

COMPACT REAL-TIME CONTROL SYSTEM OF AUTONOMOUS

VEHICLE SYSTEM USING FPGA PLATFORM

By

CHAN KIM CHON

A thesis submitted to the Department of Mechatronics and BioMedical

Engineering,

Faculty of Engineering and Science,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of

Master of Engineering Science

December 2011

ii

ABSTRACT

COMPACT REAL-TIME CONTROL SYSTEM OF AUTONOMOUS

VEHICLE SYSTEM USING FPGA PLATFORM

Chan Kim Chon

This thesis presents the use of Field Programmable Gate Array (FPGA)

for the design and implementation of a UTAR Compact Real-Time Control

System (UTAR-CRCS) on an autonomous vehicle. A single FPGA device

works as microprocessors, microcontrollers, and digital signal processing

(DSP) devices. This will give the controller much better power in parallel

computing and flexible hardware modules reconfiguration by using

programmable logic, within the required physical and economical scale. Altera

Quartus II and its Intellectual Property (IP) are used to design, simulate and

verify the UTAR-CRSC on Altera DE1 board.

Specifically, the UTAR-CRCS consists of multiple modules which are

separated from each other but run in parallel on a single FPGA device during

real-time operations. With high on-chip data rate up to 475 Mbps, UTAR-

CRCS offers a high computing performance due to parallel signal processing

across modules. This research also focuses on developing a Sobel edge

detector on real-time image. The mathematical operations of the edge

detection are performed in full parallel mode using multiplier and parallel

adder on pure hardware platform to improve the computation speed. This

research shows that FPGA offers parallel processing, good controllability and

stability in signal processing thus increasing flexibility of system. The real-

time control system assures continuity in system behaviour and output signals.

iii

ACKNOWLEDGEMENTS

It would not have been possible to write this thesis without the help

and support of the kind people around me.

In the first place I would like to thank my supervisor, Associate

Professor Dr Tan Ching Seong for his supervision, advice, and guidance from

the very early stage of this research as well as giving me extraordinary

experiences throughout the work. Above all and the most needed, he provided

me unflinching encouragement and support in various ways.

I am most grateful to my fellow research mates, Tee Yu Hon and Teoh

Chee Way for their assistance in various occasions. I also wish to thank

workplace mates for the great environment and joyful atmosphere while

carrying out this research. I would like to acknowledge the financial, academic

and technical support of the Tunku Abdul Rahman University.

Finally, I would like express my heartfelt gratitude to dear family for

their continuous encouragement, understanding and love. I would like to

dedicate this work to them.

iv

APPROVAL SHEET

This thesis entitled “COMPACT REAL-TIME CONTROL SYSTEM OF

AUTONOMOUS VEHICLE SYSTEM USING FPGA PLATFORM” was

prepared by CHAN KIM CHON and submitted as partial fulfillment of the

requirements for the degree of Master of Engineering Science at Universiti

Tunku Abdul Rahman.

Approved by:

(Dr Wang Chan Chin)

Date: 29 December 2011

Dean

Associate Professor

Department of Mechanical and Material Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

v

FACULTY OF ENGINEERING AND SCIENCE

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 29 December 2011

SUBMISSION OF THESIS

It is hereby certified that CHAN KIM CHON (ID No: 09UEM09145) has

completed this thesis entitled “COMPACT REAL-TIME CONTROL SYSTEM

OF AUTONOMOUS VEHICLE SYSTEM USING FPGA PLATFORM” under

the supervision of Dr Tan Ching Seong (Supervisor) from the Department of

Mechatronics and BioMedical Engineering, Faculty of Engineering and Science.

I understand that University will upload softcopy of my thesis in pdf format into

UTAR Institutional Repository, which may be made accessible to UTAR

community and public.

Yours truly,

(CHAN KIM CHON)

(Student Name)

vi

DECLARATION

I hereby declare that the dissertation is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare

that it has not been previously or concurrently submitted for any other degree

at UTAR or other institutions.

 Name: CHAN KIM CHON

 Date: 29 December 2011

vii

TABLE OF CONTENTS

 Page

ABSTRACT II

ACKNOWLEDGEMENTS III

APPROVAL SHEET IV

DECLARATION VI

TABLE OF CONTENTS VII

LIST OF TABLES IX

LIST OF FIGURES X

LIST OF ABBREVIATIONS XII

CHAPTER

1.0 INTRODUCTION 1
1.1 Research Motivation 1

1.2 Scope of Research 7

1.3 Thesis Outline 8

2.0 LITERATURE REVIEW 10
2.1 Overview 10

2.2 Review of Control System for Autonomous Vehicle 11

2.2.1 Control System on LAGR 11

2.2.2 Control System on SAUVIM 14

2.2.3 Control System on ATRV 17

2.2.4 Control System on DEMO III 18

2.3 Challenges in Compact Real-Time Control System 20

2.4 Summary 23

3.0 UTAR COMPACT REAL-TIME CONTROL SYSTEM 28
3.1 Overview 28

3.2 UTAR-CRCS 29

3.2.1 Hardware Description 31

3.3 Design Methodology 40
3.3.1 VHDL and Verilog Constructs for FPGA Logic

Design 43

3.4 UTAR-CRCS Implementation 44

3.4.1 FPGA-based System Architecture 45

3.4.2 Module Specifications 46

3.4.3 Communication 52

3.4.4 UTAR-CRCS Clock Management 57

3.5 Summary 59

viii

4.0 FPGA BASED MACHINE VISION 60
4.1 Overview 60

4.2 Terasic TRDB_D5M Colour Camera 62

4.3 Block Diagram of Digital Camera Design 63

4.4 Block Diagram of Digital Camera Design with Sobel Edge

 Detection 65

4.5 Sobel Edge Detector 66

4.6 FPGA Based Hard Real-Time Sobel Edge Detection

 Implementation 67

4.6.1 Computations 68

4.6.2 Line Buffer 71

4.6.3 Performance 73

4.7 Kalman Filtering for Tree Trunk Detection 78

4.8 Summary 81

5.0 RESULTS AND DISCUSSIONS 83
5.1 Overview 83

5.2 Simulations 83

5.2.1 Vector Waveform File 84

5.2.2 Custom Component Block Level Simulation 85

5.2.3 System Level Simulation 86

5.3 UTAR-CRCS Performance 88

5.3.1 Communication 89

5.3.2 Deterministic System Behaviour 91

5.3.3 Compact System 92

5.4 Summary 94

6.0 CONCLUSION AND FUTURE WORK 95
6.1 Conclusion 95

6.2 Future Work 97

AUTHOR’S PUBLICATION 99

REFERENCES 100

APPENDIX A 104

APPENDIX B 108

ix

LIST OF TABLES

Table Page

 1.1 Examples of SoC using FPGA as processing device 6

 2.1 Summary of control systems for various autonomous

vehicles 24

 3.1 Altera DE1 development board specification 32

 3.2 VHDL and Verilog code for AND gate 43

 3.3 UTAR-CRCS off-chip communications 55

 4.1 TRDB_D5M specification 63

 4.2 Comparisons of image processing time between

UTAR-CRCS and PC based processing unit 76

 5.1 Binary value of FSM states 85

 5.2 FPGA resources utilization for UTAR-CRCS 89

 5.3 Comparison of maximum data rate between multiple

CPUs system and UTAR-CRCS 90

 5.4 Dimension and weight of processing platforms for

comparison 93

x

LIST OF FIGURES

Figure Page

2.1 SAUVIM structure of real-time layer 16

2.2 The basic internal structure of a RCS control loop 20

3.1 UTAR-CRCS control architecture 29

3.2 ALV with the UTAR-CRCS 31

3.3 Altera DE1 development board 32

3.4 Fastrax UC322 GPS receiver 34

3.5 MaxSonar-EZ1 sonar range finder 35

3.6 RE08A rotary encoder 36

3.7 Bourns absolute contacting encoder 36

3.8 KBS brushless motor controller 37

3.9 MD10B DC motor driver 38

3.10 4 channel 2.4 GHz remote control 39

3.11 UTAR-CRCS on DE1 board with external I/O interface board 40

3.12 FPGA design flow 42

3.13 FPGA-based UTAR-CRCS architecture 45

3.14 Sonar range finder signal diagram 48

3.15 Flowchart of sonar range finder control signals generation 49

3.16 FSM in vehicle control module 50

3.17 FSM block for vehicle control in Quartus II 51

3.18 Part of VHDL code when FSM is in Forward state 51

3.19 Parallel communications between two blocks 53

xi

3.20 Low-level vehicle control module in UTAR-CRCS 54

3.21 SPI block that communicates with external DAC 56

3.22 UTAR-CRCS clock management 57

3.23 Frequency divider by factor of two 58

4.1 TRDB_D5M colour camera 62

4.2 Block diagram of TRDB_D5M reference design 64

4.3 UTAR-CRCS real-time image processing block diagram 65

4.4 3 x 3 convolution kernels on pixel P5 66

4.5 SIMD streams architecture 68

4.6 FPGA based Sobel operator implementation 69

4.7 Verilog code to initiate the multiplier-adder computations of

three line data with three ALTMULT_ADD blocks in X-

direction 70

4.8 Verilog code to initiate the parallel adder computations 70

4.9 Verilog code to initiate the square root functions 71

4.10 Line buffer implementation using ALTSHIFT_TAPS function 72

4.11 Sobel edge detection on real-time images 74

4.12 Time line diagram of processing activities on single frame of

image 75

4.13 Sample scene with tree trunks as obstacles and the detected

treetrunks in magenta 78

5.1 Vehicle control module FSM simulation 85

5.2 UTAR-CRCS system level simulation 87

5.3 Measured signals from DAC chips to DC motor controllers 91

xii

LIST OF ABBREVIATIONS

ACE Absolute contacting encoder

ALV Autonomous land vehicle

AUV Autonomous underwater vehicles

CPU Central processing unit

DAC Digital-to-analog converter

DARPA Defense Advanced Research Projects Agency

DSP Digital signal processor

FPGA Field programmable gate array

FSM Finite state machine

GPIO General purpose input/output

GPS Global positioning system

IP Intellectual property

LAGR Learning applied to ground robots

PWM Pulse width modulation

POMDP Partially observable Markov decision processes

RCS Real-time control system

xiii

SAUVIM Semi-autonomous underwater vehicle for

 intervention missions

SDB Sensor data bus

SoC System on chip

SPI Serial peripheral interface

UGV Unmanned ground vehicle

UTAR-CRCS UTAR compact real-time control system

VGA Video graphic array

 1

CHAPTER 1

INTRODUCTION

1.1 Research Motivation

Autonomous land vehicle (ALV) is a driverless vehicle with the

capability to navigate by itself using an intelligent control system. This

intelligent control system is to sense and perceive its surroundings necessary

to support navigational task. There are steady progresses made from the earlier

approach to current systems involving multiple sensors such as laser system,

stereovision, GPS, etc. Recent advance in sensors, communication, and

machine intelligence have made it possible to design more sophisticated ALV.

The potential applications of ALV range from daily life, search and

rescue mission to military. In recent years, global warming effects have

resulted in frequent disasters, such as: typhoon, hurricane, storms, etc. These

disasters have posted serious challenges to the search and rescue teams during

or after the disaster period. Some of the key issues are to react speedily to

reach the disaster/post-disaster locations by using autonomous vehicles; the

locations could have too narrow access for a typical autonomous vehicle

which has huge processing and control equipment on itself. The U.S.

Department of Defense (2010) published the 2009-2034 Unmanned System

Integrated Roadmap. In this roadmap, Special Operations Command

2

(SOCOM) is conducting a program that seeks to develop UGVs for

employment in reconnaissance, supply and protection missions for Special

Force units in forward operating situations. United States Northern Command

(NORTHCOM) and Pacific Command (PACOM) have both requested

technology development support for UGVs that can conduct tunnel

reconnaissance and mapping, and supply transport in complex terrain. To

overcome those challenges in a confined environment, compact autonomous

vehicle is needed. Thus, to minimize the control system becomes one of our

project objectives by using the-state-of-art solution.

With most RCS developed using multiple on-board CPUs and

microcontrollers, this research presents an alternative by using Field

Programmable Gate Array (FPGA) for the design and implementation of a

UTAR Compact Real-Time Control System (UTAR-CRCS) on an autonomous

vehicle. This will give the controller much better power in parallel computing

and flexible hardware modules reconfiguration by using programmable logic,

without an increase in size or costs.

The control system which was built on top of the Learning Applied to

Ground Robotics (LAGR) allows the unmanned vehicle to perform

autonomously in complex environments such as primitive forest trails (Alberts

et al., 2008). Rapid aging of civil and construction workers has led to the

development of M-2 which can carry construction materials and tools in the

field (Gomi, 2003). Japan‟s and USA‟s leading experts in rescue robotics are

deploying wheeled and snake-like robots to assist emergency responders in the

3

search for survivors of the devastating earthquake and tsunami that struck the

country in March, 2011.

Conventional ALV were designed to work in a known and well

protected environment such as office and lab. If this ALV is exposed to the real

world which is unknown to it, some service functions can still be provided but

many such attempts will eventually fail because of their lack of adaptability to

the dynamism of the real environment. In order to overcome all these

constraints, today, almost all ALV control system is RCS. In RCS, the present

state of the task activities sets the context that identifies the requirements for

all the support processing. RCS models complex real-time control through

sensory processing, internal world modelling and behaviour generation. These

3 components work together, receiving a task, and breaking it down into

simpler subtasks (Barbera et al., 2004).

Modern ALV with RCS can perform in a more satisfactory way though

not perfect. Many of these RCS are implemented on industrial PC such as PXI

together with different type of microcontrollers (Park et al., 2007). Due to

large amount of sensors and actuators to be monitored and controlled, RCS

system is developed using multiple on-board CPUs in order to solve the heavy

computational load (Kim & Yuh, 2004). These systems usually occupy a large

space that must be made available on the ALV. As a result, it will lead to

increase in size of autonomous vehicle and higher power consumption.

4

The autonomous operations deal with a lot of uncertainties when the

vehicle travels across the land. Although RCS is reasonably generalized and

has a multi-application system architecture, there is still room for increasing

the robustness of the architecture. RCS in its present form does not deal with

high uncertainty. Predictive navigation is integrated into RCS to improve the

effectiveness in performing worthwhile task. Seward et al. (2006) explained

how the use of Partially Observable Markov Decision Processes (POMDP)

can form the basis of decision making in the face of uncertainty and how the

technique can be effectively incorporated into the RCS architecture. The

computer based simulation has demonstrated that the POMDP technique can

be successfully integrated within a mobile robot controller and the resulting

autonomous behaviour is sensitive to variations in both the safety weighting

factor and the degree of uncertainty in sensor data. Widyotriatmo et al. (2009)

developed a predictive navigation through the extended Kalman filter (EKF)

algorithm to obtain a predicted area that might be occupied by a vehicle with

respect to particular input. By using reward value function, the vehicle has a

capability to cope with the problem of approaching object while also avoiding

obstacles.

The use of Field Programmable Gate Array (FPGA) as the control

platform for the autonomous vehicle can reduce the size of control platform on

the vehicle significantly. As a consequence, the vehicle can have extra space

for transportation. For example, vehicle can carry more basic necessities and

medical aid during the search and rescue mission. Furthermore, the

autonomous vehicle can be designed in a compact way so that it is more agile

5

when travelling autonomously. A compact design allows a better flexibility in

design and light-weight vehicle perform better in navigation across rough

terrain and has better maneuverability across obstacles (Tee & Tan, 2010). The

power consumption of the vehicle is also lower if FPGA is used as the control

platform. Using FPGA-based custom computing machines, Kentaro et al.

(2008) reported that the FPGAs perform the same computation with just 5 to

30 % of the total energy consumed by a microprocessor, while the FPGAs

accelerate the computation.

The era of SoC FPGA has just begun and roboticists have started to

show interests in using FPGA based control platform for autonomous vehicle.

A single FPGA device can work as microprocessors, microcontrollers, and

digital signal processing (DSP) devices. Murthy et al. (2008) demonstrated a

case study where FPGA based control system was derived and verified for a

simulated Unmanned Ground Vehicle (UGV). Besides that, system-on-chip

(SoC) using FPGA-based circuit board has also been designed to support

research and development of algorithms for image-directed navigation and

control (Wade & James, 2007). Table 1.1 shows some examples of SoC that

used FPGA as processing device in autonomous robot (Meng, 2006;

Mahyuddin, 2009). Among the applications, none of them demonstrates the

FPGA capability in autonomous control and vehicle navigation operations.

6

Table 1.1: Examples of SoC using FPGA as processing device

System on Chip

(SoC)

Year

Developed

Autonomous

Application
Contributions

Helios

(Xilinx Virtex-4

FPGA)

2006 Small

autonomous

robot

 3D reconstruction of an

environment using a

single camera (static

environment)

 Moderate levels of

power consumption

Agent-based Mobile

Robot System

(Xilinx Virtex-2

FPGA)

2006 Pioneer 3DX

mobile robot
 Multi-agent based

architecture framework

 Transport-independent

communication

mechanism for multi-

agent systems

Neuro-fuzzy based

Obstacle Avoidance

Program

(Altera Cyclone II

FPGA)

2009 Mobile robot  Neuro-fuzzy based

obstacle avoidance

algorithm

The evolution of computing is toward parallelism, with the near-term

focus on processors shifting from higher, single-core processing power toward

multicore implementations. Both the advantages of parallel processing and the

increased number of gates have led to a rapid increase in popularity of FPGA

implementations. Seunghun et al. (2010) demonstrated a fully pipelined stereo

vision system providing dense disparity image with additional sub-pixel

accuracy in real-time. The hardware implementation is more than 230 times

faster when compared to a software program operating on a conventional

computer. The results show that FPGA based computing platform can also be

used to accelerate the signal processing for large amount of sensors and

actuators on the autonomous vehicle when compared to a conventional

computer.

7

1.2 Scope of Research

In this thesis, the research is focused on developing a compact real-time

control system which is named UTAR Compact Real-Time Control System

(UTAR-CRCS) for an autonomous vehicle. To achieve desired navigation,

high-level control of the system processes the data from all available sensors

and generates control signals to the low-level control of the vehicle.

The research questions addressed by this research are:

 How to build a compact real-time control system of an autonomous

vehicle using a single FPGA device which works as microprocessors,

microcontrollers, and digital signal processor?

 How to utilize the parallel processing technology on FPGA to accelerate

the processing of data from various kinds of sensors and navigation

decision making on the vehicle? This includes the vision data from on-

board camera.

The objectives of this research are:

 To realize the parallelization of real-time autonomous vehicle control

architecture using FPGA technology

8

 To develop the real-time Sobel edge detection module for the

autonomous vehicle control system using hardware programming

technology

 To minimize and demonstrate the control system size-to-vehicle ratio

by using Altera DE1 board

1.3 Thesis Outline

Chapter 2 presents the literature review on the RCS of autonomous

vehicle. Most of the discussions are focused on the hardware and software of

control system, whereby the contributions and limitations of each control

system is highlighted.

Chapter 3 shows the development of UTAR-CRCS with the hardware

selection, system design methodology using Quartus II, and implementation

on Altera DE1 board. It includes the most important design considerations

that focus on system architecture, module specifications, and communication.

Chapter 4 explains and demonstrates the direct hardware

implementation of Sobel edge detector on real-time image from a camera

module. It shows the design and implementation that can accelerate the

computation speed and compares the performance to a high specification PC

based system.

9

Chapter 5 discusses about the simulations and measurement results.

The simulation waveforms on the system are presented, followed by the

measurements on the system performance. The UTAR-CRCS is also compared

to multiple CPUs system and the advantages of using FPGA based system are

highlighted.

Finally, the conclusion of the thesis is presented in Chapter 6. The

implications and results are also summarized. Besides, some suggestions for

future works are presented.

10

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

Autonomous vehicles have generated much interest in recent years due

to their ability to perform relatively difficult tasks in hazardous and remote

environments. These vehicles are usually equipped with various components

for actuation, sensing, and communication. Such components have become

increasingly sophisticated and self-contained. The control system built on the

vehicle must integrate and coordinate these components properly so that

vehicle is able to navigate autonomously with minimal human intervention.

This section describes the work carried out in the area of control

system for autonomous vehicle, focusing on the hardware, software, and

control architecture used for the vehicle control. The contributions and

limitations of each system will be highlighted while the justification of using

FPGA as a control system in this thesis will be given.

11

2.2 Review of Control System for Autonomous Vehicle

RCS is one of the most popular control methodology employed in

autonomous vehicle. It is a reference model architecture that defines the types

of functions that are required in a real-time intelligent control system, and how

these functions are related to each other. Today, most RCSs are implemented

on central processing units (CPUs) or custom made industrial computers such

as PXI system provided by National Instrument.

2.2.1 Control System on LAGR for Unstructured Terrain

The Learning Applied to Ground Robotics (LAGR) program is a

Defense Advanced Research Projects Agency (DARPA) program that has the

goal of researching learning techniques in robot navigation. DARPA selected

certain research teams for LAGR program. Each LAGR robot is built on an

electric wheelchair platform with two pairs of bumblebee cameras for vision

and an on-board GPS antenna for global localization. In order to handle the

heavy computational load from the sensors and navigational planning, the

newer version of LAGR has three dual-core 2.0-Ghz Pentium-M based

computers. One computer is connected to the left camera pair, one to the right

camera pair, and one is for general use (Sermanet et al., 2009).

The University of Idaho (UI) LAGR Planner (UILP) and the UI

software for LAGR Vision (UILV) systems both use fuzzy logic as a tool for

12

creating logical outputs to complex systems (Alberts et al., 2008). The UILP

system contains two subsystems, the global path planner that determines a

route to final goal location and the local trajectory planner that creates the

translational and rotational drive commands. Global planner used a D*

algorithm (Stentz, 1994) on the global cost map of traversability costs. The

local planner uses a predictive controller to simulate possible routes and

maximizes performance of the trajectory based on the lowest cost route that

has the most confidence. For UILV, the system relies on Stanford Research

Institute (SRI) stereo vision libraries to compute depth images of the terrain.

Several courses were implemented to test the functionality of all the

aspects of the UI LAGR (UIL) system. The original intent was to compare

performance of the UIL system with the baseline system, but the unstructured

course turned out to be too difficult for the baseline system to navigate.

Overall, the baseline system followed a more direct route and collided with

more obstacles than UIL system. In contrast, the UIL system was successful

on all runs of the courses. UIL significantly improve the capabilities of the

LAGR robot and more importantly, allow it to perform autonomously in

complex environments such as primitive forest trails which include multiple

obstacles that the base system could not navigate.

Sermanet et al. (2009) developed a complete and robust software

navigation system providing collision-free and long-range navigation

capabilities for LAGR robots. Key to robust performance under uncertainty is

the combination of a short-range perception system operating at high frame

13

rate and low resolution and a long-range, adaptive vision system operating at

lower frame rate and higher resolution. The short-range module performs local

planning and obstacle avoidance with fast reaction times, while the long-range

module performs strategic visual planning.

Multi-layer perception, mapping and planning architecture handles the

latency and frequency issues by sophisticated processing. Depending on the

speed of the vehicle, the processing time and maximum distance of each

module, a balance between each module must be found to insure good results.

Maneuver dictionary and visual odometry contributed to the robust real-time

navigation due to their simplicity and efficiency. The complete system shows a

systematic performance improvement through various field tests over the

reference baseline system.

LAGR robot comes equipped with baseline software for autonomous

navigation. Over the years, the focus of LAGR program is on algorithm

development rather than be consumed early in the project with getting a

baseline robotic platform working. Thus, all work done on the robot is on high

level systems that address problems such as processing visual information and

adjusting to a changing environment. The actual hardware and low-level

software controllers are closed systems that cannot be altered by any of the

teams. There is always room for improvement in image processing. Asano et

al. (2009) showed that quad-core CPU can execute about 1/10 operations of

FPGA in a unit time. With a latest FPGA board with DDR-II RAM and a

larger FPGA, it is possible to double the performance by processing twice the

14

number of pixels in parallel.

2.2.2 Control System on SAUVIM

The need for autonomous underwater vehicles (AUV) for intervention

missions becomes greater as they can perform underwater tasks requiring

physical contacts with the underwater environment, such as underwater

construction and repair, cable streaming and mine hunting. Kim and Yuh

(2004) developed a semi-autonomous underwater vehicle for intervention

missions (SAUVIM) that has multiple on-board CPUs, redundant sensors and

actuators, on-board power source and a robot manipulator for dextrous

underwater performance. Such a complex robotic vehicle system requires

advanced control software architecture for on-board intelligence, making it to

have prompt response from high-level control with respect to low-level sensor

data.

SAUVIM was developed by the autonomous systems laboratory of the

University of Hawaii. The SAUVIM hardware has distributed architecture in

which processing nodes are connected through Ethernet and VME-bus for soft

real-time and hard real-time tasks. There are three MC68060-based CPU

boards that handle all operations of navigation module and robot manipulator.

Five additional Pentium-based PC/104+ CPU boards are used for sensor data

processing that often becomes heavy computational loads, such as image

processing for CCD cameras and scanning sonar. Besides, various analog and

15

digital I/O boards are used for interfacing with input sensors and output

actuators. The frequency bandwidth of the arm controller is programmable in

the range of 100 Hz to 1 kHz, while the vehicle is determined to be about 3-10

Hz. A higher bandwidth implies the potential of a control system to realize

faster motions.

The SAUVIM control software architecture is a sensor data bus based

control architecture (SDBCA) that has a modular, flexible structure for any

modification or additions. Thus, almost all of the software modules can be

easily rebuilt or replaced for upgrading or testing just like hardware

components. The overall architecture consists of three layers, application layer,

real-time layer and device layer. Application layer consists of application

software which is a sub-task module that includes all software modules for

high- and mid-level processing. The real-time layer consists of system

configurator, a real-time operating system, and some parts of sub-task modules.

Device layer is the only hardware dependent part that directly connects to

hardware to send command data for actuators and to obtain actual data from

sensors.

While the hierarchical architecture described is easy for verifying the

controllability and stability, it presents a lack of flexibility and a long response

time due to no direct communication between high-level control and low-level

peripherals. To overcome these disadvantages, a sensor data bus (SDB) is used

to supply a direct communication channel between low-, mid-, and high-level

layers. With SDB, urgent sensor signals can be handled in real-time and other

16

sensor signals can be filtered, according to its criticality, to get reliable clean

data. For the implementation, the real-time layer is divided into two layers,

soft real-time layer and hard real-time layer as in Figure 2.1. Time critical

modules run in the hard real-time layer, of which the cycle time is normally

less than 10ms. Most vehicle management and mid-level input/output modules

are in the soft real-time layer, of which the cycle time is in between 10 and

100ms, depending on sensor/actuator response time.

 Figure 2.1: SAUVIM structure of real-time layer

According to the openness concept, any kind of real-time operating

system can be used for SAUVIM controller. However, to get more reliable

performance, VxWorks, of which the performance is already confirmed in the

real-time industry, is chosen. In order to guarantee the real-time processing in

each controller and CPU, the computational burden in each CPU is calculated

and distributed during run time. As a result, there are tradeoffs between

performance and power consumption. With more CPUs in the system to

improve the performance, it will lead to higher power consumption. Besides

that more software is needed to configure the various additional I/O boards.

17

2.2.3 Control System on ATRV

ATRV is a rugged four-wheel drive, differentially steered, all-terrain

robot vehicle for outdoor robotic research and application development. It is

stable in a wide variety of terrains and it can traverse them easily (Nebot et al.,

2011). An internal PC computer is installed in the vehicle with data and power

ports for user hardware interface. It is also equipped with a mobility object-

oriented software development environment.

The control architecture is one of the most important parts to develop

in a robotic system, especially if it is composed of several robots which must

cooperate. This control architecture must give support for all the facilities of

the systems and forms the backbone of the robotic system. Using ATRV as the

mobile robots, new control architecture is introduced for group of robots in

charge of doing maintenance tasks in agriculture environment. High Level

Architecture (HLA) can be considered the most important part because it not

only allows the data distribution and implicit communication among parts of

the system but also allows simultaneous operation with simulated and real

entities. The main objective of HLA is to create systems based on reusable

components of different nature which can interact easily through a distributed,

real-time operating system. HLA architecture must obey a set of rules and

interface specifications in order to govern the overall system and to govern

each participating component.

18

A robot must detect features in the sensory data stream that are salient

to the task in order to be successful in task execution. Behaviour-based robots

in particular use salient features to construct and sequence behaviours. The

salient features are extracted from sensory-motor sequences for mobile robot

navigation via teleoperation (Peng & Peters, 2005). During an offline

association step, sensory-motor sequences are partitioned into episodes

according to changes in motor commands. Salient features are then extracted

by using two statistical criteria: consistency and correlation with the motor

commands within the episode boundaries. The robot is controlled onboard by

a standard AMD Athlon XP 1.4GHz PC running Linux. All low-level sensing

and actuation modules run on the onboard computer. High-level modules and

user interface are executed on a remote laptop computer.

2.2.4 Control System on DEMO III

The US Department of Defense through its various agencies has been

major sponsor of research in autonomous vehicle. Notable examples include

the DEMO I, II, and III projects. The computing system includes a number of

Motorola CPU cards (MVME172, 2400, 2700) running VxWorks, which are

used for iris control, image acquisition, stereo vision, obstacle detection,

velocity control and terrain cover classification. A single PowerPC 750 is used

by the JPL stereo system to produce disparity maps at rate of 6 Hz (Belutta et

al., 2000).

19

Autonomous navigation in cross-country environments presents many

new challenges with respect to more traditional, urban environments. The lack

of highly structured components in the scene complicates the design of even

basic functionalities such as obstacle detection. Manduchi et al. (2005) had

developed a new sensor processing algorithm on DEMO III control system

that is suitable for cross-country autonomous navigation. Two approaches

were presented to obtain terrain cover perception, one based on stereo and

colour analysis, and the other based on range data processing. The algorithm

was ported to C++ and ran under VxWorks in a Pentium 4, 2.2 Ghz machine.

These techniques are at the core of JPL‟s perceptual system for autonomous

off-road navigation and have been tested in the context of several projects

funded by the US Department of Defense.

The RCS methodology and hierarchical task decomposition

architecture has been used to implement a number of diverse intelligent

control systems on DEMO III. Tests were conducted under various conditions

including night, day, clear weather, rain, and falling snow. The unmanned

vehicles operated over 90% of both time and distance without any operator

assistance. However, it should be noted that DEMO III tests were performed in

environments devoid of moving objects. The inclusion of moving objects in

the development of perception, world modelling, and planning algorithms for

operating an autonomous robot remains a challenging topic of current research.

As such, a description of the use of the task-decomposition-oriented RCS

methodology as an approach to acquiring and structuring the knowledge

required for the implementation of real-time complex control tasks was

20

presented (Barbera et al., 2004).

 Figure 2.2: The basic internal structure of a RCS control loop

Figure 2.2 shows the basic structure of a RCS control loop. The hope is

that ontology tools and techniques will provide more consistent single

representational solution to capturing the knowledge and all the implied

relationships, especially to the task, in a more computer readable and

processible form.

2.3 Challenges in Compact Real-Time Control System

The preceding sections have briefly discussed the control system of

various autonomous vehicles, with their achievements and limitations, as

listed in Section 2.4 and Table 2.1.

With more sophisticated sensors and actuators used in a control system,

we anticipate more hardware resources to handle the heavy computational load.

21

Possibly the biggest challenge in a RCS is to improve the processing

capability while minimizing the power consumption. The integrity of RCS is

critical to ensure the system stability and performance in real-time

environment. It must assure continuity in system behaviour and output signals.

A failure in the system may result in material loss or even endanger human

lives. The following are some possible challenges in RCS for autonomous

vehicle.

1. A compact control system can minimize the system-to-vehicle

weight ratio and therefore is useful on a compact vehicle which can

travel across terrain, rainforest, and narrow tunnel. The light weight

control system will reduce the vehicle‟s weight significantly making

the vehicle more agile during navigation.

2. As RCS is getting more complex, parallel processing need to be

implemented in the RCS to accelerate the processing of data and

decision making. Otherwise, the system response will be slower and

real-time performance is not guaranteed.

In the Unmanned Ground Vehicle Integrated Roadmap (2010), the

research and development of small UGV for the future is clearly defined.

These small UGVs are expected to play more important roles in various kinds

of missions. It can assist the soldier with reconnaissance while aiding the

understanding and visualisation of the tactical picture. An advanced small

UGV is capable of operating on all terrains such as mud, sand, rubble-type

obstacles, 6-inch deep water, and in all weather conditions. Besides ground

22

operations, there is also continuous effort to develop and demonstrate a

marinized, small UGV to support at-sea maritime interdiction operations

including boarding and inspection of vessels of all sizes. Some of the UGVs

are available now and future modifications to them will result in more

sophisticated UGVs. iRobot is developing a Small Unmanned Ground Vehicle

(SUGV) which will weigh less than 13.6 kg for military use. The SUGV is

battery-operated and capable of conducting 6-hour missions in tunnel, sewers,

caves, and military operations in urban terrain areas.

Anthony and Steve (2010) also explained the developments and

challenges for autonomous vehicle. Primitive levels of autonomy are likely to

advance very rapidly once established; as soon as any relevant techniques are

developed and stable, they may be copied and run on smaller and cheaper

processor. In addition, unmanned ground vehicle do not require humans to be

onboard and consequently do not need any life support systems, space for

humans, special armour or protection. As a result, the vehicle can be made

smaller and lighter than their manned counterparts. As the procurement cost of

vehicles is roughly proportional to their mass, a reduction in mass can be

expected to translate into cost savings and a commensurate drop in the support

required for the vehicle. The continued drive for cost effectiveness, the

pressure for smaller operator footprints, and the capacity for cooperatives of

multiple unmanned vehicles to accomplish tasks that are difficult or

impossible for single unmanned vehicle have all combined to increase interest

in networks of smaller unmanned vehicles with increased automation. A

smaller unmanned vehicle needs a compact RCS.

23

2.4 Summary

This chapter reviews the control architecture, hardware and software

used in several existent control systems of various autonomous vehicles.

Table 2.1 shows the summary of control systems for various autonomous

vehicles. Their contributions are noted and limitations of the control system

are addressed. The need for a compact control system with parallel processing

capability is stressed. Finally, the challenges in the development of a real-time

control system and the need for compact RCS in small unmanned autonomous

vehicle are identified.

24

Table 2.1: Summary of control systems for various autonomous vehicles

Vehicle Author
System

Architecture/Features
Hardware Software Advantages Disadvantages

L
A

G
R

Sermanet

et al.

(2009)

1) Multi-layered

mapping, planning,

and command

execution system

2) Combination of

short-range perception

system and long-range

adaptive vision system

1) Three

dual-core

2.0-Ghz

Pentium-M

based

computers

2) Global

Positioning

System

(GPS)

3) Two pairs

of

bumblebee

cameras

4) Inertia

Measurement

Unit (IMU)

5) Wheel

encoders

Baseline

software

(based on

RANGER

system) for

autonomous

navigation

developed

by CMU's

Robotic

Institute.

1) This system

includes all the

necessary

hardware, sensors

and software to

create standard

development

environment.

2) NREC provides

remote technical

support, spare

parts supply and

user training.

1) Actual

hardware and

low-level

software are

closed systems

that can‟t be

altered by any

teams.

2) Multiple CPUs

in the system

occupy more

space and lead to

higher power

consumption

Alberts

et al.

(2008)

1) UILP and UILV

systems both use fuzzy

logic as a tool for

creating logical

outputs.

2) Predictive controller

to simulate possible

routes and maximizes

performance

25

Table 2.1 continued

Vehicle Author
System

Architecture/Features
Hardware Software Advantages Disadvantages

S
A

U
V

IM

Kim &

Yuh

(2004)

1) It consists of

application layer, real-

time layer and device

layer.

2) A sensor data bus

(SDB) is used to

supply a direct

communication

channel between low-,

mid-, and high-level

layers

1) 3

MC68060

CPU for

navigation

- high level

navigation

- low level

navigation

- robot

manipulator

2) 2

multifunctio

nal I/O

boards

3) 5

Pentium-

based

PC/104+

CPU boards

for 6 CCD

cameras and

a scanning

sonar

4) Watson

Inertia

Measuremen

t Unit (IMU)

5) Global

Positioning

System

(GPS)

6) 2

Imagenex

881 high

resolution

scanning

sonars

(360
o
)

7) Tritech

PA 200

range sonars

VxWorks

real-time

operating

system

(RTOS)

1) Multiple on-

board CPUs

making it possible

to have a prompt

response from

high-level control

with respect to

low-level.

2) An open

distributed system

allows a wide

range of hardware

configurations as

long as they

satisfy

requirements

1) A lot of sensors

and actuators to

be monitored and

controlled

2) Heavy

computational

load for mission

planning, real-

time trajectory

planning, real-

time obstacle

avoidance, and

task description

language

interpreter.

3) Multiple CPUs

in the system

occupy more

space and lead to

higher power

consumption

26

Table 2.1 continued

Vehicle Author
System

Architecture/Features
Hardware Software Advantages Disadvantages

D
E

M
O

 I
II

Manduc

hi et al.

(2005)

1) New sensor

processing algorithm

on control system that

is suitable for cross-

country autonomous

navigation.

1) Multiple

Motorola

CPU cards

(MVME172,

2400, 2700)

2) LADAR

3) RADAR

4) Color

cameras

 VxWorks

real-time

operating

system

(RTOS)

1) Multiple on-

board CPUs

dedicated to

individual sensor

speed up the

processing of data

1) Multiple CPUs

in the system

occupy more

space and lead to

higher power

consumption

Barbera

et al.

(2004)

1) RCS methodology

and hierarchical task

decomposition

architecture

2) Consistent single

representational

solution to capturing

the knowledge and all

the implied

relationships

1) It has a world

model that caters

for different real-

time situations.

2) It decomposes

tasks into

subtasks where

each control

module is

concerned with

only its own level

of responsibility

in the

decomposition of

the task.

1) It needs a huge

database for

world modelling.

2) Complex

control structure

and algorithm.

U
n

m
a
n

n
ed

 V
eh

ic
le

Park et

al.

(2007)

1) The system consists

of Host, RT Target &

Obstacle detection

2) Navigation and

vehicle control in RT

target

1) 3 PXIs,

industrial

computer as

host PC, RT

target and

obstacle

detecting

system.

2) DC motor

48 V, 2.2

kW/3 HP to

drive

vehicle.

3) AC servo

motor to

control drum

type brake

and steering.

4) Laser

scanners &

color

cameras

1) NI DAQ

& NI motion

2) Windows

XP

Professional

1) It shows better

results than the

previous system

where response

time is shorter.

2) 2 degree

freedom for easy

computation

process.

1) Bulky control

system on

vehicle: 3 PXIs

for processing

2) Still under

development and

not yet reach

stable operation.

27

Table 2.1 continued

Vehicle Author
System

Architecture/Features
Hardware Software Advantages Disadvantages

A
T

R
V

Nebot

et al.

(2011)

1) High Level

Architecture (HLA)

generates systems

based on reusable

components of

different nature which

can interact among

them easily through a

distributed, real-time

operating system

1) Pentium

based

computers /

AMD

Athlon XP

based

computers

2) Global

Positioning

System

(GPS)

3)Sony color

camera

4) Inertia

Measuremen

t Unit (IMU)

5) Wheel

encoders

6) SICK

Laser

1) Linux

1) This system

includes all the

necessary

hardware, sensors

and software to

create standard

development

environment.

1) Multiple CPUs

in the system

occupy more

space and lead to

higher power

consumption

Peng &

Peters

(2005)

1) Salient features are

extracted from the

offline data association

to construct and

sequence the vehicle's

behaviours

28

CHAPTER 3

UTAR COMPACT REAL-TIME CONTROL SYSTEM (UTAR-CRCS)

3.1 Overview

Real-time (RT) systems are defined as those systems in which the

correctness of the system depends not only on the logical result of

computations, but also on the time at which the results are produced. The most

characteristic misconception in the domain of real-time systems is that real-

time computing is often considered as fast computing (Colnaric et al., 1998). It

must be understood that computer speed itself cannot guarantee that specific

timing requirements will be met. Instead, being able to assure that a process

will be completed within a predefined time frame is of utmost importance. In

RCS, if the timing requirements are not met or the task response action is

delayed for any reason, a catastrophic failure might occur. For the task-

specific controller described in this work, if the task response-time

requirements are not met, the vehicle controller will not be able to provide a

stable control action. In general, the main characteristics of RCS are:

1. Able to process multiple tasks in parallel

2. Predictability of temporal behaviour and continuity in output signals

3. Meet timing deadlines for the processes

29

Based on the previous literature review, it is clear that in most of the

research done, RCSs are built using multiple PCs, microcontrollers, and digital

signal processors. In this work, the proposed Field Programmable Gate Array

(FPGA) based UTAR Compact Real-Time Control System (UTAR-CRCS)

overcomes some of the challenges in RCS for ALV.

3.2 UTAR-CRCS

The UTAR-CRCS system of an ALV is shown in Fig. 3.1. It consists of

a remote control system, navigation system, vehicle control system, and

multiple sensors that are connected to the system.

 Figure 3.1: UTAR-CRCS control architecture

30

Navigation system is a high-level controller that performs obstacle

avoidance. ALV can sense its surrounding with the range sensors and this

information will be used for obstacle detection. Ultrasonic sensors are used in

this work and it can be set to detect obstacles in a desired distance. Infrared

(IR) sensor can also be used to sense range but it is easily influenced by

ambient light at outdoor environment. Thus, ultrasonic sensor is preferred over

IR sensor in the development of UTAR-CRCS. Besides, a colour camera is

used to acquire real-time image of the surrounding. The Global Positioning

System (GPS) will provide the location of the ALV on the earth. The trajectory

instructions are generated in this system and the control signals will be sent to

the vehicle control system. In case the ALV faces an indecisive situation, the

manual interaction will come into control where remote control system allows

a shift from autonomous to manual operation dynamically.

The vehicle control system is a low-level controller that performs

steering and driving tasks. It processes the signals from the navigation system,

and the rotary encoders and then generates control signals to the DC motors.

The rotary encoder will encode the speed of each DC motor and provide

feedback to the system for speed control. One of the key features in this vehicle

control system is zero-radius turning. The ALV is capable of a zero-radius turn

in a confined area such as a tunnel. Figure 3.2 shows the ALV that is installed

with the UTAR-CRCS.

31

Figure 3.2: ALV with the UTAR-CRCS

3.2.1 Hardware Description

This section describes the hardware used in the project reported in this

thesis to build the UTAR-CRCS. This includes the Altera DE1 Development

Board which is the processing platform for the control system. Generally, the

UTAR-CRCS consists of an embedded control system, a colour camera, low-

level sensors, and a custom built I/O board for interfacing with the DC motor

controller.

32

3.2.1.1 Altera DE1 Development Board

All the important components on the board are connected to pins of a

state-of-the-art Cyclone II 2C20 FPGA, allowing user to control all aspects of

the operation. Figure 3.3 shows the DE1 development board and Table 3.1

shows the DE1 board specification.

 Figure 3.3: Altera DE1 development board

Table 3.1: Altera DE1 development board specification

Parameter DE1 Development Board

FPGA

 Cyclone II EP2C20F484C7

 EPCS4 serial configuration device

I/O Devices

 Built-in USB Blaster for FPGA configuration

 RS-232 port

 VGA DAC resistor network (4096 colours)

 PS/2 mouse or keyboard port

 Line-in, line-out, microphone-in (24-bit audio CODEC)

 Expansion headers (76 signals)

VGA Video

Port

Power Switch

On-Board

Oscillators

USB Blaster

Controller Chipset

7-SEG

Display

Toggle

Switches

GPIO Pins

RS-232 Port

Cyclone II

FPGA

Push Button

Switches

SDRAM

33

Memory

 8-MB SDRAM

 512-KB SRAM

 4-MB Flash

 SD memory card slot

Switches, LEDs,

Displays, and Clocks

 10 toggle switches

 4 debounced pushbutton switches

 10 red LEDs, 8 green LEDs

 Four 7-segment displays

 27-MHz and 50-MHz oscillators

The VGA port on the board is connected to an LCD monitor for real-

time image display while SDRAM is used as a buffer for input image data

before output for display. The GPS receiver module communicates with the

DE1 board though the RS-232 port. On the board, general purpose I/O in

expansion headers are used to interface with external hardware which includes

various sensors, DC motor controllers, and the remote control receiver. The

I/O pins can also be optionally connected to LEDs to provide a visual

indicator of processing activity. Both 27 and 50 MHz oscillators are used as

system clocks.

3.2.1.2 Global Positioning System (GPS)

The Fastrax UC322 is an OEM GPS receiver module which

provides low power 90 mW operation together with weak signal

34

acquisition and tracking capability to meet even the most stringent

performance expectations. This module provides complete signal

processing from an embedded GPS antenna to serial data output in

NMEA message. Figure 3.4 shows the GPS receiver.

Figure 3.4: Fastrax UC322 GPS receiver

3.2.1.3 Sonar Range Finder

MaxSonar-EZ1 detects objects from 0-inch to 254-inches with 1-

inch resolution. It is installed on the ALV for obstacle detection. The

interface output formats included are pulse width output, analog voltage

output, and serial digital output. In this work, pulse width output is used

as input to DE1 board which then encodes the range finder‟s reading.

After that, the values are sent to the navigation module for further

processing. Figure 3.5 shows the sonar range finder.

Antenna

Processing Unit

35

Figure 3.5: MaxSonar-EZ1 sonar range finder

In order to process the pulse width (PW) input and decode the sensed

distance value, the following expressions were used:

PW = Count x (1/fclk) 3.1

Distance = (PW / 147 us) x 0.0254 m 3.2

where 147 us in Eq. 3.2 represents 0.0254 m. All these computations were

implemented using floating point multiplier and divider IP blocks.

3.2.1.4 Rotary Encoder

RE08A is a rotary encoder which comes with a slotted disc (8 slots)

and a simple interface sensor board. The sensor converts the data of rotary

motion into a series of electrical pulses. The electrical pulses are then counted

by the digital counter in the control system. With this concept, the rotary

encoder is employed in the DC motor shaft so that the controller can sense the

current motor speed as shown in Figure 3.6.

Transceiver
Processing Unit

36

 Figure 3.6: RE08A rotary encoder

3.2.1.5 Bourns Absolute Contacting Encoder (ACE)

Bourns ACE is an intelligent alternative to incremental encoders and

potentiometers. Through the use of combinatorial mathematics, the gray-code

pattern provides an absolute digital output that will also retain its last position

in the event of a power failure. It is installed on the rear wheels to sense the

orientation of rear wheels under different operations, especially in positioning

the rear wheels for zero radius turn. Figure 3.7 shows the Bourns ACE.

Figure 3.7: Bourns absolute contacting encoder

Optical Sensor

Slotted Disc

I/O Pins

I/O Pins

Shaft

37

3.2.1.6 Front Wheel Brushless Motor Controller

The ALV in this project is driven by the DC motors on front wheels.

Kelly KBS brushless motor controller is used to control the operations of the

DC motor which is installed on each front wheel of the ALV. The powerful

microprocessor in the controller is capable of comprehensive and precise

control of the controllers. Figure 3.8 shows the KBS brushless motor

controller. It has analog brake and a throttle input which accepts input in the

range of 0 to 5 V. Since the DE1 board can only output maximum voltage of

3.3 V, external high precision Digital-to-Analog Converter (DAC) is used to

generate 0 to 4.1 V. The 8-bit DAC has a full-scale output range of 0 to 4.1 V

under the operating voltage of 5 V.

 Figure 3.8: KBS brushless motor controller

3.2.1.7 Rear Wheel Motor Driver

The ALV sets different orientations of rear wheels under different

operating conditions. The DC motor driver is used to control the operations of

Power Supply

Cables

Controller Unit

Connectors

38

each rear wheel. Figure 3.9 shows the DC motor driver, MD10B that is

designed to drive high current DC motor in our application. The Pulse Width

Modulation (PWM) input on the driver is used for controlling power to the

rear wheel DC motor. A PWM block in the control system generates the input

signals to the driver.

 Figure 3.9: MD10B DC motor driver

3.2.1.8 Remote Control

The ALV will be controlled manually whenever it is in an indecisive

state or during an emergency. During this time, all controls signals from

autonomous navigation systems will be ignored. Figure 3.10 shows the 4

channel 2.4 GHz radio remote control. This remote control is normally used to

control a toy helicopter. In this work, the receiver‟s signals are studied and

processed to generate control signals directly for low-level control. By moving

the joysticks, we can control the vehicle to move in different directions or

perform a zero-radius turn.

Relay

I/O Pins

MOSFET

39

Figure 3.10: 4 channel 2.4 GHz remote control

3.2.1.9 External I/O Interface Board

An external I/O board was specially designed to interface with the DC

motor controller. This is due to the fact that DC motor controller can receive

input from 0 to 5 V while DE1 board can only have maximum output of 3.3 V.

As a solution, an external DAC chip which has output from 0 to 4.1V is used

to convert the digital output from the DE1 board and interface it with the DC

motor controller input. The control system continuously sends a digital data

stream through a Serial Peripheral Interface (SPI) to the DAC which in turn

controls the DC motor operations. Figure 3.11 shows the UTAR-CRCS

implementation on DE1 board together with the external I/O interface board

(right side of the diagram).

Control Knob

Power Switch

Antenna

40

Figure 3.11: UTAR-CRCS on DE1 board with external I/O interface board

3.3 Design Methodology

Hardware description language (HDL) is a language for formal

description and design of electronic circuits, and most commonly, digital logic

circuits. It can describe the circuit‟s functionality, its design and organization,

and tests can be created to verify its operation by means of simulation. In this

work, the use of VHDL and Verilog for logic synthesis has several advantages

over other design implementation methods because designs can be rapidly

prototyped as the FPGA device is an easily reconfigurable logic device.

The constructs of the VHDL code for synthesis can have a great effect

on the system‟s performance. Intellectual Property (IP) building blocks in the

External I/O

Interface Board

Altera DE1

Board

DC Motor

Controller

41

design software have been rigorously tested and meet the exacting

requirements of various industry standards. Therefore, the use of IP blocks in

the system can guarantee the system performance. However, for some non-

standard piece of code constructs, it might cause the synthesis tool to try a

non-optimal implementation algorithm, producing synthesized logic of lower

quality. Furthermore, targeting the predefined logic structures of FPGA which

has fixed properties requires a special design approach when writing the

VHDL or Verilog code. Figure 3.12 shows the complete FPGA design flow to

build a complex system such as UTAR-CRCS in this work.

Quartus II software was used in the programming and hardware

development to create the final FPGA based system. Firstly, development

flows begins with analysis of the application requirements such as

computational performance, throughput, and types of interfaces. Based on

these requirements, concrete system design is implemented by selecting the

appropriate IP blocks available. For example, a dedicated multiplier was used

for certain applications in this work as this hardware acceleration logic can

dramatically improve system performance. Other than IP blocks, custom HDL

blocks are also created and integrated into the UTAR-CRCS to perform

specific operations such as data acquisition and communication. All design

blocks are then linked together to exchange data and control signals.

42

Figure 3.12: FPGA design flow

Using the Quartus II software, pin locations and other pin constraints

are applied for I/O signals. This is followed by compilation of the design that

provides a report file in the synthesis, fitter, map, placement, and assembler

stages. The report file provides useful information on the device configuration.

Besides report file, compilation also generates a SRAM Object File (.sof) that

can be downloaded to the FPGA device. After all this, the performance is

analyzed from various aspects such as functionalities, timing requirements and

stability. If improvement in the system is needed, design files can be modified

and updated.

A typical FPGA design flow normally requires simulation stage after

the project compilation. It is performed on the individual block itself and then

43

on the integrated system. The simulation can show the individual block or

system performance in terms of functionality and timing before

implementation. This stage is critical and must be performed before the

hardware implementation.

3.3.1 VHDL and Verilog Constructs for FPGA Logic Design

Table 3.2: VHDL and Verilog code for AND gate

VHDL Code Verilog Code

library ieee;

use ieee.std_logic_1164.all;

entity andgate is

port(x: in std_logic;

 y: in std_logic;

 F: out std_logic);

end andgate;

architecture behav of andgate is

begin

 F <= x and y;

end behav;

module andgate (x, y, F);

input x, y;

output F;

assign F = x & y;

endmodule

This work used VHDL and Verilog as the design entry method, Table

3.2 shows the VHDL and Verilog code for an AND gate. A digital system in

VHDL consists of an entity that can contain other design entities which are

then considered as components of the top-level entity. The entity is modelled

by an entity declaration and an architecture body. Entity declaration is the

F
x

y

44

interface to the external world that defines the input and output signals while

architecture body contains description of the entity and is composed of

interconnected entities, process and components, all operating concurrently. In

UTAR-CRCS, many entities are connected together to build the top-level

entity.

In Verilog, a circuit is represented by a set of modules. Referring to

Table 3.2, a module is a keyword and andgate is the name given to this module.

The module begins with declaration of all ports as input and output. It is then

followed by the description of the module that contains any combination of the

following: variable declaration, concurrent and sequential statement blocks,

and instances of other modules. Compared to Verilog, VHDL is more tedious

in coding for the same circuit. However, a structure can be modelled equally

effectively in both VHDL and Verilog. In this project, both VHDL and Verilog

are used because the author is more familiar with VHDL but there are some IP

blocks that were written in Verilog code.

3.4 UTAR-CRCS Implementation

UTAR-CRCS was designed and developed using Altera Quartus II

software. The design entry methods include Intellectual Property (IP) blocks,

custom VHDL and Verilog design. Simulations are performed for design

verification. The system was implemented on Altera DE1 boad that is installed

on an ALV. The following section will describe the FPGA-based design details.

45

3.4.1 FPGA-based System Architecture

The FPGA-based UTAR-CRCS is an embedded system as shown in

Figure 3.13. In this design, an FPGA device works as processing units,

microcontrollers and digital signal processors.

On-Chip System Interconnect

Sensors

Module

Camera

Module

GPS

Module

RF Receiver

CMOS

Camera

GPS

Receiver

Ultrasonic

Range

Sensors

DC Motor

Controller (Right)

DC Motor

Controller(Left)

DC Motor Speed

Encoder (Right)

DC Motor Speed

Encoder (Left)

VGA

Controller

LCD

Display

SDRAM

Controller

System

Clock

External

SDRAM

C
y
c
lo

n
e

 I
I
F

P
G

A

Emergency

Stop
Navigation

Module

On-Chip System

Interconnect

RF Remote

Control

Remote Control

Module

Front Wheel

DC Motor

Driver (Right)

DC Motor

Driver (Left)

Absolute Encoder

(Right)

Absolute Encoder

(Left)

Rear Wheel

Vehicle Control Module

Figure 3.13: FPGA-based UTAR-CRCS architecture

This system consists of multiple modules that are interconnected to

each other using the on-chip system interconnect; coupling is achieved

through parallel links and control signals. The arrows between modules in the

diagram show clearly the direction of data flow or communication in the

system. In the UTAR-CRCS, system clocks come from the on-board 27 and 50

MHz oscillators. The clock signals are loaded to the modules based on

individual module requirement.

46

During real-time operation, all modules run concurrently and

according to Flynn‟s taxonomy, this is Multiple Instruction, Multiple Data

(MIMD) streams architecture. MIMD is a technique employed to achieve

parallelism so that at any time, different modules are executing different

instructions on different pieces of data. By moving towards multiple modules

for peripheral devices, high-level control modules are relieved from that work,

and peripheral services are much more flexible and fault tolerant.

Sensors provide two kinds of data: they acquire values of input

variables and notify the control system of events, which influence the further

process‟s behaviour. Typically, the control system senses system states,

characteristic values, data inputs and, with calculated results, controls the DC

motor controllers and drivers. The times to react to events are in the order of

magnitude of milliseconds, and must be guaranteed. The real-time vision

system was developed on another DE1 board due to insufficient I/O pins on a

single DE1 board; this vision system will be explained in details in Section 4.

As a result, the whole system architecture was implemented on 2 DE1 boards

and board-to-board communication is established through a UART.

3.4.2 Module Specifications

The structure of UTAR-CRCS depends on specification and

implementation issues. Controller functionality was specified and

implemented using modules and tasks. A module is a fixed part of the target

47

device whereas tasks represent the different signal processing functionalities

of a module. There can be more than one task loaded in a module thus

consuming more chip area. Specifications of module and task employ data

flow and control flow specification methods.

3.4.2.1 Data Flow

A task normally works on of multiple input and output data. In a task

processing, there is always a condition on when the input data should be

processed and when an acknowledgement signal should be sent out to the

subsequent task. The flow of data must be organized and set in orderly manner

to ensure that the system works accurately.

In UTAR-CRCS, data flow is controlled by various control signals that

flow through the task. Thus, data flow is specified by a signal diagram

showing clearly the events of input and output signals. To demonstrate the use

of signal diagram in controlling the data flow, Figure 3.14 shows the signal

diagram in reading a value from ultrasonic range sensor. Sonar_Request and

Sonar_Input are input signals while Sonar_ON and Data_Ready are output

signals for the task.

48

Figure 3.14: Sonar range finder signal diagram

When the control system needs to sense a distance, it sends a signal

(logic „high‟ in Sonar_Request) to the task. The task turns on (Sonar_ON is

asserted „high‟) the ultrasonic sensor, and sends an acknowledge signal

(Data_Ready is asserted „low‟) to subsequent task to indicate that the data is

not ready to be read. Next, the sensor input is processed and converted to a

fixed data format with an output latency of 10 clock cycles. After all this, an

acknowledge signal (Data_Ready is asserted „high‟) is sent to subsequent task

to indicate that the data is ready to be read. The output latency comes from

floating-point conversion and floating-point multiplication used to process the

input signal. Latency must be determined to ensure that all arithmetic

operations have been performed on the data before the output data is read.

The signal diagram provides a good graphical representation of the

signal flows which in turn controls the data flow. For implementation, a

flowchart is used as a step-by-step solution of HDL programming in Quartus

II to generate the control signals. Figure 3.15 shows the flowchart for the

signal diagram in Figure 3.14. In this case, different events of the sensor input

(Sonar_Input) are detected using conditional statements in the programming.

49

START

Sonar_ON = „1‟

Data_Ready = „0‟

Sonar_ON = „0‟

Data_Ready = „0‟

Data_Ready = „1‟

END

YES

NO

YES

YES

NO

NO

Sonar_Input

= “10000000000”?

Sonar_Request = “01”?

(Rising Edge)

Sonar_Input

= “11111111100”?

Figure 3.15: Flowchart of sonar range finder control signals generation

3.4.2.2 Control Flow

Control flow manipulates the switching between functionalities and

states of operation; it is specified using Finite State Machine (FSM). FSM is

composed of a finite number of states which undergo transitions. A transition

is started by a trigger and a trigger can be an event or condition. FSM has been

widely applied in digital control circuitry such as RAM read/write controller,

etc. In this thesis, FSM is built in Cyclone II programmable logic device. The

hardware implementation of FSM requires a register to store state variables, a

50

block of combinational logic which determines the state transitions, and a

second block of combinational logic that determines the outputs of the FSM.

Moore machine is an FSM whose output values are determined solely

by its current state. Figure 3.16 shows an example of an FSM used in vehicle

control modules. It controls the operations of a DC motor controller that drives

the front wheel. This special FSM consists of 5 states and each of the states

represents a single task of the module that has to be loaded on certain

conditions. . In this case, output calculation depends on the state vector which

means new values are stable long before the next active clock edge and spikes

are avoided. The input in this FSM is FRB which represents Forward, Reverse

and Brake control signals.

Figure 3.16: FSM in vehicle control module

Figure 3.17 shows the FSM block, motor_control_FSM in vehicle

control, with its inputs and outputs in Quartus II. At each of the output state,

51

the subsequent block will read the state value and generate the control signals

in the vehicle control module which in turn controls the DC motor operations.

The control mechanism was coded using VHDL. Figure 3.18 shows a part of

the VHDL code when the FSM is in Forward state. If the input FRB is “100”,

next state (NS) will be forward (F). Else, FSM will jump to Clear Throttle

(CA) as next state.

Figure 3.17: FSM block for vehicle control in Quartus II

when F =>

 if (SS_DETECT_TEMP = "000111") then

 if (FRB = "100") then

 NS <= F;

 else

 NS <= CA;

 end if;

 else

 NS <= F;

 end if;

Figure 3.18: Part of VHDL code when FSM is in Forward state

This FSM ensures a safe operation of the vehicle because any accident

arising from improper control of the DC motor will cause harm to the

environment and endanger human life. Besides safety issues, the FSM in this

work is also developed according to the DC motor controller specifications.

For example, the DC motor can rotate in both forward and reverse direction;

52

previous input value for speed must be cleared before the change in direction.

So, FSM is employed to guarantee a smooth transition between different states.

3.4.3 Communication

Data communications concerns the transmission of digital messages

between the modules in the system and from the system to external devices.

For the real-time control system in this work, both on-chip and off-chip

communication methods are established for data communication.

3.4.3.1 On-Chip

The distance over which data moves within a system may be a few

thousandths of an inch, as in the case within a single FPGA device. Over such

a small distances, digital data can be transmitted as a direct, two-level

electrical signal. Parallel links are widely used in modern designs for on-chip

inter-module communication since it is a high speed transmission of data;

many bits of data can be transmitted simultaneously at a time. Multiple

modules and tasks in UTAR-CRCS communicate through bit-level parallel

communication. Both synchronous and asynchronous transmission methods

are employed in parallel communication.

53

Figure 3.19 shows the synchronous parallel communication between

two blocks within the vehicle control module where bus connection is used to

enable continual stream of data flow between the two blocks. When the

DA_CS_LEFT signal undergoes edge transition from low to high, the

motor_controller_left block will read the FSM state (STATE), speed data

(SPEED_DATA_OUT), and brake data (BRAKE_DATA_OUT) from the

motor_control_FSM block. Quartus II Fitter performs bus routing

automatically using the database that has been created by analysis and

synthesis of the design. The Fitter matches the logic and timing requirements

of the project with the available resource of a device. It assigns each logic

function to best logic cell location for routing and timing, and selects

appropriate interconnection paths.

Figure 3.19: Parallel communications between two blocks

Parallel link comprises at least N wires that can carry N bits

simultaneously. It will eventually require more routing resources and occupy

larger chip area. Bit-serial communications offer an alternative to bit-parallel

interconnects, however, to provide the same throughput as an N-bit parallel

interconnect, the serial link must operate N times faster. With an on-board

clock of 50 MHz, parallel link is preferred in inter-module communications. In

54

UTAR-CRCS, for example, the high-level navigation module sends control

signals to the low-level vehicle control module using a parallel link running at

clock rate of 12.5 Mhz. Figure 3.20 shows the low-level vehicle control

module in UTAR-CRCS. The inputs from the high-level module are shown on

the left hand side of the diagram. This module consists of FSM, SPI and sub-

modules for data processing.

Figure 3.20: Low-level vehicle control module in UTAR-CRCS

On the other hand, for typical multiple CPUs system where the high-

level and low-level controller are implemented on different CPUs, a common

communication with USB 2.0 requires a much higher clock rate to achieve

high data rate since data is transmitted serially between the CPUs.

55

3.4.3.2 Off-Chip

Off-chip communications include interfaces to external devices for

transferring of data. All communications from UTAR-CRCS to external

devices were implemented using the general purpose input/output (GPIO) pins

on the Altera DE1 board. This is a great advantage over multiple CPUs system

where a specific I/O interface card is needed to communicate with external

devices. In addition, the external I/O interface card also increases the size of

the multiple CPUs system. Table 3.3 shows various off-chip communication

methods used in the control system. Through off-chip communication, the

real-time control system sends command data to the external devices, for

example, to configure the operation mode of an ultrasonic sensor. Besides that,

control system also performs data acquisition on various external devices.

Table 3.3: UTAR-CRCS off-chip communications

External Device Communication with Control System

Colour Camera Parallel Communication

Global Positioning System (GPS) Universal Asynchronous

Receiver/Transmitter (UART)

Digital-to-Analog Converter (DAC) Serial Peripheral Interface (SPI)

Sonar Range Finder Serial Communication

Rotary Encoder Serial Communication

Absolute Contacting Encoder Parallel Communication

Brushless Motor Controller Parallel Communication

Motor Driver Serial Communication

Remote Control Parallel Communication

56

The off-chip communications were developed according to the

individual external hardware specifications. Serial communication is the most

widely used process of sending data in this thesis. In serial communication,

data is sent one bit at a time. Motor driver is one of the devices that

communicate with the control system serially. At any one time, only one bit

data is sent to the pulse width modulation (PWM) input pin to switch the on-

board MOSFET ON and OFF to further control the speed of motor. On the

other hand, parallel communication is used to interface with the vision system.

The colour camera sends 12-bit pixel data and other configuration data in

parallel mode to the DE1 board through the GPIO pins.

The real-time control system needs a digital-to-analog converter

(DAC) for controlling the DC motor. However, today‟s FPGA lacks any on-

chip DAC conversion. Due to this problem, an off-chip 8-bit DAC component

is used and this device is Serial Peripheral Interface (SPI) compatible.

Therefore, the control system communicates with the DAC in master/slave

mode where the control system initiates the data frame. Figure 3.21 shows the

SPI block that communicates with external DAC chip, which controls DC

motor speed on the left front wheel.

Figure 3.21: SPI block that communicates with external DAC

Control signals and

data to external DAC

Processed data to be

transmitted through SPI

57

For off-chip communication interfaces, all pin assignments must be

done manually instead of automatically. Before the pin assignment, device

specifications were studied to ensure that correct I/O standard is assigned to all

pins for a proper interface between the system and external devices. For

example, the GPS module communicates via UART but the I/O levels from

the serial port are CMOS 1.8 V compatible, not RS232 compatible. In this

case, the I/O pins that are connected to the GPS must be assigned to 1.8V

LVCMOS standard in Quartus II. Improper assignment of I/O standards will

lead to fault in reading the electrical signals.

3.4.4 UTAR-CRCS Clock Management

27MHZ

50MHZ

GPS Module UART_clkgen
38.4kHz

clk

Navigation Module
27MHz

CLOCK

Rotary Encoder encoder_clkgen
105.47kHz

encoder_clk

Sonar Module
27MHz

CLK_27MHZ

Sonar Module
50MHz

CLOCK_50

Remote Control Module remote_clkgen
12.5MHz

remote_control_clk

Front Motor Control F_vehicle_clkgen
6.25MHz

motor_control_clk

Rear Motor Control R_vehicle_clkgen
6.59kHz

pwm_clk

Vehicle Control Module
27MHz

CLOCK_27

Sobel Detection Module sobel_clkgen
25MHz

iCLK

Figure 3.22: UTAR-CRCS clock management

On-board

Oscillators

Clock Generators

58

UTAR-CRCS requires different clock speed for various processing

needs in the system. Figure 3.22 shows the clock diagram for different

modules. There are some applications in the system that require lower clock

speed, for example, the rear motor control application requires an input

frequency below 10 kHz. Instead of using an external clock, a clock speed of

6.59 kHz was generated from available clocks. Digital clock divider method

was used in this thesis to generate different clock frequencies using 27 and 50

MHz clocks on the DE1 board.

Figure 3.23: Frequency divider by factor of two

A frequency divider by a factor of two using T flip-flop is shown in

Figure 3.23, where the output frequency is half of the input frequency. The

following equation shows the solution to obtain different frequency from the

available clock.

 fout = fin/2
n

 3.3

where n is the number of T flip-flop.

PIN_E12
VCC

MOTOR_CONTROLLER_CLK INPUT

PRN

CLRN

T Q

TFF

inst4

VCC

f /2

50Mhz CLK from DE1

T flip-flop

Divided Output

Frequency fout
Input Frequency fin

59

3.5 Summary

This chapter explains the architecture of UTAR-CRCS in detail and the

implementation using Quartus II design software. Typical FPGA system

design flow was used in the development from design to implementation.

There are several external sensors and controllers connected to the system.

These devices must be carefully selected and implemented in such a way that

their timing behaviour is deterministic. Multiple modules were developed and

integrated to build the UTAR-CRCS. Specifications of the modules and tasks

combine data flow and control flow specification methods. The on-chip

communication allows data transfer between modules while off-chip

communication moves data between the system and external devices.

60

CHAPTER 4

FPGA BASED MACHINE VISION

4.1 Overview

Most ALV use active sensors, for example, LIDAR and RADAR which

are more powerful than passive sensors. Despite widespread robotic use, both

LIDAR and RADAR remain as cost prohibitive options in this application.

Active sensors are more powerful, but are not suitable for military use where

active sources can be easily detected by enemy. This work seeks to develop a

distance sensor package at a much lower cost than contemporary options. As a

consequence, passive sensors such as colour camera are used to acquire data

from the environment.

Real-time video and image processing is used in a wide variety of

applications from video surveillance and traffic management to medical

imaging. Besides, it is widely used in ALV for obstacle detection and terrain

classification. Coupled with new high-resolution standards and multi-channel

environments, processing requirements can be even higher. Achieving this

level of processing power using programmable DSP requires multiple

processors. A single FPGA with an embedded soft processor can deliver the

requisite level of computing power more cost effectively (Neoh & Hazanchuk,

2005). FPGA are good alternatives which can be used to off-load the

61

computationally intensive and repetitive functions to co-processors.

Possibly the single biggest technological challenge for autonomous

vehicle is the ability to sense the environment and to use such perception

information for control (Manduchi et al., 2005). Lacking perception

capabilities, the vehicle has to rely solely on self-localization and prior

environment maps. However, the resolution of GPS is too low for tasks such

as obstacle avoidance. Thus, environment sensing is essential for the task of

efficient navigation over long distances.

Edge detection is a fundamental tool used in most image processing

applications to obtain information from the frames as a precursor step to

feature extraction and object segmentation. It aims at identifying points in a

digital image at which the image brightness changes sharply or has

discontinuities. In an ideal case, the result of applying an edge detector to an

image will lead to a set of connected curves that indicates the boundaries of

objects. This process detects outlines of an object and boundaries between

objects and the background in the image. Therefore, it filters out information

that may be regarded less relevant, while preserving the important structural

properties of an image.

This thesis focuses on hard real-time Sobel edge detection. It presents a

custom FPGA-based system designed to support research in the development

of real-time vision processing. While other edge detection operators can also

be used, this thesis used Sobel edge detection operator to demonstrate the

62

effectiveness of hard real-time vision processing on DE1 board. It is shown

that FPGAs are well suited for systems that must be flexible and deliver high

levels of performance, especially in ALV control systems where space and

power are significant concerns.

4.2 Terasic TRDB_D5M Colour Camera

TRDB_D5M is a 5 mega pixel digital colour camera developed for the

DE1 board. It consists of a CMOS sensor that captures real-time images.

Figure 4.1 shows the TRDB_D5M camera, the pixel array consists of a 2,752-

column by 2,004-row matrix of pixels addressed by column and row. Pixels

are output in a Bayer pattern format consisting of four colours – Green1,

Green2, Red and Blue (G1, G2, R, B). The camera has a 40-pin connector on

it to communicate and exchange data with DE1 board.

Figure 4.1: TRDB_D5M colour camera

CMOS Camera

GPIO Pins

Camera Module

Processing Unit

63

The camera also comes with programmable controls in gain, frame rate,

frame size, and exposure as shown in Table 4.1. It can be configured by setting

the values of corresponding registers.

Table 4.1: TRDB_D5M specification

Parameter Value

Active pixels 2,592H x 1,944V

Pixel size 2.2 μm x 2.2 μm

Colour filter array RGB Bayer pattern

Shutter type Global reset release (GRR)

Maximum data rate/ master clock 96 Mp/s at 96 MHz

Frame Rate
Full resolution Programmable up to 15 fps

VGA (640 x 480) Programmable up to 70 fps

ADC resolution 12-bit

Responsivity 1.4 V/lux-sec (550 nm)

Pixel dynamic range 70.1 dB

SNRMAX 38.1 dB

Supply Voltage
Power 3.3 V

I/O 1.7 V - 3.1 V

4.3 Block Diagram of Digital Camera Design

The TRDB_D5M Kit provides a reference hardware design (in

Verilog) as shown in Figure 4.2 that is needed to develop a 5 mega pixel

digital camera on the Altera DE1 board with an image resolution of 640 x 480

pixels. The camera is configured to a resolution of 640 x 480 pixels which is

the standard set by the National Television System Committee (NTSC), and

this is also supported by the standard VGA resolution (640 x 480 pixels at 25

64

MHz) that is available on the Altera DE1 board. The CMOS image sensor

module in the diagram represents a digital colour camera, and other digital

blocks in the core are used to process the input image and then output the

image to VGA display. One of the advantages of CMOS sensor technology is

access flexibility. In CMOS camera, the simple X-Y pixel addressing method

allows direct access to a single pixel or to a group of pixels. This results in

extremely high frame rates when working with smaller "areas of interest" on

the sensor.

Figure 4.2: Block diagram of TRDB_D5M reference design

The I2C sensor configuration block will send control signal and control

data to the camera in order to configure the camera settings such as exposure,

image resolution and colour gain. After the core receives the input data from

the camera, the data will be converted from Bayer colour pattern to 30-bit

RGB colour data to be stored in the external SDRAM. The SDRAM controller

is responsible for initiating the read and write operations on the external

SDRAM on DE1 board. VGA controller requests data from the SDRAM and

then displays it on LCD monitor. The VGA synchronization signals are

65

provided directly from the Cyclone II FPGA, and a 4-bit DAC using resistor

network is used to produce the analog data signals (red, green, and blue).

4.4 Block Diagram of Digital Camera Design with Sobel Edge Detection

Based on the reference design provided in Section 4.3, a Sobel edge

detection is applied to the real-time image stored in SDRAM before the image

is output to the VGA display. Figure 4.3 shows the block diagram in UTAR-

CRCS for Sobel edge detection on real-time images. The Sobel Edge Detector

block in Figure 4.3 consists of multiple sub-blocks to achieve data level

parallelism and to perform calculations.

Figure 4.3: UTAR-CRCS real-time image processing block diagram

66

4.5 Sobel Edge Detector

The Sobel operator computes an approximation of the absolute

gradient of the image intensity function at each point in an input greyscale

image, giving the direction of the largest possible increase from light to dark

and the rate of change in that direction. In theory, the operator consists of a

pair of 3 x 3 convolution kernels. The edge detection operator is calculated by

forming a matrix centred on a pixel chosen as the centre of the matrix area.

Figure 4.4: 3 x 3 convolution kernels on pixel P5

Figure 4.4 shows the 3 x 3 convolution kernel on the pixel P5.

Mathematically, the gradient of a two-variable function is at each point a 2D

vector with the components given by the derivatives in the horizontal and

vertical directions. This implies that the result of the Sobel operator at an

image point which is in a region of constant image intensity is a zero vector

and at point on an edge is a vector which points across the edge, from darker

to brighter values. If we define P as the source image, and Gx and Gy are two

images which at each point contain the horizontal and vertical derivative

approximations, the computations are as follow:

67

 4.1

 4.2

These are then combined together to find the absolute magnitude, G of

the gradient at each point, G is then compared to the threshold that has been

set. If G is greater than threshold value, pixel P5 is immediately classified as

edge. The absolute magnitude of the gradient is given by:

 4.3

4.6 FPGA Based Hard Real-Time Sobel Edge Detection Implementation

The implementation of Sobel operator on hard real-time platform using

Verilog is different from implementation using common C/C++ programming

language in terms of programming environment and hardware resources

utilization. In C/C++ programming environment, the image data is stored in

memory and is normally accessed using 2 dimensional arrays. However in

hard real-time implementation using Verilog, SDRAM acts as frame buffer

where image data is stored using First In First Out (FIFO) structure. The

image data is streamed continuously from the CMOS camera, stored in

SDRAM and output to VGA display.

)()(996633774411 PXPXPXPXPXPXGx 

)()(998877332211 PYPYPYPYPYPYGy 

22

yx GGG 

68

In order to achieve data level parallelism in the computations as shown

in Section 4.5, Single Instruction Multiple Data Streams (SIMD) architecture

as shown in Figure 4.5 is employed in the image processing. It is a

classification of parallel computer architectures in Flynn‟s taxonomy. In SIMD

architecture, multiple processing elements perform the same operation on

multiple data simultaneously.

Figure 4.5: SIMD streams architecture

4.6.1 Computations

The SIMD implementation has a single instruction that effectively load

9 pixels at once for computations. This can take much less time than accessing

each pixel individually, as with traditional CPU design. Figure 4.6 shows the

FPGA based Sobel operator implementation.

69

Figure 4.6: FPGA based Sobel operator implementation

In Figure 4.6, the Sobel operator implementation in X-direction is

shown; same implementation is applied in Y-direction. At each node, each

pixel is multiplied with a fixed coefficient. This was implemented by using the

multiplier-adder (ALTMULT_ADD) function that consists of 3 multipliers for

each line data. The data is shifted for processing as shown in Figure 4.6. Each

multiplier accepts a pair of inputs which are the pixel value and the fixed

coefficient, the product is then added to the products of all other pairs. For

computations of the gradient in Y-direction, different coefficients are used.

Figure 4.7 shows the Verilog code that initiates the multiplier-adder

computations of three line data with three ALTMULT_ADD blocks in X-

direction.

70

MAC_3 x0 (//multiplication-addition on 1
st
 line of pixels

 .aclr0(!iRST_N),

 .clock0(iCLK), //input clock, iCLK

 .dataa_0(Line0), //input data from line buffer 0

 .datab_0(X9), //multiplication of P9 with coefficient X9

 .datab_1(X8), //multiplication of P8 with coefficient X8

 .datab_2(X7), //multiplication of P7 with coefficient X7

 .result(mac_x0)); //result is loaded into mac_x0

MAC_3 x1 (//multiplication-addition on 2
nd

 line of pixels

 .aclr0(!iRST_N),

 .clock0(iCLK),

 .dataa_0(Line1), //input data from line buffer 1

 .datab_0(X6), //multiplication of P6 with coefficient X6

 .datab_1(X5), //multiplication of P5 with coefficient X5

 .datab_2(X4), //multiplication of P4 with coefficient X4

 .result(mac_x1)); //result is loaded into mac_x1

MAC_3 x2 (//multiplication-addition on 3
rd

 line of pixels

 .aclr0(!iRST_N),

 .clock0(iCLK),

 .dataa_0(Line2), //input data from line buffer 2

 .datab_0(X3), //multiplication of P3 with coefficient X3

 .datab_1(X2), //multiplication of P2 with coefficient X2

 .datab_2(X1), //multiplication of P1 with coefficient X1

 .result(mac_x2)); //result is loaded into mac_x2

Figure 4.7: Verilog code to initiate the multiplier-adder computations of three
line data with three ALTMULT_ADD blocks in X-direction

X1 through X9 are the fixed coefficients, these values are set while

Line0 through Line2 are the pixel data. New incoming pixel data are shifted

into Line0 until all 480 lines of data are processed, 480 is the image height for

image resolution of 640 x 480 pixels. The values (mac_x0, mac_x1, and

mac_x2) from parallel adder in ALTMULT_ADD of each line are added

together using a parallel adder (PARALLEL_ADD) function. Figure 4.8

shows the Verilog code to initiate the parallel adder function.

PA_3 pa0 (//parallel addition

 .clock(iCLK),

 .data0x(mac_x0), // all results from

 .data1x(mac_x1), // multiplication-addition are loaded

 .data2x(mac_x2), // into parallel adder

 .result(pa_x)); //result is loaded into pa_x

Figure 4.8: Verilog code to initiate the parallel adder computations

71

The results from parallel adders, pa_x and pa_y for both X and Y-

direction are then fed into square root (ALT_SQRT) function to find the

absolute magnitude of the gradient, G as explained in Section 4.5. Figure 4.9

shows the Verilog code to initiate the square root function. With the

implementation as discussed above, the system computes G value for one

pixel in just one clock cycle.

SQRT sqrt0 (//square root function

 .clk(iCLK),

 .radical(pa_x * pa_x + pa_y * pa_y), //results from parallel adders are loaded

 .q(abs_mag)); //absolute magnitude of the gradient, G

Figure 4.9: Verilog code to initiate the square root functions

The multipliers and adders of the ALTMULT_ADD are placed in

dedicated DSP block circuitry of the Cyclone II device. The pixel data width is

10-bit. However, the work covered in this thesis uses the 9 x 9-bit input

multiplier configuration in the DSP block instead of 18 x 18-bit input

multipliers to process the data. This is due to limited dedicated multiplier on

the device. As a solution, the least significant bits (LSB) of the pixel data are

truncated. There are multiple ALTMULT_ADD blocks occur in the design

thus all functions are distributed to available DSP blocks.

4.6.2 Line Buffer

Line buffer is needed to store the pixel data from SDRAM so that

Sobel edge detection calculations can be performed as in Figure 4.6. As

72

mentioned earlier, the SDRAM stores the pixel data and continuously output it

for VGA display. In order to perform real-time computations, a RAM-based

shift register function called ALTSHIFT_TAPS is utilized. Traditional shift

registers implemented with standard flip-flop use many logic cells for large

shift registers. ALTSHIFT_TAPS, however, is implemented in the Cyclone II

device memory blocks, saving logic cells and routing resources. The

ALTSHIFT_TAPS is a parameterized shift register with taps. The taps provide

data outputs from the shift register at certain points in the shift register chain.

In this thesis, the shift register chain is actually the line buffer. Figure 4.10

shows the line buffer implementation using the ALTSHIFT_TAPS function.

 Figure 4.10: Line buffer implementation using ALTSHIFT_TAPS

 function

Line buffer as in Figure 4.10 is configured to 3 taps; data from each tab

is fed to the ALTMULT_ADD block for processing. The data width is 8-bit

and the distance between taps is 640, which is equivalent to the image width

of 640 pixels. The pixel data for one image is shifted pixel by pixel into the

line buffer until the last pixel is shifted in. It then repeats the process for next

input image. Continuous shift of data from the 3 taps (Tap0x, Tap1x, and

Tap2x) enables parallel processing for mathematical operations of Sobel edge

73

detection.

4.6.3 Performance

The complete vision system which includes Sobel edge detection on

real-time input images as shown in Figure 4.3 was implemented on Altera

DE1 board. DE1 board includes a 16-pin D-SUB that can support standard

VGA resolution of 640 x 480 pixels, at 25 MHz. As such, the Sobel edge

detection was designed to operate at 25 MHz with image resolution of 640 x

480 pixels.

Threshold value for Sobel edge detection can be adjusted for different

operating conditions. Figure 4.11 shows the real-time images captured using

two different threshold values where the image on the right shows clearly

edges from that environment. However, it operates at only 9 frames per second

(fps) due to camera hardware limitations; TRDM_D5M is slow in capturing

real-time image especially under low light conditions. Anyway, Sermanet et al

(2009) had demonstrated a system that used 5-10 fps for near range obstacle

detection and 1 fps for far range obstacle detection.

74

Figure 4.11: Sobel edge detection on real-time images

Running in full parallel mode on the hard real-time implementation on

Cyclone II device, the designed Sobel edge detection architecture in fact can

process the image stored in SDRAM at 59 fps with a clock speed of 25 Mhz.

So, the system can process real-time images from camera 6 times faster if the

camera can operate at a higher frame rate. Figure 4.12 shows the time line

diagram for the processing activities on a single frame of image. It is shown

that 16.8 ms is needed to process a single frame so the system can process

input images up to 59 fps. In the diagram, Sobel edge calculation is performed

starting from the first Horizontal Request even though not all three line buffers

are loaded with data. After the third Horizontal Request cycle, all three line

buffers are loaded with pixel data and actual edge calculation is started with

matrix centred on pixels in line buffer 2. The computation process has been

discussed in Section 4.6.1. Both V_SYNC and H_SYNC are vertical and

horizontal synchronization signals for VGA display.

75

1Line Buffer 1

Line Buffer 2

Line Buffer 3

2

1

3

2

1

4

3

2

640

639

638

1 2 3 4 480…..

…..

Horizontal

Request

Vertical

Request
32us

16.8ms

Edge

Detection

Processing

H_SYNC

V_SYNC

Time(ms)

Activities

Edge

Detection

Processing

Edge

Detection

Processing

Edge

Detection

Processing

Edge

Detection

Processing

Figure 4.12: Time line diagram of processing activities on single frame of

image

In order to enable the high speed vehicle to move at 40 km/hr with on-

the-fly perception build up speed, the UTAR-CRCS needs to demonstrate its

capability to carry out the same algorithm as in high specification PC, but with

much higher speed. As an example, the image processing capability of UTAR-

CRCS was compared to a high specification Intel Core2 Duo 2.0 GHz

processor. The PC system consists of Windows Vista operating system and

with Matlab installed.

An image with resolution of 640 x 480 pixels was stored in the RAM

of the PC. The CPU time is recorded to observe the actual implementation of

the algorithm processing time. Simple Sobel edge detection is used as the

fundamental algorithm for the image processing task of the vehicle. Image was

loaded to memory before processing. This was same as UTAR-CRCS setup

used for comparisons where the Sobel edge detection module is set to process

the image stored in SDRAM instead of real-time image from camera.

76

Table 4.2: Comparisons of image processing time between UTAR-CRCS and

PC based processing unit

Number of Frames
Processing Time (s) Frames per Second (fps)

UTAR-CRCS PC UTAR-CRCS PC

1 0.0176 0.1123 56.8 8.9

10 0.1790 1.3104 55.9 7.6

100 1.7845 13.4411 56.0 7.4

1000 17.9970 136.114 55.6 7.3

Table 4.2 lists the comparisons between the 2 different processing

environments. Both systems were set to process a fixed number of input

images and the processing time was recorded. The processing time for both

systems was derived from the average reading of a few run. It is clearly shown

that UTAR-CRCS can process input images at a much higher speed compared

to the high specification PC system. In UTAR-CRCS, the hard real-time

implementation shows that the Sobel edge computation can be carried out

within a defined timeframe for an input frame rate of about 56 fps. On the

other hand, the processing capability of high specification PC declines with an

increase in the number of input images. For real-time operations which might

process large amount of images, UTAR-CRCS is expected to outperform a

high specification PC based system. Another advantage is the number of gates

used in the process. The FPGA system utilize 2127 logic elements, only 11 %

of the total logic elements available on Cyclone II, while a normal PC

platform will consume high power and high number of logic elements

compared to the UTAR-CRCS. Thus, using such high power consumption and

large processing PC system will make agile autonomous agent impossible to

move in decimetre scale environment.

77

Stereo camera is widely used in the autonomous navigation to perceive

the environment. Teoh (2011) utilized a stereo camera set that can measure up

to 8 m of range at 27 x 2 fps. For a vehicle to run at higher speed, non-myopic

image processing task is essential to the success of the navigation objectives.

Thus, typical stereo cameras might need to extend its baselines up to 30 m of

the extended target and obstacle detection. Thus, it is necessary to process up

to 3 stereo pairs of images at 3 set of stereo cameras at any given time. Given

UTAR-CRCS can process up to 56 fps, the time to process 6 images (from

stereo) is 107 ms, so the total response time for processing input images from

a stereo set is as following:

Tresponse(stereo) = Tcamera-SDRAM + Tprocessing 4.4

Tresponse(stereo) = 110 ms + 107 ms = 217 ms 4.5

where Tcamera-SDRAM is time needed for the camera to grab a real-time image

and store it in on-board memory, and Tprocessing is time needed to process 6

images at 56 fps.

Imagine an ALV moving at a speed of 40 km/h which is 11.11 m/s, the

time to process real-time images from stereo, Tresponse(stereo) is only 217 ms. In

this case, the ALV have sufficient time to respond to the environment in real-

time manner. Note that the Tresponse(stereo) can be further reduced by using a

faster processing clock or higher performance camera module. Whereas for a

high specification PC to process the same task, it may take up to 7 times

78

longer than an FPGA based system, which may make it too late to make

navigation decision in less than a second in this particular specification. Thus,

a high specification PC system will need larger power consumption and higher

processing power for the same task that can be achieved by UTAR-CRCS

architecture.

4.7 Kalman Filtering for Tree Trunk Detection

In unstructured environment, the ability to extract useful features from

real-time images provides important guidance to successful autonomous

navigation. Teoh (2010) presented the use of U-disparity image and Sobel

edge detector to extract meaningful cues that can be used to detect tree trunks.

U-disparity image is based on disparity map obtained from the stereo camera.

Figure 4.13 shows a sample scene from the research with the detected tree

trunks in magenta.

Figure 4.13: Sample scene with tree trunks as obstacles and the detected tree

trunks in magenta

79

A NIOS II processor can be added to the UTAR-CRCS to implement

functions used to detect tree trunks as demonstrated in Figure 4.13. The NIOS

II processor only occupies a small amount of logic on the FPGA device. In

addition, the NIOS II fast processor core can use a memory management unit

(MMU) to run embedded Linux. The Nios II processor core meets both hard

and soft real-time requirements with the ability to use FPGA hardware to

accelerate a function. This thesis has demonstrated a full parallel Sobel edge

detector implementation on hard real-time platform. In the high-level

navigation system of UTAR-CRCS, a filter is needed in sensor fusion and data

fusion. The implementation of a Kalman filter will be described subsequently

using tree trunks detection as an example.

Given the detected tree trunks in the initial frame as in Figure 4.13, the

tree trunks can be tracked in subsequent frames by performing tree trunks

detection in each frame. This, however, will slow down the real-time

performance of tree trunks detection since it needs to search the entire image

of each frame. If a vehicle is moving in a fast manner, it might not be able to

avoid the tree trunk. As a solution, the searching algorithm can be done more

efficiently with the use of prediction and detection scheme; Kalman filtering

provides a mechanism to achieve this. The Kalman filter is an optimal linear

estimator based on iterative and recursive process (Drolet et al., 2000). It

recursively evaluates an optimal estimate of the state of a linear system.

Kalman filter process consists of two main steps; state update (prediction) step,

and measurement update (correction) step.

80

The state of a tree trunk at each frame can be characterized by its

position and the vehicle‟s velocity. Let (xt, yt) represent the position at time t,

and),(t

y

t

x vv be the vehicle‟s velocity at time t in x and y direction respectively.

Therefore, the state vector Xt is represented as  t

y

t

xttt vvyxX ,,, .

Measurement vector Zt is defined to represent the position of tree trunks at

time t. The state vector Xt and measurement vector Zt are related in the

following basic system model equations:

Xt = AXt-1 + ωt-1 4.6

Zt = H Xt + υt 4.7

where A is known as the state transition matrix, and H is the measurement

matrix that relates the state to the measurement Zt. The variable ω is the

process noise, and υ is the measurement noise with normal probability

distributions

 p(ω) ~ N(0,Q) 4.8

 p(υ) ~ N(0,R) 4.9

where Q is process noise covariance and R is measurement noise covariance.

81

Based on the system model equations above, a few more variables are

defined for subsequent discussion. Let Xt+1(prior) be the estimated state at time

t+1, it is often referred as prior state estimation. Besides, Xt+1 is referred to the

posterior state estimation. Given the prior estimate Xt+1(prior), tree trunks

detection is performed to detect tree trunks around Xt+1(prior) area. The search

area is therefore adaptively adjusted and the tree trunk can be detected quickly.

After that, the process is formalized by comparing the Xt+1(prior) with state

measurement, Zt+1, yielding the posterior state estimation Xt+1 as follow:

Xt+1 = Xt+1(prior) + Kt+1 (Zt+1 - H Xt+1(prior)) 4.10

where Kt+1 is the Kalman gain. Jose et al (2000) explained the process of

obtaining Kalman gain. After each time and measurement update pair, the

process is repeated with the previous posterior estimates used to predict the

new prior estimates. This recursive nature is one of the very appealing features

of Kalman filter.

4.8 Summary

The need for machine vision in autonomous navigation had led to rapid

research and development in real-time vision processing. For real-time

applications, the processing speed must be fast enough to meet the process

deadline. This chapter demonstrated a full parallel FPGA based Sobel edge

detection that can process real-time input images up to 9 fps and non real-time

82

images up to 56 fps. In comparison to PC based system on non real-time

image processing, the direct hardware implementation in this thesis shows a

great advantage in processing speed as it can accelerates the computations.

The implementation of Kalman filtering for tree trunk detection is also

introduced. A successful implementation of the filter will further enhance the

real-time performance in autonomous navigation.

83

CHAPTER 5

RESULTS AND DISCUSSIONS

5.1 Overview

UTAR-CRCS consists of multiple modules that were designed and

simulated using Quartus II design software and then implemented on Altera

DE1 board. The complete system is complicated so multiple simulations were

performed to ensure the functionalities and performance. This chapter will

present some simulations that were performed using Quartus II together with

the simulations results. The system outputs from DE1 board were measured

and compared with design expectations. Besides, some of the system

performances are described and compared to multiple-CPU control systems.

5.2 Simulations

In typical design flow, simulations must be run on the individual

functional block to check on the block‟s functionalities before system

integration. After the system integration to create the UTAR-CRCS,

simulations are then performed on the complete system to observe the system

behaviours. If a faulty custom functional block is not verified and it is

integrated into UTAR-CRCS, it is difficult to detect the fault from multiple

blocks in the later design stage, and system performance is not guaranteed. So,

simulations are useful to meet certain needs, including the following cases:

84

 To verify the functionalities of a custom component before

implementing it on hardware

 To verify the cycle-accurate performance of a system before

target hardware is available

5.2.1 Vector Waveform File

Vecfor Waveform File (VWF) describes the simulation input vectors

and simulation output vectors as graphical waveforms. Waveform Editor is

used to view and edit VWF. During simulation, the VWF is an input file only.

The Simulator requires a VWF to provide the input vectors that drive

simulation. In order for a VWF to be used in creating stimulus for the

Simulator, it must specify the following:

 The input logic levels (vectors) that drive the input pins and

determine the internal logic levels throughout the design

 The nodes to be observed, start and stop times for applying

vectors, intervals at which vectors are applied

 The radix used to interpret logic levels

85

5.2.2 Custom Component Block Level Simulation

There are multiple blocks used to build the complete system. As a

demonstration, simulation that was performed on the FSM block in vehicle

control module as shown in Figure 3.15 is discussed in details. The FSM is a

control mechanism that ensures safety operations of the DC motors so it must

be verified before implementation. Table 5.1 lists the binary values of each

FSM state in the system.

Table 5.1: Binary value of FSM states

STATE STATE VALUE (BINARY)

Stop/Brake 000

Clear Brake 001

Forward 010

Reverse 011

Clear Throttle 100

Figure 5.1: Vehicle control module FSM simulation

Figure 5.1 shows the simulation of the FSM in vehicle control module.

The input vectors for this simulation are CLOCK, RESET, FORWARD,

86

REVERSE, BRAKE, RPM. All these input vectors were defined and set in

Waveform Editor of Quartus II before simulation. For the first rising clock

edge, there are no activities in the input signals thus FSM remains in

Stop/Brake (000) state. At the second rising clock edge, the control system

asserts FORWARD to logic „high‟ and FSM jumps to Clear Brake (001) state

to prepare the vehicle for acceleration. Finally in the third rising clock edge,

FORWARD signal is still logic „high‟ thus FSM makes a transition to Forward

(010) state and vehicle accelerates to forward direction.

This simulation shows that FSM behaviours meet design expectations.

It makes a smooth and correct transition between states. In case error is found

from simulation, input vectors are checked to detect any incorrect input that

causes unpredictable behaviour. If error is not arising from incorrect input

vectors, component coding needs to be evaluated. Since this simulation is

focused on the functional verification instead of timing behaviour, so the

timescale is set to unit of micro-second in order to reduce the simulation time.

A larger time interval and time unit will increase the simulation time

significantly. However, if the design requires accurate timing behaviours from

simulation, the actual time scale has to be set.

5.2.3 System Level Simulation

After the simulations on each component block, all blocks are

connected using on-chip system interconnects to establish communications

between blocks. The complete system is verified by simulation with steps

87

similar to Section 5.2.2. Figure 5.2 shows simulation which consists of inputs

to the vehicle control system and the outputs after processing through internal

logics of multiple blocks.

Figure 5.2: UTAR-CRCS system level simulation

Before the simulation is run, input vectors are designed and defined so

that it can test various functionalities of the system. At this stage, system

outputs are known based on the design specifications without running the

simulation. The expected outputs are used to verify the simulation result, as

indicated by the output signals in Figure 5.2. The outputs that are of utmost

importance in the system are control signals and data to configure the external

Digital-to-Analog Converter (DAC) chip which controls DC motors. These

signals are labeled with “DA” in front of the signal name in the simulation

88

result. All waveforms are studied carefully to ensure that it meets design

specifications. From simulation, it shows that system sends correct

configuration data to DAC chip through SPI communication.

5.3 UTAR-CRCS Performance

UTAR-CRCS is a multiple module system built on Cyclone II FPGA

device. Cyclone II is a low-end FPGA device which is known to have fewer

features and lower specifications compared to high-end FPGA device like

Stratix V. However, the low-end Cyclone II still contains most of the features

offered in high-end device. In terms of implementation, Cyclone II is limited

in the processing speed, number of I/O available, and dedicated multiplier for

signal processing.

The Cyclone II device on DE1 board used in this thesis supported 315

I/O pins which are more than sufficient in this implementation. However, only

a certain amount of I/O pins on Cyclone II device is bonded out to the DE1

board. Thus, UTAR-CRCS was built using two DE1 boards due to insufficient

I/O pins that are bonded out on a single DE1 board. Table 5.2 lists the resource

utilization on a single Cyclone II device for the whole system that includes the

vision system. The assumption made here is that a single Cyclone II device is

used for processing. The logic elements usage is only 32 % which means there

is still room for more functional blocks. Besides, the complete system utilized

95 % of the total I/O pins count on the device indicates that it can support the

complete system implementation. Most of the 9-bit dedicated multipliers were

89

used in digital signal processing for the sensors and vision camera.

Table 5.2: FPGA resources utilization for UTAR-CRCS

Resources Available Used Usage (%)

Logic Elements 18,752 5,956 32

Pins 315 299 95

Memory – RAM (kB) 234 70 30

Embedded Multiplier 9-bit 52 51 98

PLL 4 1 25

Simulations in the previous section show that FPGA based UTAR-

CRCS has met the design expectations. The following section will highlight

some performances of UTAR-CRCS compared to multiple CPUs system.

5.3.1 Communication

In order to perform parallel processing, a number of autonomous

vehicle control systems are formed of multiple CPUs. These systems

communicate with each other by external communication ports. On the other

hand, UTAR-CRCS contains multiple modules in a chip that communicate

with on-chip communication. Table 5.3 compares the maximum data rate of

multiple CPUs system with UTAR-CRCS. In this comparison, USB2.0 is

chosen for multiple CPUs system since it is commonly used as communication

between CPUs as discussed in Section 3.4.3.1. For UTAR-CRCS, the data

transfer rate for module shown in Figure 3.19 in Section 3.4.3.1 is used for this

comparison.

90

Table 5.3: Comparison of maximum data rate between multiple CPUs system

and UTAR-CRCS

System (Communication) Data Rate Clock Speed

Multiple CPUs

(USB 2.0)
480 Mbps 480 MHz

UTAR-CRCS

(On-Chip Communication)
475 Mbps

1
 12.5 MHz

1
 Calculation based on the parallel communication between high-level navigation

module and low-level vehicle control module as shown in Figure 3.19

Although different clocks are used in the system, this 12.5 MHz clock

achieves maximum data rate since it clocks the transfer of 38-bit data through

parallel communication between two modules. USB 2.0 in multiple CPUs

system can support data rate up to 480 Mbps with a clock of 480 MHz.

However, UTAR-CRCS has a maximum data rate of 475 Mbps with a clock

speed of merely 12.5 MHz. The data rate of 475 Mbps is deemed sufficient in

this implementation. On-chip communication allows data to be transmitted in

parallel mode instead of serial mode for off-chip communication. Besides, the

data rate is scalable by using different clock speed which means data rate can

be further increased by using a higher clock speed. In addition, system that

operates with lower clock frequency will consume lower power compared to

higher clock frequency (Mahesri & Vardhan, 2004). This is due to the fact that

dynamic power consumption is directly proportional to clock frequency as

shown in the following equation:

fCVP 2 5.1

where f is the clock frequency, C is the capacitance, and V is the operating

voltage.

91

5.3.2 Deterministic System Behaviour

Measurement of the system output signals is an important step after

implementation. The system performance can be analysed using various kinds

of measurements. In this thesis, all the outputs from systems were measured

using an oscilloscope. As HDL implements the functions directly on the

hardware logic, this hard-real time system assures continuity in system

behaviour and output signals.

Figure 5.3: Measured signals from DAC chips to DC motor controllers

Figure 5.3 shows the measured signals from DAC chip to DC motor

controller. Inputs to the real-time system are signals from the remote control.

When the remote control sends command to move forward, both DC motor

controllers receive the same input control voltage from the system in order to

move in forward direction. In order to make a right turn, DC motor controller

on the left wheel will receive higher control voltage which results in higher

speed than right wheel. Measurements on the system show accurate and

consistent output from the real-time system.

1.6 V

1.6 V 1.6 V

2.4 V

92

5.3.3 Compact System

This thesis describes work done to build an autonomous vehicle

control system that is compact which can be installed on a compact

autonomous vehicle. The literature review in Chapter 2 shows some

autonomous vehicle control systems that consist of multiple CPUs or a

combination of multiple CPUs with multiple processing devices such as

microcontrollers and digital signal processors. After reviewing some available

systems, this research focused on FPGA based platform where UTAR-CRCS

was built on two Altera DE 1 boards.

In this research, UTAR-CRCS does not claim itself to outperform

multiple CPUs system in every aspect. First, in term of computing power,

Cyclone II on DE1 board might not perform faster than some supercomputer

or high-end computing device but advance in FPGA technology enabled the

device to outperform CPU in certain applications (Asano et al., 2009). Second,

DE1 board doesn‟t consist of certain hardware resources or software that is

available on computer. However, some available hardware resources on a

computer might not be useful in building an autonomous vehicle control

system; it might be a waste of resources and lead to increase in power

consumption. In comparison, FPGA device consists of dedicated DSP blocks

for signal processing and logic gates that can be configured to work as a

microcontroller.

93

The UTAR-CRCS system studied in this research claims itself as

compact system by comparing to some available embedded real-time

operating system in the market in terms of size and weight. These real-time

operating system can be used to build the autonomous vehicle RCS. Table 5.4

lists the dimension, weight, and power consumption for DE1 board, Mobile

Real-Time Target Machine, and a Basic Real-Time Target Machine for

comparisons. Both Mobile Real-Time Target Machine and Basic Real-Time

Target Machine is real-time operating machine with embedded CPU and xPC

Target.

The DE1 board size is only about half the size of a Basic Real-Time

Target Machine. Besides, the weight of 0.28 kg is much lower than other real-

time machine listed in the table; it is only 14 % of the weight for a Basic Real-

Time Target Machine. The Mobile Real-Time Target Machine has much

greater dimension and weight compared to DE1. Both the weight and size

comparisons show that UTAR-CRCS is more compact. The DE1 board is

powered up by USB port of laptop in this research and only draws a maximum

power of 2.5 W according to the USB power rating specifications. This is

much lower than the power consumption of both the real-time machines.

Table 5.4: Comparisons between DE1 and Real-Time Target Machine

Processing Platform

(Embedded Board /

embedded operating system)

Dimension (cm)

(W x H x D)
Weight (kg)

Power

Consumption

(W)

Altera DE1 15.00 x 3.00 x 15.00 0.28 2.50

Mobile Real-Time

Target Machine
43.10 x 13.20 x 48.00 15.00 300.00

Basic Real-Time

Target Machine
27.00 x 8.20 x 16.20 2.00 400.00

94

5.4 Summary

This chapter presents the simulations performed on the UTAR-CRCS

for both individual blocks and the final integrated system. In this system

development, simulations can verify functionalities of multiple blocks thus

system performance is guaranteed. Besides, system output signals are

measured to check on the performance after implementation on DE1 board.

During the measurements, accurate and continuity in output signals had been

observed. The low-end Cyclone II device used in this research doesn‟t have a

high computing performance if compared to high-end computer or

supercomputer. However, the comparisons made in this chapter highlighted

certain advantages of FPGA-based system over embedded real-time operating

system particularly in size, weight, and power consumption.

95

CHAPTER 6

CONCLUSION AND FUTURE WORK

This chapter contains a conclusion of the work presented as part of this

thesis and presents some starting points for future explorations.

6.1 Conclusion

Motivated by the need of a compact autonomous vehicle in confined

environment for search and rescue mission, a compact FPGA based RCS with

the name of UTAR-CRCS was developed. Its main goal is to realise the

parallelization across multiple modules using FPGA technology. In this control

system, FPGA device works as processing unit, microcontrollers, and digital

signal processors.

All modules were designed and integrated in Quartus II software using

custom built blocks and IP blocks. In the design stage, module specifications

were clearly defined by control flow and data flow. On-chip communication

was established for inter-modules data exchange and the parallel mode

communication allows high data transfer rate between modules. Off-chip

communications allow the control system to communicate with external

devices, which is needed for sensors configurations and data acquisition. Both

the simulations and measurements demonstrate that the control system has

achieved stability and continuity in generating accurate output signals. The

96

simulations that were performed on all blocks and system are important

verification on the functionalities before hardware implementation. Without

simulations, it is difficult to locate the errors by debugging directly on the

hardware.

Besides, this research also intends to enhance the real-time visual

guidance system through implementation using FPGA device. The Sobel edge

detection on real-time image was implemented in full parallel mode with the

dedicated DSP blocks to further accelerate the computation speed. This

system is capable of processing real-time input images up to 9 fps. For non-

real-time images, this direct hardware implementation has shown greater

processing speed when compared to a high specification PC based system. In

order to guarantee real-time performance, Kalman filtering can be introduced

to predict and detect the obstacles in unstructured environment.

UTAR-CRCS has shown some advantages against multiple CPUs

system and embedded operating systems. On-chip communication between

modules can be faster and more flexible than off-chip communication between

systems. Direct hardware logic implementation reduces system response time

thus real-time performance is guaranteed. More importantly, it is compact in

terms of size and weight. On the other hand, there are also limitations in this

system. This system performance is limited by the available I/O pins and

clocks on the DE1 board. Due to insufficient I/O pins, the vision system was

implemented on another DE1 board. Besides, the low-end Cyclone II device

comes with limited on-chip resources such as dedicated multiplier to facilitate

97

future expansion. However, the predictability of the system behaviours

achieved through this design concept is expected to be sufficient to provide the

necessary basis for the higher system design levels.

6.2 Future Work

This thesis has focused on the development of FPGA based real- time

control system for autonomous vehicle. In order for the control system to

operate in the field, more modules and sensors are needed. Besides, high-level

intelligent control system and teleoperation platform have to be developed.

 An autonomous vehicle needs to sense the environment for

decision making during navigation. As such, it needs

information from Inertia Measurement Unit (IMU) to report on

vehicle velocity and orientation. It also needs LIDAR or

RADAR to complement vision system in perceiving the

environment. All these sensors are heavy computational load to

the control system so a high-end FPGA device can increase the

performance in sensory processing.

 High-level of intelligence has to be implemented in the vehicle

navigation system. One of such solutions is Partially

Observable Markov Decision Process (POMDP) that helps to

solve navigation problems. With POMDP, the vehicle navigates

to the destination following the path that brings the maximum

98

rewards. Besides, POMDP can control the on board sensors

actively to yield optimum sensor performance and thus manage

the system power consumption.

 Teleoperation system is needed to allow human-robot

cooperation. In real-time operations, the vehicle updates its

information with remote operator through wireless

communication. Real-time image, vehicle status such as battery

level is sent to the remote operator for further decision making.

The interaction mode can be manual, semi-autonomous or

autonomous depending on the task context and vehicle status.

 The current UTAR-CRCS can be implemented on a single DE1

board by bonding out all 315 I/O pins to physical hardware. In

this case, it will integrate more tasks on the same board.

99

AUTHOR’S PUBLICATION

1. K.C Chan, C.S Tan, C.L Cheng, K.S Lee, C.L Kho, Y.S Fong and C.M

Teng. (2010), “Feasibility Study of FPGA Based Real-Time Controller

for Autonomous Vehicle Applications”, IEEE Conference on

Sustainable Utilization and Development in Engineering and

Technology (STUDENT), 20-21 November 2010, page(s): 1-6.

100

REFERENCES

Alberts, J., Edwards, D., Soule, T., Anderson, M., & O'Rouke, M. (2008).

Autonomous Navigation of an Unmanned Ground Vehicle in

Unstructured Forest Terrain. ECSIS Symposium on Learning and

Adaptive Behaviors for Robotic Systems, (pp. 103-108).

Anthony, F., & Steve, S. (2010). Developments and Chellenges for

Autonomous Unmanned Vehicles.

Asano, S., Maruyama, T., & Yamaguchi, Y. (2009). Performance Comparison

of FPGA, GPU and CPU in Image Processing. International

Conference on Field Programmable Logic and Applications, (pp. 126-

131). Prague.

Barbera, T., Albus, J., Messina, E., Schlenoff, C., & Horst, J. (2004). How

Task Analysis Can be Used to Derive and Organize the Knowledge of

the Control of Autonomous Vehicles. Robotics and Autonomous

Systems , 67-78.

Bellutta, P., Manduchi, R., Matthies, L., Owens, K., & Rankin, A. (2000).

Terrain Perception for DEMO III. Intelligent Vehicles Conference.

Colnaric, M., Verber, D., Gumzej, R., & Halang, W. A. (1998).

Implementation of Hard Real-Time Embedded Control Systems. Real-

Time Systems , 293-310.

Defense, U. D., Government, U., & Army, U. (2010). 2009-2034 Unmanned

Systems Integrated Roadmap . Progressive Management .

Drolet, L., Michaud, F., & Cote, J. (2000). Adaptable Sensor Fusion Using

Multiple Kalman Filters. IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2000, (pp. 1434 - 1439).

Gomi, T. (2003). New AI and Service Robots. Industrial Robot , 123-138.

101

Guivant, J., Nebot, E., & Baiker, S. (2000). Autonomous Navigation and Map

Building Using Laser Range Sensors in Outdoor . Journal of Robotic

System , 565-583.

Kentaro, S., Nishikawa, T., Aoki, T., & Yamamoto, S. (2008). Evaluating

Power and Energy Consumption of FPGA-Based Custom Computing

Machines for Scientific Floating-Point Computation. International

Conference on ICECE Technology , (pp. 301-304). Taipei.

Kim, T., & Yuh, J. (2004). Development of a Real-Time Control Architecture

for a Semi-Autonomous Underwater Vehicle for Intervention Missions.

Control Engineering Practice 12 , 1521-1530.

Mahesri, A., & Vardhan, V. (2004). Power Consumption Breakdown on A

Modern Laptop.

Mahyuddin, M. N., Chan, Z. W., & Arshad, M. R. (2009). FPGA as an

Embedded System of a Mobile Robot with incorporated Neuro-Fuzzy

Algorithm for Obstacle Avoidance Mission. MASAUM Journal of

Basic and Applied Sciences , 361-367.

Manduchi, R., Castano, A., Talukder, A., & Matthies, L. (2005). Obstacle

Detection and Terrain Classification for Autonomous Off-Road

Navigation. Autonomous Robots , 81-102.

Meng, Y. (2006). An Agent-based Mobile Robot System Using Configurable

SoC Technique. IEEE International Conference on Robotics and

Automation, (pp. 3368-3373). Florida.

Murthy, S. N., Alvis, W., Shirodkar, R., Valavanis, K., & Moreno, W. (2008).

Methodology for Implementation of Unmanned Vehicle Control on

FPGA Using System Generator. 7th International Caribbean

Conference on Devices, Circuits and Systems, (pp. 1-6). Cancun.

102

Nebot, P., Torres-Sospedra, J., & Martinez, R. (2011). A New HLA-Based

Distributed Control Architecture for Agricultural Teams of Robots in

Hybrid Applications with Real and Simulated Devices or

Environments. Sensors , 4385-4400.

Neoh, H. S., & Hazanchuk, A. (2005). Altera Documentation. Retrieved

September 2011, from Altera Corporation Web Site:

www.altera.com/literature/cp/gspx/edge-detection.pdf

Park, M. W., Son, Y. J., & Kim, J. H. (2007). Design of the Real-Time Control

System for Controlling Unmanned Vehicle. International Conference

on Control, Automation and System, (pp. 1234-1237). Seoul, Korea.

Peng, J., & Peters, A. (2005). Extraction of Salient Features for Mobile Robot

Navigation via Teleoperation. American Control Conference, (pp.

4903-4908).

Sermanet, P., Hadsell, R., Scoffier, M., Grimes, M., Ben, J., Erkan, A., et al.

(2009). A Multi-Range Architecture for Collision-Free Off-Road Robot

Navigation. Journal of Field Robotics , 58-87.

Seunghun, J., Junguk, C., Xuan Dai, P., Kyoung Mu, L., Sung Kee, P.,

Munsang, K., et al. (2010). FPGA Design and Implementation of A

Real-Time Stereo Vision System. IEEE Transactions on Circuits and

Systems for Video Technology , 15-26.

Seward, D., Pace, C., & Agate, R. (2006). Safe and Effective Navigation of

Autonomous Robots in Hazardous Environments . Autonomous

Robots , 223-242.

Stentz, A. (1994). Optimal and Efficient Path Planning for Partially-Known

Environments. IEEE International Conference on Robotics and

Automation, (pp. 3310-3317).

103

Tee, Y. H., & Tan, Y. C. (2010). A Compact Design of Zero-Radius Steering

Autonomous Amphibious Vehicle with Direct Differential Directional

Drive - UTAR AAV. 2010 IEEE Conference on Robotics Automation

and Mechatronics (RAM), (pp. 176-181). Singapore.

Teoh, C. W. (2011). Near-Range Water Body Detection and Obstacle

Detection in Rainforest Terrain/ Tropical Terrain. M.Eng. Thesis,

Universiti Tunku Abdul Rahman, Malaysia .

Wade, S. F., & James, K. A. (2007). Reconfigurable On-Board Vision

Processing for Small Autonomous Vehicles. EURASIP Journal on

Embedded Systems .

Widyotriatmo, A., Hong, B., & Hong, K. S. (2009). Predictive Navigation of

an Autonomous Vehicle with Nonholomonic and Minimum Turning

Radius Constraints. Mechanical Science and Technology .

104

APPENDIX A

Appendix A.1: Remote control module that decode the 4-channel input from

RF receiver

Appendix A.2: Rear wheel motor control module

PIN_H18

3.3-V LVCMOS
VCC

CH3_input_remote INPUT

PIN_P18

3.3-V LVCMOS

VCC
CH1_input_remote INPUT

PIN_N21

3.3-V LVCMOS

VCC
CH2_input_remote INPUT

PIN_H17

3.3-V LVCMOS

VCC
CH4_input_remote INPUT

PIN_R17

REMOTE_CONTROLOUTPUT

remote_control_clk_input

CH1_input

CH2_input

CH3_input

CH4_input

forw ard_right_motor

reverse_right_motor

brake_right_motor

speed_data_right_motor[7..0]

brake_data_right_motor[7..0]

forw ard_left_motor

reverse_left_motor

brake_left_motor

speed_data_left_motor[7..0]

brake_data_left_motor[7..0]

REMOTE_CONTROL

remote_control

inst5

f orward_right_M_remote

rev erse_right_M_remote

brake_right_M_remote

speed_data_right_M_remote[7..0]

brake_data_right_M_remote[7..0]

f orward_lef t_M_remote

rev erse_lef t_M_remote

brake_lef t_M_remote

speed_data_lef t_M_remote[7..0]

brake_data_lef t_M_remote[7..0]

CLK_50MHZ

Remote control block w ill decode the 4 CH inputs for remote control of vehicle

PIN_H12

PIN_H14

PIN_E14

PIN_F15

PIN_F12

PIN_C14

PIN_D15

PIN_C17

3.3-V LVCMOS

3.3-V LVCMOS

3.3-V LVCMOS

3.3-V LVCMOS

3.3-V LVCMOS

3.3-V LVCMOS

3.3-V LVCMOS

3.3-V LVCMOS

VCC
RIGHT_REAR_M_ENCODER_IN[7..0] INPUT

PIN_H13

PIN_G15

PIN_E15

PIN_G16

PIN_F13

PIN_D14

PIN_D16

PIN_C18

3.3-V LVCMOS

3.3-V LVCMOS

3.3-V LVCMOS

3.3-V LVCMOS

3.3-V LVCMOS

3.3-V LVCMOS

3.3-V LVCMOS

3.3-V LVCMOS
VCC

LEFT_REAR_M_ENCODER_IN[7..0] INPUT

PIN_D22

3.3-V LVCMOS

RUN_LEFT_REAR_MOUTPUT

PIN_E22

3.3-V LVCMOS

DIR_LEFT_REAR_MOUTPUT

PIN_F22

3.3-V LVCMOS

PWM_LEFT_REAR_MOUTPUT
PIN_D21

3.3-V LVCMOS
RUN_RIGHT_REAR_MOUTPUT

PIN_E21

3.3-V LVCMOS
DIR_RIGHT_REAR_MOUTPUT

PIN_F21

3.3-V LVCMOS

PWM_RIGHT_REAR_MOUTPUT

PIN_R20

PIN_R19

PIN_U19

PIN_Y19

PIN_T18

PIN_V19

PIN_Y18

PIN_U18

LEFT_REAR_M_ENCODER[7..0]OUTPUT

PIN_U22

PIN_U21

PIN_V22

PIN_V21

PIN_W22

PIN_W21

PIN_Y22

PIN_Y21

RIGHT_REAR_M_ENCODER[7..0]OUTPUT

ZERO_TURN_RIGHT_READYOUTPUT

ZERO_TURN_LEFT_READYOUTPUT

FORWARD_READYOUTPUT

REAR_motor_clk

rear_motor_speed[4..0]

F_RIGHT

R_RIGHT

B_RIGHT

F_LEFT

R_LEFT

B_LEFT

SPEED_RIGHT_IN[7..0]

SPEED_LEFT_IN[7..0]

RIGHT_REAR_M_ENCODER_IN[7..0]

LEFT_REAR_M_ENCODER_IN[7..0]

RUN_LEFT_REAR_M

DIR_LEFT_REAR_M

PWM_LEFT_REAR_M

RUN_RIGHT_REAR_M

DIR_RIGHT_REAR_M

PWM_RIGHT_REAR_M

SPEED_RIGHT_OUT[7..0]

SPEED_LEFT_OUT[7..0]

RIGHT_REAR_M_ENCODER[7..0]

LEFT_REAR_M_ENCODER[7..0]

FORWARD_EN

ZERO_TURN_RIGHT_EN

ZERO_TURN_LEFT_EN

front_w heel_motor_control

inst14

SPEED_RIGHT_M[7..0]

SPEED_LEFT_M[7..0]

CLK_27MHZ

source[40..36]

f orward_right_M

rev erse_right_M

brake_right_M

f orward_lef t_M

rev erse_lef t_M

brake_lef t_M

speed_data_right_M[7..0]

speed_data_lef t_M[7..0]

105

Appendix A.3: Signals selection module for autonomous and remote control

operation

Appendix A.4: Motor RPM counter module (from rotary encoder)

clk

remote_enable

f orward_right_motor_remote

rev erse_right_motor_remote

brake_right_motor_remote

speed_data_right_motor_remote[7..0]

brake_data_right_motor_remote[7..0]

f orward_lef t_motor_remote

rev erse_lef t_motor_remote

brake_lef t_motor_remote

speed_data_lef t_motor_remote[7..0]

brake_data_lef t_motor_remote[7..0]

auto_enable

f orward_right_motor_auto

rev erse_right_motor_auto

brake_right_motor_auto

speed_data_right_motor_auto[7..0]

brake_data_right_motor_auto[7..0]

f orward_lef t_motor_auto

rev erse_lef t_motor_auto

brake_lef t_motor_auto

speed_data_lef t_motor_auto[7..0]

brake_data_lef t_motor_auto[7..0]

f orward_right_motor

rev erse_right_motor

brake_right_motor

speed_data_right_motor[7..0]

brake_data_right_motor[7..0]

f orward_lef t_motor

rev erse_lef t_motor

brake_lef t_motor

speed_data_lef t_motor[7..0]

brake_data_lef t_motor[7..0]

AUTO_REMOTE_SELECT

inst1

rev erse_right_M

brake_right_M

speed_data_right_M[7..0]

brake_data_right_M[7..0]

f orward_lef t_M

rev erse_lef t_M

brake_lef t_M

speed_data_lef t_M[7..0]

brake_data_lef t_M[7..0]

REMOTE_CONTROL

f orward_right_M_remote

rev erse_right_M_remote

brake_right_M_remote

speed_data_right_M_remote[7..0]

brake_data_right_M_remote[7..0]

f orward_lef t_M_remote

rev erse_lef t_M_remote

brake_lef t_M_remote

speed_data_lef t_M_remote[7..0]

brake_data_lef t_M_remote[7..0]

f orward_right_Mauto_remote_select_clk

f orward_right_M_auto

rev erse_right_M_auto

brake_right_M_auto

brake_data_right_M_auto[7..0]

f orward_lef t_M_auto

rev erse_lef t_M_auto

brake_lef t_M_auto

brake_data_lef t_M_auto[7..0]

speed_data_right_M_auto[7..0]

speed_data_lef t_M_auto[7..0]

Auto_remote_select block w ill select betw een remote and autonomous operation

PIN_B20

3.3-V LVCMOS

VCC
ROTARY_IN_LEFT INPUT

PIN_A20

3.3-V LVCMOS
VCC

RPTARY_IN_RIGHT INPUT

pulse_count_lef t[3..0]OUTPUT
rotary_encoder_clk

rotary_encoder_reset

rotary_encoder_Zero_R_left_reset

rotary_in_left

rotary_in_right

pulse_count_left[3..0]

rpm_count_left[11..0]

rpm_count_right[11..0]

pulse_count_clk

rpm_counter

inst6

rpm_count_lef t[11..0]

rpm_count_right[11..0]

CLK_27MHZ

RESET

pulse_count_clk

reset_pulse_count_lef t

This block decode the input from rotary encoder

106

Appendix A.5: Ultrasonic sensors module

Appendix A.6: Autonomous navigation module

PIN_J18

3.3-V LVCMOS
VCC

sonar_input_lef t INPUT

PIN_K21

3.3-V LVCMOS
VCC

sonar_input_right INPUT

3.3-V LVCMOS
VCC

sonar_input_center INPUT

PIN_F4

PIN_D5

PIN_D6

PIN_J4

PIN_L8

PIN_F3

PIN_D4

SONAR_NUMBER_DISPLAY_LEFT[6..0]OUTPUT

PIN_G5

PIN_G6

PIN_C2

PIN_C1

PIN_E3

PIN_E4

PIN_D3

SONAR_FRACTION_DISPLAY_LEFT[6..0]OUTPUT

PIN_E1

PIN_H6

PIN_H5

PIN_H4

PIN_G3

PIN_D2

PIN_D1

SONAR_NUMBER_DISPLAY_RIGHT[6..0]OUTPUT

PIN_J2

PIN_J1

PIN_H2

PIN_H1

PIN_F2

PIN_F1

PIN_E2

SONAR_FRACTION_DISPLAY_RIGHT[6..0]OUTPUT

sonar_number_display _center[6..0]OUTPUT

sonar_f raction_display _center[6..0]OUTPUT

PIN_K20

3.3-V LVCMOS

SONAR_LEFT_RXOUTPUT

sonar_data_lef t_ReadyOUTPUT

SONAR_CENTER_RXOUTPUT

sonar_data_center_ReadyOUTPUT

PIN_K22

3.3-V LVCMOS

SONAR_RIGHT_RXOUTPUT

sonar_data_right_ReadyOUTPUT

CLK_27MHZ

sonar_clk

sonar_input_center

sonar_center_request

sonar_input_left

sonar_left_request

sonar_input_right

sonar_right_request

sonar_pow er_center

sonar_pow er_left

sonar_pow er_right

sonar_gnd_right

sonar_gnd_left

sonar_gnd_center

sonar_integer_center[3..0]

sonar_fraction_center[4..0]

SONAR_CENTER_RX

sonar_data_center_Ready

sonar_number_display_center[6..0]

sonar_fraction_display_center[6..0]

sonar_integer_left[3..0]

sonar_fraction_left[4..0]

SONAR_LEFT_RX

sonar_data_left_Ready

SONAR_NUMBER_DISPLAY_LEFT[6..0]

SONAR_FRACTION_DISPLAY_LEFT[6..0]

sonar_integer_right[3..0]

sonar_fraction_right[4..0]

SONAR_RIGHT_RX

sonar_data_right_Ready

SONAR_NUMBER_DISPLAY_RIGHT[6..0]

SONAR_FRACTION_DISPLAY_RIGHT[6..0]

sonar_range_finder

inst2

This block decode the input from Sonar range f inder

CLK_27MHZ

CLK_50MHZ

sonar_lef t_request

sonar_right_request

sonar_integer_right[3..0]

sonar_integer_lef t[3..0]

sonar_integer_center[3..0]

sonar_center_request

CLOCK

Start

sonar_right_data_Ready

sonar_lef t_data_Ready

sonar_center_data_Ready

zero_radius_right_ready

f orward_ready

zero_turn_right_ready

zero_turn_lef t_ready

sonar_integer_right[3..0]

sonar_integer_lef t[3..0]

sonar_integer_center[3..0]

pulse_count_lef t[3..0]

GPS_in[7..0]

v ision_in[7..0]

obstacle_out

turn_right_done_out

reset_pulse_count_lef t

sonar_right_Request

sonar_lef t_Request

sonar_center_Request

F_RIGHT

R_RIGHT

B_RIGHT

SPEED_RIGHT_OUT[7..0]

BRAKE_RIGHT_OUT[7..0]

F_LEFT

R_LEFT

B_LEFT

SPEED_LEFT_OUT[7..0]

BRAKE_LEFT_OUT[7..0]

autonomous_nav igation

inst15

f orward_right_M_auto

rev erse_right_M_auto

brake_right_M_auto

speed_data_right_M_auto[7..0]

brake_data_right_M_auto[7..0]

f orward_lef t_M_auto

rev erse_lef t_M_auto

brake_lef t_M_auto

speed_data_lef t_M_auto[7..0]

brake_data_lef t_M_auto[7..0]

reset_pulse_count_lef t

sonar_right_request

sonar_lef t_request

sonar_center_request

source[42]

sonar_data_lef t_Ready

sonar_data_right_Ready

sonar_data_center_Ready

ZERO_TURN_RIGHT_READY

FORWARD_READY

pulse_count_lef t[3..0]

sonar_integer_right[3..0]

sonar_integer_lef t[3..0]

sonar_integer_center[3..0]

v ision_in[7..0]

GPS_data[7..0]

CLK_27MHZ

107

Appendix A.7: GPS receiver module

clk

RxD

RxD_data_ready

RxD_data[7..0]

RxD_endof packet

RxD_idle

GPS_Module

inst16

ClkFrequency 27000000 Signed Integer

Baud 4800 Signed Integer

Baud8 Signed Integer

Baud8GeneratorAccWidth 8 Signed Integer

Parameter Value Type

VCC
GPS_RxD INPUT

CLK_27MHZ

GPS_data[7..0]

GPS_RxD_data_ready

GPS_RxD_endof packet

GPS_RxD_idle

PIN_F14

1.8 V

108

APPENDIX B

--remote control CH1 input processing

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

USE ieee.std_logic_arith.all;

entity remote_control_decode_CH1 is

 port(CH1_count: in std_logic_vector (15 downto 0); --number

 from signal_counter, it counts the pulse width

 enable : in std_logic; --it reads CH1_counter_aclr to make sure

 that counter has done the count for one pulse

 right_dir, left_dir : out std_logic;

 data : out std_logic_vector (15 downto 0);

 LED_test : out std_logic_vector (2 downto 0)); END

remote_control_decode_CH1;

architecture decode of remote_control_decode_CH1 is

 signal LED_TEMP : STD_LOGIC_VECTOR(2 DOWNTO 0);

 --store data before assign to output

 signal data_temp : STD_LOGIC_VECTOR(15 DOWNTO 0);

 --store data before assign to output

 signal CH1_count_temp : STD_LOGIC_VECTOR(15 DOWNTO 0);

 --assign input CH1_count to it for process

 signal right_dir_temp, left_dir_temp : std_logic;

begin

 process (enable)

 begin

 if (enable = '1') then

 CH1_count_temp <= CH1_count;

 end if;

 end process;

 process (CH1_count_temp)

 begin

 -- CH1_count < 18125

 if (CH1_count_temp < "0100011011001101")then

 data_temp <= ("0100011011001101" - CH1_count_temp);

 LED_TEMP <= "100";

 right_dir_temp <= '0';

 left_dir_temp <= '1';

 -- CH1_count > 19375

 elsif (CH1_count_temp > "0100101110101111")then

 data_temp <= (CH1_count_temp - "0100101110101111");

 LED_TEMP <= "001";

109

 right_dir_temp <= '1';

 left_dir_temp <= '0';

 else

 data_temp <= "0000000000000000";

 LED_TEMP <= "010";

 right_dir_temp <= '0';

 left_dir_temp <= '0';

 end if;

 end process;

 LED_test <= LED_TEMP;

 data <= data_temp;

 right_dir <= right_dir_temp;

 left_dir <= left_dir_temp;

end decode;

--remote control CH2 input processing

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

USE ieee.std_logic_arith.all;

entity remote_control_decode_CH2 is

 port(CH2_count: in std_logic_vector (15 downto 0); --number from

 signal_counter, it counts the pulse width

 enable : in std_logic;

 --it reads CH1_counter_aclr to make sure that counter has done the

 count for one pulse

 brake : out std_logic;

 data : out std_logic_vector (15 downto 0);

 LED_test : out std_logic); --for testing purposes

END remote_control_decode_CH2;

architecture decode of remote_control_decode_CH2 is

 signal LED_TEMP : STD_LOGIC;

 --store data before assign to output

 signal data_temp : STD_LOGIC_VECTOR(15 DOWNTO 0);

 --store data before assign to output

 signal CH2_count_temp : STD_LOGIC_VECTOR(15 DOWNTO 0);

 --assign input CH1_count to it for process

 signal brake_temp : std_logic;

begin

 process (enable)

 begin

 if (enable = '1') then

 CH2_count_temp <= CH2_count;

110

 end if;

 end process;

 process (CH2_count_temp)

 begin

 then -- CH2_count < 19750

 if (CH2_count_temp > "0100110100100110")

 data_temp <= (CH2_count_temp - "0100110100100110");

 --use CH2_count deduct 19750 to get pulse width

 LED_TEMP <= '1';

 brake_temp <= '1';

 else

 data_temp <= "0000000000000000";

 LED_TEMP <= '0';

 brake_temp <= '0';

 end if;

 end process;

 LED_test <= LED_TEMP;

 data <= data_temp;

 brake <= brake_temp;

end decode;

--remote control CH3 input processing

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

USE ieee.std_logic_arith.all;

entity remote_control_decode_CH3 is

 port(CH3_count: in std_logic_vector (15 downto 0); --number

 from signal_counter, it counts the pulse width

 enable : in std_logic;

 --it reads CH3_counter_aclr to make sure that counter has done the

 count for one pulse

 forward, reverse : out std_logic; --to decode the vehicle direction

 data : out std_logic_vector (15 downto 0);

 LED_test : out std_logic_vector (2 downto 0)); --for testing

 purposes

END remote_control_decode_CH3;

architecture decode of remote_control_decode_CH3 is

 signal LED_TEMP : STD_LOGIC_VECTOR(2 DOWNTO 0);

 --store data before assign to output

 signal data_temp : STD_LOGIC_VECTOR(15 DOWNTO 0);

 --store data before assign to output

 signal CH3_count_temp : STD_LOGIC_VECTOR(15 DOWNTO 0);

 --assign input CH3_count to it for process

111

 signal forward_temp, reverse_temp : STD_LOGIC;

begin

 process (enable)

 begin

 if (enable = '1') then

 CH3_count_temp <= CH3_count;

 end if;

 end process;

 process (CH3_count_temp)

 begin

 -- CH3_count < 17500

 if (CH3_count_temp < "0100010001011100")then

 data_temp <= ("0100010001011100" - CH3_count_temp);

 LED_TEMP <= "100";

 forward_temp <= '0';

 reverse_temp <= '1';

 -- CH3_count > 18750

 elsif (CH3_count_temp > "0100100100111110")then

 data_temp <= (CH3_count_temp - "0100100100111110");

 LED_TEMP <= "001";

 forward_temp <= '1';

 reverse_temp <= '0';

 else

 data_temp <= "0000000000000000";

 LED_TEMP <= "010";

 forward_temp <= '0';

 reverse_temp <= '0';

 end if;

 end process;

 LED_test <= LED_TEMP;

 data <= data_temp;

 forward <= forward_temp;

 reverse <= reverse_temp;

end decode;

--remote control CH4 input processing

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

USE ieee.std_logic_arith.all;

entity remote_control_decode_CH4 is

 port(CH4_count: in std_logic_vector (15 downto 0); --number

 from signal_counter, it counts the pulse width

112

 enable : in std_logic; --it reads CH4_counter_aclr to make sure that

 counter has done the count for one pulse

 Z_radius_right, Z_radius_left : out std_logic; --to decode the vehicle

 zero radius turn direction

 data : out std_logic_vector (15 downto 0);

 LED_test : out std_logic_vector (2 downto 0)); --for testing

 purposes

END remote_control_decode_CH4;

architecture decode of remote_control_decode_CH4 is

 signal LED_TEMP : STD_LOGIC_VECTOR(2 DOWNTO 0);

 --store data before assign to output

 signal data_temp : STD_LOGIC_VECTOR(15 DOWNTO 0);

 --store data before assign to output

 signal CH4_count_temp : STD_LOGIC_VECTOR(15 DOWNTO 0);

 --assign input CH3_count to it for process

 signal Z_radius_right_temp, Z_radius_left_temp : STD_LOGIC;

begin

 process (enable)

 begin

 if (enable = '1') then

 CH4_count_temp <= CH4_count;

 end if;

 end process;

 process (CH4_count_temp)

 begin

 -- CH4_count < 17500

 if (CH4_count_temp < "0100010001011100")then

 data_temp <= ("0100010001011100" - CH4_count_temp);

 LED_TEMP <= "100";

 Z_radius_right_temp <= '1';

 Z_radius_left_temp <= '0';

 -- CH4_count > 18875

 elsif (CH4_count_temp > "0100100110111011")then

 data_temp <= (CH4_count_temp - "0100100110111011");

 LED_TEMP <= "001";

 Z_radius_right_temp <= '0';

 Z_radius_left_temp <= '1';

 else

 data_temp <= "0000000000000000";

 LED_TEMP <= "010";

 Z_radius_right_temp <= '0';

 Z_radius_left_temp <= '0';

 end if;

 end process;

 LED_test <= LED_TEMP;

 data <= data_temp;

113

 Z_radius_right <= Z_radius_right_temp;

 Z_radius_left <= Z_radius_left_temp;

end decode;

--remote control processing

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

USE ieee.std_logic_arith.all;

entity remote_control_processing is

 port(clk : in std_logic;

 forward, reverse : in std_logic;

 speed_data_in : in std_logic_vector (7 downto 0);

 right_dir, left_dir : in std_logic;

 direction_data_in : in std_logic_vector (7 downto 0);

 brake : in std_logic;

 brake_data_in : in std_logic_vector (7 downto 0);

 zero_R_right : in std_logic;

 zero_R_left : in std_logic;

 Z_radius_speed_in : in std_logic_vector (7 downto 0);

 forward_right_motor : out std_logic;

 reverse_right_motor : out std_logic;

 brake_right_motor : out std_logic;

 speed_data_right_motor : out std_logic_vector (7 downto 0);

 brake_data_right_motor : out std_logic_vector (7 downto 0);

 forward_left_motor : out std_logic;

 reverse_left_motor : out std_logic;

 brake_left_motor : out std_logic;

 speed_data_left_motor : out std_logic_vector (7 downto 0);

 brake_data_left_motor : out std_logic_vector (7 downto 0));

END remote_control_processing;

architecture processing of remote_control_processing is

 --store input data

 signal speed_data_in_temp : std_logic_vector (7 downto 0);

 signal direction_data_in_temp : std_logic_vector (7 downto 0);

 signal brake_data_in_temp : std_logic_vector (7 downto 0);

 signal Z_radius_speed_in_temp : std_logic_vector (7 downto 0);

 --store data before assign to output, act as buffer

 signal forward_right_motor_temp : std_logic;

 signal reverse_right_motor_temp : std_logic;

 signal brake_right_motor_temp : std_logic;

 signal speed_data_right_motor_temp : std_logic_vector (7 downto 0);

 signal brake_data_right_motor_temp : std_logic_vector (7 downto 0);

 signal forward_left_motor_temp : std_logic;

 signal reverse_left_motor_temp : std_logic;

 signal brake_left_motor_temp : std_logic;

 signal speed_data_left_motor_temp : std_logic_vector (7 downto 0);

 signal brake_data_left_motor_temp : std_logic_vector (7 downto 0);

114

begin

 speed_data_in_temp <= speed_data_in;

 direction_data_in_temp <= direction_data_in;

 brake_data_in_temp <= brake_data_in;

 Z_radius_speed_in_temp <= Z_radius_speed_in;

 process (clk)

 begin

 if (clk'event and clk='1') then

 if (brake='1')

 then --brake, highest priority

 forward_right_motor_temp <= '0';

 reverse_right_motor_temp <= '0';

 brake_right_motor_temp <= '1';

 speed_data_right_motor_temp <= "00000000";

 brake_data_right_motor_temp <= brake_data_in_temp;

 forward_left_motor_temp <= '0';

 reverse_left_motor_temp <= '0';

 brake_left_motor_temp <= '1';

 speed_data_left_motor_temp <= "00000000";

 brake_data_left_motor_temp <= brake_data_in_temp;

 elsif (forward='1' and reverse='0' and right_dir='0' and left_dir='0')

 then --move forward, both wheel same speed

 forward_right_motor_temp <= '1';

 reverse_right_motor_temp <= '0';

 brake_right_motor_temp <= '0';

 speed_data_right_motor_temp <= speed_data_in_temp;

 brake_data_right_motor_temp <= "00000000";

 forward_left_motor_temp <= '1';

 reverse_left_motor_temp <= '0';

 brake_left_motor_temp <= '0';

 speed_data_left_motor_temp <= speed_data_in_temp;

 brake_data_left_motor_temp <= "00000000";

 elsif (forward='0' and reverse='1' and right_dir='0' and left_dir='0')

 then --move reverse, both wheel same speed

 forward_right_motor_temp <= '0';

 reverse_right_motor_temp <= '1';

 brake_right_motor_temp <= '0';

 speed_data_right_motor_temp <= speed_data_in_temp;

 brake_data_right_motor_temp <= "00000000";

 forward_left_motor_temp <= '0';

 reverse_left_motor_temp <= '1';

 brake_left_motor_temp <= '0';

 speed_data_left_motor_temp <= speed_data_in_temp;

 brake_data_left_motor_temp <= "00000000";

 elsif (forward='1' and reverse='0' and right_dir='1' and left_dir='0')

 then --turn right, reduce right wheel speed

 forward_right_motor_temp <= '1';

 reverse_right_motor_temp <= '0';

 brake_right_motor_temp <= '0';

 speed_data_right_motor_temp <= (speed_data_in_temp -

direction_data_in_temp);

115

 brake_data_right_motor_temp <= "00000000";

 forward_left_motor_temp <= '1';

 reverse_left_motor_temp <= '0';

 brake_left_motor_temp <= '0';

 speed_data_left_motor_temp <= speed_data_in_temp;

 brake_data_left_motor_temp <= "00000000";

 elsif (forward='1' and reverse='0' and right_dir='0' and left_dir='1')

 then --turn left, reduce left wheel speed

 forward_right_motor_temp <= '1';

 reverse_right_motor_temp <= '0';

 brake_right_motor_temp <= '0';

 speed_data_right_motor_temp <= speed_data_in_temp;

 brake_data_right_motor_temp <= "00000000";

 forward_left_motor_temp <= '1';

 reverse_left_motor_temp <= '0';

 brake_left_motor_temp <= '0';

 speed_data_left_motor_temp <= (speed_data_in_temp -

direction_data_in_temp);

 brake_data_left_motor_temp <= "00000000";

 elsif (forward='0' and reverse='1' and right_dir='1' and left_dir='0')

 then --reverse right, reduce right wheel speed

 forward_right_motor_temp <= '0';

 reverse_right_motor_temp <= '1';

 brake_right_motor_temp <= '0';

 speed_data_right_motor_temp <= (speed_data_in_temp -

direction_data_in_temp);

 brake_data_right_motor_temp <= "00000000";

 forward_left_motor_temp <= '0';

 reverse_left_motor_temp <= '1';

 brake_left_motor_temp <= '0';

 speed_data_left_motor_temp <= speed_data_in_temp;

 brake_data_left_motor_temp <= "00000000";

 elsif (forward='0' and reverse='1' and right_dir='0' and left_dir='1')

 then --reverse left, reduce left wheel speed

 forward_right_motor_temp <= '0';

 reverse_right_motor_temp <= '1';

 brake_right_motor_temp <= '0';

 speed_data_right_motor_temp <= speed_data_in_temp;

 brake_data_right_motor_temp <= "00000000";

 forward_left_motor_temp <= '0';

 reverse_left_motor_temp <= '1';

 brake_left_motor_temp <= '0';

 speed_data_left_motor_temp <= (speed_data_in_temp -

direction_data_in_temp);

 brake_data_left_motor_temp <= "00000000";

 elsif (zero_R_right='1' and zero_R_left='0')

 then --zero radius right turn

 forward_right_motor_temp <= '0';

 reverse_right_motor_temp <= '1';

 brake_right_motor_temp <= '0';

 speed_data_right_motor_temp <= Z_radius_speed_in_temp;

 brake_data_right_motor_temp <= "00000000";

 forward_left_motor_temp <= '1';

 reverse_left_motor_temp <= '0';

 brake_left_motor_temp <= '0';

116

 speed_data_left_motor_temp <= Z_radius_speed_in_temp;

 brake_data_left_motor_temp <= "00000000";

 elsif (zero_R_right='0' and zero_R_left='1')

 then --zero radius left turn

 forward_right_motor_temp <= '1';

 reverse_right_motor_temp <= '0';

 brake_right_motor_temp <= '0';

 speed_data_right_motor_temp <= Z_radius_speed_in_temp;

 brake_data_right_motor_temp <= "00000000";

 forward_left_motor_temp <= '0';

 reverse_left_motor_temp <= '1';

 brake_left_motor_temp <= '0';

 speed_data_left_motor_temp <= Z_radius_speed_in_temp;

 brake_data_left_motor_temp <= "00000000";

 else

 forward_right_motor_temp <= '0';

 reverse_right_motor_temp <= '0';

 brake_right_motor_temp <= '1';

 speed_data_right_motor_temp <= "00000000";

 brake_data_right_motor_temp <= "00000000";

 forward_left_motor_temp <= '0';

 reverse_left_motor_temp <= '0';

 brake_left_motor_temp <= '1';

 speed_data_left_motor_temp <= "00000000";

 brake_data_left_motor_temp <= "00000000";

 end if;

 end if;

end process;

 forward_right_motor <= forward_right_motor_temp;

 reverse_right_motor <= reverse_right_motor_temp;

 brake_right_motor <= brake_right_motor_temp;

 speed_data_right_motor <= speed_data_right_motor_temp;

 brake_data_right_motor <= brake_data_right_motor_temp;

 forward_left_motor <= forward_left_motor_temp;

 reverse_left_motor <= reverse_left_motor_temp;

 brake_left_motor <= brake_left_motor_temp;

 speed_data_left_motor <= speed_data_left_motor_temp;

 brake_data_left_motor <= brake_data_left_motor_temp;

end processing;

--rear left wheel motor control

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

USE ieee.std_logic_arith.all;

entity front_left_motor_control is

 port(CLK : in std_logic;

 TURN_CW_LEFT_FRONT_M : in std_logic;

 TURN_CCW_LEFT_FRONT_M : in std_logic;

117

 RUN_LEFT_FRONT_M : out std_logic;

 DIR_LEFT_FRONT_M : out std_logic;

 LEFT_FRONT_M_SPEED : out std_logic_vector(4 downto 0));

END front_left_motor_control;

architecture control of front_left_motor_control is

 signal RUN_LEFT_FRONT_M_TEMP : STD_LOGIC;

 signal DIR_LEFT_FRONT_M_TEMP : STD_LOGIC;

 signal LEFT_FRONT_M_SPEED_TEMP : STD_LOGIC_VECTOR(4

 downto 0);

begin

 process (CLK)

 begin

 if (TURN_CW_LEFT_FRONT_M = '1' and

 TURN_CCW_LEFT_FRONT_M = '0') then --turn clockwise

 RUN_LEFT_FRONT_M_TEMP <= '0';

 DIR_LEFT_FRONT_M_TEMP <= '1';

 LEFT_FRONT_M_SPEED_TEMP <= "11101";

 elsif (TURN_CW_LEFT_FRONT_M = '0' and

 TURN_CCW_LEFT_FRONT_M = '1') then --turn

 counterclockwise

 RUN_LEFT_FRONT_M_TEMP <= '1';

 DIR_LEFT_FRONT_M_TEMP <= '0';

 LEFT_FRONT_M_SPEED_TEMP <= "11101";

 else

 RUN_LEFT_FRONT_M_TEMP <= '0';

 DIR_LEFT_FRONT_M_TEMP <= '0';

 LEFT_FRONT_M_SPEED_TEMP <= "11101";

 end if;

 end process;

 RUN_LEFT_FRONT_M <= RUN_LEFT_FRONT_M_TEMP;

 DIR_LEFT_FRONT_M <= DIR_LEFT_FRONT_M_TEMP;

 LEFT_FRONT_M_SPEED <= LEFT_FRONT_M_SPEED_TEMP;

end control;

--rear right wheel motor control

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

USE ieee.std_logic_arith.all;

entity front_right_motor_control is

 port(CLK : in std_logic;

 TURN_CW_LEFT_FRONT_M : in std_logic;

 TURN_CCW_LEFT_FRONT_M : in std_logic;

118

 RUN_LEFT_FRONT_M : out std_logic;

 DIR_LEFT_FRONT_M : out std_logic;

 LEFT_FRONT_M_SPEED : out std_logic_vector(4 downto

0));

END front_right_motor_control;

architecture control of front_right_motor_control is

 signal RUN_LEFT_FRONT_M_TEMP : STD_LOGIC;

 signal DIR_LEFT_FRONT_M_TEMP : STD_LOGIC;

 signal LEFT_FRONT_M_SPEED_TEMP : STD_LOGIC_VECTOR(4

downto 0);

begin

 process (CLK)

 begin

 if (TURN_CW_LEFT_FRONT_M = '1' and

 TURN_CCW_LEFT_FRONT_M = '0') then --turn clockwise

 RUN_LEFT_FRONT_M_TEMP <= '1';

 DIR_LEFT_FRONT_M_TEMP <= '0';

 LEFT_FRONT_M_SPEED_TEMP <= "11101";

 elsif (TURN_CW_LEFT_FRONT_M = '0' and

 TURN_CCW_LEFT_FRONT_M = '1') then --turn

 counterclockwise

 RUN_LEFT_FRONT_M_TEMP <= '0';

 DIR_LEFT_FRONT_M_TEMP <= '1';

 LEFT_FRONT_M_SPEED_TEMP <= "11101";

 else

 RUN_LEFT_FRONT_M_TEMP <= '0';

 DIR_LEFT_FRONT_M_TEMP <= '0';

 LEFT_FRONT_M_SPEED_TEMP <= "11101";

 end if;

 end process;

 RUN_LEFT_FRONT_M <= RUN_LEFT_FRONT_M_TEMP;

 DIR_LEFT_FRONT_M <= DIR_LEFT_FRONT_M_TEMP;

 LEFT_FRONT_M_SPEED <= LEFT_FRONT_M_SPEED_TEMP;

end control;

--rear wheel motor control processing

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

USE ieee.std_logic_arith.all;

entity rear_motor_control_processing is

 port(CLK : in std_logic;

 F_RIGHT, R_RIGHT, B_RIGHT : in std_logic;

 F_LEFT, R_LEFT, B_LEFT : in std_logic;

 SPEED_RIGHT_IN : in std_logic_vector(7 downto 0);

119

 SPEED_LEFT_IN : in std_logic_vector(7 downto 0);

 ENCODER_RIGHT_IN : in std_logic_vector(7 downto 0);

 ENCODER_LEFT_IN : in std_logic_vector(7 downto 0);

 CW_R_M, CCW_R_M : out std_logic;

 CW_L_M, CCW_L_M : out std_logic;

 SPEED_RIGHT_OUT : out std_logic_vector(7 downto 0);

 SPEED_LEFT_OUT : out std_logic_vector(7 downto 0);

 ENCODER_RIGHT_OUT : out std_logic_vector(7 downto 0);

 --for display purpose

 ENCODER_LEFT_OUT : out std_logic_vector(7 downto 0);

 FORWARD_EN : out std_logic;

 ZERO_TURN_RIGHT_EN : out std_logic;

 ZERO_TURN_LEFT_EN : out std_logic);

END rear_motor_control_processing;

architecture control of rear_motor_control_processing is

 --signal for right motor to turn CCW

 signal MOTOR_R_TURN_CCW_EN : STD_LOGIC;

 --signal for right motor to turn CW

 signal MOTOR_R_TURN_CW_EN : STD_LOGIC;

 --signal for assigning input to output

 signal SPEED_R_EN : STD_LOGIC;

 signal MOTOR_L_TURN_CCW_EN : STD_LOGIC;

 signal MOTOR_L_TURN_CW_EN : STD_LOGIC;

 signal SPEED_L_EN : STD_LOGIC;

 SIGNAL ZERO_TURN_RIGHT_EN_1: STD_LOGIC;

 SIGNAL ZERO_TURN_RIGHT_EN_2: STD_LOGIC;

 SIGNAL ZERO_TURN_LEFT_EN_1: STD_LOGIC;

 SIGNAL ZERO_TURN_LEFT_EN_2: STD_LOGIC;

 SIGNAL FORWARD_EN_1: STD_LOGIC;

 SIGNAL FORWARD_EN_2: STD_LOGIC;

begin

 ENCODER_RIGHT_OUT <= ENCODER_RIGHT_IN;

 ENCODER_LEFT_OUT <= ENCODER_LEFT_IN;

 process (CLK)

 begin

 if (CLK'EVENT AND CLK = '1') then

 if (F_RIGHT = '1' and F_LEFT = '1' and R_RIGHT = '0'

 and R_LEFT = '0') then --FORWARD

 if (ENCODER_RIGHT_IN = "01011100" or

 ENCODER_RIGHT_IN = "01111100" or

 ENCODER_RIGHT_IN = "11111100" or

 ENCODER_RIGHT_IN = "11111110" or

 ENCODER_RIGHT_IN = "11111010" or

 ENCODER_RIGHT_IN = "01111010" or

 ENCODER_RIGHT_IN = "01111000") then

 MOTOR_R_TURN_CCW_EN <= '0';

 MOTOR_R_TURN_CW_EN <= '0';

120

 SPEED_R_EN <= '1';

 FORWARD_EN_1 <= '1';

 elsif (ENCODER_RIGHT_IN = "00011100" or

 ENCODER_RIGHT_IN = "00011101" or

 ENCODER_RIGHT_IN = "00011001") then

 MOTOR_R_TURN_CCW_EN <= '0';

 MOTOR_R_TURN_CW_EN <= '1';

 SPEED_R_EN <= '1';

 FORWARD_EN_1 <= '1';

 else

 MOTOR_R_TURN_CCW_EN <= '1';

 MOTOR_R_TURN_CW_EN <= '0';

 SPEED_R_EN <= '0';

 FORWARD_EN_1 <= '0';

 end if;

 if (ENCODER_LEFT_IN = "00010000" or

 ENCODER_LEFT_IN = "00110000" or

 ENCODER_LEFT_IN = "00110001" or

 ENCODER_LEFT_IN = "01110001" or

 ENCODER_LEFT_IN = "01110000" or

 ENCODER_LEFT_IN = "01110100" or

 ENCODER_LEFT_IN = "01111100") then

 MOTOR_L_TURN_CCW_EN <= '0';

 MOTOR_L_TURN_CW_EN <= '0';

 SPEED_L_EN <= '1';

 FORWARD_EN_2 <= '1';

 elsif (ENCODER_LEFT_IN = "10010000" or

 ENCODER_LEFT_IN = "10010010" or

 ENCODER_LEFT_IN = "10011010") then

 MOTOR_L_TURN_CCW_EN <= '0';

 MOTOR_L_TURN_CW_EN <= '1';

 SPEED_L_EN <= '1';

 FORWARD_EN_2 <= '1';

 else

 MOTOR_L_TURN_CCW_EN <= '1';

 MOTOR_L_TURN_CW_EN <= '0';

 SPEED_L_EN <= '0';

 FORWARD_EN_2 <= '0';

 end if;

 FORWARD_EN <= (FORWARD_EN_1 AND

 FORWARD_EN_2);

 elsif (F_RIGHT = '0' and F_LEFT = '0' and R_RIGHT =

 '1' and R_LEFT = '1') then --REVERSE

 if (ENCODER_RIGHT_IN = "10010001" or

 ENCODER_RIGHT_IN = "11010001" or

 ENCODER_RIGHT_IN = "11000001" or

 ENCODER_RIGHT_IN = "11000101" or

 ENCODER_RIGHT_IN = "11000111" or

 ENCODER_RIGHT_IN = "11001111" or

 ENCODER_RIGHT_IN = "11101111" or

 ENCODER_RIGHT_IN = "10101111") then

 MOTOR_R_TURN_CCW_EN <= '0';

121

 MOTOR_R_TURN_CW_EN <= '0';

 SPEED_R_EN <= '1';

 elsif (ENCODER_RIGHT_IN = "10000001" or

 ENCODER_RIGHT_IN = "00000001" or

 ENCODER_RIGHT_IN = "00100001") then

 MOTOR_R_TURN_CCW_EN <= '0';

 MOTOR_R_TURN_CW_EN <= '1';

 SPEED_R_EN <= '1';

 else

 MOTOR_R_TURN_CCW_EN <= '1';

 MOTOR_R_TURN_CW_EN <= '0';

 SPEED_R_EN <= '0';

 end if;

 if (ENCODER_LEFT_IN = "00010011" or

 ENCODER_LEFT_IN = "00010111" or

 ENCODER_LEFT_IN = "00000111" or

 ENCODER_LEFT_IN = "01000111" or

 ENCODER_LEFT_IN = "11000111" or

 ENCODER_LEFT_IN = "11100111" or

 ENCODER_LEFT_IN = "11101111" or

 ENCODER_LEFT_IN = "11101011") then

 MOTOR_L_TURN_CCW_EN <= '0';

 MOTOR_L_TURN_CW_EN <= '0';

 SPEED_L_EN <= '1';

 elsif (ENCODER_LEFT_IN = "00001001" or

 ENCODER_LEFT_IN = "00000001" or

 ENCODER_LEFT_IN = "00000011") then

 MOTOR_L_TURN_CCW_EN <= '0';

 MOTOR_L_TURN_CW_EN <= '1';

 SPEED_L_EN <= '1';

 else

 MOTOR_L_TURN_CCW_EN <= '1';

 MOTOR_L_TURN_CW_EN <= '0';

 SPEED_L_EN <= '0';

 end if;

 elsif (F_RIGHT = '0' and F_LEFT = '1' and R_RIGHT =

 '1' and R_LEFT = '0') then --ZERO_RADIUS_RIGHT

 if (ENCODER_RIGHT_IN = "11010111" or

 ENCODER_RIGHT_IN = "11010011" or

 ENCODER_RIGHT_IN = "11000011" or

 ENCODER_RIGHT_IN = "11001011" or

 ENCODER_RIGHT_IN = "11001010" or

 ENCODER_RIGHT_IN = "01001010" or

 ENCODER_RIGHT_IN = "01001000") then

 MOTOR_R_TURN_CCW_EN <= '0';

 MOTOR_R_TURN_CW_EN <= '0';

 SPEED_R_EN <= '1';

 ZERO_TURN_RIGHT_EN_1 <= '1';

 ZERO_TURN_LEFT_EN_1 <= '0';

 elsif (ENCODER_RIGHT_IN = "11110111" or

 ENCODER_RIGHT_IN = "11100111" or

 ENCODER_RIGHT_IN = "11100011") then

 MOTOR_R_TURN_CCW_EN <= '0';

122

 MOTOR_R_TURN_CW_EN <= '1';

 SPEED_R_EN <= '1';

 ZERO_TURN_RIGHT_EN_1 <= '1';

 ZERO_TURN_LEFT_EN_1 <= '0';

 else

 MOTOR_R_TURN_CCW_EN <= '1';

 MOTOR_R_TURN_CW_EN <= '0';

 SPEED_R_EN <= '0';

 ZERO_TURN_RIGHT_EN_1 <= '0';

 ZERO_TURN_LEFT_EN_1 <= '0';

 end if;

 if (ENCODER_LEFT_IN = "01001111" or

 ENCODER_LEFT_IN = "01001101" or

 ENCODER_LEFT_IN = "01001001" or

 ENCODER_LEFT_IN = "01001000" or

 ENCODER_LEFT_IN = "00001000" or

 ENCODER_LEFT_IN = "00011000" or

 ENCODER_LEFT_IN = "10011000") then

 MOTOR_L_TURN_CCW_EN <= '0';

 MOTOR_L_TURN_CW_EN <= '0';

 SPEED_L_EN <= '1';

 ZERO_TURN_RIGHT_EN_2 <= '1';

 ZERO_TURN_LEFT_EN_2 <= '0';

 elsif (ENCODER_LEFT_IN = "10101111" or

 ENCODER_LEFT_IN = "00101111" or

 ENCODER_LEFT_IN = "00001111") then

 MOTOR_L_TURN_CCW_EN <= '0';

 MOTOR_L_TURN_CW_EN <= '1';

 SPEED_L_EN <= '1';

 ZERO_TURN_RIGHT_EN_2 <= '1';

 ZERO_TURN_LEFT_EN_2 <= '0';

 else

 MOTOR_L_TURN_CCW_EN <= '1';

 MOTOR_L_TURN_CW_EN <= '0';

 SPEED_L_EN <= '0';

 ZERO_TURN_RIGHT_EN_2 <= '0';

 ZERO_TURN_LEFT_EN_2 <= '0';

 end if;

 elsif (F_RIGHT = '1' and F_LEFT = '0' and R_RIGHT =

 '0' and R_LEFT = '1') then --ZERO_RADIUS_LEFT

 if (ENCODER_RIGHT_IN = "00111100" or

 ENCODER_RIGHT_IN = "10111100" or

 ENCODER_RIGHT_IN = "10101100" or

 ENCODER_RIGHT_IN = "10100100" or

 ENCODER_RIGHT_IN = "10100100" or

 ENCODER_RIGHT_IN = "10000100" or

 ENCODER_RIGHT_IN = "00000100" or

 ENCODER_RIGHT_IN = "00000110" or

 ENCODER_RIGHT_IN = "01000110") then

 MOTOR_R_TURN_CCW_EN <= '0';

 MOTOR_R_TURN_CW_EN <= '0';

 SPEED_R_EN <= '1';

 ZERO_TURN_LEFT_EN_1 <= '1';

123

 ZERO_TURN_RIGHT_EN_1 <= '0';

 elsif (ENCODER_RIGHT_IN = "00111101" or

 ENCODER_RIGHT_IN = "01111101" or

 ENCODER_RIGHT_IN = "01111111") then

 MOTOR_R_TURN_CCW_EN <= '0';

 MOTOR_R_TURN_CW_EN <= '1';

 SPEED_R_EN <= '1';

 ZERO_TURN_LEFT_EN_1 <= '1';

 ZERO_TURN_RIGHT_EN_1 <= '0';

 else

 MOTOR_R_TURN_CCW_EN <= '1';

 MOTOR_R_TURN_CW_EN <= '0';

 SPEED_R_EN <= '0';

 ZERO_TURN_LEFT_EN_1 <= '0';

 ZERO_TURN_RIGHT_EN_1 <= '0';

 end if;

 if (ENCODER_LEFT_IN = "11110001" or

 ENCODER_LEFT_IN = "11111001" or

 ENCODER_LEFT_IN = "11111011" or

 ENCODER_LEFT_IN = "11111010" or

 ENCODER_LEFT_IN = "11110010" or

 ENCODER_LEFT_IN = "11110000" or

 ENCODER_LEFT_IN = "11110000" or

 ENCODER_LEFT_IN = "11110100") then

 MOTOR_L_TURN_CCW_EN <= '0';

 MOTOR_L_TURN_CW_EN <= '0';

 SPEED_L_EN <= '1';

 ZERO_TURN_LEFT_EN_2 <= '1';

 ZERO_TURN_RIGHT_EN_2 <= '0';

 elsif (ENCODER_LEFT_IN = "11010001" or

 ENCODER_LEFT_IN = "11000001" or

 ENCODER_LEFT_IN = "11000101") then

 MOTOR_L_TURN_CCW_EN <= '0';

 MOTOR_L_TURN_CW_EN <= '1';

 SPEED_L_EN <= '1';

 ZERO_TURN_LEFT_EN_2 <= '1';

 ZERO_TURN_RIGHT_EN_2 <= '0';

 else

 MOTOR_L_TURN_CCW_EN <= '1';

 MOTOR_L_TURN_CW_EN <= '0';

 SPEED_L_EN <= '0';

 ZERO_TURN_LEFT_EN_2 <= '0';

 ZERO_TURN_RIGHT_EN_2 <= '0';

 end if;

 else

 MOTOR_R_TURN_CCW_EN <= '0';

 MOTOR_R_TURN_CW_EN <= '0';

 SPEED_R_EN <= '0';

 MOTOR_L_TURN_CCW_EN <= '0';

 MOTOR_L_TURN_CW_EN <= '0';

 SPEED_L_EN <= '0';

 end if;

 end if;

124

 end process;

 ZERO_TURN_RIGHT_EN <= (ZERO_TURN_RIGHT_EN_1 AND

 ZERO_TURN_RIGHT_EN_2);

 ZERO_TURN_LEFT_EN <= (ZERO_TURN_LEFT_EN_1 AND

 ZERO_TURN_LEFT_EN_2);

 process (MOTOR_R_TURN_CCW_EN, MOTOR_R_TURN_CW_EN)

 begin

 if (MOTOR_R_TURN_CW_EN = '1' and

 MOTOR_R_TURN_CCW_EN = '0') then

 CW_R_M <= '1';

 CCW_R_M <= '0';

 elsif (MOTOR_R_TURN_CW_EN = '0' and

 MOTOR_R_TURN_CCW_EN = '1') then

 CW_R_M <= '0';

 CCW_R_M <= '1';

 else

 CW_R_M <= '0';

 CCW_R_M <= '0';

 end if;

 end process;

 process (MOTOR_L_TURN_CCW_EN, MOTOR_L_TURN_CW_EN)

 begin

 if (MOTOR_L_TURN_CW_EN = '1' and

 MOTOR_L_TURN_CCW_EN = '0') then

 CW_L_M <= '1';

 CCW_L_M <= '0';

 elsif (MOTOR_L_TURN_CW_EN = '0' and

 MOTOR_L_TURN_CCW_EN = '1') then

 CW_L_M <= '0';

 CCW_L_M <= '1';

 else

 CW_L_M <= '0';

 CCW_L_M <= '0';

 end if;

 end process;

 process (SPEED_R_EN, SPEED_L_EN)

 begin

 if (SPEED_R_EN = '1' and SPEED_L_EN = '1') then

 SPEED_RIGHT_OUT <= SPEED_RIGHT_IN;

 SPEED_LEFT_OUT <= SPEED_LEFT_IN;

 else

125

 SPEED_RIGHT_OUT <= "00000000";

 SPEED_LEFT_OUT <= "00000000";

 end if;

 end process;

end control;

--signals selection block for autonomous or remote control operations

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

USE ieee.std_logic_arith.all;

entity AUTO_REMOTE_SELECT is

 port(clk : in std_logic;

 remote_enable : in std_logic;

 forward_right_motor_remote :in std_logic;--inputs from remote

 reverse_right_motor_remote : in std_logic;

 brake_right_motor_remote : in std_logic;

 speed_data_right_motor_remote : in std_logic_vector (7 downto

 0);

 brake_data_right_motor_remote : in std_logic_vector (7 downto

 0);

 forward_left_motor_remote : in std_logic;

 reverse_left_motor_remote : in std_logic;

 brake_left_motor_remote : in std_logic;

 speed_data_left_motor_remote : in std_logic_vector (7 downto

 0);

 brake_data_left_motor_remote : in std_logic_vector (7 downto

 0);

 auto_enable : in std_logic;

 forward_right_motor_auto : in std_logic; --inputs from

 autonomous module

 reverse_right_motor_auto : in std_logic;

 brake_right_motor_auto : in std_logic;

 speed_data_right_motor_auto : in std_logic_vector (7 downto

 0);

 brake_data_right_motor_auto : in std_logic_vector (7 downto

 0);

 forward_left_motor_auto : in std_logic;

 reverse_left_motor_auto : in std_logic;

 brake_left_motor_auto : in std_logic;

 speed_data_left_motor_auto : in std_logic_vector (7 downto 0);

 brake_data_left_motor_auto : in std_logic_vector (7 downto 0);

 forward_right_motor : out std_logic;

 reverse_right_motor : out std_logic;

 brake_right_motor : out std_logic;

 speed_data_right_motor : out std_logic_vector (7 downto 0);

 brake_data_right_motor : out std_logic_vector (7 downto 0);

 forward_left_motor : out std_logic;

 reverse_left_motor : out std_logic;

 brake_left_motor : out std_logic;

 speed_data_left_motor : out std_logic_vector (7 downto 0);

126

 brake_data_left_motor : out std_logic_vector (7 downto 0));

END AUTO_REMOTE_SELECT;

architecture switch of AUTO_REMOTE_SELECT is

 signal forward_right_motor_temp : std_logic;

 --store data before assign to output, act as buffer

 signal reverse_right_motor_temp : std_logic;

 signal brake_right_motor_temp : std_logic;

 signal speed_data_right_motor_temp : std_logic_vector (7 downto 0);

 signal brake_data_right_motor_temp : std_logic_vector (7 downto 0);

 signal forward_left_motor_temp : std_logic;

 signal reverse_left_motor_temp : std_logic;

 signal brake_left_motor_temp : std_logic;

 signal speed_data_left_motor_temp : std_logic_vector (7 downto 0);

 signal brake_data_left_motor_temp : std_logic_vector (7 downto 0);

begin

 process (clk)

 begin

 if (clk'event and clk = '1') then

 if (remote_enable = '1') then

 --remote control ON ***TOP PRIORITY***,

 forward_right_motor_temp <=

 forward_right_motor_remote;

 reverse_right_motor_temp <=

 reverse_right_motor_remote;

 brake_right_motor_temp <=

 brake_right_motor_remote;

 speed_data_right_motor_temp <=

 speed_data_right_motor_remote;

 brake_data_right_motor_temp <=

 brake_data_right_motor_remote;

 forward_left_motor_temp <=

 forward_left_motor_remote;

 reverse_left_motor_temp <=

 reverse_left_motor_remote;

 brake_left_motor_temp <=

 brake_left_motor_remote;

 speed_data_left_motor_temp <=

 speed_data_left_motor_remote;

 brake_data_left_motor_temp <=

 brake_data_left_motor_remote;

 elsif (remote_enable = '0') then

 --autonomous mode ON (this mode is active

 when user doesn't intervene the autonomous

 operation through remote control)

 forward_right_motor_temp <=

 forward_right_motor_auto;

 reverse_right_motor_temp <=

 reverse_right_motor_auto;

 brake_right_motor_temp <=

127

 brake_right_motor_auto;

 speed_data_right_motor_temp <=

 speed_data_right_motor_auto;

 brake_data_right_motor_temp <=

 brake_data_right_motor_auto;

 forward_left_motor_temp <=

 forward_left_motor_auto;

 reverse_left_motor_temp <=

 reverse_left_motor_auto;

 brake_left_motor_temp <=

 brake_left_motor_auto;

 speed_data_left_motor_temp <=

 speed_data_left_motor_auto;

 brake_data_left_motor_temp <=

 brake_data_left_motor_auto;

 else

 forward_right_motor_temp <= '0';

 reverse_right_motor_temp <= '0';

 brake_right_motor_temp <= '1';

 speed_data_right_motor_temp <= "00000000";

 brake_data_right_motor_temp <= "00000000";

 forward_left_motor_temp <= '0';

 reverse_left_motor_temp <= '0';

 brake_left_motor_temp <= '1';

 speed_data_left_motor_temp <= "00000000";

 brake_data_left_motor_temp <= "00000000";

 end if;

 end if;

 end process;

 forward_right_motor <= forward_right_motor_temp;

 reverse_right_motor <= reverse_right_motor_temp;

 brake_right_motor <= brake_right_motor_temp;

 speed_data_right_motor <= speed_data_right_motor_temp;

 brake_data_right_motor <= brake_data_right_motor_temp;

 forward_left_motor <= forward_left_motor_temp;

 reverse_left_motor <= reverse_left_motor_temp;

 brake_left_motor <= brake_left_motor_temp;

 speed_data_left_motor <= speed_data_left_motor_temp;

 brake_data_left_motor <= brake_data_left_motor_temp;

end switch;

--front wheel motor controller Finite State Machine (FSM)

Library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity motor_control_FSM is

port (CLOCK, RESET : in STD_LOGIC;

 FORWARD, REVERSE, BRAKE : in STD_LOGIC;

 SS_DETECT : in STD_LOGIC_VECTOR(5 DOWNTO 0);

128

 SPEED_DATA_IN, BRAKE_DATA_IN : in STD_LOGIC_VECTOR(7

 DOWNTO 0);

 RPM : in STD_LOGIC_VECTOR(11 DOWNTO 0);

 --to make sure that rpm=0 then only can change direction

 STATE : out STD_LOGIC_VECTOR(2 DOWNTO 0);

 SPEED_DATA_OUT, BRAKE_DATA_OUT : out

 STD_LOGIC_VECTOR(7 DOWNTO 0));

end motor_control_FSM;

architecture BEHV of motor_control_FSM is

 type STATE_TYPE is (F, R, B, CA, CB);

 --F=FORWARD, R=REVERSE, B=BRAKE

 signal CS, NS: STATE_TYPE;

 signal FRB: STD_LOGIC_VECTOR(2 DOWNTO 0);

 signal SPEED: STD_LOGIC_VECTOR(7 DOWNTO 0);

 signal STOP: STD_LOGIC_VECTOR(7 DOWNTO 0);

 signal RPM_TEMP: STD_LOGIC_VECTOR(11 DOWNTO 0);

 signal SS_DETECT_TEMP : STD_LOGIC_VECTOR(5 DOWNTO 0);

begin

 FRB(2) <= FORWARD;

 FRB(1) <= REVERSE;

 FRB(0) <= BRAKE;

 SPEED <= SPEED_DATA_IN;

 STOP <= BRAKE_DATA_IN;

 SYNC_PROC: process (CLOCK, RESET)

 begin

 if (RESET='1') then

 CS <= B;

 elsif (CLOCK'event and CLOCK = '1') then

 CS <= NS;

 RPM_TEMP <= RPM;

 SS_DETECT_TEMP <= SS_DETECT;

 end if;

 end process; --End REG_PROC

 COMB_PROC: process (CS, FRB)

 begin

 case CS is

 --CS=current, NS=next, F=forward, B=brake, R=reverse, CA=clear DAC

 channel A, CB=clear DAC channel B

 when B =>

 if (RPM_TEMP = "000000000000") then --check on the rpm so that

 motor only change direction when rpm=0

 if (SS_DETECT_TEMP = "000111") then

 if (FRB = "100") then

 NS <= CB;

 elsif (FRB = "010") then

 NS <= CB;

129

 else

 NS <= B;

 end if;

 end if;

 else

 NS <= B;

 end if;

 when CB =>

 if (SS_DETECT_TEMP = "000111") then

 if (FRB = "100") then

 NS <= F;

 elsif (FRB = "010") then

 NS <= R;

 else

 NS <= B;

 end if;

 else

 NS <= CB;

 --if SS_DETECT_TEMP is not "000111", the CB will

 continue to be in CB

 end if;

 when CA =>

 if (SS_DETECT_TEMP = "000111") then

 if (FRB = "100" or FRB = "010" or FRB = "001") then

 NS <= B;

 end if;

 else

 NS <= CA;

 end if;

 when F =>

 if (SS_DETECT_TEMP = "000111") then

 if (FRB = "100") then

 NS <= F;

 else

 NS <= CA;

 end if;

 else

 NS <= F;

 end if;

when R =>

 if (SS_DETECT_TEMP = "000111") then

 if (FRB = "010") then

 NS <= R;

 else

 NS <= CA;

 end if;

 else

 NS <= R;

 end if;

 end case;

130

end process; -- End COMB_PROC

STATE_PROC: process (CS)

 begin

 case CS is

 when B =>

 STATE <= "000"; --"000" output will indicate

 BRAKE in the next module

 SPEED_DATA_OUT <= SPEED;

 BRAKE_DATA_OUT <= STOP;

 when F =>

 STATE <= "010";--"010" output will indicate

 FORWARD in the next module

 SPEED_DATA_OUT <= SPEED;

 BRAKE_DATA_OUT <= STOP;

 when R =>

 STATE <= "011";--"011" output will indicate

 REVERSE in the next module

 SPEED_DATA_OUT <= SPEED;

 BRAKE_DATA_OUT <= STOP;

 when CA =>

 STATE <= "100";--"100" output will indicate

 CLEAR DAC CHANNEL A in the next module

 SPEED_DATA_OUT <= SPEED;

 BRAKE_DATA_OUT <= STOP;

 when CB =>

 STATE <= "001";--"100" output will indicate

 CLEAR DAC CHANNEL B in the next module

 SPEED_DATA_OUT <= SPEED;

 BRAKE_DATA_OUT <= STOP;

 end case;

 end process;

end BEHV;

--motor controller data arrangement for SPI communication

Library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity motor_controller_left is

port (CLOCK, SS : in STD_LOGIC;

 STATE : in STD_LOGIC_VECTOR(2 DOWNTO 0);

 SPEED_DATA_IN, BRAKE_DATA_IN : in STD_LOGIC_VECTOR(7

 DOWNTO 0);

 SS_DETECT : out STD_LOGIC_VECTOR(5 DOWNTO 0); --output for

 motor FSM

 THROTTLE : out STD_LOGIC;

 REVERSE : out STD_LOGIC;

131

 BRAKE : out STD_LOGIC;

 SPI_DATA : out STD_LOGIC_VECTOR(15 DOWNTO 0);

 START_TX : out STD_LOGIC);

end motor_controller_left;

architecture BEHV of motor_controller_left is

 signal SS_DETECT_TEMP : STD_LOGIC_VECTOR(5 DOWNTO 0);

 --to detect the SS value for Start_Tx generation

 signal START_TX_DETECT : STD_LOGIC_VECTOR(1 DOWNTO 0);

 signal SPEED: STD_LOGIC_VECTOR(7 DOWNTO 0);

 --to act as buffer for the input data

 signal STOP: STD_LOGIC_VECTOR(7 DOWNTO 0);

 signal SPI_DATA_TEMP : STD_LOGIC_VECTOR(15 DOWNTO 0); --to

 set the SPI_DATA

begin

 SPEED <= SPEED_DATA_IN; --assign speed data to a buffer

 STOP <= BRAKE_DATA_IN;

 StartTx_PROC: process (CLOCK)

 begin

 if (CLOCK'event and CLOCK = '1') then

 SS_DETECT_TEMP(5)<=SS_DETECT_TEMP(4);

 SS_DETECT_TEMP(4)<=SS_DETECT_TEMP(3);

 SS_DETECT_TEMP(3)<=SS_DETECT_TEMP(2);

 SS_DETECT_TEMP(2)<=SS_DETECT_TEMP(1);

 SS_DETECT_TEMP(1)<=SS_DETECT_TEMP(0);

 SS_DETECT_TEMP(0)<=SS;

 if (SS_DETECT_TEMP = "111110" or SS_DETECT_TEMP =

 "111111") then --to detect the SS input, 111111 is when SS HIGH,

 111110 is when SS from HIGH to LOW, Start_Tx is HIGH when

 111111 and LOW when 111110

 START_TX_DETECT(0) <= '1';

 else

 START_TX_DETECT(0) <= '0';

 end if;

 START_TX <= START_TX_DETECT(0);

 START_TX_DETECT(1) <= START_TX_DETECT(0);

 SS_DETECT <= SS_DETECT_TEMP;

 --assign SS_DETECT_TEMP to SS_DETECT for the FSM

 end if;

 end process; --End StartTx_PROC

 CONTROL_PROC: process (STATE)

 begin

 if (CLOCK'event and CLOCK = '1') then

 if STATE = "001" then

132

 --STATE = "001" is clear DAC(B)

 THROTTLE <= '1';

 REVERSE <= '1';

 BRAKE <= '0';

 SPI_DATA_TEMP(15) <= '1';

 --write to DAC(B), channel B

 SPI_DATA_TEMP(13) <= '0';

 --output set to 4.096V

 SPI_DATA_TEMP(12) <= '1';

 --active mode operation

 SPI_DATA_TEMP(11 downto 4) <= "00000000";

 elsif STATE = "010" then

 --STATE = "010" is FORWARD

 THROTTLE <= '0';

 REVERSE <= '1';

 BRAKE <= '1';

 SPI_DATA_TEMP(15) <= '0';

 --write to DAC(A), channel A

 SPI_DATA_TEMP(13) <= '0';

 --output set to 4.096V

 SPI_DATA_TEMP(12) <= '1';

 --active mode operation

 SPI_DATA_TEMP(11 downto 4) <= SPEED;

 --write forware speed to SPI

 elsif STATE = "011" then

 --STATE = "011" is REVERSE

 THROTTLE <= '1';

 REVERSE <= '0';

 BRAKE <= '1';

 SPI_DATA_TEMP(15) <= '0';

 --write to DAC(A), channel A

 SPI_DATA_TEMP(13) <= '0';

 --output set to 4.096V

 SPI_DATA_TEMP(12) <= '1';

 --active mode operation

 SPI_DATA_TEMP(11 downto 4) <= SPEED;

 --write reverse speed to SPI

 elsif STATE = "100" then

 --STATE = "100" is clear DAC(A)

 THROTTLE <= '1';

 REVERSE <= '0';

 BRAKE <= '1';

 SPI_DATA_TEMP(15) <= '0';

 --write to DAC(A), channel A

 SPI_DATA_TEMP(13) <= '0';

 --output set to 4.096V

 SPI_DATA_TEMP(12) <= '1';

 --active mode operation

 SPI_DATA_TEMP(11 downto 4) <= "00000000";

 else

 THROTTLE <= '1';

 --OTHERS STATE IS BRAKE

 REVERSE <= '1';

 BRAKE <= '0';

 SPI_DATA_TEMP(15) <= '1';

133

 --write to DAC(A), channel B

 SPI_DATA_TEMP(13) <= '0';

 --output set to 4.096V

 SPI_DATA_TEMP(12) <= '1';

 --active mode operation

 SPI_DATA_TEMP(11 downto 4) <= STOP;

 --write stop data to SPI

 end if;

 end if;

 end process; --End CONTROL_PROC

 SPI_PROC: process (START_TX_DETECT)

 begin

 if START_TX_DETECT = "01" then

 SPI_DATA <= SPI_DATA_TEMP;

 else

 SPI_DATA_TEMP <= SPI_DATA_TEMP;

 end if;

 end process; --End SPI_PROC

end BEHV;

--SPI communication

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity simpleSPI_M is

 port (

 reset : in std_logic;

 clk : in std_logic;

 SCLK : inout std_logic;

 SS : out std_logic;

 MOSI : out std_logic;

 --output from MSB to LSB to suit the DAC requirements

 MISO : in std_logic;

 DataToTx : in std_logic_vector(15 downto 0);

 DataRxd : out std_logic_vector(15 downto 0);

 StartTx : in std_logic);

 --it has to be high to start transmitting, low after finish

end simpleSPI_M;

architecture a of simpleSPI_M is

 type state_type is (idle, loadData, delay1, txBit, CheckFinished);

 signal state : state_type;

begin

 process(clk, reset, StartTx)

134

 variable index : integer := 0;

 variable dataLen : integer := 15; -- this must be set for the length of

 -- the data word to be txd

 variable MOSI_v : std_logic;

 begin

 if reset = '1' then

 DataRxd <= (others => '0');

 SCLK <= '0';

 SS <= '1';

 MOSI_v := 'Z';

 dataLen := 15;

 index := 0;

 else

 if(clk'event and clk = '1') then

 case state is

 when idle =>

 SCLK <= '0';

 SS <= '1'; -- stop SPI

 MOSI_v :='Z';

 if(StartTx = '1') then

 state <= loadData;

 else

 state <= idle;

 dataLen := 15;

 end if;

 when loadData =>

 SS <= '0'; -- start SPI

 SCLK <= '0';

 MOSI_v := DataToTx(dataLen);

 --set up data to slave

 state <= delay1;

 when delay1 =>

 state <= txBit;

 when txBit =>

 SCLK <= '1';

 DataRxd(dataLen) <= MISO;

 state <= CheckFinished;

 when checkFinished =>

 if(dataLen = index) then

 state <= idle;

 else

 state <= loadData;

 dataLen := dataLen - 1;

 end if;

 when others => null;

 end case;

 end if;

 end if;

135

 MOSI <= MOSI_v; --most significant bit MSB will be ouput first

 end process;

end a;

--motor RPM counter

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

USE ieee.std_logic_arith.all;

entity rotary_encoder_right is

 port(rotary_in : in std_logic;

 clk : in std_logic;

 reset : in std_logic;

 rpm_count : out std_logic_vector (11 downto 0)); --count in

 revolution per minute (8 input pulses is one revolution)

end rotary_encoder_right;

architecture rotary_count of rotary_encoder_right is

 signal pulse_count : std_logic_vector (3 downto 0); --pulse_count will

 count the number of input pulse

 signal revolution_count : std_logic_vector (7 downto 0); --revolution_count

 will count the number of revolution, 8 pulses is equal to one revolution

 signal rpm_count_temp : std_logic_vector (14 downto 0);

 signal clk_count : std_logic_vector (16 downto 0); --it counts the clk

 (27Mhz/256) to get 1s (1 second)

begin

process(reset,clk)

 variable detect : std_ulogic_vector (1 downto 0);

 begin

 if reset ='1' then

 detect := "00";

 pulse_count <= "0000";

 revolution_count <= "00000000";

 clk_count <= "00000000000000000"; --for 1s

 elsif rising_edge(clk) then

 detect(1) := detect(0); -- record last value of rotary_in in

 detect(1)

 detect(0) := rotary_in ; --record current rotary_in in detect(0)

 clk_count <= clk_count + '1';

 if (clk_count < "11001110000010010") then -- clk count for 1s,

 so encoder will have ouput every 1s

 if detect = "01" then -- rising_edge

 pulse_count <= pulse_count + '1';

 elsif detect = "10" then --falling_edge

 pulse_count <= pulse_count;

136

 if pulse_count = "1000" then

 --if pulses count = 8, revolution count add 1

 revolution_count <= revolution_count + '1';

 pulse_count <= "0000";

 else

 revolution_count <= revolution_count;

 end if;

 end if;

 elsif (clk_count = "11001110000010010") then

 rpm_count_temp <= revolution_count * "0111100"; --

 revolution_count in 1s x 60 = revolution per minute (111100

 = 60)

 revolution_count <= "00000000";

 clk_count <= "00000000000000000"; --for 1s

 end if;

 end if;

 rpm_count <= rpm_count_temp (11 downto 0);

end process;

end rotary_count;

--Ultrasonic sensors modules distance normalization

LIBRARY ieee;

USE ieee.std_logic_1164.all;

entity distance_FP_normalize is

 port(FP: in std_logic_vector (31 downto 0);

 normalize_integer: out std_logic_vector (3 downto 0);

 normalize_fraction: out std_logic_vector (4 downto 0));

end distance_FP_normalize;

architecture normalize of distance_FP_normalize is

 signal mantissa: std_logic_vector (22 downto 0);

begin

 process (FP)

 begin

 mantissa <= '1' & FP (22 downto 1); -- normalize the mantissa by

 adding '1' before mantissa

 if (FP (30 downto 23) > "10000001") then-- exponent > 129

 normalize_integer <= "0110"; -- display 6.5 for any

 value larger than 6.5 since maximum Max Sonar

 range is 6.5 meter

 normalize_fraction <= "01111";

 elsif (FP (30 downto 23) = "10000001") then --exponent =

 129

 normalize_integer <= '0' & mantissa (22 downto 20);

 normalize_fraction <= mantissa (19 downto 15);

 elsif (FP (30 downto 23) = "10000000") then -- exponent =

137

 128

 normalize_integer <= "00" & mantissa (22 downto

 21);

 normalize_fraction <= mantissa (20 downto 16);

 elsif (FP (30 downto 23) = "01111111") then -- exponent =

 127

 normalize_integer <= "000" & mantissa (22);

 normalize_fraction <= mantissa (21 downto 17);

 elsif (FP (30 downto 23) = "01111110") then -- exponent =

 126

 normalize_integer <= "0000";

 normalize_fraction <= mantissa (22 downto 18);

 elsif (FP (30 downto 23) = "01111101") then -- exponent =

 125

 normalize_integer <= "0000";

 normalize_fraction <= '0' & mantissa (22 downto

 19);

 elsif (FP (30 downto 23) = "01111100") then -- exponent

 = 124

 normalize_integer <= "0000";

 normalize_fraction <= "00" & mantissa (22 downto

 20);

 elsif (FP (30 downto 23) = "01111011") then -- exponent =

 123

 normalize_integer <= "0000";

 normalize_fraction <= "000" & mantissa (22 downto

 21);

 elsif (FP (30 downto 23) = "01111010") then -- exponent =

 122

 normalize_integer <= "0000";

 normalize_fraction <= "0000" & mantissa (22);

 else

 normalize_integer <= "1000"; --display 8 for

 exponent < 122

 normalize_fraction <= "11010"; --display 8 for

 exponent < 122

 end if;

 end process;

end normalize;

--autonomous navigation module

Library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity autonomous_navigation is

port (CLOCK,Start : in STD_LOGIC;

 sonar_right_data_Ready : in STD_LOGIC;

 sonar_left_data_Ready : in STD_LOGIC;

 sonar_center_data_Ready : in STD_LOGIC;

 zero_radius_right_ready : in STD_LOGIC;

 forward_ready : in STD_LOGIC;

138

 zero_turn_right_ready : in STD_LOGIC;

 zero_turn_left_ready : in STD_LOGIC;

 sonar_integer_right : in STD_LOGIC_VECTOR(3 DOWNTO 0);

 sonar_integer_left : in STD_LOGIC_VECTOR(3 DOWNTO 0);

 sonar_integer_center : in STD_LOGIC_VECTOR(3 DOWNTO 0);

 pulse_count_left : in STD_LOGIC_VECTOR(3 DOWNTO 0);

 GPS_in : in STD_LOGIC_VECTOR(7 DOWNTO 0);

 vision_in : in STD_LOGIC_VECTOR(7 DOWNTO 0);

 obstacle_out : out std_logic;

 turn_right_done_out : out std_logic;

 reset_pulse_count_left : out std_logic;

 sonar_right_Request : out std_logic;

 sonar_left_Request : out std_logic;

 sonar_center_Request : out std_logic;

 F_RIGHT, R_RIGHT, B_RIGHT : out std_logic;

 SPEED_RIGHT_OUT, BRAKE_RIGHT_OUT : out std_logic_vector(7

 downto 0);

 F_LEFT, R_LEFT, B_LEFT : out std_logic;

 SPEED_LEFT_OUT, BRAKE_LEFT_OUT : out std_logic_vector(7 downto

 0));

end autonomous_navigation;

architecture navigation of autonomous_navigation is

 signal SPEED_RIGHT_OUT_temp, BRAKE_RIGHT_OUT_temp,

 SPEED_LEFT_OUT_temp, BRAKE_LEFT_OUT_temp :

 STD_LOGIC_VECTOR(7 DOWNTO 0);

begin

 --high level navigation, GPS, IMU and Vision data can be integrated here

 process (sonar_center_data_Ready)

 begin

 if (sonar_center_data_Ready = '1') then

 if (sonar_integer_center > 0010) then

 F_RIGHT <= '1';

 R_RIGHT <= '0';

 B_RIGHT <= '0';

 SPEED_RIGHT_OUT_temp <= "01000000";

 BRAKE_RIGHT_OUT_temp <= "00000000";

 F_LEFT <= '1';

 R_LEFT <= '0';

 B_LEFT <= '0';

 SPEED_LEFT_OUT_temp <= "01000000";

 BRAKE_LEFT_OUT_temp <= "00000000";

 elsif (sonar_integer_center > 0010) then

 F_RIGHT <= '0';

 R_RIGHT <= '0';

 B_RIGHT <= '1';

 SPEED_RIGHT_OUT_temp <= "00000000";

 BRAKE_RIGHT_OUT_temp <= "01000000";

 F_LEFT <= '0';

 R_LEFT <= '0';

 B_LEFT <= '1';

139

 SPEED_LEFT_OUT_temp <= "00000000";

 BRAKE_LEFT_OUT_temp <= "01000000";

 else

 F_RIGHT <= '0';

 R_RIGHT <= '0';

 B_RIGHT <= '1';

 SPEED_RIGHT_OUT_temp <= "00000000";

 BRAKE_RIGHT_OUT_temp <= "01000000";

 F_LEFT <= '0';

 R_LEFT <= '0';

 B_LEFT <= '1';

 SPEED_LEFT_OUT_temp <= "00000000";

 BRAKE_LEFT_OUT_temp <= "01000000";

 end if;

 else

 F_RIGHT <= '0';

 R_RIGHT <= '0';

 B_RIGHT <= '1';

 SPEED_RIGHT_OUT_temp <= "00000000";

 BRAKE_RIGHT_OUT_temp <= "01000000";

 F_LEFT <= '0';

 R_LEFT <= '0';

 B_LEFT <= '1';

 SPEED_LEFT_OUT_temp <= "00000000";

 BRAKE_LEFT_OUT_temp <= "01000000";

 end if;

 end process;

 SPEED_RIGHT_OUT <= SPEED_RIGHT_OUT_temp;

 BRAKE_RIGHT_OUT <= BRAKE_RIGHT_OUT_temp;

 SPEED_LEFT_OUT <= SPEED_LEFT_OUT_temp;

 BRAKE_LEFT_OUT <= BRAKE_LEFT_OUT_temp;

end navigation;

--GPS receiver module UART

// RS-232 RX module

module GPS_Module(clk, RxD, RxD_data_ready, RxD_data, RxD_endofpacket,

RxD_idle);

input clk, RxD;

output RxD_data_ready; // onc clock pulse when RxD_data is valid

output [7:0] RxD_data;

parameter ClkFrequency = 27000000; // 27MHz

parameter Baud =4800;

output RxD_endofpacket; // one clock pulse, when no more data is received

(RxD_idle is going high)

output RxD_idle; // no data is being received

// Baud generator (we use 8 times oversampling)

140

parameter Baud8 = Baud*8;

parameter Baud8GeneratorAccWidth = 8;

wire [Baud8GeneratorAccWidth:0] Baud8GeneratorInc =

((Baud8<<(Baud8GeneratorAccWidth-7))+(ClkFrequency>>8))/(ClkFrequency>>7);

reg [Baud8GeneratorAccWidth:0] Baud8GeneratorAcc;

always @(posedge clk)

Baud8GeneratorAcc <= Baud8GeneratorAcc[Baud8GeneratorAccWidth-1:0] +

Baud8GeneratorInc;

wire Baud8Tick = Baud8GeneratorAcc[Baud8GeneratorAccWidth];

reg [1:0] RxD_sync_inv;

always @(posedge clk)

 if(Baud8Tick)

 RxD_sync_inv <= {RxD_sync_inv[0], ~RxD};

reg [1:0] RxD_cnt_inv;

reg RxD_bit_inv;

always @(posedge clk)

 if(Baud8Tick)

 begin

 if(RxD_sync_inv[1] && RxD_cnt_inv!=2'b11)

 RxD_cnt_inv <= RxD_cnt_inv + 2'h1;

 else

 if(~RxD_sync_inv[1] && RxD_cnt_inv!=2'b00)

 RxD_cnt_inv <= RxD_cnt_inv - 2'h1;

 if(RxD_cnt_inv==2'b00)

 RxD_bit_inv <= 1'b0;

 else

 if(RxD_cnt_inv==2'b11) RxD_bit_inv <= 1'b1;

 end

reg [3:0] state;

reg [3:0] bit_spacing;

// "next_bit" controls when the data sampling occurs

// depending on how noisy the RxD is, different values might work better

// with a clean connection, values from 8 to 11 work

wire next_bit = (bit_spacing==4'd11);

always @(posedge clk)

 if(state==0)

 bit_spacing <= 4'b0000;

 else

 if(Baud8Tick)

 bit_spacing <= {bit_spacing[2:0]+4'b0001}| {bit_spacing[3],

3'b000};

always @(posedge clk)

 if(Baud8Tick)

141

 case(state)

 4'b0000: if(RxD_bit_inv) state <= 4'b1000; // start bit found?

 4'b1000: if(next_bit) state <= 4'b1001; // bit 0

 4'b1001: if(next_bit) state <= 4'b1010; // bit 1

 4'b1010: if(next_bit) state <= 4'b1011; // bit 2

 4'b1011: if(next_bit) state <= 4'b1100; // bit 3

 4'b1100: if(next_bit) state <= 4'b1101; // bit 4

 4'b1101: if(next_bit) state <= 4'b1110; // bit 5

 4'b1110: if(next_bit) state <= 4'b1111; // bit 6

 4'b1111: if(next_bit) state <= 4'b0001; // bit 7

 4'b0001: if(next_bit) state <= 4'b0000; // stop bit

 default: state <= 4'b0000;

 endcase

reg [7:0]RxD_data;

always @(posedge RxD_data_ready)

 RxD_data=RxD_data_r;

reg [7:0] RxD_data_r;

always @(posedge clk)

 if(Baud8Tick && next_bit && state[3])

 RxD_data_r <= {~RxD_bit_inv, RxD_data_r[7:1]};

reg RxD_data_ready, RxD_data_error;

always @(posedge clk)

 begin

 RxD_data_ready <= (Baud8Tick && next_bit && state==4'b0001

&& ~RxD_bit_inv); // ready only if the stop bit is received

 RxD_data_error <= (Baud8Tick && next_bit && state==4'b0001

&& RxD_bit_inv); // error if the stop bit is not received

end

reg [4:0] gap_count;

always @(posedge clk)

 if (state!=0)

 gap_count<=5'h00;

 else if(Baud8Tick & ~gap_count[4])

 gap_count <= gap_count + 5'h01;

assign RxD_idle = gap_count[4];

reg RxD_endofpacket;

always @(posedge clk)

 RxD_endofpacket <= Baud8Tick & (gap_count==5'h0F);

Endmodule

--a call to Sobel edge detection function, this part is inserted to top-level entity

// sobel

wire [9:0] wVGA_R = Read_DATA2[9:0];

wire [9:0] wVGA_G = {Read_DATA1[14:10],Read_DATA2[14:10]};

wire [9:0] wVGA_B = Read_DATA1[9:0];

142

// sobel

wire wDVAL_sobel;

wire [9:0] wSobel;

sobel_edge_detection sobel0 (

 .iCLK(VGA_CTRL_CLK),

 .iRST_N(DLY_RST_2),

 .iTHRESHOLD({SW[7:2],2'b0}),

 .iDVAL(Read), //Read is request from VGA_Control

 .iDATA(wVGA_G), // gray

 .oDVAL(wDAL_sobel),

 .oDATA(wSobel)

);

// gray

wire [9:0] wGray_R = wVGA_G;

wire [9:0] wGray_G = wVGA_G;

wire [9:0] wGray_B = wVGA_G;

// to display

wire [9:0] wDISP_R = SW[9] ? wGray_R : // Gray

 SW[8] ? wSobel : // Sobel

 wVGA_R; // Color

wire [9:0] wDISP_G = SW[9] ? wGray_G : // Gray

 SW[8] ? wSobel : // Sobel

 wVGA_G; // Color

wire [9:0] wDISP_B = SW[9] ? wGray_B : // Gray

 SW[8] ? wSobel : // Sobel

 wVGA_B; // Color

--Sobel edge detection

module sobel_edge_detection (

 input iRST_N,

 input iCLK,

 input [7:0] iTHRESHOLD,

 input iDVAL,

 input [9:0] iDATA,

 output reg oDVAL,

 output reg [9:0] oDATA

);

// coefficient x

parameter X1 = 8'hff, X2 = 8'h00, X3 = 8'h01;

parameter X4 = 8'hfe, X5 = 8'h00, X6 = 8'h02;

parameter X7 = 8'hff, X8 = 8'h00, X9 = 8'h01;

// coefficient y

parameter Y1 = 8'h01, Y2 = 8'h02, Y3 = 8'h01;

parameter Y4 = 8'h00, Y5 = 8'h00, Y6 = 8'h00;

parameter Y7 = 8'hff, Y8 = 8'hfe, Y9 = 8'hff;

wire [7:0] Line0;

143

wire [7:0] Line1;

wire [7:0] Line2;

wire [17:0] mac_x0;

wire [17:0] mac_x1;

wire [17:0] mac_x2;

wire [17:0] mac_y0;

wire [17:0] mac_y1;

wire [17:0] mac_y2;

wire [19:0] pa_x;

wire [19:0] pa_y;

wire [15:0] abs_mag;

line_buffer_3 b0 (

 .clken(iDVAL),

 .clock(iCLK),

 .shiftin(iDATA[9:2]),

 .taps0x(Line0),

 .taps1x(Line1),

 .taps2x(Line2)

);

// X

mult_add_3 x0 (

 .aclr0(!iRST_N),

 .clock0(iCLK),

 .dataa_0(Line0),

 .datab_0(X9),

 .datab_1(X8),

 .datab_2(X7),

 .result(mac_x0)

);

mult_add_3 x1 (

 .aclr0(!iRST_N),

 .clock0(iCLK),

 .dataa_0(Line1),

 .datab_0(X6),

 .datab_1(X5),

 .datab_2(X4),

 .result(mac_x1)

);

mult_add_3 x2 (

 .aclr0(!iRST_N),

 .clock0(iCLK),

 .dataa_0(Line2),

 .datab_0(X3),

 .datab_1(X2),

 .datab_2(X1),

 .result(mac_x2)

);

144

// Y

mult_add_3 y0 (

 .aclr0(!iRST_N),

 .clock0(iCLK),

 .dataa_0(Line0),

 .datab_0(Y9),

 .datab_1(Y8),

 .datab_2(Y7),

 .result(mac_y0)

);

mult_add_3 y1 (

 .aclr0(!iRST_N),

 .clock0(iCLK),

 .dataa_0(Line1),

 .datab_0(Y6),

 .datab_1(Y5),

 .datab_2(Y4),

 .result(mac_y1)

);

mult_add_3 y2 (

 .aclr0(!iRST_N),

 .clock0(iCLK),

 .dataa_0(Line2),

 .datab_0(Y3),

 .datab_1(Y2),

 .datab_2(Y1),

 .result(mac_y2)

);

parallel_add_3 pa0 (

 .clock(iCLK),

 .data0x(mac_x0),

 .data1x(mac_x1),

 .data2x(mac_x2),

 .result(pa_x)

);

parallel_add_3 pa1 (

 .clock(iCLK),

 .data0x(mac_y0),

 .data1x(mac_y1),

 .data2x(mac_y2),

 .result(pa_y)

);

square_root sqrt0 (

 .clk(iCLK),

 .radical(pa_x * pa_x + pa_y * pa_y),

 .q(abs_mag)

);

always@(posedge iCLK, negedge iRST_N) begin

145

 if (!iRST_N)

 oDVAL <= 0;

 else begin

 oDVAL <= iDVAL;

 if (iDVAL)

 oDATA <= (abs_mag > iTHRESHOLD) ? 0 : 1023;

 else

 oDATA <= 0;

 end

 end

endmodule

