors with different implementations of 

the ISA. 

3.1.2 5-Stage pipeline 

With traditional single cycle data path, instructions are executed in a single clock 

cycle. The next instruction will need to wait for the previous instruction to be 

complete before it can be executed. Moreover, the execution time for each 

instruction is different. There are instructions that takes longer time to execute than 

the other. This might lead to wasted clock cycle and reduced performance of the 

processor. However, this issue can be solved by using pipelining.  

Pipelining is a technique used in computer architecture to increase the overall 

performance of a processor. It involves breaking down the execution of a task into 

smaller stages and allowing these stages to overlap in time. With this, multiple 

instructions can be executed simultaneously and improve the throughput of the 

system.  

The most common used pipeline technique in modern processor design is 5-Stage 

pipeline technique. As suggested by its name, the instruction execution cycle was 

divided into 5 different stages. Each stage performs a specific operation on the input 

data and passes the result to the next stage. The output of the first stage become the 
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input of the second stage, and so on. Besides, every stage operates on a different 

part of the data, which allow multiple instructions to be in different stages of 

execution at the same time. The 5 stages of a typical pipeline are: fetch, decode, 

execute, memory, and writeback. The details for each stage were discussed below. 

1. Fetch 

In this stage, the processor fetches the instruction from memory. Then, the 

instruction is loaded into the instruction cache, which is used to store the 

recently used instructions. 

2. Decode 

In this stage, the processor decodes the fetched instruction to determine the 

operation it needs to perform. The instruction is analyzed to determine the 

type of operation, registers, and the locations of any operands. 

3. Execute 

In this stage, the processor performs actual operation specified by the 

instruction. This involves arithmetic or logical operations, such as addition 

and subtraction. Besides, it also involves memory access or branching to a 

different part of the program. 

4. Memory 

In this stage, the processor access memory to read or write the data obtained 

from previous stage. However, this stage is optional. Some instruction such 

as “add” does not involve memory access.  

5. Writeback 
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In this stage, the results of the operation are written back to the appropriate 

register in the register file.  

Figure 3.2 illustrates the overview of 5 stage pipeline. 

 

Figure 3.2: 5 Stage pipeline 

 

3.1.3 ModelSim 

ModelSim is a popular simulation and verification tool for digital circuits and 

system. It is widely used by engineers and designers in the electronics industry to 

validate and debug their designs before they are implemented in hardware.  

ModelSim provides a powerful set of features for designing, simulating, and 

verifying digital circuits and system. For simulation, ModelSim supports both 

Verilog and VHDL languages. It can simulate all levels of abstraction, from the gate 

level to the behavioral level. For verification, ModelSim supports functional and 
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timing simulation, as well as assertion-based verification. It can also be integrated 

with other verification tools like Questa and UVM for more comprehensive 

verification. For design, ModelSim supports the creation of design hierarchy, which 

allows designers to organize their designs into logical blocks. Besides, it also 

provides design checking features like linting and syntax checking.  

There are several benefits of using ModelSim. First and foremost, ModelSim helps 

to improve design quality. It helps to identify and fix design errors early in the 

design cycle, which improves the quality of the final product. Next, ModelSim 

reduces the need for expensive hardware prototyping by providing a virtual 

environment for design validation and verification. This help to reduce the cost 

needed in design. Furthermore, ModelSim also supports industry-standard 

languages and interface, which promotes standardization and interoperability in the 

electronic industry. 

In the project, ModelSim will be the main software used to design and simulation 

the RISC-V processor. Various module such as instruction memory, adder, register, 

data memory, alu and alu control will be coded in ModelSim using Verilog. The 

functionality for each element will also be tested and verified by simulation using 

ModelSim. Finally, each element will be integrated in a main module to form the 

top design of a 32-bit 5-stage pipeline RISC-V processor. 
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Figure 3.3 shows the flow chart of the project. 
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Figure 3.3: Flow chard of the project 
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3.2 Implementation of Design 

 

The processor consists of alu, aludec, maindec, imem, dmem, IF_ID, ID_IEx, 

IEx_IMem, Imem_IW, pc_mux, reg_file, forwardMuxA, and forwardMuxB. Each 

component of the datapath will be discussed in this section. 

3.2.1 Arithmetic Logic Unit (alu) 

 

Arithmetic Logic Unit (alu) is a fundamental component of a CPU. It is responsible 

for performing arithmetic and logical operations on binary data. It reads the data 

from pipeline register ID_IEx as an input and perform various arithmetic operation 

based on the signals from aludec. The output is stored as ALUResults. In this RISC-

V processor design, 9 instructions are implemented in the ALU. The 

implementation of alu in Verilog is shown in Figure 3.4.  
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Figure 3.4: Implementation of alu in Verilog code 

 

Table 3.1 shows the base integer instructions for RV321. 

Table 3.1: Base Integer Instructions for RV321 

Category Mnemonic Description 

Arithmetic   

ADD rd, rs1, rs2 rd  rs1 + rs2 

SUB rd, rs1, rs2 rd  rs1 - rs2 

Logical   

XOR rd, rs1, rs2 rd  rs1 ^ rs2 

AND rd, rs1, rs2 rd  rs1 & rs2 

OR rd, rs1, rs2 rd  rs1 | rs2 

Shifts   

SHL rd, rs1, rs2 rd  rs1 << rs2 

SHR rd, rs1, rs2 rd  rs1 >> rs2 

Compare   

SLT rd, rs1, rs2 rd  rs1 < rs2 ? 1 : 0 

SLTU rd, rs1, rs2 rd  rs1 < rs2 ? 1 : 0 

 

3.2.2 ALU Decoder (aludec) 

 

Arithmetic Logic Unit Decoder (aludec) is used to decode the instructions. It 

received the signal from the Main Decoder Unit (maindec) and determine the type 

of operation that had to be performed by the alu. It combined all 4 inputs from 

ALUOp, funct3, funct7b5 and opb5 to decode the instruction. funct7b5 is referring 

to instruction[31:25], funct3 is referring instruction[14:12], whereas opb5 is 
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referring to instruction[0:6] in RISC-V instruction format. RTypeSub is obtained 

by performing AND operation on funct7b5 and opb5. This is used to differentiate 

the R-type ADD and SUB instruction. The implementation of aludec is shown in 

Figure 4.12. 

 

 

Figure 3.5: Implementation of aludec in Verilog code 
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The aludec output corresponds to the case selected as shown in Table 3.2.  

Table 3.2: ALU decoder output 

ALUOp RTypeSub funct3 Alu 

decode 

Operation 

2’b10 0 3’b000 4’b0000 AND 

2’b10 1 3’b000 4’b0001 SUB 

2’b10 0 3’b111 4’b0010 AND 

2’b10 0 3’b110 4’b0011 OR 

2’b10 0 3’b001 4’b0100 SLLI 

2’b10 0 3’b011 4’b0101 SLTI 

2’b10 0 3’b100 4’b0110 XOR 

2’b10 0 3’b101 4’b0111 SHR 

2’b10 0 3’b101 4’b1000 SLTU 

2’b10 0 3’b101 4’b1111 SHL 
 

3.2.3 Main Decoder (maindec)  

 

Main Decoder (maindec) is used to generate the control signals from the 7 bits 

opcode (instruction[6:0]) to determine the types of instruction. The control signals 

are RegWrite, ImmSrc, ALUSrcA, ALUSrcB, MemWrite, ResultSrc, Branch, ALUOp, 

and Jump. Each of these control signals control the multiplexer for making 

decisions in the datapath to allow the data flow accordingly to the instructions. The 

implementation of maindec is shown in Figure 3.6. 
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Figure 3.6: Implementation of maindec in Verilog code 

 

The on and off for these signals are based on the types of instructions tabulated in 

Table 3.3. 

Table 3.3: Main Decoder control signal and types of instructions 

Control 

Signal 

Instruction 

lw sw R-Type B-Type I-Type jal 

RegWrite 1 0 1 0 1 1 

ImmSrc 000 001 xxx 010 000 011 

ALUSrcA 0 0 0 0 0 0 

ALUSrcB 01 01 00 00 01 00 

MemWrite 0 1 0 0 00 0 

ResultSrc 01 00 00 00 000 10 

Branch 0 0 0 1 0 0 

ALUOp 00 00 10 01 10 00 

Jump 0 0 0 0 0 1 

 

3.2.4 Data Memory (dmem)  

 

In computer architecture, data memory is a component of a computer system that 

is responsible for storing and retrieving data. Data memory is typically used to store 
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data that is actively being processed by alu. Usually there are 3 inputs in this module, 

which are write_enable, data_address, and write_data. The module takes the 

memory address from the results of alu (data_address) and data from register file 

(write_data). Write enable (write_enable) is used to control the write permission of 

the data to the data memory. The implementation of dmem in Verilog code is shown 

in Figure 3.7. 

 

 

Figure 3.7: Implementation of dmem in Verilog code 

 

3.2.5 Instruction Memory (imem) 

 

In computer architecture, instruction memory is a component of a computer system 

that stores the instruction of a program. It is responsible for holding the sequence 

of instruction that the CPU fetches, decodes, and executes during the program 

execution. In this module, 32-bit instruction set is generated and stored in the ram 

array. The instruction to be fetch is based on the program counter fetch (PCF) input. 

As each instruction is 4 bytes, the value of PCF will be incremented by 4 to fetch 



26 
 

the next instruction. The implementation of imem in Verilog code is shown in Figure 

3.8. 
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Figure 3.8: Implementation of imem in Verilog code 

 

3.2.6 Pipeline Register 

 

In computer architecture, pipeline register is a temporary storage element used un 

a processor’s pipeline to hold data between different stages of instruction execution 

process. It serves as a synchronization point between adjacent stages, allowing 

instruction to flow through the pipeline in a controlled manner. In 5 stages pipeline, 

there are 4 pipeline registers namely IF_ID, ID_IEx, IEx_IMem, and IMem_IW. 

The registers are named for the two stages separated by that register. For example, 

the first pipeline register is IF_ID because it separates the instruction fetch and 

instruction decode stages. 

3.2.6.1  IF_ID 
 

IF_ID register as it names called, it separates the instruction fetch and 

instruction decode stages. It used to store data such as instruction fetch 

from instruction memory and ready to be released to decode stage on the 

next clock cycle. Besides, the current PC and next incremented PC 
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address (PCPlus4F) is also saved in the IF_ID register in case it needed 

later for an instruction, such as beq. The implementation of IF_ ID register 

in Verilog code is shown in Figure 3.9. 

 

Figure 3.9: Implementation of IF/ID register in Verilog code 

 

3.2.6.2  ID_IEx 
 

ID_IEx register as it names called, it separates the instruction decode and 

execute stages. It used to store information such as read data (RD1, RD2) 

from the register file and extended immediate value (ImmExt). Besides, it 

carries forward the data of PC and PCPlus4F from IF_ID register. 

Instruction[11:7] (rd), Instruction[19:15] (rs1), and Instruction[24:20] (rs2) 

will also be stored to ID_IEx register and send to Hazard Unit in execute 
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stage for hazard handling. The implementation if ID_IEx in Verilog code is 

shown in Figure 3.10. 

 

  

Figure 3.10: Implementation of ID/IEx in Verilog code 
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3.2.6.3  IEx_IMem 
 

IEx_IMem register as it names called, it separates the execute and memory 

stages. It is used to store the ALU results (ALUResult) and write data 

(Writedata). At the same time, Instruction[11:7] (rd) and PCPlus4F are also 

carried forward from previous pipeline registers and stored in IEx_IMem 

register. The implementation of IEx_IMem in Verilog code is shown in 

Figure 3.11. 

 

Figure 3.11: Implementation of IEx/IMem register in Verilog code 
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3.2.6.4  IMem_IW 
 

IMem_IW register as it names called, it separates the memory and writeback 

stages. It used to store ALU results (ALUResult) and read data (ReadData) 

from data memory. Instruction[11:7] (rd) and PCPlus4F are also carried 

forward from previous pipeline registers and store in IMem_IW register. The 

implementation of IMem_IW in Verilog code is shown in Figure 3.12. 

 

Figure 3.12: Implementation of IMem/IW register in Verilog code 

 

3.2.7 Write Data Selection MUX (result_mux) 

 

The ALU has the capability to carry out arithmetic operations like addition (A+B) 

or logical operation like equality comparison (A=B). Depending on the specific 
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instructions being executed, the output of the ALU could be either a memory 

address or the result obtained from the ALU operation. To handle this situation, a 

MUX is needed to make decision between selecting the data address or the ALU 

output value for writing back to the register file. The MUX acts as a switch that 

selects one of the two inputs based on ResultSrc control signal. This allows 

flexibility and efficient data handling in the processor’s pipeline. The 

implementation of result_mux in Verilog code is shown in Figure 3.13. 

 

 

Figure 3.13: Implementation of result_mux in Verilog code 

 

The corresponding output of result_mux is tabulated in Table 3.4 below. 

Table 3.4: Write Data Selection MUX output table 

ResultSrc output 

00 ALUResultW 

01 ReadDataW 

10 PCPlusW 

 

3.2.8 Program Counter Selection MUX (pc_mux) 

 

The Program Counter (PC) is a vital component used by the CPU to maintain the 

current instruction being executed. Under normal circumstances, the program 

counter increments by a fixed value, typically 4 (corresponding to a 32-bit 

instruction) for each clock cycle. This ensures that the program counter always 



34 
 

points to the memory address of the next instruction to be executed. However, the 

program counter can be interrupted or modified by a jump signal (jump) from the 

control unit. When the predetermined conditions are met, the control unit instructs 

the program counter to deviate from its regular incrementation and instead updated 

its value to the jump address. Therefore, pc_mux is used to select the incremented 

instruction address (PCPlus4F) or the jump address (JumpTargetE). The pc_mux is 

controlled by the PCSrcE signal. If PCSrcE signal is high, pc_mux will 

JumpTargetE on next clock cycle, else PCPlus4F will be selected. The 

implementation of pc_mux in Verilog code is shown in Figure 3.14. 

 

 

Figure 3.14: Implementation of pc_mux in Verilog code 

 

The corresponding output of pc_mux is tabulated in Table 3.5 below. 

Table 3.5: Program Counter Selection MUX output table 

PCSrcE Output 

0 PCPlus4F 

1 JumpTargetE 

 

3.2.9 Register File (regfile) 

 

The register file (regfile) in a CPU plays a critical role in storing and manipulating 

data during program execution. It serves as a high-speed storage component that 

holds a set of registers, each capable of storing a fixed width if data. Usually it has 
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4 inputs namely, RegWrite, Instruction[19:15], Instruction[24:20], and WriteData. 

RegWrite control signal is used to control the write operation on the regfile. When 

RegWrite is high, the data from WriteData will be written into the regfile. Then, 

Instruction[19:15] and Instruction[24:20] served as an input from the pipeline 

register (IF/ID) and output to pipeline register (ID/IEx) for the ALU in execute 

stage. The implementation of regfile in Verilog code is shown in Figure 3.15. 

 

 

Figure 3.15: Implementation of regfile in Verilog code 

 

3.2.10 Hazard Unit (hazardunit) 

 

The Hazard Unit is a component in a CPU’s architecture that is responsible for 

detecting and handling hazards that can occur during the execution of instructions. 

Hazards refer to situations where the sequential execution of instructions may lead 

to incorrect or unintended behavior due to dependencies or conflicts between 

instructions. The hazard unit detects these hazards and takes appropriate actions to 
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mitigate their effects. With this, the dependencies of write data begins from a 

pipeline register, rather than waiting for the WB stage to write the register file. Thus, 

the required data exists in time for later instructions, with the pipeline registers 

holding the data to be forwarded.  

There are 2 solutions to handle hazards namely forwarding and stalling. 

3.2.10.1  Forwarding  
 

Forward is a technique used by hazard unit to handle data dependencies 

between instruction and mitigate hazards. It allows the CPU to forward data 

from the producer instruction to the consumer instruction, bypassing 

intermediate pipeline stages and avoid the need for stalls or bubbles. 

There are 2 pairs of hazards conditions. 

 1 (a) EX/MEM.RegisterRd = ID/EX.RegisterRs 

    (b). EX/MEM.RegisterRd = ID/EX.RegisterRt 

 2 (a). MEM/WB.RegisterRd = ID/EX.RegisterRs 

    (b). MEM/WB.RegisterRd = ID/EX.RegisterRt 

These hazard conditions can be handled by 2 forwarding control signals 

namely ForwardA and ForwardB. ForwardA is used to control 

forwardMuxA and ForwardB is used to control forwardMuxB. 

3.2.10.1.1  Forward Multiplexer A (forwardMuxA) 
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Forward Multiplexer A takes the input of RD1, ALUResultsM, and ResultW. 

RD1 is referred as register value. ALUResultsM is referred to the alu result 

in memory stage whereas ResultW is referred to the results in writeback 

stage. Both ALUResultsM and ResultW are forwarded values. ForwardA 

control signal is used to select either the register file value or the forwarded 

values. The implementation of forwardMuxA in Verilog code is shown in 

Figure 3.16. 

 

Figure 3.16: Implementation of forwardMuxA in Verilog code 

 

The corresponding output of forwardMuxA is tabulated in Table 3.6. 

Table 3.6: Forward Multiplexer A output table 

ForwardA Output 

00 RD1 

01 ResultW 

10 ALUResultsM 

 

3.2.10.1.2  Forward Multiplexer B (forwardMuxB) 

 

Forward Multiplexer B takes the input of RD2, ALUResultsM, and ResultW. 

RD2 is referred as register value. ALUResultsM is referred to the alu result 

in memory stage whereas ResultW is referred to the results in writeback 

stage. Both ALUResultsM and ResultW are forwarded values. ForwardB 
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control signal is used to select either the register file value or the forwarded 

values. The implementation of forwardMuxB in Verilog code is shown in 

Figure 3.17. 

 

Figure 3.17: Implementation of forwardMuxB in Verilog code 

 

The corresponding output of forwardMuxB is tabulated in Table 3.7. 

Table 3.7: Forward Multiplexer B output table 

ForwardB Output 

00 RD2 

01 ResultW 

10 ALUResultsM 

 

Below shows the conditions for detecting hazards and resolve them using 

forwarding control signals: 

1. EX hazard 

a. if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and 

(EX/MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA = 10 

 

b. if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and 

(EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10 
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2. EX hazard 

a. if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) and 

(MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01 

 

b. if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) and 

(MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01 

3.2.10.2  Stalling  
 

Stalling is used when an instruction tries to read a register following a load 

instruction that writes the same register. The example of the instruction 

order is showed in Figure 3.18 below. 

lw $2, 20($1) 

and $4, $2, $5 

 

Figure 3.18: Instruction sequence of Stalling condition 

 

In this case, the and instruction will not get the updated value from lw 

because the data of the lw instruction is still being read from memory while 

the ALU is performing the operation for the and instruction. Therefore, the 

pipeline must be stalled for the combination of load following by an 

instruction that read its result. 

Below shows the conditions for detecting hazards and resolve them using 

stalling: 
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if (ID/EX.MemRead and ((ID/EX.RegisterRt = IF/ID.RegisterRs) 

or (ID/EX.RegisterRt = IF/ID.RegisterRt))) stall the pipeline 
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Chapter 4: Results and Discussion 

4.1  Overview 

In this chapter, each module that were discussed on previous chapter were 

simulated by using ModelSim software. Waveforms were generated from the 

simulations and the results were analyzed and discussed. Besides, the results were 

used to verify the functionality for each module of the design.  

In the simulation, the functionality for each module were tested by running a set of 

test sequence with different instructions. The test sequence was shown in Figure 

4.1 below. Furthermore, the clock cycle used throughout the simulation is set to 

100ps. 

main   

  addi x2 , x0,   5 

  addi x3 , x0,   12 

  addi x7 , x3,  -9   

  or x4 , x7 , x2 

  xor x5 , x3 , x4 

  add x5 , x5 , x4 

  beq x5 , x7 , end 

  slt x4 , x3 , x4 

  beq x4 , x0 , around 

  addi x5 , x0 , 0 

    

around   

  slt x4 , x7 , x2 

  add x7 , x4 , x5 

  sub x7 , x7 , x2 

  sw x7 , 84(x3) 

  lw x2 , 96(x0) 

  add x9 , x2 , x5 

  jal x3 , end 

  addi x2 , x0 , 1 
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end   

  add x2 , x2 , x9 

  addi x4 , x0 , 1 

  lui x5 , 0x80000 

  slt x6 , x5 , x4 

    

wrong   

  beq x6 , x0 , wrong 

  lui x9 , 0xABCDE 

  add x2 , x2 , x9 

  sw x2 , 0x40(x3) 

    

done   

  beq x2 , x2 , done 

 

Figure 4.19: Simulation test sequence 

 

From Figure 4.1, the test sequence consists of a main code with label main, 4 

branches with label around, end, and wrong, and end with a done label. In the main 

label, it consists of some arithmetic and logical instruction such as add, or, and xor. 

With these instructions, alu, data memory, instruction memory, register file, and 

control unit module can be tested. Besides, the test was also designed to hit hazard 

conditions to test the hazard unit of the design. In the branches label, sw and lw 

instructions were executed to test the load/store operation of the design. Moreover, 

branching instruction such as jal and beq were also executed to test the jump or 

branch condition of the design. Other module such as pipeline register, program 

counter and write data selection mux were also tested and verified along with the 

simulation. 
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4.2  Simulation and Analysis of Waveforms 

4.2.1 Program Counter Selection MUX (pc_mux) Waveform Analysis 

 

The pc_mux are used to select PCPlus4 or JumpTarget based on PCSrcE inputs. 

PCPlus4 is the PC increment by 4 for each instruction cycle while JumpTarget is a 

specific point to call when conditions are met. When PCSrcE is high, pc_mux will 

select JumpTarget as an output, else PCPlus4 is selected.  

A part simulation waveform for pc_mux is captured and shown in Figure 4.2. The 

functionality of the module is verified by comparing the inputs and outputs 

waveforms as shown in Table 4.1 below. 

 

Figure 4.2: Simulation waveform of pc_mux 

 

From Figure 4.2, input d0, d1, and s are represented as PCPlus4, JumpTarget, and 

PCSrcE respectively and output y is represented as PC. 

Table 4.1: Simulation output of pc_mux 

Inputs (hex) Output (hex) 

PCSrcE PCPlus4 JumpTarget PC 

1 0000002c 00000028 00000028 

0 0000002c 00000000 0000002c 

0 00000030 00000000 00000030 
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From Table 4.1, the output is JumpTarget when PCSrcE is 1 whereas the output is 

PCPlus4 when PCSrcE is 0. The outputs are expected. Therefore, the functionality 

of PC selection MUX is verified. 

4.2.2 Instruction Memory (imem) Waveform Analysis 

 

The instruction memory module is used to setup all the instruction flow of the test. 

From the simulation, there is a program counter fetch (PCF) input determines 

which instruction to fetch. Since each instruction had 4 bytes, the PCF value will 

increase by 4 to get the following instruction.  

A part simulation waveform for imem is captured and shown in Figure 4.3. The 

functionality of the module is verified by viewing the changes of PCF value and 

the corresponding fetched instruction. The relationship of PCF and fetched 

instruction were tabulated in Table 4.2 below.  

 

Figure 4.20: Simulation waveform of imem 

 

From Figure 4.3, input a is represented as PCF and output rd is represented as 

fetched instruction. It is noticed that for every clock cycle, the value of a is added 

by 4. Besides, each value of a is tagged with a different instruction rd. 
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Table 4.2: Relationship of PCF and fetched instruction 

PCF, a (hex) Fetched instruction, rd (hex) 

0 0x00500113 

4 0x00C00193 

8 0xFF718393 

C 0x0023E233 

10 0x0041C2B3 

14 0x004282B3 

18 0x02728863 

1C 0x0041A233 

20 0x00020463 

24 0x00000293 

28 0x0023A233 

2C 0x005203B3 

30 0x402383B3 

34 0x0471AA23 

38 0x06002103 

3C 0x005104B3 

40 0x008001EF 

44 0x00100113 

48 0x00910133 

4C 0x00100213 

50 0x800002B7 

54 0x0042A333 

58 0x00030063 

5C 0xABCDE4B7 

60 0x00910133 

64 0x0421A023 

68 0x00210063 

 

4.2.3 Data Memory (dmem) Waveform Analysis 

 

The data memory (dmem) is used to store data in the datapath. The data is written 

to the module if write enable bit (MemWrite) is set. Else, the data is read from the 

data address (a) from the alu output through IEx/IMem pipeline register.  
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A part simulation waveform for dmem is captured and shown in Figure 4.4. 

 

Figure 4.21: Simulation waveform of dmem 

 

From Figure 4.4, rd represent the instruction. The focus of the simulation for dmem 

module is sw instruction because it is the only instruction that have MemWrite set 

to 1. Instruction 0x0471aa23 is an example of sw instruction. It is notice that after 

3 cycles after sw instruction is fetched, the data reached memory stage. In memory 

stage, it read the MemWrite from the control unit. If the value is set, the writedata 

(wd) is written to data memory and output the value (rd) on the next cycle. 

Therefore, the functionality of dmem is verified. 

4.2.4 Register File (regfile) Waveform Analysis 

 

The register file (regfile) serves as a temporary memory to store data. From the 

simulation, the inputs for the regfile include read address (a1 and a2), the write 

address of register (a3), the data to be written into the register (wd3), the data read 

from the register at the outputs (rd1 and rd2), and the control signal (we3) to enable 

write data into the register.  

A part simulation waveform for regfile is captured and shown in Figure 4.5.  
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Figure 4.22: Simulation waveform of regfile 

 

From Figure 4.5, it is noticed that a1 and a2 holds the addresses of rs1 and rs2. 

Besides, then we3 is high, the data (wd3) is written into the addressed holds by a3. 

Furthermore, rd1 and rd2 output the value from the addresses holds by a1 and a2 

respectively. Therefore, the functionality of regfile module is verified. 

4.2.5 Arithmetic Logic Unit (alu) Waveform Analysis 

 

The alu is an essential component of a CPU that handles arithmetic and logical 

operations on binary data. It receives input data from the ID_IEx stage (SrcA and 

SrcB) and perform various arithmetic operations based on signals from the ALU 

decoder (ALUControl). The output is stored as ALUResults.  

A part simulation waveform for alu is captured and shown in Figure 4.6.  

 

Figure 4.23: Simulation waveform of alu 
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From Figure 4.6, instruction OR, XOR, ADD, BEQ, and SLT is simulated. With 

different ALUControl, the alu operates different operations. For example, with 

ALUControl = 0011, alu will perform OR operation. The inputs from SrcA and 

SrcB are 0x0001 and 0x0005 respectively. The result of the operation is 0x0007 

and stored in ALUResults. Therefore, the functionality of alu module is verified. 

The analysis of the simulated alu waveform is tabulated in Table 4.3 below. 

Table 4.3: Simulation output of alu 

Operation 
Input (hex) Output (hex) 

SrcA SrcB ALUControl ALUResults 

OR 00000003 00000005 0011 00000007 

XOR 0000000c 00000007 0010 0000000b 

ADD 0000000b 00000007 0000 00000012 

BEQ 00000012 00000003 0001 0000000f 

SLT 0000000c 00000007 0101 00000000 

 

4.2.6 Arithmetic Logic Unit Decoder (aludec) Waveform Analysis 

 

The aludec decodes the instructions (funct3, funct7b5 and opb5) and ALUOp from 

the control unit to determine the types of operation that has to be performed by the 

alu.  

A part simulation waveform for aludec is captured and shown in Figure 4.7.  

 

Figure 4.24: Simulation waveform of aludec 
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From Figure 4.7, rd represent the instruction. opb5, func3 and func7b5 are extracted 

from rd. Besides, ALUOp is extracted from the control unit (maindec). With these 

extracted inputs, aludec returns the appropriate ALUControl as output to determine 

the operation. Therefore, the functionality of aludec is verified. The analysis of the 

simulated aludec waveform is tabulated in Table 4.4 below. 

Table 4.4: Simulation output of aludec 

Operation 
Input  output 

rd (hex) opb5 funct7b5 funct3 ALUOp ALUControl 

ADD 004282B3 0 1 000 10 0000 

OR 0023E233 1 0 110 10 0011 

XOR 0041C2B3 1 0 100 10 0110 

BEQ 02728863 1 1 000 01 0001 

SLT 0041A233 1 0 010 10 0101 

 

4.2.7 Main decoder (maindec) Waveform Analysis 

 

The maindec is used to generate control signals based on the 7 bits opcode 

(instruction[6:0]) of an instruction. Its purpose is to interpret the opcode and 

determine the type of instruction being executed.  

A part simulation waveform for maindec is captured and shown in Figure 4.8.  

 

Figure 4.25: Simulation output of maindec 
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From Figure 4.8, 2 types of opcode simulation are shown – 0x0110011 and 

0x1100011. 0x0110011 is categorized as R-type instruction. Therefore, the 

corresponding control signal are RegWrite = 1, ImmSrc = xxx, ALUSrcA = 0, 

ALUSrcB = 00, MemWrite= 0, ResultSrc = 00, Branch = 0, ALUOp = 10, and Jump 

= 0. Besides, 0x1100011 is categorized as B-type instruction. Therefore, the 

corresponding control signals are RegWrite = 0, ImmSrc = 010, ALUSrcA = 0, 

ALUSrcB = 00, MemWrite= 0, ResultSrc = 00, Branch = 1, ALUOp = 01, and Jump 

= 0. Other types of instructions such as lw, sw, I-type, and jal are verified through 

the simulation and tabulated in Table 4.5. Therefore, the functionality of maindec 

is verified. 

Table 4.5: Simulation output of maindec 

Control 

Signal 

Instruction 

lw sw R-Type B-Type I-Type jal 

Opcode[6:0] 0000011 0100011 0110011 1100011 0010011 1101111 

RegWrite 1 0 1 0 1 1 

ImmSrc 000 001 xxx 010 000 011 

ALUSrcA 0 0 0 0 0 0 

ALUSrcB 01 01 00 00 01 00 

MemWrite 0 1 0 0 00 0 

ResultSrc 01 00 00 00 000 10 

Branch 0 0 0 1 0 0 

ALUOp 00 00 10 01 10 00 

Jump 0 0 0 0 0 1 

 

4.2.8 Write Date Selection MUX (result_mux) Waveform Analysis 

 

The result_mux is used to select ALUResults from ALU, ReadData from data 

memory, and PCPlus from program counter based on ResultSrc inputs. ALUResults 

is the address for the output from the ALU while ReadData is the data read from 

data memory. PCPlus is the PC increment by 4 for each instruction cycle. When 
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bit 1 of ResultSrc is high, result_mux will select PCPlus as an output, else if bit 0 

of ResultSrc is high, result_mux will select ReadData. Else, ALUResult will be 

selected.  

A part simulation waveform for result_mux is captured and shown in Figure 4.9. 

The functionality of the module is verified by comparing the inputs and outputs 

waveforms as shown in Table 4.6 below. 

 

Figure 4.26: Simulation output of result_mux 

 

From Figure 4.9, input d0, d1, d2 and s are represented as ALUResults, DataRead, 

PCPlus, and ResultSrc respectively and output y is represented as Result. 

Table 4.6: Simulation output of result_mux 

Inputs  Output  

ResultSrc 

(bin) 

ALUResults 

(hex) 

DataRead 

(hex) 

PCPlus  

(hex) 

Result 

(hex) 

01 00000060 0000000e 0000003c 0000000e 

00 00000000 x 00000000 00000000 

00 00000020 x 00000040 00000020 

10 x x 00000044 00000044 

 

From Table 4.6, the output is PCPlus if ResultSrc is 2b’10. Besides, the output is 

DataRead if ResultSrc is 2b’01. Moreover, the output is PCPlus if ResultSrc is 
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2b’00. The outputs are expected. Therefore, the functionality of result_mux is 

verified. 

4.2.9 Pipeline Register 

 

The pipeline register is used to store information from previous stage and load them 

to next stage. This ensures data can be carried forward correctly and allow 

instructions to be executed through the pipeline.  

4.2.9.1  IF_ID 
 

IF_ ID register located in between fetch stage and decode stage. It helps to 

store instructions (Instr), program counter (PC) and next cycle program 

counter (PCPlus4) from the fetch stage and load them to decode stage on 

the next cycle.  

A part simulation waveform for IF_ID is captured and shown in Figure 4.10. 

 

Figure 4.27: Simulation waveform of IF/ID register 

 

From Figure 4.10, InstrF, PCF, and PCPlus4F represents the instruction, 

program counter and next cycle program counter in fetch stage respectively. 

Besides, InstrD, PCD, and PCPlus4D represents the instruction, program 

counter and next cycle program counter in decode stage respectively. It was 
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noticed that the value of instruction, program counter, and next cycle 

program counter from fetch stage is loaded to decode stage in the next clock 

cycle. Therefore, the functionality of pipeline IF_ID is verified. 

 4.2.9.2  ID_IEx 
 

ID_IEx register located in between decode stage and execute stage. It helps 

to store read data (RD1, RD2) from the register file, extended immediate 

value (ImmExt), Instruction[11:7] (rd), Instruction[19:15] (rs1), and 

Instruction[24:20] (rs2) from decode stage and load them to execute stage. 

Besides, PC and PCPlus4F from IF_ID register were also carried forward 

and stored to ID_IEx.  

A part simulation waveform for ID_IEx is captured and shown in Figure 

4.11. 

 

Figure 4.28: Simulation waveform of ID/IEx register 

 

From Figure 4.11, RD1D, RD2D, PCD, Rs1D, Rs2D, RdD, ImmExtD, and 

PCPlusD are in decode stage whereas RD1E, RD2E, PCE, Rs1E, Rs2E, RdE, 
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ImmExtE, and PCPlusE are in execute stage. It was noticed that the values 

from decode stage are loaded to the respective registers in execute stage in 

the next clock cycle. Therefore, the functionality of ID_IEx is verified. 

4.2.9.3  IEx_IMem 
 

IEx_IMem register located in between execute stage and memory stage. It 

helps to store the ALU results (ALUResults) and write data (WriteData) 

from execute stage and load them in memory stage. At the same time, 

Instruction[11:7] (rd) and PCPlus4F is carried forward and stored to 

IEx_IMem.  

A part simulation waveform for IEx_IMem is captured and shown in Figure 

4.12. 

 

Figure 4.29: Simulation waveform of IEx/IMem register 

 

From Figure 4.12, ALUResultE, WriteDataE, RdE, and PCPlus4E are in 

execute stage whereas ALUResultM, WriteDataM, RdM, and PCPlus4M 

are in execute stage. It was noticed that the values from execute stage are 

loaded to the respective registers in memory stage in the next clock cycle. 

Therefore, the functionality of IEx_IMem is verified. 
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4.2.9.4  IMem_IW 
 

IMem_IW is located in between memory stage and writeback stage. It helps 

to store the ALU results (ALUResults) from the alu and read data (ReadData) 

from data memory. At the same time, Instruction[11:7] (rd) and PCPlus4F 

is carried forward and stored to IMem_IW.  

A part simulation waveform for IMem/IW is captured and shown in Figure 

4.13. 

 

Figure 4.30: Simulation waveform of IMem/IW register 

 

From Figure 4.13, ALUResultM, ReadDataM, RdM, and PCPlus4M are in 

memory stage whereas ALUResultW, ReadDataW, RdW, and PCPlus4W 

are in writeback stage. It was noticed that the values from memory stage are 

loaded to the respective registers in writeback stage in the next clock cycle. 

Therefore, the functionality of IMem_IW is verified. 

4.2.10 Hazard Unit (hazardunit) 

 

The hazard unit is used to detect situations where the sequential execution of 

instructions may lead to incorrect behaviour due to data dependencies from the 
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previous instruction. For example, Figure 4.14 shows 2 instructions executed 

sequentially. 

addi x7 , x3,  -9 

or x4 , x7 , x2 

 

Figure 4.314: Instruction sequence with hazard condition 

 

The first instruction was executed addi and store the output into x7 register. Then, 

the second instruction was executed or with the dependencies on first instruction 

because x7 register is an input for second instruction. In this case, the second 

instruction will get the wrong value of x7 if hazard unit is not existed. This is 

because, the first instruction will only update the x7 register in the writeback stage, 

which could not happen before the second instruction needs it. With hazard unit, 

the output of the first instruction can be forwarded from pipeline register. Therefore, 

the dependencies of write data can be mitigated rather than waiting for writeback 

stage to write the register.  

4.2.10.1  Forward Multiplexer A (forwardMuxA) 
 

Forward Multiplexer A (forwardMuxA) is used to selected between RD1, 

ALUResultsM, and ResultW based on forwardA control signal.  

A part of simulation of forwardMuxA is shown in Figure 4.15. The 

functionality of the module is verified by comparing the inputs and outputs 

waveforms as shown in Table 4.7 below. 
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Figure 4.32: Simulation waveform of forwardMuxA 

 

From Figure 4.15, input d0, d1, d2 and s are represented as RD1, ResultW, 

ALUResultsM, and forwardA respectively and output y is represented as 

Result. 

Table 4.7: Simulation output of fowrardMuxA 

Inputs  Output  

forwardA 

(bin) 

RD1 (hex) ResultW (hex) ALUResultsM  

(hex) 

Result 

(hex) 

00 0000000c 00000013 0000000e 0000000c 

01 00000005 0000000e 00000000 0000000e 

10 00000003 00000001 00000013 00000013 

 

From Table 4.7, the output is RD1 if forwardA is 2b’00. Besides, the output 

is ResultW if forwardA is 2b’01. Moreover, the output is ALUResultsM if 

forwardA is 2b’10. The outputs are expected. Therefore, the functionality of 

forwardMuxA is verified. 

Forward Multiplexer A is used to handle the following 2 conditions. 

1. EX/MEM.RegisterRd = ID/EX.RegisterRs 

2. MEM/WB.RegisterRd = ID/EX.RegisterRs 
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Conditions 1 happens when the destination register (rd) in IEx/IMem 

pipeline register is the same as the source register (rs) in ID/IEx pipeline 

register. The example of this condition is shown in Figure 4.16 below. 

addi x3 , x0,   12 

addi x7 , x3,  -9   

 

Figure 4.33: Instruction sequence with hazard condition 1 

 

From Figure 4.16, the 2 instructions are executed sequentially. The first 

instruction addi has a destination register (rd) of register x3. Then, the 

second instruction used the register x3 as source register (rs). As these 

instructions are executed sequentially, the first instruction is one stage ahead 

the second instruction. By the time the first instruction enters execute stage, 

the second instruction enter decode stage. This condition causes hazard 

because first instruction have not reach writeback stage to update the value 

in register x3 before second instruction uses it.  

Figure 4.17 shows the simulation of hazard condition 1. 

 

Figure 4.34: Simulation waveform of hazard condition 1 
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The simulation on Figure 4.17 is based on the instructions in Figure 4.16 

above. The first instruction is fetched in the first clock cycle whereas the 

second instruction is fetched in the second clock cycle. At the fourth clock 

cycle, the first instruction reached memory stage whereas the second 

instruction reached execute stage. Then, it was noticed that the value of 

destination register in memory stage (RdM) is equal to the value of source 

register in execute stage (Rs1E). Therefore, hazard condition 1 is detected. 

With hazard condition 1 being detected, forwardA output a control signal of 

2b’10 to forward the ALUResultM from the memory stage to be used by the 

second instruction. 

Condition 2 happens when destination register (rd) in IMem/IW pipeline 

register is the same as the source register (rs) in ID/IEx pipeline register. 

The example of this condition is shown in Figure 4.18 below. 

addi x7 , x3,  -9 

sub x4 , x5 , x2 

xor x1, x7, x6   

 

Figure 4.35: Instruction sequence with hazard condition 2 

 

From Figure 4.18, these 3 instructions are executed sequentially. The first 

instruction addi has a destination register (rd) of register x7, followed by 

the second instruction sub which had no dependencies on the first 

instruction. Then, the third instruction xor used register x7 as source register 

which created dependencies on the first instruction. As these instructions 
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are executed sequentially, the first instruction is 2 stages ahead on the third 

instruction. By the time the first instruction enters memory stage, the third 

instruction enters execute stage. This condition causes hazard because the 

first instruction have not reach writeback stage to update the value in 

register x7 before the third instruction uses it. 

Figure 4.19 shows the simulation of hazard condition 2. 

 

Figure 4.36: Waveform simulation of hazard condition 2 

 

The simulation on Figure 4.19 is based on the instructions in Figure 4.18 

above. The first instruction is fetched in the first clock cycle followed by 

the second instruction in the second clock cycle and the third instruction in 

the third clock cycle. At the fifth clock cycle, the first instruction reached 

writeback stage whereas the third instruction reached execute stage. Then, 

it was noticed that the value of destination register in writeback stage (RdW) 

is equal to the value of source register in execute stage (Rs1E). Therefore, 

hazard condition 2 is detected. With hazard condition 2 being detected, 

forwardA output a control signal of 2b’01 to forward the ResultW from the 

writeback stage to be used by the third instruction. 
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4.2.10.2  Forward Multiplexer B (forwardMuxB) 
 

Forward Multiplexer B (forwardMuxB) is used to selected between RD2, 

ALUResultsM, and ResultW based on forwardB control signal.  

A part of simulation of forwardMuxB is shown in Figure 4.20. The 

functionality of the module is verified by comparing the inputs and outputs 

waveforms as shown in Table 4.8 below. 

 

Figure 4.37: Simulation waveform of forwardMuxB 

 

From Figure 4.20, input d0, d1, d2 and s are represented as RD2, ResultW, 

ALUResultsM, and forwardB respectively and output y is represented as 

Result. 

Table 4.8: Simulation output of forwardMuxB 

Inputs  Output  

forwardB 

(bin) 

RD2 (hex) ResultW (hex) ALUResultsM  

(hex) 

Result 

(hex) 

00 00000000 80000000 00000001 00000000 

01 0000002e abcde02e 00000084 abcde02e 

10 00000020 00000001 abcde000 abcde000 

 

From Table 4.8, the output is RD2 if forwardB is 2b’00. Besides, the output 

is ResultW if forwardB is 2b’01. Moreover, the output is ALUResultsM if 
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forwardB is 2b’10. The outputs are expected. Therefore, the functionality 

of forwardMuxB is verified. 

Forward Multiplexer B is used to handle hazard condition 3 and 4 as shown 

below. 

3. EX/MEM.RegisterRd = ID/EX.RegisterRt 

4. MEM/WB.RegisterRd = ID/EX.RegisterRt 

Conditions 3 happens when the destination register (rd) in IEx/IMem 

pipeline register is the same as the target register (rt) in ID/IEx pipeline 

register. The example of this condition is shown in Figure 4.21 below. 

or x4 , x7 , x2 

xor x5 , x3 , x4 

 

Figure 4.38: Instruction sequence of hazard condition 3 

 

From Figure 4.21, the 2 instructions are executed sequentially. The first 

instruction or has a destination register (rd) of register x4. Then, the second 

instruction used the register x4 as target register (rt). As these instructions 

are executed sequentially, the first instruction is one stage ahead the second 

instruction. By the time the first instruction enters execute stage, the second 

instruction enter decode stage. This condition causes hazard because first 

instruction have not reach writeback stage to update the value in register x4 

before second instruction uses it.  

Figure 4.22 shows the simulation of hazard condition 3. 
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Figure 4.39: Simulation waveform of hazard condition 3 

 

The simulation on Figure 4.22 is based on the instructions in Figure 4.21 

above. The first instruction is fetched in the first clock cycle whereas the 

second instruction is fetched in the second clock cycle. At the fourth clock 

cycle, the first instruction reached memory stage whereas the second 

instruction reached execute stage. Then, it was noticed that the value of 

destination register in memory stage (RdM) is equal to the value of target 

register in execute stage (Rs2E). Therefore, hazard condition 3 is detected. 

With hazard condition 3 being detected, forwardB output a control signal of 

2b’10 to forward the ALUResultM from the memory stage to be used by the 

second instruction. 

Condition 4 happens when destination register (rd) in IMem/IW pipeline 

register is the same as the target register (rt) in ID/IEx pipeline register. The 

example of this condition is shown in Figure 4.23 below. 

or x4 , x7 , x2 

xor x6 , x3 , x5 
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add x5, x3, x4 

 

Figure 4.40: Instruction sequence of hazard condition 4 

 

From Figure 4.23, these 3 instructions are executed sequentially. The first 

instruction or has a destination register (rd) of register x4, followed by the 

second instruction xor which had no dependencies on the first instruction. 

Then, the third instruction add used register x4 as target register which 

created dependencies on the first instruction. As these instructions are 

executed sequentially, the first instruction is 2 stages ahead on the third 

instruction. By the time the first instruction enters memory stage, the third 

instruction enters execute stage. This condition causes hazard because the 

first instruction have not reach writeback stage to update the value in 

register x4 before the third instruction uses it. 

Figure 4.24 shows the simulation of hazard condition 4. 

 

Figure 4.41: Simulation waveform of hazard condition 4 
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The simulation on Figure 4.24 is based on the instructions in Figure 4.23 

above. The first instruction is fetched in the first clock cycle followed by 

the second instruction in the second clock cycle and the third instruction in 

the third clock cycle. At the fifth clock cycle, the first instruction reached 

writeback stage whereas the third instruction reached execute stage. Then, 

it was noticed that the value of destination register in writeback stage (RdW) 

is equal to the value of source register in execute stage (Rs2E). Therefore, 

hazard condition 4 is detected. With hazard condition 4 being detected, 

forwardB output a control signal of 2b’01 to forward the ResultW from the 

writeback stage to be used by the third instruction. 

Based on the simulation above, it was noticed that the hazard unit module was able 

to identify all the hazard conditions. Besides, forwardMuxA was used in hazard unit 

to mitigate the hazard condition 1 and hazard condition 2 by forwarding the 

information from destination register in the memory or writeback stage to the 

source register in the execute stage based on forwardA control signal. Furthermore, 

forwardMuxB was used in hazard unit to mitigate the hazard condition 3 and hazard 

condition 4 by forwarding the information from destination register in the memory 

or writeback stage to the target register in the execute stage based on forwardB 

control signal. Therefore, the functionality of the hazard unit module is verified. 

4.3  Integrating RISC-V processor  

The RISC-V processor is developed by integrating all the verified modules together. 

The integration had 3 main units which namely controller unit, hazard unit, and 

datapath unit. The controller unit helped to send out control signals based on 
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different instruction being executed. Besides, the hazard unit helped to detect 

hazard conditions during the execution and mitigated them. Moreover, the datapath 

unit helped to carry information throughout the 5 pipeline stages in the datapath.  

Figure 4.25 showed the Verilog code of the integrated control unit. 
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Figure 4.42: Implementation of control_unit in Verilog code 

 

Figure 4.26 showed the Verilog code of the integrated hazard unit. 

 

Figure 4.43: Implementation of hazard_unit in Verilog code 
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Figure 4.27 showed the Verilog code for the integrated datapath unit. 
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Figure 4.44: Implementation of datapath_unit in Verilog code 

 

These 3 main units are integrated into a main module to form a riscv_pip_27 

module. Figure 4.28 shows the Verilog code of the integrated riscv_pip_27 module. 

 

Figure 4.45: Implementation of riscv_pip_27 in Verilog code 

 

Then, the riscv_pip_27 module is integrated with the imem and dmem module to 

form the top design. The schematic of the top design is illustrated in Figure 4.29. 
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Figure 4.46: Schematic diagram of top design
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Figure 4.30 showed the Verilog code for top design. 

 

Figure 4.47: Implementation of top design in Verilog code 

 

4.4  Testbench simulation of the top design 

A simple testbench module is written to simulate the top design. The Verilog code 

for the testbench module is illustrated in Figure 4.31. 

 

 

Figure 4.48: Testbench for top design 
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The focus of the testbench is to check the ALU value for each clock cycle. In other 

words, it is also checking the value of the destination register (rd) for each 

instruction after they were executed. Form Figure xxx, the clock cycle for the 

testbench is set to 100 ps. $monitor function is used in the testbench to print the 

value of DataAdr when the value is changed. The value of DataAdr is obtained 

from IEx/IMem pipeline register. Besides, it also acted as an input to the dmem 

module. 

The simulation result of the testbench is shown in Figure 4.32. 

 

Figure 4.49: Simulation results of the testbench 

 

From Figure 4.32, the results shown is based on the test sequence in Figure 4.1. The 

first value shown is 0 because that is the initialized value for the ALU. Then, after 

the first instruction is executed (addi x2, x0, 5), the value of the ALU shown is 5. 

This is because, the output of this instruction is 5. Then, the second instruction (addi 

x3, x0, 12) has an output of value 12 and stored in the destination register (x3). 



73 
 

Therefore, the next value shown from the simulation is 12. Moreover, for third 

instruction (addi x7, x3, -9), there is a source register (x3) which is dependent on 

the destination register from the second register. The output for the third instruction 

is value 3. The output is expected because the value of register x3 is forwarded and 

updated in second instruction before being used by the third instruction. This 

forwarding feature was done by the hazard unit module. The rest of the values 

shown are the output of the respective instructions. The functionality of the top 

design is verified. Hence, the design of the 32-bit 5 stage pipeline RISC-V 

processor is completed. 
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Chapter 5: Conclusion and Future work 

In this project, a 32-bit 5 stage pipeline RISC-V processor is designed and 

implemented using Verilog coding. The top design consists of 3 main modules that 

are riscv_pip_27, imem and dmem. riscv_pip_27 module is an integrated module 

forming by control_unit, hazard_unit, and datapath_unit module. The control_unit 

module is used to send out control signals based on different instruction being 

executed. Then, the hazard_unit module is used to detect different hazard 

conditions during execution and mitigate them. Next, the datapath_unit module is 

used to carry information in the datapath through pipeline registers. The imem 

module is used to store the instruction of a program whereas the dmem is 

responsible for storing and retrieving data.  

Besides, several important modules such as alu, aludec, maindec, regfile, 

result_mux, pc_mux, pipeline register (IF/ID, ID/IEx, IEx/IMem, and IMem/IW), 

forwardMuxA and forwardMuxB were also designed and integrated in the processor. 

The functionality of these modules were tabulated in table 5.1.  

Table 5.1: Table of modules and their functionality 

Module Functionality 

alu Performing arithmetic and logical operations  

aludec 

Decode the instructions and receive signal from maindec to 

determine the type of operations that had the be performed 

maindec 

Generate control signal from the Opcode to determine types 

of instruction 
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regfile Storing and manipulating data during program execution 

result_mux Select ALUResults, ReadData, or PCPlus as output 

pc_mux Select PCPlus4 or JumpTarget to be executed 

IF/ID Store data from fetch stage and load them in decode stage 

ID/IEx Store data from decode stage and load them in execute stage 

IEx/IMem 

Store data from execute stage and load them in memory 

stage 

IMem/IW 

Store data from memory stage and load them in writeback 

stage 

forwardMuxA 

Handle following 2 hazard conditions 

1. EX/MEM.RegisterRd = ID/EX.RegisterRs 

2. MEM/WB.RegisterRd = ID/EX.RegisterRs 

forwardMuxB 

Handle following 2 hazard conditions 

1. EX/MEM.RegisterRd = ID/EX.RegisterRt 

2. MEM/WB.RegisterRd = ID/EX.RegisterRt 

 

The functionality of these modules were and verified analyzing the waveform 

generate by using ModelSim software. Besides, a testbench for top design were 

written to verify the overall functionality of the 32-bit 5 stage pipeline RISC-V 

processor. 

  

However, there are some limitations in our RISC-V processor which can be 

further improved in the future. 
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1. Implementing different extensions to the base integer instruction set 

RISC-V had standardized a series of extensions that provide additional 

functionality beyond the base integer instructions, such as floating-point 

arithmetic, bit manipulation, vector operations and cryptography. These 

extensions can be implemented or omitted depending on the design goals 

and application requirements. 

2. Improving the branch prediction accuracy and reducing the branch penalty 

Branch prediction is a technique to guess the outcome of a conditional 

branch instruction before it is executed. This allows the processor to fetch 

and execute instructions from the predicted branch without waiting for the 

actual branch instruction to be resolved. However, if the prediction is wrong, 

the processor had to flush the pipeline and fetch instructions from the 

correct branch, which causes a performance penalty. To improve the branch 

prediction accuracy and reduce branch penalty, techniques such as static 

branch prediction, dynamic branch prediction and branch history table can 

be used. 

3. Exploring different cache architecture and memory hierarchies 

Cache is a small and fast memory that store frequently accessed data from 

the main memory. Memory hierarchy is a system of multiple level of 

memory with different sizes and speed. The goal of cache architecture and 

memory hierarchy design is to reduce the average memory access time and 

increase the memory bandwidth. To achieve this goal, different aspect such 

as cache size, cache organization and cache mapping can be explored. 
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