

DESIGN AND SIMULATE RISC-V PROCESOR USING VERILOG

DAVID NGU TECK JOUNG

MASTER OF ENGINEERING IN ELECTRONIC SYSTEMS

FACULTY OF ENGINEERING AND GREEN TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

AUGUST 2023

DESIGN AND SIMULATE RISC-V PROCESOR USING VERILOG

By

DAVID NGU TECK JOUNG

A dissertation submitted to

Faculty of Engineering and Green Technology,

Universiti Tunku Abdul Rahman,

in partial fulfilment of the requirements for the degree of

Master of Engineering in Electronic Systems

AUGUST 2023

i

ABSTRACT

DESIGN AND SIMULATE RISC-V PROCESOR USING VERILOG

DAVID NGU TECK JOUNG

In this project, RISC-V processor is designed and simulated using Verilog. The

design of RISC-V processor provides an alternative for software and hardware

design to the computer designers as it provides free and open instruction set

architecture (ISA). Besides, the designed RISC-V processor will be using 5-

stage pipeline techniques to improve the overall performance of the processor.

The project is started by implementing several main modules, such as alu, aludec,

maindec, imem, dmem, regfile, pc_mux, result_mux, pipeline register (IF/ID,

ID/IEx, IEx/IMem, and IMem/IW), forwardMuxA and forwardMuxB. Besides,

hazard unit is implemented into the design to mitigate hazard conditions. The

functionality of these modules were simulated and verified by using ModelSim

software. Then, the modules were integrated into a main module to form a

riscv_pip_27 module. A simple testbench is written to verify the functionality of

the RISC-V processor.

Keywords – RISC-V processor, Verilog, 5-stage pipeline, hazard

ii

ACKNOWLEDGEMENTS

I would like to extend my sincere gratitude to my Master project supervisor, Dr.

Loh Siu Hong, for his unwavering support, motivation, and vast knowledge

throughout my research journey. In times of trouble or difficulty, he patiently

listened to my concerns and guided me in the right direction. His invaluable

guidance played a pivotal role in the entire research process and the completion

of this dissertation.

I am also deeply thankful to the moderators of my Master project,

Dr. Lee Han Kee and Ts Tan Yee Chyan, for their insightful comments,

encouragement, and thought-provoking questions. Their guidance inspired me

to explore my research from various perspectives and broaden my horizons.

Lastly, I would like to express my profound gratitude to my parents and friends

for their unfailing support and continuous encouragement throughout the

research journey and the process of writing this dissertation. Their presence and

encouragement were instrumental in achieving this milestone. I am sincerely

grateful for their contributions.

iii

APPROVAL SHEET

This dissertation entitled “DESIGN AND SIMULATE RISC-V

PROCESSOR USING VERILOG” was prepared by DAVID NGU TECK

JOUNG and submitted as partial fulfilment of requirements for the degree of

Master of Engineering in Electronic Systems at Universiti Tunku Abdul Rahman.

Approved by:

(Dr. Loh Siu Hong) Date:…………………

Supervisor

Department of Electronic Engineering

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

iv

FACULTY OF ENGINEERING AND GREEN TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: ____________

SUBMISSION OF DISSERTATION

It is hereby certified that David Ngu Teck Joung (ID No: 21AGM06719) has

completed this dissertation entitled “DESIGN AND SIMULATE RISC-V

PROCESSOR USING VERILOG” under the supervision of Dr. Loh Siu Hong

(Supervisor) from the Department of Electronic Engineering, Faculty of

Engineering and Green Technology.

I understand that the University will upload softcopy of my dissertation in pdf

format into UTAR Institutional Repository, which may be made accessible to

UTAR community and public.

Yours truly,

(David Ngu Teck Joung)

v

DECLARATION

I David Ngu Teck Joung hereby declare that the thesis/dissertation is based on

my original work except for quotations and citations which have been duly

acknowledged. I also declare that it has not been previously or concurrently

submitted for any other degree at UTAR or other institutions.

 (DAVID NGU TECK JOUNG)

 Date: _______________

vi

TABLE OF CONTENT

ABSTRACT i

ACKNOWLEDGEMENTS ii

TABLE OF CONTENT vi

LIST OF FIGURES viii

LIST OF TABLES x

LIST OF SYMBOL AND ABBREVIATIONS xi

Chapter 1: Introduction 1

1.1 Project Overview 1

1.2 Problem Statement 3

1.3 Objective 4

Chapter 2: Literature Review 5

2.1 Overview 5

2.2 Previous Work 5

Chapter 3: Methodology 13

3.1 Background Theories 13

3.1.1 Instruction Set Architecture 13

3.1.2 5-Stage pipeline 15

3.1.3 ModelSim 17

3.2 Implementation of Design 20

3.2.1 Arithmetic Logic Unit (alu) 20

3.2.2 ALU Decoder (aludec) 21

3.2.3 Main Decoder (maindec) 23

3.2.4 Data Memory (dmem) 24

3.2.5 Instruction Memory (imem) 25

3.2.6 Pipeline Register 28

3.2.6.1 IF_ID 28

3.2.6.2 ID_IEx 29

3.2.6.3 IEx_IMem 31

3.2.6.4 IMem_IW 32

3.2.7 Write Data Selection MUX (result_mux) 32

3.2.8 Program Counter Selection MUX (pc_mux) 33

3.2.9 Register File (regfile) 34

3.2.10 Hazard Unit (hazardunit) 35

3.2.10.1 Forwarding 36

vii

3.2.10.2 Stalling 39

Chapter 4: Results and Discussion 41

4.1 Overview 41

4.2 Simulation and Analysis of Waveforms 43

4.2.1 Program Counter Selection MUX (pc_mux) Waveform Analysis

 43

4.2.2 Instruction Memory (imem) Waveform Analysis 44

4.2.3 Data Memory (dmem) Waveform Analysis 45

4.2.4 Register File (regfile) Waveform Analysis 46

4.2.5 Arithmetic Logic Unit (alu) Waveform Analysis 47

4.2.6 Arithmetic Logic Unit Decoder (aludec) Waveform Analysis 48

4.2.7 Main decoder (maindec) Waveform Analysis 49

4.2.8 Write Date Selection MUX (result_mux) Waveform Analysis 50

4.2.9 Pipeline Register 52

4.2.9.1 IF_ID 52

4.2.9.2 ID_IEx 53

4.2.9.3 IEx_IMem 54

4.2.9.4 IMem_IW 55

4.2.10 Hazard Unit (hazardunit) 55

4.2.10.1 Forward Multiplexer A (forwardMuxA) 56

4.2.10.2 Forward Multiplexer B (forwardMuxB) 61

4.3 Integrating RISC-V processor 65

4.4 Testbench simulation of the top design 71

Chapter 5: Conclusion and Future work 74

Reference 77

viii

LIST OF FIGURES

Figure 3.1 Opcode and Operand of a MOV instruction 13

Figure 3.2: 5 Stage pipeline .. 17

Figure 3.3: Flow chard of the project ... 19

Figure 3.4: Implementation of alu in Verilog code ... 21

Figure 3.5: Implementation of aludec in Verilog code 22

Figure 3.6: Implementation of maindec in Verilog code 24

Figure 3.7: Implementation of dmem in Verilog code 25

Figure 3.8: Implementation of imem in Verilog code 28

Figure 3.9: Implementation of IF/ID register in Verilog code 29

Figure 3.10: Implementation of ID/IEx in Verilog code 30

Figure 3.11: Implementation of IEx/IMem register in Verilog code 31

Figure 3.12: Implementation of IMem/IW register in Verilog code 32

Figure 3.13: Implementation of result_mux in Verilog code 33

Figure 3.14: Implementation of pc_mux in Verilog code 34

Figure 3.15: Implementation of regfile in Verilog code 35

Figure 3.16: Implementation of forwardMuxA in Verilog code 37

Figure 3.17: Implementation of forwardMuxB in Verilog code 38

Figure 3.18: Instruction sequence of Stalling condition 39

Figure 4.1: Simulation test sequence .. 42

Figure 4.3: Simulation waveform of imem ... 44

Figure 4.4: Simulation waveform of dmem .. 46

Figure 4.5: Simulation waveform of regfile ... 47

Figure 4.6: Simulation waveform of alu... 47

Figure 4.7: Simulation waveform of aludec ... 48

file:///C:/Users/User/Desktop/UTAR/Project/Dissertation_template%20-%20enhance.docx%23_Toc141400161

ix

Figure 4.8: Simulation output of maindec .. 49

Figure 4.9: Simulation output of result_mux .. 51

Figure 4.10: Simulation waveform of IF/ID register 52

Figure 4.11: Simulation waveform of ID/IEx register 53

Figure 4.12: Simulation waveform of IEx/IMem register 54

Figure 4.13: Simulation waveform of IMem/IW register.................................. 55

Figure 4.14: Instruction sequence with hazard condition 56

Figure 4.15: Simulation waveform of forwardMuxA 57

Figure 4.16: Instruction sequence with hazard condition 1 58

Figure 4.17: Simulation waveform of hazard condition 1 58

Figure 4.18: Instruction sequence with hazard condition 2 59

Figure 4.19: Waveform simulation of hazard condition 2 60

Figure 4.20: Simulation waveform of forwardMuxB 61

Figure 4.21: Instruction sequence of hazard condition 3 62

Figure 4.22: Simulation waveform of hazard condition 3 63

Figure 4.23: Instruction sequence of hazard condition 4 64

Figure 4.24: Simulation waveform of hazard condition 4 64

Figure 4.25: Implementation of control_unit in Verilog code 67

Figure 4.26: Implementation of hazard_unit in Verilog code........................... 67

Figure 4.27: Implementation of datapath_unit in Verilog code 69

Figure 4.28: Implementation of riscv_pip_27 in Verilog code 69

Figure 4.29: Schematic diagram of top design ... 70

Figure 4.30: Implementation of top design in Verilog code 71

Figure 4.31: Testbench for top design .. 71

Figure 4.32: Simulation results of the testbench .. 72

x

LIST OF TABLES

Table 2.1 Implementation and design of various processor from

previous work ………………………………………………

9

Table 3.1 Base Integer instructions for RV321 21

Table 3.2 ALU decoder output ……………………………………….. 23

Table 3.3 Main decoder control signal and types of instructions……... 24

Table 3.4 Write Data Selection MUX output table …………………… 33

Table 3.5 Program Counter Selection MUX output table ……………. 34

Table 3.6 Forward Multiplexer A output table ……………………….. 37

Table 3.7 Forward Multiplexer B output table ……………………….. 38

Table 4.1 Simulation output of pc_mux ………………………………. 43

Table 4.2 Relationship of PCF and fetched instruction ………………. 45

Table 4.3 Simulation output of alu …………………………………… 48

Table 4.4 Simulation output of aludec ……………………………….. 49

Table 4.5 Simulation output of maindec ……………………………… 50

Table 4.6 Simulation output of result_mux …………………………… 51

Table 4.7 Simulation output of forwardMuxA …………………………… 57

Table 4.8 Simulation output of forwardMuxB ………………………... 61

Table 5.1 Table of modules and their functionality …………………... 74

xi

LIST OF SYMBOL AND ABBREVIATIONS

ISA Instruction Set Architecture

HDL Hardware Description Language

CISC Complex Instruction Set Computing

RISC Reduced Instruction Set Computing

ARM Advanced RISC Machines

MIPS Microprocessor without Interlocked Pipelined

Stages

FPGA Field Programmable Gate Arrays

VWF Vector Waveform File

PC Program Counter

CPU Central Processor Unit

MUX Multiplexer

PCF Program Counter Fetch

alu Arithmetic Logic Unit

pc_mux Program Counter Multiplexer

imem Instruction Memory

dmem Data Memory

regfile Register File

aludec Arithmetic Logic Unit Decoder

maindec Main Decoder

result_mux Write Data Selection Multiplexer

hazard_unit Hazard Unit

forwardMuxA Forward Multiplexer A

forwardMuxB Forward Multiplexer B

xii

IF/ID Fetch and Decoder pipeline register

ID/IEx Decode and Execute pipeline register

IEx_IMem Execute and Memory pipeline register

IMem/IW Memory and Writeback pipeline register

1

Chapter 1: Introduction

1.1 Project Overview

Very Large-Scale Integration (VLSI) design began in 1970s when

semiconductor and communication technologies were being developed. It

driven the revolution of microprocessors and the innovation of electronic

computing systems. This scenario was further extended that extensive research

fund was invested to explore the capabilities of the applications of computer in

various fields such as aviation, medical, cell phones, and automobile industries.

By 2030, more than 22.7 billion devices will be connected by IoT networks (W.

Wang et al., 2021). These IoT devices lay as a foundation towards the

accomplishment of future concepts such as smart city, self-driving cars, and

space exploration technologies.

VLSI is the process of creating an integrated circuit (IC) by combining

thousands of transistors into a single chip. Before the introduction of VLSI

technology, most ICs had limited set of functions that they could perform. VLSI

allows IC designers to add all the components such as Central Processing Unit

(CPU), Read-Only Memory (ROM), Random Access Memory (RAM), and

other logics together into a chip. The current cutting-edge technologies such as

high resolution and low-bit rate video and cellular communications provide the

end-users a marvelous number of applications, processing power and

portability. This trend is expected to grow rapidly with very important

implications on VLSI design and system design.

2

The processor is the “brain” of the established electronic computer system

today. It helps to communicate with other devices such as mouse, keyboard,

speakers, and works on the information that is has acquired from them. Most

of the processors nowadays are built in Complex Instruction Set Computing

(CISC) or Reduced Instruction Set Computing (RISC) architecture. They

proposed different design styles and circuit that differ in how the data flows or

where the data and instructions were stored. Both CISC and RISC had their

own advantages and disadvantages. Therefore, implementing and enhancing

the advantages on existing ones is still impactful to both academic and

industries.

RISC-V is a free and open Instruction Set Architecture (ISA) based on

established RISC architecture. It was founded in 2010 at the University of

California, Berkeley. RISC-V started to gain attention from the industries

because it provided open-source licenses that do not require fees to use. With

this, it breaks down barriers in the semiconductor industries. RISC-V is

fundamentally designed for modular approach. It only has 47 based instructions,

and it can be modularly adjusting those extension based on the design

requirement. RISC-V ISA does not define how a design must be implemented

or which subsets it must contain. Therefore, many RISC-V computers might

implement the compact extension to reduce power consumption, code size, and

memory use.

3

1.2 Problem Statement

Instruction Set Architecture (ISA) is part of the abstract model of a computer

that defines how the CPU is controlled by the software. It acts as an interface

between the hardware and the software. It also defined the supported data types,

registers, memories, instruction to be executed, and features of a processor.

Companies such as Intel, IBM and ARM uses their own ISAs in their products.

Unfortunately, these ISAs were patterned to avert others from using them

without a permit. Negotiations takes months and it tends to peak up the cost,

which make it difficult for community apprehensive and small organizations.

To overcome this issue, an open ISA should be found to attain sizable

innovation. With shared open core designs, it helps some small organizations

to compete in the market. This possesses a positive competitive atmosphere

between them. Therefore, consumers can be benefit by purchasing affordable

product with adequate performances.

As stated in RISC-V organization webpage, “The worldwide interest in RISC-

V is not because it is a great new chip technology, the interest is because it is a

common free and open standard to which software can be ported, and which

allows anyone to freely develop their own hardware to run the software”. These

properties of the RISC-V ISA make it ideal for our desire use.

Efficiency of the processor is strongly affected by instruction implementation.

Processors with single cycle design will execute the next instruction only when

the current instruction is completed. The efficiency of the single-cycle

processor will be greatly reduced when the complexity of the instructions

4

increases. Besides, the cycle time of the processor need to be designed to

accommodate the slowest instruction. Therefore, the latency of the processor

will be increased due to the length of the clock cycle being too long for the

execution of each instruction. With pipeline design, this problem can be

overcome by executing multiple instruction simultaneous in overlapped

manner.

1.3 Objective

1. To understand the basic of RISC-V architecture

2. To implement 5-stage pipeline design of the RISC-V processor in Verilog

3. To verify the functionality of the design by performing testbench and

simulation

5

Chapter 2: Literature Review

2.1 Overview

In this chapter, the implementation of difference architectures such as MIPS,

RISC, and CISC by other authors will be discussed.

2.2 Previous Work

The design of a 32-bit RISC processor based on MIPS using VHDL coding was

presented by (S. P. Pitpurkar et al., 2015). They argued that RISC CPU had

more benefits than CISC such as higher speed, simpler structure, and easier

implementation. They used pipeline design to describe the system and achieve

fewer clock cycles per instruction. They verified the design through extensive

simulations. They used Xilinx 13.li ISE Simulator to design, synthesize and

simulate the RISC processor based on MIPS. Their results showed that the

design had a combinational delay of 0.758 ns and a maximum operating

frequency of 1.350 Ghz.

Using Cadence, a software tool for electronic design automation, (Mohit N.

Topiwala et al., 2014) designed and implemented a 32-bit processor based on

MIPS. MIPS is a RISC architecture, which stands for reduced instruction set

computer. RISC architectures aim to increase the speed of the processor by

using a small set of simple and fast instructions. The authors stated that power

consumption is a critical factor for embedded and portable applications.

However, there is a trade-off between power, area, and delay in integrated

circuits. For some applications, low power circuits are required, and the design

6

engineers have to sacrifice more area and delay. Therefore, they suggested a

power reduction technique by skipping pipeline stages that cause unnecessary

switching activities. They designed Hazard detection unit and Data forwarding

unit for efficient implementation of the pipeline. They used Verilog-HDL to

implement the design and Cadence RTL complier to synthesize it using typical

libraries of TSMC 0.18 μm technology.

Using Verilog HDL, (Shofiqul Islam et al., 2006) developed a high speed-

pipelined execution unit of 32-bit RISC processor. They arranged the block in

different stages of pipeline so that the pipeline can operate at high frequency.

The execution stage in a typical pipeline scheme consists of input data mux,

operational block and output ALU mux. To increase the speed of the pipeline,

they selected the data for the computational blocks in the execution stage one

stage earlier in the data select stage. They also proposed a dependency resolver

module to deal with a possible problem of consecutive data dependent

instruction in the pipeline. This module handles both stalling and data

forwarding. They synthesized the processor at 0.1 micron technology and

achieved a working frequency of 714Mhz.

(Animesh Kulshreshtha et al., 2021) compared the behavioural models of 16-

bit and 32-bit RISC processors and their different instruction sets. The 16-bit

RISC processor was a non-pipeline CPU based on Harvard architecture, which

had separate data memory and instruction memory. The 32-bit RISC processor

was a pipelined CPU that followed the MIPS architecture. They aimed to study

the differences between the models based on their instruction set and

7

performance factors such as speed and power consumption. They used an

optimized Multiplier algorithm to improve the data path. In general, the 32-bit

processor consumed about 60% more power than the 16-bit processor because

of its higher operating frequency. However, the 32-bit processor was 70% faster

than the 16-bit processor. These results were expected because the 32-bit

processor can store more computational values and the pipelined architecture

of the processor reduces the length of each instruction cycle, which increases

the operating frequency and decreases the combinational delay. Based on their

results, the maximum operating frequency for the 16-bit processor and the 32-

bit processor was 78.654 MHz and 139.438 MHz, respectively. The maximum

combinational delay was 13.981 ns for the 16-bit processor and 7.028 ns for

the 32-bit processor.

Using Verilog HDL coding, (Shawkat S. Khairullah, 2022) designed and

implemented a 16-bit RISC processor with 5 pipeline stages that was simulated

using Xilinx ISE Design Suite 14.7 tool. They synthesized the design on device

Xilinx XC3S200FT256 FPGA chip. They showed the experimental and timing

diagram results that indicated that the execution unit hardware design used 2%

of Spartan – FPGA XC3S2000 area with a maximum speed of 56.8 MHz. They

also showed that the data memory unit hardware design used 8% of the same

FPGA area with a maximum speed of 67.32 MHz. Moreover, they showed that

the instruction unit hardware design used 6% of the same FPGA area with a

maximum speed of 106 MHz.

8

Using VHDL, (Sarah M. Al-sudany et al., 2021) designed and implemented a

multicore RISC processor on FPGA. They used 32-bit MIPS processor with

three main components: 32-bit data path, control unit, and hazard unit. They

divided the single cycle MIPS system into five pipeline stages to create the

pipeline MIPS processor. They also solved the data hazard, control hazard, and

structural hazard in their design. They developed the MIPS using Xilinx ISE

14.7 design suite and successfully implemented it on Xilinx Virtex-6

XC6VLX240T-1FFG1156 FPGA. The multicore MIPS processor consumed

3.422 watt of power and had an operating frequency of 136.444 MHz.

9

Table 2.1: Implementation and design of various processor from previous

works

Author Description

S. P. Pitpurkar et al.,

2015

• Implement a design of 32-bit RISC based MIPS

processor using VHDL coding

• RISC has more advantages, such as faster

speed, simplified structure, and easier to be

implemented as compared to CISC

• Xilinx 13.li ISE Simulator was used to the

design, synthesis and simulation

• Achieved combinational delay of 0.758ns and

maximum operating frequency of 1.350 GHz

Mohit N. Topiwala et

al., 2014

• Implemented a 32-bit MIPS based processor

using Cadence

• Power is the most important parameter for

embedded and portable applications

• Proposed a power reduction technique through

by-passing pipeline stages that cause

unnecessary switching activities.

• Hazard detection unit and Data forwarding unit

were designed for efficient implementation of

the pipeline

10

• Implemented using Verilog-HDL and

synthesized using Cadence RTL complier using

typical libraries of TSMC 0.18 𝜇𝑚 technology

Shawkat S.

Khairullah, 2022

• Presented hardware realization of 5 pipeline

stages of a 16-bit RISC processor

• Processor is simulated using Xilinx ISE Design

Suite 14.7 tool

• Synthesis process of the proposed system is

realized on device Xilinx XC3S200FT256

FPGA chip

• Execution unit uses 2% of Spartan – FPGA

XC3S2000 area with maximum allowable

speed of 56.8 MHz.

• Data memory unit uses 8% of Spartan – FPGA

XC3S2000 area with maximum allowable

speed of 67.32 MHz

• Instruction unit uses 6% of the same FPGA ship

area with maximum allowable speed of 106

MHz

Shofiqul Islam et al.,

2006

• Designed a high speed-pipelined execution unit

of 32-bit RISC processor

• Data selection for the computational blocks in

Execution stage is performed one stage ahead

11

• Dependency Resolver module were proposed to

solve consecutive data dependent instruction in

the pipeline

• Basically, the module handles both stalling as

well as data forwarding

Animesh Kulshreshtha

et al., 2021

• Analysed behavioural model of 16-bit and 32-

bit RISC processor and their independent

instruction sets

• 16-bit RISC processor was a non-pipeline

Harvard architecture-based CPU

• 32-bit RISC was a pipelined processor from

MIPS architecture

• Total power consumption for 32-bit processor

was about 60% more than 16-bit processor due

to higher operating frequency

• 32-bit processor was 70% faster than 16-bit

processor

• Maximum operating frequency for 16-bit

processor and 32-bit processor is 78.654 MHz

and 139.438 MHz

• Maximum combinational delay for 16-bit

processor and 32-bit processor is 13.981 ns and

7.028 ns

12

Sarah M. Al-sudany et

al., 2021

• Studied for multicore RISC processor

implemented on FPGA

• MIPS was developed using Xilinx ISE 14.7

design suite and were implemented

successfully on Xilinx Virtex-6

XC6VLX240T-1FFG1156 FPGA

• 32-bit MIPS processor was designed using

VHDL with 3 main structures: 32-bit data path,

control unit and hazard unit

• Total power analysis of multicore MIPS

processor is 3.422 watt, and the operating

frequency is 136.444 MHz

13

Chapter 3: Methodology

3.1 Background Theories

3.1.1 Instruction Set Architecture

Instruction Set Architecture (ISA) is a term that refers to the set of instructions that

a computer processor can execute. It is a fundamental aspect of computer

architecture that determines the capabilities and limitations of a processor.

An ISA is composed of a set of instructions that define the operations that a

processor can perform, as well as the format and meaning of each instruction. Each

instruction typically includes an opcode, which specifies the operation to be

performed, and one of more operands, which specify the data on which the

operation is to be performed. Figure xxx shows the example of opcode and operand

for a MOV instruction.

Figure 3.1 Opcode and Operand of a MOV instruction

From Figure 3.1, the opcode is the MOV instruction. The other parts are called the

operands. Operands are manipulated by the opcode. In this example, the operands

are the register named AL and the value 34 hex.

ISAs can be classified into 2 main categories: Reduces Instruction Set Computing

(RISC) and Complex Instruction Set Computing (CISC). RISC ISAs have a smaller

14

set of simple instructions that can be executed quickly, whereas CISC ISAs have a

larger set of more complex instructions that can perform multiple operations in a

single instruction. The RISC approach is generally favored in modern processors

because it allows for faster execution times and simpler processor designs. However,

CISC architectures are still used in certain specialized applications where the

additional complexity is justified by the increased functionality.

One example of a CISC ISA is the x86 architecture, which is used in many personal

computers and servers. The x86 ISA includes a large set of instructions which are

quite complex and can perform multiple operations in a single instruction. For

example, MOV instruction from CISC ISA can transfer data between two memory

locations or between a register and a memory location in a single instruction.

Besides, the x86 ISA also includes a variety of specialized instructions for

performing common tasks such as string manipulation, input/output operations, and

floating-point arithmetic. x86 ISA is known for its complexity and backward

compatibility. However, this complexity can make it difficult to optimize for

performance or energy efficiency. Hence, it is more challenging to write software

that runs efficiently on different processor with different implementations of the

ISA.

One example of a RISC ISA is the ARM architecture, which is used in a wide range

of device including smartphones, tables, and embedded systems. The ARM ISA

includes a relatively small set of simple instructions which can be executed faster.

For example, the MOV instruction from RISC ISA only copies data from one

register to another. Besides, ARM ISA also includes a variety of specialized

15

instruction such as loading and storing multiple registers at once, performing

conditional instructions, and performing arithmetic operations on multiple data

types. The ARM ISA is known for its simplicity and energy efficiency. The

simplicity of the ISA also makes it easier to optimize for performance and make it

easier to write software on different processors with different implementations of

the ISA.

3.1.2 5-Stage pipeline

With traditional single cycle data path, instructions are executed in a single clock

cycle. The next instruction will need to wait for the previous instruction to be

complete before it can be executed. Moreover, the execution time for each

instruction is different. There are instructions that takes longer time to execute than

the other. This might lead to wasted clock cycle and reduced performance of the

processor. However, this issue can be solved by using pipelining.

Pipelining is a technique used in computer architecture to increase the overall

performance of a processor. It involves breaking down the execution of a task into

smaller stages and allowing these stages to overlap in time. With this, multiple

instructions can be executed simultaneously and improve the throughput of the

system.

The most common used pipeline technique in modern processor design is 5-Stage

pipeline technique. As suggested by its name, the instruction execution cycle was

divided into 5 different stages. Each stage performs a specific operation on the input

data and passes the result to the next stage. The output of the first stage become the

16

input of the second stage, and so on. Besides, every stage operates on a different

part of the data, which allow multiple instructions to be in different stages of

execution at the same time. The 5 stages of a typical pipeline are: fetch, decode,

execute, memory, and writeback. The details for each stage were discussed below.

1. Fetch

In this stage, the processor fetches the instruction from memory. Then, the

instruction is loaded into the instruction cache, which is used to store the

recently used instructions.

2. Decode

In this stage, the processor decodes the fetched instruction to determine the

operation it needs to perform. The instruction is analyzed to determine the

type of operation, registers, and the locations of any operands.

3. Execute

In this stage, the processor performs actual operation specified by the

instruction. This involves arithmetic or logical operations, such as addition

and subtraction. Besides, it also involves memory access or branching to a

different part of the program.

4. Memory

In this stage, the processor access memory to read or write the data obtained

from previous stage. However, this stage is optional. Some instruction such

as “add” does not involve memory access.

5. Writeback

17

In this stage, the results of the operation are written back to the appropriate

register in the register file.

Figure 3.2 illustrates the overview of 5 stage pipeline.

Figure 3.2: 5 Stage pipeline

3.1.3 ModelSim

ModelSim is a popular simulation and verification tool for digital circuits and

system. It is widely used by engineers and designers in the electronics industry to

validate and debug their designs before they are implemented in hardware.

ModelSim provides a powerful set of features for designing, simulating, and

verifying digital circuits and system. For simulation, ModelSim supports both

Verilog and VHDL languages. It can simulate all levels of abstraction, from the gate

level to the behavioral level. For verification, ModelSim supports functional and

18

timing simulation, as well as assertion-based verification. It can also be integrated

with other verification tools like Questa and UVM for more comprehensive

verification. For design, ModelSim supports the creation of design hierarchy, which

allows designers to organize their designs into logical blocks. Besides, it also

provides design checking features like linting and syntax checking.

There are several benefits of using ModelSim. First and foremost, ModelSim helps

to improve design quality. It helps to identify and fix design errors early in the

design cycle, which improves the quality of the final product. Next, ModelSim

reduces the need for expensive hardware prototyping by providing a virtual

environment for design validation and verification. This help to reduce the cost

needed in design. Furthermore, ModelSim also supports industry-standard

languages and interface, which promotes standardization and interoperability in the

electronic industry.

In the project, ModelSim will be the main software used to design and simulation

the RISC-V processor. Various module such as instruction memory, adder, register,

data memory, alu and alu control will be coded in ModelSim using Verilog. The

functionality for each element will also be tested and verified by simulation using

ModelSim. Finally, each element will be integrated in a main module to form the

top design of a 32-bit 5-stage pipeline RISC-V processor.

19

Figure 3.3 shows the flow chart of the project.

Pass

Design Specification

Simulation of design

Verilog coding

Design entry

Integration of design

Functionality verification

Start

End

Fail

Figure 3.3: Flow chard of the project

20

3.2 Implementation of Design

The processor consists of alu, aludec, maindec, imem, dmem, IF_ID, ID_IEx,

IEx_IMem, Imem_IW, pc_mux, reg_file, forwardMuxA, and forwardMuxB. Each

component of the datapath will be discussed in this section.

3.2.1 Arithmetic Logic Unit (alu)

Arithmetic Logic Unit (alu) is a fundamental component of a CPU. It is responsible

for performing arithmetic and logical operations on binary data. It reads the data

from pipeline register ID_IEx as an input and perform various arithmetic operation

based on the signals from aludec. The output is stored as ALUResults. In this RISC-

V processor design, 9 instructions are implemented in the ALU. The

implementation of alu in Verilog is shown in Figure 3.4.

21

Figure 3.4: Implementation of alu in Verilog code

Table 3.1 shows the base integer instructions for RV321.

Table 3.1: Base Integer Instructions for RV321

Category Mnemonic Description

Arithmetic

ADD rd, rs1, rs2 rd  rs1 + rs2

SUB rd, rs1, rs2 rd  rs1 - rs2

Logical

XOR rd, rs1, rs2 rd  rs1 ^ rs2

AND rd, rs1, rs2 rd  rs1 & rs2

OR rd, rs1, rs2 rd  rs1 | rs2

Shifts

SHL rd, rs1, rs2 rd  rs1 << rs2

SHR rd, rs1, rs2 rd  rs1 >> rs2

Compare

SLT rd, rs1, rs2 rd  rs1 < rs2 ? 1 : 0

SLTU rd, rs1, rs2 rd  rs1 < rs2 ? 1 : 0

3.2.2 ALU Decoder (aludec)

Arithmetic Logic Unit Decoder (aludec) is used to decode the instructions. It

received the signal from the Main Decoder Unit (maindec) and determine the type

of operation that had to be performed by the alu. It combined all 4 inputs from

ALUOp, funct3, funct7b5 and opb5 to decode the instruction. funct7b5 is referring

to instruction[31:25], funct3 is referring instruction[14:12], whereas opb5 is

22

referring to instruction[0:6] in RISC-V instruction format. RTypeSub is obtained

by performing AND operation on funct7b5 and opb5. This is used to differentiate

the R-type ADD and SUB instruction. The implementation of aludec is shown in

Figure 4.12.

Figure 3.5: Implementation of aludec in Verilog code

23

The aludec output corresponds to the case selected as shown in Table 3.2.

Table 3.2: ALU decoder output

ALUOp RTypeSub funct3 Alu

decode

Operation

2’b10 0 3’b000 4’b0000 AND

2’b10 1 3’b000 4’b0001 SUB

2’b10 0 3’b111 4’b0010 AND

2’b10 0 3’b110 4’b0011 OR

2’b10 0 3’b001 4’b0100 SLLI

2’b10 0 3’b011 4’b0101 SLTI

2’b10 0 3’b100 4’b0110 XOR

2’b10 0 3’b101 4’b0111 SHR

2’b10 0 3’b101 4’b1000 SLTU

2’b10 0 3’b101 4’b1111 SHL

3.2.3 Main Decoder (maindec)

Main Decoder (maindec) is used to generate the control signals from the 7 bits

opcode (instruction[6:0]) to determine the types of instruction. The control signals

are RegWrite, ImmSrc, ALUSrcA, ALUSrcB, MemWrite, ResultSrc, Branch, ALUOp,

and Jump. Each of these control signals control the multiplexer for making

decisions in the datapath to allow the data flow accordingly to the instructions. The

implementation of maindec is shown in Figure 3.6.

24

Figure 3.6: Implementation of maindec in Verilog code

The on and off for these signals are based on the types of instructions tabulated in

Table 3.3.

Table 3.3: Main Decoder control signal and types of instructions

Control

Signal

Instruction

lw sw R-Type B-Type I-Type jal

RegWrite 1 0 1 0 1 1

ImmSrc 000 001 xxx 010 000 011

ALUSrcA 0 0 0 0 0 0

ALUSrcB 01 01 00 00 01 00

MemWrite 0 1 0 0 00 0

ResultSrc 01 00 00 00 000 10

Branch 0 0 0 1 0 0

ALUOp 00 00 10 01 10 00

Jump 0 0 0 0 0 1

3.2.4 Data Memory (dmem)

In computer architecture, data memory is a component of a computer system that

is responsible for storing and retrieving data. Data memory is typically used to store

25

data that is actively being processed by alu. Usually there are 3 inputs in this module,

which are write_enable, data_address, and write_data. The module takes the

memory address from the results of alu (data_address) and data from register file

(write_data). Write enable (write_enable) is used to control the write permission of

the data to the data memory. The implementation of dmem in Verilog code is shown

in Figure 3.7.

Figure 3.7: Implementation of dmem in Verilog code

3.2.5 Instruction Memory (imem)

In computer architecture, instruction memory is a component of a computer system

that stores the instruction of a program. It is responsible for holding the sequence

of instruction that the CPU fetches, decodes, and executes during the program

execution. In this module, 32-bit instruction set is generated and stored in the ram

array. The instruction to be fetch is based on the program counter fetch (PCF) input.

As each instruction is 4 bytes, the value of PCF will be incremented by 4 to fetch

26

the next instruction. The implementation of imem in Verilog code is shown in Figure

3.8.

27

28

Figure 3.8: Implementation of imem in Verilog code

3.2.6 Pipeline Register

In computer architecture, pipeline register is a temporary storage element used un

a processor’s pipeline to hold data between different stages of instruction execution

process. It serves as a synchronization point between adjacent stages, allowing

instruction to flow through the pipeline in a controlled manner. In 5 stages pipeline,

there are 4 pipeline registers namely IF_ID, ID_IEx, IEx_IMem, and IMem_IW.

The registers are named for the two stages separated by that register. For example,

the first pipeline register is IF_ID because it separates the instruction fetch and

instruction decode stages.

3.2.6.1 IF_ID

IF_ID register as it names called, it separates the instruction fetch and

instruction decode stages. It used to store data such as instruction fetch

from instruction memory and ready to be released to decode stage on the

next clock cycle. Besides, the current PC and next incremented PC

29

address (PCPlus4F) is also saved in the IF_ID register in case it needed

later for an instruction, such as beq. The implementation of IF_ ID register

in Verilog code is shown in Figure 3.9.

Figure 3.9: Implementation of IF/ID register in Verilog code

3.2.6.2 ID_IEx

ID_IEx register as it names called, it separates the instruction decode and

execute stages. It used to store information such as read data (RD1, RD2)

from the register file and extended immediate value (ImmExt). Besides, it

carries forward the data of PC and PCPlus4F from IF_ID register.

Instruction[11:7] (rd), Instruction[19:15] (rs1), and Instruction[24:20] (rs2)

will also be stored to ID_IEx register and send to Hazard Unit in execute

30

stage for hazard handling. The implementation if ID_IEx in Verilog code is

shown in Figure 3.10.

Figure 3.10: Implementation of ID/IEx in Verilog code

31

3.2.6.3 IEx_IMem

IEx_IMem register as it names called, it separates the execute and memory

stages. It is used to store the ALU results (ALUResult) and write data

(Writedata). At the same time, Instruction[11:7] (rd) and PCPlus4F are also

carried forward from previous pipeline registers and stored in IEx_IMem

register. The implementation of IEx_IMem in Verilog code is shown in

Figure 3.11.

Figure 3.11: Implementation of IEx/IMem register in Verilog code

32

3.2.6.4 IMem_IW

IMem_IW register as it names called, it separates the memory and writeback

stages. It used to store ALU results (ALUResult) and read data (ReadData)

from data memory. Instruction[11:7] (rd) and PCPlus4F are also carried

forward from previous pipeline registers and store in IMem_IW register. The

implementation of IMem_IW in Verilog code is shown in Figure 3.12.

Figure 3.12: Implementation of IMem/IW register in Verilog code

3.2.7 Write Data Selection MUX (result_mux)

The ALU has the capability to carry out arithmetic operations like addition (A+B)

or logical operation like equality comparison (A=B). Depending on the specific

33

instructions being executed, the output of the ALU could be either a memory

address or the result obtained from the ALU operation. To handle this situation, a

MUX is needed to make decision between selecting the data address or the ALU

output value for writing back to the register file. The MUX acts as a switch that

selects one of the two inputs based on ResultSrc control signal. This allows

flexibility and efficient data handling in the processor’s pipeline. The

implementation of result_mux in Verilog code is shown in Figure 3.13.

Figure 3.13: Implementation of result_mux in Verilog code

The corresponding output of result_mux is tabulated in Table 3.4 below.

Table 3.4: Write Data Selection MUX output table

ResultSrc output

00 ALUResultW

01 ReadDataW

10 PCPlusW

3.2.8 Program Counter Selection MUX (pc_mux)

The Program Counter (PC) is a vital component used by the CPU to maintain the

current instruction being executed. Under normal circumstances, the program

counter increments by a fixed value, typically 4 (corresponding to a 32-bit

instruction) for each clock cycle. This ensures that the program counter always

34

points to the memory address of the next instruction to be executed. However, the

program counter can be interrupted or modified by a jump signal (jump) from the

control unit. When the predetermined conditions are met, the control unit instructs

the program counter to deviate from its regular incrementation and instead updated

its value to the jump address. Therefore, pc_mux is used to select the incremented

instruction address (PCPlus4F) or the jump address (JumpTargetE). The pc_mux is

controlled by the PCSrcE signal. If PCSrcE signal is high, pc_mux will

JumpTargetE on next clock cycle, else PCPlus4F will be selected. The

implementation of pc_mux in Verilog code is shown in Figure 3.14.

Figure 3.14: Implementation of pc_mux in Verilog code

The corresponding output of pc_mux is tabulated in Table 3.5 below.

Table 3.5: Program Counter Selection MUX output table

PCSrcE Output

0 PCPlus4F

1 JumpTargetE

3.2.9 Register File (regfile)

The register file (regfile) in a CPU plays a critical role in storing and manipulating

data during program execution. It serves as a high-speed storage component that

holds a set of registers, each capable of storing a fixed width if data. Usually it has

35

4 inputs namely, RegWrite, Instruction[19:15], Instruction[24:20], and WriteData.

RegWrite control signal is used to control the write operation on the regfile. When

RegWrite is high, the data from WriteData will be written into the regfile. Then,

Instruction[19:15] and Instruction[24:20] served as an input from the pipeline

register (IF/ID) and output to pipeline register (ID/IEx) for the ALU in execute

stage. The implementation of regfile in Verilog code is shown in Figure 3.15.

Figure 3.15: Implementation of regfile in Verilog code

3.2.10 Hazard Unit (hazardunit)

The Hazard Unit is a component in a CPU’s architecture that is responsible for

detecting and handling hazards that can occur during the execution of instructions.

Hazards refer to situations where the sequential execution of instructions may lead

to incorrect or unintended behavior due to dependencies or conflicts between

instructions. The hazard unit detects these hazards and takes appropriate actions to

36

mitigate their effects. With this, the dependencies of write data begins from a

pipeline register, rather than waiting for the WB stage to write the register file. Thus,

the required data exists in time for later instructions, with the pipeline registers

holding the data to be forwarded.

There are 2 solutions to handle hazards namely forwarding and stalling.

3.2.10.1 Forwarding

Forward is a technique used by hazard unit to handle data dependencies

between instruction and mitigate hazards. It allows the CPU to forward data

from the producer instruction to the consumer instruction, bypassing

intermediate pipeline stages and avoid the need for stalls or bubbles.

There are 2 pairs of hazards conditions.

 1 (a) EX/MEM.RegisterRd = ID/EX.RegisterRs

 (b). EX/MEM.RegisterRd = ID/EX.RegisterRt

 2 (a). MEM/WB.RegisterRd = ID/EX.RegisterRs

 (b). MEM/WB.RegisterRd = ID/EX.RegisterRt

These hazard conditions can be handled by 2 forwarding control signals

namely ForwardA and ForwardB. ForwardA is used to control

forwardMuxA and ForwardB is used to control forwardMuxB.

3.2.10.1.1 Forward Multiplexer A (forwardMuxA)

37

Forward Multiplexer A takes the input of RD1, ALUResultsM, and ResultW.

RD1 is referred as register value. ALUResultsM is referred to the alu result

in memory stage whereas ResultW is referred to the results in writeback

stage. Both ALUResultsM and ResultW are forwarded values. ForwardA

control signal is used to select either the register file value or the forwarded

values. The implementation of forwardMuxA in Verilog code is shown in

Figure 3.16.

Figure 3.16: Implementation of forwardMuxA in Verilog code

The corresponding output of forwardMuxA is tabulated in Table 3.6.

Table 3.6: Forward Multiplexer A output table

ForwardA Output

00 RD1

01 ResultW

10 ALUResultsM

3.2.10.1.2 Forward Multiplexer B (forwardMuxB)

Forward Multiplexer B takes the input of RD2, ALUResultsM, and ResultW.

RD2 is referred as register value. ALUResultsM is referred to the alu result

in memory stage whereas ResultW is referred to the results in writeback

stage. Both ALUResultsM and ResultW are forwarded values. ForwardB

38

control signal is used to select either the register file value or the forwarded

values. The implementation of forwardMuxB in Verilog code is shown in

Figure 3.17.

Figure 3.17: Implementation of forwardMuxB in Verilog code

The corresponding output of forwardMuxB is tabulated in Table 3.7.

Table 3.7: Forward Multiplexer B output table

ForwardB Output

00 RD2

01 ResultW

10 ALUResultsM

Below shows the conditions for detecting hazards and resolve them using

forwarding control signals:

1. EX hazard

a. if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and

(EX/MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA = 10

b. if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and

(EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10

39

2. EX hazard

a. if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) and

(MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

b. if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) and

(MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

3.2.10.2 Stalling

Stalling is used when an instruction tries to read a register following a load

instruction that writes the same register. The example of the instruction

order is showed in Figure 3.18 below.

lw $2, 20($1)

and $4, $2, $5

Figure 3.18: Instruction sequence of Stalling condition

In this case, the and instruction will not get the updated value from lw

because the data of the lw instruction is still being read from memory while

the ALU is performing the operation for the and instruction. Therefore, the

pipeline must be stalled for the combination of load following by an

instruction that read its result.

Below shows the conditions for detecting hazards and resolve them using

stalling:

40

if (ID/EX.MemRead and ((ID/EX.RegisterRt = IF/ID.RegisterRs)

or (ID/EX.RegisterRt = IF/ID.RegisterRt))) stall the pipeline

41

Chapter 4: Results and Discussion

4.1 Overview

In this chapter, each module that were discussed on previous chapter were

simulated by using ModelSim software. Waveforms were generated from the

simulations and the results were analyzed and discussed. Besides, the results were

used to verify the functionality for each module of the design.

In the simulation, the functionality for each module were tested by running a set of

test sequence with different instructions. The test sequence was shown in Figure

4.1 below. Furthermore, the clock cycle used throughout the simulation is set to

100ps.

main

 addi x2 , x0, 5

 addi x3 , x0, 12

 addi x7 , x3, -9

 or x4 , x7 , x2

 xor x5 , x3 , x4

 add x5 , x5 , x4

 beq x5 , x7 , end

 slt x4 , x3 , x4

 beq x4 , x0 , around

 addi x5 , x0 , 0

around

 slt x4 , x7 , x2

 add x7 , x4 , x5

 sub x7 , x7 , x2

 sw x7 , 84(x3)

 lw x2 , 96(x0)

 add x9 , x2 , x5

 jal x3 , end

 addi x2 , x0 , 1

42

end

 add x2 , x2 , x9

 addi x4 , x0 , 1

 lui x5 , 0x80000

 slt x6 , x5 , x4

wrong

 beq x6 , x0 , wrong

 lui x9 , 0xABCDE

 add x2 , x2 , x9

 sw x2 , 0x40(x3)

done

 beq x2 , x2 , done

Figure 4.19: Simulation test sequence

From Figure 4.1, the test sequence consists of a main code with label main, 4

branches with label around, end, and wrong, and end with a done label. In the main

label, it consists of some arithmetic and logical instruction such as add, or, and xor.

With these instructions, alu, data memory, instruction memory, register file, and

control unit module can be tested. Besides, the test was also designed to hit hazard

conditions to test the hazard unit of the design. In the branches label, sw and lw

instructions were executed to test the load/store operation of the design. Moreover,

branching instruction such as jal and beq were also executed to test the jump or

branch condition of the design. Other module such as pipeline register, program

counter and write data selection mux were also tested and verified along with the

simulation.

43

4.2 Simulation and Analysis of Waveforms

4.2.1 Program Counter Selection MUX (pc_mux) Waveform Analysis

The pc_mux are used to select PCPlus4 or JumpTarget based on PCSrcE inputs.

PCPlus4 is the PC increment by 4 for each instruction cycle while JumpTarget is a

specific point to call when conditions are met. When PCSrcE is high, pc_mux will

select JumpTarget as an output, else PCPlus4 is selected.

A part simulation waveform for pc_mux is captured and shown in Figure 4.2. The

functionality of the module is verified by comparing the inputs and outputs

waveforms as shown in Table 4.1 below.

Figure 4.2: Simulation waveform of pc_mux

From Figure 4.2, input d0, d1, and s are represented as PCPlus4, JumpTarget, and

PCSrcE respectively and output y is represented as PC.

Table 4.1: Simulation output of pc_mux

Inputs (hex) Output (hex)

PCSrcE PCPlus4 JumpTarget PC

1 0000002c 00000028 00000028

0 0000002c 00000000 0000002c

0 00000030 00000000 00000030

44

From Table 4.1, the output is JumpTarget when PCSrcE is 1 whereas the output is

PCPlus4 when PCSrcE is 0. The outputs are expected. Therefore, the functionality

of PC selection MUX is verified.

4.2.2 Instruction Memory (imem) Waveform Analysis

The instruction memory module is used to setup all the instruction flow of the test.

From the simulation, there is a program counter fetch (PCF) input determines

which instruction to fetch. Since each instruction had 4 bytes, the PCF value will

increase by 4 to get the following instruction.

A part simulation waveform for imem is captured and shown in Figure 4.3. The

functionality of the module is verified by viewing the changes of PCF value and

the corresponding fetched instruction. The relationship of PCF and fetched

instruction were tabulated in Table 4.2 below.

Figure 4.20: Simulation waveform of imem

From Figure 4.3, input a is represented as PCF and output rd is represented as

fetched instruction. It is noticed that for every clock cycle, the value of a is added

by 4. Besides, each value of a is tagged with a different instruction rd.

45

Table 4.2: Relationship of PCF and fetched instruction

PCF, a (hex) Fetched instruction, rd (hex)

0 0x00500113

4 0x00C00193

8 0xFF718393

C 0x0023E233

10 0x0041C2B3

14 0x004282B3

18 0x02728863

1C 0x0041A233

20 0x00020463

24 0x00000293

28 0x0023A233

2C 0x005203B3

30 0x402383B3

34 0x0471AA23

38 0x06002103

3C 0x005104B3

40 0x008001EF

44 0x00100113

48 0x00910133

4C 0x00100213

50 0x800002B7

54 0x0042A333

58 0x00030063

5C 0xABCDE4B7

60 0x00910133

64 0x0421A023

68 0x00210063

4.2.3 Data Memory (dmem) Waveform Analysis

The data memory (dmem) is used to store data in the datapath. The data is written

to the module if write enable bit (MemWrite) is set. Else, the data is read from the

data address (a) from the alu output through IEx/IMem pipeline register.

46

A part simulation waveform for dmem is captured and shown in Figure 4.4.

Figure 4.21: Simulation waveform of dmem

From Figure 4.4, rd represent the instruction. The focus of the simulation for dmem

module is sw instruction because it is the only instruction that have MemWrite set

to 1. Instruction 0x0471aa23 is an example of sw instruction. It is notice that after

3 cycles after sw instruction is fetched, the data reached memory stage. In memory

stage, it read the MemWrite from the control unit. If the value is set, the writedata

(wd) is written to data memory and output the value (rd) on the next cycle.

Therefore, the functionality of dmem is verified.

4.2.4 Register File (regfile) Waveform Analysis

The register file (regfile) serves as a temporary memory to store data. From the

simulation, the inputs for the regfile include read address (a1 and a2), the write

address of register (a3), the data to be written into the register (wd3), the data read

from the register at the outputs (rd1 and rd2), and the control signal (we3) to enable

write data into the register.

A part simulation waveform for regfile is captured and shown in Figure 4.5.

47

Figure 4.22: Simulation waveform of regfile

From Figure 4.5, it is noticed that a1 and a2 holds the addresses of rs1 and rs2.

Besides, then we3 is high, the data (wd3) is written into the addressed holds by a3.

Furthermore, rd1 and rd2 output the value from the addresses holds by a1 and a2

respectively. Therefore, the functionality of regfile module is verified.

4.2.5 Arithmetic Logic Unit (alu) Waveform Analysis

The alu is an essential component of a CPU that handles arithmetic and logical

operations on binary data. It receives input data from the ID_IEx stage (SrcA and

SrcB) and perform various arithmetic operations based on signals from the ALU

decoder (ALUControl). The output is stored as ALUResults.

A part simulation waveform for alu is captured and shown in Figure 4.6.

Figure 4.23: Simulation waveform of alu

48

From Figure 4.6, instruction OR, XOR, ADD, BEQ, and SLT is simulated. With

different ALUControl, the alu operates different operations. For example, with

ALUControl = 0011, alu will perform OR operation. The inputs from SrcA and

SrcB are 0x0001 and 0x0005 respectively. The result of the operation is 0x0007

and stored in ALUResults. Therefore, the functionality of alu module is verified.

The analysis of the simulated alu waveform is tabulated in Table 4.3 below.

Table 4.3: Simulation output of alu

Operation
Input (hex) Output (hex)

SrcA SrcB ALUControl ALUResults

OR 00000003 00000005 0011 00000007

XOR 0000000c 00000007 0010 0000000b

ADD 0000000b 00000007 0000 00000012

BEQ 00000012 00000003 0001 0000000f

SLT 0000000c 00000007 0101 00000000

4.2.6 Arithmetic Logic Unit Decoder (aludec) Waveform Analysis

The aludec decodes the instructions (funct3, funct7b5 and opb5) and ALUOp from

the control unit to determine the types of operation that has to be performed by the

alu.

A part simulation waveform for aludec is captured and shown in Figure 4.7.

Figure 4.24: Simulation waveform of aludec

49

From Figure 4.7, rd represent the instruction. opb5, func3 and func7b5 are extracted

from rd. Besides, ALUOp is extracted from the control unit (maindec). With these

extracted inputs, aludec returns the appropriate ALUControl as output to determine

the operation. Therefore, the functionality of aludec is verified. The analysis of the

simulated aludec waveform is tabulated in Table 4.4 below.

Table 4.4: Simulation output of aludec

Operation
Input output

rd (hex) opb5 funct7b5 funct3 ALUOp ALUControl

ADD 004282B3 0 1 000 10 0000

OR 0023E233 1 0 110 10 0011

XOR 0041C2B3 1 0 100 10 0110

BEQ 02728863 1 1 000 01 0001

SLT 0041A233 1 0 010 10 0101

4.2.7 Main decoder (maindec) Waveform Analysis

The maindec is used to generate control signals based on the 7 bits opcode

(instruction[6:0]) of an instruction. Its purpose is to interpret the opcode and

determine the type of instruction being executed.

A part simulation waveform for maindec is captured and shown in Figure 4.8.

Figure 4.25: Simulation output of maindec

50

From Figure 4.8, 2 types of opcode simulation are shown – 0x0110011 and

0x1100011. 0x0110011 is categorized as R-type instruction. Therefore, the

corresponding control signal are RegWrite = 1, ImmSrc = xxx, ALUSrcA = 0,

ALUSrcB = 00, MemWrite= 0, ResultSrc = 00, Branch = 0, ALUOp = 10, and Jump

= 0. Besides, 0x1100011 is categorized as B-type instruction. Therefore, the

corresponding control signals are RegWrite = 0, ImmSrc = 010, ALUSrcA = 0,

ALUSrcB = 00, MemWrite= 0, ResultSrc = 00, Branch = 1, ALUOp = 01, and Jump

= 0. Other types of instructions such as lw, sw, I-type, and jal are verified through

the simulation and tabulated in Table 4.5. Therefore, the functionality of maindec

is verified.

Table 4.5: Simulation output of maindec

Control

Signal

Instruction

lw sw R-Type B-Type I-Type jal

Opcode[6:0] 0000011 0100011 0110011 1100011 0010011 1101111

RegWrite 1 0 1 0 1 1

ImmSrc 000 001 xxx 010 000 011

ALUSrcA 0 0 0 0 0 0

ALUSrcB 01 01 00 00 01 00

MemWrite 0 1 0 0 00 0

ResultSrc 01 00 00 00 000 10

Branch 0 0 0 1 0 0

ALUOp 00 00 10 01 10 00

Jump 0 0 0 0 0 1

4.2.8 Write Date Selection MUX (result_mux) Waveform Analysis

The result_mux is used to select ALUResults from ALU, ReadData from data

memory, and PCPlus from program counter based on ResultSrc inputs. ALUResults

is the address for the output from the ALU while ReadData is the data read from

data memory. PCPlus is the PC increment by 4 for each instruction cycle. When

51

bit 1 of ResultSrc is high, result_mux will select PCPlus as an output, else if bit 0

of ResultSrc is high, result_mux will select ReadData. Else, ALUResult will be

selected.

A part simulation waveform for result_mux is captured and shown in Figure 4.9.

The functionality of the module is verified by comparing the inputs and outputs

waveforms as shown in Table 4.6 below.

Figure 4.26: Simulation output of result_mux

From Figure 4.9, input d0, d1, d2 and s are represented as ALUResults, DataRead,

PCPlus, and ResultSrc respectively and output y is represented as Result.

Table 4.6: Simulation output of result_mux

Inputs Output

ResultSrc

(bin)

ALUResults

(hex)

DataRead

(hex)

PCPlus

(hex)

Result

(hex)

01 00000060 0000000e 0000003c 0000000e

00 00000000 x 00000000 00000000

00 00000020 x 00000040 00000020

10 x x 00000044 00000044

From Table 4.6, the output is PCPlus if ResultSrc is 2b’10. Besides, the output is

DataRead if ResultSrc is 2b’01. Moreover, the output is PCPlus if ResultSrc is

52

2b’00. The outputs are expected. Therefore, the functionality of result_mux is

verified.

4.2.9 Pipeline Register

The pipeline register is used to store information from previous stage and load them

to next stage. This ensures data can be carried forward correctly and allow

instructions to be executed through the pipeline.

4.2.9.1 IF_ID

IF_ ID register located in between fetch stage and decode stage. It helps to

store instructions (Instr), program counter (PC) and next cycle program

counter (PCPlus4) from the fetch stage and load them to decode stage on

the next cycle.

A part simulation waveform for IF_ID is captured and shown in Figure 4.10.

Figure 4.27: Simulation waveform of IF/ID register

From Figure 4.10, InstrF, PCF, and PCPlus4F represents the instruction,

program counter and next cycle program counter in fetch stage respectively.

Besides, InstrD, PCD, and PCPlus4D represents the instruction, program

counter and next cycle program counter in decode stage respectively. It was

53

noticed that the value of instruction, program counter, and next cycle

program counter from fetch stage is loaded to decode stage in the next clock

cycle. Therefore, the functionality of pipeline IF_ID is verified.

 4.2.9.2 ID_IEx

ID_IEx register located in between decode stage and execute stage. It helps

to store read data (RD1, RD2) from the register file, extended immediate

value (ImmExt), Instruction[11:7] (rd), Instruction[19:15] (rs1), and

Instruction[24:20] (rs2) from decode stage and load them to execute stage.

Besides, PC and PCPlus4F from IF_ID register were also carried forward

and stored to ID_IEx.

A part simulation waveform for ID_IEx is captured and shown in Figure

4.11.

Figure 4.28: Simulation waveform of ID/IEx register

From Figure 4.11, RD1D, RD2D, PCD, Rs1D, Rs2D, RdD, ImmExtD, and

PCPlusD are in decode stage whereas RD1E, RD2E, PCE, Rs1E, Rs2E, RdE,

54

ImmExtE, and PCPlusE are in execute stage. It was noticed that the values

from decode stage are loaded to the respective registers in execute stage in

the next clock cycle. Therefore, the functionality of ID_IEx is verified.

4.2.9.3 IEx_IMem

IEx_IMem register located in between execute stage and memory stage. It

helps to store the ALU results (ALUResults) and write data (WriteData)

from execute stage and load them in memory stage. At the same time,

Instruction[11:7] (rd) and PCPlus4F is carried forward and stored to

IEx_IMem.

A part simulation waveform for IEx_IMem is captured and shown in Figure

4.12.

Figure 4.29: Simulation waveform of IEx/IMem register

From Figure 4.12, ALUResultE, WriteDataE, RdE, and PCPlus4E are in

execute stage whereas ALUResultM, WriteDataM, RdM, and PCPlus4M

are in execute stage. It was noticed that the values from execute stage are

loaded to the respective registers in memory stage in the next clock cycle.

Therefore, the functionality of IEx_IMem is verified.

55

4.2.9.4 IMem_IW

IMem_IW is located in between memory stage and writeback stage. It helps

to store the ALU results (ALUResults) from the alu and read data (ReadData)

from data memory. At the same time, Instruction[11:7] (rd) and PCPlus4F

is carried forward and stored to IMem_IW.

A part simulation waveform for IMem/IW is captured and shown in Figure

4.13.

Figure 4.30: Simulation waveform of IMem/IW register

From Figure 4.13, ALUResultM, ReadDataM, RdM, and PCPlus4M are in

memory stage whereas ALUResultW, ReadDataW, RdW, and PCPlus4W

are in writeback stage. It was noticed that the values from memory stage are

loaded to the respective registers in writeback stage in the next clock cycle.

Therefore, the functionality of IMem_IW is verified.

4.2.10 Hazard Unit (hazardunit)

The hazard unit is used to detect situations where the sequential execution of

instructions may lead to incorrect behaviour due to data dependencies from the

56

previous instruction. For example, Figure 4.14 shows 2 instructions executed

sequentially.

addi x7 , x3, -9

or x4 , x7 , x2

Figure 4.314: Instruction sequence with hazard condition

The first instruction was executed addi and store the output into x7 register. Then,

the second instruction was executed or with the dependencies on first instruction

because x7 register is an input for second instruction. In this case, the second

instruction will get the wrong value of x7 if hazard unit is not existed. This is

because, the first instruction will only update the x7 register in the writeback stage,

which could not happen before the second instruction needs it. With hazard unit,

the output of the first instruction can be forwarded from pipeline register. Therefore,

the dependencies of write data can be mitigated rather than waiting for writeback

stage to write the register.

4.2.10.1 Forward Multiplexer A (forwardMuxA)

Forward Multiplexer A (forwardMuxA) is used to selected between RD1,

ALUResultsM, and ResultW based on forwardA control signal.

A part of simulation of forwardMuxA is shown in Figure 4.15. The

functionality of the module is verified by comparing the inputs and outputs

waveforms as shown in Table 4.7 below.

57

Figure 4.32: Simulation waveform of forwardMuxA

From Figure 4.15, input d0, d1, d2 and s are represented as RD1, ResultW,

ALUResultsM, and forwardA respectively and output y is represented as

Result.

Table 4.7: Simulation output of fowrardMuxA

Inputs Output

forwardA

(bin)

RD1 (hex) ResultW (hex) ALUResultsM

(hex)

Result

(hex)

00 0000000c 00000013 0000000e 0000000c

01 00000005 0000000e 00000000 0000000e

10 00000003 00000001 00000013 00000013

From Table 4.7, the output is RD1 if forwardA is 2b’00. Besides, the output

is ResultW if forwardA is 2b’01. Moreover, the output is ALUResultsM if

forwardA is 2b’10. The outputs are expected. Therefore, the functionality of

forwardMuxA is verified.

Forward Multiplexer A is used to handle the following 2 conditions.

1. EX/MEM.RegisterRd = ID/EX.RegisterRs

2. MEM/WB.RegisterRd = ID/EX.RegisterRs

58

Conditions 1 happens when the destination register (rd) in IEx/IMem

pipeline register is the same as the source register (rs) in ID/IEx pipeline

register. The example of this condition is shown in Figure 4.16 below.

addi x3 , x0, 12

addi x7 , x3, -9

Figure 4.33: Instruction sequence with hazard condition 1

From Figure 4.16, the 2 instructions are executed sequentially. The first

instruction addi has a destination register (rd) of register x3. Then, the

second instruction used the register x3 as source register (rs). As these

instructions are executed sequentially, the first instruction is one stage ahead

the second instruction. By the time the first instruction enters execute stage,

the second instruction enter decode stage. This condition causes hazard

because first instruction have not reach writeback stage to update the value

in register x3 before second instruction uses it.

Figure 4.17 shows the simulation of hazard condition 1.

Figure 4.34: Simulation waveform of hazard condition 1

59

The simulation on Figure 4.17 is based on the instructions in Figure 4.16

above. The first instruction is fetched in the first clock cycle whereas the

second instruction is fetched in the second clock cycle. At the fourth clock

cycle, the first instruction reached memory stage whereas the second

instruction reached execute stage. Then, it was noticed that the value of

destination register in memory stage (RdM) is equal to the value of source

register in execute stage (Rs1E). Therefore, hazard condition 1 is detected.

With hazard condition 1 being detected, forwardA output a control signal of

2b’10 to forward the ALUResultM from the memory stage to be used by the

second instruction.

Condition 2 happens when destination register (rd) in IMem/IW pipeline

register is the same as the source register (rs) in ID/IEx pipeline register.

The example of this condition is shown in Figure 4.18 below.

addi x7 , x3, -9

sub x4 , x5 , x2

xor x1, x7, x6

Figure 4.35: Instruction sequence with hazard condition 2

From Figure 4.18, these 3 instructions are executed sequentially. The first

instruction addi has a destination register (rd) of register x7, followed by

the second instruction sub which had no dependencies on the first

instruction. Then, the third instruction xor used register x7 as source register

which created dependencies on the first instruction. As these instructions

60

are executed sequentially, the first instruction is 2 stages ahead on the third

instruction. By the time the first instruction enters memory stage, the third

instruction enters execute stage. This condition causes hazard because the

first instruction have not reach writeback stage to update the value in

register x7 before the third instruction uses it.

Figure 4.19 shows the simulation of hazard condition 2.

Figure 4.36: Waveform simulation of hazard condition 2

The simulation on Figure 4.19 is based on the instructions in Figure 4.18

above. The first instruction is fetched in the first clock cycle followed by

the second instruction in the second clock cycle and the third instruction in

the third clock cycle. At the fifth clock cycle, the first instruction reached

writeback stage whereas the third instruction reached execute stage. Then,

it was noticed that the value of destination register in writeback stage (RdW)

is equal to the value of source register in execute stage (Rs1E). Therefore,

hazard condition 2 is detected. With hazard condition 2 being detected,

forwardA output a control signal of 2b’01 to forward the ResultW from the

writeback stage to be used by the third instruction.

61

4.2.10.2 Forward Multiplexer B (forwardMuxB)

Forward Multiplexer B (forwardMuxB) is used to selected between RD2,

ALUResultsM, and ResultW based on forwardB control signal.

A part of simulation of forwardMuxB is shown in Figure 4.20. The

functionality of the module is verified by comparing the inputs and outputs

waveforms as shown in Table 4.8 below.

Figure 4.37: Simulation waveform of forwardMuxB

From Figure 4.20, input d0, d1, d2 and s are represented as RD2, ResultW,

ALUResultsM, and forwardB respectively and output y is represented as

Result.

Table 4.8: Simulation output of forwardMuxB

Inputs Output

forwardB

(bin)

RD2 (hex) ResultW (hex) ALUResultsM

(hex)

Result

(hex)

00 00000000 80000000 00000001 00000000

01 0000002e abcde02e 00000084 abcde02e

10 00000020 00000001 abcde000 abcde000

From Table 4.8, the output is RD2 if forwardB is 2b’00. Besides, the output

is ResultW if forwardB is 2b’01. Moreover, the output is ALUResultsM if

62

forwardB is 2b’10. The outputs are expected. Therefore, the functionality

of forwardMuxB is verified.

Forward Multiplexer B is used to handle hazard condition 3 and 4 as shown

below.

3. EX/MEM.RegisterRd = ID/EX.RegisterRt

4. MEM/WB.RegisterRd = ID/EX.RegisterRt

Conditions 3 happens when the destination register (rd) in IEx/IMem

pipeline register is the same as the target register (rt) in ID/IEx pipeline

register. The example of this condition is shown in Figure 4.21 below.

or x4 , x7 , x2

xor x5 , x3 , x4

Figure 4.38: Instruction sequence of hazard condition 3

From Figure 4.21, the 2 instructions are executed sequentially. The first

instruction or has a destination register (rd) of register x4. Then, the second

instruction used the register x4 as target register (rt). As these instructions

are executed sequentially, the first instruction is one stage ahead the second

instruction. By the time the first instruction enters execute stage, the second

instruction enter decode stage. This condition causes hazard because first

instruction have not reach writeback stage to update the value in register x4

before second instruction uses it.

Figure 4.22 shows the simulation of hazard condition 3.

63

Figure 4.39: Simulation waveform of hazard condition 3

The simulation on Figure 4.22 is based on the instructions in Figure 4.21

above. The first instruction is fetched in the first clock cycle whereas the

second instruction is fetched in the second clock cycle. At the fourth clock

cycle, the first instruction reached memory stage whereas the second

instruction reached execute stage. Then, it was noticed that the value of

destination register in memory stage (RdM) is equal to the value of target

register in execute stage (Rs2E). Therefore, hazard condition 3 is detected.

With hazard condition 3 being detected, forwardB output a control signal of

2b’10 to forward the ALUResultM from the memory stage to be used by the

second instruction.

Condition 4 happens when destination register (rd) in IMem/IW pipeline

register is the same as the target register (rt) in ID/IEx pipeline register. The

example of this condition is shown in Figure 4.23 below.

or x4 , x7 , x2

xor x6 , x3 , x5

64

add x5, x3, x4

Figure 4.40: Instruction sequence of hazard condition 4

From Figure 4.23, these 3 instructions are executed sequentially. The first

instruction or has a destination register (rd) of register x4, followed by the

second instruction xor which had no dependencies on the first instruction.

Then, the third instruction add used register x4 as target register which

created dependencies on the first instruction. As these instructions are

executed sequentially, the first instruction is 2 stages ahead on the third

instruction. By the time the first instruction enters memory stage, the third

instruction enters execute stage. This condition causes hazard because the

first instruction have not reach writeback stage to update the value in

register x4 before the third instruction uses it.

Figure 4.24 shows the simulation of hazard condition 4.

Figure 4.41: Simulation waveform of hazard condition 4

65

The simulation on Figure 4.24 is based on the instructions in Figure 4.23

above. The first instruction is fetched in the first clock cycle followed by

the second instruction in the second clock cycle and the third instruction in

the third clock cycle. At the fifth clock cycle, the first instruction reached

writeback stage whereas the third instruction reached execute stage. Then,

it was noticed that the value of destination register in writeback stage (RdW)

is equal to the value of source register in execute stage (Rs2E). Therefore,

hazard condition 4 is detected. With hazard condition 4 being detected,

forwardB output a control signal of 2b’01 to forward the ResultW from the

writeback stage to be used by the third instruction.

Based on the simulation above, it was noticed that the hazard unit module was able

to identify all the hazard conditions. Besides, forwardMuxA was used in hazard unit

to mitigate the hazard condition 1 and hazard condition 2 by forwarding the

information from destination register in the memory or writeback stage to the

source register in the execute stage based on forwardA control signal. Furthermore,

forwardMuxB was used in hazard unit to mitigate the hazard condition 3 and hazard

condition 4 by forwarding the information from destination register in the memory

or writeback stage to the target register in the execute stage based on forwardB

control signal. Therefore, the functionality of the hazard unit module is verified.

4.3 Integrating RISC-V processor

The RISC-V processor is developed by integrating all the verified modules together.

The integration had 3 main units which namely controller unit, hazard unit, and

datapath unit. The controller unit helped to send out control signals based on

66

different instruction being executed. Besides, the hazard unit helped to detect

hazard conditions during the execution and mitigated them. Moreover, the datapath

unit helped to carry information throughout the 5 pipeline stages in the datapath.

Figure 4.25 showed the Verilog code of the integrated control unit.

67

Figure 4.42: Implementation of control_unit in Verilog code

Figure 4.26 showed the Verilog code of the integrated hazard unit.

Figure 4.43: Implementation of hazard_unit in Verilog code

68

Figure 4.27 showed the Verilog code for the integrated datapath unit.

69

Figure 4.44: Implementation of datapath_unit in Verilog code

These 3 main units are integrated into a main module to form a riscv_pip_27

module. Figure 4.28 shows the Verilog code of the integrated riscv_pip_27 module.

Figure 4.45: Implementation of riscv_pip_27 in Verilog code

Then, the riscv_pip_27 module is integrated with the imem and dmem module to

form the top design. The schematic of the top design is illustrated in Figure 4.29.

70

Figure 4.46: Schematic diagram of top design

71

Figure 4.30 showed the Verilog code for top design.

Figure 4.47: Implementation of top design in Verilog code

4.4 Testbench simulation of the top design

A simple testbench module is written to simulate the top design. The Verilog code

for the testbench module is illustrated in Figure 4.31.

Figure 4.48: Testbench for top design

72

The focus of the testbench is to check the ALU value for each clock cycle. In other

words, it is also checking the value of the destination register (rd) for each

instruction after they were executed. Form Figure xxx, the clock cycle for the

testbench is set to 100 ps. $monitor function is used in the testbench to print the

value of DataAdr when the value is changed. The value of DataAdr is obtained

from IEx/IMem pipeline register. Besides, it also acted as an input to the dmem

module.

The simulation result of the testbench is shown in Figure 4.32.

Figure 4.49: Simulation results of the testbench

From Figure 4.32, the results shown is based on the test sequence in Figure 4.1. The

first value shown is 0 because that is the initialized value for the ALU. Then, after

the first instruction is executed (addi x2, x0, 5), the value of the ALU shown is 5.

This is because, the output of this instruction is 5. Then, the second instruction (addi

x3, x0, 12) has an output of value 12 and stored in the destination register (x3).

73

Therefore, the next value shown from the simulation is 12. Moreover, for third

instruction (addi x7, x3, -9), there is a source register (x3) which is dependent on

the destination register from the second register. The output for the third instruction

is value 3. The output is expected because the value of register x3 is forwarded and

updated in second instruction before being used by the third instruction. This

forwarding feature was done by the hazard unit module. The rest of the values

shown are the output of the respective instructions. The functionality of the top

design is verified. Hence, the design of the 32-bit 5 stage pipeline RISC-V

processor is completed.

74

Chapter 5: Conclusion and Future work

In this project, a 32-bit 5 stage pipeline RISC-V processor is designed and

implemented using Verilog coding. The top design consists of 3 main modules that

are riscv_pip_27, imem and dmem. riscv_pip_27 module is an integrated module

forming by control_unit, hazard_unit, and datapath_unit module. The control_unit

module is used to send out control signals based on different instruction being

executed. Then, the hazard_unit module is used to detect different hazard

conditions during execution and mitigate them. Next, the datapath_unit module is

used to carry information in the datapath through pipeline registers. The imem

module is used to store the instruction of a program whereas the dmem is

responsible for storing and retrieving data.

Besides, several important modules such as alu, aludec, maindec, regfile,

result_mux, pc_mux, pipeline register (IF/ID, ID/IEx, IEx/IMem, and IMem/IW),

forwardMuxA and forwardMuxB were also designed and integrated in the processor.

The functionality of these modules were tabulated in table 5.1.

Table 5.1: Table of modules and their functionality

Module Functionality

alu Performing arithmetic and logical operations

aludec

Decode the instructions and receive signal from maindec to

determine the type of operations that had the be performed

maindec

Generate control signal from the Opcode to determine types

of instruction

75

regfile Storing and manipulating data during program execution

result_mux Select ALUResults, ReadData, or PCPlus as output

pc_mux Select PCPlus4 or JumpTarget to be executed

IF/ID Store data from fetch stage and load them in decode stage

ID/IEx Store data from decode stage and load them in execute stage

IEx/IMem

Store data from execute stage and load them in memory

stage

IMem/IW

Store data from memory stage and load them in writeback

stage

forwardMuxA

Handle following 2 hazard conditions

1. EX/MEM.RegisterRd = ID/EX.RegisterRs

2. MEM/WB.RegisterRd = ID/EX.RegisterRs

forwardMuxB

Handle following 2 hazard conditions

1. EX/MEM.RegisterRd = ID/EX.RegisterRt

2. MEM/WB.RegisterRd = ID/EX.RegisterRt

The functionality of these modules were and verified analyzing the waveform

generate by using ModelSim software. Besides, a testbench for top design were

written to verify the overall functionality of the 32-bit 5 stage pipeline RISC-V

processor.

However, there are some limitations in our RISC-V processor which can be

further improved in the future.

76

1. Implementing different extensions to the base integer instruction set

RISC-V had standardized a series of extensions that provide additional

functionality beyond the base integer instructions, such as floating-point

arithmetic, bit manipulation, vector operations and cryptography. These

extensions can be implemented or omitted depending on the design goals

and application requirements.

2. Improving the branch prediction accuracy and reducing the branch penalty

Branch prediction is a technique to guess the outcome of a conditional

branch instruction before it is executed. This allows the processor to fetch

and execute instructions from the predicted branch without waiting for the

actual branch instruction to be resolved. However, if the prediction is wrong,

the processor had to flush the pipeline and fetch instructions from the

correct branch, which causes a performance penalty. To improve the branch

prediction accuracy and reduce branch penalty, techniques such as static

branch prediction, dynamic branch prediction and branch history table can

be used.

3. Exploring different cache architecture and memory hierarchies

Cache is a small and fast memory that store frequently accessed data from

the main memory. Memory hierarchy is a system of multiple level of

memory with different sizes and speed. The goal of cache architecture and

memory hierarchy design is to reduce the average memory access time and

increase the memory bandwidth. To achieve this goal, different aspect such

as cache size, cache organization and cache mapping can be explored.

77

Reference

1. Urquhart, Roddy (29 March 2021). "What Does RISC-V Stand For? A

brief history of the open ISA". Systems & Design: Opinion.

Semiconductor Engineering.

2. D. Bhandarkar and D.W. Clark, “Performance from Architecture:

Comparing a RISC and a CISC with Similar Hardware Organization,”

Proceedings of the 4th Int’l. Conference on ASPLOS, Santa Clara,

California, April 8-11, 1991.

3. M. N. Topiwala and N. Saraswathi, "Implementation of a 32-bit MIPS

based RISC processor using Cadence," 2014 IEEE International

Conference on Advanced Communications, Control and Computing

Technologies, 2014, pp. 979-983, doi: 10.1109/ICACCCT.2014.7019240.

4. Kulshreshtha, A., Moudgil, A., Chaurasia, A. and Bhushan, B., 2021,

March. Analysis of 16-Bit and 32-Bit RISC Processors. In 2021 7th

International Conference on Advanced Computing and Communication

Systems (ICACCS) (Vol. 1, pp. 1318-1324). IEEE.

5. Islam, S., Chattopadhyay, D., Das, M.K., Neelima, V. and Sarkar, R.,

2006, September. Design of High-Speed-Pipelined Execution Unit of 32-

bit RISC Processor. In 2006 Annual IEEE India Conference (pp. 1-5).

IEEE.

6. Khairullah, S.S., 2022, June. Realization of a 16-bit MIPS RISC pipeline

processor. In 2022 International Congress on Human-Computer

https://semiengineering.com/what-does-risc-v-stand-for/
https://semiengineering.com/what-does-risc-v-stand-for/

78

Interaction, Optimization and Robotic Applications (HORA) (pp. 1-6).

IEEE.

7. Al-sudany, S.M., Al-Araji, A.S. and Saeed, B.M., 2021. FPGA-Based

Multi-Core MIPS Processor Design. IRAQI JOURNAL OF COMPUTERS,

COMMUNICATION, CONTROL & SYSTEMS ENGINEERING, 21(2).

8. Wang, W., Han, J., Cheng, X. and Zeng, X., 2021. An energy-efficient

cryptoextension design for RISC-V. Microelectronics Journal, 115,

p.105165

