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ABSTRACT 

 

Sign Language plays a major part in communications among individuals with 

hearing impairments or hearing-challenged individuals, a medium which allows 

them to participate in society. Through sign language, it allows them to get 

access to real-world news and access important information. Its significance can 

be proven when sign language interpreters appear on screen alongside the news 

anchor in our daily news broadcastings, with the addition of closed captions.  

 

The central component of sign language is the hand gestures. It is used to 

communicate words, phrases, and ideas, with each gesture having a specific 

meaning. Hand gestures in sign language can be divided into two main gestures, 

static gestures which do not involve movement, such as the alphabet-fingering 

or thumbs up gesture. while dynamic gestures are hand movements which 

involve changing of hand shape or position, such as waving, pointing and more. 

The applications of hand gestures in sign language include in communication, 

education, interpretation, accessibility in the form of visual format, and cultural 

events to translate lyrics, plays and musicals to sign language that is easily 

understood by individuals with hearing impairments or have difficulty in 

hearing.  

 

The current phenomenon reflects that most hearing people are unaware of sign 

language and do not take the time to learn it, leading to miscommunication and 

poor understanding between the hearing and the deaf community. They also 

view sign language as less of importance compared to spoken language. It is 

expected that with the existence of a real-time sign language interpretation tool 

would educate these ignorant people and increase their acceptance towards the 

individuals with hearing impairments or hearing-challenged individuals’ 

culture. 
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The building of this System To Interpret Sign Language aims to bridge the 

communication gap between the hearing and individuals with hearing 

impairments or hearing-challenged individuals. It shall act as a complement 

rather than a replacement to the existing sign language interpreter to enhance 

the communication and understanding among the communities. To achieve that, 

a tool will be developed to ease communication between the individuals with 

hearing impairments or hearing-challenged individuals. The sensors and 

cameras will detect the hand gestures, then translate the hand gestures to 

captions. There are several studies on sign language recognition systems, which 

built with techniques, which includes OpenCV, OpenCV with Mediapipe, 

LeapMotion Controller (LMC) with training of Convolutional Neural Network 

(CNN), which will be discussed further in the literature review. 

 

The project will follow five major steps: pre-processing, feature extraction, 

segmentation and dimension reduction, classification, and model evaluation. 

The system is built with OpenCV Mediapipe in addition of  Neural Network 

model with TensorFlow and Keras API. The results demonstrate that the system 

can detect 10 alphabets (A, E, H, I, L, N, O, S, T, U) and 7 vocabulary words 

(Best, Birthday, Please, Happy, Hearing, Like, Feel), with accuracies of 96% 

and 53% respectively. This project serves as a valuable tool in fostering 

communication and understanding between these communities. 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. General Introduction 

Sign language is a medium that is used in communication in the deaf and 

hearing-impaired communities, which involves expressions and hand gestures. 

As reported in 2017, there were about 70 million deaf people that used sign 

language as their first language (Haj et al., 2017). According to a 2017 article 

on the United Nations website, sign language is very diverse, with more than 

300 different sign languages available worldwide based on the geographical 

location and culture (United Nations, 2022). Commonly used sign languages 

include American Sign Language (ASL), Chinese Sign Language (CSL) and 

many more (Farooq et al., 2019). Despite the variety of sign languages out 

there, they share some common features such as hand movements, therefore 

the likeability of understanding between deaf/hard of hearing people of 

different countries still is high.  

 

However, there is still a social barrier between the hearing people and the deaf/ 

or hard of hearing people. As most people are not familiar with sign language, 

therefore this makes real-time communication challenging. In such cases, the 

signers would need the external assistance of a translator to facilitate the 

conversation with the hearing, which might cost them some money. A Real-

Time Hand Gesture Recognition System To Interpret Sign Language 

would be a cheaper, long-term solution. To achieve this, it requires the 

knowledge of machine learning, sensing technologies as well as AI concepts 

(such as Deep Learning) and algorithms to build the system. 

 

Several popular methods have been developed and used for this purpose, 

including OpenCV (Ismail et al., 2021) and OpenCV with Mediapipe (Riaz, 
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2022). OpenCV, a widely used open-source computer vision library, has been 

preferred for its versatility and robustness in detecting and tracking hand 

gestures. On the other hand, OpenCV with Mediapipe has gained traction for 

its ability to provide accurate and efficient hand tracking and gesture 

recognition in real-time. 

 

Another promising solution for hand-signing recognition is LeapMotion 

Controller (LMC) with training of Convolutional Neural Network (CNN) 

(Lupinetti et al., 2020). LMC is a small, portable device that tracks hand 

movements in 3D space, while CNN is an algorithm that can recognize 

complex hand gestures with high accuracy. 

 

Gloves with sensors are also an attractive option for real-time gesture 

recognition, providing precise and accurate data for hand tracking and gesture 

recognition (Pragati et al., 2009). Additionally, the Skeleton Aware 

Multimodal SLR framework (SAM-SLR) has been developed as a 

multimodal approach to hand gesture recognition, combining visual and 

skeletal information, and has shown promising results in recognizing complex 

hand gestures in real-time (Jiang et al., 2021). These techniques has its unique 

strengths and limitations, depending on the specific application and the 

accuracy and speed required for real-time gesture recognition. 

 

In this project, a comprehensive review will be provided on the popular 

methods used in the hand gesture recognition systems to interpret sign 

language. The strengths and limitations of each technique will be analyzed, 

and a method that combines the strengths of these techniques will be suggested 

to improve the accuracy of the sign language hand-gesture prediction system. 

Additionally, the challenges faced during the implementation of these 

techniques will be discussed, and possible solutions will be suggested. This 
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project aims to contribute to the development of a reliable and cost-effective 

recognition system for sign language interpretation, which would enhance the 

quality of life for individuals with hearing impairments. 

 

1.2. Importance of the Study 

The study on the development of a Recognition System To Interpret Sign 

Language would bring independence to individuals with hearing 

impairments or hearing-challenged individuals without the reliance of a 

human interpreter. With the computer vision technology, the system would 

detect and recognize hand gestures, allowing for real-time interpretation of 

sign language. This would bring social inclusion by bringing together the sign 

language users and people who do not understand sign language in their daily 

communications.  

 

Secondly, this study also would increase the efficiency of existing systems by 

reviewing the methodologies used and effectiveness of existing sign 

language interpretation systems in terms of their sign language capturing, 

recognition, translation, and representation. By comparing the performance 

of the different systems, in aspects of accuracy, and errors, the study can 

identify areas where the current interpreter systems could be enhanced. This 

could ensure a more accurate representation of the original signed message. 

 

Lastly, the study would help make communication more accessible, and 

more cost-effective to the deaf and hard of hearing when the sign language 

interpretation system becomes more widely available with the existence of a 

real-time interpreter system. With its usage in various settings, such as in 

workplaces, schools, and common spaces, individuals with hearing 

impairments or hearing-challenged individuals could fully participate in social 

and economic activities. Moreover, it will also ensure equal access to video 
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consultations for the deaf and hard of hearing especially in health 

consultations via telehealth and improve the lifestyle of the community.  

 

1.3. Problem Statement 

 

1. Dependency on trained interpreters, which may not always be available 

or accessible to the deaf and hard of hearing community. 

Individuals with hearing impairments or hearing-challenged individuals often 

faces significant communication barriers due to the unavailability or 

inaccessibility of trained sign language interpreters. According to a survey 

conducted by the National Association of the Deaf (NAD), individuals have 

reported challenges in accessing communication services, including instances 

of unavailable or unqualified interpreters (National Association of the Deaf, 

2023).  The demand for a real-time interpreter is expected to rise significantly 

by 2050, as reported by the World Health Organization (WHO) (World Health 

Organization, n.d.).  

 

 

2. Communication gap between individuals with and without hearing 

impairments in real-time. 

Individuals with hearing impairments struggle to understand spoken language 

in real-time, leading to miscommunication and exclusion. This issue can result 

in misunderstandings and communication gaps, as evidenced by a study 

published in the Journal of Deaf Studies and Deaf Education (Zaidman-Zait 

and Dotan, 2017).  

 



22 

 

3. Inadequacy of the existing systems to work with variability in sign 

language 

Existing sign language recognition systems often struggle to accurately 

recognize hand gestures, especially under varying lighting and background 

conditions. Studies have shown that recognition accuracy can significantly 

decrease in low-light environments (Mohammed et al., 2019). Additionally, 

these systems may have difficulty interpreting sign language gestures due to 

the high variability in individual signing styles (Quer and Steinbach, 2019). 

 

1.4. Aim 

The aim of this project is to develop a Hand Gesture Recognition System To 

Interpret Sign Language that addresses the interrelated problems mentioned 

above. 

 

1.5. Objective 

 

1. To design and develop an efficient algorithm for real-time hand gesture 

recognition that can detect and interpret sign language. 

This is to reduce the reliance on trained interpreters as he or she may not always 

be available or accessible. This enables individuals with hearing impairments to 

communicate more effectively and independently. 

 

 

2. To evaluate the efficiency of the hand gesture recognition system in real-

time communication scenarios. 

This is essential to ensure that the system meets the communication needs of 

people with hearing impairments, reducing the potential of social barrier 

between individuals with and without hearing impairments. 
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3. To identify potential challenges in the adoption of the system and develop 

solutions to address them. 

This is crucial to ensure the successful adoption of the system and its 

effectiveness. Solutions will be figured out to tackle these challenges. 

 

 

 

1.6. Research Questions 

As part of the development of this system, the research questions that will 

guide the study are: 

1. How can an algorithm be designed and developed to improve the 

efficiency of real-time hand gesture recognition in sign language 

interpretation? 

 

2. How efficient is the hand gesture recognition system in real-time 

communication scenarios? 

 

3. What are the potential challenges in the adoption of the system and 

how can they be addressed? 
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1.7. Proposed Solution 

Workflow: 

 

 

 

 

 

 

 

Figure 1.6.1: Workflow Diagram for the System for recognizing ASL hand gestures 
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The workflow of the proposed solution for the system for recognizing hand 

gestures in real-time to interpret sign language shown in Figure 1.6.1 involves 

the splitting into two parts: a training part and a test part. 

 

During the training phase, the goal is to train a machine learning model on 

the training dataset. This phase typically involves several steps, starting with 

pre-processing the data. This pre-processing step involves cleaning and 

organizing the data and labelling it if necessary. This labelling is important to 

help the machine learning algorithm to understand what the data represents. 

 

Once the data is pre-processed, the learning phase begins. This phase 

involves several sub-steps such as segmentation, feature extraction, dimension 

reduction, classification, and choosing a suitable machine learning algorithm. 

Feature extraction conducted when the most relevant features are selected 

from the data to be used to train the machine learning model. Segmentation 

involves breaking down the data into smaller, more manageable parts. 

Dimension reduction involves reducing the number of features to avoid 

overfitting the model. Classification involves categorizing the data into classes 

based on its features. Finally, a suitable machine learning algorithm is chosen 

to perform training on the model based on the data. 

 

After that, it will move to the test phase. During this phase, the goal is to 

make predictions on the test data with the existing trained model. This phase 

also starts with a pre-processing step, which involves cleaning and organizing 

the data. The data is then passed through the trained model, where it goes 

through the same sub-steps as the learning phase, including segmentation, 

feature extraction, dimension reduction, and classification. The model then 

generates predicted labels for the test data. 
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Finally, the predicted labels are checked if they matched to the actual labels of 

the test data. Then, evaluation takes place to calculate accuracy, precision, 

recall, and F1 score. Satisfactory model's performance can be used to make 

future predictions. If not, the model can be refined and retrained using 

different techniques or datasets. 

 

In summary, the training phase includes pre-processing the data and training 

the machine learning model, while the test phase involves pre-processing the 

test data, using the trained model to make predictions, and evaluating the 

model's performance. 
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Architecture Design: 

To implement this workflow, the proposed solution will require an architecture design that integrates the different stages seamlessly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6.2: Model-View-Controller Architecture Pattern in context of system
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The proposed solution will be developed using the Model-View-Controller 

(MVC) pattern as shown in Figure 1.6.2, which is a popular architecture 

pattern that divides the system into three components: the model, the view, and 

the controller (Pop and Altar, 2014). The model component of the system will 

handle the data and the application's logic. The view component will display 

the output of the system to the user, while the controller component will 

handle the user's input and interact with the model and view components. 

 

The sequence of events in the development of the system will involve a user 

performing a hand gesture that they want to communicate, which will be 

detected by the view component. The view component will alert the controller 

component, which will capture and manages user input. The model 

component, which is the machine learning algorithm, will process and classify 

the captured hand gestures using classifiers and alert the view component that 

it has new classified result. The view component will display the recognized 

hand gestures, including landmarks, bounding boxes, information text, point 

history, and FPS information to the user, who can continue to perform hand 

gestures to communicate with the system. This process will repeat in real-time, 

allowing the user to communicate using hand gestures until the user presses 

the ESC key, which enable sign language words or phrases translated in real 

time. 

 

The architecture design will also consider the flow of data between the 

different stages, and the hardware and software resources required to 

execute the system. A modular approach will be used to develop the different 

components separately and integrate them to form the complete system. This 

approach will allow for easy maintenance, scalability, and flexibility of the 

system. 
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Furthermore, the proposed solution's architecture design will take into account 

the computational resources required to execute the system efficiently. This 

consideration will ensure that the system runs smoothly and can handle 

recognition tasks. 

 

In summary, the development of this system to interpret sign language will 

require a well-planned architecture design, which is the MVC pattern to ensure 

the modularity and maintainability of the system.  
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1.8. Scope and Limitations 

The scope of this study is to develop a system for recognizing sign 

language’s hand gestures in real-time. Cameras or sensors are used to 

capture hand movements, and algorithms would interpret the gestures. The 

development would take place over 8 months, and the system's variables and 

factors would include camera or sensor specifications, lighting and 

background conditions, hand shape and movement variability, and machine 

learning algorithms. The project aims to achieve the objectives as stated in 

Section 1.4. Objectives: 

 

To fulfil Objective 1 as stated in Section 1.5, this system would involve the 

use of technologies such as deep learning. For instance, machine learning 

algorithms would be used to classify hand gestures and translate them into 

captions. The pre-processing techniques such as noise reduction, 

segmentation, and normalization would be used to remove any irrelevant 

information. After that, the input data would be extracted, including the shape, 

position, and movement of the hand to accurately identify specific hand 

gestures.  

 

To fulfil Objective 2 as stated in Section 1.5, the system would be trained on 

a variety of sign language gesture datasets to ensure that it can interpret 

more gestures. The system would be tested in various environments, including 

different lighting and background conditions, to determine its effectiveness in 

real-life situations. Evaluations would be conducted by comparing its results in 

aspects of speed and response time with those of human interpreters. 

Limitations of the system would be identified, and solutions proposed to 

overcome them. This is followed by Optimization for real-time processing 

which would be conducted to ensure that hand gestures are detected and 

interpreted in real-time without any significant delays. 
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To fulfil Objective 3 as stated in Section 1.5, an investigation would be 

conducted to identify the challenges posed by the variability in sign 

language gestures, including differences in hand shape, movement, and 

orientation, as well as the effects of lighting and background conditions, 

hardware and software limitations, and usability factors, such as ease of use 

and accessibility for individuals with hearing impairments. On hardware and 

software limitations, the system's performance may be affected by the 

capabilities of the hardware components used. Therefore, the study will be 

limited to using specific sign language (which is American Sign Language, or 

ASL), with the below hardware setup in Table 1.7.1 and software setup in 

Table 1.7.2. 

 

Table 1.7.1: Hardware Setup 

Hardware 

Setup 

Description 

Camera A high-quality camera is required to capture the hand 

gestures in real-time. 

Processor Fast graphics processing unit (GPU) that is capable of 

handling real-time video processing and gesture recognition 

algorithms. 

Memory Enough memory to store the trained machine learning 

models and the input data 

Display Show the recognized gestures or translated text. 
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Table 1.7.2. Software Setup 

Software Setup Description 

Operating system Windows, Linux, or MacOS 

Gesture recognition 

algorithm 

Neural Network 

Machine learning 

framework 

TensorFlow 

Keras 

Image processing 

library 

OpenCV (used for preprocessing input images and 

feature extraction) 

Testing and evaluation Scikit-learn 

TensorFlow 
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Limitations of the development of a hand-gesture recognition system may 

include the environmental limitations, algorithmic limitations, hardware 

limitations, dataset limitations, and sign language-specific limitations.  

 

The first limitations are environmental limitations including occlusion and 

lighting conditions. Occlusion occurs when part of the hand is hidden from the 

camera, which would result in recognition errors as the system is unable to 

recognize the complete hand gesture (Starner et al., 1996). Lighting conditions 

also interfere with recognition of hand gestures, in which poor lighting would 

result in shadows or reflections affecting the interpretation.  

 

The second limitation is that algorithmic limitations include computational 

complexity. To develop the hand gesture recognition would involve processes, 

such as image processing which require computational resources and can be 

time consuming (O’ Mahony et al., 2019).  

 

The third limitation is hardware limitations is the limited availability of 

hardware. The recognition system may require specialized hardware, such as 

cameras which may not be available on older laptops.  

 

The fourth limitations are dataset limitations, in which collecting and 

labelling such a dataset can be time-consuming as the system requires a large 

dataset of sign language gestures to train the model (Hou et al., 2019).  

 

The next limitations are sign language-specific limitations, which include 

variability and complexity of sign language, context-dependent sign, real-time 
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recognition and user variability. In the context of variability and complexity of 

sign language, sign languages across different regions and countries make it 

difficult to create a universal recognition system, allowing only certain 

languages to be chosen (Woll et al., 2001). In addition, sign language involves 

is a combination of not only hand gestures, also facial expressions, body 

posture, and movement, requiring advanced technology and algorithms. Next, 

sign language is context-dependent, which means it can have different 

meanings. Moreover, sign language interpretation to be built would be real-

time which is expected to be challenging due to the complexity of the task and 

the need for fast processing. 

 

Lastly, the sign language-specific limitation to be considered is user 

variability. The users may vary in terms of signing speed, style, and accuracy 

(Bellugi and Fischer, 1972). Therefore, the system must adapt to these 

variations to accurately interpret sign language. 
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1.9. Summary 

Chapter 1 of the study introduces the importance of developing a sign 

language recognition system to facilitate communication between the deaf 

and hard of hearing communities. It explores various methods for recognition 

and proposes a method that combines their strengths to enhance the accuracy 

of sign language interpretation. The study aims to provide independence for 

individuals with hearing impairments or hearing-challenged individuals, 

promoting social inclusion. The problem statement outlines the 

communication challenges faced by individuals with hearing impairments or 

hearing-challenged individuals, while the aim and objectives of the study are 

presented. The proposed solution involves using machine learning 

algorithms, with the use of the Model-View-Controller (MVC) pattern. The 

scope and limitations of the study are also presented, which include the 

development of a recognition system for interpreting American Sign 

Language, or ASL, with solutions proposed for identified limitations. 
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CHAPTER 2  

 

LITERATURE REVIEW 

 

2.1 Introduction 

 

The aftermath of the pandemic has left us to rely on virtual platforms for daily 

communication, including online learning, telehealth, and remote work. This 

has accelerated the adoption of virtual platforms for communication. However, 

currently there is no widely available recognition for sign language 

interpretation available in the market, leaving the individuals with hearing 

impairments or hearing-challenged individuals to amplify their need for 

accessible and inclusive communication. 

 

While there are systems that can recognize hand gestures for sign language 

interpretation, it is prevalent that they are not yet ready to release. This is most 

likely due to the system is still in progress to accurately interpret all variations 

of sign language in real-time, producing minimal errors in interpretation, tested 

and validated by the individuals with hearing impairments or hearing-

challenged individuals. Achieving this level of accuracy and reliability in real-

time is expected to involve a significant amount of time and resources, with 

technical expertise. 

 

With the belief that real-time interpretation technology would continue to 

advance as research in computer vision and machine learning progresses, it is 

expected to see more sophisticated systems become available in the future. This 

literature review would identify existing research in the field of hand gesture 

recognition systems for sign language interpretation. This approach is to 

identify gaps in knowledge, areas for improvement, and potential research 

directions, appropriate methodologies, to achieve the aim of increasing the 

reliability of the system. 
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2.2 Literature Review 

 

Hand gesture recognition to interpret sign language encompasses the stages of 

pre-processing, segmentation, feature extraction, dimension reduction (if used), 

and classification. 

 

Pre-processing is a stage when the input image is prepared for further 

processing. Pre-processing techniques are used to improve the quality of the 

image. In the literature review, we shall discuss presence or absence of pre-

processing, along with techniques covering image processing which includes 

image resizing, smoothing, thresholding, as well as computer vision which 

involves depth images and skeleton data. 

 

Segmentation is a stage when the separation of the hand gesture from the 

background takes place. Segmentation techniques are used to identify the hand 

region. Various techniques in segmentation, which include thresholding, 

contour detection, foreground, or background removal to track the hand or 

skeleton would be discussed. Segmentation may be assisted with hand tracking 

API, such as Mediapipe, hardware devices, such as Leap Motion Controller and 

sensors or software, such as skeleton tracking to improve the accuracy of the 

recognition system. 

 

Feature extraction is a stage when features such as colour, texture, shape, and 

motion may be extracted from the image once the hand region is identified.  

Feature extraction techniques, which further categorised into geometric feature 

extraction such as hand shape and orientation, hand landmarks, hand shape 

descriptors, finger tracking, curvature, and surface normals, image processing 

feature extraction such as edge detection and contour detection,  computer 

vision feature extraction such as depth estimation, 3D point cloud, motion 

features and depth-based features, mathematical feature extraction such as 

statistical features, sensor data feature extraction which includes sensor 

readings, and  audio signal processing feature extraction which includes audio 
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features will be discussed. In addition to that, machine learning models or 

devices would be used such as CNN, ResNet, and SVM to provide additional 

input data for improved accuracy and robustness of the system. 

 

Dimension reduction would be used to reduce the number of features in cases 

when the extracted features may be high-dimensional and redundant which 

results in classification being difficult. Therefore, it is not compulsory to be used 

in the development of the hand gesture recognition system. Techniques of 

dimension reduction used in existing studies include Principal component 

analysis (PCA) which is used to reduce the dimensionality of a dataset, linear 

discriminant analysis (LDA) which is used for classification tasks, independent 

component analysis (ICA) which is used to separate signals that are mixed.  

 

Classification is a stage when the hand gesture is classified into one of several 

predefined categories. Classification technique in existing studies can be 

categorised as Supervised Learning Techniques which is to predict the class or 

category of new, unseen data, Unsupervised Learning Technique which is to 

identify patterns or relationships within the data, such as Template matching.  

 

The literature review will also investigate if any deep learning framework, 

such as TensorFlow Lite or TensorFlow is used which leads to improved 

accuracy, and better performance with a set of tools and features provided for 

building, training, and deploying complex neural network architectures. 

Besides, the literature review shall identify whether a traditional machine 

learning which involves hand-engineered features or deep learning model 

which involves the use of artificial neural networks is being used in an existing 

study. The summary of the literature review would compare all existing studies 

in terms of its stages of development, deep learning framework, accuracy, and 

complexity. 
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2.3 OpenCV 

 

Ahmad Puad Ismail et al. demonstrated in their 2020 research, published in the 

IOP Conference Series: Materials Science and Engineering, that Python and 

OpenCV can be utilised to create a Real-Time Hand Gesture Recognition 

System for Interpreting Sign Language. This was also supported in an article 

entitled 'A Hand Gesture Sign Language to Text Real-time Interpreter using 

Google Audiopipe Artificial Intelligence' by Riaz Sulaimi who initially used 

OpenCV alone but encountered inconsistent results, the findings and outcomes 

would be mentioned in this segment. 

 

 

2.3.1 Pre-processing 

The proposed approach by Ahmad Puad Ismail et al. (Ismail et al., 2021) 

involved several stages, namely pre-processing, segmentation, feature 

extraction, and classification. In the pre-processing stage, the Haar-cascade 

classifier was used to detect the hand in the input image. The segmentation stage 

involved detecting hand gestures by calculating the space consumption within 

the area between the convex hull and contour of the hand as visualised in Figure 

2.3.1 below. 

 

Figure 2.3.1: The convex hull (in green) and the hand contour (in white) 

(Ismail et al., 2021) 
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2.3.2 Feature Extraction 

The feature extraction technique was based on the theory of Region of Interest 

(ROI), in which the region of overlapping ROIs, as visualised in Figure 2.3.2, 

are used to detect the appearance and gesture of the hand. 

 

 

Figure 2.3.2: Region of overlapping ROIs (Ismail et al., 2021) 

 

It was found that the region of interest (expressed in pixel value), for each 

gesture varies from one another.  

 

Table 2.3.2: Analysis table for Region of Interest (Ismail et al., 2021) 

 

 

The differences of ROI between gestures are visualised in Table 2.3.2. 

Calculation is carried out to obtain Area, also known as area of recognition, 

where: 

Area = H – C                  (2.3.2.1) 

H represents Area of Hull and C represents Area of Contour 
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Based on the analysis table 2.3.2, the numerical gestures of 0-5 consume area 

between 0 to 11561 pixels, while the phrases’ gestures consume area between 

2693 to 14173 pixels. 

 

2.3.3 Classification 

Lastly, classification was done to recognize the type of gesture, utilising a Haar-

cascade classifier to determine whether the box in the frame could detect the 

hand gesture or otherwise. 

 

The system was evaluated using a simulation. The simulation is conducted with 

a camera from the laptop. The screenshots of the simulation are displayed in 

Figure 2.3.3.1, Figure 2.3.3.2, and Figure 2.3.3.3.  

                                           

Figure 2.3.3.1  Image captured by                           Figure 2.3.3.2  Bounding web 

camera (Ismail et al., 2021)                      box without any gesture  

              shown. (Ismail et al., 2021) 

                                                                                                                       

 

Figure 2.3.3.3.  Recognition of hand  

showing number 1 (Ismail et al., 2021)  
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2.3.4 Accuracy 

In the simulation part, Ahmad Puad Ismail et al. evaluated the proposed 

approach on a dataset of ten hand gestures, which are the numerical values from 

1-5, as well as phrases of ‘Good’, ‘Gun’, ‘Ok’, ‘Rawr’ and ‘Stop’ which are 

posed from different scales for 10 times.  

 

Table 2.3.4: Analysis table for gesture recognition (Ismail et al., 2021) 

 

 

An analysis table in Table 2.3.4 then is produced to state the hits, misses and 

falses of Haar-cascade Classifier so as to determine if the box in the frame could 

detect the hand gesture. Based on all of the results in the table 2.3.4, the box in 

the frame can recognize all of the signs with 10 hits out of 10 trials.  

 

 

2.3.5 Advantages 

One of the notable advantages of this method is that it is computationally 

efficient and easy to implement, without the need for complex deep learning 

models. However, traditional computer vision techniques may not perform well 

in complex and noisy environments. This is proven in the article "A Hand 

Gesture Sign Language to Text Real-time Interpreter using Google Mediapipe 

Artificial Intelligence" by Riaz Sulaimi. It reports that the initial prototype of 

their system, which was developed using OpenCV, produced inconsistent 

results when detecting and interpreting hand gestures as visualised in Figure 

2.3.5.1 and Figure 2.3.5.2. 
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Figure 2.3.5.1: Right interpretation of     Figure 2.3.5.2: Wrong interpretation of  

sign language, ‘Love’ (Sulaimi, 2022)     sign language, ‘Remember’, supposed   

                                                                 ‘Love’ (Sulaimi, 2022) 

          

2.3.6 Disadvantages 

The hand gesture detection was too dependent on many factors like a clean 

background and proper lighting for accurate hand detection (blob detection).  

The inconsistency in detecting and interpreting hand gestures led the team to 

research other possible ways to make detection more reliable and accurate, 

leading them to Google’s Mediapipe. Therefore, as an enhancement, deep 

learning-based approaches using frameworks such as TensorFlow, Keras, and 

PyTorch, which involve a convolutional neural network (CNN) for feature 

extraction and classification, or a high-level framework for building media 

processing pipelines, such as Mediapipe are suggested along with OpenCV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 

 

2.4 OpenCV with Mediapipe 

 

Combining OpenCV with Mediapipe provides a powerful framework for 

developing recognition systems that can be used to interpret sign language. The 

open-source tool Mediapipe, created by Google, allows for the extraction of 

hand landmark position data from images using the Mediapipe Hands module. 

In this review, we discuss three studies that have utilised this approach and 

highlight the similarities and differences in their methodologies and findings.  

 

The 2022 IEEE International Symposium on Smart Electronic Systems (iSES) 

paper titled “Hand Gesture Recognition System in the Complex 

Background for Edge Computing Devices” by C. M. Suryateja et al. (Suryateja 

et al., 2022), uses OpenCV with MediaPipe Hands framework to extract the 

landmarks' position data, which are then recorded in a CSV format, in the 

development of the system for recognizing hand gestures using palm and finger 

positions. The system comprises four clear components, as illustrated in the 

flowchart presented in Figure 2.4: a palm detection module, a hand landmark 

(HL) position extractor, a data scrubber, and a gesture recognizer. 

 

 

Figure 2.4: The structure of the Sign Language Recognition system (Suryateja 

et al., 2022) 

 

The finger and palm position data were obtained utilizing the MediaPipe Hands 

framework, showcasing an average accuracy of 95.7% in palm detection. The 

training of the system involved leveraging the American Sign Language 

Dataset, as depicted in Figure 2.4.1. This dataset comprises hand gestures 

categorized into 10 classes, representing the letters "A" to "J". Each gesture 

image has dimensions of 160 × 120, and the dataset consists of 200 photos for 

each gesture type, featuring variations in background and individuals. 
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Figure 2.4.1: 10 gestures in American Sign Language (ASL) corresponding to 

the alphabet’s "A" to "J." (Suryateja et al., 2022) 

 

The proposed approach by C. M. Suryateja et al. involved several stages, namely 

pre-processing, segmentation, feature extraction, and classification. The study 

did not mention the use of any dimensionality reduction techniques.  

 

 

2.4.1 Pre-processing 

The pre-processing involves transforming the image dataset into a hand 

landmark (HL) position dataset using MediaPipe Hands, where the dataset is 

normalised to the wrist as visualised in Figure 2.4.1.1, and the output is stored 

in a dataset structured as a list for each gesture. 

 

Figure 2.4.1.1: Wrist and upwards as result of normalisation (Suryateja et al., 

2022) 

 

The dataset is divided into training and testing, where 80% of the data is used 

for training and 20% for testing. Pre-processing also involves the removal of 

invalid entries in the dataset using Pandas. 
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2.4.2 Feature Extraction 

Feature extraction involves utilizing a Hand Tracking Module (HTM), 

comprising a Palm Detector and an HL Position Extractor, as illustrated in 

Figure 2.4.2. The Palm Detector functions on the entire input image to detect 

the palm in the data. On the other hand, the HL Position Extractor operates on 

the cropped hand bounding box provided by the palm detector, extracting 

position data for the landmarks. 

 

Figure 2.4.2:  The working of HTM (Suryateja et al., 2022) 

 

 

2.4.3 Segmentation 

The segmentation process is fundamental in the extraction of hand landmarks, 

encompassing both palm and finger positions. This process follows the feature 

extraction stage, leveraging the Hand Tracking Module (HTM) and 

DataExtractor files. Following the identification of the palm in the input image 

by the Palm Detector during feature extraction, this information is utilized to 

train the system to estimate bounding boxes for rigid objects such as palms and 

fists. As palms are smaller objects, the non-maximum suppression algorithm 

works well even for two-hand self-occlusion cases, like handshakes. 

Meanwhile, the HL Position Extractor in HTM continues to operate on the 

cropped hand bounding box provided by the Palm Detector and returns 

landmarks with the goal that this extracted data will be used to build a ML model 

for gesture recognition. Thus, it can be concluded that the HTM may have 

contributed to both Feature extraction and Segmentation by identifying the 

relevant features (palm and finger positions) necessary for hand gesture 

recognition. 
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2.4.4 Classification 

The process of classification is carried out during the development and training 

of the ML model using machine learning classification algorithms like Decision 

Tree Classifier (DTC), Random Forest Classifier (RFC), Support Vector 

Machines (SVM), and K-Nearest Neighbours (KNN), the ML model is trained. 

The training data is derived from the extracted HL (Hand Landmark) position 

dataset obtained through the segmentation process. It was trained using an 80-

20 split of the dataset into training and testing sets. The hyperparameters of the 

model were tuned to achieve the best possible accuracy. 

 

After training the model, testing the model took place when the test dataset is 

used to predict the hand gestures in the test data. Evaluation of performance is 

done by comparing the predicted gesture, as visualised in Figure 2.4.4 with the 

actual gesture.  

 

a. Letter ‘A’

 

b. Letter ‘B’

 

 

c. Letter ‘C’

 

d. Letter ‘D’

 

e. Letter ‘E’

 

f. Letter ‘F’
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g. Letter ‘G’

 

h. Letter ‘H’

 

i. Letter ‘I’

 

 

Figure 2.4.4 (a-i): Real-time evaluation outcomes of the gesture recognition 

system (Suryateja et al., 2022) 

 

 

 

2.4.5 Accuracy 

The accuracy of the model specific classification algorithm, such as KNN was 

calculated using the confusion matrix as visualised in Figure 2.4.5, which gives 

the number of true positive, true negative, false positive, and false negative 

predictions.  

 

 

Figure 2.4.5: Confusion matrix of the model utilizing K-Nearest Neighbours 

(KNN) (Suryateja et al., 2022) 
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The Decision Tree Classifier (DTC) demonstrated perfect training data 

accuracy at 100% and achieved an accuracy of 96.4% on the test data. On the 

other hand, the model employing the Random Forest Classifier (RFC) 

algorithm achieved a training data accuracy of 100% and an accuracy of 

97.2% on the test data. Utilizing a radial base kernel, the Support Vector 

Machines (SVM) achieved an accuracy of 97.9% on the test data. 

Additionally, the K-Nearest Neighbours (KNN) algorithm-based model 

achieved a training accuracy of 97.4% and an accuracy of 98.1% on the test 

data. 

 

Table 2.4.5.1: Precision, F1-score, and Recall were computed for all models 

during the ML model development and testing (Suryateja et al., 2022) 

 

 

The precision, F1-score, and recall values for the models based on Decision Tree 

Classifier (DTC), Random Forest Classifier (RFC), Support Vector Machines 

(SVM), and K-Nearest Neighbours (KNN) are presented in Table 2.4.5.1 above.  

 

 

Table 2.4.5.2: Model and respective accuracies for the 10-class NUS dataset, 

including Training Accuracy (Tr. A), Testing Accuracy (Te. A), Overall 

Accuracy (O.A), and Average Inference Time (A.I.T) (Suryateja et al., 2022) 

 

 

In Table 2.4.5.2, the Training Accuracy (Tr. A), Testing Accuracy (Te. A), 

Overall Accuracy (O.A), and Average Inference Time (A.I.T) for the DTC, 
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RFC, SVM, and KNN-based models are presented. The inference time for the 

trained ML model falls within the range of 45-83 ms, while the overall accuracy 

ranges from 97.6% to 99.5%. Following this, the model was deployed on edge 

computing devices such as Raspberry Pi 4 and NVIDIA AGX Xavier to create 

a portable ASL recognition system. 

 

 

2.4.6 Advantages 

As an overall, the system utilised a Deep Learning Framework - the Mediapipe 

Hands framework, which is an open-source framework for hand tracking and 

gesture recognition. The advantages of using the framework include its high 

accuracy in palm detection and hand landmark extraction.  

 

 

2.4.7 Disadvantages 

However, the disadvantages include the complexity of the system built is high, 

and the dataset might contain invalid entries, which require removal.  
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2.5 LeapMotion Controller (LMC)  

 

The Leap Motion Controller (LMC) as visualized in Figure 2.5 is a small device 

that can accurately track hand movements and capture fine-grained details, 

making it a popular choice among researchers for the development of gesture 

recognition systems for sign language interpretation.  

 

Figure 2.5: Leap Motion Controller (LMC) 

 

Its ability to detect hand gestures and track hand movements in real-time has 

been utilized in many research papers, including "Real Time Sign Language 

Recognition using the Leap Motion Controller" by Naglot and Kulkarni (2016), 

"American Sign Language Recognition Using Leap Motion Controller with 

Machine Learning Approach" by Chong and Lee (2018), and "British Sign 

Language Recognition via Late Fusion of Computer Vision and Leap Motion 

with Transfer Learning to American Sign Language" by Bird, Ekárt, and Faria 

(2020). 

 

The first study is a paper by Naglot and Kulkarni (2016) that focused on 

developing a real-time sign language recognition system using the Leap Motion 

Controller (LMC) (Naglot et al., n.d.). The system aimed to track hand 

movements and recognize hand gestures in real-time. The overall process 

involved pre-processing, segmentation, feature extraction, classification, and 

final prediction. The authors used deep learning frameworks such as MLP, 

DEvoMLP, CNN, Dense Interpretation Network, Image Classification 



52 

 

Network, and Bone Data Classification Network for the classification task as 

illustrated in Figure 2.5.1. 

 

Figure 2.5.1: Overall networks and function involved in building the British 

Sign Language Recognition System (Naglot et al., n.d.) 

 

The second paper titled "American Sign Language Recognition Using Leap 

Motion Controller with Machine Learning Approach" by Chong and Lee (2018) 

proposes a system for recognizing American Sign Language (ASL) using a Leap 

Motion Controller (LMC) with a machine learning approach (Chong and Lee, 

2018). The system uses the LMC to detect hand gestures and track hand 

movements. In the last study to be investigated is by Bird, Ekárt, and Faria 

(2020), they developed a British Sign Language recognition system by utilizing 

a Late Fusion of Computer Vision and Leap Motion Controller (LMC) with 

transfer learning from American Sign Language (ASL). The proposed system 

flow of the study is shown in Figure 2.5.2 below: 
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Figure 2.5.2: Proposed flow for development of Sign Language Recognition 

Using Leap Motion Controller(Chong and Lee, 2018) 

 

2.5.1 Pre-processing 

The pre-processing step by Naglot and Kulkarni (2016) involved collecting 

data from the sensors, camera, and the LMC. The authors recorded each gesture 

for 30 seconds, 15 seconds per dominant hand, at a frequency of 0.2 seconds as 

shown in Figure 2.5.1.1. (Naglot et al., n.d.) 

 

Figure 2.5.1.1: RGB image data of 1s which collected at frequency 0.2s/frame 

(5 Hertz) 

 

The data was captured using a device positioned above the camera, facing the 

subject. The collected data were then inserted into the dataset as numerical 

vectors to be classified. The preprocessing stage also encompassed addressing 

empty frames in cases where the sensor failed to detect either hand. The pre-

processing step by Chong and Lee (2018) involved normalizing the dataset 

before providing it to the Artificial Neural Network (ANN) for training and 

testing (Chong and Lee, 2018). During the pre-processing stage by Bird, Ekárt, 

and Faria (2020), the LMC device was connected to a desktop PC and placed 

on the table to detect and track the subject’s hand and finger gestures (Bird et 

al., 2020). The setup is shown in Figure 2.5.1.2 below. 
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Figure 2.5.1.2: Setup of LMC with 3D graphic display (Bird et al., 2020) 

 

The data collected from the LMC device was pre-processed to extract 

meaningful features.  

 

2.5.2 Segmentation 

In the segmentation step by Naglot and Kulkarni (2016), the authors collected 

a dataset of British Sign Language (BSL) comprising 18 distinct gestures from 

five participants (Bird et al., 2020). Each gesture was recorded for 30 seconds, 

with 15 seconds allocated per dominant hand. This resulted in a dataset of 

numerical vectors for each gesture. Participants were instructed to perform the 

gesture at a comfortable pace during the recording. To maintain data quality and 

prevent fatigue, a recording duration of 15 seconds was chosen. In the 

segmentation stage by Chong and Lee (2018), the Palm and Finger dataset were 

selected as features for the feature extraction process(Chong and Lee, 2018). 

The Leap motion API provides various features for hand, fingers, bones, and 

gestures, including finger direction, position, and length as shown in Figure 

2.5.2 below.  
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Figure 2.5.2: Features provided by LMC API 

 

The ANN was trained using two features: the Euclidean distances between the 

consecutive fingertip position to palm position and the Euclidean distances 

between the fingertip position of each consecutive finger. 

 

 

2.5.3 Feature Extraction 

In the feature extraction step by Naglot and Kulkarni (2016), various features 

were extracted from the recorded data(Naglot et al., n.d.). These features 

encompassed the initiation and termination coordinates of the arm within 3D 

space (X, Y, and Z coordinates), along with the 3D angle between these points. 

Furthermore, the velocity of the arm in all three dimensions (X, Y, and Z) was 

calculated. Additionally, the 3D spatial coordinates (X, Y, and Z) of the elbow 

and wrist positions were recorded. The features also included the pitch, yaw, 

and roll of the palm. Finally, the 3D angle of each finger and each bone in the 

hand as visualized in Figure 2.5.3 were also extracted from the recorded data.  
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Figure 2.5.3: Bone data of each finger detected by LeapMotion sensor 

 

The use of multiple features provided a comprehensive representation of hand 

and arm movements, enabling the system to recognize a wide range of sign 

language gestures. In the feature extraction stage by Bird, Ekárt, and Faria 

(2020), features such as hand palm sphere radius, hand palm position, and 

fingertip position were extracted from the collected data(Suryateja et al., 2022). 

The authors organized these features into five distinct groups and extracted a 

total of 23 features to use as input parameters to the classifiers. 

 

 

2.5.4 Classification 

For the classification task by Naglot and Kulkarni (2016), two main 

classification tasks were performed: image classification and gesture 

recognition using the LMC. For image classification, the authors-initiated 

feature extraction from image data by employing a Convolutional Neural 

Network (CNN) with the VGG16 architecture as a starting point as illustrated 

in Figure 2.5.4 below. 

 

Figure 2.5.4: Input image is fed into a fine-tuned VGG16 CNN, where a layer 

comprising 128 ReLU neurons generates the output, which is then utilized in 

late fusion with the Leap Motion network (Naglot et al., n.d.) 

 

The authors used the first three hidden layers of the CNN, containing 4096 

neurons each, as feature extractors. For concatenation, the Softmax output layer 

was eliminated. For classification by Chong and Lee (2018), the paper used a 
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Multilayer Perceptron (MLP) neural network, which has three types of layers - 

input, output, and hidden layers as shown in Figure 2.5.4.1 below on its 

architecture.  

 

 

Figure 2.5.4.1: Architecture of MLP neural network (Chong and Lee, 2018) 

 

The network was trained using the Back Propagation (BP) algorithm, which 

involved applying input to the network, initializing weights and bias, forward 

pass, and reverse pass. During the forward pass, the net input and output to each 

hidden layer unit and output layer unit were calculated. During the reverse pass, 

the error was calculated, and the weights of interconnections from the hidden 

layer unit to the output layer unit were updated. The error of the hidden layer 

was also calculated, and the weights of interconnections from input layer 

neurons to hidden layer neurons were updated. The processing module by Bird, 

Ekárt, and Faria (2020) provided classification results using two classifiers: 

Support Vector Machine (SVM) and Deep Neural Network (DNN). The 

SVM was used with a linear kernel and "one-vs-rest" (OVR) decision method 

to handle the 36 classes in the dataset, while the DNN model consisted of two 

hidden layers with 128 neurons each, using the ReLU activation function, and a 

final Softmax layer with 36 neurons. The models were trained and tested using 

the leave-one-subject-out (LOO) approach to avoid subject bias.  

 

 

2.5.5 Deep Learning Model / Traditional Machine Learning Model 

For gesture recognition using the  LMC, a Dense Interpretation Network and 

a Bone Data Classification Network were used by Naglot and Kulkarni 
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(2016). The authors used DEvoMLP for the classification of Leap Motion data. 

The most effective layer, composed of 16 neurons, received input from both the 

Image and Leap Motion classification networks. This layer was linked to a final 

SoftMax output. Furthermore, a higher-order function network was employed 

for late fusion, combining the two modalities into a multimodal solution. Pre-

processing of the data was conducted, resulting in the acquisition of 1D vectors 

for classification. The authors also used a traditional machine learning model, 

SVM, for classification. The paper by Chong and Lee (2018) did not use any 

deep learning framework and instead used the MLP neural network as a 

traditional machine learning model for classification. The study by Bird, 

Ekárt, and Faria (2020) utilized a DNN classifier as well as traditional 

machine learning techniques such as SVM for comparison. The authors 

demonstrated that the proposed system is capable of accurately recognizing 

ASL and British Sign Language gestures. 

 

 

2.5.6 Accuracy 

The system by Naglot and Kulkarni (2016) attained an average mean 

classification accuracy of 94.44% on a 10-fold cross-validation dataset, 

outperforming previous models in the literature as shown in Table 2.5.6 below.  

 

Table 2.5.6: Mean classification accuracy with RGB, LeapMotion and Multi-

modality model (Naglot et al., n.d.) 

 

 

According to the Confusion Matrix plotted by the authors, Chong, and Lee 

(2018) shown in Figure 2.5.6, the proposed system achieved an accuracy of 

96.15% in recognizing letters/alphabet using the trained ANN. 
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Figure 2.5.6: Confusion Matrix of Predicted class vs Actual class of system 

trained using the Back Propagation (BP) algorithm (Chong and Lee, 2018) 

 

The DNN model by Bird, Ekárt, and Faria (2020) outperformed the SVM, with 

a mean accuracy of 90.58% and 85.65% for the 26-class and 36-class ASL 

recognition, respectively. The C6 feature group performed the best, with an 

accuracy rate of 93.81% and 88.79% for the 26-class and 36-class recognition 

using DNN. The sensitivity and specificity of each class were calculated, with 

the letters 'B', 'C', 'F', 'I', 'W', and 'Y' having the highest sensitivity rates, and 'H', 

'S', and 'U' having the lowest confidence levels. The results indicated that DNN 

with the C6 feature group is an effective method for ASL recognition. 

 

 

2.5.7 Complexity 

The proposed system by Naglot and Kulkarni (2016) mentioned that LMC has 

a low computational complexity and can run in real-time on a standard laptop 

computer.  

 

 

2.5.8 Advantages 

After the evaluation of 3 papers which utilised the Leap Motion Controller, it is 

found that LMC has several advantages as a sensor for hand gesture 

recognition, such as high accuracy, non-invasiveness, and ease of use. It is also 
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relatively low-cost compared to other devices, making it more accessible for 

research and practical applications. Additionally, the ability to capture hand 

movements in 3D space allows for more natural and intuitive interactions with 

the system, making it an ideal choice for sign language recognition. 

 

 

2.5.9 Disadvantages 

However, there are also some limitations to consider when using the Leap 

Motion Controller for hand gesture recognition. Its limited field of view and 

range of detection can pose a challenge for sign language recognition. The 

device may also have difficulty distinguishing between movements that occur 

close to each other in space and may require a clear line of sight, which can be 

obstructed by clothing or other objects. Finally, the device's compatibility with 

certain operating systems and software platforms may also be limited. 

 

The Leap Motion Controller (LMC) has proved to be an effective tool for 

developing real-time hand gesture recognition systems for interpreting sign 

language. Its ability to accurately track hand movements and capture fine-

grained details has made it a popular choice among researchers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 

 

2.6 Gloves with sensors 

 

Hand gesture recognition using sensor gloves has gained significant attention in 

recent years due to their ability to capture the intricate movements of the hand. 

These gloves are equipped with sensors that capture hand movements and 

facilitating the transformation of sign language into text or speech. This section 

of the literature review will examine two papers, Shukor et al.'s "A new data 

glove approach for Malaysian sign language detection" (Shukor et al., 2015) 

and Lee and Lee's "Smart wearable hand device for sign language 

interpretation system with sensors fusion" (Lee and Lee, 2018) which propose 

novel approaches for gesture recognition using sensor gloves. 

 

Shukor et al. developed a continuous sign language detection system using a 

data-glove-based approach using a tilt sensor and an accelerometer. The system 

can recognize both fingerspelling and sign gestures, making it suitable for 

deciphering Malaysian Sign Language. The system consists of a 

microcontroller, a Bluetooth module, a tilt sensor, and an accelerometer as 

shown in Figure 2.6.1.  

 

 

Figure 2.6.1: Assembly of data-glove (Shukor et al., 2015) 
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The flow chart of how it works is shown in Figure 2.6.2.  

 

Figure 2.6.2: Flowchart of Sign Language Detection Algorithm (Shukor et al., 

2015) 

 

On the other hand, Lee and Lee's sign interpretation system involved the usage 

of a custom-made wearable device that utilizes flex sensors and an inertial 

motion unit, and an improved system with fusion of pressure sensor added to 

the middle finger as shown in Figure 2.6.3.  
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Figure 2.6.3: Improved system with Pressure Sensors (Lee and Lee, 2018) 

 

Their system is divided into three modules: a sensor module, a processing 

module, and an application module as illustrated in Figure 2.6.4. 
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Figure 2.6.4: Overview of modules involved in sign interpretation system (Lee 

and Lee, 2018) 

 

 

2.6.1 Pre-processing 

In this study by Shukor et al., the pre-processing phase involves reading the tilt 

sensor (open or closed-circuit connection, which is read as digital inputs) and 

accelerometer inputs from the data glove and comparing them with stored 

memory in the microcontroller (for the few set data) when signer performs sign 

language. The pre-processing stage by Lee and Lee involves the processing of 

raw data, which includes filtering, normalization, and segmentation. The flex 

sensor and IMU data collected using an Arduino Pro Mini 328 are pre-

processed. Throughout the experiments, the flexion values of the sensors varied 

among the different subjects due to variations in the hand sizes and the sensor 

placements. Therefore, a normalization step was performed to scale the data to 

a common range. Below is a normalization formula in Figure 2.6.5 involving 

where fsi ,fs, and σfs , which are the i-th sensor reading, mean and SD of flex 

sensor value respectively. 

 

Figure 2.6.5: Normalization formula (Lee and Lee, 2018) 

 

 

2.6.2 Segmentation 

For segmentation, the algorithm used by Shukor et al. for continuous sign 

language detection is a fusion of tilt sensors and accelerometers. The 

accelerometer is required to detect gesture motion by setting a threshold in the 

axis of motion (x, y or z) since it is placed in the palm of the glove. In the study 

by Lee and Lee, the features extracted from the sensor data are the mean and 

standard deviation of each sensor signal. The extracted features are used to train 

the SVM classifier, which recognizes the hand gestures from the data. 
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2.6.3 Feature Extraction 

During feature extraction, flex sensor and tilt sensors is used by Shukor et al. 

to detect the flexion of fingers, and the accelerometer captures the movements 

of the wrist and hand for each sign gesture.  Flex sensor which is also known as 

bend sensor is a sensor that changes its resistance according to the amount of 

bend on the sensor. It is a passive resistance device fabricated by laying strips 

of carbon resistive elements within a thin flexible substrate. However, 

constructing the data glove with flex sensors can be quite costly because the 

price for flex sensor is quite expensive. Therefore, a tilt sensor or inclinometer 

is used to detect the bending of a finger, which is cheaper than flex sensor. 

 

2.6.4 Dimension Reduction 

Dimension reduction is used by Lee and Lee to reduce the number of features 

without losing important information. Principal component analysis (PCA) is 

used to reduce the dimensionality of the feature space while retaining most of 

the relevant information, such as the variance in the data. principal component 

analysis (PCA) algorithm for speeding up the processing time. 

 

 

2.6.5 Classification 

For the classification task, the gesture data is classified by Shukor et al. based 

on the features extracted from the sensors to recognize the sign language being 

performed. the classification process is done using a sign language detection 

algorithm, simpleSigner. The algorithm is a fusion between tilt sensors and 

accelerometers. 
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Figure 2.6.5: A tilt sensor at upright (vertical) position and a tilt sensor bent at 

50 degrees(Shukor et al., 2015) 

 

 

2.6.6 Deep Learning Model / Traditional Machine Learning Model 

A built-in SVM classifier was used by Lee and Lee to classify the gestures into 

the 26 alphabet letters of ASL, a “neutral” state, and an invalid sign. With that, 

the SVM classifier classifies the input features into different categories and 

outputs the corresponding letter. The system by Lee and Lee uses a traditional 

machine learning approach that involves a built-in SVM classifier which is used 

to train the model using the extracted features. 

 

 

2.6.7 Accuracy 

The experiment by Shukor et al. involving a sign language detection system that 

uses tilt sensors and an accelerometer, was successful in detecting flexor motion 

using tilt sensors, and after fitting ten tilt sensors on a data glove, the system 

was tested on candidates performing sign language and gestures for alphabets, 

numbers, and words. The results showed that the system had a reasonably high 

accuracy ranging from 78.33% to 95% for all the tests, with higher accuracy 

for alphabets and numbers, and lower accuracy for words due to the involvement 

of motion that needed to be detected by the accelerometer. The accuracy of Lee 

and Lee’s system is measured by comparing the predicted output of the classifier 

with the actual output of the test data. The accuracy of the proposed system is 

discussed in detail. Table 2.6.7 summarizes the classification results for the first 

and second versions of the system.  

Table 2.6.7: Classification accuracy 1st and 2nd version of sign recognition 

system (Lee and Lee, 2018) 
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It is observed that the accuracy of the first version was low, 65.7%, and there 

were negative classifications due to similar patterns occurring among several of 

the signs. The accuracy of the system improved significantly to 98.2% after the 

pressure sensors were added to the system. However, there were still minor 

misclassifications in the second version of the system. An analysis indicated that 

the incorrect pattern recognitions for all subjects occurred more commonly 

between the letter’s “E” and “S.” A similar issue appeared for letters “M” and 

“N” as well. Thus, the system misinterpreted the thumb region as a PR instead 

of a CR, or vice versa. 

 

 

2.6.8 Complexity 

In terms of complexity, the Lee and Lee’s system revealed that classification 

would become more complex when there is a high accuracy of recognition for 

different signs. The complexity of the system is also discussed in the context of 

the pressure sensors. The accuracy rate of signs recognition for alphabet “U” 

increased significantly when two pressure sensors data are included for the 

classification. Likewise, the mean accuracy for alphabet “R” and “V” increased 

dramatically. The inclusion of the first pressure sensor surface showed 

significant differences for the signs between the letter’s “U” and “V.” 

 

 

 

2.6.9 Advantages 

Gloves with sensors provide significant advantages in the field of sign language 

interpretation. One of the most significant advantages is their ability to 

recognize both fingerspelling and sign gestures, making them an effective tool 

for deciphering Malaysian Sign Language. Additionally, sensor gloves are not 

affected by environmental factors such as lighting and offer higher accuracy 

compared to visual-based approaches. Moreover, these gloves are non-invasive 

and intuitive, making them easy to use and transportable. Their ability to provide 
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real-time recognition further increases their potential in applications that require 

real-time communication. 

 

 

2.6.10 Disadvantages 

However, sensor gloves also have several disadvantages. One of the major 

drawbacks is the high cost of constructing the data glove with flex sensors. 

Furthermore, reading flex sensors is not very stable and is sensitive to noise, 

which may affect the accuracy of the system. The gloves may not be suitable 

for all users due to variations in hand size and sensor placement. The sensors' 

accuracy may also be affected by the user's hand movements, making regular 

calibration necessary to maintain accuracy. 

 

 

In conclusion, gloves with sensors have shown great potential for recognizing 

sign language, and significant research efforts have been directed towards 

improving their performance. 
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2.7 Skeleton Aware Multimodal SLR framework (SAM-SLR) 

 

SAM-SLR is a machine learning algorithm that can help computer programs 

better understand complex data by identifying patterns and relationships 

between different parts of the data. In the development of the recognition system 

to interpret sign language, the use of the SAM-SLR framework has been 

identified as an effective approach. In this literature review, we will take a closer 

look at two papers, namely Jiang et al.'s "Skeleton aware multi-modal sign 

language recognition" and De Coster et al.'s "Isolated sign recognition from 

RGB video using pose flow and self-attention" on their processes of pre-

processing, segmentation, feature extraction, dimension reduction, 

classification, and the use of deep learning frameworks involved. 

 

The first paper by Jiang et al. (2021) introduces the Skeleton Aware Multi-

modal Sign Language Recognition (SAM-SLR) framework, which is a 

multimodal approach for sign language recognition. The SAM-SLR framework 

utilizes two models called SL-GCN and SSTCN for skeleton keypoints and 

features, respectively, in addition to a 3D CNNs model for other modalities. The 

defined SAM-SLR framework is as shown in Figure 2.7.  

 

Figure 2.7: Concept of Skeleton Aware Multi-modal Sign Language 

Recognition Framework (SAM-SLR) 
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As visualized above, the framework involves using various inputs such as pose, 

optical flow, HHA, and depth flow data to capture different aspects of the hand 

movements, with inputs to train models such as the SL-GCN, SSTCN, 3DCNN, 

and RGD Ensemble. The second paper, De Coster et al. (2021) proposed an 

isolated sign recognition system using the Skeleton Aware Multimodal SLR 

(SAM-SLR) framework on the AUTSL dataset. The framework utilizes pose 

flow and self-attention mechanisms for the recognition of isolated signs from 

RGB videos.  

 

 

2.7.1 Pre-processing 

The pre-processing step by Jiang et al. involves using a pretrained whole-body 

pose estimation network to provide 133 keypoints estimated from the detected 

person in videos (Jiang et al., n.d.). A spatio-temporal graph can then be 

constructed by connecting the adjacent keypoints in the spatial dimension 

according to the natural connections of the human body and connecting all 

keypoints to themselves in the temporal dimension as shown in Figure 2.7.1 

below. 

 

Figure 2.7.1: RGB with whole-body 

keypoints overlay 

 

On the second paper, the dataset De Coster et al.used in the experiment is the 

balanced AUTSL dataset which consists of 36,302 samples (De Coster et al., 

n.d.). The data comprises 226 distinct signs, each captured by one of 43 

individuals. The dataset has been divided into independent sets for training, 

validation, and testing, considering variations in signers, filming locations, and 

viewpoints. The video samples are recorded at a resolution of 512 by 512 pixels 
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and a frame rate of 30 frames per second (FPS), encompassing both RGB and 

depth data. However, this study exclusively focuses on utilizing the RGB data 

for experimentation purposes. 

 

Hand cropping is performed to extract hand images as main inputs to the model. 

The OpenPose BODY-135 model is used to estimate keypoints (VTN-PF) for 

the body, hands, face, and feet as shown in Figure 2.7.2. 

 

 

Figure 2.7.2: Cropping based on hand keypoints by OpenPose may result in 

distorted crops in cases where certain keypoints are not detected (De Coster et 

al., n.d.) 

 

Hand cropping involves identifying an appropriate position for the hand crop 

extension from the forearm. This determination relies on the positioning of 

elbow and wrist keypoints. The crop size is selected to maintain relative 

consistency, accounting for variations in camera distance and individual 

physical attributes. 
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2.7.2 Segmentation 

 

The segmentation process by Jiang et al. involves reducing the graph size from 

133 nodes to 27 nodes, which contain the essential information required for 

SLR. This step also results in faster model convergence and significantly higher 

recognition rates. During the segmentation process, the samples utilized in the 

work by De Coster et al. (Figure 2.7.2.1) have diverse lengths, with a median 

duration of 61 frames. 

 

Figure 2.7.2.1. The depicted samples exhibit differing lengths, with a median 

duration of approximately 61 frames, equivalent to about 2 seconds, within the 

training set 

 

Each video sample contains initial wind-up and final wind-down segments. 

However, for the purpose of isolated sign recognition within this dataset, these 

wind-up and wind-down segments are excluded from consideration. Instead, a 

segment is chosen from the middle of the video, and a selection of 16 frames is 

made with a stride of 2 frames, resulting in an effective temporal receptive field 

of 32 frames. It's important to note that the wind-up and wind-down segments 

are not taken into account during the segment selection process. 

 

2.7.3 Feature Extraction 

 

The feature extraction process by Jiang et al. involves using spatio-temporal 

GCN with spatial partitioning strategy to model the dynamic skeletons(Jiang et 
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al., n.d.). This is done by adopting a decoupling graph convolution to boost the 

capacity of GCN. The spatial and temporal GCN are implemented as performing 

standard 2D convolution and then multiplying the results by a trainable weight 

matrix of the convolution. In isolated sign recognition, De Coster et al. identified 

significant parameters for recognition, including hand shape, orientation, 

movement, and place of articulation. They also acknowledged the importance 

of non-manual components like mouthings, eye gaze, and eyebrow movements 

in sign languages. However, for the specific task of isolated sign recognition, 

non-manual components are considered less crucial. In the AUTSL dataset, 

videos have a spatial resolution of 512 by 512 pixels. Considering that the model 

is trained using inputs of 224 by 224 pixels, there's a notable spatial down-

scaling of the inputs. As a result, a pre-processing step involves cropping out 

hand images (VTN-HC) and utilizing them as the primary inputs to the model, 

thus preserving more spatial information pertaining to the hand areas. 

 

2.7.4 Classification 

 

The classification process is done by Jiang et al. using a multi-modal ensemble 

process (Jiang et al., n.d.), which combines the outputs of the SL-GCN and 

SSTCN models for skeleton keypoints and features, respectively, and the 3D 

CNNs model for other modalities. The ensemble process involves a weighted 

voting mechanism to obtain the final prediction. For classification by De Coster 

et al., a deep learning framework is used. A VTN, or Vision Transformer 

Network, is applied to model both spatial and temporal information through the 

utilization of deep Convolutional Neural Networks (CNNs) for spatial data and 

self-attention mechanisms for temporal data. Several enhancements have been 

introduced to improve the performance and capabilities of the VTN. 
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2.7.5 Deep Learning Model / Traditional Machine Learning Model 

The deep learning framework used in the SAM-SLR framework by Jiang et 

al. includes the use of artificial neural networks in the SL-GCN and SSTCN 

models. The traditional machine learning approach involves hand-engineered 

features that are used in the 3D CNNs model for other modalities. Deep learning 

framework is also used by Coster et al., specifically a VTN. The model uses 

artificial neural networks. The VTN (Vision Transformer Network) is employed 

to model spatial information through deep Convolutional Neural Networks 

(CNNs) and temporal information through self-attention mechanisms. The VTN 

is improved with several modifications. The deep learning model used in the 

classification is a traditional machine learning method which involves hand-

engineered features. 

 

2.7.6 Accuracy 

The evaluation of the proposed approach is done by Jiang et al. using different 

modalities, and the performance of the models is measured using the top-1 and 

top-5 accuracy. The results of the experiments show that the proposed SAM-

SLR framework outperforms the baseline methods in terms of accuracy. 

Specifically, the multi-stream SL-GCN model achieved the highest top-1 

accuracy of 95.45% on the validation set, while the top-1 accuracy of the 

baseline RGB and RGB-D models were 49.23% and 62.03%, respectively.  

 

Table 2.7.6: Performance of multi-stream SL-GCN(De Coster et al., n.d.) 

 

 

Table 2.7.7: Performance baseline results RGB and RGB-D(De Coster et al., 

n.d.) 
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The results demonstrated that the proposed approach using different modalities 

can improve the overall recognition rate of sign language recognition. In the 

case of Jiang et al., they utilized the categorical cross-entropy loss function for 

all three experiments. The final model was chosen based on the lowest loss 

observed. The authors conducted a comparative analysis of the three models, 

and according to Figure 2.7.6, the VTN-PF demonstrated the highest accuracy 

at 91.51% on the validation set.  

 

Figure 2.7.6: Graph Accuracy against Parameters for 3 experiments: VTN, 

VTN-HC, VTN-PF 

 

They also compared the number of trainable parameters between the models, 

and the VTN-PF had slightly more trainable parameters than the VTN-HC 

model. 

 

 

2.7.7 Complexity 

According to Jiang et al., the proposed approach is relatively complex as it 

involves the use of multiple modalities, such as whole-body pose keypoints and 

features, RGB frames, depth, masked HHA, optical flow and depth flow as 

shown in Figure 2.7.7 below.  
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Figure 2.7.7: Visualization of modalities: RGB frames, depth, masked HHA, 

optical flow and depth flow (left-right) (Jiang et al., n.d.) 

 

Each modality requires specific processing steps and data augmentation 

techniques to extract the necessary features. For instance, the whole-body pose 

keypoints are extracted using a pretrained HRNet whole-body pose estimator, 

and then processed into four streams for joint, bone, joint motion, and bone 

motion. Similarly, RGB frames and optical flow are extracted from the videos 

using the TVL1 algorithm and then cropped and resized to 256x256 based on 

the keypoints. The depth HHA features are also extracted from depth videos 

using a mask to fill out the missing regions. Moreover, the proposed approach 

involves the use of complex models, such as the multi-stream SL-GCN model 

as shown in Figure 2.7.7.1 below, which requires careful design and 

optimization to achieve high accuracy. 

 

Figure 2.7.7.1: Multi-stream SL-GCN model (Jiang et al., n.d.) 
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According to Coster et al., the complexity of the model depends on different 

approaches that were taken to improve the accuracy of the models. In the VTN-

HC model, the hands were cropped based on wrist positions identified using 

OpenPose. This cropping process led to an augmentation in the embedding size 

within the self-attention decoder model, reaching 1024. Consequently, this 

adjustment rendered the VTN-HC model more intricate compared to the original 

VTN model. 

 

2.7.8 Advantages 

The use of the SAM-SLR framework in hand gesture recognition offers high 

accuracy, making it ideal for applications that require precision. The framework 

uses deep learning techniques that allow for the recognition of complex gestures 

and the ability to distinguish between similar gestures. Additionally, the use of 

multiple models for classification increases the model's robustness and 

accuracy, making it suitable for a wide range of applications. 

 

 

2.7.9 Disadvantages 

One major disadvantage of using the SAM-SLR framework is the high 

computational cost associated with training and inference. Due to the use of 

deep learning and the combination of multiple models, the model requires a 

significant amount of computational power and resources. This can make it 

challenging to implement the framework on low-power devices such as 

smartphones and embedded systems. Additionally, the complexity of the 

framework can make it challenging to understand and modify for researchers 

who are not familiar with deep learning techniques. 

 

By examining their research on the use of SAM-SLR, one can gain valuable 

insights into the current state of the art in hand gesture recognition systems. 

Further research in this area will potentially lead to more accurate and efficient 

sign language recognition systems, with potential applications in various fields, 

including assistive technologies and communication devices for the hearing-

impaired. 
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2.8 Summary 

This table 2.8 below provides an overview of different approaches to hand gesture recognition. Each approach is evaluated based on the methods 

used for pre-processing, segmentation, feature extraction, dimension reduction, and classification. The accuracy of each approach is also provided. 

 

Approaches evaluated include OpenCV only, OpenCV with Mediapipe, LeapMotion Controller with CNN, Gloves with sensors, and Skeleton 

Aware Multimodal SLR framework. 

 

Table 2.8: Overview of different approaches to hand gesture recognition 

Approach 

 

Process 

OpenCV only OpenCV with 

Mediapipe 

LeapMotion 

Controller with 

CNN 

Gloves with sensors Skeleton Aware 

Multimodal SLR 

framework 

Pre-processing 

Methods 

Haar-cascade classifier 

for hand detection 

Transformation of 

image dataset into a 

hand landmark (HL) 

position dataset 

using MediaPipe 

Hands 

1. Addressing empty 

frames in instances 

where the sensor 

failed to detect either 

hand. 

 

1. Read tilt sensor and 

accelerometer inputs, 

compare with stored 

memory 

 

1. Not specified 

 

2. Not specified 
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2. Normalizing the 

dataset before 

training and testing. 

 

3. The data collected 

from was pre-

processed to extract 

features. 

 

 

 

 

 

 

 

 

 

2.Filtering, 

normalization, and 

segmentation 
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Segmentation 

Methods 

Calculation of space 

consumption between 

the convex hull and 

contour of the hand 

Hand Tracking 

Module (HTM) 

consisting of a Palm 

Detector and HL 

Position Extractor 

1. Not specified 

 

2. Palm and Finger 

dataset were selected 

as features for the 

feature extraction 

process. 

 

3. Not specified 

 

 

1. Not specified 

 

2. Mean and standard 

deviation of each 

sensor signal 

1. Not specified 

 

2. Choosing a 

segment from the 

centre of the video 

and extracting 16 

frames with a step 

size of 2 frames, 

achieves an effective 

temporal receptive 

field spanning 32 

frames. 
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Feature Extraction 

Methods 

Region of Interest (ROI) 

calculation for 

appearance and gesture 

detection 

Extraction of 

position data of the 

landmarks 

1. Extracted  

Note: 3D space (X, Y, 

Z coordinates) 

- The start and 

end positions 

of the arm in 

3D space 

- The angle in 

3D space 

between the 

initial and 

final arm 

positions. 

- The speed or 

velocity of the 

arm in all 

three 

dimensions. 

1. Not specified 

 

2. Mean and standard 

deviation of each 

sensor signal 

1. Not specified 

 

2. Classification of 

significant 

parameters such as 

hand shape, 

orientation, 

movement, and place 

of articulation 
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- The position 

of the elbow 

and wrist in 

3D space. 

  

- The pitch, 

yaw, and roll 

of the palm.   

- 3D angle of 

each finger 

and each bone 

in the hand. 

 

2. Extracted the 

Euclidean distances 

between the 

consecutive fingertip 

position to palm 
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position and the 

Euclidean distances 

between the fingertip 

position of each 

consecutive finger. 

 

3. Not specified 

Dimension 

Reduction 

Methods (if used) 

Not specified Not specified Not specified 1. Not specified 

2. Principal 

Component Analysis 

(PCA) 

 

 

 

 

 

 

 

Not specified  
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Classification 

Methods 

Haar-cascade classifier 

for gesture recognition 

The models utilized 

in this study include 

the Decision Tree 

Classifier (DTC), 

Random Forest 

Classifier (RFC), 

Support Vector 

Machines (SVM), 

and K-Nearest 

Neighbours (KNN) 

1. MLP, DEvoMLP, 

CNN, Dense 

Interpretation 

Network, Image 

Classification 

Network, and Bone 

Data Classification 

Network. 

 

2. Artificial Neural 

Network (ANN). 

 

3. Leap Motion 

Controller (LMC) 

through late fusion 

using transfer 

learning 

1. simpleSigner, Sign 

Language Detection 

Algorithm (fusion of 

tilt sensors and 

accelerometers) 

 

2. SVM Classifier  

1. SL-GCN, SSTCN, 

3D CNN, and RGD 

Ensemble 

 

2. VTN for sign 

classification 



85 

 

Deep Learning 

Framework 

Not specified Not specified 1. TensorFlow, Keras 

2. TensorFlow 

3. TensorFlow 

Not specified Not specified 

Traditional 

Machine 

Learning/ Deep 

Learning Model 

Traditional Machine 

Learning 

Traditional Machine 

Learning, 

Decision Tree 

Classifier (DTC), 

Random Forest 

Classifier (RFC), 

Support Vector 

Machines (SVM), 

K-Nearest 

Neighbours (KNN) 

1. Artificial Neural 

Network (ANN) 

using the Euclidean 

distances between the 

consecutive fingertip 

position to palm 

position and the 

Euclidean distances 

between the fingertip 

position of each 

consecutive finger. 

 

2. Artificial Neural 

Network (ANN) 

 

1. Traditional Machine 

Learning 

 

2. Built-in SVM 

classifier 

Deep Learning Model 
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3. Convolutional 

Neural Network 

(CNN) 

Accuracy Recognizes all 10 hand 

gestures with 10 hits out 

of 10 trials 

DTC: Training data 

accuracy 100%, Test 

data accuracy 96.4% 

RFC: Training data 

accuracy 100%, Test 

data accuracy 97.2% 

SVM: Achieving an 

accuracy of 97.9% 

with the test data 

using a radial base 

kernel. 

KNN: Training 

accuracy 97.4%, 

Test accuracy 98.1% 

1. 95% 

2. 90.3% 

3. 96% 

1. 78.33% to 95% 

2. 65.7% to 98.2% 

1. Multi-stream SL-

GCN model (top-1 

accuracy) 95.45% on 

the validation set, 

baseline RGB and 

RGB-D (top-1 

accuracy)  models 

were 49.23% and 

62.03% 

 

2. VTN-PF: 91.51% 

on the validation set 
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Complexity Low. Computationally 

efficient and easy to 

implement 

High, requires 

technical expertise 

in parameter tuning, 

and algorithms for 

accurately 

identifying hand 

landmarks from 

images. 

High Low High 

Advantages - Computationally 

efficient 

- Easy to 

implement 

without complex 

deep learning 

models 

- High 

accuracy in 

palm 

detection 

and hand 

landmark 

extraction 

- High accuracy 

- Non-

invasiveness 

- Ease of use 

- Relatively 

low-cost 

- Captures hand 

movements in 

3D space for 

- Recognizes 

fingerspelling 

and sign 

gestures 

- Unaffected by 

environmental 

factors such as 

lighting 

- Higher 

accuracy 

- High 

accuracy 

- Recognition 

of complex 

gestures 

- Ability to 

distinguish 

between 

similar 

gestures 
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natural 

interactions 

compared to 

visual-based 

approaches 

- Non-invasive 

and intuitive 

- Increased 

robustness 

and accuracy 

 

 

 

Disadvantages - May not perform 

well in complex 

and noisy 

environments 

- Dependent on 

factors like clean 

background and 

proper lighting 

- Inconsistent 

detection and 

interpretation of 

- High 

complexity 

of the system 

- Dataset may 

contain 

invalid 

entries that 

need to be 

removed. 

- Limited field 

of view and 

range of 

detection 

- Difficulty 

distinguishing 

between 

movements 

close in space 

- Requires clear 

line of sight 

- High cost of 

construction 

- Reading flex 

sensors is not 

very stable and 

sensitive to 

noise 

- May not be 

suitable for all 

users due to 

variations in 

hand size and 

- High 

computational 

cost for 

training and 

inference 

- Challenging 

to implement 

on low-power 

devices 

- Complexity 

can make it 

challenging to 
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hand gestures 

with OpenCV 

- Frameworks like 

Mediapipe are 

suggested for 

more reliable 

and accurate 

detection. 

which can be 

obstructed 

- Compatibility 

with certain 

operating 

systems may 

be limited. 

sensor 

placement 

understand 

and modify 

for non-

experts in 

deep learning. 

 

 

 

Authors 1. Ahmad Puad Ismail et 

al. 

2. Riaz Sulaimi 

C. M. Suryateja et 

al. 

1. Naglot and 

Kulkarni (2016) 

2. Chong and Lee 

(2018) 

3. Bird, Ekárt, and 

Faria (2020) 

1. Shukor et al. 

2. Lee and Lee 

1. Jiang et al. 

2. De Coster et al. 
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The table 2.8 above has shown that there are several approaches available for 

gesture recognition using hand landmarks. Among these approaches, using 

OpenCV with Mediapipe has shown promising results for the real-time  sign 

language. 

 

Firstly, this approach provides a real-time and efficient solution for hand 

landmark detection, which is crucial for interpreting sign language in real-time. 

The combination of these tools offers a robust and accurate hand landmark 

extraction method, which can be used to create a large dataset for training and 

testing machine learning models. 

 

Secondly, the OpenCV with Mediapipe approach has shown better results 

compared to other methods, such as Haar-cascade classifiers, which are not 

robust to variations in hand size, orientation, and lighting conditions. This 

means that the approach can accurately detect hand gestures, even in 

challenging environments. 

 

In summary, using OpenCV with Mediapipe provides a practical and efficient 

solution for developing a recognition system to interpret sign language. This 

approach will be integrated into the workflow for developing a recognition 

system for sign language interpretation in the next chapter.
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CHAPTER 3  

METHODOLOGY AND WORK PLAN 

 

3.1 The Proposed Model Workflow 

 

In Chapter 1, a proposed workflow was presented for developing a hand gesture 

recognition model using deep learning techniques. In this chapter, we will delve 

deeper into the training and testing phases of the proposed workflow and 

provide detailed diagrams for each process.  

The workflow includes data pre-processing, segmentation, feature extraction, 

dimension reduction, and classification for both the Training and Testing 

phases. This section will introduce the proposed model workflow and explain 

the steps involved in developing a recognition system. The workflow diagrams 

are categorized into three parts: Training Phase, Test Phase, and Common 

Phases, with individual diagrams for Pre-processing in Training and Test 

Phase, and Common Phases containing processes for Feature Extraction, 

Segmentation, Dimension Reduction, and Classification.
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The pre-processing, segmentation, feature extraction, dimension reduction, and classification processes are derived from this main workflow 

diagram. 

 

 

 

 

 

 

 

 

 

Figure 1.6.1: Workflow Diagram for the Real-Time Hand Gesture Recognition System To Interpret Sign Language from Chapter 1 
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3.2 Pre-processing 

3.2.1 Training Phase 

 

Figure 3.2.1:   Workflow Diagram for Pre-processing (Training) 

3.2.2 Test Phase 

 

 

Figure 3.2.2:   Workflow Diagram for Pre-processing (Test) 
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Pre-processing is a crucial step in the proposed model workflow for developing 

a recognition system to interpret sign language. The goal of pre-processing is to 

prepare the raw data (images) for the subsequent stages of the system, such as 

feature extraction and classification. 

 

The first step in the pre-processing stage is to acquire a labelled dataset 

consisting of static hand gestures, 10 letters (i) A, (ii) E, (iii) H, (iv) I, (v) L, (vi) 

N, (vii) O, (viii) S, (ix) T, (x) U and moving hand gestures, 7 vocabularies in 

American Sign Language, namely (i) Best, (ii) Birthday, (iii) Please, (iv) Happy, 

(v) Hearing, (vi) Like and (vii) Feel. These datasets are collected whenever a 

user train the system by pressing ‘k’ for keypoint classifier (static hand gesture) 

followed by the data label number (0-9). As for moving hand gestures are 

collected when user train the system by pressing ‘h’ for point history classifier 

(moving hand gestures) followed by the data label (0-6). This process involved 

conversion of images to appropriate input format in the form of RGB matrices. 

 

In the notebook, the paths are specified for the dataset and the model files where 

data will be loaded, which later loaded as features (X_dataset) and labels 

(y_dataset) by NumPy. 

 

The dataset includes 21511 instances of static hand gestures (keypoints) and 

44953 instances of moving hand gestures (point history), which are split into 

75% for training and 25% for testing. Meanwhile, the number of classes are 

defined, with 10 for static hand gestures, and 7 for moving hand gestures in the 

classification task. Necessary libraries and modules such as csv, numpy, 

TensorFlow and more are imported. 

 

Once the dataset is acquired, the next step is to remove any invalid data entries. 

This is done using the Python library Pandas, which provides functions for data 

cleaning and pre-processing. Invalid data entries, such as missing or corrupted 

data are removed, as they can adversely affect the performance of the system. 
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The next step is to transform the clean dataset into Hand Landmark Position 

data (HL data) using Google's Mediapipe framework. Mediapipe is an open-

source framework that provides a comprehensive set of tools for building real-

time multimodal applications, including hand tracking and gesture recognition. 

HL data consists of the 3D coordinates of 21 hand landmarks, which are used 

to represent the hand gestures. 

 

Upon obtaining the HL data, the next step is to normalize the data to extract 

only the wrist and upwards of the signer's hand. This is done to reduce the 

complexity of the data and to focus only on the relevant features for gesture 

recognition. This step involves scaling and shifting the data to a common 

reference frame, such as the origin and orientation of the camera. 

 

Once the pre-processing stage is complete, the resulting pre-processed data is 

ready for the feature extraction stage. Feature extraction involves identifying 

relevant features from the data that can be used for classification, such as the 

angles and distances between hand landmarks. The extracted features are then 

used to train a machine learning model for gesture recognition. 
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3.2.3 Common Phases 

3.3 Feature Extraction 

 

Figure 3.3.1:   Workflow Diagram for Feature Extraction 
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The next process is the feature extraction stage, which involves the extraction 

of relevant features from the pre-processed data to be used for classification. In 

the context of our system, the facial landmarks, hand poses, and body poses are 

extracted using a MediaPipe holistic model. 

 

In this proposed model workflow, the Feature Extraction stage involves the 

wrist and upwards data (as RGB matrices) passing through the hand tracking 

module, followed by the Convolutional Neural Network (CNN) to extract hand 

landmarks. 

 

The hand tracking module contains two main components: the Palm Detector 

and the Position Extractor. The first component, the Palm Detector, is 

responsible for identifying the palm from the pre-processed wrist and upwards 

data. This aspect holds significance as the palm serves as a crucial reference 

point for determining the position of hand landmarks. The utilization of machine 

learning algorithms are to detect the palm in the input image, and then crops the 

image to focus only on the area around the palm. 

 

The second component, the Position Extractor, uses the identified palm to 

obtain the position data of the landmarks through Landmark-First Approach. 

This involves identifying the hand landmark with machine learning technique 

known as Convolutional Neural Network (CNN).  Below describes how CNN 

works in identifying the hand landmark after the palm is cropped. 

 

 

Figure 3.3.2:   Convolutional Neural Network (CNN) in hand 

landmark identification 
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Based on the above, the input to the CNN is a region of interest containing the 

hand or palm. CNNs consist of multiple convolutional layers that apply filters 

(small grids) to the input image, detecting patterns and features associated to the 

hand landmarks. Along each convolutional operation, an activation function 

(ReLU - Rectified Linear Unit) is applied to introduce non-linearity and help 

the network learn complex patterns. Pooling layers reduce the spatial 

dimensions of the feature maps produced by the convolutional layers, reducing 

computation and makes the network more manageable. After pooling, the 

feature maps are flattened into a vector. This vector is then fed into fully 

connected layers, where each neuron is connected to every neuron in the 

previous layer. The output layer of the CNN predicts the positions of hand 

landmarks with Softmax activation function, as shown below. 

 

 

Figure 3.3.3:   Finalized extracted hand landmarks 

 

Once the landmarks are identified, their positions are extracted and represented 

as a set of features. These features may include the angles and distances between 

the landmarks, which can be used for classification. 

 

Upon completion of the Feature Extraction stage, the identified palm and 

position data of landmarks are brought to the Segmentation phase. The 

Segmentation phase involves dividing the hand gestures into individual signs 

and separating the signs from the background and any other objects in the image. 

This is important for accurate recognition of individual signs, and for improving 

the overall performance of the system. 
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3.4 Segmentation and Dimension Reduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.1:   Workflow Diagram for Segmentation and Dimension Reduction 
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The Segmentation stage involves dividing the hand gestures into individual 

signs and separating the signs from the background and any other objects in the 

image. 

 

In this proposed model workflow, the Segmentation stage involves the Hand 

Tracking module, which contains two main components: the Palm Detector 

and the Position Extractor, similar to the Feature Extraction stage. 

 

The first component, the Palm Detector, estimates the bounding boxes around 

the identified palm from the feature extraction stage. This is important because 

it provides a reference for the position of the hand and the boundaries within 

which the individual signs can be recognized. The Palm Detector uses machine 

learning algorithms to estimate the bounding boxes, and then crops the image to 

focus only on the area around the palm. 

 

The second component, the Position Extractor, operates on the extracted HL 

position dataset to return the landmarks from 3.3 Feature Extraction to be carried 

forward to the next stage, which is the Dimension Reduction process. This 

involves identifying the hand landmarks using computer vision techniques, such 

as template matching and feature detection, and separating the hand signs from 

the background. 

 

Once the hand signs have been separated from the background, the Dimension 

Reduction process can be performed. This involves reducing the dimensionality 

of the feature vector for each sign, using techniques such as Principal 

Component Analysis (PCA). This reduces the computational complexity of the 

system and improves the accuracy of the classification model. 

 

After that, the reduced feature vectors are used to train a classification model. 

The classification model is responsible for recognizing the individual hand signs 

and interpreting them as their corresponding American Sign Language gestures.
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3.5 Classification 

 

 

Figure 3.5.1:   Workflow Diagram for Classification 
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The Classification stage is the final step in the proposed model workflow for 

developing a recognition system to interpret sign language. This stage involves 

building and training a machine learning model to recognize and classify the 

individual hand signs. 

 

As mentioned previously, dimension reduction is determined and conducted if 

required. This is important because high-dimensional datasets can be 

computationally expensive and difficult to train machine learning models on.  

 

Once the dimensionality of the dataset has been reduced, the next step is to build 

the machine learning model, which is the Feedforward neural network 

(FNN). Below describes how FNN works in static and moving Sign Language 

classification. 

 

 

Figure 3.5.2:   Feedforward neural network (FNN) in Sign 

Language classification 

 

Based on above, the FNN follows a feedforward approach, where the Point 

History and Keypoint coordinates flows from the input layer (L1) through the 

hidden layers (L2, L3, L4) to the output layer (L5).  

 

Necessary libraries including CSV for handling data, NumPy for numerical 

operations, TensorFlow (tf) for machine learning, and train_test_split from 

scikit-learn for splitting the dataset are imported. A random seed of 42 is set for 
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reproducibility. This sequential model is defined using the Keras API from 

TensorFlow. 

 

The input layer (L1) has several features determined by the expression 21 * 2, 

assuming each data point has 21 * 2 features. The hidden layers which are L2, 

L3, L4, consist of 2 dropout layers; one of them has a dropout rate of 0.2 is 

added to prevent overfitting, while the other has dropout rate of 0.4 for further 

regularization. They also have 2 dense layers with ReLU activation functions. 

The output layer (L5) contains softmax activation for classification. 

 

This Feedforward neural network model is trained on the training dataset 

(X_train, y_train) for 1000 epochs with a batch size of 128. The validation data 

(X_test, y_test) is provided to evaluate the model's performance during training. 

Callbacks for model checkpoint and early stopping are utilized to save the 

model's weights during training and stop training early if validation loss does 

not improve, respectively. After the model is trained, it can predict the labels of 

the static/moving sign language gestures based on the learned patterns during 

training. 

 

Overall, the Classification stage is a critical component of the proposed model 

workflow, as it involves building and training of the machine learning models 

to recognize and classify the individual hand signs. This stage is essential for 

producing a recognition system that can accurately interpret American Sign 

Language. 
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3.6 Model Evaluation 

The model's performance is assessed using the test dataset, and the validation 

loss and accuracy are computed. To evaluate the performance of the real-time 

hand gesture recognition system for interpreting sign language, a confusion 

matrix is generated and visualized using seaborn and matplotlib. Since the 

system is designed to recognize gestures for interpreting sign language of 10 

letters and 7 vocabularies, the confusion matrix would be of a 10x10, and 7x7 

dimension, as shown in Table 3.6.1 and Table 3.6.2. 
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Confusion Matrix 

 

Table 3.6.1: Confusion Matrix for 10 classes (letters) 

 Predicted class  

A E H I L N O S T U FN 

Actu

al 

Class 

A TP1 I II III IV V VI VII VIII IX I+II+…+I

X 

E X TP2 XI XII XIII XIV XV XVI XVII XVIII X+XI+…+

XIV 

H XIX XX TP3 XXI XXII XXIII XXIV XXV XXVI XXVII XIX+ 

XX+…+ 

XXVII 

I XXVIII XXIX XXX TP4 XXXI XXXII XXXIII XXXIV XXX

V 

XXXVI XXVIII+ 

XXIX+ + 

XXXVI 
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L XXXVII XXXVIII XXXIX XL TP5 XLI XLII XLIII XLIV XLV XXXVII+ 

XXXVIII+ 

… + XLV 

N XLVI XLVII XLVIII XLIX L TP6 LI LII LIII LIV XLVI+ 

XLVII+ … 

+ LIV 

O LV LVI LVII LVIII LIX LX TP7 LXI LXII LXIII LV+ 

LVI+… + 

LXIII 

S LXIV LXV LXVI LXVII LXVIII LXIX LXX TP8 LXXI LXXII LXIV+ 

LXV+ …+ 

LXXII 

T LXXIII LXXIV LXXV LXXVI LXXVII LXXVIII LXXIX LXXX TP9 LXXXI LXXIII+ 

LXXIV+ 

…+ 

LXXXI 
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U LXXXII LXXXIII LXXXIV LXXXV LXXXVI LXXXV

II 

LXXX

VIII 

LXXXI

X 

XC TP10 LXXXII+ 

LXXXIII+ 

…+ XC 

 FP  X+XIX+ 

…+ 

LXXXII 

I+XX+ …

+ 

LXXXIII 

II+XI +… 

+LXXXIV 

III+XII 

+… 

+LXXX

V 

IV+XIII 

+… 

+LXXXVI 

V+XIV 

+… 

+LXXX

VII 

VI+XV 

+… 

+LXX

XVIII 

VII+X

VI +… 

+LXX

XIX 

VIII+

XVII 

+… 

+LXX

I +XC 

IX 

+XVIII 

+…+L

XXXI 

 

 

TP: True Positives 

FP: False Positives 

FN: False Negative
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Table 3.6.2: Confusion Matrix for 7 classes (vocabularies) 

 Predicted class  

Best Birthday Please Happy Hearing Like Feel FN 

Actual 

Class 

Best TP1 I II III IV V VI I+II+…+VI 

Birthday VII TP2 VIII IX X XI XII VII+VIII+…+XII 

Please XIII XIV TP3 XV XVI XVII XVIII XIII+XIV+…+XVIII 

Happy XIX XX XXI TP4 XXII XXIII XXIV XIX+XX+…+XXIV 

Hearing XXV XXVI XXVII XXVIII TP5 XXIX XXX XXV+XXVI+…+XXX 

Like XXXI XXXII XXXIII XXXIV XXXV TP6 XXXVI XXXI+XXXII+…+XXXVI 

Feel XXXVII XXXVIII XXXIX XL XLI XLII TP7 XXXVII+XXXVIII+…+XLII 

FP VII+ 

XIII+ …+ 

XXXVII 

I+XIV+ 

…+ 

XXXVIII 

II+VIII 

+… 

+XXXIX 

III+ 

IX 

+… +XL 

IV+ 

X+… 

+XLI 

V+XI 

+… 

+XLII 

VI+XII 

+… 

+XXXVI 

 

 

TP: True Positives 

FP: False Positives 

FN: False Negatives 
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Classification Report 

 

The classification report is also generated, which includes metrics as below in 

the test dataset.  

 

Precision measures the proportion of true positive predictions among all positive 

predictions 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (3.61) 

 

 

Recall measures the proportion of true positive predictions among all actual 

positives 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (3.62) 

 

 

F1-Score is the harmonic mean of precision and recall. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3.63) 

 

 

Support is the number of occurrences of each class in the dataset. 

 

The accuracy of the system is determined using equation 3.64, which calculates 

the ratio of the total number of correct predictions to the total number of 

predictions made by the system. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 𝑇𝑃

𝑇𝑜𝑡𝑎𝑙
   (3.64) 
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3.7 Requirement Specifications 

The requirement specifications provided in Table 3.7 outline the essential 

criteria for building the sign language interpretation using standard laptop 

webcams. Here's a breakdown of the requirements: 

 

Table 3.7: Requirement Specifications to build system 

Requirements Tools / Suggestions  

Hardware requirements Standard laptop webcams 

Input Video Requirements Process video input in real-time (30 

fps or higher)  

Gesture Recognition Requirements The system should be able to detect 

hand gestures in different lighting 

conditions, backgrounds, and 

environments. 

The system should be able to 

recognize different hand gestures 

used in sign language, static or 

moving. 

Performance Requirements The system should be able to process 

video input and recognize gestures in 

real-time with minimal latency (less 

than 15 seconds). The system should 

be able to handle multiple users. 

 

 

 

3.8 Tools to use  

Programming languages: Python 

Libraries: OpenCV, Mediapipe, NumPy, TensorFlow 

Pre-trained models: Hand tracking and sign language recognition models 
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3.9 Pseudocode for this project 

Start 

 

Define function get_args(): 

a. Define and parse command-line arguments 

 

Define function main(): 

a. Parse command-line arguments using get_args 

b. Initialize camera capture 

c. Initialize MediaPipe Hand Model 

d. Read label information from CSV 

e. Initialize FPS calculation 

f. Create data structures for hand gesture history 

g. Initialize mode 

h. Specify Paths and Number of Classes (Keypoint Classification) 

i. Specify Paths and Parameters (Point history Classification) 

 

j. Main processing loop 

   while True: 

      k. Calculate FPS 

      l. Process key presses (e.g., change mode or exit) 

      m. Read a frame from the camera 

      n. Perform hand detection and tracking using MediaPipe 

 

      o. If hands_detected(results): 

         p. Calculate bounding box and landmarks 

         q. Pre-process landmarks and point history 

         r. Log data to CSV (if required) 

         s. Hand sign classification 

         t. Finger gesture classification 

         u. Update finger gesture history 

         v. Drawing part 

        w. Display the processed frame 
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        x. Check for ESC key press to exit the loop 

        y. Release camera and close OpenCV windows 

 

z. Specify Paths and Number of Classes 

   aa. Dataset Reading [For keypoint classifier, point history classifier] 

   bb. Train-Test Split 

   cc. Model Building 

   dd. Model Training 

   ee. Model Evaluation 

   ff. Convert to TensorFlow Lite Model 

   gg. Inference Test with TensorFlow Lite Model 

   hh. Confusion Matrix and Classification Report 

    ii. Save the Model for Inference 

 

End 
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3.10 Work Breakdown Structure of the Project 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 3.10: Work Breakdown Structure of the Project 
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3.11 Gantt Chart of Project 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11a: Gantt Chart of Project I 

Real-time Hand Gesture Recognition system to interpret sign language : Project Schedule

Universiti Tunku Abdul Rahman

Project Start Date Display Week 1

Project Student Supervisor

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2

WBS TASK LEAD WEEK START END DAYS
% 

DONE

WORK 

DAYS
M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S

1 Planning Mon 2/06/23 Tue 3/07/23 22

1.1
Study Project 

background
Chong Siow Yen 2 Mon 2/06/23 Mon 2/06/23 100% 1

1.2 Identify the problems 2 Tue 2/07/23 Tue 2/07/23 100% 1

1.3 Propose project solutions 2 Wed 2/08/23 Wed 2/08/23 100% 1

1.4
Define project scope and 

objectives
2 Thu 2/09/23 Thu 2/09/23 100% 1

1.5 Requirement specification 2,3 Fri 2/10/23 Mon 2/13/23 100% 2

1.5.1

Draft functional and 

non-functional 

requirements

2 Fri 2/10/23 Fri 2/10/23 100% 1

1.5.2

Refine functional and 

non-functional 

requirements

3 Mon 2/13/23 Mon 2/13/23 100% 1

1.6 Literature review 3,4 Tue 2/14/23 Wed 2/22/23 100% 7

1.6.1 Review of topics 3 Tue 2/14/23 Tue 2/14/23 100% 1

1.6.2 Analyse existing system 3 Wed 2/15/23 Thu 2/16/23 100% 2

1.6.3
Analyse model training 

methods
3,4 Thu 2/16/23 Wed 2/22/23 100% 5

1.7
Decide Development 

methodology
4,5 Thu 2/23/23 Wed 3/01/23 100% 5

1.7.1 Decide tool 4 Thu 2/23/23 Fri 2/24/23 100% 2

1.7.2 Decide image dataset 5 Mon 2/27/23 Wed 3/01/23 0% 3

1.8 Plan and manage project 6 Thu 3/02/23 Tue 3/07/23 100% 4

1.8.1
Create Work Breakdown 

Structure
5,6 Thu 3/02/23 Mon 3/06/23 100% 3

1.8.2 Finalise Gantt Chart 6 Tue 3/07/23 Tue 3/07/23 100% 1

2 Analysis and Design Wed 3/08/23 Fri 3/24/23 13

2.1 Design prototype 7,8 Mon 3/13/23 Fri 3/24/23 0% 10

3 Development Phase 1 Mon 2/27/23 Fri 3/31/23 25

3.1
Preprocess image 

dataset
5 Mon 2/27/23 Tue 2/28/23 0% 2

0.1 Develop Predictor 7,9 Thu 3/16/23 Fri 3/31/23 0% 12

0.2
Develop Statistics 

Displayer
7,9 Thu 3/16/23 Fri 3/31/23 0% 12

1 Closing Fri 3/17/23 Mon 4/24/23 27

1.1
Provide References and 

citation
7,8 Fri 3/17/23 Sun 3/19/23 0% 1

1.2
Compile Preliminary 

report
8 Sun 3/19/23 Fri 3/24/23 0% 5

1.3 Compile Proposal report 12 Sun 4/16/23 Fri 4/21/23 0% 5

1.4
Prepare presentation 

slide
12 Thu 4/20/23 Sat 4/22/23 0% 2

1.5
Oral Presentation and 

Prototype Demonstration
13 Mon 4/24/23 Mon 4/24/23 0% 1

0.1  . [ Level 2 Task ]  -  - 

0.1.1  . . [ Level 3 Task ]  -  - 

0.1.1.1  . . . [ Level 4 Task ]  -  - 

► Watch How to Create a Gantt Chart in Excel

Gantt Chart Template  © 2006-2018 by Vertex42.com.

Week 2Week 1

13 Feb 20236 Feb 2023

Week 3

20 Feb 2023

2/6/2023 (Monday)

Chong Siow Yen

Week 4

27 Feb 2023

Week 8

27 Mar 20236 Mar 2023

Week 6

13 Mar 2023

Week 5 Week 7

20 Mar 2023Dr. Chia Kai Lin
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Figure 3.11b: Gantt Chart of Project II

Real-time Hand Gesture Recognition system to interpret sign language : Project Schedule

Project II

Project Start Date Display Week 12

Project Lead Supervisor

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1

WBS TASK LEAD

PREDE

CESSO

R

START END DAYS
% 

DONE

WORK 

DAYS
M T W T F S S M T W T F S S M T W T F S S

1 Data Collection and Preprocessing  -  - 

1.1 Gather sign language dataset  Chong Siow Yen Mon 6/26/23 Sun 7/02/23 7 100% 5

1.2 Preprocess and clean the dataset Mon 7/03/23 Sun 7/09/23 7 100% 5

2 System Design and Architecture      -  - 

2.1 Design overall system architecture Mon 7/10/23 Sun 7/16/23 7 100% 5

2.2 Develop hand gesture recognition algorithm Mon 7/17/23 Sun 7/23/23 7 100% 5

3  Create Poster for Evaluation  -  - 

3.1 Design and layout poster Mon 8/07/23 Wed 8/09/23 3 100% 3

3.2 Include project highlights and results Thu 8/10/23 Sun 8/13/23 4 100% 2

4  Integration with OpenCV and Mediapipe  -  - 

4.1  Integrate hand gesture recognition algorithm Mon 8/14/23 Sun 8/20/23 7 100% 5

4.2
Implement OpenCV and Mediapipe 

functionalities
Mon 8/21/23 Sun 8/27/23 7 100% 5

5 System Optimization and Testing  -  - 

5.1 Optimize system performance   Mon 8/28/23 Sun 9/03/23 7 100% 5

5.2 Conduct extensive testing and debugging Mon 9/04/23 Sun 9/10/23 7 100% 5

6 Finalize Project Report      -  - 

6.1 Write project methodology and results Mon 9/11/23 Tue 9/12/23 2 100% 2

6.2 Review and finalize project report Wed 9/13/23 Thu 9/14/23 2 100% 2

7 Prepare Presentation Slide  -  - 

7.1 Create slides for project presentation Fri 9/15/23 Tue 9/19/23 5 0% 3

7.2 Review and finalize presentation content Thu 9/20/18 Fri 9/21/18 2 0% 2

8 Project Presentation and Submission    -  - 

8.1 Project Presentation and Submission   Fri 9/22/23 Fri 9/22/23 1 0% 1

Gantt Chart Template  © 2006-2018 by Vertex42.com.

Chong Siow Yen

Week 13Week 126/26/2023 (Monday)

18 Sep 202311 Sep 2023

Week 14

25 Sep 2023Chia Kai Lin
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The provided WBS and Gantt Chart pertain to a project aimed at developing 

a Mediapipe gesture recognition system for interpreting sign language. The 

project is divided into several phases, including planning, research, data 

acquisition, model development, interface design, integration and testing, 

documentation, and deployment. The planning phase focuses on defining the 

project scope and objectives, identifying stakeholders and team members, 

developing a project plan and timeline, defining requirements and specifications 

for the system.  

 

The Gantt Chart of Project I and Project II in Figure 3.11a and 3.11b show the 

timeline for the gesture recognition system project. The planning phase spans 

several weeks and involves tasks such as defining the project scope and 

developing a project plan. Each phase is assigned a specific timeframe, and tasks 

are scheduled to ensure timely completion of the project. 
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CHAPTER 4  

 

4 SYSTEM PERFORMANCE 

This section dives into the performance evaluation of the neural network model, 

specifically designed for Keypoint (static hand gestures) and Point History 

(moving hand gestures) detection within the system. 

 

4.1 Keypoint classifier detection 

4.1.1 Training and Validation Metrics 

 

Figure 4.1.1a: Training history of Keypoint classifier (Accuracy over epochs) 

 

The accuracy of the Keypoint classifier as shown in Figure 4.1.1a steadily 

increases over epochs during training, indicating that the model is learning and 

improving its ability to recognize keypoints in sign language gestures. 
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The training accuracy starts at a relatively low value (between 0-0.3) but 

gradually improves as the model learns from the training data. It reaches a high 

level of accuracy, achieving a value between 0.7-0.8, indicating that the model 

can correctly identify majority keypoints in the training dataset. 

 

The validation accuracy follows a similar trend, initially starting at a lower value 

(between 0.3-0.4) and then improving over epochs. It also reaches a high 

accuracy level, close to 1.0, suggesting that the model generalizes well to unseen 

data. 

 

Overall, the Keypoint classifier demonstrates excellent learning and 

generalization capabilities, achieving high accuracy on both the training and 

validation datasets. 
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Figure 4.1.1b: Training history of Keypoint classifier (Loss over epochs) 

 

The training loss, which represents the error during the training process as 

shown in Figure 4.1.1b, starts at a relatively high value of between 2.00-2.25 

but consistently decreases over epochs. This indicates that the model is 

effectively reducing its training error and improving its ability to predict 

keypoints in sign language gestures. 

 

The validation loss, which measures the error on unseen validation data, also 

follows a similar trend. It starts at a higher value of between 1.75-2.00 but 

steadily decreases over epochs. This demonstrates that the model is not 

overfitting the training data and is generalizing well to new, unseen data. 

 

Both the training and validation losses converge to low values, indicating that 

the Keypoint classifier is learning effectively and producing accurate 

predictions for keypoints in sign language gestures. 
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Figure 4.1.1c: Key Training Metrics of Keypoint classifier 

 

In terms of system performance, the Keypoint classifier demonstrates promising 

results based on Figure 4.1.1c. The final training loss, at 0.656932, indicates a 

good fit to the training data. Moreover, the final training accuracy of 0.750541 

signifies successful pattern recognition within the training dataset. The final 

validation loss, which stands at 0.285744, implying the model's ability to 

generalize effectively to unseen data. The final validation accuracy, with value 

of 0.958055, underscores the model's proficiency in making accurate 

predictions on new and previously unseen data. 

 

Based on above, the relatively low training and validation losses, along with 

reasonably high training and validation accuracies, suggest that the classifier 

has learned to recognize keypoints in sign language gestures effectively. 
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4.1.2 Confusion Matrix 

 

Figure 4.1.2: Confusion matrix of Keypoint classifier 

 

Based on Figure 4.1.2, the high values (259-953) along the diagonal (True 

Positives for each class) indicate that the model correctly identifies most static 

hand gesture. Low off-diagonal values (0-53) (False Positives for each class) 

suggest that the model rarely misclassifies one static hand gesture as another. 

 

The system exhibits excellent performance, achieving high accuracy and 

precision for all classes. 
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4.1.3 Classification Report 

Figure 4.1.3: Classification Report of Keypoint classifier 

 

The model as shown in Figure 4.1.3 performs well in correctly identifying 

instances of class "0" while maintaining a good balance between precision and 

recall. The precision of class “1” is reasonably high, the recall suggests that 

there may be room for improvement in correctly identifying instances of this 

class. Class "2" and Class “3” exhibits excellent performance with a precision, 

recall, and F1-score. Class "4" maintains high precision, recall, and F1-score 

values. Class "5" achieves an F1-score of 0.96, reflecting a good balance 

between precision and recall. Class "6" exhibits a perfect F1-score of 1.00, 

indicating that the model accurately identifies instances of class "6". Class "7" 

and "8" both have an F1-score of 0.94, suggesting solid performance. Class "9" 

achieves high precision and recall. 

 

Keypoint classifier demonstrates strong performance overall, with some classes 

achieving near-perfect accuracy and F1-scores. 

 



123 

 

 

4.2 Point History Classifier Detection 

4.2.1 Training and Validation Metrics 

 

Figure 4.2.1a: Training history of Point History Classifier (Accuracy over 

epochs) 

 

The training accuracy, represented by the blue curve in Figure 4.2.1a, starts at 

an initial value of between 0-0.25 and gradually increases over epochs. It 

reaches an accuracy of between 0.40-0.45 by the end of training, indicating that 

the model improves its ability to fit the training data over time. 

 

The validation accuracy, in orange, also shows an upward trend throughout the 

training process. It starts between 0.25-0.30 and steadily increases, eventually 

reaching an accuracy between 0.50-0.60 by the end of training. This suggests 
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that the model generalizes well to unseen data, as evidenced by the improvement 

in validation accuracy. 

 

Overall, the training history demonstrates that the Point History Classifier 

makes progress in learning from the training data and generalizing its 

knowledge to validation data. While the final accuracy values may not be 

extremely high, the upward trends in both training and validation accuracy 

indicate that the model is learning effectively. 

 

 

 

Figure 4.2.1b: Training history of Point History Classifier (Loss over epochs) 

 

 

The training loss, in blue in Figure 4.2.1b, starts at an initial value of 

approximately 1.9 and gradually decreases as training progresses. It reaches a 

minimum training loss of 1.5 by the end of training, indicating that the model 
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is effectively minimizing the error between its predictions and the actual 

training data. 

 

The validation loss, represented by the orange curve, also shows a decreasing 

trend throughout the training process. It starts around 1.8-1.9 and steadily 

decreases, eventually reaching a validation loss of near 1.3 by the end of 

training. This suggests that the model is not only fitting the training data well 

but also generalizing effectively to unseen validation data. 

 

Overall, the training history demonstrates that the Point History Classifier 

successfully reduces its loss function, indicating improved model performance. 

These results indicate promising system performance, with the potential for 

further enhancements through fine-tuning or additional training epochs. 

 

 

 

 

Figure 4.2.1c: Key Training Metrics of Point History Classifier 

 

The Point History Classifier exhibits notable performance metrics, as shown in 

Figure 4.2.1c. The final training loss at 1.496126, indicates an optimal learning 

process with a close fit to the training data. The training accuracy of 0.439580, 

reflecting average pattern recognition within the training dataset. For 

generalization, the model's final validation loss is 1.332529, signalling its ability 

to extrapolate learning to new, unseen historical data. This followed by a 

validation accuracy of 0.532254, highlighting the model's proficiency in making 

accurate predictions on previously unobserved historical data points. 
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The model shows promise in capturing historical patterns, as indicated by the 

validation metrics. The training accuracy can be improved further. Further 

refinements and optimizations could enhance its performance in recognizing 

historical trends. 

 

 

4.2.2 Confusion Matrix 

 

Figure 4.2.2: Confusion matrix of Point History classifier 

 

High values are found along the diagonal (true positives for each class) in Figure 

4.2.2 for class 1 - Birthday, 2 - Please, 4 - Hearing indicate that the model 

correctly identifies for these respective moving hand gestures. Lighter colours 

with value (1-419) off the diagonal suggest areas where the classifier may 

struggle to make accurate predictions. This indicates the model needs slight 

improvement correctly identifies all classes. 
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4.2.3 Classification Report 

 

Figure 4.2.3: Classification Report of Point History classifier 

 

For class 0 in Figure 4.2.3, while the model has a high precision for this class, 

it struggles with recall, meaning it correctly identifies instances of class 0 but 

misses many. The model has a lower precision but better recall for this class, 

indicating it can correctly classify more instances of class 1. The model 

performs reasonably well in terms of precision and recall for class 2. Class 3 has 

a balanced performance. Class 4 has slight strong performance in terms of 

precision and recall. Class 5 has a moderate performance. Class 6 exhibits the 

lowest performance metrics, suggesting challenges in correctly classifying this 

category.  

 

Overall, the model's performance is moderate, with an accuracy of 0.53, 

indicating that it correctly classified approximately 53% of the data points. 
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4.3 Comparing OpenCV with Mediapipe and Neural Network with other methodologies in Literature Review (refer Table 2.8) 

Table 4.3. Accuracy Comparison Literature Review and Current Development 

Approach 

 

 

Process 

OpenCV only OpenCV with 

Mediapipe 

LeapMotion 

Controller with 

CNN 

Gloves with 

sensors 

Skeleton Aware 

Multimodal SLR 

framework 

OpenCV with 

Mediapipe and 

TensorFlow’s 

Neural 

Network 

Accuracy Recognizes all 10 

hand gestures with 

10 hits out of 10 

trials 

DTC: Training 

data accuracy 

100%, Test data 

accuracy 96.4% 

RFC: Training 

data accuracy 

100%, Test data 

accuracy 97.2% 

SVM: 97.9% 

accuracy with the 

1. 95% 

2. 90.3% 

3. 96% 

1. 78.33% to 95% 

2. 65.7% to 98.2% 

1. Multi-stream 

SL-GCN model 

(top-1 accuracy) 

95.45% on the 

validation set, 

baseline RGB and 

RGB-D (top-1 

accuracy)  models 

were 49.23% and 

62.03% 

Keypoint 

Classifier: 96% 

 

Point-History 

Classifier: 53% 
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Based on Table 4.3, it is witnessed that the developed system, which combines OpenCV with Mediapipe and TensorFlow's Neural Network 

model, has achieved superior accuracy, especially in Keypoint Classification, where it reached an impressive 96%. This performance surpasses 

that of both Gloves with sensors and the LeapMotion Controller with CNN. Furthermore, the system's overall accuracy, including Point History 

Classification at 53%, outperforms the accuracy achieved by the Skeleton Aware Multimodal SLR framework.

test data for a 

radial base kernel 

KNN: Training 

accuracy 97.4%, 

Test accuracy 

98.1% 

 

2. VTN-PF: 

91.51% on the 

validation set 

Authors 1. Ahmad Puad 

Ismail et al. 

2. Riaz Sulaimi 

C. M. Suryateja et 

al. 

1. Naglot and 

Kulkarni (2016) 

2. Chong and Lee 

(2018) 

3. Bird, Ekárt, and 

Faria (2020) 

1. Shukor et al. 

2. Lee and Lee 

1. Jiang et al. 

2. De Coster et al. 

Chong Siow 

Yen 
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4 TESTING RESULTS 

 

4.1 Introduction 

As outlined in Chapter 1, Section 1.5, the primary objective of this project is to 

develop an efficient algorithm for the system for recognizing hand gestures in 

real-time. This section delves into the testing results, providing an analysis of 

the system’s performance and its ability to interpret and recognize sign language 

gestures. 

 

 

To meet this objective, a comprehensive approach has been employed that 

includes: 

 

4.1.1 Approach 

a. Testing Audience 

The target audience for this project consists of 4 testers from diverse 

demographics, including age, ethnicity, gender, hand dominance (right-

handed/left-handed/ambidextrous), ASL proficiency 

(beginner/intermediate/advance), and experience with ASL technology 

(novice/experienced).  

 

This diverse group of testers ensures a thorough evaluation of the system’s 

performance across various user profiles. Table  4.2.4.1a below shows the 

testers’ profile and feedback on system. 

 

 

 

 

 

 

 

 



131 

 

 

 

Table  4.1.1a: Testers’ Profile and Feedback on System 

Tester Age 

 

Ethnicity Gender 

(Male/F

emale) 

Hand 

Dominance 

(Right-

handed/Left-

handed/ 

Ambidextrou

s) 

ASL 

Proficiency 

(Beginner/ 

Intermediate/ 

Advance) 

Experience 

with ASL 

Technology 

(Novice/Exp

erienced) 

Tester 

1 

25 Chinese Male Right-handed Beginner Novice 

Tester 

2 

52 Chinese Female Right-handed Beginner Novice 

Tester 

3 

22 Chinese Female Right-handed Intermediate Novice 

Tester 

4 

22 Indian Female Left-handed  Beginner Novice 

 

 

 

Visualizations of Demographics of Testers as shown below would include 

Figure 4.1.1a: Age of Testers, Figure 4.1.1b: Ethnicity of Testers, Figure 4.1.1c: 

Gender of Testers, Figure 4.1.1d: Hand Dominance of Testers, Figure 4.1.1e: 

ASL Proficiency and Figure 4.1.1f: Experience of ASL Tech. 
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Demographics of Testers visualized as below: 

 

Figure 4.1.1a: Age of Testers 

 

Figure 4.1.1b: Ethnicity of Testers 

 

 

Figure 4.1.1c: Gender of Testers 

 

Figure 4.1.1d: Hand Dominance of 

Testers 

 

 

Figure 4.1.1e: ASL Proficiency 

 

Figure 4.1.1f: Experience of ASL 

Tech 
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b. Gesture Variability 

Both static and moving gestures have been considered for testing, replicating 

real-world sign language communication scenarios. Static gestures represent 

stationary hand signs, while moving gestures involve dynamic hand movements 

commonly used in sign language. The gestures are trained with left and right 

hand as shown in Table  4.2.4.1b and Table  4.2.4.1c, to ensure versatility and 

accuracy in recognizing sign language expressions, regardless of the signer's 

dominant hand. 

 

Table  4.1.1b: Static Gestures with contrasting hand signing 

0. A 

Right Left 

  

1. E 

Right Left 

  

2. H 

Right Left 

  

3. I 

Right Left 
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4. L 

Right Left 

  

5. N 

Right Left 

  

6. O 

Right Left 

  

7. S 

Right Left 

  

8. T 
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Right Left 

  

9. U 

Right Left 

  

 

 

Table 4.1.1b1: Moving Gestures with contrasting hand signing 

0. Best 

Right Left 

  

1. Birthday 

Right Left 

  

2. Please 

Right Left 
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3. Happy 

Right Left 

  

4. Hearing 

Right Left 

  

5. Like 

  

6. Feel (unidentified) 

Right Left 
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c. Evaluation Metrics 

The evaluation metrics include average duration, speed, and recognition 

counts for each tested gesture. These metrics allow us to assess the system's 

accuracy, efficiency, and overall performance in interpreting sign language 

gestures. 

 

d. Feedback and Comments 

Tester feedback and comments play a crucial role in refining the system. 

Feedback, such as difficulties encountered or suggestions for improvement, 

helps in identifying areas where the system may require enhancements. 

 

4.1.2 Expected Achievement 

By following this approach, the project is set to achieve the following 

a. Evaluate Accuracy and Efficiency 

Assess the accuracy and efficiency of the hand gesture recognition system in 

real-time communication scenarios. This evaluation is essential to ensure that 

the system effectively meets the communication needs of individuals with 

hearing impairments, thereby reducing potential communication gaps. 

 

b. Address Challenges 

Identify potential challenges in the adoption of the system and develop solutions 

to address them. This proactive approach is vital to ensure the successful 

adoption of the system and enhance its overall accuracy and efficiency. 
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4.2 Test Setup and Data Collection 

In this section, a detailed account of the test setup and data collection process is 

provided for evaluating the developed sign language recognition system. A 

systematic approach was followed to ensure accurate and comprehensive 

assessment. 

 

4.2.1 Test Environment Setup 

a. For testers 

The testing environment is conducted at regular lighting conditions, at comfort-

level of distance and height of laptop setup of testers, to mimic real-world 

conditions. 

 

Here are images of testers (Figure 4.2.1a - 4.2.1d) trying out the system at the 

comfort of their homes or dining places. 

 

Figure 4.2.1a: Tester 1 doing ‘Best’ 

gesture being detected 

 

Figure 4.2.1b: Tester 2 doing 

‘Birthday’ gesture being detected 

 

Figure 4.2.1c: Tester 3 doing ‘I’ 

gesture being detected 

 

Figure 4.2.1d: Tester 4 doing 

‘Please’ gesture being detected 
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b. For self 

The testing environment was carefully configured. Two lighting conditions 

were considered: one at regular lighting, and another at dim lighting. Other than 

that, the sitting positions are set at 36cm from their respective table, and another 

at 53cm from the table These conditions were chosen to assess the system's 

performance in different visual scenarios. 

 

Example snapshots of system (4.2.1aa- 4.2.1dd) detecting user’s ‘A’ gesture 

under various conditions. 

 

 

Figure 4.2.1.1aa: 36cm – from table 

Light condition 

 

Figure 4.2.1.1bb: 53cm – from table 

Light condition 

 

Figure 4.2.1.cc: 36cm – from table 

Dim condition 

 

Figure 4.2.1.dd: 53cm – from table 

Dim condition 
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4.2.2 Gestures Used for Testing 

Evaluation involved a diverse set of gestures, categorized into two main types: 

 

Static Gestures:  

These represent stationary hand signs used in sign language. The hand signs 

which are involved, are 10 letters ( A, E, H, I, L, N, O, S, T, U). 

 

 

Moving Gestures:  

These involve dynamic hand movements typically used for expressive 

communication in sign language. The hand movements involved in this testing 

contain 7 vocabularies, namely (i) Best, (ii) Birthday, (iii) Please, (iv) Happy, 

(v) Hearing, (vi) Like and (vii) Feel. 

 

 

4.2.3   Tester Recruitment and Data Collection 

A diverse group of 4 testers was recruited to ensure a comprehensive evaluation 

of the sign language recognition system. Tester demographics, including age, 

ethnicity, sex, used hand (right-handed/left-handed/ambidextrous), ASL 

proficiency (beginner/intermediate/advance), and experience with ASL 

technology (novice/experienced), were recorded to account for variations in 

user profiles. 
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Data collection 

Data collection involved the execution of various gestures by testers, and the 

following data points were collected for each gesture: 

Recognition Result 

Whether the system correctly recognized the gesture. 

Recognized Counts 

The number of times the gesture was correctly recognized. 

Time Taken (s : cs) 

The time taken by the system to recognize the gesture, recorded in seconds 

and centiseconds. 

Average Time Taken 

The average time taken for recognition across all testers. 

Average Speed 

The average speed of gesture execution, measured in gestures per second (s-

1). 
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4.3 Evaluation and Tester Feedback 

a. For testers 

Gesture Recognition results 

The recognition results for each gesture, both static and moving, were documented for each tester. This includes whether the gesture was correctly 

recognized or not. Recognized counts provide insights into the system's consistency and reliability in recognizing specific gestures. 

 

Formulas to calculate Average time taken and Average speed as follows: 

 

                                                                      𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 =  
𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 (𝑠)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑟𝑠
                                                                    (4.2.6.1) 

                                                                              𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 =  
1

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 (𝑠)
                                                              (4.2.6.2) 

 

 

The data collected for a subset of gestures and testers is presented in Table 4.2.6  below: 
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Table 4.3 Tabulation of Testers Attempt of Sign Language Recognition System 

Static/Moving Gesture Tester Recognition 

Result 

Recognised 

counts 

Time taken  

(s : cs) 

Average time 

taken (s) 

Average speed 

(s-1) 

 

Static 

 

A 

1 Recognised 4 02:42 2.42 + 2.67 + 1.52
+1.49 

4
 

= 2.03s 

1

2.03
 

= 0.49s-1 
2 Recognised 02:67 

3 Recognised 01:52 

4 Recognised 01:49 

 

Static 

 

E 

1 Recognised 4 01:58 1.58 + 1.59 + 0.98
+1.48

4
 

= 1.41s 

1

1.41
 

= 0.71s-1 
2 Recognised 01:59 

3 Recognised 00:98 

4 Recognised 01:48 

 

Static 

 

H 

1 Recognised 4 01:84 1.84 + 1.84 + 0.73
+1.34

4
 

= 1.44s 

1

1.44
 

= 0.69s-1 
2 Recognised 01:84 

3 Recognised 00:73 

4 Recognised 01:34 

 

Static 

 

I 

1 Recognised 4 01:11 1

1.84
 

2 Recognised 04:05 
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3 Recognised 00:96 1.11 + 4.05 + 0.96
+1.25

4
 

= 1.84s 

= 0.54s-1 

4 Recognised 01:25 

 

Static 

 

L 

1 Recognised 4 01:48 1.48 + 1.67 + 1.06
+0.77

4
 

= 1.25s 

1

1.25
 

 

= 0.8s-1 

2 Recognised 01:67 

3 Recognised 01:06 

4 Recognised 00:77 

 

Static 

 

N 

1 Recognised 4 00:97 0.97 + 2.77 + 1.24
+2.04

4
 

= 1.76s 

1

1.76
 

 

= 0.57s-1 

2 Recognised 02:77 

3 Recognised 01:24 

4 Recognised 02:04 

 

Static 

 

O 

1 Recognised 4 00:73 0.73 + 5.10 + 1.12
+1.25

4
 

= 2.05s 

1

2.05
 

= 0.49s-1 
2 Recognised 05:10 

3 Recognised 01:12 

4 Recognised 01:25 

 

Static 

 

S 

1 Recognised 4 01:34 1

1.27
 

2 Recognised 01:32 
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3 Recognised 01:01 1.34 + 1.32 + 1.01
+1.40

4
 

= 1.27s 

= 0.79s-1 

4 Recognised 01:40 

 

Static 

 

T 

1 Recognised 4 01:26 1.26 + 2.57 + 1.25
+1.64

4
 

= 1.68s 

1

1.68
 

= 0.60s-1 
2 Recognised 02:57 

3 Recognised 01:25 

4 Recognised 01:64 

 

Static 

 

U 

1 Recognised 4 00:84 0.84 + 1.13 + 1.67
+0.94

4
 

= 1.15s 

1

1.15
 

= 0.87s-1 
2 Recognised 01:13 

3 Recognised 01:67 

4 Recognised 00:94 

 

Moving 

 

Best 

1 Recognised 4 01:02 1.02 + 1.66 + 1.95
+1.81

4
 

= 1.61s 

1

1.61
 

= 0.62 s-1 
2 Recognised 01:66 

3 Recognised 01:95 

4 Recognised 01:81 

 

Moving 

 

Birthday 

1 Recognised 4 02:59 1

1.95
 

2 Recognised 02:29 
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3 Recognised 00:96 2.59 + 2.29 + 0.96
+1.96

4
 

= 1.95s 

= 0.51s-1 

 

 

 

 

4 Recognised 01:96 

 

Moving 

 

Please 

1 Recognised 3 02:92 2.92 + 15 + 12.88
+2.99

4
 

= 8.45s 

1

8.45
 

= 0.12s-1 
2 Unrecognised 15:00 

3 Recognised 12:88 

4 Recognised 02:99 

 

Moving 

 

Happy 

1 Recognised 4 02:43 2.43 + 12.59 + 6.59
+3.51

4
 

= 6.28s 

1

6.28
 

= 0.16s-1 
2 Recognised 12:59 

3 Recognised 06:59 

4 Recognised 03:51 

 

Moving 

 

Hearing 

1 Recognised 4 01:65 1.65 + 1.74 + 11.14
+1.64

4
 

= 4.04s 

1

4.04
 

= 0.25s-1 
2 Recognised 01:74 

3 Recognised 11:14 

4 Recognised 01:64 
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Moving 

 

Like 

1 Recognised 4 01:29 1.29 + 6.80 + 5.21
+2.08 

4
 

= 3.85s 

1

3.85
 

= 0.26s-1 
2 Recognised 06:80 

3 Recognised 05:21 

4 Recognised 02:08 

 

Moving 

 

Feel 

1 Unrecognised 0 15:00 15 + 15 + 15 + 15

4
 

= 15s 

1

15
 

= 0.07s-1 
2 Unrecognised 15:00 

3 Unrecognised 15:00 

4 Unrecognised 15:00 
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Based on the collection of data and evaluation metrics from above, detailed 

evaluation results, insights gained from testers’ feedback, are analysed. 

 

 

Figure 4.3.1: Bar Chart of Average Duration (s) and Average Speed of Static 

Gestures (s-1) 

 

The bar chart in Figure 4.3.1 above displays the average duration (in seconds) 

and average speed (in seconds per gesture) of various static gestures, including 

A, E, H, I, L, N, O, S, T, and U. 

 

Gesture "U" stands out as the fastest with shortest time taken, and records on an 

average recognition time of 1.15 seconds per gesture. Gestures "A" and "O" 

have the slowest recognition times, both with an average of 2.03 seconds per 

gesture. 
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Figure 4.3.2: Bar Chart of Average Duration (s) and Average Speed of Moving 

Gestures (s-1) 

 

Based on Figure 4.3.2, "Please" has the longest average recognition time of 

8.45 seconds, while "Best" is the fastest, with an average recognition time of 

1.61 seconds. This suggests that "Please" is recognized slowly, whereas "Best" 

is recognized more quickly. More complex gestures, such as "Birthday" and 

"Hearing," take longer to recognize on average, possibly due to the intricacies 

of the hand movements involved. "Feel" exceeds the time limit for detection 

specified at 15 seconds. This indicates that more training may be required for 

the model to recognize this gesture accurately. 
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Figure 4.3.3: Line Graph of Recognized counts of Static Gestures 

 

This graph in Figure 4.3.3 demonstrates that all tested static gestures achieved 

consistent recognition performance, each with four successful recognitions. 

This uniformity suggests that the model exhibits robust recognition capabilities 

for the static sign language gestures. 
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Figure 4.3.4: Line Graph of Recognized counts of Moving Gestures 

 

From the graph in Figure 4.3.4, it is evident that the "Feel" gesture had no 

successful recognitions during testing, as indicated by a recognized count of 0. 

In contrast, the "Best," "Birthday," "Happy," "Hearing," and "Like" gestures 

were recognized four times each, demonstrating consistent and successful 

recognition. The "Please" gesture had a slightly lower recognition count of 3, 

indicating that it was recognized with a slightly lower frequency compared to 

the others. 

 

This data suggests that the model performed well in recognizing most of the 

moving sign language gestures, except for the "Feel" gesture, which requires 

further improvement in recognition accuracy. 
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Tester Feedback 

Table 4.3.1 below summarizes feedback and comments received from testers 

regarding their experiences with the system. 

 

Table 4.3.1: Feedback and Comments by Testers 

Tester Feedback and Comments 

Tester 1 Motions which are fast are not detected. Unrecognised 

moving gestures are classified as ‘Best’ 

Tester 2 The system seems to detect gestures effectively only 

when the user is in specific body positions. 

Tester 3 Two hands not able to detect, complicated hand gestures 

are detected slower 

Tester 4 Complex gestures take long time to detect.  

 

 

The feedback by Tester 1 suggests the need for improvements in gesture 

recognition speed and accuracy. The feedback by Tester 2 emphasizes the 

importance of ensuring the system's robustness across a range of user positions. 

Tester 3’s feedback indicates a need for enhancements in recognizing complex 

and multi-hand gestures. Tester 4’s feedback shows importance of optimizing 

the system's performance for quicker recognition of complex gestures. 

 

In response to this feedback, Chapter 5 will provide comprehensive 

recommendations on refining the system. These recommendations will focus on 

addressing these issues and enhancing the overall performance of the system, 

ensuring that it can accurately and efficiently detect all types of gestures. 
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b. For self 

 

Lighting and Distance Variations 

The impact of lighting conditions and distances (36cm vs. 53cm) on gesture 

recognition performance are analysed as shown in Table 4.2.6.2. 

 

Table 4.3.2: Recognition state under different Lighting and Distances 

  Recognized (1) / Unrecognized (0) 

  36cm – 

from table 

Light 

condition 

53cm – 

from table 

Light 

condition 

36cm – 

from table 

Dim 

condition 

53cm – 

from table 

Dim 

condition 

Static A 1 1 1 1 

E 1 1 1 1 

H 1 1 1 1 

I 1 1 1 1 

L 1 1 1 1 

N 1 1 1 1 

O 1 1 1 1 

S 1 1 1 1 

T 1 1 1 1 

U 1 1 1 1 

Moving Best 1 1 1 1 

Birthday 1 1 1 1 

Please 1 1 1 1 

Happy 1 1 1 1 

Hearing 1 1 1 1 

Like 1 1 1 1 

Feel 0 0 0 0 
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In general, the system exhibits a robust performance, with gestures (other than 

‘Feel’) being successfully recognized in both regular and dim lighting 

conditions, as well as at varying distances from the table. 
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CHAPTER 5 

 

4 CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1 Conclusions 

In conclusion, this project has successfully achieved the objectives stated earlier 

in the development of the ASL recognition system. The primary goal was to 

design and develop an efficient algorithm for the hand gesture recognition, 

reducing the reliance on trained interpreters for individuals with hearing 

impairments. The successfully built a TensorFlow Keras API neural network 

model integrated with OpenCV Mediapipe, achieving an impressive accuracy 

rate of 96% for static gestures and 53% for dynamic, moving gestures. In 

addition, based on the testings results, the system could work real-time, under 

different lightings and distances from the webcam, enabling efficiency to be 

used in real-time communication scenarios in Objective 2. It is also can be used 

by various users from different demographics, either gender, age, ethnicity, 

hand dominance, at all levels of proficiency of ASL, addressing the past 

limitations and leading to inclusivity, fulfilling Objective 3. 

 

 

5.2 Recommendations for future work 

Based on the findings from Chapter 3, the following recommendations are made 

for future work: 

 

1. Enhance Point History Classifier 

Continue to refine and optimize the Point History Classifier to improve training 

accuracy. Additional training epochs and fine-tuning may be necessary to 

achieve higher accuracy levels. 

 



156 

 

2. Gesture Recognition Speed 

Investigate methods to enhance gesture recognition speed, especially for more 

complex gestures like "Feel." Optimization techniques and model architecture 

adjustments may be explored. 

 

3. Robustness Across User Positions 

Conduct further research and development to ensure the system's robustness 

across a wide range of user positions and orientations. This may involve 

collecting additional data from diverse user scenarios. 

 

4. Complex Gesture Recognition 

Focus on enhancing the model's ability to recognize complex and multi-hand 

gestures. This could involve data augmentation, specialized model 

architectures, or more extensive training. 

 

5. Feedback Integration  

Continuously gather feedback from users and testers to iteratively improve the 

system's performance. Feedback should be carefully analysed and used to guide 

future development efforts. 

 

By implementing these recommendations, it is expected that the system's overall 

performance will be significantly enhanced, ensuring accurate and efficient 

detection of all types of gestures, thereby improving its utility and user 

satisfaction. 
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