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ABSTRACT 

 

The challenge of navigating complex road systems, especially in urban environments, 

necessitates innovative solutions to enhance driver safety and confidence. This project explores 

the development of a computer vision system aimed at detecting road junctions in real-time, 

providing drivers with timely and accurate guidance. The system comprises two key 

components: junction detection and image similarity comparison. Traditional object detection 

metrics, such as Intersection over Union (IOU), are ill-suited for the intangible nature of 

junctions. As a solution, we propose the use of accuracy as an alternative evaluation metric to 

assess the model's ability to classify frames as 'junction present' or 'no junction.' Ground truth 

labeling of test images as '1' or '0' is performed, facilitating accuracy evaluation. This project's 

computer vision model demonstrated significant progress in junction detection accuracy, 

enhancing driver safety and navigation. Challenges encountered provide valuable insights for 

future refinement, particularly in optimizing cloud-based processing efficiency. The findings 

contribute to the advancement of intelligent navigation systems in complex urban 

environments.  
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Chapter 1 

Introduction 

Over the years, the domain of computer vision has invested significant efforts in the analysis 

and assessment of road condition. Given that majority of society heavily relies on road 

networks for their daily activities, continuous research endeavours aim to improve the 

convenience and efficiency of road usage. Within this extensive body of research, road 

navigation stands out as a crucial domain to investigate and enhance, given its indispensable 

role in our lives. In this chapter, I will present the background and motivation driving this 

research, elucidate its contributions to the field, clarify the rationale for pursuing this study, 

and provide an overview of the proposal’s structure. 

 

1.1  Problem Statement and Motivation  

The motivation behind this research is to enhance road navigation for users by harnessing 

computer vision technology to accurately identify junctions and intersections in real-time. As 

reliance on GPS navigation continues to grow, drivers often encounter difficulties in precisely 

recognizing and navigating these crucial pints, resulting in missed turns, incorrect routes, and 

potential safety risks. This study seeks to address these challenges by developing a real-time 

computer vision model using TensorFlow and RetinaNet. These models are designed to detect 

junctions and intersections from live street images captured by a camera connected to a 

Raspberry Pi device. The primary goal is to provide drivers with instantaneous navigation 

support, thereby improving their driving experience and reducing the likelihood of navigation 

errors. Furthermore, we envision future enhancements, including integration with an audible 

feedback system, utilization of the Google Map API, and the implementation of an image 

comparison model, to create a more comprehensive and refined navigation experience. 

However, it is important to note that these enhancements are beyond the scope of the current 

project. 

 

1.2  Objectives  

The primary objective of this project is to develop a computer vision model capable of detecting 

junctions in frames captured by the camera before they are sent to the subsequent block, which 

is the image similarity comparison model. The model can be divided into two parts. The first 
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part will focus on detecting junctions in the frames obtained from the camera on the Raspberry 

Pi. The second part of the model will be responsible for comparing the captured images with 

images of correct intersections from Google Street View images, but only under the condition 

that a junction has been detected in the previous block of the model. These operations will be 

done on the cloud for reasons that will be clarified later in the report. 

 

1.3  Project Scope and Direction  

The project involves several critical components and processes aimed at creating an effective 

intersection detection system. At its core, we've developed a computer vision model that 

accurately detects intersections. This model is hosted in the AWS cloud for efficient 

computation. 

 

Within the AWS cloud environment, we have two key models: the Junction Detection 

Model and Image Similarity Detection Model. These models utilize Amazon's Elastic Compute 

Cloud (EC2) for complex calculations. The Raspberry Pi acts as an essential interface, 

triggering audio alerts based on similarity results from EC2. 

 

The project's deliverables include a system that captures street scene images at one frame 

per second. These frames are securely stored in AWS Simple Storage Service (S3). Amazon 

EC2 retrieves the frames from S3 and performs junction detection and image matching. The 

Image Similarity Model compares captured images with Google Street View images, 

referencing the driver's route. Together, these components form a comprehensive system for 

intersection detection and driver assistance. 

 

1.4  Contributions 

In this project, several significant contributions have been made to develop an effective 

intersection detection system. Firstly, we meticulously configured the camera to capture 

images at a consistent rate of one frame per second, ensuring a continuous stream of visual 

data. Secondly, we successfully set up the Raspberry Pi, establishing seamless 

communication between the camera and the device to facilitate the transfer of frames.  
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One of the pivotal contributions lies in the development of a robust junction detection 

model. Leveraging a pre-trained model from TensorFlow as a foundation, we meticulously 

fine-tuned and tailored the model to our specific needs. Notably, we made crucial 

modifications to the classification head while preserving the box regression head, enabling 

the model to accurately detect junctions, a critical element in our intersection detection 

system. 

 

Recognizing the computational limitations of the Raspberry Pi, we took a strategic step 

by relocating the trained junction detection model to the cloud. This migration ensures that 

the model can harness the immense computational power and resources available in the cloud 

environment, ultimately enhancing the efficiency and effectiveness of our intersection 

detection system. These contributions collectively form the cornerstone of our project's 

success, paving the way for further refinement and evaluation in the subsequent phases. 

 

1.5  Report Organization 

The details of this research are shown in the following chapters. In Chapter 2, some related 

backgrounds are reviewed. Then, Chapter 3 details the system methodology and general work 

procedures. And then, Chapter 4 highlights the system diagram and its components. Chapter 5 

is about the system operation. Chapter 6 reports the result and feasibility of the proposed 

method. Lastly, Chapter 7 concludes the project. 
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Chapter 2 

Literature Review 

2.1 Previous Works using Tensorflow Object Detection Models 

 

TensorFlow Object Detection models are a groundbreaking solution in the field of computer 

vision, offering a versatile and efficient approach to detecting objects within images and videos. 

These models are pre-trained on large datasets containing a wide variety of objects, enabling 

them to recognize and locate objects in real-world scenes accurately. The TensorFlow 

framework, developed by Google, serves as the foundation for these models, ensuring robust 

and reliable performance. 

 

The Object Detection API represents an open-source toolkit constructed upon TensorFlow, 

designed for the training and deployment of object detection models. TensorFlow, an open-

source library, is employed for a wide range of dataflow programming activities. The 

underlying TensorFlow platform is primarily written in C++, and it supports a Python or C++ 

API layer for ease of use and integration. [7] 

 

One of the notable features of TensorFlow Object Detection models is their adaptability. 

They provide a starting point for tackling object detection tasks, allowing researchers and 

developers to fine-tune and customize the models to suit specific needs as fully utilised by [6] 

where the authors extract traffic sign data using Tensorflow Object Detection model. Figure 

2.1.1 below displays their extensive use of Tensorflow. This flexibility is invaluable when 

addressing real-world applications, as different scenarios may require tailored solutions. 

Whether it's identifying pedestrians for autonomous vehicles, detecting defects in 

manufacturing processes, or monitoring wildlife, TensorFlow Object Detection models can be 

adapted to handle a wide range of challenges. 
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Figure 2.1.1 Framework for building and training a deep learning model to detect street 

signs using Tensorflow [6] 

 

Furthermore, TensorFlow Object Detection models are compatible with various platforms 

and frameworks, making them accessible for deployment in diverse environments. This 

versatility has contributed to their widespread adoption in both research and industry, where 

they are applied to tasks such as object tracking, instance segmentation, and even more 

complex problems like scene understanding. Take [7] for example, they were able identify the 

location of traffic lights with moderate number of samples when using TensorFlow approach. 

In summary, TensorFlow Object Detection models stand as a testament to the power of deep 

learning and its transformative impact on computer vision, empowering developers to create 

solutions that enhance safety, efficiency, and automation across various domains. 

  

2.1.1 Weakness 

As highlighted in [9], Tensorflow have several drawbacks as well, the first is: Although the 

COCO dataset offers a diverse collection of objects, it is not all-encompassing, and certain 

objects are absent from it. For instance, the dataset lacks images of junctions, so we manually 

obtain and labelled the junction dataset to be able to train the object detection model. 

Additionally, the developed assistive tool can identify humans as individuals but does not 

possess the capability to differentiate between specific individuals using facial recognition 

techniques. 

 

 



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    6 
 

2.2 Previous Works using Intangible Object Detections 

2.2.1 Intersection Detection 

Intersection detection plays a pivotal role in modern transportation and urban planning, 

addressing critical challenges that impact both traffic efficiency and road safety. In congested 

urban areas, efficient traffic management is essential for reducing gridlock and minimizing 

commute times. Intersection detection systems provide real-time insights into traffic 

conditions, enabling adaptive traffic signal control and efficient traffic management. By 

dynamically adjusting signal timing based on current traffic patterns, these systems help 

alleviate congestion and enhance the overall flow of vehicles, making urban transportation 

more efficient and eco-friendly. 

 

Moreover, intersection detection contributes significantly to road safety. Intersections are 

notorious hotspots for accidents and collisions due to complex traffic interactions. Detection 

systems equipped with advanced sensors and computer vision technologies can provide drivers 

with warnings about potential conflicts and unsafe conditions. Additionally, they can aid in the 

development of collision avoidance systems, helping vehicles make split-second decisions to 

prevent accidents. As cities grow and traffic volumes increase, the importance of intersection 

detection becomes increasingly evident, offering not only convenience but also a crucial layer 

of safety in our daily commutes. 

 

This domain is quite sufficiently explored by multiple researchers and there are quite a 

few techniques when it comes to intersection detection.  

 

A related study is presented in [4] where they introduce a novel approach for intersection 

detection using deep learning and computer vision techniques. The system relies on a multi-

task deep neural network that simultaneously performs two critical tasks: drivable area 

segmentation and rotated road bounding box detection as shown in Figure 2.2.1.1. The drivable 

area segmentation identifies regions where the vehicle can safely drive, while the rotated road 

bounding box detection precisely identifies branch roads within intersections. This method's 

effectiveness is demonstrated through experiments in real-world parking lot environments, 

where it outperforms traditional model-based techniques and facilitates successful intersection 

navigation by guiding the vehicle through the detected branch roads while avoiding obstacles. 
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Figure 2.2.1.1 Rotated road bounding box detection results; (a) nonintersection case, (b) 

intersection case with rotated bounding box, and (c) unrotated bounding box.[4] 

 

The authors in [5] employed scene semantic segmentation on images, utilizing 

convolutional neural networks with an encoder-decoder architecture, to generate an image 

where each pixel is classified into specific classes like "road," "building," and "sidewalk." This 

segmentation image is then used to identify road pixels and the shapes they form, which aids 

in distinguishing between different types of intersections. Additionally, the paper emphasizes 

the importance of traffic light and sign detection around intersections, focusing on the precise 

position and type of these landmarks rather than comprehensive attribute recognition. These 

components collectively contribute to the paper's intersection detection methodology as 

illustrated clearly in Figure 2.2.1.2. 
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Figure 2.2.1.2 Intersection Detection Algorithm in [5] 

 

In contrast to the aforementioned papers, our approach diverges by focusing on a 

localization-centric strategy within object detection. Specifically, we initiated a TensorFlow 

object detection model with a custom classification head and conducted training exclusively 

on junction images that were meticulously annotated with bounding boxes. This distinctive 

emphasis on localization enables us to precisely pinpoint intersection-related features, 

potentially enhancing the accuracy and specificity of our detection system. 

 

It is worth mentioning that most other junction detection models capture and detect 

junctions from aerial-view. [3] 

 

 

Figure 2.2.1.3 The roundabout intersection. A top-view. The red arrows in (b) 

and (c) point to intersections. 
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2.3 Previous Works on Raspberry Pi 

The Raspberry Pi, a credit-card-sized single-board computer, has emerged as a powerful and 

cost-effective tool in the realm of object detection tasks. Its role in object detection is 

particularly significant due to its portability, affordability, and versatility. Raspberry Pi devices 

are equipped with various models, each differing in computational power and capabilities, but 

even the most modest Raspberry Pi models can be harnessed effectively for object detection 

tasks. 

 

One of the key features that make Raspberry Pi suitable for object detection is its ability to 

run lightweight machine learning models efficiently. Object detection involves the 

identification and localization of objects within images or video frames, and this process 

demands computational resources. Raspberry Pi can leverage frameworks like TensorFlow 

Lite and OpenCV to deploy pre-trained object detection models, enabling real-time inference 

on images or video streams. Its compact form factor makes it suitable for embedded systems, 

surveillance cameras, and even robotics applications where object detection is crucial. 

 

Moreover, the Raspberry Pi's GPIO (General Purpose Input/Output) pins allow for 

seamless integration with various sensors, cameras, and peripherals, making it adaptable to a 

wide range of object detection scenarios. Whether it's monitoring home security, wildlife 

tracking, or     , the Raspberry Pi offers a flexible platform to implement object detection 

solutions. In summary, the Raspberry Pi's affordability, accessibility, and compatibility with 

machine learning frameworks make it a valuable asset for object detection tasks. 

 

 

2.4 Previous Works using Cloud Computing on Object Detection Models 

 

 Leveraging cloud computing for object detection models has become a game-changer in the 

field of computer vision and artificial intelligence. Cloud computing offers several advantages 

for deploying, managing, and scaling object detection models, making it a preferred choice for 

businesses, researchers, and developers. 

 

One of the primary benefits of using cloud computing for object detection is the immense 

computational power and resources available in the cloud. This concept is exemplified in a 
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study by [10], where cloud computing was harnessed to augment the computational and storage 

capabilities of local robots.  Training complex deep learning models for object detection often 

requires significant computational resources, including high-performance GPUs and TPUs. 

Cloud providers like AWS, Azure, and Google Cloud offer access to these resources on-

demand, allowing developers to train and fine-tune their models efficiently. This eliminates the 

need for expensive on-premises hardware investments and ensures that even resource-intensive 

tasks can be accomplished swiftly. 

 

Scalability is another key advantage of cloud computing. Object detection models deployed 

in the cloud can easily scale to handle varying workloads. Whether it's processing a few images 

or analyzing a massive video stream, cloud-based object detection systems can dynamically 

allocate resources to meet demand, ensuring low latency and consistent performance. This 

flexibility is invaluable for applications such as surveillance, autonomous vehicles, and real-

time monitoring. 

 

Security and reliability are paramount when dealing with sensitive object detection tasks, 

such as in autonomous vehicles or healthcare applications. Leading cloud providers invest 

heavily in security measures, including data encryption, access controls, and compliance 

certifications. This ensures that object detection models deployed in the cloud meet rigorous 

security standards and can be trusted for mission-critical applications. 

 

2.4.1 Amazon Cloud Service 

In this project, Amazon Web Services (AWS) is chosen to be the cloud service provider due to 

its comprehensive suite of cloud computing services, extensive scalability options, and robust 

infrastructure, which align with the requirements and demands of the object detection tasks and 

computational needs of the project. Specifically, we chose to use Amazon Elastic Compute 

Cloud (EC2) to handle the computation. This cloud service offers machine images that 

encapsulate all the necessary components for a server, including the operating system. This 

simplifies the setup process and ensures a streamlined and efficient environment for running 

our object detection models. Additional settings can be customized to tailor CPU, memory, and 

networking capacity to meet the specific requirements of our object detection tasks. [12] 
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When compared to local processing, cloud-based object detection using AWS EC2 

typically exhibits faster processing times. This advantage is attributed to the immense 

computational power and resources available in the cloud, enabling rapid execution of object 

detection tasks. This can be particularly beneficial for scenarios where real-time or low-latency 

responses are crucial, as cloud-based processing can deliver results more quickly and 

efficiently compared to relying solely on local resources. The speed between local and cloud 

is visualised in Figure 2.4.1.1. 

 

Figure 2.4.1.1 Cloud vs Local Processing Time [12] 

 

 

In summary, cloud computing has revolutionized object detection by providing access to 

vast computational resources, scalability, and simplified deployment and management. It has 

democratized the development and deployment of object detection models, making them 

accessible to a broader audience while ensuring reliability and security, ultimately driving 

innovation in various industries. 

 

 

2.4.2 Weakness 

Although cloud computing presents numerous advantages for various tasks, it is not without 

its inherent drawbacks. Chief among these concerns is network dependence, where factors such 

as network outages or congestion can disrupt access to the cloud-based model, potentially 
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rendering critical services inaccessible. Additionally, the reliance on remote cloud resources 

may introduce latency into the system, resulting in delays when making predictions compared 

to running inference locally. This is discussed in detail in [11]. This latency issue is particularly 

relevant in applications necessitating real-time or low-latency responses, highlighting the need 

for a careful consideration of the trade-offs between cloud-based computational power and the 

imperative of timely decision-making in certain scenarios. 
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Chapter 3 

Proposed Method/Approach  

 

3.1 Methodologies and General Work Procedures  

The overall system consists of four parts: image acquisition, junction detection and image 

comparison (to be reported by my groupmate) and audible feedback.  

 

3.1.1 Image Acquisition 

The camera would need to be positioned at the front of the car, oriented toward the road. It 

will capture a video and a python program will handle video splitting, obtaining a frame for 

every second. These images will be fed into a junction detection model that uses RetinaNet and 

ResNet as the pre-trained backbone network. 

 

3.1.2 Junction Detection 

 The object detection architecture employed is RetinaNet, a single-stage object detection 

network that employs a feature pyramid network to identify objects across a range of scales 

and aspect ratios. However, I utilized a particular pre-trained checkpoint designed for the 

ResNet50_v1 architecture. ResNet50_v1 is a frequently employed backbone network in object 

detection models. The code fetches the pre-trained checkpoint tailored for ResNet50_V1, 

which has been trained on the COCO dataset. Subsequently, it restores all layers except the top 

classification layer within the network. This enables the smooth transfer of weights to the 

RetinaNet architecture. 

   

 The reason for using the ResNet50_v1 checkpoint stems from its widespread adoption as a 

backbone network in object detection models and its proven ability to extract essential features 

from images effectively. The RetinaNet architecture implemented in the code necessitates a 

backbone network for feature extraction, and ResNet50_v1 is a popular selection owing to its 

robust performance track record. 

 

 Beyond the previously mentioned architecture and pre-trained checkpoint specifications, 

the refinement of the junction detection model included additional fine-tuning using a 

dedicated dataset meticulously annotated for the purpose of junction detection. This training 
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dataset comprised Google Street View images, painstakingly annotated using the LabelImg 

tool to outline bounding boxes around the junction present in the images. Leveraging this 

annotated dataset, the RetinaNet model undergo training to ensure that it is precisely 

customised for the specialised task of junction detection. 

  

 In the training phase, the RetinaNet model that was initially configured with a single class, 

“junction” to detect junction as per the previous approach. In an effort to enhance the model’s 

performance, I acquired new training data and labelled it using the LabelImg tool before 

employing it to train the RetinaNet model. The hyperparameter of the model during the training 

remained consistent with those utilised in the previous work, with the sole adjustment being 

the integration of a larger training dataset. After training, the model’s state was saved for future 

use in detecting junction in new images.  

 

3.1.3 Audible Feedback  

As aforementioned the system will provide audible feedback to the driver, signalling the correct 

turn or warning against incorrect turns. There will be 2 types of audible feedback; correct and 

incorrect audible sounds. When the driver is approaching the correct junction, the system will 

trigger the correct audible sound to inform the driver that is the correct turn to take. On the 

other hand, the system will trigger the correct audible sound to inform the drive that it is the 

correct turn to take. On the other hand, the system will trigger the incorrect audible sound as 

soon as it detects that the driver has taken the wrong turn. By listening to the feedback sound, 

drivers are able to identify whether they have taken the correct or incorrect turns. The decision 

of what types of sound to make in specific situation is determined by a Python program code, 

which also relies on the output from the model. 

 

3.1.4 Cloud Computing 

Due to the limitation in computing power in Raspberry Pi, I will be a virtual server, Amazon 

EC2 to host and run the junction detection model and other codes such as image similarity 

detection and so on. The input for the junction detection model, which are the frames mentioned 

in Section 3.1.1 will be uploaded to Amazon S3 to provide easy access to the EC2 instance. 
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3.2 Study Area and data 

Our research was conducted in Westlake, a neighbourhood just beside UTAR, Kampar. The 

figure below shows the exact location of our test case. 

 

The training data can be accessed here: 

https://drive.google.com/drive/folders/1HdFo0P83sj5dUjiYYEqPsgSdtE37ZkF8?usp=sharin

g 

 

The testing data can be accessed here:  

https://drive.google.com/drive/folders/1E8YGYOqdUYT1wHcu__ry5poARVBUQWNs?usp

=sharing 

  

https://drive.google.com/drive/folders/1HdFo0P83sj5dUjiYYEqPsgSdtE37ZkF8?usp=sharing
https://drive.google.com/drive/folders/1HdFo0P83sj5dUjiYYEqPsgSdtE37ZkF8?usp=sharing
https://drive.google.com/drive/folders/1E8YGYOqdUYT1wHcu__ry5poARVBUQWNs?usp=sharing
https://drive.google.com/drive/folders/1E8YGYOqdUYT1wHcu__ry5poARVBUQWNs?usp=sharing
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The table below shows the summarisation of the dataset: 

 

Table 3.2.1 Summarisation of Dataset 

Dataset Training Data Testing Data 

Size 1085 images 41 images 

Collection 

Method 

Snipping Tool (Google Street View) Captured using camera 

Image 

Preprocessing 

Cropped unnecessary parts, resized to 1024 x 1024 - 

Annotation Tool LabelImg (bounding box labeling) Manually labelled 

Annotation 

Format 

XML file (exported from LabelImg) .txt file 

Annotation 

Purpose 

Fine tune the pre-trained model Calculate accuracy  
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Chapter 4 

System Design 
4.1 System Block Diagram 

 

Figure 4.1 System Block Diagram 

 

4.2 System Components Specifications 

4.2.1 Camera + Raspberry Pi  

The process commences with the front-facing camera capturing the street scene in video 

format. A Python program running on the Raspberry Pi then splits this video into individual 

frames at a rate of one frame per second. These freshly captured frames are the input for the 

subsequent stage of processing. 

 

4.2.2 Amazon S3 (Simple Storage Service) (made some changes – newly added) 

The Amazon S3 (Simple Storage Service) is a cloud storage service offered by one of the 

pioneers of cloud services providers in the market, Amazon Web Services (AWS). AWS is 

known for its scalability and security. It enables users to conveniently store and retrieve various 

types of data, including files and objects via the internet. The purpose of S3 in this project is 

that it will be used to store the frames that are uploaded from the Raspberry Pi which was 

initially capture by the camera. The reason of uploading the frames into Amazon S3 will be 

explained in Section 4.2.3. 
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4.2.3 Amazon EC2  

The Amazon EC2 (Elastic Computer Cloud) is a web service provided by Amazon Web 

Services (AWS) that offers flexible and scalable computing resources to handle any 

computation that is needed in the cloud. Users can easily start and oversee virtual servers, 

referred to as ‘instances’, on-demand.  

 

The Raspberry Pi 4 Model B, with its 1.8 GHz quad-core Cortex-A72 processor and 2GB 

SDRAM, faces processing power limitations when tasked with running both the Junction 

Detection Model and Image Similarity Detection Model. These models demand substantial 

computing resources, which can strain the Raspberry Pi's capabilities. To address this 

challenge, we've opted for an alternative approach—leveraging Amazon EC2 for cloud 

computing. By migrating both models to Amazon EC2, we can harness the cloud's 

computational prowess, relieving the Raspberry Pi of this heavy load. Additionally, to further 

optimize system performance, we've implemented a process where the camera-captured frames 

are uploaded to Amazon S3. This strategy significantly reduces the processing burden on the 

Raspberry Pi when interfacing with EC2. Configuring Amazon EC2 instances to retrieve input 

images directly from Amazon S3 proves to be a more efficient approach compared to 

transmitting images as payloads directly to EC2. Following cloud-based computations, the 

results are then relayed back to the Raspberry Pi for further processing. 

 

4.2.3.1 Junction Detection Model  

In this report, the junction detection model undergoes fine-tuning with an expanded dataset 

comprising a larger number of annotated junction images obtained from Google Street View. 

The hyperparameters of the model remain consistent with those utilized in the prior work. 

Following fine-tuning, we will save the model’s state for future use in detecting junctions 

within new images. Then the trained model will be uploaded to Amazon EC2. The model in 

EC2 will get the frames from Amazon S3 and then perform junction detection on said frames. 

If there is existence of junction in the frames, the model will then send that frame to the 

following block which is Image Similarity Detection Model for further processing. 
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4.2.3.2 Image Similarity Detection Model 

  This part is done by my groupmate, Tan Yi Xuan. 

  

 4.2.3.3 Google Directions API 

  This part is done by my groupmate, Tan Yi Xuan. 

 

 4.2.3.4 Google Street View API 

  This part is done by my groupmate, Tan Yi Xuan. 

 

4.2.4 Raspi Audio  

As mentioned in the earlier part of the paper, the system will provide 2 types of audible 

feedback to the driver. The python code of Raspi Audio is employed in the Raspberry Pi device 

which and the outcome of the python code will be determined by the similarity result obtained 

from the preceding block. In essence, if the detected junction is the correct junction, the system 

will initiate the corresponding correct auditory signal; conversely when user has taken the 

wrong junction, the system will prompt the system to emit the corresponding feedback. 
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Chapter 5 

System Implementation 

5.1 Hardware Setup 

The hardware that will be used in this project includes a laptop, a Raspberry Pi device, and a 

camera. The laptop will serve the purpose of configuring the Raspberry Pi as well as training 

the junction detection model. Then the Raspberry Pi will be used as an edge device to perform 

the computer vision tasks. The variant of the Raspberry Pi is Raspberry Pi 4 Model B. The 

camera will capture the input, which consist of street images. An audio system will be 

employed to provide output, informing the user whether the turn is correct or if they have taken 

the wrong turn. 

 

Table 5.1 Specifications of laptop  

Description Specifications 

Model ILLEGEAR ROGUE 

OS Window 10 Pro (Version 21H2) 

CPU Ryzen 4800H 

RAM 16GB 

Graphic Nvidia GTX1650 TI 

Storage 512GB M.2 PCIe NVMe SSD 

 

 

Table 5.2 Specifications of Raspberry Pi  

Description Specifications 

Model Raspberry Pi 4 Model B 

OS Debian GNU/Linux 11 (bulleye) 

CPU Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.8GHz 

RAM 2GB LPDDR4-3200 SDRAM 

Hard Disk SanDisk EDGE 16GB 
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Table 5.3 Specifications of Camera  

Description Specifications 

Model Rapoo XW180 

Frame Rate Up to VGA 30FPS 

Video Resolution FHD 1080P/HD 720P 

Connector Type USB 2.0 

 

 

Figure 5.1 The setup of the Raspberry Pi 4 Model B 

 

5.2 Software Setup 

The software that will be used in this project includes Jupyter notebook, TensorFlow, 

Raspberry Pi OS, Amazon EC2, Amazon S3.  

 

5.2.1 Jupyter notebook 

Table 5.4 Specifications of Jupyter Notebook 

Description Specifications 

Version 7.0.3 

 

5.2.2 TensorFlow 

Table 5.5 Specifications of TensorFlow 

Description Specifications 

Version 2.13.0 
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5.2.3 Operating system of Raspberry Pi 

Table 5.6 Specification of Operating System of Raspberry Pi 

Description Specifications 

Version Debian 11 (Bullseye) 64-bit 

 

5.2.4 Amazon EC2 

Table 5.7 Specification of Amazon EC2 

Description Specifications 

CPU 2 virtual CPU 

RAM 8GB 

OS Amazon Linux 2023 

 

 

5.3 Settings and Configuration 

5.3.1 Jupyter notebook 

The settings and configuration that was done on Jupyter notebook is not much because it is 

only the platform to train the Junction Detection Model.  

 

5.3.2 TensorFlow 

The pre-trained model that was used to train the Junction Detection Model is TensorFlow. 

Initially TensorFlow’s Object Detection has 2 heads which are object detection head and box 

regression head. Each of these head is responsible for a specific task or output. For instance, 

classification head will determine what objects are present in an image and assigning class 

labels to those objects. On the other hand, box regression head is responsible for refining the 

bounding box coordinates of the detected objects. Our approach in this project is that we will 

preserve the weight of the box regression head and then make changes to the classification 

head. In a simpler terms, we train the classification head with manually labelled training data 

to be able to classify between junction and non-junction images while restoring the weight of 

the box regression head. 
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5.3.3 Raspberry Pi OS 

The Raspberry Pi device was configured with a 32-bit Debian 10 initially. After that we 

upgraded it to 64bit of Debian 11 as the device is equipped with a 64-bit CPU, which can 

significantly enhance the system’s overall performance. We observed that the execution of 

python to be slightly faster than the previous version. 

 

5.3.4 Amazon S3 

The configuration of Amazon S3 is done through the Amazon S3 console. After that we also 

created a bucket in the Amazon S3 to store the frames that will be uploaded from Raspberry 

Pi. After that we need to make sure that Amazon S3 is configured to be able to connect to 

Amazon EC2 as the frames that stored in the S3 will be used by the EC2. The connection 

between them requires a few steps. First of all, we need to run “AWS configure” in EC2 and 

insert access key and secret access key to verify the credentials. With the help of “boto3” 

library, EC2 can then establish client connection to S3. 

 

5.3.5 Amazon EC2 (Elastic Computing Cloud) 

The configuration of Amazon EC2 is done by launching the instance also known as virtual 

server via AWS (Amazon Web Service) console.  

 

The initial consideration when setting up an instance in EC2 is that we need to select the 

appropriate AMI (Amazon Machine Image) according to our usage. Think of AMI as similar 

to an ISO image, as it will contains components like operating system, applications and other 

additional libraries that will be installed on the instance. For our case we are going to choose 

Linux x86_64 HVM kernel-6.1 as the AMI of our virtual server. 

 

 

Figure 5.2 The configuration of AMI in EC2 

  



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    24 
 

The next configuration is the instance type of the EC2. Instance Types refer to virtual 

servers capable of running applications. AWS offer different combination of CPU, memory, 

storage, and networking capabilities allow the users to tailor their resource allocation 

accordingly. In our case, we selected instance type of t2.large as it is aligned to our model’s 

need and is more cost efficient. 

 

 

Figure 5.2 The configuration of instance type in EC2 

 

By default, an Elastic Block store (EBS) is configured with volume size of 8GB of SSD. In 

our case, we configure the EBS to 25GB. 

 

Figure 5.3 The configuration of EBS in EC2 

 

Other than initial configuration of the EC2, the installation of libraries into the server is 

also required. As aforementioned, both of the Junction Detection Model and Image Similarity 

Detection Model are uploaded to the virtual server EC2 which means that EC2 also requires 

some libraries to be installed in order to perform detection as well as similarity calculation.  
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5.4 System Operation (screenshot) 

5.4.1 Video Acquisition 

The driving scene video is obtained by connecting a web camera to Raspberry Pi and 

capturing the camera input. 

 

5.4.2 Video Frame Extraction 

On Raspberry Pi, I performed video frame extraction using a frame rate of 1fps to get only 1 

frame per second. Figure 5.4.2.1 shows the input video and Figure 5.4.2.2 shows the output 

frames of the video. 

 

Figure 5.4.2.1 Input Video 

 

Figure 5.4.2.2 Output Frames 

 

 

 

 

 

 

 

5.4.3 Sending Frames to Amazon S3 
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After authenticating credentials at Jupyter Notebook level, the Raspberry Pi is able to send the 

frames to an Amazon S3 bucket that we previously configured with the following code (Figure 

5.4.3.1) 

 

 

 
Figure 5.4.3.1 Code Snippet to send images to Amazon S3 

 

The figure below shows the Amazon S3 console and the frames that have been uploaded. 

 

Figure 5.4.3.2 Amazon S3 Console 

 

5.4.4 Connect to Amazon EC2 to run Python Script 

After that, the Raspberry Pi need to use Secure Socket Shell (SSH) to connect to the EC2 

instance to be able to run the python script that has been previously uploaded to the virtual 

server. The figure below shows the EC2 instance on AWS console. 
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Figure 5.4.4.1 Amazon EC2 Console 

 

5.4.5 Handle Output to get Comparison Result 

I configured the SSH connection and command so that the EC2 will print the ouput to the 

Jupyter Notebook in real time. In this way, I can capture the result of each of the frames instead 

of getting the results only when the python script has finished running. Figure 5.4.5.1 shows 

the output of the EC2 python script in Jupyter Notebook. 

 

 

Figure 5.4.5.1 Output from the EC2 python script 

 

Upon getting this data, I extracted “Audio: 1” or “Audio: 0” from the output. 

 

5.4.6 Trigger Raspi Audio 

The figure below shows the code snippet to extract the keywords and play raspi audios 

accordingly. 

 
Figure 5.4.6.1 Code snippet for Handling Output 
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5.5 Implementation Issues & Challenges 

5.5.1 Migration of code to Raspberry Pi 

Migrating code to Raspberry Pi from the laptop that was used to train the model can often 

encounter compatibility issues due to differences in operating system, and software 

dependencies. To solve this kind of problem, I must go through some research to download 

certain software dependencies and also finding the way of achieving the same output but on 

different operating systems. For example, making audible “beep” can be very easy on device 

that has Window Operating System as they just need to import “winsound” library to the python 

code and by using “winsound.Beep()” the system will make sound. On the other hand, we will 

need to install “beepy” libraries for Debian 11. Then the sound can be trigger by calling 

“beepy.beep()” in the code. 

 

5.5.2 Computation Limitation of Raspberry Pi  

The next challenge is the performance of both Junction Detection Model and Image Similarity 

Detection Model noticeably decreased after migrating the code from the laptop that trained the 

models to the Raspberry Pi device, primarily due to the computational limitations inherent to 

possesses significantly lower processing power and memory capacity compared to most 

laptops. As a result, computationally intensive task that run smoothly on a laptop will 

experience delays or execution time to complete the execution of the code is longer than 

expected on the Raspberry Pi device.  

 

With that said, we looked for alternative ways and found that cloud service like Amazon 

Web Service (AWS) which is one of the pioneers of web service that one can find in the market 

nowadays can help us to overcome the issue of computational limitation in the Raspberry Pi. 

In simpler terms, both computationally intensive models will be uploaded to a virtual server in 

the cloud and most of the computation will be done in the cloud. Meanwhile Raspberry Pi will 

just handle in the input images which are the frames taken by the camera and upload those 

frames to the cloud to be executed by the model that is currently hosted in the virtual server in 

AWS. Furthermore, Raspberry Pi will also need to handle the output from the cloud which is 

the similarity result then trigger the corresponding audible feedback. 
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5.5.3 Internet Connectivity Issues 

As mentioned earlier, both the Junction Detection Model and Image Similarity Detection 

Model are hosted in the cloud. This implies that the system requires a consistent and reliable 

Internet connection to execute the models. The Raspberry Pi device will rely on the internet to 

upload the frames captured by the camera so that these frames can be processed by the models, 

other than that the Raspberry Pi also need to handle the result that was returned by the model 

from the cloud. In the previous work, only a very small part of the system requires internet 

access which is the part where the system need to use Google Direction API to get the 

coordination as well as Google Street View API to get the image of correct junction. However, 

now even the Junction Detection Model and Image Similarity Detection Model required 

internet connectivity to perform detection. 

 

 

5.6 Concluding Remarks 

 

In conclusion, this project has showcased the potential of harnessing a combination of 

advanced technologies, from deep learning models to cloud-based solutions, to address real-

world challenges in road safety and driver support. While the journey has been marked by its 

share of challenges, including compatibility issues during code migration and the inherent 

limitations of Raspberry Pi's computational power, we've successfully navigated these 

obstacles by leveraging the capabilities of Amazon Web Services (AWS) to offload intensive 

computations to the cloud. This shift to a cloud-based approach not only enhances the system's 

performance but also underscores the critical importance of a reliable internet connection in 

our setup.  
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Chapter 6  

System Evaluation and Discussion 

 

6.1 System Testing and Performance Metrics  

Traditional evaluation metrics such as Intersection over Union (IOU) for object detection rely 

on precise object boundaries, which are well-defined for tangible objects like vehicles or 

pedestrians. However, the challenge with junction detection lies in the intangible nature of 

junctions; they don't have fixed boundaries, making it impractical to use bounding boxes and 

IOU as evaluation criteria.  

 

As a solution, we propose using accuracy as an alternative metric for assessing the model's 

performance. In this context, accuracy will measure the model's ability to correctly classify 

images as either 'junction present' or 'no junction.' To establish ground truth, manual labelling 

of test images as '1' (indicating the presence of a junction) or '0' (indicating no junction) will 

be performed. The model's predictions will then be compared to this ground truth, allowing us 

to determine its accuracy in detecting junctions. This approach accounts for the unique 

characteristics of junctions and provides a meaningful measure of the model's real-world 

performance. 

 

 I will be using the metrics below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

Tp +  TN +  FP +  FN
 

(1) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(2) 

 

 

6.2 Testing Setup and Result 

I used 41 test images to test the model’s performance. They are frames that are split from a 

captured video in Westlake, Kampar. I manually labelled the test images with 1 or 0 depending 

on whether the image contain junction or not. The ground truth value is saved in an .txt file. 

The link to access the test data is provided in Section 3.2. 
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The result of the model is as follows: 

Table 6.2.1 Results of Model 

Metrics Score 

Accuracy 0.71 

F1 Score 0.67 

 

6.3 Project Challenges 

 

One of the significant challenges faced during this project was the intangible nature of junctions 

as objects. Determining the precise boundaries for labeling training data, such as where the 

bounding box should start and end, proved to be a complex task. This inconsistency in labeling 

may have contributed to suboptimal model performance after training. Additionally, 

environmental factors like obstructions and varying weather conditions posed challenges in 

accurately detecting junctions. 

 

Another noteworthy challenge was related to latency when utilizing cloud services. While 

the performance of using Amazon EC2 for computation improved significantly compared to 

the Raspberry Pi, there remained a noticeable delay in processing due to the utilization of cloud 

services. It is possible that the EC2 instance may not have been fully optimized to handle the 

extensive processing demands, leading to latency issues. 

 

6.4 Objectives Evaluation 

 

The primary goal of this project is to accurately detect junctions in frames captured by the 

camera. Junction detection accuracy is measured using the accuracy metric. This metric 

assesses the model's ability to correctly identify whether a junction is present in a given frame. 

The achieved accuracy score is 0.71, indicating a substantial success in meeting this primary 

objective. 

 

 Another critical objective is to assess the efficiency and latency of cloud-based processing 

since I are using cloud computing. This evaluation considers the time required for image 

processing and analysis on cloud infrastructure, specifically Amazon EC2. It helps determine 

whether the cloud-based approach aligns with project requirements and expectations. It is 
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essential to highlight that during the project's implementation and testing phases, a significant 

latency was observed in the processing pipeline. This latency, while expected in cloud-based 

processing, was particularly noticeable and merits consideration for future improvements. 

 

6.5 Concluding Remarks 

In conclusion, this project has achieved notable success in addressing the challenging task of 

junction detection. Traditional metrics like Intersection over Union (IOU), which are suited for 

well-defined tangible objects, were impractical for junctions due to their intangible nature. As 

a solution, we introduced accuracy as an alternative evaluation metric, which proved effective 

in assessing the model's real-world performance. With an accuracy score of 0.71, the model 

demonstrated its capability to distinguish between images with and without junctions, aligning 

with our primary objective. 

 

However, it's crucial to acknowledge the project's significant challenges. The intangibility 

of junctions complicated the labeling process during training, potentially impacting the model's 

performance. Environmental factors, including obstructions and varying weather conditions, 

posed further challenges in achieving accurate junction detection. 

 

Moreover, the integration of cloud-based processing, while enhancing computational 

capabilities with Amazon EC2, introduced noticeable latency into the system. This latency, 

although expected in cloud computing, calls for optimization and future improvements to 

streamline processing times. 

 

In summary, this project has made substantial progress in achieving its primary objectives, 

notably in junction detection accuracy. Yet, the challenges encountered, such as the unique 

nature of junctions and latency issues, highlight areas for future refinement and optimization. 

These findings provide valuable insights for further enhancing the efficiency and effectiveness 

of our system. 
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Chapter 7  

Conclusion and Recommendation 
 
7.1 Conclusion 

 

The decision to harness the power of cloud computing services, as opposed to local execution 

on the Raspberry Pi, offers a range of signification advantages. First and foremost, utilizing 

AWS EC2 enables us to seamlessly scale our computational resources in response to 

fluctuating workloads, ensuring optimal processing efficiency at all times. This scalability not 

only enhances performance but also promotes cost efficiency, as resource-intensive tasks are 

offloaded to EC2, reducing the computational load and translating into cost savings and 

improved energy efficiency for the Raspberry Pi. Moreover, AWS's robust and highly available 

infrastructure guarantees uninterrupted accessibility and the continuous operation of our 

models, boosting overall reliability. Additionally, the remote manageability afforded by EC2 

empowers us to efficiently oversee and monitor our instances, simplifying maintenance, 

updates, and troubleshooting processes. Lastly, AWS's centralized data storage solutions, such 

as S3, enhance our data management practices, further streamlining our project's objectives. 

To summarise, the primary object of this project is to bolster driver confidence by delivering 

real-time audible feedback throughout their journeys and these cloud-based advantages serve 

as essential enablers in achieving that objective. 

 

7.2 Recommendation 

As we reflect on the overall satisfactory results achieved in the current project, it is worth 

considering avenues for further enhancement and exploration. One promising direction is to 

delve into additional AWS services, particularly Amazon SageMaker, for the implementation 

of machine learning solutions. SageMaker offers a comprehensive suite of tools and 

capabilities tailored for machine learning model development, training, and deployment. 

Exploring SageMaker’s potential can open up new horizon in out project, enabling us to 

leverage its streamlined workflows, built-in algorithms, and scalable infrastructure. By 

incorporating SageMaker into out project’s evosystem, we can aim for even greater efficiency, 

scalability, and invocation in our machine learning endeavours.  

 

 The next future work that can be done is expanding the scope of our study area and 

increasing the number of training data. Due to the constraints of time and manpower in this 
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project, the model was trained primarily using data from the immediate vicinity of UTAR. 

However, we strongly believe that the potential of this system extends far beyond its current 

boundaries. With the implementation of an expanded training dataset, we firmly believe that 

the system can demonstrate remarkable performance improvements. By including data from a 

wider geographic area, we can enhance the model’s ability to recognise various road conditions 

and driving scenarios. This expanded capability would position the system as a valuable 

support tool for drivers in diverse real-world situations.   
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Appendix 

A.1 Raspi_code.ipynb 
# Split Video into Frames 
import cv2 as cv 

import os 

 

# Open the video file 

video_path = 'wrong1.mp4'  # Replace with the path to your video file 

cap = cv.VideoCapture(video_path) 

 

# Check if the video file was opened successfully 

if not cap.isOpened(): 

    print("Error: Could not open video file.") 

    exit() 

 

# Get the frames per second (FPS) of the video 

fps = int(cap.get(cv.CAP_PROP_FPS)) 

 

# Define the output directory where frames will be saved 

output_directory = 'output'  # Change this to your desired output directory 

os.makedirs(output_directory, exist_ok=True) 

 

frame_count = 0 

 

# Loop through the frames 

while True: 

    # Read the next frame 

    ret, frame = cap.read() 

 

    # Break the loop if we have reached the end of the video 

    if not ret: 

        break 

 

    # Save the frame to the output directory 

    frame_filename = os.path.join(output_directory, f'frame_{frame_count:04d}.jpg') 

    cv.imwrite(frame_filename, frame) 

 

    frame_count += 1 

 

    # Skip frames to capture one frame per second 

    frames_to_skip = fps - 1 

    for _ in range(frames_to_skip): 

        cap.read() 

 

# Release the video capture object and close any open windows 

cap.release() 

cv.destroyAllWindows() 

 

print(f"Saved {frame_count} frames to {output_directory}.") 
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print(f"Video FPS: {fps}") 

 

# Upload Frames to Amazon S3 Bucket 

import os 

 

#credentials 

os.environ['AWS_ACCESS_KEY_ID'] = 'AKIAQVCXYEDYCERTQR4Y' 

os.environ['AWS_SECRET_ACCESS_KEY'] = '*' 

os.environ['AWS_DEFAULT_REGION'] = 'ap-northeast-1' 

 

import os 

import boto3 

 

# Initialize an S3 client 

s3 = boto3.client('s3') 

 

# Specify your S3 bucket name 

bucket_name = 'junction-detection' 

 

# Specify the local directory path containing the images 

local_directory = 'output' 

 

# List all files in the local directory 

local_files = os.listdir(local_directory) 

 

# Loop through the list of files and upload each image to S3 

for local_file in local_files: 

    if local_file.lower().endswith(('.jpg', '.jpeg', '.png', '.gif', '.bmp')): 

        # Specify the destination object key (the path and filename in the bucket) 

        object_key = f'frames/{local_file}'  # Include the filename in the object_key 

 

        # Specify the local path to the image file 

        local_image_path = os.path.join(local_directory, local_file) 

 

        # Upload the image to S3 

        s3.upload_file(local_image_path, bucket_name, object_key) 

 

        #print(f"Uploaded: {local_image_path} to S3 bucket: {bucket_name} with object key: 

{object_key}") 

 

# Audio function 

import beepy 

def play_beep_sound(value): 

    pygame.mixer.init() 

    if value > 0: 

        beepy.beep(“ping”) #positive 

    else: 

        beepy.beep(“error”) #negative 
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# SSH to EC2 instance to Run Python Script containing junction detection model and 

image similarity model 

 

import subprocess 

import paramiko 

 

# Establish SSH connection 

cert = paramiko.RSAKey.from_private_key_file("junc.pem") 

c = paramiko.SSHClient() 

c.set_missing_host_key_policy(paramiko.AutoAddPolicy()) 

print("connecting...") 

c.connect(hostname="13.115.166.35", username="ec2-user", pkey=cert) 

print("connected!!!") 

 

# Command to execute your script 

command = ['python3', '/home/ec2-user/Pipeline.py'] 

 

# Run the script and capture its output 

process = c.exec_command(' '.join(command), get_pty=True) 

stdout = process[1] 

 

# Print the output in real-time 

for line in iter(stdout.readline, ""): 

    print(line, end='') 

    if "Audio: 1" in line: 

        print("Playing audio for positive result") 

        play_beep_sound(1) 

 

    elif "Audio: 0" in line: 

        print("Playing audio for negative result") 

        play_beep_sound(0) 

 

 

# Wait for the process to finish 

process_exit_code = process[0].wait() 

print(f"Script exit code: {process_exit_code}") 

 

# Close the SSH connection 

c.close() 
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A.2 ec2_code.py 
import tensorflow as tf 

import os 

import numpy as np 
from six import BytesIO 

import numpy as np 

import keras 

import cv2 
from PIL import Image, ImageDraw, ImageFont 

 

from keras.layers import Flatten, Dense, Input,concatenate 
from keras.layers import Conv2D, MaxPooling2D 

from keras.layers import Activation, Dropout 

from keras.models import Model 

from keras.models import Sequential 
from scipy import spatial 

#from tensorflow.keras.applications.vgg16 import VGG16 

import boto3 
 

def load_image_into_numpy_array(path): 

  """Load an image from file into a numpy array. 
 

  Puts image into numpy array to feed into tensorflow graph. 

  Note that by convention we put it into a numpy array with shape 

  (height, width, channels), where channels=3 for RGB. 
 

  Args: 

    path: a file path. 
 

  Returns: 

    uint8 numpy array with shape (img_height, img_width, 3) 
  """ 

  img_data = tf.io.gfile.GFile(path, 'rb').read() 

  image = Image.open(BytesIO(img_data)) 

  image = image.resize((1024, 1024)) 
  (im_width, im_height) = image.size 

  return np.array(image.getdata()).reshape( 

      (im_height, im_width, 3)).astype(np.uint8) 
 

#for multiple boxes 

def plot_detections(image_np, 

                    boxes, 
                    classes, 

                    scores, 

                    category_index, 
                    figsize=(12, 16), 

                    image_name=None, 

                   title=None): 
    """Wrapper function to visualize detections. 

 

    Args: 

        image_np: uint8 numpy array with shape (img_height, img_width, 3) 
        boxes: a numpy array of shape [N, 4] 

        classes: a numpy array of shape [N]. Note that class indices are 1-based, 



Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    41 
 

            and match the keys in the label map. 
        scores: a numpy array of shape [N] or None.  If scores=None, then 

            this function assumes that the boxes to be plotted are groundtruth 

            boxes and plot all boxes as black with no classes or scores. 

        category_index: a dict containing category dictionaries (each holding 
            category index `id` and category name `name`) keyed by category indices. 

        figsize: size for the figure. 

        image_name: a name for the image file. 
    """ 

    image_np_with_annotations = image_np.copy() 

    if scores is None: 
        scores = np.ones_like(classes, dtype=np.float32) 

    viz_utils.visualize_boxes_and_labels_on_image_array( 

        image_np_with_annotations, 

        boxes, 
        classes, 

        scores, 

        category_index, 
        use_normalized_coordinates=True, 

        min_score_thresh=0.45, 

        line_thickness=2) 
    if image_name: 

        plt.imsave(image_name, image_np_with_annotations) 

    else: 

        plt.figure(figsize=figsize) 
        plt.imshow(image_np_with_annotations) 

        if title: 

            plt.title(title) 
        plt.show() 

 

 

## Load the Saved Junction Detection Model 
 

import os 

saved_model_path = r'/home/ec2-user/FYP2_retrain4' 
pb_file_path = os.path.join(saved_model_path, 'saved_model.pb') 

print(os.path.exists(pb_file_path)) 

 
 

loaded_module = tf.saved_model.load('/home/ec2-user/FYP2_retrain4') 

loaded_detection_fn = loaded_module.detect 

loaded_fine_tuned_model = loaded_module.detection_model 
 

 

### Redefine Variables 
 

junction_class_id = 1 

num_classes = 1 
category_index = {junction_class_id: {'id': junction_class_id, 'name': 'junction'}} 

 

 

# Load Similarity Model 
## VGG-16 model with pre-trained weights 
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vgg16 = keras.applications.VGG16(weights="imagenet", include_top=True, pooling="max", 

input_shape=(224, 224, 3)) 

 

# Extract fc2 layer 
 

basemodel = Model(inputs=vgg16.input, outputs=vgg16.get_layer("fc2").output) 

 
 

# Obtain feature vectors function 

def get_feature_vector(img): 
 img = cv2.resize(img, (224, 224)) 

 feature_vector = basemodel.predict(img.reshape(1, 224, 224, 3)) 

 return feature_vector 

 
 

# Calculate similarity using cosine similarity 

def calculate_similarity(vector1, vector2): 
    return 1 - spatial.distance.cosine(vector1, vector2) 

 

 
# Get Coordinates of all Junctions in Desired Route using Google Directions API 

import requests 

import json 

 
# Define the API endpoint 

endpoint = 'https://maps.googleapis.com/maps/api/directions/json' 

 
# Define a list of origins and destinations 

origins = ['1066, Jln Seksyen 1/2, Taman Bandar Barat, 31900 Kampar, Perak'] 

destinations = ['1337, Jln Seksyen 1/3, Taman Bandar Barat, 31900 Kampar, Perak'] 

 
params = { 

    'key': 'AIzaSyCRs4VDM3CDp4FBoZ8fZVJ6cg9XRd2Wxqc', 

    'mode': 'driving' 
} 

 

# Iterate through origins and destinations 
for origin in origins: 

    for destination in destinations: 

        # Set the origin and destination for this iteration 

        params['origin'] = origin 
        params['destination'] = destination 

 

        # Make the API request 
        response = requests.get(endpoint, params=params) 

       # Check if the request was successful 

        if response.status_code == 200: 
            # Parse the JSON response 

            routes = response.json() 

 

        else: 
            print(f"Error: {response.status_code}") 
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# # Get the cardinal direction of the junction coordinates 

def get_new_heading(current_heading, turn_direction): 

    """ 

    Calculate the new heading based on the current heading and turn direction. 
 

    Args: 

        current_heading: Current heading (e.g., "north", "east", "south", "west"). 
        turn_direction: Turn direction (e.g., "left" or "right"). 

 

    Returns: 
        New heading as a string. 

    """ 

    cardinal_directions = ["north", "east", "south", "west"] 

 
    # Define the order of cardinal directions 

    if current_heading not in cardinal_directions: 

        raise ValueError("Invalid current heading") 
 

    index = cardinal_directions.index(current_heading) 

 
    # Calculate the new index based on the turn direction 

    if turn_direction == "left": 

        new_index = (index - 1) % 4 

    elif turn_direction == "right": 
        new_index = (index + 1) % 4 

    else: 

        raise ValueError("Invalid turn direction") 
 

    return cardinal_directions[new_index] 

 

 
 

 

# List to store start locations with associated cardinal directions 
junctions = [] 

 

# Initialize variables 
current_heading = None 

previous_turn_direction = None 

 

for route in routes['routes']: 
    for leg in route['legs']: 

        for step in leg['steps']: 

            instruction = step['html_instructions'] 
 

            # Check for headings 

            if "Head <b>" in instruction: 
                current_heading = instruction.split("<b>")[1].split("</b>")[0].lower() 

 

            # Check for turns 

            elif "Turn <b>" in instruction: 
                turn_direction = instruction.split("<b>")[1].split("</b>")[0].lower() 
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                # Check if this "Turn" instruction immediately follows a "Head" instruction 
                if current_heading is not None and not junctions: 

                    # If it's the first instruction, add it without applying get_new_heading 

                    current_heading = current_heading 

                # Calculate new heading based on current heading and turn direction 
                else: 

                    new_heading = get_new_heading(current_heading, previous_turn_direction) 

                    current_heading = new_heading  # Update current heading 
 

                # Extract latitude and longitude 

                start_location = step['start_location'] 
                latitude = start_location['lat'] 

                longitude = start_location['lng'] 

 

                # Create a dictionary with latitude, longitude, and associated directions 
                location_with_directions = { 

                    'latitude': latitude, 

                    'longitude': longitude, 
                    'current_heading': current_heading, 

                } 

 
                # Append the dictionary to the junctions list 

                junctions.append(location_with_directions) 

 

                # Update the previous turn direction 
                previous_turn_direction = turn_direction 

 

 
## Shift Coordinates to capture entire junction in frame 

def shift_coordinates(current_latitude, current_longitude, current_heading): 

    """ 

    Shift coordinates based on current heading. 
 

    Args: 

        current_latitude (float): Current latitude. 
        current_longitude (float): Current longitude. 

        current_heading (str): Current heading ("north", "south", "east", or "west"). 

 
    Returns: 

        Tuple (new_latitude, new_longitude): New coordinates. 

    """ 

    shift = 0.00017 
 

    if current_heading == "north": 

        new_latitude = current_latitude - shift 
        new_longitude = current_longitude 

    elif current_heading == "south": 

        new_latitude = current_latitude + shift 
        new_longitude = current_longitude 

    elif current_heading == "east": 

        new_latitude = current_latitude 

        new_longitude = current_longitude - shift 
    elif current_heading == "west": 

        new_latitude = current_latitude 
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        new_longitude = current_longitude + shift 
    else: 

        raise ValueError("Invalid current_heading") 

 

    return new_latitude, new_longitude 
 

 

 
 

# Update the latitude and longitude in the dictionary 

for location in junctions: 
    new_latitude, new_longitude = shift_coordinates(location['latitude'], location['longitude'], 

location['current_heading']) 

 

    location['latitude'] = new_latitude 
    location['longitude'] = new_longitude 

 

 
# Get Google Street View image of all junctions in the specified route 

import requests 

# Function to fetch Google Street View image 
def fetch_street_view_image(latitude, longitude, heading): 

  api_key = 'AIzaSyCRs4VDM3CDp4FBoZ8fZVJ6cg9XRd2Wxqc' 

  size = '640x480' 

  fov = 100 
  heading = heading 

  pitch = 0 

  url = 
f'https://maps.googleapis.com/maps/api/streetview?location={latitude},{longitude}&size={size}&fov

={fov}&heading={heading}&pitch={pitch}&key={api_key}' 

  response = requests.get(url) 

  if response.status_code == 200: 
      return response.content 

  else: 

      print('Error: Unable to fetch Street View image') 
 

# List to store fetched images 

junction_images = [] 
# Create a list to store the feature vectors 

junction_feature_vectors = [] 

 

heading_mapping = { 
    "north": 0, 

    "south": 180, 

    "east": 90, 
    "west": 270 

} 

 
# Fetch images for each set of coordinates 

for i, location in enumerate(junctions): 

    heading_value = heading_mapping.get(location['current_heading'], None) 

    image_data = fetch_street_view_image(location['latitude'], location['longitude'], heading_value) 
 

    if image_data is not None: 
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      image_data = cv2.imdecode(np.frombuffer(image_data, np.uint8), cv2.IMREAD_COLOR) 
      image_data = cv2.resize(image_data, (224, 224)) 

      junction_images.append(image_data) 

      # Calculate the feature vector and store it separately 

      feature_vector = get_feature_vector(image_data).ravel() 
      junction_feature_vectors.append(feature_vector) 

 

 
# Get Frames 

boto3.setup_default_session(region_name='ap-northeast-1') 

s3 = boto3.client('s3') 
 

# Define the S3 bucket and directory 

bucket_name = 'junction-detection' 

directory_name = 'frames'  # Change this to the specific directory within the bucket 
 

# List objects in the S3 bucket 

response = s3.list_objects_v2(Bucket=bucket_name, Prefix=directory_name) 
 

# Download the frames to a local directory 

local_directory = '/home/ec2-user/frames' 
 

if not os.path.exists(local_directory): 

    os.makedirs(local_directory) 

 
for obj in response.get('Contents', []): 

    file_name = obj['Key'] 

    local_path = os.path.join(local_directory, os.path.basename(file_name)) 
 

    # Download the file 

    s3.download_file(bucket_name, file_name, local_path) 

 
 

frames_dir = '/home/ec2-user/frames' 

frames_np = [] 
# List all files in the directory 

files = os.listdir(frames_dir) 

 
 

# Filter for image files (e.g., '.jpg', '.png', etc.) 

image_files = [f for f in files if f.lower().endswith(('.jpg', '.jpeg', '.png', '.gif', '.bmp'))] 

 
# Loop through the image files 

for i in image_files: 

  image_path = os.path.join(frames_dir, i) 
  frames_np.append(load_image_into_numpy_array(image_path)) 

 

 
# Calculate Similarity 

# Loop through the frames, if there is junction detected, check the similarity with junction_images 

(contain the correct junctions to be taken). 
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confidence_threshold = 0.4 
similarity_threshold_prev = 0.5 

similarity_threshold = 0.7 

 

previous_junction_image = None 
junction_image_counter = 0 

 

 
for i in range(len(frames_np)): 

 

    comparison_result = 0 
    image_np = frames_np[i]  # Extract the image numpy array 

    input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, axis=0), dtype=tf.float32) 

    detections = loaded_detection_fn(input_tensor) 

 
    # Filter out detections with confidence below the threshold 

    filtered_indices = detections['detection_scores'][0].numpy() >= confidence_threshold 

    filtered_boxes = detections['detection_boxes'][0].numpy()[filtered_indices] 
 

    if len(filtered_boxes) > 0: 

        # If there are detections above the threshold, process the image 
        print('Frame', i+1, 'contains junctions') 

 

        # Get the image containing junctions 

        junction_frame = get_feature_vector(image_np).ravel() 
 

        if previous_junction_image is None: 

          # If it's the first detected junction frame, compare it with the first junction image 
          comparison_result = calculate_similarity(junction_frame, 

junction_feature_vectors[junction_image_counter]) 

 

        else: 
          # Compare the current frame with the most recently compared junction image 

          similarity_score = calculate_similarity(junction_frame, previous_junction_image) 

 
          # If the similarity score is above a certain threshold, consider it the same junction 

          if similarity_score > similarity_threshold_prev: 

            print("Same junctions captured, skipping.......") 
            continue  # Skip further processing for this frame 

 

          # Now you can compare the frame with the "correct_junctions" data 

          comparison_result = calculate_similarity(junction_frame, 
junction_feature_vectors[junction_image_counter]) 

 

        # Print similarity score 
        print('Comparison Result:', comparison_result) 

 

        # Check if the similarity score is above the threshold for triggering audio 
        if comparison_result > similarity_threshold: 

          print("Audio: 1") 

          #trigger_raspi_audio(positive) 

        else: 
          print("Audio: 0") 

          #trigger_raspi_audio(negative) 
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        # Update the previous junction image with the current frame 

        previous_junction_image = junction_frame 

        junction_image_counter+=1 

 
    else: 

        # If no detections above the threshold, no junctions detected, discard the image 

        print('Frame', i+1, 'does not contain junctions, skipping...........') 
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A.3 Evaluation.ipynb 
import tensorflow 
import matplotlib 

import matplotlib.pyplot as plt 

 
import os 

# import sys 

# sys.path.append('/path/to/tf_slim') 
import random 

import io 

import imageio 

import glob 
import scipy.misc 

import numpy as np 

from six import BytesIO 
from PIL import Image, ImageDraw, ImageFont 

from IPython.display import display, Javascript 

from IPython.display import Image as IPyImage 
 

import tensorflow as tf 

 

from object_detection.utils import label_map_util 
from object_detection.utils import config_util 

from object_detection.utils import visualization_utils as viz_utils 

#from object_detection.utils import colab_utils 
from object_detection.builders import model_builder 

 

%matplotlib inline 

 
def load_image_into_numpy_array(path): 

  """Load an image from file into a numpy array. 

 
  Puts image into numpy array to feed into tensorflow graph. 

  Note that by convention we put it into a numpy array with shape 

  (height, width, channels), where channels=3 for RGB. 
 

  Args: 

    path: a file path. 

 
  Returns: 

    uint8 numpy array with shape (img_height, img_width, 3) 

  """ 
  img_data = tf.io.gfile.GFile(path, 'rb').read() 

  image = Image.open(BytesIO(img_data)) 

  image = image.resize((1024, 1024)) 
  (im_width, im_height) = image.size 

  return np.array(image.getdata()).reshape( 

      (im_height, im_width, 3)).astype(np.uint8) 

 
#for multiple boxes 

def plot_detections(image_np, 

                    boxes, 
                    classes, 
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                    scores, 
                    category_index, 

                    figsize=(12, 16), 

                    image_name=None, 

                   title=None): 
    """Wrapper function to visualize detections. 

 

    Args: 
        image_np: uint8 numpy array with shape (img_height, img_width, 3) 

        boxes: a numpy array of shape [N, 4] 

        classes: a numpy array of shape [N]. Note that class indices are 1-based, 
            and match the keys in the label map. 

        scores: a numpy array of shape [N] or None.  If scores=None, then 

            this function assumes that the boxes to be plotted are groundtruth 

            boxes and plot all boxes as black with no classes or scores. 
        category_index: a dict containing category dictionaries (each holding 

            category index `id` and category name `name`) keyed by category indices. 

        figsize: size for the figure. 
        image_name: a name for the image file. 

    """ 

    image_np_with_annotations = image_np.copy() 
    if scores is None: 

        scores = np.ones_like(classes, dtype=np.float32) 

    viz_utils.visualize_boxes_and_labels_on_image_array( 

        image_np_with_annotations, 
        boxes, 

        classes, 

        scores, 
        category_index, 

        use_normalized_coordinates=True, 

        min_score_thresh=0.35, 

        line_thickness=2) 
    if image_name: 

        plt.imsave(image_name, image_np_with_annotations) 

    else: 
        plt.figure(figsize=figsize) 

        plt.imshow(image_np_with_annotations) 

        if title: 
            plt.title(title) 

        plt.show() 

 

# Load the saved model 
loaded_module = tf.saved_model.load('C:/Users/xiaoq/Downloads/FYP 1024 resnet/FYP2_retrain4') 

loaded_detection_fn = loaded_module.detect 

loaded_fine_tuned_model = loaded_module.detection_model 
 

# Redefine variable 

junction_class_id = 1 
num_classes = 1 

category_index = {junction_class_id: {'id': junction_class_id, 'name': 'junction'}} 

 

# Test Images 
frames_dir = 'output' 

frames_np = [] 
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# List all files in the directory 
files = os.listdir(frames_dir) 

 

# Filter for image files (e.g., '.jpg', '.png', etc.) 

image_files = [f for f in files if f.lower().endswith(('.jpg', '.jpeg', '.png', '.gif', '.bmp'))] 
print(len(image_files)) 

# Loop through the image files 

for i in image_files: 
  image_path = os.path.join(frames_dir, i) 

  frames_np.append(np.expand_dims(load_image_into_numpy_array(image_path), axis=0)) 

binary_predictions = [] 
label_id_offset = 1 

 

# Loop through the image files and perform detection 

for i in range(len(frames_np)): 
    input_tensor = tf.convert_to_tensor(frames_np[i], dtype=tf.float32) 

    detections = loaded_detection_fn(input_tensor) 

 
    found_positive = False  # Flag to check if a positive detection was found 

     

    for detection_score in detections['detection_scores'][0].numpy(): 
        if detection_score > 0.35: 

            binary_predictions.append(1) 

            found_positive = True 

            break  # Exit the inner loop if a positive detection is found 
     

    if not found_positive: 

        binary_predictions.append(0) 
 

# Now, binary_predictions contains the predictions 

 

# Evaluation Metric 
from sklearn.metrics import accuracy_score, confusion_matrix, f1_score 

labels_from_file = [] 

# Read the text file and extract labels 
with open('output/ground_truth.txt', 'r') as file: 

    for line in file: 

        # Remove any leading/trailing whitespace and convert the line to an integer 
        label = int(line.strip()) 

        labels_from_file.append(label) 

 

# Calculate accuracy 
accuracy = accuracy_score(labels_from_file, binary_predictions) 

 

# Calculate F1 score 
f1 = f1_score(labels_from_file, binary_predictions) 

 

print(f'Accuracy: {accuracy:.2f}') 
print('Confusion Matrix:') 

print(confusion) 

print(f'F1 Score: {f1:.2f}') 
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