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ABSTRACT 

 

In recent years, the scholarly community has shown great interest in Human Activity 

Recognition (HAR) as a result of its wide applications and growing significance spanning 

different domains. While much research has been conducted, focusing on the development of 

algorithms and techniques for HAR, less emphasis was placed on the improvement of HAR 

research’s efficiency in terms of sensor data collection, annotation, and storage, resulting in the 

use of incomplete, inefficient, and time-consuming data engineering systems.  

This project aims to address the issue of inefficient data engineering infrastructure 

being used in current HAR research by developing an efficient, comprehensive, and user-

friendly data engineering system for data collection, annotation, and storage. To implement the 

data engineering system proposed, two mobile applications, SensorData and 

SensorDataLogger with user-friendly interfaces and intuitive functionalities are developed 

using Java programming language and Android Studio. The dataset created using the proposed 

data engineering system is then used to train unidirectional Long Short Term Memory (LSTM) 

model to evaluate the efficiency of proposed system in terms of accuracy and generalization 

capabilities. In other words, if the dataset created using the proposed system can achieve good 

accuracy and generalization during training and testing, it means that the proposed data 

engineering system is effective. To prevent overfitting, early stopping is used to monitor 

validation loss during training and dropout rate of 0.3 are applied. This project proves that the 

proposed data engineering system is efficient, which is able to achieve an accuracy of 96.57%. 

In conclusion, this project will be a significant contribution to the development of HAR 

in multiple aspects. Firstly, it advances the domain enhancing the data engineering system’s 

efficiency. Next, it improves the accuracy and reliability of HAR research by allowing the 

researchers to produce dataset of high-quality. Furthermore, it improves scalability and 

reproducibility by allowing researchers to expand projects to large scope or reproduce other 

research with least effort. Moreover, it reduces the barriers of entry for non-technical 

researchers to engage in HAR research. Lastly, the project paves the way for establishment of 

standardized dataset, with streamlined data collection, data annotation and data storage, and 

allow comparative research and benchmarking. 
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Chapter 1 

Introduction 

 

1.1  Problem Statement and Motivation 

Human activity recognition (HAR) refers to classification of human activities or actions 

carried out by one or more individuals by using signals data recorded from responsive sensors 

when they make movements [3]. In recent years, the scholarly community has shown great 

interest in Human Activity Recognition (HAR) as a result of its wide applications and growing 

significance spanning different domains. [8] indicates that there are approximately 120 

publications in the field of HAR in 2019, about 130 publications in 2020, followed by 80 

publications in 2021. Theoretically, this trend has been motivated by a surge in the 

development of smart systems and environments that are progressively revolutionizing our 

daily lives over the past few years [14]. The smart systems and intelligent environments being 

built cover various aspects of human lives, including health monitoring, elderly care, 

surveillance system, disaster occurrence detection, interactive gaming, etc. Besides, the 

proliferation of advanced sensors, particularly in electronic devices and the prevalence of these 

devices have enabled the collection of rich and diverse data about human movements [5]. On 

the other hand, the improvement in Machine Learning and Deep Learning algorithm helps to 

further advance the area of HAR by allowing the development of sophisticated algorithms to 

accurately classify human activities [5]. This could be seen in [5], where researchers achieved 

an average recognition accuracy of 93.0% and 92.2% by using Deep Learning and Machine 

Learning algorithms, respectively. 

Despite the extensive research done on the development of HAR algorithms and 

techniques to improve the recognition accuracy, less emphasis was placed on the improvement 

of HAR research’s efficiency in terms of sensor data collection, annotation, and storage. The 

relevant process remains time-consuming, inefficient, and complicated. For instance, the 

studies in [1] and [3] did not specify the data collection, annotation, and storage procedure. 

There were, however, researches who did pay attention to the data engineering process. For 

example, the authors in [2] clearly showed the data collection, annotation, and storage strategy. 

However, the methodologies used were quite inefficient. The data subjects in [2] were required 

to wear 3-D accelerometers on wrist, hip and hold a rucksack with GPS sensor and a flash-
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card-memory-based 19-channel recorder to store the data. The data collected was then 

annotated manually by supervisors or data subjects. A better example was [8], which gave clear 

descriptions and used effective solutions for data collection and storage. The data subjects in 

[8] were required to wear accelerometer and heart rate sensors on wrists. The data obtained 

from these sensors were sent to an Android phone via BLE and stored in MySQL database 

located on a server in cloud. However, the data collected still required manual labelling [8]. 

The inefficient data engineering system being used in HAR research represents a significant 

challenge and there is a pressing need to address the inefficiencies to enhance the overall 

effectiveness and performance of HAR research. 

The motivation behind this HAR research stems from the critical need to propel the 

field forward while maximizing its impact. The current inefficiencies in the data engineering 

process of HAR researches bring the problems of scalability, reproducibility, and 

comparability. For example, the inefficiency in sensor data collection, annotation and storage 

used in HAR research hampers the project scalability since it is difficult and time-consuming 

for researchers to expand projects to larger scopes as large and reliable datasets are required. 

Besides, the inefficient and non-standardized data engineering system being employed affects 

the reproducibility of the project for future researchers. This will limit the potential and 

achievements of HAR research. Not only that, the data engineering system in HAR which lacks 

efficiency and standardization can affect the comparability of studies within the field. This is 

because inefficient methodology causes inaccurate data, noise and inconsistent quality of data 

being collected. When the annotations are done manually without standardization, there is a 

risk of inconsistencies in labelling human activities, which leads to discrepancies in labeled 

ground truth. Parka et al. [15] pointed out that one of the factors which led to misclassification 

of human activities was due to the lack of synchronization between activity performances and 

data annotation. Using inefficient strategy will also result in the waste of resources including 

time, money, and manpower. Moreover, non-standardized and inefficient data engineering 

system presents a challenge in establishing benchmark dataset that serves as a common ground 

for HAR algorithm’s performance evaluation. 

Hence, a comprehensive and effective data engineering infrastructure is required to 

address the issues by streamlining data collection methods, implementing more effective 

annotation procedures, and optimizing storage strategies. By doing that, researchers can 

undertake larger-scale studies with reduced time and resource constraints. Moreover, the 

efficient data engineering ensures the accurate, reliable, and high quality of sensor data being 
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collected, labelled, and stored, which further improve the accuracy and reliability in HAR 

models. This will allow future researchers to be able to reproduce researches done to further 

enhance them and improve the overall performance of HAR field. Furthermore, efficient data 

engineering enables comparability of studies, and this will contribute to the development of 

standardized benchmarks for evaluating HAR algorithms. Last but not least, the proposed data 

engineering system will remove the barriers for those researchers who do not have strong 

background in data engineering. 

 

1.2  Objectives 

1.2.1 To address the issue of inefficient data engineering infrastructure being used in 

current Human Activity Recognition (HAR) research. 

As mentioned earlier, much emphasis was given to development of algorithms and 

technologies in HAR, rather than on improving the efficiency of data engineering infrastructure 

used to collect, annotate, and store data. Consequently, most of the current HAR research still 

employed inefficient methodologies, resulting in inaccurate or unreliable results, affects the 

scalability, reproducibility, comparability and limits the progress of HAR area. The primary 

objective of this project is to address the issue of inefficient data engineering infrastructure 

existing in most of the HAR research nowadays. This project aims to improve the efficiency, 

accuracy, and reliability of HAR research by designing and constructing an efficient and 

comprehensive data engineering model for the process of data collection, data annotation and 

data storage. Achieving this objective can help other researchers to overcome the challenges 

associated with inefficient data engineering infrastructure and to advance the state of the art in 

the area of Human Activity Recognition. 

 

1.2.2 To develop a comprehensive, efficient, and user-friendly data engineering system 

for data collection, annotation, and storage. 

Another project’s objective is to develop a comprehensive, efficient, and user-friendly 

data engineering system for data collection, annotation, and storage. The data engineering 

system proposed can be achieved by developing streamlined data collection techniques, 

automated annotation strategies, and efficient data storage solutions. The implementation of 

the system will help to simplify the process of data collection, annotation, and storage. This 

will directly improve the performance and productivity of subsequent HAR research, which is 

important to achieve greater results and breakthroughs in HAR. This project will also focus on 
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developing user-friendly system that is easy to use, especially to those researchers with do not 

have technical background in data engineering. The system should also be flexible enough to 

be adapted for use in a variety of research with minimal modifications. 

 

1.2.3 To design and develop mobile applications, SensorData and SensorDataLogger 

Another project objective is to design and develop mobile applications used in the data 

engineering system, which are SensorData and SensorDataLogger. The applications are 

developed to achieve the efficient data engineering system proposed. The applications are 

developed using Java programming language and Android Studio as IDE.  

The applications are connected using Bluetooth to send and receive instructions. Users 

can give instructions via SensorData while SensorDataLogger is responsible to receive and 

execute instructions. In SensorData, users can add the activities they want to collect data for 

by defining the activities’ names and relevant IDs. The IDs should be unique among the 

activities being created. Then, users can start the data recording process by clicking at the 

activity created and set the durations they want to collect data for. After users click the 

‘START’ button, SensorData starts a timer. When the time is up, SensorData will automatically 

send instructions to SensorDataLogger to stop the recording process. When users click the 

‘Save Log File’ button, SensorData will send instructions to SensorDataLogger with the 

specific filename, which is the ID of the activity. When users click ‘Upload Log File’, 

SensorData will send instructions to SensorDataLogger to upload log files to Google Cloud 

Storage. 

SensorDataLogger contains functions such as showing real-time data of accelerometer 

and gyroscope to monitor the data collection process. Not only that, SensorDataLogger can 

start the sensor data recording process for a particular physical activity for a specified period 

of time and stop automatically when the time is up, upon the instructions from SensorData. 

Besides, when the recording process stops and users click the ‘Save Log File’ button through 

SensorData, SensorDataLogger will start the process of saving log file locally into mobile 

phone with specified filename. Furthermore, SensorDataLogger can upload the log files to 

Google Cloud Storage server for later processing, upon the instructions from SensorData.  

This project will not focus on developing applications for iOS as most of the researchers 

use Android phone to conduct the research. 

 

1.2.4 To evaluate the efficiency of proposed data engineering system on HAR algorithm. 



Chapter 1 
 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    5 
 

Another project objective is to evaluate the efficiency of proposed data engineering system 

on HAR algorithm by looking at the performance of the HAR algorithms. This assessment will 

encompass performance metrics such as accuracy and the generalization capabilities of HAR 

algorithms. These metrics enable a quantitative assessment of how the HAR algorithms 

perform when the proposed data engineering system is being implemented. By systematically 

gauging the efficiency of the proposed data engineering system, this objective inherently 

addresses the practicality and feasibility of integrating the proposed system into real-world 

HAR applications. Besides, this project also wants to demonstrate that the proposed data 

engineering system can improve the scalability, reproducibility, and comparability of project 

without compromising recognition accuracy or efficiency. 

 

1.3  Project Scope and Direction  

The scope of this project revolves around addressing the issue of inefficient data 

engineering system within current Human Activity Recognition (HAR) researches. As stated 

in the problem statement, much of the emphasis in HAR has been directed towards the 

development of algorithms and techniques used to increase the activity recognition accuracy, 

overshadowing the optimization of data engineering infrastructure, in terms of data collection, 

data annotation and data storage. This imbalanced effort has resulted in the employment of 

inefficient data engineering solutions in current HAR researches, leading to inaccuracies, 

unreliability, and limitations in scalability, reproducibility, and comparability of HAR studies. 

Henceforth, the scope of this research is to develop a comprehensive, efficient, and user-

friendly data engineering system. The proposed system can be achieved by developing 

streamlined data collection techniques, automated annotation strategies, and efficient data 

storage solutions. With this system being constructed and utilized, sensor data can be accurately 

collected, labelled, and stored, which would bring efficiency to subsequent HAR research. The 

system designed should be user-friendly and straightforward to use, especially to those 

researchers who do not have technical background in data engineering.  

To achieve the goal, the project covers the design and development of two mobile 

applications, SensorData and SensorDataLogger. The applications are developed using Java 

programming language and Android Studio as IDE. Both applications are connected via 

Bluetooth. Users can give instructions via SensorData while SensorDataLogger is responsible 

to receive and execute instructions. In SensorData, users can add the activities they want to 

collect data for by defining the activities’ names and relevant IDs. The IDs should be unique 
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among the activities being created. Then, users can start the data recording process by clicking 

at the activity created and set the durations they want to collect data for. After users click the 

‘START’ button, SensorData starts a timer. When the time is up, SensorData will automatically 

send instructions to SensorDataLogger to stop the recording process. When users click the 

‘Save Log File’ button, SensorData will send instructions to SensorDataLogger with the 

specific filename, which is the ID of the activity. When users click ‘Upload Log File’, 

SensorData will send instructions to SensorDataLogger to upload log files to Google Cloud 

Storage. SensorDataLogger contains functions such as showing real-time data of accelerometer 

and gyroscope to monitor the data collection process. Not only that, SensorDataLogger can 

start the sensor data recording process for a particular physical activity for a specified period 

of time and stop automatically when the time is up, upon the instructions from SensorData. 

Besides, when the recording process stops and users click the ‘Save Log File’ button through 

SensorData, SensorDataLogger will start the process of saving log file locally into mobile 

phone with specified filename. Furthermore, SensorDataLogger can upload the log files to 

Google Cloud Storage server for later processing, upon the instructions from SensorData. 

Since most of the research were done using Android device, therefore this project will 

not focus on developing mobile applications for iOS device. 

 

1.4  Contributions 

1.4.1 Advancement of Data Engineering System in HAR research 

  This project helps to advance the area of Human Activity Recognition (HAR) by 

addressing the often-overlooked issue related to inefficient data engineering system being used 

to collect, label, and store data. Inefficient data engineering system being used to handle data 

will limit the potential progress and achievements of researchers in the area of HAR research. 

This project aims to remove this barrier by developing a comprehensive and efficient data 

engineering system to provide researchers with necessary tools to achieve more in the field. By 

devising and implementing an efficient data engineering system for data collection, annotation, 

and storage, this research fosters a new paradigm in HAR research. 

 

1.4.2 Improvement of Accuracy and Reliability of HAR research 

Furthermore, this project helps to improve the accuracy and reliability of HAR research. 

Sensor data is one of the important components in HAR research. The accuracy and reliability 

of the data being collected and processed will have a significant impact on the outcome of 
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subsequent HAR research. Hence, it is crucial that the data engineering system used to handle 

data is accurate and reliable. The proposed system directly addresses the challenges associated 

with inefficient data handling practices, paving the way for more accurate and reliable HAR 

studies. 

 

1.4.3 Improvement of Scalability and Reproducibility of HAR research 

  By implementing the efficient data engineering system, the optimized system facilitates 

the handling of larger datasets without compromising accuracy, thereby enabling researchers 

to explore broader contexts and scenarios. Additionally, the standardized data engineering 

procedures ensure greater reproducibility of experiments across different studies. 

 

1.4.4 Foundation and Impetus for Future Researches 

Besides, this project also contributes a foundation and reference for future research. 

The data engineering system being designed and developed in this project helps to facilitate 

future research, as it can be adapted to be used in other research, either within the same area or 

different area of study with only minimal modifications. The system proposed will have long-

term significance and benefits to all the research that relies on data collection, annotation, and 

storage. The proposed system is also expected to stimulate further innovation and exploration 

within HAR domain. 

 

1.4.5 Practical Implementation for Non-technical Researchers 

Moreover, this project will also benefit those researchers who do not have technical 

background in data engineering. By offering a user-friendly interface and intuitive 

functionalities, the proposed data engineering system allows more researchers to engage in 

HAR research without grappling with complex technical intricacies. This helps to reduce the 

barriers to entry for new researchers and increase the overall performance of the related field. 

 

1.4.6 Comparative Research and Benchmarking 

The proposed data engineering system allows the establishment of more standardized 

dataset, with streamlined data collection, data annotation and data storage. This allows for 

meaningful comparative research and benchmarking in the realm of HAR. Researchers can 

now compare the performance of various HAR algorithms and techniques on standardized 
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datasets, eliminating the confounding effects of inefficient data engineering practices. This 

contributes to a more accurate assessment of different HAR approaches. 

 

1.5  Report Organization 

This research is organized into six chapters, which includes: Chapter 1 Introduction, 

Chapter 2 Literature Review, Chapter 3 System Methodology/Approach, Chapter 4 System 

Design, Chapter 5 System Implementation, Chapter 6 System Evaluation and Discussion and 

Chapter 7 Conclusion.  

Chapter 1 serves as the introduction of this research, describing background of the 

project, problem statements discovered in the current HAR researches, motivation of 

implementing the project, project scope, project objectives, contributions of the project and 

project report structure.  

Chapter 2 entails a comprehensive exploration of existing Human Activity Recognition 

researches conducted using smartphone embedded sensors. The evaluations of strengths and 

weaknesses of the researches have been done.  

Next, Chapter 3 delves into the overall system design and proposed methodology 

adopted in this project. System architecture diagram, use case diagram and activity diagram 

along with the detailed descriptions are included in this chapter. 

Chapter 4 includes a system block diagram, which shows the components of the 

proposed system, including data collection, dataset creation, data exploration, data 

segmentation, model training and evaluation, hyperparameter tuning and model testing. We 

also include the flowchart explaining the process and implementation of each component in 

the proposed system.  

Additionally, Chapter 5 discusses on the system implementation, which includes the 

details of the hardware, software and cloud used in this system. We also include the 

configurations and settings needed for the hardware, software, and cloud. Then, we discuss the 

partial outcome of data engineering system, which is the SensorData and SensorDataLogger 

applications. After that, we discuss on coding and partial results of each process in the machine 

learning pipeline. We also talk about some implementation issues and challenges faced and 

how we overcome them. 

After that, Chapter 6 presents the outcome of our project. Firstly, we show and explain 

the coding on how we perform model testing and evaluate their performance. Then, we 

demonstrate the confusion matrix and accuracy, loss, RMSE values we are able to achieve from 
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model testing. Moreover, we review some of the project challenges and our solutions to tackle 

them. We also had an objective evaluation to show the current progress of this project. 

Lastly, Chapter 7 includes the conclusion which discuss about our current 

accomplishments and summary of the project. Recommendations are also given on the 

improvements we can make to further enhance the performance of this research. 
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Chapter 2 

Literature Review 

 

2  Previous works on Human Activity Recognition (HAR) 

Human Activity Recognition (HAR) stands as a central focus of this research, poised 

at the intersection of technology and human behavior. As our lives become intensively 

interlaced with digital devices, the ability to understand and predict human activities from 

sensor data holds tremendous value. Researchers have ardently explored the area of HAR due 

to its growing significances and its wide applications in our daily life that span healthcare, 

surveillance, fitness tracking, etc. This literature review will delve into the essential elements 

that constitute the foundation of HAR based on inertial sensors, which are sensor dataset 

creation, signals preprocessing, model training and model evaluation.  

 

2.1  Review of the Technologies 

2.1.1 Dataset 

      The first step in Human Activity Recognition (HAR) research based on inertial sensors 

is dataset preparation. This research will capture the sensor signals from accelerometer and 

gyroscope. Accelerometer captures the linear acceleration and gravitational forces acting on it, 

where the processed signals can be used to identify sudden changes in movements [3]. 

Gyroscope records the angular velocity, capturing the rotational motion around each axis, 

where the processed data can be used to identify the position and alignment of the devices [3].  

 

2.1.1.1 Data Source 

  Most of the previous research conducted using inertial sensors involved implementing 

the data collection process and creating an independent, bespoke datasets. For instance, the 

authors in [1] collected accelerometer and gyroscope sensor data for the activities of stop, 

walking, running, and running helter-skelter, aiming to identify occurrences of disasters such 

as fire, tsunamis, etc. Besides, in [2], the authors collect sensor data in supervised and 

unsupervised settings by allowing data subjects wearing 3-D accelerometers on wrist, hip, and 

by holding a rucksack with GPS sensor. Moreover, the authors in [4] collected the 

accelerometer data using mobile phone by asking the data subjects to hold the smartphones in 
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front of the chests or inside pockets while performing activities such as slow walking, fast 

walking, running, aerobic dancing, climbing upstairs and climbing downstairs. Furthermore, 

the data subjects in [6] carried the smartphones in their leg pockets to detect actions such as 

standing, sitting, fallen down, squatting in toilet, etc. The sensor suite in [6] includes 

accelerometer, gyroscope, humidity, and temperature sensors.  

Creating an independent dataset allows the researchers to have full control over the data 

quality, ensuring the data collected is consistent, and of high quality. This helps to reduce the 

noises and biases in the dataset. Besides, researchers can also customize the data collection to 

match the specific requirements of the research, focusing on the types of activities, scenarios 

or contexts that are most relevant. For instance, in [1], [4] and [6], the authors included the 

actions which are not commonly found in existing open datasets, such as running helter-skelter, 

aerobic dancing and squatting in toilet. Hence, the authors created independent datasets for 

their own usages. [2] emphasizes the significance of using out-of-laboratory sensor data for the 

development of HAR, which is not commonly seen in existing open datasets. The authors in 

[6] also collected humidity data and temperature data via smartphone, which are rarely found 

in public datasets. Most of the existing datasets are largely based on accelerometer, gyroscope, 

and magnetometer [5].  

However, creating an independent dataset can introduce limitations such as inaccurate 

measurement due to different ways of sensor placement and attachment on data subjects. For 

example, the authors in [4] found that the acceleration data showed significant variation for the 

same physical activity when data subjects shifted the position of smartphones from holding in 

hands in front of chests to putting smartphones inside pockets. [2] also found that sensor 

location, attachment, and other factors such as body shape of data subjects and the clothes wore 

by the data subjects would affect the accuracy of acceleration data collected to differentiate 

sitting and standing activities. The body shape of data subjects might have impact on the sensor 

orientation on the waist [2]. The data subjects in [2] wore sport clothes, which caused the 

unsteady position of accelerometers.   

There were also researchers who opted for open existing datasets instead of creating on 

their own. For example, the authors in [11], chose to use Opportunity dataset which collects 

data from 23 body sensors, 12 object sensors and 21 ambient sensors regarding the human daily 

morning activities in a room. Similarly, [21] use KU-HAR dataset, which collects data from 

accelerometer and gyroscope through smartphone placed in a waist bag, due to its wide 

variations of activities included and it is currently the largest datasets available for 
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accelerometer and gyroscope data. Furthermore, [20] used HHAR dataset which contains 

signals collected from both smartphones and smartwatches. Other existing dataset includes 

WISDM, REALDISP, PAPAM2 and others [5].  

Using public datasets helps to reduce biases that may be introduced during data 

collection. Besides, employing public datasets help to solve the problem of recognizing human 

movement patterns among different individuals since human actions have large intra-subject 

and inter-subject variability [5]. Researchers faced difficulties in developing a methodology 

that can recognize human movement among all subject [5]. Hence, using publicly available 

datasets offer a benchmark for evaluating and fine-tuning models. 

However, existing datasets may have limited relevance with your research purpose and 

context and limited diversity in terms of activities type and sensor type. [5]. In short, it is nearly 

impossible to find a public dataset which aligns with your research goals in terms of activities 

type, sensor type, annotations, etc. This will limit the applicability and accuracy of your 

research. 

 

2.1.1.2 Smartphone Embedded Sensors 

  The prior researches of HAR based on inertial sensors can be classified into two 

categories in terms of data collection device, which includes smart devices and wearable, 

standalone sensors. The smart devices include smartphones and smartwatches. This research 

will concentrate on collecting sensor signals using embedded sensors within smartphone. 

  The widespread adoption of smart devices, especially smartphones and smartwatches 

has led to a surge in HAR research done using these technologies [5]. For instance, the author 

in [4] and [7] proposed a human action recognition system leveraging acceleration data from 

only single triaxial accelerometer embedded in smartphone. Han et al. [1] devised a human 

action recognition model using accelerometer and gyroscope embedded in smartphones to 

detect occurrences of disasters. Similarly, Bulbul et al. [3] used smartphone embedded 

accelerometer and gyroscope sensors to collect signals to recognize six activities. Moreover, 

Masum et al. [6], proposed a reliable data gathering process by using accelerometer sensor, 

gyroscope sensor, temperature sensor and humidity sensor to gather data.  

There were also researches done based on smartwatches. For example, Kheirkhahan et 

al. [18] developed a real-time health monitoring framework using smartwatches. The authors 

proposed a ROAMM framework which involves continuous sensor data gathering at high 

frequency to monitor and evaluate physical activity, along with patient-reported outcomes [18]. 
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An activity recognition system based on smartwatch that utilizes active learning was suggested 

in [19] and was able to obtain a 93.3% of recognition accuracy. The authors in [20] conducted 

HAR research by using acceleration signals from both smartphones and smartwatches. The 

authors then analyzed and compared the outputs from both devices [20]. 

The growing diffusion of smartphones and smartwatches into humans’ daily lives 

renders them to become the daily demands of users nowadays and hence, they can be an 

effective tool used to gather data about users’ physical movement while performing daily 

activities [3] [6]. Some researcher argued that smartwatches are convenient to wear and have 

high user acceptability [18], which positions smartwatches as the optimal device for continuous 

data collection and monitoring, compared with smartphones [18]. This is because smartphones 

are bulkier and less portable than smartwatches and smartwatches can be easily worn at any 

time, such as during exercise or sleep time [19]. Both smartphones and smartwatches feature a 

wide array of embedded sensors, allowing different types of sensor signals being collected, 

including accelerometer, gyroscope, GPS sensor, etc. [3] [18]. This helps to extend the research 

done to a larger scope by incorporating sensor data received from various sensors to identify 

more complicated situations and activities [3]. Both smartphones and smartwatches offer 

interactivity. The researchers can implement the research without direct contact with data 

subjects and devices by giving feedbacks through the screens [18] [19]. Smartwatches allow 

the data subjects to be easily notified by the messages or warnings in terms of texts, sounds 

and vibrations from researchers due to the close proximity to their visual sights compared to 

smartphones [19].  

The main difference between smartphones and smartwatches is their battery life. 

Smartwatches has limited battery life, especially when all embedded sensors are collecting data 

concurrently at high sampling rate [18]. The study in [18] shows that accelerometer consumes 

the least battery but would also exhausts the battery after collecting data continuously for a 

short period of time. Next, smartwatches have limited computational capabilities in terms of 

memory and CPU compared with smartphones [19]. In contrast, smartphones nowadays have 

better computational capabilities in terms of memory, battery, and CPU [5] [17]. For instance, 

researchers can execute HAR models on smartphones to classify human activity based on 

sensor data, which means smartphones allow real-time activity monitoring and feedback in 

online mode [5] [17]. Furthermore, another difference is that smartwatch records both body 

and arm movements, introducing higher variability [20]. There are instances when sometimes 

the arm movements are not associated to the corresponding human activity [20]. This will lead 
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to outliers in the data collected. In contrast, smartphones capture only the whole-body 

movement [20]. 

Smartphone-based HAR also introduce some limitations. For instance, smartphone 

based HAR poses a challenge of recognizing the location and orientation of smartphone if the 

data is collected in a free-living environment [16]. Different users have different ways and 

positions of carrying smartphones with them in real-world scenarios [16]. [4] showed that the 

accelerometer data exhibited significant variation for the same physical activity when data 

subjects shifted the position of smartphone from holding it in hand in front of chest to putting 

smartphone inside pocket. This makes the task of recognizing human activity to be more 

challenging, as changes in smartphone position will result in the decrease of recognition 

accuracy [17]. Besides, smartphone based HAR cannot overcome the problem common to all 

HAR researches, which is sensor data used to recognize human activity must be collected in 

controlled environment [16]. In [2], the authors showed that training using supervised data and 

validation using unsupervised data would result in a significant decrease of recognition 

accuracy, meaning the recognition algorithm was not feasible in a free-living environment. 

Moreover, another limitation is lack of personalization, meaning that an offline model shows 

lower accuracy rate of recognizing an individual’s actions if the individual’s data has not been 

used to train the model [16]. 

 

 Smartphone Smartwatch 

Daily demand ✓ ✓ 

Wide array of sensor types ✓ ✓ 

Weight Bulkier than smartwatch Lighter than smartphone 

Interactivity ✓ ✓ 

Battery life Short Long 

Computational capabilities Low High 

Variability High Low 

The position of device Various position Always on wrist 

Table 2.1: Comparison between smartphones and smartwatches 

 

2.1.1.3 Data Annotation for Smartphone Based HAR 

  The dataset collected needs to be annotated to be used to perform supervised learning, 

which will then be used to classify human activities. Difficulty in data annotation remains as 
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one of the open challenges for HAR, since it involves large amount of real-time data [5]. 

Generating ground truth annotation is a labor-intensive and time-consuming process that 

presents a challenge to all supervised learning [16].  

Some researches applied purely human supervision to annotate the dataset collected via 

smartphone embedded sensors. The data subjects in [4] carried the smartphone in hands in front 

of the chests or inside pockets and perform the activities, with the smartphones continuously 

collect data. The data subjects were asked to pause and wait for a few seconds before 

proceeding with the subsequent activity [4]. This is used as an indication to the researcher who 

will perform the manual annotation later, to avoid mislabeling [4]. Manual annotation for 

supervised learning is time-consuming since substantial amounts of sensor signals are involved 

[16]. Manual annotation also poses a problem of mislabeling or misinterpretation due to human 

error or bias. 

There are also researches perform data labelling with the help of devices. The authors 

in [24] developed a tool called VoiceLabel, where the data subjects can use interaction voice 

recognition to annotate the data. The mobile device will start or stop the recording process if 

the data subjects said keywords like ‘Start Recording’ [24]. Then, the data subjects can label 

the activities performed by saying the name of activities, like ‘Walking’, ‘Standing’, etc [24]. 

Besides, crowd labelling approach was proposed to facilitate the manual annotation 

process [22]. The authors in [22] used AR module to detect the physical activity of an 

individual. Upon detecting a shift from physical activity to standing still activity, the PLM 

module would then prompt the users to indicate the label of the previous physical activities 

[22]. The limitation of this approach is that the process was time-consuming and interrupting 

from the users’ perspective, as they were required to take out the phone to provide the labels 

[22]. Frequent prompting may result in depletion of battery power within a short period of time 

[22]. 

To deal with the problem of manual labelling, development of automated annotation 

tools to facilitate the annotation process is needed. However, the tools developed can only be 

used in offline situations, meaning the data collection and data annotation process are 

performed asynchronously [16]. 

Next, [16] proposed an automatic labelling approach to address the issue of data 

annotation. The authors in [16] presented a heuristic function that integrates GPS sensor data 

and step count information from step detector. The step count information was employed as a 

metric to detect different physical actions, based on the step / minutes (spm) rate [16]. For 
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example, walking activities normally correspond to a rate between 90-110 spm [16]. However, 

the accuracy of the proposed heuristic function fluctuated according to the type of activities 

[16]. The heuristic function worked better for activities with lower variability such as long 

walking, compared with activities with high variability [3]. 

 

2.1.1.4 Data Storage for Smartphone Based HAR 

Data storage methods depend on the type of device used to collect the data. For data 

collection using smartphones, the dataset created will be stored somewhere before further 

processing. Most of the research done using smartphones will store the collected sensor data 

locally inside mobile phones, since mobile phones nowadays have large memory space. This 

could be seen in [1], [3], [4], [7] etc. However, they did not specify how the stored data would 

be extracted out for processing and activity recognition. In [21] and [22], the authors specified 

that the data would be stored inside mobile phone storage and uploaded to cloud for later 

processing and storage. 

 

2.1.1.5 Sampling frequency 

  Sampling frequency or also known as sampling rate, plays a vital role in human activity 

recognition research to capture all the necessary frequencies [17]. Sampling frequency design 

choice can be influenced by factors such as resource availability, desired precision, and the 

specific data features used for activity recognition [17]. A high sampling rate can capture sensor 

signals with high accuracy, but at the same time it would increase the rate of battery 

consumption [17]. A low sampling rate consumes less power but would introduce impulses 

and decrease recognition accuracy for particular activities such as foot hitting the ground during 

running or during Nordic walking [2] [17]. Besides, a high sampling rate should be used if only 

frequency domain features are considered to recognize human activities [17]. Studies in [2], 

[8], [9] and [17] suggested that the range of sampling frequency appropriate to record daily 

activities of human is between 20Hz to 30Hz. This prevents the problem of under sampling 

and high battery consumption [16].  

In [3], the signals were recorded via smartphone embedded accelerometer and 

gyroscope at a sampling rate of 50Hz. The authors in [4] used a sampling frequency of 100Hz 

to collect acceleration signals. Next, the authors in [6] collected signals from accelerometer, 

gyroscope, temperature sensor and humidity sensor at a sampling rate of 1Hz. In [9], the 

sampling frequency being employed was 25Hz. In [16], the accelerometer signals were 
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collected via smartphones at 30Hz. In [25], the authors recorded acceleration signals via 

smartphone embedded accelerometer by using a sampling rate of 125Hz. Overall, a sampling 

frequency range of 1Hz to 125Hz was observed for smartphone based HAR. There may be a 

tradeoff between accuracy and resource consumption [17]. 

 

2.1.2 Signals Preprocessing 

The time-series sensor signals collected using smartphone embedded sensors are 

preprocessed using various ways before they are used to train the activity recognition models.  

 

2.1.2.1 Noise Reduction and Label Encoding 

The raw sensor data collected exhibits inherent noises [5]. Preprocessing steps are 

required to eliminate noises in the data to produce high-quality data suitable to be fed to the 

activity recognition models [5].  

For example, the study in [3] collected time-series signals for each dimension from 

smartphone embedded accelerometer and gyroscope. To eliminate noises, the signals were first 

subjected to median and High-pass Butterworth filter (20Hz) [3]. Then, the second filtering 

was performed using Low-pass Butterworth filter (3Hz) to negate the influences of gravity in 

accelerometer data [3]. After that, normalization was performed to keep the signals’ values 

within the interval of (-1, 1) [3]. The magnitudes of Euclidean values across three dimensions 

were computed to combine the three-dimensional signal into single dataset [3]. Moreover, the 

authors in [7] who collected data from smartphone embedded accelerometer implemented error 

handling as the first step of data preprocessing to remove the rows which have additional 

attributes or null values. Then, normalization or known as min-max scaling was performed to 

keep the data within the range of 0 to 1 [7].  

There are also researches who do not perform any noise reduction or removal. For 

instance, the authors in [4] used the smartphone embedded triaxial accelerometer to capture the 

acceleration along the x-axis, y-axis, and z-axis. The authors chose not to perform any noise 

cancellation on the raw data since the data subjects were required to hold the smartphones in 

hands in front of the chest along the way while they performed all the six activities required 

[4]. The smartphone position and orientation did not change and hence, no noise was 

introduced. Similarly, in [6], the authors proposed that preprocessing was not necessary since 

the data collected were free from outliers and missing data.  
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Next, label encoding plays a pivotal role in supervised learning. Label encoding 

transforms the text data (activity name) into numerical data (activity code) to prepare the data 

to be input to activity recognition model [7]. In [3], activity codes were appended at the end of 

each row after noise removal step. Similarly, in [7], label encoding is performed by importing 

the class Label Encoder from sklearn library. 

 

2.1.2.2 Feature Engineering 

Feature engineering need be implemented to produce informative data representation 

and increase the classification accuracy [4] [10]. Raw data cannot be fed directly to activity 

classification model [4]. Feature extraction normally starts with 5ation of time-series sensor 

signals in fixed window size using window overlapping technique. Then, the desirable features 

will be extracted from fixed windows [10]. The features that can be extracted include time 

domain features, frequency domain features and discrete domain features [5] [10]. Time 

domain features include the mean, standard deviation, median, etc. while frequency domain 

features include Fast Fourier Transform (FFT) coefficients, Discrete Fourier Transform (DFT), 

entropy spectrum, etc. [5].  

[5] states that researches involving classification using deep learning models like CNN, 

LSTM, Transformer Model, etc. do not implement feature extraction step. This is because deep 

learning techniques can generate optimal features automatically from raw data [5]. On the other 

hand, studies involving classification using classic machine learning models like Random 

Forests, Decision Tree, k-Nearest Neighbors, etc. required the implementation of feature 

extraction. 

For instance, in [4], feature creation involved applying low pass filter and high pass 

filter to separate gravitational signals and body acceleration signals for each time series in 

different directions by setting the cutoff frequency at 0.25Hz. After that, window overlapping 

was performed by breaking down the datasets into smaller segments and applying window for 

each segment [4]. A window size of 128 samples, corresponding to 1.28 seconds of 

accelerometer data, is utilized for extracting features from each time series [4]. This size is 

well-suited for capturing various activity cycles [4]. The authors in [4] also allowed 50% of 

overlap between consecutive windows to minimize information loss at the edges of windows. 

After that, the features were extracted from each window, which include mean value, average 

of peak frequency (APF), variance of APF, etc. [4]. The extracted features were used for 

subsequent classification. 
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Similarly, in [10], the sensor signals were transformed into fixed windows with size of 

2.56 seconds each. 50% overlap was allowed [10]. Then, time domain features and frequency 

domain features were generated from the fixed windows of data [10]. A 561-column feature 

vector was generated. Next, [10] implemented the permutation importance feature selection 

method to assess the significance of each feature in the given set and their impacts on the 

classification model. Values were assigned to each feature in the feature set by using 

permutation importance feature selection method [10]. The 561-column feature vector in [10] 

represented variable-based features extracted from signals. The number of features for each 

signals was computed and sorted in descending order. After that, various number of features 

would be selected from each signals to be used as input to activity recognition model in each 

iteration [10]. The accuracy of activity recognition for each iteration was computed and 

compared with the accuracy of activity recognition when all the features were inputted [10]. 

[16] suggested that the window size span from 1 second to 10 seconds, highlighting 

that the optimal window size for common activity recognition tasks is 1 second. The authors 

performed segmentation of accelerometer signals by using sliding window techniques with a 

50% overlap and 1 second of window size [16]. Then, the author came out with features set 

consisting of both time-domain features and frequency-domain features, including mean, 

variance, skewness, location of high peaks, etc. [16]. 

Furthermore, feature selection was employed in [6] to distinguish between transitional 

and non-transitional human activities by using accelerometer and gyroscope data. Moreover, 

[7] implemented feature scaling to facilitate the learning process of algorithms. The authors in 

[7] employed standard scaler provided in sklearn library to perform feature scaling for both 

training and testing datasets.  

There is also research whereby feature engineering was not implemented, such as in [1] 

[12] and [14], whereby they involved classification using LSTM. 

 

2.1.3 Machine Learning Algorithm 

The features extracted from previous step are being used as input to different 

classification model. 

 

2.1.3.1 Classic Machine Learning 

Classic Machine Learning models include k-Nearest Neighbours (k-NN), Random 

Forests (RF), Decision Trees (DT), k-Means Clustering, Support Vector Machine (SVM), etc. 
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Classic Machine Learning models are more suitable to be used when the input dataset has small 

size and lower dimensions, or when fast training is required [5]. Besides, Classic Machine 

Learning models can generate high accuracy with low computational requirement [5]. Classic 

Machine Learning models come with certain constraints. For instance, the features used in 

training the Classic Machine Learning models are often selected and engineered by human 

based on their understanding of the problem [14]. This approach can be ineffective, time-

consuming and may not always result in the best possible model [14]. 

One of the Classic Machine Learning models used is Support Vector Machine (SVM). 

SVM is a supervised machine learning algorithm that can be used for both classification and 

regression tasks. It works by finding a hyperplane that best separates different classes in a 

dataset and ignoring outliers. This hyperplane aims to maximize the margin between the 

classes, which is the distance between the hyperplane and the nearest data points from each 

class. The data points that are closest to the hyperplane and influence its position are called 

support vectors. SVM is effective for handling both linearly separable and non-linearly 

separable data by using different types of kernel functions, such as linear, polynomial, and 

radial basis function (RBF) kernels. These kernels allow SVM to map the data into a space 

where it's easier to find a separating hyperplane. SVM algorithm was used in [3], [4], [6], [7], 

[16] and [10]. In [3], the authors used supervised SVM with a cubic polynomial kernel to 

recognize six activities and achieved a success rate of 99.4%. Besides, [4] used SVM to classify 

six activities for two datasets, one with smartphone in hand and one with smartphone in pocket 

and achieved accuracies of 88.76% and 72.27% respectively. [6] implemented SVM with RBF 

kernel and achieved 98.90% of accuracy. [16] indicates that SVM have demonstrated good 

accuracy outcomes and being computationally affordable, especially during the prediction 

phase, although it may not be the best solution when dealing with inaccuracies in labelling.  

Besides, another classic models being utilized is k-Nearest Neighbors (k-NN). k-NN 

algorithm functions by identifying the 'k' closest data points in the training set to a new, unseen 

data point and then making predictions based on the labels or values of those neighboring 

points. The choice of ‘k’ value influences the algorithm's sensitivity to noise and the 

smoothness of the decision boundary [3]. Small ‘k’ value may lead to noisy predictions, high 

‘k’ values may provide smoother but biased predictions [3]. k-NN algorithm is non-parametric, 

making it suitable to be used for predictions for various types of data [6]. However, k-NN can 

be computationally expensive for large datasets, as it requires calculating distances between 
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the new data point and all training data points. k-NN model was being employed in [3], [6], 

[16] and [10]. 

Another two Classic Machine Learning models being employed are Decision Tree (DT) 

and Random Forests (RF). Both DT and RF algorithms are non-parametric supervised learning 

methods used for both classification and regression tasks. DT model functions by breaking 

down a dataset into smaller subsets while making decisions based on feature values. These 

decisions create a tree-like structure, consisting of a root node, branches, internal nodes, and 

leaf nodes. The root node presents at the beginning of the tree and the segmentation of dataset 

according to various features starts from here. The internal node represents a feature while the 

branch corresponds to a possible feature value. The leaf node represents a predicted outcome. 

The process of constructing a DT involves selecting the best features to split the dataset at each 

internal node. The feature is chosen based on criteria like Information Gain, Gain Ratio or Gini 

Index. The algorithm continues recursively, creating nodes and branches until a stopping 

condition is met. DT is easy to use and interpret. It is also computationally less expensive [16]. 

However, DT can be prone to overfitting, especially when the tree is deep and capture noises 

in the data. The RF algorithm, which is an ensemble learning method, can improve the 

performance of DT, by combining the predictions of multiple DT [6] [13]. The process begins 

with creating a collection of DTs, each trained on a different subset of the data obtained through 

random sampling with replacement, by using bagging or boasting technique. These techniques 

help to reduce overfitting and enhance generalization. Besides, only a random subset of features 

is considered for each split during the construction of individual DT within the RF. This 

introduces further diversity among the trees and prevents them from becoming overly 

correlated. Once the ensemble of DT is built, the algorithm combines their predictions, by using 

majority voting for classification tasks or averaging for regression tasks, to arrive at a final 

prediction. RF can prevent the overfitting problem and manage outliers or noises well by due 

to the introduced randomness [13]. However, RF can use large space and time when there are 

many DT [13]. The DT algorithm was used in [3] and [10] while the RF algorithm was used in 

[4], [6], [7], [16], [20] and [10]. RF model can achieve better accuracy compared to DT model, 

as in [3] where a binary DT achieved 53.1% of success rate while RF model with 20 subtrees 

achieved 91.7% of success rate. 

 

2.1.3.2 Deep Learning 
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  Deep Learning models include Convolutional Neural Network (CNN), Recurrent 

Neural Networks (RNNs), Long Short-Term Memory Networks (LSTMs), Transformer model, 

etc. Deep Learning models possess the capability of generating optimized features 

automatically and spontaneously from raw input sensor data [5]. This automation, through 

multiple hidden layers, facilitates the discovery of previously unknown patterns [5]. Deep 

Learning models can recognize complicated activities while achieving high accuracy [5]. Deep 

Learning models come with certain limitations. For instance, deep learning models which have 

complicated structures present a challenge in interpreting and understanding how the models 

work [5]. Besides, deep learning models are more suitable to be used when the datasets have 

large sizes, to ensure that the models have effective performance [5]. Deep Learning models 

require a high computational burden, demanding significant processing resources for training 

and inference procedures [5]. 

Convolutional Neural Network (CNN) is a feedforward neural network primarily 

designed for tasks involving visual data, such as image recognition and computer vision. Each 

neuron in CNN processes data in its receptive field only. A typical CNN model consists of 

three layers: convolutional layer, pooling layer, and fully connected layer. The convolutional 

layer serves as the fundamental component of CNN model, responsible for the main 

computational tasks. The layer first scan through the input image by using small kernels to 

detect specific features such as edges, corners, textures, etc. After adding bias and applying 

activation function, the convolution features are passed to next layer. The pooling layers are 

placed between convolutional layers. They are often used to reduce spatial dimensions, 

retaining the most important information while decreasing computational load. Some pooling 

that are normally used are Max Pooling and Average Pooling. CNN also incorporate fully 

connected layers to make predictions on the extracted features. CNN introduces some 

challenges such as large dataset and high computing power are required for model training. 

CNN algorithm was used in [7], [23] and [26]. The authors in [7] created a dataset consisting 

of six activities by using smartphone-embedded accelerometers. The training dataset that was 

being preprocessed was used to train CNN model by using Softmax activation function, 

applying dropout technique with probability of 0.5, using Adam as the optimizer and sparse 

categorical entropy for multiclass classification [7]. The CNN model was able to achieve an 

accuracy of 99% [7]. [26] employed a two-convolutional-layered and two-dropout-layered 

CNN model to prevent overfitting problem. The model achieved 91% accuracy [26]. 



Chapter 2 
 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    23 
 

Another deep learning algorithm is Recurrent Neural Network (RNN). RNN is a class 

of artificial neural networks designed for sequential data processing, such as natural language 

processing, time-series forecasting, etc. According to Figure 2.1, the input data at time t goes 

through computation steps in hidden layer and produce an output [1]. The output from time t, 

along with the input data from time t+1 become the input for the hidden layer at time t+1 [1]. 

This is one of the key features of RNNs, which is recurrent connections, allowing information 

to flow from one time step to the next. This looping connection allows the network to maintain 

memory and capture dependencies in sequential data. RNNs are trained using backpropagation 

through time (BPTT), which will adjust its weights and biases during training to minimize the 

difference between its predictions and the actual target values, thereby learning to model 

sequential patterns. Traditional RNNs introduce long-term dependency problem, where the 

network struggles to capture and learn relationships between data points that are separated by 

a significant number of time steps [1]. Besides, RNN also introduces vanishing gradient or 

exploding gradient problem, where the gradients used in the backpropagation algorithm 

become extremely small or extremely large. This is primarily due to the repeated multiplication 

of weight matrices in the network during backpropagation. 

 

 
Figure 2.1: RNN model in [1] 

 

The next deep learning algorithm being commonly used is Long Short-Term Memory 

Network (LSTM). LSTM is advanced version of RNN architecture which is designed to solve 

the problem of vanishing gradient or exploding gradient [23]. LSTM networks consist of 

LSTM cells, which are connected in a sequential manner, allowing them to process data over 

multiple time steps. Each LSTM cell contains several crucial components, including input gate, 
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output gate, forget gate and memory cell [1]. The input gate determines which parts of the new 

input data are important and should be incorporated into the cell’s memory. The forget gate 

decides what information from the previous cell state should be retained or discarded by using 

sigmoid activation function [12]. The function will output value between 0 and 1, where 0 

represents to discard the data while 1 represents to retain the data [12]. The output gate 

regulates the information that will be passed to the next time step as the output. The memory 

cell can store and carry data over long sequences, making it capable of capturing long-range 

dependencies in the data. Similar with RNN, LSTMs are trained using BPTT. LSTM was being 

used in [1], [12], [14], [23] and [26]. To prevent overfitting, the authors in [12] applied dropout 

techniques to randomly deactivate certain neurons in a layer by setting their values to zero 

during training. Fully operate neural network was used during testing [12]. 

 

 
Figure 2.2: LSTM neuron in [1] 

 

2.1.4 Performance Evaluation  

In HAR, the evaluation of activity recognition model’s performance is of paramount 

importance to assess the effectiveness of classification algorithms. Performance metric serves 

as a quantitative measure to determine the accuracy and reliability of activity recognition 

models. The performance metrics will provide insights into how well a model generalizes to 

new, unseen data and its ability to correctly recognize different activities.  

Some of the commonly utilized performance metrics in HAR include accuracy, 

precision, recall and f1-score. For example, studies in [1], [4], [6], [7], [16], [25] and [12] used 

accuracy as a performance metrics. Accuracy measures the percentage of overall correct 

predictions. Besides, researches in  [6] [16] involved the calculation of precision, recall and f1-

score. Precision, or positive predictive value (PPV) measures the accuracy of positive 

prediction. Recall, or true positive rate (TPR) measures the ratio of positive samples that are 
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correctly detected. F1-score combines the precision and recall into a single score and strikes a 

balance between them. Furthermore, researches in [3], [7] and [12] presented a comprehensive 

view of activity recognition model classification by using confusion matrices, detailing true 

positives, true negatives, false positives, and false negatives. 

  

2.1.5 Summary of the Technologies Review 

  In summary, the choice of data source in smartphone based HAR research plays a 

crucial role in shaping the quality and relevance of the collected data. Researchers have 

predominantly pursued two main approaches: creating independent, customized datasets and 

utilizing existing public datasets. Creating an independent dataset allows the researchers to 

have full control over the data quality, ensuring the data collected is consistent, and of high 

quality. Besides, researchers can also customize the data collection to match the specific 

requirements of the research, focusing on the types of activities, scenarios or contexts that are 

most relevant. However, inaccurate sensor data may be collected due to different ways of 

sensor placement and attachment on data subjects. Using existing dataset may solve the 

problem of data accuracy, but it can lead to limited applicability to real-world scenarios, as it 

is difficult to find an existing dataset which perfectly fits the research purpose and scope. 

  Next, in terms of data collection device, most researchers chose to use smart devices as 

the data collection device, including smartphones and smartwatches. This is due to the growing 

diffusion of smartphones and smartwatches into humans’ daily lives renders them to become 

the daily demands of users nowadays, which make them suitable devices to collect sensor 

signals regarding human daily activities. Besides, both smartphones and smartwatches feature 

a wide array of embedded sensors, allowing different types of sensor signals being collected. 

Both smartphones and smartwatches offer interactivity. Smartwatches are lighter in weight 

compared to smartphones. However, smartwatches have limited battery life and computational 

capabilities in terms of CPU and memory compared to smartphones. Additionally, smartwatch 

records both body and arm movements, introducing higher variability. In contrast, smartphones 

capture only the whole-body movement. 

Another important element in data collection is the sampling frequency. Sampling 

frequency design choice can be influenced by factors such as resource availability, desired 

precision, and the specific data features used for activity recognition. A high sampling rate can 

capture sensor signals with high accuracy, but at the same time it would increase the rate of 

battery consumption [17]. A low sampling rate consumes less power but would introduce 
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impulses and decrease recognition accuracy for particular activities. The range of sampling 

frequency to record daily activities of human is suggested to be between 20Hz and 30Hz, which 

caters both the under sampling and battery consumption problems. However, a sampling 

frequency range of 1Hz to 125Hz was observed for smartphone based HAR research reviewed. 

There may be a tradeoff between accuracy and resource consumption [17]. 

In terms of data annotation, most of the reviewed system still required manual 

annotation, which was tedious and time-consuming since it involved a large amount of sensor 

data. Manual annotation also prone to human mistake and mislabeling because the data subjects 

perform the physical activity continuously. There is research which perform data labelling with 

the help of devices. The authors used voice recognition technique to perform data annotation. 

Besides, there is also research done on using crowd labelling approach to facilitate the manual 

annotation process, which prompt the data subjects to provide the labels of the activities. 

Moreover, there is also research proposing a heuristic function to label the data automatically, 

which is then proved to have fluctuated accuracy according to the type of activities. 

  In terms of data storage, the data storage methods depend on the type of data collection 

device. The research based on smart devices allow the data collected to be stored temporarily 

inside the local storage and uploaded later to cloud server for further processing. 

  Signals preprocessing in smartphone-based Human Activity Recognition (HAR) 

involves essential steps to prepare raw sensor data for training activity recognition models. 

This process primarily includes noise reduction and label encoding, as well as feature 

engineering. In many HAR studies, the raw sensor data collected from smartphones inherently 

contain noise, necessitating preprocessing steps to enhance data quality. Techniques like 

median and Butterworth filters are employed to eliminate noise [3]. Additionally, label 

encoding plays a pivotal role in supervised learning by converting activity names into 

numerical codes [7]. Some studies choose not to perform noise reduction when sensor positions 

and orientations remain stable [4]. Similarly, data sets free from outliers and missing data may 

not require extensive preprocessing [6]. Next, feature engineering is a critical step to create 

informative data representations and enhance classification accuracy. The process involves 

segmenting time-series sensor signals into fixed windows and extracting relevant features, 

including time and frequency domain features [4]. Deep learning models like CNN and LSTM 

can automatically generate optimal features from raw data, reducing the need for explicit 

feature extraction [5]. However, classic machine learning models often require feature 

extraction [5]. Most of the research allows the consecutive segmented windows to have 50% 
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overlap to minimize information loss at the edges of windows, as in [4], [10] and [16]. The 

window size needs to be carefully decided to capture various activity cycles. The suggested 

window size range between 1 second to 10 seconds [16]. 

  The machine learning algorithms used for classification can be categorized into two 

main groups: Classic Machine Learning and Deep Learning models. The choice between these 

two categories depends on the size of the dataset, computational resources, and the complexity 

of the problem. Classic Machine Learning models, including k-Nearest Neighbors (k-NN), 

Random Forests (RF), Decision Trees (DT), k-Means Clustering, and Support Vector Machine 

(SVM), are preferred when dealing with smaller datasets or when rapid model training is 

required. These models are known for their ability to achieve high accuracy with relatively low 

computational demands. However, they often rely on manually engineered features, which can 

be time-consuming and may not always lead to the best model performance. Deep Learning 

models, such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNNs), 

Long Short-Term Memory Networks (LSTMs), and Transformer models, are particularly adept 

at automatically generating optimized features from raw sensor data. They excel in recognizing 

complex activities and achieving high accuracy but require large datasets and substantial 

computational resources. Knowledge to interpret deep learning model is also one of the 

challenges. 

  Last but not least, the evaluation of activity recognition models in Human Activity 

Recognition (HAR) research is a critical step to assess the effectiveness and reliability of 

classification algorithms. Performance metrics serve as quantitative measures that gauge how 

accurately activity recognition models can identify different activities and generalize to new, 

unseen data. Commonly utilized performance metrics in HAR include accuracy, precision, 

recall, f1-score, and confusion matrix. The choice of performance metrics or combination of 

performance metrics depends on the nature of the applications and objectives of the activity 

recognition tasks. 

 

2.2  Review of the Existing Systems  

2.2.1 A Study on Human Activity Recognition Using Accelerometer Data from 

Smartphones [4] 

  The authors in [4] collected acceleration data from smartphone-embedded 

accelerometer by using a sampling frequency of 100Hz. Two datasets were created, collecting 

acceleration signals for six activities including running, slow-walk, fast-walk, aerobic-dancing, 
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walking upstairs and walking downstairs. The authors included action which is not commonly 

found in public datasets such as aerobic dancing [4]. The first dataset was asking the data 

subjects to hold the smartphones in hands in front of the chests while the second dataset was 

asking the data subjects to put the smartphones in their pockets while performing activities. 

The collected data were stored locally inside smartphone. However, the authors did not specify 

how the stored data would be extracted out for processing and activity recognition. Manual 

annotation was used to label the datasets. The smartphone recorded signals continuously while 

data subjects performed the six activities. The data subjects were asked to wait for a few 

seconds after completing one activity before starting the next activity [4]. This is used as an 

indication to the researcher who will perform the manual annotation later, to avoid mislabeling 

[4]. There were in total 79573 samples of triaxial accelerometer being collected. 

  For data preprocessing, [4] did not perform any noise cancellation on the raw data. This 

is because the data subjects held the smartphones in hands in front of the chest or inside pockets 

along the way while they performed all the six activities required [4]. The smartphone position 

and orientation did not change and hence, no noise was introduced. On the other hand, [4] 

indicates that feature engineering need be implemented to produce informative data 

representation and increase the classification accuracy. Raw acceleration data cannot be fed 

directly to activity classification model [4]. In [4], feature creation involved applying low pass 

filter and high pass filter to separate gravitational signals and body acceleration signals for each 

time series in different directions by setting the cutoff frequency at 0.25Hz. After that, feature 

extraction was performed by first implementing window overlapping [4]. The datasets were 

broken down into smaller segments and applying window for each segment [4]. A window size 

of 128 samples, corresponding to 1.28 seconds of accelerometer data, is utilized for extracting 

features from each time series [4]. This size is well-suited for capturing various activity cycles 

[4]. The authors in [4] also allowed 50% of overlap between consecutive windows to minimize 

information loss at the edges of windows. After that, the features were extracted from each 

window, which include mean value, min value, max value, average of peak frequency (APF), 

variance of APF, etc. [4]. To find the most representative features in the feature vector, the 

authors in [4] applied clustering-based evaluation approach. As a result, they narrowed down 

their original 24-dimensional feature vector to 18 relevant features. The extracted features were 

used for subsequent classification. 



Chapter 2 
 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    29 
 

  Next, the authors in [4] performed classification for the two datasets using individual 

classifiers like Multilayer Perceptron, RF, LMT, SVM, Simple Logistic and LogitBoost. 10-

fold cross validation was used.  

 

 
Figure 2.3: Accuracy for individual classifiers for different dataset in [4] 

 

Besides, the authors also performed classification using combined classifiers. The 

authors proposed that various classifiers might provide varied insights into the patterns that 

need classification, potentially leading to increased accuracy, efficiency, and robustness in the 

classification process [4]. The classification using combined classifiers applied average of 

probabilities to achieve final predictions [4]. 

 

 

Figure 2.4: Accuracy for combined classifiers for different dataset in [4] 

 

The authors in [4] found that the acceleration data showed significant variation for the 

same physical activity when data subjects shifted the position of smartphones from holding in 

hands in front of chests to putting smartphones inside pockets. Besides, [4] found that the 

combined classifiers using the first three individual classifiers that had good performance 

outperformed the individual classifiers, in terms of accuracy. [4] suggested that the HAR 

architecture they proposed can accurately recognize human activities, without concerning 

about the smartphone’s position. 

 



Chapter 2 
 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    30 
 

 
Figure 2.5: Variation in acceleration signals when smartphones’ positions change in [4] 

 

2.2.2 Assessment of Human Activity Recognition based on Impact of Feature Extraction 

Prediction Accuracy [10] 

      In [10], UCI HAR dataset was used for activity recognition task. UCI HAR dataset 

consists of signals collected at 50Hz for six activities, including walking, walking upstairs, 

walking downstairs, sitting, standing, and laying, via smartphone-embedded accelerometer and 

gyroscope.  

Data preprocessing was done by the authors of the dataset. The data was labeled 

manually. Then, the data were preprocessed by first applying noise filters. Next, the data were 

segmented using window sliding technique. The data was segmented using fixed width sliding 

windows of 2.56 seconds with a 50% overlap, resulting in 128 readings per window. To isolate 

the sensor acceleration signal, which encompasses both gravitational and body motion 

elements, a Butterworth low-pass filter was employed. The intention was to differentiate body 

acceleration from gravitational force. The author of the dataset assumed that gravitational force 

consists of low-frequency components. Hence, a filter with a cutoff frequency of 0.3 Hz was 

applied. Subsequently, time domain features and frequency domain features were generated 

from the fixed windows of data [10]. The features generated include mean, standard deviation, 

max value, min value, etc. A 561-column feature vector was generated. 

The authors in [10] proposed that using all the features in the feature vector for activity 

recognition was not necessary. Additionally, the features in the feature vector do not have equal 

weightage. Therefore, [10] implemented the permutation importance feature selection method 

to assess the significance of each feature in the given set and their influences on the 

classification model. Values were assigned to each feature in the feature set by using 

permutation importance feature selection method [10]. The 561-column feature vector in [10] 

represented variable-based features extracted from signals. The number of features for each 

signals was computed and sorted in descending order. After that, various number of features 



Chapter 2 
 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    31 
 

would be selected from each signals to be used as input to activity recognition model in each 

iteration [10].  

The authors employed seven machine learning algorithm for classification, including 

Neural Network, SVM, DT, RF, k-NN, SGD and LG. The accuracy of activity recognition for 

each iteration was computed and compared with the accuracy of activity recognition when all 

the features were inputted [10].  

The authors in [10] found that by incorporating more features with the highest 

permutation values at each iteration, the classifier's accuracy approaches very closely to that 

achieved when utilizing all available features. The classifier’s accuracy only experiences a 

slight decrease even when using just single feature [10]. Besides, the results also showed that 

the accuracy of the models increased exponentially at the first few iterations. This is because 

the features with highest value were selected in the first few iterations, and they have significant 

influence on the overall accuracy [10]. After a few iterations, the less significant features were 

selected and hence, they have less influence on the overall accuracy [10]. The less influential 

features can then be ignored to reduce the dataset’s size and computation resources needed 

[10]. The authors conclude that high accuracy of classification with reduced size of datasets 

can be achieved by using permutation importance feature selection method proposed [10]. 

 

 

Figure 2.6: Accuracy of SVM change when number of features used change in [10] 
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Figure 2.7: Accuracy of RF change when number of features used change in [10] 

 

2.2.3 Human Activity Recognition Using LSTM Network with Dropout Technique [12] 

  In [12], the authors chose to use public datasets for model training and evaluation. No 

preprocessing was mentioned in [12]. 

      The authors indicated that RNN introduced long-term dependencies problem. Hence, a 

LSTM network where each neuron encompasses four components was being employed. The 

first component is the input gate, which receives input from current state and sends output to 

next layer. The next element is the forget gate, deciding what information from the previous 

cell state should be retained or discarded by using sigmoid activation function [12]. The 

function will output value between 0 and 1, where 0 represents to discard the feature while 1 

represents to retain the feature [12]. The following component is the update gate, where new 

features are introduced after the removal of unwanted ones. This is achieved through vector 

addition, allowing the network to update its information. The final component is the output 

gate, which regulates the information that will be passed to the next module by processing 

through a sigmoid function and a tanh function. The authors in [12] suggested that the dropout 

technique should be used to prevent overfitting of data. The dropout technique will randomly 

deactivate certain neurons in a layer during training of the model. This makes the layer appear 

and function as if it had a different number of nodes and connections than the preceding layer. 

During training, every update to a layer incorporates a fresh perspective of the current layer, 

which introduces randomness and helps prevent overfitting. During testing, the entire neural 

network was considered, without dropout [12]. 

       For the activity recognition purpose, the authors proposed a simple unidirectional 

LSTM network. The network consists of an input layer, a hidden layer with 32 neurons, a layer 

with sigmoid activation function and an output layer. The authors first split the dataset into 

training and testing dataset. The authors then divided the large training dataset into smaller 
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batches to enhance the performance. The authors used a constant batch size of 4 and perform 

iterations over a specified number of epochs. This is done because smaller dataset will save 

computational resources and execute faster. Besides, the model also used backpropagation to 

adjust the weights and biases. Adam optimizer was applied to adjust the model’s learning rate 

and to locate the global minimum or the loss value for each iteration. Categorical cross-entropy 

was used to calculate the loss when there are inaccurate predictions. 

  The result showed that the proposed LSTM model achieved an accuracy of 92.67% of 

recognizing activities such as laying, sitting, standing, walking, walking downstairs, and 

walking upstairs [12]. 

 

 

Figure 2.8: Accuracy in [12] 

 

2.2.4 LSTM Networks Using Smartphone Data for Sensor-Based Human Activity 

Recognition in Smart Homes [14] 

 

 

Figure 2.9: System architecture diagram in [14] 
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  In [14], UCI HAR dataset was being used for activity recognition task. The datasets 

collected signals via smartphone embedded accelerometer and gyroscopes at a constant rate of 

50 Hz. The data subjects were required to hold the smartphone at waist level while performing 

six activities, i.e., walking, walking upstairs, walking downstairs, sitting, standing, and lying 

down. 

      The data preprocessing was done by the authors of the dataset, instead of authors in 

[14]. The data was labeled manually. Then, the data were preprocessed by first applying noise 

filters. To capture the human body motion, a third-order Butterworth low-pass filter was 

employed with a cutoff frequency of 20 Hz [14]. The frequency was chosen because 99% of 

human activities’ energy were below 15 Hz [14]. Next, the data were segmented using window 

sliding technique. The data was segmented using fixed width sliding windows of 2.56 seconds 

with a 50% overlap [14]. There are a few considerations of segmenting the dataset into 2.56 

seconds of windows. Firstly, it accounts for the typical walking rate of an average individual, 

which falls within the range of 90 to 130 steps per minute, equivalent to a minimum of 1.5 

steps per second. Secondly, the chosen window size ensures that each segmented window 

encompasses at least one complete walking cycle, which consists of two steps. Thirdly, this 

approach accommodates individuals with slower walking cadences, including the elderly and 

those with disabilities, by assuming a minimum speed equal to 50% of the average human 

cadence. After that, the data went through normalization process, showing a mean value of 0 

and a variance value of 1 [14]. At the first stage, the dataset was split into training dataset 

(71.39%) and testing dataset (28.61%). Next, during the second stage where the model was 

trained and hyperparameter tuning was performed, the training dataset was split again into75% 

of training datasets and 25% of validating datasets. 

  For activity recognition using LSTM networks, the authors proposed five LSTM 

network architectures, which includes Vanilla LSTM, 2-Stacked LSTM, 3-Stacked LSTM, 

CNN-LSTM, and 4-layer CNN-LSTM [14]. The Vanilla LSTM model, or the original LSTM 

model consists of a single hidden layer and a feedforward output layer [14]. 
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Figure 2.10: Vanilla LSTM model in [14] 

 

The 2-Stacked LSTM model comes with two hidden layers while the 3-Stacked LSTM model 

comes with three hidden layers. Each hidden layer associates with multiple memory cells. 

 

 

Figure 2.11: 2-Stacked LSTM model in [14] 

 

 

Figure 2.12: 3-Stacked LSTM model in [14] 
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The CNN-LSTM network incorporates CNN layers to extract features from raw input data. 

The extracted features were then integrated with LSTM layer to facilitate sequence prediction. 

 

 

Figure 2.13: CNN-LSTM model in [14] 

 

To improve activity recognition accuracy, the authors in [14] proposed a 4-layer CNN-LSTM 

network. Four 1-D CNN layers were used to extract features from raw input data by using 

ReLU activation functions. After features extraction, a max pooling layer was implemented to 

summarize the feature maps generated by the previous CNN layers and to reduce computational 

complexities. Multiple dropout layers were added on top of pooling layer to prevent overfitting. 

The dimensions of the feature maps need to be reduced by using a flattened layer to transform 

feature map in matrix representation to vector representation. This allows LSTM to be able to 

process the feature maps. The output then went through the LSTM layer to model temporal 

dynamics and to activate the feature maps. The final layer consists of a fully connected layer 

and a Softmax layer for activity classification purpose. The optimal hyperparameters for the 4-

layer CNN-LSTM network was determined by using Bayesian Optimization. 

 

 

Figure 2.14: 4-layered CNN-LSTM model in [14] 



Chapter 2 
 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    37 
 

 

  The result shows that the 4-layer CNN-LSTM model achieved an accuracy of 99.39%, 

outperforming other models. The proposed 4-layer CNN-LSTM model introduced two 

benefits. One of them is the CNN layers in the proposed network can directly map the spatial 

representation of raw sensor data for feature extraction. The next benefit is that the LSTM layer 

excels at capturing and leveraging temporal dependencies within the data and use this 

information to improve feature extraction for HAR. 

 

2.2.5 Summary of the Existing Systems 

 [4] [10] [12] [14] Proposed System 

Create own 

datasets 
✓    ✓ 

Data collection 

using 

smartphone 

✓    ✓ 

Automated 

annotation 
    ✓ 

Save log file 

into local 

storage 

✓    ✓ 

Upload log file 

to cloud 
    ✓ 

Noise 

management 
 ✓  ✓ 

Drop rows with null values. 

Drop rows when timestamp 

= 0. 

Sort in ascending order of 

timestamp. 

Data 

segmentation 
✓ ✓ ✓ ✓ ✓ 

Feature 

Engineering 
✓ ✓   ✓ 

Classification 

model 

Classic 

Machine 

Learning 

algorithm 

Classic 

Machine 

Learning 

algorithm 

Deep 

Learning 

algorithm 

Deep 

Learning 

algorithm 

LSTM 

Performance 

metric 
Accuracy Accuracy Accuracy Accuracy Accuracy 

 

Table 2.2: Comparison between existing systems and proposed system 
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According to the Table 2.2, only [4] chose to create dataset by collecting signals at 

100Hz using smartphone embedded accelerometer. [10], [12] and [14] chose to use public 

datasets, where [10] and [14] used UCI HAR dataset. The UCI HAR dataset was constructed 

by using signals collected from smartphone embedded accelerometer and gyroscope at 50Hz. 

The dataset used in [12] did not have any extra information. [4] annotate the dataset manually 

and store the dataset inside smartphone local storage. However, the authors in [4] did not 

specify how to extract the dataset out for further processing and analysis. For UCI HAR dataset, 

the authors also annotated the dataset manually. 

For data preprocessing, only [10] and [14] applied noise filters for noise management 

since they used similar public datasets. [4] did not perform any noise cancellation since the 

authors suggested that no noise was being introduced into the dataset they created. [12] did not 

specify anything about noise management. For feature engineering, [4] applied low pass filter 

and high pass filter to separate gravitational signals and body acceleration signals. Similarly, 

[10] and [14] applied Butterworth low pass filter to differentiate body acceleration from 

gravitational force. Next, [4], [10] and [14] also performed data segmentation using window 

sliding techniques with 50% overlap between consecutive windows to minimize information 

loss at the edges of windows. After that, only [4] and [10] implemented feature extraction from 

raw data since [4] and [10] performed classification using classic machine learning algorithms 

while [12] and [14] used deep learning algorithms which can automatically extract features 

from raw data. Both [4] and [10] wanted to find the most representative features in the feature 

vector generated. [4] applied clustering-based evaluation approach while [10] applied 

permutation importance feature selection method. 

For activity recognition, [4] and [10] employed classic machine learning algorithms, 

including SVM, RF, DT, k-NN, etc. [4] also proposed the combination of classifiers to improve 

the performance of activity recognition. On the other hand, [12] and [14] employed deep 

learning algorithms. [12] implemented a simple, unidirectional LSTM network, which consists 

of an input layer, a hidden layer with 32 neurons and an output layer. The authors in [12] 

divided the large training datasets into batches to improve performance and to save 

computational resources. [12] also applied dropout techniques to prevent overfitting. [14] 

implemented original LSTM network, stacked LSTM network and CNN-LSTM network. The 

authors in [14] performed Bayesian Optimization for hyperparameter tuning. 

All the four studies used accuracy as the performance metrics. [4] concludes that the 

combined classifier using SVM, Multilayer Perceptron and LogitBoost achieved the highest 
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accuracy at 91.15%. The authors also proposed that their recognition method is robust enough 

to recognize human activities without concerning about smartphone’s position. [10] suggested 

that high accuracy of classification with reduced size of datasets can be achieved by using 

permutation importance feature selection method proposed. The proposed simple 

unidirectional LSTM network with dropout technique in [12] achieved an accuracy of 92.67%. 

Whereas the proposed 4-layer CNN-LSTM architecture in [14] achieved an accuracy of 

99.39%. 

 

2.2.5.1 Strengths 

One of the strengths in [4] is the authors chose to create dataset by themselves. Creating 

an independent dataset allows the researchers to have full control over the data quality, ensuring 

the data collected is consistent, and of high quality. This helps to reduce the noises and biases 

in the dataset. Besides, researchers can also customize the data collection to match the specific 

requirements of the research, focusing on the types of activities, scenarios or contexts that are 

most relevant. For instance, [4] included the actions which are not commonly found in existing 

open datasets, such as aerobic dancing.  

Besides, another strength found in [10] is the implementation of feature engineering 

and permutation importance features selection method. Feature engineering need be 

implemented to produce informative data representation and increase the classification 

accuracy [10]. The data were segmented using window sliding technique and features were 

extracted from fixed windows of data, including both time-domain features and frequency-

domain features. Then, the permutation importance feature selection method was implemented 

to assess the significance of each feature in the given set and their influences on the 

classification model. By doing this, the size of the feature vector used to train machine learning 

model can be significantly reduced by removing the least influential features from the vector.  

Another strength can be found in [12], where the authors used dropout techniques to 

prevent the problem of overfitting of LSTM model. The dropout technique will randomly 

deactivate certain neurons in a layer during training of the LSTM model. This makes the layer 

appear and function as if it had a different number of nodes and connections than the preceding 

layer. During training, every update to a layer incorporates a fresh perspective of the current 

layer, which introduces randomness and helps prevent overfitting. Besides, another strength is 

[12] divided the large training dataset into smaller batches to enhance the performance. The 

authors used a constant batch size of 4 and perform iterations over a specified number of 
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epochs. This is done because smaller dataset will save computational resources and execute 

faster. 

 

2.2.5.2 Weaknesses 

  One of the weaknesses in [4] is the inefficient data engineering system used to collect, 

annotate, and store sensor signals. The authors in [4] collected signals using smartphone. The 

signals were stored inside mobile phone locally. After the data collection process is done, the 

data were then extracted out and manually annotated. The authors in [4] did not specify how 

the data was going to be extracted out. 

Another common weakness in [10], [12] and [14] is the usage of public datasets. Public 

datasets only cover common human activities, such as walking, standing, climbing upstairs, 

etc. They may have limited relevance with your research purpose and context and limited 

diversity in terms of activities type and sensor type. [5]. This will limit the applicability and 

accuracy of the researches. The authors in [10], [12] and [14] chose to use public datasets, 

possibly for the sake of convenience. Constructing a dataset from scratch requires substantial 

efforts, time, and techniques, especially when considering the necessity for large datasets to 

train deep learning models.  It saves them a lot of efforts to use preprocessed and well-defined 

public datasets. 

 

2.3  Proposed System 

      The proposed system will implement smartphone based human activity recognition 

system. Firstly, the data engineering system proposed will be used for data collection, data 

annotation and data storage by using SensorData application and SensorDataLogger 

application developed. Two Android devices will be installed with the applications, whereby 

the device installed with SensorDataLogger will be carried by data subjects in their pockets 

while they perform the activities. The device installed with SensorData will be carried in hand 

by the researcher or the data subject himself or herself. The two applications are connected via 

Bluetooth to send and receive instructions. The researcher will collect signals from 

accelerometer and gyroscope embedded in smartphone at 100Hz of sampling frequency for 

four activities: standing, walking, climbing upstairs and climbing downstairs. The log files 

collected for each activity will be annotated automatically by the data engineering system 

proposed and saved inside the local storage. After that, the log files can be uploaded to Google 

Cloud Storage for further processing. 
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  Next, the log files collected will be extracted out from Google Cloud Storage by using 

Google Colab. The log files will be combined into single dataset. After that, common data 

preprocessing will be implemented on dataset, such as dropping rows with null values, 

dropping rows when timestamp equals to zero and sorting the dataset in ascending order of 

timestamp. Subsequently, data exploration will be performed to understand better the dataset’s 

characteristics, structure, quality and to identify any data preparation steps needed.  

  Then, data segmentation will be performed, by sliding the dataset into windows of size 

0.5 seconds each. We allow 50% overlap between consecutive windows to minimize 

information loss. The windows of data will be divided into 80% of training dataset and 20% of 

testing dataset. We then proceed to LSTM model training and evaluation using the windows of 

data. Hyperparameter tuning is also performed to further enhance the performance of LSTM 

model by identifying the combination of hyperparameters that work best. Finally, we will 

implement model testing using dedicated testing dataset to test the model’s generalization 

capability on new, unseen data.  
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Chapter 3 

System Methodology/Approach  

 

3.1  System Design Diagram 

3.1.1    System Architecture Diagram 

 

 

Figure 3.1: System Architecture Diagram 

 

Figure 3.1 shows the system architecture diagram of the proposed HAR system in this 

research.  

Firstly, the data engineering system proposed in this research is used for data collection. 

The data engineering system proposed comprising hardware, software, and cloud. The 

hardware used in this system consists of two Android devices installed with the applications, 

SensorData and SensorDataLogger. The applications are connected via Bluetooth to send and 

receive instructions. The data subjects are required to carry the smartphones with 

SensorDataLogger applications installed inside their pockets and perform each activity for one 

minute. The device installed with SensorData application will be held in hand by data subject 

or researcher. After collecting sensor signals from accelerometer and gyroscope embedded in 

smartphone installed with SensorDataLogger, the log files are annotated automatically and 

saved into local storage with specified filename, which is the activity ID specified by user. 
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Then, upon the instructions from SensorData, SensorDataLogger uploads all the log files in the 

specified path to Google Cloud Storage server for storage and further processing, via Wi-Fi.  

After that, the log files stored in the Google Cloud Storage are extracted out for dataset 

creation purpose by using Google Colab. Since there are many individual log files created 

during data collection, therefore we need to combine all the log files to become one single 

dataset. The original CSV log files are first converted to Parquet log files. Parquet files are used 

instead of CSV files since Parquet is a columnar storage file format designed for efficient 

compression and storage. It can significantly reduce the amount of space required to store the 

dataset compared to CSV files. Besides, Parquet files store data in a columnar format, making 

it easier to skip over irrelevant columns during data retrieval. This can lead to faster query and 

analysis performance, which is important in HAR research as we need to process and analyze 

data frequently. After that, the Parquet log files are combined into single dataset. 

Next, the dataset goes through the data preprocessing. For example, dropping rows with 

missing values in certain attributes, dropping rows when timestamp is zero and sorting the 

dataset in ascending order of timestamp. 

After data preprocessing, data exploration is carried out to gain insights into the 

dataset’s characteristics, structure, and quality. This step is performed to identify missing 

values or outliers in the dataset, obtain summary information regarding the dataset, data 

visualization, explore relationships between the variables, etc. The findings from data 

exploration can identify the subsequent data preparation steps that need to be performed. 

Subsequently, the dataset will go through data segmentation by using window sliding 

techniques. This is because the raw time-series data cannot be used directly to train the machine 

learning or deep learning models. The dataset is divided into smaller segments, called windows. 

Each window consists of 50 rows or 0.5 seconds of accelerometer and gyroscope signals, with 

50% overlap between consecutive windows to minimize information loss at the edge of 

windows. After data segmentation, we need to split the windows into 80% of training dataset 

and 20% of testing dataset.  

Then, we can proceed with the training of LSTM model by using the windows of data 

produced in previous step. After training, the LSTM model’s performance is evaluated by 

computing confusion matrix and accuracy.  

After model training and evaluation, hyperparameter tuning will be performed to 

further enhance the performance of the models. During this iterative optimization process, 
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various hyperparameters, such as learning rates, batch sizes, layer sizes, and dropout rates are 

fine-tuned to find the combination that produces the best model performance.  

Once the optimal hyperparameters are identified, model testing and evaluation are 

performed using the identified hyperparameters. The fine-tuned models are tested on a 

dedicated testing dataset to measure the models' real-world performance and generalization 

capability on new, unseen data. This step helps to validate the practical utility of the proposed 

smartphone based HAR system and the reliability of the system in real-world applications. 

 

3.1.2    Use Case Diagram and Description 

3.1.2.1 Use Case Diagram 

 

 

Figure 3.2: Use Case Diagram of HAR system 

 

Figure Name Explanation 

 

Researcher 

It represents the people 

who perform HAR 

research 
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Data engineering system 

It represents the data 

engineering system 

involved in the HAR 

research. 

 

SensorData application 

It represents the 

SensorData application 

used in data engineering 

system. 

 

SensorDataLogger 

application 

It represents the 

SensorDataLogger 

application used in data 

engineering system. 

 

Use Case 

It presents a system or a 

process that interacts 

with the researchers or 

system. 

 
Association relationship 

It connects use cases and 

actors if there is 

interaction between 

them. 

 

Include relationship 

It is used to indicate that 

one use case includes the 

functionality of another 

use case. 

 

Generalization 

relationship 

It means one actor can 

inherit the role of another 

actor. 

 

System and Boundary 

It represents the scope or 

limits of the HAR 

system. 

 

Table 3.1: Use Case Legend 

 

3.1.2.2 Use Case Description 
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Use Case Name Show Real-time data 

Use Case ID UC001 

Description 

This use case allows data engineering system to show real-time data 

of accelerometer and gyroscope through SensorDataLogger 

application. 

Primary Actor Data Engineering System 

Secondary Actor Researcher 

Trigger Researcher opens the SensorDataLogger application. 

Precondition 

• Researcher has installed the SensorDataLogger application in 

his or her device. 

• Researcher has not opened the SensorDataLogger 

application. 

Scenario Name Step Action 

Main Flow 

1 
Researcher clicks the SensorDataLogger icon 

through his or her device. 

2 The SensorDataLogger executes. 

3 
The user interface of SensorDataLogger shows 

real-time data of accelerometer and gyroscope. 

Alternate Flow – 

Application Crash 
2.1 

The application window displays application 

crash error. 

Alternate Flow – 

Absence / Non-

functional Sensors 

3.1 
The user interface of SensorDataLogger shows 

only the real-time data of sensor that exists. 

Rules 

• The SensorDataLogger application must be opened through 

Android device. 

• The device installed with SensorDataLogger must consists of 

functional accelerometer and gyroscope. 

Author Tee Jia Lin 

 

Use Case Name Add Activity 

Use Case ID UC002 

Description 
This use case allows researchers to add activity button that they want 

to collect data for through SensorData application. 

Primary Actor Researcher 

Secondary Actor Data Engineering System 

Trigger 
Researcher clicks the ‘Add Activity’ button through the user 

interface of SensorData application. 
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Precondition 
Researcher has opened the SensorDataLogger application and can 

access the user interface of the application. 

Scenario Name Step Action 

Main Flow 

1 
Researcher clicks the ‘Add Activity’ button via 

SensorDataLogger user interface. 

2 
A dialog pops out. Researcher fills in the name 

of activity and class ID of activity. 

3 
Researcher clicks the ‘CREATE ACTION’ 

button. 

4 
The application checks the validity of the 

activity name and class ID. 

5 
The activity button created has been shown in 

the list in the user interface of the application. 

Alternate Flow – 

Invalid activity 

name or class ID 

4.1 The dialog will prompt an error. 

Rules 
The activity name and Class ID must be unique among all the 

activities. 

Author Tee Jia Lin 

 

Use Case Name Make Bluetooth Connection 

Use Case ID UC003 

Description 
This use case allows researchers to connect SensorData and 

SensorDataLogger via Bluetooth. 

Primary Actor Researcher 

Secondary Actor Data Engineering System 

Trigger 
Researcher clicks the ‘Connect to device’ button, through 

SensorData application  

Precondition 

• Researcher has given permissions for both applications to 

access Bluetooth. 

• Researcher has enabled the Bluetooth connection of both 

devices. 

Scenario Name Step Action 

Main Flow 

1 

The Bluetooth connection status bar showing 

‘Not connected’. Researcher clicks the kebab 

menu button on the upper corner of 

SensorData’s user interface.  

2 
Researcher clicks the ‘Connect to device’ 

option. 
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3 
A dialog pops out, showing the list of devices 

connected before.  

4 

Researcher clicks the device name where 

SensorDataLogger is installed on. The 

Bluetooth connection status bar showing 

‘Connecting…’. 

5 
SensorData application initiates the Bluetooth 

connection. 

6 

The Bluetooth connection status bar will 

change to ‘Connected to x’, where x represents 

the device name of SensorDataLogger. 

Alternate Flow – 

Device name does 

not exist 

3.1 
Researcher clicks the ‘SCAN FOR DEVICE’ 

option to scan for nearby devices. 

3.2 
The device name where SensorDataLogger is 

installed shows in the list. 

3.3 
Back to Main Flow step 4 to continue the 

connection process. 

Alternate Flow – 

Fail to connect to 

SensorDataLogger 

5.1 
A toast message pops out, indicating ‘Unable 

to connect to device’. 

5.2 
Back to Main Flow step 1 to reinitiate the 

Bluetooth connection. 

Rules The devices stay within the acceptable range. 

Author Tee Jia Lin 

 

Use Case Name Start Data Recording 

Use Case ID UC004 

Description This use case allows researchers to start data recording process. 

Primary Actor Researcher 

Secondary Actor Data Engineering System 

Trigger 
Researchers click the ‘START’ button through user interface of 

SensorData application. 

Precondition 

• SensorData and SensorDataLogger are connected via 

Bluetooth. 

• The device installed with SensorDataLogger is put inside 

data subject’s pocket. 

• The activity that researcher wants to collect data for has been 

created via SensorData user interface. 
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Include Use Case: 
• Stop Data Recording 

• Annotate Data 

Scenario Name Step Action 

Main Flow 

1 
Researcher clicks the activity button that he or 

she wants to collect data for via SensorData. 

2 
Researcher set the duration of how long he or 

she wants to collect data. 

3 Researcher clicks ‘START’ button. 

4 System starts a timer and start to collect data. 

Alternate Flow – 

Fail to connect to 

SensorDataLogger 

5.1 
A toast message pops out, indicating ‘Unable 

to connect to device’. 

5.2 
Back to Main Flow step 1 to reinitiate the 

Bluetooth connection. 

Rules The Bluetooth connection between two devices stay connected. 

Author Tee Jia Lin 

 

Use Case Name Stop Data Recording 

Use Case ID UC005 

Description This use case allows system to stop data recording process. 

Primary Actor Data Engineering System 

Trigger The timer for the data recording process has stopped. 

Precondition 

• Researcher has started the data collection process. 

• A timer is counting down on both SensorData and 

SensorDataLogger. 

Scenario Name Step Action 

Main Flow 

1 

Time is up. The timer for the data recording 

process has stopped on both SensorData and 

SensorDataLogger. 

2 

SensorData sends instructions to 

SensorDataLogger to stop data recording via 

Bluetooth. 

3 SensorDataLogger stops recording data. 
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4 
A toast message pops out, indicating ‘Stop 

recording’. 

Alternate Flow – 

Fail to stop data 

recording 

2.1 SensorDataLogger fails to stop data recording. 

2.2 Use case terminates.  

Rules The Bluetooth connection between two devices stay connected. 

Author Tee Jia Lin 

 

Use Case Name Save Log Files 

Use Case ID UC006 

Description 
This use case allows researchers to save collected data locally inside 

smartphone storage. 

Primary Actor Researcher 

Secondary Actor Data Engineering System 

Trigger 
The researcher clicks the ‘Save Log File’ button through user 

interface of SensorData application. 

Precondition 
• The data recording process has stopped.  

• A dataset is available to be saved. 

Scenario Name Step Action 

Main Flow 

1 
Researcher clicks the ‘Save Log File’ button 

through the user interface of SensorData. 

2 
SensorDataLogger saves the log file in the 

specified location. 

3 
A toast message pops out, indicating ‘Log file 

saved’. 

Alternate Flow – 

The dataset is 

unavailable 

2.1 SensorDataLogger fails to save log file 

2.2 Use case terminates.  

Rules The Bluetooth connection between two devices stay connected. 

Author Tee Jia Lin 

 

Use Case Name Upload Log Files to Cloud Server 

Use Case ID UC007 
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Description 

This use case allows researchers to upload log files stored inside 

smartphone local storage to Google Cloud Storage for further 

processing through SensorDataLogger. 

Primary Actor Researcher 

Secondary Actor Data Engineering System 

Trigger 
The researcher clicks the ‘Upload Log File’ button through user 

interface of SensorData application. 

Precondition 
The datasets to be uploaded are stored inside local storage of the 

device. 

Scenario Name Step Action 

Main Flow 

1 
Researcher clicks the ‘Upload Log File’ button 

through user interface of SensorData. 

2 
SensorDataLogger upload all the log files in 

the specified path to Google Cloud Storage. 

3 

A toast message pops out, indicating 

‘Uploaded x files successfully’, where x 

represents the number of files uploaded. 

4 
SensorDataLogger deletes the log files 

uploaded in the local storage. 

Alternate Flow – 

The dataset is 

unavailable 

2.1 System fails to upload log file 

2.2 Use case terminates.  

Rules The Bluetooth connection between two devices stay connected. 

Author Tee Jia Lin 

 

Use Case Name Annotate Data 

Use Case ID UC008 

Description This use case allows system to annotate data. 

Primary Actor Data Engineering System 

Trigger SensorData sends the instruction to start the data collection process. 

Precondition 

• Researcher has started the data collection process. 

• Instruction that contains the class ID has been sent from 

SensorData to SensorDataLogger. 

Scenario Name Step Action 
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Main Flow 

1 
The SensorDataLogger has started the data 

collection process. 

2 
SensorDataLogger identifies the class ID sent 

from SensorData. 

3 
SensorDataLogger appends the class ID at the 

end of each row of data. 

Alternate Flow – 

Class ID is 

unavailable 

2.1 
SensorDataLogger fails to recognize the class 

ID from the instructions sent. 

2.2 Use case terminates.  

Rules The Bluetooth connection between two devices stay connected. 

Author Tee Jia Lin 

 

Use Case Name Collect data 

Use Case ID UC009 

Description This use case allows researchers to perform data collection 

Primary Actor Researcher 

Trigger 
Researcher wants to implement a Human Activity Recognition 

research and does not want to use public datasets. 

Precondition 

• Data sources, sensors, or mechanisms for data collection are 

available and properly configured. 

• The purpose and requirements of the dataset are defined. 

Include Use Case: 

• Start Data Recording 

• Save Log Files 

• Upload Log Files to Cloud Server 

Scenario Name Step Action 

Main Flow 

1 
Researcher determines the activities he or she 

wants to collect data for.  

2 
Researcher determines the duration for each 

activity. 

Rules - 

Author Tee Jia Lin 
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Use Case Name Collect data 

Use Case ID UC009 

Description This use case allows researchers to perform data collection 

Primary Actor Researcher 

Trigger 
Researcher wants to implement a Human Activity Recognition 

research and does not want to use public datasets. 

Precondition 

• Data sources, sensors, or mechanisms for data collection are 

available and properly configured. 

• The purpose and requirements of the dataset are defined. 

Include Use Case: 

• Start Data Recording 

• Save Log Files 

• Upload Log Files to Cloud Server 

Scenario Name Step Action 

Main Flow 

1 
Researcher determines the activities he or she 

wants to collect data for.  

2 
Researcher determines the duration for each 

activity. 

Rules - 

Author Tee Jia Lin 

 

Use Case Name Perform Data Preprocessing 

Use Case ID UC011 

Description 
This use case allows researchers to preprocess dataset to make it 

suitable for subsequent classification. 

Primary Actor Researcher 

Trigger 
Researchers extract the datasets out from Google Cloud Storage to 

Google Colab. 

Precondition 

• The dataset created is available in Google Cloud Storage. 

• The dataset is in .parquet format. 

• The researcher has opened the Google Colab. 

Scenario Name Step Action 

Main Flow 1 
Researcher opens the Google Colab, imports 

necessary libraries, and makes configuration. 
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2 
Researcher extracts the .parquet dataset out 

from GCS in Google Colab. 

3 

Researcher performs data preprocessing steps 

such as removing null values, sorting in 

ascending order of timestamp, etc. 

4 
Researcher stores the pre-processed dataset 

back to GCS. 

Alternate Flow – 

Failed to extract 

the datasets 

1.1 
Researcher failed to read the .parquet dataset in 

Google Colab. 

1.2 
Back to Main Flow step 1 to re-extract the 

datasets. 

Rules The kernel of the Google Colab stays opened. 

Author Tee Jia Lin 

 

Use Case Name Perform Data Segmentation 

Use Case ID UC012 

Description 
This use case allows researchers to break dataset into smaller 

segments to make it suitable for subsequent classification. 

Primary Actor Researcher 

Trigger 
Researchers extract the pre-processed datasets out from Google 

Cloud Storage to Google Colab. 

Precondition 
• Researcher has pre-processed the dataset. 

• The dataset is in .parquet format. 

Scenario Name Step Action 

Main Flow 

1 
Researcher extracts the pre-processed dataset 

in .parquet format from GCS to Google Colab. 

2 

Researcher perform window sliding, with 

window size of 50 rows of data and 50% 

overlap between consecutive windows. 

3 
Researcher splits the windows of data into 80% 

of training dataset and 20% of testing dataset. 

4 
Researcher stores the segmented dataset back 

to GCS. 

Alternate Flow – 

Failed to extract 

the datasets 

1.1 
Researcher failed to read the .parquet datasets 

in Google Colab. 

1.2 
Back to Main Flow step 1 to re-extract the 

datasets. 

Rules The kernel of the Google Colab stays opened. 
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Author Tee Jia Lin 

 

Use Case Name Model Training 

Use Case ID UC013 

Description 
This use case allows researchers to perform model training using 

labelled dataset. 

Primary Actor Researcher 

Trigger 
Researchers extract dataset out from Google Cloud Storage to 

Google Colab. 

Precondition 

• The dataset is in .parquet format and ready to be used to train 

models. 

• The dataset is labelled and pre-processed. 

Scenario Name Step Action 

Main Flow 

1 
Researcher extracts the labelled dataset in 

.parquet format from GCS to Google Colab. 

2 Researcher builds the model architecture. 

2 
Researcher trains the models with labelled 

training dataset. 

3 Researcher evaluates the model performance. 

Alternate Flow – 

Failed to extract 

the datasets 

1.1 
Researcher failed to read the .parquet datasets 

in Google Colab. 

1.2 
Back to Main Flow step 1 to re-extract the 

datasets. 

Rules The kernel of the Google Colab stays opened. 

Author Tee Jia Lin 

 

Use Case Name Perform Hyperparameter Tuning 

Use Case ID UC014 

Description 
This use case allows researchers to perform hyperparameter tuning 

on selected models to optimize model performance. 

Primary Actor Researcher 

Trigger 
The selected models achieve low performance during training or the 

researcher wants to enhance the performance of the model. 

Precondition Models have been selected for tuning.  
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Scenario Name Step Action 

Main Flow 

1 
Researcher selects the model that requires 

hyperparameter tuning. 

2 
Researcher identifies the hyperparameters that 

need to be tuned for the selected model. 

3 
For each hyperparameter, researcher defines 

the search space. 

4 
Researcher identifies the hyperparameter 

tuning strategy that he or she is going to use. 

5 
Researcher implements the hyperparameter 

tuning. 

6 
System evaluates the model performance after 

hyperparameter tuning. 

7 

System identifies the combination of 

hyperparameters that resulted in the best 

performance of model. 

8 
Researcher selects and identifies the 

hyperparameters for the final model. 

Alternate Flow – 

Tuning failure 

5.1 
Hyperparameter tuning process encounters 

error. 

5.2 Researcher needs to debug the errors.  

Alternate Flow – 

Hyperparameter 

tuning is not 

effective 

7.1 
The hyperparameter tuning process does not 

improve the model performance. 

7.2 Back to Main Flow step 2. 

Rules The kernel of the Google Colab stays opened. 

Author Tee Jia Lin 

 

Use Case Name Model Testing 

Use Case ID UC015 

Description 
This use case allows researchers to perform model testing to 

evaluate a model’s performance on new data. 

Primary Actor Researcher 

Trigger Combinations of hyperparameter are identified. 
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Precondition 

• A trained model is available for testing. 

• A labelled testing dataset which contains new data and pre-

processed is available.  

• The labelled testing dataset has been pre-processed. 

Scenario Name Step Action 

Main Flow 

1 Researcher gets the testing dataset. 

2 Researcher gets the trained model to be tested. 

3 Researcher implements the model testing. 

4 
Researcher evaluates the model performance 

on testing dataset. 

Alternate Flow – 

Test dataset 

unavailable 

1.1 Researcher fails to read the testing dataset. 

1.2 Use case terminates.  

Rules The kernel of the Google Colab stays opened. 

Author Tee Jia Lin 
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3.1.3 Activity Diagram  

 

Figure 3.3: Activity Diagram 

 

Each step in the proposed HAR system is depicted in Figure 3.3. Firstly, the researcher 

needs to collect sensor signals. The data collection involves the usage of SensorDataLogger 

and SensorData applications. The researcher has to open the applications. The applications will 
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ask for permissions to use Bluetooth, storage and ask to turn on Bluetooth if it hasn’t been 

turned on. After that, SensorDataLogger application will ask the researcher to log in the Google 

account. SensorData will then show the user interface consisting of list of activity buttons while 

SensorDataLogger will show real-time accelerometer and gyroscope data. Next, the researcher 

can either choose to add activity button that he or she wants to collect data for via SensorData, 

or the researcher can connect both applications via Bluetooth. If the researcher wants to add 

activity button, he or she needs to define activity name, class ID, and click ‘CREATE 

ACTION’ button. After both applications are connected via Bluetooth, the researcher can start 

the data collection process. The device installed with SensorDataLogger can be put inside 

pocket while the device installed with SensorData will be held on hand. To collect data, the 

researcher needs to click activity button that he or she wants to collect data for. A dialog will 

pop out, asking to set duration. After setting duration, click the ‘START’ button. The 

SensorData application will send instructions to start recording to SensorData application and 

start a timer. Similarly, when SensorData application receives the instructions, a timer will 

start. After timer stops, the SensorDataLogger and SensorData applications will stop data 

recording process. The log files created will be automatically annotated via SensorDataLogger 

application. The researcher now needs to click ‘Save Log File’ button and SensorData 

application will send instructions to SensorDataLogger to save the log file. Next, the researcher 

can choose to either continue collect sensor data for other activities or upload the existing log 

files to cloud server. If the researcher chooses to continue collecting data, then he or she just 

needs to click another activity button and repeats the same process. If the researcher chooses 

to upload the existing log files, then he or she needs to click ‘Upload Log File’ button. 

SensorData application will then send instructions to SensorDataLogger application to upload 

all the log files inside local storage to Google Cloud Storage. After uploading, the 

SensorDataLogger application will delete all the uploaded log files. This process continues 

until the researcher has collected data for all the activities. 

 After data collection, the researcher needs to create a dataset by combining all the log files 

into one single dataset. The researcher first convert all the CSV log files into Parquet log files. 

Then, the parquet log files are combined into single dataset. 

 Subsequently, data preprocessing is performed on the dataset created to make them more 

suitable for subsequent classification. Preprocessing steps such as dropping rows with null 

values, dropping rows when timestamp is zero and sorting the dataset in ascending order of 

timestamp are implemented.  
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 Then, data exploration is performed on the preprocessed dataset created in previous step. 

The steps such as identifying missing values or outliers, visualizing data, obtaining summary 

information regarding dataset, etc. are implemented to understand better the characteristics and 

quality of dataset. This step is crucial to identify subsequent data preparation steps. 

Then, the researcher will perform data segmentation by breaking large datasets into fixed 

size of windows. After that, the windows produced are split into 80% of training dataset and 

20% of testing data. The training dataset can be used to train LSTM model. After model 

training, the researcher will perform evaluation to assess the performance of the models by 

computing confusion matrices and accuracies.  

Next, hyperparameter tuning is performed to identify the combination of hyperparameters 

that can produce the best model performance. Finally, the model will go through testing phase 

using the testing dataset. 
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Chapter 4 

System Design 

 

4.1  System Block Diagram 

 

 

Figure 4.1: Block diagram for smartphone based HAR system. 

 

The first step in the proposed smartphone based HAR system is data collection. The 

data collection involves sensor signals collection from accelerometer and gyroscope embedded 

in smartphone by using SensorData and SensorDataLogger applications being developed in 

this research. Two Android devices are used. After data collection, the researcher proceeds to 

dataset creation. Google Colab software is used starting from this step. This is because many 

individuals CSV log files are created during data collection. The researcher needs to convert 

the CSV log files into Parquet log files and combine all the log files to become single dataset. 

After that, the dataset produced is preprocessed. The preprocessing steps include dropping rows 

with null values, dropping rows with timestamp equals to zero and sorting the dataset in 
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ascending order of timestamp. Then, data exploration is performed on the preprocessed dataset. 

Through data exploration, the researcher can understand the data type of the features in the 

dataset, visualize the class label distribution, identify the missing values or outliers, and 

visualize the relationship between the variables in the dataset. This helps to decide the 

subsequent data preparation steps that need to be implemented. Next, the researcher will 

implement data segmentation. This is because raw time-series data cannot be fed directly to 

LSTM model. The researcher will break the large datasets into fixed size of windows, whereby 

each window consists of 50 rows of data. After that, the windows produced are split into 80% 

of training dataset and 20% of testing data. The training dataset can be used to train LSTM 

model. After model training, the researcher will perform evaluation to assess the performance 

of the models by computing confusion matrix and accuracy. Subsequently, hyperparameter 

tuning is performed to identify the combination of hyperparameters to further enhance the 

performance of LSTM model. Finally, the model will go through testing phase using the testing 

dataset. 

 

4.2  System Components Specifications 

4.2.1 Data Collection 

 

 

Figure 4.2: Flowchart for data collection in smartphone based HAR system. 
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The first step in the smartphone based HAR system is data collection. The data 

collection involves the usage of SensorDataLogger and SensorData applications. The 

applications are connected by Bluetooth to send and receive instructions. When researcher 

opens the applications, the applications will ask for permissions to use Bluetooth, storage and 

ask to turn on Bluetooth if it hasn’t been turned on. After that, SensorDataLogger application 

will ask the researcher to log in the Google account. SensorData will then show the user 

interface consisting of list of activity buttons while SensorDataLogger will show real-time 

accelerometer and gyroscope data as well as the sampling frequency. If the researcher uses 

these applications for the first time, then he or she needs to add activity button that they want 

to collect data for via SensorData. The researcher simply needs to click the ‘Add Activity’ 

button, define the activity name, activity ID, and click ‘CREATE ACTION’ button. The 

activity ID and activity name must be unique among the activity buttons created. The researcher 

will not be able to click the ‘CREATE ACTION’ button if there is duplication of names and 

IDs. Then, the buttons created will be shown in the user interface of SensorData application. 

To delete the button created, the research simply needs to swipe the particular button to the 

left. 

After that, the researcher needs to connect both applications via Bluetooth. The status 

bar will change to ‘Connected’ when the Bluetooth connections are successfully established. 

After both applications are connected via Bluetooth, the researcher can start the data collection 

process. The device installed with SensorDataLogger can be put inside pocket while the device 

installed with SensorData will be held in hand. To collect data, the researcher needs to click 

activity button that he or she wants to collect data for. A dialog will pop out, asking to set 

duration. After setting duration, click the ‘START’ button. The SensorData application will 

send instructions to start recording to SensorDataLogger application and start a timer. 

Similarly, when SensorDataLogger application receives the instructions, a timer will start. 

After timer stops, the SensorDataLogger and SensorData applications will stop data 

recording process. The researcher now needs to click ‘Save Log File’ button and SensorData 

application will send instructions to SensorDataLogger to save the log file. The log file name 

will be the activity ID and the datetime when the log files are created. The log files created are 

annotated with the activity ID automatically. Next, the researcher can choose to either continue 

collect sensor data for other activities or upload the existing log files to cloud server. If the 

researcher chooses to continue collecting data, then he or she just needs to click another activity 

button and repeats the same process. If the researcher chooses to upload the existing log files, 
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then he or she needs to click ‘Upload Log File’ button. SensorData application will then send 

instructions to SensorDataLogger application to upload all the log files inside local storage to 

Google Cloud Storage. After uploading, the SensorDataLogger application will delete all the 

uploaded log files. This process continues until the researcher has collected data for all the 

activities. 

 

4.2.2 Dataset Creation 

 

 

Figure 4.3: Flowchart for dataset creation in smartphone based HAR system. 
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Figure 4.4: Flowchart for data preprocessing in smartphone based HAR system. 

 

Starting from second step, Google Colab software is used. The second step in the 

smartphone based HAR system is dataset creation. When researchers are collecting sensor data 

for each activity, individual log files will be created. Therefore, these log files need to be 

combined to become single dataset for the purpose of subsequent data exploration, 

preprocessing, model training, etc.  

The researcher first extracts the individual log files from Google Cloud Storage. This is 

performed by first performing authentication with Google Cloud Storage by uploading the .json 

file of private key and get authentication via from google.colab import auth and 

auth.authenticate_user(). Then, the researcher imports the necessary library, from google.cloud 

import storage, and retrieve the list of CSV files from the relevant Google Cloud Storage 

bucket by specifying the project id, bucket name and folder name.  

Then, the researcher converts the CSV files into Parquet files. Parquet files are used instead 

of CSV files since Parquet is a columnar storage file format designed for efficient compression 

and storage. It can significantly reduce the amount of space required to store the dataset 

compared to CSV files. Besides, Parquet files store data in a columnar format, making it easier 

to skip over irrelevant columns during data retrieval. This can lead to faster query and analysis 
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performance, which is important in HAR research as we need to process and analyze data 

frequently. The researcher implements the conversion by first read the CSV files using 

pandas.read_csv() and convert to Parquet files using pandas.to_parquet() function provided 

by pandas library. 

After that, the Parquet log files are preprocessed. The researcher will remove the rows of 

data with null values by using pandas.dropna() and the rows of data with timestamp equals to 

zero. Besides, the researcher will sort the dataset in ascending order of timestamp by using 

pandas.sort_values(). 

Last but not least, all the log files are combined into single dataset. The dataset is then saved 

back to Google Cloud Storage by specifying the file path. 

 

4.2.3 Data Exploration 

 

 

Figure 4.5: Flowchart for data exploration in smartphone based HAR system. 

 

The next step in the smartphone based HAR system proposed is data exploration. This step 

is performed to allow researchers to better understand the structure, quality, and characteristics 

of the created dataset. This step is crucial to identify subsequent data preparation steps. 
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The researcher first loads the dataset from Google Cloud Storage using 

pandas.load_parquet(). Then, the researcher identifies the shape of the dataset via 

pandas.shape attribute. The researcher also recognizes the data type of each attributes in the 

dataset, including the number of non-null values and memory usage by using pandas.info(). 

The researcher also generates statistical summary of the dataset by using pandas.describe(). 

This helps to gain insights into the central tendency and dispersion of the dataset, identifying 

potential outliers, and understanding the distribution of numerical variables in the dataset. Next, 

the researcher identifies missing values and infinity values in the dataset by using 

pandas.isnull(), numpy.isinf() and numpy.isneginf(). Subsequently, the researcher computes 

and visualize the class distributions in the dataset by using pandas.crosstab() and 

seaborn.countplot(). Lastly, the researcher visualizes the relationship between the numerical 

variables in the dataset by using correlation matrix via pandas.corr() and seaborn.heatmap. 

The squares with darker color indicate the stronger relationship between the variables, while 

squares with lighter color suggest weak relationships or no relationship. 

 

4.2.4 Data Segmentation 

 

 

Figure 4.6: Flowchart for data segmentation in smartphone based HAR system. 
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Since raw time-series sensor data cannot be fed directly to LSTM model, therefore the 

subsequent step would be data segmentation by using window sliding techniques. The 

researcher first loads the preprocessed dataset. Then, the dataset is divided into smaller 

segments, called windows. Each window consists of 0.5 seconds of accelerometer and 

gyroscope signals, with 50% overlap between consecutive windows to minimize information 

loss at the edge of windows. After segmentation, the windows of data are divided into 80% of 

training dataset and 20% of testing dataset. 

 

4.2.5 Model Training & Evaluation 

 

Figure 4.7: Flowchart for model training and evaluation in smartphone based HAR system. 

 

 

Figure 4.8: Architecture of LSTM model proposed. 
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For LSTM model training, the researcher first builds the architecture of the model. A 

unidirectional and simple LSTM model is proposed in this project by using TensorFlow and 

Keras. The model consists of one LSTM layer, one dropout layer and one dense layer. The first 

layer is a LSTM layer with 32 nodes to capture sequential patterns in the data. The number of 

node is chosen since our training dataset only consists of 3846 data points after data 

segmentation. LSTM model which is too complex will introduce overfitting problem during 

training when our dataset size is small. Next, the hidden layer incorporates a dropout layer with 

a 30% dropout rate to prevent overfitting problem. Overfitting happens when a model becomes 

too specialized in fitting certain data patterns. The dropout technique is a regularization 

techniques in neural network to reduce the interdependencies among neurons by randomly 

deactivating a subset of neurons in the layer during training. This introduces noise and 

variability during training, ensuring that each batch of data is trained using different subsets of 

neuron and thereby regularize the model. The dense layer is a fully connected dense layer 

implemented using Softmax activation function for multiclass classification. The Softmax 

activation function takes an input vector and computes the probability of the input belongs to 

each class. The probability scores computed are normalized to ensure that they sum up to 1. 

Then, the final output is the class with the highest probability score.  

Additionally, the LSTM model is compiled with categorical cross-entropy loss. 

Categorical cross-entropy is a loss function which measures the difference between the 

predicted distribution of classes (output of neural network) and the true distribution of classes 

(ground truth labels). Besides, Adam optimizer is used, which is a stochastic gradient descent 

optimizer used to dynamically adjust the learning rates of the model to minimize loss function. 

The evaluation metric used is accuracy. 

During training, a constant batch size of 4 is used. Batch size refers to the number of 

data samples that are processed together in a single forward and backward pass through a neural 

network during training. In this context, a batch size of 4 means that, during each iteration of 

model training, the neural network processes four data samples simultaneously. A batch size 

of 4 is chosen as smaller batch size are more suitable to work with small datasets and when we 

have limited computational resources. 

The LSTM model training is conducted for 50 epochs with early stopping based on 

validation loss with a patience of 5 epochs. The code used to implement the early stopping is 

EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True). This means that 

the model training will run for a maximum of 50 iterations during training, but it will stop early 
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if the validation loss does not improve for 5 consecutive epochs. In other words, if the 

validation loss remains stagnant or increases for five consecutive epochs, the training process 

will terminate before reaching the maximum of 50 epochs to prevent overfitting and save time. 

Before stopping, the code will automatically restore the model’s weight to the best observed 

point that achieved the best validation loss during training. 

After building the architecture of LSTM model, we can proceed with the training of 

LSTM model using all the parameters mentioned. After training, the LSTM model’s 

performance is evaluated by computing confusion matrix, accuracy, loss and RMSE. A graph 

on the change of train loss, train accuracy, validation loss and validation accuracy are also 

plotted using matplotlib library. 

 

4.2.6 Hyperparameter Tuning 

 

 

Figure 4.9: Flowchart for hyperparameter tuning in smartphone based HAR system. 

 

After model training and evaluation, hyperparameter tuning is performed. Firstly, we 

define a KerasClassifier as a wrapper for the keras model. This is because we are going to use 

GridSearchCV by scikit-learn library. A KerasClassifier wrapper is necessary so that the keras 

model can be integrated with the hyperparameter tuning routines by scikit-learn library. 

Subsequently, we identify the hyperparameters that need to be tuned. In this project, we 
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perform tuning for batch size, epochs, learning rate and dropout rate. Then, we define the search 

space for each hyperparameter, which is the range of values the model is going to explore. For 

example, the search space defined for the batch size is 4, 16 and 32. Next, we need to identify 

the hyperparameter tuning strategy. In this context, we use GridSearchCV provided by scikit-

learn library to perform the hyperparameter tuning. GridSearchCV trains and evaluates the 

model over all possible combinations of hyperparameter values within the defined search space 

to find the combinations that achieve the best accuracy. We also implement the early stopping 

that will monitor the validation loss during training. It will stop the training when the validation 

loss does not improve for 5 consecutive epochs to prevent overfitting problem. Finally, we 

implement the hyperparameter tuning and identify the combination of hyperparameter that 

achieve the best accuracy. 

 

4.2.7 Model Testing 

 

 

Figure 4.10: Flowchart for model testing in smartphone based HAR system. 

 

The last step in the proposed smartphone based HAR system is model testing by using 

the dedicated testing dataset. By using the combination of hyperparameters identified in 

previous step, the trained and fine-tuned model is tested to measure the models' real-world 

performance by allowing the model to be presented with new, previously unseen data that 

simulates real-world scenarios. 
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The researcher first gets the testing dataset. Then, he or she performs testing on the 

trained and fine-tuned model. After that, the researcher evaluates the performance of the model 

by computing accuracy, loss, RMSE and confusion matrix. The evaluation results obtained 

from testing process provide valuable insights into the effectiveness, practical utility, and 

reliability of the proposed HAR system. 
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Chapter 5 

System Implementation 

 

5.1  Hardware Setup 

The hardware involved in this project is a laptop and two Android mobile devices. The 

two Android devices used involve a smartphone and a tablet. The smartphone will be installed 

with SensorDataLogger to show real-time sensor data from accelerometer and gyroscope, to 

collect sensor data, to annotate the log file automatically, to save the log file with specified 

filename, and to upload the log file to Google Cloud Storage server for further processing. The 

tablet will be installed with SensorData to give instructions to the smartphone.  

The laptop is used to develop the mobile applications, SensorData and 

SensorDataLogger. The laptop is also used to perform HAR relevant operations such as dataset 

creation, data preprocessing, data exploration, data segmentation, model training and 

evaluation, hyperparameter tuning, and model testing. 

 

Description Specifications 

Model Lenovo IdeaPad S540 

Processor 2nd Gen AMD Ryzen™7 

Operating System Windows 11 

Graphic AMD Integrated Graphics 

Memory 12 GB DDR4 

Storage 512 GB PCIe SSD 

 

Table 5.1: Specifications of laptop 

 

Description Specifications 

Model Redmi Note 11 Pro 5G 

Processor Snapdragon 695, Octa-core Max 2.2 GHz 

Operating System Android 12, MIUI 13 

Graphic Mali-G57 MC2 

Memory 8GB RAM 



Chapter 5 
 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    74 
 

Storage 128GB 

 

Table 5.2: Specifications of smartphone 

 

Description Specifications 

Model Samsung Galaxy Tab A8 10.5 

Processor Octa-core  

Operating System Android 13 

Graphic Mali-G52 MP2 

Memory 4GB RAM 

Storage 64GB 

 

Table 5.3: Specifications of tablet 

 

5.2  Software Setup 

This project focuses on both the data engineering system and human activity 

recognition system. Several software is used in Android devices and laptop.  

Firstly, software used in laptop include Android Studio and Google Colab. Android 

Studio is used for the purpose of developing mobile applications to implement the data 

engineering system. The Android emulators in Android Studio were also used to simulate the 

mobile applications being developed, i.e., the user interface and the functionalities, before 

being installed to the smartphones. Besides, Google Colab is used for the purpose of dataset 

creation, data preprocessing, data exploration, data segmentation, model training and 

evaluation, hyperparameter tuning, and model testing. 

Next, the software that needs to be installed in Android devices include SensorData and 

SensorDataLogger. These applications are used to implement the data engineering system to 

collect sensor data from accelerometer and gyroscope embedded in smartphone. Besides, the 

applications can be used to annotate the log files automatically, to save the log files inside local 

storage with specified filename and upload all the log files to Google Cloud Storage server for 

further processing. 
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Figure 5.1: Android Studio Arctic Fox, 2020.3.1, Patch 4 

 

 

Figure 5.2: Android emulators used. 

 



Chapter 5 
 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    76 
 

 

Figure 5.3: Google Colab interface. 

 

5.3  Cloud Setup 

  This project involves the usage of cloud platform, which is Google Cloud Storage to 

store the uploaded sensor data log files for further processing.  Before the researcher starts to 

collect data, the SensorDataLogger application will request the researcher to log into Google 

account. After the researcher collects the data, the log files will be stored locally inside 

smartphone storage. After done collecting data for all the activities, the researcher can click the 

button ‘Upload Log Files’ via SensorData application to upload all the log files to the logged 

in Google Cloud Storage server.  

 

 

Figure 5.4: Google Cloud Storage bucket used to store the log files. 
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5.4  Setting and Configuration  

For data collection, two Android devices installed with SensorData and 

SensorDataLogger are used. These two devices must be configured first before data collection. 

For instance, both applications need to be given permissions to access Bluetooth and storage 

of the devices. Bluetooth permission is needed because both applications need to send and 

receive instructions via Bluetooth. Storage permission is needed because SensorData will store 

the activity buttons’ details created, which is the activity name and ID inside the local storage 

while SensorDataLogger will store the log files created inside the local storage temporarily 

before uploading to cloud. Besides, SensorDataLogger application will ask the user to log into 

Google account. This is because the log files collected later will be uploaded to Google Cloud 

Storage for further storage and processing. Furthermore, dialogs will pop out on both 

applications, asking to turn on Bluetooth if they are currently inactive. On the other hand, 

activity buttons need to be created before data collection by defining unique activity names and 

IDs. The configurations are also needed for GCS. Before we can upload the log files to cloud 

server, the researcher needs to create a project through the console and create a service account 

for authentication purpose. Then, we need to include the code to connect the SensorDataLogger 

application with the GCS during the development of mobile applications. 

Next, the data collection process requires some settings. The device installed with 

SensorDataLogger should stay inside the front pocket of the data subject along the way when 

data collection process is performed. Whereas the device installed with SensorData will be held 

in hand by researcher or data subject to start the data collection process. This project is 

collecting sensor signals for 4 activities, including walking, standing, climbing upstairs, and 

climbing downstairs. There are in total 5 data subjects involved, whereby each data subject will 

perform each activity for 1 minute. 

 The HAR related operations such as dataset creation, data exploration, data segmentation, 

model training and evaluation, hyperparameter tuning and model testing are implemented in 

Google Colab. Before we can perform the operations, we need to first sign into the Google 

Colab using Google account and create a new .ipynb notebook. Besides, to extract the data 

stored in Google Cloud Storage to Google Colab, we need to create a service account via 

Google Cloud Console and upload the .json file of the service account to Google Colab for 

authentication purpose. Then, we need to run the code from google.colab import auth and 

auth.authenticate_user() to connect the Google Colab to the relevant GCS account. 

 



Chapter 5 
 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    78 
 

5.5  System Operation 

5.4.1 Data Engineering 

The data engineering system in this project refers to sensor signals collection, 

annotation, and storage. For the implementation of data engineering system, two Android 

devices installed with SensorData and SensorDataLogger applications are used.  

 

5.4.1.1 User Interface of SensorData and SensorDataLogger 
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Figure 5.5: User Interface of SensorData 
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Figure 5.6: User Interface of SensorDataLogger 

 

5.4.1.2 Authorization to use Bluetooth and storage 

Before start collecting data, the SensorData and SensorDataLogger applications are 

given permissions to use Bluetooth and storage. The developed applications are connected 

using Bluetooth to send and receive instructions. Besides, devices’ local storage will be needed 

to store the sensor data log files temporarily. Users need to grant permissions to allow the 

applications to access the Bluetooth service and local storage of devices. If any of the 

permissions are not granted by users, it will bring effects to the following processes of the 

applications. For instance, the applications cannot communicate via Bluetooth, or the 

application cannot store log files into local storage of device. 
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Figure 5.7: Dialog box asking for Bluetooth permission. 

 

 

Figure 5.8: Dialog box asking for storage permission. 

 

5.4.1.3 Turn on Bluetooth 

  The devices’ Bluetooth need to be turned on before data collection. If the Bluetooth is 

inactive initially, a dialog box will pop out, asking to turn on the Bluetooth when the researcher 

starts the applications. 
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Figure 5.9: Dialog box asking to turn on Bluetooth in SensorDataLogger. 
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Figure 5.10: Dialog box asking to turn on Bluetooth in SensorData. 

 

5.4.1.4 Google Cloud Storage server 

One of the functions of SensorDataLogger is to upload all the sensor data log files in 

the specified path to Google Cloud Storage bucket, upon instructions from SensorData. To 

achieve this function, the application involves the usage of Google Cloud Platform and Google 

Cloud Storage. First, I will have to create a new project called SensorDataLogger in Google 

Cloud Platform through Google Cloud console. Next, I will create a bucket in Google Cloud 

Storage with the name sensordatalogger-logfiles.appspot.com. Last but not least, I will create 

a service account to authenticate SensorDataLogger application and authorize it to access 

user’s account. Once these steps are completed, the SensorDataLogger application will be able 

to access user’s Google account and upload log files to the created bucket for further 

processing. 
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Figure 5.11: Service account created. 

 

 

Figure 5.12: Bucket sensordatalogger-logfiles.appspot.com created. 

 

5.4.1.5 Google account sign in 

After the user grants the permissions to use Bluetooth and storage, the 

SensorDataLogger application will redirect user to Google account sign-in page. This step is 

necessary to ensure that the sensor data log files can be uploaded successfully to the relevant 

Google Cloud Storage bucket. 
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Figure 5.13: Google account sign-in page. 

 

5.4.1.4 Add Activity Buttons 

The researcher needs to add activity buttons that he or she wants to collect data for via 

SensorData application. The researcher needs to define unique activity name and class ID and 

click ‘CREATE ACTION’ button. The buttons created will be shown in the list in user 

interface. In this project, we create 4 activity buttons. with the name and ID as  

• STAND - 1 

• WALK - 2 

• STAIR DOWN - 3 

• STAIR UP - 4 
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The activity ID specified here will be used as the filename of the log files. If users want to 

delete the activity buttons created all they need to do is swipe the created button in the list to 

the left. 

 

 

Figure 5.14: Dialog box to add activity buttons in SensorData. 
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Figure 5.15: Swipe to the left to delete activity button. 

 

5.4.1.5 Real-time accelerometer and gyroscope data 

Once users grant the permission to use Bluetooth and storage as well as signing in 

Google account, the SensorDataLogger application will show real-time accelerometer and 

gyroscope data. This helps to monitor whether the application has access to accelerometer and 

gyroscope sensor or not. This function is achieved by using Sensor, SensorManager, 

SensorEvent and SensorEventListener classes imported from Android.hardware package.  
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Figure 5.16: Real-time accelerometer and gyroscope data in SensorDataLogger. 

 

5.4.1.6 List of activity buttons 

Once users grant the permission to use Bluetooth and storage and users already went 

through the process of creating activity buttons, the SensorData application will show the list 

of activity buttons created. 
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Figure 5.17: List of activity buttons in SensorData. 

 

5.4.1.8 Bluetooth connection 

The researcher will connect both SensorData and SensorDataLogger via Bluetooth to 

start the data collection process. The applications contain features of showing list of paired 

devices and showing the Bluetooth connection status, whether it is disconnected or connected 

to certain device. 

In this project, SensorData is installed on Samsung Galaxy A8 10.5 while 

SensorDataLogger is installed on Redmi Note 11 Pro 5G. To initiate Bluetooth connection 

from SensorData to SensorDataLogger, the user needs to click the option menu at the top right 

corner of the application and chooses the option ‘Connect device’. Then, a list of pair devices 

will be shown. The user will then choose to connect with Redmi Note 11 Pro 5G. The status 

will then change from ‘not connected’ to ‘connecting’. If the applications are successfully 

connected via Bluetooth, the status shown under the title bar of SensorData will change to 

‘Connected to Redmi Note 11 Pro 5G’ and the status shown in SensorDataLogger will be 

‘Connected to Samsung Galaxy A8’. 

 



Chapter 5 
 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    90 
 

 

 

Figure 5.18: The devices show status ‘Not connected’. 
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Figure 5.19: The device displays list of paired devices. 
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Figure 5.20: SensorData initiate Bluetooth connection to SensorDataLogger, status showing 

‘Connecting…’ 
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Figure 5.21: The devices show status ‘Connected to Redmi Note 11 Pro 5G’ and ‘Connected 

to Samsung Galaxy A8’. 

 

5.4.1.9 Start recording 

 After the applications are connected via Bluetooth, they are now ready to send and 

receive instructions. Users can now start the data collection process. To collect data, the user 

needs to click the activity button that he or she wants to collect data for. After that, a dialog 

will pop out asking to set the duration for the relevant data collection process. Then, click the 

‘START’ button. The SensorData application will send instructions to start recording to 

SensorDataLogger application and start a timer. Similarly, when SensorDataLogger 

application receives the instructions, a timer will start. Now the data subject starts to perform 

the activities, such as standing, walking, climbing upstairs and climbing downstairs. Note that 

the device installed with SensorDataLogger stays in the pocket of data subject along the way 

he or she is performing the activities to collect the accelerometer and gyroscope signals. 
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Figure 5.22: Click activity button ‘WALK’ via SensorDataLogger. 

 

 

Figure 5.23: A dialog asking to set duration. After that, click ‘START’. 

 

 

Figure 5.24: A timer starts at SensorData. 
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Figure 5.25: A timer starts at SensorDataLogger. 

 

5.4.1.10 Stop recording 

After timer stops, the SensorDataLogger and SensorData applications will stop data 

recording process. The log files created will be automatically annotated via SensorDataLogger 

application. 
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Figure 5.26: Timer stops. SensorDataLogger stops to collect sensor signals for ‘WALK’ 

activity. 

 

5.4.1.11 Save log files 

To save the log file, the researcher needs to click ‘Save Log File’ button and SensorData 

application will send instructions to SensorDataLogger to save the log file. The CSV log files 

will be saved in local storage of devices installed with SensorDataLogger, which is at 

/storage/emulated/0/Android/data/my.edu.utar.sensordatalogger/files with a fixed filename 

format, which is a combination of filename and datetime. Note that the user does not need to 

specify the filename manually. The filename for the relevant log file will be the activity ID 

specified when the activity button is created. For example, when the user creates the activity 

button for ‘WALK’ activity, the activity name defined is ‘WALK’ and the activity ID specified 

is ‘1’. Hence, after user collect data for walking activity and click ‘Save Log File’ button, the 

log files will be saved with the filename ‘Log_1_20230814202506.csv’.  
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Figure 5.27: Click ‘Save Log File’ button. 

 

 

Figure 5.28: Log files saved with specified filename. 

 



Chapter 5 
 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    98 
 

 

Figure 5.29: Log files content with automated annotation. 

 

5.4.1.12 Upload log file to Google Cloud Storage bucket 

Users can choose to either upload log file each time after collecting data and saving log 

file for one activity, or the user can choose to upload all the log files at once. The user would 

need to click the ‘Upload Log File’ button at SensorData. The instructions will be sent to 

SensorDataLogger, which will start to read and upload all the files available in the specified 

path to the specified bucket in the logged in Google Cloud Storage account. In this project, we 

are going to upload log files to the bucket sensordatalogger-logfiles.appspot.com. After 

uploaded successfully all the files, the log files in the local storage will be deleted. 
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Figure 5.30: Click ‘Upload Log File’ button. 
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Figure 5.31: Upload log files to the bucket. 

 

5.4.2 Dataset Creation 

 After data engineering process, the log files collected for all activities are now stored in the 

bucket sensordatalogger-logfiles.appspot.com in the folder CSVFile/ in Google Cloud Storage 

server. This project involves 5 data subjects and collects accelerometer and gyroscope data for 

4 activities. Each data subject is required to perform each activity for 1 minute. Hence, there 

are many individual log files being created and stored. Large amounts of individual log files 

make it difficult for subsequent HAR related operations such as data exploration, data 

segmentation, etc. Therefore, this dataset creation process is implemented to combine all the 

log files into single dataset and perform some basic preprocessing steps. 

 Before implementing the code for dataset creation, we need to import the necessary 

libraries, including pandas, gcsfs and google.cloud. We use the code from google.cloud import 

storage, import pandas as pd and import gcsfs. 
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This dataset creation process is implemented in Google Colab. First, we need to import 

the CSV log files. This is done by first retrieving the list of CSV file paths stored in GCS 

bucket. We specify the project ID, bucket name and folder name as shown in Figure 5.35. One 

of the example CSV file paths retrieved is “CSVFile/Log_1_20230814202506.csv”. To read 

the CSV file into Google Colab, gsutil URI, which is a file path specifically used by GCS, 

needs to be used. Hence, we need to format the filename of the CSV log files using the code in 

Figure 5.36. The example formatted file path looks like “gs://sensordatalogger-

logfiles.appspot.com/CSVFile/Log_1_20230814202506.csv”. Then, we can read the CSV files 

by using pd.read_csv() and the formatted file path. 

After that, we will convert the CSV log files to Parquet log files. Parquet files are used 

instead of CSV files since Parquet is a columnar storage file format designed for efficient 

compression and storage. It can significantly reduce the amount of space required to store the 

dataset compared to CSV files. This can be shown in Figure 5.37. Besides, Parquet files store 

data in a columnar format, making it easier to skip over irrelevant columns during data retrieval. 

This can lead to faster query and analysis performance, which is important in HAR research as 

we need to process and analyze data frequently. We convert the CSV files into Parquet files 

and later store the Parquet files back to GCS bucket inside folder ParquetFile/ using the 

to_parquet(), as shown in Figure 5.38. To read the Parquet files, we need to format the filename 

to gsutil URI, as shown in Figure 5.39. Then, we can read the Parquet files using 

read_parquet() and the formatted file path. 

Subsequently, we can combine the Parquet log files into single dataset. Before that, for 

each Parquet log files we will perform some preprocessing steps. For instance, drop rows with 

null values using pandas.dropna(), drop rows of data when timestamp equals to zero and sort 

the data in ascending order of timestamp using pandas.sort_values(). Then, we will combine 

the Parquet log files. The final dataset with the shape (120245, 7) is stored back into GCS with 

the name har.parquet. The final dataset consists of seven columns, whereby the first six 

columns are the signals data from accelerometer and gyroscope, and the last column is the 

activity label. 

The complete code for dataset creation is shown in Appendix. 
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Figure 5.32: Individual log files created and stored in Google Cloud Storage. 

 

 

 

Figure 5.33: Retrieve the list of CSV file paths stored in GCS. 
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Figure 5.34: Format the filename of CSV file. 

 

  

 

Figure 5.35: Storage spaces needed for CSV log files (LHS) compared to Parquet log files 

(RHS). 

 



Chapter 5 
 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    104 
 

 

Figure 5.36: Convert CSV files to Parquet files. Save back the Parquet files to GCS bucket 

inside folder ParquetFile/. 

 

 

 

Figure 5.37: Retrieve the list of Parquet file paths stored in GCS. 
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Figure 5.38: Format the filename of Parquet file. 

 

 

 

Figure 5.39: Preprocessing. 
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Figure 5.40: Some part of the final dataset, har.parquet. 

 

5.4.3 Data Exploration 

Firstly, we need to import the necessary libraries such as pandas, numpy, seaborn, and 

matplotlib. We use the code import numpy as np, import pandas as pd, import seaborn as sns, 

and import matplotlib.pyplot as plt. 

Then, we load the final dataset, har.parquet from GCS bucket by using read_parquet() 

and gsutil URI of the file into a pandas dataframe called explore_df. Then, we can print the 

shape of the dataset by using explore_df.shape. The shape of the dataset is (120245, 7).  

Next, we use explore_df.info() to recognize the data type of each attributes in the 

dataset, including the number of non-null values and memory usage. The result shows that 

there are in total 120245 non-null rows of data for 7 attributes. The first six columns which 

consist of signals data from accelerometer and gyroscope have float datatype, whereas the last 
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column which consists of activity labels has int datatype. The total memory usage for this 

dataset is 6.4MB. 

After that, we use explore_df.describe() to generate statistical summary of the dataset 

by calculating the mean, standard deviation, maximum, minimum, and quartile values of the 

data for each attribute in the dataset. This can help to gain insights into the central tendency 

and dispersion of the dataset, identifying potential outliers, and understanding the distribution 

of numerical variables in the dataset. The result shows that x attribute has the mean value of -

0.151056, standard deviation of 1.559903, min value of -11.06 and max value of 10.51. -0.92, 

-0.34 and 1.05 are the values for 25%, 50% and 75% quartile respectively. 

Next, the researcher identifies missing values and infinity values in the dataset by using 

explore_df.isnull(), numpy.isinf() and numpy.isneginf(). The result reveals that the dataset does 

not have any null values, negative infinity values and positive infinity values.  

Subsequently, the researcher computes and visualize the class distributions in the 

dataset by using pandas.crosstab() and seaborn.countplot(). The result shows that the dataset 

has an approximately equal distribution of samples among all the activities. The activity 

labelled ‘1’ has 30049 rows while the activity labelled ‘2’ consists of 30040 rows. The activity 

labelled ‘3’ has 30088 rows while the activity labelled '4’ consists of 30068 rows. 

Lastly, the researcher visualizes the relationship between the numerical variables in the 

dataset by using correlation matrix via explore_df.corr() and seaborn.heatmap. The squares 

with darker color indicate the stronger relationship between the variables, while squares with 

lighter color suggest weak relationships or no relationship. The result shows that there is a 

strong relationship between x and z, y and y2, etc. 

The complete code for data exploration is shown in Appendix. 
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Figure 5.41: Data type of each attribute in the dataset. 

 

 

Figure 5.42: Statistical summary of dataset. 

 

 

Figure 5.43: Null values of dataset for each attributes. 

 

 

Figure 5.44: Infinity values of dataset. 

 



Chapter 5 
 

Bachelor of Computer Science (Honours) 

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
    109 
 

 

Figure 5.45: Number of samples for each activity. 

 

 

Figure 5.46: Bar graph showing number of samples for each activity. 
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Figure 5.47: Correlation matrix. 

 

5.4.4 Data Segmentation 

Before data segmentation happens, we need to import necessary libraries such as 

pandas, scipy and sklearn. The codes being used are from sklearn.model_selection import 

train_test_split, from scipy import stats, from scipy.stats import mode and import pandas as 

pd. 

Firstly, we load the final dataset, har.parquet from GCS bucket by using 

read_parquet() and gsutil URI of the file into a pandas dataframe called lstm_df.  

Then, we split the dataset into small segments called windows. Each windows consists 

of 0.5 seconds of data with 50% overlap to minimize information loss at the edge of windows. 

In other words, each segment consists of 50 consecutive data points from each of the six 

features. Sometimes, there may be situation where there are two or more different labels in one 

segment of data. In this situation, the labels being assigned to each segment are decided by 

using the mode of labels. The mode of labels is calculated using stats.mode. Next, we split the 

signals and labels during segmentation and save the final results into different variables, 

reshaped_segments and labels. The result shows that the shape of the reshaped_segments is 

(4808, 50, 6), whereby the first number indicates number of segments, the second number 
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indicates the number of time steps, and the third number indicates the number of features. The 

shape of the labels is (4808, 4), whereby it consists of 4808 segments and 4 classes. 

Lastly, we split the dataset into 80% of training dataset and 20% of testing dataset by 

using train_test_split() and the input vector will be reshaped_segments and labels obtained 

from previous steps. The output vectors are X_train, y_train, X_test and y_test. The shape of 

the X_train is (3846, 50, 6) and y_train is (3846, 4). Whereas the shape of the X_test is (962, 

50, 6) and y_test is (962, 4). 

The complete code for data segmentation is shown in Appendix. 

 

5.4.5 Model Training and Evaluation 

In this project, we choose to use LSTM model. Beforehand, we need to import 

necessary libraries. The libraries we are going to use include pandas, sklearn, matplotlib and 

tensorflow. 

Firstly, we need to build the architecture of the LSTM model. We define a 

create_lstm_model() which takes two parameters, dropout rate and learning rate. Inside the 

create_lstm_model() function, a sequential neural network is created by using 

tf.keras.models.Sequential(). After that, we add a LSTM layer with 32 units to the model by 

using model.add(LSTM(units = 32, input_shape = (X_train.shape[1], X_train.shape[2]))). 

Then, we add a dropout layer as the hidden layer by using model.add(Dropout(dr)) where the 

default dropout rate, dr is 0.3. We also add a dense layer as the output layer with 4 units and 

softmax activation function by using model.add(Dense(y_train.shape[1], activation = 

'softmax')). Subsequentially, we initialize an Adam optimizer with the learning rate, lr of 

0.0025 by using optimizer = Adam(learning_rate=lr). The LSTM model is then compiled with 

categorical cross-entropy loss function, the Adam optimizer initialized before and accuracy as 

the evaluation metrics. The code being involved here is 

model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']). 

We also run model.summary() to view the summary of LSTM architecture as shown in Figure 

5.51. 

Next, we can start training the LSTM model that we built by defining the batch size as 

4 and n_epochs as 50. Early stopping is also defined here to monitor the validation loss during 

model training, by using EarlyStopping(monitor='val_loss', patience=5, 

restore_best_weights=True). Then, we start training by using model.fit(X_train, y_train, 

epochs = n_epochs, validation_split = 0.20, callbacks=[early_stopping], batch_size = 
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batch_size, verbose = 1). Figure 5.52 shows the result of loss, accuracy, validation loss and 

validation accuracy for each iteration of model training. The results show that the model 

training stops at 26th iteration with loss (0.0956), accuracy (0.9711), validation loss (0.1278) 

and validation accuracy (0.9688) before reaching the maximum 50th  iteration. This is because 

the early stopping is monitoring the validation loss during model training. If the validation loss 

remains stagnant or increases for five consecutive epochs, then the training process will 

terminate to prevent overfitting. Early stopping will also automatically restore the model’s 

weight to the best observed point that achieved the best validation loss during training. 

Subsequently, a graph is plot as shown in Figure 5.53. The graph is plotted on the 

changes of train loss, train accuracy, validation loss and validation accuracy over the time 

during model training. The graph shows that the training loss and validation loss decrease 

gradually from 1st epoch until around 10th epoch. Then starting from 11th epoch until 26th epoch, 

the training loss and validation loss remains stagnant and slightly fluctuate. Whereas for 

training accuracy and validation accuracy, the result shows that they increase gradually from 

1st to around 10th epoch and remain stagnant from 11th epoch to 26th epoch. 

Lastly, we compute the accuracy, loss and RMSE of model training. The result is shown 

at Figure 5.54, with accuracy at 0.9828392863273621, loss at 0.06129278615117073 and 

RMSE at 0.08665741. We also compute the confusion matrix, as shown in Figure 5.55. 

The complete code for model training and evaluation is shown in Appendix. 

 

 

Figure 5.48: Libraries or packages used. 
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Figure 5.49: LSTM model architecture. 
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Figure 5.50: Results of model training. 

 

 

Figure 5.51: A graph plotted on the changes of train loss, train accuracy, validation loss and 

validation accuracy. 

 

 

Figure 5.52: Accuracy, loss and RMSE of training. 
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Figure 5.53: Confusion matrix. 

 

5.4.6 Hyperparameter Tuning 

  Before implementing hyperparameter tuning, we need to import necessary libraries. 

The libraries used include scikeras, sklearn and tensorflow. 

  Firstly, we define a KerasClassifier as a wrapper for our Keras model by using 

KerasClassifier(build_fn=create_lstm_model, verbose=0, batch_size=4, dr=0.2, epochs=30, 

lr=0.001). Next, we define the param_grid, which is the search space for the hyperparameters 

that the model is going to explore. Here, we perform hyperparameter tuning for batch size, 

dropout rate, learning rate and epochs. After that, we initialize the early stopping just like what 

we did during model training to monitor validation loss and prevent overfitting. The code 

involved is early_stopping = EarlyStopping(monitor='val_loss', patience=5, 

restore_best_weights=True). Then, we start to implement hyperparameter tuning using 

GridSearchCV, whereby we use 3-fold cross validation and we split the training dataset into 

80% of training data and 20% of validation data. The code being used is 

GridSearchCV(estimator=keras_model, param_grid=param_grid, cv=3, scoring='accuracy', 

n_jobs=-1) and grid_result = grid.fit(X_train, y_train, validation_split=0.2, 

callbacks=[early_stopping]). 
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  Finally, we access the best parameters and best accuracy using 

grid_result.best_params_ and grid_result.best_score_. The result shows that the best 

combination of hyperparameters is batch size of 16, dropout rate of 0.2, epochs of 50 and 

learning rate 0.0025. The accuracy achieved is 0.96. 

The complete code for hyperparameter tuning is shown in Appendix. 

 

 

Figure 5.54: Libraries or packages used. 

 

 

Figure 5.55: param_grid. 

 

 

Figure 5.56: Best combination of hyperparameters and accuracy. 

 

5.4.7 Model Testing 

  Firstly, we re-train the LSTM model by using the combination of hyperparameters 

identified in previous step and on the training dataset. Then, we performed testing by using the 

dedicated testing. The codes involved are tuned_model.evaluate(X_test, y_test, batch_size = 

batch_size, verbose = 1) and tuned_model.predict(X_test).  Then, we compute the accuracy, 

loss, and RMSE, as shown in Figure 5.60. The result shows that after hyperparameter tuning, 

the model can achieve an accuracy of 0.9656964540481567, loss of 0.11889327317476273 

and RMSE of 0.11827322. We also compute confusion matrix, as shown in Figure 5.61.  

The complete code for model testing is shown in Appendix. 
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Figure 5.57: Accuracy, loss and RMSE of testing. 

 

 

Figure 5.58: Confusion matrix. 

 

5.6  Implementation Issues and Challenges 

The challenging part during development of the project is sensor data synchronization. 

This project involves collecting sensor signals from accelerometer and gyroscope. Hence, I 

need to ensure that the sensor data recorded are synchronized correctly. 

Next, another challenging part is ensuring the reliable Bluetooth connectivity between 

SensorData and SensorDataLogger. Bluetooth connectivity between SensorData and 

SensorDataLogger is important because the applications send and receive instructions via 

Bluetooth. I need to determine the furthest distance that the Bluetooth connectivity can hold 

between the devices, to ensure the reliability of the dataset being created later. 
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  Besides, another challenging part is technical issues with the Android Studio while 

developing mobile applications. This is due to unfamiliarity with the software interface and 

functionalities and can be overcame by searching solutions from Internet. 

  Additionally, another challenge while performing human activity recognition research 

is the technical issues with Google Colab. Sometimes there would be problems like 

incompatible versions of the libraries, missing packages, missing modules, etc. This challenge 

can be overcome by searching solutions and opinions from Internet. 

 

5.7  Concluding Remark 

  In the nutshell, we have shown here what are the hardware, software and cloud 

component being used in this project. The hardware used are laptop and two Android devices. 

The software used are Google Colab, Android Studio SensorData and SensorDataLogger. The 

cloud used is GCS. We have also stated their specifications and functions in the proposed 

system and how to properly configure them before usage. Laptop is used for the development 

of mobile applications using Android Studio and HAR related operations using Google Colab. 

Two Android devices are installed with SensorData and SensorDataLogger to implement the 

data engineering system proposed. It is important to make configurations and settings before 

we start to perform data engineering and HAR related operations. This helps to prevent 

common errors that might happen during system implementation and reveal some errors that 

we might overlook. For instance, the applications need to be given permissions to use Bluetooth 

and storage and turn on Bluetooth before data collection.  

The codes and partial results for the HAR related operations, including date exploration, 

data segmentation, model training and evaluation, hyperparameter tuning and model testing are 

described in detail here and attached in Appendix. This helps other researchers who are 

referencing this project to have better understanding and are able to replicate and further 

enhance this project. Finally, the implementation issues and challenges serve as a reminder for 

other researchers who are referring to this project to avoid making the same mistake. 
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Chapter 6 

System Evaluation and Discussion  

 

6.1  Model Testing and Performance Metrics 

  In this project, model testing is implemented using the dedicated testing datasets and 

the hyperparameter combination obtained from hyperparameter tuning. Later, the performance 

of model testing is evaluated using accuracy, loss, RMSE, and confusion matrix.  

Firstly, we re-train the LSTM model by using the combinations of hyperparameters that 

achieve the best performance during hyperparameter tuning. The hyperparameters used involve 

a batch size of 16, epochs of 50, dropout rate of 0.2 and learning rate of 0.0025. We also 

implement early stopping and dropout techniques to prevent overfitting. Other 

hyperparameters remain the same.  

 

 

 

 

 

 

 

 

 

 

 

 

After that, we start to perform testing. The accuracy and loss are obtained by first using 

the tuned models to make evaluations on testing datasets. In this project, our testing dataset 

consists of shape (962, 50, 6). The accuracy represents the proportion of correctly classified 

samples out of the total samples in the dataset. The loss represents how well the predictions 

match the true labels. Additionally, RMSE is computed by first using the tuned model to make 

predictions on testing dataset and store the predictions. Then, we use mean_squared_error() to 

calculate MSE and RMSE is obtained by applying square root on MSE. RMSE represents the 

magnitude of predictions errors. Lower value of RMSE indicates better performance.  

tuned_model = tf.keras.models.Sequential() 

tuned_model.add(LSTM(units = 32, input_shape = (X_train.shape[1], X_train.shape[2]))) 

tuned_model.add(Dropout(0.2)) 

tuned_model.add(Dense(y_train.shape[1], activation = 'softmax')) 

optimizer = Adam(learning_rate=0.0025) 

tuned_model.compile(loss='categorical_crossentropy', optimizer=optimizer, 

metrics=['accuracy']) 

batch_size = 16 

n_epochs = 50 

early_stopping = EarlyStopping(monitor='val_loss', patience=5, 

restore_best_weights=True) 

history = tuned_model.fit(X_train, y_train, epochs = n_epochs, validation_split = 0.20, 

callbacks=[early_stopping], batch_size = batch_size, verbose = 1) 
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Confusion matrix is also computed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2  Testing Setup and Result 

 

 

Figure 6.1: Confusion matrix of model testing. 

# loss and accuracy 

loss_tuned, accuracy_tuned = tuned_model.evaluate(X_test, y_test, batch_size = 

batch_size, verbose = 1) 

 

# RMSE 

y_pred_tuned = tuned_model.predict(X_test) 

mse_tuned = mean_squared_error(y_pred_tuned, y_test) 

rmse_tuned = np.sqrt(mse_tuned) 

 

#confusion matrix 

predictions = tuned_model.predict(X_test) 

class_labels = ['1', '2', '3', '4'] 

max_test = np.argmax(y_test, axis=1) 

max_predictions = np.argmax(predictions, axis=1) 

confusion_matrix = metrics.confusion_matrix(max_test, max_predictions) 

sns.heatmap(confusion_matrix, xticklabels = class_labels, yticklabels = 

class_labels, annot = True, linewidths = 0.1, fmt='d', cmap = 'YlGnBu') 

plt.title("Confusion matrix", fontsize = 15) 

plt.ylabel('True label') 

plt.xlabel('Predicted label') 

plt.show() 
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Figure 6.2: Accuracy, loss and RMSE of model testing. 

 

  Firstly, we re-train the LSTM model by using the combinations of hyperparameters that 

achieve the best performance during hyperparameter tuning. Then, we performed the testing 

using the tuned model and testing dataset.  

After testing, we compute accuracy, loss and RMSE and the result is shown in Figure 

6.2. The result shows that the tuned model can achieve an accuracy of 96.57% when being used 

on new, unseen dataset. This proves the generalization capabilities of LSTM model trained 

using dataset created from the proposed data engineering system. In essence, this validates the 

efficiency and capability of the proposed data engineering system in producing high-quality 

datasets and conducive to robust model generalization. Overfitting problem is not expected to 

occur since we are implementing early stopping and dropout technique. 

Furthermore, a confusion matrix is also computed, as shown in Figure 6.1. According 

to the result, the LSTM model predicted quite well for each activity, including standing (1), 

walking (2), climbing downstairs (3) and climbing upstairs (4). However, the model sometimes 

confuses between walking (2), climbing downstairs (3) and climbing downstairs (4). Overall, 

the model achieves good accuracy and generalization capability. 

 

6.3  Project Challenges 

  One of the challenges encountered while implementing this project is deficiencies in 

knowledge and experience. This projects involve data engineering and human activity 

recognition which requires knowledge about development of mobile applications, machine 

learning pipeline and techniques, deep learning models architecture, etc. Prior starting this 

project, only limited opportunities are available to get involved in developing mobile 

applications, machine learning pipeline and deep learning process, and most of them are basic 

practices for beginners. Consequently, the successful execution of this project necessitated a 

substantial investment of time and effort into intensive research and investigative efforts to 

have a profound understanding of the underlying concepts and technologies essential for its 

realization.  
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  Besides, another project challenge includes limited number of data subjects involved in 

this project. Deep learning model training typically necessitates access to large datasets for 

effective generalization. However, since only five data subjects are involved, the resulting 

dataset size is quite small. This raises concerns about the potential susceptibility to overfitting 

of model. To mitigate this issue, dropout techniques and early stopping techniques have been 

incorporated during model training, hyperparameter tuning and model testing to prevent 

overfitting. 

  Furthermore, another project challenge is constraint imposed by limited computational 

resources. In this project, all the HAR related operations are implemented in Google Colab. 

One of the tasks in HAR requires substantial number of computational resources, which is 

hyperparameter tuning. A substantial investment of time, which is about 2 hours are still 

required for hyperparameter tuning although the hardware specifications had been changed to 

GPU T4. Extra payment is needed if more resources are needed.  

 

6.4  Objectives Evaluation 

Index Objectives States 

1 

To address the issue of inefficient data engineering 

infrastructure being used in current Human 

Activity Recognition (HAR) research. 

Completed 

2 

To develop a comprehensive, efficient, and user-

friendly data engineering system for data 

collection, annotation, and storage. 

Completed 

3 
To design and develop mobile applications, 

SensorData and SensorDataLogger. 
Completed 

4 
To evaluate the efficiency of proposed data 

engineering system on HAR algorithm. 
Completed 

 

Table 6.1: Objectives evaluation. 

 

The Table 6.1 has shown the overall objectives evaluation of this project.  

We have successfully addressed the issue of inefficient data engineering infrastructure 

being used in current Human Activity Recognition research by developing a comprehensive, 

efficient, and user-friendly data engineering system for data collection, annotation, and storage. 

To implement this data engineering system, we have designed and developed two mobile 
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applications, SensorData and SensorDataLogger. The applications are connected using 

Bluetooth to send and receive instructions. Users can give instructions via SensorData while 

SensorDataLogger is responsible to receive and execute instructions. In SensorData, users can 

start the data recording process by clicking at the activity buttons created and set the durations 

they want to collect data for. After users click the ‘START’ button, SensorData sends the 

instructions to SensorDataLogger to start data recording process and starts a timer. Similarly, 

when SensorDataLogger receives the instructions, a timer is also started. When the timer stops, 

SensorData will automatically send instructions to SensorDataLogger to stop the recording 

process. The log files created in SensorDataLogger are automatically annotated with the ID of 

the activity. When users click the ‘Save Log File’ button, SensorData will send instructions to 

SensorDataLogger to save the log files with the specific filename, which is the ID of the 

activity. When users click ‘Upload Log File’, SensorData will send instructions to 

SensorDataLogger to upload log files to Google Cloud Storage bucket.  

On the other hand, the applications offer user-friendly interface and intuitive 

functionalities so that non-technical researchers can easily utilize the system proposed in their 

research. The proposed data engineering system is said to be comprehensive since the system 

proposed covers all the components required to create a dataset needed for Human Activity 

Recognition, including data collection, annotation, and storage. Additionally, the proposed 

system is said to be efficient as it requires least human effort to create a dataset of high-quality 

and is able to achieve good accuracy and generalization. For instance, it includes the features 

of automated annotation, eliminating the need for manual annotations, which requires a lot of 

effort. Besides, the log files can be directly uploaded to cloud server, which is more easier to 

be extracted for further processing. 

Next, we have also successfully evaluated the efficiency of  the proposed data 

engineering system on HAR algorithm by looking at the performance of the HAR algorithms 

trained using the dataset collected via data engineering system proposed. This assessment 

encompasses performance metrics such as accuracy and the generalization capabilities of HAR 

algorithms. In other words, if the dataset created using the proposed data engineering system 

can achieve good accuracy and generalization during training and testing, it means that the 

proposed data engineering system is effective. After data collection, we have performed HAR 

related operations such as dataset creation, data exploration and data segmentation. Then, we 

build and train a simple and unidirectional LSTM model, perform hyperparameter tuning and 

model testing. During model training, we have successfully achieved an accuracy of 0.9828, 
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loss of 0.0613 and RMSE of 0.0867. Besides, during model testing using dedicated testing 

dataset and tuned model, we obtained an accuracy of 0.9657, loss of 0.1189 and RMSE of 

0.1183. This statistics validates the efficiency of the proposed data engineering system. It also 

shows the practicality and feasibility of integrating the proposed data engineering system into 

real-world HAR applications as it can improve the scalability, reproducibility, and 

comparability of project without compromising recognition accuracy or efficiency. 

 

6.5  Concluding Remark   

  In a nutshell, this chapter has discussed the details regarding the model testing and 

performance metrics used. We are using tuned model and dedicated testing dataset for model 

testing. The performance metrics used include accuracy, loss, RMSE and confusion matrix. 

Besides, we also show and analyze the results of model testing based on accuracy, loss, RMSE, 

and confusion matrix. Our project validates the efficiency of the proposed data engineering 

system in producing high-quality dataset. Furthermore, we have talked about some of the 

challenges or constraints faced while implementing this project and proposed our solutions to 

tackle the challenges. This helps to give clear understanding to other researchers who are 

referencing this project. Last but not least, an objective evaluation process is performed to show 

the current progress of this project and how far it achieves. 
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Chapter 7 

Conclusion and Recommendations 

 

7.1  Conclusion 

In recent years, HAR research has primarily focused on refining algorithms and 

techniques, often overshadowing the critical need for efficient data engineering systems in 

terms of sensor data collection, annotation, and storage. This results in the use of incomplete 

and inefficient data engineering systems, which brings negative effects to the accuracy, 

efficiency, scalability, and reproducibility of HAR research. 

This project addresses this vital issue of inefficient data engineering infrastructure by 

introducing an efficient, comprehensive, and user-friendly data engineering system for data 

collection, annotation, and storage. To implement the data engineering system proposed, two 

mobile applications, SensorData and SensorDataLogger with user-friendly interfaces and 

intuitive functionalities are developed. The applications are utilized to collect raw sensor 

signals. The raw signals went through some preprocessing and a dataset is created. The dataset 

is later used to train a unidirectional LSTM model with 32 neurons. To prevent overfitting, 

early stopping monitoring validation loss and dropout technique using dropout rate of 0.3 are 

applied during model training. The training accuracy obtained is 0.9711.  

Hyperparameter tuning is then implemented and identify the best combinations, which 

is [batch size: 16, dropout rate: 0.2, learning rate: 0.0025, epochs: 50]. These hyperparameters 

are used to re-train a LSTM model and this model is used to perform model testing.  

In evaluating the efficiency of our proposed data engineering system, we compute 

accuracy, loss, RMSE, and the confusion matrix. This project proves that the proposed data 

engineering system is efficient, which is able to achieve an accuracy rate of 96.57% during 

model testing. 

In conclusion, this project represents a significant stride towards the advancement of 

HAR research. By addressing the critical need for efficient data engineering in data collection, 

annotation, and storage, we have contributed to improving accuracy, reliability, scalability, and 

reproducibility in HAR research. We offer a comprehensive and effective toolkit for data 

engineering, aimed to further enhance the performance of the field. 

 

7.2  Recommendation 
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  This section serves as a recommendation to other researchers who are referencing and 

citing this research. These recommendations aim to continue the current work and further 

enhance the performance of smartphone based HAR research. 

  One of the recommendations is to increase the size of the dataset used in future studies, 

by adding number of samples and variations of activities being collected. Currently, this project 

only collects data from five data subjects and for four activities, resulting in a small dataset. By 

incorporating larger and more diverse datasets, researchers can capture a broader range of 

activities and user behaviors, which can lead to more robust and generalizable HAR models.  

  Next, another recommendation is to diversify the sources of data by collecting signals 

from different types of sensor. This project only collects data from smartphone embedded 

accelerometer and gyroscope, which is sufficient for human daily activities like walking, 

standing, climbing upstairs, etc. The inclusion of additional sensor such as magnetometer, GPS 

sensor, proximity sensor, ambient light sensor, etc. can provide a more comprehensive 

understanding of human behavior. Researcher should explore the integration of data from 

different sensors to capture a more detailed and holistic view of users' activities and 

environments. This helps to improve the performance and versatility of activity recognition 

system, making them applicable to a broader range of scenarios or use cases. 

  Furthermore, we can explore other deep learning architecture for activity recognition 

purpose. While this project is employing a simple and unidirectional LSTM model with 32 

neurons, other deep learning models are worth explored as well. Researchers can consider 

bidirectional LSTM model, CNN, or more complex architectures that combine multiple types 

of neural networks such as LSTM-CNN or 4-layered LSTM-CNN. This helps to enhance 

recognition accuracy and broaden the scope of smartphone based HAR.  
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APPENDIX 

 

Configurations & Libraries 

# import libraries 

from google.cloud import storage 

import numpy as np 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

import gcsfs 

import warnings 

warnings.filterwarnings('ignore') 

from sklearn import metrics 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import classification_report 

from sklearn.metrics import ConfusionMatrixDisplay 

from sklearn.metrics import make_scorer 

from sklearn.metrics import mean_squared_error 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import cross_validate 

from sklearn.model_selection import cross_val_predict 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import GridSearchCV 

from sklearn.base import clone 

import tensorflow as tf 

from tensorflow import keras 

from tensorflow import stack 

import scikeras 

from scikeras.wrappers import KerasClassifier 

from keras.models import Sequential 
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from keras.layers import Dense, GlobalAveragePooling1D, BatchNormalization, MaxPool1D, 

Reshape, Activation, Dropout 

from keras.layers import LSTM 

from keras.callbacks import ModelCheckpoint, EarlyStopping 

from keras.optimizers import Adam 

from scipy import stats 

from scipy.stats import mode 

from google.colab import auth 

 

# GCS authentication 

auth.authenticate_user() 

 

Dataset Creation Coding  

# get list of filepaths from google cloud bucket 

csv_file_paths = [] 

 

def get_csv_files(project_id="sensordatalogger-logfiles"): 

    storage_client = storage.Client(project=project_id) 

    bucket = storage.Bucket(storage_client, 'sensordatalogger-logfiles.appspot.com') 

    str_folder_name_on_gcs = 'CSVFile/' 

    blobs = bucket.list_blobs(prefix=str_folder_name_on_gcs) 

    print("Blob name:") 

    for blob in blobs: 

        csv_file_paths.append(blob.name) 

 

get_csv_files() 

print("List of csv files:") 

print(csv_file_paths) 

 

# format file name 

for i in range(len(csv_file_paths)): 

    csv_file_paths[i] = "gs://sensordatalogger-logfiles.appspot.com/" + csv_file_paths[i] 

print(csv_file_paths[i]) 
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# Convert CSV file to Parquet file 

parquet_dir = "gs://sensordatalogger-logfiles.appspot.com/ParquetFile/" 

 

def convert_csv_to_parquet(input_file_path, output_file_path): 

    csv_df = pd.read_csv(input_file_path, names=['sensor', 'x', 'y', 'z', 'timestamp', 'label']) 

    csv_df.to_parquet(output_file_path) 

 

for i in range(len(csv_file_paths)): 

    filename = csv_file_paths[i].split('/')[-1] 

    filename = filename.replace('csv', 'parquet') 

    parquet_file_name = parquet_dir + filename 

    convert_csv_to_parquet(csv_file_paths[i], parquet_file_name) 

 

# Import Parquet file 

# Get list of file paths from google cloud bucket 

parquet_file_paths = [] 

 

def get_parquet_files(project_id="sensordatalogger-logfiles"): 

    storage_client = storage.Client(project=project_id) 

    bucket = storage.Bucket(storage_client, 'sensordatalogger-logfiles.appspot.com') 

    str_folder_name_on_gcs = 'ParquetFile/' 

    blobs = bucket.list_blobs(prefix=str_folder_name_on_gcs) 

    print("Blob name:") 

    for blob in blobs: 

        parquet_file_paths.append(blob.name) 

 

get_parquet_files() 

print("List of parquet files:") 

print(parquet_file_paths) 

 

# format file name 

for i in range(len(parquet_file_paths)): 
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    parquet_file_paths[i] = "gs://sensordatalogger-logfiles.appspot.com/" + 

parquet_file_paths[i] 

    print(parquet_file_paths[i]) 

 

# Combine log files 

preprocessed_parquet_dir = 

"gs://sensordataloggerlogfiles.appspot.com/PreprocessedParquetFile/" 

 

for i in range(len(parquet_file_paths)): 

    preprocessed_df = pd.read_parquet(parquet_file_paths[i], engine='auto') 

    parts = parquet_file_paths[i].split('/') 

    preprocessed_parquet_file_path = preprocessed_parquet_dir + parts[-1] 

 

    # drop null values 

    preprocessed_df.dropna(inplace=True) 

 

    # drop the rows where timestamp is 0 

    preprocessed_df = preprocessed_df[preprocessed_df['timestamp'] != 0] 

 

    index = 0 

 

    # split accelerometer and gyroscope data 

    for r in range(preprocessed_df.shape[0]): 

        if preprocessed_df['sensor'].iloc[r] == 'GYRO': 

            index = r 

            break; 

 

    signals_acce = preprocessed_df.values[:index, 1:6] 

    signals_gyro = preprocessed_df.values[index:, 1:6] 

 

    acce_row = signals_acce.shape[0] 

    gyro_row = signals_gyro.shape[0] 

    keep_row = min(acce_row, gyro_row) 
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    signals_acce = signals_acce[:keep_row] 

    signals_gyro = signals_gyro[:keep_row] 

 

    acce_raw_df = pd.DataFrame(signals_acce, columns=['x', 'y', 'z', 'ts', 'label']) 

    gyro_raw_df = pd.DataFrame(signals_gyro, columns=['x2', 'y2', 'z2', 'ts2', 'label2']) 

 

    # sort in ascending order 

    acce_raw_df = acce_raw_df.sort_values(by = ['ts'], ignore_index=True) 

    gyro_raw_df = gyro_raw_df.sort_values(by = ['ts2'], ignore_index=True) 

 

    # combine and arrange side by side 

    final_df = pd.concat([acce_raw_df, gyro_raw_df], axis=1, join='outer') 

    final_df.to_parquet(preprocessed_parquet_file_path) 

 

# Get preprocessed file path 

preprocessed_parquet_file_paths = [] 

 

def get_preprocessed_parquet_files(project_id="sensordatalogger-logfiles"): 

    storage_client = storage.Client(project=project_id) 

    bucket = storage.Bucket(storage_client, 'sensordatalogger-logfiles.appspot.com') 

    str_folder_name_on_gcs = 'PreprocessedParquetFile/' 

    blobs = bucket.list_blobs(prefix=str_folder_name_on_gcs) 

    print("Blob name:") 

    for blob in blobs: 

        preprocessed_parquet_file_paths.append(blob.name) 

 

get_preprocessed_parquet_files() 

 

# Format file name 

for i in range(len(preprocessed_parquet_file_paths)): 

    preprocessed_parquet_file_paths[i] = "gs://sensordatalogger-logfiles.appspot.com/" + 

preprocessed_parquet_file_paths[i] 
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    print(preprocessed_parquet_file_paths[i] 

 

# Combine file paths 

same_activity_file_paths = {} 

 

for i in range(len(preprocessed_parquet_file_paths)): 

    p1 = preprocessed_parquet_file_paths[i].split('/')[-1] 

    p2 = p1.split('_')[1] 

 

    if p2 in same_activity_file_paths: 

        same_activity_file_paths[p2].append(preprocessed_parquet_file_paths[i]) 

    else: 

        same_activity_file_paths[p2] = [preprocessed_parquet_file_paths[i]] 

 

print(same_activity_file_paths) 

 

# Combine files for each activity 

activity_file_dir = 'gs://sensordatalogger-logfiles.appspot.com/ActivityParquetFile/' 

column_names = ['x', 'y', 'z', 'ts', 'label', 'x2', 'y2', 'z2', 'ts2', 'label2'] 

 

for key in same_activity_file_paths: 

    activity_list = [] 

    same_activity_df = pd.DataFrame() 

 

    print(key) 

 

    # change data to numpy and append to activity_list 

    for l in range(len(same_activity_file_paths[key])): 

        activity_df = pd.read_parquet(same_activity_file_paths[key][l], engine='auto') 

        activity_np = activity_df.to_numpy() 

        activity_list.append(activity_np) 

 

        if l == 0: 
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            parts = same_activity_file_paths[key][l].split('/') 

            parts2 = parts[-1].split('_')[0] + '_' + parts[-1].split('_')[1] + '.parquet' 

            activity_parquet_file_path = activity_file_dir + parts2 

            print(activity_parquet_file_path) 

 

    # Check if all elements in num_columns_list are the same 

    num_columns_list = [array.shape[1] for array in activity_list] 

    print(num_columns_list) 

 

    if all(num == num_columns_list[0] for num in num_columns_list): 

        print("The files have similar number of columns.") 

    else: 

        print("The files does not have similar number of columns.") 

 

    # append data to file 

    for n in range(len(activity_list)): 

        df = pd.DataFrame(activity_list[n]) 

        same_activity_df = pd.concat([same_activity_df, df], ignore_index=True) 

 

    same_activity_df.columns = column_names 

    same_activity_df.to_parquet(activity_parquet_file_path) 

 

    #print(same_activity_df) 

    print(same_activity_df.shape) 

    print('\n') 

 

# Get files 

activity_parquet_file_paths = [] 

 

def get_activity_parquet_files(project_id="sensordatalogger-logfiles"): 

    storage_client = storage.Client(project=project_id) 

    bucket = storage.Bucket(storage_client, 'sensordatalogger-logfiles.appspot.com') 

    str_folder_name_on_gcs = 'ActivityParquetFile/' 
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    blobs = bucket.list_blobs(prefix=str_folder_name_on_gcs) 

    print("Blob name:") 

    for blob in blobs: 

        activity_parquet_file_paths.append(blob.name) 

 

get_activity_parquet_files() 

print("List of parquet files:") 

print(activity_parquet_file_paths) 

 

# Format file name 

for i in range(len(activity_parquet_file_paths)): 

    activity_parquet_file_paths[i] = "gs://sensordatalogger-logfiles.appspot.com/" + 

activity_parquet_file_paths[i] 

    print(activity_parquet_file_paths[i]) 

 

# Combine vertically 

har_df = pd.DataFrame() 

 

for k in range(len(activity_parquet_file_paths)): 

    df = pd.read_parquet(activity_parquet_file_paths[k], engine='auto') 

    df.drop(['ts', 'ts2', 'label'], axis=1, inplace=True) 

    df.rename(columns = {'label2':'label'}, inplace = True) 

    df['label'] = df['label'].astype(int) 

    har_df = pd.concat([har_df, df], axis=0, ignore_index=True) 

 

har_df.to_parquet('gs://sensordatalogger-logfiles.appspot.com/har.parquet', engine='auto', 

index=False) 

print(har_df) 

print(har_df.shape) 

 

Data Exploration Coding 

explore_df = pd.read_parquet("gs://sensordatalogger-logfiles.appspot.com/har.parquet", 

engine='auto') 
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explore_df.shape 

explore_df.info() 

explore_df.describe() 

 

# Check null value 

explore_df.isnull().sum()*100/len(explore_df) 

 

# Check infinity value 

has_positive_infinity = np.isinf(explore_df).any().any() 

has_negative_infinity = np.isneginf(explore_df).any().any() 

if has_positive_infinity: 

    print("The DataFrame contains positive infinity values.") 

if has_negative_infinity: 

    print("The DataFrame contains negative infinity values.") 

if not has_positive_infinity and not has_negative_infinity: 

    print("The DataFrame does not contain infinity values.") 

 

# Class distribution 

pd.crosstab(index =explore_df["label"],columns="count") 

 

sns.set_style("whitegrid") 

plt.figure(figsize = (5, 4)) 

sns.countplot(x = 'label', data = explore_df) 

plt.title('Number of samples by activity') 

plt.show() 

 

corr_matrix=explore_df.corr() 

corr_matrix 

fig, ax = plt.subplots(figsize=(8,8)) 

sns.heatmap(data=corr_matrix, annot=True, linewidths=.5, ax=ax) 

 

Data Segmentation Coding 

# Read dataset 
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lstm_df = pd.read_parquet("gs://sensordatalogger-logfiles.appspot.com/har.parquet", 

engine='auto') 

print(lstm_df.shape) 

 

# windowing 

n_time_steps = 50 

n_features = 6 

step = 25 

n_classes = 4 

segments = [] 

labels = [] 

 

for i in range(0,  lstm_df.shape[0]- n_time_steps, step): 

 

    x_acce = lstm_df['x'].values[i: i + 50] 

    y_acce = lstm_df['y'].values[i: i + 50] 

    z_acce = lstm_df['z'].values[i: i + 50] 

    x_gyro = lstm_df['x2'].values[i: i + 50] 

    y_gyro = lstm_df['y2'].values[i: i + 50] 

    z_gyro = lstm_df['z2'].values[i: i + 50] 

    label_mode_result = stats.mode(lstm_df['label'][i: i + 50]) 

    if np.isscalar(label_mode_result[0]): 

      label = label_mode_result[0] 

    else: 

      label = label_mode_result.mode[0] 

 

    segments.append([x_acce, y_acce, z_acce, x_gyro, y_gyro, z_gyro]) 

    labels.append(label) 

 

reshaped_segments = np.asarray(segments, dtype= np.float32).reshape(-1, n_time_steps, 

n_features) 

labels = np.asarray(pd.get_dummies(labels), dtype = np.float32) 

print(reshaped_segments.shape) 
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print(labels.shape) 

 

# Split into training & testing 

X_train, X_test, y_train, y_test = train_test_split(reshaped_segments, labels, test_size = 0.2, 

random_state = 42) 

print(X_train.shape) 

print(y_train.shape) 

print(X_test.shape) 

print(y_test.shape) 

 

Model Training & Evaluation Coding 

def create_lstm_model(dr=0.3, lr=0.0025): 

  model = tf.keras.models.Sequential() 

  model.add(LSTM(units = 32, input_shape = (X_train.shape[1], X_train.shape[2]))) 

  model.add(Dropout(dr)) 

  model.add(Dense(y_train.shape[1], activation = 'softmax')) 

  optimizer = Adam(learning_rate=lr) 

  model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) 

  return model 

 

model = create_lstm_model() 

model.summary() 

 

batch_size = 4 

n_epochs = 50 

early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True) 

history = model.fit(X_train, y_train, epochs = n_epochs, validation_split = 0.20, 

callbacks=[early_stopping], batch_size = batch_size, verbose = 1) 

 

plt.plot(np.array(history.history['loss']), "r--", label = "Train loss") 

plt.plot(np.array(history.history['accuracy']), "g--", label = "Train accuracy") 

plt.plot(np.array(history.history['val_loss']), "r-", label = "Validation loss") 

plt.plot(np.array(history.history['val_accuracy']), "g-", label = "Validation accuracy") 
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plt.title("Training session's progress over iterations") 

plt.legend(loc='lower left') 

plt.ylabel('Training Progress (Loss/Accuracy)') 

plt.xlabel('Training Epoch') 

plt.ylim(0) 

plt.show() 

 

loss, accuracy = model.evaluate(X_train, y_train, batch_size = batch_size, verbose = 1) 

y_pred_train = model.predict(X_train, batch_size = batch_size, verbose=1) 

mse_train = mean_squared_error(y_pred_train, y_train) 

rmse_train = np.sqrt(mse_train) 

 

print("Train Accuracy: ", accuracy) 

print("Train Loss: ", loss) 

print ("Train RMSE: ", rmse_train) 

 

predictions = model.predict(X_train) 

class_labels = ['1', '2', '3', '4'] 

max_train = np.argmax(y_train, axis=1) 

max_predictions = np.argmax(predictions, axis=1) 

confusion_matrix = metrics.confusion_matrix(max_train, max_predictions) 

sns.heatmap(confusion_matrix, xticklabels = class_labels, yticklabels = class_labels, annot = 

True, linewidths = 0.1, fmt='d', cmap = 'YlGnBu') 

plt.title("Confusion matrix", fontsize = 15) 

plt.ylabel('True label') 

plt.xlabel('Predicted label') 

plt.show() 

 

Hyperparameter Tuning Coding 

keras_model = KerasClassifier(build_fn=create_lstm_model, verbose=0, batch_size=4, 

dr=0.2, epochs=30, lr=0.001) 

param_grid = { 

    'batch_size': [4, 16, 32], 
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    'dr': [0.2, 0.3, 0.4], 

    'epochs': [30, 40, 50], 

    'lr': [0.001, 0.0025] 

} 

early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True) 

grid = GridSearchCV(estimator=keras_model, param_grid=param_grid, cv=3, 

scoring='accuracy', n_jobs=-1) 

grid_result = grid.fit(X_train, y_train, validation_split=0.2, callbacks=[early_stopping]) 

best_params = grid_result.best_params_ 

best_model = grid_result.best_estimator_.model 

 

print("Best Parameters: ", grid_result.best_params_) 

print("Best Accuracy: ", grid_result.best_score_) 

 

Model Testing Coding 

# re-train model 

tuned_model = tf.keras.models.Sequential() 

tuned_model.add(LSTM(units = 32, input_shape = (X_train.shape[1], X_train.shape[2]))) 

tuned_model.add(Dropout(0.2)) 

tuned_model.add(Dense(y_train.shape[1], activation = 'softmax')) 

optimizer = Adam(learning_rate=0.0025) 

tuned_model.compile(loss='categorical_crossentropy', optimizer=optimizer, 

metrics=['accuracy']) 

tuned_model.summary() 

 

batch_size = 16 

n_epochs = 50 

early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True) 

history = tuned_model.fit(X_train, y_train, epochs = n_epochs, validation_split = 0.20, 

callbacks=[early_stopping], batch_size = batch_size, verbose = 1) 

 

# Testing using best hyperparameter 
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loss_tuned, accuracy_tuned = tuned_model.evaluate(X_test, y_test, batch_size = batch_size, 

verbose = 1) 

y_pred_tuned = tuned_model.predict(X_test) 

mse_tuned = mean_squared_error(y_pred_tuned, y_test) 

rmse_tuned = np.sqrt(mse_tuned) 

 

print("Test Accuracy: ", accuracy_tuned) 

print("Test Loss: ", loss_tuned) 

print("Test RMSE: ", rmse_tuned) 

 

# confusion matrix 

predictions = tuned_model.predict(X_test) 

class_labels = ['1', '2', '3', '4'] 

max_test = np.argmax(y_test, axis=1) 

max_predictions = np.argmax(predictions, axis=1) 

confusion_matrix = metrics.confusion_matrix(max_test, max_predictions) 

sns.heatmap(confusion_matrix, xticklabels = class_labels, yticklabels = class_labels, annot = 

True, linewidths = 0.1, fmt='d', cmap = 'YlGnBu') 

plt.title("Confusion matrix", fontsize = 15) 

plt.ylabel('True label') 

plt.xlabel('Predicted label') 

plt.show() 
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FINAL YEAR PROJECT WEEKLY REPORT 
(Project II) 

 

Trimester, Year: Trimester 3, Year 3 Study week no.: 3 

Student Name & ID: Tee Jia Lin 2005546 

Supervisor: Ts Dr Ooi Boon Yaik 

Project Title: Human Activity Recognition Via Accelerometer and Gyro Sensors 

 

 

1. WORK DONE 
[Please write the details of the work done in the last fortnight.] 

 

- Review objective, background, problem statement of the research. 

- Made research on machine learning / deep learning pipeline. 
 

 

2. WORK TO BE DONE 

 

- Collect data and create dataset.  

 

 

3. PROBLEMS ENCOUNTERED 

 

 

- Unable to decide what machine learning / deep learning model to be used. 

 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 

- Should start earlier. 
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 Supervisor’s signature              Student’s signature 
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FINAL YEAR PROJECT WEEKLY REPORT 
(Project II) 

 

Trimester, Year: Trimester 3, Year 3 Study week no.: 4 

Student Name & ID: Tee Jia Lin 2005546 

Supervisor: Ts Dr Ooi Boon Yaik 

Project Title: Human Activity Recognition Via Accelerometer and Gyro Sensors 

 

 

1. WORK DONE 
[Please write the details of the work done in the last fortnight.] 

 

- Decide to use LSTM model. 

- Raw dataset collected. 
 

 

2. WORK TO BE DONE 

 

- Study on LSTM model architecture and implementation. 

- Preprocess dataset. 

 

 

3. PROBLEMS ENCOUNTERED 

 

 

- No. 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 

- Progress is on track. 

 

 

 

 

 

 

 

 

 _________________________      _________________________ 

 Supervisor’s signature              Student’s signature 
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FINAL YEAR PROJECT WEEKLY REPORT 
(Project II) 

 

Trimester, Year: Trimester 3, Year 3 Study week no.: 6 

Student Name & ID: Tee Jia Lin 2005546 

Supervisor: Ts Dr Ooi Boon Yaik 

Project Title: Human Activity Recognition Via Accelerometer and Gyro Sensors 

 

 

1. WORK DONE 
[Please write the details of the work done in the last fortnight.] 

 

- Data preprocessing done. Dataset was created. 

- Made study on LSTM architecture. Decide to use the simple unidirectional 

LSTM. 
 

 

2. WORK TO BE DONE 

 

- Try to implement the model training by referencing other researcher’s work. 

 

 

3. PROBLEMS ENCOUNTERED 

 

 

- Not familiar with the machine learning process. 

 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 

- Progress is on track. 

 

 

 

 

 

 

 

 

 _________________________      _________________________ 

 Supervisor’s signature              Student’s signature 
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FINAL YEAR PROJECT WEEKLY REPORT 
(Project II) 

 

Trimester, Year: Trimester 3, Year 3 Study week no.: 8 

Student Name & ID: Tee Jia Lin 2005546 

Supervisor: Ts Dr Ooi Boon Yaik 

Project Title: Human Activity Recognition Via Accelerometer and Gyro Sensors 

 

 

1. WORK DONE 
[Please write the details of the work done in the last fortnight.] 

 

- Perform data exploration on preprocessed dataset. 

- Perform data segmentation on the dataset.  
 

 

2. WORK TO BE DONE 

 

- Build architecture of LSTM model. 

- LSTM model training. 

 

 

3. PROBLEMS ENCOUNTERED 

 

 

- No. 

 

 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 

- Progress is on track. 

 

 

 

 

 

 

 

 

 _________________________      _________________________ 

 Supervisor’s signature              Student’s signature 
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FINAL YEAR PROJECT WEEKLY REPORT 
(Project II) 

 

Trimester, Year: Trimester 3, Year 3 Study week no.: 9 

Student Name & ID: Tee Jia Lin 2005546 

Supervisor: Ts Dr Ooi Boon Yaik 

Project Title: Human Activity Recognition Via Accelerometer and Gyro Sensors 

 

 

1. WORK DONE 
[Please write the details of the work done in the last fortnight.] 

 

- LSTM model architecture built. 

- LSTM model training. 
 

 

 

2. WORK TO BE DONE 

 

- Solve the overfitting problem. 

 

 

3. PROBLEMS ENCOUNTERED 

 

 

- LSTM model training results in overfitting problem. 

 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 

- Progress is a bit delayed. 

 

 

 

 

 

 

 

 

 _________________________      _________________________ 

 Supervisor’s signature              Student’s signature 
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Trimester, Year: Trimester 3, Year 3 Study week no.: 10 

Student Name & ID: Tee Jia Lin 2005546 

Supervisor: Ts Dr Ooi Boon Yaik 

Project Title: Human Activity Recognition Via Accelerometer and Gyro Sensors 

 

 

1. WORK DONE 
[Please write the details of the work done in the last fortnight.] 

 

- Use early stopping and dropout technique to solve the overfitting problem. 
 

 

 

2. WORK TO BE DONE 

 

- Hyperparameter tuning.  

- Model testing. 

- Start writing report. 

 

 

3. PROBLEMS ENCOUNTERED 

 

 

- No. 

 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 

- Progress is a bit delayed. 

 

 

 

 

 

 

 

 _________________________      _________________________ 

 Supervisor’s signature              Student’s signature 
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FINAL YEAR PROJECT WEEKLY REPORT 
(Project II) 

 

Trimester, Year: Trimester 3, Year 3 Study week no.: 11 

Student Name & ID: Tee Jia Lin 2005546 

Supervisor: Ts Dr Ooi Boon Yaik 

Project Title: Human Activity Recognition Via Accelerometer and Gyro Sensors 

 

 

1. WORK DONE 
[Please write the details of the work done in the last fortnight.] 

 

- Hyperparameter tuning done. 

- LSTM model testing done. 
 

 

 

2. WORK TO BE DONE 

 

- Complete FYP2 report. 

 

 

3. PROBLEMS ENCOUNTERED 

 

 

- No. 

 

 

 

4. SELF EVALUATION OF THE PROGRESS 

 

- Progress is on track. 

 

 

 

 

 

 

 

 

 _________________________      _________________________ 

 Supervisor’s signature              Student’s signature 
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