
1

REAL-TIME HAND GESTURE RECOGNITION SYSTEM TO

INTERPRET SIGN LANGUAGE

CHONG SIOW YEN

A project report submitted in fulfilment of the

requirements for the award of Bachelor of Science (Honours) Software

Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

June 2023

2

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature :

Name : Chong Siow Yen

ID No. : 19UEB03392

Date : 9 February 2023

3

APPROVAL FOR SUBMISSION

I certify that this project report entitled “REAL-TIME HAND GESTURE

RECOGNITION SYSTEM TO INTERPRET SIGN LANGUAGE” was

prepared by CHONG SIOW YEN has met the required standard for submission

in partial fulfilment of the requirements for the award of Bachelor of Science

(Honours) Software Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Dr. Chia Kai Lin

Date : 9 February 2023

4

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2023, Chong Siow Yen. All right reserved.

5

ACKNOWLEDGEMENTS

I would like to express my gratitude towards Dr. Chia Kai Lin who suggests the

title, Real-Time Hand Gesture Recognition System To Interpret Sign Language,

which would potentially benefit the communication between people with

disabilities (deaf/hard of hearing) and the non-disabled person. She supervises

me throughout my Project and provides useful suggestions to enhance the report

as well as in image processing.

Secondly, I would like to thank the moderator, Dr. Lee Ming Jie for being active

in the Microsoft Teams and always there to answer my inquiries on the Project.

Next, I appreciate Dr. Faranak Nejati, my moderator for her useful advice during

presentation of PROJECT I and II, as well as Dr Wong Whee Yen, the lecturer

for the course, UECS3599 PROJECT I, in providing explanations of each part

of the Project which aids me in understanding better on what to expect for each

chapter. Finally, I would like to thank my parents who are huge sponsors of me

finishing the studies and loved ones for supporting and motivating me this far.

6

ABSTRACT

Sign Language plays a major part in communications among individuals with

hearing impairments or hearing-challenged individuals, a medium which allows

them to participate in society. Through sign language, it allows them to get

access to real-world news and access important information. Its significance can

be proven when sign language interpreters appear on screen alongside the news

anchor in our daily news broadcastings, with the addition of closed captions.

The central component of sign language is the hand gestures. It is used to

communicate words, phrases, and ideas, with each gesture having a specific

meaning. Hand gestures in sign language can be divided into two main gestures,

static gestures which do not involve movement, such as the alphabet-fingering

or thumbs up gesture. while dynamic gestures are hand movements which

involve changing of hand shape or position, such as waving, pointing and more.

The applications of hand gestures in sign language include in communication,

education, interpretation, accessibility in the form of visual format, and cultural

events to translate lyrics, plays and musicals to sign language that is easily

understood by individuals with hearing impairments or have difficulty in

hearing.

The current phenomenon reflects that most hearing people are unaware of sign

language and do not take the time to learn it, leading to miscommunication and

poor understanding between the hearing and the deaf community. They also

view sign language as less of importance compared to spoken language. It is

expected that with the existence of a real-time sign language interpretation tool

would educate these ignorant people and increase their acceptance towards the

individuals with hearing impairments or hearing-challenged individuals’

culture.

7

The building of this System To Interpret Sign Language aims to bridge the

communication gap between the hearing and individuals with hearing

impairments or hearing-challenged individuals. It shall act as a complement

rather than a replacement to the existing sign language interpreter to enhance

the communication and understanding among the communities. To achieve that,

a tool will be developed to ease communication between the individuals with

hearing impairments or hearing-challenged individuals. The sensors and

cameras will detect the hand gestures, then translate the hand gestures to

captions. There are several studies on sign language recognition systems, which

built with techniques, which includes OpenCV, OpenCV with Mediapipe,

LeapMotion Controller (LMC) with training of Convolutional Neural Network

(CNN), which will be discussed further in the literature review.

The project will follow five major steps: pre-processing, feature extraction,

segmentation and dimension reduction, classification, and model evaluation.

The system is built with OpenCV Mediapipe in addition of Neural Network

model with TensorFlow and Keras API. The results demonstrate that the system

can detect 10 alphabets (A, E, H, I, L, N, O, S, T, U) and 7 vocabulary words

(Best, Birthday, Please, Happy, Hearing, Like, Feel), with accuracies of 96%

and 53% respectively. This project serves as a valuable tool in fostering

communication and understanding between these communities.

8

TABLE OF CONTENTS

REAL-TIME HAND GESTURE RECOGNITION SYSTEM TO

INTERPRET SIGN LANGUAGE 1

DECLARATION 2

APPROVAL FOR SUBMISSION 3

© 2023, Chong Siow Yen. All right reserved. 4

ACKNOWLEDGEMENTS 5

ABSTRACT 6

TABLE OF CONTENTS 8

LIST OF TABLES 13

LIST OF FIGURES 14

CHAPTER 1 18

1. INTRODUCTION 18

1.1. General Introduction 18

1.2. Importance of the Study 20

1.3. Problem Statement 21

1. Dependency on trained interpreters, which

may not always be available or accessible to

the deaf and hard of hearing community. 21

2. Communication gap between individuals

with and without hearing impairments in

real-time. 21

3. Inadequacy of the existing systems to work

with variability in sign language 22

1.4. Aim 22

1.5. Objective 22

1. To design and develop an efficient algorithm for

real-time hand gesture recognition that can

detect and interpret sign language. 22

2. To evaluate the efficiency of the hand gesture

recognition system in real-time

communication scenarios. 22

9

3. To identify potential challenges in the adoption

of the system and develop solutions to

address them. 23

1.6. Research Questions 23

1.7. Proposed Solution 24

Figure 1.6.1: Workflow Diagram for the System

for recognizing ASL hand gestures 24

Figure 1.6.2: Model-View-Controller Architecture

Pattern in context of system 27

1.8. Scope and Limitations 30

Table 1.7.1: Hardware Setup 31

Table 1.7.2. Software Setup 32

1.9. Summary 35

CHAPTER 2 36

LITERATURE REVIEW 36

2.1 Introduction 36

2.2 Literature Review 37

2.3 OpenCV 39

2.3.1 Pre-processing 39

2.3.2 Feature Extraction 40

2.3.3 Classification 41

2.3.4 Accuracy 42

2.3.5 Advantages 42

2.3.6 Disadvantages 43

2.4 OpenCV with Mediapipe 44

2.4.1 Pre-processing 45

2.4.2 Feature Extraction 46

2.4.3 Segmentation 46

2.4.4 Classification 47

2.4.5 Accuracy 48

2.4.6 Advantages 50

2.4.7 Disadvantages 50

2.5 LeapMotion Controller (LMC) 51

10

2.5.1 Pre-processing 53

2.5.2 Segmentation 54

2.5.3 Feature Extraction 55

2.5.4 Classification 56

2.5.5 Deep Learning Model / Traditional Machine

Learning Model 57

2.5.6 Accuracy 58

2.5.7 Complexity 59

2.5.8 Advantages 59

2.5.9 Disadvantages 60

2.6 Gloves with sensors 61

2.6.1 Pre-processing 64

2.6.2 Segmentation 64

2.6.3 Feature Extraction 65

2.6.4 Dimension Reduction 65

2.6.5 Classification 65

2.6.6 Deep Learning Model / Traditional Machine

Learning Model 66

2.6.7 Accuracy 66

2.6.8 Complexity 67

2.6.9 Advantages 67

2.6.10 Disadvantages 68

2.7 Skeleton Aware Multimodal SLR framework

(SAM-SLR) 69

2.7.1 Pre-processing 70

2.7.2 Segmentation 72

2.7.3 Feature Extraction 72

2.7.4 Classification 73

2.7.5 Deep Learning Model / Traditional Machine

Learning Model 74

2.7.6 Accuracy 74

2.7.7 Complexity 75

2.7.8 Advantages 77

11

2.7.9 Disadvantages 77

2.8 Summary 78

CHAPTER 3 91

METHODOLOGY AND WORK PLAN 91

3.1 The Proposed Model Workflow 91

3.2 Pre-processing 93

3.3 Feature Extraction 96

3.4 Segmentation and Dimension Reduction 99

3.5 Classification 101

3.6 Model Evaluation 104

3.7 Requirement Specifications 110

3.8 Tools to use 110

3.9 Pseudocode for this project 111

3.10 Work Breakdown Structure of the Project 113

3.11 Gantt Chart of Project 114

CHAPTER 4 117

4 SYSTEM PERFORMANCE 117

4.1 Keypoint classifier detection 117

4.1.1 Training and Validation Metrics 117

4.1.2 Confusion Matrix 121

4.1.3 Classification Report 122

4.2 Point History Classifier Detection 123

4.2.1 Training and Validation Metrics 123

4.2.2 Confusion Matrix 126

4.2.3 Classification Report 127

4.3 Comparing OpenCV with Mediapipe and Neural

Network with other methodologies in Literature

Review (refer Table 2.8) 128

4 TESTING RESULTS 130

4.1 Introduction 130

4.1.1 Approach 130

4.1.2 Expected Achievement 137

4.2 Test Setup and Data Collection 138

12

4.2.1 Test Environment Setup 138

4.2.2 Gestures Used for Testing 140

4.2.3 Tester Recruitment and Data Collection 140

4.3 Evaluation and Tester Feedback 142

a. For testers 142

b. For self 153

CHAPTER 5 155

4 CONCLUSIONS AND RECOMMENDATIONS 155

5.1 Conclusions 155

5.2 Recommendations for future work 155

1. Enhance Point History Classifier 155

2. Gesture Recognition Speed 156

3. Robustness Across User Positions 156

4. Complex Gesture Recognition 156

5. Feedback Integration 156

REFERENCES 157

13

LIST OF TABLES

Table 1.7.1: Hardware Setup 31

Table 1.7.2: Software Setup 32

Table 2.3.2: Analysis table for Region of Interest 40

Table 2.3.4: Analysis table for gesture recognition 42

Table 2.4.5.1: Precision, F1-score, and Recall were computed for all models

 during the ML model development and testing 49

Table 2.4.5.2: Model and corresponding accuracies for 10 class 49

NUS dataset with Training Accuracy (Tr. A),

Testing Accuracy (Te. A), Overall Accuracy

(O.A), Average Inference Time (A.I.T)

Table 2.5.6: Mean classification accuracy with RGB, 58

LeapMotion and Multi-modality model

Table 2.6.7: Classification accuracy 1st and 2nd 66

version of sign recognition and the system

Table 2.7.6: Performance of multi-stream SL-GCN 74

Table 2.7.7: Performance baseline results RGB and RGB-D 74

Table 2.8: Overview of different approaches to hand gesture recognition

 78-89

Table 3.6.1: Confusion Matrix for 10 classes (letters) 105-107

Table 3.6.2: Confusion Matrix for 7 classes (vocabularies) 108

Table 3.7: Requirement Specifications 110

Table 4.3. Accuracy Comparison Literature Review and Current Development

128-129

Table 4.1.1a: Testers’ Profile and Feedback on System 131

Table 4.1.1b: Static Gestures with contrasting hand signing 133-135

Table 4.1.1b1: Moving Gestures with contrasting hand signing 135-137

Table 4.3: Tabulation of Testers Attempt of Sign Language Recognition System

143-147

Table 4.3.1: Feedback and Comments by Testers 152

Table 4.3.2: Recognition state under different Lighting and Distances 153

https://docs.google.com/document/d/1cydD7Pp95S8miI4AQ04aur24TuT-MyKU/edit#heading=h.1pxezwc

14

LIST OF FIGURES

Figure 1.6.1: Workflow Diagram for the Real-Time Hand Gesture 24

 Recognition System To Interpret Sign Language

Figure 1.6.2: Model-View-Controller Architecture Pattern 27

 in context of system

Figure 2.3.1: The convex hull (in green) and the hand 39

 contour (in white) in context of system

Figure 2.3.2: Region of overlapping ROIs 40

Figure 2.3.3.1: Image captured by camera 41

Figure 2.3.3.2: Bounding web box without any gesture 41

Figure 2.3.3.3: Recognition of hand showing number 1 41

Figure 2.3.5.1: Right interpretation of sign language, ‘Love’ 43

Figure 2.3.5.2: Wrong interpretation of sign language, ‘Remember’

 supposed ‘Love’ 43

Figure 2.4: The structure of the Sign Language Recognition system 44

Figure 2.4.1: 10 gestures in American Sign Language (ASL) corresponding

to the alphabet’s "A" to "J." 48

Figure 2.4.1.1: Wrist and upwards as result of normalisation 45

Figure 2.4.2: The working of HTM 46

Figure 2.4.4: Real-time testing results of the gesture recognition 48

 System

Figure 2.4.5: Confusion matrix of the model utilizing K-Nearest Neighbours

(KNN) 48

Figure 2.5: Leap Motion Controller (LMC) 51

Figure 2.5.1: Overall networks and function 52

 involved in building the British Sign

 Language Recognition System

Figure 2.5.1.1: RGB image data of 1s 53

 which collected at frequency 0.2s/frame (5 Hertz)

Figure 2.5.1.2: Setup of LMC with 3D graphic display 53

Figure 2.5.2: Features provided by LMC API 52

Figure 2.5.3: Bone data of each finger detected by 55

https://docs.google.com/document/d/1cydD7Pp95S8miI4AQ04aur24TuT-MyKU/edit#heading=h.cak5csjmu266
https://docs.google.com/document/d/1cydD7Pp95S8miI4AQ04aur24TuT-MyKU/edit#heading=h.z8vmm7m4gww4
https://docs.google.com/document/d/1cydD7Pp95S8miI4AQ04aur24TuT-MyKU/edit#heading=h.z8vmm7m4gww4
https://docs.google.com/document/d/1cydD7Pp95S8miI4AQ04aur24TuT-MyKU/edit#heading=h.z8vmm7m4gww4
https://docs.google.com/document/d/1cydD7Pp95S8miI4AQ04aur24TuT-MyKU/edit#heading=h.z8vmm7m4gww4
https://docs.google.com/document/d/1cydD7Pp95S8miI4AQ04aur24TuT-MyKU/edit#heading=h.z8vmm7m4gww4

15

 LeapMotion sensor

Figure 2.5.4: Input image is fed into a fine-tuned VGG16 CNN, where a layer

comprising 128 ReLU neurons generates the output, which

is then utilized in late fusion with the Leap Motion network

(Naglot et al., n.d.) Figure 2.5.4.1: Architecture of

MLP neural network 56

Figure 2.5.4.1: Architecture of MLP neural network 57

Figure 2.5.6: Confusion Matrix of Predicted class 58

 vs Actual class of system trained

 using the Back Propagation (BP) algorithm

Figure 2.6.1: Assembly of data-glove 61

Figure 2.6.2: Flowchart of Sign Language Detection 62

 Algorithm

Figure 2.6.3: Improved system with Pressure Sensors 63

Figure 2.6.4: Overview of modules involved in sign 63

 interpretation system

Figure 2.6.5: Normalization formula 66

Figure 2.6.6: A tilt sensor at upright (vertical) position 66

 bent at 50 and a tilt sensor degree

Figure 2.6.7: Classification accuracy 1st and 2nd 66

 of sign recognition

Figure 2.7: Concept of Skeleton Aware Multi-modal Sign 69

 Language Recognition Framework (SAM-SLR)

Figure 2.7.1: RGB with whole-body keypoints overlay 70

Figure 2.7.2: Cropping based on hand keypoints by OpenPose may

 result in distorted crops in cases where certain keypoints

 are not detected 71

Figure 2.7.2.1: The depicted samples exhibit differing lengths, with a median

duration of approximately 61 frames, equivalent to about 2

seconds, within the training set 72

Figure 2.7.6: Graph Accuracy against Parameters for 3 74

 experiments: VTN, VTN-HC, VTN-PF

16

Figure 2.7.7: Visualization of modalities: RGB frames, 75

 depth, masked HHA, optical flow and depth flow

Figure 2.7.7.1: Multi-stream SL-GCN model 76

Figure 3.2.1: Workflow Diagram for Pre-processing (Training) 93

Figure 3.2.2: Workflow Diagram for Pre-processing (Test) 93

Figure 3.3.1: Workflow Diagram for Feature Extraction 96

Figure 3.3.2: Convolutional Neural Network (CNN) in hand landmark

identification 97

Figure 3.3.3: Finalized extracted hand landmarks 98

Figure 3.4.1: Workflow Diagram for Segmentation and Dimension

Reduction 99

Figure 3.5.1: Workflow Diagram for Classification 101

Figure 3.5.2: Feedforward neural network (FNN) in Sign Language

classification 102

Figure 3.10: Work Breakdown Structure of the Project 113

Figure 3.11a: Gantt Chart of Project I 114

Figure 3.11b: Gantt Chart of Project II 115

Figure 4.1.1a: Training history of Keypoint classifier (Accuracy over epochs)

 117

Figure 4.1.1b: Training history of Keypoint classifier (Loss over epochs)

119

Figure 4.1.1c: Key Training Metrics of Keypoint classifier 120

Figure 4.1.2: Confusion matrix of Keypoint classifier 121

Figure 4.1.3: Classification Report of Keypoint classifier 122

Figure 4.2.1a: Training history of Point History Classifier (Accuracy over

epochs) 123

Figure 4.2.1b: Training history of Point History Classifier (Loss over epochs)

 124

Figure 4.2.1c: Key Training Metrics of Point History Classifier 125

Figure 4.2.2: Confusion matrix of Point History classifier 126

Figure 4.2.3: Classification Report of Point History classifier 127

Figure 4.1.1a: Age of Testers 132

Figure 4.1.1b: Ethnicity of Testers 132

17

Figure 4.1.1c: Gender of Testers 132

Figure 4.1.1d: Hand Dominance of Testers 132

Figure 4.1.1e: ASL Proficiency 132

Figure 4.1.1f: Experience of ASL Tech 132

Figure 4.2.1a: Tester 1 doing ‘Best’ gesture being detected 138

Figure 4.2.1b: Tester 2 doing ‘Birthday’ gesture being detected 138

Figure 4. 2.1c: Tester 3 doing ‘I’ gesture being detected 138

Figure 4. 2.1d: Tester 4 doing ‘Please’ gesture being detected 138

Figure 4.2.1.1aa: 36cm – from table Light condition 139

Figure 4.2.1bb: 53cm – from table Light condition 139

Figure 4.2.1cc: 36cm – from table Dim condition 139

Figure 4.2.1dd: 53cm – from table Dim condition 139

Figure 4.3.1: Bar Chart of Average Duration (s) and Average Speed of Static

Gestures (s-1) 148

Figure 4.3.2: Bar Chart of Average Duration (s) and Average Speed of Moving

Gestures (s-1) 149

Figure 4.3.3: Line Graph of Recognized counts of Static Gestures 150

Figure 4.3.4: Line Graph of Recognized counts of Moving Gestures 151

18

CHAPTER 1

1. INTRODUCTION

1.1. General Introduction

Sign language is a medium that is used in communication in the deaf and

hearing-impaired communities, which involves expressions and hand gestures.

As reported in 2017, there were about 70 million deaf people that used sign

language as their first language (Haj et al., 2017). According to a 2017 article

on the United Nations website, sign language is very diverse, with more than

300 different sign languages available worldwide based on the geographical

location and culture (United Nations, 2022). Commonly used sign languages

include American Sign Language (ASL), Chinese Sign Language (CSL) and

many more (Farooq et al., 2019). Despite the variety of sign languages out

there, they share some common features such as hand movements, therefore

the likeability of understanding between deaf/hard of hearing people of

different countries still is high.

However, there is still a social barrier between the hearing people and the deaf/

or hard of hearing people. As most people are not familiar with sign language,

therefore this makes real-time communication challenging. In such cases, the

signers would need the external assistance of a translator to facilitate the

conversation with the hearing, which might cost them some money. A Real-

Time Hand Gesture Recognition System To Interpret Sign Language

would be a cheaper, long-term solution. To achieve this, it requires the

knowledge of machine learning, sensing technologies as well as AI concepts

(such as Deep Learning) and algorithms to build the system.

Several popular methods have been developed and used for this purpose,

including OpenCV (Ismail et al., 2021) and OpenCV with Mediapipe (Riaz,

19

2022). OpenCV, a widely used open-source computer vision library, has been

preferred for its versatility and robustness in detecting and tracking hand

gestures. On the other hand, OpenCV with Mediapipe has gained traction for

its ability to provide accurate and efficient hand tracking and gesture

recognition in real-time.

Another promising solution for hand-signing recognition is LeapMotion

Controller (LMC) with training of Convolutional Neural Network (CNN)

(Lupinetti et al., 2020). LMC is a small, portable device that tracks hand

movements in 3D space, while CNN is an algorithm that can recognize

complex hand gestures with high accuracy.

Gloves with sensors are also an attractive option for real-time gesture

recognition, providing precise and accurate data for hand tracking and gesture

recognition (Pragati et al., 2009). Additionally, the Skeleton Aware

Multimodal SLR framework (SAM-SLR) has been developed as a

multimodal approach to hand gesture recognition, combining visual and

skeletal information, and has shown promising results in recognizing complex

hand gestures in real-time (Jiang et al., 2021). These techniques has its unique

strengths and limitations, depending on the specific application and the

accuracy and speed required for real-time gesture recognition.

In this project, a comprehensive review will be provided on the popular

methods used in the hand gesture recognition systems to interpret sign

language. The strengths and limitations of each technique will be analyzed,

and a method that combines the strengths of these techniques will be suggested

to improve the accuracy of the sign language hand-gesture prediction system.

Additionally, the challenges faced during the implementation of these

techniques will be discussed, and possible solutions will be suggested. This

20

project aims to contribute to the development of a reliable and cost-effective

recognition system for sign language interpretation, which would enhance the

quality of life for individuals with hearing impairments.

1.2. Importance of the Study

The study on the development of a Recognition System To Interpret Sign

Language would bring independence to individuals with hearing

impairments or hearing-challenged individuals without the reliance of a

human interpreter. With the computer vision technology, the system would

detect and recognize hand gestures, allowing for real-time interpretation of

sign language. This would bring social inclusion by bringing together the sign

language users and people who do not understand sign language in their daily

communications.

Secondly, this study also would increase the efficiency of existing systems by

reviewing the methodologies used and effectiveness of existing sign

language interpretation systems in terms of their sign language capturing,

recognition, translation, and representation. By comparing the performance

of the different systems, in aspects of accuracy, and errors, the study can

identify areas where the current interpreter systems could be enhanced. This

could ensure a more accurate representation of the original signed message.

Lastly, the study would help make communication more accessible, and

more cost-effective to the deaf and hard of hearing when the sign language

interpretation system becomes more widely available with the existence of a

real-time interpreter system. With its usage in various settings, such as in

workplaces, schools, and common spaces, individuals with hearing

impairments or hearing-challenged individuals could fully participate in social

and economic activities. Moreover, it will also ensure equal access to video

21

consultations for the deaf and hard of hearing especially in health

consultations via telehealth and improve the lifestyle of the community.

1.3. Problem Statement

1. Dependency on trained interpreters, which may not always be available

or accessible to the deaf and hard of hearing community.

Individuals with hearing impairments or hearing-challenged individuals often

faces significant communication barriers due to the unavailability or

inaccessibility of trained sign language interpreters. According to a survey

conducted by the National Association of the Deaf (NAD), individuals have

reported challenges in accessing communication services, including instances

of unavailable or unqualified interpreters (National Association of the Deaf,

2023). The demand for a real-time interpreter is expected to rise significantly

by 2050, as reported by the World Health Organization (WHO) (World Health

Organization, n.d.).

2. Communication gap between individuals with and without hearing

impairments in real-time.

Individuals with hearing impairments struggle to understand spoken language

in real-time, leading to miscommunication and exclusion. This issue can result

in misunderstandings and communication gaps, as evidenced by a study

published in the Journal of Deaf Studies and Deaf Education (Zaidman-Zait

and Dotan, 2017).

22

3. Inadequacy of the existing systems to work with variability in sign

language

Existing sign language recognition systems often struggle to accurately

recognize hand gestures, especially under varying lighting and background

conditions. Studies have shown that recognition accuracy can significantly

decrease in low-light environments (Mohammed et al., 2019). Additionally,

these systems may have difficulty interpreting sign language gestures due to

the high variability in individual signing styles (Quer and Steinbach, 2019).

1.4. Aim

The aim of this project is to develop a Hand Gesture Recognition System To

Interpret Sign Language that addresses the interrelated problems mentioned

above.

1.5. Objective

1. To design and develop an efficient algorithm for real-time hand gesture

recognition that can detect and interpret sign language.

This is to reduce the reliance on trained interpreters as he or she may not always

be available or accessible. This enables individuals with hearing impairments to

communicate more effectively and independently.

2. To evaluate the efficiency of the hand gesture recognition system in real-

time communication scenarios.

This is essential to ensure that the system meets the communication needs of

people with hearing impairments, reducing the potential of social barrier

between individuals with and without hearing impairments.

23

3. To identify potential challenges in the adoption of the system and develop

solutions to address them.

This is crucial to ensure the successful adoption of the system and its

effectiveness. Solutions will be figured out to tackle these challenges.

1.6. Research Questions

As part of the development of this system, the research questions that will

guide the study are:

1. How can an algorithm be designed and developed to improve the

efficiency of real-time hand gesture recognition in sign language

interpretation?

2. How efficient is the hand gesture recognition system in real-time

communication scenarios?

3. What are the potential challenges in the adoption of the system and

how can they be addressed?

24

1.7. Proposed Solution

Workflow:

Figure 1.6.1: Workflow Diagram for the System for recognizing ASL hand gestures

25

The workflow of the proposed solution for the system for recognizing hand

gestures in real-time to interpret sign language shown in Figure 1.6.1 involves

the splitting into two parts: a training part and a test part.

During the training phase, the goal is to train a machine learning model on

the training dataset. This phase typically involves several steps, starting with

pre-processing the data. This pre-processing step involves cleaning and

organizing the data and labelling it if necessary. This labelling is important to

help the machine learning algorithm to understand what the data represents.

Once the data is pre-processed, the learning phase begins. This phase

involves several sub-steps such as segmentation, feature extraction, dimension

reduction, classification, and choosing a suitable machine learning algorithm.

Feature extraction conducted when the most relevant features are selected

from the data to be used to train the machine learning model. Segmentation

involves breaking down the data into smaller, more manageable parts.

Dimension reduction involves reducing the number of features to avoid

overfitting the model. Classification involves categorizing the data into classes

based on its features. Finally, a suitable machine learning algorithm is chosen

to perform training on the model based on the data.

After that, it will move to the test phase. During this phase, the goal is to

make predictions on the test data with the existing trained model. This phase

also starts with a pre-processing step, which involves cleaning and organizing

the data. The data is then passed through the trained model, where it goes

through the same sub-steps as the learning phase, including segmentation,

feature extraction, dimension reduction, and classification. The model then

generates predicted labels for the test data.

26

Finally, the predicted labels are checked if they matched to the actual labels of

the test data. Then, evaluation takes place to calculate accuracy, precision,

recall, and F1 score. Satisfactory model's performance can be used to make

future predictions. If not, the model can be refined and retrained using

different techniques or datasets.

In summary, the training phase includes pre-processing the data and training

the machine learning model, while the test phase involves pre-processing the

test data, using the trained model to make predictions, and evaluating the

model's performance.

27

Architecture Design:

To implement this workflow, the proposed solution will require an architecture design that integrates the different stages seamlessly.

Figure 1.6.2: Model-View-Controller Architecture Pattern in context of system

28

The proposed solution will be developed using the Model-View-Controller

(MVC) pattern as shown in Figure 1.6.2, which is a popular architecture

pattern that divides the system into three components: the model, the view, and

the controller (Pop and Altar, 2014). The model component of the system will

handle the data and the application's logic. The view component will display

the output of the system to the user, while the controller component will

handle the user's input and interact with the model and view components.

The sequence of events in the development of the system will involve a user

performing a hand gesture that they want to communicate, which will be

detected by the view component. The view component will alert the controller

component, which will capture and manages user input. The model

component, which is the machine learning algorithm, will process and classify

the captured hand gestures using classifiers and alert the view component that

it has new classified result. The view component will display the recognized

hand gestures, including landmarks, bounding boxes, information text, point

history, and FPS information to the user, who can continue to perform hand

gestures to communicate with the system. This process will repeat in real-time,

allowing the user to communicate using hand gestures until the user presses

the ESC key, which enable sign language words or phrases translated in real

time.

The architecture design will also consider the flow of data between the

different stages, and the hardware and software resources required to

execute the system. A modular approach will be used to develop the different

components separately and integrate them to form the complete system. This

approach will allow for easy maintenance, scalability, and flexibility of the

system.

29

Furthermore, the proposed solution's architecture design will take into account

the computational resources required to execute the system efficiently. This

consideration will ensure that the system runs smoothly and can handle

recognition tasks.

In summary, the development of this system to interpret sign language will

require a well-planned architecture design, which is the MVC pattern to ensure

the modularity and maintainability of the system.

30

1.8. Scope and Limitations

The scope of this study is to develop a system for recognizing sign

language’s hand gestures in real-time. Cameras or sensors are used to

capture hand movements, and algorithms would interpret the gestures. The

development would take place over 8 months, and the system's variables and

factors would include camera or sensor specifications, lighting and

background conditions, hand shape and movement variability, and machine

learning algorithms. The project aims to achieve the objectives as stated in

Section 1.4. Objectives:

To fulfil Objective 1 as stated in Section 1.5, this system would involve the

use of technologies such as deep learning. For instance, machine learning

algorithms would be used to classify hand gestures and translate them into

captions. The pre-processing techniques such as noise reduction,

segmentation, and normalization would be used to remove any irrelevant

information. After that, the input data would be extracted, including the shape,

position, and movement of the hand to accurately identify specific hand

gestures.

To fulfil Objective 2 as stated in Section 1.5, the system would be trained on

a variety of sign language gesture datasets to ensure that it can interpret

more gestures. The system would be tested in various environments, including

different lighting and background conditions, to determine its effectiveness in

real-life situations. Evaluations would be conducted by comparing its results in

aspects of speed and response time with those of human interpreters.

Limitations of the system would be identified, and solutions proposed to

overcome them. This is followed by Optimization for real-time processing

which would be conducted to ensure that hand gestures are detected and

interpreted in real-time without any significant delays.

31

To fulfil Objective 3 as stated in Section 1.5, an investigation would be

conducted to identify the challenges posed by the variability in sign

language gestures, including differences in hand shape, movement, and

orientation, as well as the effects of lighting and background conditions,

hardware and software limitations, and usability factors, such as ease of use

and accessibility for individuals with hearing impairments. On hardware and

software limitations, the system's performance may be affected by the

capabilities of the hardware components used. Therefore, the study will be

limited to using specific sign language (which is American Sign Language, or

ASL), with the below hardware setup in Table 1.7.1 and software setup in

Table 1.7.2.

Table 1.7.1: Hardware Setup

Hardware

Setup

Description

Camera A high-quality camera is required to capture the hand

gestures in real-time.

Processor Fast graphics processing unit (GPU) that is capable of

handling real-time video processing and gesture recognition

algorithms.

Memory Enough memory to store the trained machine learning

models and the input data

Display Show the recognized gestures or translated text.

32

Table 1.7.2. Software Setup

Software Setup Description

Operating system Windows, Linux, or MacOS

Gesture recognition

algorithm

Neural Network

Machine learning

framework

TensorFlow

Keras

Image processing

library

OpenCV (used for preprocessing input images and

feature extraction)

Testing and evaluation Scikit-learn

TensorFlow

33

Limitations of the development of a hand-gesture recognition system may

include the environmental limitations, algorithmic limitations, hardware

limitations, dataset limitations, and sign language-specific limitations.

The first limitations are environmental limitations including occlusion and

lighting conditions. Occlusion occurs when part of the hand is hidden from the

camera, which would result in recognition errors as the system is unable to

recognize the complete hand gesture (Starner et al., 1996). Lighting conditions

also interfere with recognition of hand gestures, in which poor lighting would

result in shadows or reflections affecting the interpretation.

The second limitation is that algorithmic limitations include computational

complexity. To develop the hand gesture recognition would involve processes,

such as image processing which require computational resources and can be

time consuming (O’ Mahony et al., 2019).

The third limitation is hardware limitations is the limited availability of

hardware. The recognition system may require specialized hardware, such as

cameras which may not be available on older laptops.

The fourth limitations are dataset limitations, in which collecting and

labelling such a dataset can be time-consuming as the system requires a large

dataset of sign language gestures to train the model (Hou et al., 2019).

The next limitations are sign language-specific limitations, which include

variability and complexity of sign language, context-dependent sign, real-time

34

recognition and user variability. In the context of variability and complexity of

sign language, sign languages across different regions and countries make it

difficult to create a universal recognition system, allowing only certain

languages to be chosen (Woll et al., 2001). In addition, sign language involves

is a combination of not only hand gestures, also facial expressions, body

posture, and movement, requiring advanced technology and algorithms. Next,

sign language is context-dependent, which means it can have different

meanings. Moreover, sign language interpretation to be built would be real-

time which is expected to be challenging due to the complexity of the task and

the need for fast processing.

Lastly, the sign language-specific limitation to be considered is user

variability. The users may vary in terms of signing speed, style, and accuracy

(Bellugi and Fischer, 1972). Therefore, the system must adapt to these

variations to accurately interpret sign language.

35

1.9. Summary

Chapter 1 of the study introduces the importance of developing a sign

language recognition system to facilitate communication between the deaf

and hard of hearing communities. It explores various methods for recognition

and proposes a method that combines their strengths to enhance the accuracy

of sign language interpretation. The study aims to provide independence for

individuals with hearing impairments or hearing-challenged individuals,

promoting social inclusion. The problem statement outlines the

communication challenges faced by individuals with hearing impairments or

hearing-challenged individuals, while the aim and objectives of the study are

presented. The proposed solution involves using machine learning

algorithms, with the use of the Model-View-Controller (MVC) pattern. The

scope and limitations of the study are also presented, which include the

development of a recognition system for interpreting American Sign

Language, or ASL, with solutions proposed for identified limitations.

36

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The aftermath of the pandemic has left us to rely on virtual platforms for daily

communication, including online learning, telehealth, and remote work. This

has accelerated the adoption of virtual platforms for communication. However,

currently there is no widely available recognition for sign language

interpretation available in the market, leaving the individuals with hearing

impairments or hearing-challenged individuals to amplify their need for

accessible and inclusive communication.

While there are systems that can recognize hand gestures for sign language

interpretation, it is prevalent that they are not yet ready to release. This is most

likely due to the system is still in progress to accurately interpret all variations

of sign language in real-time, producing minimal errors in interpretation, tested

and validated by the individuals with hearing impairments or hearing-

challenged individuals. Achieving this level of accuracy and reliability in real-

time is expected to involve a significant amount of time and resources, with

technical expertise.

With the belief that real-time interpretation technology would continue to

advance as research in computer vision and machine learning progresses, it is

expected to see more sophisticated systems become available in the future. This

literature review would identify existing research in the field of hand gesture

recognition systems for sign language interpretation. This approach is to

identify gaps in knowledge, areas for improvement, and potential research

directions, appropriate methodologies, to achieve the aim of increasing the

reliability of the system.

37

2.2 Literature Review

Hand gesture recognition to interpret sign language encompasses the stages of

pre-processing, segmentation, feature extraction, dimension reduction (if used),

and classification.

Pre-processing is a stage when the input image is prepared for further

processing. Pre-processing techniques are used to improve the quality of the

image. In the literature review, we shall discuss presence or absence of pre-

processing, along with techniques covering image processing which includes

image resizing, smoothing, thresholding, as well as computer vision which

involves depth images and skeleton data.

Segmentation is a stage when the separation of the hand gesture from the

background takes place. Segmentation techniques are used to identify the hand

region. Various techniques in segmentation, which include thresholding,

contour detection, foreground, or background removal to track the hand or

skeleton would be discussed. Segmentation may be assisted with hand tracking

API, such as Mediapipe, hardware devices, such as Leap Motion Controller and

sensors or software, such as skeleton tracking to improve the accuracy of the

recognition system.

Feature extraction is a stage when features such as colour, texture, shape, and

motion may be extracted from the image once the hand region is identified.

Feature extraction techniques, which further categorised into geometric feature

extraction such as hand shape and orientation, hand landmarks, hand shape

descriptors, finger tracking, curvature, and surface normals, image processing

feature extraction such as edge detection and contour detection, computer

vision feature extraction such as depth estimation, 3D point cloud, motion

features and depth-based features, mathematical feature extraction such as

statistical features, sensor data feature extraction which includes sensor

readings, and audio signal processing feature extraction which includes audio

38

features will be discussed. In addition to that, machine learning models or

devices would be used such as CNN, ResNet, and SVM to provide additional

input data for improved accuracy and robustness of the system.

Dimension reduction would be used to reduce the number of features in cases

when the extracted features may be high-dimensional and redundant which

results in classification being difficult. Therefore, it is not compulsory to be used

in the development of the hand gesture recognition system. Techniques of

dimension reduction used in existing studies include Principal component

analysis (PCA) which is used to reduce the dimensionality of a dataset, linear

discriminant analysis (LDA) which is used for classification tasks, independent

component analysis (ICA) which is used to separate signals that are mixed.

Classification is a stage when the hand gesture is classified into one of several

predefined categories. Classification technique in existing studies can be

categorised as Supervised Learning Techniques which is to predict the class or

category of new, unseen data, Unsupervised Learning Technique which is to

identify patterns or relationships within the data, such as Template matching.

The literature review will also investigate if any deep learning framework,

such as TensorFlow Lite or TensorFlow is used which leads to improved

accuracy, and better performance with a set of tools and features provided for

building, training, and deploying complex neural network architectures.

Besides, the literature review shall identify whether a traditional machine

learning which involves hand-engineered features or deep learning model

which involves the use of artificial neural networks is being used in an existing

study. The summary of the literature review would compare all existing studies

in terms of its stages of development, deep learning framework, accuracy, and

complexity.

39

2.3 OpenCV

Ahmad Puad Ismail et al. demonstrated in their 2020 research, published in the

IOP Conference Series: Materials Science and Engineering, that Python and

OpenCV can be utilised to create a Real-Time Hand Gesture Recognition

System for Interpreting Sign Language. This was also supported in an article

entitled 'A Hand Gesture Sign Language to Text Real-time Interpreter using

Google Audiopipe Artificial Intelligence' by Riaz Sulaimi who initially used

OpenCV alone but encountered inconsistent results, the findings and outcomes

would be mentioned in this segment.

2.3.1 Pre-processing

The proposed approach by Ahmad Puad Ismail et al. (Ismail et al., 2021)

involved several stages, namely pre-processing, segmentation, feature

extraction, and classification. In the pre-processing stage, the Haar-cascade

classifier was used to detect the hand in the input image. The segmentation stage

involved detecting hand gestures by calculating the space consumption within

the area between the convex hull and contour of the hand as visualised in Figure

2.3.1 below.

Figure 2.3.1: The convex hull (in green) and the hand contour (in white)

(Ismail et al., 2021)

40

2.3.2 Feature Extraction

The feature extraction technique was based on the theory of Region of Interest

(ROI), in which the region of overlapping ROIs, as visualised in Figure 2.3.2,

are used to detect the appearance and gesture of the hand.

Figure 2.3.2: Region of overlapping ROIs (Ismail et al., 2021)

It was found that the region of interest (expressed in pixel value), for each

gesture varies from one another.

Table 2.3.2: Analysis table for Region of Interest (Ismail et al., 2021)

The differences of ROI between gestures are visualised in Table 2.3.2.

Calculation is carried out to obtain Area, also known as area of recognition,

where:

Area = H – C (2.3.2.1)

H represents Area of Hull and C represents Area of Contour

41

Based on the analysis table 2.3.2, the numerical gestures of 0-5 consume area

between 0 to 11561 pixels, while the phrases’ gestures consume area between

2693 to 14173 pixels.

2.3.3 Classification

Lastly, classification was done to recognize the type of gesture, utilising a Haar-

cascade classifier to determine whether the box in the frame could detect the

hand gesture or otherwise.

The system was evaluated using a simulation. The simulation is conducted with

a camera from the laptop. The screenshots of the simulation are displayed in

Figure 2.3.3.1, Figure 2.3.3.2, and Figure 2.3.3.3.

Figure 2.3.3.1 Image captured by Figure 2.3.3.2 Bounding web

camera (Ismail et al., 2021) box without any gesture

 shown. (Ismail et al., 2021)

Figure 2.3.3.3. Recognition of hand

showing number 1 (Ismail et al., 2021)

42

2.3.4 Accuracy

In the simulation part, Ahmad Puad Ismail et al. evaluated the proposed

approach on a dataset of ten hand gestures, which are the numerical values from

1-5, as well as phrases of ‘Good’, ‘Gun’, ‘Ok’, ‘Rawr’ and ‘Stop’ which are

posed from different scales for 10 times.

Table 2.3.4: Analysis table for gesture recognition (Ismail et al., 2021)

An analysis table in Table 2.3.4 then is produced to state the hits, misses and

falses of Haar-cascade Classifier so as to determine if the box in the frame could

detect the hand gesture. Based on all of the results in the table 2.3.4, the box in

the frame can recognize all of the signs with 10 hits out of 10 trials.

2.3.5 Advantages

One of the notable advantages of this method is that it is computationally

efficient and easy to implement, without the need for complex deep learning

models. However, traditional computer vision techniques may not perform well

in complex and noisy environments. This is proven in the article "A Hand

Gesture Sign Language to Text Real-time Interpreter using Google Mediapipe

Artificial Intelligence" by Riaz Sulaimi. It reports that the initial prototype of

their system, which was developed using OpenCV, produced inconsistent

results when detecting and interpreting hand gestures as visualised in Figure

2.3.5.1 and Figure 2.3.5.2.

43

Figure 2.3.5.1: Right interpretation of Figure 2.3.5.2: Wrong interpretation of

sign language, ‘Love’ (Sulaimi, 2022) sign language, ‘Remember’, supposed

 ‘Love’ (Sulaimi, 2022)

2.3.6 Disadvantages

The hand gesture detection was too dependent on many factors like a clean

background and proper lighting for accurate hand detection (blob detection).

The inconsistency in detecting and interpreting hand gestures led the team to

research other possible ways to make detection more reliable and accurate,

leading them to Google’s Mediapipe. Therefore, as an enhancement, deep

learning-based approaches using frameworks such as TensorFlow, Keras, and

PyTorch, which involve a convolutional neural network (CNN) for feature

extraction and classification, or a high-level framework for building media

processing pipelines, such as Mediapipe are suggested along with OpenCV.

44

2.4 OpenCV with Mediapipe

Combining OpenCV with Mediapipe provides a powerful framework for

developing recognition systems that can be used to interpret sign language. The

open-source tool Mediapipe, created by Google, allows for the extraction of

hand landmark position data from images using the Mediapipe Hands module.

In this review, we discuss three studies that have utilised this approach and

highlight the similarities and differences in their methodologies and findings.

The 2022 IEEE International Symposium on Smart Electronic Systems (iSES)

paper titled “Hand Gesture Recognition System in the Complex

Background for Edge Computing Devices” by C. M. Suryateja et al. (Suryateja

et al., 2022), uses OpenCV with MediaPipe Hands framework to extract the

landmarks' position data, which are then recorded in a CSV format, in the

development of the system for recognizing hand gestures using palm and finger

positions. The system comprises four clear components, as illustrated in the

flowchart presented in Figure 2.4: a palm detection module, a hand landmark

(HL) position extractor, a data scrubber, and a gesture recognizer.

Figure 2.4: The structure of the Sign Language Recognition system (Suryateja

et al., 2022)

The finger and palm position data were obtained utilizing the MediaPipe Hands

framework, showcasing an average accuracy of 95.7% in palm detection. The

training of the system involved leveraging the American Sign Language

Dataset, as depicted in Figure 2.4.1. This dataset comprises hand gestures

categorized into 10 classes, representing the letters "A" to "J". Each gesture

image has dimensions of 160 × 120, and the dataset consists of 200 photos for

each gesture type, featuring variations in background and individuals.

45

Figure 2.4.1: 10 gestures in American Sign Language (ASL) corresponding to

the alphabet’s "A" to "J." (Suryateja et al., 2022)

The proposed approach by C. M. Suryateja et al. involved several stages, namely

pre-processing, segmentation, feature extraction, and classification. The study

did not mention the use of any dimensionality reduction techniques.

2.4.1 Pre-processing

The pre-processing involves transforming the image dataset into a hand

landmark (HL) position dataset using MediaPipe Hands, where the dataset is

normalised to the wrist as visualised in Figure 2.4.1.1, and the output is stored

in a dataset structured as a list for each gesture.

Figure 2.4.1.1: Wrist and upwards as result of normalisation (Suryateja et al.,

2022)

The dataset is divided into training and testing, where 80% of the data is used

for training and 20% for testing. Pre-processing also involves the removal of

invalid entries in the dataset using Pandas.

46

2.4.2 Feature Extraction

Feature extraction involves utilizing a Hand Tracking Module (HTM),

comprising a Palm Detector and an HL Position Extractor, as illustrated in

Figure 2.4.2. The Palm Detector functions on the entire input image to detect

the palm in the data. On the other hand, the HL Position Extractor operates on

the cropped hand bounding box provided by the palm detector, extracting

position data for the landmarks.

Figure 2.4.2: The working of HTM (Suryateja et al., 2022)

2.4.3 Segmentation

The segmentation process is fundamental in the extraction of hand landmarks,

encompassing both palm and finger positions. This process follows the feature

extraction stage, leveraging the Hand Tracking Module (HTM) and

DataExtractor files. Following the identification of the palm in the input image

by the Palm Detector during feature extraction, this information is utilized to

train the system to estimate bounding boxes for rigid objects such as palms and

fists. As palms are smaller objects, the non-maximum suppression algorithm

works well even for two-hand self-occlusion cases, like handshakes.

Meanwhile, the HL Position Extractor in HTM continues to operate on the

cropped hand bounding box provided by the Palm Detector and returns

landmarks with the goal that this extracted data will be used to build a ML model

for gesture recognition. Thus, it can be concluded that the HTM may have

contributed to both Feature extraction and Segmentation by identifying the

relevant features (palm and finger positions) necessary for hand gesture

recognition.

47

2.4.4 Classification

The process of classification is carried out during the development and training

of the ML model using machine learning classification algorithms like Decision

Tree Classifier (DTC), Random Forest Classifier (RFC), Support Vector

Machines (SVM), and K-Nearest Neighbours (KNN), the ML model is trained.

The training data is derived from the extracted HL (Hand Landmark) position

dataset obtained through the segmentation process. It was trained using an 80-

20 split of the dataset into training and testing sets. The hyperparameters of the

model were tuned to achieve the best possible accuracy.

After training the model, testing the model took place when the test dataset is

used to predict the hand gestures in the test data. Evaluation of performance is

done by comparing the predicted gesture, as visualised in Figure 2.4.4 with the

actual gesture.

a. Letter ‘A’

b. Letter ‘B’

c. Letter ‘C’

d. Letter ‘D’

e. Letter ‘E’

f. Letter ‘F’

48

g. Letter ‘G’

h. Letter ‘H’

i. Letter ‘I’

Figure 2.4.4 (a-i): Real-time evaluation outcomes of the gesture recognition

system (Suryateja et al., 2022)

2.4.5 Accuracy

The accuracy of the model specific classification algorithm, such as KNN was

calculated using the confusion matrix as visualised in Figure 2.4.5, which gives

the number of true positive, true negative, false positive, and false negative

predictions.

Figure 2.4.5: Confusion matrix of the model utilizing K-Nearest Neighbours

(KNN) (Suryateja et al., 2022)

49

The Decision Tree Classifier (DTC) demonstrated perfect training data

accuracy at 100% and achieved an accuracy of 96.4% on the test data. On the

other hand, the model employing the Random Forest Classifier (RFC)

algorithm achieved a training data accuracy of 100% and an accuracy of

97.2% on the test data. Utilizing a radial base kernel, the Support Vector

Machines (SVM) achieved an accuracy of 97.9% on the test data.

Additionally, the K-Nearest Neighbours (KNN) algorithm-based model

achieved a training accuracy of 97.4% and an accuracy of 98.1% on the test

data.

Table 2.4.5.1: Precision, F1-score, and Recall were computed for all models

during the ML model development and testing (Suryateja et al., 2022)

The precision, F1-score, and recall values for the models based on Decision Tree

Classifier (DTC), Random Forest Classifier (RFC), Support Vector Machines

(SVM), and K-Nearest Neighbours (KNN) are presented in Table 2.4.5.1 above.

Table 2.4.5.2: Model and respective accuracies for the 10-class NUS dataset,

including Training Accuracy (Tr. A), Testing Accuracy (Te. A), Overall

Accuracy (O.A), and Average Inference Time (A.I.T) (Suryateja et al., 2022)

In Table 2.4.5.2, the Training Accuracy (Tr. A), Testing Accuracy (Te. A),

Overall Accuracy (O.A), and Average Inference Time (A.I.T) for the DTC,

50

RFC, SVM, and KNN-based models are presented. The inference time for the

trained ML model falls within the range of 45-83 ms, while the overall accuracy

ranges from 97.6% to 99.5%. Following this, the model was deployed on edge

computing devices such as Raspberry Pi 4 and NVIDIA AGX Xavier to create

a portable ASL recognition system.

2.4.6 Advantages

As an overall, the system utilised a Deep Learning Framework - the Mediapipe

Hands framework, which is an open-source framework for hand tracking and

gesture recognition. The advantages of using the framework include its high

accuracy in palm detection and hand landmark extraction.

2.4.7 Disadvantages

However, the disadvantages include the complexity of the system built is high,

and the dataset might contain invalid entries, which require removal.

51

2.5 LeapMotion Controller (LMC)

The Leap Motion Controller (LMC) as visualized in Figure 2.5 is a small device

that can accurately track hand movements and capture fine-grained details,

making it a popular choice among researchers for the development of gesture

recognition systems for sign language interpretation.

Figure 2.5: Leap Motion Controller (LMC)

Its ability to detect hand gestures and track hand movements in real-time has

been utilized in many research papers, including "Real Time Sign Language

Recognition using the Leap Motion Controller" by Naglot and Kulkarni (2016),

"American Sign Language Recognition Using Leap Motion Controller with

Machine Learning Approach" by Chong and Lee (2018), and "British Sign

Language Recognition via Late Fusion of Computer Vision and Leap Motion

with Transfer Learning to American Sign Language" by Bird, Ekárt, and Faria

(2020).

The first study is a paper by Naglot and Kulkarni (2016) that focused on

developing a real-time sign language recognition system using the Leap Motion

Controller (LMC) (Naglot et al., n.d.). The system aimed to track hand

movements and recognize hand gestures in real-time. The overall process

involved pre-processing, segmentation, feature extraction, classification, and

final prediction. The authors used deep learning frameworks such as MLP,

DEvoMLP, CNN, Dense Interpretation Network, Image Classification

52

Network, and Bone Data Classification Network for the classification task as

illustrated in Figure 2.5.1.

Figure 2.5.1: Overall networks and function involved in building the British

Sign Language Recognition System (Naglot et al., n.d.)

The second paper titled "American Sign Language Recognition Using Leap

Motion Controller with Machine Learning Approach" by Chong and Lee (2018)

proposes a system for recognizing American Sign Language (ASL) using a Leap

Motion Controller (LMC) with a machine learning approach (Chong and Lee,

2018). The system uses the LMC to detect hand gestures and track hand

movements. In the last study to be investigated is by Bird, Ekárt, and Faria

(2020), they developed a British Sign Language recognition system by utilizing

a Late Fusion of Computer Vision and Leap Motion Controller (LMC) with

transfer learning from American Sign Language (ASL). The proposed system

flow of the study is shown in Figure 2.5.2 below:

53

Figure 2.5.2: Proposed flow for development of Sign Language Recognition

Using Leap Motion Controller(Chong and Lee, 2018)

2.5.1 Pre-processing

The pre-processing step by Naglot and Kulkarni (2016) involved collecting

data from the sensors, camera, and the LMC. The authors recorded each gesture

for 30 seconds, 15 seconds per dominant hand, at a frequency of 0.2 seconds as

shown in Figure 2.5.1.1. (Naglot et al., n.d.)

Figure 2.5.1.1: RGB image data of 1s which collected at frequency 0.2s/frame

(5 Hertz)

The data was captured using a device positioned above the camera, facing the

subject. The collected data were then inserted into the dataset as numerical

vectors to be classified. The preprocessing stage also encompassed addressing

empty frames in cases where the sensor failed to detect either hand. The pre-

processing step by Chong and Lee (2018) involved normalizing the dataset

before providing it to the Artificial Neural Network (ANN) for training and

testing (Chong and Lee, 2018). During the pre-processing stage by Bird, Ekárt,

and Faria (2020), the LMC device was connected to a desktop PC and placed

on the table to detect and track the subject’s hand and finger gestures (Bird et

al., 2020). The setup is shown in Figure 2.5.1.2 below.

54

Figure 2.5.1.2: Setup of LMC with 3D graphic display (Bird et al., 2020)

The data collected from the LMC device was pre-processed to extract

meaningful features.

2.5.2 Segmentation

In the segmentation step by Naglot and Kulkarni (2016), the authors collected

a dataset of British Sign Language (BSL) comprising 18 distinct gestures from

five participants (Bird et al., 2020). Each gesture was recorded for 30 seconds,

with 15 seconds allocated per dominant hand. This resulted in a dataset of

numerical vectors for each gesture. Participants were instructed to perform the

gesture at a comfortable pace during the recording. To maintain data quality and

prevent fatigue, a recording duration of 15 seconds was chosen. In the

segmentation stage by Chong and Lee (2018), the Palm and Finger dataset were

selected as features for the feature extraction process(Chong and Lee, 2018).

The Leap motion API provides various features for hand, fingers, bones, and

gestures, including finger direction, position, and length as shown in Figure

2.5.2 below.

55

Figure 2.5.2: Features provided by LMC API

The ANN was trained using two features: the Euclidean distances between the

consecutive fingertip position to palm position and the Euclidean distances

between the fingertip position of each consecutive finger.

2.5.3 Feature Extraction

In the feature extraction step by Naglot and Kulkarni (2016), various features

were extracted from the recorded data(Naglot et al., n.d.). These features

encompassed the initiation and termination coordinates of the arm within 3D

space (X, Y, and Z coordinates), along with the 3D angle between these points.

Furthermore, the velocity of the arm in all three dimensions (X, Y, and Z) was

calculated. Additionally, the 3D spatial coordinates (X, Y, and Z) of the elbow

and wrist positions were recorded. The features also included the pitch, yaw,

and roll of the palm. Finally, the 3D angle of each finger and each bone in the

hand as visualized in Figure 2.5.3 were also extracted from the recorded data.

56

Figure 2.5.3: Bone data of each finger detected by LeapMotion sensor

The use of multiple features provided a comprehensive representation of hand

and arm movements, enabling the system to recognize a wide range of sign

language gestures. In the feature extraction stage by Bird, Ekárt, and Faria

(2020), features such as hand palm sphere radius, hand palm position, and

fingertip position were extracted from the collected data(Suryateja et al., 2022).

The authors organized these features into five distinct groups and extracted a

total of 23 features to use as input parameters to the classifiers.

2.5.4 Classification

For the classification task by Naglot and Kulkarni (2016), two main

classification tasks were performed: image classification and gesture

recognition using the LMC. For image classification, the authors-initiated

feature extraction from image data by employing a Convolutional Neural

Network (CNN) with the VGG16 architecture as a starting point as illustrated

in Figure 2.5.4 below.

Figure 2.5.4: Input image is fed into a fine-tuned VGG16 CNN, where a layer

comprising 128 ReLU neurons generates the output, which is then utilized in

late fusion with the Leap Motion network (Naglot et al., n.d.)

The authors used the first three hidden layers of the CNN, containing 4096

neurons each, as feature extractors. For concatenation, the Softmax output layer

was eliminated. For classification by Chong and Lee (2018), the paper used a

57

Multilayer Perceptron (MLP) neural network, which has three types of layers -

input, output, and hidden layers as shown in Figure 2.5.4.1 below on its

architecture.

Figure 2.5.4.1: Architecture of MLP neural network (Chong and Lee, 2018)

The network was trained using the Back Propagation (BP) algorithm, which

involved applying input to the network, initializing weights and bias, forward

pass, and reverse pass. During the forward pass, the net input and output to each

hidden layer unit and output layer unit were calculated. During the reverse pass,

the error was calculated, and the weights of interconnections from the hidden

layer unit to the output layer unit were updated. The error of the hidden layer

was also calculated, and the weights of interconnections from input layer

neurons to hidden layer neurons were updated. The processing module by Bird,

Ekárt, and Faria (2020) provided classification results using two classifiers:

Support Vector Machine (SVM) and Deep Neural Network (DNN). The

SVM was used with a linear kernel and "one-vs-rest" (OVR) decision method

to handle the 36 classes in the dataset, while the DNN model consisted of two

hidden layers with 128 neurons each, using the ReLU activation function, and a

final Softmax layer with 36 neurons. The models were trained and tested using

the leave-one-subject-out (LOO) approach to avoid subject bias.

2.5.5 Deep Learning Model / Traditional Machine Learning Model

For gesture recognition using the LMC, a Dense Interpretation Network and

a Bone Data Classification Network were used by Naglot and Kulkarni

58

(2016). The authors used DEvoMLP for the classification of Leap Motion data.

The most effective layer, composed of 16 neurons, received input from both the

Image and Leap Motion classification networks. This layer was linked to a final

SoftMax output. Furthermore, a higher-order function network was employed

for late fusion, combining the two modalities into a multimodal solution. Pre-

processing of the data was conducted, resulting in the acquisition of 1D vectors

for classification. The authors also used a traditional machine learning model,

SVM, for classification. The paper by Chong and Lee (2018) did not use any

deep learning framework and instead used the MLP neural network as a

traditional machine learning model for classification. The study by Bird,

Ekárt, and Faria (2020) utilized a DNN classifier as well as traditional

machine learning techniques such as SVM for comparison. The authors

demonstrated that the proposed system is capable of accurately recognizing

ASL and British Sign Language gestures.

2.5.6 Accuracy

The system by Naglot and Kulkarni (2016) attained an average mean

classification accuracy of 94.44% on a 10-fold cross-validation dataset,

outperforming previous models in the literature as shown in Table 2.5.6 below.

Table 2.5.6: Mean classification accuracy with RGB, LeapMotion and Multi-

modality model (Naglot et al., n.d.)

According to the Confusion Matrix plotted by the authors, Chong, and Lee

(2018) shown in Figure 2.5.6, the proposed system achieved an accuracy of

96.15% in recognizing letters/alphabet using the trained ANN.

59

Figure 2.5.6: Confusion Matrix of Predicted class vs Actual class of system

trained using the Back Propagation (BP) algorithm (Chong and Lee, 2018)

The DNN model by Bird, Ekárt, and Faria (2020) outperformed the SVM, with

a mean accuracy of 90.58% and 85.65% for the 26-class and 36-class ASL

recognition, respectively. The C6 feature group performed the best, with an

accuracy rate of 93.81% and 88.79% for the 26-class and 36-class recognition

using DNN. The sensitivity and specificity of each class were calculated, with

the letters 'B', 'C', 'F', 'I', 'W', and 'Y' having the highest sensitivity rates, and 'H',

'S', and 'U' having the lowest confidence levels. The results indicated that DNN

with the C6 feature group is an effective method for ASL recognition.

2.5.7 Complexity

The proposed system by Naglot and Kulkarni (2016) mentioned that LMC has

a low computational complexity and can run in real-time on a standard laptop

computer.

2.5.8 Advantages

After the evaluation of 3 papers which utilised the Leap Motion Controller, it is

found that LMC has several advantages as a sensor for hand gesture

recognition, such as high accuracy, non-invasiveness, and ease of use. It is also

60

relatively low-cost compared to other devices, making it more accessible for

research and practical applications. Additionally, the ability to capture hand

movements in 3D space allows for more natural and intuitive interactions with

the system, making it an ideal choice for sign language recognition.

2.5.9 Disadvantages

However, there are also some limitations to consider when using the Leap

Motion Controller for hand gesture recognition. Its limited field of view and

range of detection can pose a challenge for sign language recognition. The

device may also have difficulty distinguishing between movements that occur

close to each other in space and may require a clear line of sight, which can be

obstructed by clothing or other objects. Finally, the device's compatibility with

certain operating systems and software platforms may also be limited.

The Leap Motion Controller (LMC) has proved to be an effective tool for

developing real-time hand gesture recognition systems for interpreting sign

language. Its ability to accurately track hand movements and capture fine-

grained details has made it a popular choice among researchers.

61

2.6 Gloves with sensors

Hand gesture recognition using sensor gloves has gained significant attention in

recent years due to their ability to capture the intricate movements of the hand.

These gloves are equipped with sensors that capture hand movements and

facilitating the transformation of sign language into text or speech. This section

of the literature review will examine two papers, Shukor et al.'s "A new data

glove approach for Malaysian sign language detection" (Shukor et al., 2015)

and Lee and Lee's "Smart wearable hand device for sign language

interpretation system with sensors fusion" (Lee and Lee, 2018) which propose

novel approaches for gesture recognition using sensor gloves.

Shukor et al. developed a continuous sign language detection system using a

data-glove-based approach using a tilt sensor and an accelerometer. The system

can recognize both fingerspelling and sign gestures, making it suitable for

deciphering Malaysian Sign Language. The system consists of a

microcontroller, a Bluetooth module, a tilt sensor, and an accelerometer as

shown in Figure 2.6.1.

Figure 2.6.1: Assembly of data-glove (Shukor et al., 2015)

62

The flow chart of how it works is shown in Figure 2.6.2.

Figure 2.6.2: Flowchart of Sign Language Detection Algorithm (Shukor et al.,

2015)

On the other hand, Lee and Lee's sign interpretation system involved the usage

of a custom-made wearable device that utilizes flex sensors and an inertial

motion unit, and an improved system with fusion of pressure sensor added to

the middle finger as shown in Figure 2.6.3.

63

Figure 2.6.3: Improved system with Pressure Sensors (Lee and Lee, 2018)

Their system is divided into three modules: a sensor module, a processing

module, and an application module as illustrated in Figure 2.6.4.

64

Figure 2.6.4: Overview of modules involved in sign interpretation system (Lee

and Lee, 2018)

2.6.1 Pre-processing

In this study by Shukor et al., the pre-processing phase involves reading the tilt

sensor (open or closed-circuit connection, which is read as digital inputs) and

accelerometer inputs from the data glove and comparing them with stored

memory in the microcontroller (for the few set data) when signer performs sign

language. The pre-processing stage by Lee and Lee involves the processing of

raw data, which includes filtering, normalization, and segmentation. The flex

sensor and IMU data collected using an Arduino Pro Mini 328 are pre-

processed. Throughout the experiments, the flexion values of the sensors varied

among the different subjects due to variations in the hand sizes and the sensor

placements. Therefore, a normalization step was performed to scale the data to

a common range. Below is a normalization formula in Figure 2.6.5 involving

where fsi ,fs, and σfs , which are the i-th sensor reading, mean and SD of flex

sensor value respectively.

Figure 2.6.5: Normalization formula (Lee and Lee, 2018)

2.6.2 Segmentation

For segmentation, the algorithm used by Shukor et al. for continuous sign

language detection is a fusion of tilt sensors and accelerometers. The

accelerometer is required to detect gesture motion by setting a threshold in the

axis of motion (x, y or z) since it is placed in the palm of the glove. In the study

by Lee and Lee, the features extracted from the sensor data are the mean and

standard deviation of each sensor signal. The extracted features are used to train

the SVM classifier, which recognizes the hand gestures from the data.

65

2.6.3 Feature Extraction

During feature extraction, flex sensor and tilt sensors is used by Shukor et al.

to detect the flexion of fingers, and the accelerometer captures the movements

of the wrist and hand for each sign gesture. Flex sensor which is also known as

bend sensor is a sensor that changes its resistance according to the amount of

bend on the sensor. It is a passive resistance device fabricated by laying strips

of carbon resistive elements within a thin flexible substrate. However,

constructing the data glove with flex sensors can be quite costly because the

price for flex sensor is quite expensive. Therefore, a tilt sensor or inclinometer

is used to detect the bending of a finger, which is cheaper than flex sensor.

2.6.4 Dimension Reduction

Dimension reduction is used by Lee and Lee to reduce the number of features

without losing important information. Principal component analysis (PCA) is

used to reduce the dimensionality of the feature space while retaining most of

the relevant information, such as the variance in the data. principal component

analysis (PCA) algorithm for speeding up the processing time.

2.6.5 Classification

For the classification task, the gesture data is classified by Shukor et al. based

on the features extracted from the sensors to recognize the sign language being

performed. the classification process is done using a sign language detection

algorithm, simpleSigner. The algorithm is a fusion between tilt sensors and

accelerometers.

66

Figure 2.6.5: A tilt sensor at upright (vertical) position and a tilt sensor bent at

50 degrees(Shukor et al., 2015)

2.6.6 Deep Learning Model / Traditional Machine Learning Model

A built-in SVM classifier was used by Lee and Lee to classify the gestures into

the 26 alphabet letters of ASL, a “neutral” state, and an invalid sign. With that,

the SVM classifier classifies the input features into different categories and

outputs the corresponding letter. The system by Lee and Lee uses a traditional

machine learning approach that involves a built-in SVM classifier which is used

to train the model using the extracted features.

2.6.7 Accuracy

The experiment by Shukor et al. involving a sign language detection system that

uses tilt sensors and an accelerometer, was successful in detecting flexor motion

using tilt sensors, and after fitting ten tilt sensors on a data glove, the system

was tested on candidates performing sign language and gestures for alphabets,

numbers, and words. The results showed that the system had a reasonably high

accuracy ranging from 78.33% to 95% for all the tests, with higher accuracy

for alphabets and numbers, and lower accuracy for words due to the involvement

of motion that needed to be detected by the accelerometer. The accuracy of Lee

and Lee’s system is measured by comparing the predicted output of the classifier

with the actual output of the test data. The accuracy of the proposed system is

discussed in detail. Table 2.6.7 summarizes the classification results for the first

and second versions of the system.

Table 2.6.7: Classification accuracy 1st and 2nd version of sign recognition

system (Lee and Lee, 2018)

67

It is observed that the accuracy of the first version was low, 65.7%, and there

were negative classifications due to similar patterns occurring among several of

the signs. The accuracy of the system improved significantly to 98.2% after the

pressure sensors were added to the system. However, there were still minor

misclassifications in the second version of the system. An analysis indicated that

the incorrect pattern recognitions for all subjects occurred more commonly

between the letter’s “E” and “S.” A similar issue appeared for letters “M” and

“N” as well. Thus, the system misinterpreted the thumb region as a PR instead

of a CR, or vice versa.

2.6.8 Complexity

In terms of complexity, the Lee and Lee’s system revealed that classification

would become more complex when there is a high accuracy of recognition for

different signs. The complexity of the system is also discussed in the context of

the pressure sensors. The accuracy rate of signs recognition for alphabet “U”

increased significantly when two pressure sensors data are included for the

classification. Likewise, the mean accuracy for alphabet “R” and “V” increased

dramatically. The inclusion of the first pressure sensor surface showed

significant differences for the signs between the letter’s “U” and “V.”

2.6.9 Advantages

Gloves with sensors provide significant advantages in the field of sign language

interpretation. One of the most significant advantages is their ability to

recognize both fingerspelling and sign gestures, making them an effective tool

for deciphering Malaysian Sign Language. Additionally, sensor gloves are not

affected by environmental factors such as lighting and offer higher accuracy

compared to visual-based approaches. Moreover, these gloves are non-invasive

and intuitive, making them easy to use and transportable. Their ability to provide

68

real-time recognition further increases their potential in applications that require

real-time communication.

2.6.10 Disadvantages

However, sensor gloves also have several disadvantages. One of the major

drawbacks is the high cost of constructing the data glove with flex sensors.

Furthermore, reading flex sensors is not very stable and is sensitive to noise,

which may affect the accuracy of the system. The gloves may not be suitable

for all users due to variations in hand size and sensor placement. The sensors'

accuracy may also be affected by the user's hand movements, making regular

calibration necessary to maintain accuracy.

In conclusion, gloves with sensors have shown great potential for recognizing

sign language, and significant research efforts have been directed towards

improving their performance.

69

2.7 Skeleton Aware Multimodal SLR framework (SAM-SLR)

SAM-SLR is a machine learning algorithm that can help computer programs

better understand complex data by identifying patterns and relationships

between different parts of the data. In the development of the recognition system

to interpret sign language, the use of the SAM-SLR framework has been

identified as an effective approach. In this literature review, we will take a closer

look at two papers, namely Jiang et al.'s "Skeleton aware multi-modal sign

language recognition" and De Coster et al.'s "Isolated sign recognition from

RGB video using pose flow and self-attention" on their processes of pre-

processing, segmentation, feature extraction, dimension reduction,

classification, and the use of deep learning frameworks involved.

The first paper by Jiang et al. (2021) introduces the Skeleton Aware Multi-

modal Sign Language Recognition (SAM-SLR) framework, which is a

multimodal approach for sign language recognition. The SAM-SLR framework

utilizes two models called SL-GCN and SSTCN for skeleton keypoints and

features, respectively, in addition to a 3D CNNs model for other modalities. The

defined SAM-SLR framework is as shown in Figure 2.7.

Figure 2.7: Concept of Skeleton Aware Multi-modal Sign Language

Recognition Framework (SAM-SLR)

70

As visualized above, the framework involves using various inputs such as pose,

optical flow, HHA, and depth flow data to capture different aspects of the hand

movements, with inputs to train models such as the SL-GCN, SSTCN, 3DCNN,

and RGD Ensemble. The second paper, De Coster et al. (2021) proposed an

isolated sign recognition system using the Skeleton Aware Multimodal SLR

(SAM-SLR) framework on the AUTSL dataset. The framework utilizes pose

flow and self-attention mechanisms for the recognition of isolated signs from

RGB videos.

2.7.1 Pre-processing

The pre-processing step by Jiang et al. involves using a pretrained whole-body

pose estimation network to provide 133 keypoints estimated from the detected

person in videos (Jiang et al., n.d.). A spatio-temporal graph can then be

constructed by connecting the adjacent keypoints in the spatial dimension

according to the natural connections of the human body and connecting all

keypoints to themselves in the temporal dimension as shown in Figure 2.7.1

below.

Figure 2.7.1: RGB with whole-body

keypoints overlay

On the second paper, the dataset De Coster et al.used in the experiment is the

balanced AUTSL dataset which consists of 36,302 samples (De Coster et al.,

n.d.). The data comprises 226 distinct signs, each captured by one of 43

individuals. The dataset has been divided into independent sets for training,

validation, and testing, considering variations in signers, filming locations, and

viewpoints. The video samples are recorded at a resolution of 512 by 512 pixels

71

and a frame rate of 30 frames per second (FPS), encompassing both RGB and

depth data. However, this study exclusively focuses on utilizing the RGB data

for experimentation purposes.

Hand cropping is performed to extract hand images as main inputs to the model.

The OpenPose BODY-135 model is used to estimate keypoints (VTN-PF) for

the body, hands, face, and feet as shown in Figure 2.7.2.

Figure 2.7.2: Cropping based on hand keypoints by OpenPose may result in

distorted crops in cases where certain keypoints are not detected (De Coster et

al., n.d.)

Hand cropping involves identifying an appropriate position for the hand crop

extension from the forearm. This determination relies on the positioning of

elbow and wrist keypoints. The crop size is selected to maintain relative

consistency, accounting for variations in camera distance and individual

physical attributes.

72

2.7.2 Segmentation

The segmentation process by Jiang et al. involves reducing the graph size from

133 nodes to 27 nodes, which contain the essential information required for

SLR. This step also results in faster model convergence and significantly higher

recognition rates. During the segmentation process, the samples utilized in the

work by De Coster et al. (Figure 2.7.2.1) have diverse lengths, with a median

duration of 61 frames.

Figure 2.7.2.1. The depicted samples exhibit differing lengths, with a median

duration of approximately 61 frames, equivalent to about 2 seconds, within the

training set

Each video sample contains initial wind-up and final wind-down segments.

However, for the purpose of isolated sign recognition within this dataset, these

wind-up and wind-down segments are excluded from consideration. Instead, a

segment is chosen from the middle of the video, and a selection of 16 frames is

made with a stride of 2 frames, resulting in an effective temporal receptive field

of 32 frames. It's important to note that the wind-up and wind-down segments

are not taken into account during the segment selection process.

2.7.3 Feature Extraction

The feature extraction process by Jiang et al. involves using spatio-temporal

GCN with spatial partitioning strategy to model the dynamic skeletons(Jiang et

73

al., n.d.). This is done by adopting a decoupling graph convolution to boost the

capacity of GCN. The spatial and temporal GCN are implemented as performing

standard 2D convolution and then multiplying the results by a trainable weight

matrix of the convolution. In isolated sign recognition, De Coster et al. identified

significant parameters for recognition, including hand shape, orientation,

movement, and place of articulation. They also acknowledged the importance

of non-manual components like mouthings, eye gaze, and eyebrow movements

in sign languages. However, for the specific task of isolated sign recognition,

non-manual components are considered less crucial. In the AUTSL dataset,

videos have a spatial resolution of 512 by 512 pixels. Considering that the model

is trained using inputs of 224 by 224 pixels, there's a notable spatial down-

scaling of the inputs. As a result, a pre-processing step involves cropping out

hand images (VTN-HC) and utilizing them as the primary inputs to the model,

thus preserving more spatial information pertaining to the hand areas.

2.7.4 Classification

The classification process is done by Jiang et al. using a multi-modal ensemble

process (Jiang et al., n.d.), which combines the outputs of the SL-GCN and

SSTCN models for skeleton keypoints and features, respectively, and the 3D

CNNs model for other modalities. The ensemble process involves a weighted

voting mechanism to obtain the final prediction. For classification by De Coster

et al., a deep learning framework is used. A VTN, or Vision Transformer

Network, is applied to model both spatial and temporal information through the

utilization of deep Convolutional Neural Networks (CNNs) for spatial data and

self-attention mechanisms for temporal data. Several enhancements have been

introduced to improve the performance and capabilities of the VTN.

74

2.7.5 Deep Learning Model / Traditional Machine Learning Model

The deep learning framework used in the SAM-SLR framework by Jiang et

al. includes the use of artificial neural networks in the SL-GCN and SSTCN

models. The traditional machine learning approach involves hand-engineered

features that are used in the 3D CNNs model for other modalities. Deep learning

framework is also used by Coster et al., specifically a VTN. The model uses

artificial neural networks. The VTN (Vision Transformer Network) is employed

to model spatial information through deep Convolutional Neural Networks

(CNNs) and temporal information through self-attention mechanisms. The VTN

is improved with several modifications. The deep learning model used in the

classification is a traditional machine learning method which involves hand-

engineered features.

2.7.6 Accuracy

The evaluation of the proposed approach is done by Jiang et al. using different

modalities, and the performance of the models is measured using the top-1 and

top-5 accuracy. The results of the experiments show that the proposed SAM-

SLR framework outperforms the baseline methods in terms of accuracy.

Specifically, the multi-stream SL-GCN model achieved the highest top-1

accuracy of 95.45% on the validation set, while the top-1 accuracy of the

baseline RGB and RGB-D models were 49.23% and 62.03%, respectively.

Table 2.7.6: Performance of multi-stream SL-GCN(De Coster et al., n.d.)

Table 2.7.7: Performance baseline results RGB and RGB-D(De Coster et al.,

n.d.)

75

The results demonstrated that the proposed approach using different modalities

can improve the overall recognition rate of sign language recognition. In the

case of Jiang et al., they utilized the categorical cross-entropy loss function for

all three experiments. The final model was chosen based on the lowest loss

observed. The authors conducted a comparative analysis of the three models,

and according to Figure 2.7.6, the VTN-PF demonstrated the highest accuracy

at 91.51% on the validation set.

Figure 2.7.6: Graph Accuracy against Parameters for 3 experiments: VTN,

VTN-HC, VTN-PF

They also compared the number of trainable parameters between the models,

and the VTN-PF had slightly more trainable parameters than the VTN-HC

model.

2.7.7 Complexity

According to Jiang et al., the proposed approach is relatively complex as it

involves the use of multiple modalities, such as whole-body pose keypoints and

features, RGB frames, depth, masked HHA, optical flow and depth flow as

shown in Figure 2.7.7 below.

76

Figure 2.7.7: Visualization of modalities: RGB frames, depth, masked HHA,

optical flow and depth flow (left-right) (Jiang et al., n.d.)

Each modality requires specific processing steps and data augmentation

techniques to extract the necessary features. For instance, the whole-body pose

keypoints are extracted using a pretrained HRNet whole-body pose estimator,

and then processed into four streams for joint, bone, joint motion, and bone

motion. Similarly, RGB frames and optical flow are extracted from the videos

using the TVL1 algorithm and then cropped and resized to 256x256 based on

the keypoints. The depth HHA features are also extracted from depth videos

using a mask to fill out the missing regions. Moreover, the proposed approach

involves the use of complex models, such as the multi-stream SL-GCN model

as shown in Figure 2.7.7.1 below, which requires careful design and

optimization to achieve high accuracy.

Figure 2.7.7.1: Multi-stream SL-GCN model (Jiang et al., n.d.)

77

According to Coster et al., the complexity of the model depends on different

approaches that were taken to improve the accuracy of the models. In the VTN-

HC model, the hands were cropped based on wrist positions identified using

OpenPose. This cropping process led to an augmentation in the embedding size

within the self-attention decoder model, reaching 1024. Consequently, this

adjustment rendered the VTN-HC model more intricate compared to the original

VTN model.

2.7.8 Advantages

The use of the SAM-SLR framework in hand gesture recognition offers high

accuracy, making it ideal for applications that require precision. The framework

uses deep learning techniques that allow for the recognition of complex gestures

and the ability to distinguish between similar gestures. Additionally, the use of

multiple models for classification increases the model's robustness and

accuracy, making it suitable for a wide range of applications.

2.7.9 Disadvantages

One major disadvantage of using the SAM-SLR framework is the high

computational cost associated with training and inference. Due to the use of

deep learning and the combination of multiple models, the model requires a

significant amount of computational power and resources. This can make it

challenging to implement the framework on low-power devices such as

smartphones and embedded systems. Additionally, the complexity of the

framework can make it challenging to understand and modify for researchers

who are not familiar with deep learning techniques.

By examining their research on the use of SAM-SLR, one can gain valuable

insights into the current state of the art in hand gesture recognition systems.

Further research in this area will potentially lead to more accurate and efficient

sign language recognition systems, with potential applications in various fields,

including assistive technologies and communication devices for the hearing-

impaired.

78

2.8 Summary

This table 2.8 below provides an overview of different approaches to hand gesture recognition. Each approach is evaluated based on the methods

used for pre-processing, segmentation, feature extraction, dimension reduction, and classification. The accuracy of each approach is also provided.

Approaches evaluated include OpenCV only, OpenCV with Mediapipe, LeapMotion Controller with CNN, Gloves with sensors, and Skeleton

Aware Multimodal SLR framework.

Table 2.8: Overview of different approaches to hand gesture recognition

Approach

Process

OpenCV only OpenCV with

Mediapipe

LeapMotion

Controller with

CNN

Gloves with sensors Skeleton Aware

Multimodal SLR

framework

Pre-processing

Methods

Haar-cascade classifier

for hand detection

Transformation of

image dataset into a

hand landmark (HL)

position dataset

using MediaPipe

Hands

1. Addressing empty

frames in instances

where the sensor

failed to detect either

hand.

1. Read tilt sensor and

accelerometer inputs,

compare with stored

memory

1. Not specified

2. Not specified

79

2. Normalizing the

dataset before

training and testing.

3. The data collected

from was pre-

processed to extract

features.

2.Filtering,

normalization, and

segmentation

80

Segmentation

Methods

Calculation of space

consumption between

the convex hull and

contour of the hand

Hand Tracking

Module (HTM)

consisting of a Palm

Detector and HL

Position Extractor

1. Not specified

2. Palm and Finger

dataset were selected

as features for the

feature extraction

process.

3. Not specified

1. Not specified

2. Mean and standard

deviation of each

sensor signal

1. Not specified

2. Choosing a

segment from the

centre of the video

and extracting 16

frames with a step

size of 2 frames,

achieves an effective

temporal receptive

field spanning 32

frames.

81

Feature Extraction

Methods

Region of Interest (ROI)

calculation for

appearance and gesture

detection

Extraction of

position data of the

landmarks

1. Extracted

Note: 3D space (X, Y,

Z coordinates)

- The start and

end positions

of the arm in

3D space

- The angle in

3D space

between the

initial and

final arm

positions.

- The speed or

velocity of the

arm in all

three

dimensions.

1. Not specified

2. Mean and standard

deviation of each

sensor signal

1. Not specified

2. Classification of

significant

parameters such as

hand shape,

orientation,

movement, and place

of articulation

82

- The position

of the elbow

and wrist in

3D space.

- The pitch,

yaw, and roll

of the palm.

- 3D angle of

each finger

and each bone

in the hand.

2. Extracted the

Euclidean distances

between the

consecutive fingertip

position to palm

83

position and the

Euclidean distances

between the fingertip

position of each

consecutive finger.

3. Not specified

Dimension

Reduction

Methods (if used)

Not specified Not specified Not specified 1. Not specified

2. Principal

Component Analysis

(PCA)

Not specified

84

Classification

Methods

Haar-cascade classifier

for gesture recognition

The models utilized

in this study include

the Decision Tree

Classifier (DTC),

Random Forest

Classifier (RFC),

Support Vector

Machines (SVM),

and K-Nearest

Neighbours (KNN)

1. MLP, DEvoMLP,

CNN, Dense

Interpretation

Network, Image

Classification

Network, and Bone

Data Classification

Network.

2. Artificial Neural

Network (ANN).

3. Leap Motion

Controller (LMC)

through late fusion

using transfer

learning

1. simpleSigner, Sign

Language Detection

Algorithm (fusion of

tilt sensors and

accelerometers)

2. SVM Classifier

1. SL-GCN, SSTCN,

3D CNN, and RGD

Ensemble

2. VTN for sign

classification

85

Deep Learning

Framework

Not specified Not specified 1. TensorFlow, Keras

2. TensorFlow

3. TensorFlow

Not specified Not specified

Traditional

Machine

Learning/ Deep

Learning Model

Traditional Machine

Learning

Traditional Machine

Learning,

Decision Tree

Classifier (DTC),

Random Forest

Classifier (RFC),

Support Vector

Machines (SVM),

K-Nearest

Neighbours (KNN)

1. Artificial Neural

Network (ANN)

using the Euclidean

distances between the

consecutive fingertip

position to palm

position and the

Euclidean distances

between the fingertip

position of each

consecutive finger.

2. Artificial Neural

Network (ANN)

1. Traditional Machine

Learning

2. Built-in SVM

classifier

Deep Learning Model

86

3. Convolutional

Neural Network

(CNN)

Accuracy Recognizes all 10 hand

gestures with 10 hits out

of 10 trials

DTC: Training data

accuracy 100%, Test

data accuracy 96.4%

RFC: Training data

accuracy 100%, Test

data accuracy 97.2%

SVM: Achieving an

accuracy of 97.9%

with the test data

using a radial base

kernel.

KNN: Training

accuracy 97.4%,

Test accuracy 98.1%

1. 95%

2. 90.3%

3. 96%

1. 78.33% to 95%

2. 65.7% to 98.2%

1. Multi-stream SL-

GCN model (top-1

accuracy) 95.45% on

the validation set,

baseline RGB and

RGB-D (top-1

accuracy) models

were 49.23% and

62.03%

2. VTN-PF: 91.51%

on the validation set

87

Complexity Low. Computationally

efficient and easy to

implement

High, requires

technical expertise

in parameter tuning,

and algorithms for

accurately

identifying hand

landmarks from

images.

High Low High

Advantages - Computationally

efficient

- Easy to

implement

without complex

deep learning

models

- High

accuracy in

palm

detection

and hand

landmark

extraction

- High accuracy

- Non-

invasiveness

- Ease of use

- Relatively

low-cost

- Captures hand

movements in

3D space for

- Recognizes

fingerspelling

and sign

gestures

- Unaffected by

environmental

factors such as

lighting

- Higher

accuracy

- High

accuracy

- Recognition

of complex

gestures

- Ability to

distinguish

between

similar

gestures

88

natural

interactions

compared to

visual-based

approaches

- Non-invasive

and intuitive

- Increased

robustness

and accuracy

Disadvantages - May not perform

well in complex

and noisy

environments

- Dependent on

factors like clean

background and

proper lighting

- Inconsistent

detection and

interpretation of

- High

complexity

of the system

- Dataset may

contain

invalid

entries that

need to be

removed.

- Limited field

of view and

range of

detection

- Difficulty

distinguishing

between

movements

close in space

- Requires clear

line of sight

- High cost of

construction

- Reading flex

sensors is not

very stable and

sensitive to

noise

- May not be

suitable for all

users due to

variations in

hand size and

- High

computational

cost for

training and

inference

- Challenging

to implement

on low-power

devices

- Complexity

can make it

challenging to

89

hand gestures

with OpenCV

- Frameworks like

Mediapipe are

suggested for

more reliable

and accurate

detection.

which can be

obstructed

- Compatibility

with certain

operating

systems may

be limited.

sensor

placement

understand

and modify

for non-

experts in

deep learning.

Authors 1. Ahmad Puad Ismail et

al.

2. Riaz Sulaimi

C. M. Suryateja et

al.

1. Naglot and

Kulkarni (2016)

2. Chong and Lee

(2018)

3. Bird, Ekárt, and

Faria (2020)

1. Shukor et al.

2. Lee and Lee

1. Jiang et al.

2. De Coster et al.

90

The table 2.8 above has shown that there are several approaches available for

gesture recognition using hand landmarks. Among these approaches, using

OpenCV with Mediapipe has shown promising results for the real-time sign

language.

Firstly, this approach provides a real-time and efficient solution for hand

landmark detection, which is crucial for interpreting sign language in real-time.

The combination of these tools offers a robust and accurate hand landmark

extraction method, which can be used to create a large dataset for training and

testing machine learning models.

Secondly, the OpenCV with Mediapipe approach has shown better results

compared to other methods, such as Haar-cascade classifiers, which are not

robust to variations in hand size, orientation, and lighting conditions. This

means that the approach can accurately detect hand gestures, even in

challenging environments.

In summary, using OpenCV with Mediapipe provides a practical and efficient

solution for developing a recognition system to interpret sign language. This

approach will be integrated into the workflow for developing a recognition

system for sign language interpretation in the next chapter.

91

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 The Proposed Model Workflow

In Chapter 1, a proposed workflow was presented for developing a hand gesture

recognition model using deep learning techniques. In this chapter, we will delve

deeper into the training and testing phases of the proposed workflow and

provide detailed diagrams for each process.

The workflow includes data pre-processing, segmentation, feature extraction,

dimension reduction, and classification for both the Training and Testing

phases. This section will introduce the proposed model workflow and explain

the steps involved in developing a recognition system. The workflow diagrams

are categorized into three parts: Training Phase, Test Phase, and Common

Phases, with individual diagrams for Pre-processing in Training and Test

Phase, and Common Phases containing processes for Feature Extraction,

Segmentation, Dimension Reduction, and Classification.

92

The pre-processing, segmentation, feature extraction, dimension reduction, and classification processes are derived from this main workflow

diagram.

Figure 1.6.1: Workflow Diagram for the Real-Time Hand Gesture Recognition System To Interpret Sign Language from Chapter 1

93

3.2 Pre-processing

3.2.1 Training Phase

Figure 3.2.1: Workflow Diagram for Pre-processing (Training)

3.2.2 Test Phase

Figure 3.2.2: Workflow Diagram for Pre-processing (Test)

94

Pre-processing is a crucial step in the proposed model workflow for developing

a recognition system to interpret sign language. The goal of pre-processing is to

prepare the raw data (images) for the subsequent stages of the system, such as

feature extraction and classification.

The first step in the pre-processing stage is to acquire a labelled dataset

consisting of static hand gestures, 10 letters (i) A, (ii) E, (iii) H, (iv) I, (v) L, (vi)

N, (vii) O, (viii) S, (ix) T, (x) U and moving hand gestures, 7 vocabularies in

American Sign Language, namely (i) Best, (ii) Birthday, (iii) Please, (iv) Happy,

(v) Hearing, (vi) Like and (vii) Feel. These datasets are collected whenever a

user train the system by pressing ‘k’ for keypoint classifier (static hand gesture)

followed by the data label number (0-9). As for moving hand gestures are

collected when user train the system by pressing ‘h’ for point history classifier

(moving hand gestures) followed by the data label (0-6). This process involved

conversion of images to appropriate input format in the form of RGB matrices.

In the notebook, the paths are specified for the dataset and the model files where

data will be loaded, which later loaded as features (X_dataset) and labels

(y_dataset) by NumPy.

The dataset includes 21511 instances of static hand gestures (keypoints) and

44953 instances of moving hand gestures (point history), which are split into

75% for training and 25% for testing. Meanwhile, the number of classes are

defined, with 10 for static hand gestures, and 7 for moving hand gestures in the

classification task. Necessary libraries and modules such as csv, numpy,

TensorFlow and more are imported.

Once the dataset is acquired, the next step is to remove any invalid data entries.

This is done using the Python library Pandas, which provides functions for data

cleaning and pre-processing. Invalid data entries, such as missing or corrupted

data are removed, as they can adversely affect the performance of the system.

95

The next step is to transform the clean dataset into Hand Landmark Position

data (HL data) using Google's Mediapipe framework. Mediapipe is an open-

source framework that provides a comprehensive set of tools for building real-

time multimodal applications, including hand tracking and gesture recognition.

HL data consists of the 3D coordinates of 21 hand landmarks, which are used

to represent the hand gestures.

Upon obtaining the HL data, the next step is to normalize the data to extract

only the wrist and upwards of the signer's hand. This is done to reduce the

complexity of the data and to focus only on the relevant features for gesture

recognition. This step involves scaling and shifting the data to a common

reference frame, such as the origin and orientation of the camera.

Once the pre-processing stage is complete, the resulting pre-processed data is

ready for the feature extraction stage. Feature extraction involves identifying

relevant features from the data that can be used for classification, such as the

angles and distances between hand landmarks. The extracted features are then

used to train a machine learning model for gesture recognition.

96

3.2.3 Common Phases

3.3 Feature Extraction

Figure 3.3.1: Workflow Diagram for Feature Extraction

97

The next process is the feature extraction stage, which involves the extraction

of relevant features from the pre-processed data to be used for classification. In

the context of our system, the facial landmarks, hand poses, and body poses are

extracted using a MediaPipe holistic model.

In this proposed model workflow, the Feature Extraction stage involves the

wrist and upwards data (as RGB matrices) passing through the hand tracking

module, followed by the Convolutional Neural Network (CNN) to extract hand

landmarks.

The hand tracking module contains two main components: the Palm Detector

and the Position Extractor. The first component, the Palm Detector, is

responsible for identifying the palm from the pre-processed wrist and upwards

data. This aspect holds significance as the palm serves as a crucial reference

point for determining the position of hand landmarks. The utilization of machine

learning algorithms are to detect the palm in the input image, and then crops the

image to focus only on the area around the palm.

The second component, the Position Extractor, uses the identified palm to

obtain the position data of the landmarks through Landmark-First Approach.

This involves identifying the hand landmark with machine learning technique

known as Convolutional Neural Network (CNN). Below describes how CNN

works in identifying the hand landmark after the palm is cropped.

Figure 3.3.2: Convolutional Neural Network (CNN) in hand

landmark identification

98

Based on the above, the input to the CNN is a region of interest containing the

hand or palm. CNNs consist of multiple convolutional layers that apply filters

(small grids) to the input image, detecting patterns and features associated to the

hand landmarks. Along each convolutional operation, an activation function

(ReLU - Rectified Linear Unit) is applied to introduce non-linearity and help

the network learn complex patterns. Pooling layers reduce the spatial

dimensions of the feature maps produced by the convolutional layers, reducing

computation and makes the network more manageable. After pooling, the

feature maps are flattened into a vector. This vector is then fed into fully

connected layers, where each neuron is connected to every neuron in the

previous layer. The output layer of the CNN predicts the positions of hand

landmarks with Softmax activation function, as shown below.

Figure 3.3.3: Finalized extracted hand landmarks

Once the landmarks are identified, their positions are extracted and represented

as a set of features. These features may include the angles and distances between

the landmarks, which can be used for classification.

Upon completion of the Feature Extraction stage, the identified palm and

position data of landmarks are brought to the Segmentation phase. The

Segmentation phase involves dividing the hand gestures into individual signs

and separating the signs from the background and any other objects in the image.

This is important for accurate recognition of individual signs, and for improving

the overall performance of the system.

99

3.4 Segmentation and Dimension Reduction

Figure 3.4.1: Workflow Diagram for Segmentation and Dimension Reduction

100

The Segmentation stage involves dividing the hand gestures into individual

signs and separating the signs from the background and any other objects in the

image.

In this proposed model workflow, the Segmentation stage involves the Hand

Tracking module, which contains two main components: the Palm Detector

and the Position Extractor, similar to the Feature Extraction stage.

The first component, the Palm Detector, estimates the bounding boxes around

the identified palm from the feature extraction stage. This is important because

it provides a reference for the position of the hand and the boundaries within

which the individual signs can be recognized. The Palm Detector uses machine

learning algorithms to estimate the bounding boxes, and then crops the image to

focus only on the area around the palm.

The second component, the Position Extractor, operates on the extracted HL

position dataset to return the landmarks from 3.3 Feature Extraction to be carried

forward to the next stage, which is the Dimension Reduction process. This

involves identifying the hand landmarks using computer vision techniques, such

as template matching and feature detection, and separating the hand signs from

the background.

Once the hand signs have been separated from the background, the Dimension

Reduction process can be performed. This involves reducing the dimensionality

of the feature vector for each sign, using techniques such as Principal

Component Analysis (PCA). This reduces the computational complexity of the

system and improves the accuracy of the classification model.

After that, the reduced feature vectors are used to train a classification model.

The classification model is responsible for recognizing the individual hand signs

and interpreting them as their corresponding American Sign Language gestures.

101

3.5 Classification

Figure 3.5.1: Workflow Diagram for Classification

102

The Classification stage is the final step in the proposed model workflow for

developing a recognition system to interpret sign language. This stage involves

building and training a machine learning model to recognize and classify the

individual hand signs.

As mentioned previously, dimension reduction is determined and conducted if

required. This is important because high-dimensional datasets can be

computationally expensive and difficult to train machine learning models on.

Once the dimensionality of the dataset has been reduced, the next step is to build

the machine learning model, which is the Feedforward neural network

(FNN). Below describes how FNN works in static and moving Sign Language

classification.

Figure 3.5.2: Feedforward neural network (FNN) in Sign

Language classification

Based on above, the FNN follows a feedforward approach, where the Point

History and Keypoint coordinates flows from the input layer (L1) through the

hidden layers (L2, L3, L4) to the output layer (L5).

Necessary libraries including CSV for handling data, NumPy for numerical

operations, TensorFlow (tf) for machine learning, and train_test_split from

scikit-learn for splitting the dataset are imported. A random seed of 42 is set for

103

reproducibility. This sequential model is defined using the Keras API from

TensorFlow.

The input layer (L1) has several features determined by the expression 21 * 2,

assuming each data point has 21 * 2 features. The hidden layers which are L2,

L3, L4, consist of 2 dropout layers; one of them has a dropout rate of 0.2 is

added to prevent overfitting, while the other has dropout rate of 0.4 for further

regularization. They also have 2 dense layers with ReLU activation functions.

The output layer (L5) contains softmax activation for classification.

This Feedforward neural network model is trained on the training dataset

(X_train, y_train) for 1000 epochs with a batch size of 128. The validation data

(X_test, y_test) is provided to evaluate the model's performance during training.

Callbacks for model checkpoint and early stopping are utilized to save the

model's weights during training and stop training early if validation loss does

not improve, respectively. After the model is trained, it can predict the labels of

the static/moving sign language gestures based on the learned patterns during

training.

Overall, the Classification stage is a critical component of the proposed model

workflow, as it involves building and training of the machine learning models

to recognize and classify the individual hand signs. This stage is essential for

producing a recognition system that can accurately interpret American Sign

Language.

104

3.6 Model Evaluation

The model's performance is assessed using the test dataset, and the validation

loss and accuracy are computed. To evaluate the performance of the real-time

hand gesture recognition system for interpreting sign language, a confusion

matrix is generated and visualized using seaborn and matplotlib. Since the

system is designed to recognize gestures for interpreting sign language of 10

letters and 7 vocabularies, the confusion matrix would be of a 10x10, and 7x7

dimension, as shown in Table 3.6.1 and Table 3.6.2.

105

Confusion Matrix

Table 3.6.1: Confusion Matrix for 10 classes (letters)

 Predicted class

A E H I L N O S T U FN

Actu

al

Class

A TP1 I II III IV V VI VII VIII IX I+II+…+I

X

E X TP2 XI XII XIII XIV XV XVI XVII XVIII X+XI+…+

XIV

H XIX XX TP3 XXI XXII XXIII XXIV XXV XXVI XXVII XIX+

XX+…+

XXVII

I XXVIII XXIX XXX TP4 XXXI XXXII XXXIII XXXIV XXX

V

XXXVI XXVIII+

XXIX+ +

XXXVI

106

L XXXVII XXXVIII XXXIX XL TP5 XLI XLII XLIII XLIV XLV XXXVII+

XXXVIII+

… + XLV

N XLVI XLVII XLVIII XLIX L TP6 LI LII LIII LIV XLVI+

XLVII+ …

+ LIV

O LV LVI LVII LVIII LIX LX TP7 LXI LXII LXIII LV+

LVI+… +

LXIII

S LXIV LXV LXVI LXVII LXVIII LXIX LXX TP8 LXXI LXXII LXIV+

LXV+ …+

LXXII

T LXXIII LXXIV LXXV LXXVI LXXVII LXXVIII LXXIX LXXX TP9 LXXXI LXXIII+

LXXIV+

…+

LXXXI

107

U LXXXII LXXXIII LXXXIV LXXXV LXXXVI LXXXV

II

LXXX

VIII

LXXXI

X

XC TP10 LXXXII+

LXXXIII+

…+ XC

 FP X+XIX+

…+

LXXXII

I+XX+ …

+

LXXXIII

II+XI +…

+LXXXIV

III+XII

+…

+LXXX

V

IV+XIII

+…

+LXXXVI

V+XIV

+…

+LXXX

VII

VI+XV

+…

+LXX

XVIII

VII+X

VI +…

+LXX

XIX

VIII+

XVII

+…

+LXX

I +XC

IX

+XVIII

+…+L

XXXI

TP: True Positives

FP: False Positives

FN: False Negative

108

Table 3.6.2: Confusion Matrix for 7 classes (vocabularies)

 Predicted class

Best Birthday Please Happy Hearing Like Feel FN

Actual

Class

Best TP1 I II III IV V VI I+II+…+VI

Birthday VII TP2 VIII IX X XI XII VII+VIII+…+XII

Please XIII XIV TP3 XV XVI XVII XVIII XIII+XIV+…+XVIII

Happy XIX XX XXI TP4 XXII XXIII XXIV XIX+XX+…+XXIV

Hearing XXV XXVI XXVII XXVIII TP5 XXIX XXX XXV+XXVI+…+XXX

Like XXXI XXXII XXXIII XXXIV XXXV TP6 XXXVI XXXI+XXXII+…+XXXVI

Feel XXXVII XXXVIII XXXIX XL XLI XLII TP7 XXXVII+XXXVIII+…+XLII

FP VII+

XIII+ …+

XXXVII

I+XIV+

…+

XXXVIII

II+VIII

+…

+XXXIX

III+

IX

+… +XL

IV+

X+…

+XLI

V+XI

+…

+XLII

VI+XII

+…

+XXXVI

TP: True Positives

FP: False Positives

FN: False Negatives

109

Classification Report

The classification report is also generated, which includes metrics as below in

the test dataset.

Precision measures the proportion of true positive predictions among all positive

predictions

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3.61)

Recall measures the proportion of true positive predictions among all actual

positives

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3.62)

F1-Score is the harmonic mean of precision and recall.

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3.63)

Support is the number of occurrences of each class in the dataset.

The accuracy of the system is determined using equation 3.64, which calculates

the ratio of the total number of correct predictions to the total number of

predictions made by the system.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 𝑇𝑃

𝑇𝑜𝑡𝑎𝑙
 (3.64)

110

3.7 Requirement Specifications

The requirement specifications provided in Table 3.7 outline the essential

criteria for building the sign language interpretation using standard laptop

webcams. Here's a breakdown of the requirements:

Table 3.7: Requirement Specifications to build system

Requirements Tools / Suggestions

Hardware requirements Standard laptop webcams

Input Video Requirements Process video input in real-time (30

fps or higher)

Gesture Recognition Requirements The system should be able to detect

hand gestures in different lighting

conditions, backgrounds, and

environments.

The system should be able to

recognize different hand gestures

used in sign language, static or

moving.

Performance Requirements The system should be able to process

video input and recognize gestures in

real-time with minimal latency (less

than 15 seconds). The system should

be able to handle multiple users.

3.8 Tools to use

Programming languages: Python

Libraries: OpenCV, Mediapipe, NumPy, TensorFlow

Pre-trained models: Hand tracking and sign language recognition models

111

3.9 Pseudocode for this project

Start

Define function get_args():

a. Define and parse command-line arguments

Define function main():

a. Parse command-line arguments using get_args

b. Initialize camera capture

c. Initialize MediaPipe Hand Model

d. Read label information from CSV

e. Initialize FPS calculation

f. Create data structures for hand gesture history

g. Initialize mode

h. Specify Paths and Number of Classes (Keypoint Classification)

i. Specify Paths and Parameters (Point history Classification)

j. Main processing loop

 while True:

 k. Calculate FPS

 l. Process key presses (e.g., change mode or exit)

 m. Read a frame from the camera

 n. Perform hand detection and tracking using MediaPipe

 o. If hands_detected(results):

 p. Calculate bounding box and landmarks

 q. Pre-process landmarks and point history

 r. Log data to CSV (if required)

 s. Hand sign classification

 t. Finger gesture classification

 u. Update finger gesture history

 v. Drawing part

 w. Display the processed frame

112

 x. Check for ESC key press to exit the loop

 y. Release camera and close OpenCV windows

z. Specify Paths and Number of Classes

 aa. Dataset Reading [For keypoint classifier, point history classifier]

 bb. Train-Test Split

 cc. Model Building

 dd. Model Training

 ee. Model Evaluation

 ff. Convert to TensorFlow Lite Model

 gg. Inference Test with TensorFlow Lite Model

 hh. Confusion Matrix and Classification Report

 ii. Save the Model for Inference

End

113

3.10 Work Breakdown Structure of the Project

Figure 3.10: Work Breakdown Structure of the Project

114

3.11 Gantt Chart of Project

Figure 3.11a: Gantt Chart of Project I

Real-time Hand Gesture Recognition system to interpret sign language : Project Schedule

Universiti Tunku Abdul Rahman

Project Start Date Display Week 1

Project Student Supervisor

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2

WBS TASK LEAD WEEK START END DAYS
%

DONE

WORK

DAYS
M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S

1 Planning Mon 2/06/23 Tue 3/07/23 22

1.1
Study Project

background
Chong Siow Yen 2 Mon 2/06/23 Mon 2/06/23 100% 1

1.2 Identify the problems 2 Tue 2/07/23 Tue 2/07/23 100% 1

1.3 Propose project solutions 2 Wed 2/08/23 Wed 2/08/23 100% 1

1.4
Define project scope and

objectives
2 Thu 2/09/23 Thu 2/09/23 100% 1

1.5 Requirement specification 2,3 Fri 2/10/23 Mon 2/13/23 100% 2

1.5.1

Draft functional and

non-functional

requirements

2 Fri 2/10/23 Fri 2/10/23 100% 1

1.5.2

Refine functional and

non-functional

requirements

3 Mon 2/13/23 Mon 2/13/23 100% 1

1.6 Literature review 3,4 Tue 2/14/23 Wed 2/22/23 100% 7

1.6.1 Review of topics 3 Tue 2/14/23 Tue 2/14/23 100% 1

1.6.2 Analyse existing system 3 Wed 2/15/23 Thu 2/16/23 100% 2

1.6.3
Analyse model training

methods
3,4 Thu 2/16/23 Wed 2/22/23 100% 5

1.7
Decide Development

methodology
4,5 Thu 2/23/23 Wed 3/01/23 100% 5

1.7.1 Decide tool 4 Thu 2/23/23 Fri 2/24/23 100% 2

1.7.2 Decide image dataset 5 Mon 2/27/23 Wed 3/01/23 0% 3

1.8 Plan and manage project 6 Thu 3/02/23 Tue 3/07/23 100% 4

1.8.1
Create Work Breakdown

Structure
5,6 Thu 3/02/23 Mon 3/06/23 100% 3

1.8.2 Finalise Gantt Chart 6 Tue 3/07/23 Tue 3/07/23 100% 1

2 Analysis and Design Wed 3/08/23 Fri 3/24/23 13

2.1 Design prototype 7,8 Mon 3/13/23 Fri 3/24/23 0% 10

3 Development Phase 1 Mon 2/27/23 Fri 3/31/23 25

3.1
Preprocess image

dataset
5 Mon 2/27/23 Tue 2/28/23 0% 2

0.1 Develop Predictor 7,9 Thu 3/16/23 Fri 3/31/23 0% 12

0.2
Develop Statistics

Displayer
7,9 Thu 3/16/23 Fri 3/31/23 0% 12

1 Closing Fri 3/17/23 Mon 4/24/23 27

1.1
Provide References and

citation
7,8 Fri 3/17/23 Sun 3/19/23 0% 1

1.2
Compile Preliminary

report
8 Sun 3/19/23 Fri 3/24/23 0% 5

1.3 Compile Proposal report 12 Sun 4/16/23 Fri 4/21/23 0% 5

1.4
Prepare presentation

slide
12 Thu 4/20/23 Sat 4/22/23 0% 2

1.5
Oral Presentation and

Prototype Demonstration
13 Mon 4/24/23 Mon 4/24/23 0% 1

0.1 . [Level 2 Task] - -

0.1.1 . . [Level 3 Task] - -

0.1.1.1 . . . [Level 4 Task] - -

► Watch How to Create a Gantt Chart in Excel

Gantt Chart Template © 2006-2018 by Vertex42.com.

Week 2Week 1

13 Feb 20236 Feb 2023

Week 3

20 Feb 2023

2/6/2023 (Monday)

Chong Siow Yen

Week 4

27 Feb 2023

Week 8

27 Mar 20236 Mar 2023

Week 6

13 Mar 2023

Week 5 Week 7

20 Mar 2023Dr. Chia Kai Lin

115

Figure 3.11b: Gantt Chart of Project II

Real-time Hand Gesture Recognition system to interpret sign language : Project Schedule

Project II

Project Start Date Display Week 12

Project Lead Supervisor

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1

WBS TASK LEAD

PREDE

CESSO

R

START END DAYS
%

DONE

WORK

DAYS
M T W T F S S M T W T F S S M T W T F S S

1 Data Collection and Preprocessing - -

1.1 Gather sign language dataset Chong Siow Yen Mon 6/26/23 Sun 7/02/23 7 100% 5

1.2 Preprocess and clean the dataset Mon 7/03/23 Sun 7/09/23 7 100% 5

2 System Design and Architecture - -

2.1 Design overall system architecture Mon 7/10/23 Sun 7/16/23 7 100% 5

2.2 Develop hand gesture recognition algorithm Mon 7/17/23 Sun 7/23/23 7 100% 5

3 Create Poster for Evaluation - -

3.1 Design and layout poster Mon 8/07/23 Wed 8/09/23 3 100% 3

3.2 Include project highlights and results Thu 8/10/23 Sun 8/13/23 4 100% 2

4 Integration with OpenCV and Mediapipe - -

4.1 Integrate hand gesture recognition algorithm Mon 8/14/23 Sun 8/20/23 7 100% 5

4.2
Implement OpenCV and Mediapipe

functionalities
Mon 8/21/23 Sun 8/27/23 7 100% 5

5 System Optimization and Testing - -

5.1 Optimize system performance Mon 8/28/23 Sun 9/03/23 7 100% 5

5.2 Conduct extensive testing and debugging Mon 9/04/23 Sun 9/10/23 7 100% 5

6 Finalize Project Report - -

6.1 Write project methodology and results Mon 9/11/23 Tue 9/12/23 2 100% 2

6.2 Review and finalize project report Wed 9/13/23 Thu 9/14/23 2 100% 2

7 Prepare Presentation Slide - -

7.1 Create slides for project presentation Fri 9/15/23 Tue 9/19/23 5 0% 3

7.2 Review and finalize presentation content Thu 9/20/18 Fri 9/21/18 2 0% 2

8 Project Presentation and Submission - -

8.1 Project Presentation and Submission Fri 9/22/23 Fri 9/22/23 1 0% 1

Gantt Chart Template © 2006-2018 by Vertex42.com.

Chong Siow Yen

Week 13Week 126/26/2023 (Monday)

18 Sep 202311 Sep 2023

Week 14

25 Sep 2023Chia Kai Lin

116

The provided WBS and Gantt Chart pertain to a project aimed at developing

a Mediapipe gesture recognition system for interpreting sign language. The

project is divided into several phases, including planning, research, data

acquisition, model development, interface design, integration and testing,

documentation, and deployment. The planning phase focuses on defining the

project scope and objectives, identifying stakeholders and team members,

developing a project plan and timeline, defining requirements and specifications

for the system.

The Gantt Chart of Project I and Project II in Figure 3.11a and 3.11b show the

timeline for the gesture recognition system project. The planning phase spans

several weeks and involves tasks such as defining the project scope and

developing a project plan. Each phase is assigned a specific timeframe, and tasks

are scheduled to ensure timely completion of the project.

117

CHAPTER 4

4 SYSTEM PERFORMANCE

This section dives into the performance evaluation of the neural network model,

specifically designed for Keypoint (static hand gestures) and Point History

(moving hand gestures) detection within the system.

4.1 Keypoint classifier detection

4.1.1 Training and Validation Metrics

Figure 4.1.1a: Training history of Keypoint classifier (Accuracy over epochs)

The accuracy of the Keypoint classifier as shown in Figure 4.1.1a steadily

increases over epochs during training, indicating that the model is learning and

improving its ability to recognize keypoints in sign language gestures.

118

The training accuracy starts at a relatively low value (between 0-0.3) but

gradually improves as the model learns from the training data. It reaches a high

level of accuracy, achieving a value between 0.7-0.8, indicating that the model

can correctly identify majority keypoints in the training dataset.

The validation accuracy follows a similar trend, initially starting at a lower value

(between 0.3-0.4) and then improving over epochs. It also reaches a high

accuracy level, close to 1.0, suggesting that the model generalizes well to unseen

data.

Overall, the Keypoint classifier demonstrates excellent learning and

generalization capabilities, achieving high accuracy on both the training and

validation datasets.

119

Figure 4.1.1b: Training history of Keypoint classifier (Loss over epochs)

The training loss, which represents the error during the training process as

shown in Figure 4.1.1b, starts at a relatively high value of between 2.00-2.25

but consistently decreases over epochs. This indicates that the model is

effectively reducing its training error and improving its ability to predict

keypoints in sign language gestures.

The validation loss, which measures the error on unseen validation data, also

follows a similar trend. It starts at a higher value of between 1.75-2.00 but

steadily decreases over epochs. This demonstrates that the model is not

overfitting the training data and is generalizing well to new, unseen data.

Both the training and validation losses converge to low values, indicating that

the Keypoint classifier is learning effectively and producing accurate

predictions for keypoints in sign language gestures.

120

Figure 4.1.1c: Key Training Metrics of Keypoint classifier

In terms of system performance, the Keypoint classifier demonstrates promising

results based on Figure 4.1.1c. The final training loss, at 0.656932, indicates a

good fit to the training data. Moreover, the final training accuracy of 0.750541

signifies successful pattern recognition within the training dataset. The final

validation loss, which stands at 0.285744, implying the model's ability to

generalize effectively to unseen data. The final validation accuracy, with value

of 0.958055, underscores the model's proficiency in making accurate

predictions on new and previously unseen data.

Based on above, the relatively low training and validation losses, along with

reasonably high training and validation accuracies, suggest that the classifier

has learned to recognize keypoints in sign language gestures effectively.

121

4.1.2 Confusion Matrix

Figure 4.1.2: Confusion matrix of Keypoint classifier

Based on Figure 4.1.2, the high values (259-953) along the diagonal (True

Positives for each class) indicate that the model correctly identifies most static

hand gesture. Low off-diagonal values (0-53) (False Positives for each class)

suggest that the model rarely misclassifies one static hand gesture as another.

The system exhibits excellent performance, achieving high accuracy and

precision for all classes.

122

4.1.3 Classification Report

Figure 4.1.3: Classification Report of Keypoint classifier

The model as shown in Figure 4.1.3 performs well in correctly identifying

instances of class "0" while maintaining a good balance between precision and

recall. The precision of class “1” is reasonably high, the recall suggests that

there may be room for improvement in correctly identifying instances of this

class. Class "2" and Class “3” exhibits excellent performance with a precision,

recall, and F1-score. Class "4" maintains high precision, recall, and F1-score

values. Class "5" achieves an F1-score of 0.96, reflecting a good balance

between precision and recall. Class "6" exhibits a perfect F1-score of 1.00,

indicating that the model accurately identifies instances of class "6". Class "7"

and "8" both have an F1-score of 0.94, suggesting solid performance. Class "9"

achieves high precision and recall.

Keypoint classifier demonstrates strong performance overall, with some classes

achieving near-perfect accuracy and F1-scores.

123

4.2 Point History Classifier Detection

4.2.1 Training and Validation Metrics

Figure 4.2.1a: Training history of Point History Classifier (Accuracy over

epochs)

The training accuracy, represented by the blue curve in Figure 4.2.1a, starts at

an initial value of between 0-0.25 and gradually increases over epochs. It

reaches an accuracy of between 0.40-0.45 by the end of training, indicating that

the model improves its ability to fit the training data over time.

The validation accuracy, in orange, also shows an upward trend throughout the

training process. It starts between 0.25-0.30 and steadily increases, eventually

reaching an accuracy between 0.50-0.60 by the end of training. This suggests

124

that the model generalizes well to unseen data, as evidenced by the improvement

in validation accuracy.

Overall, the training history demonstrates that the Point History Classifier

makes progress in learning from the training data and generalizing its

knowledge to validation data. While the final accuracy values may not be

extremely high, the upward trends in both training and validation accuracy

indicate that the model is learning effectively.

Figure 4.2.1b: Training history of Point History Classifier (Loss over epochs)

The training loss, in blue in Figure 4.2.1b, starts at an initial value of

approximately 1.9 and gradually decreases as training progresses. It reaches a

minimum training loss of 1.5 by the end of training, indicating that the model

125

is effectively minimizing the error between its predictions and the actual

training data.

The validation loss, represented by the orange curve, also shows a decreasing

trend throughout the training process. It starts around 1.8-1.9 and steadily

decreases, eventually reaching a validation loss of near 1.3 by the end of

training. This suggests that the model is not only fitting the training data well

but also generalizing effectively to unseen validation data.

Overall, the training history demonstrates that the Point History Classifier

successfully reduces its loss function, indicating improved model performance.

These results indicate promising system performance, with the potential for

further enhancements through fine-tuning or additional training epochs.

Figure 4.2.1c: Key Training Metrics of Point History Classifier

The Point History Classifier exhibits notable performance metrics, as shown in

Figure 4.2.1c. The final training loss at 1.496126, indicates an optimal learning

process with a close fit to the training data. The training accuracy of 0.439580,

reflecting average pattern recognition within the training dataset. For

generalization, the model's final validation loss is 1.332529, signalling its ability

to extrapolate learning to new, unseen historical data. This followed by a

validation accuracy of 0.532254, highlighting the model's proficiency in making

accurate predictions on previously unobserved historical data points.

126

The model shows promise in capturing historical patterns, as indicated by the

validation metrics. The training accuracy can be improved further. Further

refinements and optimizations could enhance its performance in recognizing

historical trends.

4.2.2 Confusion Matrix

Figure 4.2.2: Confusion matrix of Point History classifier

High values are found along the diagonal (true positives for each class) in Figure

4.2.2 for class 1 - Birthday, 2 - Please, 4 - Hearing indicate that the model

correctly identifies for these respective moving hand gestures. Lighter colours

with value (1-419) off the diagonal suggest areas where the classifier may

struggle to make accurate predictions. This indicates the model needs slight

improvement correctly identifies all classes.

127

4.2.3 Classification Report

Figure 4.2.3: Classification Report of Point History classifier

For class 0 in Figure 4.2.3, while the model has a high precision for this class,

it struggles with recall, meaning it correctly identifies instances of class 0 but

misses many. The model has a lower precision but better recall for this class,

indicating it can correctly classify more instances of class 1. The model

performs reasonably well in terms of precision and recall for class 2. Class 3 has

a balanced performance. Class 4 has slight strong performance in terms of

precision and recall. Class 5 has a moderate performance. Class 6 exhibits the

lowest performance metrics, suggesting challenges in correctly classifying this

category.

Overall, the model's performance is moderate, with an accuracy of 0.53,

indicating that it correctly classified approximately 53% of the data points.

128

4.3 Comparing OpenCV with Mediapipe and Neural Network with other methodologies in Literature Review (refer Table 2.8)

Table 4.3. Accuracy Comparison Literature Review and Current Development

Approach

Process

OpenCV only OpenCV with

Mediapipe

LeapMotion

Controller with

CNN

Gloves with

sensors

Skeleton Aware

Multimodal SLR

framework

OpenCV with

Mediapipe and

TensorFlow’s

Neural

Network

Accuracy Recognizes all 10

hand gestures with

10 hits out of 10

trials

DTC: Training

data accuracy

100%, Test data

accuracy 96.4%

RFC: Training

data accuracy

100%, Test data

accuracy 97.2%

SVM: 97.9%

accuracy with the

1. 95%

2. 90.3%

3. 96%

1. 78.33% to 95%

2. 65.7% to 98.2%

1. Multi-stream

SL-GCN model

(top-1 accuracy)

95.45% on the

validation set,

baseline RGB and

RGB-D (top-1

accuracy) models

were 49.23% and

62.03%

Keypoint

Classifier: 96%

Point-History

Classifier: 53%

129

Based on Table 4.3, it is witnessed that the developed system, which combines OpenCV with Mediapipe and TensorFlow's Neural Network

model, has achieved superior accuracy, especially in Keypoint Classification, where it reached an impressive 96%. This performance surpasses

that of both Gloves with sensors and the LeapMotion Controller with CNN. Furthermore, the system's overall accuracy, including Point History

Classification at 53%, outperforms the accuracy achieved by the Skeleton Aware Multimodal SLR framework.

test data for a

radial base kernel

KNN: Training

accuracy 97.4%,

Test accuracy

98.1%

2. VTN-PF:

91.51% on the

validation set

Authors 1. Ahmad Puad

Ismail et al.

2. Riaz Sulaimi

C. M. Suryateja et

al.

1. Naglot and

Kulkarni (2016)

2. Chong and Lee

(2018)

3. Bird, Ekárt, and

Faria (2020)

1. Shukor et al.

2. Lee and Lee

1. Jiang et al.

2. De Coster et al.

Chong Siow

Yen

130

4 TESTING RESULTS

4.1 Introduction

As outlined in Chapter 1, Section 1.5, the primary objective of this project is to

develop an efficient algorithm for the system for recognizing hand gestures in

real-time. This section delves into the testing results, providing an analysis of

the system’s performance and its ability to interpret and recognize sign language

gestures.

To meet this objective, a comprehensive approach has been employed that

includes:

4.1.1 Approach

a. Testing Audience

The target audience for this project consists of 4 testers from diverse

demographics, including age, ethnicity, gender, hand dominance (right-

handed/left-handed/ambidextrous), ASL proficiency

(beginner/intermediate/advance), and experience with ASL technology

(novice/experienced).

This diverse group of testers ensures a thorough evaluation of the system’s

performance across various user profiles. Table 4.2.4.1a below shows the

testers’ profile and feedback on system.

131

Table 4.1.1a: Testers’ Profile and Feedback on System

Tester Age

Ethnicity Gender

(Male/F

emale)

Hand

Dominance

(Right-

handed/Left-

handed/

Ambidextrou

s)

ASL

Proficiency

(Beginner/

Intermediate/

Advance)

Experience

with ASL

Technology

(Novice/Exp

erienced)

Tester

1

25 Chinese Male Right-handed Beginner Novice

Tester

2

52 Chinese Female Right-handed Beginner Novice

Tester

3

22 Chinese Female Right-handed Intermediate Novice

Tester

4

22 Indian Female Left-handed Beginner Novice

Visualizations of Demographics of Testers as shown below would include

Figure 4.1.1a: Age of Testers, Figure 4.1.1b: Ethnicity of Testers, Figure 4.1.1c:

Gender of Testers, Figure 4.1.1d: Hand Dominance of Testers, Figure 4.1.1e:

ASL Proficiency and Figure 4.1.1f: Experience of ASL Tech.

132

Demographics of Testers visualized as below:

Figure 4.1.1a: Age of Testers

Figure 4.1.1b: Ethnicity of Testers

Figure 4.1.1c: Gender of Testers

Figure 4.1.1d: Hand Dominance of

Testers

Figure 4.1.1e: ASL Proficiency

Figure 4.1.1f: Experience of ASL

Tech

133

b. Gesture Variability

Both static and moving gestures have been considered for testing, replicating

real-world sign language communication scenarios. Static gestures represent

stationary hand signs, while moving gestures involve dynamic hand movements

commonly used in sign language. The gestures are trained with left and right

hand as shown in Table 4.2.4.1b and Table 4.2.4.1c, to ensure versatility and

accuracy in recognizing sign language expressions, regardless of the signer's

dominant hand.

Table 4.1.1b: Static Gestures with contrasting hand signing

0. A

Right Left

1. E

Right Left

2. H

Right Left

3. I

Right Left

134

4. L

Right Left

5. N

Right Left

6. O

Right Left

7. S

Right Left

8. T

135

Right Left

9. U

Right Left

Table 4.1.1b1: Moving Gestures with contrasting hand signing

0. Best

Right Left

1. Birthday

Right Left

2. Please

Right Left

136

3. Happy

Right Left

4. Hearing

Right Left

5. Like

6. Feel (unidentified)

Right Left

137

c. Evaluation Metrics

The evaluation metrics include average duration, speed, and recognition

counts for each tested gesture. These metrics allow us to assess the system's

accuracy, efficiency, and overall performance in interpreting sign language

gestures.

d. Feedback and Comments

Tester feedback and comments play a crucial role in refining the system.

Feedback, such as difficulties encountered or suggestions for improvement,

helps in identifying areas where the system may require enhancements.

4.1.2 Expected Achievement

By following this approach, the project is set to achieve the following

a. Evaluate Accuracy and Efficiency

Assess the accuracy and efficiency of the hand gesture recognition system in

real-time communication scenarios. This evaluation is essential to ensure that

the system effectively meets the communication needs of individuals with

hearing impairments, thereby reducing potential communication gaps.

b. Address Challenges

Identify potential challenges in the adoption of the system and develop solutions

to address them. This proactive approach is vital to ensure the successful

adoption of the system and enhance its overall accuracy and efficiency.

138

4.2 Test Setup and Data Collection

In this section, a detailed account of the test setup and data collection process is

provided for evaluating the developed sign language recognition system. A

systematic approach was followed to ensure accurate and comprehensive

assessment.

4.2.1 Test Environment Setup

a. For testers

The testing environment is conducted at regular lighting conditions, at comfort-

level of distance and height of laptop setup of testers, to mimic real-world

conditions.

Here are images of testers (Figure 4.2.1a - 4.2.1d) trying out the system at the

comfort of their homes or dining places.

Figure 4.2.1a: Tester 1 doing ‘Best’

gesture being detected

Figure 4.2.1b: Tester 2 doing

‘Birthday’ gesture being detected

Figure 4.2.1c: Tester 3 doing ‘I’

gesture being detected

Figure 4.2.1d: Tester 4 doing

‘Please’ gesture being detected

139

b. For self

The testing environment was carefully configured. Two lighting conditions

were considered: one at regular lighting, and another at dim lighting. Other than

that, the sitting positions are set at 36cm from their respective table, and another

at 53cm from the table These conditions were chosen to assess the system's

performance in different visual scenarios.

Example snapshots of system (4.2.1aa- 4.2.1dd) detecting user’s ‘A’ gesture

under various conditions.

Figure 4.2.1.1aa: 36cm – from table

Light condition

Figure 4.2.1.1bb: 53cm – from table

Light condition

Figure 4.2.1.cc: 36cm – from table

Dim condition

Figure 4.2.1.dd: 53cm – from table

Dim condition

140

4.2.2 Gestures Used for Testing

Evaluation involved a diverse set of gestures, categorized into two main types:

Static Gestures:

These represent stationary hand signs used in sign language. The hand signs

which are involved, are 10 letters (A, E, H, I, L, N, O, S, T, U).

Moving Gestures:

These involve dynamic hand movements typically used for expressive

communication in sign language. The hand movements involved in this testing

contain 7 vocabularies, namely (i) Best, (ii) Birthday, (iii) Please, (iv) Happy,

(v) Hearing, (vi) Like and (vii) Feel.

4.2.3 Tester Recruitment and Data Collection

A diverse group of 4 testers was recruited to ensure a comprehensive evaluation

of the sign language recognition system. Tester demographics, including age,

ethnicity, sex, used hand (right-handed/left-handed/ambidextrous), ASL

proficiency (beginner/intermediate/advance), and experience with ASL

technology (novice/experienced), were recorded to account for variations in

user profiles.

141

Data collection

Data collection involved the execution of various gestures by testers, and the

following data points were collected for each gesture:

Recognition Result

Whether the system correctly recognized the gesture.

Recognized Counts

The number of times the gesture was correctly recognized.

Time Taken (s : cs)

The time taken by the system to recognize the gesture, recorded in seconds

and centiseconds.

Average Time Taken

The average time taken for recognition across all testers.

Average Speed

The average speed of gesture execution, measured in gestures per second (s-

1).

142

4.3 Evaluation and Tester Feedback

a. For testers

Gesture Recognition results

The recognition results for each gesture, both static and moving, were documented for each tester. This includes whether the gesture was correctly

recognized or not. Recognized counts provide insights into the system's consistency and reliability in recognizing specific gestures.

Formulas to calculate Average time taken and Average speed as follows:

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 =
𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 (𝑠)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑟𝑠
 (4.2.6.1)

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 =
1

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 (𝑠)
 (4.2.6.2)

The data collected for a subset of gestures and testers is presented in Table 4.2.6 below:

143

Table 4.3 Tabulation of Testers Attempt of Sign Language Recognition System

Static/Moving Gesture Tester Recognition

Result

Recognised

counts

Time taken

(s : cs)

Average time

taken (s)

Average speed

(s-1)

Static

A

1 Recognised 4 02:42 2.42 + 2.67 + 1.52
+1.49

4

= 2.03s

1

2.03

= 0.49s-1
2 Recognised 02:67

3 Recognised 01:52

4 Recognised 01:49

Static

E

1 Recognised 4 01:58 1.58 + 1.59 + 0.98
+1.48

4

= 1.41s

1

1.41

= 0.71s-1
2 Recognised 01:59

3 Recognised 00:98

4 Recognised 01:48

Static

H

1 Recognised 4 01:84 1.84 + 1.84 + 0.73
+1.34

4

= 1.44s

1

1.44

= 0.69s-1
2 Recognised 01:84

3 Recognised 00:73

4 Recognised 01:34

Static

I

1 Recognised 4 01:11 1

1.84

2 Recognised 04:05

144

3 Recognised 00:96 1.11 + 4.05 + 0.96
+1.25

4

= 1.84s

= 0.54s-1

4 Recognised 01:25

Static

L

1 Recognised 4 01:48 1.48 + 1.67 + 1.06
+0.77

4

= 1.25s

1

1.25

= 0.8s-1

2 Recognised 01:67

3 Recognised 01:06

4 Recognised 00:77

Static

N

1 Recognised 4 00:97 0.97 + 2.77 + 1.24
+2.04

4

= 1.76s

1

1.76

= 0.57s-1

2 Recognised 02:77

3 Recognised 01:24

4 Recognised 02:04

Static

O

1 Recognised 4 00:73 0.73 + 5.10 + 1.12
+1.25

4

= 2.05s

1

2.05

= 0.49s-1
2 Recognised 05:10

3 Recognised 01:12

4 Recognised 01:25

Static

S

1 Recognised 4 01:34 1

1.27

2 Recognised 01:32

145

3 Recognised 01:01 1.34 + 1.32 + 1.01
+1.40

4

= 1.27s

= 0.79s-1

4 Recognised 01:40

Static

T

1 Recognised 4 01:26 1.26 + 2.57 + 1.25
+1.64

4

= 1.68s

1

1.68

= 0.60s-1
2 Recognised 02:57

3 Recognised 01:25

4 Recognised 01:64

Static

U

1 Recognised 4 00:84 0.84 + 1.13 + 1.67
+0.94

4

= 1.15s

1

1.15

= 0.87s-1
2 Recognised 01:13

3 Recognised 01:67

4 Recognised 00:94

Moving

Best

1 Recognised 4 01:02 1.02 + 1.66 + 1.95
+1.81

4

= 1.61s

1

1.61

= 0.62 s-1
2 Recognised 01:66

3 Recognised 01:95

4 Recognised 01:81

Moving

Birthday

1 Recognised 4 02:59 1

1.95

2 Recognised 02:29

146

3 Recognised 00:96 2.59 + 2.29 + 0.96
+1.96

4

= 1.95s

= 0.51s-1

4 Recognised 01:96

Moving

Please

1 Recognised 3 02:92 2.92 + 15 + 12.88
+2.99

4

= 8.45s

1

8.45

= 0.12s-1
2 Unrecognised 15:00

3 Recognised 12:88

4 Recognised 02:99

Moving

Happy

1 Recognised 4 02:43 2.43 + 12.59 + 6.59
+3.51

4

= 6.28s

1

6.28

= 0.16s-1
2 Recognised 12:59

3 Recognised 06:59

4 Recognised 03:51

Moving

Hearing

1 Recognised 4 01:65 1.65 + 1.74 + 11.14
+1.64

4

= 4.04s

1

4.04

= 0.25s-1
2 Recognised 01:74

3 Recognised 11:14

4 Recognised 01:64

147

Moving

Like

1 Recognised 4 01:29 1.29 + 6.80 + 5.21
+2.08

4

= 3.85s

1

3.85

= 0.26s-1
2 Recognised 06:80

3 Recognised 05:21

4 Recognised 02:08

Moving

Feel

1 Unrecognised 0 15:00 15 + 15 + 15 + 15

4

= 15s

1

15

= 0.07s-1
2 Unrecognised 15:00

3 Unrecognised 15:00

4 Unrecognised 15:00

148

Based on the collection of data and evaluation metrics from above, detailed

evaluation results, insights gained from testers’ feedback, are analysed.

Figure 4.3.1: Bar Chart of Average Duration (s) and Average Speed of Static

Gestures (s-1)

The bar chart in Figure 4.3.1 above displays the average duration (in seconds)

and average speed (in seconds per gesture) of various static gestures, including

A, E, H, I, L, N, O, S, T, and U.

Gesture "U" stands out as the fastest with shortest time taken, and records on an

average recognition time of 1.15 seconds per gesture. Gestures "A" and "O"

have the slowest recognition times, both with an average of 2.03 seconds per

gesture.

149

Figure 4.3.2: Bar Chart of Average Duration (s) and Average Speed of Moving

Gestures (s-1)

Based on Figure 4.3.2, "Please" has the longest average recognition time of

8.45 seconds, while "Best" is the fastest, with an average recognition time of

1.61 seconds. This suggests that "Please" is recognized slowly, whereas "Best"

is recognized more quickly. More complex gestures, such as "Birthday" and

"Hearing," take longer to recognize on average, possibly due to the intricacies

of the hand movements involved. "Feel" exceeds the time limit for detection

specified at 15 seconds. This indicates that more training may be required for

the model to recognize this gesture accurately.

150

Figure 4.3.3: Line Graph of Recognized counts of Static Gestures

This graph in Figure 4.3.3 demonstrates that all tested static gestures achieved

consistent recognition performance, each with four successful recognitions.

This uniformity suggests that the model exhibits robust recognition capabilities

for the static sign language gestures.

151

Figure 4.3.4: Line Graph of Recognized counts of Moving Gestures

From the graph in Figure 4.3.4, it is evident that the "Feel" gesture had no

successful recognitions during testing, as indicated by a recognized count of 0.

In contrast, the "Best," "Birthday," "Happy," "Hearing," and "Like" gestures

were recognized four times each, demonstrating consistent and successful

recognition. The "Please" gesture had a slightly lower recognition count of 3,

indicating that it was recognized with a slightly lower frequency compared to

the others.

This data suggests that the model performed well in recognizing most of the

moving sign language gestures, except for the "Feel" gesture, which requires

further improvement in recognition accuracy.

152

Tester Feedback

Table 4.3.1 below summarizes feedback and comments received from testers

regarding their experiences with the system.

Table 4.3.1: Feedback and Comments by Testers

Tester Feedback and Comments

Tester 1 Motions which are fast are not detected. Unrecognised

moving gestures are classified as ‘Best’

Tester 2 The system seems to detect gestures effectively only

when the user is in specific body positions.

Tester 3 Two hands not able to detect, complicated hand gestures

are detected slower

Tester 4 Complex gestures take long time to detect.

The feedback by Tester 1 suggests the need for improvements in gesture

recognition speed and accuracy. The feedback by Tester 2 emphasizes the

importance of ensuring the system's robustness across a range of user positions.

Tester 3’s feedback indicates a need for enhancements in recognizing complex

and multi-hand gestures. Tester 4’s feedback shows importance of optimizing

the system's performance for quicker recognition of complex gestures.

In response to this feedback, Chapter 5 will provide comprehensive

recommendations on refining the system. These recommendations will focus on

addressing these issues and enhancing the overall performance of the system,

ensuring that it can accurately and efficiently detect all types of gestures.

153

b. For self

Lighting and Distance Variations

The impact of lighting conditions and distances (36cm vs. 53cm) on gesture

recognition performance are analysed as shown in Table 4.2.6.2.

Table 4.3.2: Recognition state under different Lighting and Distances

 Recognized (1) / Unrecognized (0)

 36cm –

from table

Light

condition

53cm –

from table

Light

condition

36cm –

from table

Dim

condition

53cm –

from table

Dim

condition

Static A 1 1 1 1

E 1 1 1 1

H 1 1 1 1

I 1 1 1 1

L 1 1 1 1

N 1 1 1 1

O 1 1 1 1

S 1 1 1 1

T 1 1 1 1

U 1 1 1 1

Moving Best 1 1 1 1

Birthday 1 1 1 1

Please 1 1 1 1

Happy 1 1 1 1

Hearing 1 1 1 1

Like 1 1 1 1

Feel 0 0 0 0

154

In general, the system exhibits a robust performance, with gestures (other than

‘Feel’) being successfully recognized in both regular and dim lighting

conditions, as well as at varying distances from the table.

155

CHAPTER 5

4 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In conclusion, this project has successfully achieved the objectives stated earlier

in the development of the ASL recognition system. The primary goal was to

design and develop an efficient algorithm for the hand gesture recognition,

reducing the reliance on trained interpreters for individuals with hearing

impairments. The successfully built a TensorFlow Keras API neural network

model integrated with OpenCV Mediapipe, achieving an impressive accuracy

rate of 96% for static gestures and 53% for dynamic, moving gestures. In

addition, based on the testings results, the system could work real-time, under

different lightings and distances from the webcam, enabling efficiency to be

used in real-time communication scenarios in Objective 2. It is also can be used

by various users from different demographics, either gender, age, ethnicity,

hand dominance, at all levels of proficiency of ASL, addressing the past

limitations and leading to inclusivity, fulfilling Objective 3.

5.2 Recommendations for future work

Based on the findings from Chapter 3, the following recommendations are made

for future work:

1. Enhance Point History Classifier

Continue to refine and optimize the Point History Classifier to improve training

accuracy. Additional training epochs and fine-tuning may be necessary to

achieve higher accuracy levels.

156

2. Gesture Recognition Speed

Investigate methods to enhance gesture recognition speed, especially for more

complex gestures like "Feel." Optimization techniques and model architecture

adjustments may be explored.

3. Robustness Across User Positions

Conduct further research and development to ensure the system's robustness

across a wide range of user positions and orientations. This may involve

collecting additional data from diverse user scenarios.

4. Complex Gesture Recognition

Focus on enhancing the model's ability to recognize complex and multi-hand

gestures. This could involve data augmentation, specialized model

architectures, or more extensive training.

5. Feedback Integration

Continuously gather feedback from users and testers to iteratively improve the

system's performance. Feedback should be carefully analysed and used to guide

future development efforts.

By implementing these recommendations, it is expected that the system's overall

performance will be significantly enhanced, ensuring accurate and efficient

detection of all types of gestures, thereby improving its utility and user

satisfaction.

157

REFERENCES

Bellugi, U. and Fischer, S., 1972. A comparison of sign language and spoken language.

Cognition, 1(2–3), pp.173–200.

Bird, J.J., Ekárt, A. and Faria, D.R., 2020. British sign language recognition via late

fusion of computer vision and leap motion with transfer learning to american

sign language. Sensors (Switzerland), 20(18), pp.1–19.

Chong, T.W. and Lee, B.G., 2018. American sign language recognition using leap

motion controller with machine learning approach. Sensors (Switzerland),

18(10).

De Coster, M., Van Herreweghe, M. and Dambre, J., Isolated Sign Recognition from

RGB Video using Pose Flow and Self-Attention,

Farooq, U., Asmat, A., Rahim, M.S.B.M., Khan, N.S. and Abid, A., 2019, November.

A comparison of hardware-based approaches for sign language gesture

recognition systems. In 2019 International Conference on Innovative

Computing (ICIC) (pp. 1-6). IEEE.

Haj, A., Ghoul, O., and Jemni, M., 2017. Toward sign language handshapes

recognition using Myo armband. 2017 6th International Conference on

Information and Communication Technology and Accessibility (ICTA) (pp. 1-

6). IEEE.

Hou, J. et al., 2019. SignSpeaker: A real-time, high-precision smartwatch-based sign

language translator. The 25th Annual International Conference on Mobile

Computing and Networking (pp. 1-15).

Ismail, A.P., Aziz, F.A.A., Kasim, N.M. and Daud, K., 2021. Hand gesture recognition

on python and opencv. IOP Conference Series: Materials Science and

Engineering, 1045(1), p.012043.

158

Jiang, S. et al., 2021. Skeleton Aware Multi-modal Sign Language Recognition.

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (pp. 3413-3423).

Lee, B.G. and Lee, S.M., 2018. Smart Wearable Hand Device for Sign Language

Interpretation System with Sensors Fusion. IEEE Sensors Journal, 18(3),

pp.1224–1232.

Lupinetti, K., Ranieri, A., Giannini, F. and Monti, M., 2020. 3D dynamic hand gestures

recognition using the Leap Motion sensor and convolutional neural networks.

Available at: http://arxiv.org/abs/2003.01450.

Mohammed, A.A.Q., Lv, J. and Islam, M.D.S., 2019. A deep learning-based end-to-

end composite system for hand detection and gesture recognition. Sensors

(Switzerland), 19(23).

National Association of the Deaf, 2023. National Association of the Deaf - NAD

[Online]. Available at: https://www.nad.org/about-us/position-

statements/position-statement-on-health-care-access-for-deaf-patients/

[Accessed: 24 March 2023].

Naglot, D., Scholar, R. and Kulkarni, M., Real Time Sign Language Recognition using

the Leap Motion Controller,

O’ Mahony, N. et al., 2019. Deep Learning vs. Traditional Computer Vision. In

Advances in Computer Vision: Proceedings of the 2019 Computer Vision

Conference (CVC), Volume 1 1 2020 (pp. 128-144). Springer International

Publishing.

Pop, D.P. and Altar, A., 2014. Designing an MVC model for rapid web application

development. Procedia Engineering. 2014 Elsevier Ltd, pp. 1172–1179.

159

Pragati G., Naveen A. and Sanjeev S.,2009. Vision Based Hand Gesture Recognition.

International Journal of Computer and Information Engineering, 3(1), pp.186-

191.

Quer, J. and Steinbach, M., 2019. Handling sign language data: The impact of modality.

Frontiers in Psychology, 10, p.483.

Riaz S., 2022. A Hand Gesture Sign Language to Text Real Time Interpreter using

Google Mediapipe Artificial Intelligence by Riaz Sulaimi | MLearning.ai |

Medium [Online]. Available at: https://medium.com/mlearning-ai/a-hand-

gesture-sign-language-to-text-real-time-interpreter-using-google-mediapipe-

artificial-dfb395c42a23 [Accessed: 24 March 2023].

Shukor, A.Z. et al., 2015. A New Data Glove Approach for Malaysian Sign Language

Detection. Procedia Computer Science. 2015 Elsevier B.V., pp. 60–67.

Sulaimi, R., 2022, A Hand Gesture Sign Language to Text Real Time Interpreter using

Google Mediapipe Artificial Intelligence | by Riaz Sulaimi | MLearning.ai |

Medium [Online]. Available at: https://medium.com/mlearning-ai/a-hand-

gesture-sign-language-to-text-real-time-interpreter-using-google-mediapipe-

artificial-dfb395c42a23 [Accessed: 21 April 2023].

Suryateja, C.M., Boppu, S., Cenkeramaddi, L.R. and Ramkumar, B., 2022. Hand

Gesture Recognition System in the Complex Background for Edge Computing

Devices. Proceedings - 2022 IEEE International Symposium on Smart

Electronic Systems, iSES 2022. 2022 Institute of Electrical and Electronics

Engineers Inc., pp. 13–18.

Starner, T., Weaver, J. and Pentland, A., 1996. Real-Time American Sign Language

Recognition Using Desk and Wearable Computer Based Video. IEEE

Transactions on pattern analysis and machine intelligence, 20(12), pp.1371-

1375.

160

United Nations, 2022. International Day of Sign Languages | United Nations [Online].

Available at: https://www.un.org/en/observances/sign-languages-day

[Accessed: 24 March 2023].

Woll, B., Sutton-Spence, R. and Elton, F., 2001. Multilingualism: The global approach

to sign languages. The sociolinguistics of sign languages, 8, p.32.

World Health Organization, n.d. Hearing loss [Online]. Available at:

https://www.who.int/health-topics/hearing-loss#tab=tab_1 [Accessed: 24

March 2023].

Zaidman-Zait, A. and Dotan, A., 2017. Everyday stressors in deaf and hard of hearing

adolescents: The role of coping and pragmatics. Journal of Deaf Studies and

Deaf Education, 22(3), pp.257–268.

