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ABSTRACT

The challenge of navigating complex road systems, especially in urban environments,
necessitates innovative solutions to enhance driver safety and confidence. This project explores
the development of a computer vision system aimed at detecting road junctions in real-time,
providing drivers with timely and accurate guidance. The system comprises two key
components: junction detection and image similarity comparison. Traditional object detection
metrics, such as Intersection over Union (IOU), are ill-suited for the intangible nature of
junctions. As a solution, we propose the use of accuracy as an alternative evaluation metric to
assess the model's ability to classify frames as 'junction present' or 'no junction." Ground truth
labeling of test images as '1' or '0" is performed, facilitating accuracy evaluation. This project's
computer vision model demonstrated significant progress in junction detection accuracy,
enhancing driver safety and navigation. Challenges encountered provide valuable insights for
future refinement, particularly in optimizing cloud-based processing efficiency. The findings
contribute to the advancement of intelligent navigation systems in complex urban

environments.
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Chapter 1

Introduction

Over the years, the domain of computer vision has invested significant efforts in the analysis
and assessment of road condition. Given that majority of society heavily relies on road
networks for their daily activities, continuous research endeavours aim to improve the
convenience and efficiency of road usage. Within this extensive body of research, road
navigation stands out as a crucial domain to investigate and enhance, given its indispensable
role in our lives. In this chapter, I will present the background and motivation driving this
research, elucidate its contributions to the field, clarify the rationale for pursuing this study,

and provide an overview of the proposal’s structure.

1.1 Problem Statement and Motivation

The motivation behind this research is to enhance road navigation for users by harnessing
computer vision technology to accurately identify junctions and intersections in real-time. As
reliance on GPS navigation continues to grow, drivers often encounter difficulties in precisely
recognizing and navigating these crucial pints, resulting in missed turns, incorrect routes, and
potential safety risks. This study seeks to address these challenges by developing a real-time
computer vision model using TensorFlow and RetinaNet. These models are designed to detect
junctions and intersections from live street images captured by a camera connected to a
Raspberry Pi device. The primary goal is to provide drivers with instantaneous navigation
support, thereby improving their driving experience and reducing the likelihood of navigation
errors. Furthermore, we envision future enhancements, including integration with an audible
feedback system, utilization of the Google Map API, and the implementation of an image
comparison model, to create a more comprehensive and refined navigation experience.
However, it is important to note that these enhancements are beyond the scope of the current

project.

1.2 Objectives

The primary objective of this project is to develop a computer vision model capable of detecting
junctions in frames captured by the camera before they are sent to the subsequent block, which

is the image similarity comparison model. The model can be divided into two parts. The first
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part will focus on detecting junctions in the frames obtained from the camera on the Raspberry
Pi. The second part of the model will be responsible for comparing the captured images with
images of correct intersections from Google Street View images, but only under the condition
that a junction has been detected in the previous block of the model. These operations will be
done on the cloud for reasons that will be clarified later in the report.

1.3 Project Scope and Direction

The project involves several critical components and processes aimed at creating an effective
intersection detection system. At its core, we've developed a computer vision model that
accurately detects intersections. This model is hosted in the AWS cloud for efficient

computation.

Within the AWS cloud environment, we have two key models: the Junction Detection
Model and Image Similarity Detection Model. These models utilize Amazon's Elastic Compute
Cloud (EC2) for complex calculations. The Raspberry Pi acts as an essential interface,

triggering audio alerts based on similarity results from EC2.

The project's deliverables include a system that captures street scene images at one frame
per second. These frames are securely stored in AWS Simple Storage Service (S3). Amazon
EC2 retrieves the frames from S3 and performs junction detection and image matching. The
Image Similarity Model compares captured images with Google Street View images,
referencing the driver's route. Together, these components form a comprehensive system for

intersection detection and driver assistance.

1.4 Contributions

In this project, several significant contributions have been made to develop an effective
intersection detection system. Firstly, we meticulously configured the camera to capture
images at a consistent rate of one frame per second, ensuring a continuous stream of visual
data. Secondly, we successfully set up the Raspberry Pi, establishing seamless

communication between the camera and the device to facilitate the transfer of frames.
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One of the pivotal contributions lies in the development of a robust junction detection
model. Leveraging a pre-trained model from TensorFlow as a foundation, we meticulously
fine-tuned and tailored the model to our specific needs. Notably, we made crucial
modifications to the classification head while preserving the box regression head, enabling
the model to accurately detect junctions, a critical element in our intersection detection

system.

Recognizing the computational limitations of the Raspberry Pi, we took a strategic step
by relocating the trained junction detection model to the cloud. This migration ensures that
the model can harness the immense computational power and resources available in the cloud
environment, ultimately enhancing the efficiency and effectiveness of our intersection
detection system. These contributions collectively form the cornerstone of our project's

success, paving the way for further refinement and evaluation in the subsequent phases.

1.5 Report Organization

The details of this research are shown in the following chapters. In Chapter 2, some related
backgrounds are reviewed. Then, Chapter 3 details the system methodology and general work
procedures. And then, Chapter 4 highlights the system diagram and its components. Chapter 5
is about the system operation. Chapter 6 reports the result and feasibility of the proposed

method. Lastly, Chapter 7 concludes the project.
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Chapter 2

Literature Review

2.1 Previous Works using Tensorflow Object Detection Models

TensorFlow Object Detection models are a groundbreaking solution in the field of computer
vision, offering a versatile and efficient approach to detecting objects within images and videos.
These models are pre-trained on large datasets containing a wide variety of objects, enabling
them to recognize and locate objects in real-world scenes accurately. The TensorFlow
framework, developed by Google, serves as the foundation for these models, ensuring robust

and reliable performance.

The Object Detection API represents an open-source toolkit constructed upon TensorFlow,
designed for the training and deployment of object detection models. TensorFlow, an open-
source library, is employed for a wide range of dataflow programming activities. The
underlying TensorFlow platform is primarily written in C++, and it supports a Python or C++

API layer for ease of use and integration. [7]

One of the notable features of TensorFlow Object Detection models is their adaptability.
They provide a starting point for tackling object detection tasks, allowing researchers and
developers to fine-tune and customize the models to suit specific needs as fully utilised by [6]
where the authors extract traffic sign data using Tensorflow Object Detection model. Figure
2.1.1 below displays their extensive use of Tensorflow. This flexibility is invaluable when
addressing real-world applications, as different scenarios may require tailored solutions.
Whether it's identifying pedestrians for autonomous vehicles, detecting defects in
manufacturing processes, or monitoring wildlife, TensorFlow Object Detection models can be

adapted to handle a wide range of challenges.
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o ACQUIRE LOCATE
Create a training dataset )
by exploiting the locations Extract coordinates Calculate the locations
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TRAIN DETECT / CLASSIFY

Train a street sign Object Pass intersection imagery

Detection model using through the newly trained

TensorFlow model and extract positive
detections

Figure 2.1.1 Framework for building and training a deep learning model to detect street

signs using Tensorflow [6]

Furthermore, TensorFlow Object Detection models are compatible with various platforms
and frameworks, making them accessible for deployment in diverse environments. This
versatility has contributed to their widespread adoption in both research and industry, where
they are applied to tasks such as object tracking, instance segmentation, and even more
complex problems like scene understanding. Take [7] for example, they were able identify the
location of traffic lights with moderate number of samples when using TensorFlow approach.
In summary, TensorFlow Object Detection models stand as a testament to the power of deep
learning and its transformative impact on computer vision, empowering developers to create

solutions that enhance safety, efficiency, and automation across various domains.

2.1.1 Weakness

As highlighted in [9], Tensorflow have several drawbacks as well, the first is: Although the
COCO dataset offers a diverse collection of objects, it is not all-encompassing, and certain
objects are absent from it. For instance, the dataset lacks images of junctions, so we manually
obtain and labelled the junction dataset to be able to train the object detection model.
Additionally, the developed assistive tool can identify humans as individuals but does not
possess the capability to differentiate between specific individuals using facial recognition

techniques.
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2.2 Previous Works using Intangible Object Detections

2.2.1 Intersection Detection

Intersection detection plays a pivotal role in modern transportation and urban planning,
addressing critical challenges that impact both traffic efficiency and road safety. In congested
urban areas, efficient traffic management is essential for reducing gridlock and minimizing
commute times. Intersection detection systems provide real-time insights into traffic
conditions, enabling adaptive traffic signal control and efficient traffic management. By
dynamically adjusting signal timing based on current traffic patterns, these systems help
alleviate congestion and enhance the overall flow of vehicles, making urban transportation

more efficient and eco-friendly.

Moreover, intersection detection contributes significantly to road safety. Intersections are
notorious hotspots for accidents and collisions due to complex traffic interactions. Detection
systems equipped with advanced sensors and computer vision technologies can provide drivers
with warnings about potential conflicts and unsafe conditions. Additionally, they can aid in the
development of collision avoidance systems, helping vehicles make split-second decisions to
prevent accidents. As cities grow and traffic volumes increase, the importance of intersection
detection becomes increasingly evident, offering not only convenience but also a crucial layer

of safety in our daily commutes.

This domain is quite sufficiently explored by multiple researchers and there are quite a

few techniques when it comes to intersection detection.

A related study is presented in [4] where they introduce a novel approach for intersection
detection using deep learning and computer vision techniques. The system relies on a multi-
task deep neural network that simultaneously performs two critical tasks: drivable area
segmentation and rotated road bounding box detection as shown in Figure 2.2.1.1. The drivable
area segmentation identifies regions where the vehicle can safely drive, while the rotated road
bounding box detection precisely identifies branch roads within intersections. This method's
effectiveness is demonstrated through experiments in real-world parking lot environments,
where it outperforms traditional model-based techniques and facilitates successful intersection

navigation by guiding the vehicle through the detected branch roads while avoiding obstacles.
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Figure 2.2.1.1 Rotated road bounding box detection results; (a) nonintersection case, (b)
intersection case with rotated bounding box, and (c) unrotated bounding box.[4]

The authors in [5] employed scene semantic segmentation on images, utilizing
convolutional neural networks with an encoder-decoder architecture, to generate an image

where each pixel is classified into specific classes like "road,” "building,” and "sidewalk." This
segmentation image is then used to identify road pixels and the shapes they form, which aids
in distinguishing between different types of intersections. Additionally, the paper emphasizes
the importance of traffic light and sign detection around intersections, focusing on the precise
position and type of these landmarks rather than comprehensive attribute recognition. These
components collectively contribute to the paper's intersection detection methodology as

illustrated clearly in Figure 2.2.1.2.
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Figure 2.2.1.2 Intersection Detection Algorithm in [5]

In contrast to the aforementioned papers, our approach diverges by focusing on a
localization-centric strategy within object detection. Specifically, we initiated a TensorFlow
object detection model with a custom classification head and conducted training exclusively
on junction images that were meticulously annotated with bounding boxes. This distinctive
emphasis on localization enables us to precisely pinpoint intersection-related features,

potentially enhancing the accuracy and specificity of our detection system.

It is worth mentioning that most other junction detection models capture and detect

junctions from aerial-view. [3]

(a) (b) (c)
Figure 2.2.1.3 The roundabout intersection. A top-view. The red arrows in (b)

and (c) point to intersections.
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2.3 Previous Works on Raspberry Pi

The Raspberry Pi, a credit-card-sized single-board computer, has emerged as a powerful and
cost-effective tool in the realm of object detection tasks. Its role in object detection is
particularly significant due to its portability, affordability, and versatility. Raspberry Pi devices
are equipped with various models, each differing in computational power and capabilities, but
even the most modest Raspberry Pi models can be harnessed effectively for object detection
tasks.

One of the key features that make Raspberry Pi suitable for object detection is its ability to
run lightweight machine learning models efficiently. Object detection involves the
identification and localization of objects within images or video frames, and this process
demands computational resources. Raspberry Pi can leverage frameworks like TensorFlow
Lite and OpenCV to deploy pre-trained object detection models, enabling real-time inference
on images or video streams. Its compact form factor makes it suitable for embedded systems,

surveillance cameras, and even robotics applications where object detection is crucial.

Moreover, the Raspberry Pi's GPIO (General Purpose Input/Output) pins allow for
seamless integration with various sensors, cameras, and peripherals, making it adaptable to a
wide range of object detection scenarios. Whether it's monitoring home security, wildlife
tracking, or , the Raspberry Pi offers a flexible platform to implement object detection
solutions. In summary, the Raspberry Pi's affordability, accessibility, and compatibility with

machine learning frameworks make it a valuable asset for object detection tasks.

2.4 Previous Works using Cloud Computing on Object Detection Models

Leveraging cloud computing for object detection models has become a game-changer in the
field of computer vision and artificial intelligence. Cloud computing offers several advantages
for deploying, managing, and scaling object detection models, making it a preferred choice for

businesses, researchers, and developers.

One of the primary benefits of using cloud computing for object detection is the immense

computational power and resources available in the cloud. This concept is exemplified in a
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study by [10], where cloud computing was harnessed to augment the computational and storage
capabilities of local robots. Training complex deep learning models for object detection often
requires significant computational resources, including high-performance GPUs and TPUSs.
Cloud providers like AWS, Azure, and Google Cloud offer access to these resources on-
demand, allowing developers to train and fine-tune their models efficiently. This eliminates the
need for expensive on-premises hardware investments and ensures that even resource-intensive

tasks can be accomplished swiftly.

Scalability is another key advantage of cloud computing. Object detection models deployed
in the cloud can easily scale to handle varying workloads. Whether it's processing a few images
or analyzing a massive video stream, cloud-based object detection systems can dynamically
allocate resources to meet demand, ensuring low latency and consistent performance. This
flexibility is invaluable for applications such as surveillance, autonomous vehicles, and real-

time monitoring.

Security and reliability are paramount when dealing with sensitive object detection tasks,
such as in autonomous vehicles or healthcare applications. Leading cloud providers invest
heavily in security measures, including data encryption, access controls, and compliance
certifications. This ensures that object detection models deployed in the cloud meet rigorous

security standards and can be trusted for mission-critical applications.

2.4.1 Amazon Cloud Service

In this project, Amazon Web Services (AWS) is chosen to be the cloud service provider due to
its comprehensive suite of cloud computing services, extensive scalability options, and robust
infrastructure, which align with the requirements and demands of the object detection tasks and
computational needs of the project. Specifically, we chose to use Amazon Elastic Compute
Cloud (EC2) to handle the computation. This cloud service offers machine images that
encapsulate all the necessary components for a server, including the operating system. This
simplifies the setup process and ensures a streamlined and efficient environment for running
our object detection models. Additional settings can be customized to tailor CPU, memory, and

networking capacity to meet the specific requirements of our object detection tasks. [12]
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When compared to local processing, cloud-based object detection using AWS EC2
typically exhibits faster processing times. This advantage is attributed to the immense
computational power and resources available in the cloud, enabling rapid execution of object
detection tasks. This can be particularly beneficial for scenarios where real-time or low-latency
responses are crucial, as cloud-based processing can deliver results more quickly and
efficiently compared to relying solely on local resources. The speed between local and cloud
is visualised in Figure 2.4.1.1.

CLOUD VS LOCAL PROCESSING TIME

Figure 2.4.1.1 Cloud vs Local Processing Time [12]

In summary, cloud computing has revolutionized object detection by providing access to
vast computational resources, scalability, and simplified deployment and management. It has
democratized the development and deployment of object detection models, making them
accessible to a broader audience while ensuring reliability and security, ultimately driving

innovation in various industries.

2.4.2 Weakness
Although cloud computing presents numerous advantages for various tasks, it is not without
its inherent drawbacks. Chief among these concerns is network dependence, where factors such

as network outages or congestion can disrupt access to the cloud-based model, potentially
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rendering critical services inaccessible. Additionally, the reliance on remote cloud resources
may introduce latency into the system, resulting in delays when making predictions compared
to running inference locally. This is discussed in detail in [11]. This latency issue is particularly
relevant in applications necessitating real-time or low-latency responses, highlighting the need
for a careful consideration of the trade-offs between cloud-based computational power and the

imperative of timely decision-making in certain scenarios.
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Chapter 3
Proposed Method/Approach

3.1 Methodologies and General Work Procedures
The overall system consists of four parts: image acquisition, junction detection and image
comparison (to be reported by my groupmate) and audible feedback.

3.1.1 Image Acquisition

The camera would need to be positioned at the front of the car, oriented toward the road. It
will capture a video and a python program will handle video splitting, obtaining a frame for
every second. These images will be fed into a junction detection model that uses RetinaNet and

ResNet as the pre-trained backbone network.

3.1.2 Junction Detection

The object detection architecture employed is RetinaNet, a single-stage object detection
network that employs a feature pyramid network to identify objects across a range of scales
and aspect ratios. However, | utilized a particular pre-trained checkpoint designed for the
ResNet50_v1 architecture. ResNet50 vl is a frequently employed backbone network in object
detection models. The code fetches the pre-trained checkpoint tailored for ResNet50 V1,
which has been trained on the COCO dataset. Subsequently, it restores all layers except the top
classification layer within the network. This enables the smooth transfer of weights to the

RetinaNet architecture.

The reason for using the ResNet50_v1 checkpoint stems from its widespread adoption as a
backbone network in object detection models and its proven ability to extract essential features
from images effectively. The RetinaNet architecture implemented in the code necessitates a
backbone network for feature extraction, and ResNet50 v1 is a popular selection owing to its

robust performance track record.

Beyond the previously mentioned architecture and pre-trained checkpoint specifications,
the refinement of the junction detection model included additional fine-tuning using a

dedicated dataset meticulously annotated for the purpose of junction detection. This training
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dataset comprised Google Street View images, painstakingly annotated using the Labellmg
tool to outline bounding boxes around the junction present in the images. Leveraging this
annotated dataset, the RetinaNet model undergo training to ensure that it is precisely
customised for the specialised task of junction detection.

In the training phase, the RetinaNet model that was initially configured with a single class,
“junction” to detect junction as per the previous approach. In an effort to enhance the model’s
performance, | acquired new training data and labelled it using the Labellmg tool before
employing it to train the RetinaNet model. The hyperparameter of the model during the training
remained consistent with those utilised in the previous work, with the sole adjustment being
the integration of a larger training dataset. After training, the model’s state was saved for future

use in detecting junction in new images.

3.1.3 Audible Feedback

As aforementioned the system will provide audible feedback to the driver, signalling the correct
turn or warning against incorrect turns. There will be 2 types of audible feedback; correct and
incorrect audible sounds. When the driver is approaching the correct junction, the system will
trigger the correct audible sound to inform the driver that is the correct turn to take. On the
other hand, the system will trigger the correct audible sound to inform the drive that it is the
correct turn to take. On the other hand, the system will trigger the incorrect audible sound as
soon as it detects that the driver has taken the wrong turn. By listening to the feedback sound,
drivers are able to identify whether they have taken the correct or incorrect turns. The decision
of what types of sound to make in specific situation is determined by a Python program code,

which also relies on the output from the model.

3.1.4 Cloud Computing

Due to the limitation in computing power in Raspberry Pi, I will be a virtual server, Amazon
EC2 to host and run the junction detection model and other codes such as image similarity
detection and so on. The input for the junction detection model, which are the frames mentioned

in Section 3.1.1 will be uploaded to Amazon S3 to provide easy access to the EC2 instance.
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3.2 Study Area and data
Our research was conducted in Westlake, a neighbourhood just beside UTAR, Kampar. The

figure below shows the exact location of our test case.

Westlake, Kampar

The training data can be accessed here:
https://drive.google.com/drive/folders/IHdFo0P83sj5dUji Y Y EqPsgSdtE37ZkF8?usp=sharin
g

The testing data can be accessed here:
https://drive.google.com/drive/folders/IESYGYOqdUYT1wHcu  ry5poARVBUQWNSs?usp
=sharing
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https://drive.google.com/drive/folders/1HdFo0P83sj5dUjiYYEqPsgSdtE37ZkF8?usp=sharing
https://drive.google.com/drive/folders/1E8YGYOqdUYT1wHcu__ry5poARVBUQWNs?usp=sharing
https://drive.google.com/drive/folders/1E8YGYOqdUYT1wHcu__ry5poARVBUQWNs?usp=sharing

The table below shows the summarisation of the dataset:

Table 3.2.1 Summarisation of Dataset

Preprocessing

Dataset Training Data Testing Data
Size 1085 images 41 images
Collection Snipping Tool (Google Street View) Captured using camera
Method
Image Cropped unnecessary parts, resized to 1024 x 1024 | -

Annotation Tool

Labellmg (bounding box labeling)

Manually labelled

Annotation XML file (exported from Labellmg) txt file
Format

Annotation Fine tune the pre-trained model Calculate accuracy
Purpose
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Chapter 4
System Design

4.1 System Block Diagram

—»  Frames Raspi Audio

vvvvvvvvvvv

Origin and Destinations Image Similarity
Detection Model

t

So0gle Google Street
b APl | ——»  Corordination ——— yio i —— Images of Correct Junctions

Figure 4.1 System Block Diagram

4.2 System Components Specifications

4.2.1 Camera + Raspberry Pi

The process commences with the front-facing camera capturing the street scene in video
format. A Python program running on the Raspberry Pi then splits this video into individual
frames at a rate of one frame per second. These freshly captured frames are the input for the

subsequent stage of processing.

4.2.2 Amazon S3 (Simple Storage Service) (made some changes — newly added)

The Amazon S3 (Simple Storage Service) is a cloud storage service offered by one of the
pioneers of cloud services providers in the market, Amazon Web Services (AWS). AWS is
known for its scalability and security. It enables users to conveniently store and retrieve various
types of data, including files and objects via the internet. The purpose of S3 in this project is
that it will be used to store the frames that are uploaded from the Raspberry Pi which was
initially capture by the camera. The reason of uploading the frames into Amazon S3 will be

explained in Section 4.2.3.
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4.2.3 Amazon EC2

The Amazon EC2 (Elastic Computer Cloud) is a web service provided by Amazon Web
Services (AWS) that offers flexible and scalable computing resources to handle any
computation that is needed in the cloud. Users can easily start and oversee virtual servers,

referred to as ‘instances’, on-demand.

The Raspberry Pi 4 Model B, with its 1.8 GHz quad-core Cortex-A72 processor and 2GB
SDRAM, faces processing power limitations when tasked with running both the Junction
Detection Model and Image Similarity Detection Model. These models demand substantial
computing resources, which can strain the Raspberry Pi's capabilities. To address this
challenge, we've opted for an alternative approach—Ileveraging Amazon EC2 for cloud
computing. By migrating both models to Amazon EC2, we can harness the cloud's
computational prowess, relieving the Raspberry Pi of this heavy load. Additionally, to further
optimize system performance, we've implemented a process where the camera-captured frames
are uploaded to Amazon S3. This strategy significantly reduces the processing burden on the
Raspberry Pi when interfacing with EC2. Configuring Amazon EC2 instances to retrieve input
images directly from Amazon S3 proves to be a more efficient approach compared to
transmitting images as payloads directly to EC2. Following cloud-based computations, the

results are then relayed back to the Raspberry Pi for further processing.

4.2.3.1 Junction Detection Model
In this report, the junction detection model undergoes fine-tuning with an expanded dataset
comprising a larger number of annotated junction images obtained from Google Street View.
The hyperparameters of the model remain consistent with those utilized in the prior work.
Following fine-tuning, we will save the model’s state for future use in detecting junctions
within new images. Then the trained model will be uploaded to Amazon EC2. The model in
EC2 will get the frames from Amazon S3 and then perform junction detection on said frames.
If there is existence of junction in the frames, the model will then send that frame to the

following block which is Image Similarity Detection Model for further processing.
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4.2.3.2 Image Similarity Detection Model
This part is done by my groupmate, Tan Yi Xuan.

4.2.3.3 Google Directions API
This part is done by my groupmate, Tan Yi Xuan.

4.2.3.4 Google Street View API
This part is done by my groupmate, Tan Yi Xuan.

4.2.4 Raspi Audio

As mentioned in the earlier part of the paper, the system will provide 2 types of audible
feedback to the driver. The python code of Raspi Audio is employed in the Raspberry Pi device
which and the outcome of the python code will be determined by the similarity result obtained
from the preceding block. In essence, if the detected junction is the correct junction, the system
will initiate the corresponding correct auditory signal; conversely when user has taken the

wrong junction, the system will prompt the system to emit the corresponding feedback.
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Chapter 5
System Implementation

5.1 Hardware Setup

The hardware that will be used in this project includes a laptop, a Raspberry Pi device, and a
camera. The laptop will serve the purpose of configuring the Raspberry Pi as well as training
the junction detection model. Then the Raspberry Pi will be used as an edge device to perform
the computer vision tasks. The variant of the Raspberry Pi is Raspberry Pi 4 Model B. The
camera will capture the input, which consist of street images. An audio system will be
employed to provide output, informing the user whether the turn is correct or if they have taken

the wrong turn.

Table 5.1 Specifications of laptop

Description Specifications
Model ILLEGEAR ROGUE
oS Window 10 Pro (Version 21H2)
CPU Ryzen 4800H
RAM 16GB
Graphic Nvidia GTX1650 Tl
Storage 512GB M.2 PCle NVMe SSD
Table 5.2 Specifications of Raspberry Pi
Description Specifications
Model Raspberry Pi 4 Model B
oS Debian GNU/Linux 11 (bulleye)
CPU Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.8GHz
RAM 2GB LPDDR4-3200 SDRAM
Hard Disk SanDisk EDGE 16GB
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Table 5.3 Specifications of Camera

Description Specifications
Model Rapoo XW180
Frame Rate Up to VGA 30FPS
Video Resolution FHD 1080P/HD 720P
Connector Type USB 2.0

Camera

Figure 5.1 The setup of the Raspberry Pi 4 Model B

5.2 Software Setup
The software that will be used in this project includes Jupyter notebook, TensorFlow,
Raspberry Pi OS, Amazon EC2, Amazon S3.

5.2.1 Jupyter notebook
Table 5.4 Specifications of Jupyter Notebook

Description Specifications
Version 7.0.3

5.2.2 TensorFlow

Table 5.5 Specifications of TensorFlow

Description Specifications
Version 2.13.0
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5.2.3 Operating system of Raspberry Pi
Table 5.6 Specification of Operating System of Raspberry Pi

Description Specifications
Version Debian 11 (Bullseye) 64-bit

5.2.4 Amazon EC2
Table 5.7 Specification of Amazon EC2

Description Specifications
CPU 2 virtual CPU
RAM 8GB

oS Amazon Linux 2023

5.3 Settings and Configuration
5.3.1 Jupyter notebook
The settings and configuration that was done on Jupyter notebook is not much because it is

only the platform to train the Junction Detection Model.

5.3.2 TensorFlow

The pre-trained model that was used to train the Junction Detection Model is TensorFlow.
Initially TensorFlow’s Object Detection has 2 heads which are object detection head and box
regression head. Each of these head is responsible for a specific task or output. For instance,
classification head will determine what objects are present in an image and assigning class
labels to those objects. On the other hand, box regression head is responsible for refining the
bounding box coordinates of the detected objects. Our approach in this project is that we will
preserve the weight of the box regression head and then make changes to the classification
head. In a simpler terms, we train the classification head with manually labelled training data
to be able to classify between junction and non-junction images while restoring the weight of

the box regression head.
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5.3.3 Raspberry Pi OS

The Raspberry Pi device was configured with a 32-bit Debian 10 initially. After that we
upgraded it to 64bit of Debian 11 as the device is equipped with a 64-bit CPU, which can
significantly enhance the system’s overall performance. We observed that the execution of

python to be slightly faster than the previous version.

5.3.4 Amazon S3

The configuration of Amazon S3 is done through the Amazon S3 console. After that we also
created a bucket in the Amazon S3 to store the frames that will be uploaded from Raspberry
Pi. After that we need to make sure that Amazon S3 is configured to be able to connect to
Amazon EC2 as the frames that stored in the S3 will be used by the EC2. The connection
between them requires a few steps. First of all, we need to run “AWS configure” in EC2 and
insert access key and secret access key to verify the credentials. With the help of “boto3”
library, EC2 can then establish client connection to S3.

5.3.5 Amazon EC2 (Elastic Computing Cloud)
The configuration of Amazon EC2 is done by launching the instance also known as virtual

server via AWS (Amazon Web Service) console.

The initial consideration when setting up an instance in EC2 is that we need to select the
appropriate AMI (Amazon Machine Image) according to our usage. Think of AMI as similar
to an ISO image, as it will contains components like operating system, applications and other
additional libraries that will be installed on the instance. For our case we are going to choose
Linux x86_64 HVM kernel-6.1 as the AMI of our virtual server.

Amazon mac0S Ubuntu Windows Red Hat SUSE Li
Linux

aws ubuntu® || B Microsoft || @ RedHat

&=
Mac

Amazon Machine Image (AMI)

Amazon Linux 2023 AMI| Free tier eligible
ami-0 7459521 (64-bit (x86)) / ami-01bc7bde90041 1ddc (64-bit (Arm)) v
NA enabled: true  Root device type: ebs

Description

Amazon Linux 2023 AMI 2023.1.20230912.0 x86_64 HVM kernel-6.1

Architecture AMIID

/M,mm—,‘ ami-0a2e10¢1b87459531
Figure 5.2 The configuration of AMI in EC2
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The next configuration is the instance type of the EC2. Instance Types refer to virtual
servers capable of running applications. AWS offer different combination of CPU, memory,
storage, and networking capabilities allow the users to tailor their resource allocation
accordingly. In our case, we selected instance type of t2.large as it is aligned to our model’s
need and is more cost efficient.

¥ Instance type info

Instance type

t2.k

ration: true (D All generations

Compare instance types

On-Demand SUSE pric: 2216 USD

Additional costs apply for AMIs with pre-installed software

Figure 5.2 The configuration of instance type in EC2

By default, an Elastic Block store (EBS) is configured with volume size of 8GB of SSD. In
our case, we configure the EBS to 25GB.

¥ Storage (volumes) info

v
2
B

EBS Volumes Hide details

¥ Volume 1 (AMI Root) (Customn)

Storage type Info Device name - required Info Snapshot Info

EBS Jdev/xvda snap-0296c4bd17a888d11

Size (GiB) Info Volume type info 10PS Info

|25 ‘ ‘gp% v‘ ‘mno

Delete on termination Info Encrypted info KMS key Info

|VES v ‘ ‘ Not encrypted v ‘

KMS keys are only applicable when
cryption is set on this volume.

Figure 5.3 The configuration of EBS in EC2

Other than initial configuration of the EC2, the installation of libraries into the server is
also required. As aforementioned, both of the Junction Detection Model and Image Similarity
Detection Model are uploaded to the virtual server EC2 which means that EC2 also requires

some libraries to be installed in order to perform detection as well as similarity calculation.
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5.4 System Operation (screenshot)
5.4.1 Video Acquisition
The driving scene video is obtained by connecting a web camera to Raspberry Pi and

capturing the camera input.

5.4.2 Video Frame Extraction

On Raspberry Pi, | performed video frame extraction using a frame rate of 1fps to get only 1
frame per second. Figure 5.4.2.1 shows the input video and Figure 5.4.2.2 shows the output
frames of the video.

W video.mp4

Figure 5.4.2.1 Input Video

M frame_0031jpg : M frame_0032jpg : P frame_0034,pg : M frame_0035,pg : M frame_0036jpg : M frame_0037jpg

,‘Y; £ z , SEET

M frame_0042jpg : M frame_0043.pg

M frame_0038.jpg 3 M frame_0039.jpg

Figure 5.4.2.2 Output Frames

5.4.3 Sending Frames to Amazon S3
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After authenticating credentials at Jupyter Notebook level, the Raspberry Pi is able to send the
frames to an Amazon S3 bucket that we previously configured with the following code (Figure
5.4.3.1)

# Loop through the Llist of files and upload each image to 53
for local_file in local files:
if local file.lower().endswith(({ .jpg", "-Jjp

# Con-tEy Fh '} + 1 3 on hiort bBow T}
# Specify the destination object key (

object_key = f'frames/{local file}

]

ne Local patn T The i1mage jilLe

= ps.path.join({local directory, local file)

=
Q
al
w

ll—l
(N
=]
o

[u=]

lI'D

o
W
=+
o

|

# Upload the image to 53

s3.upload file(local image path, bucket name, object key)

e nti £kl Tzl = A afhl 0 © hige o S oLl e = = FE Lo e
#orint(f"Uploaded: {loc iage_path} to 53 bucket: {bucket name} with object key: {object_key

[ Lmag am Y ) !
ocad L ge ICReT name; L oD ey 10Dject_Rrey;

Figure 5.4.3.1 Code Snippet to send images to Amazon S3

The figure below shows the Amazon S3 console and the frames that have been uploaded.

Amazon §3

frames/

» © ® © @ 60 G O

Figure 5.4.3.2 Amazon S3 Console

5.4.4 Connect to Amazon EC2 to run Python Script
After that, the Raspberry Pi need to use Secure Socket Shell (SSH) to connect to the EC2
instance to be able to run the python script that has been previously uploaded to the virtual

server. The figure below shows the EC2 instance on AWS console.
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@ New EC2 Experience % Instances (1/1) info
el us what you think

[ Frindinstanc r tag (case-sensitive) |
EC2 Dashboard Clear filters
EC2 Global View
Evente Name v | Instance ID | instancestate v | Instancetype ¥
‘ junc-detect i-0b82dcb7eb6e3aces Ostopped @A t2large

¥ Instances
Instances
Instance Types
Launch Templates
Spot Requests
Savings Plans
Reserved Instances
Dedicated Hosts

Capacity Reservations

Instance: i-0b82dcb7eb6e3ace5 (junc-detect)

v Images

AMIs Details Security Networking Storage Status checks Monitoring Tags

AMI Catalog

¥ Instance summary Info
¥ Elastic Block Store

Instance ID Public IPv4 address
Volumes i-0b82dcb7ebbe3ace5 (junc-detect) -
Snapshots

1Pv6 address Instance state
Lifecycle Manager _ O stopped

Figure 5.4.4.1 Amazon EC2 Console

5.4.5 Handle Output to get Comparison Result

I configured the SSH connection and command so that the EC2 will print the ouput to the
Jupyter Notebook in real time. In this way, | can capture the result of each of the frames instead
of getting the results only when the python script has finished running. Figure 5.4.5.1 shows

the output of the EC2 python script in Jupyter Notebook.

Frame 1 contains junctions

1/1 [==============z===z====z=========] - 15 BG4ms/step
Comparison Result: 8.7228862587828129
Audio: 1

Figure 5.4.5.1 Output from the EC2 python script

Upon getting this data, | extracted “Audio: 17 or “Audio: 0” from the output.

5.4.6 Trigger Raspi Audio
The figure below shows the code snippet to extract the keywords and play raspi audios

accordingly.

# Print the output in real-time
for line in iter(stdout.readline, ""):
print(line, end="")
if "Audio: 1" in line:
print(”"Playing audio for positive result™)

play_beep_sound(pos)

elif "Audio: @" in line:
print(”"Playing audio for negative result™)

play_beep_sound(neg)

Figure 5.4.6.1 Code snippet for Handling Output
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5.5 Implementation Issues & Challenges

5.5.1 Migration of code to Raspberry Pi

Migrating code to Raspberry Pi from the laptop that was used to train the model can often
encounter compatibility issues due to differences in operating system, and software
dependencies. To solve this kind of problem, I must go through some research to download
certain software dependencies and also finding the way of achieving the same output but on
different operating systems. For example, making audible “beep” can be very easy on device
that has Window Operating System as they just need to import “winsound” library to the python
code and by using “winsound.Beep()” the system will make sound. On the other hand, we will
need to install “beepy” libraries for Debian 11. Then the sound can be trigger by calling
“beepy.beep()” in the code.

5.5.2 Computation Limitation of Raspberry Pi

The next challenge is the performance of both Junction Detection Model and Image Similarity
Detection Model noticeably decreased after migrating the code from the laptop that trained the
models to the Raspberry Pi device, primarily due to the computational limitations inherent to
possesses significantly lower processing power and memory capacity compared to most
laptops. As a result, computationally intensive task that run smoothly on a laptop will
experience delays or execution time to complete the execution of the code is longer than

expected on the Raspberry Pi device.

With that said, we looked for alternative ways and found that cloud service like Amazon
Web Service (AWS) which is one of the pioneers of web service that one can find in the market
nowadays can help us to overcome the issue of computational limitation in the Raspberry Pi.
In simpler terms, both computationally intensive models will be uploaded to a virtual server in
the cloud and most of the computation will be done in the cloud. Meanwhile Raspberry Pi will
just handle in the input images which are the frames taken by the camera and upload those
frames to the cloud to be executed by the model that is currently hosted in the virtual server in
AWS. Furthermore, Raspberry Pi will also need to handle the output from the cloud which is

the similarity result then trigger the corresponding audible feedback.
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5.5.3 Internet Connectivity Issues

As mentioned earlier, both the Junction Detection Model and Image Similarity Detection
Model are hosted in the cloud. This implies that the system requires a consistent and reliable
Internet connection to execute the models. The Raspberry Pi device will rely on the internet to
upload the frames captured by the camera so that these frames can be processed by the models,
other than that the Raspberry Pi also need to handle the result that was returned by the model
from the cloud. In the previous work, only a very small part of the system requires internet
access which is the part where the system need to use Google Direction API to get the
coordination as well as Google Street View API to get the image of correct junction. However,
now even the Junction Detection Model and Image Similarity Detection Model required
internet connectivity to perform detection.

5.6 Concluding Remarks

In conclusion, this project has showcased the potential of harnessing a combination of
advanced technologies, from deep learning models to cloud-based solutions, to address real-
world challenges in road safety and driver support. While the journey has been marked by its
share of challenges, including compatibility issues during code migration and the inherent
limitations of Raspberry Pi's computational power, we've successfully navigated these
obstacles by leveraging the capabilities of Amazon Web Services (AWS) to offload intensive
computations to the cloud. This shift to a cloud-based approach not only enhances the system's
performance but also underscores the critical importance of a reliable internet connection in

our setup.
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Chapter 6
System Evaluation and Discussion

6.1 System Testing and Performance Metrics

Traditional evaluation metrics such as Intersection over Union (I0U) for object detection rely
on precise object boundaries, which are well-defined for tangible objects like vehicles or
pedestrians. However, the challenge with junction detection lies in the intangible nature of
junctions; they don't have fixed boundaries, making it impractical to use bounding boxes and

IOU as evaluation criteria.

As a solution, we propose using accuracy as an alternative metric for assessing the model's
performance. In this context, accuracy will measure the model's ability to correctly classify
images as either 'junction present’ or 'no junction.' To establish ground truth, manual labelling
of test images as '1' (indicating the presence of a junction) or '0" (indicating no junction) will
be performed. The model's predictions will then be compared to this ground truth, allowing us
to determine its accuracy in detecting junctions. This approach accounts for the unique
characteristics of junctions and provides a meaningful measure of the model's real-world

performance.

I will be using the metrics below:

A B TP+ TN
WAy = Tp + TN + FP + FN
1)
2 x Precision x Recall
F1 Score = —
Precision + Recall
2)

6.2 Testing Setup and Result

I used 41 test images to test the model’s performance. They are frames that are split from a
captured video in Westlake, Kampar. | manually labelled the test images with 1 or 0 depending
on whether the image contain junction or not. The ground truth value is saved in an .txt file.

The link to access the test data is provided in Section 3.2.
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The result of the model is as follows:
Table 6.2.1 Results of Model

Metrics Score
Accuracy 0.71
F1 Score 0.67

6.3 Project Challenges

One of the significant challenges faced during this project was the intangible nature of junctions
as objects. Determining the precise boundaries for labeling training data, such as where the
bounding box should start and end, proved to be a complex task. This inconsistency in labeling
may have contributed to suboptimal model performance after training. Additionally,
environmental factors like obstructions and varying weather conditions posed challenges in

accurately detecting junctions.

Another noteworthy challenge was related to latency when utilizing cloud services. While
the performance of using Amazon EC2 for computation improved significantly compared to
the Raspberry Pi, there remained a noticeable delay in processing due to the utilization of cloud
services. It is possible that the EC2 instance may not have been fully optimized to handle the

extensive processing demands, leading to latency issues.

6.4 Objectives Evaluation

The primary goal of this project is to accurately detect junctions in frames captured by the
camera. Junction detection accuracy is measured using the accuracy metric. This metric
assesses the model's ability to correctly identify whether a junction is present in a given frame.
The achieved accuracy score is 0.71, indicating a substantial success in meeting this primary

objective.

Another critical objective is to assess the efficiency and latency of cloud-based processing
since | are using cloud computing. This evaluation considers the time required for image
processing and analysis on cloud infrastructure, specifically Amazon EC2. It helps determine

whether the cloud-based approach aligns with project requirements and expectations. It is
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essential to highlight that during the project's implementation and testing phases, a significant
latency was observed in the processing pipeline. This latency, while expected in cloud-based

processing, was particularly noticeable and merits consideration for future improvements.

6.5 Concluding Remarks

In conclusion, this project has achieved notable success in addressing the challenging task of
junction detection. Traditional metrics like Intersection over Union (10U), which are suited for
well-defined tangible objects, were impractical for junctions due to their intangible nature. As
a solution, we introduced accuracy as an alternative evaluation metric, which proved effective
in assessing the model's real-world performance. With an accuracy score of 0.71, the model
demonstrated its capability to distinguish between images with and without junctions, aligning

with our primary objective.

However, it's crucial to acknowledge the project's significant challenges. The intangibility
of junctions complicated the labeling process during training, potentially impacting the model's
performance. Environmental factors, including obstructions and varying weather conditions,

posed further challenges in achieving accurate junction detection.

Moreover, the integration of cloud-based processing, while enhancing computational
capabilities with Amazon EC2, introduced noticeable latency into the system. This latency,
although expected in cloud computing, calls for optimization and future improvements to

streamline processing times.

In summary, this project has made substantial progress in achieving its primary objectives,
notably in junction detection accuracy. Yet, the challenges encountered, such as the unique
nature of junctions and latency issues, highlight areas for future refinement and optimization.
These findings provide valuable insights for further enhancing the efficiency and effectiveness

of our system.
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Chapter 7
Conclusion and Recommendation

7.1 Conclusion

The decision to harness the power of cloud computing services, as opposed to local execution
on the Raspberry Pi, offers a range of signification advantages. First and foremost, utilizing
AWS EC2 enables us to seamlessly scale our computational resources in response to
fluctuating workloads, ensuring optimal processing efficiency at all times. This scalability not
only enhances performance but also promotes cost efficiency, as resource-intensive tasks are
offloaded to EC2, reducing the computational load and translating into cost savings and
improved energy efficiency for the Raspberry Pi. Moreover, AWS's robust and highly available
infrastructure guarantees uninterrupted accessibility and the continuous operation of our
models, boosting overall reliability. Additionally, the remote manageability afforded by EC2
empowers us to efficiently oversee and monitor our instances, simplifying maintenance,
updates, and troubleshooting processes. Lastly, AWS's centralized data storage solutions, such
as S3, enhance our data management practices, further streamlining our project's objectives.
To summarise, the primary object of this project is to bolster driver confidence by delivering
real-time audible feedback throughout their journeys and these cloud-based advantages serve

as essential enablers in achieving that objective.

7.2 Recommendation

As we reflect on the overall satisfactory results achieved in the current project, it is worth
considering avenues for further enhancement and exploration. One promising direction is to
delve into additional AWS services, particularly Amazon SageMaker, for the implementation
of machine learning solutions. SageMaker offers a comprehensive suite of tools and
capabilities tailored for machine learning model development, training, and deployment.
Exploring SageMaker’s potential can open up new horizon in out project, enabling us to
leverage its streamlined workflows, built-in algorithms, and scalable infrastructure. By
incorporating SageMaker into out project’s evosystem, we can aim for even greater efficiency,

scalability, and invocation in our machine learning endeavours.

The next future work that can be done is expanding the scope of our study area and

increasing the number of training data. Due to the constraints of time and manpower in this

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

33



project, the model was trained primarily using data from the immediate vicinity of UTAR.
However, we strongly believe that the potential of this system extends far beyond its current
boundaries. With the implementation of an expanded training dataset, we firmly believe that
the system can demonstrate remarkable performance improvements. By including data from a
wider geographic area, we can enhance the model’s ability to recognise various road conditions
and driving scenarios. This expanded capability would position the system as a valuable

support tool for drivers in diverse real-world situations.
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Appendix

A.1 Raspi_code.ipynb
# Split Video into Frames
import cv2 as cv

import 0s

# Open the video file
video_path = 'wrongl.mp4" # Replace with the path to your video file
cap = cv.VideoCapture(video_path)

# Check if the video file was opened successfully
if not cap.isOpened():
print("Error: Could not open video file.")
exit()

# Get the frames per second (FPS) of the video
fps = int(cap.get(cv.CAP_PROP_FPS))

# Define the output directory where frames will be saved
output_directory = 'output’ # Change this to your desired output directory
os.makedirs(output_directory, exist_ok=True)

frame_count =0

# Loop through the frames
while True:
# Read the next frame
ret, frame = cap.read()

# Break the loop if we have reached the end of the video
if not ret:
break

# Save the frame to the output directory
frame_filename = os.path.join(output_directory, f'frame_{frame_count:04d}.jpg’)
cv.imwrite(frame_filename, frame)

frame_count += 1

# Skip frames to capture one frame per second
frames_to_skip = fps- 1
for _in range(frames_to_skip):

cap.read()

# Release the video capture object and close any open windows
cap.release()
cv.destroyAllWindows()

print(f*Saved {frame_count} frames to {output_directory}.")
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print(f"Video FPS: {fps}")

# Upload Frames to Amazon S3 Bucket
import os

#credentials

os.environ[AWS_ACCESS_KEY_ID] ='AKIAQVCXYEDYCERTQRA4Y"
os.environ[AWS_SECRET_ACCESS_KEY'] ="'
os.environ[AWS_DEFAULT_REGION'] = "ap-northeast-1'

import 0s
import boto3

# Initialize an S3 client
s3 = boto3.client('s3")

# Specify your S3 bucket name
bucket_name = "junction-detection’

# Specify the local directory path containing the images
local_directory = 'output’

# List all files in the local directory
local_files = os.listdir(local_directory)

# Loop through the list of files and upload each image to S3
for local_file in local_files:
if local_file.lower().endswith((.jpg’, ".jped’, .png’, ".gif', .bmp"):
# Specify the destination object key (the path and filename in the bucket)
object_key = f'frames/{local_file}' # Include the filename in the object_key

# Specify the local path to the image file
local_image_path = os.path.join(local_directory, local_file)

# Upload the image to S3
s3.upload_file(local_image_path, bucket_name, object_key)

#print(f"Uploaded: {local_image_path} to S3 bucket: {bucket_name} with object key:
{object_key}")

# Audio function
import beepy
def play_beep_sound(value):
pygame.mixer.init()
if value > 0:
beepy.beep(“ping”) #positive
else:
beepy.beep(“error”) #negative

Bachelor of Computer Science (Honours)
Faculty of Information and Communication Technology (Kampar Campus), UTAR

38



# SSH to EC2 instance to Run Python Script containing junction detection model and
image similarity model

import subprocess
import paramiko

# Establish SSH connection

cert = paramiko.RSAKey.from_private_key_file("junc.pem")

¢ = paramiko.SSHClient()
c.set_missing_host_key_policy(paramiko.AutoAddPolicy())
print("connecting...")

c.connect(hostname="13.115.166.35", username="ec2-user", pkey=cert)
print(“connected!!!")

# Command to execute your script
command = ['python3’, /home/ec2-user/Pipeline.py']

# Run the script and capture its output
process = c.exec_command(’ .join(command), get_pty=True)
stdout = process[1]

# Print the output in real-time
for line in iter(stdout.readline, "™):
print(line, end=")
if "Audio: 1" in line:
print("Playing audio for positive result™)
play _beep sound(1)

elif "Audio: 0" in line:
print("Playing audio for negative result")
play beep sound(0)

# Wait for the process to finish
process_exit_code = process[0].wait()
print(f"Script exit code: {process_exit_code}")

# Close the SSH connection
c.close()
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A.2 ec2_code.py

import tensorflow as tf

import 0s

import numpy as np

from six import BytesIO

import numpy as np

import keras

import cv2

from PIL import Image, ImageDraw, ImageFont

from keras.layers import Flatten, Dense, Input,concatenate
from keras.layers import Conv2D, MaxPooling2D

from keras.layers import Activation, Dropout

from keras.models import Model

from keras.models import Sequential

from scipy import spatial

#from tensorflow.keras.applications.vgg16 import VGG16
import boto3

def load_image_into_numpy_array(path):
"L oad an image from file into a numpy array.

Puts image into numpy array to feed into tensorflow graph.
Note that by convention we put it into a numpy array with shape
(height, width, channels), where channels=3 for RGB.

Args:
path: a file path.

Returns:

uint8 numpy array with shape (img_height, img_width, 3)
img_data = tf.io.gfile. GFile(path, 'rb").read()
image = Image.open(ByteslO(img_data))
image = image.resize((1024, 1024))
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(

(im_height, im_width, 3)).astype(np.uint8)

#for multiple boxes

def plot_detections(image_np,
boxes,
classes,
scores,
category_index,
figsize=(12, 16),
image_name=None,
title=None):

""Wrapper function to visualize detections.

Args:
image_np: uint8 numpy array with shape (img_height, img_width, 3)
boxes: a numpy array of shape [N, 4]
classes: a numpy array of shape [N]. Note that class indices are 1-based,
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and match the keys in the label map.
scores: a numpy array of shape [N] or None. If scores=None, then
this function assumes that the boxes to be plotted are groundtruth
boxes and plot all boxes as black with no classes or scores.
category_index: a dict containing category dictionaries (each holding

category index “id" and category name ‘name’) keyed by category indices.

figsize: size for the figure.

image_name: a name for the image file.
image_np_with_annotations = image_np.copy()
if scores is None:

scores = np.ones_like(classes, dtype=np.float32)
viz_utils.visualize_boxes_and_labels_on_image_array(

image_np_with_annotations,

boxes,

classes,

Scores,

category_index,

use_normalized_coordinates=True,

min_score_thresh=0.45,

line_thickness=2)
if image_name:

plt.imsave(image_name, image_np_with_annotations)
else:

plt.figure(figsize=figsize)

plt.imshow(image_np_with_annotations)

if title:

plt.title(title)
plt.show()

## Load the Saved Junction Detection Model

import os

saved_model_path = r'/fhome/ec2-user/FYP2_retraing'
pb_file_path = os.path.join(saved_model_path, 'saved _model.pb")
print(os.path.exists(pb_file_path))

loaded_module = tf.saved_model.load(‘/home/ec2-user/FYP2_retrain4")
loaded_detection_fn = loaded_module.detect
loaded_fine_tuned_model = loaded_module.detection_model

### Redefine Variables
junction_class_id =1

num_classes = 1
category_index = {junction_class_id: {'id": junction_class_id, 'name': 'junction}}

# Load Similarity Model
## VVGG-16 model with pre-trained weights
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vggl16 = keras.applications.VGG16(weights="imagenet", include_top=True, pooling="max",

input_shape=(224, 224, 3))
# Extract fc2 layer

basemodel = Model(inputs=vgg16.input, outputs=vgg16.get_layer("fc2").output)

# Obtain feature vectors function

def get_feature_vector(img):

img = cv2.resize(img, (224, 224))

feature_vector = basemodel.predict(img.reshape(1, 224, 224, 3))
return feature vector

# Calculate similarity using cosine similarity
def calculate_similarity(vectorl, vector2):
return 1 - spatial.distance.cosine(vectorl, vector2)

# Get Coordinates of all Junctions in Desired Route using Google Directions API
import requests
import json

# Define the API endpoint
endpoint = 'https://maps.googleapis.com/maps/api/directions/json’

# Define a list of origins and destinations
origins = ['1066, JIn Seksyen 1/2, Taman Bandar Barat, 31900 Kampar, Perak']
destinations = ['1337, JIn Seksyen 1/3, Taman Bandar Barat, 31900 Kampar, Perak']

params = {
'key": 'AlzaSyCRs4VDM3CDp4FB0z8fZVJ6cg9XRd2Wxqc',
'mode': 'driving'

}

# Iterate through origins and destinations
for origin in origins:
for destination in destinations:
# Set the origin and destination for this iteration
params['origin] = origin
params['destination'] = destination

# Make the API request
response = requests.get(endpoint, params=params)
# Check if the request was successful
if response.status_code == 200:
# Parse the JSON response
routes = response.json()

else:
print(f"Error: {response.status_code}")
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# # Get the cardinal direction of the junction coordinates
def get_new_heading(current_heading, turn_direction):

Calculate the new heading based on the current heading and turn direction.

Args:
current_heading: Current heading (e.g., "north", "east", "south”, "west").
turn_direction: Turn direction (e.g., "left" or "right™).

Returns:
New heading as a string.

cardinal_directions = ["north", "east", "south”, "west"]

# Define the order of cardinal directions
if current_heading not in cardinal_directions:
raise ValueError("Invalid current heading")

index = cardinal_directions.index(current_heading)

# Calculate the new index based on the turn direction
if turn_direction == "left":
new_index = (index - 1) % 4
elif turn_direction == "right™:
new_index = (index + 1) % 4
else:
raise ValueError("Invalid turn direction")

return cardinal_directions[new_index]

# List to store start locations with associated cardinal directions
junctions =]

# Initialize variables
current_heading = None
previous_turn_direction = None

for route in routes['routes']:
for leg in route['legs']:
for step in leg['steps']:
instruction = step[‘html_instructions']

# Check for headings
if "Head <b>" in instruction:
current_heading = instruction.split("<b>")[1].split("</b>")[0].lower()

# Check for turns
elif "Turn <b>" in instruction:
turn_direction = instruction.split("<b>")[1].split(""</b>")[0].lower()
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# Check if this "Turn" instruction immediately follows a "Head" instruction

if current_heading is not None and not junctions:
# If it's the first instruction, add it without applying get_new_heading
current_heading = current_heading

# Calculate new heading based on current heading and turn direction

else:
new_heading = get_new_heading(current_heading, previous_turn_direction)
current_heading = new_heading # Update current heading

# Extract latitude and longitude
start_location = step['start_location']
latitude = start_location['lat]
longitude = start_location['Ing']

# Create a dictionary with latitude, longitude, and associated directions
location_with_directions = {

'latitude’: latitude,

‘longitude’: longitude,

‘current_heading': current_heading,

¥

# Append the dictionary to the junctions list
junctions.append(location_with_directions)

# Update the previous turn direction
previous_turn_direction = turn_direction

## Shift Coordinates to capture entire junction in frame
def shift_coordinates(current_latitude, current_longitude, current_heading):

Shift coordinates based on current heading.

Args:
current_latitude (float): Current latitude.
current_longitude (float): Current longitude.

current_heading (str): Current heading (""north", "south", "east", or "west").

Returns:
Tuple (new_latitude, new_longitude): New coordinates.

shift = 0.00017

if current_heading == "north":
new_latitude = current_latitude - shift
new_longitude = current_longitude
elif current_heading == "south":
new_latitude = current_latitude + shift
new_longitude = current_longitude
elif current_heading == "east"":
new_latitude = current_latitude
new_longitude = current_longitude - shift
elif current_heading == "west"":
new_latitude = current_latitude
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new_longitude = current_longitude + shift
else:
raise ValueError("Invalid current_heading")

return new_latitude, new_longitude

# Update the latitude and longitude in the dictionary
for location in junctions:

new_latitude, new_longitude = shift_coordinates(location['latitude], location['longitude’],
location['current_heading'])

location['latitude’] = new_latitude
location['longitude’] = new_longitude

# Get Google Street View image of all junctions in the specified route
import requests
# Function to fetch Google Street View image
def fetch_street_view_image(latitude, longitude, heading):
api_key = 'AlzaSyCRs4VDM3CDp4FB0Z8fZVJ6cg9XRd2Wxqc'
size = '640x480'
fov = 100
heading = heading
pitch =0
url =
f'https://maps.googleapis.com/maps/api/streetview?location={latitude},{longitude}&size={size}&fov
={fov}&heading={heading}&pitch={pitch}&key={api_key}'
response = requests.get(url)
if response.status_code == 200:
return response.content
else:
print(Error: Unable to fetch Street View image")

# List to store fetched images
junction_images =[]

# Create a list to store the feature vectors
junction_feature_vectors = []

heading_mapping = {
"north": 0,
"south": 180,
"east™: 90,
"west": 270

}

# Fetch images for each set of coordinates
for i, location in enumerate(junctions):
heading_value = heading_mapping.get(location['current_heading'], None)
image_data = fetch_street_view_image(location['latitude’], location['longitude’], heading_value)

if image_data is not None:
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image_data = cv2.imdecode(np.frombuffer(image_data, np.uint8), cv2.IMREAD_COLOR)
image_data = cv2.resize(image_data, (224, 224))

junction_images.append(image_data)

# Calculate the feature vector and store it separately

feature_vector = get_feature_vector(image_data).ravel()
junction_feature_vectors.append(feature_vector)

# Get Frames
boto3.setup_default_session(region_name="ap-northeast-1")
s3 = boto3.client('s3")

# Define the S3 bucket and directory
bucket_name = 'junction-detection’
directory_name = ‘frames' # Change this to the specific directory within the bucket

# List objects in the S3 bucket
response = s3.list_objects_v2(Bucket=bucket_name, Prefix=directory_name)

# Download the frames to a local directory
local_directory = ''home/ec2-user/frames'

if not os.path.exists(local_directory):
os.makedirs(local_directory)

for obj in response.get('Contents', []):
file_name = obj['Key']
local_path = os.path.join(local_directory, os.path.basename(file_name))

# Download the file
s3.download_file(bucket_name, file_name, local_path)

frames_dir = ''home/ec2-user/frames'
frames_np =[]

# List all files in the directory

files = os.listdir(frames_dir)

# Filter for image files (e.g., .jpg’, .png’, etc.)
image_files = [f for f in files if f.lower().endswith((".jpg’, .jped’, ".png’, ".gif', ".bmp"))]

# Loop through the image files

for i in image_files:
image_path = os.path.join(frames_dir, i)
frames_np.append(load_image_into_numpy_array(image_path))

# Calculate Similarity
# Loop through the frames, if there is junction detected, check the similarity with junction_images
(contain the correct junctions to be taken).
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confidence_threshold = 0.4
similarity_threshold_prev = 0.5
similarity_threshold = 0.7

previous_junction_image = None
junction_image_counter =0
for i in range(len(frames_np)):

comparison_result =0
image_np = frames_np[i] # Extract the image numpy array

input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, axis=0), dtype=tf.float32)

detections = loaded_detection_fn(input_tensor)

# Filter out detections with confidence below the threshold
filtered_indices = detections['detection_scores'][0].numpy() >= confidence_threshold
filtered_boxes = detections['detection_boxes'][0].numpy()[filtered_indices]

if len(filtered_boxes) > 0:
# If there are detections above the threshold, process the image
print('Frame’, i+1, ‘contains junctions’)

# Get the image containing junctions
junction_frame = get_feature_vector(image_np).ravel()

if previous_junction_image is None:
# If it's the first detected junction frame, compare it with the first junction image
comparison_result = calculate_similarity(junction_frame,
junction_feature_vectors[junction_image_counter])

else:
# Compare the current frame with the most recently compared junction image
similarity_score = calculate_similarity(junction_frame, previous_junction_image)

# If the similarity score is above a certain threshold, consider it the same junction
if similarity_score > similarity_threshold_prev:

print("Same junctions captured, skipping.......")

continue # Skip further processing for this frame

# Now you can compare the frame with the "correct_junctions" data
comparison_result = calculate_similarity(junction_frame,
junction_feature_vectors[junction_image_counter])

# Print similarity score
print('‘Comparison Result:', comparison_result)

# Check if the similarity score is above the threshold for triggering audio
if comparison_result > similarity_threshold:
print("Audio: 1")
#trigger_raspi_audio(positive)
else:
print("Audio: 0")
#trigger_raspi_audio(negative)
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# Update the previous junction image with the current frame
previous_junction_image = junction_frame
junction_image_counter+=1

else:
# If no detections above the threshold, no junctions detected, discard the image
print('Frame’, i+1, 'does not contain junctions, skipping........... |
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A.3 Evaluation.ipynb

import tensorflow
import matplotlib
import matplotlib.pyplot as plt

import 0s

# import sys

# sys.path.append('/path/to/tf_slim’)

import random

import io

import imageio

import glob

import scipy.misc

import numpy as np

from six import ByteslO

from PIL import Image, ImageDraw, ImageFont
from IPython.display import display, Javascript
from IPython.display import Image as IPylmage

import tensorflow as tf

from object_detection.utils import label_map_util

from object_detection.utils import config_util

from object_detection.utils import visualization_utils as viz_utils
#from object_detection.utils import colab_utils

from object_detection.builders import model_builder

%matplotlib inline

def load_image_into_numpy_array(path):
""" Load an image from file into a numpy array.

Puts image into numpy array to feed into tensorflow graph.
Note that by convention we put it into a numpy array with shape
(height, width, channels), where channels=3 for RGB.

Args:
path: a file path.

Returns:

uint8 numpy array with shape (img_height, img_width, 3)
img_data = tf.io.gfile. GFile(path, 'rb").read()
image = Image.open(ByteslO(img_data))
image = image.resize((1024, 1024))
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(

(im_height, im_width, 3)).astype(np.uint8)

#for multiple boxes

def plot_detections(image_np,
boxes,
classes,
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scores,
category_index,
figsize=(12, 16),
image_name=None,
title=None):
"""Wrapper function to visualize detections.

Args:
image_np: uint8 numpy array with shape (img_height, img_width, 3)
boxes: a numpy array of shape [N, 4]
classes: a numpy array of shape [N]. Note that class indices are 1-based,
and match the keys in the label map.
scores: a numpy array of shape [N] or None. If scores=None, then
this function assumes that the boxes to be plotted are groundtruth
boxes and plot all boxes as black with no classes or scores.
category_index: a dict containing category dictionaries (each holding
category index “id" and category name “name’) keyed by category indices.
figsize: size for the figure.
image_name: a name for the image file.
image_np_with_annotations = image_np.copy()
if scores is None:
scores = np.ones_like(classes, dtype=np.float32)
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_annotations,
boxes,
classes,
scores,
category_index,
use_normalized_coordinates=True,
min_score_thresh=0.35,
line_thickness=2)
if image_name:
plt.imsave(image_name, image_np_with_annotations)
else:
plt.figure(figsize=figsize)
plt.imshow(image_np_with_annotations)
if title:
plt.title(title)
plt.show()

# Load the saved model

loaded_module = tf.saved_model.load('C:/Users/xiaog/Downloads/FYP 1024 resnet/FYP2_retrain4')
loaded_detection_fn = loaded_module.detect

loaded_fine_tuned_model = loaded_module.detection_model

# Redefine variable

junction_class_id =1

num_classes = 1

category_index = {junction_class_id: {'id": junction_class_id, 'name": 'junction'}}

# Test Images
frames_dir = 'output’
frames_np =[]
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# List all files in the directory
files = os.listdir(frames_dir)

# Filter for image files (e.g., ".jpg’, .png’, etc.)
image_files = [f for f in files if f.lower().endswith((".jpd’, ".jped’, .png’, ".gif', .bmp"))]
print(len(image_files))
# Loop through the image files
for i in image_files:
image_path = os.path.join(frames_dir, i)
frames_np.append(np.expand_dims(load_image_into_numpy_array(image_path), axis=0))
binary_predictions =]
label id_offset =1

# Loop through the image files and perform detection

for i in range(len(frames_np)):
input_tensor = tf.convert_to_tensor(frames_np[i], dtype=tf.float32)
detections = loaded_detection_fn(input_tensor)

found_positive = False # Flag to check if a positive detection was found

for detection_score in detections['detection_scores’][0].numpy():
if detection_score > 0.35:
binary_predictions.append(1)
found_positive = True
break # Exit the inner loop if a positive detection is found

if not found_positive:
binary_predictions.append(0)

# Now, binary_predictions contains the predictions

# Evaluation Metric

from sklearn.metrics import accuracy_score, confusion_matrix, f1_score

labels_from_file =[]

# Read the text file and extract labels

with open(‘output/ground_truth.txt', 'r') as file:

for line in file:

# Remove any leading/trailing whitespace and convert the line to an integer
label = int(line.strip())
labels_from_file.append(label)

# Calculate accuracy
accuracy = accuracy_score(labels_from_file, binary_predictions)

# Calculate F1 score
f1 = f1_score(labels_from_file, binary_predictions)

print(f'Accuracy: {accuracy:.2f}")
print(‘Confusion Matrix:")
print(confusion)

print(f'F1 Score: {f1..2f}")
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