

RIGHT TRACK – A GOOGLE MAP COMPANION USING JUNCTION

RECOGNITION

BY

TAN YONG MING

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

MAY 2023

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: RIGHT TRACK – A GOOGLE MAP COMPANION USING JUNCTION

RECOGNITION

Academic Session: MAY 2023

 I TAN YONG MING

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 B-832, JALAN KUBUR

 TANAH MERAH _____Dr. Aun Yichiet ________

 17500, KELANTAN Supervisor’s name

 Date: 12/9/2023 Date: ____15/9/2023______

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY/INSTITUTE* OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 12/9/2023

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that ______TAN YONG MING___________________________ (ID No:

__20ACB05117) has completed this final year project/ dissertation/ thesis* entitled

“____________RIGHT TRACK – A GOOGLE MAP COMPANION USING JUNCTION

RECOGNITION ____ _” under the supervision of ____Dr. Aun Yichiet__ (Supervisor) from the

Department of ___ Computer and Communication Technology (DCCT)___, Faculty/Institute* of

___Information and Communication Technology___ .

I understand that University will upload softcopy of my final year project / dissertation/ thesis* in pdf

format into UTAR Institutional Repository, which may be made accessible to UTAR community and

public.

Yours truly,

Tan Yong Ming

(Student Name)

*Delete whichever not applicable

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “METHODOLOGY, CONCEPT AND DESIGN OF A 2-

MICRON CMOS DIGITAL BASED TEACHING CHIP USING FULL-CUSTOM

DESIGN STYLE” is my own work except as cited in the references. The report has not been

accepted for any degree and is not being submitted concurrently in candidature for any degree

or other award.

Signature : ___ ______________________

Name : _____Tan Yong Ming____________________

Date : __12/9/2023_______________________

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to the following people for their invaluable support

and contributions to this project:

First and foremost, I would like to thank my supervisor, Dr. Aun Yichiet, for his constant

guidance, support, and encouragement throughout the project. Without his expertise and

insights, this project would not have been possible. Dr. Aun Yichiet has given me this bright

opportunity to engage in a Computer Vision project, and I am grateful for his unwavering

support and encouragement. A million thanks to you, Dr. Aun Yichiet, for your invaluable

contributions to this project.

To a very special person in my life, Carolyn Tan, for her remarkable patience, unwavering

support, and love for being a constant source of strength and inspiration for me. Finally, I am

deeply thankful for the love, support and continuous encouragement that my parents and family

have shown me throughout the course of my project. Their belief in me and their constant

motivation have been instrumental in my success.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

ABSTRACT

The challenge of navigating complex road systems, especially in urban environments,

necessitates innovative solutions to enhance driver safety and confidence. This project explores

the development of a computer vision system aimed at detecting road junctions in real-time,

providing drivers with timely and accurate guidance. The system comprises two key

components: junction detection and image similarity comparison. Traditional object detection

metrics, such as Intersection over Union (IOU), are ill-suited for the intangible nature of

junctions. As a solution, we propose the use of accuracy as an alternative evaluation metric to

assess the model's ability to classify frames as 'junction present' or 'no junction.' Ground truth

labeling of test images as '1' or '0' is performed, facilitating accuracy evaluation. This project's

computer vision model demonstrated significant progress in junction detection accuracy,

enhancing driver safety and navigation. Challenges encountered provide valuable insights for

future refinement, particularly in optimizing cloud-based processing efficiency. The findings

contribute to the advancement of intelligent navigation systems in complex urban

environments.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

TABLE OF CONTENTS

TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES x

LIST OF TABLES xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Objectives 1

1.3 Project Scope and Direction 2

1.4 Contributions 2

1.5 Report Organization 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 Previous Works using Tensorflow Object Detection Models 4

2.1.1 Weakness 5

2.2 Previous Works using Intangible Object Detections 6

2.2.1 Intersection Detection 6

2.3 Previous Works on Raspberry Pi 9

2.4 Previous Works using Cloud Computing on Object Detection

Models

9

2.4.1 Amazon Cloud Service 10

2.4.2 Weakness 11

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH 13

3.1 Methodologies and General Work Procedures 13

3.1.1 Image Acquisition 13

3.1.2 Junction Detection 13

3.1.3 Audible Feedback 14

3.1.4 Cloud Computing 14

3.2 Study Area and Data 15

CHAPTER 4 SYSTEM DESIGN 17

 4.1 System Block Diagram 17

 4.2 System Components Specifications 17

4.2.1 Camera + Raspberry Pi 17

4.2.2 Amazon S3 17

4.2.3 Amazon EC2 18

 4.2.3.1 Amazon EC2 18

 4.2.3.2 Image Similarity Detection Model 19

 4.2.3.3 Google Directions API 19

 4.2.3.4 Google Street View API 19

4.2.4 Raspi Audio 19

CHAPTER 5 SYSTEM IMPLEMENTATION 20

 5.1 Hardware Setup 20

5.2 Software Setup 21

5.2.1 Jupyter Notebook 21

5.2.2 TensorFlow 21

5.2.3 Operating system of Raspberry Pi 22

5.2.4 Amazon EC2 22

5.3 Setting and Configuration 22

5.3.1 Jupyter Notebook 22

5.3.2 TensorFlow 22

5.3.3 Raspberry Pi OS 23

5.3.4 Amazon S3 23

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

5.3.5 Amazon EC2 23

5.4 System Operation (with Screenshot) 25

5.4.1 Video Acquisition 25

5.4.2 Video Frame Extraction 25

5.4.3 Sending Frames to Amazon S3 26

5.4.4 Connect to Amazon EC2 to run Python Script 26

5.4.5 Handle Output to get Comparison Result 27

5.4.6 Trigger Raspi Audio 27

5.5 Implementation Issues and Challenges 28

5.5.1 Migration of code to Raspberry Pi 28

5.5.3 Computation Limitation of Raspberry Pi 28

5.5.3 Internet Connectivity Issues 29

5.6 Concluding Remark 29

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 30

6.1 System Testing and Performance Metrics

30

6.2 Testing Setup and Result 30

6.3 Project Challenges 31

6.4 Objectives Evaluation 31

6.5 Concluding Remark 32

CHAPTER 7 CONCLUSION AND RECOMMENDATION 33

7.1 Conclusion 33

7.2 Recommendation 33

REFERENCES 35

 APPENDIX 37

 WEEKLY LOG 52

 POSTER 58

 PLAGIARISM CHECK RESULT 152

 FYP2 CHECKLIST 160

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

LIST OF FIGURES

Figure Number Title Page

Figure 2.1.1 Framework for building and training a deep learning model

to detect street signs using Tensorflow [6]
5

Figure 2.2.1.1 Rotated road bounding box detection results; (a)

nonintersection case, (b) intersection case with rotated

bounding box, and (c) unrotated bounding box.[4]

7

Figure 2.2.1.2 Intersection Detection Algorithm in [5] 8

Figure 2.2.1.3 The roundabout intersection. A top-view. The red arrows in

(b) and (c) point to intersections.

8

Figure 2.4.1.1 Cloud vs Local Processing Time [12] 11

Figure 3.2.1 Study Area 15

Figure 4.1.1 System Block Diagram 17

Figure 5.1.1 The setup of the Raspberry Pi 4 Model B 21

Figure 5.3.5.1 The configuration of AMI in EC2 23

Figure 5.3.5.2 The configuration of instance type in EC2 24

Figure 5.3.5.3 The configuration of EBS in EC2 24

Figure 5.4.2.1 Input Video 25

Figure 5.4.2.2 Output Frames 25

Figure 5.4.3.1 Code Snippet to send images to Amazon S3 26

Figure 5.4.3.2 Amazon S3 Console 26

Figure 5.4.4.1 Amazon EC2 Console 27

Figure 5.4.5.1 Output from the EC2 python script 27

Figure 5.4.6.1 Code snippet for Handling Output 27

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

LIST OF TABLES

Table Number Title Page

Table 3.2.1 Summarisation of Dataset 16

Table 5.1.1 Specifications of laptop 20

Table 5.1.2 Specifications of Raspberry Pi 20

Table 5.1.3 Specification of Camera 21

Table 5.2.1.1 Specifications of Jupyter Notebook 21

Table 5.2.2.2 Specifications of TensorFlow 21

Table 5.2.3.1 Specification of Operating System of Raspberry Pi 22

Table 5.2.4.1 Specification of Amazon EC2 22

Table 6.2.1 Results of Model 31

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF ABBREVIATIONS

API Application Programming Interface

CPU Central Processing Unit

OS Operating System

RAM Random Access Memory

AWS Amazon Web Service

Amazon S3 Amazon Simple Storage Service

Amazon EC2 Amazon Elastic Compute Cloud

EBS Elastic Block Store

FPS Frame Per Second

SSH Secure Socket Shell

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1

Introduction

Over the years, the domain of computer vision has invested significant efforts in the analysis

and assessment of road condition. Given that majority of society heavily relies on road

networks for their daily activities, continuous research endeavours aim to improve the

convenience and efficiency of road usage. Within this extensive body of research, road

navigation stands out as a crucial domain to investigate and enhance, given its indispensable

role in our lives. In this chapter, I will present the background and motivation driving this

research, elucidate its contributions to the field, clarify the rationale for pursuing this study,

and provide an overview of the proposal’s structure.

1.1 Problem Statement and Motivation

The motivation behind this research is to enhance road navigation for users by harnessing

computer vision technology to accurately identify junctions and intersections in real-time. As

reliance on GPS navigation continues to grow, drivers often encounter difficulties in precisely

recognizing and navigating these crucial pints, resulting in missed turns, incorrect routes, and

potential safety risks. This study seeks to address these challenges by developing a real-time

computer vision model using TensorFlow and RetinaNet. These models are designed to detect

junctions and intersections from live street images captured by a camera connected to a

Raspberry Pi device. The primary goal is to provide drivers with instantaneous navigation

support, thereby improving their driving experience and reducing the likelihood of navigation

errors. Furthermore, we envision future enhancements, including integration with an audible

feedback system, utilization of the Google Map API, and the implementation of an image

comparison model, to create a more comprehensive and refined navigation experience.

However, it is important to note that these enhancements are beyond the scope of the current

project.

1.2 Objectives

The primary objective of this project is to develop a computer vision model capable of detecting

junctions in frames captured by the camera before they are sent to the subsequent block, which

is the image similarity comparison model. The model can be divided into two parts. The first

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

part will focus on detecting junctions in the frames obtained from the camera on the Raspberry

Pi. The second part of the model will be responsible for comparing the captured images with

images of correct intersections from Google Street View images, but only under the condition

that a junction has been detected in the previous block of the model. These operations will be

done on the cloud for reasons that will be clarified later in the report.

1.3 Project Scope and Direction

The project involves several critical components and processes aimed at creating an effective

intersection detection system. At its core, we've developed a computer vision model that

accurately detects intersections. This model is hosted in the AWS cloud for efficient

computation.

Within the AWS cloud environment, we have two key models: the Junction Detection

Model and Image Similarity Detection Model. These models utilize Amazon's Elastic Compute

Cloud (EC2) for complex calculations. The Raspberry Pi acts as an essential interface,

triggering audio alerts based on similarity results from EC2.

The project's deliverables include a system that captures street scene images at one frame

per second. These frames are securely stored in AWS Simple Storage Service (S3). Amazon

EC2 retrieves the frames from S3 and performs junction detection and image matching. The

Image Similarity Model compares captured images with Google Street View images,

referencing the driver's route. Together, these components form a comprehensive system for

intersection detection and driver assistance.

1.4 Contributions

In this project, several significant contributions have been made to develop an effective

intersection detection system. Firstly, we meticulously configured the camera to capture

images at a consistent rate of one frame per second, ensuring a continuous stream of visual

data. Secondly, we successfully set up the Raspberry Pi, establishing seamless

communication between the camera and the device to facilitate the transfer of frames.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

One of the pivotal contributions lies in the development of a robust junction detection

model. Leveraging a pre-trained model from TensorFlow as a foundation, we meticulously

fine-tuned and tailored the model to our specific needs. Notably, we made crucial

modifications to the classification head while preserving the box regression head, enabling

the model to accurately detect junctions, a critical element in our intersection detection

system.

Recognizing the computational limitations of the Raspberry Pi, we took a strategic step

by relocating the trained junction detection model to the cloud. This migration ensures that

the model can harness the immense computational power and resources available in the cloud

environment, ultimately enhancing the efficiency and effectiveness of our intersection

detection system. These contributions collectively form the cornerstone of our project's

success, paving the way for further refinement and evaluation in the subsequent phases.

1.5 Report Organization

The details of this research are shown in the following chapters. In Chapter 2, some related

backgrounds are reviewed. Then, Chapter 3 details the system methodology and general work

procedures. And then, Chapter 4 highlights the system diagram and its components. Chapter 5

is about the system operation. Chapter 6 reports the result and feasibility of the proposed

method. Lastly, Chapter 7 concludes the project.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

Chapter 2

Literature Review

2.1 Previous Works using Tensorflow Object Detection Models

TensorFlow Object Detection models are a groundbreaking solution in the field of computer

vision, offering a versatile and efficient approach to detecting objects within images and videos.

These models are pre-trained on large datasets containing a wide variety of objects, enabling

them to recognize and locate objects in real-world scenes accurately. The TensorFlow

framework, developed by Google, serves as the foundation for these models, ensuring robust

and reliable performance.

The Object Detection API represents an open-source toolkit constructed upon TensorFlow,

designed for the training and deployment of object detection models. TensorFlow, an open-

source library, is employed for a wide range of dataflow programming activities. The

underlying TensorFlow platform is primarily written in C++, and it supports a Python or C++

API layer for ease of use and integration. [7]

One of the notable features of TensorFlow Object Detection models is their adaptability.

They provide a starting point for tackling object detection tasks, allowing researchers and

developers to fine-tune and customize the models to suit specific needs as fully utilised by [6]

where the authors extract traffic sign data using Tensorflow Object Detection model. Figure

2.1.1 below displays their extensive use of Tensorflow. This flexibility is invaluable when

addressing real-world applications, as different scenarios may require tailored solutions.

Whether it's identifying pedestrians for autonomous vehicles, detecting defects in

manufacturing processes, or monitoring wildlife, TensorFlow Object Detection models can be

adapted to handle a wide range of challenges.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

Figure 2.1.1 Framework for building and training a deep learning model to detect street

signs using Tensorflow [6]

Furthermore, TensorFlow Object Detection models are compatible with various platforms

and frameworks, making them accessible for deployment in diverse environments. This

versatility has contributed to their widespread adoption in both research and industry, where

they are applied to tasks such as object tracking, instance segmentation, and even more

complex problems like scene understanding. Take [7] for example, they were able identify the

location of traffic lights with moderate number of samples when using TensorFlow approach.

In summary, TensorFlow Object Detection models stand as a testament to the power of deep

learning and its transformative impact on computer vision, empowering developers to create

solutions that enhance safety, efficiency, and automation across various domains.

2.1.1 Weakness

As highlighted in [9], Tensorflow have several drawbacks as well, the first is: Although the

COCO dataset offers a diverse collection of objects, it is not all-encompassing, and certain

objects are absent from it. For instance, the dataset lacks images of junctions, so we manually

obtain and labelled the junction dataset to be able to train the object detection model.

Additionally, the developed assistive tool can identify humans as individuals but does not

possess the capability to differentiate between specific individuals using facial recognition

techniques.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

2.2 Previous Works using Intangible Object Detections

2.2.1 Intersection Detection

Intersection detection plays a pivotal role in modern transportation and urban planning,

addressing critical challenges that impact both traffic efficiency and road safety. In congested

urban areas, efficient traffic management is essential for reducing gridlock and minimizing

commute times. Intersection detection systems provide real-time insights into traffic

conditions, enabling adaptive traffic signal control and efficient traffic management. By

dynamically adjusting signal timing based on current traffic patterns, these systems help

alleviate congestion and enhance the overall flow of vehicles, making urban transportation

more efficient and eco-friendly.

Moreover, intersection detection contributes significantly to road safety. Intersections are

notorious hotspots for accidents and collisions due to complex traffic interactions. Detection

systems equipped with advanced sensors and computer vision technologies can provide drivers

with warnings about potential conflicts and unsafe conditions. Additionally, they can aid in the

development of collision avoidance systems, helping vehicles make split-second decisions to

prevent accidents. As cities grow and traffic volumes increase, the importance of intersection

detection becomes increasingly evident, offering not only convenience but also a crucial layer

of safety in our daily commutes.

This domain is quite sufficiently explored by multiple researchers and there are quite a

few techniques when it comes to intersection detection.

A related study is presented in [4] where they introduce a novel approach for intersection

detection using deep learning and computer vision techniques. The system relies on a multi-

task deep neural network that simultaneously performs two critical tasks: drivable area

segmentation and rotated road bounding box detection as shown in Figure 2.2.1.1. The drivable

area segmentation identifies regions where the vehicle can safely drive, while the rotated road

bounding box detection precisely identifies branch roads within intersections. This method's

effectiveness is demonstrated through experiments in real-world parking lot environments,

where it outperforms traditional model-based techniques and facilitates successful intersection

navigation by guiding the vehicle through the detected branch roads while avoiding obstacles.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

Figure 2.2.1.1 Rotated road bounding box detection results; (a) nonintersection case, (b)

intersection case with rotated bounding box, and (c) unrotated bounding box.[4]

The authors in [5] employed scene semantic segmentation on images, utilizing

convolutional neural networks with an encoder-decoder architecture, to generate an image

where each pixel is classified into specific classes like "road," "building," and "sidewalk." This

segmentation image is then used to identify road pixels and the shapes they form, which aids

in distinguishing between different types of intersections. Additionally, the paper emphasizes

the importance of traffic light and sign detection around intersections, focusing on the precise

position and type of these landmarks rather than comprehensive attribute recognition. These

components collectively contribute to the paper's intersection detection methodology as

illustrated clearly in Figure 2.2.1.2.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

Figure 2.2.1.2 Intersection Detection Algorithm in [5]

In contrast to the aforementioned papers, our approach diverges by focusing on a

localization-centric strategy within object detection. Specifically, we initiated a TensorFlow

object detection model with a custom classification head and conducted training exclusively

on junction images that were meticulously annotated with bounding boxes. This distinctive

emphasis on localization enables us to precisely pinpoint intersection-related features,

potentially enhancing the accuracy and specificity of our detection system.

It is worth mentioning that most other junction detection models capture and detect

junctions from aerial-view. [3]

Figure 2.2.1.3 The roundabout intersection. A top-view. The red arrows in (b)

and (c) point to intersections.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

2.3 Previous Works on Raspberry Pi

The Raspberry Pi, a credit-card-sized single-board computer, has emerged as a powerful and

cost-effective tool in the realm of object detection tasks. Its role in object detection is

particularly significant due to its portability, affordability, and versatility. Raspberry Pi devices

are equipped with various models, each differing in computational power and capabilities, but

even the most modest Raspberry Pi models can be harnessed effectively for object detection

tasks.

One of the key features that make Raspberry Pi suitable for object detection is its ability to

run lightweight machine learning models efficiently. Object detection involves the

identification and localization of objects within images or video frames, and this process

demands computational resources. Raspberry Pi can leverage frameworks like TensorFlow

Lite and OpenCV to deploy pre-trained object detection models, enabling real-time inference

on images or video streams. Its compact form factor makes it suitable for embedded systems,

surveillance cameras, and even robotics applications where object detection is crucial.

Moreover, the Raspberry Pi's GPIO (General Purpose Input/Output) pins allow for

seamless integration with various sensors, cameras, and peripherals, making it adaptable to a

wide range of object detection scenarios. Whether it's monitoring home security, wildlife

tracking, or , the Raspberry Pi offers a flexible platform to implement object detection

solutions. In summary, the Raspberry Pi's affordability, accessibility, and compatibility with

machine learning frameworks make it a valuable asset for object detection tasks.

2.4 Previous Works using Cloud Computing on Object Detection Models

 Leveraging cloud computing for object detection models has become a game-changer in the

field of computer vision and artificial intelligence. Cloud computing offers several advantages

for deploying, managing, and scaling object detection models, making it a preferred choice for

businesses, researchers, and developers.

One of the primary benefits of using cloud computing for object detection is the immense

computational power and resources available in the cloud. This concept is exemplified in a

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

study by [10], where cloud computing was harnessed to augment the computational and storage

capabilities of local robots. Training complex deep learning models for object detection often

requires significant computational resources, including high-performance GPUs and TPUs.

Cloud providers like AWS, Azure, and Google Cloud offer access to these resources on-

demand, allowing developers to train and fine-tune their models efficiently. This eliminates the

need for expensive on-premises hardware investments and ensures that even resource-intensive

tasks can be accomplished swiftly.

Scalability is another key advantage of cloud computing. Object detection models deployed

in the cloud can easily scale to handle varying workloads. Whether it's processing a few images

or analyzing a massive video stream, cloud-based object detection systems can dynamically

allocate resources to meet demand, ensuring low latency and consistent performance. This

flexibility is invaluable for applications such as surveillance, autonomous vehicles, and real-

time monitoring.

Security and reliability are paramount when dealing with sensitive object detection tasks,

such as in autonomous vehicles or healthcare applications. Leading cloud providers invest

heavily in security measures, including data encryption, access controls, and compliance

certifications. This ensures that object detection models deployed in the cloud meet rigorous

security standards and can be trusted for mission-critical applications.

2.4.1 Amazon Cloud Service

In this project, Amazon Web Services (AWS) is chosen to be the cloud service provider due to

its comprehensive suite of cloud computing services, extensive scalability options, and robust

infrastructure, which align with the requirements and demands of the object detection tasks and

computational needs of the project. Specifically, we chose to use Amazon Elastic Compute

Cloud (EC2) to handle the computation. This cloud service offers machine images that

encapsulate all the necessary components for a server, including the operating system. This

simplifies the setup process and ensures a streamlined and efficient environment for running

our object detection models. Additional settings can be customized to tailor CPU, memory, and

networking capacity to meet the specific requirements of our object detection tasks. [12]

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

When compared to local processing, cloud-based object detection using AWS EC2

typically exhibits faster processing times. This advantage is attributed to the immense

computational power and resources available in the cloud, enabling rapid execution of object

detection tasks. This can be particularly beneficial for scenarios where real-time or low-latency

responses are crucial, as cloud-based processing can deliver results more quickly and

efficiently compared to relying solely on local resources. The speed between local and cloud

is visualised in Figure 2.4.1.1.

Figure 2.4.1.1 Cloud vs Local Processing Time [12]

In summary, cloud computing has revolutionized object detection by providing access to

vast computational resources, scalability, and simplified deployment and management. It has

democratized the development and deployment of object detection models, making them

accessible to a broader audience while ensuring reliability and security, ultimately driving

innovation in various industries.

2.4.2 Weakness

Although cloud computing presents numerous advantages for various tasks, it is not without

its inherent drawbacks. Chief among these concerns is network dependence, where factors such

as network outages or congestion can disrupt access to the cloud-based model, potentially

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

rendering critical services inaccessible. Additionally, the reliance on remote cloud resources

may introduce latency into the system, resulting in delays when making predictions compared

to running inference locally. This is discussed in detail in [11]. This latency issue is particularly

relevant in applications necessitating real-time or low-latency responses, highlighting the need

for a careful consideration of the trade-offs between cloud-based computational power and the

imperative of timely decision-making in certain scenarios.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

Chapter 3

Proposed Method/Approach

3.1 Methodologies and General Work Procedures

The overall system consists of four parts: image acquisition, junction detection and image

comparison (to be reported by my groupmate) and audible feedback.

3.1.1 Image Acquisition

The camera would need to be positioned at the front of the car, oriented toward the road. It

will capture a video and a python program will handle video splitting, obtaining a frame for

every second. These images will be fed into a junction detection model that uses RetinaNet and

ResNet as the pre-trained backbone network.

3.1.2 Junction Detection

 The object detection architecture employed is RetinaNet, a single-stage object detection

network that employs a feature pyramid network to identify objects across a range of scales

and aspect ratios. However, I utilized a particular pre-trained checkpoint designed for the

ResNet50_v1 architecture. ResNet50_v1 is a frequently employed backbone network in object

detection models. The code fetches the pre-trained checkpoint tailored for ResNet50_V1,

which has been trained on the COCO dataset. Subsequently, it restores all layers except the top

classification layer within the network. This enables the smooth transfer of weights to the

RetinaNet architecture.

 The reason for using the ResNet50_v1 checkpoint stems from its widespread adoption as a

backbone network in object detection models and its proven ability to extract essential features

from images effectively. The RetinaNet architecture implemented in the code necessitates a

backbone network for feature extraction, and ResNet50_v1 is a popular selection owing to its

robust performance track record.

 Beyond the previously mentioned architecture and pre-trained checkpoint specifications,

the refinement of the junction detection model included additional fine-tuning using a

dedicated dataset meticulously annotated for the purpose of junction detection. This training

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

dataset comprised Google Street View images, painstakingly annotated using the LabelImg

tool to outline bounding boxes around the junction present in the images. Leveraging this

annotated dataset, the RetinaNet model undergo training to ensure that it is precisely

customised for the specialised task of junction detection.

 In the training phase, the RetinaNet model that was initially configured with a single class,

“junction” to detect junction as per the previous approach. In an effort to enhance the model’s

performance, I acquired new training data and labelled it using the LabelImg tool before

employing it to train the RetinaNet model. The hyperparameter of the model during the training

remained consistent with those utilised in the previous work, with the sole adjustment being

the integration of a larger training dataset. After training, the model’s state was saved for future

use in detecting junction in new images.

3.1.3 Audible Feedback

As aforementioned the system will provide audible feedback to the driver, signalling the correct

turn or warning against incorrect turns. There will be 2 types of audible feedback; correct and

incorrect audible sounds. When the driver is approaching the correct junction, the system will

trigger the correct audible sound to inform the driver that is the correct turn to take. On the

other hand, the system will trigger the correct audible sound to inform the drive that it is the

correct turn to take. On the other hand, the system will trigger the incorrect audible sound as

soon as it detects that the driver has taken the wrong turn. By listening to the feedback sound,

drivers are able to identify whether they have taken the correct or incorrect turns. The decision

of what types of sound to make in specific situation is determined by a Python program code,

which also relies on the output from the model.

3.1.4 Cloud Computing

Due to the limitation in computing power in Raspberry Pi, I will be a virtual server, Amazon

EC2 to host and run the junction detection model and other codes such as image similarity

detection and so on. The input for the junction detection model, which are the frames mentioned

in Section 3.1.1 will be uploaded to Amazon S3 to provide easy access to the EC2 instance.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

3.2 Study Area and data

Our research was conducted in Westlake, a neighbourhood just beside UTAR, Kampar. The

figure below shows the exact location of our test case.

The training data can be accessed here:

https://drive.google.com/drive/folders/1HdFo0P83sj5dUjiYYEqPsgSdtE37ZkF8?usp=sharin

g

The testing data can be accessed here:

https://drive.google.com/drive/folders/1E8YGYOqdUYT1wHcu__ry5poARVBUQWNs?usp

=sharing

https://drive.google.com/drive/folders/1HdFo0P83sj5dUjiYYEqPsgSdtE37ZkF8?usp=sharing
https://drive.google.com/drive/folders/1HdFo0P83sj5dUjiYYEqPsgSdtE37ZkF8?usp=sharing
https://drive.google.com/drive/folders/1E8YGYOqdUYT1wHcu__ry5poARVBUQWNs?usp=sharing
https://drive.google.com/drive/folders/1E8YGYOqdUYT1wHcu__ry5poARVBUQWNs?usp=sharing

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

The table below shows the summarisation of the dataset:

Table 3.2.1 Summarisation of Dataset

Dataset Training Data Testing Data

Size 1085 images 41 images

Collection

Method

Snipping Tool (Google Street View) Captured using camera

Image

Preprocessing

Cropped unnecessary parts, resized to 1024 x 1024 -

Annotation Tool LabelImg (bounding box labeling) Manually labelled

Annotation

Format

XML file (exported from LabelImg) .txt file

Annotation

Purpose

Fine tune the pre-trained model Calculate accuracy

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

Chapter 4

System Design
4.1 System Block Diagram

Figure 4.1 System Block Diagram

4.2 System Components Specifications

4.2.1 Camera + Raspberry Pi

The process commences with the front-facing camera capturing the street scene in video

format. A Python program running on the Raspberry Pi then splits this video into individual

frames at a rate of one frame per second. These freshly captured frames are the input for the

subsequent stage of processing.

4.2.2 Amazon S3 (Simple Storage Service) (made some changes – newly added)

The Amazon S3 (Simple Storage Service) is a cloud storage service offered by one of the

pioneers of cloud services providers in the market, Amazon Web Services (AWS). AWS is

known for its scalability and security. It enables users to conveniently store and retrieve various

types of data, including files and objects via the internet. The purpose of S3 in this project is

that it will be used to store the frames that are uploaded from the Raspberry Pi which was

initially capture by the camera. The reason of uploading the frames into Amazon S3 will be

explained in Section 4.2.3.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

4.2.3 Amazon EC2

The Amazon EC2 (Elastic Computer Cloud) is a web service provided by Amazon Web

Services (AWS) that offers flexible and scalable computing resources to handle any

computation that is needed in the cloud. Users can easily start and oversee virtual servers,

referred to as ‘instances’, on-demand.

The Raspberry Pi 4 Model B, with its 1.8 GHz quad-core Cortex-A72 processor and 2GB

SDRAM, faces processing power limitations when tasked with running both the Junction

Detection Model and Image Similarity Detection Model. These models demand substantial

computing resources, which can strain the Raspberry Pi's capabilities. To address this

challenge, we've opted for an alternative approach—leveraging Amazon EC2 for cloud

computing. By migrating both models to Amazon EC2, we can harness the cloud's

computational prowess, relieving the Raspberry Pi of this heavy load. Additionally, to further

optimize system performance, we've implemented a process where the camera-captured frames

are uploaded to Amazon S3. This strategy significantly reduces the processing burden on the

Raspberry Pi when interfacing with EC2. Configuring Amazon EC2 instances to retrieve input

images directly from Amazon S3 proves to be a more efficient approach compared to

transmitting images as payloads directly to EC2. Following cloud-based computations, the

results are then relayed back to the Raspberry Pi for further processing.

4.2.3.1 Junction Detection Model

In this report, the junction detection model undergoes fine-tuning with an expanded dataset

comprising a larger number of annotated junction images obtained from Google Street View.

The hyperparameters of the model remain consistent with those utilized in the prior work.

Following fine-tuning, we will save the model’s state for future use in detecting junctions

within new images. Then the trained model will be uploaded to Amazon EC2. The model in

EC2 will get the frames from Amazon S3 and then perform junction detection on said frames.

If there is existence of junction in the frames, the model will then send that frame to the

following block which is Image Similarity Detection Model for further processing.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

4.2.3.2 Image Similarity Detection Model

 This part is done by my groupmate, Tan Yi Xuan.

 4.2.3.3 Google Directions API

 This part is done by my groupmate, Tan Yi Xuan.

 4.2.3.4 Google Street View API

 This part is done by my groupmate, Tan Yi Xuan.

4.2.4 Raspi Audio

As mentioned in the earlier part of the paper, the system will provide 2 types of audible

feedback to the driver. The python code of Raspi Audio is employed in the Raspberry Pi device

which and the outcome of the python code will be determined by the similarity result obtained

from the preceding block. In essence, if the detected junction is the correct junction, the system

will initiate the corresponding correct auditory signal; conversely when user has taken the

wrong junction, the system will prompt the system to emit the corresponding feedback.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

Chapter 5

System Implementation

5.1 Hardware Setup

The hardware that will be used in this project includes a laptop, a Raspberry Pi device, and a

camera. The laptop will serve the purpose of configuring the Raspberry Pi as well as training

the junction detection model. Then the Raspberry Pi will be used as an edge device to perform

the computer vision tasks. The variant of the Raspberry Pi is Raspberry Pi 4 Model B. The

camera will capture the input, which consist of street images. An audio system will be

employed to provide output, informing the user whether the turn is correct or if they have taken

the wrong turn.

Table 5.1 Specifications of laptop

Description Specifications

Model ILLEGEAR ROGUE

OS Window 10 Pro (Version 21H2)

CPU Ryzen 4800H

RAM 16GB

Graphic Nvidia GTX1650 TI

Storage 512GB M.2 PCIe NVMe SSD

Table 5.2 Specifications of Raspberry Pi

Description Specifications

Model Raspberry Pi 4 Model B

OS Debian GNU/Linux 11 (bulleye)

CPU Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.8GHz

RAM 2GB LPDDR4-3200 SDRAM

Hard Disk SanDisk EDGE 16GB

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

Table 5.3 Specifications of Camera

Description Specifications

Model Rapoo XW180

Frame Rate Up to VGA 30FPS

Video Resolution FHD 1080P/HD 720P

Connector Type USB 2.0

Figure 5.1 The setup of the Raspberry Pi 4 Model B

5.2 Software Setup

The software that will be used in this project includes Jupyter notebook, TensorFlow,

Raspberry Pi OS, Amazon EC2, Amazon S3.

5.2.1 Jupyter notebook

Table 5.4 Specifications of Jupyter Notebook

Description Specifications

Version 7.0.3

5.2.2 TensorFlow

Table 5.5 Specifications of TensorFlow

Description Specifications

Version 2.13.0

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

5.2.3 Operating system of Raspberry Pi

Table 5.6 Specification of Operating System of Raspberry Pi

Description Specifications

Version Debian 11 (Bullseye) 64-bit

5.2.4 Amazon EC2

Table 5.7 Specification of Amazon EC2

Description Specifications

CPU 2 virtual CPU

RAM 8GB

OS Amazon Linux 2023

5.3 Settings and Configuration

5.3.1 Jupyter notebook

The settings and configuration that was done on Jupyter notebook is not much because it is

only the platform to train the Junction Detection Model.

5.3.2 TensorFlow

The pre-trained model that was used to train the Junction Detection Model is TensorFlow.

Initially TensorFlow’s Object Detection has 2 heads which are object detection head and box

regression head. Each of these head is responsible for a specific task or output. For instance,

classification head will determine what objects are present in an image and assigning class

labels to those objects. On the other hand, box regression head is responsible for refining the

bounding box coordinates of the detected objects. Our approach in this project is that we will

preserve the weight of the box regression head and then make changes to the classification

head. In a simpler terms, we train the classification head with manually labelled training data

to be able to classify between junction and non-junction images while restoring the weight of

the box regression head.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

5.3.3 Raspberry Pi OS

The Raspberry Pi device was configured with a 32-bit Debian 10 initially. After that we

upgraded it to 64bit of Debian 11 as the device is equipped with a 64-bit CPU, which can

significantly enhance the system’s overall performance. We observed that the execution of

python to be slightly faster than the previous version.

5.3.4 Amazon S3

The configuration of Amazon S3 is done through the Amazon S3 console. After that we also

created a bucket in the Amazon S3 to store the frames that will be uploaded from Raspberry

Pi. After that we need to make sure that Amazon S3 is configured to be able to connect to

Amazon EC2 as the frames that stored in the S3 will be used by the EC2. The connection

between them requires a few steps. First of all, we need to run “AWS configure” in EC2 and

insert access key and secret access key to verify the credentials. With the help of “boto3”

library, EC2 can then establish client connection to S3.

5.3.5 Amazon EC2 (Elastic Computing Cloud)

The configuration of Amazon EC2 is done by launching the instance also known as virtual

server via AWS (Amazon Web Service) console.

The initial consideration when setting up an instance in EC2 is that we need to select the

appropriate AMI (Amazon Machine Image) according to our usage. Think of AMI as similar

to an ISO image, as it will contains components like operating system, applications and other

additional libraries that will be installed on the instance. For our case we are going to choose

Linux x86_64 HVM kernel-6.1 as the AMI of our virtual server.

Figure 5.2 The configuration of AMI in EC2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

The next configuration is the instance type of the EC2. Instance Types refer to virtual

servers capable of running applications. AWS offer different combination of CPU, memory,

storage, and networking capabilities allow the users to tailor their resource allocation

accordingly. In our case, we selected instance type of t2.large as it is aligned to our model’s

need and is more cost efficient.

Figure 5.2 The configuration of instance type in EC2

By default, an Elastic Block store (EBS) is configured with volume size of 8GB of SSD. In

our case, we configure the EBS to 25GB.

Figure 5.3 The configuration of EBS in EC2

Other than initial configuration of the EC2, the installation of libraries into the server is

also required. As aforementioned, both of the Junction Detection Model and Image Similarity

Detection Model are uploaded to the virtual server EC2 which means that EC2 also requires

some libraries to be installed in order to perform detection as well as similarity calculation.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

5.4 System Operation (screenshot)

5.4.1 Video Acquisition

The driving scene video is obtained by connecting a web camera to Raspberry Pi and

capturing the camera input.

5.4.2 Video Frame Extraction

On Raspberry Pi, I performed video frame extraction using a frame rate of 1fps to get only 1

frame per second. Figure 5.4.2.1 shows the input video and Figure 5.4.2.2 shows the output

frames of the video.

Figure 5.4.2.1 Input Video

Figure 5.4.2.2 Output Frames

5.4.3 Sending Frames to Amazon S3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

After authenticating credentials at Jupyter Notebook level, the Raspberry Pi is able to send the

frames to an Amazon S3 bucket that we previously configured with the following code (Figure

5.4.3.1)

Figure 5.4.3.1 Code Snippet to send images to Amazon S3

The figure below shows the Amazon S3 console and the frames that have been uploaded.

Figure 5.4.3.2 Amazon S3 Console

5.4.4 Connect to Amazon EC2 to run Python Script

After that, the Raspberry Pi need to use Secure Socket Shell (SSH) to connect to the EC2

instance to be able to run the python script that has been previously uploaded to the virtual

server. The figure below shows the EC2 instance on AWS console.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

Figure 5.4.4.1 Amazon EC2 Console

5.4.5 Handle Output to get Comparison Result

I configured the SSH connection and command so that the EC2 will print the ouput to the

Jupyter Notebook in real time. In this way, I can capture the result of each of the frames instead

of getting the results only when the python script has finished running. Figure 5.4.5.1 shows

the output of the EC2 python script in Jupyter Notebook.

Figure 5.4.5.1 Output from the EC2 python script

Upon getting this data, I extracted “Audio: 1” or “Audio: 0” from the output.

5.4.6 Trigger Raspi Audio

The figure below shows the code snippet to extract the keywords and play raspi audios

accordingly.

Figure 5.4.6.1 Code snippet for Handling Output

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

5.5 Implementation Issues & Challenges

5.5.1 Migration of code to Raspberry Pi

Migrating code to Raspberry Pi from the laptop that was used to train the model can often

encounter compatibility issues due to differences in operating system, and software

dependencies. To solve this kind of problem, I must go through some research to download

certain software dependencies and also finding the way of achieving the same output but on

different operating systems. For example, making audible “beep” can be very easy on device

that has Window Operating System as they just need to import “winsound” library to the python

code and by using “winsound.Beep()” the system will make sound. On the other hand, we will

need to install “beepy” libraries for Debian 11. Then the sound can be trigger by calling

“beepy.beep()” in the code.

5.5.2 Computation Limitation of Raspberry Pi

The next challenge is the performance of both Junction Detection Model and Image Similarity

Detection Model noticeably decreased after migrating the code from the laptop that trained the

models to the Raspberry Pi device, primarily due to the computational limitations inherent to

possesses significantly lower processing power and memory capacity compared to most

laptops. As a result, computationally intensive task that run smoothly on a laptop will

experience delays or execution time to complete the execution of the code is longer than

expected on the Raspberry Pi device.

With that said, we looked for alternative ways and found that cloud service like Amazon

Web Service (AWS) which is one of the pioneers of web service that one can find in the market

nowadays can help us to overcome the issue of computational limitation in the Raspberry Pi.

In simpler terms, both computationally intensive models will be uploaded to a virtual server in

the cloud and most of the computation will be done in the cloud. Meanwhile Raspberry Pi will

just handle in the input images which are the frames taken by the camera and upload those

frames to the cloud to be executed by the model that is currently hosted in the virtual server in

AWS. Furthermore, Raspberry Pi will also need to handle the output from the cloud which is

the similarity result then trigger the corresponding audible feedback.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

5.5.3 Internet Connectivity Issues

As mentioned earlier, both the Junction Detection Model and Image Similarity Detection

Model are hosted in the cloud. This implies that the system requires a consistent and reliable

Internet connection to execute the models. The Raspberry Pi device will rely on the internet to

upload the frames captured by the camera so that these frames can be processed by the models,

other than that the Raspberry Pi also need to handle the result that was returned by the model

from the cloud. In the previous work, only a very small part of the system requires internet

access which is the part where the system need to use Google Direction API to get the

coordination as well as Google Street View API to get the image of correct junction. However,

now even the Junction Detection Model and Image Similarity Detection Model required

internet connectivity to perform detection.

5.6 Concluding Remarks

In conclusion, this project has showcased the potential of harnessing a combination of

advanced technologies, from deep learning models to cloud-based solutions, to address real-

world challenges in road safety and driver support. While the journey has been marked by its

share of challenges, including compatibility issues during code migration and the inherent

limitations of Raspberry Pi's computational power, we've successfully navigated these

obstacles by leveraging the capabilities of Amazon Web Services (AWS) to offload intensive

computations to the cloud. This shift to a cloud-based approach not only enhances the system's

performance but also underscores the critical importance of a reliable internet connection in

our setup.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

Chapter 6

System Evaluation and Discussion

6.1 System Testing and Performance Metrics

Traditional evaluation metrics such as Intersection over Union (IOU) for object detection rely

on precise object boundaries, which are well-defined for tangible objects like vehicles or

pedestrians. However, the challenge with junction detection lies in the intangible nature of

junctions; they don't have fixed boundaries, making it impractical to use bounding boxes and

IOU as evaluation criteria.

As a solution, we propose using accuracy as an alternative metric for assessing the model's

performance. In this context, accuracy will measure the model's ability to correctly classify

images as either 'junction present' or 'no junction.' To establish ground truth, manual labelling

of test images as '1' (indicating the presence of a junction) or '0' (indicating no junction) will

be performed. The model's predictions will then be compared to this ground truth, allowing us

to determine its accuracy in detecting junctions. This approach accounts for the unique

characteristics of junctions and provides a meaningful measure of the model's real-world

performance.

 I will be using the metrics below:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

Tp + TN + FP + FN

(1)

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(2)

6.2 Testing Setup and Result

I used 41 test images to test the model’s performance. They are frames that are split from a

captured video in Westlake, Kampar. I manually labelled the test images with 1 or 0 depending

on whether the image contain junction or not. The ground truth value is saved in an .txt file.

The link to access the test data is provided in Section 3.2.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

The result of the model is as follows:

Table 6.2.1 Results of Model

Metrics Score

Accuracy 0.71

F1 Score 0.67

6.3 Project Challenges

One of the significant challenges faced during this project was the intangible nature of junctions

as objects. Determining the precise boundaries for labeling training data, such as where the

bounding box should start and end, proved to be a complex task. This inconsistency in labeling

may have contributed to suboptimal model performance after training. Additionally,

environmental factors like obstructions and varying weather conditions posed challenges in

accurately detecting junctions.

Another noteworthy challenge was related to latency when utilizing cloud services. While

the performance of using Amazon EC2 for computation improved significantly compared to

the Raspberry Pi, there remained a noticeable delay in processing due to the utilization of cloud

services. It is possible that the EC2 instance may not have been fully optimized to handle the

extensive processing demands, leading to latency issues.

6.4 Objectives Evaluation

The primary goal of this project is to accurately detect junctions in frames captured by the

camera. Junction detection accuracy is measured using the accuracy metric. This metric

assesses the model's ability to correctly identify whether a junction is present in a given frame.

The achieved accuracy score is 0.71, indicating a substantial success in meeting this primary

objective.

 Another critical objective is to assess the efficiency and latency of cloud-based processing

since I are using cloud computing. This evaluation considers the time required for image

processing and analysis on cloud infrastructure, specifically Amazon EC2. It helps determine

whether the cloud-based approach aligns with project requirements and expectations. It is

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

essential to highlight that during the project's implementation and testing phases, a significant

latency was observed in the processing pipeline. This latency, while expected in cloud-based

processing, was particularly noticeable and merits consideration for future improvements.

6.5 Concluding Remarks

In conclusion, this project has achieved notable success in addressing the challenging task of

junction detection. Traditional metrics like Intersection over Union (IOU), which are suited for

well-defined tangible objects, were impractical for junctions due to their intangible nature. As

a solution, we introduced accuracy as an alternative evaluation metric, which proved effective

in assessing the model's real-world performance. With an accuracy score of 0.71, the model

demonstrated its capability to distinguish between images with and without junctions, aligning

with our primary objective.

However, it's crucial to acknowledge the project's significant challenges. The intangibility

of junctions complicated the labeling process during training, potentially impacting the model's

performance. Environmental factors, including obstructions and varying weather conditions,

posed further challenges in achieving accurate junction detection.

Moreover, the integration of cloud-based processing, while enhancing computational

capabilities with Amazon EC2, introduced noticeable latency into the system. This latency,

although expected in cloud computing, calls for optimization and future improvements to

streamline processing times.

In summary, this project has made substantial progress in achieving its primary objectives,

notably in junction detection accuracy. Yet, the challenges encountered, such as the unique

nature of junctions and latency issues, highlight areas for future refinement and optimization.

These findings provide valuable insights for further enhancing the efficiency and effectiveness

of our system.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

Chapter 7

Conclusion and Recommendation

7.1 Conclusion

The decision to harness the power of cloud computing services, as opposed to local execution

on the Raspberry Pi, offers a range of signification advantages. First and foremost, utilizing

AWS EC2 enables us to seamlessly scale our computational resources in response to

fluctuating workloads, ensuring optimal processing efficiency at all times. This scalability not

only enhances performance but also promotes cost efficiency, as resource-intensive tasks are

offloaded to EC2, reducing the computational load and translating into cost savings and

improved energy efficiency for the Raspberry Pi. Moreover, AWS's robust and highly available

infrastructure guarantees uninterrupted accessibility and the continuous operation of our

models, boosting overall reliability. Additionally, the remote manageability afforded by EC2

empowers us to efficiently oversee and monitor our instances, simplifying maintenance,

updates, and troubleshooting processes. Lastly, AWS's centralized data storage solutions, such

as S3, enhance our data management practices, further streamlining our project's objectives.

To summarise, the primary object of this project is to bolster driver confidence by delivering

real-time audible feedback throughout their journeys and these cloud-based advantages serve

as essential enablers in achieving that objective.

7.2 Recommendation

As we reflect on the overall satisfactory results achieved in the current project, it is worth

considering avenues for further enhancement and exploration. One promising direction is to

delve into additional AWS services, particularly Amazon SageMaker, for the implementation

of machine learning solutions. SageMaker offers a comprehensive suite of tools and

capabilities tailored for machine learning model development, training, and deployment.

Exploring SageMaker’s potential can open up new horizon in out project, enabling us to

leverage its streamlined workflows, built-in algorithms, and scalable infrastructure. By

incorporating SageMaker into out project’s evosystem, we can aim for even greater efficiency,

scalability, and invocation in our machine learning endeavours.

 The next future work that can be done is expanding the scope of our study area and

increasing the number of training data. Due to the constraints of time and manpower in this

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

project, the model was trained primarily using data from the immediate vicinity of UTAR.

However, we strongly believe that the potential of this system extends far beyond its current

boundaries. With the implementation of an expanded training dataset, we firmly believe that

the system can demonstrate remarkable performance improvements. By including data from a

wider geographic area, we can enhance the model’s ability to recognise various road conditions

and driving scenarios. This expanded capability would position the system as a valuable

support tool for drivers in diverse real-world situations.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

REFERENCES

[1] X. Li et al., “Assessing street-level urban greenery using google street view and a

modified Green View index,” Urban Forestry & Urban Greening,

https://www.sciencedirect.com/science/article/pii/S1618866715000874 (accessed Sep.

12, 2023).

[2] A. Campbell, A. Both, and Q. (Chayn) Sun, “Detecting and mapping traffic signs from

Google Street View images using Deep Learning and GIS,” Computers, Environment

and Urban Systems,

https://www.sciencedirect.com/science/article/pii/S0198971519300870 (accessed Sep.

13, 2023).

[3] P. Mukhija, S. Tourani, and K. M. Krishna, “Outdoor Intersection Detection for

Autonomous Exploration,” IEEE Xplore,

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7169508 (accessed Sep. 13,

2023).

[4] J. Ahn, Y. Lee, M. Kim, and J. Park, “Vision-based branch road detection for intersection

navigation in unstructured environment using Multi-Task Network,” Journal of

Advanced Transportation, https://www.hindawi.com/journals/jat/2022/9328398/

(accessed Sep. 14, 2023).

[5] A. G. Bălănescu, C. L. Sîrbu, and C. Orhei, “Intersection detection based on Mono-

camera sensor | IEEE conference ...,” IEEE Xplore,

https://ieeexplore.ieee.org/document/9851381/ (accessed Sep. 13, 2023).

[6] A. Campbell, A. Both, and Q. (Chayn) Sun, “Detecting and mapping traffic signs from

Google Street View images using Deep Learning and GIS,” Computers, Environment

and Urban Systems,

https://www.sciencedirect.com/science/article/pii/S0198971519300870 (accessed Sep.

14, 2023).

[7] H. Eklund, “Diva,” OBJECT DETECTION: MODEL COMPARISON ON

AUTOMATED DOCUMENT CONTENT INTERPRETATION, https://www.diva-

portal.org/smash/get/diva2:994607/FULLTEXT01.pdf (accessed Sep. 13, 2023).

[8] T. V. Janahiraman and M. S. Mohamed Subuhan, “IEEE Xplore Full-text PDF:,”

IEEEXplore, https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7169508

(accessed Sep. 13, 2023).

[9] R. B. Islam, S. Akhter, F. Iqbal, Md. S. U. Rahman, and R. Khan, “Deep learning based

object detection and surrounding environment description for visually impaired

people,” Heliyon,

https://www.sciencedirect.com/science/article/pii/S2405844023041312 (accessed Sep.

14, 2023).

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

[10] Y. Jian, W. Xin, Z. Xue, and Dai ZhenYou, “IEEE Xplore,” Cloud computing and visual

attention based object detection for power substation surveillance robots,

https://ieeexplore.ieee.org/abstract/document/7129299 (accessed Sep. 14, 2023).

[11] J. Ren, Y. Guo, D. Zhang, Q. Liu, and Y. Zhang , “IEEE Xplore,” Distributed and

Efficient Object Detection in Edge Computing: Challenges and Solutions,

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8337810 (accessed Sep. 14,

2023).

[12] M. Guillermo et al., “IEEE Xplore,” Implementation of Automated Annotation through

Mask RCNN Object Detection model in CVAT using AWS EC2 Instance,

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9293906 (accessed Sep. 14,

2023).

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

Appendix

A.1 Raspi_code.ipynb
Split Video into Frames
import cv2 as cv

import os

Open the video file

video_path = 'wrong1.mp4' # Replace with the path to your video file

cap = cv.VideoCapture(video_path)

Check if the video file was opened successfully

if not cap.isOpened():

 print("Error: Could not open video file.")

 exit()

Get the frames per second (FPS) of the video

fps = int(cap.get(cv.CAP_PROP_FPS))

Define the output directory where frames will be saved

output_directory = 'output' # Change this to your desired output directory

os.makedirs(output_directory, exist_ok=True)

frame_count = 0

Loop through the frames

while True:

 # Read the next frame

 ret, frame = cap.read()

 # Break the loop if we have reached the end of the video

 if not ret:

 break

 # Save the frame to the output directory

 frame_filename = os.path.join(output_directory, f'frame_{frame_count:04d}.jpg')

 cv.imwrite(frame_filename, frame)

 frame_count += 1

 # Skip frames to capture one frame per second

 frames_to_skip = fps - 1

 for _ in range(frames_to_skip):

 cap.read()

Release the video capture object and close any open windows

cap.release()

cv.destroyAllWindows()

print(f"Saved {frame_count} frames to {output_directory}.")

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

print(f"Video FPS: {fps}")

Upload Frames to Amazon S3 Bucket

import os

#credentials

os.environ['AWS_ACCESS_KEY_ID'] = 'AKIAQVCXYEDYCERTQR4Y'

os.environ['AWS_SECRET_ACCESS_KEY'] = '*'

os.environ['AWS_DEFAULT_REGION'] = 'ap-northeast-1'

import os

import boto3

Initialize an S3 client

s3 = boto3.client('s3')

Specify your S3 bucket name

bucket_name = 'junction-detection'

Specify the local directory path containing the images

local_directory = 'output'

List all files in the local directory

local_files = os.listdir(local_directory)

Loop through the list of files and upload each image to S3

for local_file in local_files:

 if local_file.lower().endswith(('.jpg', '.jpeg', '.png', '.gif', '.bmp')):

 # Specify the destination object key (the path and filename in the bucket)

 object_key = f'frames/{local_file}' # Include the filename in the object_key

 # Specify the local path to the image file

 local_image_path = os.path.join(local_directory, local_file)

 # Upload the image to S3

 s3.upload_file(local_image_path, bucket_name, object_key)

 #print(f"Uploaded: {local_image_path} to S3 bucket: {bucket_name} with object key:

{object_key}")

Audio function

import beepy

def play_beep_sound(value):

 pygame.mixer.init()

 if value > 0:

 beepy.beep(“ping”) #positive

 else:

 beepy.beep(“error”) #negative

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

SSH to EC2 instance to Run Python Script containing junction detection model and

image similarity model

import subprocess

import paramiko

Establish SSH connection

cert = paramiko.RSAKey.from_private_key_file("junc.pem")

c = paramiko.SSHClient()

c.set_missing_host_key_policy(paramiko.AutoAddPolicy())

print("connecting...")

c.connect(hostname="13.115.166.35", username="ec2-user", pkey=cert)

print("connected!!!")

Command to execute your script

command = ['python3', '/home/ec2-user/Pipeline.py']

Run the script and capture its output

process = c.exec_command(' '.join(command), get_pty=True)

stdout = process[1]

Print the output in real-time

for line in iter(stdout.readline, ""):

 print(line, end='')

 if "Audio: 1" in line:

 print("Playing audio for positive result")

 play_beep_sound(1)

 elif "Audio: 0" in line:

 print("Playing audio for negative result")

 play_beep_sound(0)

Wait for the process to finish

process_exit_code = process[0].wait()

print(f"Script exit code: {process_exit_code}")

Close the SSH connection

c.close()

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

A.2 ec2_code.py
import tensorflow as tf

import os

import numpy as np
from six import BytesIO

import numpy as np

import keras

import cv2
from PIL import Image, ImageDraw, ImageFont

from keras.layers import Flatten, Dense, Input,concatenate
from keras.layers import Conv2D, MaxPooling2D

from keras.layers import Activation, Dropout

from keras.models import Model

from keras.models import Sequential
from scipy import spatial

#from tensorflow.keras.applications.vgg16 import VGG16

import boto3

def load_image_into_numpy_array(path):

 """Load an image from file into a numpy array.

 Puts image into numpy array to feed into tensorflow graph.

 Note that by convention we put it into a numpy array with shape

 (height, width, channels), where channels=3 for RGB.

 Args:

 path: a file path.

 Returns:

 uint8 numpy array with shape (img_height, img_width, 3)
 """

 img_data = tf.io.gfile.GFile(path, 'rb').read()

 image = Image.open(BytesIO(img_data))

 image = image.resize((1024, 1024))
 (im_width, im_height) = image.size

 return np.array(image.getdata()).reshape(

 (im_height, im_width, 3)).astype(np.uint8)

#for multiple boxes

def plot_detections(image_np,

 boxes,
 classes,

 scores,

 category_index,
 figsize=(12, 16),

 image_name=None,

 title=None):
 """Wrapper function to visualize detections.

 Args:

 image_np: uint8 numpy array with shape (img_height, img_width, 3)
 boxes: a numpy array of shape [N, 4]

 classes: a numpy array of shape [N]. Note that class indices are 1-based,

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

 and match the keys in the label map.
 scores: a numpy array of shape [N] or None. If scores=None, then

 this function assumes that the boxes to be plotted are groundtruth

 boxes and plot all boxes as black with no classes or scores.

 category_index: a dict containing category dictionaries (each holding
 category index `id` and category name `name`) keyed by category indices.

 figsize: size for the figure.

 image_name: a name for the image file.
 """

 image_np_with_annotations = image_np.copy()

 if scores is None:
 scores = np.ones_like(classes, dtype=np.float32)

 viz_utils.visualize_boxes_and_labels_on_image_array(

 image_np_with_annotations,

 boxes,
 classes,

 scores,

 category_index,
 use_normalized_coordinates=True,

 min_score_thresh=0.45,

 line_thickness=2)
 if image_name:

 plt.imsave(image_name, image_np_with_annotations)

 else:

 plt.figure(figsize=figsize)
 plt.imshow(image_np_with_annotations)

 if title:

 plt.title(title)
 plt.show()

Load the Saved Junction Detection Model

import os

saved_model_path = r'/home/ec2-user/FYP2_retrain4'
pb_file_path = os.path.join(saved_model_path, 'saved_model.pb')

print(os.path.exists(pb_file_path))

loaded_module = tf.saved_model.load('/home/ec2-user/FYP2_retrain4')

loaded_detection_fn = loaded_module.detect

loaded_fine_tuned_model = loaded_module.detection_model

Redefine Variables

junction_class_id = 1

num_classes = 1
category_index = {junction_class_id: {'id': junction_class_id, 'name': 'junction'}}

Load Similarity Model
VGG-16 model with pre-trained weights

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

vgg16 = keras.applications.VGG16(weights="imagenet", include_top=True, pooling="max",

input_shape=(224, 224, 3))

Extract fc2 layer

basemodel = Model(inputs=vgg16.input, outputs=vgg16.get_layer("fc2").output)

Obtain feature vectors function

def get_feature_vector(img):
 img = cv2.resize(img, (224, 224))

 feature_vector = basemodel.predict(img.reshape(1, 224, 224, 3))

 return feature_vector

Calculate similarity using cosine similarity

def calculate_similarity(vector1, vector2):
 return 1 - spatial.distance.cosine(vector1, vector2)

Get Coordinates of all Junctions in Desired Route using Google Directions API

import requests

import json

Define the API endpoint

endpoint = 'https://maps.googleapis.com/maps/api/directions/json'

Define a list of origins and destinations

origins = ['1066, Jln Seksyen 1/2, Taman Bandar Barat, 31900 Kampar, Perak']

destinations = ['1337, Jln Seksyen 1/3, Taman Bandar Barat, 31900 Kampar, Perak']

params = {

 'key': 'AIzaSyCRs4VDM3CDp4FBoZ8fZVJ6cg9XRd2Wxqc',

 'mode': 'driving'
}

Iterate through origins and destinations
for origin in origins:

 for destination in destinations:

 # Set the origin and destination for this iteration

 params['origin'] = origin
 params['destination'] = destination

 # Make the API request
 response = requests.get(endpoint, params=params)

 # Check if the request was successful

 if response.status_code == 200:
 # Parse the JSON response

 routes = response.json()

 else:
 print(f"Error: {response.status_code}")

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

Get the cardinal direction of the junction coordinates

def get_new_heading(current_heading, turn_direction):

 """

 Calculate the new heading based on the current heading and turn direction.

 Args:

 current_heading: Current heading (e.g., "north", "east", "south", "west").
 turn_direction: Turn direction (e.g., "left" or "right").

 Returns:
 New heading as a string.

 """

 cardinal_directions = ["north", "east", "south", "west"]

 # Define the order of cardinal directions

 if current_heading not in cardinal_directions:

 raise ValueError("Invalid current heading")

 index = cardinal_directions.index(current_heading)

 # Calculate the new index based on the turn direction

 if turn_direction == "left":

 new_index = (index - 1) % 4

 elif turn_direction == "right":
 new_index = (index + 1) % 4

 else:

 raise ValueError("Invalid turn direction")

 return cardinal_directions[new_index]

List to store start locations with associated cardinal directions
junctions = []

Initialize variables
current_heading = None

previous_turn_direction = None

for route in routes['routes']:
 for leg in route['legs']:

 for step in leg['steps']:

 instruction = step['html_instructions']

 # Check for headings

 if "Head " in instruction:
 current_heading = instruction.split("")[1].split("")[0].lower()

 # Check for turns

 elif "Turn " in instruction:
 turn_direction = instruction.split("")[1].split("")[0].lower()

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

 # Check if this "Turn" instruction immediately follows a "Head" instruction
 if current_heading is not None and not junctions:

 # If it's the first instruction, add it without applying get_new_heading

 current_heading = current_heading

 # Calculate new heading based on current heading and turn direction
 else:

 new_heading = get_new_heading(current_heading, previous_turn_direction)

 current_heading = new_heading # Update current heading

 # Extract latitude and longitude

 start_location = step['start_location']
 latitude = start_location['lat']

 longitude = start_location['lng']

 # Create a dictionary with latitude, longitude, and associated directions
 location_with_directions = {

 'latitude': latitude,

 'longitude': longitude,
 'current_heading': current_heading,

 }

 # Append the dictionary to the junctions list

 junctions.append(location_with_directions)

 # Update the previous turn direction
 previous_turn_direction = turn_direction

Shift Coordinates to capture entire junction in frame

def shift_coordinates(current_latitude, current_longitude, current_heading):

 """

 Shift coordinates based on current heading.

 Args:

 current_latitude (float): Current latitude.
 current_longitude (float): Current longitude.

 current_heading (str): Current heading ("north", "south", "east", or "west").

 Returns:

 Tuple (new_latitude, new_longitude): New coordinates.

 """

 shift = 0.00017

 if current_heading == "north":

 new_latitude = current_latitude - shift
 new_longitude = current_longitude

 elif current_heading == "south":

 new_latitude = current_latitude + shift
 new_longitude = current_longitude

 elif current_heading == "east":

 new_latitude = current_latitude

 new_longitude = current_longitude - shift
 elif current_heading == "west":

 new_latitude = current_latitude

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

 new_longitude = current_longitude + shift
 else:

 raise ValueError("Invalid current_heading")

 return new_latitude, new_longitude

Update the latitude and longitude in the dictionary

for location in junctions:
 new_latitude, new_longitude = shift_coordinates(location['latitude'], location['longitude'],

location['current_heading'])

 location['latitude'] = new_latitude
 location['longitude'] = new_longitude

Get Google Street View image of all junctions in the specified route

import requests

Function to fetch Google Street View image
def fetch_street_view_image(latitude, longitude, heading):

 api_key = 'AIzaSyCRs4VDM3CDp4FBoZ8fZVJ6cg9XRd2Wxqc'

 size = '640x480'

 fov = 100
 heading = heading

 pitch = 0

 url =
f'https://maps.googleapis.com/maps/api/streetview?location={latitude},{longitude}&size={size}&fov

={fov}&heading={heading}&pitch={pitch}&key={api_key}'

 response = requests.get(url)

 if response.status_code == 200:
 return response.content

 else:

 print('Error: Unable to fetch Street View image')

List to store fetched images

junction_images = []
Create a list to store the feature vectors

junction_feature_vectors = []

heading_mapping = {
 "north": 0,

 "south": 180,

 "east": 90,
 "west": 270

}

Fetch images for each set of coordinates

for i, location in enumerate(junctions):

 heading_value = heading_mapping.get(location['current_heading'], None)

 image_data = fetch_street_view_image(location['latitude'], location['longitude'], heading_value)

 if image_data is not None:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

 image_data = cv2.imdecode(np.frombuffer(image_data, np.uint8), cv2.IMREAD_COLOR)
 image_data = cv2.resize(image_data, (224, 224))

 junction_images.append(image_data)

 # Calculate the feature vector and store it separately

 feature_vector = get_feature_vector(image_data).ravel()
 junction_feature_vectors.append(feature_vector)

Get Frames

boto3.setup_default_session(region_name='ap-northeast-1')

s3 = boto3.client('s3')

Define the S3 bucket and directory

bucket_name = 'junction-detection'

directory_name = 'frames' # Change this to the specific directory within the bucket

List objects in the S3 bucket

response = s3.list_objects_v2(Bucket=bucket_name, Prefix=directory_name)

Download the frames to a local directory

local_directory = '/home/ec2-user/frames'

if not os.path.exists(local_directory):

 os.makedirs(local_directory)

for obj in response.get('Contents', []):

 file_name = obj['Key']

 local_path = os.path.join(local_directory, os.path.basename(file_name))

 # Download the file

 s3.download_file(bucket_name, file_name, local_path)

frames_dir = '/home/ec2-user/frames'

frames_np = []
List all files in the directory

files = os.listdir(frames_dir)

Filter for image files (e.g., '.jpg', '.png', etc.)

image_files = [f for f in files if f.lower().endswith(('.jpg', '.jpeg', '.png', '.gif', '.bmp'))]

Loop through the image files

for i in image_files:

 image_path = os.path.join(frames_dir, i)
 frames_np.append(load_image_into_numpy_array(image_path))

Calculate Similarity

Loop through the frames, if there is junction detected, check the similarity with junction_images

(contain the correct junctions to be taken).

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

confidence_threshold = 0.4
similarity_threshold_prev = 0.5

similarity_threshold = 0.7

previous_junction_image = None
junction_image_counter = 0

for i in range(len(frames_np)):

 comparison_result = 0
 image_np = frames_np[i] # Extract the image numpy array

 input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, axis=0), dtype=tf.float32)

 detections = loaded_detection_fn(input_tensor)

 # Filter out detections with confidence below the threshold

 filtered_indices = detections['detection_scores'][0].numpy() >= confidence_threshold

 filtered_boxes = detections['detection_boxes'][0].numpy()[filtered_indices]

 if len(filtered_boxes) > 0:

 # If there are detections above the threshold, process the image
 print('Frame', i+1, 'contains junctions')

 # Get the image containing junctions

 junction_frame = get_feature_vector(image_np).ravel()

 if previous_junction_image is None:

 # If it's the first detected junction frame, compare it with the first junction image
 comparison_result = calculate_similarity(junction_frame,

junction_feature_vectors[junction_image_counter])

 else:
 # Compare the current frame with the most recently compared junction image

 similarity_score = calculate_similarity(junction_frame, previous_junction_image)

 # If the similarity score is above a certain threshold, consider it the same junction

 if similarity_score > similarity_threshold_prev:

 print("Same junctions captured, skipping.......")
 continue # Skip further processing for this frame

 # Now you can compare the frame with the "correct_junctions" data

 comparison_result = calculate_similarity(junction_frame,
junction_feature_vectors[junction_image_counter])

 # Print similarity score
 print('Comparison Result:', comparison_result)

 # Check if the similarity score is above the threshold for triggering audio
 if comparison_result > similarity_threshold:

 print("Audio: 1")

 #trigger_raspi_audio(positive)

 else:
 print("Audio: 0")

 #trigger_raspi_audio(negative)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

 # Update the previous junction image with the current frame

 previous_junction_image = junction_frame

 junction_image_counter+=1

 else:

 # If no detections above the threshold, no junctions detected, discard the image

 print('Frame', i+1, 'does not contain junctions, skipping...........')

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

A.3 Evaluation.ipynb
import tensorflow
import matplotlib

import matplotlib.pyplot as plt

import os

import sys

sys.path.append('/path/to/tf_slim')
import random

import io

import imageio

import glob
import scipy.misc

import numpy as np

from six import BytesIO
from PIL import Image, ImageDraw, ImageFont

from IPython.display import display, Javascript

from IPython.display import Image as IPyImage

import tensorflow as tf

from object_detection.utils import label_map_util
from object_detection.utils import config_util

from object_detection.utils import visualization_utils as viz_utils

#from object_detection.utils import colab_utils
from object_detection.builders import model_builder

%matplotlib inline

def load_image_into_numpy_array(path):

 """Load an image from file into a numpy array.

 Puts image into numpy array to feed into tensorflow graph.

 Note that by convention we put it into a numpy array with shape

 (height, width, channels), where channels=3 for RGB.

 Args:

 path: a file path.

 Returns:

 uint8 numpy array with shape (img_height, img_width, 3)

 """
 img_data = tf.io.gfile.GFile(path, 'rb').read()

 image = Image.open(BytesIO(img_data))

 image = image.resize((1024, 1024))
 (im_width, im_height) = image.size

 return np.array(image.getdata()).reshape(

 (im_height, im_width, 3)).astype(np.uint8)

#for multiple boxes

def plot_detections(image_np,

 boxes,
 classes,

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

 scores,
 category_index,

 figsize=(12, 16),

 image_name=None,

 title=None):
 """Wrapper function to visualize detections.

 Args:
 image_np: uint8 numpy array with shape (img_height, img_width, 3)

 boxes: a numpy array of shape [N, 4]

 classes: a numpy array of shape [N]. Note that class indices are 1-based,
 and match the keys in the label map.

 scores: a numpy array of shape [N] or None. If scores=None, then

 this function assumes that the boxes to be plotted are groundtruth

 boxes and plot all boxes as black with no classes or scores.
 category_index: a dict containing category dictionaries (each holding

 category index `id` and category name `name`) keyed by category indices.

 figsize: size for the figure.
 image_name: a name for the image file.

 """

 image_np_with_annotations = image_np.copy()
 if scores is None:

 scores = np.ones_like(classes, dtype=np.float32)

 viz_utils.visualize_boxes_and_labels_on_image_array(

 image_np_with_annotations,
 boxes,

 classes,

 scores,
 category_index,

 use_normalized_coordinates=True,

 min_score_thresh=0.35,

 line_thickness=2)
 if image_name:

 plt.imsave(image_name, image_np_with_annotations)

 else:
 plt.figure(figsize=figsize)

 plt.imshow(image_np_with_annotations)

 if title:
 plt.title(title)

 plt.show()

Load the saved model
loaded_module = tf.saved_model.load('C:/Users/xiaoq/Downloads/FYP 1024 resnet/FYP2_retrain4')

loaded_detection_fn = loaded_module.detect

loaded_fine_tuned_model = loaded_module.detection_model

Redefine variable

junction_class_id = 1
num_classes = 1

category_index = {junction_class_id: {'id': junction_class_id, 'name': 'junction'}}

Test Images
frames_dir = 'output'

frames_np = []

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

List all files in the directory
files = os.listdir(frames_dir)

Filter for image files (e.g., '.jpg', '.png', etc.)

image_files = [f for f in files if f.lower().endswith(('.jpg', '.jpeg', '.png', '.gif', '.bmp'))]
print(len(image_files))

Loop through the image files

for i in image_files:
 image_path = os.path.join(frames_dir, i)

 frames_np.append(np.expand_dims(load_image_into_numpy_array(image_path), axis=0))

binary_predictions = []
label_id_offset = 1

Loop through the image files and perform detection

for i in range(len(frames_np)):
 input_tensor = tf.convert_to_tensor(frames_np[i], dtype=tf.float32)

 detections = loaded_detection_fn(input_tensor)

 found_positive = False # Flag to check if a positive detection was found

 for detection_score in detections['detection_scores'][0].numpy():
 if detection_score > 0.35:

 binary_predictions.append(1)

 found_positive = True

 break # Exit the inner loop if a positive detection is found

 if not found_positive:

 binary_predictions.append(0)

Now, binary_predictions contains the predictions

Evaluation Metric
from sklearn.metrics import accuracy_score, confusion_matrix, f1_score

labels_from_file = []

Read the text file and extract labels
with open('output/ground_truth.txt', 'r') as file:

 for line in file:

 # Remove any leading/trailing whitespace and convert the line to an integer
 label = int(line.strip())

 labels_from_file.append(label)

Calculate accuracy
accuracy = accuracy_score(labels_from_file, binary_predictions)

Calculate F1 score
f1 = f1_score(labels_from_file, binary_predictions)

print(f'Accuracy: {accuracy:.2f}')
print('Confusion Matrix:')

print(confusion)

print(f'F1 Score: {f1:.2f}')

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: 2, 3 Study week no.:2

Student Name & ID: Tan Yong Ming , 2005117

Supervisor: Dr. Aun Yichiet

Project Title: RIGHT TRACK – A GOOGLE MAP COMPANION USING

JUNCTION RECOGNITION

1. WORK DONE
- perform discussion with supervisor and groupmate

2. WORK TO BE DONE
- figure out the junction that will be used for the training as well as testing set

3. PROBLEMS ENCOUNTERED
- no

4. SELF EVALUATION OF THE PROGRESS

- On track

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: 2, 3 Study week no.:4

Student Name & ID: Tan Yong Ming, 2005117

Supervisor: Dr. Aun Yichiet

Project Title: RIGHT TRACK – A GOOGLE MAP COMPANION USING

JUNCTION RECOGNITION

1. WORK DONE
- obtain more data on junction images

2. WORK TO BE DONE
- insert the new data and retrain the model

3. PROBLEMS ENCOUNTERED
- no

4. SELF EVALUATION OF THE PROGRESS

- On track

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: 2, 3 Study week no.:6

Student Name & ID: Tan Yong Ming, 2005117

Supervisor: Dr. Aun Yichiet

Project Title: RIGHT TRACK – A GOOGLE MAP COMPANION USING

JUNCTION RECOGNITION

1. WORK DONE
- retrained model to get higher validation score

2. WORK TO BE DONE
- discuss with groupmate about the setup

3. PROBLEMS ENCOUNTERED
- no

4. SELF EVALUATION OF THE PROGRESS

- On track

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: 2, 3 Study week no.:8

Student Name & ID: Tan Yong Ming, 2005117

Supervisor: Dr. Aun Yichiet

Project Title: RIGHT TRACK – A GOOGLE MAP COMPANION USING

JUNCTION RECOGNITION

1. WORK DONE
- configure raspi audio

2. WORK TO BE DONE
- transfer trained model

3. PROBLEMS ENCOUNTERED
- no

4. SELF EVALUATION OF THE PROGRESS

- On track

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: 2, 3 Study week no.:10

Student Name & ID: Tan Yong Ming, 2005117

Supervisor: Dr. Aun Yichiet

Project Title: RIGHT TRACK – A GOOGLE MAP COMPANION USING

JUNCTION RECOGNITION

1. WORK DONE
- transfer trained model to raspberry pi, install library and configure new OS

2. WORK TO BE DONE
- finish up the report and the code

3. PROBLEMS ENCOUNTERED
- no

4. SELF EVALUATION OF THE PROGRESS

- On track

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: 2, 3 Study week no.:12

Student Name & ID: Tan Yong Ming , 2005117

Supervisor: Dr. Aun Yichiet

Project Title: RIGHT TRACK – A GOOGLE MAP COMPANION USING

JUNCTION RECOGNITION

1. WORK DONE
- write report and finalise the code

2. WORK TO BE DONE
- recheck the report and make sure the code is working fine

3. PROBLEMS ENCOUNTERED
- no

4. SELF EVALUATION OF THE PROGRESS

- On track

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

POSTER

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

PLAGIARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name(s) of
Candidate(s)

TAN YONG MING

ID Number(s)

20ACB05117

Programme / Course BACHELOR OF COMPUTER SCIENCE (HONOURS)

Title of Final Year Project RIGHT TRACK – A GOOGLE MAP COMPANION USING

JUNCTION RECOGNITION

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: _6 %

Similarity by source
Internet Sources: ________5______%
Publications: ____2___ %
Student Papers: _______3__ %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report

to Faculty/Institute
Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: _____Dr. Aun Yichiet_____

 Name: __________________________

Date: ______15/9/2023_________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 20ACB05117

Student Name TAN YONG MING

Supervisor Name DR. AUN YICHIET

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Title Page
√ Signed Report Status Declaration Form
√ Signed FYP Thesis Submission Form
√ Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)
√ List of Symbols (if applicable)
√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review
√ Appendices (if applicable)
√ Weekly Log
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)
√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the

ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my
report.

(Signature of Student)
Date:12/9/2023

