

WEB-BASED IMAGE-AUGMENTED REALITY (AR)

 MATCHING GENERATOR

BY

BILL HUNDSON DAVID

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION SYSTEMS (HONOURS) INFORMATION SYSTEMS

ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

MAY 2023

WEB-BASED IMAGE-AUGMENTED REALITY (AR)

 MATCHING GENERATOR

BY

BILL HUNDSON DAVID

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION SYSTEMS (HONOURS) INFORMATION SYSTEMS

ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

MAY 2023

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: __

 __

 __

Academic Session: _____________

 I __

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 __________________________ _________________________

 __________________________ Supervisor’s name

 Date: _____________________ Date: ____________________

WEB-BASED IMAGE-AUGMENTED REALITY (AR)

MATCHING GENERATOR

MAY 2023

BILL HUNDSON DAVID

Kampung Tapaang,

Peti Surat 45,

89320 Telupid, Sabah.

15/9/2023

Syed Muhammad Bin Syed Omar

Text Box
15/09/2023

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 15/9/2023

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that Bill Hundson David (ID No: 18ACB01007) has completed

this final year project entitled “Web-Based Image-Augmented Reality (AR) Matching Generator”

under the supervision of Syed Muhammad Bin Syed Omar (Supervisor) from the Department of

Information Systems, Faculty of Information and Communication Technology.

I understand that University will upload softcopy of my final year project in pdf format into UTAR

Institutional Repository, which may be made accessible to UTAR community and public.

Yours truly,

(Bill Hundson David)

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “WEB-BASED IMAGE-AUGMENTED REALITY (AR)

MATCHING GENERATOR” is my own work except as cited in the references. The report

has not been accepted for any degree and is not being submitted concurrently in candidature

for any degree or other award.

Signature : _________________________

Name : _________________________

Date : _________________________

15/9/2023

Bill Hundson David

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

ACKNOWLEDGEMENTS

I would like to express my sincerest gratitude and appreciation to my supervisor and academic

advisor, Mr. Syed Muhammad Bin Syed Omar who has provided me invaluable guidance

throughout working on this project and throughout my years of studies at UTAR as a whole.

This project has been a source of vital hands-on experience for developing my first practical

application project. The lessons that I have gathered throughout the whole duration on

developing the system for this project are all immensely invaluable.

I would also like to extend my most heartfelt thanks to my entire family for the overwhelming

support that they have continuously provided me throughout my entire time studying at UTAR.

I especially would like to acknowledge the help that has been given by my younger sister who

has been the assistant in testing out the project system’s operations for the System

Implementation section of this report. Thank you, Elysia Jane. Most important of all, I

wholeheartedly express my unending gratitude for my mother, Fillista Jagnal, who has been

the backbone of my family for years and the one who has been financing my studies at UTAR.

All my achievements at this university were only possible thanks to her. With that, I therefore

dedicate this Final Year Project as well as my Bachelor’s Degree to her. Thank you, mommy.

Lastly, I would also like to remember my late father, David Siani. Right from the start, he had

always pushed me to continuously further my studies and climb the education ladder as high

as possible, right until the end of his lifetime. “Belajarlah ya, anak” were his final words to

me. I dedicate this work in loving memory of my father. May he rest in peace.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

ABSTRACT

This is a project paper on the development for a cross-platform augmented reality application.

To achieve its cross-platform nature, the completed system will be developed as a web-based

application. In addition to using standard JavaScript, the project will also be incorporating

React.js and Node.js to develop the system. In a nutshell, the project aims to deliver a system

for video conferencing albeit with enhanced functionalities through exploiting the potentials of

AR technology. Multiple video streams of users will be processed in real-time to extract the

prominent human subject in a given video scene. The extracted video image of multiple human

subjects will then be rendered and displayed within a single video scene. This is the process of

augmenting user video images onto a virtual environment. The virtual environment, also

referred to as the background element of the rendered output video, will be customizable to a

certain degree. This system offers a unique software solution to deliver an AR experience with

many creative implications. The completed system will incorporate the Selfie Segmentation

Model developed by MediaPipe to perform the segmentation process in order to separate the

foreground and background elements of a given video stream. The foreground subject refers to

the human subject in a video. The completed system will allow manipulation of the background

element. Other than that, the system will also utilize WebRTC technology to facilitate the video

communication aspect between users of the system. The successfully developed system will be

deployed to the web after which it will be publicly accessible through a given URL.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

TABLE OF CONTENTS

TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES ix

LIST OF TABLES xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Objectives 2

1.3 Project Scope and Direction 4

1.4 Contributions 5

1.5 Report Organization 6

CHAPTER 2 LITERATURE REVIEW 7

2.1 Review of the Existing Systems/Applications 7

2.2 Critical Remarks of Previous Works 11

2.3 Summary of the Existing Systems 12

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 13

3.1 System Design Diagram 13

3.1.1 System Architecture Diagram 13

3.1.2 Use Case Diagram and Description 15

3.1.3 Activity Diagram 19

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

CHAPTER 4 SYSTEM DESIGN 20

 4.1 System Block Diagram 20

 4.2 System Components Specifications 21

 4.3 System Components Interaction Operations 23

 4.4 System Development 27

CHAPTER 5 SYSTEM IMPLEMENTATION 68

 5.1 Hardware Setup 68

5.2 Software Setup 68

5.3 Web Deployment 71

5.4 System Operation 77

5.5 Implementation Issues and Challenges 83

5.6 Concluding Remark 84

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 85

6.1 Web Browser Compatibility Testing

85

6.2 Project Challenges 86

6.3 Objectives Evaluation 87

6.4 Concluding Remark 88

CHAPTER 7 CONCLUSION AND RECOMMENDATION 89

7.1 Conclusion 89

7.2 Recommendation 90

REFERENCES 91

WEEKLY LOG 92

POSTER 98

PLAGIARISM CHECK RESULT 99

FYP2 CHECKLIST 102

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

LIST OF FIGURES

Figure

Number

Title Page

Figure 2.1.1 Virtual monitors displayed on the AR interface 8

Figure 2.1.3 Visual Conditioning output 9

Figure 2.1.4 Two users with separate backgrounds 10

Figure 2.1.5 Two users matched to the same background 10

Figure 3.1.2 Use case diagram 15

Figure 3.1.3 Activity diagram 19

Figure 4.1.1 System Block Diagram 20

Figure 4.3.1 Interaction operations between the Call Operations Manager and

Connections Middleware with the Session States Store system

components

23

Figure 4.3.2 Interaction operations between the Call Operation Manager and

Media Segmentation Handler system components

23

Figure 4.3.3 Interaction operations between the Call Operations Manager and

Connections Middleware system components

24

Figure 4.3.4 Interaction operations between the Media Segmentation Handler

and Connections Middleware system components

25

Figure 4.3.5 Interaction operations between the Connections Middleware and

Communications Server system components

26

Figure 4.4.1 Terminal command create a .json package file 27

Figure 4.4.2 Configuration for the .json package file 27

Figure 4.4.3 Terminal command to install the required package dependencies 28

Figure 4.4.4 Terminal command to create a React.js application using the

Redux template

31

Figure 4.4.5 Terminal command to install the required package dependencies 32

Figure 4.4.6 The system’s file structure 46

Figure 5.3.1 Open Relay free TURN server credentials configuration 71

Figure 5.3.2 Creating a new repository on GitHub 72

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

Figure 5.3.3 Pushing the server component directory to the GitHub repository 72

Figure 5.3.4 The server component successfully uploaded to GitHub 73

Figure 5.3.5 Creating a new service by building and deploying from the Git

repository

73

Figure 5.3.6 Link to Configure the GitHub account to work with Render 73

Figure 5.3.7 Selecting the server component Git repository to link to Render 74

Figure 5.3.8 Connecting Render to the server component repository 74

Figure 5.3.9 Configurations for the web service deployment 75

Figure 5.3.10 Button to start deployment of the web service 75

Figure 5.3.11 Successful deployment of the system server component web

service

76

Figure 5.3.12 Installing gh-pages as a developer dependency 76

Figure 5.3.13 Terminal command for deploying to gh-pages 76

Figure 5.3.14 Successful deployment to GitHub Pages 76

Figure 5.4.1 System Homepage 77

Figure 5.4.2 Host Call Page 77

Figure 5.4.3 Join Call Page 78

Figure 5.4.4 Input validation for empty name field 78

Figure 5.4.5 Input validation when entering a non-existent call session ID 78

Figure 5.4.6 Page loading when creating a new call session as host 79

Figure 5.4.7 Call session ID to be shared with the connecting peer user 79

Figure 5.4.8 Start Segmentation button (left) to be clicked once peer has joined

call session

79

Figure 5.4.9 Call session page with the generated AR output video 80

Figure 5.4.10 Swap Video function to swap video background and segmentation

source

81

Figure 5.4.11 Custom Background function to upload a custom background

image

81

Figure 5.4.12 Image files of the AR output video saved using the Screenshot

function

82

Figure 5.4.13 Saved image of the AR output video 82

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

LIST OF TABLES

Table Number Title Page

Table 2.3.1 Features comparison of previous works with this project’s

system

12

Table 3.1.1 Host Call use case description 16

Table 3.1.2 Join Call use case description 16

Table 3.1.3 Transmit Local Video Stream use case description 17

Table 3.1.4 Display Peer Video use case description 17

Table 3.1.5 Generate AR Video use case description 18

Table 3.1.6 Leave Call use case description 18

Table 5.2.1 Software tools and technologies utilized in the system

development

69

Table 5.2.2 Node.js package dependencies implemented in the system 70

Table 6.1.1 Compatibility testing for running the system on different

web browsers

85

Table 6.3.1 Project Objectives Evaluation 87

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF ABBREVIATIONS

API Application Programming Interface

AR Augmented Reality

CSCW Computer Supported Collaborative Work

FYP Final Year Project

DOM Document Object Model

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

ICE Interactive Connectivity Establishment

ID Identification

IDE Integrated Development Environment

NAT Network Address Translation

NPM Node Package Manager

PC Personal Computer

SDP Session Description Protocol

STUN Session Traversal Utilities for NAT

TURN Traversal Using Relay NAT

UI User Interface

URL Uniform Resource Locator

UUID Universal Unique Identifier

WebRTC Web Real-Time Communication

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1

Introduction

1.1 Problem Statement and Motivation

Projecting a foreground image onto a desired background image is a technology that has existed

for many years. One of the most well-known examples of this technique is chroma keying or

better familiarized as using green screens. Chroma keying refers to a process where specific

elements of a particular color in a video or image is replaced with a different element. This

process dictates how green screens are used to segregate a foreground subject, typically a

person, and virtually replace the background environment. This technology has its use in

various context, popularly in video and image productions.

A more modern example is the virtual background feature used for video conferencing systems

such as those in Microsoft Teams and Zoom. This feature enables a virtual background to be

projected behind the user, enriching the video meeting experience. However, this feature is

intended to be used solely within the specific applications themselves. These are only among

the more well-known scenarios in which the user image-background matching technology is

practiced. There are various more potential ways this technology can be used.

The major constrain to current system implementations is that users a limited to using specific

systems intended for use only within the intended application use case. Furthermore, most

current implementations are through operating system dependent applications while also

requiring the devices to install the specific software application for access to their system. This

may be an issue when AR software providers decide to develop the application native to

specific platforms only. For example, Instagram’s AR camera feature is only accessible to users

on its social media platform. Therefore, there is an opportunity to develop more cross-platform

AR applications. Thanks to the rapid popularity of video conferencing systems due to the recent

Covid-19 pandemic, developers have come up with new API tools and algorithms which finally

enables development of web-based peer-to-peer video calling as well as AR applications.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

1.2 Objectives

The end-goal of this project foresees the successful development and deployment of a fully

functional web-based augmented reality application that would allow multi-user video image

matching to dynamic background image. There are several objectives tied to the development

and integration of key software components necessary for building the system. These

components will be developed using the specified development frameworks and libraries which

will be most suitable for developing modern web applications.

i. To develop a peer-to-peer video streaming module.

The functionalities of the application fundamentally rely on the capability for remote peer-to-

peer video communication. Therefore, a basic module to allow video communication between

remote users will be developed based on WebRTC technology. Development will also utilize

a popular open-source JavaScript library which is React.js alongside standard JavaScript to

build the front-end of the application. Furthermore, Node.js which is an open-source cross-

platform server environment together with the installation of required dependency modules

will be used to develop the back-end. The application should allow an initial user to host a call

and generate a unique call ID which can be shared to other users. A secondary user will then

be able to join in to the call session by providing the given call ID. This will then establish

peer-to-peer remote communication allowing transmission of video stream between the users.

ii. To develop a module for video capture and perform image segmentation.

A module will be developed to allow access to a device’s camera and capture a video stream

of the user. An algorithm will then attempt to identify the user’s image in the video stream and

perform segmentation to separate between the foreground (human subject) and background.

Development for this module will utilize the Selfie Segmentation Model developed by

MediaPipe. This is a machine learning model which enables segmentation of the portrait of a

person in a still or video image and will enable manipulation of the person’s background.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

iii. To integrate video streaming and image segmentation modules.

The peer-to-peer video streaming module will be further developed to work with the image

segmentation module. The application should identify the incoming video stream of the call

session participants. Segmentation is done on each video stream to separate between the human

subject identified within the video frame and their corresponding background. The application

will then be able to draw the segmented video images of a human subject from one user’s video

stream onto another user’s video stream in real-time. For example, the application can have the

segmented user video image of the call host projected on top of the peer call participant’s video

stream. This will make it look as if both users are in the same physical space.

iv. To deploy the augmented reality matching application to the web.

The fully integrated and working application will be deployed to the web so that it may be

publicly accessible to users using a web browser. The application will be split into client and

server ends, each of which will be hosted on separate web service hosting platforms. The client

side will be hosted through GitHub Pages which is suitable for hosting static sites such as the

front-end of the project application. Furthermore, the server side will be hosted using Render,

a cloud-based application hosting platform. The project will utilize the free-tier service that

Render offers which provides generous usage limitations suitable for projects of this scale.

v. To develop further enhancements for application functionalities.

Once the base application is successfully deployed, further development will be done as

necessary to bring added functionality and further enhancements to the application. For

instance, the application will provide the functionality to take a screenshot of the generated

output video. The application will also allow swapping between having either the one of the

user’s videos to be the background element with the other user to be augmented onto it.

Moreover, the application would have a custom background mode option that would allow the

user to upload an image file that the application will then use to set as the background element.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

1.3 Project Scope

The scope of this project involves the development of a cross-platform user to background

image-augmented reality matching application. The application will be web-based and thus

will be developed using the appropriate tools, technologies, and practices for building web-

based applications. The system will be developed mainly utilizing Node.js and React.js, a

component-based open-source JavaScript library alongside standard JavaScript. Furthermore,

the project will also incorporate WebRTC technology which will allow two remote users of the

system to establish video communications over the internet. Fundamentally, the target system

will be a hybrid between a video calling application and an augmented reality program. Once

developed, the application will be deployed to the web which will then be publicly accessible

to users by running the application on a web browser through a given URL.

The application program will be made to capture a video image of the user after which it will

perform segmentation to separate between the user’s image and background element. The

application will then ‘augment’ the user’s segmented video image onto the other user’s video,

making them appear as if they are physically together in the same environment. Additionally,

the application will provide functionalities for customization options to allow for a dynamic

background. Users are given different operational options for the final video output such as

taking screenshots and using a custom background image. The application is aimed to support

two users each on different devices collaborating within the same video calling session.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

1.4 Contributions

As a justification for working on this project, the completed system seeks to address the

limitations of modern AR applications. Firstly, most features of user image-background

matching are embedded within an application. For example, the virtual background feature in

video conferencing applications like Microsoft Teams and Zoom are intended to enhance the

video calling experience. The AR camera feature in social media applications such as

Facebook, Instagram, and Snapchat are intended for social postings or for entertainment

purposes. Thus, all these AR features are made available solely to improve the capabilities of

the individual applications themselves. This application will help fulfil the need for a user-

background matching tool that provides more general usage. It may be used for leisure

activities such as taking a photo together with a remote user or it may also be practical for more

formal purposes like capturing photos for e-graduation ceremonies for university students.

Furthermore, development of AR tools today mostly leans towards building native applications

for specific platforms. This may pose problems where an application is exclusively available

for only one platform, or that performance for the same application might differ on different

platforms. The choice to create this tool as a web-based application means it will be available

for use across all platforms, fulfilling the need for a cross-platform solution. Other than that,

this solution discards the need to use physical components such as specialized AR goggles or

marker objects to perform AR as well as making it functional wherever there is network access.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

1.5 Report Organization

This FYP II report consists of 7 chapters. Chapter 1 provides an introduction to the entire

project. It discusses the project background including problem statements to address and

motivations for engaging with this project. It also includes the project scope which discusses

what aspects are and are not covered, objectives to be met for the project to succeed, and the

potential impact or significance that the project hopes to bring. Chapter 2 includes the literature

review done and comparison between previous works to the completed system of this project.

Chapter 3 presents the development methodology, tools, and design for the completed system

including system architecture, system use cases, and system activity design models.

Furthermore, it also contains the timeline schedule applied in working on the project. Chapter

4 is the section which will describe in detail how the complete system is developed in its

entirety and will provide all the information necessary for rebuilding the system. Additionally,

the section will also include system design diagrams which shows the major system

components, each of their specifications, and how each component interacts with one another

to conduct system operations. Next is Chapter 5 which is closely tied to the contents in the

previous chapter. This section contains process descriptions for setting up and configuring the

system to have it deployed to the web. It also lists the hardware setup used for developing the

system and software setup which includes the software programs installed as a prerequisite

prior to starting the development work as well as all the Node package dependencies that the

complete system relies on. Moreover, the section also shows images taken of the system

operation in action and discusses issues and challenges faced during system implementation.

In Chapter 6, an evaluation is done to test the system’s compatibility to run on different web

browsers, major project challenges that were faced, and the overall evaluation on project

objectives that were achieved. Lastly is Chapter 7 which includes a concluding statement and

some words on recommendations for future readers of this paper to rebuild the system.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

Chapter 2

Literature Review

2.1 Review of the Existing Systems/Applications

2.1.1 Marker Tracking and HMD Calibration for a Video-based Augmented Reality

Conferencing System

This paper describes the works for an augmented reality conferencing system [1]. The system

was developed as a tool to support CSCW (Computer Supported Collaborative Work), where

a group of remotely located individuals work together on a project in real-time with the

assistance of software tools and related technologies. As written [1], the example given to

illustrate the system involves two groups of users: the AR user which will be the remote field

worker and desktop computer users who are also referred to as desk bound experts. The AR

user is equipped with an optical see-through head mounted display and a camera, with the

desktop computers being mounted on with cameras as well. The head mounted display worn

by the AR user is used to view the video image of desktop computer users which are captured

through the camera mounted on their computer. Similarly, the desktop computer users will be

able to view video image captured by the AR user’s camera.

Other sets of components involved is the use of small marked cards and a larger piece of paper

[1]. Each small marked card bears the identification for each desktop computer user and serves

as a placeholder for where virtual monitors will show up on when seen through the AR

interface. Each virtual monitor will display the camera image of the corresponding desktop

computer user according to the identification detected on each marked card. Lastly, the larger

piece of paper will be used to provide the interface for the virtual shared white board where the

users can utilize to do collaborative work on. Figure 2.1.1 is an image taken from the article

showcasing the desktop computer user’s video image displayed on the virtual monitors.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

Figure 2.1.1 Virtual monitors displayed on the AR interface

2.1.2 The Effect of Spatial Cues in Augmented Reality Video Conferencing

This paper describes a continuation of the work in [1]. Written in this paper is the introduction

of a set of new features added in as an upgrade to the previous system [1]. As described in [2],

the authors acknowledge a few weaknesses of the augmented reality conference system in [1].

One key upgrade to the system which is of interest to the research for this paper is the

elimination of the background scene for desktop computer users. It is mentioned how the

existence of the background alongside the user image in the virtual monitors causes a sense of

“discontinuity” from the real world [2]. Thus, the removal of the background in the virtual

monitor was done leaving only the desktop user’s image displayed on the virtual monitor.

Figure 2.1.2 is an image from the article showcasing the result of background elimination.

Figure 2.1.2 Elimination of background from user image

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

2.1.3 Visual Conditioning for Augmented-Reality-Assisted Video Conferencing

This work demonstrates an algorithm for a system that receives teleconferencing video and

processes it into the desired output which is called as visual conditioning [3]. This system is

intended for use in AR assisted video conferencing. Initially, the system first receives a raw

video teleconferencing image. The system will attempt to identify the foreground and

background elements in the video. Then, the boundary pixels of the foreground are captured,

wherein a drawing of foreground and background boundaries is then derived. A drawing area

for the background is then determined through the newly drawn boundaries. The system will

then proceed to add in the background. This can be done by selecting from sets of available

backgrounds. Alternatively, a new background may be designed according to characteristics of

the foreground such as its colors. Finally, the segmented foreground, drawing area, and

designed background are combined into a single composite image. Figure 2.1.3 is an image

taken from the paper illustrating the visual conditioning process.

Figure 2.1.3 Visual Conditioning output

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

2.1.4 Virtual Presence Via Mobile

This work discusses is a patent for a mobile video conferencing system [4]. In this system, the

video image of a user is first captured using the camera on their mobile device. This video is

then sent over to a server via cellular network for processing. The user initially has the option

to retain the original background in the video or replace it with a new one. If the user chooses

to replace the background, the server will firstly extract the foreground of the video to create a

new output, segmenting it from its background. The new output will have the background

replaced with a new background of the user’s choice. The final video output will then be

transmitted to the receiving user’s mobile device for viewing. Figures 2.1.4.1 and 2.1.4.2 are

images taken from this paper which illustrates background replacement for two user videos.

Figure 2.1.4 Two users with separate backgrounds

Figure 2.1.5 Two users matched to the same background

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

2.2 Critical Remarks of Previous Works

2.2.1 Marker Tracking and HMD Calibration for a Video-based Augmented Reality

Conferencing System

Strength – Uses physical markers to display peer users video streams on virtual monitors.

Allows for multiple user videos to appear within same video frame, creating the feeling as if

peer users are in the same physical room space.

Weakness – No actual segmentation is done on user video streams to separate between the

human subject and background. Human subjects are displayed on top of two layers of

background image resulting in them not blending in well together.

2.2.2 The Effect of Spatial Cues in Augmented Reality Video Conferencing

Strength – Background Subtraction Technique [2] is applied to user video streams with the

users having a single-colored background image. This means segmentation being done to

separate between the human subject and background. As a result, user video images are able to

blend in much better with the artificial background.

Weakness – This method still relies on using physical markers to display peer user video

streams where they can only be displayed on the virtual monitors, resulting in very limited

flexibility on how the human subjects are displayed in the AR video output.

2.2.3 Visual Conditioning for Augmented-Reality-Assisted Video Conferencing

Strength – This work introduces a system to be used in video teleconferencing. The system

has the advantage of being able to process multiple user video streams for human subject and

background segmentation. Additionally, the system is also able to analyze the foreground

subject to dynamically create a suitable background.

Weakness – Although able to perform human subject segmentation on multiple video streams,

the system does not blend them together into a single video. Each segmented human subjects

are still displayed on separate video outputs with distinct backgrounds.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

2.2.4 Virtual Presence Via Mobile

Strength – This work showcases an AR matching model similar to the ones used in many of

the modern applications. Ability to run on mobile devices allows for higher usage flexibility as

the system can be run by remote peers anywhere as long as the cellular network bandwidth

supports it. Moreover, users also have full control on background selection meaning they may

share the same background if they wish to.

Weakness – Similar to most modern applications, it is still only limited to augmenting human

subjects within separate video outputs. It does not support augmenting users to appear within

each other’s videos or within the same virtual environment.

2.3 Summary of the Existing Systems

Feature
System

2.2.1

System

2.2.2

System

2.2.3

System

2.2.4

Proposed

Solution

Segments

human subject

and background

 ✓ ✓ ✓ ✓

Functions

without physical

marker

 ✓ ✓ ✓

Works on

mobile devices
 ✓ ✓

Full background

customization
 ✓ ✓

Augmentation

of peer users

within the same

video/virtual

environment

 ✓

Table 2.3.1 Features comparison of previous works with this project’s system

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

Chapter 3

System Methodology/Approach

3.1 System Design Diagram

3.1.1 System Architecture Diagram

Figure 3.1.1 System architecture diagram

The above figure illustrates the architecture of the system to be built in this project. As a general

overview, the system’s architecture is built upon WebRTC technology for establishing peer-

to-peer connection between two or more system users. Once the connection is established,

peers will be able to transmit video streams to each other over the internet through their

browser. While peers are connected, the system will capture each user’s video stream and feed

it to the video segmentation algorithm as input. The algorithm will output a generated AR video

which will be displayed to the users. In order to establish the peer-to-peer connection, peer

users will first need to exchange various necessary information.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

First is the configuration data on media stream that will be transmitted which tells clients ‘what’

is to be communicated and the information regarding clients’ network connection which tells

‘how’ they will communicate. The signaling server will be responsible for handling this initial

data exchange. The signaling server acts as an intermediary to allow two remote peers discover

each other on a network, conduct negotiations for a connection, coordinate and control

connections, as well as terminate them if needed. The process begins when the local user or

client contacts the signaling server by sending an SDP (Session Description Protocol) offer

which contains configuration for media that the client intends to deliver. The signaling server

passes this SDP information to the remote user or peer client which it intends to establish a

connection with. The remote user will then store the SDP information it has received, replies

back with its own SDP information known as an SDP answer for the signaling server to receive

and pass it on back to the local user.

At this point, both clients have received each other’s SDP information. The next step is to have

the two clients exchange information regarding their respective network connections. This is

done by having the clients exchange their ICE (Interactive Connectivity Establishment)

candidates. ICE candidates are essentially sets of public IP address and port that clients may

utilize to connect with each other. ICE candidates can be retrieved by the client by contacting

the STUN (Session Traversal Utilities for NAT) server which allow clients to discover their

public IP address, port, and the NAT (Network Address Translation). The client will contact

the STUN server and in turn the server replies with ICE candidates. Both clients will exchange

this information with each other, again through the signaling server.

Once both clients have each other’s SDP information and ICE candidates, they will then be

able to establish a direct peer-to-peer connection. However, in the case that the STUN server

fails, clients will not be able to retrieve their ICE candidates and instead will rely on using the

TURN server to establish the connection. The TURN (Traversal Using Relay NAT) implies a

protocol for relaying network traffic, acting as an intermediary to allow clients to transmit data

to and from one another. This alternative method involves a client directly routing network

traffic which includes the media stream to the TURN server and then have it forward to other

peer clients. Although more direct, using the TURN server to establish connection is less

preferable as it introduces additional latency, negatively affecting system performance.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

3.1.2 Use Case Diagram and Description

Figure 3.1.2 Use case diagram

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

Use Case: Host call Actor: User

Purpose: For user to create a new call session and generate call ID.

Trigger: User clicks on “host call” button.

Normal Event Flow:

1. User clicks “host call” button and is redirected to a new page.

2. User inputs their name and clicks “host” button.

3. System contacts server to create a new call session with unique ID.

4. System creates new user and sets user as call host.

5. System adds user to call session’s participants list.

6. System redirects user to call session page.

Alternate Event Flows:

2a. An error is displayed if user leaves the name field empty.

3a. An error is displayed if system is unable to contact the server.

Table 3.1.1 Host Call use case description

Use Case: Join call Actor: User

Purpose: For user to join an existing call and establish peer-to-peer connection.

Trigger: User clicks on “join call” button.

Normal Event Flow:

1. User clicks “join call” button and is redirected to a new page.

2. User inputs their name with call ID and clicks “join” button.

3. System contacts server to verify if call session exists and is not full.

4. System creates new user and updates call session's participants list.

5. System redirects user to call session page.

Alternate Event Flows:

2a. An error is displayed if user leaves either the name or call ID field empty.

3a. An error is displayed if system unable to contact the server.

3b. An error is displayed if call session with the given ID does not exist.

3c. An error message will display to notify user if a call session is full.

Table 3.1.2 Join Call use case description

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

Use Case: Transmit local video stream Actor: User

Purpose: For capturing user video and transmit stream to other peers.

Trigger: When user is successfully redirected to a call session page.

Normal Event Flow:

1. System requests device camera permission access.

2. User grants camera permission access.

3. System accesses video stream captured through the camera.

4. System displays local preview of user’s video.

5. System transmits video stream to connected peers.

Alternate Event Flows:

2a. An error is displayed if user denies permission access.

5a. System will not transmit video stream if current user is the only call participant.

Table 3.1.3 Transmit Local Video Stream use case description

Use Case: Display peer video Actor: User

Purpose: For receiving and displaying connected peers’ video stream.

Trigger: When user is successfully redirected to a call session page.

Normal Event Flow:

1. System checks if other call participants exist.

2. System attempts to establish connection with other peers.

3. System retrieves incoming video stream from other peers.

4. System displays video preview from other call participants.

Alternate Event Flows:

1a. System will not proceed with next events if current user is the only participant.

2a. An error will be displayed if unable to establish peer-to-peer connection.

Table 3.1.4 Display Peer Video use case description

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

Use Case: Generate AR video Actor: User

Purpose: For processing user video streams to generate AR video output.

Trigger: When video stream from user is successfully captured and received.

Normal Event Flow:

1. System captures local user video stream.

2. System checks if other call participants exist.

3. System reads local and remote video stream.

4. System performs segmentation and AR matching process on videos.

5. System displays processed AR video output.

Alternate Event Flows:

3a. System will only read local video stream if current user is sole call participant.

Table 3.1.5 Generate AR Video use case description

Use Case: Leave call Actor: User

Purpose: To allow user disconnect from call session.

Trigger: When user clicks “leave call” button.

Normal Event Flow:

1. User clicks on “leave call” button.

2. System checks if other call participants exist.

3. System updates call session participants list.

4. Current user’s user object is destroyed.

5. System redirects user to application homepage.

Alternate Event Flows:

3a. If current user is the last participant, system will instead destroy call session.

Table 3.1.6 Leave Call use case description

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

3.1.3 Activity Diagram

Figure 3.1.3 Activity diagram

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

Chapter 4

System Design

4.1 System Block Diagram

Figure 4.1.1 System Block Diagram

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

Figure 4.1.1 shows the top-down system block design which visualizes the interrelationship

between the multiple components that comprises the system. The system components are

separated into two main groups namely the client side and server side. As shown in the figure,

the client components group consists of 4 system components while the server components

group has a single system server component. Each component encapsulates varying sets of

system application files housing functions, classes, and other data variables all interacting with

one another to deliver each component’s respective role. As a general overview, the Call

Operations Manager interacts with the Session States Store and Media Segmentation Handler

components to facilitate the major system functionality which is to establish and manage call

sessions between the application clients as well as process incoming media stream to perform

AR matching. To facilitate various operations between the remote application clients, these

components interact through the Connections Middleware component which acts as an

intermediary between the client components group and the Communications Server.

4.2 System Components Specifications

4.2.1 Call Operations Manager

This component makes up for the biggest bulk of the application’s code structure. The main

role of this component is to manage the overall operations and logic that are involved with

creating and destroying call sessions as well as facilitating real-time communications between

remote application users by connecting to and disconnecting them from the particular call

session. Consequently, this component encapsulates the application codes for building most of

the application’s front-end including the overall application user interface design. The UI

delivered through this component will provide the means for a user to host or join a call session,

view incoming video stream from a peer user, as well as view and conduct a number of

operations on the generated AR video output.

4.2.2 Session States Store

This component is essentially for storing and managing the application session states which

are temporary data necessary to the system flow and logic. The session states the component

should store includes the user’s identity, call session ID, call host, call participants list, and

loading overlay. These session state values are supplied to the other interacting components

through accessing the given get and set functions for the respective session states.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

4.2.3 Connections Middleware

This is the middleware component that will act as the medium to allow the application on the

client machine to ‘talk’ with the remote server. This component will also synonymously be in

the form of the signaling server. As previously explained, the signaling server enables two

remote peers to discover each other on a network and coordinate real-time communications

between them. The mechanism for which this component employs to facilitate communications

is through message passing. When a component wishes to interact with the remote server, it

does so by invoking one of the ‘emit’ functions provided by the signaling server. The target

method will emit a specific message to the remote server and will wait for the server to respond.

Upon receiving the response, it should communicate the information to other interacting

components so that they would act accordingly.

4.2.4 Communications Server

This is the remote server component for the application which is also regarded as an extension

to the signaling server. This component will be deployed as an independent Node.js application

separate from the client-side program. This remote server will be hosted on a cloud hosting

platform using Render. This component communicates with the client application through

message passing which is initiated by the Connections Middleware. Upon receiving an emit

message from the client, it will respond by emitting back the appropriate message. Among the

various data that this server will send to the client may include the server port number, call

session parameters, as well as calls to UI functions to name a few, all which are necessary to

allow application flow and logic to synchronize between the remote host and peer clients.

4.2.5 Media Segmentation Handler

This is the component fundamentally responsible for processing incoming user video streams

to produce the system’s intended AR video output. Once a connection is established between

the host and peer clients, this component will implement the MediaPipe Selfie Segmentation

Model to run the segmentation process on the video source which will either be the client or

peer’s video. Aside from generating the AR-image matching, this component also encapsulates

a number of functions that the user can trigger through interacting with the provided UI

elements to control how the application should render the output. This includes functions to

use a custom background and swap between using host or peer video background.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

4.3 System Components Interaction Operations

This subchapter will provide more detailed illustrations of the individual processes and

operations each system components carry out in order to interact with one other.

Figure 4.3.1 Interaction operations between the Call Operations Manager and Connections

Middleware with the Session States Store system components

Figure 4.3.2 Interaction operations between the Call Operation Manager and Media

Segmentation Handler system components

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

Figure 4.3.3 Interaction operations between the Call Operations Manager and Connections

Middleware system components

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

Figure 4.3.4 Interaction operations between the Media Segmentation Handler and

Connections Middleware system components

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

Figure 4.3.5 Interaction operations between the Connections Middleware and

Communications Server system components

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

4.4 System Development

There are a number of prerequisite software components that will require setting up prior to

starting the development work on the system. A complete list of these software components is

written in Chapter 5.2 Software Setup. This subchapter will focus on showcasing the steps

involved to develop the system from scratch.

4.4.1 Creating the Remote Server Application

This section demonstrates the steps in creating the remote server for the Communications

Server system component. To start, a new directory is created for the server. With the directory

opened in the IDE, which in this case using VS Code, the command in Figure 4.4.1 is executed

in the terminal to create a new .json package file. This file is for storing the installed package

dependencies which the server program relies on. Additionally, the entry point field is set to

server.js as seen in Figure 4.4.2. The other field values are just set to their defaults.

Figure 4.4.1 Terminal command create a .json package file

Figure 4.4.2 Configuration for the .json package file

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

Next, the package dependencies are installed through the following command in Figure 4.4.3.

Figure 4.4.3 Terminal command to install the required package dependencies

After the packages are installed, a JavaScript file named server.js is created. This file will be

the main server node application file. Below are the codes written in the file.

server.js

const express = require("express");

const http = require("http");

const { v4: uuidv4 } = require("uuid");

const cors = require("cors");

const cron = require("node-cron");

const { default: axios } = require("axios");

const PORT = process.env.PORT || 10000;

const app = express();

app.use(cors());

const server = http.createServer(app);

let connectedUsers = [];

let calls = [];

app.get("/api/call-exists/:callID", (req, res) => {

 const { callID } = req.params;

 const call = calls.find((call) => call.id === callID);

 if (call) {

 if (call.connectedUsers.length > 1) {

 return res.send({ callExists: true, callFull: true });

 } else {

 return res.send({ callExists: true, callFull: false });

 }

 } else {

 return res.send({ callExists: false });

 }

});

const io = require("socket.io")(server, {

 cors: {

 origin: "*",

 methods: ["GET", "POST"],

 },

 maxHttpBufferSize: 1e7,

});

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

io.on("connection", (socket) => {

 console.log(`User connected ${socket.id}`);

 socket.on("create-call", (data) => {

 createCallHandler(data, socket);

 });

 socket.on("join-call", (data) => {

 joinCallHandler(data, socket);

 });

 socket.on("disconnect", () => {

 disconnectHandler(socket);

 });

 socket.on("connection-signal", (data) => {

 signalingHandler(data, socket);

 });

 socket.on("connection-init", (data) => {

 connectionInitHandler(data, socket);

 });

 socket.on("ar-image-matcher", (data) => {

 const { tempCallID } = data;

 io.in(tempCallID).emit("ar-image-matcher");

 });

 socket.on("swap-video", (data) => {

 const { tempCallID } = data;

 io.in(tempCallID).emit("swap-video");

 });

 socket.on("reset", (data) => {

 const { tempCallID } = data;

 io.in(tempCallID).emit("reset");

 });

 socket.on("custom-background", (data) => {

 const { tempCallID, img } = data;

 const imgFile = { img };

 io.in(tempCallID).emit("custom-background", imgFile);

 });

 socket.on("end-call", (data) => {

 const { tempCallID } = data;

 io.in(tempCallID).emit("end-call");

 });

 socket.on("await-feed", (data) => {

 const { tempCallID } = data;

 io.in(tempCallID).emit("ar-matching");

 });

 socket.on("signal-loader", (data) => {

 const { tempCallID } = data;

 io.in(tempCallID).emit("signal-loader");

 });

});

const createCallHandler = (data, socket) => {

 const { identity } = data;

 const callID = uuidv4().substring(0, 4);

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

 const newUser = {

 identity,

 id: uuidv4(),

 socketID: socket.id,

 callID,

 };

 connectedUsers = [...connectedUsers, newUser];

 const newCall = {

 id: callID,

 connectedUsers: [newUser],

 };

 socket.join(callID);

 calls = [...calls, newCall];

 socket.emit("call-id", { callID });

 socket.emit("call-update", { connectedUsers: newCall.connectedUsers });

};

const joinCallHandler = (data, socket) => {

 const { identity, callID } = data;

 const newUser = {

 identity,

 id: uuidv4(),

 socketID: socket.id,

 callID,

 };

 const call = calls.find((call) => call.id === callID);

 call.connectedUsers = [...call.connectedUsers, newUser];

 socket.join(callID);

 connectedUsers = [...connectedUsers, newUser];

 call.connectedUsers.forEach((user) => {

 if (user.socketID !== socket.id) {

 const data = {

 connectedUserSocketID: socket.id,

 };

 io.to(user.socketID).emit("connection-prepare", data);

 }

 });

 io.to(callID).emit("call-update", { connectedUsers: call.connectedUsers });

};

const disconnectHandler = (socket) => {

 const user = connectedUsers.find((user) => user.socketID === socket.id);

 if (user) {

 const call = calls.find((call) => call.id === user.callID);

 call.connectedUsers = call.connectedUsers.filter(

 (user) => user.socketID !== socket.id

);

 socket.leave(user.callID);

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

 if (call.connectedUsers.length > 0) {

 console.log("call.connectedUsers.length > 0");

 io.to(call.id).emit("user-disconnected", { socketID: socket.id });

 io.to(call.id).emit("end-call");

 } else {

 calls = calls.filter((c) => c.id !== call.id);

 }

 }

};

const signalingHandler = (data, socket) => {

 const { connectedUserSocketID, signal } = data;

 const signalingData = { signal, connectedUserSocketID: socket.id };

 io.to(connectedUserSocketID).emit("connection-signal", signalingData);

};

const connectionInitHandler = (data, socket) => {

 const { connectedUserSocketID } = data;

 const initData = { connectedUserSocketID: socket.id };

 io.to(connectedUserSocketID).emit("connection-init", initData);

};

if (server.listen(PORT, () => {})) {

 cron.schedule("0,15,30,45 * * * * *", () => {

 axios

 .get("https://image-ar-matcher.onrender.com")

 .then((response) => {

 response = null;

 })

 .catch((response) => {

 response = null;

 });

 });

}

4.4.2 Initial Setup of the Main Client Application

This section will demonstrate the initial setup for the main client-side application which makes

up the major bulk of the system’s program structure. To begin, a new directory is created where

it will be opened in VS Code for us to create a new React.js application to. Once opened in VS

Code, the following command in Figure 4.4.4 is executed in the terminal where client being

the name of the application. This will create a new React.js application built with the Redux

template which will be used in developing the Session States Store system component later.

Figure 4.4.4 Terminal command to create a React.js application using the Redux template

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

Inside the newly created React application directory, some cleaning up may be done to remove

additional files that would not be essential to the system. These include App.test.js, logo.svg,

setupTests.js, and the features directory along with all its content. Of course, updates should

be made accordingly to any files that had references to those files removed. Additionally, the

app folder that contains the store.js file should also be renamed to store for convenience. Lastly,

the following command in Figure 4.4.5 is run to install the Node package dependencies for this

client application. Details on each dependency is written further in Chapter 5.2.

Figure 4.4.5 Terminal command to install the required package dependencies

4.4.3 Creating the Redux Store

This section showcases configuring the Session States Store system component using the

Redux state management library. Inside the store directory containing the store.js file, two new

files are created namely actions.js and reducer.js. Below are the source codes for each file.

actions.js

const Actions = {

 SET_IS_CALL_HOST: "SET_IS_CALL_HOST",

 SET_IDENTITY: "SET_IDENTITY",

 SET_CALL_ID: "SET_CALL_ID",

 SET_SHOW_LOADING_OVERLAY: "SET_SHOW_LOADING_OVERLAY",

 SET_PARTICIPANTS: "SET_PARTICIPANTS",

};

export const setIsCallHost = (isCallHost) => {

 return {

 type: Actions.SET_IS_CALL_HOST,

 isCallHost,

 };

};

export const setIdentity = (identity) => {

 return {

 type: Actions.SET_IDENTITY,

 identity,

 };

};

export const setCallID = (callID) => {

 return {

 type: Actions.SET_CALL_ID,

 callID,

 };

};

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

export const setShowLoadingOverlay = (showLoadingOverlay) => {

 return {

 type: Actions.SET_SHOW_LOADING_OVERLAY,

 showLoadingOverlay,

 };

};

export const setParticipants = (participants) => {

 return {

 type: Actions.SET_PARTICIPANTS,

 participants,

 };

};

export default Actions;

reducer.js

import Actions from "./actions";

const initState = {

 identity: "",

 isCallHost: false,

 callID: null,

 showLoadingOverlay: true,

 participants: [],

};

const reducer = (state = initState, action) => {

 switch (action.type) {

 case Actions.SET_IS_CALL_HOST:

 return {

 ...state,

 isCallHost: action.isCallHost,

 };

 case Actions.SET_CALL_ID:

 return {

 ...state,

 callID: action.callID,

 };

 case Actions.SET_IDENTITY:

 return {

 ...state,

 identity: action.identity,

 };

 case Actions.SET_SHOW_LOADING_OVERLAY:

 return {

 ...state,

 showLoadingOverlay: action.showLoadingOverlay,

 };

 case Actions.SET_PARTICIPANTS:

 return {

 ...state,

 participants: action.participants,

 };

 default:

 return state;

 }

};

export default reducer;

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

store.js

import { configureStore } from "@reduxjs/toolkit";

import reducer from "./reducer";

export const store = configureStore({

 reducer: reducer,

});

export default store;

4.4.4 Creating the WebRTC Module

This section demonstrates the implementation of the WebRTC open framework that will

provide the real-time communications capability for the system. Inside the src directory, a new

directory named utils is created. In the new directory, a new JavaScript file is added named

api.js of which the codes for are given below. Next, another file named webRTCHandler.js is

also created. As its name implies, this file will be the main handler for the system’s WebRTC

module which accommodates various functions that can be called externally by the other

system. This WebRTC handler primarily works in conjunction with the signaling server in

order to establish real-time communications between remote clients. Calling the

getLocalVideoAndInitConnection function will have the application to start capturing the

client’s local video stream and make a call to the signaling server to create or join a call session.

To create the signaling server, a new file named signalingServer.js is added to the utils

directory. The primary role of the signaling server is to facilitate message passing between this

client application and the remote server. When the web application page is opened on a

browser, it will immediately attempt to establish a handshake with the remote server which

upon successful reception, a socket instance is instantiated which will be the point for the

signaling server to make contact with the remote server. Fundamentally, all the signaling server

does is to listen for and emit events to and from the remote server. The functions for the event

listeners are denoted as socket.on while the event emitters are implied by the socket.emit

functions. Event emitting is done to request for certain data from the remote server or for

sending data that the server should utilize. Furthermore, the signaling server constantly runs

event listeners to listen for responses emitted by the remote server. Upon reception of an

emitted event, the signaling server would optionally assign any data object received to a new

variable instance and execute the appropriate actions that the event listener has been specified

to do. The coding for webRTCHandler.js and signalingServer.js are as given in the next pages.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

api.js

import axios from "axios";

const serverAPI = "https://image-ar-matcher.onrender.com/api";

export const getCallExists = async (callID) => {

 const response = await axios.get(`${serverAPI}/call-exists/${callID}`);

 return response.data;

};

webRTCHandler.js

import { setShowLoadingOverlay } from "../store/actions";

import store from "../store/store";

import * as signalingServer from "./signalingServer";

import Peer from "simple-peer";

import SegmentationHandler from "./segmentationHandler";

import { showUtilityButtons } from "../pages/call/videoSection/VideoButtons";

const defaultConstraints = {

 audio: false,

 video: {

 width: "1920",

 height: "1080",

 },

};

let localStream;

let isHost = false;

let tempConnectedUserSocketID;

export const getLocalVideoAndInitConnection = async (

 isCallHost,

 identity,

 callID = null

) => {

 navigator.mediaDevices

 .getUserMedia(defaultConstraints)

 .then((stream) => {

 if (isCallHost) {

 isHost = true;

 }

 localStream = stream;

 showLocalVideoPreview(localStream);

 isCallHost

 ? signalingServer.createCall(identity)

 : signalingServer.joinCall(identity, callID);

 })

 .catch((err) => {

 console.log("Failed to access webcam.");

 console.log(err);

 });

};

let peers = {};

let streams = [];

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

const getConfiguration = () => {

 return {

 iceServers: [

 {

 urls: "stun:a.relay.metered.ca:80",

 },

 {

 urls: "turn:a.relay.metered.ca:80",

 username: "1e845039e49ee8c52cf102ef",

 credential: "kIyLpMJOFcmNx5g/",

 },

 {

 urls: "turn:a.relay.metered.ca:80?transport=tcp",

 username: "1e845039e49ee8c52cf102ef",

 credential: "kIyLpMJOFcmNx5g/",

 },

 {

 urls: "turn:a.relay.metered.ca:443",

 username: "1e845039e49ee8c52cf102ef",

 credential: "kIyLpMJOFcmNx5g/",

 },

 {

 urls: "turn:a.relay.metered.ca:443?transport=tcp",

 username: "1e845039e49ee8c52cf102ef",

 credential: "kIyLpMJOFcmNx5g/",

 },

],

 };

};

The getConfiguration function returns TURN server credentials configurations for preparing

peer connections. Acquiring these credentials is detailed in Chapter 5.3 Web Deployment.

export const prepareNewPeerConnection = (

 connectedUserSocketID,

 isInitiator

) => {

 const configuration = getConfiguration();

 peers[connectedUserSocketID] = new Peer({

 initiator: isInitiator,

 config: configuration,

 stream: localStream,

 });

 peers[connectedUserSocketID].on("signal", (data) => {

 const signalData = {

 signal: data,

 connectedUserSocketID: connectedUserSocketID,

 };

 signalingServer.signalPeerData(signalData);

 });

 peers[connectedUserSocketID].on("stream", (stream) => {

 addStream(stream, connectedUserSocketID);

 streams = [...streams, stream];

 });

};

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

export const signalDataHandler = (data) => {

 peers[data.connectedUserSocketID].signal(data.signal);

};

export const removePeerConnection = (data) => {

 const { socketID } = data;

 const videoContainer = document.getElementById(`${socketID}-video-container`);

 const videoElement = document.getElementById(`${socketID}-video`);

 if (videoContainer && videoElement) {

 const tracks = videoElement.srcObject.getTracks();

 tracks.forEach((t) => t.stop());

 videoElement.srcObject = null;

 videoContainer.removeChild(videoElement);

 videoContainer.parentNode.removeChild(videoContainer);

 if (peers[socketID]) {

 peers[socketID].destroy();

 }

 delete peers[socketID];

 }

};

const showLocalVideoPreview = (stream) => {

 const videosContainer = document.getElementById("videos_container");

 videosContainer.classList.add("videos_container");

 const videoContainer = document.createElement("div");

 videoContainer.id = "local-video-container";

 videoContainer.classList.add("video_track_container");

 const videoElement = document.createElement("video");

 videoElement.autoplay = true;

 videoElement.muted = true;

 videoElement.srcObject = stream;

 videoElement.id = "local-video";

 videoElement.classList.add("video");

 videoElement.onloadedmetadata = () => {

 videoElement.play();

 };

 videoContainer.appendChild(videoElement);

 videosContainer.appendChild(videoContainer);

};

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

const addStream = (stream, connectedUserSocketID) => {

 const videosContainer = document.getElementById("videos_container");

 const videoContainer = document.createElement("div");

 videoContainer.id = `${connectedUserSocketID}-video-container`;

 videoContainer.classList.add("video_track_container");

 const videoElement = document.createElement("video");

 videoElement.autoplay = true;

 videoElement.muted = true;

 videoElement.srcObject = stream;

 videoElement.id = `${connectedUserSocketID}-video`;

 videoElement.classList.add("video");

 videoElement.onloadedmetadata = () => {

 videoElement.play();

 };

 videoContainer.appendChild(videoElement);

 videosContainer.appendChild(videoContainer);

 tempConnectedUserSocketID = connectedUserSocketID;

 store.dispatch(setShowLoadingOverlay(false));

};

export const ARImageMatcher = () => {

 const videosContainer = document.getElementById("videos_container");

 const AROutputContainer = document.createElement("div");

 AROutputContainer.id = "ar-output-container";

 AROutputContainer.classList.add("ar_output_container");

 const canvasElement = document.createElement("canvas");

 canvasElement.id = "ar-output-canvas";

 canvasElement.classList.add("ar_output_canvas");

 canvasElement.width = 1920;

 canvasElement.height = 1080;

 let hostVideoElement, peerVideoElement;

 if (isHost) {

 hostVideoElement = document.getElementById("local-video");

 peerVideoElement = document.getElementById(

 `${tempConnectedUserSocketID}-video`

);

 } else {

 hostVideoElement = document.getElementById(

 `${tempConnectedUserSocketID}-video`

);

 peerVideoElement = document.getElementById("local-video");

 }

 AROutputContainer.appendChild(canvasElement);

 videosContainer.appendChild(AROutputContainer);

 showUtilityButtons();

 SegmentationHandler(

 hostVideoElement.id,

 peerVideoElement.id,

 canvasElement.id

);

};

export const getIsHost = () => {

 return isHost;

};

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

signalingServer.js
import io from "socket.io-client";

import { setCallID, setParticipants } from "../store/actions";

import store from "../store/store";

import * as webRTCHandler from "./webRTCHandler";

import {

 customBackground,

 resetSegmentation,

 swapVideo,

} from "./segmentationHandler";

import { leaveCallHandler } from "../pages/call/videoSection/LeaveCallButton";

import { setShowLoadingOverlay } from "../store/actions";

const SERVER = "https://image-ar-matcher.onrender.com";

let socket = null;

let tempCallID;

export const connectWithSocketIOServer = () => {

 socket = io(SERVER);

 socket.on("connect", () => {

 console.log("Successfully connected with socket.io server");

 console.log(socket.id);

 });

 socket.on("call-id", (data) => {

 const { callID } = data;

 tempCallID = callID;

 store.dispatch(setCallID(callID));

 });

 socket.on("call-update", (data) => {

 const { connectedUsers } = data;

 store.dispatch(setParticipants(connectedUsers));

 });

 socket.on("connection-prepare", (data) => {

 const { connectedUserSocketID } = data;

 webRTCHandler.prepareNewPeerConnection(connectedUserSocketID, false);

 socket.emit("connection-init", {

 connectedUserSocketID: connectedUserSocketID,

 });

 });

 socket.on("connection-signal", (data) => {

 webRTCHandler.signalDataHandler(data);

 });

 socket.on("connection-init", (data) => {

 const { connectedUserSocketID } = data;

 webRTCHandler.prepareNewPeerConnection(connectedUserSocketID, true);

 });

 socket.on("user-disconnected", (data) => {

 webRTCHandler.removePeerConnection(data);

 leaveCallHandler();

 });

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

socket.on("ar-image-matcher", () => {

 webRTCHandler.ARImageMatcher();

 });

 socket.on("swap-video", () => {

 swapVideo();

 store.dispatch(setShowLoadingOverlay(false));

 });

 socket.on("reset", () => {

 resetSegmentation();

 store.dispatch(setShowLoadingOverlay(false));

 });

 socket.on("custom-background", (data) => {

 const { img } = data;

 customBackground(img, false);

 store.dispatch(setShowLoadingOverlay(false));

 });

 socket.on("end-call", () => {

 leaveCallHandler();

 });

 socket.on("signal-loader", () => {

 store.dispatch(setShowLoadingOverlay(true));

 });

};

export const createCall = (identity) => {

 const data = {

 identity,

 };

 socket.emit("create-call", data);

};

export const joinCall = (identity, callID) => {

 const data = {

 identity,

 callID,

 };

 tempCallID = callID;

 socket.emit("join-call", data);

};

export const signalPeerData = (data) => {

 socket.emit("connection-signal", data);

};

export const signalARImageMatcher = () => {

 const data = { tempCallID };

 socket.emit("ar-image-matcher", data);

};

export const signalSwapVideo = () => {

 signalLoader();

 const data = { tempCallID };

 socket.emit("swap-video", data);

};

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

export const signalReset = () => {

 signalLoader();

 const data = { tempCallID };

 socket.emit("reset", data);

};

export const signalCustomBackground = (img) => {

 signalLoader();

 const data = { tempCallID, img };

 socket.emit("custom-background", data);

};

export const endCall = () => {

 const data = { tempCallID };

 socket.emit("end-call", data);

};

const signalLoader = () => {

 const data = { tempCallID };

 socket.emit("signal-loader", data);

};

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

4.4.5 Creating the Image-AR Matching Module

This section demonstrates building the Media Segmentation Handler system component which

will deliver the application’s intended capability to generate image to AR matching. This

module constitutes of a single application file; segmentationHandler.js that is created inside

the utils directory. Referring to coding, the SegmentationHandler function is first run as soon

as two remote clients successfully join a call session together. Inside webRTCHandler.js, the

SegmentationHandler function is called while passing in the host and peer user HTML video

element ID as well as the output HTML canvas element ID to the function’s parameters. On

every initial run, the remote peer user’s video is set as the media source for the algorithm to

run the segmentation process on. The function to run the video segmentation is the

sendToMediaPipe function where the peer user’s video is passed in as the image source.

onResults is the function that executes to generate the final output image frames. It takes in

results as parameter which is the resulting image frame after it has been processed for

segmentation through the sendToMediaPipe function. The onResults function reiterates with

every frame of the segmented image received and with each execution it draws the background

image, segmented image and the segmentation mask with them layered on top of one another

onto the output HTML canvas element. This process creates the effect that the human subject

in the segmented video frame is augmented onto the virtual environment which is the

background video image. Furthermore, calling the swapVideo function enables switching

between having either the host or peer to have their video become the segmentation source.

This will then allow the host user to be augmented onto the peer’s video environment instead.

Additionally, there is also the customBackground function which allows the user to upload

their own image file and have it drawn onto the output canvas as the background element.

Unfortunately, due to the limitations of the Selfie Segmentation Model, only one instance of

the SelfieSegmentation object can exist at one time. Only one video source may be processed

for segmentation, meaning the system will not be able to augment both host and peer users

together in the output video when the custom background mode is selected. Furthermore, there

is also the screenshotHandler function which allows saving an image of the output video and

the resetSegmentation function which resets the segmentation mode to its initial state.

Whenever a user triggers a function, a call is made to the signaling server to emit an event to

the remote server, emit the event back to the other peer user, and also trigger the specified

function for them. This is done to keep application operation for both users synchronized.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

segmentationHandler.js

import { SelfieSegmentation } from "@mediapipe/selfie_segmentation";

import { signalCustomBackground } from "./signalingServer";

import canvasToImage from "canvas-to-image";

let isVideoSwapped = false;

let isCustomBackground = false;

let tempInitiator = false;

let stopSegmentation = false;

let tempHostVideoID, tempPeerVideoID, tempCanvasID;

let backgroundImageURL;

function SegmentationHandler(hostVideoID, peerVideoID, canvasID) {

 if (

 tempHostVideoID !== null &&

 tempPeerVideoID !== null &&

 tempCanvasID !== null

) {

 tempHostVideoID = hostVideoID;

 tempPeerVideoID = peerVideoID;

 tempCanvasID = canvasID;

 }

 let backgroundVideoElement;

 let segmentedVideoElement;

 if (!isCustomBackground) {

 if (isVideoSwapped) {

 backgroundVideoElement = document.getElementById(tempPeerVideoID);

 segmentedVideoElement = document.getElementById(tempHostVideoID);

 console.log("Peer video is set as background");

 } else {

 backgroundVideoElement = document.getElementById(tempHostVideoID);

 segmentedVideoElement = document.getElementById(tempPeerVideoID);

 console.log("Host video is set as background");

 }

 } else {

 let backgroundImg = new Image();

 backgroundImg.src = backgroundImageURL;

 backgroundVideoElement = backgroundImg;

 if (isVideoSwapped) {

 segmentedVideoElement = document.getElementById(tempPeerVideoID);

 console.log("Running segmentation on peer video");

 } else {

 segmentedVideoElement = document.getElementById(tempHostVideoID);

 console.log("Running segmentation on host video");

 }

 }

 const canvasElement = document.getElementById(tempCanvasID);

 const canvasCtx = canvasElement.getContext("2d");

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

 function onResults(results) {

 canvasCtx.save();

 canvasCtx.clearRect(0, 0, canvasElement.width, canvasElement.height);

 canvasCtx.globalCompositeOperation = "source-over";

 canvasCtx.drawImage(

 results.segmentationMask,

 0,

 0,

 canvasElement.width,

 canvasElement.height

);

 canvasCtx.globalCompositeOperation = "source-in";

 canvasCtx.drawImage(

 results.image,

 0,

 0,

 canvasElement.width,

 canvasElement.height

);

 canvasCtx.globalCompositeOperation = "destination-over";

 canvasCtx.drawImage(

 backgroundVideoElement,

 0,

 0,

 canvasElement.width,

 canvasElement.height

);

 canvasCtx.restore();

 if (stopSegmentation) {

 closeSegmentation();

 stopSegmentation = false;

 }

 }

 const selfieSegmentation = new SelfieSegmentation({
 locateFile: (file) => {

 return `https://cdn.jsdelivr.net/npm/@mediapipe/selfie_segmentation/${file}`;

 },

 });

 selfieSegmentation.setOptions({

 modelSelection: 1,

 selfieMode: false,

 });

 selfieSegmentation.onResults(onResults);

 const sendToMediaPipe = async () => {

 try {

 await selfieSegmentation.send({ image: segmentedVideoElement });

 requestAnimationFrame(sendToMediaPipe);

 } catch (e) {

 console.log(e);

 }

 };

 sendToMediaPipe();

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

 const closeSegmentation = () => {
 selfieSegmentation.close();

 };

}

const restartSegmentation = () => {

 stopSegmentation = true;

 return SegmentationHandler(tempHostVideoID, tempPeerVideoID, tempCanvasID);

};

export const swapVideo = () => {

 isVideoSwapped = !isVideoSwapped;

 restartSegmentation();

};

export const customBackground = (img, initiator) => {

 if (initiator) {

 backgroundImageURL = img;

 isCustomBackground = true;

 tempInitiator = true;

 return;

 }

 if (!tempInitiator) {

 backgroundImageURL = img;

 isCustomBackground = true;

 } else { tempInitiator = false; }

 restartSegmentation();

};

export const backgroundImageHandler = (e) => {

 if (e.target.files[0].size <= 1e7) {

 const reader = new FileReader();

 reader.onload = () => {

 if (reader.readyState === 2) {

 customBackground(reader.result, true);

 signalCustomBackground(reader.result);

 } else { return; }

 };

 reader.readAsDataURL(e.target.files[0]);

 } else { alert("Maximum file size: 10MB."); }

};

export const screenshotHandler = () => {

 const canvasElement = document.getElementById(tempCanvasID);

 canvasToImage(canvasElement);

};

export const resetSegmentation = () => {

 isVideoSwapped = false;

 isCustomBackground = false;

 tempInitiator = false;

 backgroundImageURL = null;

 restartSegmentation();

};

export default SegmentationHandler;

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

4.4.6 Building the Front-End User Interface Components

This section showcases the rest of the system’s file components and structure in which all of it

encompasses the entire client application user interface. To store the files, inside the src

directory, a parent directory titled pages is created contains three subdirectories namely call,

home, and joinCall. The call directory also contains two other sub-directories namely

participantsSection and videoSection. Moreover, another directory placed inside src named

resources with its own subdirectory images is where .svg image files for UI button elements

are stored. Figure 4.4.6 is an image of the system file structure of this section for reference. It

should be noted that these are merely how the front-end UI has been specifically implemented

for this project application and that those interested in rebuilding this system may develop the

front-end UI in their own design. The important bit is being able to develop the front-end UI

to work with all the components in the previous sections.

Figure 4.4.6 The system’s file structure

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

call/Call.js

import React, { useEffect } from "react";

import ParticipantsSection from "./participantsSection/ParticipantsSection";

import VideoSection from "./videoSection/VideoSection";

import CallLabel from "./CallLabel";

import { connect } from "react-redux";

import * as webRTCHandler from "../../utils/webRTCHandler";

import LoadingOverlay from "./LoadingOverlay";

import "./Call.css";

const Call = ({ callID, identity, isCallHost, showLoadingOverlay }) => {

 useEffect(() => {

 if (!isCallHost && !callID) {

 const siteUrl = window.location.origin;

 window.location.href = siteUrl;

 } else {

 webRTCHandler.getLocalVideoAndInitConnection(

 isCallHost,

 identity,

 callID

);

 }

 }, []);

 return (

 <div className="call_container">

 <ParticipantsSection />

 <VideoSection />

 <CallLabel callID={callID} />

 {showLoadingOverlay && <LoadingOverlay />}

 </div>

);

};

const mapStoreStateToProps = (state) => {

 return {

 ...state,

 };

};

export default connect(mapStoreStateToProps)(Call);

call/CallLabel.js

import React from "react";

const CallLabel = ({ callID }) => {

 return (

 <div className="call_label">

 <p className="call_label_paragraph">ID: {callID}</p>

 </div>

);

};

export default CallLabel;

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

call/LoadingOverlay.js

import React from "react";

const LoadingOverlay = () => {

 return (

 <div className="loading_overlay_container">

 <div className="loader"></div>

 </div>

);

};

export default LoadingOverlay;

call/Call.css

.call_container {

 width: 100%;

 height: 100vh;

 display: flex;

}

.message_container {

 margin-top: 5px;

 display: flex;

 flex-direction: column;

}

/* width */

::-webkit-scrollbar {

 width: 5px;

 background: rgba(0, 188, 164, 0.1);

}

/* Track */

::-webkit-scrollbar-track {

 box-shadow: inset 0 0 5px grey;

 border-radius: 10px;

}

/* Handle */

::-webkit-scrollbar-thumb {

 background: #e5e5e5;

 border-radius: 10px;

}

.loading_overlay_container {

 width: 100%;

 height: 100vh;

 background: rgb(10, 152, 218);

 opacity: 0.8;

 display: flex;

 justify-content: center;

 align-items: center;

 position: absolute;

 z-index: 2;

}

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

.loader {

 border: 16px solid #f3f3f3; /* Light grey */

 border-top: 16px solid #0052c9; /* Blue */

 border-radius: 50%;

 width: 120px;

 height: 120px;

 animation: spin 2s linear infinite;

}

@keyframes spin {

 0% {

 transform: rotate(0deg);

 }

 100% {

 transform: rotate(360deg);

 }

}

.participants_container {

 width: 100%;

 display: flex;

 justify-content: flex-start;

 flex-direction: column;

 align-content: flex-start;

 height: 50%;

}

.participants_paragraph {

 color: black;

 text-align: start;

 font-weight: 500;

 margin-left: 40px;

 transition: 0.5s;

 margin: 0 40px;

 padding: 10px 0px;

}

.participants_paragraph:hover {

 background-color: #e5e5e5;

 border-radius: 8px;

}

.participants_separator_line {

 width: calc(100% - 80px);

 height: 2px;

 background-color: #e5e5e5;

 margin-left: 40px;

 margin-top: 5px;

 margin-bottom: 5px;

}

.participants_section_container {

 height: 100%;

 width: 20%;

 background-color: white;

 display: flex;

 flex-direction: column;

}

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

.participants_label_container {

 display: flex;

 align-items: flex-start;

 justify-content: flex-start;

}

.participants_label_paragraph {

 font-weight: 700;

 color: #9ca5ab;

 margin-left: 40px;

 font-size: 16px;

}

.video_buttons_container {

 width: 100%;

 height: 10%;

 display: flex;

 align-items: center;

 justify-content: center;

 position: absolute;

 left: 0;

 bottom: 0;

 background: linear-gradient(168.68deg, #0052c9 1.12%, #0a91db 100%);

 border-top-left-radius: 25px;

 border-top-right-radius: 25px;

}

.video_button_container {

 margin-left: 30px;

 display: flex;

 flex-direction: column;

}

.video_button_image {

 height: 80%;

 border-radius: 25px;

 transition: 0.3s;

 background: whitesmoke;

}

.video_button_image:hover {

 background: cornflowerblue;

 border-radius: 25px;

}

.video_button_image:active {

 transition: 0.3s;

 background: white;

}

.video_button_end {

 width: 200px;

 height: 60px;

 font-size: 18px;

 font-weight: 600;

 border-radius: 65px;

 border: none;

 color: white;

 background: #fc5d5b;

 box-shadow: 0px 3px 30px rgba(252, 93, 91, 0.1);

 transition: 0.2s;

}

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

.video_button_end:hover {

 background: red;

}

.participants {

 display: flex;

 width: 100%;

 height: 100%;

}

.participant {

 flex-grow: 1;

}

.video {

 display: inline-block;

 width: 70%;

 height: 70%;

 position: relative;

 margin-top: 18%;

}

.call_label {

 position: absolute;

 display: flex;

 width: 100%;

 justify-content: center;

 z-index: 4;

}

.call_label_paragraph {

 font-size: 17px;

 color: white;

 margin-top: 0;

 padding: 18px 38px;

 background: linear-gradient(168.68deg, #0052c9 1.12%, #0a91db 100%);

 border-radius: 0px 0px 15px 15px;

}

.ar_output_container {

 width: 100%;

 height: 50%;

 position: relative;

 display: flex;

 align-items: center;

 justify-content: center;

 z-index: -1;

}

.ar_output_canvas {

 /* width: 100%; */

 height: 100%;

 position: relative;

 display: inline-block;

}

.video_track_container {

 width: 50%;

 height: 40%;

 position: relative;

 text-align: center;

}

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

.video_section_container {

 height: 100%;

 width: 60%;

 display: flex;

 flex-direction: column;

 justify-content: flex-end;

}

call/participantsSection/Participants.js

import React from "react";

import { connect } from "react-redux";

const SingleParticipant = (props) => {

 const { identity, lastItem } = props;

 return (

 <>

 <p className="participants_paragraph">{identity}</p>

 {!lastItem && }

 </>

);

};

const Participants = ({ participants }) => {

 return (

 <div className="participants_container">

 {participants.map((participant, index) => {

 return (

 <SingleParticipant

 key={participant.identity}

 lastItem={participants.length === index + 1}

 participant={participant}

 identity={participant.identity}

 />

);

 })}

 </div>

);

};

const mapStoreStateToProps = (state) => {

 return {

 ...state,

 };

};

export default connect(mapStoreStateToProps)(Participants);

call/participantsSection/Participants.js

import React from "react";

const ParticipantsLabel = () => {

 return (

 <div className="participants_label_container">

 <p className="participants_label_paragraph">CALL PARTICIPANTS</p>

 </div>

);

};

export default ParticipantsLabel;

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

call/participantsSection/ParticipantsSection.js

import React from "react";

import ParticipantsLabel from "./ParticipantsLabel";

import Participants from "./Participants";

const ParticipantsSection = () => {

 return (

 <div className="participants_section_container">

 <ParticipantsLabel />

 <Participants />

 </div>

);

};

export default ParticipantsSection;

call/videoSection/VideoButtons.js

import React from "react";

import LeaveCallButton from "./LeaveCallButton";

import SwapVideoButton from "./SwapVideoButton";

import CustomBackgroundButton from "./CustomBackgroundButton";

import ScreenshotButton from "./ScreenshotButton";

import ResetButton from "./ResetButton";

import ARImageMatcherButton from "./ARImageMatcherButton";

import { getIsHost } from "../../../utils/webRTCHandler";

const VideoButtons = (props) => {

 if (getIsHost()) { return (

 <div id="video-buttons-container" className="video_buttons_container">

 <ARImageMatcherButton />

 <CustomBackgroundButton />

 <ScreenshotButton />

 <SwapVideoButton />

 <ResetButton />

 <LeaveCallButton />

 </div>

);

 } else {

 return (

 <div id="video-buttons-container" className="video_buttons_container">

 <CustomBackgroundButton />

 <ScreenshotButton />

 <SwapVideoButton />

 <ResetButton />

 <LeaveCallButton />

 </div>

);

 }

};

export const showUtilityButtons = () => {

 if (getIsHost()) { document.getElementById("ar-image-matcher-button").remove(); }

 document.getElementById("custom-background-button-icon").hidden = false;

 document.getElementById("screenshot-button-icon").hidden = false;

 document.getElementById("swap-video-button-icon").hidden = false;

 document.getElementById("reset-button-icon").hidden = false;

};

export default VideoButtons;

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

call/videoSection/ARImageMatcherButton.js

import startButton from "../../../resources/images/start.svg";

import { signalARImageMatcher } from "../../../utils/signalingServer";

const ARImageMatcherButton = () => {

 const ARImageMatcherButtonHandler = () => {

 signalARImageMatcher();

 };

 return (

 <div id="ar-image-matcher-button" className="video_button_container">

 <img

 alt="ar-img-matcher-button"

 src={startButton}

 className="video_button_image"

 onClick={ARImageMatcherButtonHandler}

 />

 </div>

);

};

export default ARImageMatcherButton;

call/videoSection/CustomBackgroundButton.js

import customBackgroundButton from "../../../resources/images/custom-background.svg";

import { backgroundImageHandler } from "../../../utils/segmentationHandler";

const CustomBackgroundButton = () => {

 const customBackgroundButtonHandler = () => {

 document.getElementById("custom-background-input").click();

 };

 return (

 <div id="custom-background-button" className="video_button_container">

 <img

 id="custom-background-button-icon"

 alt="custom-background-button"

 src={customBackgroundButton}

 className="video_button_image"

 onClick={customBackgroundButtonHandler}

 hidden

 />

 <input

 id="custom-background-input"

 type="file"

 accept="image/*"

 multiple

 onChange={backgroundImageHandler}

 hidden

 />

 </div>

);

};

export default CustomBackgroundButton;

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

call/videoSection/LeaveCallButton.js

import React from "react";

import { endCall } from "../../../utils/signalingServer";

const LeaveCallButton = () => {

 return (

 <div id="leave-call-button" className="video_button_container">

 <button

 className="video_button_end"

 onClick={(leaveCallHandler, endCall)}

 >

 Leave Call

 </button>

 </div>

);

};

export const leaveCallHandler = () => {

 const siteURL = window.location.origin + "/image-ar-matcher";

 window.location.href = siteURL;

};

export default LeaveCallButton;

call/videoSection/ScreenshotButton.js

import screenshotButton from "../../../resources/images/screenshot.svg";

import { screenshotHandler } from "../../../utils/segmentationHandler";

const ScreenshotButton = () => {

 const screenshotButtonHandler = () => {

 setTimeout(screenshotHandler, 5000);

 setAnimation();

 };

 const setAnimation = () => {

 document.getElementById("screenshot-button").style.animation =

 "spin 1s ease 0s 5 normal forwards";

 setTimeout(resetAnimation, 5000);

 };

 const resetAnimation = () => {

 document.getElementById("screenshot-button").style.animation = "none";

 };

 return (

 <div id="screenshot-button" className="video_button_container">

 <img

 id="screenshot-button-icon"

 alt="screenshot-button"

 src={screenshotButton}

 className="video_button_image"

 onClick={screenshotButtonHandler}

 hidden

 />

 </div>

);

};

export default ScreenshotButton;

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

call/videoSection/ResetButton.js

import resetButton from "../../../resources/images/reset.svg";

import { signalReset } from "../../../utils/signalingServer";

const ResetButton = () => {

 const resetHandler = () => {

 signalReset();

 };

 return (

 <div id="reset-button" className="video_button_container">

 <img

 id="reset-button-icon"

 alt="reset-button"

 src={resetButton}

 className="video_button_image"

 onClick={resetHandler}

 hidden

 />

 </div>

);

};

export default ResetButton;

call/videoSection/SwapVideoButton.js

import swapVideoButton from "../../../resources/images/swap-video.svg";

import { signalSwapVideo } from "../../../utils/signalingServer";

const SwapVideoButton = () => {

 const swapVideoButtonHandler = () => {

 signalSwapVideo();

 };

 return (

 <div id="swap-video-button" className="video_button_container">

 <img

 id="swap-video-button-icon"

 alt="swap-video-button"

 src={swapVideoButton}

 className="video_button_image"

 onClick={swapVideoButtonHandler}

 hidden

 />

 </div>

);

};

export default SwapVideoButton;

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

call/videoSection/VideoSection.js

import React from "react";

import VideoButtons from "./VideoButtons";

const VideoSection = () => {

 return (

 <div className="video_section_container">

 <VideoButtons />

 </div>

);

};

export default VideoSection;

home/ConnectButton.js

import React from "react";

const ConnectButton = ({

 createCallButton = false,

 buttonText,

 onClickHandler,

}) => {

 const buttonClass = createCallButton

 ? "create_call_button" : "join_call_button";

 return (

 <button className={buttonClass} onClick={onClickHandler}>

 {buttonText}

 </button>

);

};

export default ConnectButton;

home/Home.js

import React, { useEffect } from "react";

import ConnectButtons from "./ConnectButtons";

import { connect } from "react-redux";

import { setIsCallHost } from "../../store/actions";

import "./Home.css";

const Home = ({ setIsCallHostAction }) => {

 useEffect(() => { setIsCallHostAction(false); }, []);

 return (

 <div className="home_container">

 <div className="home_panel">

 <h2>AUGMENTED REALITY MATCHER</h2>

 <ConnectButtons />

 </div>

 </div>

);

};

const mapActionsToProps = (dispatch) => { return {

 setIsCallHostAction: (isCallHost) => dispatch(setIsCallHost(isCallHost)), };

};

export default connect(null, mapActionsToProps)(Home);

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

home/Home.css

.home_container {

 width: 100%;

 height: 100vh;

 display: flex;

 align-items: center;

 justify-content: center;

}

.home_panel {

 width: 600px;

 height: 400px;

 background-color: white;

 border: 1px solid grey;

 filter: drop-shadow(0 0 0.2rem grey);

 display: flex;

 flex-direction: column;

 align-items: center;

 justify-content: space-evenly;

}

.home_image {

 width: 150px;

}

.connect_buttons_container {

 display: flex;

 flex-direction: column;

}

.join_call_button {

 background-color: #2d8cff;

 border: 1px solid #e5e5e5;

 color: white;

 font-size: 13px;

 font-weight: 700;

 width: 180px;

 height: 30px;

 border-radius: 8px;

 transition: 0.3s;

}

.join_call_button:hover { background-color: blue; }

.create_call_button {

 margin-top: 15px;

 background-color: white;

 border: 1px solid #e5e5e5;

 color: black;

 font-size: 13px;

 width: 180px;

 height: 30px;

 border-radius: 8px;

 transition: 0.3s;

}

.create_call_button:hover {

 background-color: #e5e5e5;

}

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

home/ConnectButtons.css

import React from "react";

import ConnectButton from "./ConnectButton";

import { useNavigate } from "react-router-dom";

const ConnectButtons = () => {

 let navigate = useNavigate();

 const pushToJoinCall = () => {

 navigate("/join-call");

 };

 const pushToJoinCallAsHost = () => {

 navigate("/join-call?host=true");

 };

 return (

 <div className="connect_buttons_container">

 <ConnectButton

 buttonText="Join call"

 onClickHandler={pushToJoinCall}

 />

 <ConnectButton

 createCallButton

 buttonText="Host call"

 onClickHandler={pushToJoinCallAsHost}

 />

 </div>

);

};

export default ConnectButtons;

joinCall/joinCall.css

.join_call_container {

 width: 100%;

 height: 100vh;

 display: flex;

 align-items: center;

 justify-content: center;

 position: relative;

}

.join_call_panel {

 width: 400px;

 height: 400px;

 background-color: white;

 border: 1px solid grey;

 filter: drop-shadow(0 0 0.2rem grey);

 display: flex;

 flex-direction: column;

 align-items: flex-start;

}

.join_call_title {

 font-size: 24px;

 font-weight: 700;

 margin-left: 35px;

 margin-top: 80px;

}

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

.join_call_inputs_container {

 display: flex;

 flex-direction: column;

 height: 100px;

 justify-content: space-between;

 width: 100%;

 align-items: center;

 margin-top: 10px;

}

.error_message_container {

 display: flex;

 height: 50px;

 margin-left: 35px;

}

.error_message_paragraph {

 color: red;

}

.loading_overlay_container {

 position: absolute;

 display: flex;

 align-items: center;

 justify-content: center;

 width: 100%;

 height: 100%;

 left: 0;

 top: 0;

 background: rgba(0, 82, 201, 0.7);

}

.loading_overlay_loader {

 border: 16px solid #f3f3f3; /* Light grey */

 border-top: 16px solid #0052c9; /* Blue */

 border-radius: 50%;

 width: 120px;

 height: 120px;

 animation: spin 2s linear infinite;

}

@keyframes spin {

 0% {

 transform: rotate(0deg);

 }

 100% {

 transform: rotate(360deg);

 }

}

.checkbox_container {

 display: flex;

 margin-left: 35px;

 margin-top: 5px;

 align-items: center;

}

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

.checkbox_connection {

 width: 25px;

 height: 25px;

 background: #2d8cff;

 border: 1px solid rgba(255, 255, 255, 0.5);

 border-radius: 8px;

 backdrop-filter: blur(80px);

 display: flex;

 align-items: center;

 justify-content: center;

}

.checkbox_container_paragraph {

 font-weight: 400;

 font-size: 16px;

 margin-left: 15px;

}

.checkbox_image {

 max-width: 100%;

 max-height: 100%;

}

.join_call_buttons_container {

 display: flex;

 justify-content: flex-end;

 width: 100%;

}

.join_call_cancel_button {

 width: 80px;

 margin-right: 35px;

 height: 30px;

 background-color: white;

 border: 1px solid gray;

 border-radius: 8px;

 transition: 0.3s;

}

.join_call_cancel_button:hover {

 background-color: #e5e5e5;

}

.join_call_success_button {

 width: 80px;

 margin-right: 15px;

 height: 30px;

 background-color: #2d8cff;

 border-radius: 8px;

 border: none;

 font-weight: 700;

 color: white;

 transition: 0.3s;

}

.join_call_success_button:hover {

 background-color: blue;

}

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

.join_call_inputs_container {

 display: flex;

 flex-direction: column;

 height: 100px;

 justify-content: space-between;

 width: 100%;

 align-items: center;

 margin-top: 10px;

}

.join_call_input {

 border-radius: 12px;

 border: 1px solid #e5e5e5;

 width: 300px;

 height: 40px;

 padding: 0px 15px;

}

.join_call_input:focus {

 border: 1px solid blue;

}

joinCall/JoinCall.js

import React, { useEffect } from "react";

import { useLocation } from "react-router-dom";

import { connect } from "react-redux";

import { setIsCallHost } from "../../store/actions";

import JoinCallTitle from "./JoinCallTitle";

import JoinCallContent from "./JoinCallContent";

import "./JoinCall.css";

const JoinCall = (props) => {

 const { setIsCallHostAction, isCallHost } = props;

 const search = useLocation().search;

 useEffect(() => {

 const isCallHost = new URLSearchParams(search).get("host");

 if (isCallHost) { setIsCallHostAction(true); }}, []);

 return (

 <div className="join_call_container">

 <div className="join_call_panel">

 <JoinCallTitle isCallHost={isCallHost} />

 <JoinCallContent />

 </div>

 </div>

);

};

const mapStoreStateToProps = (state) => {

 return { ...state, };

};

const mapActionsToProps = (dispatch) => {

 return {

 setIsCallHostAction: (isCallHost) => dispatch(setIsCallHost(isCallHost)),

 };

};

export default connect(mapStoreStateToProps, mapActionsToProps)(JoinCall);

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

joinCall/ErrorMessage.js

import React from "react";

const ErrorMessage = ({ errorMessage }) => {

 return (

 <div className="error_message_container">

 {errorMessage && (

 <p className="error_message_paragraph">{errorMessage}</p>

)}

 </div>

);

};

export default ErrorMessage;

joinCall/JoinCallInputs.js

import React from "react";

const Input = ({ placeholder, value, changeHandler }) => {

 return (

 <input

 value={value}

 onChange={changeHandler}

 className="join_call_input"

 placeholder={placeholder}

 />

);

};

const JoinCallInputs = (props) => {

 const { callIDValue, setCallIDValue, nameValue, setNameValue, isCallHost } = props;

 const callIDValueChangeHandler = (event) => {

 setCallIDValue(event.target.value);

 };

 const nameValueChangeHandler = (event) => {

 setNameValue(event.target.value);

 };

 return (

 <div className="join_call_inputs_container">

 {!isCallHost && (

 <Input

 placeholder="Enter call ID"

 value={callIDValue}

 changeHandler={callIDValueChangeHandler}

 />

)}

 <Input

 placeholder="Enter your name"

 value={nameValue}

 changeHandler={nameValueChangeHandler}

 />

 </div>

);

};

export default JoinCallInputs;

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

joinCall/JoinCallButtons.js

import React from "react";

import { useNavigate } from "react-router-dom";

const Button = ({ buttonText, cancelButton = false, onClickHandler }) => {

 const buttonClass = cancelButton

 ? "join_call_cancel_button"

 : "join_call_success_button";

 return (

 <button onClick={onClickHandler} className={buttonClass}>

 {buttonText}

 </button>

);

};

const JoinCallButtons = ({ joinCallHandler, isCallHost }) => {

 const successButtonText = isCallHost ? "Host" : "Join";

 const navigate = useNavigate();

 const pushToHome = () => {

 navigate("/");

 };

 return (

 <div className="join_call_buttons_container">

 <Button buttonText={successButtonText} onClickHandler={joinCallHandler} />

 <Button

 buttonText="Cancel"

 cancelButton

 onClickHandler={pushToHome}

 />

 </div>

);

};

export default JoinCallButtons;

joinCall/JoinCallTitle.js

import React from "react";

const JoinCallTitle = ({ isCallHost }) => {

 const titleText = isCallHost ? "Host Call" : "Join Call";

 return <p className="join_call_title">{titleText}</p>;

};

export default JoinCallTitle;

joinCall/JoinCallContent.js

import React, { useState } from "react";

import JoinCallInputs from "./JoinCallInputs";

import { connect } from "react-redux";

import ErrorMessage from "./ErrorMessage";

import JoinCallButtons from "./JoinCallButtons";

import { useNavigate } from "react-router-dom";

import { getCallExists } from "../../utils/api";

import { setIdentity, setCallID } from "../../store/actions";

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 65

const JoinCallContent = (props) => {

 const { isCallHost, setIdentityAction, setCallIDAction } = props;

 const [callIDValue, setCallIDValue] = useState("");

 const [nameValue, setNameValue] = useState("");

 const [errorMessage, setErrorMessage] = useState(null);

 const navigate = useNavigate();

 const joinCallHandler = async () => {

 if (!nameValue) {

 setErrorMessage("Your name is required");

 } else {

 setIdentityAction(nameValue);

 if (isCallHost) {

 createCall();

 } else {

 await joinCall();

 }

 }

 };

 const joinCall = async () => {

 const responseMessage = await getCallExists(callIDValue);

 const { callExists, callFull } = responseMessage;

 if (callExists) {

 if (callFull) {

 setErrorMessage("The call session is full");

 } else {

 setCallIDAction(callIDValue);

 navigate("/call");

 }

 } else {

 setErrorMessage("Unidentified call ID");

 }

 };

 const createCall = () => {

 navigate("/call");

 };

 return (

 <>

 <JoinCallInputs

 callIDValue={callIDValue}

 setCallIDValue={setCallIDValue}

 nameValue={nameValue}

 setNameValue={setNameValue}

 isCallHost={isCallHost}

 />

 <ErrorMessage errorMessage={errorMessage} />

 <JoinCallButtons

 joinCallHandler={joinCallHandler}

 isCallHost={isCallHost}

 />

 </>

);

};

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 66

const mapStoreStateToProps = (state) => {

 return {

 ...state,

 };

};

const mapActionsToProps = (dispatch) => {

 return {

 setIdentityAction: (identity) => dispatch(setIdentity(identity)),

 setCallIDAction: (callID) => dispatch(setCallID(callID)),

 };

};

export default connect(

 mapStoreStateToProps,

 mapActionsToProps

)(JoinCallContent);

4.4.7 Additional Adjustments

Some final adjustments will be made before the system is ready for deployment to the web.

Firstly, the fourth line of code in the snippet below is added to index.html which is located

inside the public directory:

<body>

 <noscript>You need to enable JavaScript to run this app.</noscript>

 <div id="root"></div>

 <div id="videos_container"></div>

</body>

The next sets of adjustments are made to the applications files which will all be located inside

the src directory. Codes for App.js are replaced with the following:

import React, { useEffect } from "react";

import { createHashRouter, RouterProvider } from "react-router-dom";

import Home from "./pages/home/Home";

import JoinCall from "./pages/joinCall/JoinCall";

import Call from "./pages/call/Call";

import { connectWithSocketIOServer } from "./utils/signalingServer";

import "./App.css";

function App() {

 const router = createHashRouter([

 { path: "/", element: <Home />, },

 { path: "/join-call", element: <JoinCall />, },

 { path: "/call", element: <Call />, },

]);

 useEffect(() => {

 connectWithSocketIOServer();

 }, []);

 return <RouterProvider router={router} />;

}

export default App;

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 67

The following class is added to index.css:

.videos_container {

 margin-left: 20%;

 width: 60%;

 height: calc(100vh - 10%);

 left: 0;

 top: 0;

 position: absolute;

 display: flex;

 flex-wrap: wrap;

}

The React.StrictMode component inside index.js is commented out or removed:

// <React.StrictMode>

<Provider store={store}>

 <App />

</Provider>

// </React.StrictMode>

The App.css file should either have its entire content removed or have the file itself deleted

since it will not be needed. Next, the first line of code in the snippet below is added to

package.json which will add the website URL for the system.

"homepage": "https://hundson.github.io/image-ar-matcher",

"name": "client",

"version": "0.1.0",

"private": true,

"dependencies": {

The third and fourth lines of code in the snippet below is also added to package.json.

"scripts": {

"start": "react-scripts start",

"predeploy": "npm run build",

"deploy": "gh-pages -d build",

The process for deploying the system to the web are detailed in Chapter 5.3 Web Deployment.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 68

Chapter 5

System Implementation

5.1 Hardware Setup

Description Specification

Operating System Windows 10

CPU AMD Ryzen 5 3500X

GPU AMD Radeon RX 6600M

RAM 16GB

Webcam PC Device Camera

Table 5.1.1 Device hardware specifications used in application development

5.2 Software Setup

Tools Description

Visual Studio

Code

Main integrated development environment (IDE) and code editor for

application development.

Google

Chrome
Browser used for running and testing application deployment.

Node.js

Cross-platform, open-source JavaScript runtime environment which

enables JavaScript to run outside of a browser. This allows

developing the back-end to handle client requests all in pure

JavaScript, providing ease in the overall development and

maintenance process.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 69

WebRTC

Stands for “Web Real-Time Communication”. Web framework to

enable real-time communications through web browsers.

Implemented through JavaScript API and allows browsers to

exchange media including audio, video, and various other data.

MediaPipe

Selfie

Segmentation

Machine learning model that segments prominent humans in a given

scene. The project application will utilize the JavaScript API

provided to implement the image segmentation functionality.

Table 5.2.1 Software tools and technologies utilized in the system development

By using Node.js for development, this enables access to NPM (Node Package Manager) for

installing JavaScript libraries known as Node.js packages (also called modules or

dependencies). For this application project, various modules will be installed and made to work

with each other to deliver the application’s functionalities.

Node.js Package Description

axios
Used for making HTTP requests, similar to Fetch API native

for JavaScript but provides better ease of use.

canvas-to-image
Converts HTML canvas elements into images. Combined with

html2canvas to provide screenshot functionality.

cors
Allows sending and receiving of resources and data between

sites of different origin (Cross-Origin Resource Sharing).

express
Node.js web application framework. Provides robust set of

features fundamental for developing the application back-end.

mediapipe/

selfie_segmentation

Node.js package to implement the MediaPipe Selfie

Segmentation solution model.

node-cron

Node.js tool to schedule tasks to run on a periodic basis. Used

to schedule making an HTTP GET request to the server hosted

on Render to keep it awake and readily available at all times.

react
JavaScript library that enables much more ease in developing

interactive web UI for the front-end of the application.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 70

react-dom
React package for working with HTML DOM (Document

Object Model). Installs automatically with React.

react-redux

React UI bindings layer for Redux. Enables React components

to read data from a Redux store and dispatch actions to the

Redux store to update state.

react-router-dom
Enables using React Router for client-side routing. Faster and

more efficient method for website navigation.

react-scripts
Package that includes scripts and configurations used by

React. As such, it is installed automatically with React.

reduxjs/toolkit
Redux Toolkit package to enable implementation of the

Session States Store system component.

simple-peer

Part of the WebRTC API library. Establishes a connection

between web browsers using WebRTC. This allows direct

peer-to-peer communication without the need of a server.

socket.io

For creating WebSockets and building the signaling server.

WebSockets allows for persistent, low-latency, and

bidirectional communication between a client and server.

socket.io-client Client-side implementation for Socket.IO.

uuid
UUID (Universal Unique Identifier). Enables application to

generate unique IDs used for joining a call session.

gh-pages Node.js package for deploying to GitHub Pages.

Table 5.2.2 Node.js package dependencies implemented in the system

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 71

5.3 Web Deployment

5.3.1 Acquiring TURN Server Credentials

This project system will utilize Open Relay which is a free TURN server provided by Metered

Video. Credentials configuration for getting access to the TURN server can be acquired by

signing up for an account over at https://www.metered.ca/. After logging in, the free TURN

server configuration can be accessed in the Turn Server tab of the dashboard page. These

configurations are placed in the getConfiguration function inside webRTCHandler.js as

previously demonstrate in Chapter 4.4.4.

Figure 5.3.1 Open Relay free TURN server credentials configuration

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 72

5.3.2 Deploying the System Server Component

Before the server component can be deployed to Render, it will first be added as a new

repository on GitHub. The following sets of figures will demonstrate the process. Additionally,

a .gitignore file should be added to the root directory of the server component to configure

ignoring the node_modules directory to prevent it from being uploaded to GitHub.

Figure 5.3.2 Creating a new repository on GitHub

Figure 5.3.3 Pushing the server component directory to the GitHub repository

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 73

Figure 5.3.4 The server component successfully uploaded to GitHub

The server component is now ready to be deployed to Render. The next sets of figures will

demonstrate the process.

Figure 5.3.5 Creating a new service by building and deploying from the Git repository

Figure 5.3.6 Link to Configure the GitHub account to work with Render

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 74

Figure 5.3.7 Selecting the server component Git repository to link to Render

Figure 5.3.8 Connecting Render to the server component repository

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 75

Figure 5.3.9 Configurations for the web service deployment

Figure 5.3.10 Button to start deployment of the web service

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 76

Figure 5.3.11 Successful deployment of the system server component web service

5.3.3 Deploying the System Client Component

The client component will be added to a new Git repository and subsequently published

through GitHub Pages. After deployment, the system will then be publicly available for visiting

on the internet through the given URL. Before that, the gh-pages dependency is installed.

Figure 5.3.12 Installing gh-pages as a developer dependency

Adding the client component to a GitHub repository follows the same process as in Chapter

5.3.2 for the server component. If it doesn’t already exists, a .gitignore file should also be added

to ignore node_modules. After uploading to GitHub, the following command is run:

Figure 5.3.13 Terminal command for deploying to gh-pages

Figure 5.3.14 Successful deployment to GitHub Pages

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 77

5.4 System Operation

The system has been hosted over at https://hundson.github.io/image-ar-matcher/. System

operations demonstration for this section has been done with the help of an assistant acting as

the remote peer client user and running the website from a remote location.

Figure 5.4.1 System Homepage

Figure 5.4.2 Host Call Page

https://hundson.github.io/image-ar-matcher/

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 78

Figure 5.4.3 Join Call Page

Figure 5.4.4 Input validation for empty name field

Figure 5.4.5 Input validation when entering a non-existent call session ID

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 79

Figure 5.4.6 Page loading when creating a new call session as host

Figure 5.4.7 Call session ID to be shared with the connecting peer user

Figure 5.4.8 Start Segmentation button (left) to be clicked once peer has joined call session

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 80

Figure 5.4.9 shows the call session page UI once a peer user has connected and the

segmentation process has been started. On each initial run, the host video is set as the

background element while the peer video is set as the source for the segmentation process. This

creates the effect of augmenting the peer user onto the video environment of the host user. On

the left most side are the names of the call participants. In the buttons container at the bottom

and starting from the left is the Custom Background button, Screenshot button, Swap Video

button, Restart Segmentation button, and the Leave Call button.

Figure 5.4.9 Call session page with the generated AR output video

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 81

Figure 5.4.10 Swap Video function to swap video background and segmentation source

Figure 5.4.11 Custom Background function to upload a custom background image

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 82

Figure 5.4.12 Image files of the AR output video saved using the Screenshot function

Figure 5.4.13 Saved image of the AR output video

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 83

5.5 Implementation Issues and Challenges

One of the main drawbacks of the system is due to the limitations of the MediaPipe Selfie

Segmentation model itself. In the previous Figure 5.5.10, it can be seen that only the peer user

is augmented onto the output video when the Custom Background mode is selected. This is

due to the Selfie Segmentation Model’s limitation of only being able to target one video source

for processing at a time. The model is not able to perform segmentation for multiple video

sources concurrently, meaning segmentation cannot be executed simultaneously for both host

and peer videos when using a custom background and they therefore cannot be augmented

together onto the output video at the same time. The result in Figure 5.5.12 is achieved by

firstly saving an image of the segmented peer user with the custom background using the

Screenshot function. Then, the saved image is then reused as the custom background. However,

the host user is instead the one who gets their video processed for segmentation and have their

body augmented onto the custom background. This workaround, however, is tedious. Other

than that, there are also system stability issues arising from the implementation of the Selfie

Segmentation Model where the application would sometimes fail to run the segmentation

process. The Reset Segmentation function was added to counter this by killing and replacing

the currently running segmentation process instance when the corresponding button is clicked.

Moreover, there are also occasions where the system operation would gradually show signs of

unresponsiveness. Although the Selfie Segmentation Model is only able to process a single

video source at one time, it is still possible for the system to accidentally duplicate multiple

running instances of the same segmentation process. This unwanted behavior causes the

application to visibly slow down. The exact cause for this issue remains undetermined with

multiple targeted testing done not being able to reproduce the issue. However, this issue is, at

the very least, a rare occurrence. In regards to this issue and the one mentioned beforehand, the

general factor behind them can only be due to either the experimental nature of the Selfie

Segmentation Model itself or are direct results of the shortcomings in how the programming

for this system has been implemented. In relation to that statement, the system can only perform

at its best when using the Google Chrome browser on a desktop computer. Unfortunately, there

was not much effort that was able to be put into optimizing the system to run for different

devices and browsers. The system’s UI is not mobile responsive so although the application

can be run on mobile devices, the user might not be able to interact with the UI elements.

Lastly, audio was also not been able to have captured together with the users’ video streams.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 84

5.6 Concluding Remark

Overall, the implementation process undergone for the system had been smoothly carried out

without any major issues. The client-side application was successfully hosted through GitHub

Pages while the server-side program was hosted using the Render cloud hosting platform.

Although there is much room for improvement to further optimize system performance and

polish the application UI for enhanced user experience, the project has achieved its goal of

implementing a working web-based system delivering the intended use cases and

functionalities. Much of the time and effort made throughout the project’s lifetime were put

into extensive prototyping, bug fixing, as well as developing workarounds for problems and

much less so was able to be allocated for optimizing the UI and operations performance. Due

to time constraint, there was much more emphasis put on working to fully deliver the intended

system functionality and thus the user experience aspect was left slightly neglected.

Nevertheless, the system’s implementation overall has still been very satisfactory.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 85

Chapter 6

System Evaluation and Discussion

6.1 Web Browser Compatibility Testing

Web Browser Platform Remark Support

Google Chrome

Windows

System operation runs perfectly as intended

with all functionalities working flawlessly.
Full

Firefox
System operation runs perfectly as intended

with all functionalities working flawlessly.
Full

Microsoft Edge
System operation runs perfectly as intended

with all functionalities working flawlessly.
Full

Opera/Opera GX
System operation runs perfectly as intended

with all functionalities working flawlessly.
Full

Brave
System operation runs perfectly as intended

with all functionalities working flawlessly.
Full

DuckDuckGo
System operation runs perfectly as intended

with all functionalities working flawlessly.
Full

Google Chrome Android

System is able to run with the user able to

connect to peer user. System is able to run

segmentation model and generate AR output

video. However, Swap Video and Restart

Segmentation button functions are not

executable. UI is not fully responsive to

scale dynamically to fit the sizes for the

smaller screen of the mobile device.

Semi-

supported

Table 6.1.1 Compatibility testing for running the system on different web browsers

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 86

6.2 Project Challenges

This project has been in the works over the period of a few years starting from the year 2020.

The biggest challenge faced during the course of researching for and developing the project is

having to work with the lack of guidelines and proper documentations. This is due to the nature

of the project itself being fairly new or is at least less commonly explored. Moreover, this has

also been further exaggerated by the fact that the MediaPipe Selfie Segmentation Model

implemented in this project system is itself only very recently developed and was made as a

result of the huge spike in popularity of video calling applications during the recent COVID-

19 pandemic. There are very few projects that could be found which utilizes this model. There

are also fewer numbers of systems developed that could be found publicly which incorporates

both aspects of augmented reality and remote video communications together. In fact, the

extensive researching that was done for this project was not able to find any specifically web-

based application that blends AR with real-time video communications. Therefore, it can be

assumed that this project is one which is quite unique. It is due to this reason that the project

has taken a considerably long time to develop as there are very few resources found that could

be used as a point of reference and thus many of the implementations in this system was

achieved through numerous experimentations as well as countless trials and errors. Another

major challenge in working on the project is working with the Selfie Segmentation Model itself.

Due to the limitations of the model that was discussed earlier in the previous chapter, some sort

of workaround was necessary to develop in an attempt to mitigate the model’s shortcoming

and still be able to deliver the intended system functionality albeit not to the degree as it was

initially hoped to be. It still would have been ideal had the system been able to simultaneously

run the segmentation process on both host and peer user’s videos. Furthermore, there are also

workarounds needed to be made to ensure the system operation during the call session was

synchronized on both host and peer clients’ end. Due to how the Selfie Segmentation Model

works, the segmentation process is done locally by the client machine meaning that clients do

not stream to each other the actual processed AR output video. In other words, each host and

peer client will run the segmentation process as well as trigger any of the button functions

individually on their own machine. In order to synchronize which functions are triggered

between the two remote users, a workaround was implemented where the signaling server

would emit an event to the user anytime one of them triggers a function. Upon receiving the

emitted event, the receiving end would also trigger the same function, keeping users in sync.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 87

6.3 Objectives Evaluation

Objective Evaluation Result

To develop a peer-to-

peer video streaming

module.

The completed system has successfully been able to

facilitate real-time video communication between two

remote users, enabling an initial user to host a call session

and generate a unique ID with which they may share to

another user to use so that they may join the call session.

Fulfilled

To develop a module

for video capture and

perform image

segmentation.

The completed system is able to access the client device’s

camera, capture a video stream of the user, identify the

human subject, and perform segmentation to separate

between the foreground (human subject) and background.

Fulfilled

To integrate video

streaming and image

segmentation

modules.

The full integration of both the video streaming and

image segmentation modules was successfully done

through the implementation of the completed system. The

system is able to take either the host or peer video as the

media source, perform the segmentation process on the

selected video source, and have the user’s segmented

image augmented onto the video of the other user.

Fulfilled

To deploy the

augmented reality

matching application

to the web.

The completed system has been successfully deployed to

the web and is public accessible through the given URL.

The system structure is split into the client and server

ends with the client hosted through GitHub Pages and the

server hosted using the Render cloud hosting platform.

Fulfilled

To develop further

enhancements for

application

functionalities.

Additional features were added to the system to enhance

its functionality. However, the Custom Background

function was not able to fully deliver its intended purpose

as the system is not able to simultaneously run

segmentation on multiple video sources. The system is

then able to augment only one of either users onto the

video when the Custom Background mode is activated.

Partially

fulfilled

Table 6.3.1 Project Objectives Evaluation

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 88

6.4 Concluding Remark

The overall evaluation of the system establishes that the project was able to produce immensely

satisfying results despite some of the shortcomings. Generally speaking, the project has been

hugely successful as development work was able to develop and implement nearly the entirety

of the major system functionalities that the project intended to deliver. Overall, there was only

one significant functionality that the final system was unfortunately not able to deliver which

is the simultaneous processing of both host and peer user videos for segmentation and

concurrent augmentation of both remote users onto a custom background environment. Despite

that, it should be understood that unless a different image segmentation machine learning

model had been used in place of the MediaPipe Selfie Segmentation Model, nothing could have

been done to change this outcome as the system was handicapped due to the model’s limitation.

Nevertheless, the final system’s implementation has still been able to realize the most important

deliverable of this entire project which is the development of a video conferencing system

capable of generating image-to-augmented reality matching with user videos. The completed

system managed to deliver a functionality to augment the image of a user to the video

environment of another user in real-time. Taking into account the unique nature of this system,

the results that the project was able to produce is nothing short of exceptional.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 89

Chapter 7

Conclusion and Recommendation

7.1 Conclusion

The idea for this project was immensely inspired by the spike in popularity for video

conferencing applications due to the COVID-19 pandemic. Emerging threats from that time

has seen a huge shift in the work culture of the job industry. Companies and government bodies

have enacted the work-from-home policy in interest of public safety. Workers have since then

opted to utilize video conferencing applications in order to conduct their daily communications

while working remotely. Motivation for developing the completed system stems from the

recognition that there are various potential improvements that can be made to further enhance

the video conferencing experience through harnessing the technological power of AR.

Development of the completed system brings about a unique solution for AR experience not

yet offered in any known application. The biggest advantage the completed system intends to

deliver is the functionality to render human images from the video of conference participants

into a single video scene or virtual environment. This capability is in contrast to most of the

current implementations where user videos are only rendered within their own separate video

scenes. The completed system brings about a higher degree of realism where users are made to

appear as if they are actually in the same physical space standing right next to each other. This

project serves as a proof of concept that is hoped to be further experimented on and would see

a better implementation in the future as web development tools for AR matures over time.

Nonetheless, this project serves as an attempt to work on a practical implementation of the web

tools and frameworks currently available at the time of writing. The MediaPipe Image

Segmentation Model, for instance, was developed as a result of the COVID-19 pandemic. This

project has provided a good opportunity to put this algorithm into practical use. Nowadays,

more and more powerful web-based applications are being developed thanks to the ever-

growing innovations in web tools and framework and the completed system is a testimony to

this. Such applications were previously only possible develop as native platform applications.

Current tools are bringing the AR experience closer to be implemented on the web.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 90

7.2 Recommendation

During the course of working on the project, MediaPipe has released a new version of their

Selfie Segmentation Model. The latest release has compiled the Selfie Segmentation Model

together alongside their other image segmentation machine learning models into a single

collection named the MediaPipe Image Segmenter. This latest iteration of their segmentation

model has brought numerous added functionalities. For instance, the newer model has now

managed to incorporate detection for individual body parts such as the arms, legs, torso, etc.

This feature alone brings about vastly bigger numbers of potential use cases. The reason that

this project did not implement the newer release of this model is because of how different the

programming implementation is between the new and old model. It was decided that the project

would stick to utilizing the older model as time as well as other constraints did not allow for

making any major overhaul to how the system was originally implemented for Final Year

Project I. For anyone in the future who are interested in rebuilding this system, it is highly

encouraged that they would look into utilizing the latest machine learning models for image

segmentation that is available during that time. The Selfie Segmentation Model used

specifically in this project in in the experimental state and thus is highly unstable making it

unsuitable for any production builds. It is expected that machine learning models for image

segmentation will continue to improve over time and increase in numbers into the future.

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 91

REFERENCES

[1] H. Kato and M. Billinghurst, "Marker tracking and HMD calibration for a video-based

augmented reality conferencing system," Proceedings 2nd IEEE and ACM International

Workshop on Augmented Reality (IWAR'99), San Francisco, CA, USA, 1999, pp. 85-94, doi:

10.1109/IWAR.1999.803809.

[2] H. Kato, M. Billinghurst, K. Morigana, and K. Tachibana, “The Effect of Spatial Cues in

Augmented Reality Video Conferencing” Proceedings of the Ninth International Conference

on Human-Computer Interaction, 2001, vol. 2, pp. 478-481

[3] O. G. Guleryuz and A. Kalker, "Visual conditioning for augmented-reality-assisted video

conferencing," 2012 IEEE 14th International Workshop on Multimedia Signal Processing

(MMSP), Banff, AB, Canada, 2012, pp. 71-76, doi: 10.1109/MMSP.2012.6343418.

[4] S. Kumar, S. Saxena, and A. K. Singh, “Virtual presence via mobile,” U.S. Patent 9 024

997, May 5, 2015.

[5] Google, “Getting started with WebRTC,” WebRTC, 28-May-2019. [Online]. Available:

https://webrtc.org/getting-started/overview. [Accessed: 30-Jan-2023].

[6] MediaPipe, “Image segmentation task guide,” Google, 31-Mar-2023. [Online]. Available:

https://developers.google.com/mediapipe/solutions/vision/image_segmenter. [Accessed: 31-

Mar-2023].

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 92

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y5S2 Study week no.: 3 (4/7/2023)

Student Name & ID: Bill Hundson David 18ACB01007

Supervisor: Syed Muhammad Bin Syed Omar

Project Title: Web-Based Image-Augmented Reality (AR) Matching Generator

1. WORK DONE

- Conducted extensive planning to decide how work from FYP 1 should be carried over

when going into FYP 2

2. WORK TO BE DONE

- Review the newly released version of the MediaPipe Selfie Segmentation Model

- Discuss with supervisor on what should be done for FYP 2

3. PROBLEMS ENCOUNTERED

- None

4. SELF EVALUATION OF THE PROGRESS

- Need to pick up the pace with the work progress

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 93

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y5S2 Study week no.: 4 (11/7/2023)

Student Name & ID: Bill Hundson David 18ACB01007

Supervisor: Syed Muhammad Bin Syed Omar

Project Title: Web-Based Image-Augmented Reality (AR) Matching Generator

1. WORK DONE

- Reviewed the newly released version of the MediaPipe Selfie Segmentation Model

2. WORK TO BE DONE

- Start development work to integrate the image segmentation module with the video

calling application

3. PROBLEMS ENCOUNTERED

- Review on the new version of the Selfie Segmentation Model finds that its

implementation far too different from the old model

- It is decided that the project will stick to implementing the old segmentation model

4. SELF EVALUATION OF THE PROGRESS

- System development progress needs to speed up

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 94

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y5S2 Study week no.: 6 (25/7/2023)

Student Name & ID: Bill Hundson David 18ACB01007

Supervisor: Syed Muhammad Bin Syed Omar

Project Title: Web-Based Image-Augmented Reality (AR) Matching Generator

1. WORK DONE

- Managed to renew source code design for the image segmentation module

- Started work to integrate segmentation into the video calling app

2. WORK TO BE DONE

- Continue developing the segmentation function for the system

3. PROBLEMS ENCOUNTERED

- The application is still facing numerous bugs with the segmentation function

4. SELF EVALUATION OF THE PROGRESS

- Work progress was shown to supervisor and feedback was received

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 95

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y5S2 Study week no.: 8 (8/8/2023)

Student Name & ID: Bill Hundson David 18ACB01007

Supervisor: Syed Muhammad Bin Syed Omar

Project Title: Web-Based Image-Augmented Reality (AR) Matching Generator

1. WORK DONE

- Successfully developed the segmentation function for system

- System is now able to perform segmentation for user videos and render the AR output

2. WORK TO BE DONE

- Continue development work to add the custom background and video swapping

functionalities

- Continue optimizing system and fixing bugs

- Start working on writing the report

3. PROBLEMS ENCOUNTERED

- There are still various bugs with the system that needs to be addressed especially when

running the segmentation functionality

4. SELF EVALUATION OF THE PROGRESS

- Even though project is progressing steadily, there is still much work to be done

- Need to hasten progress as deadlines are nearing

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 96

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y5S2 Study week no.: 10 (22/8/2023)

Student Name & ID: Bill Hundson David 18ACB01007

Supervisor: Syed Muhammad Bin Syed Omar

Project Title: Web-Based Image-Augmented Reality (AR) Matching Generator

1. WORK DONE

- Report writing is in progress

- Successfully developed the custom background and video swapping functions

2. WORK TO BE DONE

- Need to come up with a workaround to deal with the limitations of the segmentation

model

3. PROBLEMS ENCOUNTERED

- The limitations of the Selfie Segmentation Model had just been realized

4. SELF EVALUATION OF THE PROGRESS

- Satisfied with project progress

- Supervisor is satisfied with the developed system as well

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 97

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y5S2 Study week no.: 13 (12/9/2023)

Student Name & ID: Bill Hundson David 18ACB01007

Supervisor: Syed Muhammad Bin Syed Omar

Project Title: Web-Based Image-Augmented Reality (AR) Matching Generator

1. WORK DONE

- Managed to add the restart segmentation function as a solution for working around the

segmentation model’s limitation

- Managed to fix the last remaining major bugs with the system

- Development for this project’s system has been completed

2. WORK TO BE DONE

- Need to finish up writing the report

3. PROBLEMS ENCOUNTERED

- None

4. SELF EVALUATION OF THE PROGRESS

- Met with supervisor one final time before FYP submission

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 98

POSTER

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 99

PLAGIARISM CHECK RESULT

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 100

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 101

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name(s) of
Candidate(s)

Bill Hundson David

ID Number(s)

18ACB01007

Programme / Course Bachelor of Information Systems (Honours) Information Systems
Engineering

Title of Final Year Project Web-Based Image-Augmented Reality (AR) Image Matcher

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: ___ %

Similarity by source
Internet Sources: _______________%
Publications: _________ %
Student Papers: _________ %

Number of individual sources listed of
more than 3% similarity:

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report

to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: __________________________

 Name: __________________________

Date: ___________________________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

3

3
1
0

0

Text Box
Syed Muhammad Syed Omar

Text Box
15/09/2023

Bachelor of Information Systems (Honours) Information Systems Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 102

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 18ACB01007

Student Name Bill Hundson David

Supervisor Name Syed Muhammad Bin Syed Omar

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Title Page

√ Signed Report Status Declaration Form

√ Signed FYP Thesis Submission Form

√ Signed form of the Declaration of Originality

√ Acknowledgement

√ Abstract

√ Table of Contents

√ List of Figures (if applicable)

√ List of Tables (if applicable)

 List of Symbols (if applicable)

√ List of Abbreviations (if applicable)

√ Chapters / Content

√ Bibliography (or References)

√
All references in bibliography are cited in the thesis, especially in the chapter
of literature review

 Appendices (if applicable)

√ Weekly Log

√ Poster

√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

√
I agree 5 marks will be deducted due to incorrect format, declare wrongly the
ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my
report.

(Signature of Student)
Date: 15/9/2023

	Cover Page
	18ACB01007_FYP2

