

HUMAN ACTIVITY RECOGNITION VIA ACCELEROMETER AND GYRO

SENSORS

BY

TEE JIA LIN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

MAY 2023

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: Human Activity Recognition Via Accelerometer and Gyro Sensors

Academic Session: May 2023

 I TEE JIA LIN

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 2356, Jalan Seksyen 2/10,

 Taman Bandar Baru, Ts Dr Ooi Boon Yaik _______

 31900 Kampar, Perak Supervisor’s name

 Date: 15 September 2023 Date: 15 September 2023

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 15 September 2023

SUBMISSION OF FINAL YEAR PROJECT

It is hereby certified that Tee Jia Lin (ID No: 20ACB05546) has completed this final year project

entitled “Human Activity Recognition Via Accelerometer and Gyro Sensors” under the supervision

of Ts Dr Ooi Boon Yaik (Supervisor) from the Department of Computer Science, Faculty of

Information and Communication Technology.

I understand that University will upload softcopy of my final year project in pdf format into UTAR

Institutional Repository, which may be made accessible to UTAR community and public.

Yours truly,

(Tee Jia Lin)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

DECLARATION OF ORIGINALITY

I declare that this report entitled “HUMAN ACTIVITY RECOGNITION VIA

ACCELEROMETER AND GYRO SENSORS” is my own work except as cited in the

references. The report has not been accepted for any degree and is not being submitted

concurrently in candidature for any degree or other award.

Signature : _________________________

Name : Tee Jia Lin

Date : 15 September 2023

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

ACKNOWLEDGEMENTS

I would like to convey my gratitude to those who have contributed to the successful completion

of my Final Year Project 2.

First and foremost, I would like to express my sincere appreciation to Ts Dr Ooi Boon Yaik,

my supervisor, and my moderator Dr Sarah A'fifah Binti Abdullah Sani, who have given me

this golden opportunity to involve in the field of Human Activity Recognition using

smartphone embedded accelerometer and gyroscope. A million thanks for their guidance and

motivation throughout the project.

Other than that, I would like to say thanks to my parents and friends for their love and support,

which kept me motivated throughout the project.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

ABSTRACT

In recent years, the scholarly community has shown great interest in Human Activity

Recognition (HAR) as a result of its wide applications and growing significance spanning

different domains. While much research has been conducted, focusing on the development of

algorithms and techniques for HAR, less emphasis was placed on the improvement of HAR

research’s efficiency in terms of sensor data collection, annotation, and storage, resulting in the

use of incomplete, inefficient, and time-consuming data engineering systems.

This project aims to address the issue of inefficient data engineering infrastructure

being used in current HAR research by developing an efficient, comprehensive, and user-

friendly data engineering system for data collection, annotation, and storage. To implement the

data engineering system proposed, two mobile applications, SensorData and

SensorDataLogger with user-friendly interfaces and intuitive functionalities are developed

using Java programming language and Android Studio. The dataset created using the proposed

data engineering system is then used to train unidirectional Long Short Term Memory (LSTM)

model to evaluate the efficiency of proposed system in terms of accuracy and generalization

capabilities. In other words, if the dataset created using the proposed system can achieve good

accuracy and generalization during training and testing, it means that the proposed data

engineering system is effective. To prevent overfitting, early stopping is used to monitor

validation loss during training and dropout rate of 0.3 are applied. This project proves that the

proposed data engineering system is efficient, which is able to achieve an accuracy of 96.57%.

In conclusion, this project will be a significant contribution to the development of HAR

in multiple aspects. Firstly, it advances the domain enhancing the data engineering system’s

efficiency. Next, it improves the accuracy and reliability of HAR research by allowing the

researchers to produce dataset of high-quality. Furthermore, it improves scalability and

reproducibility by allowing researchers to expand projects to large scope or reproduce other

research with least effort. Moreover, it reduces the barriers of entry for non-technical

researchers to engage in HAR research. Lastly, the project paves the way for establishment of

standardized dataset, with streamlined data collection, data annotation and data storage, and

allow comparative research and benchmarking.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

TABLE OF CONTENTS

TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES ix

LIST OF TABLES xiii

LIST OF ABBREVIATIONS xiv

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Objectives 3

1.3 Project Scope and Direction 5

1.4 Contributions 6

1.5 Report Organization 8

CHAPTER 2 LITERATURE REVIEW 10

2.1 Review of the Technologies 10

2.2 Review of the Existing Systems 27

2.3 Proposed System 40

CHAPTER 3 SYSTEM METHODOLOGY/APPROACH (FOR

DEVELOPMENT-BASED PROJECT)

42

3.1 System Design Diagram 42

3.1.1 System Architecture Diagram 42

3.1.2 Use Case Diagram and Description 44

3.1.3 Activity Diagram 58

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

CHAPTER 4 SYSTEM DESIGN 61

 4.1 System Block Diagram 61

 4.2 System Components Specifications 62

CHAPTER 5 SYSTEM IMPLEMENTATION (FOR DEVELOPMENT-

 BASED PROJECT)

73

 5.1 Hardware Setup 73

5.2 Software Setup 74

5.3 Cloud Setup 76

5.4 Setting and Configuration 77

5.5 System Operation (with Screenshot) 78

5.6 Implementation Issues and Challenges 117

5.7 Concluding Remark 118

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 119

6.1 Model Testing and Performance Metrics

119

6.2 Testing Setup and Result 120

6.3 Project Challenges 121

6.4 Objectives Evaluation 122

6.5 Concluding Remark 124

CHAPTER 7 CONCLUSION AND RECOMMENDATION 125

7.1 Conclusion 125

7.2 Recommendation 126

REFERENCES 127

 APPENDIX 131

 WEEKLY LOG 145

 POSTER 152

 PLAGIARISM CHECK RESULT 153

 FYP2 CHECKLIST 167

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

LIST OF FIGURES

Figure Number Title Page

Figure 2.1 RNN model in [1] 23

Figure 2.2 LSTM neuron in [1] 24

Figure 2.3 Accuracy for individual classifiers for different dataset in

[4]

29

Figure 2.4 Accuracy for combined classifiers for different dataset in

[4]

29

Figure 2.5 Variation in acceleration signals when smartphones’

positions change in [4]

30

Figure 2.6 Accuracy of SVM change when number of features used

change in [10]

31

Figure 2.7 Accuracy of RF change when number of features used

change in [10]

32

Figure 2.8 Accuracy in [12] 33

Figure 2.9 System architecture diagram in [14] 33

Figure 2.10 Vanilla LSTM model in [14] 35

Figure 2.11 2-Stacked LSTM model in [14] 35

Figure 2.12 3-Stacked LSTM model in [14] 35

Figure 2.13 CNN-LSTM model in [14] 36

Figure 2.14 4-layered CNN-LSTM model in [14] 36

Figure 3.1 System Architecture Diagram 42

Figure 3.2 Use Case Diagram of HAR system 44

Figure 3.3 Activity Diagram 58

Figure 4.1 Block diagram for smartphone based HAR system 61

Figure 4.2 Flowchart for data collection in smartphone based HAR

system

62

Figure 4.3 Flowchart for dataset creation in smartphone based HAR

system

64

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

Figure 4.4 Flowchart for data preprocessing in smartphone based HAR

system

65

Figure 4.5 Flowchart for data exploration in smartphone based HAR

system

66

Figure 4.6 Flowchart for data segmentation in smartphone based HAR

system

67

Figure 4.7 Flowchart for model training and evaluation in smartphone

based HAR system

68

Figure 4.8 Architecture of LSTM model proposed 68

Figure 4.9 Flowchart for hyperparameter tuning in smartphone based

HAR system

70

Figure 4.10 Flowchart for model testing in smartphone based HAR

system

71

Figure 5.1 Android Studio Arctic Fox, 2020.3.1, Patch 4 75

Figure 5.2 Android emulators used 75

Figure 5.3 Google Colab interface 76

Figure 5.4 Google Cloud Storage bucket used to store the log files. 76

Figure 5.5 User Interface of SensorData 79

Figure 5.6 User Interface of SensorDataLogger 80

Figure 5.7 Dialog box asking for Bluetooth permission 81

Figure 5.8 Dialog box asking for storage permission 81

Figure 5.9 Dialog box asking to turn on Bluetooth in

SensorDataLogger

82

Figure 5.10 Dialog box asking to turn on Bluetooth in SensorData 83

Figure 5.11 Service account created 84

Figure 5.12 Bucket sensordatalogger-logfiles.appspot.com created 84

Figure 5.13 Google account sign-in page 85

Figure 5.14 Dialog box to add activity buttons in SensorData 86

Figure 5.15 Swipe to the left to delete activity button 87

Figure 5.16 Real-time accelerometer and gyroscope data in

SensorDataLogger

88

Figure 5.17 List of activity buttons in SensorData 89

Figure 5.18 The devices show status ‘Not connected’ 90

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

Figure 5.19 The device displays list of paired devices 91

Figure 5.20 SensorData initiate Bluetooth connection to

SensorDataLogger, status showing ‘Connecting…’

92

Figure 5.21 The devices show status ‘Connected to Redmi Note 11 Pro

5G’ and ‘Connected to Samsung Galaxy A8’.

93

Figure 5.22 Click activity button ‘WALK’ via SensorDataLogger 94

Figure 5.23 A dialog asking to set duration. After that, click ‘START’ 94

Figure 5.24 A timer starts at SensorData 94

Figure 5.25 A timer starts at SensorDataLogger 95

Figure 5.26 Timer stops. SensorDataLogger stops to collect sensor

signals for ‘WALK’ activity

96

Figure 5.27 Click ‘Save Log File’ button 97

Figure 5.28 Log files saved with specified filename 97

Figure 5.29 Log files content with automated annotation 98

Figure 5.30 Click ‘Upload Log File’ button 99

Figure 5.31 Upload log files to the bucket 100

Figure 5.32 Individual log files created and stored in Google Cloud

Storage

102

Figure 5.33 Retrieve the list of CSV file paths stored in GCS 102

Figure 5.34 Format the filename of CSV file 103

Figure 5.35 Storage spaces needed for CSV log files (LHS) compared to

Parquet log files (RHS).

103

Figure 5.36 Convert CSV files to Parquet files. Save back the Parquet

files to GCS bucket inside folder ParquetFile/

104

Figure 5.37 Retrieve the list of Parquet file paths stored in GCS 104

Figure 5.38 Format the filename of Parquet file 105

Figure 5.39 Preprocessing 105

Figure 5.40 Some part of the final dataset, har.parquet 106

Figure 5.41 Data type of each attribute in the dataset 108

Figure 5.42 Statistical summary of dataset 108

Figure 5.43 Null values of dataset for each attributes 108

Figure 5.44 Infinity values of dataset 108

Figure 5.45 Number of samples for each activity 109

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

Figure 5.46 Bar graph showing number of samples for each activity 109

Figure 5.47 Correlation matrix 110

Figure 5.48 Libraries or packages used 112

Figure 5.49 LSTM model architecture 113

Figure 5.50 Results of model training 114

Figure 5.51 A graph plotted on the changes of train loss, train accuracy,

validation loss and validation accuracy

114

Figure 5.52 Accuracy, loss and RMSE of training 114

Figure 5.53 Confusion matrix 115

Figure 5.54 Libraries or packages used 116

Figure 5.55 param_grid 116

Figure 5.56 Best combination of hyperparameters and accuracy 116

Figure 5.57 Accuracy, loss and RMSE of testing 117

Figure 5.58 Confusion matrix 117

Figure 6.1 Confusion matrix of model testing 120

Figure 6.2 Accuracy, loss and RMSE of model testing 121

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiii

LIST OF TABLES

Table Number Title Page

Table 2.1 Comparison between smartphones and smartwatches 14

Table 2.2 Comparison between existing systems and proposed system 37

Table 3.1 Use Case Legend 45

Table 5.1 Specifications of laptop 73

Table 5.2 Specifications of smartphone 73

Table 5.3 Specifications of tablet 74

Table 6.1 Objectives evaluation 122

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiv

LIST OF ABBREVIATIONS

LSTM Long Short Term Memory

CNN Convolutional Neural Network

RNN Recurrent Neural Network

HAR Human Activity Recognition

SVM Support Vector Machine

RF Random Forest

DT Decision Tree

SGD Stochastic Gradient Descent

LG Logistic Regression

k-NN k-nearest neighbors

GPS Global Positioning System

MSE Mean squared error

RMSE Root mean squared error

GCS Google Cloud Storage

FFT Fast Fourier Transform

DFT Discrete Fourier Transform

APF average of peak frequency

BPTT backpropagation through time

PPV positive predictive value

TPR true positive rate

BLE Bluetooth Low Energy

IDE Integrated Development Environment

Chapter 1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 1

Chapter 1

Introduction

1.1 Problem Statement and Motivation

Human activity recognition (HAR) refers to classification of human activities or actions

carried out by one or more individuals by using signals data recorded from responsive sensors

when they make movements [3]. In recent years, the scholarly community has shown great

interest in Human Activity Recognition (HAR) as a result of its wide applications and growing

significance spanning different domains. [8] indicates that there are approximately 120

publications in the field of HAR in 2019, about 130 publications in 2020, followed by 80

publications in 2021. Theoretically, this trend has been motivated by a surge in the

development of smart systems and environments that are progressively revolutionizing our

daily lives over the past few years [14]. The smart systems and intelligent environments being

built cover various aspects of human lives, including health monitoring, elderly care,

surveillance system, disaster occurrence detection, interactive gaming, etc. Besides, the

proliferation of advanced sensors, particularly in electronic devices and the prevalence of these

devices have enabled the collection of rich and diverse data about human movements [5]. On

the other hand, the improvement in Machine Learning and Deep Learning algorithm helps to

further advance the area of HAR by allowing the development of sophisticated algorithms to

accurately classify human activities [5]. This could be seen in [5], where researchers achieved

an average recognition accuracy of 93.0% and 92.2% by using Deep Learning and Machine

Learning algorithms, respectively.

Despite the extensive research done on the development of HAR algorithms and

techniques to improve the recognition accuracy, less emphasis was placed on the improvement

of HAR research’s efficiency in terms of sensor data collection, annotation, and storage. The

relevant process remains time-consuming, inefficient, and complicated. For instance, the

studies in [1] and [3] did not specify the data collection, annotation, and storage procedure.

There were, however, researches who did pay attention to the data engineering process. For

example, the authors in [2] clearly showed the data collection, annotation, and storage strategy.

However, the methodologies used were quite inefficient. The data subjects in [2] were required

to wear 3-D accelerometers on wrist, hip and hold a rucksack with GPS sensor and a flash-

Chapter 1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 2

card-memory-based 19-channel recorder to store the data. The data collected was then

annotated manually by supervisors or data subjects. A better example was [8], which gave clear

descriptions and used effective solutions for data collection and storage. The data subjects in

[8] were required to wear accelerometer and heart rate sensors on wrists. The data obtained

from these sensors were sent to an Android phone via BLE and stored in MySQL database

located on a server in cloud. However, the data collected still required manual labelling [8].

The inefficient data engineering system being used in HAR research represents a significant

challenge and there is a pressing need to address the inefficiencies to enhance the overall

effectiveness and performance of HAR research.

The motivation behind this HAR research stems from the critical need to propel the

field forward while maximizing its impact. The current inefficiencies in the data engineering

process of HAR researches bring the problems of scalability, reproducibility, and

comparability. For example, the inefficiency in sensor data collection, annotation and storage

used in HAR research hampers the project scalability since it is difficult and time-consuming

for researchers to expand projects to larger scopes as large and reliable datasets are required.

Besides, the inefficient and non-standardized data engineering system being employed affects

the reproducibility of the project for future researchers. This will limit the potential and

achievements of HAR research. Not only that, the data engineering system in HAR which lacks

efficiency and standardization can affect the comparability of studies within the field. This is

because inefficient methodology causes inaccurate data, noise and inconsistent quality of data

being collected. When the annotations are done manually without standardization, there is a

risk of inconsistencies in labelling human activities, which leads to discrepancies in labeled

ground truth. Parka et al. [15] pointed out that one of the factors which led to misclassification

of human activities was due to the lack of synchronization between activity performances and

data annotation. Using inefficient strategy will also result in the waste of resources including

time, money, and manpower. Moreover, non-standardized and inefficient data engineering

system presents a challenge in establishing benchmark dataset that serves as a common ground

for HAR algorithm’s performance evaluation.

Hence, a comprehensive and effective data engineering infrastructure is required to

address the issues by streamlining data collection methods, implementing more effective

annotation procedures, and optimizing storage strategies. By doing that, researchers can

undertake larger-scale studies with reduced time and resource constraints. Moreover, the

efficient data engineering ensures the accurate, reliable, and high quality of sensor data being

Chapter 1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 3

collected, labelled, and stored, which further improve the accuracy and reliability in HAR

models. This will allow future researchers to be able to reproduce researches done to further

enhance them and improve the overall performance of HAR field. Furthermore, efficient data

engineering enables comparability of studies, and this will contribute to the development of

standardized benchmarks for evaluating HAR algorithms. Last but not least, the proposed data

engineering system will remove the barriers for those researchers who do not have strong

background in data engineering.

1.2 Objectives

1.2.1 To address the issue of inefficient data engineering infrastructure being used in

current Human Activity Recognition (HAR) research.

As mentioned earlier, much emphasis was given to development of algorithms and

technologies in HAR, rather than on improving the efficiency of data engineering infrastructure

used to collect, annotate, and store data. Consequently, most of the current HAR research still

employed inefficient methodologies, resulting in inaccurate or unreliable results, affects the

scalability, reproducibility, comparability and limits the progress of HAR area. The primary

objective of this project is to address the issue of inefficient data engineering infrastructure

existing in most of the HAR research nowadays. This project aims to improve the efficiency,

accuracy, and reliability of HAR research by designing and constructing an efficient and

comprehensive data engineering model for the process of data collection, data annotation and

data storage. Achieving this objective can help other researchers to overcome the challenges

associated with inefficient data engineering infrastructure and to advance the state of the art in

the area of Human Activity Recognition.

1.2.2 To develop a comprehensive, efficient, and user-friendly data engineering system

for data collection, annotation, and storage.

Another project’s objective is to develop a comprehensive, efficient, and user-friendly

data engineering system for data collection, annotation, and storage. The data engineering

system proposed can be achieved by developing streamlined data collection techniques,

automated annotation strategies, and efficient data storage solutions. The implementation of

the system will help to simplify the process of data collection, annotation, and storage. This

will directly improve the performance and productivity of subsequent HAR research, which is

important to achieve greater results and breakthroughs in HAR. This project will also focus on

Chapter 1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 4

developing user-friendly system that is easy to use, especially to those researchers with do not

have technical background in data engineering. The system should also be flexible enough to

be adapted for use in a variety of research with minimal modifications.

1.2.3 To design and develop mobile applications, SensorData and SensorDataLogger

Another project objective is to design and develop mobile applications used in the data

engineering system, which are SensorData and SensorDataLogger. The applications are

developed to achieve the efficient data engineering system proposed. The applications are

developed using Java programming language and Android Studio as IDE.

The applications are connected using Bluetooth to send and receive instructions. Users

can give instructions via SensorData while SensorDataLogger is responsible to receive and

execute instructions. In SensorData, users can add the activities they want to collect data for

by defining the activities’ names and relevant IDs. The IDs should be unique among the

activities being created. Then, users can start the data recording process by clicking at the

activity created and set the durations they want to collect data for. After users click the

‘START’ button, SensorData starts a timer. When the time is up, SensorData will automatically

send instructions to SensorDataLogger to stop the recording process. When users click the

‘Save Log File’ button, SensorData will send instructions to SensorDataLogger with the

specific filename, which is the ID of the activity. When users click ‘Upload Log File’,

SensorData will send instructions to SensorDataLogger to upload log files to Google Cloud

Storage.

SensorDataLogger contains functions such as showing real-time data of accelerometer

and gyroscope to monitor the data collection process. Not only that, SensorDataLogger can

start the sensor data recording process for a particular physical activity for a specified period

of time and stop automatically when the time is up, upon the instructions from SensorData.

Besides, when the recording process stops and users click the ‘Save Log File’ button through

SensorData, SensorDataLogger will start the process of saving log file locally into mobile

phone with specified filename. Furthermore, SensorDataLogger can upload the log files to

Google Cloud Storage server for later processing, upon the instructions from SensorData.

This project will not focus on developing applications for iOS as most of the researchers

use Android phone to conduct the research.

1.2.4 To evaluate the efficiency of proposed data engineering system on HAR algorithm.

Chapter 1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 5

Another project objective is to evaluate the efficiency of proposed data engineering system

on HAR algorithm by looking at the performance of the HAR algorithms. This assessment will

encompass performance metrics such as accuracy and the generalization capabilities of HAR

algorithms. These metrics enable a quantitative assessment of how the HAR algorithms

perform when the proposed data engineering system is being implemented. By systematically

gauging the efficiency of the proposed data engineering system, this objective inherently

addresses the practicality and feasibility of integrating the proposed system into real-world

HAR applications. Besides, this project also wants to demonstrate that the proposed data

engineering system can improve the scalability, reproducibility, and comparability of project

without compromising recognition accuracy or efficiency.

1.3 Project Scope and Direction

The scope of this project revolves around addressing the issue of inefficient data

engineering system within current Human Activity Recognition (HAR) researches. As stated

in the problem statement, much of the emphasis in HAR has been directed towards the

development of algorithms and techniques used to increase the activity recognition accuracy,

overshadowing the optimization of data engineering infrastructure, in terms of data collection,

data annotation and data storage. This imbalanced effort has resulted in the employment of

inefficient data engineering solutions in current HAR researches, leading to inaccuracies,

unreliability, and limitations in scalability, reproducibility, and comparability of HAR studies.

Henceforth, the scope of this research is to develop a comprehensive, efficient, and user-

friendly data engineering system. The proposed system can be achieved by developing

streamlined data collection techniques, automated annotation strategies, and efficient data

storage solutions. With this system being constructed and utilized, sensor data can be accurately

collected, labelled, and stored, which would bring efficiency to subsequent HAR research. The

system designed should be user-friendly and straightforward to use, especially to those

researchers who do not have technical background in data engineering.

To achieve the goal, the project covers the design and development of two mobile

applications, SensorData and SensorDataLogger. The applications are developed using Java

programming language and Android Studio as IDE. Both applications are connected via

Bluetooth. Users can give instructions via SensorData while SensorDataLogger is responsible

to receive and execute instructions. In SensorData, users can add the activities they want to

collect data for by defining the activities’ names and relevant IDs. The IDs should be unique

Chapter 1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 6

among the activities being created. Then, users can start the data recording process by clicking

at the activity created and set the durations they want to collect data for. After users click the

‘START’ button, SensorData starts a timer. When the time is up, SensorData will automatically

send instructions to SensorDataLogger to stop the recording process. When users click the

‘Save Log File’ button, SensorData will send instructions to SensorDataLogger with the

specific filename, which is the ID of the activity. When users click ‘Upload Log File’,

SensorData will send instructions to SensorDataLogger to upload log files to Google Cloud

Storage. SensorDataLogger contains functions such as showing real-time data of accelerometer

and gyroscope to monitor the data collection process. Not only that, SensorDataLogger can

start the sensor data recording process for a particular physical activity for a specified period

of time and stop automatically when the time is up, upon the instructions from SensorData.

Besides, when the recording process stops and users click the ‘Save Log File’ button through

SensorData, SensorDataLogger will start the process of saving log file locally into mobile

phone with specified filename. Furthermore, SensorDataLogger can upload the log files to

Google Cloud Storage server for later processing, upon the instructions from SensorData.

Since most of the research were done using Android device, therefore this project will

not focus on developing mobile applications for iOS device.

1.4 Contributions

1.4.1 Advancement of Data Engineering System in HAR research

 This project helps to advance the area of Human Activity Recognition (HAR) by

addressing the often-overlooked issue related to inefficient data engineering system being used

to collect, label, and store data. Inefficient data engineering system being used to handle data

will limit the potential progress and achievements of researchers in the area of HAR research.

This project aims to remove this barrier by developing a comprehensive and efficient data

engineering system to provide researchers with necessary tools to achieve more in the field. By

devising and implementing an efficient data engineering system for data collection, annotation,

and storage, this research fosters a new paradigm in HAR research.

1.4.2 Improvement of Accuracy and Reliability of HAR research

Furthermore, this project helps to improve the accuracy and reliability of HAR research.

Sensor data is one of the important components in HAR research. The accuracy and reliability

of the data being collected and processed will have a significant impact on the outcome of

Chapter 1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 7

subsequent HAR research. Hence, it is crucial that the data engineering system used to handle

data is accurate and reliable. The proposed system directly addresses the challenges associated

with inefficient data handling practices, paving the way for more accurate and reliable HAR

studies.

1.4.3 Improvement of Scalability and Reproducibility of HAR research

 By implementing the efficient data engineering system, the optimized system facilitates

the handling of larger datasets without compromising accuracy, thereby enabling researchers

to explore broader contexts and scenarios. Additionally, the standardized data engineering

procedures ensure greater reproducibility of experiments across different studies.

1.4.4 Foundation and Impetus for Future Researches

Besides, this project also contributes a foundation and reference for future research.

The data engineering system being designed and developed in this project helps to facilitate

future research, as it can be adapted to be used in other research, either within the same area or

different area of study with only minimal modifications. The system proposed will have long-

term significance and benefits to all the research that relies on data collection, annotation, and

storage. The proposed system is also expected to stimulate further innovation and exploration

within HAR domain.

1.4.5 Practical Implementation for Non-technical Researchers

Moreover, this project will also benefit those researchers who do not have technical

background in data engineering. By offering a user-friendly interface and intuitive

functionalities, the proposed data engineering system allows more researchers to engage in

HAR research without grappling with complex technical intricacies. This helps to reduce the

barriers to entry for new researchers and increase the overall performance of the related field.

1.4.6 Comparative Research and Benchmarking

The proposed data engineering system allows the establishment of more standardized

dataset, with streamlined data collection, data annotation and data storage. This allows for

meaningful comparative research and benchmarking in the realm of HAR. Researchers can

now compare the performance of various HAR algorithms and techniques on standardized

Chapter 1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 8

datasets, eliminating the confounding effects of inefficient data engineering practices. This

contributes to a more accurate assessment of different HAR approaches.

1.5 Report Organization

This research is organized into six chapters, which includes: Chapter 1 Introduction,

Chapter 2 Literature Review, Chapter 3 System Methodology/Approach, Chapter 4 System

Design, Chapter 5 System Implementation, Chapter 6 System Evaluation and Discussion and

Chapter 7 Conclusion.

Chapter 1 serves as the introduction of this research, describing background of the

project, problem statements discovered in the current HAR researches, motivation of

implementing the project, project scope, project objectives, contributions of the project and

project report structure.

Chapter 2 entails a comprehensive exploration of existing Human Activity Recognition

researches conducted using smartphone embedded sensors. The evaluations of strengths and

weaknesses of the researches have been done.

Next, Chapter 3 delves into the overall system design and proposed methodology

adopted in this project. System architecture diagram, use case diagram and activity diagram

along with the detailed descriptions are included in this chapter.

Chapter 4 includes a system block diagram, which shows the components of the

proposed system, including data collection, dataset creation, data exploration, data

segmentation, model training and evaluation, hyperparameter tuning and model testing. We

also include the flowchart explaining the process and implementation of each component in

the proposed system.

Additionally, Chapter 5 discusses on the system implementation, which includes the

details of the hardware, software and cloud used in this system. We also include the

configurations and settings needed for the hardware, software, and cloud. Then, we discuss the

partial outcome of data engineering system, which is the SensorData and SensorDataLogger

applications. After that, we discuss on coding and partial results of each process in the machine

learning pipeline. We also talk about some implementation issues and challenges faced and

how we overcome them.

After that, Chapter 6 presents the outcome of our project. Firstly, we show and explain

the coding on how we perform model testing and evaluate their performance. Then, we

demonstrate the confusion matrix and accuracy, loss, RMSE values we are able to achieve from

Chapter 1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 9

model testing. Moreover, we review some of the project challenges and our solutions to tackle

them. We also had an objective evaluation to show the current progress of this project.

Lastly, Chapter 7 includes the conclusion which discuss about our current

accomplishments and summary of the project. Recommendations are also given on the

improvements we can make to further enhance the performance of this research.

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 10

Chapter 2

Literature Review

2 Previous works on Human Activity Recognition (HAR)

Human Activity Recognition (HAR) stands as a central focus of this research, poised

at the intersection of technology and human behavior. As our lives become intensively

interlaced with digital devices, the ability to understand and predict human activities from

sensor data holds tremendous value. Researchers have ardently explored the area of HAR due

to its growing significances and its wide applications in our daily life that span healthcare,

surveillance, fitness tracking, etc. This literature review will delve into the essential elements

that constitute the foundation of HAR based on inertial sensors, which are sensor dataset

creation, signals preprocessing, model training and model evaluation.

2.1 Review of the Technologies

2.1.1 Dataset

 The first step in Human Activity Recognition (HAR) research based on inertial sensors

is dataset preparation. This research will capture the sensor signals from accelerometer and

gyroscope. Accelerometer captures the linear acceleration and gravitational forces acting on it,

where the processed signals can be used to identify sudden changes in movements [3].

Gyroscope records the angular velocity, capturing the rotational motion around each axis,

where the processed data can be used to identify the position and alignment of the devices [3].

2.1.1.1 Data Source

 Most of the previous research conducted using inertial sensors involved implementing

the data collection process and creating an independent, bespoke datasets. For instance, the

authors in [1] collected accelerometer and gyroscope sensor data for the activities of stop,

walking, running, and running helter-skelter, aiming to identify occurrences of disasters such

as fire, tsunamis, etc. Besides, in [2], the authors collect sensor data in supervised and

unsupervised settings by allowing data subjects wearing 3-D accelerometers on wrist, hip, and

by holding a rucksack with GPS sensor. Moreover, the authors in [4] collected the

accelerometer data using mobile phone by asking the data subjects to hold the smartphones in

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 11

front of the chests or inside pockets while performing activities such as slow walking, fast

walking, running, aerobic dancing, climbing upstairs and climbing downstairs. Furthermore,

the data subjects in [6] carried the smartphones in their leg pockets to detect actions such as

standing, sitting, fallen down, squatting in toilet, etc. The sensor suite in [6] includes

accelerometer, gyroscope, humidity, and temperature sensors.

Creating an independent dataset allows the researchers to have full control over the data

quality, ensuring the data collected is consistent, and of high quality. This helps to reduce the

noises and biases in the dataset. Besides, researchers can also customize the data collection to

match the specific requirements of the research, focusing on the types of activities, scenarios

or contexts that are most relevant. For instance, in [1], [4] and [6], the authors included the

actions which are not commonly found in existing open datasets, such as running helter-skelter,

aerobic dancing and squatting in toilet. Hence, the authors created independent datasets for

their own usages. [2] emphasizes the significance of using out-of-laboratory sensor data for the

development of HAR, which is not commonly seen in existing open datasets. The authors in

[6] also collected humidity data and temperature data via smartphone, which are rarely found

in public datasets. Most of the existing datasets are largely based on accelerometer, gyroscope,

and magnetometer [5].

However, creating an independent dataset can introduce limitations such as inaccurate

measurement due to different ways of sensor placement and attachment on data subjects. For

example, the authors in [4] found that the acceleration data showed significant variation for the

same physical activity when data subjects shifted the position of smartphones from holding in

hands in front of chests to putting smartphones inside pockets. [2] also found that sensor

location, attachment, and other factors such as body shape of data subjects and the clothes wore

by the data subjects would affect the accuracy of acceleration data collected to differentiate

sitting and standing activities. The body shape of data subjects might have impact on the sensor

orientation on the waist [2]. The data subjects in [2] wore sport clothes, which caused the

unsteady position of accelerometers.

There were also researchers who opted for open existing datasets instead of creating on

their own. For example, the authors in [11], chose to use Opportunity dataset which collects

data from 23 body sensors, 12 object sensors and 21 ambient sensors regarding the human daily

morning activities in a room. Similarly, [21] use KU-HAR dataset, which collects data from

accelerometer and gyroscope through smartphone placed in a waist bag, due to its wide

variations of activities included and it is currently the largest datasets available for

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 12

accelerometer and gyroscope data. Furthermore, [20] used HHAR dataset which contains

signals collected from both smartphones and smartwatches. Other existing dataset includes

WISDM, REALDISP, PAPAM2 and others [5].

Using public datasets helps to reduce biases that may be introduced during data

collection. Besides, employing public datasets help to solve the problem of recognizing human

movement patterns among different individuals since human actions have large intra-subject

and inter-subject variability [5]. Researchers faced difficulties in developing a methodology

that can recognize human movement among all subject [5]. Hence, using publicly available

datasets offer a benchmark for evaluating and fine-tuning models.

However, existing datasets may have limited relevance with your research purpose and

context and limited diversity in terms of activities type and sensor type. [5]. In short, it is nearly

impossible to find a public dataset which aligns with your research goals in terms of activities

type, sensor type, annotations, etc. This will limit the applicability and accuracy of your

research.

2.1.1.2 Smartphone Embedded Sensors

 The prior researches of HAR based on inertial sensors can be classified into two

categories in terms of data collection device, which includes smart devices and wearable,

standalone sensors. The smart devices include smartphones and smartwatches. This research

will concentrate on collecting sensor signals using embedded sensors within smartphone.

 The widespread adoption of smart devices, especially smartphones and smartwatches

has led to a surge in HAR research done using these technologies [5]. For instance, the author

in [4] and [7] proposed a human action recognition system leveraging acceleration data from

only single triaxial accelerometer embedded in smartphone. Han et al. [1] devised a human

action recognition model using accelerometer and gyroscope embedded in smartphones to

detect occurrences of disasters. Similarly, Bulbul et al. [3] used smartphone embedded

accelerometer and gyroscope sensors to collect signals to recognize six activities. Moreover,

Masum et al. [6], proposed a reliable data gathering process by using accelerometer sensor,

gyroscope sensor, temperature sensor and humidity sensor to gather data.

There were also researches done based on smartwatches. For example, Kheirkhahan et

al. [18] developed a real-time health monitoring framework using smartwatches. The authors

proposed a ROAMM framework which involves continuous sensor data gathering at high

frequency to monitor and evaluate physical activity, along with patient-reported outcomes [18].

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 13

An activity recognition system based on smartwatch that utilizes active learning was suggested

in [19] and was able to obtain a 93.3% of recognition accuracy. The authors in [20] conducted

HAR research by using acceleration signals from both smartphones and smartwatches. The

authors then analyzed and compared the outputs from both devices [20].

The growing diffusion of smartphones and smartwatches into humans’ daily lives

renders them to become the daily demands of users nowadays and hence, they can be an

effective tool used to gather data about users’ physical movement while performing daily

activities [3] [6]. Some researcher argued that smartwatches are convenient to wear and have

high user acceptability [18], which positions smartwatches as the optimal device for continuous

data collection and monitoring, compared with smartphones [18]. This is because smartphones

are bulkier and less portable than smartwatches and smartwatches can be easily worn at any

time, such as during exercise or sleep time [19]. Both smartphones and smartwatches feature a

wide array of embedded sensors, allowing different types of sensor signals being collected,

including accelerometer, gyroscope, GPS sensor, etc. [3] [18]. This helps to extend the research

done to a larger scope by incorporating sensor data received from various sensors to identify

more complicated situations and activities [3]. Both smartphones and smartwatches offer

interactivity. The researchers can implement the research without direct contact with data

subjects and devices by giving feedbacks through the screens [18] [19]. Smartwatches allow

the data subjects to be easily notified by the messages or warnings in terms of texts, sounds

and vibrations from researchers due to the close proximity to their visual sights compared to

smartphones [19].

The main difference between smartphones and smartwatches is their battery life.

Smartwatches has limited battery life, especially when all embedded sensors are collecting data

concurrently at high sampling rate [18]. The study in [18] shows that accelerometer consumes

the least battery but would also exhausts the battery after collecting data continuously for a

short period of time. Next, smartwatches have limited computational capabilities in terms of

memory and CPU compared with smartphones [19]. In contrast, smartphones nowadays have

better computational capabilities in terms of memory, battery, and CPU [5] [17]. For instance,

researchers can execute HAR models on smartphones to classify human activity based on

sensor data, which means smartphones allow real-time activity monitoring and feedback in

online mode [5] [17]. Furthermore, another difference is that smartwatch records both body

and arm movements, introducing higher variability [20]. There are instances when sometimes

the arm movements are not associated to the corresponding human activity [20]. This will lead

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 14

to outliers in the data collected. In contrast, smartphones capture only the whole-body

movement [20].

Smartphone-based HAR also introduce some limitations. For instance, smartphone

based HAR poses a challenge of recognizing the location and orientation of smartphone if the

data is collected in a free-living environment [16]. Different users have different ways and

positions of carrying smartphones with them in real-world scenarios [16]. [4] showed that the

accelerometer data exhibited significant variation for the same physical activity when data

subjects shifted the position of smartphone from holding it in hand in front of chest to putting

smartphone inside pocket. This makes the task of recognizing human activity to be more

challenging, as changes in smartphone position will result in the decrease of recognition

accuracy [17]. Besides, smartphone based HAR cannot overcome the problem common to all

HAR researches, which is sensor data used to recognize human activity must be collected in

controlled environment [16]. In [2], the authors showed that training using supervised data and

validation using unsupervised data would result in a significant decrease of recognition

accuracy, meaning the recognition algorithm was not feasible in a free-living environment.

Moreover, another limitation is lack of personalization, meaning that an offline model shows

lower accuracy rate of recognizing an individual’s actions if the individual’s data has not been

used to train the model [16].

 Smartphone Smartwatch

Daily demand ✓ ✓

Wide array of sensor types ✓ ✓

Weight Bulkier than smartwatch Lighter than smartphone

Interactivity ✓ ✓

Battery life Short Long

Computational capabilities Low High

Variability High Low

The position of device Various position Always on wrist

Table 2.1: Comparison between smartphones and smartwatches

2.1.1.3 Data Annotation for Smartphone Based HAR

 The dataset collected needs to be annotated to be used to perform supervised learning,

which will then be used to classify human activities. Difficulty in data annotation remains as

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 15

one of the open challenges for HAR, since it involves large amount of real-time data [5].

Generating ground truth annotation is a labor-intensive and time-consuming process that

presents a challenge to all supervised learning [16].

Some researches applied purely human supervision to annotate the dataset collected via

smartphone embedded sensors. The data subjects in [4] carried the smartphone in hands in front

of the chests or inside pockets and perform the activities, with the smartphones continuously

collect data. The data subjects were asked to pause and wait for a few seconds before

proceeding with the subsequent activity [4]. This is used as an indication to the researcher who

will perform the manual annotation later, to avoid mislabeling [4]. Manual annotation for

supervised learning is time-consuming since substantial amounts of sensor signals are involved

[16]. Manual annotation also poses a problem of mislabeling or misinterpretation due to human

error or bias.

There are also researches perform data labelling with the help of devices. The authors

in [24] developed a tool called VoiceLabel, where the data subjects can use interaction voice

recognition to annotate the data. The mobile device will start or stop the recording process if

the data subjects said keywords like ‘Start Recording’ [24]. Then, the data subjects can label

the activities performed by saying the name of activities, like ‘Walking’, ‘Standing’, etc [24].

Besides, crowd labelling approach was proposed to facilitate the manual annotation

process [22]. The authors in [22] used AR module to detect the physical activity of an

individual. Upon detecting a shift from physical activity to standing still activity, the PLM

module would then prompt the users to indicate the label of the previous physical activities

[22]. The limitation of this approach is that the process was time-consuming and interrupting

from the users’ perspective, as they were required to take out the phone to provide the labels

[22]. Frequent prompting may result in depletion of battery power within a short period of time

[22].

To deal with the problem of manual labelling, development of automated annotation

tools to facilitate the annotation process is needed. However, the tools developed can only be

used in offline situations, meaning the data collection and data annotation process are

performed asynchronously [16].

Next, [16] proposed an automatic labelling approach to address the issue of data

annotation. The authors in [16] presented a heuristic function that integrates GPS sensor data

and step count information from step detector. The step count information was employed as a

metric to detect different physical actions, based on the step / minutes (spm) rate [16]. For

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 16

example, walking activities normally correspond to a rate between 90-110 spm [16]. However,

the accuracy of the proposed heuristic function fluctuated according to the type of activities

[16]. The heuristic function worked better for activities with lower variability such as long

walking, compared with activities with high variability [3].

2.1.1.4 Data Storage for Smartphone Based HAR

Data storage methods depend on the type of device used to collect the data. For data

collection using smartphones, the dataset created will be stored somewhere before further

processing. Most of the research done using smartphones will store the collected sensor data

locally inside mobile phones, since mobile phones nowadays have large memory space. This

could be seen in [1], [3], [4], [7] etc. However, they did not specify how the stored data would

be extracted out for processing and activity recognition. In [21] and [22], the authors specified

that the data would be stored inside mobile phone storage and uploaded to cloud for later

processing and storage.

2.1.1.5 Sampling frequency

 Sampling frequency or also known as sampling rate, plays a vital role in human activity

recognition research to capture all the necessary frequencies [17]. Sampling frequency design

choice can be influenced by factors such as resource availability, desired precision, and the

specific data features used for activity recognition [17]. A high sampling rate can capture sensor

signals with high accuracy, but at the same time it would increase the rate of battery

consumption [17]. A low sampling rate consumes less power but would introduce impulses

and decrease recognition accuracy for particular activities such as foot hitting the ground during

running or during Nordic walking [2] [17]. Besides, a high sampling rate should be used if only

frequency domain features are considered to recognize human activities [17]. Studies in [2],

[8], [9] and [17] suggested that the range of sampling frequency appropriate to record daily

activities of human is between 20Hz to 30Hz. This prevents the problem of under sampling

and high battery consumption [16].

In [3], the signals were recorded via smartphone embedded accelerometer and

gyroscope at a sampling rate of 50Hz. The authors in [4] used a sampling frequency of 100Hz

to collect acceleration signals. Next, the authors in [6] collected signals from accelerometer,

gyroscope, temperature sensor and humidity sensor at a sampling rate of 1Hz. In [9], the

sampling frequency being employed was 25Hz. In [16], the accelerometer signals were

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 17

collected via smartphones at 30Hz. In [25], the authors recorded acceleration signals via

smartphone embedded accelerometer by using a sampling rate of 125Hz. Overall, a sampling

frequency range of 1Hz to 125Hz was observed for smartphone based HAR. There may be a

tradeoff between accuracy and resource consumption [17].

2.1.2 Signals Preprocessing

The time-series sensor signals collected using smartphone embedded sensors are

preprocessed using various ways before they are used to train the activity recognition models.

2.1.2.1 Noise Reduction and Label Encoding

The raw sensor data collected exhibits inherent noises [5]. Preprocessing steps are

required to eliminate noises in the data to produce high-quality data suitable to be fed to the

activity recognition models [5].

For example, the study in [3] collected time-series signals for each dimension from

smartphone embedded accelerometer and gyroscope. To eliminate noises, the signals were first

subjected to median and High-pass Butterworth filter (20Hz) [3]. Then, the second filtering

was performed using Low-pass Butterworth filter (3Hz) to negate the influences of gravity in

accelerometer data [3]. After that, normalization was performed to keep the signals’ values

within the interval of (-1, 1) [3]. The magnitudes of Euclidean values across three dimensions

were computed to combine the three-dimensional signal into single dataset [3]. Moreover, the

authors in [7] who collected data from smartphone embedded accelerometer implemented error

handling as the first step of data preprocessing to remove the rows which have additional

attributes or null values. Then, normalization or known as min-max scaling was performed to

keep the data within the range of 0 to 1 [7].

There are also researches who do not perform any noise reduction or removal. For

instance, the authors in [4] used the smartphone embedded triaxial accelerometer to capture the

acceleration along the x-axis, y-axis, and z-axis. The authors chose not to perform any noise

cancellation on the raw data since the data subjects were required to hold the smartphones in

hands in front of the chest along the way while they performed all the six activities required

[4]. The smartphone position and orientation did not change and hence, no noise was

introduced. Similarly, in [6], the authors proposed that preprocessing was not necessary since

the data collected were free from outliers and missing data.

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 18

Next, label encoding plays a pivotal role in supervised learning. Label encoding

transforms the text data (activity name) into numerical data (activity code) to prepare the data

to be input to activity recognition model [7]. In [3], activity codes were appended at the end of

each row after noise removal step. Similarly, in [7], label encoding is performed by importing

the class Label Encoder from sklearn library.

2.1.2.2 Feature Engineering

Feature engineering need be implemented to produce informative data representation

and increase the classification accuracy [4] [10]. Raw data cannot be fed directly to activity

classification model [4]. Feature extraction normally starts with 5ation of time-series sensor

signals in fixed window size using window overlapping technique. Then, the desirable features

will be extracted from fixed windows [10]. The features that can be extracted include time

domain features, frequency domain features and discrete domain features [5] [10]. Time

domain features include the mean, standard deviation, median, etc. while frequency domain

features include Fast Fourier Transform (FFT) coefficients, Discrete Fourier Transform (DFT),

entropy spectrum, etc. [5].

[5] states that researches involving classification using deep learning models like CNN,

LSTM, Transformer Model, etc. do not implement feature extraction step. This is because deep

learning techniques can generate optimal features automatically from raw data [5]. On the other

hand, studies involving classification using classic machine learning models like Random

Forests, Decision Tree, k-Nearest Neighbors, etc. required the implementation of feature

extraction.

For instance, in [4], feature creation involved applying low pass filter and high pass

filter to separate gravitational signals and body acceleration signals for each time series in

different directions by setting the cutoff frequency at 0.25Hz. After that, window overlapping

was performed by breaking down the datasets into smaller segments and applying window for

each segment [4]. A window size of 128 samples, corresponding to 1.28 seconds of

accelerometer data, is utilized for extracting features from each time series [4]. This size is

well-suited for capturing various activity cycles [4]. The authors in [4] also allowed 50% of

overlap between consecutive windows to minimize information loss at the edges of windows.

After that, the features were extracted from each window, which include mean value, average

of peak frequency (APF), variance of APF, etc. [4]. The extracted features were used for

subsequent classification.

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 19

Similarly, in [10], the sensor signals were transformed into fixed windows with size of

2.56 seconds each. 50% overlap was allowed [10]. Then, time domain features and frequency

domain features were generated from the fixed windows of data [10]. A 561-column feature

vector was generated. Next, [10] implemented the permutation importance feature selection

method to assess the significance of each feature in the given set and their impacts on the

classification model. Values were assigned to each feature in the feature set by using

permutation importance feature selection method [10]. The 561-column feature vector in [10]

represented variable-based features extracted from signals. The number of features for each

signals was computed and sorted in descending order. After that, various number of features

would be selected from each signals to be used as input to activity recognition model in each

iteration [10]. The accuracy of activity recognition for each iteration was computed and

compared with the accuracy of activity recognition when all the features were inputted [10].

[16] suggested that the window size span from 1 second to 10 seconds, highlighting

that the optimal window size for common activity recognition tasks is 1 second. The authors

performed segmentation of accelerometer signals by using sliding window techniques with a

50% overlap and 1 second of window size [16]. Then, the author came out with features set

consisting of both time-domain features and frequency-domain features, including mean,

variance, skewness, location of high peaks, etc. [16].

Furthermore, feature selection was employed in [6] to distinguish between transitional

and non-transitional human activities by using accelerometer and gyroscope data. Moreover,

[7] implemented feature scaling to facilitate the learning process of algorithms. The authors in

[7] employed standard scaler provided in sklearn library to perform feature scaling for both

training and testing datasets.

There is also research whereby feature engineering was not implemented, such as in [1]

[12] and [14], whereby they involved classification using LSTM.

2.1.3 Machine Learning Algorithm

The features extracted from previous step are being used as input to different

classification model.

2.1.3.1 Classic Machine Learning

Classic Machine Learning models include k-Nearest Neighbours (k-NN), Random

Forests (RF), Decision Trees (DT), k-Means Clustering, Support Vector Machine (SVM), etc.

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 20

Classic Machine Learning models are more suitable to be used when the input dataset has small

size and lower dimensions, or when fast training is required [5]. Besides, Classic Machine

Learning models can generate high accuracy with low computational requirement [5]. Classic

Machine Learning models come with certain constraints. For instance, the features used in

training the Classic Machine Learning models are often selected and engineered by human

based on their understanding of the problem [14]. This approach can be ineffective, time-

consuming and may not always result in the best possible model [14].

One of the Classic Machine Learning models used is Support Vector Machine (SVM).

SVM is a supervised machine learning algorithm that can be used for both classification and

regression tasks. It works by finding a hyperplane that best separates different classes in a

dataset and ignoring outliers. This hyperplane aims to maximize the margin between the

classes, which is the distance between the hyperplane and the nearest data points from each

class. The data points that are closest to the hyperplane and influence its position are called

support vectors. SVM is effective for handling both linearly separable and non-linearly

separable data by using different types of kernel functions, such as linear, polynomial, and

radial basis function (RBF) kernels. These kernels allow SVM to map the data into a space

where it's easier to find a separating hyperplane. SVM algorithm was used in [3], [4], [6], [7],

[16] and [10]. In [3], the authors used supervised SVM with a cubic polynomial kernel to

recognize six activities and achieved a success rate of 99.4%. Besides, [4] used SVM to classify

six activities for two datasets, one with smartphone in hand and one with smartphone in pocket

and achieved accuracies of 88.76% and 72.27% respectively. [6] implemented SVM with RBF

kernel and achieved 98.90% of accuracy. [16] indicates that SVM have demonstrated good

accuracy outcomes and being computationally affordable, especially during the prediction

phase, although it may not be the best solution when dealing with inaccuracies in labelling.

Besides, another classic models being utilized is k-Nearest Neighbors (k-NN). k-NN

algorithm functions by identifying the 'k' closest data points in the training set to a new, unseen

data point and then making predictions based on the labels or values of those neighboring

points. The choice of ‘k’ value influences the algorithm's sensitivity to noise and the

smoothness of the decision boundary [3]. Small ‘k’ value may lead to noisy predictions, high

‘k’ values may provide smoother but biased predictions [3]. k-NN algorithm is non-parametric,

making it suitable to be used for predictions for various types of data [6]. However, k-NN can

be computationally expensive for large datasets, as it requires calculating distances between

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 21

the new data point and all training data points. k-NN model was being employed in [3], [6],

[16] and [10].

Another two Classic Machine Learning models being employed are Decision Tree (DT)

and Random Forests (RF). Both DT and RF algorithms are non-parametric supervised learning

methods used for both classification and regression tasks. DT model functions by breaking

down a dataset into smaller subsets while making decisions based on feature values. These

decisions create a tree-like structure, consisting of a root node, branches, internal nodes, and

leaf nodes. The root node presents at the beginning of the tree and the segmentation of dataset

according to various features starts from here. The internal node represents a feature while the

branch corresponds to a possible feature value. The leaf node represents a predicted outcome.

The process of constructing a DT involves selecting the best features to split the dataset at each

internal node. The feature is chosen based on criteria like Information Gain, Gain Ratio or Gini

Index. The algorithm continues recursively, creating nodes and branches until a stopping

condition is met. DT is easy to use and interpret. It is also computationally less expensive [16].

However, DT can be prone to overfitting, especially when the tree is deep and capture noises

in the data. The RF algorithm, which is an ensemble learning method, can improve the

performance of DT, by combining the predictions of multiple DT [6] [13]. The process begins

with creating a collection of DTs, each trained on a different subset of the data obtained through

random sampling with replacement, by using bagging or boasting technique. These techniques

help to reduce overfitting and enhance generalization. Besides, only a random subset of features

is considered for each split during the construction of individual DT within the RF. This

introduces further diversity among the trees and prevents them from becoming overly

correlated. Once the ensemble of DT is built, the algorithm combines their predictions, by using

majority voting for classification tasks or averaging for regression tasks, to arrive at a final

prediction. RF can prevent the overfitting problem and manage outliers or noises well by due

to the introduced randomness [13]. However, RF can use large space and time when there are

many DT [13]. The DT algorithm was used in [3] and [10] while the RF algorithm was used in

[4], [6], [7], [16], [20] and [10]. RF model can achieve better accuracy compared to DT model,

as in [3] where a binary DT achieved 53.1% of success rate while RF model with 20 subtrees

achieved 91.7% of success rate.

2.1.3.2 Deep Learning

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 22

 Deep Learning models include Convolutional Neural Network (CNN), Recurrent

Neural Networks (RNNs), Long Short-Term Memory Networks (LSTMs), Transformer model,

etc. Deep Learning models possess the capability of generating optimized features

automatically and spontaneously from raw input sensor data [5]. This automation, through

multiple hidden layers, facilitates the discovery of previously unknown patterns [5]. Deep

Learning models can recognize complicated activities while achieving high accuracy [5]. Deep

Learning models come with certain limitations. For instance, deep learning models which have

complicated structures present a challenge in interpreting and understanding how the models

work [5]. Besides, deep learning models are more suitable to be used when the datasets have

large sizes, to ensure that the models have effective performance [5]. Deep Learning models

require a high computational burden, demanding significant processing resources for training

and inference procedures [5].

Convolutional Neural Network (CNN) is a feedforward neural network primarily

designed for tasks involving visual data, such as image recognition and computer vision. Each

neuron in CNN processes data in its receptive field only. A typical CNN model consists of

three layers: convolutional layer, pooling layer, and fully connected layer. The convolutional

layer serves as the fundamental component of CNN model, responsible for the main

computational tasks. The layer first scan through the input image by using small kernels to

detect specific features such as edges, corners, textures, etc. After adding bias and applying

activation function, the convolution features are passed to next layer. The pooling layers are

placed between convolutional layers. They are often used to reduce spatial dimensions,

retaining the most important information while decreasing computational load. Some pooling

that are normally used are Max Pooling and Average Pooling. CNN also incorporate fully

connected layers to make predictions on the extracted features. CNN introduces some

challenges such as large dataset and high computing power are required for model training.

CNN algorithm was used in [7], [23] and [26]. The authors in [7] created a dataset consisting

of six activities by using smartphone-embedded accelerometers. The training dataset that was

being preprocessed was used to train CNN model by using Softmax activation function,

applying dropout technique with probability of 0.5, using Adam as the optimizer and sparse

categorical entropy for multiclass classification [7]. The CNN model was able to achieve an

accuracy of 99% [7]. [26] employed a two-convolutional-layered and two-dropout-layered

CNN model to prevent overfitting problem. The model achieved 91% accuracy [26].

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 23

Another deep learning algorithm is Recurrent Neural Network (RNN). RNN is a class

of artificial neural networks designed for sequential data processing, such as natural language

processing, time-series forecasting, etc. According to Figure 2.1, the input data at time t goes

through computation steps in hidden layer and produce an output [1]. The output from time t,

along with the input data from time t+1 become the input for the hidden layer at time t+1 [1].

This is one of the key features of RNNs, which is recurrent connections, allowing information

to flow from one time step to the next. This looping connection allows the network to maintain

memory and capture dependencies in sequential data. RNNs are trained using backpropagation

through time (BPTT), which will adjust its weights and biases during training to minimize the

difference between its predictions and the actual target values, thereby learning to model

sequential patterns. Traditional RNNs introduce long-term dependency problem, where the

network struggles to capture and learn relationships between data points that are separated by

a significant number of time steps [1]. Besides, RNN also introduces vanishing gradient or

exploding gradient problem, where the gradients used in the backpropagation algorithm

become extremely small or extremely large. This is primarily due to the repeated multiplication

of weight matrices in the network during backpropagation.

Figure 2.1: RNN model in [1]

The next deep learning algorithm being commonly used is Long Short-Term Memory

Network (LSTM). LSTM is advanced version of RNN architecture which is designed to solve

the problem of vanishing gradient or exploding gradient [23]. LSTM networks consist of

LSTM cells, which are connected in a sequential manner, allowing them to process data over

multiple time steps. Each LSTM cell contains several crucial components, including input gate,

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 24

output gate, forget gate and memory cell [1]. The input gate determines which parts of the new

input data are important and should be incorporated into the cell’s memory. The forget gate

decides what information from the previous cell state should be retained or discarded by using

sigmoid activation function [12]. The function will output value between 0 and 1, where 0

represents to discard the data while 1 represents to retain the data [12]. The output gate

regulates the information that will be passed to the next time step as the output. The memory

cell can store and carry data over long sequences, making it capable of capturing long-range

dependencies in the data. Similar with RNN, LSTMs are trained using BPTT. LSTM was being

used in [1], [12], [14], [23] and [26]. To prevent overfitting, the authors in [12] applied dropout

techniques to randomly deactivate certain neurons in a layer by setting their values to zero

during training. Fully operate neural network was used during testing [12].

Figure 2.2: LSTM neuron in [1]

2.1.4 Performance Evaluation

In HAR, the evaluation of activity recognition model’s performance is of paramount

importance to assess the effectiveness of classification algorithms. Performance metric serves

as a quantitative measure to determine the accuracy and reliability of activity recognition

models. The performance metrics will provide insights into how well a model generalizes to

new, unseen data and its ability to correctly recognize different activities.

Some of the commonly utilized performance metrics in HAR include accuracy,

precision, recall and f1-score. For example, studies in [1], [4], [6], [7], [16], [25] and [12] used

accuracy as a performance metrics. Accuracy measures the percentage of overall correct

predictions. Besides, researches in [6] [16] involved the calculation of precision, recall and f1-

score. Precision, or positive predictive value (PPV) measures the accuracy of positive

prediction. Recall, or true positive rate (TPR) measures the ratio of positive samples that are

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 25

correctly detected. F1-score combines the precision and recall into a single score and strikes a

balance between them. Furthermore, researches in [3], [7] and [12] presented a comprehensive

view of activity recognition model classification by using confusion matrices, detailing true

positives, true negatives, false positives, and false negatives.

2.1.5 Summary of the Technologies Review

 In summary, the choice of data source in smartphone based HAR research plays a

crucial role in shaping the quality and relevance of the collected data. Researchers have

predominantly pursued two main approaches: creating independent, customized datasets and

utilizing existing public datasets. Creating an independent dataset allows the researchers to

have full control over the data quality, ensuring the data collected is consistent, and of high

quality. Besides, researchers can also customize the data collection to match the specific

requirements of the research, focusing on the types of activities, scenarios or contexts that are

most relevant. However, inaccurate sensor data may be collected due to different ways of

sensor placement and attachment on data subjects. Using existing dataset may solve the

problem of data accuracy, but it can lead to limited applicability to real-world scenarios, as it

is difficult to find an existing dataset which perfectly fits the research purpose and scope.

 Next, in terms of data collection device, most researchers chose to use smart devices as

the data collection device, including smartphones and smartwatches. This is due to the growing

diffusion of smartphones and smartwatches into humans’ daily lives renders them to become

the daily demands of users nowadays, which make them suitable devices to collect sensor

signals regarding human daily activities. Besides, both smartphones and smartwatches feature

a wide array of embedded sensors, allowing different types of sensor signals being collected.

Both smartphones and smartwatches offer interactivity. Smartwatches are lighter in weight

compared to smartphones. However, smartwatches have limited battery life and computational

capabilities in terms of CPU and memory compared to smartphones. Additionally, smartwatch

records both body and arm movements, introducing higher variability. In contrast, smartphones

capture only the whole-body movement.

Another important element in data collection is the sampling frequency. Sampling

frequency design choice can be influenced by factors such as resource availability, desired

precision, and the specific data features used for activity recognition. A high sampling rate can

capture sensor signals with high accuracy, but at the same time it would increase the rate of

battery consumption [17]. A low sampling rate consumes less power but would introduce

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 26

impulses and decrease recognition accuracy for particular activities. The range of sampling

frequency to record daily activities of human is suggested to be between 20Hz and 30Hz, which

caters both the under sampling and battery consumption problems. However, a sampling

frequency range of 1Hz to 125Hz was observed for smartphone based HAR research reviewed.

There may be a tradeoff between accuracy and resource consumption [17].

In terms of data annotation, most of the reviewed system still required manual

annotation, which was tedious and time-consuming since it involved a large amount of sensor

data. Manual annotation also prone to human mistake and mislabeling because the data subjects

perform the physical activity continuously. There is research which perform data labelling with

the help of devices. The authors used voice recognition technique to perform data annotation.

Besides, there is also research done on using crowd labelling approach to facilitate the manual

annotation process, which prompt the data subjects to provide the labels of the activities.

Moreover, there is also research proposing a heuristic function to label the data automatically,

which is then proved to have fluctuated accuracy according to the type of activities.

 In terms of data storage, the data storage methods depend on the type of data collection

device. The research based on smart devices allow the data collected to be stored temporarily

inside the local storage and uploaded later to cloud server for further processing.

 Signals preprocessing in smartphone-based Human Activity Recognition (HAR)

involves essential steps to prepare raw sensor data for training activity recognition models.

This process primarily includes noise reduction and label encoding, as well as feature

engineering. In many HAR studies, the raw sensor data collected from smartphones inherently

contain noise, necessitating preprocessing steps to enhance data quality. Techniques like

median and Butterworth filters are employed to eliminate noise [3]. Additionally, label

encoding plays a pivotal role in supervised learning by converting activity names into

numerical codes [7]. Some studies choose not to perform noise reduction when sensor positions

and orientations remain stable [4]. Similarly, data sets free from outliers and missing data may

not require extensive preprocessing [6]. Next, feature engineering is a critical step to create

informative data representations and enhance classification accuracy. The process involves

segmenting time-series sensor signals into fixed windows and extracting relevant features,

including time and frequency domain features [4]. Deep learning models like CNN and LSTM

can automatically generate optimal features from raw data, reducing the need for explicit

feature extraction [5]. However, classic machine learning models often require feature

extraction [5]. Most of the research allows the consecutive segmented windows to have 50%

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 27

overlap to minimize information loss at the edges of windows, as in [4], [10] and [16]. The

window size needs to be carefully decided to capture various activity cycles. The suggested

window size range between 1 second to 10 seconds [16].

 The machine learning algorithms used for classification can be categorized into two

main groups: Classic Machine Learning and Deep Learning models. The choice between these

two categories depends on the size of the dataset, computational resources, and the complexity

of the problem. Classic Machine Learning models, including k-Nearest Neighbors (k-NN),

Random Forests (RF), Decision Trees (DT), k-Means Clustering, and Support Vector Machine

(SVM), are preferred when dealing with smaller datasets or when rapid model training is

required. These models are known for their ability to achieve high accuracy with relatively low

computational demands. However, they often rely on manually engineered features, which can

be time-consuming and may not always lead to the best model performance. Deep Learning

models, such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNNs),

Long Short-Term Memory Networks (LSTMs), and Transformer models, are particularly adept

at automatically generating optimized features from raw sensor data. They excel in recognizing

complex activities and achieving high accuracy but require large datasets and substantial

computational resources. Knowledge to interpret deep learning model is also one of the

challenges.

 Last but not least, the evaluation of activity recognition models in Human Activity

Recognition (HAR) research is a critical step to assess the effectiveness and reliability of

classification algorithms. Performance metrics serve as quantitative measures that gauge how

accurately activity recognition models can identify different activities and generalize to new,

unseen data. Commonly utilized performance metrics in HAR include accuracy, precision,

recall, f1-score, and confusion matrix. The choice of performance metrics or combination of

performance metrics depends on the nature of the applications and objectives of the activity

recognition tasks.

2.2 Review of the Existing Systems

2.2.1 A Study on Human Activity Recognition Using Accelerometer Data from

Smartphones [4]

 The authors in [4] collected acceleration data from smartphone-embedded

accelerometer by using a sampling frequency of 100Hz. Two datasets were created, collecting

acceleration signals for six activities including running, slow-walk, fast-walk, aerobic-dancing,

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 28

walking upstairs and walking downstairs. The authors included action which is not commonly

found in public datasets such as aerobic dancing [4]. The first dataset was asking the data

subjects to hold the smartphones in hands in front of the chests while the second dataset was

asking the data subjects to put the smartphones in their pockets while performing activities.

The collected data were stored locally inside smartphone. However, the authors did not specify

how the stored data would be extracted out for processing and activity recognition. Manual

annotation was used to label the datasets. The smartphone recorded signals continuously while

data subjects performed the six activities. The data subjects were asked to wait for a few

seconds after completing one activity before starting the next activity [4]. This is used as an

indication to the researcher who will perform the manual annotation later, to avoid mislabeling

[4]. There were in total 79573 samples of triaxial accelerometer being collected.

 For data preprocessing, [4] did not perform any noise cancellation on the raw data. This

is because the data subjects held the smartphones in hands in front of the chest or inside pockets

along the way while they performed all the six activities required [4]. The smartphone position

and orientation did not change and hence, no noise was introduced. On the other hand, [4]

indicates that feature engineering need be implemented to produce informative data

representation and increase the classification accuracy. Raw acceleration data cannot be fed

directly to activity classification model [4]. In [4], feature creation involved applying low pass

filter and high pass filter to separate gravitational signals and body acceleration signals for each

time series in different directions by setting the cutoff frequency at 0.25Hz. After that, feature

extraction was performed by first implementing window overlapping [4]. The datasets were

broken down into smaller segments and applying window for each segment [4]. A window size

of 128 samples, corresponding to 1.28 seconds of accelerometer data, is utilized for extracting

features from each time series [4]. This size is well-suited for capturing various activity cycles

[4]. The authors in [4] also allowed 50% of overlap between consecutive windows to minimize

information loss at the edges of windows. After that, the features were extracted from each

window, which include mean value, min value, max value, average of peak frequency (APF),

variance of APF, etc. [4]. To find the most representative features in the feature vector, the

authors in [4] applied clustering-based evaluation approach. As a result, they narrowed down

their original 24-dimensional feature vector to 18 relevant features. The extracted features were

used for subsequent classification.

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 29

 Next, the authors in [4] performed classification for the two datasets using individual

classifiers like Multilayer Perceptron, RF, LMT, SVM, Simple Logistic and LogitBoost. 10-

fold cross validation was used.

Figure 2.3: Accuracy for individual classifiers for different dataset in [4]

Besides, the authors also performed classification using combined classifiers. The

authors proposed that various classifiers might provide varied insights into the patterns that

need classification, potentially leading to increased accuracy, efficiency, and robustness in the

classification process [4]. The classification using combined classifiers applied average of

probabilities to achieve final predictions [4].

Figure 2.4: Accuracy for combined classifiers for different dataset in [4]

The authors in [4] found that the acceleration data showed significant variation for the

same physical activity when data subjects shifted the position of smartphones from holding in

hands in front of chests to putting smartphones inside pockets. Besides, [4] found that the

combined classifiers using the first three individual classifiers that had good performance

outperformed the individual classifiers, in terms of accuracy. [4] suggested that the HAR

architecture they proposed can accurately recognize human activities, without concerning

about the smartphone’s position.

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 30

Figure 2.5: Variation in acceleration signals when smartphones’ positions change in [4]

2.2.2 Assessment of Human Activity Recognition based on Impact of Feature Extraction

Prediction Accuracy [10]

 In [10], UCI HAR dataset was used for activity recognition task. UCI HAR dataset

consists of signals collected at 50Hz for six activities, including walking, walking upstairs,

walking downstairs, sitting, standing, and laying, via smartphone-embedded accelerometer and

gyroscope.

Data preprocessing was done by the authors of the dataset. The data was labeled

manually. Then, the data were preprocessed by first applying noise filters. Next, the data were

segmented using window sliding technique. The data was segmented using fixed width sliding

windows of 2.56 seconds with a 50% overlap, resulting in 128 readings per window. To isolate

the sensor acceleration signal, which encompasses both gravitational and body motion

elements, a Butterworth low-pass filter was employed. The intention was to differentiate body

acceleration from gravitational force. The author of the dataset assumed that gravitational force

consists of low-frequency components. Hence, a filter with a cutoff frequency of 0.3 Hz was

applied. Subsequently, time domain features and frequency domain features were generated

from the fixed windows of data [10]. The features generated include mean, standard deviation,

max value, min value, etc. A 561-column feature vector was generated.

The authors in [10] proposed that using all the features in the feature vector for activity

recognition was not necessary. Additionally, the features in the feature vector do not have equal

weightage. Therefore, [10] implemented the permutation importance feature selection method

to assess the significance of each feature in the given set and their influences on the

classification model. Values were assigned to each feature in the feature set by using

permutation importance feature selection method [10]. The 561-column feature vector in [10]

represented variable-based features extracted from signals. The number of features for each

signals was computed and sorted in descending order. After that, various number of features

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 31

would be selected from each signals to be used as input to activity recognition model in each

iteration [10].

The authors employed seven machine learning algorithm for classification, including

Neural Network, SVM, DT, RF, k-NN, SGD and LG. The accuracy of activity recognition for

each iteration was computed and compared with the accuracy of activity recognition when all

the features were inputted [10].

The authors in [10] found that by incorporating more features with the highest

permutation values at each iteration, the classifier's accuracy approaches very closely to that

achieved when utilizing all available features. The classifier’s accuracy only experiences a

slight decrease even when using just single feature [10]. Besides, the results also showed that

the accuracy of the models increased exponentially at the first few iterations. This is because

the features with highest value were selected in the first few iterations, and they have significant

influence on the overall accuracy [10]. After a few iterations, the less significant features were

selected and hence, they have less influence on the overall accuracy [10]. The less influential

features can then be ignored to reduce the dataset’s size and computation resources needed

[10]. The authors conclude that high accuracy of classification with reduced size of datasets

can be achieved by using permutation importance feature selection method proposed [10].

Figure 2.6: Accuracy of SVM change when number of features used change in [10]

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 32

Figure 2.7: Accuracy of RF change when number of features used change in [10]

2.2.3 Human Activity Recognition Using LSTM Network with Dropout Technique [12]

 In [12], the authors chose to use public datasets for model training and evaluation. No

preprocessing was mentioned in [12].

 The authors indicated that RNN introduced long-term dependencies problem. Hence, a

LSTM network where each neuron encompasses four components was being employed. The

first component is the input gate, which receives input from current state and sends output to

next layer. The next element is the forget gate, deciding what information from the previous

cell state should be retained or discarded by using sigmoid activation function [12]. The

function will output value between 0 and 1, where 0 represents to discard the feature while 1

represents to retain the feature [12]. The following component is the update gate, where new

features are introduced after the removal of unwanted ones. This is achieved through vector

addition, allowing the network to update its information. The final component is the output

gate, which regulates the information that will be passed to the next module by processing

through a sigmoid function and a tanh function. The authors in [12] suggested that the dropout

technique should be used to prevent overfitting of data. The dropout technique will randomly

deactivate certain neurons in a layer during training of the model. This makes the layer appear

and function as if it had a different number of nodes and connections than the preceding layer.

During training, every update to a layer incorporates a fresh perspective of the current layer,

which introduces randomness and helps prevent overfitting. During testing, the entire neural

network was considered, without dropout [12].

 For the activity recognition purpose, the authors proposed a simple unidirectional

LSTM network. The network consists of an input layer, a hidden layer with 32 neurons, a layer

with sigmoid activation function and an output layer. The authors first split the dataset into

training and testing dataset. The authors then divided the large training dataset into smaller

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 33

batches to enhance the performance. The authors used a constant batch size of 4 and perform

iterations over a specified number of epochs. This is done because smaller dataset will save

computational resources and execute faster. Besides, the model also used backpropagation to

adjust the weights and biases. Adam optimizer was applied to adjust the model’s learning rate

and to locate the global minimum or the loss value for each iteration. Categorical cross-entropy

was used to calculate the loss when there are inaccurate predictions.

 The result showed that the proposed LSTM model achieved an accuracy of 92.67% of

recognizing activities such as laying, sitting, standing, walking, walking downstairs, and

walking upstairs [12].

Figure 2.8: Accuracy in [12]

2.2.4 LSTM Networks Using Smartphone Data for Sensor-Based Human Activity

Recognition in Smart Homes [14]

Figure 2.9: System architecture diagram in [14]

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 34

 In [14], UCI HAR dataset was being used for activity recognition task. The datasets

collected signals via smartphone embedded accelerometer and gyroscopes at a constant rate of

50 Hz. The data subjects were required to hold the smartphone at waist level while performing

six activities, i.e., walking, walking upstairs, walking downstairs, sitting, standing, and lying

down.

 The data preprocessing was done by the authors of the dataset, instead of authors in

[14]. The data was labeled manually. Then, the data were preprocessed by first applying noise

filters. To capture the human body motion, a third-order Butterworth low-pass filter was

employed with a cutoff frequency of 20 Hz [14]. The frequency was chosen because 99% of

human activities’ energy were below 15 Hz [14]. Next, the data were segmented using window

sliding technique. The data was segmented using fixed width sliding windows of 2.56 seconds

with a 50% overlap [14]. There are a few considerations of segmenting the dataset into 2.56

seconds of windows. Firstly, it accounts for the typical walking rate of an average individual,

which falls within the range of 90 to 130 steps per minute, equivalent to a minimum of 1.5

steps per second. Secondly, the chosen window size ensures that each segmented window

encompasses at least one complete walking cycle, which consists of two steps. Thirdly, this

approach accommodates individuals with slower walking cadences, including the elderly and

those with disabilities, by assuming a minimum speed equal to 50% of the average human

cadence. After that, the data went through normalization process, showing a mean value of 0

and a variance value of 1 [14]. At the first stage, the dataset was split into training dataset

(71.39%) and testing dataset (28.61%). Next, during the second stage where the model was

trained and hyperparameter tuning was performed, the training dataset was split again into75%

of training datasets and 25% of validating datasets.

 For activity recognition using LSTM networks, the authors proposed five LSTM

network architectures, which includes Vanilla LSTM, 2-Stacked LSTM, 3-Stacked LSTM,

CNN-LSTM, and 4-layer CNN-LSTM [14]. The Vanilla LSTM model, or the original LSTM

model consists of a single hidden layer and a feedforward output layer [14].

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 35

Figure 2.10: Vanilla LSTM model in [14]

The 2-Stacked LSTM model comes with two hidden layers while the 3-Stacked LSTM model

comes with three hidden layers. Each hidden layer associates with multiple memory cells.

Figure 2.11: 2-Stacked LSTM model in [14]

Figure 2.12: 3-Stacked LSTM model in [14]

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 36

The CNN-LSTM network incorporates CNN layers to extract features from raw input data.

The extracted features were then integrated with LSTM layer to facilitate sequence prediction.

Figure 2.13: CNN-LSTM model in [14]

To improve activity recognition accuracy, the authors in [14] proposed a 4-layer CNN-LSTM

network. Four 1-D CNN layers were used to extract features from raw input data by using

ReLU activation functions. After features extraction, a max pooling layer was implemented to

summarize the feature maps generated by the previous CNN layers and to reduce computational

complexities. Multiple dropout layers were added on top of pooling layer to prevent overfitting.

The dimensions of the feature maps need to be reduced by using a flattened layer to transform

feature map in matrix representation to vector representation. This allows LSTM to be able to

process the feature maps. The output then went through the LSTM layer to model temporal

dynamics and to activate the feature maps. The final layer consists of a fully connected layer

and a Softmax layer for activity classification purpose. The optimal hyperparameters for the 4-

layer CNN-LSTM network was determined by using Bayesian Optimization.

Figure 2.14: 4-layered CNN-LSTM model in [14]

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 37

 The result shows that the 4-layer CNN-LSTM model achieved an accuracy of 99.39%,

outperforming other models. The proposed 4-layer CNN-LSTM model introduced two

benefits. One of them is the CNN layers in the proposed network can directly map the spatial

representation of raw sensor data for feature extraction. The next benefit is that the LSTM layer

excels at capturing and leveraging temporal dependencies within the data and use this

information to improve feature extraction for HAR.

2.2.5 Summary of the Existing Systems

 [4] [10] [12] [14] Proposed System

Create own

datasets
✓ ✓

Data collection

using

smartphone

✓ ✓

Automated

annotation
 ✓

Save log file

into local

storage

✓ ✓

Upload log file

to cloud
 ✓

Noise

management
 ✓ ✓

Drop rows with null values.

Drop rows when timestamp

= 0.

Sort in ascending order of

timestamp.

Data

segmentation
✓ ✓ ✓ ✓ ✓

Feature

Engineering
✓ ✓ ✓

Classification

model

Classic

Machine

Learning

algorithm

Classic

Machine

Learning

algorithm

Deep

Learning

algorithm

Deep

Learning

algorithm

LSTM

Performance

metric
Accuracy Accuracy Accuracy Accuracy Accuracy

Table 2.2: Comparison between existing systems and proposed system

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 38

According to the Table 2.2, only [4] chose to create dataset by collecting signals at

100Hz using smartphone embedded accelerometer. [10], [12] and [14] chose to use public

datasets, where [10] and [14] used UCI HAR dataset. The UCI HAR dataset was constructed

by using signals collected from smartphone embedded accelerometer and gyroscope at 50Hz.

The dataset used in [12] did not have any extra information. [4] annotate the dataset manually

and store the dataset inside smartphone local storage. However, the authors in [4] did not

specify how to extract the dataset out for further processing and analysis. For UCI HAR dataset,

the authors also annotated the dataset manually.

For data preprocessing, only [10] and [14] applied noise filters for noise management

since they used similar public datasets. [4] did not perform any noise cancellation since the

authors suggested that no noise was being introduced into the dataset they created. [12] did not

specify anything about noise management. For feature engineering, [4] applied low pass filter

and high pass filter to separate gravitational signals and body acceleration signals. Similarly,

[10] and [14] applied Butterworth low pass filter to differentiate body acceleration from

gravitational force. Next, [4], [10] and [14] also performed data segmentation using window

sliding techniques with 50% overlap between consecutive windows to minimize information

loss at the edges of windows. After that, only [4] and [10] implemented feature extraction from

raw data since [4] and [10] performed classification using classic machine learning algorithms

while [12] and [14] used deep learning algorithms which can automatically extract features

from raw data. Both [4] and [10] wanted to find the most representative features in the feature

vector generated. [4] applied clustering-based evaluation approach while [10] applied

permutation importance feature selection method.

For activity recognition, [4] and [10] employed classic machine learning algorithms,

including SVM, RF, DT, k-NN, etc. [4] also proposed the combination of classifiers to improve

the performance of activity recognition. On the other hand, [12] and [14] employed deep

learning algorithms. [12] implemented a simple, unidirectional LSTM network, which consists

of an input layer, a hidden layer with 32 neurons and an output layer. The authors in [12]

divided the large training datasets into batches to improve performance and to save

computational resources. [12] also applied dropout techniques to prevent overfitting. [14]

implemented original LSTM network, stacked LSTM network and CNN-LSTM network. The

authors in [14] performed Bayesian Optimization for hyperparameter tuning.

All the four studies used accuracy as the performance metrics. [4] concludes that the

combined classifier using SVM, Multilayer Perceptron and LogitBoost achieved the highest

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 39

accuracy at 91.15%. The authors also proposed that their recognition method is robust enough

to recognize human activities without concerning about smartphone’s position. [10] suggested

that high accuracy of classification with reduced size of datasets can be achieved by using

permutation importance feature selection method proposed. The proposed simple

unidirectional LSTM network with dropout technique in [12] achieved an accuracy of 92.67%.

Whereas the proposed 4-layer CNN-LSTM architecture in [14] achieved an accuracy of

99.39%.

2.2.5.1 Strengths

One of the strengths in [4] is the authors chose to create dataset by themselves. Creating

an independent dataset allows the researchers to have full control over the data quality, ensuring

the data collected is consistent, and of high quality. This helps to reduce the noises and biases

in the dataset. Besides, researchers can also customize the data collection to match the specific

requirements of the research, focusing on the types of activities, scenarios or contexts that are

most relevant. For instance, [4] included the actions which are not commonly found in existing

open datasets, such as aerobic dancing.

Besides, another strength found in [10] is the implementation of feature engineering

and permutation importance features selection method. Feature engineering need be

implemented to produce informative data representation and increase the classification

accuracy [10]. The data were segmented using window sliding technique and features were

extracted from fixed windows of data, including both time-domain features and frequency-

domain features. Then, the permutation importance feature selection method was implemented

to assess the significance of each feature in the given set and their influences on the

classification model. By doing this, the size of the feature vector used to train machine learning

model can be significantly reduced by removing the least influential features from the vector.

Another strength can be found in [12], where the authors used dropout techniques to

prevent the problem of overfitting of LSTM model. The dropout technique will randomly

deactivate certain neurons in a layer during training of the LSTM model. This makes the layer

appear and function as if it had a different number of nodes and connections than the preceding

layer. During training, every update to a layer incorporates a fresh perspective of the current

layer, which introduces randomness and helps prevent overfitting. Besides, another strength is

[12] divided the large training dataset into smaller batches to enhance the performance. The

authors used a constant batch size of 4 and perform iterations over a specified number of

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 40

epochs. This is done because smaller dataset will save computational resources and execute

faster.

2.2.5.2 Weaknesses

 One of the weaknesses in [4] is the inefficient data engineering system used to collect,

annotate, and store sensor signals. The authors in [4] collected signals using smartphone. The

signals were stored inside mobile phone locally. After the data collection process is done, the

data were then extracted out and manually annotated. The authors in [4] did not specify how

the data was going to be extracted out.

Another common weakness in [10], [12] and [14] is the usage of public datasets. Public

datasets only cover common human activities, such as walking, standing, climbing upstairs,

etc. They may have limited relevance with your research purpose and context and limited

diversity in terms of activities type and sensor type. [5]. This will limit the applicability and

accuracy of the researches. The authors in [10], [12] and [14] chose to use public datasets,

possibly for the sake of convenience. Constructing a dataset from scratch requires substantial

efforts, time, and techniques, especially when considering the necessity for large datasets to

train deep learning models. It saves them a lot of efforts to use preprocessed and well-defined

public datasets.

2.3 Proposed System

 The proposed system will implement smartphone based human activity recognition

system. Firstly, the data engineering system proposed will be used for data collection, data

annotation and data storage by using SensorData application and SensorDataLogger

application developed. Two Android devices will be installed with the applications, whereby

the device installed with SensorDataLogger will be carried by data subjects in their pockets

while they perform the activities. The device installed with SensorData will be carried in hand

by the researcher or the data subject himself or herself. The two applications are connected via

Bluetooth to send and receive instructions. The researcher will collect signals from

accelerometer and gyroscope embedded in smartphone at 100Hz of sampling frequency for

four activities: standing, walking, climbing upstairs and climbing downstairs. The log files

collected for each activity will be annotated automatically by the data engineering system

proposed and saved inside the local storage. After that, the log files can be uploaded to Google

Cloud Storage for further processing.

Chapter 2

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 41

 Next, the log files collected will be extracted out from Google Cloud Storage by using

Google Colab. The log files will be combined into single dataset. After that, common data

preprocessing will be implemented on dataset, such as dropping rows with null values,

dropping rows when timestamp equals to zero and sorting the dataset in ascending order of

timestamp. Subsequently, data exploration will be performed to understand better the dataset’s

characteristics, structure, quality and to identify any data preparation steps needed.

 Then, data segmentation will be performed, by sliding the dataset into windows of size

0.5 seconds each. We allow 50% overlap between consecutive windows to minimize

information loss. The windows of data will be divided into 80% of training dataset and 20% of

testing dataset. We then proceed to LSTM model training and evaluation using the windows of

data. Hyperparameter tuning is also performed to further enhance the performance of LSTM

model by identifying the combination of hyperparameters that work best. Finally, we will

implement model testing using dedicated testing dataset to test the model’s generalization

capability on new, unseen data.

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 42

Chapter 3

System Methodology/Approach

3.1 System Design Diagram

3.1.1 System Architecture Diagram

Figure 3.1: System Architecture Diagram

Figure 3.1 shows the system architecture diagram of the proposed HAR system in this

research.

Firstly, the data engineering system proposed in this research is used for data collection.

The data engineering system proposed comprising hardware, software, and cloud. The

hardware used in this system consists of two Android devices installed with the applications,

SensorData and SensorDataLogger. The applications are connected via Bluetooth to send and

receive instructions. The data subjects are required to carry the smartphones with

SensorDataLogger applications installed inside their pockets and perform each activity for one

minute. The device installed with SensorData application will be held in hand by data subject

or researcher. After collecting sensor signals from accelerometer and gyroscope embedded in

smartphone installed with SensorDataLogger, the log files are annotated automatically and

saved into local storage with specified filename, which is the activity ID specified by user.

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 43

Then, upon the instructions from SensorData, SensorDataLogger uploads all the log files in the

specified path to Google Cloud Storage server for storage and further processing, via Wi-Fi.

After that, the log files stored in the Google Cloud Storage are extracted out for dataset

creation purpose by using Google Colab. Since there are many individual log files created

during data collection, therefore we need to combine all the log files to become one single

dataset. The original CSV log files are first converted to Parquet log files. Parquet files are used

instead of CSV files since Parquet is a columnar storage file format designed for efficient

compression and storage. It can significantly reduce the amount of space required to store the

dataset compared to CSV files. Besides, Parquet files store data in a columnar format, making

it easier to skip over irrelevant columns during data retrieval. This can lead to faster query and

analysis performance, which is important in HAR research as we need to process and analyze

data frequently. After that, the Parquet log files are combined into single dataset.

Next, the dataset goes through the data preprocessing. For example, dropping rows with

missing values in certain attributes, dropping rows when timestamp is zero and sorting the

dataset in ascending order of timestamp.

After data preprocessing, data exploration is carried out to gain insights into the

dataset’s characteristics, structure, and quality. This step is performed to identify missing

values or outliers in the dataset, obtain summary information regarding the dataset, data

visualization, explore relationships between the variables, etc. The findings from data

exploration can identify the subsequent data preparation steps that need to be performed.

Subsequently, the dataset will go through data segmentation by using window sliding

techniques. This is because the raw time-series data cannot be used directly to train the machine

learning or deep learning models. The dataset is divided into smaller segments, called windows.

Each window consists of 50 rows or 0.5 seconds of accelerometer and gyroscope signals, with

50% overlap between consecutive windows to minimize information loss at the edge of

windows. After data segmentation, we need to split the windows into 80% of training dataset

and 20% of testing dataset.

Then, we can proceed with the training of LSTM model by using the windows of data

produced in previous step. After training, the LSTM model’s performance is evaluated by

computing confusion matrix and accuracy.

After model training and evaluation, hyperparameter tuning will be performed to

further enhance the performance of the models. During this iterative optimization process,

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 44

various hyperparameters, such as learning rates, batch sizes, layer sizes, and dropout rates are

fine-tuned to find the combination that produces the best model performance.

Once the optimal hyperparameters are identified, model testing and evaluation are

performed using the identified hyperparameters. The fine-tuned models are tested on a

dedicated testing dataset to measure the models' real-world performance and generalization

capability on new, unseen data. This step helps to validate the practical utility of the proposed

smartphone based HAR system and the reliability of the system in real-world applications.

3.1.2 Use Case Diagram and Description

3.1.2.1 Use Case Diagram

Figure 3.2: Use Case Diagram of HAR system

Figure Name Explanation

Researcher

It represents the people

who perform HAR

research

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 45

Data engineering system

It represents the data

engineering system

involved in the HAR

research.

SensorData application

It represents the

SensorData application

used in data engineering

system.

SensorDataLogger

application

It represents the

SensorDataLogger

application used in data

engineering system.

Use Case

It presents a system or a

process that interacts

with the researchers or

system.

Association relationship

It connects use cases and

actors if there is

interaction between

them.

Include relationship

It is used to indicate that

one use case includes the

functionality of another

use case.

Generalization

relationship

It means one actor can

inherit the role of another

actor.

System and Boundary

It represents the scope or

limits of the HAR

system.

Table 3.1: Use Case Legend

3.1.2.2 Use Case Description

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 46

Use Case Name Show Real-time data

Use Case ID UC001

Description

This use case allows data engineering system to show real-time data

of accelerometer and gyroscope through SensorDataLogger

application.

Primary Actor Data Engineering System

Secondary Actor Researcher

Trigger Researcher opens the SensorDataLogger application.

Precondition

• Researcher has installed the SensorDataLogger application in

his or her device.

• Researcher has not opened the SensorDataLogger

application.

Scenario Name Step Action

Main Flow

1
Researcher clicks the SensorDataLogger icon

through his or her device.

2 The SensorDataLogger executes.

3
The user interface of SensorDataLogger shows

real-time data of accelerometer and gyroscope.

Alternate Flow –

Application Crash
2.1

The application window displays application

crash error.

Alternate Flow –

Absence / Non-

functional Sensors

3.1
The user interface of SensorDataLogger shows

only the real-time data of sensor that exists.

Rules

• The SensorDataLogger application must be opened through

Android device.

• The device installed with SensorDataLogger must consists of

functional accelerometer and gyroscope.

Author Tee Jia Lin

Use Case Name Add Activity

Use Case ID UC002

Description
This use case allows researchers to add activity button that they want

to collect data for through SensorData application.

Primary Actor Researcher

Secondary Actor Data Engineering System

Trigger
Researcher clicks the ‘Add Activity’ button through the user

interface of SensorData application.

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 47

Precondition
Researcher has opened the SensorDataLogger application and can

access the user interface of the application.

Scenario Name Step Action

Main Flow

1
Researcher clicks the ‘Add Activity’ button via

SensorDataLogger user interface.

2
A dialog pops out. Researcher fills in the name

of activity and class ID of activity.

3
Researcher clicks the ‘CREATE ACTION’

button.

4
The application checks the validity of the

activity name and class ID.

5
The activity button created has been shown in

the list in the user interface of the application.

Alternate Flow –

Invalid activity

name or class ID

4.1 The dialog will prompt an error.

Rules
The activity name and Class ID must be unique among all the

activities.

Author Tee Jia Lin

Use Case Name Make Bluetooth Connection

Use Case ID UC003

Description
This use case allows researchers to connect SensorData and

SensorDataLogger via Bluetooth.

Primary Actor Researcher

Secondary Actor Data Engineering System

Trigger
Researcher clicks the ‘Connect to device’ button, through

SensorData application

Precondition

• Researcher has given permissions for both applications to

access Bluetooth.

• Researcher has enabled the Bluetooth connection of both

devices.

Scenario Name Step Action

Main Flow

1

The Bluetooth connection status bar showing

‘Not connected’. Researcher clicks the kebab

menu button on the upper corner of

SensorData’s user interface.

2
Researcher clicks the ‘Connect to device’

option.

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 48

3
A dialog pops out, showing the list of devices

connected before.

4

Researcher clicks the device name where

SensorDataLogger is installed on. The

Bluetooth connection status bar showing

‘Connecting…’.

5
SensorData application initiates the Bluetooth

connection.

6

The Bluetooth connection status bar will

change to ‘Connected to x’, where x represents

the device name of SensorDataLogger.

Alternate Flow –

Device name does

not exist

3.1
Researcher clicks the ‘SCAN FOR DEVICE’

option to scan for nearby devices.

3.2
The device name where SensorDataLogger is

installed shows in the list.

3.3
Back to Main Flow step 4 to continue the

connection process.

Alternate Flow –

Fail to connect to

SensorDataLogger

5.1
A toast message pops out, indicating ‘Unable

to connect to device’.

5.2
Back to Main Flow step 1 to reinitiate the

Bluetooth connection.

Rules The devices stay within the acceptable range.

Author Tee Jia Lin

Use Case Name Start Data Recording

Use Case ID UC004

Description This use case allows researchers to start data recording process.

Primary Actor Researcher

Secondary Actor Data Engineering System

Trigger
Researchers click the ‘START’ button through user interface of

SensorData application.

Precondition

• SensorData and SensorDataLogger are connected via

Bluetooth.

• The device installed with SensorDataLogger is put inside

data subject’s pocket.

• The activity that researcher wants to collect data for has been

created via SensorData user interface.

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 49

Include Use Case:
• Stop Data Recording

• Annotate Data

Scenario Name Step Action

Main Flow

1
Researcher clicks the activity button that he or

she wants to collect data for via SensorData.

2
Researcher set the duration of how long he or

she wants to collect data.

3 Researcher clicks ‘START’ button.

4 System starts a timer and start to collect data.

Alternate Flow –

Fail to connect to

SensorDataLogger

5.1
A toast message pops out, indicating ‘Unable

to connect to device’.

5.2
Back to Main Flow step 1 to reinitiate the

Bluetooth connection.

Rules The Bluetooth connection between two devices stay connected.

Author Tee Jia Lin

Use Case Name Stop Data Recording

Use Case ID UC005

Description This use case allows system to stop data recording process.

Primary Actor Data Engineering System

Trigger The timer for the data recording process has stopped.

Precondition

• Researcher has started the data collection process.

• A timer is counting down on both SensorData and

SensorDataLogger.

Scenario Name Step Action

Main Flow

1

Time is up. The timer for the data recording

process has stopped on both SensorData and

SensorDataLogger.

2

SensorData sends instructions to

SensorDataLogger to stop data recording via

Bluetooth.

3 SensorDataLogger stops recording data.

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 50

4
A toast message pops out, indicating ‘Stop

recording’.

Alternate Flow –

Fail to stop data

recording

2.1 SensorDataLogger fails to stop data recording.

2.2 Use case terminates.

Rules The Bluetooth connection between two devices stay connected.

Author Tee Jia Lin

Use Case Name Save Log Files

Use Case ID UC006

Description
This use case allows researchers to save collected data locally inside

smartphone storage.

Primary Actor Researcher

Secondary Actor Data Engineering System

Trigger
The researcher clicks the ‘Save Log File’ button through user

interface of SensorData application.

Precondition
• The data recording process has stopped.

• A dataset is available to be saved.

Scenario Name Step Action

Main Flow

1
Researcher clicks the ‘Save Log File’ button

through the user interface of SensorData.

2
SensorDataLogger saves the log file in the

specified location.

3
A toast message pops out, indicating ‘Log file

saved’.

Alternate Flow –

The dataset is

unavailable

2.1 SensorDataLogger fails to save log file

2.2 Use case terminates.

Rules The Bluetooth connection between two devices stay connected.

Author Tee Jia Lin

Use Case Name Upload Log Files to Cloud Server

Use Case ID UC007

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 51

Description

This use case allows researchers to upload log files stored inside

smartphone local storage to Google Cloud Storage for further

processing through SensorDataLogger.

Primary Actor Researcher

Secondary Actor Data Engineering System

Trigger
The researcher clicks the ‘Upload Log File’ button through user

interface of SensorData application.

Precondition
The datasets to be uploaded are stored inside local storage of the

device.

Scenario Name Step Action

Main Flow

1
Researcher clicks the ‘Upload Log File’ button

through user interface of SensorData.

2
SensorDataLogger upload all the log files in

the specified path to Google Cloud Storage.

3

A toast message pops out, indicating

‘Uploaded x files successfully’, where x

represents the number of files uploaded.

4
SensorDataLogger deletes the log files

uploaded in the local storage.

Alternate Flow –

The dataset is

unavailable

2.1 System fails to upload log file

2.2 Use case terminates.

Rules The Bluetooth connection between two devices stay connected.

Author Tee Jia Lin

Use Case Name Annotate Data

Use Case ID UC008

Description This use case allows system to annotate data.

Primary Actor Data Engineering System

Trigger SensorData sends the instruction to start the data collection process.

Precondition

• Researcher has started the data collection process.

• Instruction that contains the class ID has been sent from

SensorData to SensorDataLogger.

Scenario Name Step Action

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 52

Main Flow

1
The SensorDataLogger has started the data

collection process.

2
SensorDataLogger identifies the class ID sent

from SensorData.

3
SensorDataLogger appends the class ID at the

end of each row of data.

Alternate Flow –

Class ID is

unavailable

2.1
SensorDataLogger fails to recognize the class

ID from the instructions sent.

2.2 Use case terminates.

Rules The Bluetooth connection between two devices stay connected.

Author Tee Jia Lin

Use Case Name Collect data

Use Case ID UC009

Description This use case allows researchers to perform data collection

Primary Actor Researcher

Trigger
Researcher wants to implement a Human Activity Recognition

research and does not want to use public datasets.

Precondition

• Data sources, sensors, or mechanisms for data collection are

available and properly configured.

• The purpose and requirements of the dataset are defined.

Include Use Case:

• Start Data Recording

• Save Log Files

• Upload Log Files to Cloud Server

Scenario Name Step Action

Main Flow

1
Researcher determines the activities he or she

wants to collect data for.

2
Researcher determines the duration for each

activity.

Rules -

Author Tee Jia Lin

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 53

Use Case Name Collect data

Use Case ID UC009

Description This use case allows researchers to perform data collection

Primary Actor Researcher

Trigger
Researcher wants to implement a Human Activity Recognition

research and does not want to use public datasets.

Precondition

• Data sources, sensors, or mechanisms for data collection are

available and properly configured.

• The purpose and requirements of the dataset are defined.

Include Use Case:

• Start Data Recording

• Save Log Files

• Upload Log Files to Cloud Server

Scenario Name Step Action

Main Flow

1
Researcher determines the activities he or she

wants to collect data for.

2
Researcher determines the duration for each

activity.

Rules -

Author Tee Jia Lin

Use Case Name Perform Data Preprocessing

Use Case ID UC011

Description
This use case allows researchers to preprocess dataset to make it

suitable for subsequent classification.

Primary Actor Researcher

Trigger
Researchers extract the datasets out from Google Cloud Storage to

Google Colab.

Precondition

• The dataset created is available in Google Cloud Storage.

• The dataset is in .parquet format.

• The researcher has opened the Google Colab.

Scenario Name Step Action

Main Flow 1
Researcher opens the Google Colab, imports

necessary libraries, and makes configuration.

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 54

2
Researcher extracts the .parquet dataset out

from GCS in Google Colab.

3

Researcher performs data preprocessing steps

such as removing null values, sorting in

ascending order of timestamp, etc.

4
Researcher stores the pre-processed dataset

back to GCS.

Alternate Flow –

Failed to extract

the datasets

1.1
Researcher failed to read the .parquet dataset in

Google Colab.

1.2
Back to Main Flow step 1 to re-extract the

datasets.

Rules The kernel of the Google Colab stays opened.

Author Tee Jia Lin

Use Case Name Perform Data Segmentation

Use Case ID UC012

Description
This use case allows researchers to break dataset into smaller

segments to make it suitable for subsequent classification.

Primary Actor Researcher

Trigger
Researchers extract the pre-processed datasets out from Google

Cloud Storage to Google Colab.

Precondition
• Researcher has pre-processed the dataset.

• The dataset is in .parquet format.

Scenario Name Step Action

Main Flow

1
Researcher extracts the pre-processed dataset

in .parquet format from GCS to Google Colab.

2

Researcher perform window sliding, with

window size of 50 rows of data and 50%

overlap between consecutive windows.

3
Researcher splits the windows of data into 80%

of training dataset and 20% of testing dataset.

4
Researcher stores the segmented dataset back

to GCS.

Alternate Flow –

Failed to extract

the datasets

1.1
Researcher failed to read the .parquet datasets

in Google Colab.

1.2
Back to Main Flow step 1 to re-extract the

datasets.

Rules The kernel of the Google Colab stays opened.

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 55

Author Tee Jia Lin

Use Case Name Model Training

Use Case ID UC013

Description
This use case allows researchers to perform model training using

labelled dataset.

Primary Actor Researcher

Trigger
Researchers extract dataset out from Google Cloud Storage to

Google Colab.

Precondition

• The dataset is in .parquet format and ready to be used to train

models.

• The dataset is labelled and pre-processed.

Scenario Name Step Action

Main Flow

1
Researcher extracts the labelled dataset in

.parquet format from GCS to Google Colab.

2 Researcher builds the model architecture.

2
Researcher trains the models with labelled

training dataset.

3 Researcher evaluates the model performance.

Alternate Flow –

Failed to extract

the datasets

1.1
Researcher failed to read the .parquet datasets

in Google Colab.

1.2
Back to Main Flow step 1 to re-extract the

datasets.

Rules The kernel of the Google Colab stays opened.

Author Tee Jia Lin

Use Case Name Perform Hyperparameter Tuning

Use Case ID UC014

Description
This use case allows researchers to perform hyperparameter tuning

on selected models to optimize model performance.

Primary Actor Researcher

Trigger
The selected models achieve low performance during training or the

researcher wants to enhance the performance of the model.

Precondition Models have been selected for tuning.

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 56

Scenario Name Step Action

Main Flow

1
Researcher selects the model that requires

hyperparameter tuning.

2
Researcher identifies the hyperparameters that

need to be tuned for the selected model.

3
For each hyperparameter, researcher defines

the search space.

4
Researcher identifies the hyperparameter

tuning strategy that he or she is going to use.

5
Researcher implements the hyperparameter

tuning.

6
System evaluates the model performance after

hyperparameter tuning.

7

System identifies the combination of

hyperparameters that resulted in the best

performance of model.

8
Researcher selects and identifies the

hyperparameters for the final model.

Alternate Flow –

Tuning failure

5.1
Hyperparameter tuning process encounters

error.

5.2 Researcher needs to debug the errors.

Alternate Flow –

Hyperparameter

tuning is not

effective

7.1
The hyperparameter tuning process does not

improve the model performance.

7.2 Back to Main Flow step 2.

Rules The kernel of the Google Colab stays opened.

Author Tee Jia Lin

Use Case Name Model Testing

Use Case ID UC015

Description
This use case allows researchers to perform model testing to

evaluate a model’s performance on new data.

Primary Actor Researcher

Trigger Combinations of hyperparameter are identified.

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 57

Precondition

• A trained model is available for testing.

• A labelled testing dataset which contains new data and pre-

processed is available.

• The labelled testing dataset has been pre-processed.

Scenario Name Step Action

Main Flow

1 Researcher gets the testing dataset.

2 Researcher gets the trained model to be tested.

3 Researcher implements the model testing.

4
Researcher evaluates the model performance

on testing dataset.

Alternate Flow –

Test dataset

unavailable

1.1 Researcher fails to read the testing dataset.

1.2 Use case terminates.

Rules The kernel of the Google Colab stays opened.

Author Tee Jia Lin

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 58

3.1.3 Activity Diagram

Figure 3.3: Activity Diagram

Each step in the proposed HAR system is depicted in Figure 3.3. Firstly, the researcher

needs to collect sensor signals. The data collection involves the usage of SensorDataLogger

and SensorData applications. The researcher has to open the applications. The applications will

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 59

ask for permissions to use Bluetooth, storage and ask to turn on Bluetooth if it hasn’t been

turned on. After that, SensorDataLogger application will ask the researcher to log in the Google

account. SensorData will then show the user interface consisting of list of activity buttons while

SensorDataLogger will show real-time accelerometer and gyroscope data. Next, the researcher

can either choose to add activity button that he or she wants to collect data for via SensorData,

or the researcher can connect both applications via Bluetooth. If the researcher wants to add

activity button, he or she needs to define activity name, class ID, and click ‘CREATE

ACTION’ button. After both applications are connected via Bluetooth, the researcher can start

the data collection process. The device installed with SensorDataLogger can be put inside

pocket while the device installed with SensorData will be held on hand. To collect data, the

researcher needs to click activity button that he or she wants to collect data for. A dialog will

pop out, asking to set duration. After setting duration, click the ‘START’ button. The

SensorData application will send instructions to start recording to SensorData application and

start a timer. Similarly, when SensorData application receives the instructions, a timer will

start. After timer stops, the SensorDataLogger and SensorData applications will stop data

recording process. The log files created will be automatically annotated via SensorDataLogger

application. The researcher now needs to click ‘Save Log File’ button and SensorData

application will send instructions to SensorDataLogger to save the log file. Next, the researcher

can choose to either continue collect sensor data for other activities or upload the existing log

files to cloud server. If the researcher chooses to continue collecting data, then he or she just

needs to click another activity button and repeats the same process. If the researcher chooses

to upload the existing log files, then he or she needs to click ‘Upload Log File’ button.

SensorData application will then send instructions to SensorDataLogger application to upload

all the log files inside local storage to Google Cloud Storage. After uploading, the

SensorDataLogger application will delete all the uploaded log files. This process continues

until the researcher has collected data for all the activities.

 After data collection, the researcher needs to create a dataset by combining all the log files

into one single dataset. The researcher first convert all the CSV log files into Parquet log files.

Then, the parquet log files are combined into single dataset.

 Subsequently, data preprocessing is performed on the dataset created to make them more

suitable for subsequent classification. Preprocessing steps such as dropping rows with null

values, dropping rows when timestamp is zero and sorting the dataset in ascending order of

timestamp are implemented.

Chapter 3

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 60

 Then, data exploration is performed on the preprocessed dataset created in previous step.

The steps such as identifying missing values or outliers, visualizing data, obtaining summary

information regarding dataset, etc. are implemented to understand better the characteristics and

quality of dataset. This step is crucial to identify subsequent data preparation steps.

Then, the researcher will perform data segmentation by breaking large datasets into fixed

size of windows. After that, the windows produced are split into 80% of training dataset and

20% of testing data. The training dataset can be used to train LSTM model. After model

training, the researcher will perform evaluation to assess the performance of the models by

computing confusion matrices and accuracies.

Next, hyperparameter tuning is performed to identify the combination of hyperparameters

that can produce the best model performance. Finally, the model will go through testing phase

using the testing dataset.

Chapter 4

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 61

Chapter 4

System Design

4.1 System Block Diagram

Figure 4.1: Block diagram for smartphone based HAR system.

The first step in the proposed smartphone based HAR system is data collection. The

data collection involves sensor signals collection from accelerometer and gyroscope embedded

in smartphone by using SensorData and SensorDataLogger applications being developed in

this research. Two Android devices are used. After data collection, the researcher proceeds to

dataset creation. Google Colab software is used starting from this step. This is because many

individuals CSV log files are created during data collection. The researcher needs to convert

the CSV log files into Parquet log files and combine all the log files to become single dataset.

After that, the dataset produced is preprocessed. The preprocessing steps include dropping rows

with null values, dropping rows with timestamp equals to zero and sorting the dataset in

Chapter 4

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 62

ascending order of timestamp. Then, data exploration is performed on the preprocessed dataset.

Through data exploration, the researcher can understand the data type of the features in the

dataset, visualize the class label distribution, identify the missing values or outliers, and

visualize the relationship between the variables in the dataset. This helps to decide the

subsequent data preparation steps that need to be implemented. Next, the researcher will

implement data segmentation. This is because raw time-series data cannot be fed directly to

LSTM model. The researcher will break the large datasets into fixed size of windows, whereby

each window consists of 50 rows of data. After that, the windows produced are split into 80%

of training dataset and 20% of testing data. The training dataset can be used to train LSTM

model. After model training, the researcher will perform evaluation to assess the performance

of the models by computing confusion matrix and accuracy. Subsequently, hyperparameter

tuning is performed to identify the combination of hyperparameters to further enhance the

performance of LSTM model. Finally, the model will go through testing phase using the testing

dataset.

4.2 System Components Specifications

4.2.1 Data Collection

Figure 4.2: Flowchart for data collection in smartphone based HAR system.

Chapter 4

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 63

The first step in the smartphone based HAR system is data collection. The data

collection involves the usage of SensorDataLogger and SensorData applications. The

applications are connected by Bluetooth to send and receive instructions. When researcher

opens the applications, the applications will ask for permissions to use Bluetooth, storage and

ask to turn on Bluetooth if it hasn’t been turned on. After that, SensorDataLogger application

will ask the researcher to log in the Google account. SensorData will then show the user

interface consisting of list of activity buttons while SensorDataLogger will show real-time

accelerometer and gyroscope data as well as the sampling frequency. If the researcher uses

these applications for the first time, then he or she needs to add activity button that they want

to collect data for via SensorData. The researcher simply needs to click the ‘Add Activity’

button, define the activity name, activity ID, and click ‘CREATE ACTION’ button. The

activity ID and activity name must be unique among the activity buttons created. The researcher

will not be able to click the ‘CREATE ACTION’ button if there is duplication of names and

IDs. Then, the buttons created will be shown in the user interface of SensorData application.

To delete the button created, the research simply needs to swipe the particular button to the

left.

After that, the researcher needs to connect both applications via Bluetooth. The status

bar will change to ‘Connected’ when the Bluetooth connections are successfully established.

After both applications are connected via Bluetooth, the researcher can start the data collection

process. The device installed with SensorDataLogger can be put inside pocket while the device

installed with SensorData will be held in hand. To collect data, the researcher needs to click

activity button that he or she wants to collect data for. A dialog will pop out, asking to set

duration. After setting duration, click the ‘START’ button. The SensorData application will

send instructions to start recording to SensorDataLogger application and start a timer.

Similarly, when SensorDataLogger application receives the instructions, a timer will start.

After timer stops, the SensorDataLogger and SensorData applications will stop data

recording process. The researcher now needs to click ‘Save Log File’ button and SensorData

application will send instructions to SensorDataLogger to save the log file. The log file name

will be the activity ID and the datetime when the log files are created. The log files created are

annotated with the activity ID automatically. Next, the researcher can choose to either continue

collect sensor data for other activities or upload the existing log files to cloud server. If the

researcher chooses to continue collecting data, then he or she just needs to click another activity

button and repeats the same process. If the researcher chooses to upload the existing log files,

Chapter 4

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 64

then he or she needs to click ‘Upload Log File’ button. SensorData application will then send

instructions to SensorDataLogger application to upload all the log files inside local storage to

Google Cloud Storage. After uploading, the SensorDataLogger application will delete all the

uploaded log files. This process continues until the researcher has collected data for all the

activities.

4.2.2 Dataset Creation

Figure 4.3: Flowchart for dataset creation in smartphone based HAR system.

Chapter 4

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 65

Figure 4.4: Flowchart for data preprocessing in smartphone based HAR system.

Starting from second step, Google Colab software is used. The second step in the

smartphone based HAR system is dataset creation. When researchers are collecting sensor data

for each activity, individual log files will be created. Therefore, these log files need to be

combined to become single dataset for the purpose of subsequent data exploration,

preprocessing, model training, etc.

The researcher first extracts the individual log files from Google Cloud Storage. This is

performed by first performing authentication with Google Cloud Storage by uploading the .json

file of private key and get authentication via from google.colab import auth and

auth.authenticate_user(). Then, the researcher imports the necessary library, from google.cloud

import storage, and retrieve the list of CSV files from the relevant Google Cloud Storage

bucket by specifying the project id, bucket name and folder name.

Then, the researcher converts the CSV files into Parquet files. Parquet files are used instead

of CSV files since Parquet is a columnar storage file format designed for efficient compression

and storage. It can significantly reduce the amount of space required to store the dataset

compared to CSV files. Besides, Parquet files store data in a columnar format, making it easier

to skip over irrelevant columns during data retrieval. This can lead to faster query and analysis

Chapter 4

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 66

performance, which is important in HAR research as we need to process and analyze data

frequently. The researcher implements the conversion by first read the CSV files using

pandas.read_csv() and convert to Parquet files using pandas.to_parquet() function provided

by pandas library.

After that, the Parquet log files are preprocessed. The researcher will remove the rows of

data with null values by using pandas.dropna() and the rows of data with timestamp equals to

zero. Besides, the researcher will sort the dataset in ascending order of timestamp by using

pandas.sort_values().

Last but not least, all the log files are combined into single dataset. The dataset is then saved

back to Google Cloud Storage by specifying the file path.

4.2.3 Data Exploration

Figure 4.5: Flowchart for data exploration in smartphone based HAR system.

The next step in the smartphone based HAR system proposed is data exploration. This step

is performed to allow researchers to better understand the structure, quality, and characteristics

of the created dataset. This step is crucial to identify subsequent data preparation steps.

Chapter 4

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 67

The researcher first loads the dataset from Google Cloud Storage using

pandas.load_parquet(). Then, the researcher identifies the shape of the dataset via

pandas.shape attribute. The researcher also recognizes the data type of each attributes in the

dataset, including the number of non-null values and memory usage by using pandas.info().

The researcher also generates statistical summary of the dataset by using pandas.describe().

This helps to gain insights into the central tendency and dispersion of the dataset, identifying

potential outliers, and understanding the distribution of numerical variables in the dataset. Next,

the researcher identifies missing values and infinity values in the dataset by using

pandas.isnull(), numpy.isinf() and numpy.isneginf(). Subsequently, the researcher computes

and visualize the class distributions in the dataset by using pandas.crosstab() and

seaborn.countplot(). Lastly, the researcher visualizes the relationship between the numerical

variables in the dataset by using correlation matrix via pandas.corr() and seaborn.heatmap.

The squares with darker color indicate the stronger relationship between the variables, while

squares with lighter color suggest weak relationships or no relationship.

4.2.4 Data Segmentation

Figure 4.6: Flowchart for data segmentation in smartphone based HAR system.

Chapter 4

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 68

Since raw time-series sensor data cannot be fed directly to LSTM model, therefore the

subsequent step would be data segmentation by using window sliding techniques. The

researcher first loads the preprocessed dataset. Then, the dataset is divided into smaller

segments, called windows. Each window consists of 0.5 seconds of accelerometer and

gyroscope signals, with 50% overlap between consecutive windows to minimize information

loss at the edge of windows. After segmentation, the windows of data are divided into 80% of

training dataset and 20% of testing dataset.

4.2.5 Model Training & Evaluation

Figure 4.7: Flowchart for model training and evaluation in smartphone based HAR system.

Figure 4.8: Architecture of LSTM model proposed.

Chapter 4

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 69

For LSTM model training, the researcher first builds the architecture of the model. A

unidirectional and simple LSTM model is proposed in this project by using TensorFlow and

Keras. The model consists of one LSTM layer, one dropout layer and one dense layer. The first

layer is a LSTM layer with 32 nodes to capture sequential patterns in the data. The number of

node is chosen since our training dataset only consists of 3846 data points after data

segmentation. LSTM model which is too complex will introduce overfitting problem during

training when our dataset size is small. Next, the hidden layer incorporates a dropout layer with

a 30% dropout rate to prevent overfitting problem. Overfitting happens when a model becomes

too specialized in fitting certain data patterns. The dropout technique is a regularization

techniques in neural network to reduce the interdependencies among neurons by randomly

deactivating a subset of neurons in the layer during training. This introduces noise and

variability during training, ensuring that each batch of data is trained using different subsets of

neuron and thereby regularize the model. The dense layer is a fully connected dense layer

implemented using Softmax activation function for multiclass classification. The Softmax

activation function takes an input vector and computes the probability of the input belongs to

each class. The probability scores computed are normalized to ensure that they sum up to 1.

Then, the final output is the class with the highest probability score.

Additionally, the LSTM model is compiled with categorical cross-entropy loss.

Categorical cross-entropy is a loss function which measures the difference between the

predicted distribution of classes (output of neural network) and the true distribution of classes

(ground truth labels). Besides, Adam optimizer is used, which is a stochastic gradient descent

optimizer used to dynamically adjust the learning rates of the model to minimize loss function.

The evaluation metric used is accuracy.

During training, a constant batch size of 4 is used. Batch size refers to the number of

data samples that are processed together in a single forward and backward pass through a neural

network during training. In this context, a batch size of 4 means that, during each iteration of

model training, the neural network processes four data samples simultaneously. A batch size

of 4 is chosen as smaller batch size are more suitable to work with small datasets and when we

have limited computational resources.

The LSTM model training is conducted for 50 epochs with early stopping based on

validation loss with a patience of 5 epochs. The code used to implement the early stopping is

EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True). This means that

the model training will run for a maximum of 50 iterations during training, but it will stop early

Chapter 4

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 70

if the validation loss does not improve for 5 consecutive epochs. In other words, if the

validation loss remains stagnant or increases for five consecutive epochs, the training process

will terminate before reaching the maximum of 50 epochs to prevent overfitting and save time.

Before stopping, the code will automatically restore the model’s weight to the best observed

point that achieved the best validation loss during training.

After building the architecture of LSTM model, we can proceed with the training of

LSTM model using all the parameters mentioned. After training, the LSTM model’s

performance is evaluated by computing confusion matrix, accuracy, loss and RMSE. A graph

on the change of train loss, train accuracy, validation loss and validation accuracy are also

plotted using matplotlib library.

4.2.6 Hyperparameter Tuning

Figure 4.9: Flowchart for hyperparameter tuning in smartphone based HAR system.

After model training and evaluation, hyperparameter tuning is performed. Firstly, we

define a KerasClassifier as a wrapper for the keras model. This is because we are going to use

GridSearchCV by scikit-learn library. A KerasClassifier wrapper is necessary so that the keras

model can be integrated with the hyperparameter tuning routines by scikit-learn library.

Subsequently, we identify the hyperparameters that need to be tuned. In this project, we

Chapter 4

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 71

perform tuning for batch size, epochs, learning rate and dropout rate. Then, we define the search

space for each hyperparameter, which is the range of values the model is going to explore. For

example, the search space defined for the batch size is 4, 16 and 32. Next, we need to identify

the hyperparameter tuning strategy. In this context, we use GridSearchCV provided by scikit-

learn library to perform the hyperparameter tuning. GridSearchCV trains and evaluates the

model over all possible combinations of hyperparameter values within the defined search space

to find the combinations that achieve the best accuracy. We also implement the early stopping

that will monitor the validation loss during training. It will stop the training when the validation

loss does not improve for 5 consecutive epochs to prevent overfitting problem. Finally, we

implement the hyperparameter tuning and identify the combination of hyperparameter that

achieve the best accuracy.

4.2.7 Model Testing

Figure 4.10: Flowchart for model testing in smartphone based HAR system.

The last step in the proposed smartphone based HAR system is model testing by using

the dedicated testing dataset. By using the combination of hyperparameters identified in

previous step, the trained and fine-tuned model is tested to measure the models' real-world

performance by allowing the model to be presented with new, previously unseen data that

simulates real-world scenarios.

Chapter 4

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 72

The researcher first gets the testing dataset. Then, he or she performs testing on the

trained and fine-tuned model. After that, the researcher evaluates the performance of the model

by computing accuracy, loss, RMSE and confusion matrix. The evaluation results obtained

from testing process provide valuable insights into the effectiveness, practical utility, and

reliability of the proposed HAR system.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 73

Chapter 5

System Implementation

5.1 Hardware Setup

The hardware involved in this project is a laptop and two Android mobile devices. The

two Android devices used involve a smartphone and a tablet. The smartphone will be installed

with SensorDataLogger to show real-time sensor data from accelerometer and gyroscope, to

collect sensor data, to annotate the log file automatically, to save the log file with specified

filename, and to upload the log file to Google Cloud Storage server for further processing. The

tablet will be installed with SensorData to give instructions to the smartphone.

The laptop is used to develop the mobile applications, SensorData and

SensorDataLogger. The laptop is also used to perform HAR relevant operations such as dataset

creation, data preprocessing, data exploration, data segmentation, model training and

evaluation, hyperparameter tuning, and model testing.

Description Specifications

Model Lenovo IdeaPad S540

Processor 2nd Gen AMD Ryzen™7

Operating System Windows 11

Graphic AMD Integrated Graphics

Memory 12 GB DDR4

Storage 512 GB PCIe SSD

Table 5.1: Specifications of laptop

Description Specifications

Model Redmi Note 11 Pro 5G

Processor Snapdragon 695, Octa-core Max 2.2 GHz

Operating System Android 12, MIUI 13

Graphic Mali-G57 MC2

Memory 8GB RAM

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 74

Storage 128GB

Table 5.2: Specifications of smartphone

Description Specifications

Model Samsung Galaxy Tab A8 10.5

Processor Octa-core

Operating System Android 13

Graphic Mali-G52 MP2

Memory 4GB RAM

Storage 64GB

Table 5.3: Specifications of tablet

5.2 Software Setup

This project focuses on both the data engineering system and human activity

recognition system. Several software is used in Android devices and laptop.

Firstly, software used in laptop include Android Studio and Google Colab. Android

Studio is used for the purpose of developing mobile applications to implement the data

engineering system. The Android emulators in Android Studio were also used to simulate the

mobile applications being developed, i.e., the user interface and the functionalities, before

being installed to the smartphones. Besides, Google Colab is used for the purpose of dataset

creation, data preprocessing, data exploration, data segmentation, model training and

evaluation, hyperparameter tuning, and model testing.

Next, the software that needs to be installed in Android devices include SensorData and

SensorDataLogger. These applications are used to implement the data engineering system to

collect sensor data from accelerometer and gyroscope embedded in smartphone. Besides, the

applications can be used to annotate the log files automatically, to save the log files inside local

storage with specified filename and upload all the log files to Google Cloud Storage server for

further processing.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 75

Figure 5.1: Android Studio Arctic Fox, 2020.3.1, Patch 4

Figure 5.2: Android emulators used.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 76

Figure 5.3: Google Colab interface.

5.3 Cloud Setup

 This project involves the usage of cloud platform, which is Google Cloud Storage to

store the uploaded sensor data log files for further processing. Before the researcher starts to

collect data, the SensorDataLogger application will request the researcher to log into Google

account. After the researcher collects the data, the log files will be stored locally inside

smartphone storage. After done collecting data for all the activities, the researcher can click the

button ‘Upload Log Files’ via SensorData application to upload all the log files to the logged

in Google Cloud Storage server.

Figure 5.4: Google Cloud Storage bucket used to store the log files.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 77

5.4 Setting and Configuration

For data collection, two Android devices installed with SensorData and

SensorDataLogger are used. These two devices must be configured first before data collection.

For instance, both applications need to be given permissions to access Bluetooth and storage

of the devices. Bluetooth permission is needed because both applications need to send and

receive instructions via Bluetooth. Storage permission is needed because SensorData will store

the activity buttons’ details created, which is the activity name and ID inside the local storage

while SensorDataLogger will store the log files created inside the local storage temporarily

before uploading to cloud. Besides, SensorDataLogger application will ask the user to log into

Google account. This is because the log files collected later will be uploaded to Google Cloud

Storage for further storage and processing. Furthermore, dialogs will pop out on both

applications, asking to turn on Bluetooth if they are currently inactive. On the other hand,

activity buttons need to be created before data collection by defining unique activity names and

IDs. The configurations are also needed for GCS. Before we can upload the log files to cloud

server, the researcher needs to create a project through the console and create a service account

for authentication purpose. Then, we need to include the code to connect the SensorDataLogger

application with the GCS during the development of mobile applications.

Next, the data collection process requires some settings. The device installed with

SensorDataLogger should stay inside the front pocket of the data subject along the way when

data collection process is performed. Whereas the device installed with SensorData will be held

in hand by researcher or data subject to start the data collection process. This project is

collecting sensor signals for 4 activities, including walking, standing, climbing upstairs, and

climbing downstairs. There are in total 5 data subjects involved, whereby each data subject will

perform each activity for 1 minute.

 The HAR related operations such as dataset creation, data exploration, data segmentation,

model training and evaluation, hyperparameter tuning and model testing are implemented in

Google Colab. Before we can perform the operations, we need to first sign into the Google

Colab using Google account and create a new .ipynb notebook. Besides, to extract the data

stored in Google Cloud Storage to Google Colab, we need to create a service account via

Google Cloud Console and upload the .json file of the service account to Google Colab for

authentication purpose. Then, we need to run the code from google.colab import auth and

auth.authenticate_user() to connect the Google Colab to the relevant GCS account.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 78

5.5 System Operation

5.4.1 Data Engineering

The data engineering system in this project refers to sensor signals collection,

annotation, and storage. For the implementation of data engineering system, two Android

devices installed with SensorData and SensorDataLogger applications are used.

5.4.1.1 User Interface of SensorData and SensorDataLogger

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 79

Figure 5.5: User Interface of SensorData

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 80

Figure 5.6: User Interface of SensorDataLogger

5.4.1.2 Authorization to use Bluetooth and storage

Before start collecting data, the SensorData and SensorDataLogger applications are

given permissions to use Bluetooth and storage. The developed applications are connected

using Bluetooth to send and receive instructions. Besides, devices’ local storage will be needed

to store the sensor data log files temporarily. Users need to grant permissions to allow the

applications to access the Bluetooth service and local storage of devices. If any of the

permissions are not granted by users, it will bring effects to the following processes of the

applications. For instance, the applications cannot communicate via Bluetooth, or the

application cannot store log files into local storage of device.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 81

Figure 5.7: Dialog box asking for Bluetooth permission.

Figure 5.8: Dialog box asking for storage permission.

5.4.1.3 Turn on Bluetooth

 The devices’ Bluetooth need to be turned on before data collection. If the Bluetooth is

inactive initially, a dialog box will pop out, asking to turn on the Bluetooth when the researcher

starts the applications.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 82

Figure 5.9: Dialog box asking to turn on Bluetooth in SensorDataLogger.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 83

Figure 5.10: Dialog box asking to turn on Bluetooth in SensorData.

5.4.1.4 Google Cloud Storage server

One of the functions of SensorDataLogger is to upload all the sensor data log files in

the specified path to Google Cloud Storage bucket, upon instructions from SensorData. To

achieve this function, the application involves the usage of Google Cloud Platform and Google

Cloud Storage. First, I will have to create a new project called SensorDataLogger in Google

Cloud Platform through Google Cloud console. Next, I will create a bucket in Google Cloud

Storage with the name sensordatalogger-logfiles.appspot.com. Last but not least, I will create

a service account to authenticate SensorDataLogger application and authorize it to access

user’s account. Once these steps are completed, the SensorDataLogger application will be able

to access user’s Google account and upload log files to the created bucket for further

processing.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 84

Figure 5.11: Service account created.

Figure 5.12: Bucket sensordatalogger-logfiles.appspot.com created.

5.4.1.5 Google account sign in

After the user grants the permissions to use Bluetooth and storage, the

SensorDataLogger application will redirect user to Google account sign-in page. This step is

necessary to ensure that the sensor data log files can be uploaded successfully to the relevant

Google Cloud Storage bucket.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 85

Figure 5.13: Google account sign-in page.

5.4.1.4 Add Activity Buttons

The researcher needs to add activity buttons that he or she wants to collect data for via

SensorData application. The researcher needs to define unique activity name and class ID and

click ‘CREATE ACTION’ button. The buttons created will be shown in the list in user

interface. In this project, we create 4 activity buttons. with the name and ID as

• STAND - 1

• WALK - 2

• STAIR DOWN - 3

• STAIR UP - 4

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 86

The activity ID specified here will be used as the filename of the log files. If users want to

delete the activity buttons created all they need to do is swipe the created button in the list to

the left.

Figure 5.14: Dialog box to add activity buttons in SensorData.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 87

Figure 5.15: Swipe to the left to delete activity button.

5.4.1.5 Real-time accelerometer and gyroscope data

Once users grant the permission to use Bluetooth and storage as well as signing in

Google account, the SensorDataLogger application will show real-time accelerometer and

gyroscope data. This helps to monitor whether the application has access to accelerometer and

gyroscope sensor or not. This function is achieved by using Sensor, SensorManager,

SensorEvent and SensorEventListener classes imported from Android.hardware package.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 88

Figure 5.16: Real-time accelerometer and gyroscope data in SensorDataLogger.

5.4.1.6 List of activity buttons

Once users grant the permission to use Bluetooth and storage and users already went

through the process of creating activity buttons, the SensorData application will show the list

of activity buttons created.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 89

Figure 5.17: List of activity buttons in SensorData.

5.4.1.8 Bluetooth connection

The researcher will connect both SensorData and SensorDataLogger via Bluetooth to

start the data collection process. The applications contain features of showing list of paired

devices and showing the Bluetooth connection status, whether it is disconnected or connected

to certain device.

In this project, SensorData is installed on Samsung Galaxy A8 10.5 while

SensorDataLogger is installed on Redmi Note 11 Pro 5G. To initiate Bluetooth connection

from SensorData to SensorDataLogger, the user needs to click the option menu at the top right

corner of the application and chooses the option ‘Connect device’. Then, a list of pair devices

will be shown. The user will then choose to connect with Redmi Note 11 Pro 5G. The status

will then change from ‘not connected’ to ‘connecting’. If the applications are successfully

connected via Bluetooth, the status shown under the title bar of SensorData will change to

‘Connected to Redmi Note 11 Pro 5G’ and the status shown in SensorDataLogger will be

‘Connected to Samsung Galaxy A8’.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 90

Figure 5.18: The devices show status ‘Not connected’.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 91

Figure 5.19: The device displays list of paired devices.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 92

Figure 5.20: SensorData initiate Bluetooth connection to SensorDataLogger, status showing

‘Connecting…’

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 93

Figure 5.21: The devices show status ‘Connected to Redmi Note 11 Pro 5G’ and ‘Connected

to Samsung Galaxy A8’.

5.4.1.9 Start recording

 After the applications are connected via Bluetooth, they are now ready to send and

receive instructions. Users can now start the data collection process. To collect data, the user

needs to click the activity button that he or she wants to collect data for. After that, a dialog

will pop out asking to set the duration for the relevant data collection process. Then, click the

‘START’ button. The SensorData application will send instructions to start recording to

SensorDataLogger application and start a timer. Similarly, when SensorDataLogger

application receives the instructions, a timer will start. Now the data subject starts to perform

the activities, such as standing, walking, climbing upstairs and climbing downstairs. Note that

the device installed with SensorDataLogger stays in the pocket of data subject along the way

he or she is performing the activities to collect the accelerometer and gyroscope signals.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 94

Figure 5.22: Click activity button ‘WALK’ via SensorDataLogger.

Figure 5.23: A dialog asking to set duration. After that, click ‘START’.

Figure 5.24: A timer starts at SensorData.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 95

Figure 5.25: A timer starts at SensorDataLogger.

5.4.1.10 Stop recording

After timer stops, the SensorDataLogger and SensorData applications will stop data

recording process. The log files created will be automatically annotated via SensorDataLogger

application.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 96

Figure 5.26: Timer stops. SensorDataLogger stops to collect sensor signals for ‘WALK’

activity.

5.4.1.11 Save log files

To save the log file, the researcher needs to click ‘Save Log File’ button and SensorData

application will send instructions to SensorDataLogger to save the log file. The CSV log files

will be saved in local storage of devices installed with SensorDataLogger, which is at

/storage/emulated/0/Android/data/my.edu.utar.sensordatalogger/files with a fixed filename

format, which is a combination of filename and datetime. Note that the user does not need to

specify the filename manually. The filename for the relevant log file will be the activity ID

specified when the activity button is created. For example, when the user creates the activity

button for ‘WALK’ activity, the activity name defined is ‘WALK’ and the activity ID specified

is ‘1’. Hence, after user collect data for walking activity and click ‘Save Log File’ button, the

log files will be saved with the filename ‘Log_1_20230814202506.csv’.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 97

Figure 5.27: Click ‘Save Log File’ button.

Figure 5.28: Log files saved with specified filename.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 98

Figure 5.29: Log files content with automated annotation.

5.4.1.12 Upload log file to Google Cloud Storage bucket

Users can choose to either upload log file each time after collecting data and saving log

file for one activity, or the user can choose to upload all the log files at once. The user would

need to click the ‘Upload Log File’ button at SensorData. The instructions will be sent to

SensorDataLogger, which will start to read and upload all the files available in the specified

path to the specified bucket in the logged in Google Cloud Storage account. In this project, we

are going to upload log files to the bucket sensordatalogger-logfiles.appspot.com. After

uploaded successfully all the files, the log files in the local storage will be deleted.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 99

Figure 5.30: Click ‘Upload Log File’ button.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 100

Figure 5.31: Upload log files to the bucket.

5.4.2 Dataset Creation

 After data engineering process, the log files collected for all activities are now stored in the

bucket sensordatalogger-logfiles.appspot.com in the folder CSVFile/ in Google Cloud Storage

server. This project involves 5 data subjects and collects accelerometer and gyroscope data for

4 activities. Each data subject is required to perform each activity for 1 minute. Hence, there

are many individual log files being created and stored. Large amounts of individual log files

make it difficult for subsequent HAR related operations such as data exploration, data

segmentation, etc. Therefore, this dataset creation process is implemented to combine all the

log files into single dataset and perform some basic preprocessing steps.

 Before implementing the code for dataset creation, we need to import the necessary

libraries, including pandas, gcsfs and google.cloud. We use the code from google.cloud import

storage, import pandas as pd and import gcsfs.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 101

This dataset creation process is implemented in Google Colab. First, we need to import

the CSV log files. This is done by first retrieving the list of CSV file paths stored in GCS

bucket. We specify the project ID, bucket name and folder name as shown in Figure 5.35. One

of the example CSV file paths retrieved is “CSVFile/Log_1_20230814202506.csv”. To read

the CSV file into Google Colab, gsutil URI, which is a file path specifically used by GCS,

needs to be used. Hence, we need to format the filename of the CSV log files using the code in

Figure 5.36. The example formatted file path looks like “gs://sensordatalogger-

logfiles.appspot.com/CSVFile/Log_1_20230814202506.csv”. Then, we can read the CSV files

by using pd.read_csv() and the formatted file path.

After that, we will convert the CSV log files to Parquet log files. Parquet files are used

instead of CSV files since Parquet is a columnar storage file format designed for efficient

compression and storage. It can significantly reduce the amount of space required to store the

dataset compared to CSV files. This can be shown in Figure 5.37. Besides, Parquet files store

data in a columnar format, making it easier to skip over irrelevant columns during data retrieval.

This can lead to faster query and analysis performance, which is important in HAR research as

we need to process and analyze data frequently. We convert the CSV files into Parquet files

and later store the Parquet files back to GCS bucket inside folder ParquetFile/ using the

to_parquet(), as shown in Figure 5.38. To read the Parquet files, we need to format the filename

to gsutil URI, as shown in Figure 5.39. Then, we can read the Parquet files using

read_parquet() and the formatted file path.

Subsequently, we can combine the Parquet log files into single dataset. Before that, for

each Parquet log files we will perform some preprocessing steps. For instance, drop rows with

null values using pandas.dropna(), drop rows of data when timestamp equals to zero and sort

the data in ascending order of timestamp using pandas.sort_values(). Then, we will combine

the Parquet log files. The final dataset with the shape (120245, 7) is stored back into GCS with

the name har.parquet. The final dataset consists of seven columns, whereby the first six

columns are the signals data from accelerometer and gyroscope, and the last column is the

activity label.

The complete code for dataset creation is shown in Appendix.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 102

Figure 5.32: Individual log files created and stored in Google Cloud Storage.

Figure 5.33: Retrieve the list of CSV file paths stored in GCS.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 103

Figure 5.34: Format the filename of CSV file.

Figure 5.35: Storage spaces needed for CSV log files (LHS) compared to Parquet log files

(RHS).

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 104

Figure 5.36: Convert CSV files to Parquet files. Save back the Parquet files to GCS bucket

inside folder ParquetFile/.

Figure 5.37: Retrieve the list of Parquet file paths stored in GCS.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 105

Figure 5.38: Format the filename of Parquet file.

Figure 5.39: Preprocessing.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 106

Figure 5.40: Some part of the final dataset, har.parquet.

5.4.3 Data Exploration

Firstly, we need to import the necessary libraries such as pandas, numpy, seaborn, and

matplotlib. We use the code import numpy as np, import pandas as pd, import seaborn as sns,

and import matplotlib.pyplot as plt.

Then, we load the final dataset, har.parquet from GCS bucket by using read_parquet()

and gsutil URI of the file into a pandas dataframe called explore_df. Then, we can print the

shape of the dataset by using explore_df.shape. The shape of the dataset is (120245, 7).

Next, we use explore_df.info() to recognize the data type of each attributes in the

dataset, including the number of non-null values and memory usage. The result shows that

there are in total 120245 non-null rows of data for 7 attributes. The first six columns which

consist of signals data from accelerometer and gyroscope have float datatype, whereas the last

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 107

column which consists of activity labels has int datatype. The total memory usage for this

dataset is 6.4MB.

After that, we use explore_df.describe() to generate statistical summary of the dataset

by calculating the mean, standard deviation, maximum, minimum, and quartile values of the

data for each attribute in the dataset. This can help to gain insights into the central tendency

and dispersion of the dataset, identifying potential outliers, and understanding the distribution

of numerical variables in the dataset. The result shows that x attribute has the mean value of -

0.151056, standard deviation of 1.559903, min value of -11.06 and max value of 10.51. -0.92,

-0.34 and 1.05 are the values for 25%, 50% and 75% quartile respectively.

Next, the researcher identifies missing values and infinity values in the dataset by using

explore_df.isnull(), numpy.isinf() and numpy.isneginf(). The result reveals that the dataset does

not have any null values, negative infinity values and positive infinity values.

Subsequently, the researcher computes and visualize the class distributions in the

dataset by using pandas.crosstab() and seaborn.countplot(). The result shows that the dataset

has an approximately equal distribution of samples among all the activities. The activity

labelled ‘1’ has 30049 rows while the activity labelled ‘2’ consists of 30040 rows. The activity

labelled ‘3’ has 30088 rows while the activity labelled '4’ consists of 30068 rows.

Lastly, the researcher visualizes the relationship between the numerical variables in the

dataset by using correlation matrix via explore_df.corr() and seaborn.heatmap. The squares

with darker color indicate the stronger relationship between the variables, while squares with

lighter color suggest weak relationships or no relationship. The result shows that there is a

strong relationship between x and z, y and y2, etc.

The complete code for data exploration is shown in Appendix.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 108

Figure 5.41: Data type of each attribute in the dataset.

Figure 5.42: Statistical summary of dataset.

Figure 5.43: Null values of dataset for each attributes.

Figure 5.44: Infinity values of dataset.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 109

Figure 5.45: Number of samples for each activity.

Figure 5.46: Bar graph showing number of samples for each activity.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 110

Figure 5.47: Correlation matrix.

5.4.4 Data Segmentation

Before data segmentation happens, we need to import necessary libraries such as

pandas, scipy and sklearn. The codes being used are from sklearn.model_selection import

train_test_split, from scipy import stats, from scipy.stats import mode and import pandas as

pd.

Firstly, we load the final dataset, har.parquet from GCS bucket by using

read_parquet() and gsutil URI of the file into a pandas dataframe called lstm_df.

Then, we split the dataset into small segments called windows. Each windows consists

of 0.5 seconds of data with 50% overlap to minimize information loss at the edge of windows.

In other words, each segment consists of 50 consecutive data points from each of the six

features. Sometimes, there may be situation where there are two or more different labels in one

segment of data. In this situation, the labels being assigned to each segment are decided by

using the mode of labels. The mode of labels is calculated using stats.mode. Next, we split the

signals and labels during segmentation and save the final results into different variables,

reshaped_segments and labels. The result shows that the shape of the reshaped_segments is

(4808, 50, 6), whereby the first number indicates number of segments, the second number

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 111

indicates the number of time steps, and the third number indicates the number of features. The

shape of the labels is (4808, 4), whereby it consists of 4808 segments and 4 classes.

Lastly, we split the dataset into 80% of training dataset and 20% of testing dataset by

using train_test_split() and the input vector will be reshaped_segments and labels obtained

from previous steps. The output vectors are X_train, y_train, X_test and y_test. The shape of

the X_train is (3846, 50, 6) and y_train is (3846, 4). Whereas the shape of the X_test is (962,

50, 6) and y_test is (962, 4).

The complete code for data segmentation is shown in Appendix.

5.4.5 Model Training and Evaluation

In this project, we choose to use LSTM model. Beforehand, we need to import

necessary libraries. The libraries we are going to use include pandas, sklearn, matplotlib and

tensorflow.

Firstly, we need to build the architecture of the LSTM model. We define a

create_lstm_model() which takes two parameters, dropout rate and learning rate. Inside the

create_lstm_model() function, a sequential neural network is created by using

tf.keras.models.Sequential(). After that, we add a LSTM layer with 32 units to the model by

using model.add(LSTM(units = 32, input_shape = (X_train.shape[1], X_train.shape[2]))).

Then, we add a dropout layer as the hidden layer by using model.add(Dropout(dr)) where the

default dropout rate, dr is 0.3. We also add a dense layer as the output layer with 4 units and

softmax activation function by using model.add(Dense(y_train.shape[1], activation =

'softmax')). Subsequentially, we initialize an Adam optimizer with the learning rate, lr of

0.0025 by using optimizer = Adam(learning_rate=lr). The LSTM model is then compiled with

categorical cross-entropy loss function, the Adam optimizer initialized before and accuracy as

the evaluation metrics. The code being involved here is

model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']).

We also run model.summary() to view the summary of LSTM architecture as shown in Figure

5.51.

Next, we can start training the LSTM model that we built by defining the batch size as

4 and n_epochs as 50. Early stopping is also defined here to monitor the validation loss during

model training, by using EarlyStopping(monitor='val_loss', patience=5,

restore_best_weights=True). Then, we start training by using model.fit(X_train, y_train,

epochs = n_epochs, validation_split = 0.20, callbacks=[early_stopping], batch_size =

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 112

batch_size, verbose = 1). Figure 5.52 shows the result of loss, accuracy, validation loss and

validation accuracy for each iteration of model training. The results show that the model

training stops at 26th iteration with loss (0.0956), accuracy (0.9711), validation loss (0.1278)

and validation accuracy (0.9688) before reaching the maximum 50th iteration. This is because

the early stopping is monitoring the validation loss during model training. If the validation loss

remains stagnant or increases for five consecutive epochs, then the training process will

terminate to prevent overfitting. Early stopping will also automatically restore the model’s

weight to the best observed point that achieved the best validation loss during training.

Subsequently, a graph is plot as shown in Figure 5.53. The graph is plotted on the

changes of train loss, train accuracy, validation loss and validation accuracy over the time

during model training. The graph shows that the training loss and validation loss decrease

gradually from 1st epoch until around 10th epoch. Then starting from 11th epoch until 26th epoch,

the training loss and validation loss remains stagnant and slightly fluctuate. Whereas for

training accuracy and validation accuracy, the result shows that they increase gradually from

1st to around 10th epoch and remain stagnant from 11th epoch to 26th epoch.

Lastly, we compute the accuracy, loss and RMSE of model training. The result is shown

at Figure 5.54, with accuracy at 0.9828392863273621, loss at 0.06129278615117073 and

RMSE at 0.08665741. We also compute the confusion matrix, as shown in Figure 5.55.

The complete code for model training and evaluation is shown in Appendix.

Figure 5.48: Libraries or packages used.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 113

Figure 5.49: LSTM model architecture.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 114

Figure 5.50: Results of model training.

Figure 5.51: A graph plotted on the changes of train loss, train accuracy, validation loss and

validation accuracy.

Figure 5.52: Accuracy, loss and RMSE of training.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 115

Figure 5.53: Confusion matrix.

5.4.6 Hyperparameter Tuning

 Before implementing hyperparameter tuning, we need to import necessary libraries.

The libraries used include scikeras, sklearn and tensorflow.

 Firstly, we define a KerasClassifier as a wrapper for our Keras model by using

KerasClassifier(build_fn=create_lstm_model, verbose=0, batch_size=4, dr=0.2, epochs=30,

lr=0.001). Next, we define the param_grid, which is the search space for the hyperparameters

that the model is going to explore. Here, we perform hyperparameter tuning for batch size,

dropout rate, learning rate and epochs. After that, we initialize the early stopping just like what

we did during model training to monitor validation loss and prevent overfitting. The code

involved is early_stopping = EarlyStopping(monitor='val_loss', patience=5,

restore_best_weights=True). Then, we start to implement hyperparameter tuning using

GridSearchCV, whereby we use 3-fold cross validation and we split the training dataset into

80% of training data and 20% of validation data. The code being used is

GridSearchCV(estimator=keras_model, param_grid=param_grid, cv=3, scoring='accuracy',

n_jobs=-1) and grid_result = grid.fit(X_train, y_train, validation_split=0.2,

callbacks=[early_stopping]).

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 116

 Finally, we access the best parameters and best accuracy using

grid_result.best_params_ and grid_result.best_score_. The result shows that the best

combination of hyperparameters is batch size of 16, dropout rate of 0.2, epochs of 50 and

learning rate 0.0025. The accuracy achieved is 0.96.

The complete code for hyperparameter tuning is shown in Appendix.

Figure 5.54: Libraries or packages used.

Figure 5.55: param_grid.

Figure 5.56: Best combination of hyperparameters and accuracy.

5.4.7 Model Testing

 Firstly, we re-train the LSTM model by using the combination of hyperparameters

identified in previous step and on the training dataset. Then, we performed testing by using the

dedicated testing. The codes involved are tuned_model.evaluate(X_test, y_test, batch_size =

batch_size, verbose = 1) and tuned_model.predict(X_test). Then, we compute the accuracy,

loss, and RMSE, as shown in Figure 5.60. The result shows that after hyperparameter tuning,

the model can achieve an accuracy of 0.9656964540481567, loss of 0.11889327317476273

and RMSE of 0.11827322. We also compute confusion matrix, as shown in Figure 5.61.

The complete code for model testing is shown in Appendix.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 117

Figure 5.57: Accuracy, loss and RMSE of testing.

Figure 5.58: Confusion matrix.

5.6 Implementation Issues and Challenges

The challenging part during development of the project is sensor data synchronization.

This project involves collecting sensor signals from accelerometer and gyroscope. Hence, I

need to ensure that the sensor data recorded are synchronized correctly.

Next, another challenging part is ensuring the reliable Bluetooth connectivity between

SensorData and SensorDataLogger. Bluetooth connectivity between SensorData and

SensorDataLogger is important because the applications send and receive instructions via

Bluetooth. I need to determine the furthest distance that the Bluetooth connectivity can hold

between the devices, to ensure the reliability of the dataset being created later.

Chapter 5

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 118

 Besides, another challenging part is technical issues with the Android Studio while

developing mobile applications. This is due to unfamiliarity with the software interface and

functionalities and can be overcame by searching solutions from Internet.

 Additionally, another challenge while performing human activity recognition research

is the technical issues with Google Colab. Sometimes there would be problems like

incompatible versions of the libraries, missing packages, missing modules, etc. This challenge

can be overcome by searching solutions and opinions from Internet.

5.7 Concluding Remark

 In the nutshell, we have shown here what are the hardware, software and cloud

component being used in this project. The hardware used are laptop and two Android devices.

The software used are Google Colab, Android Studio SensorData and SensorDataLogger. The

cloud used is GCS. We have also stated their specifications and functions in the proposed

system and how to properly configure them before usage. Laptop is used for the development

of mobile applications using Android Studio and HAR related operations using Google Colab.

Two Android devices are installed with SensorData and SensorDataLogger to implement the

data engineering system proposed. It is important to make configurations and settings before

we start to perform data engineering and HAR related operations. This helps to prevent

common errors that might happen during system implementation and reveal some errors that

we might overlook. For instance, the applications need to be given permissions to use Bluetooth

and storage and turn on Bluetooth before data collection.

The codes and partial results for the HAR related operations, including date exploration,

data segmentation, model training and evaluation, hyperparameter tuning and model testing are

described in detail here and attached in Appendix. This helps other researchers who are

referencing this project to have better understanding and are able to replicate and further

enhance this project. Finally, the implementation issues and challenges serve as a reminder for

other researchers who are referring to this project to avoid making the same mistake.

Chapter 6

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 119

Chapter 6

System Evaluation and Discussion

6.1 Model Testing and Performance Metrics

 In this project, model testing is implemented using the dedicated testing datasets and

the hyperparameter combination obtained from hyperparameter tuning. Later, the performance

of model testing is evaluated using accuracy, loss, RMSE, and confusion matrix.

Firstly, we re-train the LSTM model by using the combinations of hyperparameters that

achieve the best performance during hyperparameter tuning. The hyperparameters used involve

a batch size of 16, epochs of 50, dropout rate of 0.2 and learning rate of 0.0025. We also

implement early stopping and dropout techniques to prevent overfitting. Other

hyperparameters remain the same.

After that, we start to perform testing. The accuracy and loss are obtained by first using

the tuned models to make evaluations on testing datasets. In this project, our testing dataset

consists of shape (962, 50, 6). The accuracy represents the proportion of correctly classified

samples out of the total samples in the dataset. The loss represents how well the predictions

match the true labels. Additionally, RMSE is computed by first using the tuned model to make

predictions on testing dataset and store the predictions. Then, we use mean_squared_error() to

calculate MSE and RMSE is obtained by applying square root on MSE. RMSE represents the

magnitude of predictions errors. Lower value of RMSE indicates better performance.

tuned_model = tf.keras.models.Sequential()

tuned_model.add(LSTM(units = 32, input_shape = (X_train.shape[1], X_train.shape[2])))

tuned_model.add(Dropout(0.2))

tuned_model.add(Dense(y_train.shape[1], activation = 'softmax'))

optimizer = Adam(learning_rate=0.0025)

tuned_model.compile(loss='categorical_crossentropy', optimizer=optimizer,

metrics=['accuracy'])

batch_size = 16

n_epochs = 50

early_stopping = EarlyStopping(monitor='val_loss', patience=5,

restore_best_weights=True)

history = tuned_model.fit(X_train, y_train, epochs = n_epochs, validation_split = 0.20,

callbacks=[early_stopping], batch_size = batch_size, verbose = 1)

Chapter 6

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 120

Confusion matrix is also computed.

6.2 Testing Setup and Result

Figure 6.1: Confusion matrix of model testing.

loss and accuracy

loss_tuned, accuracy_tuned = tuned_model.evaluate(X_test, y_test, batch_size =

batch_size, verbose = 1)

RMSE

y_pred_tuned = tuned_model.predict(X_test)

mse_tuned = mean_squared_error(y_pred_tuned, y_test)

rmse_tuned = np.sqrt(mse_tuned)

#confusion matrix

predictions = tuned_model.predict(X_test)

class_labels = ['1', '2', '3', '4']

max_test = np.argmax(y_test, axis=1)

max_predictions = np.argmax(predictions, axis=1)

confusion_matrix = metrics.confusion_matrix(max_test, max_predictions)

sns.heatmap(confusion_matrix, xticklabels = class_labels, yticklabels =

class_labels, annot = True, linewidths = 0.1, fmt='d', cmap = 'YlGnBu')

plt.title("Confusion matrix", fontsize = 15)

plt.ylabel('True label')

plt.xlabel('Predicted label')

plt.show()

Chapter 6

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 121

Figure 6.2: Accuracy, loss and RMSE of model testing.

 Firstly, we re-train the LSTM model by using the combinations of hyperparameters that

achieve the best performance during hyperparameter tuning. Then, we performed the testing

using the tuned model and testing dataset.

After testing, we compute accuracy, loss and RMSE and the result is shown in Figure

6.2. The result shows that the tuned model can achieve an accuracy of 96.57% when being used

on new, unseen dataset. This proves the generalization capabilities of LSTM model trained

using dataset created from the proposed data engineering system. In essence, this validates the

efficiency and capability of the proposed data engineering system in producing high-quality

datasets and conducive to robust model generalization. Overfitting problem is not expected to

occur since we are implementing early stopping and dropout technique.

Furthermore, a confusion matrix is also computed, as shown in Figure 6.1. According

to the result, the LSTM model predicted quite well for each activity, including standing (1),

walking (2), climbing downstairs (3) and climbing upstairs (4). However, the model sometimes

confuses between walking (2), climbing downstairs (3) and climbing downstairs (4). Overall,

the model achieves good accuracy and generalization capability.

6.3 Project Challenges

 One of the challenges encountered while implementing this project is deficiencies in

knowledge and experience. This projects involve data engineering and human activity

recognition which requires knowledge about development of mobile applications, machine

learning pipeline and techniques, deep learning models architecture, etc. Prior starting this

project, only limited opportunities are available to get involved in developing mobile

applications, machine learning pipeline and deep learning process, and most of them are basic

practices for beginners. Consequently, the successful execution of this project necessitated a

substantial investment of time and effort into intensive research and investigative efforts to

have a profound understanding of the underlying concepts and technologies essential for its

realization.

Chapter 6

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 122

 Besides, another project challenge includes limited number of data subjects involved in

this project. Deep learning model training typically necessitates access to large datasets for

effective generalization. However, since only five data subjects are involved, the resulting

dataset size is quite small. This raises concerns about the potential susceptibility to overfitting

of model. To mitigate this issue, dropout techniques and early stopping techniques have been

incorporated during model training, hyperparameter tuning and model testing to prevent

overfitting.

 Furthermore, another project challenge is constraint imposed by limited computational

resources. In this project, all the HAR related operations are implemented in Google Colab.

One of the tasks in HAR requires substantial number of computational resources, which is

hyperparameter tuning. A substantial investment of time, which is about 2 hours are still

required for hyperparameter tuning although the hardware specifications had been changed to

GPU T4. Extra payment is needed if more resources are needed.

6.4 Objectives Evaluation

Index Objectives States

1

To address the issue of inefficient data engineering

infrastructure being used in current Human

Activity Recognition (HAR) research.

Completed

2

To develop a comprehensive, efficient, and user-

friendly data engineering system for data

collection, annotation, and storage.

Completed

3
To design and develop mobile applications,

SensorData and SensorDataLogger.
Completed

4
To evaluate the efficiency of proposed data

engineering system on HAR algorithm.
Completed

Table 6.1: Objectives evaluation.

The Table 6.1 has shown the overall objectives evaluation of this project.

We have successfully addressed the issue of inefficient data engineering infrastructure

being used in current Human Activity Recognition research by developing a comprehensive,

efficient, and user-friendly data engineering system for data collection, annotation, and storage.

To implement this data engineering system, we have designed and developed two mobile

Chapter 6

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 123

applications, SensorData and SensorDataLogger. The applications are connected using

Bluetooth to send and receive instructions. Users can give instructions via SensorData while

SensorDataLogger is responsible to receive and execute instructions. In SensorData, users can

start the data recording process by clicking at the activity buttons created and set the durations

they want to collect data for. After users click the ‘START’ button, SensorData sends the

instructions to SensorDataLogger to start data recording process and starts a timer. Similarly,

when SensorDataLogger receives the instructions, a timer is also started. When the timer stops,

SensorData will automatically send instructions to SensorDataLogger to stop the recording

process. The log files created in SensorDataLogger are automatically annotated with the ID of

the activity. When users click the ‘Save Log File’ button, SensorData will send instructions to

SensorDataLogger to save the log files with the specific filename, which is the ID of the

activity. When users click ‘Upload Log File’, SensorData will send instructions to

SensorDataLogger to upload log files to Google Cloud Storage bucket.

On the other hand, the applications offer user-friendly interface and intuitive

functionalities so that non-technical researchers can easily utilize the system proposed in their

research. The proposed data engineering system is said to be comprehensive since the system

proposed covers all the components required to create a dataset needed for Human Activity

Recognition, including data collection, annotation, and storage. Additionally, the proposed

system is said to be efficient as it requires least human effort to create a dataset of high-quality

and is able to achieve good accuracy and generalization. For instance, it includes the features

of automated annotation, eliminating the need for manual annotations, which requires a lot of

effort. Besides, the log files can be directly uploaded to cloud server, which is more easier to

be extracted for further processing.

Next, we have also successfully evaluated the efficiency of the proposed data

engineering system on HAR algorithm by looking at the performance of the HAR algorithms

trained using the dataset collected via data engineering system proposed. This assessment

encompasses performance metrics such as accuracy and the generalization capabilities of HAR

algorithms. In other words, if the dataset created using the proposed data engineering system

can achieve good accuracy and generalization during training and testing, it means that the

proposed data engineering system is effective. After data collection, we have performed HAR

related operations such as dataset creation, data exploration and data segmentation. Then, we

build and train a simple and unidirectional LSTM model, perform hyperparameter tuning and

model testing. During model training, we have successfully achieved an accuracy of 0.9828,

Chapter 6

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 124

loss of 0.0613 and RMSE of 0.0867. Besides, during model testing using dedicated testing

dataset and tuned model, we obtained an accuracy of 0.9657, loss of 0.1189 and RMSE of

0.1183. This statistics validates the efficiency of the proposed data engineering system. It also

shows the practicality and feasibility of integrating the proposed data engineering system into

real-world HAR applications as it can improve the scalability, reproducibility, and

comparability of project without compromising recognition accuracy or efficiency.

6.5 Concluding Remark

 In a nutshell, this chapter has discussed the details regarding the model testing and

performance metrics used. We are using tuned model and dedicated testing dataset for model

testing. The performance metrics used include accuracy, loss, RMSE and confusion matrix.

Besides, we also show and analyze the results of model testing based on accuracy, loss, RMSE,

and confusion matrix. Our project validates the efficiency of the proposed data engineering

system in producing high-quality dataset. Furthermore, we have talked about some of the

challenges or constraints faced while implementing this project and proposed our solutions to

tackle the challenges. This helps to give clear understanding to other researchers who are

referencing this project. Last but not least, an objective evaluation process is performed to show

the current progress of this project and how far it achieves.

Chapter 7

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 125

Chapter 7

Conclusion and Recommendations

7.1 Conclusion

In recent years, HAR research has primarily focused on refining algorithms and

techniques, often overshadowing the critical need for efficient data engineering systems in

terms of sensor data collection, annotation, and storage. This results in the use of incomplete

and inefficient data engineering systems, which brings negative effects to the accuracy,

efficiency, scalability, and reproducibility of HAR research.

This project addresses this vital issue of inefficient data engineering infrastructure by

introducing an efficient, comprehensive, and user-friendly data engineering system for data

collection, annotation, and storage. To implement the data engineering system proposed, two

mobile applications, SensorData and SensorDataLogger with user-friendly interfaces and

intuitive functionalities are developed. The applications are utilized to collect raw sensor

signals. The raw signals went through some preprocessing and a dataset is created. The dataset

is later used to train a unidirectional LSTM model with 32 neurons. To prevent overfitting,

early stopping monitoring validation loss and dropout technique using dropout rate of 0.3 are

applied during model training. The training accuracy obtained is 0.9711.

Hyperparameter tuning is then implemented and identify the best combinations, which

is [batch size: 16, dropout rate: 0.2, learning rate: 0.0025, epochs: 50]. These hyperparameters

are used to re-train a LSTM model and this model is used to perform model testing.

In evaluating the efficiency of our proposed data engineering system, we compute

accuracy, loss, RMSE, and the confusion matrix. This project proves that the proposed data

engineering system is efficient, which is able to achieve an accuracy rate of 96.57% during

model testing.

In conclusion, this project represents a significant stride towards the advancement of

HAR research. By addressing the critical need for efficient data engineering in data collection,

annotation, and storage, we have contributed to improving accuracy, reliability, scalability, and

reproducibility in HAR research. We offer a comprehensive and effective toolkit for data

engineering, aimed to further enhance the performance of the field.

7.2 Recommendation

Chapter 7

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 126

 This section serves as a recommendation to other researchers who are referencing and

citing this research. These recommendations aim to continue the current work and further

enhance the performance of smartphone based HAR research.

 One of the recommendations is to increase the size of the dataset used in future studies,

by adding number of samples and variations of activities being collected. Currently, this project

only collects data from five data subjects and for four activities, resulting in a small dataset. By

incorporating larger and more diverse datasets, researchers can capture a broader range of

activities and user behaviors, which can lead to more robust and generalizable HAR models.

 Next, another recommendation is to diversify the sources of data by collecting signals

from different types of sensor. This project only collects data from smartphone embedded

accelerometer and gyroscope, which is sufficient for human daily activities like walking,

standing, climbing upstairs, etc. The inclusion of additional sensor such as magnetometer, GPS

sensor, proximity sensor, ambient light sensor, etc. can provide a more comprehensive

understanding of human behavior. Researcher should explore the integration of data from

different sensors to capture a more detailed and holistic view of users' activities and

environments. This helps to improve the performance and versatility of activity recognition

system, making them applicable to a broader range of scenarios or use cases.

 Furthermore, we can explore other deep learning architecture for activity recognition

purpose. While this project is employing a simple and unidirectional LSTM model with 32

neurons, other deep learning models are worth explored as well. Researchers can consider

bidirectional LSTM model, CNN, or more complex architectures that combine multiple types

of neural networks such as LSTM-CNN or 4-layered LSTM-CNN. This helps to enhance

recognition accuracy and broaden the scope of smartphone based HAR.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 127

REFERENCES

[1] Y. K. Han and Y. B. Choi, “Human Action Recognition based on LSTM Model using

Smartphone Sensor,” in 2019 Eleventh International Conference on Ubiquitous and Future

Networks (ICUFN), Jul. 2019, pp. 748-750, doi: 10.1109/ICUFN.2019.8806065.

[2] M. Ermes, J. PÄrkkÄ, J. MÄntyjÄrvi and I. Korhonen, “Detection of Daily Activities and

Sports With Wearable Sensors in Controlled and Uncontrolled Conditions,” in IEEE

Transactions on Information Technology in Biomedicine, vol. 12, no. 1, pp. 20-26, Jan. 2008,

doi: 10.1109/TITB.2007.899496.

[3] E. Bulbul, A. Cetin and I. A. Dogru, “Human Activity Recognition Using Smartphones,” in

2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies

(ISMSIT), Oct. 2018, pp. 1-6, doi: 10.1109/ISMSIT.2018.8567275.

[4] A. Bayat, M. Pomplun and D. A. Tran, “A Study on Human Activity Recognition Using

Accelerometer Data from Smartphones,” in Procedia Computer Science, vol. 34, pp. 450-457,

2014, doi: https://doi.org/10.1016/j.procs.2014.07.009.

[5] F. Demrozi, G. Pravadelli, A. Bihorac and P. Rashidi, “Human Activity Recognition Using

Inertial, Physiological and Environmental Sensors: A Comprehensive Survey,” in IEEE

Access, vol. 8, pp. 210816-210836, Nov. 2020, doi: 10.1109/ACCESS.2020.3037715.

[6] A. K. Muhammad Masum, A. Barua, E. H. Bahadur, M. R. Alam, M. Akib Uz Zaman

Chowdhury and M. S. Alam, “Human Activity Recognition Using Multiple Smartphone

Sensors,” in 2018 International Conference on Innovations in Science, Engineering and

Technology (ICISET), Oct. 2018, pp. 468-473, doi: 10.1109/ICISET.2018.8745628.

[7] M. Alema Khatun and M. Abu Yousuf, “Human Activity Recognition Using Smartphone

Sensor Based on Selective Classifiers,” in 2020 2nd International Conference on Sustainable

Technologies for Industry 4.0 (STI), Dec. 2020, pp. 1-6, doi: 10.1109/STI50764.2020.9350486.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 128

[8] J. Manjarrés, V. Russo, J. Peñaranda and M. Pardo, “Human Activity and Heart Rate

Monitoring System in a Mobile Platform,” in 2018 Congreso Internacional de Innovación y

Tendencias en Ingeniería (CONIITI), Oct. 2018, pp. 1-6, doi:

10.1109/CONIITI.2018.8587094.

[9] F. Attal, S. Mohammed, M. Dedabrishvili, F. Chamroukhi, L. Oukhellou, and Y. Amirat,

“Physical Human Activity Recognition Using Wearable Sensors,” in Sensors, vol. 15, no. 12,

pp. 31314–31338, Dec. 2015, doi: 10.3390/s151229858.

[10] P. William, G. R. Lanke, D. Bordoloi, A. Shrivastava, A. P. Srivastavaa and S. V.

Deshmukh, “Assessment of Human Activity Recognition based on Impact of Feature

Extraction Prediction Accuracy,” presented at the 2023 4th International Conference on

Intelligent Engineering and Management (ICIEM), London, United Kingdom, May 2023.

[11] Y. Liu, L. Nie, L. Liu and D.S. Rosenblum, “From action to activity: Sensor-based activity

recognition,” in Neurocomputing, Mar. 2016, pp. 108-115, doi:

https://doi.org/10.1016/j.neucom.2015.08.096.

[12] J. G. Ponsam, S. V. J. B. Gracia, G. Geetha, K. Nimala, S. Chepuri and R. S. Rajline,

“Human Activity Recognition Using LSTM Network with Dropout Technique,” presented at

the 2022 International Conference on Power, Energy, Control and Transmission Systems

(ICPECTS), Chennai, India, December 2022.

[13] P. P. Ariza-Colpas et al., “Human Activity Recognition Data Analysis: History,

Evolutions, and New Trends,” in Sensors 2022, vol. 22, no. 9, pp. 3401, April 2022, doi:

https://doi.org/10.3390/s22093401.

[14] S. Mekruksavanich and A. Jitpattanakul, “LSTM Networks Using Smartphone Data for

Sensor-Based Human Activity Recognition in Smart Homes,” in Sensors 2021, vol. 21, no. 5,

p. 1636, Feb. 2021, doi: https://doi.org/10.3390/s21051636.

[15] J. Parkka, M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola and I. Korhonen, “Activity

classification using realistic data from wearable sensors,” in IEEE Transactions on Information

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 129

Technology in Biomedicine, vol. 10, no. 1, pp. 119-128, Jan. 2006, doi:

10.1109/TITB.2005.856863.

[16] F. Cruciani, I. Cleland, C. Nugent, P. McCullagh, K. Synnes and J. Hallberg, “Automatic

Annotation for Human Activity Recognition in Free Living Using a Smartphone,” in Sensors,

vol. 18, no. 7, pp. 2203, Jul. 2018, doi: 10.3390/s18072203.

[17] M. Shoaib, S. Bosch, O. Incel, H. Scholten, and P. Havinga, “A Survey of Online Activity

Recognition Using Mobile Phones,” in Sensors, vol. 15, no. 1, pp. 2059-2085, Jan. 2015, doi:

10.3390/s150102059.

[18] M. Kheirkhahan, S. Nair, A. Davoudi, P. Rashidi, A. A. Wanigatunga, D. B. Corbett, T.

Mendoza, T. M. Manini and S. Ranka, “A smartwatch-based framework for real-time and

online assessment and mobility monitoring,” in Journal of Biomedical Informatics, vol. 89, pp.

19-40, Jan. 2019, doi: https://doi.org/10.1016/j.jbi.2018.11.003.

[19] F. Shahmohammadi, A. Hosseini, C. E. King and M. Sarrafzadeh, “Smartwatch Based

Activity Recognition Using Active Learning,” in 2017 IEEE/ACM International Conference

on Connected Health: Applications, Systems and Engineering Technologies (CHASE),

Philadelphia, pp. 321-329, Jul. 2017, doi: 10.1109/CHASE.2017.115.

[20] R. San-Segundo, H. Blunck, J. Moreno-Pimentel, A. Stisen and M. Gil-Martín, “Robust

Human Activity Recognition using smartwatches and smartphones,” in Engineering

Applications of Artificial Intelligence, vol. 72, pp. 190-202, Jun. 2018, doi:

https://doi.org/10.1016/j.engappai.2018.04.002.

[21] I. D. Luptáková, M. Kubovˇcík and J. Pospíchal, “Wearable Sensor-Based Human

Activity Recognition with Transformer Model,” in Sensors 2022, vol. 22, no. 5, pp. 1911,

March 2022, doi: https://doi.org/10.3390/s22051911.

[22] I. Cleland, M. Han, C. Nugent, H. Lee, S. McClean, S. Zhang and S. Lee, “Evaluation of

Prompted Annotation of Activity Data Recorded from a Smart Phone,” in Sensors 2014, vol.

14, no. 9, pp. 15861-15879, Aug. 2014, doi: 10.3390/s140915861.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 130

[23] S. Mekruksavanich and A. Jitpattanakul, “A Comparative Study of Deep Learning

Robustness for Sensor-based Human Activity Recognition,” presented at the 2023 46th

International Conference on Telecommunications and Signal Processing (TSP), Prague, Czech

Republic, July 2023.

[24] S. Harada, K. Patel, J. A. Landay and T. S. Saponas, “VoiceLabel: using speech to label

mobile sensor data,” presented at the Proceedings of the 10th International Conference on

Multimodal Interfaces, ICMI 2008, Chania, Crete, Greece, October 20-22, 2008, Oct. 2008.

[25] S. Das, L. Green, B. Perez and M. J. Murphy, "Detecting User Activities using the

Accelerometer on Android Smartphones," July 2010.

[26] B. Moradi, M. Aghapour and A. Shirbandi, “Compare of Machine Learning and Deep

Learning Approaches for Human Activity Recognition,” presented at the 2022 30th

International Conference on Electrical Engineering (ICEE), Tehran, Iran, Islamic Republic of,

May 2022.

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 131

APPENDIX

Configurations & Libraries

import libraries

from google.cloud import storage

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import gcsfs

import warnings

warnings.filterwarnings('ignore')

from sklearn import metrics

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

from sklearn.metrics import classification_report

from sklearn.metrics import ConfusionMatrixDisplay

from sklearn.metrics import make_scorer

from sklearn.metrics import mean_squared_error

from sklearn.model_selection import train_test_split

from sklearn.model_selection import cross_validate

from sklearn.model_selection import cross_val_predict

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import GridSearchCV

from sklearn.base import clone

import tensorflow as tf

from tensorflow import keras

from tensorflow import stack

import scikeras

from scikeras.wrappers import KerasClassifier

from keras.models import Sequential

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 132

from keras.layers import Dense, GlobalAveragePooling1D, BatchNormalization, MaxPool1D,

Reshape, Activation, Dropout

from keras.layers import LSTM

from keras.callbacks import ModelCheckpoint, EarlyStopping

from keras.optimizers import Adam

from scipy import stats

from scipy.stats import mode

from google.colab import auth

GCS authentication

auth.authenticate_user()

Dataset Creation Coding

get list of filepaths from google cloud bucket

csv_file_paths = []

def get_csv_files(project_id="sensordatalogger-logfiles"):

 storage_client = storage.Client(project=project_id)

 bucket = storage.Bucket(storage_client, 'sensordatalogger-logfiles.appspot.com')

 str_folder_name_on_gcs = 'CSVFile/'

 blobs = bucket.list_blobs(prefix=str_folder_name_on_gcs)

 print("Blob name:")

 for blob in blobs:

 csv_file_paths.append(blob.name)

get_csv_files()

print("List of csv files:")

print(csv_file_paths)

format file name

for i in range(len(csv_file_paths)):

 csv_file_paths[i] = "gs://sensordatalogger-logfiles.appspot.com/" + csv_file_paths[i]

print(csv_file_paths[i])

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 133

Convert CSV file to Parquet file

parquet_dir = "gs://sensordatalogger-logfiles.appspot.com/ParquetFile/"

def convert_csv_to_parquet(input_file_path, output_file_path):

 csv_df = pd.read_csv(input_file_path, names=['sensor', 'x', 'y', 'z', 'timestamp', 'label'])

 csv_df.to_parquet(output_file_path)

for i in range(len(csv_file_paths)):

 filename = csv_file_paths[i].split('/')[-1]

 filename = filename.replace('csv', 'parquet')

 parquet_file_name = parquet_dir + filename

 convert_csv_to_parquet(csv_file_paths[i], parquet_file_name)

Import Parquet file

Get list of file paths from google cloud bucket

parquet_file_paths = []

def get_parquet_files(project_id="sensordatalogger-logfiles"):

 storage_client = storage.Client(project=project_id)

 bucket = storage.Bucket(storage_client, 'sensordatalogger-logfiles.appspot.com')

 str_folder_name_on_gcs = 'ParquetFile/'

 blobs = bucket.list_blobs(prefix=str_folder_name_on_gcs)

 print("Blob name:")

 for blob in blobs:

 parquet_file_paths.append(blob.name)

get_parquet_files()

print("List of parquet files:")

print(parquet_file_paths)

format file name

for i in range(len(parquet_file_paths)):

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 134

 parquet_file_paths[i] = "gs://sensordatalogger-logfiles.appspot.com/" +

parquet_file_paths[i]

 print(parquet_file_paths[i])

Combine log files

preprocessed_parquet_dir =

"gs://sensordataloggerlogfiles.appspot.com/PreprocessedParquetFile/"

for i in range(len(parquet_file_paths)):

 preprocessed_df = pd.read_parquet(parquet_file_paths[i], engine='auto')

 parts = parquet_file_paths[i].split('/')

 preprocessed_parquet_file_path = preprocessed_parquet_dir + parts[-1]

 # drop null values

 preprocessed_df.dropna(inplace=True)

 # drop the rows where timestamp is 0

 preprocessed_df = preprocessed_df[preprocessed_df['timestamp'] != 0]

 index = 0

 # split accelerometer and gyroscope data

 for r in range(preprocessed_df.shape[0]):

 if preprocessed_df['sensor'].iloc[r] == 'GYRO':

 index = r

 break;

 signals_acce = preprocessed_df.values[:index, 1:6]

 signals_gyro = preprocessed_df.values[index:, 1:6]

 acce_row = signals_acce.shape[0]

 gyro_row = signals_gyro.shape[0]

 keep_row = min(acce_row, gyro_row)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 135

 signals_acce = signals_acce[:keep_row]

 signals_gyro = signals_gyro[:keep_row]

 acce_raw_df = pd.DataFrame(signals_acce, columns=['x', 'y', 'z', 'ts', 'label'])

 gyro_raw_df = pd.DataFrame(signals_gyro, columns=['x2', 'y2', 'z2', 'ts2', 'label2'])

 # sort in ascending order

 acce_raw_df = acce_raw_df.sort_values(by = ['ts'], ignore_index=True)

 gyro_raw_df = gyro_raw_df.sort_values(by = ['ts2'], ignore_index=True)

 # combine and arrange side by side

 final_df = pd.concat([acce_raw_df, gyro_raw_df], axis=1, join='outer')

 final_df.to_parquet(preprocessed_parquet_file_path)

Get preprocessed file path

preprocessed_parquet_file_paths = []

def get_preprocessed_parquet_files(project_id="sensordatalogger-logfiles"):

 storage_client = storage.Client(project=project_id)

 bucket = storage.Bucket(storage_client, 'sensordatalogger-logfiles.appspot.com')

 str_folder_name_on_gcs = 'PreprocessedParquetFile/'

 blobs = bucket.list_blobs(prefix=str_folder_name_on_gcs)

 print("Blob name:")

 for blob in blobs:

 preprocessed_parquet_file_paths.append(blob.name)

get_preprocessed_parquet_files()

Format file name

for i in range(len(preprocessed_parquet_file_paths)):

 preprocessed_parquet_file_paths[i] = "gs://sensordatalogger-logfiles.appspot.com/" +

preprocessed_parquet_file_paths[i]

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 136

 print(preprocessed_parquet_file_paths[i]

Combine file paths

same_activity_file_paths = {}

for i in range(len(preprocessed_parquet_file_paths)):

 p1 = preprocessed_parquet_file_paths[i].split('/')[-1]

 p2 = p1.split('_')[1]

 if p2 in same_activity_file_paths:

 same_activity_file_paths[p2].append(preprocessed_parquet_file_paths[i])

 else:

 same_activity_file_paths[p2] = [preprocessed_parquet_file_paths[i]]

print(same_activity_file_paths)

Combine files for each activity

activity_file_dir = 'gs://sensordatalogger-logfiles.appspot.com/ActivityParquetFile/'

column_names = ['x', 'y', 'z', 'ts', 'label', 'x2', 'y2', 'z2', 'ts2', 'label2']

for key in same_activity_file_paths:

 activity_list = []

 same_activity_df = pd.DataFrame()

 print(key)

 # change data to numpy and append to activity_list

 for l in range(len(same_activity_file_paths[key])):

 activity_df = pd.read_parquet(same_activity_file_paths[key][l], engine='auto')

 activity_np = activity_df.to_numpy()

 activity_list.append(activity_np)

 if l == 0:

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 137

 parts = same_activity_file_paths[key][l].split('/')

 parts2 = parts[-1].split('_')[0] + '_' + parts[-1].split('_')[1] + '.parquet'

 activity_parquet_file_path = activity_file_dir + parts2

 print(activity_parquet_file_path)

 # Check if all elements in num_columns_list are the same

 num_columns_list = [array.shape[1] for array in activity_list]

 print(num_columns_list)

 if all(num == num_columns_list[0] for num in num_columns_list):

 print("The files have similar number of columns.")

 else:

 print("The files does not have similar number of columns.")

 # append data to file

 for n in range(len(activity_list)):

 df = pd.DataFrame(activity_list[n])

 same_activity_df = pd.concat([same_activity_df, df], ignore_index=True)

 same_activity_df.columns = column_names

 same_activity_df.to_parquet(activity_parquet_file_path)

 #print(same_activity_df)

 print(same_activity_df.shape)

 print('\n')

Get files

activity_parquet_file_paths = []

def get_activity_parquet_files(project_id="sensordatalogger-logfiles"):

 storage_client = storage.Client(project=project_id)

 bucket = storage.Bucket(storage_client, 'sensordatalogger-logfiles.appspot.com')

 str_folder_name_on_gcs = 'ActivityParquetFile/'

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 138

 blobs = bucket.list_blobs(prefix=str_folder_name_on_gcs)

 print("Blob name:")

 for blob in blobs:

 activity_parquet_file_paths.append(blob.name)

get_activity_parquet_files()

print("List of parquet files:")

print(activity_parquet_file_paths)

Format file name

for i in range(len(activity_parquet_file_paths)):

 activity_parquet_file_paths[i] = "gs://sensordatalogger-logfiles.appspot.com/" +

activity_parquet_file_paths[i]

 print(activity_parquet_file_paths[i])

Combine vertically

har_df = pd.DataFrame()

for k in range(len(activity_parquet_file_paths)):

 df = pd.read_parquet(activity_parquet_file_paths[k], engine='auto')

 df.drop(['ts', 'ts2', 'label'], axis=1, inplace=True)

 df.rename(columns = {'label2':'label'}, inplace = True)

 df['label'] = df['label'].astype(int)

 har_df = pd.concat([har_df, df], axis=0, ignore_index=True)

har_df.to_parquet('gs://sensordatalogger-logfiles.appspot.com/har.parquet', engine='auto',

index=False)

print(har_df)

print(har_df.shape)

Data Exploration Coding

explore_df = pd.read_parquet("gs://sensordatalogger-logfiles.appspot.com/har.parquet",

engine='auto')

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 139

explore_df.shape

explore_df.info()

explore_df.describe()

Check null value

explore_df.isnull().sum()*100/len(explore_df)

Check infinity value

has_positive_infinity = np.isinf(explore_df).any().any()

has_negative_infinity = np.isneginf(explore_df).any().any()

if has_positive_infinity:

 print("The DataFrame contains positive infinity values.")

if has_negative_infinity:

 print("The DataFrame contains negative infinity values.")

if not has_positive_infinity and not has_negative_infinity:

 print("The DataFrame does not contain infinity values.")

Class distribution

pd.crosstab(index =explore_df["label"],columns="count")

sns.set_style("whitegrid")

plt.figure(figsize = (5, 4))

sns.countplot(x = 'label', data = explore_df)

plt.title('Number of samples by activity')

plt.show()

corr_matrix=explore_df.corr()

corr_matrix

fig, ax = plt.subplots(figsize=(8,8))

sns.heatmap(data=corr_matrix, annot=True, linewidths=.5, ax=ax)

Data Segmentation Coding

Read dataset

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 140

lstm_df = pd.read_parquet("gs://sensordatalogger-logfiles.appspot.com/har.parquet",

engine='auto')

print(lstm_df.shape)

windowing

n_time_steps = 50

n_features = 6

step = 25

n_classes = 4

segments = []

labels = []

for i in range(0, lstm_df.shape[0]- n_time_steps, step):

 x_acce = lstm_df['x'].values[i: i + 50]

 y_acce = lstm_df['y'].values[i: i + 50]

 z_acce = lstm_df['z'].values[i: i + 50]

 x_gyro = lstm_df['x2'].values[i: i + 50]

 y_gyro = lstm_df['y2'].values[i: i + 50]

 z_gyro = lstm_df['z2'].values[i: i + 50]

 label_mode_result = stats.mode(lstm_df['label'][i: i + 50])

 if np.isscalar(label_mode_result[0]):

 label = label_mode_result[0]

 else:

 label = label_mode_result.mode[0]

 segments.append([x_acce, y_acce, z_acce, x_gyro, y_gyro, z_gyro])

 labels.append(label)

reshaped_segments = np.asarray(segments, dtype= np.float32).reshape(-1, n_time_steps,

n_features)

labels = np.asarray(pd.get_dummies(labels), dtype = np.float32)

print(reshaped_segments.shape)

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 141

print(labels.shape)

Split into training & testing

X_train, X_test, y_train, y_test = train_test_split(reshaped_segments, labels, test_size = 0.2,

random_state = 42)

print(X_train.shape)

print(y_train.shape)

print(X_test.shape)

print(y_test.shape)

Model Training & Evaluation Coding

def create_lstm_model(dr=0.3, lr=0.0025):

 model = tf.keras.models.Sequential()

 model.add(LSTM(units = 32, input_shape = (X_train.shape[1], X_train.shape[2])))

 model.add(Dropout(dr))

 model.add(Dense(y_train.shape[1], activation = 'softmax'))

 optimizer = Adam(learning_rate=lr)

 model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])

 return model

model = create_lstm_model()

model.summary()

batch_size = 4

n_epochs = 50

early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)

history = model.fit(X_train, y_train, epochs = n_epochs, validation_split = 0.20,

callbacks=[early_stopping], batch_size = batch_size, verbose = 1)

plt.plot(np.array(history.history['loss']), "r--", label = "Train loss")

plt.plot(np.array(history.history['accuracy']), "g--", label = "Train accuracy")

plt.plot(np.array(history.history['val_loss']), "r-", label = "Validation loss")

plt.plot(np.array(history.history['val_accuracy']), "g-", label = "Validation accuracy")

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 142

plt.title("Training session's progress over iterations")

plt.legend(loc='lower left')

plt.ylabel('Training Progress (Loss/Accuracy)')

plt.xlabel('Training Epoch')

plt.ylim(0)

plt.show()

loss, accuracy = model.evaluate(X_train, y_train, batch_size = batch_size, verbose = 1)

y_pred_train = model.predict(X_train, batch_size = batch_size, verbose=1)

mse_train = mean_squared_error(y_pred_train, y_train)

rmse_train = np.sqrt(mse_train)

print("Train Accuracy: ", accuracy)

print("Train Loss: ", loss)

print ("Train RMSE: ", rmse_train)

predictions = model.predict(X_train)

class_labels = ['1', '2', '3', '4']

max_train = np.argmax(y_train, axis=1)

max_predictions = np.argmax(predictions, axis=1)

confusion_matrix = metrics.confusion_matrix(max_train, max_predictions)

sns.heatmap(confusion_matrix, xticklabels = class_labels, yticklabels = class_labels, annot =

True, linewidths = 0.1, fmt='d', cmap = 'YlGnBu')

plt.title("Confusion matrix", fontsize = 15)

plt.ylabel('True label')

plt.xlabel('Predicted label')

plt.show()

Hyperparameter Tuning Coding

keras_model = KerasClassifier(build_fn=create_lstm_model, verbose=0, batch_size=4,

dr=0.2, epochs=30, lr=0.001)

param_grid = {

 'batch_size': [4, 16, 32],

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 143

 'dr': [0.2, 0.3, 0.4],

 'epochs': [30, 40, 50],

 'lr': [0.001, 0.0025]

}

early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)

grid = GridSearchCV(estimator=keras_model, param_grid=param_grid, cv=3,

scoring='accuracy', n_jobs=-1)

grid_result = grid.fit(X_train, y_train, validation_split=0.2, callbacks=[early_stopping])

best_params = grid_result.best_params_

best_model = grid_result.best_estimator_.model

print("Best Parameters: ", grid_result.best_params_)

print("Best Accuracy: ", grid_result.best_score_)

Model Testing Coding

re-train model

tuned_model = tf.keras.models.Sequential()

tuned_model.add(LSTM(units = 32, input_shape = (X_train.shape[1], X_train.shape[2])))

tuned_model.add(Dropout(0.2))

tuned_model.add(Dense(y_train.shape[1], activation = 'softmax'))

optimizer = Adam(learning_rate=0.0025)

tuned_model.compile(loss='categorical_crossentropy', optimizer=optimizer,

metrics=['accuracy'])

tuned_model.summary()

batch_size = 16

n_epochs = 50

early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)

history = tuned_model.fit(X_train, y_train, epochs = n_epochs, validation_split = 0.20,

callbacks=[early_stopping], batch_size = batch_size, verbose = 1)

Testing using best hyperparameter

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 144

loss_tuned, accuracy_tuned = tuned_model.evaluate(X_test, y_test, batch_size = batch_size,

verbose = 1)

y_pred_tuned = tuned_model.predict(X_test)

mse_tuned = mean_squared_error(y_pred_tuned, y_test)

rmse_tuned = np.sqrt(mse_tuned)

print("Test Accuracy: ", accuracy_tuned)

print("Test Loss: ", loss_tuned)

print("Test RMSE: ", rmse_tuned)

confusion matrix

predictions = tuned_model.predict(X_test)

class_labels = ['1', '2', '3', '4']

max_test = np.argmax(y_test, axis=1)

max_predictions = np.argmax(predictions, axis=1)

confusion_matrix = metrics.confusion_matrix(max_test, max_predictions)

sns.heatmap(confusion_matrix, xticklabels = class_labels, yticklabels = class_labels, annot =

True, linewidths = 0.1, fmt='d', cmap = 'YlGnBu')

plt.title("Confusion matrix", fontsize = 15)

plt.ylabel('True label')

plt.xlabel('Predicted label')

plt.show()

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 145

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 3

Student Name & ID: Tee Jia Lin 2005546

Supervisor: Ts Dr Ooi Boon Yaik

Project Title: Human Activity Recognition Via Accelerometer and Gyro Sensors

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

- Review objective, background, problem statement of the research.

- Made research on machine learning / deep learning pipeline.

2. WORK TO BE DONE

- Collect data and create dataset.

3. PROBLEMS ENCOUNTERED

- Unable to decide what machine learning / deep learning model to be used.

4. SELF EVALUATION OF THE PROGRESS

- Should start earlier.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 146

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 4

Student Name & ID: Tee Jia Lin 2005546

Supervisor: Ts Dr Ooi Boon Yaik

Project Title: Human Activity Recognition Via Accelerometer and Gyro Sensors

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

- Decide to use LSTM model.

- Raw dataset collected.

2. WORK TO BE DONE

- Study on LSTM model architecture and implementation.

- Preprocess dataset.

3. PROBLEMS ENCOUNTERED

- No.

4. SELF EVALUATION OF THE PROGRESS

- Progress is on track.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 147

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 6

Student Name & ID: Tee Jia Lin 2005546

Supervisor: Ts Dr Ooi Boon Yaik

Project Title: Human Activity Recognition Via Accelerometer and Gyro Sensors

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

- Data preprocessing done. Dataset was created.

- Made study on LSTM architecture. Decide to use the simple unidirectional

LSTM.

2. WORK TO BE DONE

- Try to implement the model training by referencing other researcher’s work.

3. PROBLEMS ENCOUNTERED

- Not familiar with the machine learning process.

4. SELF EVALUATION OF THE PROGRESS

- Progress is on track.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 148

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 8

Student Name & ID: Tee Jia Lin 2005546

Supervisor: Ts Dr Ooi Boon Yaik

Project Title: Human Activity Recognition Via Accelerometer and Gyro Sensors

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

- Perform data exploration on preprocessed dataset.

- Perform data segmentation on the dataset.

2. WORK TO BE DONE

- Build architecture of LSTM model.

- LSTM model training.

3. PROBLEMS ENCOUNTERED

- No.

4. SELF EVALUATION OF THE PROGRESS

- Progress is on track.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 149

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 9

Student Name & ID: Tee Jia Lin 2005546

Supervisor: Ts Dr Ooi Boon Yaik

Project Title: Human Activity Recognition Via Accelerometer and Gyro Sensors

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

- LSTM model architecture built.

- LSTM model training.

2. WORK TO BE DONE

- Solve the overfitting problem.

3. PROBLEMS ENCOUNTERED

- LSTM model training results in overfitting problem.

4. SELF EVALUATION OF THE PROGRESS

- Progress is a bit delayed.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 150

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 10

Student Name & ID: Tee Jia Lin 2005546

Supervisor: Ts Dr Ooi Boon Yaik

Project Title: Human Activity Recognition Via Accelerometer and Gyro Sensors

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

- Use early stopping and dropout technique to solve the overfitting problem.

2. WORK TO BE DONE

- Hyperparameter tuning.

- Model testing.

- Start writing report.

3. PROBLEMS ENCOUNTERED

- No.

4. SELF EVALUATION OF THE PROGRESS

- Progress is a bit delayed.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 151

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 11

Student Name & ID: Tee Jia Lin 2005546

Supervisor: Ts Dr Ooi Boon Yaik

Project Title: Human Activity Recognition Via Accelerometer and Gyro Sensors

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

- Hyperparameter tuning done.

- LSTM model testing done.

2. WORK TO BE DONE

- Complete FYP2 report.

3. PROBLEMS ENCOUNTERED

- No.

4. SELF EVALUATION OF THE PROGRESS

- Progress is on track.

 _________________________ _________________________

 Supervisor’s signature Student’s signature

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 152

POSTER

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 153

PLAGIARISM CHECK RESULT

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 154

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 155

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 156

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 157

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 158

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 159

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 160

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 161

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 162

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 163

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 164

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 165

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 166

FACULTY OF INFORMATION AND COMMUNICATION

 TECHNOLOGY

Full Name(s) of
Candidate(s)

Tee Jia Lin

ID Number(s)

20ACB05546

Programme / Course Bachelor of Computer Science (Honours)

Title of Final Year Project Human Activity Recognition Via Accelerometer and Gyro

Sensors

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: 9 %

Similarity by source
Internet Sources: ____7___%
Publications: 5 %
Student Papers: 3 %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report

to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: Ts Dr Ooi Boon Yaik

 Name: __________________________

Date: 15 September 2023 Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 167

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 20ACB05546

Student Name Tee Jia Lin

Supervisor Name Ts Dr Ooi Boon Yaik

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

 Front Plastic Cover (for hardcopy)
 ✓ Title Page
 ✓ Signed Report Status Declaration Form
 ✓ Signed FYP Thesis Submission Form
 ✓ Signed form of the Declaration of Originality
 ✓ Acknowledgement
 ✓ Abstract
 ✓ Table of Contents
 ✓ List of Figures (if applicable)
 ✓ List of Tables (if applicable)

 List of Symbols (if applicable)
 ✓ List of Abbreviations (if applicable)
 ✓ Chapters / Content
 ✓ Bibliography (or References)
 ✓ All references in bibliography are cited in the thesis, especially in the chapter

of literature review
 ✓ Appendices (if applicable)
 ✓ Weekly Log
 ✓ Poster
 ✓ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)
 ✓ I agree 5 marks will be deducted due to incorrect format, declare wrongly the

ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my
report.

(Signature of Student)
Date: 15 September 2023

