

TITLE PAGE

PARALLELIZING WEB SCRAPING TO IMPROVE

PERFORMANCE AND SCALABILITY

BY

NA YI CHUN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JUNE 2023

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: PARALLELIZING WEB SCRAPING TO IMPROVE

PERFORMANCE AND SCALABILITY

Academic Session: JUNE 2023

I NA YI CHUN

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 B-12-7 SANDILANDS

 GAT LEBUH SANDILANDS ____Ooi Boon Yaik_____

 GEORGETOWN, 10300

 PENANG Supervisor’s name

 Date: 15 SEPTEMBER 2023 Date: 15 SEPTEMBER 2023

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 15 SEPTEMBER 2023

SUBMISSION OF FINAL YEAR PROJECT

It is hereby certified that ___NA YI CHUN____(ID No: _20ACB05770) has completed this final

year project/ dissertation/ thesis* entitled “PARALLELIZING WEB SCRAPING TO

IMPROVE PERFORMANCE AND SCALABILITY” under the supervision of TS DR OOI

BOON YAIK (Supervisor) from the Department of COMPUTER SCIENCE, FACULTY OF

INFORMATION AND COMMUNICATION TECHNOLOGY.

I understand that University will upload softcopy of my final year project in pdf format into UTAR

Institutional Repository, which may be made accessible to UTAR community and public.

Yours truly,

NA YI CHUN

*Delete whichever not applicable

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “PARALLELIZING WEB SCRAPING TO IMPROVE

PERFORMANCE AND SCALABILITY” is my own work except as cited in the references.

The report has not been accepted for any degree and is not being submitted concurrently in

candidature for any degree or other award.

Signature : _________________________

Name : NA YI CHUN

Date : 15 SEPTEMBER 2023

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my supervisor, Ts Dr Ooi Boon Yaik and

my academic advisor, Dr Wong Chee Siang for their motivation and guidance through my

research journey for this project. I would like to express my gratitude especially to my

supervisor for their insight, expertise, and encouragement, which has helped me greatly in the

completion of this project.

Secondly, I would like to thank my family and friends for their unconditional love and support.

Their constant encouragement, patience, and understanding have been a source of motivation

for me. They have been there for me through the ups and downs of this research journey, and

I could not have done it without them.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

ABSTRACT

Web scraping is the process of extracting data from websites, usually for analysis or other

purposes. Web scraping is increasingly important in e-commerce because it enables businesses

to extract valuable data from competitors' websites, especially product prices. This data can be

used to gain insights into market trends, optimize pricing strategies, and improve product

offerings. However, web scraping can be a challenging task due to some reasons such as the

sheer volume of data available, network bandwidth, etc., when monitoring product prices

across numerous e-commerce platforms. The main purpose of this project is to help whoever

is suffering from the long waiting time to scrape desired information much faster than usual

regardless of whether the data is small-scale or large-scale from the internet through the

integration of web scraping technologies and distributed computer system. The proposed

solution requires user interaction to be configured and initialized. It employs a message

queuing algorithm to divide scraping tasks into smaller units and utilizes multiple worker nodes

for concurrent web data extraction. In the scraping process, Selenium Web Driver interacts

with specified web elements based on user-defined selectors or XPATH, allowing

asynchronous HTTP requests and responses. Performance metrics such as response times,

bandwidth data, and task status will be monitored for benchmarking and error handling. After

finishing the scraping process, the scraped results are stored in a CSV file for further analysis.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

TABLE OF CONTENT

TITLE PAGE ... I

REPORT STATUS DECLARATION FORM ... II

SUBMISSION OF FINAL YEAR PROJECT ... III

DECLARATION OF ORIGINALITY ... IV

ACKNOWLEDGEMENTS ... V

ABSTRACT ... VI

LIST OF FIGURES .. IX

LIST OF TABLES .. X

LIST OF ABBREVIATIONS .. XI

CHAPTER 1 - INTRODUCTION .. 1

1.1 Problem Statement and Motivation .. 1

1.2 Objectives ... 2

1.3 Project Scope and Direction.. 2

1.4 Contributions.. 3

1.5 Report Organization .. 3

CHAPTER 2 - LITERATURE REVIEW ... 4

2.1 Review of the Technologies.. 4
2.1.1 Web Scraping using Python .. 4
2.1.2 Comparison between BeautifulSoup, Selenium, and Scrapy................ 4

2.1.3 Testing Using Selenium Web Driver .. 5
2.1.4 Flask and Message Queue ... 5
2.1.5 Summary of the Technologies Review ... 6

2.2 Review of the Existing Systems/Applications 6
2.2.1 Design and Implementation of Scalable, Fully Distributed Web Crawler

for a Web Search Engine .. 6
2.2.2 Synchronizing Distributed Scraping ... 8
2.2.3 Research on Scrapy-Based Distributed Crawler System for Crawling

Semi-structure Information at High Speed ... 9

file:///C:/Users/yichu/Desktop/FYP2%20report/20ACB05770_FYP2.docx%23_Toc145665192

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

2.2.4 Summary of the Existing Systems .. 11

CHAPTER 3 - SYSTEM METHODOLOGY/APPROACH ... 12

3.1 Methodologies and General Work Procedures ... 12

3.2 Use Case Diagram and Description .. 13

3.3 Activity Diagram .. 15

CHAPTER 4 - SYSTEM DESIGN ... 16

4.1 System Block Diagram ... 16

CHAPTER 5 - SYSTEM IMPLEMENTATION .. 20

5.1 Hardware Setup ... 20

5.2 Software Setup .. 20

5.3 System Operation .. 21

5.4 Implementation Issues and Challenges ... 26

5.5 Concluding Remark .. 27

CHAPTER 6 - SYSTEM EVALUATION AND DISCUSSION .. 28

6.1 System Testing and Performance Metrics .. 28

6.2 Testing Result ... 29

6.3 Project Challenges .. 31

6.4 Objectives Evaluation and Concluding Remark 31

CHAPTER 7 - CONCLUSION AND RECOMMENDATION ... 32

7.1 Conclusion .. 32

7.2 Recommendations ... 32

REFERENCES ... 33

APPENDIX ... A-1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

LIST OF FIGURES

Figure Number Title Page

Figure 2.2.1.1 Cooperation between multiple agents in DCrawler 7

Figure 2.2.2.1 An example of Petri Net 9

Figure 2.2.3.1 Enhanced scheme of distributed extension for standard

single crawler

10

Figure 3.2.1 Use Case Diagram 13

Figure 3.3.1 Activity Diagram 15

Figure 4.1.1 System Block Diagram 16

Figure 4.1.2 Message Queue Algorithm 17

Figure 4.1.3 Data Aggregation 18

Figure 5.3.1 Configuration 21

Figure 5.3.2 Pop Up Window 21

Figure 5.3.3 Access Target Web Page 22

Figure 5.3.4 Configuration of Chromedriver 22

Figure 5.3.5 Product Detail Page 23

Figure 5.3.6 Response Time 24

Figure 5.3.7 Network Bandwidth Data 24

Figure 5.3.8 Scraped Result 25

Figure 5.4.1 Pop Up Window (Mydin) 26

Figure 5.4.2 Pop Up Window (Shopee) 26

Figure 6.2.1 Response Time for Task 1 29

Figure 6.2.2 Response Time for Task 2 29

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

LIST OF TABLES

Table Number Title Page

Table 2.1.2.1 Comparison between Python Web Scraping Libraries and

Frameworks

 5

Table 2.2.3.1 Comparison between single and distributed crawler 11

Table 3.2.1 Description of Use Case Diagram 14

Table 5.1.1 Specifications of Laptop 20

Table 6.1.1 System Testing 28

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

LIST OF ABBREVIATIONS

CPN Colored Petri Net

CPU Central Processing Unit

CSS Cascading Style Sheets

CSV Comma Separated Values

GIL Global Interpreter Lock

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

I/O Input/Output

URL Uniform Resource Locator

XML Extensible Markup Language

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1 - Introduction

1.1 Problem Statement and Motivation

The majority of online content is displayed in the form of HTML documents, which are

designed for human consumption rather than machine learning and are considered unstructured

data. This unstructured data is growing rapidly on the internet each year. Due to its lack of

adherence to any specific data format, extracting and storing large volumes of internet data for

future use poses a significant challenge [1]. Our primary focus is to extract and store substantial

amounts of internet data efficiently for future analysis, a task that is achievable through

utilizing a specialized technique known as Web Scraping. Web scraping is the process of

extracting data from websites, usually for analysis or other purposes. Web scraping is

increasingly important in e-commerce because it enables businesses to extract valuable data

from competitors' websites, especially product prices. This data can be used to gain insights

into market trends, optimize pricing strategies, and improve product offerings. However, web

scraping can be a challenging task due to some reasons such as the sheer volume of data

available, network bandwidth, etc., when monitoring product prices across numerous e-

commerce platforms. On top of that, web scraping can be resource-intensive such as demand

for high computational processing power. As a result, web scraping can be a complex and

challenging task that requires careful planning and execution.

Problem Statement 1: Default web scraping configuration using a single thread.

Using the default web scraping configuration, which employs a single thread, sets a significant

constraint on the speed and effectiveness of web data extraction. This method retrieves data in

a sequential manner, leading to sluggish performance and impracticality when dealing with

extensive web scraping tasks. For instance, when attempting to acquire information from a

thousand web pages, employing a single-threaded approach means that data retrieval occurs

one page at a time, resulting in a time-consuming operation.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

Problem Statement 2: Dynamic nature of many websites.

Dynamic content refers to website content that changes in response to user input, server-side

scripts, or other factors such as location or time of day. Handling changes in web documents

over time is one of the toughest issues in web data extraction as the challenge with dynamic

content is that it can make it difficult for web scraping scripts to capture data accurately. The

development of JavaScript frameworks in web development has caused significant changes to

how data is embedded and how web pages are rendered, thus affecting the structure of web

documents [2]. For example, if a script is designed to scrape a specific element from a

webpage, but that element is only loaded after the page has finished loading, the script may not

be able to find it. Hence, the proposed solution aims to handle dynamic content more

effectively.

1.2 Objectives

This application aims to further enhance the processing performance and scalability of web

scraping and data extraction processes by applying suitable scraping techniques and tools to

coordinate the process effectively.

Hence, the objectives of this project including:

1. To build a scalable web scraping solution that can handle dynamic content and be

customized to suit specific scraping requirements.

2. To design and develop distributed systems to scrape web data.

1.3 Project Scope and Direction

The scope of this project is to design and develop a custom library tailored for web scraping

tasks that incorporate various optimization techniques to streamline the data extraction process.

This library would be developed using Python programming language while Visual Studio

Code would serve as the development environment for testing and debugging the library. In

terms of web scraping, this library implemented Selenium, a powerful web automation tool, to

enable browser automation. This allows the library to mimic human behaviour to interact with

web pages so that data can be extracted from websites effectively without being detected by

the antibot system if there is any. Furthermore, the backend infrastructure of the library is

developed to facilitate task management and communication using Flask, a lightweight and

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

versatile Python web framework. On top of that, algorithms such as message queuing is

implemented to handle task management efficiently as it enables asynchronous and parallel

processing of web scraping requests. It means that multiple scraping tasks can be queued and

executed concurrently without blocking or delaying other processes, making the library

suitable for large-scale data extraction tasks while ensuring it is much faster. In the end, there

would be test cases and performance benchmarks to validate the library’s effectiveness and

speed improvements.

1.4 Contributions

This project makes several significant contributions. First, it introduces a custom Python library

that enhances the efficiency and speed of web scraping operations by leveraging the capabilities

of Selenium to be able to perform web scraping on a wide range of websites. Secondly, this

project also provides a more flexible and scalable architecture to monitor scraping tasks.

Moreover, this project is able to handle a high volume of scraping requests without delays by

implementing message queuing that allows tasks to be executed asynchronously in parallel.

Ultimately, these contributions address the real-world challenges of web scraping by providing

a comprehensive solution that enhances performance and scalability in this domain.

1.5 Report Organization

There are seven chapters in this report. Chapter 1 introduces the project and outlines the key

concepts that guided the project’s development. In Chapter 2, relevant technologies and

existing research relevant to the solution and algorithm employed in the development of this

project will be reviewed. In Chapter 3, we will go through the theories underlying the methods

employed in this project and give a general description of the system architecture. In Chapter

4, attention is given to the system design and functionality. In Chapter 5, we will discuss the

system implementation such as hardware setup, software setup, how the system operates,

implementation issues and challenges as well as concluding remarks. In Chapter 6, the system

will be evaluated, and the performance of the system will be discussed. Lastly, there will be a

conclusion and recommendation for future work in Chapter 7.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

Chapter 2 - Literature Review

This chapter will discuss some popular existing web scraping tools and techniques, which are

related to the ones utilized in this proposed web scraping solution. Other papers related to

improving the performance of web scraping will also be reviewed.

2.1 Review of the Technologies

2.1.1 Web Scraping using Python

Python is one of the most popular programming languages nowadays. Although some

users may not be familiar with it, but it is quite simple to learn even if users have never

used it or have no prior programming expertise. Since Python is a widely used

programming language, if there is any problem regarding the Python code, it is always

recommended to find the solution through the large online community where there are high

chances that someone else has faced a similar issue and solved it. In addition, Python

code is relatively readable and simple to understand, hence, the library of code is highly

reusable and easy to maintain as well compared to Java and C language [3].

2.1.2 Comparison between BeautifulSoup, Selenium, and Scrapy

The following are some examples of web scraping tools that use Python. First, Scrapy is a

framework that helps developers create and scale large web crawling projects. It also includes

a web-based shell to simulate a human user's browsing behaviour. A graphical interface is

provided in the web-based crawler to simplify the use of the web scraping tool, making it easier

for non-programmers to collect web content. Beautiful Soup is a tool for scraping HTML and

other XML documents, which is how data gets extracted. It offers simple Pythonic functions

for navigating, finding, and changing a parse tree as well as a toolkit for disintegrating HTML

files and extracting needed data using lxml or html5lib. Selenium refers to a web page rendering

tool that allows the process of surfing a website to be automated [4]. [5] uses Python web

scraping tool to extract information from more than 3000 documents to automate the process

of collecting and storing the data. When the authors manually search for data in each document

manually, they manage to complete 25 tasks every hour. In contrast, after they use a web

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

scraping tool to automate the process, more than 1000 tasks can be completed per hour

effortlessly.

Table 2.1.2.1 – Comparison between Python Web Scraping Libraries and Frameworks

2.1.3 Testing Using Selenium Web Driver

[6] offers a comprehensive overview of Selenium Web Driver after using it for software testing.

The author emphasizes that the execution speed of Selenium Web Driver is considered the

fastest among all components of the Selenium toolkit as starting a server is unnecessary

because it can directly interact with the browser for test case execution. On top of that, it also

offers better support for testing dynamic web pages. One example of Selenium Web Driver

that can behave like a real user is that it will not fill a disabled text box. The author also suggests

that Selenium Web Driver supports integration with other tools to enhance usability and

accuracy.

2.1.4 Flask and Message Queue

A message queuing system acts as a buffer for asynchronous data communication between

different components or systems. It stores messages and allows producers and consumers to

connect, publish, or consume messages from queues or topics. This decouples the sender and

receiver, promoting independent operation and improving system flexibility and efficiency.

Message queuing system is able to handle increased in demand. For example, the system can

easily accommodate higher processing requirements by adjusting factors such as message

volume, partitions, and producers or consumers. Hence, it is scalable [7]. [8] suggests an

architecture that users can access via a web application to monitor conditions with machine

learning. To build the web interface that connects CoreSys-Cloud's MQTT broker and a

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

MySQL database, Flask is used. Flask is chosen for its lightweight and flexible nature, making

it ideal for creating user-friendly web interfaces. This choice indicates the author's intention to

provide an accessible and efficient method of accessing and managing data from the cloud-

based system. Besides that, message queuing (MQTT) is utilized to enable communication

between the OPC-UA/MQTT gateway and CoreSys-Cloud. MQTT is a lightweight protocol

that excels in transmitting data between devices and servers, making it an ideal option for IoT

and automation systems.

2.1.5 Summary of the Technologies Review

In conclusion, Python is the most suitable choice among other programming language. Even

though Scrapy has more advantages compared to Selenium, but Scrapy lacks built-in support

for scraping dynamic websites that heavily rely on client-side rendering through JavaScript,

especially e-commerce websites while Selenium can automate a web browser to load the web

page, render and interact with JavaScript to extract desired data. Hence, Selenium is preferred

rather than Scrapy. In order to improve performance and scalability of web scraping processes,

Selenium Web Driver, Flask, and Message Queue have to be integrated into the system as well.

2.2 Review of the Existing Systems/Applications

2.2.1 Design and Implementation of Scalable, Fully Distributed Web Crawler for a

Web Search Engine

In this paper [5], DCrawler, a scalable and completely distributed web crawler is proposed and

put into practice. The primary features include platform independence, workload

decentralization, as it can assign the tasks efficiently for dividing the domain to crawl, and fault

tolerance. The proposed crawler is made up of numerous agents that coordinate independently

to ensure each agent scans a portion of the web. Each agent has multiple threads assigned to it,

and each thread is dedicated to visiting a single host. The threads visit each host using a breadth-

first search approach. Additionally, multiple techniques are implemented to ensure that various

threads are visiting different hosts concurrently to avoid overloading any particular host with

an excessive number of requests. The web crawler is capable of downloading multiple million

pages per day, making it efficient for purposes like web search and web characterization.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

Figure 2.2.1.1 – Cooperation between multiple agents in DCrawler

Based on the figure above, the crawling architecture shown in the figure aims to divide the

crawling jobs into separate segments to be executed by particular modules. The flowchart can

be comprehended as follows:

The paragraph discusses the collaboration between three distinct crawlers and their

corresponding logic, as illustrated in Figure 2.2.1.1. The seed represents the initial list of URLs

provided to the crawler, which then visits them. The assignment module computes which

crawler is responsible for a specific host using an identifier-based consistent hashing technique.

The core crawling module follows a basic crawling algorithm and fetches the web page

associated with the URL, which is then passed to the HTML parsing module. The HTML

parsing module extracts various components of the web page and returns them to the crawler,

and the extracted links are passed back to the assignment module for further processing. The

HTML parsing module also enables focused crawling based on constraints. The workbench is

a user interface module that provides real-time control over the crawling process and displays

graphical representations and statistics. Finally, the document dumping module is used to store

the fetched pages in a local machine or network server, and the available capacity is also

considered as a factor that affects the weight of the crawler. In summary, the paragraph

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

describes the process of crawling, parsing, and storing web pages, as well as the user interface

that enables real-time control over the crawling process.

2.2.2 Synchronizing Distributed Scraping

[9] presents a synchronized and distributed web scraping system for comparing multiple flight

ticket-selling outlets. The system compares at least two outlets from a common search query

to improve the efficiency of web scraping for extracting ticket prices. Workload can be

distributed across multiple machines, and scraping bots can be synchronized for data collection.

Each machine in the proposed configuration uses one scraping thread and several machines are

used to enable simultaneous comparison of multiple outlets due to limited resources.

The benefits of the proposed solution include that the system ought to remain active constantly.

For instance, the implementation of the price comparison system, which included 12 different

bots, was tested for over two months. The system experienced occasional crashes of individual

bots, but overall, it remained stable and unaffected for comparisons with other bots. The

distributed design of the solution offers the flexibility for many machines to use many bots on

to conduct comparisons across a variety of outlets and extract desired data from each outlet

concurrently.

The proposed solution for synchronized scraping aims to avoid deadlocks through the use of

synchronization barriers, including synchronization at the start, synchronization during search,

and timeouts. The Colored Petri Net (CPN) modeling technique is used to explain the solution.

CPN is an extension of Petri Nets and uses a high-level programming language to create timed

models. The CPN model consists of places and transitions that are connected through

synchronization barriers to ensure efficient and synchronized data extraction.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

Figure 2.2.2.1 – An example of Petri Net

Figure 2.2.2.1 shows a "Jobs" place that is initialized with three tokens representing jobs. Only

the "Start Job" transition is enabled at first, but when it is fired, the "Jobs" place is left with two

tokens and the "Busy" place has one token. Eventually, the CPN model described in the paper

reaches its final state when the "Done" place gathers all three tokens and none in the "Jobs"

place.

2.2.3 Research on Scrapy-Based Distributed Crawler System for Crawling Semi-

structure Information at High Speed

[10] introduces a distributed crawler system to crawl video websites based on Scrapy for high-

speed crawling of semi-structured information. The proposed system is also designed to

overcome the low utilization rate and efficiency of single machine crawlers in extracting

complex semi-structured information on website pages with video contents. This paper

proposes an improved approach to distributed web crawling by integrating Redis Database and

Scrapy-Redis into the Scrapy framework. The result is a faster and more efficient system

capable of crawling semi-structured data. Additionally, the integration allows for a

standardized storage strategy. According to the authors, the traditional single machine crawler

is no longer suitable for large-scale data acquisition requirements, but the use of a distributed

crawler can fulfill the growing need for web page data. The use of multiple machines to

cooperate in information crawling can lead to improved efficiency and robustness of the

crawler. Video websites such as Tencent, Youku, SOHU, and iQIYI are used for testing

purpose.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

Figure 2.2.3.1 – Enhanced scheme of distributed extension for standard single crawler

The goal of extending the single crawler system to a distributed system is to have specialized

modules execute distinct segments of the crawling task. This is done through the use of Scrapy-

Redis distributed components and Redis databases, which can mark crawled links in the

crawling queue to prevent repeated crawling issues. By adding Redis databases to the

traditional Scrapy framework, the workload among multiple crawlers can be coordinated in a

distributed system. Through it, each crawler can access the same Redis database, enabling the

scheduling and duplicate management of the Redis database as the Redis database stores

information about which URLs have already been crawled, which URLs are waiting to be

crawled, and which URLs are being crawled by which machine. This allows multiple machines

to work together efficiently to crawl vast number of URLs in parallel, without duplicating effort

or stepping on each other's toes. Eventually, this improves the single crawler system, resulting

in a distributed high-speed information crawling system.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

Table 2.2.3.1 – Comparison between single and distributed crawler

Based on Table 2.2.3.1, the distributed crawler performs better compared to a single machine

crawler as it shows efficiency gains of 84.53%, 88.95%, 93.05%, and 100% for four video

sites.

2.2.4 Summary of the Existing Systems

In [5], although the web crawler implements novel parallel crawling to improve the

performance, the proposed multiprocessing crawlers are only limited to using one machine to

execute.

On the other hand, the solution proposed in [9] has a distributed design that enables the usage

of unlimited machines and bots to carry out the price comparison of multiple outlets

simultaneously, extracting the required data from each outlet. However, due to the limited

resources available to each machine in [9], each machine only runs one scraping thread. When

using the Scrapy-Redis distributed component to improve the performance of a standard

machine crawler in [10], multiple machines can be used in a distributed architecture.

The distributed nature of the system in [9] and [10] allows the workload to be divided among

these different machines, and each machine can work independently to perform its assigned

tasks. This can help to increase the speed and efficiency of the crawling process, as well as to

improve the scalability and robustness of the system. However, the use of multiple hosts may

also increase the cost of maintaining and managing the system.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

Chapter 3 - System Methodology/Approach

3.1 Methodologies and General Work Procedures

The following summarizes the library’s general methodology in the proposed solution. First,

to initiate the Python script and configure its settings, the user needs to input specific

parameters including the website link to be scraped, web page elements, the desired number of

items to scrape, and the parallel processing setup such as the number of threads. After that, the

system will import libraries and set up configurations to perform initialization and prepare the

necessary data structures. Next, the system will implement the message queuing algorithm by

dividing the scraping tasks into smaller units and adding them to a task queue where each task

represents an item to be scrapped. Meanwhile, the system will create a specific number of

worker nodes, which are equivalent to the number of threads specified by the user when calling

the function. These workers collaborate to fetch and scrape data from the web concurrently

without blocking or delaying one another. Now, the system will browse the website link

provided earlier and look for web page elements specified by the user to scrape. In this session,

each worker navigates web pages through Selenium Web Driver to interact with specified web

page elements based on CSS selectors or XPATH to extract data while message queuing allows

the HTTP requests and responses to be captured asynchronously. Throughout the scraping

process, the system monitors and logs the response time, bandwidth data, and status of each

task for benchmarking and to ensure that exceptions can be handled smoothly without

interrupting the process. Once all tasks are completed, the system will calculate the total

response time for the scraping process and store the scraped results in a CSV file for further

analysis which is not within this project scope. Visualizations such as bar charts will be

generated as well using Matplotlib library to provide insights into the performance of different

configurations of the system. Finally, the user can review the scraped data and performance

analysis and rerun the scraping process by adjusting the configuration of the aforementioned

parameters if necessary.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

3.2 Use Case Diagram and Description

Figure 3.2.1 – Use Case Diagram

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

Action Done by Description

Configure library settings User Provide parameters needed

by the library function.

Specify URL User Provide a website link to be

scrapped.

Specify number of threads User Define the number of threads

per process.

Input web page element

detail

User For the scraper to locate the

specific element on the web

page.

Initialize scraping process User Run the process.

Parallelize Scraping Tasks System Divide the scraping tasks

into smaller units and assign

them to multiple workers or

threads. It manages the

concurrent execution of

tasks.

Extract and Collect Data System Collect data from the target

web page using Selenium

asynchronously. HTTP

requests and responses are

captured to extract

information.

Handle Error System Manage exceptions that may

occur during data

acquisition. It logs errors and

continues scraping.

Aggregate Data System Store collected data such as

scraped information,

response time, and network

bandwidth for further

analysis.

Generate Reports System Create reports and

visualizations to provide

insights to the user.

Table 3.2.1 – Description of Use Case Diagram

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

3.3 Activity Diagram

Figure 3.3.1 – Activity Diagram

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

Chapter 4 - System Design

4.1 System Block Diagram

Figure 4.1.1 – System Block Diagram

The flowchart begins with “Interaction between User with Library” and “Configuration of

Library Parameters” where the user needs to configure the web scraping parameters. For

example, the user has to provide the website URL to scrape, the web page elements detail such

as CSS Selector or XPATH per item they aim to scrape and define the number of threads per

process to enable multithreading. Upon completion of the configuration, the user may initiate

the web scraping process.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

Figure 4.1.2 – Message Queue Algorithm

Once the system has been activated, it will elect a master node and generate multiple worker

nodes according to the number of threads set by the user earlier. The master node will manage

the parallelization of the scraping tasks by dividing them into smaller units and store in the task

queue. Initially, every worker node will be assigned a task to scrape particular web page

elements. Instead of assigning an equal number of tasks to every worker node in the first place,

the message queue algorithm is designed to assign tasks to any worker node that is not

executing any task at the moment. Another way round, the worker node will send a request to

the master node for a new task when it has finished all assigned tasks. The advantage of

designing the algorithm in this way instead is to prevent any delay caused by any worker node.

For example, there are 4 worker nodes, and each worker node is assigned 10 tasks. If worker

node A has finished the 10 tasks much earlier than worker nodes B, C, and D, there will be a

waste of resources while waiting for other worker nodes that are slow due to latency or other

issues. Hence, the overall performance and efficiency will be affected negatively as well.

In “Network Bandwidth Monitoring”, BrowserMob Proxy, an open-source tool that captures

and records HTTP traffic between the Selenium Web Driver browser in this case, and a target

web server that acts as a proxy server, is utilized to monitor network activity. This includes the

bandwidth usage and data exchanged during web scraping. Once an instance of the proxy server

is created, it is automatically configured to listen on a specified port (port 8090). Before

initializing a scraping task, HTTP Archive (HAR) data is captured for that particular task. Once

the web scraping process begins, the proxy server sits between the Selenium Web Driver

browser and the target web server to intercept all HTTP requests and responses including

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

headers, URLs, response times, and data size. After each web scraping task is completed, the

captured HAR data will be saved and stored in a directory. This step is valuable as it helps to

identify the potential bottlenecks and diagnose any issues related to network communication

as well as for performance analysis and optimization purposes.

In “Data Extraction from Target Web Page”, the scraping process captures HTTP requests and

responses to extract information asynchronously using Selenium. Meanwhile, if there is any

error detected during data extraction such as the target web page is failed to be accessed, it is

caught using a try-except block and the corresponding exception message will be printed to

indicate the occurrence of the error. After printing the error message, the code continues to the

next task without terminating the entire scraping process in order to maximize data extraction

and minimize disruptions caused by individual task errors. This allows the system to log errors

and it will affect the smoothness of the scraping process.

Figure 4.1.3 – Data Aggregation

The “Data Aggregation” module represents the process of collecting and organizing the data

extracted from the scraping process into a structured format for user review and reporting.

Before data aggregation can take place, the system performs web scraping to extract data,

mostly unstructured, from the target web pages such as product names and product prices. After

collecting the data, the data is organized into a structured format so that the data can be stored

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

in data structures such as tables, lists, or dictionaries. Next, data needs to be cleaned to avoid

formatting issues and data redundancy. Once the data is structured and cleaned, it will be stored

in CSV file for easy data retrieval and visualization. Data transformation is needed to

standardize the time by converting the time unit into seconds. Finally, the aggregated data is

ready to be exported to external tools or formats for analysis and visualization.

After finishing running all the scraping tasks, the access to the proxy server will be eliminated

and reports and visualization such as network activity, scraped results, total response times,

etc., will be generated for user review.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

Chapter 5 - System Implementation

5.1 Hardware Setup

Description Specifications

Model Acer Nitro AN515-57

Processor Intel Core i7-11800H

Operating System Windows 10

Graphic NVIDIA GeForce RTX 3060 Laptop GPU

Memory 16GB DDR4 RAM

Storage 512GB SATA HDD, 240GB SSD

Table 5.1.1 – Specifications of Laptop

5.2 Software Setup

1. Flask – Version 2.3.2

2. Microsoft Visual Studio Code – Version 1.77.3

3. Python – Version 3.11.3

4. Selenium – Version 4.8.3

5. Selenium Web Driver (Chrome Driver) – Version 116.0.5845.96

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

5.3 System Operation

Figure 5.3.1 – Configuration

The solution is a library function that will prompt inputs from the user,

1. Target web page URL to be scrapped.

2. HTML structure of the desired web page element(s).

3. Select the number of threads.

• (1,1) represents (number of processes, number of threads).

• allows scaling the web scraping operations horizontally by adding more threads.

Figure 5.3.2 – Pop Up Window

The pop-up window will be dismissed using Selenium to interact with it like a real user.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

Figure 5.3.3 – Access Target Web Page

Figure 5.3.4 – Configuration of Chromedriver

The argument “--blink-settings=imagesEnabled=false” is used in the Chrome WebDriver

configuration to optimize the web scraping process by disabling the loading of images when

the web page is rendered in the browser.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

Figure 5.3.5 – Product Detail Page

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

Figure 5.3.6 – Response Time

Figure 5.3.7 – Network Bandwidth Data

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

Figure 5.3.8 – Scraped Result

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

5.4 Implementation Issues and Challenges

Figure 5.4.1 – Pop Up Window (Mydin)

Figure 5.4.2 – Pop Up Window (Shopee)

Even though this project has been designed to adapt to different kinds of web page URLs and

different HTML structures of the web pages and Selenium provides methods to interact with

the pop-up elements to dismiss them, the library still cannot foresee the structure of pop-up

windows when user prompt new or unseen web pages. This pop-up may block access to the

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

underlying page until they are closed or interacted with. This can prevent the scraper from

accessing the desired data prompted by the user earlier.

Another issue such that some Shopee URLs do not want their data to be scraped by bots,

because they may lose their competitive advantage, violate their terms of service, or expose

their customers’ privacy. Therefore, they have a strong anti-bot system to prevent or limit web

crawling and web scraping activities on their websites. This may happen to other websites as

well, especially popular platforms such as Amazon, Lazada, etc. Hence, it restricts the

practicality of this project.

5.5 Concluding Remark

Although there were limitations in the project’s implementation as mentioned earlier, it can

still be considered a success as it has produced a functional system that achieves its main goal.

However, it is important to acknowledge that the system still has to be applicable to a wide

range of users to prove its usefulness and relevance to a diverse user base. Therefore, it is

essential to come up with creative solutions to address these issues.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

Chapter 6 - System Evaluation and Discussion

6.1 System Testing and Performance Metrics

Type of Testing Context

Performance Testing The system's performance should be

measured using attributes such as response

time and network bandwidth data. The

performance should be compared among

scraping processes that use different numbers

of threads.

Scalability Testing The system should be tested to ensure that it

can handle an increasing number of requests

and maintain its performance and response

time.

Table 6.1.1 – System Testing

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

6.2 Testing Result

Figure 6.2.1 – Response Time for Task 1

Figure 6.2.2 – Response Time for Task 2

Task 1 is performed by scraping 100 products from an e-commerce website while Task 2

scrapes 200 products from the same e-commerce website. In terms of performance testing,

based on Figure 6.2.1, the initial linear scaling of response time from 1 thread to 9 threads

suggests that the web scraping solution is efficiently utilizing additional threads to handle

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

increased workloads. This efficiency indicates that increasing the number of threads results in

faster processing times and improved concurrency, which is a positive output. However, the

rebound in response time at 10 threads indicates that there might be resource limitations or

bottlenecks that start to impact performance when too many threads are used concurrently. On

top of that, if there are more threads than available CPU cores, the system may still execute

tasks concurrently, but the threads have to switch between one another more frequently, which

may potentially lead to overhead and increased response times. On the other hand, the pattern

in Figure 6.2.2 is somehow similar to the pattern in Figure 6.2.1, which is considered a good

result for scalability testing as the response time and performance is almost the same.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

6.3 Project Challenges

For concurrency issues such as the presence of Global Interpreter Lock (GIL) in Python, which

ensures that only one thread can execute Python code at a time within a single process. This

means that Python threads may not fully utilize the CPU resources for CPU-bound tasks.

However, when implementing multithreading for parallel tasks, generating and switching

between threads still experiences some overhead despite having the GIL disabled to eliminate

the restriction of using only one thread to execute Python code.

6.4 Objectives Evaluation and Concluding Remark

It is hard to determine whether the project’s objectives have been completely fulfilled.

However, the proposed library can scrape the target data successfully faster than using default

Selenium to do so by only prompting the user to perform simple configurations such as

providing a target URL, desired web page elements to be scraped, and determining the number

of threads to initiate the asynchronous scraping tasks. The target website can be an e-commerce

website with dynamic content, which consists of heavy client-side rendering using JavaScript

frameworks. However, the system still requires the user to provide the updated HTML structure

such as CSS Selector or XPATH to relocate the target elements on the web page. For objective

2, the system will be improved to use multiple machines to generate more threads to further

enhance the performance and scalability of the scraping process.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

Chapter 7 - Conclusion and Recommendation

7.1 Conclusion

The main purpose of this project is to help whoever is suffering from the long waiting time to

scrape desired information much faster than usual regardless of whether the data is small-scale

or large-scale from the internet through the integration of web scraping technologies and

distributed computer system. While the suggested approach may not exhibit remarkable

performance in terms of multi-computing, it undeniably excels in terms of the performance

metrics outlined in Chapter 6. Hopefully, the aim can be accomplished with the web scraping

solution proposed in this project.

7.2 Recommendations

To enhance the performance of the proposed solution further, a highly effective approach

would be exploring distributed scraping solutions, wherein multiple machines or instances

collaborate to scrape websites concurrently. Tools such as Scrapy Cluster and distributed task

queues can be considered as well in distributing the workload. By embracing this strategy, web

scraping operations can scale horizontally so that they can accommodate increased data

volumes and more sophisticated scraping tasks as user demands expand.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

REFERENCES

[1] R. S. Chaulagain, S. Pandey, S. R. Basnet and S. Shakya, "Cloud Based Web Scraping

for Big Data Applications," in 2017 IEEE International Conference on Smart Cloud

(SmartCloud), New York,, IEEE, 2017, pp. 138-143.

[2] R. Lawson, Web Scraping with Python, Packt Publishing, 2015.

[3] B. Zhao, "Web Scraping," in Encyclopedia of Big Data, Corvallis, Springer

International Publishing AG, 2017, pp. 1-3.

[4] G. Richards, N. DeVito and P. Inglesby, "How We Learnt to Stop Worrying and Love

Web Scraping," Nature, vol. 585, no. 7826, pp. 621-622, September 2020.

[5] M. Kumar and P. Neelima, "Design and Implementation of Scalable, Fully Distributed

Web Crawler for a Web Search Engine," International Journal of Computer

Applications, vol. 15, no. 7, pp. 8- 13, February 2011.

[6] P. Ramya, V. Sindhura and P. V. Sagar, "Testing using selenium web driver," in 2017

Second International Conference on Electrical, Computer and Communication

Technologies (ICECCT), Coimbatore, IEEE, 2017, pp. 1-7.

[7] G. Fu, Y. Zhang and G. Yu, "A Fair Comparison of Message Queuing Systems," IEEE

Access, vol. 9, pp. 421-432, 2021.

[8] F. Arévalo, M. R. Diprasetya and A. Schwung, "A Cloud-based Architecture for

Condition Monitoring based on Machine Learning," in 2018 IEEE 16th International

Conference on Industrial Informatics (INDIN), Porto, IEEE, 2018, pp. 163-168.

[9] G. Meesters, "Synchronising Distributed Scraping," Open University of the

Netherlands, Heerlen, 2021.

[10] F. Yin, X. He and Z. Liu, "Research on Scrapy-Based Distributed Crawler System for

Crawling Semi-structure Information at High Speed," in 2018 IEEE 4th International

Conference on Computer and Communications (ICCC), Chengdu, 2018.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 A-1

APPENDIX

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y3S3 Study week no.: 4

Student Name & ID: Na Yi Chun – 20ACB05770

Supervisor: Ts Dr Ooi Boon Yaik

Project Title: Parallelizing Web Scraping to Improve Performance and Scalability

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Performed literature review on message queue algorithm and Flask.

2. WORK TO BE DONE

Find a suitable website to scrape for a large volume of data.

3. PROBLEMS ENCOUNTERED

Scraped product details from Shopee during Project I but failed to scrape now due to its

strong antibot system.

4. SELF EVALUATION OF THE PROGRESS

Still following the timeline.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 A-2

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y3S3 Study week no.: 6

Student Name & ID: Na Yi Chun – 20ACB05770

Supervisor: Ts Dr Ooi Boon Yaik

Project Title: Parallelizing Web Scraping to Improve Performance and Scalability

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Successfully scraped the movie details of IMDB Top 250 TV Shows.

2. WORK TO BE DONE

Modify the scraping code to enable multiprocessing and multithreading.

3. PROBLEMS ENCOUNTERED

The process of scraping all 250 movie details is very slow.

4. SELF EVALUATION OF THE PROGRESS

Still following the timeline.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 A-3

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y3S3 Study week no.: 10

Student Name & ID: Na Yi Chun – 20ACB05770

Supervisor: Ts Dr Ooi Boon Yaik

Project Title: Parallelizing Web Scraping to Improve Performance and Scalability

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Have modified code that includes multiprocessing and multithreading capability.

2. WORK TO BE DONE

Implement the message queue algorithm to further improve the solution.

Find out the problem of why the result does not work as what theory says.

3. PROBLEMS ENCOUNTERED

The performance should improve further as the number of threads increases, but the

scraping process failed to improve further when 5 threads and above were used.

4. SELF EVALUATION OF THE PROGRESS

Still following the timeline.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 A-4

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Y3S3 Study week no.: 12

Student Name & ID: Na Yi Chun – 20ACB05770

Supervisor: Ts Dr Ooi Boon Yaik

Project Title: Parallelizing Web Scraping to Improve Performance and Scalability

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

Have integrated the message queue algorithm into the existing code.

2. WORK TO BE DONE

Find out the way to disable GIL in Python to enable concurrency.

Find a new use case to support the usefulness of this proposed solution.

3. PROBLEMS ENCOUNTERED

IMDB was not a suitable use case for this project.

4. SELF EVALUATION OF THE PROGRESS

Still following the timeline.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 A-5

POSTER

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 A-6

PLAGIARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 A-7

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 A-8

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name(s) of
Candidate(s)

Na Yi Chun

ID Number(s)

20ACB05770

Programme / Course Computer Science

Title of Final Year Project Parallelizing Web Scraping to Improve Performance and Scalability

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: __6 %

Similarity by source
Internet Sources: ________4_______%
Publications: _____1____ %
Student Papers: ______4___ %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report

to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: ____Ooi Boon Yaik____

 Name: __________________________

Date: 15 SEPTEMBER 2023 Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 A-9

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 20ACB05770

Student Name Na Yi Chun

Supervisor Name Ts Dr Ooi Boon Yaik

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Title Page
√ Signed Report Status Declaration Form
√ Signed FYP Thesis Submission Form
√ Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)

 List of Symbols (if applicable)
√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review
√ Appendices (if applicable)
√ Weekly Log
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the
ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my
report.

(Signature of Student)
Date: 15/9/2023

