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PLANT-DISEASE DETECTION BY USING COMPUTER VISION

APPROACH

ABSTRACT

Plant maladies have long been a major concern in agriculture, frequently resulting in

substantial yield losses, economic losses, and degraded crop quality. As the global

demand for food security and sustainable agricultural practices increases, there is a

pressing need for effective and precise disease detection mechanisms. Computer

vision and deep learning provide promising avenues for the rapid and accurate

identification of plant diseases. This study explores the feasibility of utilising

pre-trained deep learning models, such as ResNet18, VGG16, AlexNet, and

GoogleNet, to detect and classify a wide variety of plant diseases. Using a

comprehensive dataset containing images of foliage exhibiting various disease

symptoms, these models were trained, refined, and evaluated with extreme care.

According to preliminary findings, GoogleNet outperforms its competitors in terms

of accuracy and computational efficiency. While apple leaves serve as the study's

primary case study, the methodologies and findings have broader implications. It

paves the way for the development of real-time disease detection systems on the

field, which could revolutionise the agricultural industry. Such systems could endow

farmers around the world with the means to make informed decisions, optimize crop

health, and ultimately increase food production.
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CHAPTER 1

INTRODUCTION

1.1 Background

Plant diseases have been a major concern for farmers and agriculturalists for

centuries, resulting in significant crop productivity declines and economic losses.

Historically, botanists and agricultural specialists were relied upon extensively for

the detection and diagnosis of these diseases. On the basis of their observations,

botanists and agricultural specialists would manually inspect crops, identify

symptoms, and recommend treatments. This traditional procedure, while effective, is

labour-intensive, time-consuming, and sometimes subjective, resulting in potential

inaccuracies.

Rapid technological advancements, particularly in computer vision and deep

learning, have ushered in a new era of plant disease detection. Convolutional Neural

Networks (CNNs), a specialised type of neural network for processing data with a

grid-like topology (such as an image), have demonstrated extraordinary performance

in image recognition tasks. By training these models with extensive datasets

containing images of healthy and diseased plants, the model can be honed to

accurately detect a variety of plant diseases.

A study, for instance, used a pretrained ResNet34 model to detect numerous

crop diseases with a 97.2% accuracy rate. Another study successfully diagnosed

maladies in rice plants by combining the capabilities of Densely Connected Neural

Network (DenseNet) and multilayer perceptron (MLP), with an accuracy of 97.68%.

Once trained, these models can process thousands of images with consistent accuracy

in a fraction of the time it would take a human expert.



The applications of these technologies in the actual world are extensive.

Farmers can now diagnose plant diseases using mobile applications integrated with

these trained models. The application can provide immediate feedback on a plant's

health status, potential diseases, and recommended remedies when a photograph of a

leaf is taken. This immediate feedback loop enables farmers to act rapidly,

potentially preserving entire crops.

Moreover, computer vision's applications in agriculture extend beyond

disease detection. It consists of insect detection, crop yield forecasting, soil health

analysis, and even automated harvesting. This combination of artificial intelligence

and conventional agricultural techniques is often referred to as 'precision agriculture.'

It represents a significant advance in making agriculture more efficient, sustainable,

and resistant to obstacles.

Figure 1: A diseased leaf identified by computer vision.

1.2 Problem Statements

Agriculture, as the foundation of numerous economies, performs a crucial role in

ensuring food security and sustainability. However, the agricultural sector faces



persistent threats from a variety of threats, with plant diseases emerging as one of the

most formidable adversaries. These diseases, which are caused by pathogens such as

fungi, bacteria, and viruses, can inflict havoc on crops and result in substantial yield

losses. The repercussions of these diseases are not just limited to decreased

production; it also correlates to substantial economic losses for farmers and can

contribute to food shortages in affected regions.

Historically, agricultural specialists and botanists have played a significant

role in the detection and diagnosis of plant diseases. These professionals would

traverse fields, painstakingly inspecting crops, identifying symptoms, and

recommending treatments based on their observations. This method has some

advantages, but it is also fraught with difficulties. Inspections performed manually

are time-consuming, labour-intensive, and subjective. The possibility of human error,

coupled with the delay in detection, can result in the disease spreading unchecked

and affecting larger swaths of crops.

In the modern era, with rapid technological advancements and a growing

global population, the demand for sustenance is skyrocketing. This escalating

demand emphasises the need for innovative, efficient, and scalable solutions for plant

disease detection. The challenge is multifaceted: how to create a system that not only

diagnoses plant diseases rapidly and accurately, but is also accessible to producers

worldwide, regardless of their technological expertise or resources? How to

guarantee early detection in order to prevent widespread crop devastation?

This project's overarching goal is encapsulated by its title: "Plant Disease

Detection Using a Computer Vision Approach." Despite the fact that the immediate

focus may be on apple leaves, the larger objective is unmistakable. The agricultural

sector requires an all-encompassing, scalable, and technologically advanced method

for detecting plant diseases across a vast array of species. By leveraging the

capabilities of computer vision and deep learning, this project aims to provide a

revolutionary solution for plant disease detection and management in the modern

agricultural landscape.



1.3 Aims and Objectives

The objectives of the thesis are shown as following:

i) To develop an efficient and accurate system for detecting plant diseases using

a computer vision approach.

ii) To provide a scalable and adaptable solution that caters to a wide range of

plants and diseases, ensuring broad applicability in diverse agricultural

settings.

iii) To set a benchmark in plant health diagnostics, paving the way for future

research and innovations in the domain of agricultural technology.

1.4 Organization of the Thesis

Table 1: Organisational of the Thesis for Plant-disease detection project. 

Chapter Description

Chapter 1: Introduction ● Introduces the context, significance, and challenges

of plant disease detection. Presents the aim and

objectives of the study.

Chapter 2: Literature

Review

● Provides a comprehensive review of existing

methodologies, technologies, and research in plant

disease detection and computer vision applications in

agriculture.

Chapter 3:

Methodology

● Describes the methods employed in the study,

including data collection, preprocessing, model

selection, training, validation, and system integration.

Chapter 4: System

Design and

Implementation

● Details the design considerations and the

implementation process of the disease detection

system. Discusses the choice of algorithms, tools, and

platforms used.



Chapter 5: Results and

Discussion

● Presents the results obtained from the trained models.

Discusses the implications, accuracy, and efficiency of

the system in real-world scenarios.

Chapter 6: Conclusion

and Future Work

● Summarises the findings of the study. Discusses the

contributions, limitations, and recommendations for

future research and improvements.



CHAPTER 2

LITERATURE REVIEW

2.1  Overview of Plant Diseases

Like all living things, plants are susceptible to a variety of maladies. These diseases

can be caused by a variety of organisms, including fungi, bacteria, viruses, and even

insects. Apple trees, a ubiquitous staple in orchards, are not immune to this

vulnerability. Apple trees are susceptible to several maladies that not only threaten

their health but also reduce their yield.

Figure 2: The indication of Apple Scab disease (MacHardy, 1996) 

One of the predominant maladies afflicting apple trees globally is Apple

Scab, caused by the fungus Venturia inadequacies. Affected trees have predominantly

dark, scaly lesions on their leaves, but also on their fruits and twigs. Apple scab can

significantly reduce fruit yield and quality if left unchecked (MacHardy, 1996).



Figure 3: The indication of Black Rot disease (Sutton, 1990)

Black Rot, caused by the fungus Botryosphaeria obtusa, is yet another

formidable adversary of apple trees. Initial symptoms appear on fruits as

inconspicuous dark patches. As the disease progresses, however, these blotches can

spread across the entire apple, rendering it inedible. In addition, the disease can affect

the tree's leaves and branches, compromising its overall health (Sutton, 1990). Above

Figure 3 shows the indication of Black Rot disease.



Figure 4: The indication of Cedar Apple Rust disease (Anagnostakis, 1987)

Cedar Apple Rust, a peculiar disease caused by the rust fungus

Gymnosporangium juniperi-virginianae, requires two hosts to complete its life cycle:

apple trees and junipers. On apple trees, the disease manifests as striking brilliant

orange lesions on the leaves, frequently resulting in premature leaf drop and thereby

impairing the tree's photosynthetic capacity (Anagnostakis, 1987). A truly robust

apple tree displays no outward symptoms of disease. It consistently produces a

bountiful harvest of wholesome fruits and possesses lush leaves and sturdy branches.

In order to ensure the long-term health of apple trees, it is essential to combine

rigorous surveillance with preventative and curative measures (Jones & Aldwinckle,

1990). Above Figure 4 shows the indication of Cedar Apple Rust disease.



2.2  Traditional Methods of Disease Detection

Agriculture's history is intricately intertwined with the evolution of plant disease

detection and control. Before the advent of modern technology, farmers and

horticulturists relied on traditional methods to detect and combat plant diseases for

centuries. Although rudimentary in comparison to today's sophisticated techniques,

these practices were the foundation of agriculture, assuring the health and

productivity of crops.

Visual inspection was one of the primary and most straightforward methods.

Farmers, armed with keen vision and years of experience, would stroll through their

fields, meticulously inspecting plants for irregularities. Disease symptoms, such as

discoloured leaves, wilting, abnormal growth patterns, and the presence of parasites,

indicate that a plant is under stress (Smith, 1977). Although time-consuming, this

hands-on approach was essential for early detection, allowing for prompt corrective

action.

In the past, physical barriers were also utilised to prevent the spread of

airborne diseases. To reduce the speed and range of disease-carrying winds, farmers

would strategically plant windbreaks, such as rows of tall trees or shrubs. In addition,

protective coverings or improvised canopies were utilised to shield crops from

precipitation, which may have facilitated the spread of certain pathogens (Oerke &

Dehne, 2004).

The practice of crop rotation was rooted in both disease prevention and soil

health. Farmers could prevent the buildup of specific pathogens in the soil by

planting various crops sequentially over multiple seasons. This method was notably

effective against soil-borne diseases, preventing the overabundance of pathogens

specific to a single crop (Campbell & Madden, 1990).

Another cornerstone of traditional disease management was plant breeding.

Farmers would select and cultivate plant varieties with natural resistance to prevalent

maladies over generations. This early form of genetic modification ensured that

cereals possessed innate resistance to particular pathogens (Allard, 1960).



Utilising nature's own checks and balances, biological controls were also

essential to disease management. Beneficial insects, such as ladybirds, were

introduced to fields to control pests known to transmit disease. In a similar manner,

beneficial fungi and bacteria were introduced to the soil to combat their pathogenic

counterparts (Hajek & Eilenberg, 2018).

In addition to these tangible techniques, the intangible knowledge handed

down through the generations was priceless. Frequently, indigenous knowledge,

folklore, and local customs provided the key to identifying and treating plant

maladies with locally available resources. This combination of observation,

experience, and custom created a holistic approach to agriculture that was both

sustainable and in harmony with nature (Warren, 1991).

Even though botanists or agriculturalists rely significantly on scientific

advances and technology in the modern era, understanding and respecting these

traditional techniques is essential. It provides a window into sustainable and holistic

agricultural practices, emphasising the significance of a balanced approach that

combines the past's wisdom with the present's innovations.



2.3 Role of Computer Vision in Agriculture

Figure 5: The brief outcome of Computer Vision (Senthilnath et al., 2016)

As shown in the above Figure 5, The incorporation of computer vision into

agriculture has marked a significant turning point in the way farming operations are

conducted. A prominent subfield of artificial intelligence (AI), computer vision

concentrates on enabling machines to interpret and act upon visual data, simulating

the capabilities of the human visual system. This technology has been a

game-changer in agriculture, providing solutions to a multitude of problems spanning

from crop health monitoring to the automation of complex tasks.

One of the most significant applications of computer vision in agriculture is

precision cultivation. This method of modern agriculture employs technology to

monitor and manage crops at a granular level, assuring their optimal health and yield.

Using drones equipped with high-resolution cameras, farmers can capture aerial

images of their fields that are rich in detail. Senthilnath et al. (2016) state that

sophisticated algorithms are then applied to these images to identify areas that may

be experiencing stress, pest infestations, or nutrient deficiencies. These precise

insights allow producers to take immediate, targeted actions, such as applying water,



pesticides, or fertilisers to specific areas, thereby optimising resource use and

minimising environmental damage.

Another area where computer vision has had a revolutionary impact is disease

detection. Computer vision is a more efficient alternative to the time-consuming

manual inspections required by conventional methods. High-definition cameras can

scan plants meticulously, detecting minute changes in colour, texture, and shape that

may indicate the advent of a disease. By training machine learning models on large

datasets, these systems can identify specific pathogens with remarkable precision,

often well before it manifests visibly (Barbedo, 2018). This type of proactive

detection permits early interventions, which may prevent widespread crop damage.

Computer vision has also enabled revolutionary advancements in the field of

automated harvesting. Advanced robots, equipped with specialised cameras and

AI-driven algorithms, can discern when fruits or vegetables have attained the ideal

ripeness. Then, these machines can carefully harvest the fruits and vegetables, which

is essential for preserving post-harvest quality. This level of automation proves

invaluable for delicate commodities like strawberries and tomatoes (Sa et al., 2017).

In addition, applications of computer vision include soil analysis, yield

prediction, livestock monitoring, and greenhouse automation. For example,

sophisticated camera systems can analyse soil samples to determine their texture and

nutrient content. These insights help farmers make informed judgements regarding

crop selection and fertilisation techniques (Mehrabi et al., 2020). In livestock

farming, computer vision technologies monitor animal health, behaviour, and growth

patterns to ensure optimal conditions for animal welfare.

In short, the incorporation of computer vision into agriculture is reshaping the

industry, propelling it towards greater efficacy, sustainability, and resiliency. As

technological advancements continue, it is anticipated that the role of computer

vision in agriculture will continue to expand, addressing new challenges and

enhancing global food security.
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2.4 Deep Learning: An Overview

Figure 6: Architecture of a Deep Neural Network (LeCun et al., 2015)

Deep learning, a prominent subset of machine learning, is at the vanguard of the

revolution in artificial intelligence (AI). This computational method, which was

inspired by the intricate workings of the human brain, specifically neural networks, is

adept at processing large datasets and identifying intricate patterns within them

(LeCun et al., 2015). Deep learning employs multiple layers of artificial neural

networks to perform a variety of tasks, from image and speech recognition to

complex natural language processing. The architecture of deep neural network is

shown in above Figure 6.

The term "deep" in "deep learning" refers to the depth or number of neural

networks taking in the neural networks. Deep neural networks can have up to 150

hidden layers, whereas traditional neural networks may have only two or three (He et

al., 2016). Each of these layers meticulously analyses the input data, identifies

relevant features, and transmits the refined data to the following layer. This stratified,

hierarchical approach to feature extraction enables deep learning models to recognise

and comprehend complex patterns, thereby improving their predictive or

classification accuracy.
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Ability of deep learning to manage and process unstructured data types, such

as images, audio clips, and textual content, is a significant advantage. This is

accomplished without the need for laborious manual feature extraction

(Schmidhuber, 2015). In specialised fields such as medical imaging, this advantage is

palpably advantageous. In this context, deep learning models can detect anomalies in

diagnostic images such as X-rays and MRI scans that are too subtle or subtle for

human professionals to detect.

Concurrent rise of big data and the remarkable increase in computational

prowess, particularly with the introduction of Graphics Processing Units (GPUs),

have significantly aided the ascent of deep learning (Krizhevsky et al., 2012). GPUs,

which were originally conceived for graphic depiction in video games, excel at

matrix operations, which are fundamental to deep learning algorithms.

However, the path to deep learning is not without obstacles. For the training

phase of deep learning models, a large amount of labelled data is required.

Furthermore, this training can be both time-consuming and computationally

intensive. A significant difficulty with complex deep learning models is their "black

box" nature, which renders their decision-making processes obscure and difficult to

decipher (Castelvecchi, 2016).

Deep learning's potential in the agricultural sector is already being realised.

Deep learning will revolutionise the future of agriculture by predicting agricultural

yields, detecting plant diseases, and pioneering innovations in precision farming. As

technological progress continues to accelerate, the combination of deep learning with

diverse industries promises a future rich in innovations and enhanced capabilities.

2.4.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) have emerged as a pivotal architecture in

the deep learning domain, particularly when handling visual data. CNNs are based on

the concept that images can be processed in layers, with each layer learning an

increasingly complex representation of the data. CNNs rely on the convolution

operation, in which a filter or kernel traverses the input data, such as an image, to
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generate a feature map. This operation enables CNNs to initially focus on local

features and then combine them in deeper layers to recognise larger structures.

Deeper into the architecture of CNNs, the convolutional layer, where the

convolution operation is implemented, is the foundational layer. Each neuron here is

connected to a small input region, and the presence of multiple such layers enables

the network to distinguish between basic edges and intricate patterns. This is

followed by the pooling layer, which reduces the spatial dimensions of the data,

thereby expediting computations and bolstering the network's robustness. This layer's

max-pooling procedure, which selects the maximum value from a set of values, is

prevalent. The architecture culminates in the fully connected layer, which is a

conventional multi-layer perceptron with a SoftMax activation function in the output

layer, which converts high-level features from antecedent layers into the final class

score.

CNNs are distinguished by their Rectified Linear Unit (ReLU) activation

function, which introduces nonlinearity to the model. This nonlinearity is crucial

because it enables the network to learn from its mistakes and adapt, a requirement for

recognising complex patterns. To prevent overfitting in expansive networks, CNNs

frequently employ a regularisation technique known as dropout. Here, random

neurons are temporarily omitted from the network during training to ensure its

robustness. In addition, batch normalisation is employed to normalise the activations

of neurons, resulting in accelerated training and decreased sensitivity to initialization.

One of the defining characteristics of CNNs is their translational invariance.

Once a feature is identified in one segment of an image, it can be identified in any

other segment, thereby reducing the amount of training data required and enhancing

the network's resilience to object positioning in images. Modern CNN architectures,

including AlexNet, VGG, ResNet, and Inception, have set new benchmarks for a

variety of visual recognition tasks. While these architectures differ in complexity and

number of parameters, it will all utilise the fundamental principles of CNNs. Transfer

learning is a powerful technique in the CNN arsenal, where models pre-trained on

large datasets, such as ImageNet, are refined on smaller datasets, yielding remarkable

results even with limited data. Figure 7 shows the anatomy of a Convolutional

Neural Network.
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Figure 7: Anatomy of a Convolutional Neural Network (He et al., 2016)

2.4.2 Transfer Learning: Benefits and Use Cases

In the swiftly evolving field of deep learning, training models from scratch can be

both time-consuming and resource intensive. This is especially true when the

quantity or scope of the available dataset is limited. Transfer learning arises as a

crucial strategy in such circumstances. It entails adapting a pre-trained model, which

has typically been trained on a large and diverse dataset, to a new, related task that

may have less data. Transfer learning provides a shortcut to attaining commendable

performance by building on the knowledge acquired during the initial training phase.

Transfer learning's inherent effectiveness is one of its major benefits. Initial

layers of a neural network are intended to capture generic characteristics such as

edges, textures, and colours. These characteristics are frequently shared by a variety

of duties. Consequently, these layers can be utilised or repurposed for various

purposes. It's the latter layers, which tend to be more task-specific, that usually

require fine-tuning. This method not only expedites the training process but also

reduces the quantity of data required. This is especially advantageous because it

reduces the risk of overfitting, especially when working with smaller, more

specialised data sets.
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The conservation of computational resources is a further noteworthy

advantage. The process of training complex deep neural networks is both

computationally and memory intensive. Such training typically requires specialised

hardware configurations, such as potent GPUs. Transfer learning enables

organisations and researchers to access and utilise cutting-edge models without

incurring the extensive computational costs and time investments required to train

them from scratch.

Transfer learning's applications encompass a vast array of domains. In the

field of medical imaging, for instance, where acquiring labelled data can be a

significant obstacle, transfer learning techniques have been instrumental in detecting

a variety of anomalies and diseases. Similarly, in the field of natural language

processing, models that have been pre-trained on large text corpora are optimised for

specific tasks, such as sentiment analysis, translation, and text summarization.

Transfer learning plays a role in the development of autonomous vehicles, enabling

models trained in one operating environment to function optimally in another.

Nonetheless, it is crucial to approach transfer learning with a critical eye. The

degree of similarity between the source task (from which the model was pre-trained)

and the target task determines its effectiveness. If the two tasks are extremely

dissimilar, transfer learning may not produce the desired results. In certain

circumstances, it may even hinder performance. Below Figure 8 shows the

Conceptual Framework of Transfer Learning.

In essence, transfer learning exemplifies the concept that knowledge acquired

in one domain can be seamlessly and effectively applied to another in artificial

intelligence. As the complexity of datasets and models continues to grow, the

strategic significance and appeal of transfer learning are set to rise, offering a

pragmatic approach to diverse computational challenges.
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Figure 8: Conceptual Framework of Transfer Learning

2.4.3 Previous Works on Plant Disease Detection by AI.

The intersection of Artificial Intelligence (AI) and agriculture has spawned

revolutionary opportunities, particularly in the field of plant disease detection.

Because plant diseases have the potential to substantially reduce crop yields, which

can have a domino effect on food supply chains and global food security, it is urgent

to address them effectively. Historically, botanists and pathologists were extensively

relied upon for the detection and diagnosis of plant diseases. These specialists would

conduct meticulous visual inspections, frequently resorting to microscopic or

chemical tests to determine the presence of pathogens. Despite their efficacy, these

techniques were labour-intensive, time-consuming, and at times constrained by the

subjectivity of human interpretation.

The advent of AI, particularly deep learning techniques, predicted a paradigm

shift in this scenario. These techniques provided automation, scalability, and a high

level of precision, making them viable alternatives to conventional methods.

Numerous studies and experiments have demonstrated the effectiveness of AI in

detecting and diagnosing plant diseases over the years. Mohanty et al. (2016), who

presented the "PlantVillage" dataset, as shown in Figure 9, published one of the

seminal works in this field. This dataset included over 50,000 images of both
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diseased and healthy plant foliage, 14 crop species, and 26 distinct diseases. Since

then, it has become a central resource for researchers worldwide, facilitating the

training and validation of numerous AI models. Utilising a deep convolutional neural

network on this dataset, Mohanty et al. reported a 99.35% accuracy rate, establishing

a standard for future research.

Figure 9: Sample Images from the PlantVillage Dataset: A Visual

Representation of Healthy and Diseased Plant Leaves (Mohanty et al., 2016)

Ferentinos (2018) built upon this foundation by utilising deep convolutional

neural networks for tomato plants. The research demonstrated the usefulness of

transfer learning, a technique in which models initially trained on enormous datasets

such as ImageNet are then fine-tuned for specific tasks, in this case tomato disease

detection. In a comprehensive review, Barbedo (2018) examined the challenges and

opportunities presented by artificial intelligence in plant disease detection. The study

emphasised the importance of robust and diverse datasets, cautioned against the

dangers of over-reliance on AI, and advocated for the incorporation of

domain-specific knowledge to improve the accuracy of AI models.
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The combination of AI with other emergent technologies has also garnered

considerable attention. Integrating AI-driven disease detection systems with drones

or IoT devices, for instance, offers the potential for large-scale, real-time monitoring

of agricultural lands. Such integrations can facilitate the early detection of disease

symptoms, enabling producers to take prompt preventive or corrective action. As the

field continues to develop, it is evident that the combination of AI and plant disease

detection is not merely a passing fad, but a transformative force with the potential to

improve agricultural practices.
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CHAPTER 3

METHODOLOGY

3.1 Data Collection

3.1.1 Sources of Data

Data plays an essential function in agricultural research and plant disease detection.

The effectiveness of any machine learning or deep learning model is determined by

the data's quality and quantity. For this investigation, the renowned PlantVillage

dataset was the primary data source.

PlantVillage is a comprehensive dataset that has significantly advanced plant

disease detection research. It contains a vast collection of images representing a

variety of plant diseases, making it an invaluable resource for researchers who wish

to train deep learning models for disease identification. The significance of such

datasets cannot be understated, particularly when considering the global challenges

posed by plant diseases. According to the Food and Agriculture Organisation of the

United Nations, the food supply must be increased by 70 percent by 2050 in order to

feed the world's population. Nevertheless, nearly a third of all food is lost due to

plant diseases and disorders (Negi, 2021).
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Figure 10: Sample images from the PlantVillage dataset showcasing the

diversity of plant diseases and conditions. (Mohanty et al., 2016)

The PlantVillage dataset is distinguished by its diversity and abundance. PlantVillage

provides a variety of data, as opposed to the majority of datasets that were collected

in a laboratory setting. It contains laboratory images with uniform backgrounds as

well as images that reflect real-world conditions, making it more representative of

the challenges encountered in actual agricultural settings (Albattah et al., 202). The

sample images from the PlantVillage dataset showcasing the diversity of plant

diseases and conditions are shown in Figure 10.

Moupojou et al. (2023) emphasised the significance of data augmentation

when working with the PlantVillage dataset. Given the scarcity of labelled training

data in the field of plant disease detection, data augmentation techniques such as

cropping, rotation, scaling, and tilting have been shown to improve the performance

of deep learning models. When models were trained on the PlantVillage dataset using

these augmentation techniques, their accuracy and recall metrics improved

significantly (Albattah et al., 2022).

In essence, the PlantVillage dataset has been a cornerstone in the field of

artificial intelligence-based plant disease detection. Its diverse collection of images,

representing various disease states, provides a robust platform for researchers to train

and test their models, thereby advancing the mission of sustainable and disease-free

agriculture. In the field of deep learning, especially when working with image data,

the preprocessing and enhancement of the dataset play important roles. These steps
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not only ensure that the data is in an optimal format for the model but also enhance

the model's ability to generalise to unseen data, thereby improving its robustness and

performance.

3.1.2 Data Preprocessing and Augmentation

The initial dataset obtained from PlantVillage consisted of images with varying

dimensions and resolutions. To guarantee uniformity and compatibility with the deep

learning model, each image was resized to 256 by 256 pixels. This uniform resizing

is essential because deep learning models, particularly convolutional neural

networks, require input images of a fixed dimension. After resizing, a centre

cropping technique was used to reduce the image's dimensions to 224 x 224 pixels.

This method focuses on the central region of the image, which is frequently dense

with disease-detection-critical features.

Following the resizing and cropping, each image was normalised.

Normalisation is a technique that scales the pixel values of an image to lie within a

specific range, typically between 0 and 1. For this undertaking, the images were

normalised using mean values of [0.456, 0.406, 0.408] and standard deviations of

[0.229, 0.224, 0.225]. These values, derived from the ImageNet dataset, ensure that

the image data is on a consistent scale, which facilitates the training process of the

model, particularly when employing transfer learning with ImageNet-trained models.

Data augmentation techniques were implemented, but only for the training

set, in order to augment the dataset and introduce more variability. Figure 11 below

shows the sample image of augmentation of a healthy leaf. Random resizing and

cropping were one of the primary techniques used. By resizing and cropping an

image, the model is exposed to multiple perspectives of the same image, preventing

it from overfitting to specific patterns. In addition, a random horizontal rotation with

a probability of 50% was applied to the images. This technique guarantees that the

model is insensitive to the orientation of disease characteristics, thereby enhancing

its detection capabilities.
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Figure 11: Augmented images of a healthy leaf

The decision to implement these preprocessing and augmentation techniques

was strategic. When working with a limited dataset, such as the one provided by

PlantVillage, random transformations and consistent input formats are essential.

These stages ensure that the model is trained on a diverse set of images, thereby

enhancing its ability to detect plant diseases under a variety of conditions.

3.2 Model Selection and Rationale

3.2.1 ResNet18

Figure 12: ResNet architecture (He et al., 2015)

As shown in Figure 12, in the complex landscape of deep learning, the selection of

the optimal model architecture is crucial, particularly when the task at hand is as

nuanced as the detection of plant diseases. Among the plethora of available

architectures, ResNet18 is selected due to its technical prowess and practical

benefits.

ResNet, or Residual Network, was introduced by He et al. in 2015 as a

revolutionary solution to a persistent problem in the deep learning community: the
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vanishing gradient problem. Gradients, which are crucial to the network's learning

during the training phase, frequently reach negligible values as neural networks

become more complex. This renders the network incapable of continuing to learn

effectively. The brilliance of ResNet resides in its implementation of "skip

connections" or "shortcuts." These are pathways that enable the gradient to bypass

certain layers during backpropagation, ensuring that the gradient remains substantial

even in extremely deep networks, thereby facilitating efficient learning.

The choice of ResNet18, where "18" represents its 18-layer depth, was

influenced by a number of factors. While there are ResNet variants with greater

depth, such as ResNet50 and ResNet101, ResNet18 combines computational

efficiency with depth. Fewer layers translate to fewer computational demands,

resulting in shorter training times—a crucial factor when computational resources are

limited. Moreover, deeper networks increase the risk of overfitting, which occurs

when the model becomes overly adapted to the training data and performs

inadequately on new, unseen data. This risk is mitigated by ResNet18's balanced

depth, particularly when the dataset is small.

The opportunity to leverage transfer learning is a further compelling

advantage of ResNet18. Weights for ResNet18 that have been pre-trained on the vast

ImageNet dataset are readily available. Using these weights as a starting point can

considerably improve performance, particularly if the dataset is insufficient to train a

deep model from scratch. This method utilises the knowledge extracted from a large

dataset and adapts it to the specific task, thereby assuring a robust model despite the

possibility of data limitations.

Finally, ResNet18's track record speaks volumes. In spite of its relative

simplicity in comparison to more complex variants, it has consistently demonstrated

exceptional performance across a variety of tasks. Its design, specifically the residual

connections, enables it to identify even the most subtle indications of plant disease.



26

3.2.2 VGG16

The Visual Geometry Group (VGG) from the University of Oxford introduced the

VGG16 model, which has since become one of the cornerstones in the deep learning

community, especially for image classification tasks. The "16" in VGG16 represents

the number of weight layers in the network, making it an architecture with a

relatively comprehensive design. This profundity is one of the reasons why its

performance in capturing intricate patterns and specifics in images is so impressive.

The architecture of VGG16 is distinguished by its simplicity. In contrast to other

deep models that may use a variety of layer types or complex connections, VGG16

primarily employs 3x3 convolutional layers layered on top of one another to increase

its depth. This repetitive clustering of small filters is one of the team's most

important discoveries. It enables the model to learn multi-scale hierarchical features

from the images, where the initial layers capture fundamental details such as edges

and textures and the deeper layers comprehend more complex patterns and object

sections.

Several factors that decide to employ VGG16 in this undertaking. First, like

ResNet18, VGG16 provides the benefit of transfer learning. The model has been

pre-trained on the ImageNet dataset, which contains over one million images across

one thousand categories. By utilising these pre-trained weights, we can leverage the

generic features learned from this massive dataset and fine-tune the model for task of

plant disease detection. This approach is especially beneficial when the dataset might

not be extensive or diverse enough to train such a deep model from inception. An

additional benefit of VGG16 is its consistent performance across a variety of duties.

Despite the introduction of more recent architectures, VGG16 continues to be a

dependable option, particularly when interpretability is a concern. Its simple

architecture makes it simpler to comprehend and visualise what the model may be

learning at various levels. It is important to note, however, that VGG16 is

computationally more intensive than other models due to its complexity and number

of parameters. This may lengthen training periods and increase memory

requirements. But with the proper hardware and optimisation strategies, these

obstacles can be overcome. In the context of the project, which focuses on detecting

subtle patterns indicative of plant diseases, VGG16's ability to discern fine details is
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an asset. Its depth enables the model to encompass a wide range of characteristics,

from the most fundamental to the most complex, making it adept at identifying the

various stages and types of plant diseases.

3.2.3 AlexNet

AlexNet represents a significant milestone in the field of deep learning, particularly

in image classification tasks. Deep convolutional neural network (CNN) named after

its creator Alex Krizhevsky made headlines in 2012 when it won the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) by a significant margin (Krizhevsky,

Sutskever, and Hinton, 2012). This success demonstrated the enormous potential of

deep learning architectures for processing vast image datasets.

AlexNet's design, though simpler than succeeding deep learning models, was

revolutionary for its time. It is structured with five convolutional layers succeeded by

three fully connected layers. AlexNet's use of the Rectified Linear Unit (ReLU)

activation function, which effectively addressed the vanishing gradient problem and

enabled models to have greater depth without impeding the training process (Nair &

Hinton, 2010), is an outstanding characteristic. The inclusion of dropout layers is an

additional essential component of AlexNet. This technique has been observed to

improve the model's generalisation capabilities (Srivastava et al., 2014). These layers

prevent overfitting by randomly setting a fraction of input units to zero during the

training phase.

Multiple factors influenced the decision to incorporate AlexNet in the project.

Its historical significance and demonstrated effectiveness in image classification

tasks made it a dependable option. Despite its relative simplicity, AlexNet has

consistently demonstrated its prowess in capturing vital image features, making it

proficient at distinguishing patterns and nuances necessary for the detection of plant

diseases. Similarly, to VGG16 and ResNet18, AlexNet can be enhanced via transfer

learning. Having been pre-trained on the vast ImageNet dataset, it permits us to

utilise the generic features it has learned and tailor them to specific task. Such an

approach is invaluable, particularly when the size or diversity of the dataset is

limited. AlexNet serves as a baseline model in the broader context of the research,
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providing insights into the evolution of deep learning architectures over time. Its

inherent ability to recognise essential image characteristics makes it an indispensable

tool for plant disease detection.

3.2.4 GoogleNet

Figure 13: GoogleNet Inception architecture (Szegedy et al., 2015)

GoogleNet, also known as Inception v1 which is shown in above Figure 13, is a

pivotal architecture within the history of deep learning. This model, which was

introduced by Szegedy et al. (2015) from Google, won the 2014 ImageNet Large

Scale Visual Recognition Challenge (ILSVRC). Its innovative design and

introduction of the "Inception module" distinguished it from its contemporaries and

paved the way for future advances in deep learning architectures. The Inception

module, the linchpin of GoogleNet, was designed to resolve the difficulty of

determining the optimal kernel size for convolution. Instead of committing to a

single kernel size, the Inception module applies multiple kernel sizes (1x1, 3x3, 5x5,

etc.) concurrently before concatenating the resulting feature maps. This method

assures that the network can capture spatial hierarchies in an image, from

fine-grained to coarse features, in an adaptive manner. In addition, GoogleNet

incorporated 1x1 convolution operations not only for dimensionality reduction but

also to introduce nonlinearity between spatial convolutions, thereby augmenting the

model's expressive capacity.
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GoogleNet's profundity is an additional notable feature. It was significantly

deeper than previous models with 22 layers. However, despite its complexity, it was

computationally efficient due to the intelligent application of Inception modules. The

profundity of the network, coupled with its distinctive architecture, enabled it to

capture intricate image patterns and details with remarkable precision. The decision

to employ GoogleNet was multifaceted. It was a compelling option due to its track

record in large-scale image classification competitions and its innovative design. The

Inception modules, which are capable of capturing a wide variety of features, are

ideally suited for the delicate task of plant disease detection, where subtle visual

signals frequently determine the correct diagnosis.

GoogleNet, like the other models discussed, can also benefit from transfer

learning. Utilising its pre-trained weights, which have been fine-tuned on the dataset,

can expedite the training process and contribute to improved generalisation on

unseen data.

3.3 Training Process

3.3.1 Hyperparameters and Training Setup

The process of training deep learning models, particularly in the domain of image

recognition, is meticulous and complex. During this phase, the model, through

numerous iterations, learns to recognise patterns, characteristics, and nuances in the

provided dataset. The goal is to iteratively modify the model's internal parameters in

order to reduce the gap between its predictions and the actual labels. The

configuration, which includes the judicious selection of hyperparameters, has a

significant impact on the efficacy of this training. In the field of machine learning,

hyperparameters are parameters that are not inherently acquired from the data.

Instead, learning rate are determined before the training procedure begins. Their

importance is paramount, as it can significantly affect the efficacy of the model.

Several hyperparameters were diligently chosen for selected models:

The Learning Rate (lr) configuration was set to 0.001. This rate is pivotal as it

determines the magnitude of adjustment to the model with respect to the loss
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gradient. A slower learning rate assures that the model converges with accuracy,

although it may take longer. Momentum, another vital hyperparameter, was set at

0.9. It propels the optimizer in the appropriate direction while dampening

oscillations. This is especially advantageous in regions where the surface curves

steeply in one dimension relative to the other. The Batch Size was fixed at 4. This

quantity represents the number of training examples used during a single iteration.

Typically, a smaller quantity has a regularising effect, reducing generalisation error.

The intended duration of the instruction was 25 Epochs. An epoch is a cycle during

which the model processes every instance in the dataset. The number of epochs

determines the number of times the learning algorithm will iterate over the entire

dataset.

Lastly, a Scheduler with a step size of 7 and a gamma of 0.1 was employed.

This scheduler modifies the learning rate dynamically based on the number of

epochs. By diminishing the learning rate at regular intervals, convergence is

accelerated and the risk of overshooting the global minimum is reduced. Regarding

the training configuration, the models were prepared in an environment with GPU

support. This ensures that matrix operations, which are fundamental for deep

learning computations, are performed quickly. The selection of the device depended

on the availability of a CUDA-compatible GPU; in its absence, the CPU was the

default. The training dataset contains data augmentation techniques, such as random

resizing and horizontal rotation. These techniques increase the scale of the dataset,

introduce variability, and are instrumental in preventing overfitting.

In addition, the models were initialised with weights that were pre-trained on

the vast ImageNet dataset. This strategy, known as transfer learning, capitalises on

knowledge gained from one task and applies it to a related task, in this case the

detection of plant maladies. The code is shown in the below Figure 14.
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Figure 14: Pseudo-code representation of the deep learning training process
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3.4 Evaluation Metrics and Validation

3.4.1 Loss Function and Optimization

In the complex domain of deep learning, it is crucial to choose an appropriate loss

function and optimisation strategy. These elements largely determine how a model

learns from data and refines its predictions. For the current mission, which involves

the classification of plant diseases, specific decisions were made to ensure optimal

performance.

The chosen loss metric was the Cross-Entropy Loss function (Smith, 2017).

This choice is substantiated in the provided code, where the function is initialised as

c = nn.The function CrossEntropyLoss(). Cross-Entropy Loss quantifies the

dissimilarity between the model's predicted probability distribution and the actual

label distribution. In simplified terms, the loss is minimal when the model's

predictions closely match the actual labels. In contrast, a significant deviation

increases the loss. Given the multi-class nature of the classification problem, this loss

function ensures that the model is appropriately penalised for inaccurate predictions

(Brown et al., 2019).

As indicated by the code snippet: opt = optim, the Stochastic Gradient

Descent (SGD) method was chosen as the optimisation

strategy.SGD(model_resnet.fc.parameters(), lr=0.001, momentum=0.9). SGD, a

variant of the conventional gradient descent algorithm, offers computational

efficiency by utilising mini-batches of data rather than the entire dataset for each

iteration (Ruder, 2016). The learning rate, denoted in the code as lr and set to 0.001,

is crucial. It essentially determines the magnitude of model parameter adjustments

performed during training. A slower learning rate guarantees more cautious steps,

which may result in a slower convergence, whereas a faster learning rate risks

overshooting the optimal solution.

In addition, the momentum parameter, which is set to 0.90, incorporates prior

gradients into the current update. This technique, which is frequently compared to a

ball rolling downhill, prevents the optimizer from becoming entangled in local
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minima and propels it towards the global minimum (Sutskever et al., 2013). In order

to enhance the optimisation procedure, a learning rate scheduler was implemented.

The code states that s = lr_scheduler.StepLR(opt, step_size=7, gamma=0.1), the

scheduler dynamically adjusts the learning rate based on epoch progression. This

nuanced approach ensures that while the model can initially take larger learning

steps, as convergence approaches, it employs more refined and smaller step sizes,

ensuring precision in the learning process (Smith and Topin, 2017).

In summation, the combination of Cross-Entropy Loss and the SGD

optimizer, along with learning rate scheduling, produces a robust training framework.

This framework is tailored to the challenges posed by the classification of plant

diseases, ensuring that the model learns and generalises effectively.
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CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Bill of Material

This project's Bills of Material (BoM) consists predominantly of software

components, given that its execution was software-centric and required no

specialised hardware beyond a standard laptop. The Bill of Materials functions as a

comprehensive list of all the software tools and libraries used throughout the project,

ensuring reproducibility and clarity for anyone wishing to build upon the work.

Notable is the fact that all software components listed in the Bill of Materials

are open-source and free, making the endeavour affordable and accessible. The

selection of these tools was influenced by their sturdiness, community support, and

pervasive use in academia and industry, ensuring the project's dependability and

reproducibility.

4.1.1 Setting up the Development Environment

This project's Bills of Material (BoM) consists predominantly of software

components, given that its execution was software-centric and required no

specialised hardware beyond a standard laptop. The Bill of Materials functions as a

comprehensive list of all the software tools and libraries used throughout the project,

ensuring reproducibility and clarity for anyone wishing to build upon the work.

Notable is the fact that all software components listed in the Bill of Materials

are open-source and free, making the endeavour affordable and accessible. The

selection of these tools was influenced by their sturdiness, community support, and
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pervasive use in academia and industry, ensuring the project's dependability and

reproducibility.

4.1.2 Operating System

The laptop's operating system was the foundational stratum upon which all software

tools and applications were installed and executed. This initiative utilises Window

10.

4.1.3 Integrated Development Environment (IDE)

Visual Studio Code: Integrated Development Environment Microsoft's Visual Studio

Code, a free and open-source integrated development environment (IDE), served as

the primary utility for writing, debugging, and executing the code. Its extensibility

and broad range of add-ons made it an excellent choice for developing both deep

learning models and the Flask web application.

4.1.4 Programming Language – Python

Python, renowned for its simplicity and intelligibility, was the primary programming

language used. Its extensive libraries and frameworks, particularly in machine

learning and web development, made it an obvious choice for this undertaking.

4.1.5 Web Framework – Flask

Web Framework - Flask: The web application was developed using Flask, a

lightweight and extensible micro web framework written in Python. Its ease of use

and seamless integration with Python-based machine learning models made it the

preferred option for the web infrastructure of the project.

4.1.6 Deep Learning Libraries

Deep Learning Libraries: PyTorch, a prominent open-source machine learning

library, was used for designing, training, and evaluating the deep learning models. Its
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extensive modules and dynamic computation graph facilitated the development of

models.

4.1.7 Additional Libraries and Tools

Throughout the project, additional Python libraries and tools, including but not

limited to PIL (for image processing), torchvision (for computer vision tasks), and io

(for managing byte streams), were utilised.

4.2 Setting up the Development Environment

4.2.1 Operating System Configuration

The project was created that uses the Windows 10 operating system. This operating

system offered a reliable platform that was compatible with all necessary software

tools and libraries.

4.2.2 Visual Studio Code Installation

Visual Studio Code (VSCode) was installed as the main Integrated Development

Environment (IDE) for this project. VSCode provides a user-friendly interface, an

integrated terminal, and a multitude of productivity-enhancing extensions.

Particularly useful was the Python extension for VSCode, which included linting,

IntelliSense, code navigation, and code formatting.

4.2.3 Python Setup

Python, the project's basis, was installed next. Python 3.9.13 was used for the project,

assuring compatibility with all libraries and frameworks. The Python package

installer, pip, was also configured to facilitate the installation of required libraries.

4.2.4 Library Installations

After installing Python, the next step involved installing essential libraries. Several

essential libraries were integrated into the environment using the pip utility. Notably,
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torch and torchvision have been implemented, both of which are essential for the

development and training of deep learning models. Additionally, the flask library was

set up, which was required for the development of the web application's backend. For

duties involving image processing, the PIL module from the Pillow package was

added. Notably, certain utility libraries, such as io, were already installed as part of

the standard Python library, eliminating the need for a separate installation.

4.2.5 Flask Web Application Setup

The Flask framework was selected due to its ease of use and seamless compatibility

with Python-based models. The project structure was organised with distinct folders

for templates, static files, and the application's core code. The supplied webapp.py

script served as the application's primary entry point, managing routes and

integrating the deep learning model for predictions.

4.2.6 Model Integration

The pre-trained Googlenet model, which was optimised for the detection of apple

leaf diseases, was incorporated into the Flask application. The provided path was

used to retrieve the model's state dictionary, ensuring that the web application had

access to the trained weights and biases. This integration enabled the Flask

application to analyse uploaded images, run them through the model, and return

real-time predictions.

4.2.7 Web Application Templates

The index.html and result.html were created as HTML templates for the web

application's user interface. These templates, styled with Bootstrap, provided a

responsive and interactive interface for users to upload images and view predictions.

4.3 Flask Web Application: Backend Design

Python's Flask was used to design the infrastructure of the web application. Flask is a

lightweight web framework. Flask provides the necessary tools and libraries to create



39

a web application, making it the ideal choice for this undertaking.

4.3.1  Initialization of the Flask App

Before diving into the application's intricacies, it is necessary to initialise Flask. This

phase entails configuring the primary Flask object and defining the paths for

templates and static files, code is shown below Figure 15.  

Figure 15: Coding for Initialization of the Flask App

4.3.2 Model Loading

The application's base is the deep learning model. Here, the pretrained GoogLeNet

model is inserted, and its final layer is tailored to the classification task at hand, code

are shown below Figure 16.

Figure 16: Coding for Model Loading

4.3.3  Image Transformation and Prediction Functions

For the model to make predictions, the input images must be transformed into the

format the model expects. These operations are responsible for image transformation

and prediction, which the code is shown in below Figure 16. 
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Figure 17: Coding for Image Transformation and Prediction Functions

4.3.4 Main Route for Image Upload and Prediction

The application's primary route handles both the image upload and prediction

features. When a user uploads an image, the image is processed, and a prediction is

made as shown in Figure 18.

Figure 18: Coding for Image Upload and Prediction
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4.3.5 Running the Flask App

The Flask application is finally configured to operate on a specific host and port.

This phase concludes the backend design and makes the application accessible to

users. The code is shown below Figure 19.

Figure 19: Coding for Running the Flask App

4.4 User Interface: Frontend Design and Interactivity

The frontend of the web application functions as the interface between the user and

the functionality of the backend. It is intuitive, user-friendly, and visually enticing,

allowing users to navigate and interact with the application with ease. HTML, CSS,

and JavaScript, which are standard web development technologies, were used to

construct the frontend.

4.4.1  Main Upload Interface

The application's primary interface is intended to enable users to upload images of

apple leaves. This interface is constructed with HTML and designed with the popular

CSS framework Bootstrap. The design is responsive, ensuring that it appears and

operates properly on a variety of devices, from desktop computers to mobile phones.

Code is shown below Figure 20.
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Figure 20: Coding for Main Upload Interface

4.4.2 Styling and Aesthetics

CSS is used to improve the application's visual appeal. The background image, card

design, and other elements are styled to create an aesthetically pleasing appearance.

The design is enhanced by Bootstrap classes, which ensure consistency and

responsiveness. As shown in Figure 21.

Figure 21: Coding for Styling and Aesthetic

4.4.3 Interactive Image Preview

To improve user interaction, a JavaScript function is implemented that enables users

to observe uploaded images prior to submitting them for prediction. This feature

provides the user with immediate confirmation that the correct image has been

selected. As shown in Figure 22.
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Figure 22: Coding for Interactive Image Preview

4.4.4 Result Display Interface

The application redirects users to a results page once an image has been uploaded

and processed. This page displays the prediction and provides details about the

disease and its treatment. The layout guarantees that the results are presented in a

plain and informative manner. As shown in Figure 23.

Figure 23: Coding for Result Display Interface

Evaluating the performance of deep learning models on test data is an

indispensable step in the machine learning pipeline. It provides a lens through which

the generalisation capabilities of the model can be evaluated, especially given that

the test data is not examined during the training phase. This objective evaluation is

essential for comprehending the model's potential efficacy in real-world scenarios.

This project utilised a variety of deep learning architectures, including

ResNet18, VGG16, AlexNet, and GoogleNet. While each of these models was
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trained using the same dataset, their architectural complexities and fundamental

design philosophies are inherently distinct. Therefore, their performances provide a

rich tapestry of information regarding their respective assets and weaknesses. The

ResNet18 model, distinguished by its residual connections, enables the training of

deeper networks without the difficulties of vanishing or exploding gradients. 

4.5 Model Performance on Test Data

Evaluating the performance of deep learning models on test data is an indispensable

step in the machine learning pipeline. It provides a lens through which the

generalisation capabilities of the model can be evaluated, especially given that the

test data is not examined during the training phase. This objective evaluation is

essential for comprehending the model's potential efficacy in real-world scenarios.

This project utilised a variety of deep learning architectures, including ResNet18,

VGG16, AlexNet, and GoogleNet. While each of these models was trained using the

same dataset, their architectural complexities and fundamental design philosophies

are inherently distinct. Therefore, their performances provide a rich tapestry of

information regarding their respective assets and weaknesses.

The ResNet18 model, distinguished by its residual connections, enables the

training of deeper networks without the difficulties of vanishing or exploding

gradients. This architectural detail resulted in a commendable 93.8% accuracy on the

test data. The accompanying loss curve for ResNet18 demonstrated a consistent

decline, indicating consistent learning across epochs.

In contrast, VGG16 is renowned for its architectural simplicity and

profundity. Its design, which consists of repeated blocks of convolutional layers and

max pooling, is adept at capturing intricate image characteristics. This capability was

reflected in its performance, as the model's accuracy on the test data was 92.4%.

AlexNet, widely regarded as a pioneer in the field of deep learning, was an

additional model of interest. AlexNet, which consists of five convolutional layers

followed by three completely connected layers, achieved an accuracy of 90.2% on
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the test data. This accomplishment highlights the accelerated development of deep

learning architectures over the past decade.

GoogleNet was the standout performer. Its unique inception modules are

designed to extract multi-level representations of image features. This design

complexity was reflected in the model's stellar performance, with 95.5% accuracy on

the test dataset.

The comparison between the accuracy and the validation accuracy for the

four pre-trained models is overall slightly lower in about 2% in validation accuracy,

which shown in Figure 24 and Figure 25.

Figure 24:Accuracy for Resnet18, VGG16, AlexNet and GoogleNet
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Figure 25: Validation accuracy for Resnet18, VGG16, AlexNet and GoogleNet

Several conclusions can be derived from these findings. First, the robust

performance of all models demonstrates the suitability of deep learning techniques

for plant disease detection. Their distinct architectural designs account for the

nuanced differences in precision between the models. For example, GoogleNet's

inception modules, which capture features at multiple dimensions, could be a

significant factor in its superior accuracy. In addition, the consistently declining loss

curves for all models throughout the training phase indicate a stable and effective

learning process. In addition to serving as visual aids, these curves play a crucial role

in influencing model optimization decisions.

In overall, the test data-derived performance metrics provide invaluable

insights. Not only to cast light on the capabilities of the models, but the data also

pave the way for discussions about real-world applicability, model optimizations, and

avenues for future improvements.
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4.6 User Feedback and Real-world Testing

Real-world applicability and user experience are equally as essential as a machine

learning model's technical performance. To evaluate the model's practical utility, it

was subjected to real-world testing via the Flask web application, and feedback was

solicited from a subset of users.

The web application was distributed to a small group of classmates, each of

whom has a solid comprehension of the project's objectives and the difficulties

associated with plant disease detection. To simulate a genuine user experience, users

were encouraged to upload images of apple leaves, even if images were not part of

the training dataset. The received feedback was insightful. The majority of students

found the web application to be intuitive and are impressed by how quickly disease

predictions can be made. This survey remarked favourably on the lucidity of the

disease descriptions and associated treatment recommendations, noting that such

specifics enhanced the user experience.

However, there were highlighted areas for advancement. A few colleagues

mentioned misclassifications occurring on occasion. Several individuals observed

that the model appeared to struggle with low-resolution or poorly illuminated

photographs. A notable concern was also raised regarding the display of the web

application on devices with smaller screens. Some users reported that the information

was not completely displayed or was difficult to read on their mobile devices,

indicating a need for improved mobile optimization.

4.7 Limitations, Challenges, and Lessons Learned

Throughout the course of this investigation, several limitations and difficulties were

encountered, each presenting its own set of lessons. The diversity of the dataset was

one of the primary restrictions. While the PlantVillage dataset was comprehensive, it

may not have captured the full variability of apple leaf diseases under diverse

environmental conditions, disease progression stages, and lighting conditions. In

addition, technological limitations played an important role. The models were trained

on a standard laptop, and the lack of specialised hardware such as GPUs and the
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constrained RAM imposed limitations on the model's complexity and

hyperparameter tuning.

The user interface of the web application was not entirely optimised for

smaller smartphone screens, negatively impacting the user experience, as indicated

by user feedback. This feedback highlighted the significance of mobile optimization

in the current digital era, in which a substantial percentage of users access web

applications via mobile devices. There were also many obstacles. Overfitting, a

frequent concern in deep learning, posed an ongoing obstacle. Given the complexity

of deep learning models, it was crucial to ensure that the model did not overfit to the

training data and retained their generalisation abilities. The abundance of available

deep learning architectures presented a further obstacle. Extensive research and

experimentation were required to choose the most suitable ones for this particular

undertaking. The robustness of the model had to be ensured despite the fact that

images in the real world varied considerably in terms of quality, illumination, and

angle. Time was yet another obstacle. Even the quickest model training sessions

required at least five hours, necessitating perseverance and effective resource

management. In addition, compatibility issues arose with the most recent versions of

Python, necessitating a rollback to Python 3.9 to ensure that all libraries function

without interruption.

Despite these obstacles, the endeavour was an educational experience.

Development of deep learning models is inherently iterative, and initial failures or

suboptimal results frequently pave the way for enhancing the model's performance.

Even if limited in number, the feedback from real-world consumers was invaluable,

providing insights that technical metrics frequently overlook. This voyage, which

was filled with both technical and user-centric insights, will undoubtedly influence

future efforts in the field of AI-driven plant disease detection.



CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Summary of Findings and Achievements

Throughout the course of this research, the primary objective was to harness the

power of deep learning for the detection of apple leaf diseases. The project has

culminated in a number of significant accomplishments. Training and validation of

four deep learning models—ResNet18, VGG16, AlexNet, and GoogleNet—formed

the basis of the research. GoogleNet emerged as the top performer, with an

outstanding disease detection accuracy of approximately 95%. Each of the other

models performed effectively and contributed to a better grasp of the dataset's

complexities.

A significant accomplishment was the development of a Flask-based,

user-centric web application. This platform enabled users, predominantly classmates,

to easily upload apple leaf images and obtain instantaneous disease predictions. In

real-world testing, the application's efficacy was evident as users were able to upload

images and obtain results without difficulty, demonstrating the system's practical

utility and effectiveness. In terms of data, the application was evaluated by fewer

than ten individuals. Their interactions yielded invaluable insights, particularly

regarding the application's adaptability to different screen sizes and device types.

5.2 Recommendations for Future Work and Improvements

While the current research has made significant strides in apple leaf disease detection

using deep learning, there remains ample scope for enhancement and expansion.

First, the dataset could be enriched with more diverse images, documenting the

progression of the disease at various stages and in various environmental conditions.

This would make the paradigm more robust and versatile. Incorporating real-time



feedback mechanisms into the web application can also contribute to the continuous

development of the model, as users can validate or correct predictions, thereby

creating a dynamic learning environment.

Exploring more sophisticated architectures and hybrid models may result in

greater precision from a technical standpoint. The user interface of the web

application could be improved, particularly for devices with smaller screens, to

ensure a seamless experience for all users. Given the difficulties posed by hardware

constraints, future research could also investigate distributed training or cloud-based

platforms for more effective model training. Expanding the scope beyond apple

leaves to other crops or even various types of plant diseases can transform the system

into a comprehensive agricultural tool, thereby assisting farmers and scientists.
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APPENDICES

APPENDIX A: Coding for Model Training
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APPENDIX B: Coding for WebApp
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APPENDIX C:Coding for Upload.html
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