

REAL TIME JUNCTION RECOGNITION USING IMAGE MATCHING

BY

TAN YI XUAN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

MAY 2023

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: REAL TIME JUNCTION RECOGNITION USING IMAGE MATCHING

Academic Session: MAY 2023

 I TAN YI XUAN

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 26, JALAN FLORA 3F/16,

 TELOK PANGLIMA GARANG _____Dr. Aun Yichiet______

 42500, SELANGOR Supervisor’s name

 Date: 12/9/2023 Date: __15 Sep 2023______

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY/INSTITUTE* OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 12/9/2023

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that ______Tan Yi Xuan___________________________ (ID No:

__21ACB01124) has completed this final year project/ dissertation/ thesis* entitled

“____________REAL TIME JUNCTION RECOGNITION USING IMAGE MATCHING ____ _”

under the supervision of ____Dr. Aun Yichiet__ (Supervisor) from the Department of

_____Computer and Communication Technology (DCCT)_____, Faculty/Institute* of

___Information and Communication Technology___ .

I understand that University will upload softcopy of my final year project / dissertation/ thesis* in pdf

format into UTAR Institutional Repository, which may be made accessible to UTAR community and

public.

Yours truly,

Tan Yi Xuan

(Student Name)

*Delete whichever not applicable

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “METHODOLOGY, CONCEPT AND DESIGN OF A 2-

MICRON CMOS DIGITAL BASED TEACHING CHIP USING FULL-CUSTOM

DESIGN STYLE” is my own work except as cited in the references. The report has not been

accepted for any degree and is not being submitted concurrently in candidature for any degree

or other award.

Signature : ___ ______________________

Name : _____Tan Yi Xuan____________________

Date : __12/9/2023_______________________

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Dr. Aun Yichiet

who has given me this bright opportunity to engage in a junction recognition image matching

task.

And my project group mate, Tan Yong Ming for collaborating seamlessly.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

ABSTRACT

In an age of advanced navigation technology, urban road complexity still poses challenges,

leading to missed turns and potential hazards. This research endeavors to mitigate these issues

by developing a computer vision-based intersection detection system. The project leverages

the synergy of Google Directions API and Google Street View (GSV) API to automate route

and junction coordination retrieval. The study focuses on a neighborhood in Westlake, Kampar,

UTAR, where real-world urban complexity is scaled down for testing. The objective is to instill

driver confidence and safety by providing timely and accurate junction notifications. The

deliverables include automated route retrieval, junction coordinates, and a mechanism to filter

and compare video frames, thereby improving navigation in complex urban environments. By

integrating Google Directions API and GSV, our project aims to revolutionize the way drivers

navigate unfamiliar roads. Our system not only enhances safety but also streamlines the

navigation process by reducing cognitive load. The intelligent frame filtering mechanism

represents a significant contribution to the efficiency of the system, ensuring that drivers

receive timely and accurate notifications. Overall, this research stands as a testament to our

commitment to improving urban navigation and safety through innovative computer vision

solutions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

TABLE OF CONTENTS

TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES x

LIST OF TABLES xi

LIST OF SYMBOLS xii

LIST OF ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Objectives 2

1.3 Project Scope and Direction 2

1.4 Contributions 2

1.5 Report Organization 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 Previous Works on using Google Directions API 4

2.1.1 Weakness 5

2.2 Previous Works on Using Google Street View Image API 6

2.1.1 Strength and Weaknesses 8

2.3 Previous Works on Route Validation 8

2.4 Previous Works on Image Similarity Models in Traffic Analysis 9

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 10

3.1 Study Area and data 10

3.2 Methodology and General Work Procedures 10

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

3.2.1 Google Directions API Call 10

 3.2.1.1 API Key Acquisition 11

 3.2.1.1 API Endpoint 11

 3.2.1.1 Request Parameters 11

 3.2.1.1 HTTP Request Method 11

 3.2.1.1 Handling Response 11

3.2.2 GSV API Call 12

 3.2.2.1 API Key Acquisition 12

 3.2.2.2 API Endpoint 13

 3.2.2.3 HTTP Request Method 13

 3.2.2.4 Handling Response 14

 3.2.2.4.1 Shift Coordinates 14

 3.2.2.4.1 Handling Response 15

3.2.3 Image Similarity Model 16

3.3 System Design Equation 17

3.3.1 Equation of Coordinates Shifting 17

CHAPTER 4 SYSTEM DESIGN 18

 4.1 System Component Specifications 18

4.1.1 System Design Diagram 18

4.1.2 System design Diagram Component Specifications 18

 4.1.2.1 Google Directions API 18

 4.1.2.2 Google Street View API 18

 4.1.2.3 Image Similarity Detection Model 19

CHAPTER 5 SYSTEM IMPLEMENTATION 20

 5.1 Hardware Setup 20

5.2 Software Setup 20

5.3 Setting and Configuration 21

5.3.1 Google Cloud API Key 21

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

5.4 System Operation (with Screenshot) 22

5.4.1 Google Directions API 22

5.4.2 Google Street View API 23

5.4.3 Image Similarity Detection Model 24

5.5 Concluding Remarks 24

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 25

6.1 Testing Setup and Result 25

6.2 Project Challenges 26

6.3 Objectives Evaluation 27

6.4 The Feasibility of Using Google Street View API for Junction

Image Capture

28

CHAPTER 7 CONCLUSION AND RECOMMENDATION 30

7.1 Conclusion 30

7.2 Recommendation 30

REFERENCES 32

 APPENDIX 34

 WEEKLY LOG 43

 POSTER 49

 PLAGIARISM CHECK RESULT 50

 FYP2 CHECKLIST 55

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

LIST OF FIGURES

Figure Number Title Page

Figure 1.1.1 Flyover with two roads sharing same space 1

Figure 2.1.1.1 Destination that is slightly apart from the endpoint 6

Figure 2.2.1 GSV images captured in six directions at a sample site in

the study area (a) and GSV images captured at three vertical

view angles at a sample site (b)

7

Figure 3.1.1 Location of Test Case 10

Figure 3.2.2.3.1 Example of a requested GSV static image 13

Figure 3.2.2.4.1.1 Street View of Coordinates obtained from Direction API

(before shifting)

15

Figure 3.2.2.3.1.2 Street View of Coordinates obtained from Direction API

(after shifting)

15

Figure 3.2.2.4.1 Different Frames Capturing the Same Junction 16

Figure 3.3.1 System Design Diagram 18

Figure 5.3.1.1 Creating a New Project in Google Cloud 21

Figure 5.3.1.2 Generating an API key in Google Cloud 21

Figure 5.3.1.3 Generated API key 21

Figure 5.4.1.1 JSON response from Google Directions API 22

Figure 5.4.1.2 Content in Junction 23

Figure 5.4.2.1 Content in Junction (after shifting) 23

Figure 5.4.2.2 Code snippet to decode GSV API response 23

Figure 5.4.2.3 Images in junction_images 24

Figure 6.1 Junctions that do not match 25

Figure 6.2 Junctions that match 26

Figure 6.3 Duplicate Image of Junction 26

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

LIST OF TABLES

Table Number Title Page

Table 3.2.1.3.1 Parameters of Google Directions API 11

Table 3.2.2.3.1 Parameters of Google Street View API 14

Table 3.2.2.3.2 Cardinal Directions and Heading Mapping 14

Table 5.1.1 Specifications of laptop 20

Table 5.4.1.1 Parameters Passed to Google Directions API endpoint 22

Table 5.4.2.1 Parameters Passed to Google Street View API 23

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF SYMBOLS

φ Phi (representing latitude)

λ Lambda (representing longitude)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiii

LIST OF ABBREVIATIONS

GSV Google Street View

API Application Programming Interface

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

XML Extensible Markup Language

VBA Visual Basic for Applications

OSM Open Street Map

GCP Google Cloud Platform

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1

Introduction

In this chapter, I will present the background, problem statement and motivation of our

research. My contribution to this field through this paper is also highlighted in this chapter.

1.1 Problem Statement and Motivation

In today's age of advanced road navigation systems and applications like Google Maps and

Waze, finding our way around cities has become significantly more manageable. However, the

intricacies of urban road networks often present challenges that these navigation tools struggle

to overcome. Taking a wrong turn in a bustling city is a common occurrence, and the need to

frequently glance at a mobile screen for route updates can not only be inconvenient but also

hazardous. Despite the progress made in navigation technology, drivers still grapple with

unfamiliar road layouts, resulting in numerous accidents and disruptions.

To address these challenges, our research endeavors to develop a computer vision model

capable of accurately predicting the appropriate turns for drivers. One specific problem we aim

to tackle involves situations there are flyovers and the two roads will be sharing the same space

from a top-down perspective like in Figure 1.1.1. Conventional navigation apps might fail to

recognize that a driver has taken the wrong turn in such scenarios, delaying route corrections.

Our objective is to enhance driver confidence and safety by promptly identifying intersection

points and notifying drivers of incorrect turns.

Figure 1.1.1 Flyover with two roads sharing same space

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

1.2 Objectives

The objective of this research is to develop and evaluate a computer vision model that utilizes

image comparison techniques to accurately recognise the appropriate turn for drivers based

on digital images captured by a camera installed in front of a vehicle. The model will

compare the captured images with images of correct intersections from Google Street View

API and will be integrated into a Raspberry Pi device that will provide audible alerts to the

driver, signaling the correct turn or warning against incorrect turns.

1.3 Project Scope and Direction

It's essential to note that our research scope focuses on a specific geographical area within

Westlake, Kampar, UTAR. Here, we have scaled down our study to neighborhood-sized

junctions, as obtaining appropriate test images for complex flyover scenarios proved

challenging. By providing drivers with accurate, real-time guidance in these neighborhood

settings, we aim to demonstrate the potential of our approach and set the stage for future

advancements in urban navigation systems. Ultimately, our research strives to make city

navigation more efficient and secure for all road users.

I will be using Google APIs in this project, namely Google Direction API and Google Street

View API.

The deliverables of this project will include automation of route and junction coordinates

retrieval and an junction recognition algorithm that filters video frames that depict the same

junction and compares distinct junctions with the correct junctions.

1.4 Contributions

In this research project, I have made several contributions towards the development of a

computer vision model for turn prediction using street images captured by a camera installed

in front of a vehicle. My contributions are as follows:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

Proposing a novel approach: the innovative integration of the Google Directions API and

Google Street View (GSV) API to provide a holistic and real-time view of the driver's

journey. By seamlessly combining these two powerful tools, I introduced a novel approach to

address the challenges of road navigation in complex urban environments.

These contributions advance the field of computer vision and have implications for the

development of practical solutions for turn recognition in real-world driving scenarios.

1.5 Report Organization

The details of this research are shown in the following chapters. In Chapter 2, some related

backgrounds are reviewed. Then, the system mythology and general work procedures is

discussed in Chapter 3. Chapter 4 explains the system design diagram and its components.

Chapter 5 shows the settings, configurations and system operation. And then, Chapter 6

reports the result and feasibility of the proposed method. Lastly, Chapter 7 details the

conclusion of this project.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

Chapter 2

Literature Review

2.1 Previous Works on using Google Directions API

The Google Directions API is a fundamental tool in modern navigation systems, enabling users

to get precise directions, plan routes, and access geospatial data. This API taps into Google's

vast geographical database and real-time traffic information to provide turn-by-turn directions.

It takes addresses of origin and destination as input and factors in variables like traffic

congestion and road closures to find the quickest path.

In addition to directions, this API supports route planning, allowing users to customize trips

based on transportation mode (e.g., driving, walking, or public transit), and it offers data on

travel times, distances, and expected arrival times. It's also flexible, accommodating waypoints

or stops, which is valuable for logistics and delivery businesses.

Most importantly, the Google Directions API offers geospatial data retrieval. It provides

access to location-related data, including coordinates, place details, and geographic boundaries.

This feature is crucial for applications like geofencing, location-based marketing, and spatial

analysis. This aspect is utilized in my project as will be discussed later in the subsequent

chapters. In essence, the Google Directions API serves as a foundational component of modern

navigation and location-based services.

The Google Directions API [6] functions through a straightforward process. When

implementing it, an HTTP request is dispatched to a specific address, typically

"http://maps.googleapis.com/maps/api/directions," with various parameters. These parameters

include:

- Origin Point: This specifies the starting location of the trip.

- Waypoints: These are optional waypoints or intermediate locations that the route

should pass through during the journey.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

- Destination Point: This marks the final endpoint where the trip concludes.

Upon receiving this request, the Google Directions API processes the provided information

to calculate the optimal route, considering factors like distance, traffic conditions, and available

roadways. It then generates a response, usually in JSON or XML format, containing detailed

navigation instructions, waypoints, distance, estimated travel time, and other relevant data.

The authors in [5] have utilize these features to develop a navigation system for visually

impaired individuals to generate the optimal route. However, their evaluation highlights

limitations in the Google Directions API when applied to outdoor navigation for the visually

impaired. Another study [7] aimed to find an optimal vehicle routing scheme for delivering

goods and services to multiple convenience stores using web scraping and Excel VBA. They

utilized the Google Directions API to develop a computer program for solving the optimal

networking problem, enhancing the efficiency of goods delivery. This showcases Google

Directions API's versatility in solving complex logistical challenges and its potential to enhance

cost-effective and efficient supply chain operations.

This study [8] introduces a different use case for the Google Directions API, specifically in

the context of measuring public transit accessibility. It demonstrates that the API can provide

shorter access distances in areas with more public access points. This finding suggests that

open cloud services like the Google Directions API can serve as valuable alternatives for

measuring public transit accessibility, benefiting transit researchers and agencies.

2.1.1 Weakness

Even though the Google Directions API is a powerful tool for navigation, it may not

consistently provide precise destination points, leading to deviations from the intended final

locations. In certain scenarios, especially those involving irregular paths or densely spaced

waypoints, the API can struggle to accurately pinpoint the exact destination. This limitation

results in users reaching their destinations at points slightly away from the intended endpoint a

shown in Figure 2.1.1.1 [5]. Consequently, addressing this issue becomes crucial for improving

the accuracy and reliability of navigation applications that rely on the Google Directions API.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

Figure 2.1.1.1 Destination that is slightly apart from the endpoint

2.2 Previous Works on Using Google Street View Image API

Google Street View (GSV) is a technology integrated into Google Maps and Google Earth,

offering panoramic street views from various locations worldwide. Initially launched in 2007

with limited coverage, GSV has expanded to encompass an extensive image dataset across 48

countries. Equipped with nine directional cameras, GPS units, laser range scanners, and

connectivity options, GSV captures detailed street-level imagery. Data collection involves

driving vehicles to photograph locations, with factors like weather and population density

influencing timing and location choices. Advanced sensor data allows precise geographic

mapping of images, enabling the creation of seamless 360-degree views through image

processing algorithms. This resource presents a powerful alternative to traditional asset data

collection methods, potentially enhancing or even replacing existing practices for certain

applications. [9]

The Google Street View API is a crucial component of modern location-based applications,

allowing developers to seamlessly integrate street-level imagery into their projects. This API

grants straightforward access to Google's vast repository of visual data, enabling developers to

incorporate panoramic views of locations from any location effortlessly.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

The Google Street View API offers various features, including the retrieval of static images,

dynamic panoramas, and 360-degree photos. These visual assets can be easily integrated into

various applications such as mapping services, tourism guides, and real estate platforms,

offering users a virtual tour of places as if they were there. Additionally, the imagery is also

used in machine learning projects that require the use of street-level images. This versatility

makes the GSV a valuable resource for developers looking to enhance user experiences and

leverage street-level visual data in a wide range of applications.

Google Street View (GSV) provides a virtually continuous tour of city streets, offering

users a sensation akin to being present in that location. It closely resembles the experience of

exploring a city through traditional means like driving, cycling, or walking. This is why it is

used in projects that required street-level images, like in [2] where they perform urban greenery

assessment using static GSV images. To achieve their project objective, they captured the GSV

images in six directions and three vertical view angles as they intend to get the 360° perspective

of a pedestrian as shown in Figure 2.2.1. In our case, we aim to capture the view of a driver so

we will be only capturing the GSV image in 1 single direction. In [10], the authors employed

a similar approach as their aim is to capture images of traffic signs, given that these signs

typically face the road in a single direction.

Figure 2.2.1 GSV images captured in six directions at a sample site in the study area (a) and

GSV images captured at three vertical view angles at a sample site (b)

Authors is [10] used GSV for an entirely different use case, lane detection. They assessed

numerous works on lane detection that used Open-Street-Map (OSM) [11] for acquiring test

images based on geographical data. However, OSM lacks the capability to provide the current

system location, as indicated in [12], rendering it unable to obtain test images at the system's

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

present location. This limitation can be overcome by leveraging GSV APIs, which enable the

retrieval of the system's current location.

Although I couldn't locate any prior research utilizing GSV images for junction similarity

matching in the existing literature, I chose to investigate whether employing GSV images for

calculating junction similarity would be viable. This decision was influenced by studies hinting

at the potential effectiveness and efficiency of this approach.

2.2.1 Strength and Weaknesses

[3] effectively collected data related to the visual appeal of an environment, the availability of

infrastructure for active transportation, and the quality of sidewalk amenities. However, they

encountered difficulties in obtaining meaningful results concerning motorized traffic and

parking. Similarly, [4] faced limitations when trying to assess the locations of a seasonal tree-

nesting species. The variability in dates of Google Street View (GSV) imagery presents a

significant challenge when extracting such data.

2.3 Previous Works on Route Validation

Route validation, in the context of confirming that a driver is adhering to the intended path,

holds a crucial role in modern navigation and driver assistance systems. It serves as a real-time

feedback mechanism that ensures drivers stay on course and make the correct turns, reducing

the likelihood of errors and enhancing road safety. By cross-referencing the driver's progress

with the intended route, these systems can provide timely alerts and corrective instructions if

deviations occur. The importance of route validation becomes particularly evident in scenarios

where precise navigation is critical, such as emergency response vehicles, logistics, and public

transportation. It not only aids in preventing wrong turns and missed destinations but also

contributes to smoother traffic flow and optimized travel times. In essence, route validation

plays a vital role in enhancing driver confidence, reducing navigational stress, and ultimately

improving the efficiency and reliability of road journeys.

2.4 Previous Works on Image Similarity Models in Traffic Analysis

The importance of image similarity models in the realm of traffic analysis, especially when it

comes to recognizing junctions and assessing road conditions, cannot be overstated. These

models represent a critical technological advancement that leverages computer vision and

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

machine learning techniques to process vast amounts of visual data generated by traffic

cameras, dashcams, and other imaging sources. In doing so, they provide invaluable insights

into the dynamic and often complex nature of roadways, profoundly impacting road safety,

transportation efficiency, and overall traffic management.

One of the primary functions of image similarity models is the precise identification of

junctions, a task that holds immense significance in route planning and navigation systems.

Recognizing junctions accurately ensures that drivers receive timely and reliable directions,

reducing the risk of missed turns and navigational errors. This is particularly crucial in urban

environments, where intricate networks of intersections and roadways can pose challenges for

both human drivers and automated navigation systems. Image similarity models excel at this

task by comparing real-time visual data with a database of reference images, allowing for

seamless junction recognition and guidance.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

Chapter 3

System Methodology/Approach

3.1 Study Area and data

Our research was conducted in the Westlake, a neighborhood just beside UTAR, Kampar.

Figure 3.2.1 below shows the location where we obtained our sample test cases.

Figure 3.1.1 Location of Test Case

3.2 Methodology and General Work Procedures

3.2.1 Google Directions API Call

In this section, we outline the procedures and steps involved in obtaining route information

using the Google Directions API. The Google Directions API serves as a pivotal component in

our intersection detection project, allowing us to retrieve precise navigation instructions and

route details.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

3.2.1.1 API Key Acquisition

To access the Google Directions API, we initiated the process by obtaining a unique API key

from the Google Cloud Platform (GCP). This API key serves as the authentication mechanism

for our requests, enabling us to utilize the API's functionalities securely.

3.2.1.2 API Endpoint

Our API calls were directed to the specific Google Directions API endpoint, which comprises

the base URL and a designated path for route-related requests. The endpoint URL was

structured to target the Directions API accurately.

3.2.1.3 Request Parameters

We configured our API requests with a set of parameters to tailor the route information to our

requirements. These parameters included:

Table 3.2.1.3.1 Parameters of Google Directions API

Parameters Description

Origin The starting location of the trip.

Destination The ending point of the route

Waypoints (Optional) Optional waypoints or intermediate locations

that the route should pass through during the

journey.

Mode (Optional) The preferred method of transportation, like

driving or walking.

3.2.1.4 HTTP Request Method

Our API requests were made using the HTTP GET method, which is the standard practice for

retrieving directions and route-related data from the Google Directions API.

3.2.1.5 Handling Response

The obtained JSON result from the Google Directions API was processed to extract specific

data related to junctions and their associated cardinal directions. The process involved iterating

through the JSON structure, which contained route information.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

For each route, the script traversed through its legs and steps, focusing on the provided

instructions. It identified headings and turns in the instructions by checking for specific

keywords like "Head" and "Turn." When a heading was encountered, it extracted the cardinal

direction associated with it, and when a turn instruction was found, it extracted the turn

direction.

To ensure accurate cardinal direction assignment, the script considered the context of each turn

instruction. If a "Turn" instruction immediately followed a "Head" instruction, it was treated

differently from subsequent turn instructions. The script utilized a function called

get_new_heading to calculate the new heading based on the current heading and the turn

direction.

Additionally, the latitude and longitude coordinates of the start location for each step were

extracted. These coordinates, along with the associated cardinal directions, were stored in a

structured format as dictionaries. These dictionaries, representing location data with directions,

were then appended to a list called "junctions."

The script also maintained a record of the previous turn direction to facilitate the calculation of

new headings as the instructions were processed sequentially. This methodology allowed for

the extraction and organization of data regarding junctions and their respective directions,

which was crucial for subsequent analysis and processing in the project.

3.2.2 GSV API Call

This section outlines the methodology and procedures employed to access street-level imagery

through the Google Street View API, a fundamental component of our intersection detection

project. The Google Street View API enables us to retrieve panoramic images of specific

locations, which are vital for our image-based intersection analysis.

3.2.2.1 API Key Acquisition

We initiated our interaction with the Google Street View API by acquiring an API key from

the Google Cloud Platform (GCP). This API key served as the authentication mechanism for

our requests, ensuring secure access to the API's services.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

3.2.2.2 API Endpoint

Our API calls were directed to the designated Google Street View API endpoint. This

endpoint was constructed with precision to target the specific functionalities of the Street

View API, allowing us to fetch street-level images.

3.2.2.3 HTTP Request Method

API requests to the Google Street View API were made using the standard HTTP GET method.

This method facilitated the retrieval of street view images for specified geographical

coordinates. An example of requesting a GSV static image is shown below.

https://maps.googleapis.com/maps/api/streetview?location={latitude},{longitude}&size={siz

e}&fov={fov}&heading={heading}&pitch={pitch}&key={api_key}

Figure 3.2.2.3.1 shows an example of a requested GSV static image.

Figure 3.2.2.3.1 Example of a requested GSV static image

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

Table 3.2.2.3.1 Parameters of Google Street View API

Parameter Description Dimension

Location Either text string or lat/long value lat/long value

Size Output size of the image in pixels 2048×2048

Heading Horizontal field of view of the image degrees

Pitch Up/down angle of the camera relative to the

Street View vehicle

0

Field of Vision

(FOV)

Horizontal field of view of the image degrees

Table 3.2.2.3.2 Cardinal Directions and Heading Mapping

Cardinal Directions Heading

North 0

East 90

South 180

West 270

3.2.2.4 Handling Response

3.2.2.4.1 Shift Coordinates

Since the coordinates obtained from the Google Directions API are directly centered on the

user's intended junctions (Figure 3.2.2.4.1.1), it becomes necessary to modify these

coordinates. This modification entails shifting them to a position that allows for a better view

of the junction within the frame of the Google Street View (GSV) image, ensuring that the

junction is adequately captured.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

Figure 3.2.2.4.1.1 Street View of Coordinates obtained from Direction API (before shifting)

Figure 3.2.2.3.1.2 below shows that the junction can be captured in the image after shifting.

Figure 3.2.2.3.1.2 Street View of Coordinates obtained from Direction API (after shifting)

3.2.2.4.2 Handling Response

Utilizing the adjusted coordinates and heading values described in Chapter 3.2.1.5, the GSV

API will retrieve street images and subsequently add them to a list known as

'junction_images.' This list will serve a crucial role in Chapter 3.2.3. The feature vectors of

the images will be added to a separate list called ‘junction_feature_vectors’ for later use when

calculating image similarity.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

The adjustment of the new latitude and longitude coordinates is determined by the current

heading of the route. If the current heading is 'north,' the offset is applied slightly in the southern

direction. Similarly, for other headings, such as 'south,' 'east,' or 'west,' the offset is calculated

accordingly to align with the intended route direction.

3.2.3 Image Similarity Model

Upon obtaining images with detected junctions, it's possible to encounter multiple images

capturing the same junction as shown in Figure 3.2.2.4.1. To address this, an image similarity

model is employed to assess the similarity between the current frame and the previous frame.

This comparison helps determine whether the junction remains the same or if it's a different

one.

Figure 3.2.2.4.1 Different Frames Capturing the Same Junction

For distinct junctions, a comparison is made against specific ‘junction images' that have

been predefined. These images represent specific junctions that the driver must navigate

according to the planned route. Consequently, this process helps identify and confirm whether

the detected junction corresponds to one of these predefined junctions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

3.3 System Design Equation

3.3.1 Equation of Coordinates Shifting

Let:

- φcurrent to be the current latitude in radians.

- λcurrent to be the current longitude in radians.

- Shift to be the offset value. Shift = 0.00017

The new latitude(φcurrent) and longitude (λcurrent) [13] can be calculated based on the current

heading (current_heading) as follows:

If current_heading = “north”:

φnew = φcurrent - shift

λnew = λcurrent

If current_heading = “south”:

φnew = φcurrent + shift

λnew = λcurrent

If current_heading = “east”:

φnew = φcurrent

λnew = λcurrent – shift

If current_heading = “west”:

φnew = φcurrent

λnew = λcurrent + shift

(1)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

Chapter 4

System Design

4.1 System Component Specifications

4.1.1 System Design Diagram

Figure 3.3.1 System Design Diagram

4.1.2 System design Diagram Component Specifications

4.1.2.1 Google Directions API

This block is used to provide route information. This component is responsible for making API

requests to retrieve detailed route data, including navigation instructions and coordinates of

any intersections to be taken. The API endpoint, request parameters, and the handling of API

responses are all meticulously defined to facilitate effective communication with the Google

Directions API.

 The input for this block is Origin and Destination as the start and end point of a given route.

After retrieving the JSON data returned by the API call, I process the data to extract

coordination information and the cardinal direction of each intersection.

4.1.2.2 Google Street View API

In this block, the input consists of coordinates and cardinal directions for each intersection.

These parameters are supplied to the API endpoint, and the outcome is a set of Google Street

View (GSV) images depicting the respective intersections. Additionally, within this block,

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

coordinate shifting is performed to guarantee that the entire junction is captured within the

GSV images.

4.1.2.3 Image Similarity Detection Model

The input to this block comprises frames from captured images and a predefined set of correct

junctions along the specified route. Before comparing the captured frames with the correct

junctions, the block conducts similarity matching among frames to eliminate duplicates

depicting the same junctions. After computing image similarity between distinct junctions and

the correct junctions, the model will generate a "comparison_result" for each unique junction.

This output will be utilized in the subsequent block to generate auditory feedback.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

Chapter 5

System Implementation

5.1 Hardware Setup

The hardware involved in this project is a laptop. The laptop is used to call the GSV and Google

Directions API and for hosting the code that will compare the results of the junction detection

model and the obtained static GSV images.

Table 5.1 Specifications of laptop

Description Specifications

Model HUAWEI MATEBOOK 16S

Processor INTEL I7-12700H

Operating System Windows 11 Home (Version 21H2)

Graphic Intel Iris Xe Graphics

Memory 16GB LPDDR5

Storage 1TB NVMe PCIe SSD

5.2 Software Setup

In the development of this project, I mainly used Google Colabotary

1. Google Colaboratory

Version: 0.0.1a2

2. OpenCV

Version: 4.6.0

Release Date: 12/6/2022

3. Tensorflow (comes with Keras API)

Version: 2.10.1

4. Numpy

Version: 1.21.5

5. Pandas

Version: 1.4.4

6. Matplotlib

Version: 3.5.2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

5.3 Settings and Configuration

5.3.1 Google Cloud API Key

Step 1: Create Google Cloud account.

Step 2: Create a New Project

Figure 5.3.1.1 Creating a New Project in Google Cloud

Step 3: Select the project and click Create Credentials > API key

Figure 5.3.1.2 Generating an API key in Google Cloud

Step 4: Copy the API key generated.

Figure 5.3.1.3 Generated API key

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

5.4 System Operation

In this section, I will demonstrate a test case using the steps specified below.

5.4.1 Google Directions API

The table below displays the parameters passed to the Google Directions API endpoint:

Table 5.4.1.1 Parameters Passed to Google Directions API endpoint

Parameters Value

origin '1066, Jln Seksyen 1/2, Taman Bandar

Barat, 31900 Kampar, Perak'

destination '1337, Jln Seksyen 1/3, Taman Bandar

Barat, 31900 Kampar, Perak'

API key ***

mode 'driving'

Figure 5.4.1.1 shows a snippet of the JSON response from Google Directions API.

Figure 5.4.1.1 JSON response from Google Directions API

I implemented a “get_new_heading” function to get the cardinal directions solely from the

JSON response. In our enclosed environment, when the vehicle is heading west and then makes

a left turn, it ends up facing south. Therefore, we will focus exclusively on roads that follow

this configuration. As we delve deeper into the project, we believe it's crucial to integrate a

GPS system capable of determining the vehicle's cardinal direction. The code is available in

the Appendix.

After that, I extracted the start_location in Figure 5.4.1.1 and the cardinal directions and stored

them in a dictionary (‘junctions’) to be used when calling Google Street View API.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

Figure 5.4.1.2 Content in Junction

5.4.2 Google Street View API

I performed coordinates shifting on the coordinates to get the desired junction Figure 5.4.1.2

and the figure below shows the shifted coordinates.

Figure 5.4.2.1 Content in Junction (after shifting)

Parameters passed into Google Street View API:

Table 5.4.2.1 Parameters Passed to Google Street View API

Parameters Value

Latitude (Latitude from junctions)

longitude (Longitude from junctions)

size '640x480'

fov 100

heading (Cardinal direction from junctions)

pitch 0

API key ***

I decoded the response from the GSV API into a format that OpenCV (cv2) can work with

using the code snippet in Figure 5.4.2.2. The flag “cv2.IMREAD_COLOR” indicates that the

image should be loaded in color mode, preserving all color channels (Blue, Green, Red).

Figure 5.4.2.2 Code snippet to decode GSV API response

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

The images are appended to a list “junction_images” as shown in Figure 5.4.2.3

Figure 5.4.2.3 images in junction_images

5.4.3 Image Similarity Detection Model

I compared captured junction and the correct junction in “junction_images” and the results are

further discussed in Chapter 6: System Evaluation and Discussion.

5.5 Concluding Remarks

In this section, we illustrated a comprehensive test case demonstrating the successful

amalgamation of the Google Directions API and Google Street View API. Through precise

parameter configuration, we efficiently acquired essential route information, junction

coordinates, and cardinal directions. Notably, our custom "get_new_heading" function

facilitated the extraction of cardinal directions from the API response. Following this, we

executed coordinate shifting to optimize junction framing, and the resulting street view images

were adeptly decoded for seamless integration into our system. This harmonious integration

lays the groundwork for our intersection detection system, setting the stage for rigorous

evaluation and refinement in the subsequent chapters.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

Chapter 6

System Evaluation and Discussion

6.1 Testing Setup and Result

In the evaluation of our junction recognition system, we concentrated our efforts on a specific

test case within the Westlake area, where the system demonstrated results.

Figure 6.1 display two junctions that do not match. Under this situation, the result is

negative.

Figure 6.1 Junction that do not match

Figure 6.2 display two images that matches. Under this condition, the results will be

positive.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

Figure 6.2 Junction that matches

Figure 5.4.3.3 display an image that depicts the same junction as the previous frame.

Consequently, it will be skipped and not compared with any items in “junction_images”

Figure 6.3 Duplicate Image of Junction

6.2 Project Challenges

In the implementation of our intersection detection system, we encountered several noteworthy

challenges related to the use of Google Street View (GSV) imagery. One of the primary

challenges arose from the fact that GSV imagery may capture junctions from different angles

compared to our test cases. This variance in perspective posed difficulties for our similarity

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

detection model, as it needed to match frames taken at potentially contrasting orientations.

Consequently, achieving accurate similarity comparisons between our test cases and GSV

imagery became a significant challenge.

Furthermore, we grappled with the issue of temporal disparities in GSV imagery. Over time,

buildings, road infrastructure, and their surroundings can undergo substantial transformations.

This temporal shift meant that GSV images often depicted junctions with different colors,

structures, and environmental contexts compared to our current test cases. These alterations

sometimes led to a noticeable discrepancy between the present-day scene and the older GSV

imagery. Navigating these temporal differences and ensuring reliable similarity matching in

such dynamic scenarios posed an intricate challenge that required innovative solutions.

6.3 Objectives Evaluation

Our approach successfully automated the process of route generation, coordination

extraction, and junction detection. However, it's essential to acknowledge that while the

outcomes were generally satisfactory, there exists a scope for improvement. Notably, we faced

two significant challenges as discussed in Chapter 5.5: Implementation Issues & Challenges.

The temporal differences between Google Street View (GSV) imagery and real-time scenarios

can affect the system's accuracy, given that our model relies on GSV images as references.

Furthermore, variations in image angles can result in deviations from the intended viewpoint,

potentially impacting detection accuracy.

In light of these challenges, we adopted a conservative threshold of 0.65 for similarity

scores in our similarity detection model. This threshold selection was a deliberate choice to

mitigate the impact of these challenges on our results. Moving forward, we recognize the

potential for further refining our approach and expanding its adaptability to diverse scenarios

while maintaining a strong foundation built on the lessons learned from this specific test case.

Our ongoing commitment is to enhance the system's robustness, making it even more effective

and versatile.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

6.4 The Feasibility of Using Google Street View API for Junction Image Capture

The utilization of the Google Street View (GSV) API as a tool for capturing images of junctions

along predefined routes offers numerous advantages in the realm of intersection detection. It

provides a readily available source of visual data that can be harnessed for real-time navigation

and intersection recognition. However, the effectiveness of this approach is subject to certain

limitations and considerations.

One primary consideration is the temporal aspect of GSV imagery. GSV provides a vast

repository of street-level images, but the temporal gap between when these images were

captured and the present moment can pose challenges. Street views may have changed over

time due to construction, urban development, or simply the evolution of natural surroundings.

Consequently, there is a possibility that the GSV images may not accurately represent the

current state of junctions. This temporal misalignment introduces an element of uncertainty

into the system, as the junctions depicted in the GSV imagery may not perfectly align with the

physical junctions encountered by drivers.

Another crucial aspect is the variability in image angles and viewpoints captured by GSV.

Street view imagery is collected using multiple cameras mounted on vehicles that traverse

roadways, resulting in images captured from different angles and positions. While this diversity

is valuable for general navigation purposes, it can become a challenge when specific

viewpoints are required for intersection detection. Varied angles can lead to deviations from

the intended perspective, potentially affecting the system's accuracy in recognizing junctions.

Despite these challenges, the GSV API remains a valuable tool for capturing images of

junctions along routes. Its vast coverage and accessibility make it an attractive choice for

automating intersection detection. To enhance its utility further, a potential avenue for

improvement would be to ensure more frequent updates of GSV imagery. The integration of

more recent images into the GSV database would enable a closer alignment between the

captured imagery and real-time junctions, reducing the temporal discrepancies. Additionally,

implementing techniques for selecting images with optimal viewpoints and angles could

enhance the system's accuracy in identifying junctions.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

In conclusion, while Google Street View API serves as a promising tool for capturing

purposeful images of junctions along routes, it is essential to address the temporal disparities

and angle variations inherent in the imagery. Overcoming these challenges through regular

updates and viewpoint optimization could significantly enhance the system's effectiveness in

intersection detection, further solidifying its role as a valuable resource for navigation and route

guidance.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

Chapter 7

Conclusion and Recommendation

7.1 Conclusion

I believe that my project represents a significant contribution to the field of intersection

detection. By devising a novel approach that combines the Google Directions API and the

Google Street View API, I aimed to streamline the process of obtaining route information while

harnessing visual data critical for intersection identification. Through this implementation, I

have demonstrated the potential for more efficient and user-friendly navigation systems.

One of the key strengths of my work lies in the automation of the entire process, encompassing

route calculation and image comparison. This automation has the potential to reduce manual

intervention, which is a substantial step forward in enhancing navigation systems. Additionally,

my project addresses real-world challenges such as variations in image angles and temporal

differences in Google Street View imagery, showcasing my commitment to overcoming

practical obstacles.

Moreover, my project underscores the importance of adopting a multidisciplinary approach,

bringing together geographic data, computer vision, and machine learning to tackle intersection

recognition challenges. This interdisciplinary perspective not only adds depth to my work but

also creates opportunities for future research and innovation in the realm of navigation and

road safety.

In summary, I firmly believe that my project's unique blend of APIs, automation, and

interdisciplinary thinking holds great promise for the improvement of intersection detection

and navigation systems. While there is undoubtedly room for improvement, my work serves as

a solid foundation upon which future developments can build, ultimately contributing to safer

and more efficient road travel.

7.2 Recommendation

Firstly, considering the importance of user interaction and accessibility, we recommend the

incorporation of a user-friendly interface that allows users to input their origin and destination

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

coordinates conveniently. This feature would empower users to define their specific routes,

enabling the system to fetch accurate directions and images tailored to their preferences. Such

a user interface would promote greater engagement and customization, catering to a broader

range of user requirements.

Furthermore, to augment the system's capabilities and user convenience, integration with

widely used mapping services such as Google Maps could be considered. By seamlessly

integrating with Google Maps, our system could leverage its extensive features, real-time

traffic updates, and user-friendly interface. Users could effortlessly plan their routes, and our

intersection detection system could seamlessly fetch the necessary data, providing a

comprehensive and efficient navigation experience.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

REFERENCES

[1] Google, Google Maps platform documentation | Street View Static API | google for

developers, https://developers.google.com/maps/documentation/streetview/ (accessed

Sep. 12, 2023).

[2] X. Li et al., “Assessing street-level urban greenery using google street view and a

modified Green View index,” Urban Forestry & Urban Greening,

https://www.sciencedirect.com/science/article/pii/S1618866715000874 (accessed Sep.

12, 2023).

[3] A. G. Rundle, M. D. M. Bader, C. A. Richards, J. O. Teitler, and K. M. Neckerman,

“Using google street view to audit neighborhood environments,” American Journal of

Preventive Medicine,

https://www.sciencedirect.com/science/article/pii/S0749379710005623 (accessed Sep.

12, 2023).

[4] J. Rousselet et al., “Assessing species distribution using google street view: A pilot study

with the pine processionary moth,” PLOS ONE,

https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0074918

(accessed Sep. 12, 2023).

[5] S. F. Memon, M. A. Memon, S. Zardari, and S. Nizamani, “Blind’s eye: Employing

Google Directions API for outdoor navigation of visually impaired pedestrians,”

Mehran University Research Journal of Engineering and Technology,

https://publications.muet.edu.pk/index.php/muetrj/article/view/282 (accessed Sep. 13,

2023).

[6] Google, “The Google Directions API - Google Maps API Web Services,” Google Maps

platform documentation | directions API | google for developers,

https://developers.google.com/maps/documentation/directions/ (accessed Sep. 13,

2023).

[7] Q. T. Le and D. Pishva, “Application of web scraping and google API service to ... - IEEE

xplore,” 2015 17th International Conference on Advanced Communication Technology

(ICACT), PyeongChang, Korea (South),

https://ieeexplore.ieee.org/abstract/document/7224841/ (accessed Sep. 13, 2023).

[8] H. Jin, F. Jin, Q. Hao, H. Zhu, and X. Yang, “Measuring public transit accessibility based

on Google Direction Api,” The Open Transportation Journal,

https://opentransportationjournal.com/VOLUME/13/PAGE/93/FULLTEXT/ (accessed

Sep. 13, 2023).

[9] V. Balali, E. Depwe, and M. Golparvar-Fard, “Multi-class traffic sign detection and

classification using Google ...,” researchgate,

https://www.researchgate.net/profile/Vahid_Balali/publication/271273346_Multi-

class_Traffic_Sign_Detection_and_Classification_Using_Google_Street_View_Images

/links/55f708f808ae07629dbcbfa1.pdf (accessed Sep. 13, 2023).

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

[10] R. S. Mamidala, U. Uthkota, M. B. Shankar, A. J. Antony, and A. V. Narasimhadhan,

“IEEE Xplore Full-text PDF:,” IEEEXplore,

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7169508 (accessed Sep. 13,

2023).

[11] Y. Jiang, F. Gao, and G. Xu, “Computer Vision-based multiple-lane detection on

straight ... - IEEE xplore,” IEEE Xplore, https://ieeexplore.ieee.org/document/5476151/

(accessed Sep. 13, 2023).

[12] A. Buczkowski, “Why would you use openstreetmap if there is google maps?,”

Geoawesomeness, https://geoawesomeness.com/why-would-you-use-openstreetmap-if-

there-is-google-maps/ (accessed Sep. 13, 2023).

[13] “Angular symbols for standard solar relations,” Angular Symbols for Standard Solar

Relations | EME 810: Solar Resource Assessment and Economics, https://www.e-

education.psu.edu/eme810/node/575 (accessed Sep. 14, 2023).

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

Appendix
A.1 api.ipynb

import tensorflow

import matplotlib

import matplotlib.pyplot as plt

import os

import scipy.misc

import numpy as np

from six import BytesIO

from PIL import Image, ImageDraw, ImageFont

import tensorflow as tf

import pandas as pd

import numpy as np

import keras

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

import h5py

import cv2

from keras.layers import Flatten, Dense, Input,concatenate

from keras.layers import Conv2D, MaxPooling2D

from keras.layers import Activation, Dropout

from keras.models import Model

from keras.models import Sequential

import tensorflow as tf

from scipy import spatial

#from tensorflow.keras.applications.vgg16 import VGG16

%matplotlib inline

def load_image_into_numpy_array(path):

 """Load an image from file into a numpy array.

 Puts image into numpy array to feed into tensorflow graph.

 Note that by convention we put it into a numpy array with shape

 (height, width, channels), where channels=3 for RGB.

 Args:

 path: a file path.

 Returns:

 uint8 numpy array with shape (img_height, img_width, 3)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

 """

 img_data = tf.io.gfile.GFile(path, 'rb').read()

 image = Image.open(BytesIO(img_data))

 image = image.resize((1024, 1024))

 (im_width, im_height) = image.size

 return np.array(image.getdata()).reshape(

 (im_height, im_width, 3)).astype(np.uint8)

#for multiple boxes

def plot_detections(image_np,

 boxes,

 classes,

 scores,

 category_index,

 figsize=(12, 16),

 image_name=None,

 title=None):

 """Wrapper function to visualize detections.

 Args:

 image_np: uint8 numpy array with shape (img_height, img_width, 3)

 boxes: a numpy array of shape [N, 4]

 classes: a numpy array of shape [N]. Note that class indices are 1-based,

 and match the keys in the label map.

 scores: a numpy array of shape [N] or None. If scores=None, then

 this function assumes that the boxes to be plotted are groundtruth

 boxes and plot all boxes as black with no classes or scores.

 category_index: a dict containing category dictionaries (each holding

 category index `id` and category name `name`) keyed by category indices.

 figsize: size for the figure.

 image_name: a name for the image file.

 """

 image_np_with_annotations = image_np.copy()

 if scores is None:

 scores = np.ones_like(classes, dtype=np.float32)

 viz_utils.visualize_boxes_and_labels_on_image_array(

 image_np_with_annotations,

 boxes,

 classes,

 scores,

 category_index,

 use_normalized_coordinates=True,

 min_score_thresh=0.45,

 line_thickness=2)

 if image_name:

 plt.imsave(image_name, image_np_with_annotations)

 else:

 plt.figure(figsize=figsize)

 plt.imshow(image_np_with_annotations)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

 if title:

 plt.title(title)

 plt.show()

loaded_module = tf.saved_model.load('/content/gdrive/MyDrive/FYP2/current_best')

loaded_detection_fn = loaded_module.detect

loaded_fine_tuned_model = loaded_module.detection_model

junction_class_id = 1

num_classes = 1

category_index = {junction_class_id: {'id': junction_class_id, 'name': 'junction'}}

vgg16 = keras.applications.VGG16(weights="imagenet", include_top=True, pooling="max",

input_shape=(224, 224, 3))

basemodel = Model(inputs=vgg16.input, outputs=vgg16.get_layer("fc2").output)

def get_feature_vector(img):

 img = cv2.resize(img, (224, 224))

 feature_vector = basemodel.predict(img.reshape(1, 224, 224, 3))

 return feature_vector

def calculate_similarity(vector1, vector2):

return 1 - spatial.distance.cosine(vector1, vector2)

import requests

import json

Define the API endpoint

endpoint = 'https://maps.googleapis.com/maps/api/directions/json'

Define a list of origins and destinations

origins = ['1066, Jln Seksyen 1/2, Taman Bandar Barat, 31900 Kampar, Perak']

destinations = ['1337, Jln Seksyen 1/3, Taman Bandar Barat, 31900 Kampar, Perak']

params = {

 'key': ‘*’,

 'mode': 'driving'

}

Iterate through origins and destinations

for origin in origins:

 for destination in destinations:

 # Set the origin and destination for this iteration

 params['origin'] = origin

 params['destination'] = destination

 # Make the API request

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

 response = requests.get(endpoint, params=params)

 # Check if the request was successful

 if response.status_code == 200:

 # Parse the JSON response

 routes = response.json()

 else:

 print(f"Error: {response.status_code}")

def get_new_heading(current_heading, turn_direction):

 """

 Calculate the new heading based on the current heading and turn direction.

 Args:

 current_heading: Current heading (e.g., "north", "east", "south", "west").

 turn_direction: Turn direction (e.g., "left" or "right").

 Returns:

 New heading as a string.

 """

 cardinal_directions = ["north", "east", "south", "west"]

 # Define the order of cardinal directions

 if current_heading not in cardinal_directions:

 raise ValueError("Invalid current heading")

 index = cardinal_directions.index(current_heading)

 # Calculate the new index based on the turn direction

 if turn_direction == "left":

 new_index = (index - 1) % 4

 elif turn_direction == "right":

 new_index = (index + 1) % 4

 else:

 raise ValueError("Invalid turn direction")

 return cardinal_directions[new_index]

List to store start locations with associated cardinal directions

junctions = []

Initialize variables

current_heading = None

previous_turn_direction = None

for route in routes['routes']:

 for leg in route['legs']:

 for step in leg['steps']:

 instruction = step['html_instructions']

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

 # Check for headings

 if "Head " in instruction:

 current_heading = instruction.split("")[1].split("")[0].lower()

 # Check for turns

 elif "Turn " in instruction:

 turn_direction = instruction.split("")[1].split("")[0].lower()

 # Check if this "Turn" instruction immediately follows a "Head" instruction

 if current_heading is not None and not junctions:

 # If it's the first instruction, add it without applying get_new_heading

 current_heading = current_heading

 # Calculate new heading based on current heading and turn direction

 else:

 new_heading = get_new_heading(current_heading, previous_turn_direction)

 current_heading = new_heading # Update current heading

 # Extract latitude and longitude

 start_location = step['start_location']

 latitude = start_location['lat']

 longitude = start_location['lng']

 # Create a dictionary with latitude, longitude, and associated directions

 location_with_directions = {

 'latitude': latitude,

 'longitude': longitude,

 'current_heading': current_heading,

 }

 # Append the dictionary to the junctions list

 junctions.append(location_with_directions)

 # Update the previous turn direction

 previous_turn_direction = turn_direction

def shift_coordinates(current_latitude, current_longitude, current_heading):

 """

 Shift coordinates based on current heading.

 Args:

 current_latitude (float): Current latitude.

 current_longitude (float): Current longitude.

 current_heading (str): Current heading ("north", "south", "east", or "west").

 Returns:

 Tuple (new_latitude, new_longitude): New coordinates.

 """

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

 shift = 0.00017

 if current_heading == "north":

 new_latitude = current_latitude - shift

 new_longitude = current_longitude

 elif current_heading == "south":

 new_latitude = current_latitude + shift

 new_longitude = current_longitude

 elif current_heading == "east":

 new_latitude = current_latitude

 new_longitude = current_longitude - shift

 elif current_heading == "west":

 new_latitude = current_latitude

 new_longitude = current_longitude + shift

 else:

 raise ValueError("Invalid current_heading")

 return new_latitude, new_longitude

Update the latitude and longitude in the dictionary

for location in junctions:

 new_latitude, new_longitude = shift_coordinates(location['latitude'],

location['longitude'], location['current_heading'])

 location['latitude'] = new_latitude

 location['longitude'] = new_longitude

import requests

Function to fetch Google Street View image

def fetch_street_view_image(latitude, longitude, heading):

 api_key = ‘*’

 size = '640x480'

 fov = 100

 heading = heading

 pitch = 0

 url =

f'https://maps.googleapis.com/maps/api/streetview?location={latitude},{longitude}&size={si

ze}&fov={fov}&heading={heading}&pitch={pitch}&key={api_key}'

 response = requests.get(url)

 if response.status_code == 200:

 return response.content

 else:

 print('Error: Unable to fetch Street View image')

import cv2

import numpy as np

import matplotlib.pyplot as plt

List to store fetched images

junction_images = []

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

Create a list to store the feature vectors

junction_feature_vectors = []

heading_mapping = {

 "north": 0,

 "south": 180,

 "east": 90,

 "west": 270

}

Fetch images for each set of coordinates

for i, location in enumerate(junctions):

 heading_value = heading_mapping.get(location['current_heading'], None)

 image_data = fetch_street_view_image(location['latitude'], location['longitude'],

heading_value)

 if image_data is not None:

 image_data = cv2.imdecode(np.frombuffer(image_data, np.uint8),

cv2.IMREAD_COLOR)

 image_data = cv2.resize(image_data, (224, 224))

 junction_images.append(image_data)

 # Calculate the feature vector and store it separately

 feature_vector = get_feature_vector(image_data).ravel()

 junction_feature_vectors.append(feature_vector)

frames_dir = '/content/gdrive/MyDrive/FYP2/1fps'

frames_np = []

List all files in the directory

files = os.listdir(frames_dir)

Filter for image files (e.g., '.jpg', '.png', etc.)

image_files = [f for f in files if f.lower().endswith(('.jpg', '.jpeg', '.png', '.gif', '.bmp'))]

Loop through the image files

for i in image_files:

 image_path = os.path.join(frames_dir, i)

 frames_np.append(

 load_image_into_numpy_array(image_path))

confidence_threshold = 0.4

similarity_threshold_prev = 0.5

similarity_threshold = 0.7

previous_junction_image = None

junction_image_counter = 0

for i in range(len(frames_np)):

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

 comparison_result = 0

 image_np = frames_np[i] # Extract the image numpy array

 input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, axis=0),

dtype=tf.float32)

 detections = loaded_detection_fn(input_tensor)

 # Filter out detections with confidence below the threshold

 filtered_indices = detections['detection_scores'][0].numpy() >= confidence_threshold

 filtered_boxes = detections['detection_boxes'][0].numpy()[filtered_indices]

 if len(filtered_boxes) > 0:

 # If there are detections above the threshold, process the image

 print('Frame', i+1, 'contains junctions')

 # Get the image containing junctions

 junction_frame = get_feature_vector(image_np).ravel()

 if previous_junction_image is None:

 # If it's the first detected junction frame, compare it with the first junction image

 comparison_result = calculate_similarity(junction_frame,

junction_feature_vectors[junction_image_counter])

 else:

 # Compare the current frame with the most recently compared junction image

 similarity_score = calculate_similarity(junction_frame, previous_junction_image)

 # If the similarity score is above a certain threshold, consider it the same junction

 if similarity_score > similarity_threshold_prev:

 print("Similarity with previous junction", similarity_score)

 print("Same junctions captured, skipping.......")

 continue # Skip further processing for this frame

 # Now you can compare the frame with the "correct_junctions" data

 comparison_result = calculate_similarity(junction_frame,

junction_feature_vectors[junction_image_counter])

 # Display the images

 fig, axes = plt.subplots(1, 2, figsize=(12, 6)) # Create a subplot with two columns

 # Display image_np on the first subplot

 axes[0].imshow(image_np)

 axes[0].set_title('Captured Junction')

 # Display junction_images[junction_image_counter] on the second subplot

 axes[1].imshow(junction_images[junction_image_counter])

 axes[1].set_title('Correct Junction')

 plt.show()

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

 # Print similarity score

 print('Comparison Result:', comparison_result)

 # Check if the similarity score is above the threshold for triggering audio

 if comparison_result > similarity_threshold:

 print("Results: positive")

 #trigger_raspi_audio(positive)

 else:

 print("Results: negative")

 #trigger_raspi_audio(negative)

 # Update the previous junction image with the current frame

 previous_junction_image = junction_frame

 junction_image_counter+=1

 else:

 # If no detections above the threshold, no junctions detected, discard the image

 print('Frame', i+1, 'does not contain junctions, skipping...........')

 print("\n\n")

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: 2, 3 Study week no.:2

Student Name & ID: Tan Yi Xuan , 2101124

Supervisor: Dr. Aun Yichiet

Project Title: REAL TIME JUNCTION RECOGNITION USING IMAGE

MATCHING

1. WORK DONE
Pick up previous work done in FYP1 and discuss with supervisor.

2. WORK TO BE DONE
Create Google developer account and get API key to be used in API calls in code.

3. PROBLEMS ENCOUNTERED
- no

4. SELF EVALUATION OF THE PROGRESS

- On track

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: 2, 3 Study week no.:4

Student Name & ID: Tan Yi Xuan , 2101124

Supervisor: Dr. Aun Yichiet

Project Title: REAL TIME JUNCTION RECOGNITION USING IMAGE

MATCHING

1. WORK DONE
- generated API key

- explored methods to use Google Street View API calls in python

2. WORK TO BE DONE
- Get data for test case

3. PROBLEMS ENCOUNTERED
- no

4. SELF EVALUATION OF THE PROGRESS

- On track

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: 2, 3 Study week no.:6

Student Name & ID: Tan Yi Xuan , 2101124

Supervisor: Dr. Aun Yichiet

Project Title: REAL TIME JUNCTION RECOGNITION USING IMAGE

MATCHING

1. WORK DONE
- obtained videos that simulate cars dashcam when driving on the road within our testcase

2. WORK TO BE DONE
- re-evaluate project flow

3. PROBLEMS ENCOUNTERED
- no

4. SELF EVALUATION OF THE PROGRESS

- On track

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: 2, 3 Study week no.:8

Student Name & ID: Tan Yi Xuan , 2101124

Supervisor: Dr. Aun Yichiet

Project Title: REAL TIME JUNCTION RECOGNITION USING IMAGE

MATCHING

1. WORK DONE
- explored google directions api and implemented in code

2. WORK TO BE DONE
- discuss with groupmate on integration

3. PROBLEMS ENCOUNTERED
- no

4. SELF EVALUATION OF THE PROGRESS

- On track

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: 2, 3 Study week no.:10

Student Name & ID: Tan Yi Xuan , 2101124

Supervisor: Dr. Aun Yichiet

Project Title: REAL TIME JUNCTION RECOGNITION USING IMAGE

MATCHING

1. WORK DONE
- apply logic of integration with groupmate in code

2. WORK TO BE DONE
- finalize code

3. PROBLEMS ENCOUNTERED
- no

4. SELF EVALUATION OF THE PROGRESS

- On track

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: 2, 3 Study week no.:12

Student Name & ID: Tan Yi Xuan , 2101124

Supervisor: Dr. Aun Yichiet

Project Title: REAL TIME JUNCTION RECOGNITION USING IMAGE

MATCHING

1. WORK DONE
- clean up code and write report

2. WORK TO BE DONE
-

3. PROBLEMS ENCOUNTERED
- no

4. SELF EVALUATION OF THE PROGRESS

- On track

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

POSTER

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

PLAGIARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name(s) of
Candidate(s)

TAN YI XUAN

ID Number(s)

21ACB01124

Programme / Course BACHELOR OF COMPUTER SCIENCE (HONOURS)

Title of Final Year Project REAL TIME JUNCTION RECOGNITION USING IMAGE MATCHING

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: _10 %

Similarity by source
Internet Sources: _______6________%
Publications: ____7_____ %
Student Papers: ______4___ %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report
to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: _Dr. Aun Yichiet___________

 Name: __________________________

Date: ___15 Sep 2023______________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 21ACB01124

Student Name TAN YI XUAN

Supervisor Name DR. AUN YICHIET

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Title Page
√ Signed Report Status Declaration Form
√ Signed FYP Thesis Submission Form
√ Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)
√ List of Symbols (if applicable)
√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review
√ Appendices (if applicable)
√ Weekly Log
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)
√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the

ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my
report.

(Signature of Student)
Date:12/9/2023

