
A SEMANTIC BASED SOFTWARE REDOCUMENTATION USING

ONTOLOGY WITH DISTRIBUTED PROCESSING TECHNIQUES

HIEW KHAI HANG

A project report submitted in partial fulfillment of the

requirements for the award of Bachelor of Science

(Honours) Software Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

October 2023

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Signature :

Name :

ID No. :

Date :

Hiew Khai Hang

1903181

6/10/2023

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “A SEMANTIC BASED

SOFTWARE REDOCUMENTATION USING ONTOLOGY WITH

DISTRIBUTED PROCESSING TECHNIQUES” was prepared by HIEW

KHAI HANG has met the required standard for submission in partial

fulfilment of the requirements for the award of Bachelor of Science (Honours)

Software Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

Signature :

Co-Supervisor :

Date :

Dr.Sugumaran a/l Nallusamy

6/10/2023

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be

made of the use of any material contained in, or derived from, this report.

© 2023, HIEW KHAI HANG. All right reserved.

iv

ACKNOWLEDGEMENTS

I am deeply grateful for the collaborative effort and support of everyone who

contributed to the successful completion of this project. Your dedication and

contributions have been invaluable, and I want to express my heartfelt thanks.

First and foremost, I would like to extend my sincere appreciation to my

supervisor, Ts Dr Sugumaran a/l Nallusamy. His guidance, expertise, and

unwavering commitment to my project have been instrumental in its

development. Ts Dr Sugumaran a/l Nallusamy provided invaluable insights

and encouraged me to explore new horizons, shaping this project into what it

is today.

Additionally, I want to express my gratitude to the Department of Internet

Engineering and Computer Science (DIECS) faculty and staff for continued

support and resources that facilitated the research and development process.

To my friends and family, who provided encouragement, understanding, and a

listening ear throughout this journey, I offer my heartfelt thanks. Their

unwavering belief in me sustained my motivation and determination.

Lastly, I want to thank all the participants and individuals who contributed

their time, expertise, and insights to this project. Their contribution was

indispensable in achieving the research goals.

This project would not have been possible without the collective efforts and

encouragement of each and everyone of them. Together, we have achieved a

significant milestone, and I am proud to have had the opportunity to work

with such a dedicated and supportive group of people.

Thank you all for the contribution and support.

v

ABSTRACT

This project attempts to address the maintenance issues that industries

experience as a result of the inadequate or non-existent documentation

provided for the system, which drives up the cost to identify and fix system

flaws. The time required to provide such documentation and the developer's

belief that it is not important for the development process are the real causes

of insufficient or non-existent source code documentation. Hence, the

development of a web-based analysis system that manages user source code

uploads and communicates with the Databricks cloud platform, which uses

distributed processing techniques to quicken the redocumentation process, is

the suggested solution for this project to address the root cause of the issue.

The web-based analysis system is then able to retrieve and show the analysis

data using the analysis result return. In addition, the web-based analysis

system offers the creation of an ontology graph of the source code

components, which illustrates the connections between each component.

Three people were chosen to test the web-based analytic system as part of the

evaluation process. The system usability score, which was determined by

analysing the participants' responses, was 80.83%. This excellent result

implies that the web-based analysis method is very user-friendly and usable.

However, the participants' subsequent suggestions for improvement are also

gathered in order to improve the operation of the web-based analytic system

and meet the needs of the responders. With this semantically based

redocumentation technique using distributed processing technology to produce

documentation in order to enhance the efficiency of the development and

debugging phases within a project team has been accomplished.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xix

LIST OF APPENDICES xx

CHAPTER

1 INTRODUCTION 1

1.1 Background of the Problem 1

1.2 Problem Statement 3

1.2.1 Time and budget consuming increased in

maintaining the source code with

inappropriate software documentation 3

1.2.2 Performance of current redocumentation

tools reduce due to large source code 3

1.2.3 Inefficient in finding relevant information

in different file in the source code with

current redocumentation tools 4

1.3 Aim and Objectives 4

1.4 Proposed Solution 4

1.5 Proposed Approach 5

1.6 Project Scope 6

1.6.1 Extraction Module 6

1.6.2 Transformation Module 6

1.6.3 Store Data Module 7

1.6.4 Ontology Transformation Module 7

2 LITERATURE REVIEW 8

2.1 Introduction 8

vii

2.2 Reverse Engineering 8

2.3 Software Redocumentation Process 9

2.4 Redocumentation Tools 11

2.4.1 Doxygen 11

2.4.2 Javadoc 13

2.4.3 PHPDocumentor 14

2.4.4 Natural Docs 16

2.5 Comparison and Analysis of Existing

Redocumentation Tools 17

2.5.1 Javadoc 18

2.5.2 PHPDocumentor 18

2.5.3 Doxygen 19

2.5.4 Natural Docs 19

2.6 Ontology 19

2.6.1 Transformation from Data Repositories to

Ontology Repositories 20

2.6.2 Protégé – Ontology Editor 21

2.6.3 HermiT Reasoner 23

2.6.4 Querying Ontologies Using SPARQL 24

2.7 Apache Spark 26

2.7.1 Apache Spark Architecture 28

2.7.2 Hadoop Distributed File System 28

3 METHODOLOGY AND WORK PLAN 30

3.1 Introduction 30

3.2 Software Development Methodology 30

3.3 Project Plan 32

3.3.1 Work Breakdown Structure (WBS) 32

3.3.2 Gantt Chart 35

3.4 Development Tools 38

3.4.1 Databricks 38

3.4.2 Protégé 38

3.4.3 HermiT Reasoner 38

3.4.4 RDFLib 38

3.4.5 Amazon Simple Storage Service 39

viii

3.4.6 Amazon Lambda 39

3.4.7 Flask API 39

3.4.8 Laravel Framework 40

4 PROJECT SPECIFICATION 41

4.1 Introduction 41

4.2 Requirement Specification 41

4.2.1 Functional Requirements 41

4.2.2 Non-Functional Requirements 42

4.2.3 Use Case Diagram 43

4.2.4 Use Case Description 44

4.3 Prototype Design 55

5 SYSTEM DESIGN 59

5.1 Introduction 59

5.2 System Architecture Design 59

5.2.1 Laravel Framework Architecture 60

5.2.2 Ontology Design 61

5.3 Conclusion 65

6 SYSTEM IMPLEMENTATION 66

6.1 Introduction 66

6.2 Project Setup 66

6.2.1 AWS S3 Setup 67

6.2.2 Azure Databricks Workspace &

Workflows Setup 69

6.2.3 AWS Lambda Function 75

6.3 System Modules 78

6.3.1 Extraction Module 79

6.3.2 Transformation Module 82

6.3.3 Store Data Module 93

6.3.4 Ontology Transformation Module 96

6.4 System Deployment 132

6.5 Conclusion 133

7 SYSTEM TESTING 134

7.1 Introduction 134

7.2 Unit Testing 134

ix

7.2.1 Unit Testing for Extraction Module 135

7.2.2 Unit Testing for Transformation Module 137

7.2.3 Unit Testing for Store Data Module 145

7.2.4 Unit Testing for Ontology Transformation

Module 148

7.3 Integration Testing 155

7.4 Performance Testing 171

7.5 System Usability Test 175

7.5.1 Test Scenario of Usability Testing 175

7.5.2 Result of Usability Testing 178

7.6 Manual Evaluate the Proposed OBSR with

distributed processing techniques 180

8 CONCLUSION & RECOMMENDATION 187

8.1 Conclusion 187

8.2 Limitation and Recommendation for future work 188

9 REFERENCES 190

APPENDICES 195

x

LIST OF TABLES

Table 2.1: Functionalities Provided in the Redocumentation Tools 17

Table 4.1: Use Case Description for generate documentation 44

Table 4.2: Use Case Description for view documenetation 45

Table 4.3: Use Case Description for Search by keyword in generated
documentation 47

Table 4.4: Use Case Description for generate & view graph 49

Table 4.5: Use Case Description for search by keyword in graph
generated 51

Table 7.1: Unit Testing for Extraction Module 135

Table 7.2: Unit Testing for Transformation Module 137

Table 7.3: Unit Testing for Store Data Module 145

Table 7.4: Unit Testing for Ontology Transformation Module 148

Table 7.5: Integration Test Cases 156

Table 7.6: Execution Databricks Notebook Under Normal Load Test
Case 172

Table 7.7: Ontology Construction Under Normal Load Test Case 173

Table 7.8: Used Time for Sending Different Flask API Request 174

Table 7.9: Sending Request to Flask API Under Normal Load Test Case 174

Table 7.10: Summary of Participants’ Top Liked Features of the System 179

Table 7.11: Summary of suggestions for improving the system by
participants 180

Table 7.12: Test Cases for evaluate the propose OBSR method 181

xi

LIST OF FIGURES

Figure 1.1: Proposed OBSR Solution with Distributed Processing
Techniques 4

Figure 2.1: Data Flow Overview (Doxygen, n.d.) 12

Figure 2.2: Javadoc Object Tree (Leslie, 2002) 13

Figure 2.3: XML Javadoc Tree (Leslie, 2002) 14

Figure 2.4: The Flow of the documentation process (phpDocumentor,
n.d.) 15

Figure 2.5: Protégé Class Browser (Sivakumar & Arivoli, 2011) 22

Figure 2.6: Owlviz Graphical Representation (Sivakumar & Arivoli,
2011) 22

Figure 2.7: Results of the Performance Evaluation (Shearer, Motik &
Horrocks, 2008) 24

Figure 2.8: Complete RDF graph (Castillo, Rothe & Leser, 2010) 25

Figure 2.9: SPARQL query patterns (Castillo, Rothe & Leser, 2010) 25

Figure 2.10: Query Result (Castillo, Rothe & Leser, 2010) 26

Figure 2.11: Apache Spark Architecture (Anurag Garg, 2023) 28

Figure 3.1: Evolutionary Prototype Model 30

Figure 3.2: Gantt Chart 1 35

Figure 3.3: Gantt Chart 2 36

Figure 3.4: Gantt Chart 3 36

Figure 3.5: Gantt Chart 4 37

Figure 3.6: Gantt Chart 5 37

Figure 4.1: Use Case Diagram 43

Figure 4.2: Home Page of the Redocumentation tools 55

Figure 4.3: Generate Documentation Page 55

Figure 4.4: Navigation Side Bar 56

xii

Figure 4.5: Code Metrics of the whole source code folder 57

Figure 4.6: Class Page 57

Figure 4.7: User’s Class Details Page 58

Figure 4.8: Search Class Page 58

Figure 5.1: Overview of the System Architecture Design 59

Figure 5.2: Source Code Components Ontology 63

Figure 5.3: Error prompt when the inconsistent of the ontology appear 65

Figure 6.1: Database Configuration In .env File 67

Figure 6.2: Amazon S3 Console 68

Figure 6.3: Create User Console 68

Figure 6.4: Set Permission Pages 68

Figure 6.5: Security Credentials Tab 69

Figure 6.6: Create Access Key Button 69

Figure 6.7: Retrieving Access Key 69

Figure 6.8: Fill in the information from S3 Bucket and Access Key
Credential 69

Figure 6.9: Search Result in Azure Portal 70

Figure 6.10: Create A New Azure Databricks Workspace 70

Figure 6.11: Launching the new created workspace 71

Figure 6.12：Creating a new notebook 71

Figure 6.13: Creating New Compute Cluster 72

Figure 6.14: Attach Cluster to a notebook 72

Figure 6.15: Workflow Console 73

Figure 6.16: Create Automation Jobs with Databricks Workflows 73

Figure 6.17: Job Details 73

Figure 6.18: User Settings Button 74

xiii

Figure 6.19: Access Token Category in Developers Tab 74

Figure 6.20: Generating a new token 74

Figure 6.21: Token generate successfully 75

Figure 6.22: Create Function Button 75

Figure 6.23: Creating Lambda Function and Configuration 76

Figure 6.24: The Code to be execute when an event triggers this lambda
function 77

Figure 6.25: Trigger Event Configuration 78

Figure 6.26: File Upload Page 79

Figure 6.27: Warning Message Display when validation failed 79

Figure 6.28: The Message Display After File has successfully uploaded 79

Figure 6.29: Code Segment of Upload File Controller 80

Figure 6.30: S3 Bucket Folder 80

Figure 6.31: Amazon Lambda Trigger when S3 Bucket has a folder
name files/ 81

Figure 6.32: The script to be run when lambda function is trigger 81

Figure 6.33: The workflow to be triggered when the Databricks API is
called 82

Figure 6.34: Mounting a S3 bucket into Databricks DBFS 82

Figure 6.35: Pre-processing of the data 83

Figure 6.36: Code Segment for declaring the class for each line of the
source code 84

Figure 6.37: Code Segment to filtering null class and visualize the
dataframe 84

Figure 6.38: Part of the visualization of the result 84

Figure 6.39: Code Segments of Finding Variable 85

Figure 6.40: Code Segments of Exception Handler and Result
Visualization 85

xiv

Figure 6.41: Part of the Finding Variable Result 86

Figure 6.42: Code Segments of Finding Methods 87

Figure 6.43: Code Segments Result Visualization, Distinct and Count of
Dataframe 87

Figure 6.44: Part of the Finding Method Result 88

Figure 6.45: Construct a new multidimensional collection and perform
filter action 89

Figure 6.46: First Iteration of retrieve dependency function 90

Figure 6.47:Second Iteration of the retrieve dependency function 90

Figure 6.48: Third Iteration of the retrieve dependency function 91

Figure 6.49: Fourth Iteration of the retrieve dependency function 91

Figure 6.50: Merging and performing transformations action of
dataframe 92

Figure 6.51: Part of the Dependencies Result 92

Figure 6.52: Function to Retrieve Code Metrics 93

Figure 6.53: Result of the Code Metrics Dataframe 93

Figure 6.54: Writing dataframe into CSV 94

Figure 6.55: Variable CSV Stored in S3 Bucket 94

Figure 6.56: Method CSV Stored in S3 Bucket 95

Figure 6.57: Dependencies CSV Stored in S3 Bucket 95

Figure 6.58: Metrics CSV Stored in S3 Bucket 95

Figure 6.59: Default Region Stored in config file 96

Figure 6.60: Access Key and Secret Access Key Stored in credentials
file 97

Figure 6.62: Each of object retrieve from the response variable 98

Figure 6.64: Result of Dependencies Dataframe 99

Figure 6.65: Result of Methods Dataframe 99

xv

Figure 6.66: Result of Variable Dataframe 99

Figure 6.67: Result of Metrics Dataframe 100

Figure 6.68: Import necessary classes and modules from RDFLib 100

Figure 6.69: Base Class Reference Defined 100

Figure 6.71: Explain example 101

Figure 6.72: Namespace define earlier 102

Figure 6.73: Example Ontology Output in TTL format 103

Figure 6.74: Import Flask Library in Jupyter Notebook 103

Figure 6.75: Creating Instance of Flask 104

Figure 6.76: GetAllMethod Route Defined 104

Figure 6.77: Running of the Flask application 105

Figure 6.78: Part of the result retrieve with the query in Ontology Graph 105

Figure 6.79: Transformation of the Retrieve Data into Dataframe 106

Figure 6.80: Filtering the data with “Has Method” Relationship 106

Figure 6.81: Dropping the Unnecessary Column 107

Figure 6.82: Output of the Jsonify Data 107

Figure 6.83: Better Visualization of Jsonify Data in Postman 107

Figure 6.88: Ontology Data Retrieved 109

Figure 6.89: Dataframe Transformed from the Ontology Data 109

Figure 6.90: Jsonify Data Retrieved in Postman 109

Figure 6.91: Retrieve Method Data by Class User Input 110

Figure 6.92: Retrieve Variable Data by Class User Input 110

Figure 6.93: Route to Download Complete Ontology File 110

Figure 6.94: File Downloaded After Sending Request 111

Figure 6.95: Splitting the Ontology with Only Dependencies Data 111

xvi

Figure 6.96: Splitting the Ontology with Only Variable Data 112

Figure 6.97: Splitting the Ontology with Only Method Data 113

Figure 6.98: Route declares to handle different URL request 114

Figure 6.99: Different Controller Has been Created to handle different
request 114

Figure 6.100: Blade View Components 115

Figure 6.102: multipleUpload Method in FilesController 116

Figure 6.103: Index Method in FilesController 117

Figure 6.104: File Model 117

Figure 6.105: Output of the file-upload blade template with retrieved
data 118

Figure 6.106: Error Prompt of the file-upload blade template with
invalid file extension 118

Figure 6.107: Index Function of VariablesController 119

Figure 6.108: GuzzleHTTP Client used 119

Figure 6.110: Variable Data Display 120

Figure 6.111: Search Function in Variable Controller 121

Figure 6.112: Result Display by Searching “user” 121

Figure 6.113: Empty Result when the class name does not exist 122

Figure 6.114: Different Data Display 122

Figure 6.115: Index Method in MethodsController 123

Figure 6.116: Search Method in MethodsController 123

Figure 6.118: Method Data Display 124

Figure 6.119: Method Data Display by searching “user” 124

Figure 6.120: Method Data Display by searching non-existing class
name 124

Figure 6.121: Index Method in DependenciesController 125

xvii

Figure 6.122: Search Method in DependenciesController 125

Figure 6.123: display-dependencies blade view component 126

Figure 6.124: Dependencies Data Display 126

Figure 6.125: Dependencies Data Display by searching
“openstockcontroller” 127

Figure 6.126: Dependencies Data Display by searching non-existing
class name 127

Figure 6.127: Index Method in MetricsController 128

Figure 6.128: display-metric blade view component 128

Figure 6.129: Metrics Data Display 129

Figure 6.130: Dropdown Navigation Bar 129

Figure 6.131: Step 1&2 To Generate Ontology Graph 130

Figure 6.132: Step 3 to generate Ontology Graph 130

Figure 6.133: Step 4 to search in the ontology graph 131

Figure 6.134: Example Output generated for method ontology graph 131

Figure 6.135: Some of the Git Action 132

Figure 6.136: GitHub Repositories 133

Figure 7.8: The Test Result 164

Figure 7.9: Test Cases for Method API 165

Figure 7.10: Test Cases for Variable API 166

Figure 7.11: Test Cases for Dependencies API 167

Figure 7.12: Test Cases for Metrics API 168

Figure 7.13: Test Cases for Different Ontology File Download 168

Figure 7.14: Integration Test in Retrieving Method Data 169

Figure 7.15: Integration Test in Retrieving Variable Data 170

Figure 7.16: Integration Test in Retrieving Dependency Data 170

xviii

Figure 7.17: Integration Test in Retrieving Ontology File 171

Figure 7.18: Total Used Time for Databricks Analysis & Produce
Output 171

Figure 7.19: Total Used Time for Construct Ontology Graph 172

Figure 7.20: Variable in Stakeholder Class 180

Figure 7.21: Search Result with stakeholder’s class variable 181

Figure 7.22: part of Openstockcontroller source code 183

Figure 7.23: Part of the dependencies output of openstockcontroller 184

Figure 7.24: Source code of stakeholder class 185

Figure 7.25: Result of the stakeholder class’s method 186

xix

LIST OF SYMBOLS / ABBREVIATIONS

API - Application Programming Interfaces

AWS - Amazon Web Service

CLI - Command Line Interface

CSS - Cascading Style Sheet

CSV - Comma-separated Values

DBFS - Databricks File System

HTML - Hypertext Markup Language

HTTP - Hypertext Transfer Protocol

JSON - JavaScript Object Notation

JSON-LD - JavaScript Object Notation for Linked Data

OBSR - Ontology Based Software Redocumentation

 Approach

OWL - Web Ontology Language

RDF - Resource Description Framework

S3 - Simple Storage Service

SCSS - Sassy Cascading Style Sheet

SPARQL - Simple Protocol and RDF Query Language

SUS - System Usability Scale

TTL - Terse RDF Triple Language

URI - Uniform Resource Identifier

URL - Uniform Resource Locator

WAMP - Windows, Apache, MySQL, and PHP server

WBS - Work Breakdown Structure

WebVOWL - Web-based Visualization of Ontologies

XML - Extended Markup Language

xx

LIST OF APPENDICES

Appendix A: Template of User Satisfaction Survey 195

Appendix B: Usability Test Responses 196

Appendix C: Keys Retrieving Process in S3 Bucket by Boto3 200

Appendix D: Information Extraction and Concatenate Dataframe 201

Appendix E: Iteration of different dataframe and transform into
ontology 202

Appendix F: Different Routes to retrieve different Data 203

Appendix G: File-upload Blade view component 205

Appendix H: display-method blade view component 205

Appendix I: display-variable blade view component 206

Appendix J: API Testing Result 207

1

CHAPTER 1

1 INTRODUCTION

1.1 Background of the Problem

Software maintenance is a very broad term that refers to all changes made to a software

system after it is put into use. Fixing problems, improving, eliminating, and adding

capabilities, adjusting to changing operational settings and data needs, and improving

performance, usability, or any other quality aspects are all examples of this (CANFORA &

CIMITILE, 2001).

According to Kaur and Singh (2015), one of the maintenance challenges is due to the

poor documentation quality which will lead to rise in the cost to detect any defects that are

included in the system. This further suggests that maintenance effort is influenced by

documentation quality. One of the main issues in comprehending a system is inadequate or

inaccurate documentation(Freeman & Munro, 1992). Taking over development or

maintenance tasks when system documentation was outdated, nonexistent, or inadequate and

the source code is the only source for comprehending the written codes was a big difficulty

for software engineers. Instead of developing a new module or maintaining the current

software, the software engineer spent more time understanding the current code. So, to reduce

maintenance work for the software developers, redocumentation is utilized to update the

program documentation with the same abstraction which was in line with the most current

code developments.

Our code should be documented for a variety of reasons. Future developers will be

able to maintain and update the code more easily because of the documentation since they

will be able to better comprehend our work and know where to make changes when

modifications are required (Ryan, 2022). According to the study by Kaur and Singh (2015),

The developer is able to save 12% of the cost of maintenance with up-to-date system

documentation support compared to those developers without up-to-date system

documentation support. The length of time required for the existing redocumentation strategy

has gotten longer and longer as the system has increased in size as a result of the quick

development of software systems with ever-increasing features and functionalities. When the

2

redocumentation tools are not able to handle the large size of source code, mostly the

organization would just ignore the redocumentation part as long as the system is well

functioning, the system documentation is not important from the organization's view. But

once the maintenance and upgrading system process is being implemented, the developers

and maintainers would take more time to understand how the system operates before they

start implementing the changes. Moreover, those new developers who just joined the team

would also face the same problem mentioned above. If the organization treats system

documentation as an important item for the whole system developing process and the

redocumentation tools are not able to handle the redocumentation process, it will cost the

organization to have a staff who took responsibility for it and with low efficiency and time-

consuming.

According to Nallusamy et al. (2021), the study of the class of redocumentation

approaches—which includes XML-based method, incremental redocumentation, model-

oriented redocumentation, etc.—was of poor quality in terms of granularity and efficiency. A

trustworthy tool to extract software components, handled by the parser in the software

redocumentation process, was necessary when a new software developer assumes

development or maintenance responsibilities. The present parsers of the redocumentation

tools might not be able to handle this massive quantity of data. Using the technologies now

available on the market to redocument was time-consuming and unproductive. Hence,

distributed processing approach was used to implement this challenge and resolve it.

Other than that, the current software redocumentation approach often comes out with

HTMLs which represent different files in the system. Software developers or maintainers

needed to navigate through different hyperlinks which represent different files in the source

code to find relevant information on a specific component. This lacks the transitive closures

that enable the construction of all pertinent information with a minimal amount of content

navigation in the documentation. In order to facilitate the redocumentation process and

represent information in the source code, ontology is therefore particularly employed. To aid

program comprehension during maintenance activities, browsing, and semantic searching

functionality is included in the produced HTML documentation. (Nallusamy,2015)

3

1.2 Problem Statement

To offer consistent and up-to-date software documentation that enables the software

developers to understand the written codes and system documentation in an efficient way

which allows they able to handle updating and maintenance of the source code with better

code structure understanding, the software documentation is intended to develop and update

automatically and regularly. There are now three key areas where redocumentation were

having issues.

1.2.1 Time and budget consuming increased in maintaining the source code with

inappropriate software documentation

The documentation is frequently manually produced in conventional software development,

which can result in contradictions or obsolete information and cost developers important time

and resources from the organization. The quality of software documentation is an important

factor that affects the ability of developers to understand the system quickly. If the

documentation was inappropriate and poor in quality, it will cost the developer time when

dealing with the problem in the system (Kaur & Singh, 2015). When new software

developers took longer time in understanding the code with inappropriate software

documentation rather than developing or maintaining the code, which will cause a decrease in

their performance and leads to the developing schedule or maintaining schedule becoming

longer which cost additional time and money from the client.

1.2.2 Performance of current redocumentation tools reduce due to large source code

According to Nallusamy, Hao, and Zulkifle (2021), as technology advances and software gets

complex over time, source code sizes increase as more files are added to handle more

functions. As the complexity of the source code increases, the system's limited processing

capacity will make redocumenting big sources of code challenging and time-consuming.

Nevertheless, the issue may be resolved by dividing the source code and assigning a cluster

of computers to handle each of their pieces of source code in the system constructed using

distributed processing techniques.

4

1.2.3 Inefficient in finding relevant information in different file in the source code

with current redocumentation tools

According to Nallusamy (2015), Software maintainers must visit several links from diverse

pieces of data in the source code to get a single solution, and the provided link is unable to

continuously traverse the content to create a new idea from the knowledge that was already

there. The effectiveness and efficiency of the program documentation's exploration tools,

such as browsing, searching, and visualizing the source code, were impacted by this.

1.3 Aim and Objectives

This project aims to study the existing redocumentation approaches and tools to understand

their advantages and drawback in order to reduce the time consumed in the redocumentation

task and deal with the uncertainty occurs when current redocumentation tools dealing with

large source code using OBSR with distributed processing technique approach.

Objectives:

1. To develop a web application to handle the redocumentation process by the source

code uploaded by the user and generate documentation and dependency diagram of

the source code.

2. To create a data transformation method in the cloud platform which uses distributed

processing technique and generate output return to the web application.

3. To evaluate the proposed OBSR with distributed processing technique approach using

validating the correctness of the information and diagram generated.

1.4 Proposed Solution

Figure 1.1: Proposed OBSR Solution with Distributed Processing Techniques

5

To resolve the problems outlined in the given problem statement, a web-based application for

the deployment of semantically based software redocumentation employing ontology and

distributed processing techniques was required. The web application first will receive the

source code uploaded by the user and load it into the parser. The parser was used to extract

crucial information from the source code and save it in the repository. The suggested method

made use of HDFS to store, process, and analyze the source code across several commodity

hardware nodes. A master node and a slave node will both exist. Blocks from the same file

were distributed across multiple workstations by a master node, which also distributes the

tasks to slave nodes at load time (Nallusamy, Hao & Zulkifle, 2021).

Other than that, the implementation of the OBSR method involves creating software

redocumentation from the source code ontology and enabling software maintainers to browse

and search for transitive relations and concept hierarchies using semantics. Source code

ontology provides a knowledge repository, whereas the reasoning tool provides a query

technique and verification method to improve the browsing and searching functionalities in

the software documentation (Nallusamy, 2015).

1.5 Proposed Approach

The evolutionary prototyping technique was used in this project. It allows us to continuously

roll out prototypes and improve them to make sure the client is happy with the product before

installing the application, making it far more flexible than a waterfall approach. This

approach combines incremental and extreme modelling. This technique reduces the

likelihood of failure by enabling us to describe the development's scope and make new

changes to meet client expectations since it identifies risk early on. When there are no defined

requirements papers, using the prototype approach is a helpful way to gather and assess

demands (Martinez, 2021).

 The first phase in the evolutionary prototyping strategy was to plan, collect initial

needs from the research, and assess the benefits and shortcomings of the current

redocumentation approaches and tools. Through the analysis, we were able to identify the

issue with the present redocumentation and design a solution to address the issue with a

specific goal in mind. The next step was to create a prototype of different independents

module which separated in the redocumentation tools based on the initial requirements

acquired and design that helps the user understand the features and layout that were used in

6

the system. The client or user next assesses the prototype and provides suggestions and

comments to help the redocumentation tools prototype develop. The user or client's feedback

and comments were analyzed and used to improve the prototype through multiple iterations

until the prototype was refined and improved and all requirements are met. Then, we move

into the development phase to create an actual system using the prototype as a guide and

additional testing to ensure that the redocumentation tools meet the client's expectations and

requirements, and finally, the system was prepared for deployment.

1.6 Project Scope

By utilizing an ontology-based approach to software redocumentation using distributed

processing technique, the approach should come out with the idea of integration of ontology-

based repository and distributed processing techniques to produce a software documentation

for maintaining the source code. The project scope involves several modules to meet the

objective of this project which include Extraction Module, Transformation Module, Store

Data Module, and Ontology Transformation module.

1.6.1 Extraction Module

The source code itself was the sole thing utilized in this project to extract the information.

The following components, which may have originated from different programming

languages, were taken out of the source code: forms, modules, functions, processes, event

processes, tables, data reports, and variables, among others. The source code has been

imported into the HDFS environment. To extract data for analysis, the next step was to load

the source code into RDD, the main Spark storage structure.

1.6.2 Transformation Module

After the extraction module had finished loading the source code into RDD, transformations

were used to tidy up, organize, and prepare the data for analysis. Filtering out extraneous data,

aggregating data, joining data from many sources, and applying complicated calculations

were examples of transformation-related jobs. The data can be saved in a dataframe and

stored in as many output types, including XML, CSV, and others, after being filtered out

using the built-in RDD function.

7

1.6.3 Store Data Module

After being transformed, the data was imported into the destination system, which was often

a data lake, a data warehouse, or another type of storage solution. The data from the

dataframe created in the transformation module was loaded into this module and saved in

several output formats before being stored in a particular storage place, such as Amazon S3,

Azure Data Lake Storage, and others.

1.6.4 Ontology Transformation Module

In this module, the source code ontology was created from the information in the CSV file.

Data in the SCO are the source code components taken from the CSV file, which consists of

class, method, variable, and dependency information. The individual was mapped to the

relevant idea and role using the object property and data property. Finally, the SCO was used

to display the information in the technical HTML software documentation.

8

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

This chapter begins with a review of the existing literature on software maintenance, software

documentation process, software documentation tools, reverse engineering and the concept

and platform used during the redocumentation process.

2.2 Reverse Engineering

The use of program understanding technology is among the most promising solutions to the

issue of software evolution. According to estimates, between fifty and ninety percent of

evolution effort is focused on understanding or comprehending programs. While attempting

to comprehend a program, programmers employ comprehension techniques, domain

knowledge, and programming expertise. For instance, one may take the source code's

syntactic information and use programming skills to create semantic abstractions (Müller,

Wong & Tilley, 1993)

Reverse engineering is one technique to improve the programme comprehension

process for large software systems as manual matching of such plans is challenging.

Although while reverse engineering takes many different forms, the main objective is always

to get data from already-in-use software systems. Using this information, future development

can be enhanced, maintenance and re-engineering can be made simpler, and project

management can be made easier.

Information extraction and abstraction are generally thought of as the two steps in the

reverse engineering process. While abstraction develops documents and views that are user-

oriented, information extraction analyses the relevant system artefacts to acquire raw data.

(Nallusamy, 2015).

Redocumentation and design recovery are two major methodologies that can be used

in reverse engineering approaches. The goal of redocumentation is to create or update

different perspectives of a given artefact at the same level of abstraction, such as beautiful

printing source code or visualising CFGs. Besides that, according to Gannod & Cheng (1999),

9

there are two types of reverse engineering: informal and formal. Informal methods essentially

use pattern matching or synthetic structure analysis to retrieve artefacts from the source code.

Formal approaches, in contrast, rely on mathematical logic, which necessitates running the

specification and evaluating the program's characteristics. The benefit of formal approaches

is that they give well-defined syntax and semantics for formal specification. Also, the syntax

and semantics of the formal approach are well defined. Moreover, the formal approach offers

inference rules that may be used to confirm the accuracy of each stage in the reverse

engineering process.

In this project, the suggested solution makes use of formal approaches to redocument

the source code in order to offer semantic knowledge representation. The inference rules,

which can extract the semantic relationship from the repository, may be used by the formal

procedures to convey the findings.

2.3 Software Redocumentation Process

In order to establish a procedure to use reverse engineering architecture to save the

information in software, redocumentation mainly consists of four primary components. This

procedure would result in documentation. The Software Work Product (SWP), the parser, the

repository, and the software documentation make up the four primary parts.

• Software Work Product

Source code, configuration files, generated scripts, and auxiliary artifacts

make up SWP. A data collection tool, a handbook, a job control system, or a visual

user interface that aids in source code comprehension can all be considered auxiliary

artifacts. (Nallusamy, 2015)

• Parser

The required data is extracted from SM using a parser, then it is stored in a

repository and a system knowledge base. The parser's role is crucial in returning

pertinent data with a certain approach. There are parsers that are exclusively

interested in a certain language and those that are interested in different kinds of

computer languages, like Universal Report. As specified by Marlow (2002), based on

10

a freely accessible generic Haskell parser supplied with GHC, haddock implements it.

However, they were unable to utilize the parser because they wanted to modify the

abstract syntax to include documentation annotations and supplement the grammar

with additional products to handle documentation. As a result, the Haddock

implementation includes a modified version of the original generic parser that was

changed in the sections for lexical, abstract, and grammatical information. (Nallusamy,

2015)

• Repository

A repository stored information about source code metrics, and code-level

relationship and dependencies. Usually, the data gathered in the repository is required

to process and create knowledge, or to find hidden information which can show some

interrelation within the source code. This information is published as a document by

extracting it using a query language such as SQL or graph-based queries (Nallusamy,

2015). According to Kienle and Muller (2010), they use RSF text file as a repository

and represent this as directed graph. The directed graph is presented as structural

documentation in the Rigi Tools by extracting the data using the Rigi Command

Language (RCL) query. (Nallusamy, 2015)

Generally, redocumentation uses the repository to analyse and present a

hidden relationship in a source code. The query techniques used in the repository play

an important role in browsing and searching the content in a documentation to present

knowledge in different abstraction levels. (Nallusamy, 2015).

• Documentation

A number of documentation forms, including directed graphs, annotation,

visualisation, metrics, or documentation, are then used to provide the processed data

to the end user which include software maintainers. Modules, procedures, classes,

subclasses, interfaces, control flows, composition, and enslavement are among the

software components that are deleted. There are two types of written and graphical

documentation for software. There are many different writing styles that may be used

to create text documentation, from informal inline language to custom views that are

dynamically created from a document database. Since they offer automated indexing

and the creation of links between document portions or divisions, HTML and XML

11

are seen as more flexible forms of textual documentation. Using the advantages of

HTML documentation, with all the tasks listed, is able to increase programme

comprehension compared to a plain-text document. Static Images, which may employ

a non-standard depiction of software artefacts and relationships, are the least well-

established sort of graphical documentation. The most complex graphical documents

may be modified by the user, giving them a greater opportunity to create original

representations of the topic system. A software visualisation technique is used to give

graphic documentation so that the maintainer may more easily understand (Nallusamy,

2015).

2.4 Redocumentation Tools

The most current state-of-the-art tools that have created solutions for the redocumentation

process are presented in this area. The majority of the tools have been created for reverse

engineering, which is sometimes equated to the process of redocumentation. However,

several important tools have been found that can help with the continuing generation of high-

quality documentation resulting from the redocumentation process.

2.4.1 Doxygen

Developed in 1997, Doxygen is a program that creates technical software documentation

from source code. A stable version (1.8.3) of this specific utility was released on December

26, 2012, and it has since become the de facto industry standard. C, C++, C#, Java, and

Python are just a few of the numerous programming languages that are supported by the tool.

The tool employs improvised reverse engineering methods based on artificial source code

analysis. Accepting the source code and processing it to an XML repository using lexical and

synthetic analysis starts the redocumentation process. (Heesch, 2004)

Doxygen's major benefit is its ability to provide documentation in a number of forms,

including HTM, RTF, LaTeX, and MAN. Doxygen has added indexing and searching

features that let users look for data using the index that is supplied. The database is queried

through the CGI protocol, which then returns the answers.

12

Figure 2.1: Data Flow Overview (Doxygen, n.d.)

 According to the Data Flow Diagram above, each parser and processor deals with

various duties independently before passing them on to the following parser to further extract

the source code. A singleton class file named Config is utilized by the config parser to

manage and save the settings of a project that is processed. The language parser, which is

built as a large state machine, receives the input buffer that has been through the C

Preprocessor's handling and loading of the input file. There is one parser for all the supported

languages such as C/C++/Java. The parser's job is to turn the input buffer into an entry tree.

An entry is described as a collection of unorganized data. It creates dictionaries of the

extracted classes, files, namespaces, variables, functions, etc. throughout the data organizer

process. The relationship between the extracted entities is computed too. If tag files are

supplied in the configuration file, an XML parser based on SAX will read them and put Entry

objects in the entry tree, marking the entry as external and containing the tag file's metadata.

Special remark blocks that offer a brief or extensive description are saved as strings in the

entities that they document by the documentation parser. Source parsers attempt to cross-

reference the source code they parse with the entities that are described. The sources' syntax

is highlighted as well. The output generators receive the output directly. Following the

collection and cross-referencing of data, doxygen produces output in a number of formats.

Directly from the collected data structures, XML is produced.

13

The XQuery-based XML query used by the Doxygen tool is seen as being preferable

to SQL-based queries. It is possible to do searches for different data structures, including

tree- and graph-based structures, using XML because of the way it is displayed in the

recursive entity. For example, a database model and code structure may be created using

XML. As a result, the same structure may be used by other sources, including existing

documentation, to deliver the same XML information. The XML query language-created

documentation can more precisely study important information than the relational approach

can.

2.4.2 Javadoc

Javadoc scans a series of java source codes, which are frequently the source code for several

Java packages, using the Java compiler. With each class definition and class-member

declaration, the compiler produces information. This data is combined with the comments by

the Javadoc tool to produce a class object tree structure that exactly matches the XML tree

structure. The underlying Javadoc tool completes the parking process and gives the doclet

access to a RootDoc object whether you are using a built-in HTML doclet or a custom doclet

(Leslie, 2002).

Figure 2.2: Javadoc Object Tree (Leslie, 2002)

The mapping of the Javadoc object hierarchy to XML comes next. To create XML

that complies with our specific requirements, we may utilize element names and change the

organization as necessary. We are able to generate a tree of XML documents along with the

tree of HTML pages the conventional doclet produces, as opposed to producing a single

XML document containing the full JavaDoc output.

14

Figure 2.3: XML Javadoc Tree (Leslie, 2002)

2.4.3 PHPDocumentor

An open-source PHP documentation tool is called PHPDocumentor. PHPDocumentor

automatically parses PHP source code and provides coherent API and source code

documentation in a number of formats, depending on the structure of the source code itself

and PHPDoc-formatted comments. You may produce documentation in HTML, PDF, CHM,

or Docbook formats with PHPDocumentor..

15

Figure 2.4: The Flow of the documentation process (phpDocumentor, n.d.)

The three-step procedure shown in the diagram above—Boot the application, Parse

files into an AST, and Transform AST into artifacts—allows PHPDocumentor to deconstruct

a project into its structural pieces and, depending on the template used, provide different sorts

of output.

16

In order to correctly produce documentation, PHPDocumentor needs to locate all files

in the project that we would like to document in the Parse files into an AST process. Many

factors, such as directories and a listing indicating which files are disregarded, affect which

files are eligible for our documentation based on the parameters and settings supplied.

If a cache of a prior PHPDocumentor run is present in the specified destination folder,

it is loaded. In order to ensure that it doesn't include any items that aren't intended to be

documented, PHPDocumentor will delete all files from that cache that aren't listed in the file

listing that was discovered previously. After that, PHPDocumentor ought to have a

description of our project, represented by an instance of the ProjectDescriptor class, which

might be prepopulated with the Abstract Syntax Tree found from a prior run.

PHPDocumentor will cycle over all files that were found before creating, or refreshing, the

AST. Each file is hashed, and the cache is used to determine if the file is still recent. If the

hash for a particular file does not exist in the cache or differs, PHPDocumentor will construct

a new representation of that file and replace the old one (phpDocumentor, n.d.)

2.4.4 Natural Docs

A multi-language open-source documentation generator is called Natural Docs. We write

documentation for our code using a natural syntax that is readable as plain English, and

Natural Docs then scans our code and generates high-quality HTML documentation from it.

(NaturalDocs, n.d.).

 Natural docs use a range of parsing approaches, such as regular expressions and

semantic analysis, to extract information from source code and output documentation only in

HTML format. Natural Docs can produce documentation for non-code components like

configuration files and database schemas as well as extract information about code elements

like functions, variables, and classes.

 Natural Docs' ability to handle code that is poorly commented or for languages

without well-defined comment syntax is one of its advantages. Natural Docs uses its semantic

analysis skills to deduce the structure and meaning of the code while working with poorly

commented code. After classes, methods, functions, and other code components have been

identified through code analysis, the tools employ a number of approaches to infer the

documentation for those elements. For instance, it may look up the names of variables,

17

functions, and classes to figure out what they're for, or it might check the arguments and

return types of functions to guess what they'll do.

Natural docs employ a combination of regular expressions and semantic analysis to

extract information from the code itself for languages without well-defined comment syntax.

The tools identify the components of the code through analysis, and then use regular

expressions to retrieve details about those components. The name and type of a variable or

function, or the argument list and return type of a function, for instance, may be determined

using regular expressions.

2.5 Comparison and Analysis of Existing Redocumentation Tools

Table 2.1: Functionalities Provided in the Redocumentation Tools

 JavaDoc PHPDocumentor Doxygen Natural

Docs

Supported

Language

Java PHP C/C++, C#, D,

IDL, Fortran,

Java, PHP,

Python

Any

Languages

with

comment

Generated

Diagram

 Class Inheritance

Diagram

Caller & Callee

Graphs,

Inheritance

Diagram,

Dependency

Graph,

Collaboration

Diagrams

Inheritance

Diagram

Supported

Format

HTML HTML, CHM,

PDF, XML

HTML, CHM,

RTF, LaTeX,

XML

HTML

Highlighting

And Linking of

Generated Doc

 ✓

Searching ✓ ✓ ✓ ✓

18

Function

Browsing Option Hypertext Link Hypertext Link Graphics Hypertext

Link

 Based on the functionalities provided in Table 2.1, the limitations, and strengths of

the existing redocumentation tools are identified as follows:

2.5.1 Javadoc

Without any created illustrations, Javadoc just facilitates the development of documentation

for Java source code. Without the created diagram, the documentation is unable to describe

how the parts of a Java class object relate to one another, and the maintainer must ascertain

how each Java class is connected independently in order to completely understand the source

code before doing their maintenance duties. The documentation output is produced using a

very basic description search technique and only supports HTML. As a result, the selection

and ranking of search results occasionally failed to live up to expectations. The software

maintainer must manually navigate to the page with a hypertext link by using the navigation

bar of the HTML documentation generated in order to explore specific classes in the

document because the output generated does not highlight or link the class object in the

HTML to the appropriate class. In addition, Javadoc might take a while to create

documentation for big codebases, particularly if the source code is poorly organised.

Moreover, it mainly relies on code comments to produce documentation. Incomplete or

incorrect documentation may be created if the code is not well-documented using comments.

2.5.2 PHPDocumentor

As PHPDocumentor can only create class inheritance diagrams of the extracted source code

and can only give documentation for PHP source code, it is rigid for a team that must work

on other projects that utilise other development platforms. It creates documentation in more

forms than Javadoc, such as HTML, CHM, PDF, and XML, making it simpler for

programme maintainers. Using hypertext links, the generated documentation may also be

accessed. The generated documentation allows the programme maintainer to look up the

relevant class or function without using the navigation bar by providing matching highlights

and links to the pages that are connected with each class name and function. PHPDocumentor

includes a straightforward search option that periodically influences the ranking and selection

of search results, much like Javadoc does. Moreover, the syntax-based parsing engine used by

19

PHPDocumentor might result in inaccurate documentation and sluggish performance if the

massive source code base is poorly organised or contains mistakes.

2.5.3 Doxygen

Doxygen does not provide the ability to link generated documentation to each source code

file, in contrast to the other two documentation tools. Although the query mechanism is

simple, programme maintainers can browse the documentation's contents visually and

textually. Software maintainers must therefore navigate through a lot of links from different

pieces of information in the source code in order to discover a single knowledge element.

Apart from that, configuring Doxygen for use with complicated codebases can be difficult

and call for in-depth tool and codebase expertise. Dealing with large codebases takes time as

well when the code is poorly organised.

2.5.4 Natural Docs

Natural Docs can only create inheritance diagrams and documentation output in HTML,

which makes any customization beyond simple HTML formatting difficult. Other than that, it

did not enable linking classes or modules together with corresponding headings and

connections to related sites. This makes the system maintainers work harder as they examine

the entire system to do a maintenance task.

2.6 Ontology

According to Ganapathy & Sagayaraj (2010), The collections of data known as ontologies are

a crucial part of the semantic-based software redocumentation. The term "ontology," which is

derived from philosophy, refers to the science that describes the many types of entities in the

world and how they connect to one another. Ontology, according to Gruber, is the

specification of conception. The axioms for limiting the relationship between words and the

fundamental concepts and their relationships that make up the vocabulary of an application

domain are defined by ontology. This definition describes the structure of an ontology.

Taxonomy and a set of inference rules are features of the most common type of ontology

used by software redocumentation tools. Taxonomy identifies groups of items and the

connections between them. For usage on the Web, relations between entities, classes, and

subclasses are extremely useful tools. By giving classes properties and enabling subclasses to

inherit those characteristics, a huge number of relationships between entities may be

described. Ontologies' inference rules add more power. A computer may be able to draw

20

inferences from an ontology's rules on the classes and relations. Although the computer does

not actually "understand" any of this data, it is now far more capable of manipulating the

words in ways that are helpful and clear to the user. Ontologies are used by more

sophisticated applications to connect the data on a page to the underlying knowledge

structures and inference procedures.

2.6.1 Transformation from Data Repositories to Ontology Repositories

An assortment of digital data may be found in a data repository, which one or more

companies might employ to achieve a variety of goals. In literature, subject-specific datasets

are sometimes referred to as data libraries. Also, a data library often maintains local data sets

and provides access to them through a number of different channels. Although a data

repository only offers basic operations like search, put, and get, a data library frequently

provides access to the whole dataset (Hartmann, Palma & Gómez-Pérez, 2009).

Data warehouses, which analyze the stored data for management's decision-making,

rose to prominence in the late 1980s and early 1990s. Periodically, data is appended to the

repository, generally in this way. It may not, however, always have the analytical capabilities

that a data warehouse offers.

A knowledge base is often a central archive for knowledge items. Ontologies are often

used by knowledge bases to formally define its content and categorization system, but they

can also contain unstructured or unformalized data that is expressed in procedural code or

plain language. Furthermore, unlike a data repository, the goal of a knowledge base is often

to enable automated deductive reasoning over the knowledge that has been recorded.

It is not unexpected that the ontology and semantic web communities started to show

interest in using repositories to store semantic material a few years ago. Ontologies have had

tremendous growth and application over the past few years, particularly in the semantic web's

content. Ontologies are being created and used by academia and business to deliver new

technologies and assist daily operations. As a result, there are presently many ontologies that

have been created by several parties, making the ability to exchange and reuse them

important.

21

Early attempts to compile a foundation of existing ontologies suggested developing a

library system that provided a variety of tools for organizing, customizing, and standardizing

collections of ontologies. With the help of this system, ontologies might be grouped and

reorganized for later usage, integration, upkeep, mapping, and versioning (Hartmann, Palma

& Gómez-Pérez, 2009).

2.6.2 Protégé – Ontology Editor

Ontology visualizations are used as information retrieval tools in applications that employ

ontologies and have been integrated into ontology management systems like OntoUML and

NavigOWL. Protégé's graphical user interface and Java API allow for interactive access to

and modification of ontologies and knowledge bases. Pluggable components can be added to

Protégé to bring additional features and services. A growing number of add-on plugins

provide innumerable features, including additional ontology tools for management,

multimedia support, querying and reasoning engines, methods for solving problems, and

other features. A wide range of representation formats may be used to generate, view, and

manipulate ontologies thanks to the extensive collection of knowledge-modelling structures

and operations that Protégé supports. Protégé facilitates the construction of framework-based

ontologies. An upgraded version of the frame-based system was produced in 2003 in order to

support OWL with the benefit of the semantic web version. RDF, OWL, and XML schema

are just a few of the forms in which Protégé ontology may be exported. (Sivakumar & Arivoli,

2011).

 There are several ontology visualization methods in Protégé: Protégé Class Browser,

Node Link and Tree, etc.

22

Figure 2.5: Protégé Class Browser (Sivakumar & Arivoli, 2011)

The taxonomy and axioms in the ontology are visualized using the Protégé plugin

OWLviz as shown in Figure 2.6.

Figure 2.6: Owlviz Graphical Representation (Sivakumar & Arivoli, 2011)

23

2.6.3 HermiT Reasoner

Services for Description of Justification Subsumption testing and categorization for logic

ontologies are often carried out by evaluating the consistency of many knowledge bases

generated from the original ontology. For instance, analyzing the consistency of a knowledge

base where at least one individual belongs to that class can quickly reveal whether a class is

fulfilling. When they work to create a model of the knowledge base, Tableau reasoners do

these consistency checks. Nevertheless, there are two challenges with building the models.

First, there are frequently a large number of distinct structures that may be models; typically,

a tableau algorithm must consider each of these possibilities before coming to the conclusion

that no model is feasible. Second, even for ontologies that are somewhat small, the models

created by tableau reasoners have the potential to be quite huge (Shearer, Motik & Horrocks

2008). These two kinds of complexity also commonly interact; for example, when building

huge models, there are typically more potential models to consider, which makes practical

reasoning hard.

 Both of these causes of difficulty are addressed by the Descriptive Logic reasoning

system HermiT Reasoner, which is built on a completely new architecture. The

"hypertableau" calculus used by HermiT significantly decreases the number of potential

models that must be taken into account (Shearer et al. 2008). The "anywhere blocking"

method, which restricts the sizes of the models that are built, is another feature of HermiT.

Lastly, HermiT employs an innovative and incredibly effective method for managing

nominals when there are number constraints and inverse roles. A variety of other

optimizations are also made possible by the combination of core algorithm advancements.

 When an OWL file is fed into the HermiT reasoner, it determines if the ontology is

coherent and establishes the connection of subsumption between the concepts. The test

demonstrates that the HermiT reasoner is equally as quick as other reasoners and is even

quicker when used to categorize complicated ontologies. The performance evaluation

findings for several ontologies, which demonstrate how well they are categorized, are shown

in Figure 2.2. The hypertableau rule application approach makes this feasible.

24

Figure 2.7: Results of the Performance Evaluation (Shearer, Motik & Horrocks, 2008)

2.6.4 Querying Ontologies Using SPARQL

The management of the ontology by users through apps utilizing query-answering is crucial

in ontology development. To access the data from the ontology, the query language for

ontologies is required. The RDF-based query and the Logic/Ruled Based Query are two

subcategories of the query language (Sirin & Parsia, 2007). SPARQL, which is essentially a

data retriever based on the RDF triple format, supports RDF-based searches.

 SPARQL is a query language designed for RDF, a data format represented as a

directed labeled graph. SPARQL essentially function as a graph-matching query language,

and it has three main components (Pérez, Arenas & Gutierrez 2009):

- Pattern Matching: This part of SPARQL allows to create queries that match pattern

within RDF graphs. It has attributes like nesting, filtering, optional portions, union of

patterns, and the option to indicate the data source to be matched.

- Solution Modifiers: After the pattern matching is performed, SPARQL offers solution

modifiers to modify the results. These include classical operators like projection

(selecting specific variables), distinct (removing duplicate result), order (sorting

results) and limit (limiting the number of results returned).

25

- Query Output: SPARQL queries can produce various types of outputs. These include

yes-or-no questions, choosing variable values that meet the patterns, creating new

RDF data from these values, and resource descriptions (providing detailed

information about specific resources in the RDF graph).

In essence, SPARQL is a versatile query language for working with RDF data, allowing

users to efficiently retrieve, manipulate, and generate data in various ways based on graph

patterns and criteria. Sample of the SPARQL queries and the result for the RDF graph are

shown in the figures below:

Figure 2.8: Complete RDF graph (Castillo, Rothe & Leser, 2010)

Figure 2.9: SPARQL query patterns (Castillo, Rothe & Leser, 2010)

26

Figure 2.10: Query Result (Castillo, Rothe & Leser, 2010)

2.7 Apache Spark

According to (Pointer 2020), Apache Spark is a framework for data processing that can

quickly perform operations on enormous amounts of data and divide processes over a number

of servers, whether used alone or in cooperation with other distributed computing

technologies. The fields of big data and machine learning, which demand the mobilization of

huge computing capacity to manage enormous data warehouses, depend on these two features.

Spark's simple API abstracts away the majority of the tedious work, relieving developers of

some of the programming responsibilities related to distributed computing and large-scale

data processing.

Apache Spark is one of the most well-known distributed big data analysis frameworks

in the world. In addition to supporting the use of SQL, data streaming, machine learning, and

graphical analysis, Spark provides native Java, Scala, Python, and R connectors. Spark can be

used in a variety of contexts.

27

According to Mazzeschi (2021), Big data refers to a category of data whose analysis

takes a significant amount of time and computational resources. Because of this, using huge

data for analysis is never simple. First, we want a big data specialist, next we require a

significant quantity of pricey computer capacity that may be rented from the cloud. Big data

analysis is a talent that only a select few professionals have, as we can only learn it via

practice and rigorous study and experimenting. This talent's worth is rising steadily.

Using our own equipment is the most typical method for carrying out any sort of data

analysis. Due to the hardware's limited processing capability, it could take too long if the data

is particularly large. Even with today's technology, processing a few Gigabytes of data while

building a machine learning model will take a few hours. Scaling horizontally, which entails

boosting GPU power to expedite the operation, is one potential approach. Thanks to cloud

service providers, we can now rent GPU online. One of the greatest solutions for analyzing

large amounts of data is still this technology, which is referred to as cloud computing.

Nevertheless, merely increasing computational power does not ensure that the

analysis is carried out in the most effective manner. Thus, there's a potential that a few of the

equipment we rented may use a lot of processing power inefficiently. Distributed computing

can be helpful in this situation. Instead of using a single computer or a group of GPUs,

distributed computing makes use of several distinct devices, each with its own GPU and CPU.

In order to maximize process efficiency, the data is divided into several divisions before

analysis in order to be used concurrently by all the machines in the cluster. As a result, the

application will run as effectively as possible while using the least amount of computer

resources. Cluster construction is a difficult process that calls very sophisticated software.

Spark is only one of the alternatives.

A programming abstraction known as resilient distributed datasets (RDD), which may

be scattered throughout a computer cluster, is the foundation upon which Apache Spark is

based. Instead, operations on the RDDs might be spread out over the cluster and executed in

parallel batches to provide rapid and scalable parallel processing.

Due to the combination of a driver core process, which divides a Spark application

into tasks and distributes them to numerous executor processes, Spark operates in a

distributed manner. These executors can be scaled up or down according to the application's

28

needs. In addition, Spark builds on Hadoop's MapReduce approach to accommodate various

computation types, such stream processing and interactive searches, in a powerful way. In

addition to that, Spark does not provide a framework for distributing file structure.

Programmers install Spark on top of Hadoop to allow the advanced analytics applications of

Spark to utilize the data stored using the Hadoop Distributed File System (HDFS)

2.7.1 Apache Spark Architecture

Figure 2.11: Apache Spark Architecture (Anurag Garg, 2023)

The driver program, which also constructs the Spark Context, invokes the application's main

programme in the Apache Spark architecture. All of the necessary elements are present in a

Spark Context. To keep track of how jobs are being completed in the cluster, Spark Driver

and Spark Context work together. The responsibilities that Spark Driver is in charge of go

much beyond those of the Cluster Manager. The Cluster Manager is in charge of assigning

resources. After then, the job is divided up into several smaller jobs and dispatched to worker

nodes. (Anurag Garg, 2023)

A number of worker nodes may be used to distribute and cache an RDD when it is

formed in the Spark Context. Worker nodes carry out the tasks that the Cluster Manager gives

them, finishing them, and sending the results back to the Spark Context. The executor is in

responsible of fulfilling these obligations. Executor life expectancy is the same as that of the

Spark Application. The system's performance may be improved by growing the worker node,

which will allow the jobs to be split up into more logical chunks.

2.7.2 Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) is used to handle and store the enormous

datasets typical of Big Data applications. Hadoop's primary file storage system is called

HDFS. Because HDFS is fault resilient, it may be installed on low-cost, commodity hardware.

29

For applications requiring high-throughput data access, HDFS is available. Moreover, it

enables Apache Spark and Hadoop to access file system data in streams. (Databricks, n.d.).

 Hadoop is a system that utilizes distributed storage and parallel computing. Big data

cannot be saved in a usual way, thus this may be used to sort and save it. An open-source

Hadoop component project called HDFS offers several significant advantages when

managing enormous amounts of data. Accepting mistakes will be the first step HDFS has

been built to automatically identify issues and resolve them rapidly, ensuring dependability

and stability. With the cluster design, 2 GB of data may be processed every second. Having

access to new categories of data, particularly streaming data, will take third place. It is

effective for managing streaming data because it was made to handle massive amounts of

data for sequential processing and high information transfer rates. The fourth advantage is

compatibility and mobility. Because HDFS is intended to be scalable to a variety of hardware

configurations and works with several underlying operating systems, users are free to use it

however they see suitable. Additional benefits include adaptability, affordability for large

data quantities, and scalability (Databricks, n.d.).

30

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter discusses system development methods and project planning. The chapter

provides a work breakdown structure (WBS) with a Gantt chart to see the planned timeline

for each task and a description of the development tools used to construct this system.

3.2 Software Development Methodology

Prototyping is a software development method that involves creating, testing, and revising a

prototype until it is functional. Also, it set the stage for the ultimate programme or system. It

works effectively in situations when there are unclear project requirements. The process is

one of repeated trial-and-error between the client and the developer.

 In this project, our development method was evolutionary prototyping. The created

prototype was progressively refined in response to supervisor feedback until it is eventually

accepted. That allowed us to save time and effort. This was because it might occasionally be

laborious to build a prototype from start. For initiatives utilising cutting-edge, poorly

understood technology, this paradigm is helpful. Also, it was used in complex projects where

each function only has to be checked once. When the demand was erratic or first poorly

understood, it was helpful.

Figure 3.1: Evolutionary Prototype Model

31

1. Requirement Gathering

The goals, scopes, timetable, and restrictions of the project are all determined during this

phase. The first requirement was gathered as part of the project planning process, which

will dictate how the system was constructed. Initial needs were acquired by conducting

research in the relevant subject, analyzing the present redocumentation system, and

compiling information on the shortcomings and challenges of the current

redocumentation tools. The need to address the shortcomings and challenges of the

current redocumentation technologies was established using the information acquired. In

addition, the new technology may make the same features of the old redocumentation

tools, which were created in a new architecture, function better. The following action was

to create a project plan that will list the actions required to complete the project. To help

with project planning, the WBS and Gantt Chart were utilized to estimate the time needed

to complete each subtask and meet the project's set milestones. WBS's main objective was

to divide large, complicated jobs into a number of smaller subtasks. By presenting project

activities that were declared in the WBS and their accompanying start and completion

dates in a calendar format, the Gantt chart offers a standard structure for graphically

illuminating information about project schedules.

2. Design

To give the project manager a visual representation of the proposed design solution, the

Proposed OBSR Solution with Distributed Processing Techniques diagram was created in

the quick design phase. It includes the design of the parser using the Spark platform and

HDFS to implement distributed processing techniques in the project as well as the design

of the knowledge repository to satisfy the goals and requirements in the first phase.

3. Built Prototype

After gathering requirements and doing some initial design work, the module prototype

was made. This project make use of Azure Databrick, which provides an Apache Spark-

optimized platform. Apache Spark tasks, such as the data extraction and data storage

module, which shows some of the system's basic output, may be executed quickly and

effectively thanks to this platform.

32

4. Evaluation

Users were shown the initial prototype produced in the previous step for assessment

reasons. Following the assessment, the feedback and comments received from the user

were recorded. This information was significant since it may help developers make the

prototype better by revealing needs that aren't being satisfied. Any issues with the

prototype also be uncovered throughout the examination.

5. Review & Refine

After several iterations, the prototype was refined and improved once the input has been

examined. The prototype was iterated over and over again until the user is happy with it

and all of the system's needs and goals were achieved. The prototype design was

transformed into the finished actual system after the user approves it.

6. Development

The actual system was developed using the design from prototyping and new GUI which

is not same as Databricks.

7. Testing

When the system's development is finished, testing will take place. The goal of software

testing was to make sure that the system has been designed with the fewest possible flaws

that could lead to system failure, that it complies with the technical specification

established by its design and development, and that it effectively and efficiently satisfies

the needs of the user, including handling all the exceptional and boundary cases.

8. Deployment & Maintenance

When a system successfully completes and passes each test that was run during testing, it

is then ready for deployment. If a flaw was discovered while a user was using the system,

further maintenance would permit the release of a new patch with bug remedies in the

future.

3.3 Project Plan

3.3.1 Work Breakdown Structure (WBS)

0.0 A Semantic Based Software Redocumentation Using Ontology with Distributed

Processing Techniques

33

1.0 Project Planning & Requirements Gathering

1.1. Preliminary Planning

1.1.1. Understanding Background of the Project

1.1.2. Identify The Problem of Current Existing Redocumentation Tools

1.1.3. Define Problem Statements

1.1.4. Determine Project Objectives

1.1.5. Define Project Proposed Solution

1.1.6. Select Project Proposed Approach

1.1.7. Define Project Scope

1.2. Literature Review

1.2.1. Review Software Redocumentation Process

1.2.2. Review Existing Software Redocumentation Tools

1.2.3. Review Ontology Concept in Constructing a Knowledge

Repository

1.2.4. Review Spark Architecture and Distributed Processing Techniques

1.3. Methodology and Work Plan

1.3.1. Select Suitable Software Development Methodology

1.3.2. Develop Work Breakdown Structure

1.3.3. Develop Gantt Chart

1.3.4. Identify Software Development Tool

1.4. Requirement Identification

1.4.1. Requirement Specification

1.4.1.1. Gather Functional Requirement

1.4.1.2. Gather System Requirements

1.4.1.3. Gather Non-Functional Requirement

1.4.2. UML Modeling

1.4.2.1. Create Use Case Diagram

1.4.2.2. Create Use Case Description

2.0 System Development

2.1. First Iteration

2.1.1. Develop low-fidelity prototype with Databricks with built in

GUI

2.1.2. Develop low-fidelity prototype for the web-based system which

handles files upload and data visualization

34

2.1.3. Evaluation and gathering feedback

2.1.4. Refine prototype

2.2. Second Iteration

2.2.1. Design

2.2.1.1. Ontology Structure Design

2.2.1.2. System Architecture Design

2.2.2. Prototyping

2.2.2.1. Develop file-upload operation from web-

application

2.2.2.2. Develop parser analysis algorithm

2.2.3. Evaluation and gathering feedback

2.2.4. Refine prototype

2.3. Third Iteration

2.3.1. Functionality Design

2.3.2. Web application prototyping

2.3.2.1. Develop Source Code Extraction Module

2.3.2.2. Develop Transformation Module in Databricks

2.3.2.3. Develop Store Data Module with CSV format into

cloud storage

2.3.2.4. Develop Ontology Transformation Module with

CSV Data

2.3.2.5. Develop Laravel Web Application to display

Ontology Data

2.3.3. Evaluation and gathering feedback

2.3.4. Refine prototype

3.0 System Testing

3.1. Develop Test Plan & Test Cases

3.2. Unit Testing

3.3. Integration Testing

3.4. Performance Testing

3.5. System Usability Testing

4.0 Deployment

4.1. System Deployment

35

3.3.2 Gantt Chart

Figure 3.2: Gantt Chart 1

36

Figure 3.3: Gantt Chart 2

Figure 3.4: Gantt Chart 3

37

Figure 3.5: Gantt Chart 4

Figure 3.6: Gantt Chart 5

38

3.4 Development Tools

The proposed semantic based software redocumentation using ontology with distributed

processing techniques tool has a web application for users to input their source code file in

order to proceed with the redocumentation process of the source code. Therefore, web

application development tools were used in this project to aid the development process. Other

than that, Databricks was the platform to running the spark workloads.

3.4.1 Databricks

Databricks develops a web-based platform for employing Spark that includes Ipython

programming notebooks and automated cluster administration. Using tools from BI to

machine learning, it was used to process, store, clean, distribute, analyze, model, and

monetize their datasets. The technology behind the Azure Databricks Lakehouse Platform,

which powers the platforms' SQL warehouses and computer clusters, is called Apache Spark.

Azure Databricks is a platform that is optimized for Apache Spark and provides a quick and

simple way to run Apache Spark workloads.

3.4.2 Protégé

Protégé is a popular open-source ontology editor that allows us to create, edit and visualize

ontologies. It provides a user-friendly interface for designing and managing ontologies and

supports a wide range of ontology languages, including OWL, RDF and RDFS. This tool will

be used to design the source code ontology with defining the logical class characteristics as

OWL expressions.

3.4.3 HermiT Reasoner

The HermiT Reasoner is one of the new OWL reasoners that uses hyper tableau calculus. The

designed source code ontology was required to be verified by classifying the ontology using

this tool.

3.4.4 RDFLib

Working with RDF (Resource Description Framework) data is made easy with the help of the

well-known Python package RDFLib. It is common practice to describe structured

information and data in RDF, a standardized format for describing resources on the web in a

way that is machine-readable. It's a crucial technology for the Semantic Web that makes it

39

possible to represent data in a form that computers can readily comprehend and interpret.

With the use of SPARQL, which RDFLib provides, we can construct, manipulate, and query

RDF graphs. Triples, or assertions with the pattern subject-predicate-object, make up RDF

graphs. We can represent and interact in a systematic way with their triples thanks to the

library. In addition, it supports a number of RDF serialization formats, including RDF/XML,

Turtle, N-Triples, and JSON-LD. We can serialize RDF graphs into various file formats as a

result.

3.4.5 Amazon Simple Storage Service

AWS provides the cloud-based storage of objects service known as Amazon S3. It is highly

available and scalable. It enables us to easily and affordably store and retrieve data, including

files, photographs, movies, backups, and more. A wide range of uses, including data storage,

backup and archiving, data dissemination, content delivery, and data lakes, make extensive

use of S3.

3.4.6 Amazon Lambda

AWS Lambda, or Amazon Lambda as it is more commonly known, is a serverless computing

service offered by AWS. It enables us to execute code in response to different events without

having to control infrastructure or servers. With Lambda, we can run our code in a highly

scalable, on-demand way while only paying for the actual computing time we use.

To automate the analysis process when S3 receives a file, we can trigger the Databricks

workflow by using the Databricks API with the appropriate job ID using Lambda functions.

3.4.7 Flask API

Python has a simple and adaptable web framework called Flask. It is intended to make it

simple to quickly and efficiently construct web apps. Flask gives developers the ability to

select and include additional libraries as necessary while also providing the tools and

components required to build online applications that can handle routing, templates, form

handling, and more. In order to collect data from Amazon S3 storage and execute ontology

altering with RDFLib function and return the result to our web application, we use Flask API

with the RDFLib, a Python package.

40

3.4.8 Laravel Framework

In this project, the Python Flask Restful API's API endpoints were used in conjunction with

the Laravel Framework's Blade Templates, Laravel Mix, to develop our web application. We

may develop dynamic HTML views using Laravel's Blade templating engine to produce the

application's front end. In order to include data from the backend in our HTML, we may

utilize the Blade directive. In addition, Laravel Mix is a tool that makes it easier to compile

front-end assets, such as SCSS into CSS and JavaScript. Popular JavaScript frameworks and

libraries can be integrated with it as well.

41

CHAPTER 4

4 PROJECT SPECIFICATION

4.1 Introduction

The project's preliminary specification, which involves defining the system's specification in

terms of both functional and non-functional needs, is the chapter's main focus. It also

contains explanations of each use case for tools for semantic software redocumentation that

make use of ontologies and distributed processing methods, as well as a use case diagram.

The high-level functionality and breadth of the system are graphically represented with the

use case diagram, a specific type of diagram. The use case diagram also depicts the

relationship between the actor and system. A documented record of the activities the actors

take while utilizing the technology will be included in the use case description.

4.2 Requirement Specification

Reviewing current systems that are comparable to the proposed inventory management

system outlined in Chapter 2 allows for the collection and identification of the requirements

for the proposed system. Non-functional requirements and functional requirements were the

two categories into which the requirement specification was divided. The system's services,

as well as how it must react to different inputs and perform under diverse conditions, are

listed in the functional requirements. Non-functional requirements were limitations on the

system's ability to provide certain features or services, and they frequently apply to the

system as a whole rather than to certain features or services individually.

4.2.1 Functional Requirements

Functional requirement for web-based application for semantic based software

redocumentation tools are outlined in the list below:

• The system shall allow the users to input the source code file for analysis purposes.

• The system shall generate relevant documentation (Variable, Method, Dependency,

Metrics) for each of the components in the source code.

• The system shall allow the users to search by the keywords to find the relevant

components’ documentation (Variable, Method, Dependency).

42

• The system shall generate a graph for different components and show the relationship

between the components and classes.

• The system shall allow the users to search by the keyword to find the relevant

dependencies in the dependency graph generated.

4.2.2 Non-Functional Requirements

• The interface of the web-based system should be easy to use, navigate, simple and

consistent which allows the user to understand the workflow of the system easily.

• The time needed to generate documentation in this system should be shorter compared

to other existing redocumentation tools.

• The system should ensure that the data inside the system will be protected.

43

4.2.3 Use Case Diagram

Figure 4.1: Use Case Diagram

44

4.2.4 Use Case Description

Table 4.1: Use Case Description for generate documentation

Use Case Name: Generate Documentation

ID: 1 Importance Level: High

Primary Actor: Software Project Manager

Use Case Type: Detailed, Essential

Stakeholders and Interests:

Software Maintainer – The person who maintain the source code system and want to know

the relationship and details of the source code without manually reviewing the source code.

Brief Description: This use case describes how a software maintainer input the source code

into the system and perform documentation process.

Trigger: A software maintainer wants to know the relationship and details of the source

code without manually reviewing the source code.

Relationships:

 Association : software maintainer

 Include : N/A

 Extend : N/A

 Generalization: N/A

Normal Flow of Events:

1. The software maintainers access the main page of the system which has the upload
source code button.

2. The software maintainers click the ‘upload’ button.

3. The system will prompt an upload field to the software maintainers.

4. The software maintainers choose the folder which contain the source code
components.

5. The software maintainers click the ‘upload’ button, and the system will store and
start the documentation process.

Sub-flows:

 5.1 The system will validate the file extension of the file uploaded by the user

Alternate/Exceptional Flows:

 5.1 If the file upload by the user is not validate, an error message will be prompted to

ask user to re-upload the file.

45

 5.2 If the file upload by the user is validate successfully, a file-upload successful

message will be prompt and the file will be stored.

 5.3 If the user leaves the file-upload field as empty, the system will prompt the user with

a missing file input message.

Table 4.2: Use Case Description for view documenetation

Use Case Name: View Documentation

ID: 2 Importance Level: High

Primary Actor: Software

Maintainer/Developer, Software Project

Manager

Use Case Type: Detailed, Essential

Stakeholders and Interests:

Software Maintainer – The person who maintain the source code system and want to know

the relationship and details of the source code without manually reviewing the source code.

Brief Description: This use case describes how a software maintainer access to the web-

application to view the documentation generated.

Trigger: A software maintainer wants to know the relationship and details of the source

code without manually reviewing the source code.

Relationships:

 Association : software maintainer

 Include : N/A

 Extend : N/A

 Generalization : N/A

Normal Flow of Events:

View Metrics

1. The software maintainers access the main page of the system.

2. The software maintainers select “DisplayMetric” button in the navigation bar.

3. The system will display the metric data of the whole source code component.

46

View Variable

1. The software maintainers access the main page of the system.

2. The software maintainers select “DisplayVariable” button in the navigation bar.

3. The system will display the variable data with corresponding class component.

View Method

1. The software maintainers access the main page of the system.

2. The software maintainers select “DisplayMethod” button in the navigation bar.

3. The system will display the method data with corresponding class component.

View Dependency

1. The software maintainers access the main page of the system.

2. The software maintainers select “DisplayDependency” button in the navigation bar.

3. The system will display the dependency data with corresponding class component.

Sub-flows:

View Metric

 2.1 The system retrieves the metrics data from Flask Backend API.

View Variable

 2.1 The system retrieves the variable and class data from Flask Backend API.

View Method

 2.1 The system retrieves the method and class data from Flask Backend API.

View Dependency

 2.1 The system retrieves the dependency and class data from Flask Backend API.

Alternate/Exceptional Flows:

View Metric

 2.1 If the Flask Application is not up, a reject request error will be prompt to the user.

View Variable

 2.1 If the Flask Application is not up, a reject request error will be prompt to the user.

View Method

 2.1 If the Flask Application is not up, a reject request error will be prompt to the user.

View Dependency

 2.1 If the Flask Application is not up, a reject request error will be prompt to the user.

47

Table 4.3: Use Case Description for Search by keyword in generated documentation

Use Case Name: Search by keyword in generated

documentation

ID: 3 Importance Level: High

Primary Actor: Software

Maintainer/Developer, Software Project

Manager

Use Case Type: Detailed, Essential

Stakeholders and Interests:

Software Maintainer – The person who maintain the source code system and want to know

the details of a specific component in the source code.

Brief Description: This use case describes how a software maintainer search and get the

detail information of the component.

Trigger: A software maintainer wants to know the details of a specific component in the

source code

Relationships:

 Association : software maintainer

 Include : N/A

 Extend : N/A

 Generalization : N/A

Normal Flow of Events:

View Variable

1. The software maintainers access the main page of the system.

2. The software maintainers select “DisplayVariable” button in the navigation bar.

3. The system will then navigate to the variable data page will All variable data return.

4. The software maintainers key in the search key word on the top search input field
and click on the “search” button.

5. The system will display the variable data search from the ontology by the user.

View Method

1. The software maintainers access the main page of the system.

2. The software maintainers select “DisplayMethod” button in the navigation bar.

3. The system will then navigate to the method data page will All method data return.

4. The software maintainers key in the search key word on the top search input field

48

and click on the “search” button.

5. The system will display the method data search from the ontology by the user.

View Dependency

1. The software maintainers access the main page of the system.

2. The software maintainers select “DisplayDependency” button in the navigation bar.

3. The system will then navigate to the dependency data page will All dependency data
return.

4. The software maintainers key in the search key word on the top search input field
and click on the “search” button.

5. The system will display the dependency data search from the ontology by the user.

Sub-flows:

View Variable

 2.1 The system retrieves the variable and class data from Flask Backend API.

 4.1 The system received the request with the user search key word and perform search

 query in the Flask Application.

 4.2 The Flask Application then return the search variable data to the Web Application.

View Method

 2.1 The system retrieves the method and class data from Flask Backend API.

 4.1 The system received the request with the user search key word and perform search

 query in the Flask Application.

 4.2 The Flask Application then return the search method data to the Web Application.

View Dependency

 2.1 The system retrieves the dependency and class data from Flask Backend API.

 4.1 The system received the request with the user search key word and perform search

 query in the Flask Application.

 4.2 The Flask Application then return the search dependency data to the Web

 Application.

Alternate/Exceptional Flows:

View Variable

 4.1 If the user search with empty keyword input, the Flask Application will return all

 variable data as default.

View Method

 4.1 If the user search with empty keyword input, the Flask Application will return all

49

 variable data as default.

View Dependency

 4.1 If the user search with empty keyword input, the Flask Application will return all

 variable data as default.

Table 4.4: Use Case Description for generate & view graph

Use Case Name: Generate and View Graph

ID: 4 Importance Level: High

Primary Actor: Software

Maintainer/Developer, Software Project

Manager

Use Case Type: Detailed, Essential

Stakeholders and Interests:

Software Maintainer – The person who maintain the source code system and want to know

the relationship of each component used in the source code.

Brief Description: This use case describes how a software maintainer view the dependency

graph between each of the used component.

Trigger: A software maintainer wants to know the relationship of each component used in

the source code in a graphical way which provide better understanding.

Relationships:

 Association : software maintainer

 Include : N/A

 Extend : N/A

 Generalization : N/A

Normal Flow of Events:

View & Generate Variable Graph

1. The software maintainers access the main page of the system.

2. The software maintainers select “GenerateGraph” button in the navigation bar.

3. The system will then navigate to the generate graph page will procedure to generate
the graph.

50

4. The software maintainers click on “Variable Ontology” button to download the
variable ontology file.

5. The software maintainers click on the link provide in the generate graph procedure
and upload the variable ontology file.

6. The whole variable ontology graph is then generated with corresponding class
relationship and display in the application.

View & Generate Method Graph

1. The software maintainers access the main page of the system.

2. The software maintainers select “GenerateGraph” button in the navigation bar.

3. The system will then navigate to the generate graph page will procedure to generate
the graph.

4. The software maintainers click on “Method Ontology” button to download the
method ontology file.

5. The software maintainers click on the link provide in the generate graph procedure
and upload the method ontology file.

6. The whole method ontology graph is then generated with corresponding class
relationship and display in the application.

View & Generate Dependency Graph

1. The software maintainers access the main page of the system.

2. The software maintainers select “GenerateGraph” button in the navigation bar.

3. The system will then navigate to the generate graph page will procedure to generate
the graph.

4. The software maintainers click on “Dependency Ontology” button to download the
dependency ontology file.

5. The software maintainers click on the link provide in the generate graph procedure
and upload the dependency ontology file.

6. The whole dependency ontology graph is then generated with corresponding class
relationship and display in the application.

View & Complete Ontology Graph

1. The software maintainers access the main page of the system.

2. The software maintainers select “GenerateGraph” button in the navigation bar.

3. The system will then navigate to the generate graph page will procedure to generate
the graph.

4. The software maintainers click on “Complete Ontology” button to download the
complete ontology file.

51

5. The software maintainers click on the link provide in the generate graph procedure
and upload the complete ontology file.

6. The whole complete ontology graph is then generated with class, variable, method,
metrics and depedencies relationship and display in the application.

Sub-flows:

Alternate/Exceptional Flows:

View & Generate Variable Graph

 5.1 If the file format is not valid, the WebVOWL will throw an invalid file error

message.

View & Generate Method Graph

 5.1 If the file format is not valid, the WebVOWL will throw an invalid file error

message.

View & Generate Dependency Graph

 5.1 If the file format is not valid, the WebVOWL will throw an invalid file error

 message.

View & Complete Ontology Graph

 5.1 If the file format is not valid, the WebVOWL will throw an invalid file error

 message.

Table 4.5: Use Case Description for search by keyword in graph generated

Use Case Name: Search By Keyword in graph

generated

ID: 5 Importance Level: High

Primary Actor: Software

Maintainer/Developer, Software Project

Manager

Use Case Type: Detailed, Essential

Stakeholders and Interests:

Software Maintainer – The person who maintain the source code system and want to locate

the actual components with its corresponding relationship with the others.

Brief Description: This use case describes how a software maintainer search through the

52

generated graph to get the information of the relationship between each

of the nodes.

Trigger: A software maintainer wants to know the relationship and details of the source

code components which has linkage to each other.

Relationships:

 Association : software maintainer

 Include : N/A

 Extend : N/A

 Generalization : N/A

Normal Flow of Events:

Search Variable Graph

1. The software maintainers access the main page of the system.

2. The software maintainers select “GenerateGraph” button in the navigation bar.

3. The system will then navigate to the generate graph page will procedure to generate
the graph.

4. The software maintainers click on the link provide in the generate graph procedure
and upload the variable ontology file.

5. The whole variable ontology graph is then generated.

6. The software maintainer key in the search key word in the input field below.

7. The node with the search key will be highlighted with a red circle allow the software
maintainer to locate the searched node.

Search Method Graph

1. The software maintainers access the main page of the system.

2. The software maintainers select “GenerateGraph” button in the navigation bar.

3. The system will then navigate to the generate graph page will procedure to generate
the graph.

4. The software maintainers click on the link provide in the generate graph procedure
and upload the method ontology file.

5. The whole method ontology graph is then generated.

6. The software maintainer key in the search key word in the input field below.

7. The node with the search key will be highlighted with a red circle allow the software

53

maintainer to locate the searched node.

Search Dependency Graph

1. The software maintainers access the main page of the system.

2. The software maintainers select “GenerateGraph” button in the navigation bar.

3. The system will then navigate to the generate graph page will procedure to generate
the graph.

4. The software maintainers click on the link provide in the generate graph procedure
and upload the dependency ontology file.

5. The whole dependency ontology graph is then generated.

6. The software maintainer key in the search key word in the input field below.

7. The node with the search key will be highlighted with a red circle allow the software
maintainer to locate the searched node.

Search Ontology Graph

1. The software maintainers access the main page of the system.

2. The software maintainers select “GenerateGraph” button in the navigation bar.

3. The system will then navigate to the generate graph page will procedure to generate
the graph.

4. The software maintainers click on the link provide in the generate graph procedure
and upload the complete ontology file.

5. The whole complete ontology graph is then generated.

6. The software maintainer key in the search key word in the input field below.

7. The node with the search key will be highlighted with a red circle allow the software
maintainer to locate the searched node.

Sub-flows:

Search Variable Graph

 6.1 If the keyword input by the software maintainer exists, the search input will prompt a

 several option which contain the keyword input string by the software maintainer to

 choose and the chosen node will be highlighted.

Search Method Graph

 6.1 If the keyword input by the software maintainer exists, the search input will prompt a

 several option which contain the keyword input string by the software maintainer to

 choose and the chosen node will be highlighted.

Search Dependency Graph

54

 6.1 If the keyword input by the software maintainer exists, the search input will prompt a

 several option which contain the keyword input string by the software maintainer to

 choose and the chosen node will be highlighted.

Search Ontology Graph

 6.1 If the keyword input by the software maintainer exists, the search input will prompt a

 several option which contain the keyword input string by the software maintainer to

 choose and the chosen node will be highlighted.

Alternate/Exceptional Flows:

Search Variable Graph

 6.1 If the user search keyword is not found, there will be no option for the software

maintainer to select, hence no highlighted node will be display.

Search Method Graph

 6.1 If the user search keyword is not found, there will be no option for the software

maintainer to select, hence no highlighted node will be display.

Search Dependency Graph

 6.1 If the user search keyword is not found, there will be no option for the software

maintainer to select, hence no highlighted node will be display.

Search Ontology Graph

 6.1 If the user search keyword is not found, there will be no option for the software

maintainer to select, hence no highlighted node will be display.

55

4.3 Prototype Design

This section showing the prototype design which include the layout of each webpage and the

design used in the actual development progress.

Figure 4.2: Home Page of the Redocumentation tools

The user was able to click on the generate documentation button to navigate to the page that

allows the user to upload the source code and perform documentation process.

Figure 4.3: Generate Documentation Page

56

The user was allowed to upload the source code folder for analysis purposes, and the

documentation will be saved to a web server which allow the user to be access by the

navigation tab.

Figure 4.4: Navigation Side Bar

57

Figure 4.5: Code Metrics of the whole source code folder

Upon the end of the documentation process, information on other related components utilized

in a specific source code as well as the software's measurement of the source code's

complexity is presented in these pages.

Figure 4.6: Class Page

This page provide the link to each of the class in the source code, in order to view the details

of the selected class.

58

Figure 4.7: User’s Class Details Page

This page show all the details such as function, libraries, private variables and etc information

used in this class.

Figure 4.8: Search Class Page

This page allows the user to input the class name for search component purposes. If there was

any result found, the class with link which enables the user to navigate to the corresponding

class detail page will be provided. Other than that, the general information about the class

will be shown too.

59

CHAPTER 5

5 SYSTEM DESIGN

5.1 Introduction

An overview of the system architecture and ontology design employed in this project is given

in this chapter. The Laravel framework and the cloud platform used to build the system are

both covered in-depth in the system's architectural design. However, using an external

application called WebVOWL (Web-based representation of Ontologies), the developed

ontology is used to describe the relationship between the classes and methods before being

utilized to generate a graph representation of the dependencies of the entire source code.

5.2 System Architecture Design

Figure 5.1: Overview of the System Architecture Design

Figure 5.1 shows an overview of the implemented system’s architecture design. The system

consists of one application which is a Laravel Web application. By sending a request to the

Flask API in order to execute the query to retrieve the data, the Web application will be in

60

charge of the source code file upload and displaying the results. Once the files have been

uploaded via the Laravel Web Application, the controller of Laravel will store them in

Amazon S3 Storage and then launch an AWS Lambda Function to run Azure Databricks

Notebook, which is used to perform the Extract, Transform, and Load process of the source

code and produce dataframe output that will be written into a CSV file and stored in Amazon

S3 Storage.

Following the upload of the CSV file containing the source code information to

Amazon S3 Storage, while activating the Flask API, it will retrieve the information from the

CSV file from Amazon S3 Storage using the built-in Python library and create an ontology

using an external library called RDFLib that was imported. Following the creation of the

ontology, the user can retrieve data by using a predefined SPARQL query in Flask or by

searching through the class name, which the Flask API will accept as input and work in

conjunction with to retrieve data about the class name input by the user. Last but not least, the

user has the option to download various ontology file formats that will be uploaded to Web-

based Visualization of Ontologies (WebVOWL) in order to produce an ontology

visualization that will help the user comprehend the source code more clearly.

5.2.1 Laravel Framework Architecture

The Laravel Framework is a PHP web framework that is open-source and free. It is used to

create sophisticated online applications. It is based on the architectural design pattern known

as Model-View-Controller (MVC). There are many features in Laravel. These are listed

below:

- Modularity: Laravel includes a large number of frameworks and modules that aid

developers in creating PHP web applications that are responsive and modular.

Additionally, this feature expedites development.

- Eloquent ORM: Object Relation Mapping is an acronym. Eloquent, a built-in ORM in

Laravel, manages database-related tasks.

- Artisan: Laravel's command-line interface is called Artisan.

- Blade Templates: The Blade concept from Laravel generates a distinctive template to

display data.

- Unit Testing: In Laravel, unit testing can be carried through using test cases.

- Email support: A built-in class in Laravel named Mail facilitates email sending.

61

- Authentication: The system's users are identified through authentication. It is typically

accomplished by knowing the user's account and password.

Model-View-Controller (MVC) is an architectural design pattern used by Laravel that

divides an application into three primary parts: Model, View, and Controller. The

organization, maintainability, and scalability of the code are all improved by the separation of

concerns.

- Model: The data and business logic of the application are represented by the model.

The database is accessed, data is retrieved, stored, and operations are carried out on

the data. Models in Laravel usually reside in the 'app' directory and extend the

Eloquent ORM (Object-Relational Mapping) framework to streamline database

interactions. Models offer techniques for data manipulation and querying while

defining the structure of database tables. Eloquent's relationship methods, such as

‘hasOne’, ‘hasMant’, ‘belongsTo’, and others, are used to define relationships

between models. CRUD (create, read, update, delete) activities on the database can be

carried out using the model instance.

- View: Data presentation to the user is the responsibility of the View. It includes the

UI elements that consumers view in their browsers, layout files, and HTML templates.

Views in Laravel are normally kept in the directory ‘resource/views. The final HTML

that is sent to the user's browser is produced using views. Laravel creates dynamic

views using the Blade templating engine. Blade enables the usage of reusable

components, template inheritance, and control structures like "@if" and "@foreach."

- Controller: Input from users is processed, models are interacted with, and data is

prepared for the Views by the Controller. It functions as a go-between for the Model

and the View, deciding how the program will behave based on user interactions. The

directory 'app/Http/Controllers' has the controller files. A controller's methods each

indicate a particular route or action that the application is capable of handling. Models

are used by the controller to fetch or alter data as needed after receiving input from

the request (such as form data). Following processing, controllers provide the user

with responses in the form of views or JSON.

5.2.2 Ontology Design

Carefully envisioning, defining, and arranging the concepts, relationships, and attributes

inside a given domain are necessary while designing an ontology. In order to improve

62

understanding, sharing, and reasoning about domain-specific information, ontologies are used

to codify and express knowledge in a machine-readable fashion. There are some steps to

guide through designing an ontology:

1. Clearly identify the ontology's scope and purposes: Outlining the domain, concepts,

and knowledge we wish to represent.

2. Identify Important Concepts and Classes: List the important ideas, groups of ideas,

or entities that are important to the domain. This could be things, intangible concepts,

actions, or physical things.

3. Establish Relationships: Identify connections between the concepts. Relationships

show the connections between concepts.

4. Define Properties: Specifying the properties of attributes that describe the concepts.

Properties (values) can be data properties or object properties (link to other

concepts).

5. Choose Ontology Language: Pick an ontology language based on the requirements.

OWL and RDF are popular choices.

6. Create Class Hierarchy: Create a hierarchical structure (taxonomy) for concepts to

reflect relationships between subsumption and specialization. The ontology is better

organized and easier to understand because to this hierarchy.

7. Apply Domain Vocabulary and Standards: Use current standards, ontologies, and

domain vocabularies as appropriate. This makes sure that the terminology is

consistent and compatible.

8. Use Cases and Instances: Determine possible ontology applications and think about

how specific instances (examples of a concept) might fit into the architecture.

9. Consider Restriction and Constraints: To encapsulate the logical principles and

limitations that apply to the domain, define constraints and axioms.

10. Reuse and Extend Ontologies: In order to save time and improve interoperability, it

may be appropriate to repurpose or augment existing ontologies.

63

Figure 5.2: Source Code Components Ontology

Before any analysis of the source code analysis to be done, we need to design the

source code ontology schema by using Protégé, which is an ontology editor, in order confirm

the data structure and the analysis method to be done. As shown in Figure 5.2 above, the Java

source code has 4 different concepts which are Class, Method, Variable and Metrics. For

example, A Java source code has different classes which are User, UserController and etc.

Inside the classes it contains different method such as getUserInfomation, getUserName and

etc. Other than that, those classes also contain the variable such as username, user_age and

etc. Moreover, some of the classes may have dependent on the other classes’ method, for

example, in the UserController class, it calls the getUserName function declare in User class,

which represents a dependent relationship between these 2 classes. Last but not least, the

whole Java Source Code has several metrics such as Total Line of Code (TLOC), Number of

Class, Number of Method and etc.

64

With the concepts declare, we are now able to define the object properties which

link the concepts together. An object property is a fundamental concept used to describe

relationships between individual (instances) or classes (concepts) in a domain. Object

property define how different classes are connected or related to each other. These

relationships play a crucial role in modelling the structure and semantics of a domain’s

knowledge. For example, UserController hasFunction getUserName. The hasFunction is a

property which shows the relationship between the UserController (domain) and

getUserName (range).

To ensure that the general class and attributes across classes are defined consistently

and categorised appropriately, the planned ontology has to be checked. An ontology is

verified to make sure it is accurate, consistent, and in line with its intended uses. The goal of

ontology verification is to find mistakes, contradictions, and problems within the ontology in

order to verify its accuracy and dependability. Using the Protégé software's HermiT Reasoner,

pick the HermiT Reasoner engine from the reasoner menu to carry out the verification

procedure. The HermiT Reasoner computes the results and displays a hierarchy when the

verification is required. The incorrect result is displayed to amend or change the class

hierarchy or the axioms in the ontology, as shown in Figure 5.3, if the classification is

inconsistent or incorrect. As a result, following each execution of the reasoning functions in

Protégé, the ontology engineers must always examine the ontology and make any necessary

modifications.

65

Figure 5.3: Error prompt when the inconsistent of the ontology appear

5.3 Conclusion

This chapter concluded by giving a general summary of the system architecture and ontology

design that were employed in this project. The Laravel framework and the cloud services

used by the system were both described in the system architectural design. Using the data

output produced by the Databricks cloud platform, the ontology design will then be used to

build the ontology idea. Overall, by outlining a clear and well-organized system architecture

and ontology design, this chapter set the groundwork for the creation and application of the

system.

66

CHAPTER 6

6 SYSTEM IMPLEMENTATION

6.1 Introduction

An overview of the project's setup and system implementation is given in this chapter. Each

system component, such as a web application, a cloud-based analysis platform, and

visualization tools, is described in detail. The use cases and requirements specifications

addressed in Chapter 4 are the basis for the system modules' design. This chapter further

details the characteristics and functionalities of each module to help the reader understand it

better.

6.2 Project Setup

The first step in this project is to register for an Azure account at

https://signup.live.com/signup We can subscribe to a service on Azure using the account.

The service we'll be using for this project is Azure Databricks, which will take care of the

extraction, transformation, and loading of the user-uploaded source code. Microsoft Azure

offers Azure Databricks, an analytics platform built on Apache Spark, as a fully managed

service. Microsoft and Databricks, the business formed by the Apache Spark developers, are

working together on it. With the help of Azure Databricks, businesses will be able to handle

and analyze enormous datasets in a more effective and scalable way. It offers a unified

platform for data engineering, data science, and big data analytics.

To use the S3 and Lambda services, which enable us to store files on cloud storage

and make them retrievable via Azure Databricks and mount as a DBFS under Azure

Databricks, we must first register an Amazon account. Create an account at

https://portal.aws.amazon.com/billing/signup#/start/email to get started. Popular cloud-based

object storage is offered by AWS's Amazon S3. For many types of data, including files,

photos, movies, backups, and more, it provides scalable storage. S3 is made to offer great

performance, availability, and durability for online data storage and retrieval.

The next step is to decide on a framework for our web application. Laravel

framework is what we use for our speedy and affordable development process. Installing a

WAMP server and Composer are two of the technologies required to use the Laravel

framework. On a Windows operating system, a WAMP server is a software stack used for

web development. It offers a setting for locally running web apps on our machine for

https://signup.live.com/signup
https://portal.aws.amazon.com/billing/signup#/start/email

67

development and testing needs. In addition, Composer, a tool for managing dependencies, is

essential for managing the libraries, packages, and dependencies needed for our application.

It makes it simpler to add, update, and manage external packages and libraries, which

facilitates the development and maintenance of our Laravel projects. In addition, with

Composer installed, we can use the command "composer global require laravel/installer" to

download the Laravel installer to my machine worldwide. With this command, the

laravel/installer package will be downloaded and installed in a PATH-compatible location on

my system. In my command-line environment, I can now create new Laravel projects by

using the 'Laravel' command from any location.

To create a new Laravel project, we can run “laravel new <project-name>” or

“composer create-project laravel/laravel=8.* <project-name>” to configure which laravel

version to use. Running these commands will create a new project with the specified name

and all the necessary files and dependencies.

Next is to configure the database and environment credential. Using the WAMP

server, it provides a MySQL database which hosting in 127.0.0.1 with a port 3306 in default.

The only thing we need to do is to create a database and replace the name of the database in

the project’s env file.

Figure 6.1: Database Configuration In .env File

6.2.1 AWS S3 Setup

1) An AWS account is needed to set up a S3 Bucket.

2) Once a AWS account is prepared, go to https://s3.console.aws.amazon.com/s3/get-

started?region=ap-southeast-1®ion=ap-southeast-1 to create a new S3 bucket by

clicking the “Create Bucket” button in the S3 console, as shown below.

https://s3.console.aws.amazon.com/s3/get-started?region=ap-southeast-1®ion=ap-southeast-1
https://s3.console.aws.amazon.com/s3/get-started?region=ap-southeast-1®ion=ap-southeast-1

68

Figure 6.2: Amazon S3 Console

3) Follow the steps given by the S3 console to complete the bucket creation process.

4) After creating the S3 bucket, now we need to create a user in order to connect to the

S3 bucket with the credentials and access key given.

5) Navigate to https://us-east-1.console.aws.amazon.com/iamv2/home?region=ap-

southeast-1#/users to create a new user as shown below.

Figure 6.3: Create User Console

6) Follow the process of user creation, and in the “Set Permissions” process, select

“Attach Policies Directly” and search “s3” in the search bar bellow, and select

“AmazonS3FullAccess” and click next.

Figure 6.4: Set Permission Pages

7) Click on the “Create User Button” a new user will be created, next we will generate

an access key based on the user created.

https://us-east-1.console.aws.amazon.com/iamv2/home?region=ap-southeast-1#/users
https://us-east-1.console.aws.amazon.com/iamv2/home?region=ap-southeast-1#/users

69

8) In the Users dashboard, select the user we have just created and navigate through the

“Security Credentials” tab which shown in below.

Figure 6.5: Security Credentials Tab

9) Scroll down and find the access key category and click on the “Create Access Key”

button.

Figure 6.6: Create Access Key Button

10) Select the use case of the access key will be use and generate the access key.

11) Get the access key and secret access key, then change them in the Laravel project's

env file.

Figure 6.7: Retrieving Access Key

Figure 6.8: Fill in the information from S3 Bucket and Access Key Credential

6.2.2 Azure Databricks Workspace & Workflows Setup

1) An Azure account is needed to setup the Databricks Workspace & Workflows.

70

2) Once the Azure account is prepared, login into the account and search Azure

Databricks, select and create a workspace in Azure Databricks console.

Figure 6.9: Search Result in Azure Portal

Figure 6.10: Create A New Azure Databricks Workspace

3) Follow the guidelines and procedure to create a new workspace with some

configuration. Once the workspace is created successfully, launch the workspace.

71

Figure 6.11: Launching the new created workspace

4) After launching the workspace, create a new notebook which used to perform analysis

of the source code later.

Figure 6.12：Creating a new notebook

5) Other than that, to perform the analysis action, a cluster will be needed to execute the

notebook, hence we will need to create a compute cluster in order to execute the

notebook by clicking on the compute button in the navigation bar.

72

Figure 6.13: Creating New Compute Cluster

6) Next, attach the created cluster into the notebook by clicking the connect button locate

on the top right of the notebook and start the cluster when executing the notebook.

Figure 6.14: Attach Cluster to a notebook

73

7) To automate the executing of the notebook, we will be using the workflows’ function

which provide by the Azure Databricks, click on the Workflows button located in the

navigation bar and select create job.

Figure 6.15: Workflow Console

8) Fill in the necessary details and configuration options and the most important is to

select which path (notebook) to execute when a trigger event happens.

Figure 6.16: Create Automation Jobs with Databricks Workflows

9) Once the job created successfully, note down the Job ID declare in the job details

category which will be used in the configuration of AWS Lambda Function.

Figure 6.17: Job Details

74

10) Other things to mentioned to make the automation of the execution of notebook work

successfully, is to generate a access token which used for authorize purpose when

calling Databricks API, navigate through “User Settings” in the dropdown button

which located in the most top right of the page.

Figure 6.18: User Settings Button

11) Click on the “Developers” tab and find Access Token category and click “Manage”

Figure 6.19: Access Token Category in Developers Tab

12) Click on the “Generate new token” button.

13) Enter the comment which used to represent the function of the token and tune the

lifetime of the token.

Figure 6.20: Generating a new token

14) Click on the Generate Button and take note on the token generated which will be used

in the lambda trigger function.

75

Figure 6.21: Token generate successfully

6.2.3 AWS Lambda Function

1) Using the AWS account created in section 6.2.1, login and navigate through the AWS

Lambda dashboard with this URL: https://ap-southeast-

1.console.aws.amazon.com/lambda/home?region=ap-southeast-1#/discover

2) Select the region which located beside the username drop-down button. Make sure the

region is same with the region of the S3 bucket, if they are in different location, the

lambda function could not function properly to get the trigger event from the S3

bucket.

3) Select the “Create Function” button located at the top right corner of the dashboard.

Figure 6.22: Create Function Button

4) Fill in the necessary information and select the runtime environment (Node.js 14.x)

and using the x86_64 architecture as the configuration setting of the lambda function.

https://ap-southeast-1.console.aws.amazon.com/lambda/home?region=ap-southeast-1#/discover
https://ap-southeast-1.console.aws.amazon.com/lambda/home?region=ap-southeast-1#/discover

76

Figure 6.23: Creating Lambda Function and Configuration

5) After the Lambda Function created successfully, click on the function just created,

scroll down and find the “Code” tab which will need to be execute when a trigger

event happens.

77

Figure 6.24: The Code to be execute when an event triggers this lambda function

6) Configure the code above, update the job_id with the corresponding job_id noted in

the section 6.2.2 and change the Authorization header with your bearer token created

in section 6.2.2 the created access token in databricks.

7) Next is to add a trigger event to call this lambda function, scroll up and find a “Add

Trigger” button and select the source as S3 since we are using S3 bucket to trigger the

function.

78

Figure 6.25: Trigger Event Configuration

8) Fill in the necessary information and condition to trigger this function. In my case,

when a post action is occurred in files/ folder, this function will be triggered to call

the Databricks API and execute the corresponding workflow job declare in the

Databricks.

6.3 System Modules

This project only features one application, a web-based application which separate in front-

end (client-side) using Laravel to render and sending request to the backend through RESTful

API, and the backend (server-side) which we are using Python Flask to construct ontology

79

and retrieve data from it. Other than that, Laravel also took responsibility on upload the file

by the user and storing it on the Amazon S3 bucket.

6.3.1 Extraction Module

First, the user uploads the source code through the web application and the controller handles

the upload process.

Figure 6.26: File Upload Page

Inside the controller, it will validate the file type of the user upload. Due to our

analysis is suitable only for java source code, other type of source code will not be accepted

when uploading the file.

Figure 6.27: Warning Message Display when validation failed

The user can select a bunch of files and click on the “Upload Files” button, and the

controller will take action saving it into the S3 storage.

Figure 6.28: The Message Display After File has successfully uploaded

80

Figure 6.29: Code Segment of Upload File Controller

Figure 6.30: S3 Bucket Folder

After storing the files into Amazon S3 Bucket, a AWS Lambda Function will be

triggered to execute a Databricks notebook which act as our cloud analysis platform to

perform analysis and generate CSV file and store into Amazon S3 bucket again. This

function will be trigger when a folder name files/ has store into the S3 bucket.

81

Figure 6.31: Amazon Lambda Trigger when S3 Bucket has a folder name files/

When this function is triggered, it will execute the scripts below which will call the

Databricks API to execute the corresponding Databricks workflow with the bearer token as

authorization and the job_id which created in Databricks.

Figure 6.32: The script to be run when lambda function is trigger

82

Figure 6.33: The workflow to be triggered when the Databricks API is called

After the Databricks notebook execute, the command inside the notebook will be

execute follow by the sequence. The First command will be the mounting of the S3 storage to

the Databricks DBFS, which allow us to retrieve the file and content after mounting the S3

into DBFS directly.

Figure 6.34: Mounting a S3 bucket into Databricks DBFS

6.3.2 Transformation Module

A unified data analytics platform called Databricks was created to assist enterprises in

processing, analysing, and visualizing massive amounts of data. Big data processing, machine

learning, and advanced analytics all frequently use it. A collaborative platform that interfaces

with numerous technologies and data sources is offered by Databricks.

Scala analysis could be performed on the Databricks platform after the S3 storage

was mounted into the DBFS. One of the programming languages that Databricks supports for

creating code on the platform is Scala. The Java Virtual Machine (JVM) supports the flexible

83

programming language Sclaa, which is renowned for its object-oriented and functional

characteristics. Given that it works especially well for distributed processing workloads, large

data frameworks like Apache Spark frequently use it.

Extracting the source code from the files is the initial step in beginning the study of

the source code. As seen in the figure below, you may get the entire content of the source

code files saved in the DBFS as a Resilient Distributed Dataset (RDD) by utilizing the

textFile functions offered by the SparkContext class. Every file in the directory will have its

contents line by line read. After extracting the material is finished, the source code content

is further transformed to aid in the analysis by pre-processing the data before the real

transformation. The first step is to use Scala's map function to change every element in the

RDD to lowercase, making analysis easier. A higher-order function called map is used

frequently with collections in Scala to apply a given transformation function to each element

of the collection, creating a new collection with the modified items. Next, leading and trailing

whitespace, including spaces, tabs, and newline characters are removed from a string using

the trim function supplied by Scala's String class. Pre-processing is completed in its final step,

which involves filtering out extraneous lines of source code that contain comments and

unclean lines that will impact the analysis process later.

Figure 6.35: Pre-processing of the data

The map method is then used once more to construct a multidimensional collection

that contains showing the line of source code with the appropriate class name in order to

declare the class of the line. The line will be further processed by using the indexOf,

substring, and lastIndexOf functions to retrieve the class name in the line and save it inside a

global variable defined before once a class name is found by the condition declared in the

code, such as the line contains "public class" and "{" inside the string. The map function is

84

used to construct a multidimensional collection that displays the class name and the related

line of code when the class name has been retrieved.

Figure 6.36: Code Segment for declaring the class for each line of the source code

Prior to receiving the results, we must use the filter function to remove any lines

with null classes, which indicate that they are lines that fall within an interface. Next, use the

toDF function to convert the RDD into a dataframe and display the resulting dataframe in the

console for improved result visualization.

Figure 6.37: Code Segment to filtering null class and visualize the dataframe

Figure 6.38: Part of the visualization of the result

85

6.3.2.1 Finding Variable for Each Class

Up to this point, all the preliminary processes to convert the source code into a better data

representation collection have been finished. We can then move on to the following phase,

which finds the variable for each class, by using the collection we retrieved during the class-

declaring phase. The procedure used in each phase is the same: data is filtered, mapped to a

multidimensional collection, and then transformed into a dataframe. The procedure for

locating the variable for each class is shown in the code segment below. First, filtering the

line from the source code that contains the variable class and various types of variables from

the collection that was retrieved in the previous phases during the class declaring phase. The

next step is to change each line of the collection that is followed by a variable using the map

function once more. Use the built-in functions lastIndexOf, indexOf, and substring function,

which were used in the previous step, to extract the variable name inside the map function. A

multidimensional collection that only contains the class name and the variable name is

created at the end of each line of the collection that has been filtered to only contain the

variable.

Figure 6.39: Code Segments of Finding Variable

Similar to the earlier phase, various exception handlers are utilized to filter the

empty variable caused by the unclean pre-processing result and produce a dataframe to

improve the display of the findings.

Figure 6.40: Code Segments of Exception Handler and Result Visualization

86

Figure 6.41: Part of the Finding Variable Result

6.3.2.2 Finding Methods for Each Class

To find the methods from each line with their respective class in this section, we are using the

collection from the class-defining phase. The method in the code segment below filters out

the lines that contain the letters "{" and "public," but not the letters "class." The data must

then be mapped into a multidimensional collection that includes the names of the class and

function. We are using built-in functions like indexOf, lastIndexOf, and substring during the

mapping process to extract the function name and save it in a global variable. The next step is

to create a new multidimensional collection using the global variable.

87

Figure 6.42: Code Segments of Finding Methods

The multidimensional collection is then converted, as per usual, into a dataframe for

improved data display. After that, a unique filtering function is applied to the dataframe to

exclude instances of classes with identical functions. This method is then used to determine

how many methods will be included in the code metrics.

Figure 6.43: Code Segments Result Visualization, Distinct and Count of Dataframe

88

Figure 6.44: Part of the Finding Method Result

6.3.2.3 Finding Dependencies for Each Class

Databricks uses the indexOf, lastIndexOf, and substring built-in functions inside the map

function of the multidimensional collection retrieved from the pre-processing phase to find

each of the function's names with the following line inside a class in order to determine the

dependencies of each class. The map function will create a multidimensional collection with

the class name, function name, and the line of source code, which represents the line of

code under which function and which class, after extracting the function name using

condition apply. After creating the multidimensional collection of class names, function

names, and line data, we filter out any lines that don't contain function names or lines that

contain the character "." (which denotes a function that depends on other methods or

functions). The code segment that performs the extract and transformation action is shown

below.

89

Figure 6.45: Construct a new multidimensional collection and perform filter action

The dependent function is then retrieved from the line retrieved from the earlier

constructed collection. As previously established, each "." stands for a function that depends

on other methods or functions; a line may have multiple "."s, which signify a class that

depends on multiple functions that are declared on other classes or built-in functions. We can

now obtain the dependent function that is stored in "cut2" variables in the code segments

below by using the indexOf and substring functions with a condition that was used to

determine the index of the function name.

90

Figure 6.46: First Iteration of retrieve dependency function

Iterating over the code above and creating a new collection with the same data

structure but different data within is required to obtain all the dependencies of a line that

contains multiple "." characters. We must filter out empty lines before the function iterates to

prevent a break in the analysis. As a result, each time the function is used, a new dataframe

with the same basic structure but different data representing the class dependencies will be

created.

Figure 6.47:Second Iteration of the retrieve dependency function

91

Figure 6.48: Third Iteration of the retrieve dependency function

Figure 6.49: Fourth Iteration of the retrieve dependency function

Due to the maximum number of times the "." character can appear in a line, which is

4, all dependencies have been removed after four iterations of the function. The next step is to

combine all of the dataframes, delete any extraneous columns, and run a special filtering

92

algorithm to remove any objects that repeatedly appear in the dataframe. Last but not least,

the function that uses Class and Function columns to sort the dataframe uses an ascending

order. The code snippet that follows demonstrates how the function merges the dataframe and

carries out the various modifications that were mentioned earlier.

Figure 6.50: Merging and performing transformations action of dataframe

Figure 6.51: Part of the Dependencies Result

6.3.2.4 Code Metrics for Whole Application

Using the filter method, Scala is able to extract every line that has the necessary information

for us, such as the imported libraries, class, interface, and function, making it simple to obtain

the Code Metrics of the entire program. Scala can filter the same element that appears in the

collection by utilizing a separate function after getting the data by removing lines that contain

the pre-defined keyword. Last but not least, use the count function on the collection to get the

amount of information that has been saved; it will return that amount. The code snippets

below demonstrate how to retrieve the application's overall Code metrics.

93

Figure 6.52: Function to Retrieve Code Metrics

Figure 6.53: Result of the Code Metrics Dataframe

6.3.3 Store Data Module

We can now write those data into a csv file and save it back in the S3 bucket declared in the

previous module, which was used to extract the uploaded file from the user, after all the

necessary data has been saved as a dataframe and stored in the variable declared in the

Databricks notebook. We can change the options for the csv and the mode that is used to

write the csv by utilizing a built-in function in Databricks. For instance, we may use the

"option("header",true)" option to include the header of the dataframe in the csv file and the

"overwrite mode" to allow the file writer to overwrite the file when the identical file already

exists. The code snippets below demonstrate how the mounted S3 location in the DBFS

writes the various dataframe into CSV and saves them to an S3 bucket.

94

Figure 6.54: Writing dataframe into CSV

Figure 6.55: Variable CSV Stored in S3 Bucket

95

Figure 6.56: Method CSV Stored in S3 Bucket

Figure 6.57: Dependencies CSV Stored in S3 Bucket

Figure 6.58: Metrics CSV Stored in S3 Bucket

In Addition, some of the dataframe is stored in several files due to the Apache Spark

operates on data partitions, which are smaller chunks of the data that can be processed in

96

parallel. Spark distributes the data across multiple partitions to take advantage of parallel

processing capabilities. Each partition becomes a separate file when the writer publishes the

partitioned data to files.

6.3.4 Ontology Transformation Module

The next stage is to obtain the content of the CSV files and create the ontology using RDFLib,

a Python library, which will be done once the source code has been converted into a

structured dataframe and stored as CSV in an S3 bucket. Python will be used throughout the

ontology creation procedure. Therefore, the first step in creating the ontology is to use Python

to retrieve the data from the S3 Bucket. Using the "pip install boto3" command or the "conda

install -c conda-forge boto3" command in the Anaconda environment to serve the Python

language, the Boto3 library must be installed in the Python environment in order to link

Python with S3 Bucket. Boto3 is the AWS Python SDK, which enables programmers to

connect with a variety of AWS services. It offers a collection of APIs and libraries that

simplify the process of creating software that uses AWS's cloud resources and services.

Boto3 makes it easier to create, configure, manage, and interact programmatically with AWS

services.

Before using Boto3, we must set up the login credentials for the AWS account using

the IAM Console and AWS CLI. By repeating the steps in section 6.2.1 of the generating

user process, we may create a new user for the S3 bucket using the IAM Console. That user

can access the S3 bucket using the credentials and access key supplied. The S3 Bucket can be

accessed using the same Access Key and Secret Access Key of the user created in chapter

6.2.1. The command "aws configure" sets up the credentials file and requests the Access Key,

Secret Access Key, and the default region name. The AWS CLI must be downloaded in order

to configure the authentication credentials using the "aws configure" command. The

credentials and configuration file in the .aws folder, as shown in the image below, will save

the Access Key and Secret Access Key with the default region once the configuration process

is finished.

Figure 6.59: Default Region Stored in config file

97

Figure 6.60: Access Key and Secret Access Key Stored in credentials file

Finally, after setting up the AWS credentials, we can now retrieve data from an S3

bucket. We first build a boto3 S3 client and specify the S3 bucket name in order to later

obtain all the information about the S3 bucket. The keys to obtain the contents of the files

stored in the dependenciesCSV folder in the S3 bucket will be saved in the dependencies_file

array. Due to the folder may contain several files due to the partitioning of Databricks which

store the information in several files. There are other arrays, such as the methods_file,

metric_file, and variable_file arrays, that are used to hold different keys to access the

information as well. Calling the list_object_v2 function after supplying the bucket name as

the Bucket parameter will provide a list of all the objects in the bucket. Iterating the list

objects allows us to collect the Keys required to later extract the files' contents. In addition,

the earlier-created array is used to maintain the Keys by applying nested conditional

expressions that are used by the startwith and endswith functions to choose which array to

save the Keys in. The dependencies_file array will hold the key and the keys saved will be

used to get the information inside the file, for instance, a key ended with ".csv" and start with

"dependencies" showing the key is storing a part of the dependent information. Additionally,

an exception handler is used to deal with any errors that may arise when trying to extract the

Keys from the S3 bucket. The code snippets in Appendix C that follow show you how to get

keys out of an S3 bucket.

98

Figure 6.61: Each of object retrieve from the response variable

By using the read and decode function of the Body attribute in the return object to

convert the sequence of bytes encoded in UTF-8 characters into human-readable text,

typically in the form of Unicode characters, the contents of the file can be retrieved by calling

the get_object function of the S3 client. This will first obtain object information by iterating

through the array that stores the keys. Since the read_csv method requires either a file-like

object or a valid file path as input to read CSV data, we must use StringIO to convert the data

from the string csv_content into a File-Like Object. StringIO provides a way to handle the

CSV content as if it were a file when using the read_csv function. As a result, after the CSV

data has been transformed into a File-Like Object, the read_csv function can read the data

and transform it into a dataframe. The last step is to store the dataframe into an array.

Due to the partitioning of the Databricks Cluster, some of the data will be saved into

different files in the S3 bucket, indicating that different keys will be used to access a subject's

data, each of which will yield a single dataframe. To simplify the process later on, we must

concatenate many dataframes in an array into a single dataframe. Using the concat function

of the Pandas package, which also provides options like axis = 0 for concatenating the

dataframe vertically, we can easily finish this work. The Code Segments in Appendix D

illustrate the information extraction process and result presentation.

99

Figure 6.62: Result of Dependencies Dataframe

Figure 6.63: Result of Methods Dataframe

Figure 6.64: Result of Variable Dataframe

100

Figure 6.65: Result of Metrics Dataframe

The concatenated dataframe can now be used to build an ontology in Python using

RDFLib. Establishing classes, attributes, and relationships inside the ontology framework is

one of the processes in this process. This focuses on the structure and schema of the ontology

rather than specific instances or individuals. Python users can install RDFLib by issuing the

pip command "pip install rdflib" or, in the Anaconda environment, "conda install -c conda-

forge rdflib." Importing the necessary classes and modules from RDFLib is the next step, as

seen in the accompanying figure:

Figure 6.66: Import necessary classes and modules from RDFLib

After that, create an RDF graph to hold the ontology. Custom namespaces may be

specified for the ontology's elements, attributes, and literals. By adding triples to the graph,

we can also define classes, subclasses, and properties. To further understand how the entities

and attributes of the ontologies are defined, let's take a look at the Figure below.

Figure 6.67: Base Class Reference Defined

101

To begin, we create an RDF graph to hold the ontology in accordance with the

illustration above. The following step is the development of a namespace, which acts as the

foundation URI for the subsequent generation of further URIRef. A namespace is a method

for supplying the prefix or abbreviation of a URI. URIs are used to uniquely identify

resources in RDF data, which is crucial to the Semantic Web and linked data principles. RDF

data may be handled and read by humans more easily by shortening long URIs using a

namespace. All of the base class references declared in the above image are types of an

ontology class, as was mentioned in chapter 5.2.2. The base class reference then corresponds

to the design that was created and added to the ontology graph as a triple.

Accompanying the concatenation of dataframes in the previous phase, the ontology may be

generated using the dataframe and RDFLib, as shown in the accompanying figure.

The figure in Appendix E shows the ontology's development process. We first iterate

through the Dependency dataframe using the dataframe's iterrows method, which returns the

data row by row with related columns. Using the row data received, the namespace specified

previously, and the addition of the value by calling the row with the appropriate column name,

we first create a URIRef (Uniform Resource Identifier Reference) for the class and dependent

function. Then, using the URIRef of the defined resource, we add the triple to the graph to

specify the classes. We also create a new URIRef with the class name and the string

has_method appended at the end to represent the resources that a class has that rely on a

function. Using the URIRef, we add the triple into the graph as a sub-property of

topObjectProperty, which highlights the connection between the class and the dependent

function. Once the ObjectProperty has been defined, the domain and range can now be added

to the graph by including a triple with the appropriate class and dependant URIRef declared

previously.

Figure 6.68: Explain example

102

Figure 6.69: Namespace define earlier

Consider the dataframe in the figure above as an illustration. In the first iteration, the

dataframe only retrieves the row of data with index 0. By using the namespace previously

defined and adding the class name to the end of the namespace, we establish the class

reference using the URIRef function. The dependent reference is the same. The generated

reference is then combined with a triple representing the produced resource, which is a

subclass of the primary class reference that was previously declared, to include both

references that were previously declared as resources in the ontology graph. The dependant

reference is equivalent, but it belongs to the dependent Class reference that was previously

declared. The dependent function and class relationship are then represented by a new

reference that is created next. We add a new ObjectProperty with multiple triples to the

ontology network by repeating the previous procedure. We can now add the domain and

range under this ObjectProperty using the URIRef of the ObjectProperty. The class to which

an ObjectProperty can be applied as a subject is specified by its domain and the class to

which it can be attached as an object is specified by its range. The class reference in this

instance is the Object Property domain, and the dependent reference is the Object Property

range, signifying that the class is dependent on the function. Referring back to figure 6.71,

the defaultexceptionhandler class is dependent on the getallerrors function, which has a

specific URI reference, in the row with index 0, following the building of the ontology.

URIRef list:
defaultexceptionhandler: http://semanticBasedRedocumentation.org/class/defaultexceptionhandler

getallerror: http://semanticBasedRedocumentation.org/class/getallerror

dependent (Object Property):

http://semanticBasedRedocumentation.org/class/defaultexceptionhandler_has_dependent

domain: http://semanticBasedRedocumentation.org/class/defaultexceptionhandler

range: http://semanticBasedRedocumentation.org/class/getallerror

Ontologies and RDF normally need URIs, which URIRef represents, to be globally

unique. As a result, the RDFLib is able to recognize the repeated URI and put the information

under it even after the dataframe has been iterated. For instance, the RDFLib will recognize

the repeated class and dependent reference and add the new data under it while iterating over

103

the dataframe which has the same class reference as the previous row and dependent

reference. In the figure below, the final result is depicted:

Figure 6.70: Example Ontology Output in TTL format

As a result, now that we understand how an ontology is built, we can replicate the

process with other dataframes, such as method, variable, and metrics dataframes, to build an

entire ontology graph with the various classes defined and various types of object properties

that represent various relationships, such as has method, has variable, and has attributes for

different classes.

Now that the entire ontology graph has been created, we may extract the data from

the ontology. Flask will be used to handle the request received and provide the data to the

front-end application, which will streamline the retrieving process. Flask, a Python micro

web framework for creating web apps and APIs, will be used to create the back-end services.

Flask is able to immediately retrieve data from the ontology in the Python environment and

deliver it to the front-end application for display purposes because we built the ontology

using RDFLib in Python. The steps involved in utilizing Flask to provide a Python backend

service include developing a Flask application, specifying routes, and managing requests and

responses. Installing the flask package using the pip command "pip install Flask" or the

conda command "conda install -c anaconda flask" in an Anaconda environment is required

before using flask in a Python environment. Secondly, import the library into the Jupyter

Notebook that was used to run the Python command indicated in the following figure:

Figure 6.71: Import Flask Library in Jupyter Notebook

The following step is to create an instance of the Flask class and supply the unique

Python variable "__name__" as an input, which aids Flask in determining the application's

104

root path. In relation to the application's location in the file system, it allows Flask to know

where to seek for static files, templates, and other resources.

Figure 6.72: Creating Instance of Flask

Use the "@OntologyGenerator.route" decorator to define the routes next. The URL

path is the parameter given to the decorator. Furthermore, by passing a list of methods as a

parameter to the "@OntologyGenerator.route" decorator, we may specify which HTTP

methods the route should support. For further information on how the Flask routes were

created, let's take a closer look at the figure below.

Figure 6.73: GetAllMethod Route Defined

The route defined as "/GetAllMethod" in the diagram above accepts client requests

using the HTTP "GET" method. The "@OntologyGenerator.route" decorator's getAllMethod

method will be run when someone has sent the request through the URL. After the route has

been declare, we are now able to run the Flask application locally by the instance create

before with a given port number as shown in the figure below:

105

Figure 6.74: Running of the Flask application

After the running of the Flask Application, we can now access the services by

sending request to http://127.0.0.1:5000/{Route_Name}. For example, in the figure 6.76, we

can access to the getAllMethod service by sending a “GET” request to

http://127.0.0.1:5000/GetAllMethod and the service will return a Jsonify data which contains

the methods data.

Returning to Figure 6.76, we first create an empty array inside the function to store

the data that will be retrieved later. The "query" function of the RDFLib library is then used

to create the SPARQL query that will be used to extract data from the ontology network. The

prepared question is passed as an argument to the "query" function, which retrieves the data

from the ontology network. The "g" stands for the ontology graph created in the previous

stage. The query is used to get each object attribute along with its appropriate domain and

range using a URI reference syntax. The figure below shows the piece of the ontology graph

that the query returned:

Figure 6.75: Part of the result retrieve with the query in Ontology Graph

Following the data retrieval, we simply use the class name, relationship, and method

to further process the data. We may handle the data using a conditional statement by

examining the second column of the array, which indicates the object property because the

data retrieval is in multidimensional array format. The data will be further processed and

saved into the data array that was previously declared with several columns, including

the Dependent, Method, Attribute, and Variable columns. The data array will then be

http://127.0.0.1:5000/%7bRoute_Name%7d
http://127.0.0.1:5000/GetAllMethod

106

converted into a dataframe, and a filter procedure will be used to keep only the rows with the

"Has Method" relationship and remove any unneeded columns from the dataframe, including

variable, dependent, and attribute columns with null values. The dataframe is finally

transformed into JSON format data and returned as jsonified data. The outcome is depicted in

the following figure.

Figure 6.76: Transformation of the Retrieve Data into Dataframe

Figure 6.77: Filtering the data with “Has Method” Relationship

107

Figure 6.78: Dropping the Unnecessary Column

Figure 6.79: Output of the Jsonify Data

Figure 6.80: Better Visualization of Jsonify Data in Postman

108

By using the aforementioned procedure, we are now able to request the method data

from a local host domain using the specified port. The same procedure is followed when

retrieving variables, dependencies, and metrics data, with a few modifications like subject

filtering to get the data we need for various purposes. The code snippets in Appendix F

demonstrate the method and procedure used to retrieve the additional data.

All the variables, methods, dependencies, and metrics data are retrievable via the

aforementioned routes. As a result, the next functionality to build is the ability to access data

using a class provided by the user, which only returns the data the user specifically requested.

Let's take a closer look at the route shown in the Appendix F for further information.

The route is declared as seen in Appendix F, and its goal is to retrieve the

dependencies information provided by the user for the class. Pay attention to the string

<class> that indicates the variable section in the route URL. Then, the variable will be passed

as a keyword argument to the function below. The data retrieved and subsequently

transformed from the data retrieved from the ontology are then stored in an array that is

produced. Before utilizing the SPARQL search query, we next modify the Input variable by

putting the class name that the user entered into a URL string that denotes the URLRef of the

ontology resource we want to search for. The prepared SPARQL query is then combined with

the input variable to search the object property with its domain and range using a URIRef that

is identical to the input variable. The data that was retrieved is also further processed before

being put into the data array that was earlier created and converted into a dataframe. The

dataframe is finally transformed into JSON data and sent back to the front-end application,

which then sends a request to the Flask application. By sending a request to

http://127.0.0.1:5000/<class>, one can access the services; the class attribute in the URL

denotes user input. The information obtained with the user input "usercontroller" is displayed

below.

109

Figure 6.81: Ontology Data Retrieved

Figure 6.82: Dataframe Transformed from the Ontology Data

Figure 6.83: Jsonify Data Retrieved in Postman

When finding variable and method data using user-inputted class information, the

same procedure is done. Below is a diagram of the code segments used to search the variable

and method.

110

Figure 6.84: Retrieve Method Data by Class User Input

Figure 6.85: Retrieve Variable Data by Class User Input

Last but not least, in order for the user to download and upload the created ontology

graph to the Web-based Visualization of Ontologies (WebVOWL) in order to examine the

ontology graph, we would need to return it in file format. In order to handle the download

request, a route is declared. The procedure of returning the Ontology File for the user to

download is depicted in the image below.

Figure 6.86: Route to Download Complete Ontology File

The ontology is first serialized into a TTL file format using a machine path. The

process of transforming RDF (Resource Description Framework) data from its internal

representation into other formats that may be readily saved, communicated, or processed is

known as serialization in RDFLib. Triples, which are assertions with subject-predicate-object

relationships, make up RDF data. We can represent these triples using serialization in a

number of different formats, including XML, Turtle (TTL), RDF/XML, JSON-LD, and more.

The send_file function in Flask is then used to provide file download capability in the web

111

application in response to an HTTP request after the serialization process is complete. You

can reach this service at http://127.0.0.1:5000/CompleteOntology.

Figure 6.87: File Downloaded After Sending Request

Due to the Complete Ontology's high level of complexity, a large and complicated

graph was formed, making it difficult to easily search for nodes inside it. As a result, we have

chosen to divide the ontology into a number of smaller ontology graphs, which can produce a

clearer and more accurate graph visualization. As indicated in the diagram below, a new route

is established to handle the task of separating the ontology.

Figure 6.88: Splitting the Ontology with Only Dependencies Data

http://127.0.0.1:5000/CompleteOntology

112

This approach manages the ontology's division by creating a new Ontology Graph

using solely Dependencies information. The procedure is the same as that used to build a full

ontology graph: after retrieving the dependencies data from an S3 bucket with keys and

converting it to a dataframe, predefining the namespace that will be used to create the

URIRef later, creating a new instance of the RDFLib ontology graph, and beginning the

process of iterating the dataframe and adding triples to the ontology graph. After the ontology

graph has been built, it is serialized with our local machine's download route, allowing users

to download the file by sending a request to http://127.0.0.1:5000/DependeciesOntology.

The user can download the Ontology containing the data they want with the route

defined, and the same is true for the Variable and Method data. The routes that deal with the

Variable and Method ontologies are displayed below.

Figure 6.89: Splitting the Ontology with Only Variable Data

http://127.0.0.1:5000/DependeciesOntology

113

Figure 6.90: Splitting the Ontology with Only Method Data

Finally, the front-end web application built on the Laravel Framework will receive

the data return from the Flask services. In Chapter 5, the Laravel Framework's architecture is

covered. Let's go over the Laravel Framework's controller and view components, which

manage the data received and visualization.

Laravel first defines routes that relate URLs to particular controller functions, The

'routes/web.php' file in the Laravel project directory is normally where routes are defined.

Each route includes an optional name, a controller method, and a URL. The map below

depicts the declared path.

114

Figure 6.91: Route declares to handle different URL request

According to the diagram above, every route manages various URL requests using

various methods, such as the get and post methods that are bound to a method declared in the

controllers. The application's logic is handled by the controllers. They take requests from

routes, process the data, and then provide answers along with the appropriate view

component. The 'app/Http/Controllers' folder in the Laravel project directory, which is

depicted in the figure below, is where controllers are kept.

Figure 6.92: Different Controller Has been Created to handle different request

Other than that, users can access data thanks to view components. They are often

created using Laravel's template engine, Blade. Views can use Blade syntax to display data

that is sent by the controller. These Blade view components are kept in the Laravel project

directory 'resources/views' folder, as seen in the figure below.

115

Figure 6.93: Blade View Components

Let's talk about the entire web application process, starting with the file-upload

controller and the rendering of the file-upload page by the view components.

The Blade engine, which offers a practical and expressive approach to deal with

views and produce dynamic HTML output, is used to write the view components. By

separating the presentation layer from the application logic, it enables us to better organize

and manage the code. The page-upload blade template is shown in the Appendix E. Which, if

the problem was caught in the controller, will show the error and return to the view template

using the blade engine's @if syntax. In addition, there is a form to manage file uploads using

the "POST" method, which passes the uploaded files to the controller function with the URL

declared in the "action" attribute and the previously described route file. The notification will

appear on the website after the file is uploaded successfully; it will be in the same div as the

error prompt but will have a different colour and message. Additionally, the details of the

uploaded file will also appear on the page that will be displayed later.

116

Figure 6.94: multipleUpload Method in FilesController

The request will be passed into this method to manage the file upload procedure

when the submit event has been triggered in the blade view component. We check to see if

the required attribute is present in the request first; if it is not, the validation will throw an

error to the view component. The next step is to perform a second validation that checks the

file extension because Databricks only handles the lexical analysis of Java Source Code; if

the uploaded file is not Java source code, it will return an error message to the view

component because we are handling multiple uploads. We obtain the information from each

file and save it in the database using iteration. Other than that, we upload each file into the S3

into the files/folder within the S3 bucket and save their path into the database using the S3

disk that was explained and configured in Chapter 5. The controller will redirect the pages

with a specified URL and send back the success message that displays in the view component

after all the files have been successfully uploaded.

117

Figure 6.95: Index Method in FilesController

The data for the index function will come from the File Model, which contains the

application's data and business logic. They frequently use an Object-Relational Mapping

(ORM) like Eloquent to connect with the database. The 'app' directory is normally where

models can be found. as depicted in the following figure.

Figure 6.96: File Model

With the help of the model, we are able to get the data out of the File database table

and return it to the view. Because of this, the view is able to loop through the data return and

present the information as a table.

118

Figure 6.97: Output of the file-upload blade template with retrieved data

Figure 6.98: Error Prompt of the file-upload blade template with invalid file extension

The Lambda Function will start the Databricks workflow when the files have been

uploaded to the S3 bucket, and the output of the analysis will then be saved back into the S3

bucket. The data will then be read from the S3 bucket and further transformed while the Flask

API is operating, creating an ontology. The web application is then linked to the Flask

119

Service via the controller, which returns the data that has been transformed into an ontology

and is then displayed.

Figure 6.99: Index Function of VariablesController

The code snippets above demonstrate the VariablesController's index function,

which returns the data returned by the Flask API. Guzzle is used in the Laravel Framework to

send HTTP queries to external APIs. Guzzle HTTP client must first be installed using the

composer command "composer require "guzzlehttp/guzzle". The Laravel Controllers, which

must import the Guzzle namespace at the top of the project, can then use Guzzle:

Figure 6.100: GuzzleHTTP Client used

The "Client" class instance is then created in the index method, where it will be used

to send HTTP requests. The URL is then specified in the index function and saved into the

$apiURL variable, which is used in the subsequent steps. The next step is to perform a GET

120

request to the URL defined previously using the get method of the "Client" instance, saving

the response into the $response variable. We can get a variety of information from the

response object after submitting the request. We retrieve the contents of the raw response

body in the code segment above. In order to give the response data to the "display-variable"

view components, we must first decode it using the json_decode method because the data is

in JSON format. The function will throw an exception error code to the view component and

display it on the web page if it encounters an exception.

After the data is passed to the view, the view will be in charge of rendering the data

by iterating through the data array using the @foreach function from the blade engine and

displaying the data in table format.

Figure 6.101: Variable Data Display

We can see every class and the accompanying variables in the diagram above. In

addition, there is an input field where the user can type in a class name to search the ontology

graph. Only the variable data with the user-inputted class name will be returned by the search

procedure. In order to access only the essential data, the VariableController handles the

searching function and connects to the Flask API in the code segments below.

121

Figure 6.102: Search Function in Variable Controller

The code section above initially processes the input by using a conditional statement

to see if the user entered any data into the field. If not, the entire variable data for all classes

will be returned. After that, it proceeds in the same manner as the index function described

earlier, establishing a client object and setting the apiURL in advance. The class name will be

attached to the end of the apiURL, which serves as the argument to fetch in the Flask API, if

the user entered the class name into the input field. The next step, which involves initiating a

request, retrieving its contents from the body, and returning the data to the view component

and display, is nearly identical. The results of the search are shown in the figure below.

Figure 6.103: Result Display by Searching “user”

122

Figure 6.104: Empty Result when the class name does not exist

Figure 6.105: Different Data Display

Although there are many data displays, the controller's methods are essentially the

same. The apiURL used to connect to the Flask API is the only variation. As a result, the

code segments and display results for various purposes will be depicted in the picture below

and share the same ideas as the variable retrieve process.

123

Figure 6.106: Index Method in MethodsController

Figure 6.107: Search Method in MethodsController

124

Figure 6.108: Method Data Display

Figure 6.109: Method Data Display by searching “user”

Figure 6.110: Method Data Display by searching non-existing class name

125

Figure 6.111: Index Method in DependenciesController

Figure 6.112: Search Method in DependenciesController

126

Figure 6.113: display-dependencies blade view component

Figure 6.114: Dependencies Data Display

127

Figure 6.115: Dependencies Data Display by searching “openstockcontroller”

Figure 6.116: Dependencies Data Display by searching non-existing class name

128

Figure 6.117: Index Method in MetricsController

Figure 6.118: display-metric blade view component

129

Figure 6.119: Metrics Data Display

Last but not least, the created ontology can be downloaded as a file. Using the

WebVOWL tools, you can choose from a variety of ontology types to download and create a

graph from.

Figure 6.120: Dropdown Navigation Bar

There are numerous options to download the ontology files, including dependency,

method, variable, and whole ontology, from the dropdown navigation bar above. When you

click the generate graph button after downloading the file, step-by-step directions for creating

the graph will then display in the page.

130

Figure 6.121: Step 1&2 To Generate Ontology Graph

Figure 6.122: Step 3 to generate Ontology Graph

131

Figure 6.123: Step 4 to search in the ontology graph

Figure 6.124: Example Output generated for method ontology graph

132

6.4 System Deployment

Git provides effective version control for this online application, which is hosted on GitHub

Repositories. Git is a well-liked version control system that enables developers to effortlessly

manage several project versions, track changes, and collaborate on code. Git makes it simple

to integrate code updates and improvements while maintaining a well-organized development

process.

The project repositories are housed on GitHub, a platform for collaboration and

version control on the internet. A central location for developers to store, manage, and share

their code repositories is provided by GitHub. With features like pull requests, branching, and

issue tracking, it enables productive teamwork and makes it simpler to evaluate and integrate

code changes.

Figure 6.125: Some of the Git Action

133

Figure 6.126: GitHub Repositories

6.5 Conclusion

This chapter concludes with an overview of the system implementation procedure. The

project setup process starts with setting up the AWS and Azure accounts that will be used to

leverage Amazon S3, Amazon Lambda Function, and Azure Databricks Platform for file

storage and the use of Distributed Processing Techniques. This chapter also demonstrates

how the Laravel project setup may be configured, as well as how a web application can

interface with Amazon S3 services and immediately launch an AWS Lambda Function to run

a Databricks workflow. The installation of necessary dependencies and tools is then covered

in the chapter.

Extraction, Transformation, Store Data, and Ontology Transformation Module are

the different system modules. Each module's implementation process is described in depth,

including the use of various tools and proof-of-code segments. Each module result has been

displayed since the module was implemented. Not to mention that the web application and

Python Flask program are hosted on GitHub repositories and use Git for efficient version

control, giving them a central location for development management and communication.

134

CHAPTER 7

7 SYSTEM TESTING

7.1 Introduction

Unit testing, integration testing, and usability testing were all conducted in this chapter to

ensure that both the functional and the non-functional needs of the software were met in this

project.

7.2 Unit Testing

In this project, unit testing is used to manually test each function to make sure the web

application complies with the required definition. This method ensures that all functional and

non-functional requirements are met while also assisting in the functionality verification of

the applications. Other than that, this method will be conducted with manual testing and API

testing with Postman. Postman will be act as a tool that helps in API Testing. Postman is a

popular collaboration platform and toolset for testing, developing and documenting APIs. It

provides a user-friendly interface that allows developers, testers, and API consumers to

interact with APIs and perform various tasks related to API development and testing.

Postman simplifies the process of making API requests, inspecting responses, and automating

API workflows. Hence, the test cases and result of the Flask API testing and their

accompanying findings are summarized below.

135

7.2.1 Unit Testing for Extraction Module

Table 7.1: Unit Testing for Extraction Module

Test Module Extraction Module Test Title File Upload from the Web Application

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UNIT-001 Upload Valid Source Code 1. Select the files

the user wishes to

upload for

analyse purpose.

2. Click open on the

file browsing

console.

3. Click Upload

Files button to

proceed

I. Java Source

Code Files

The source code files

have been uploaded

to S3 bucket and

return the upload

successfully message.

Pass

UNIT-002 Upload Invalid Source Code 1. Select files with

invalid file

extension the user

wishes to upload

for analyse

I. Source Code

Files with other

extension except

from Java.

The source code files

will not be uploaded

to S3 bucket and

return the Upload fail

message with Invalid

Pass

136

purpose.

2. Click open on the

file browsing

console.

3. Click Upload

Files button to

proceed.

File Extension.

UNIT-003 Mounting S3 Bucket into

Databricks DBFS

1. The files

uploaded in the

S3 Bucket are

retrieve and

mounted in

Databricks DBFS

No Test Data The S3 bucket which

contains the source

code files is mounted

in Databricks DBFS

and be access by

Databricks Notebook

Pass

137

7.2.2 Unit Testing for Transformation Module

Table 7.2: Unit Testing for Transformation Module

Test Module Transformation Module Test Title Source Code Transformation Process

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UNIT-004 Extract the information from

the Java Source Code File

and perform pre-processing

which filtering those

unnecessary line, noisy data

and comments in the source

code.

1. Mapping the line

retrieve from the

source code into

lower case

2. Trimming the

line by removing

the leading and

trailing

whitespace

characters

3. Filter out the line

with some

specific character

which represents

the comment line

and remove some

line with special

No Test Data A clean collection of

the source code line

has been retrieving

and save into a

variable for further

process to retrieve

Dependency, Method,

Variable and Metrics

data.

Pass

138

word which

indicates the

unnecessary line

and noisy data.

4. Retrieve the class

name by using

conditional

statement and

add a new

column beside

each of the line

in the collection

which

representing the

line is belong to

which class.

5. Remove Those

line without class

name as noisy

data.

139

UNIT-005 Extract the information from

the Collection retrieve in the

pre-processing phase and

retrieving Dependency data,

transform into data frame.

1. Using

Conditional

Statement, insert

a new column in

the collection

which represents

the method name.

2. Using the

collection, find

the dependent

method in the

line with

corresponding

class and method

using specific

character and

save into a new

collection.

3. Remove those

line with empty

No Test Data The Dataframe result

retrieved showing the

relationship between

the class, function

and variable with 3

columns, Class,

Function and

HasDependencies.

Pass

140

method name.

4. Transform into

Dataframe.

5. Iterate the

process until

there is no

specific

characters occurs

in the Cut

column of the

collections.

During the

iteration process,

each iteration

produces a

Dataframe with

same columns.

6. Merge the

Dataframe and

remove

unnecessary

141

columns.

UNIT-006 Extract the information from

the Collection retrieve in the

pre-processing phase and

retrieving Variable data,

transform into data frame.

1. Filtering out the

line with specific

string which

represent the type

of the variable.

2. Retrieve only the

variable name

with substring

function.

3. Construct a new

collection which

storing the class

name and

corresponding

variable.

4. Remove element

with empty

variable name.

5. Remove duplicate

element occurs in

No Test Data The Dataframe result

retrieved showing the

relationship between

the class and variable

with 2 columns, Class

and HasVariable.

Pass

142

the collection.

6. Transform Into

DataFrame with

the collection

retrieved.

UNIT-007 Extract the information from

the Collection retrieve in the

pre-processing phase and

retrieving Method data,

transform into data frame.

1. Filtering out the

line with specific

characters and

string which

represents the line

contains a

method.

2. Retrieve only

method name

with substring

function.

3. Construct a new

collection which

stores the class

and its

corresponding

No Test Data The Dataframe result

retrieved showing the

relationship between

the class and method

with 2 columns, Class

and HasMethod.

Pass

143

method name.

4. Transform into

Dataframe

UNIT-008 Extract the information from

the Collection retrieve in the

pre-processing phase and

retrieving Metric data,

transform into data frame.

1. Perform filtering

process with

different

condition to

retrieve the

ImportClass line,

Class line,

Interface line, and

Function line.

2. After the filtering

process, using

distinct to remove

duplicate

elements occurs

in each of the

collection.

3. Using Count

function to get the

No Test Data The Dataframe result

retrieved showing the

relationship between

the Attribute and

quanitty with 2

columns, Attribute

and Quantity. The

attributes contain

Total Line of Code,

Total Class, Total

Method, Total

Interface and Total

Imported Library.

Pass

144

quantity for each

of the attribute.

4. Create a new

collection to save

the attributes and

corresponding

quantity.

5. Transform into

Dataframe.

145

7.2.3 Unit Testing for Store Data Module

Table 7.3: Unit Testing for Store Data Module

Test Module Store Data Module Test Title Writing the Data from the DataFrame into

CSV File

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UNIT-009 Writing Variable Dataframe

into CSV and save into S3

Bucket.

1. Using The

Variable

Dataframe

Generated from

the

Transformation

Module, write the

data into CSV

and save into

mounted S3

bucket in DBFS.

No Test Data The variableCSV file

should save in the

DBFS and sync to the

S3 bucket in the

AWS S3 console.

Pass

UNIT-010 Writing Method Dataframe

into CSV and save into S3

Bucket.

1. Using The

Method

Dataframe

Generated from

the

No Test Data The methodCSV file

should save in the

DBFS and sync to the

S3 bucket in the

AWS S3 console.

Pass

146

Transformation

Module, write the

data into CSV and

save into mounted

S3 bucket in

DBFS.

UNIT-011 Writing Dependencies

Dataframe into CSV and

save into S3 Bucket.

1. Using The

Dependencies

Dataframe

Generated from

the

Transformation

Module, write the

data into CSV and

save into mounted

S3 bucket in

DBFS.

No Test Data The

dependenciesCSV file

should save in the

DBFS and sync to the

S3 bucket in the

AWS S3 console.

Pass

UNIT-012 Writing Metrics Dataframe

into CSV and save into S3

Bucket.

1. Using The

Metrics

Dataframe

Generated from

No Test Data The metricsCSV file

should save in the

DBFS and sync to the

S3 bucket in the

Pass

147

the

Transformation

Module, write the

data into CSV and

save into mounted

S3 bucket in

DBFS.

AWS S3 console.

148

7.2.4 Unit Testing for Ontology Transformation Module

Table 7.4: Unit Testing for Ontology Transformation Module

Test Module Ontology Transformation Module Test Title Retrieve CSV File Data and Transform into

Ontology

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UNIT-013 Retrieve the CSV Files

saved in S3 bucket and get

the content of those CSV

files.

1. Create a boto3 client and set

up configuration of the

boto3 to connect S3 bucket.

2. Retrieve all the keys with

CSV file extension and

defined prefix.

3. Add the key to

corresponding array created.

4. Iterate through the arrays

which contains the key to

access the content of the

files for different purposes

and get the content of the

file with the key.

5. Save the content into an

array and concatenate the

No Test Data The are 4 Dataframe

generated which include

Variable, Method,

Dependency and Metric

with the Key retrieve by the

boto3 client.

Pass

149

array become a complete

Python Dataframe.

UNIT-013 Using the Variable

Dataframe, construct an

ontology graph and add

the data of the variable

dataframe into ontology

graph as triple.

1. Iterate Through the Variable

Dataframe, creating unique

URI reference with the

value of the dataframe

columns.

2. Creating triple with the

unique URI reference and

add into the ontology graph.

3. Creating unique URI

reference for the

relationship of the class and

variable as object property

4. Creating triples with the

relationship URI reference

with corresponding domain

(class URI ref) and range

(variable URI ref)

No Test Data The Ontology graph should

have classes nodes and

corresponding Variable with

relationship (Object

Property)

Pass

UNIT-014 Using the Method

Dataframe, construct an

1. Iterate Through the Method

Dataframe, creating unique

No Test Data The Ontology graph should

have classes nodes and

Pass

150

ontology graph and add

the data of the variable

dataframe into ontology

graph as triple.

URI reference with the

value of the dataframe

columns.

2. Creating triple with the

unique URI reference and

add into the ontology graph.

3. Creating unique URI

reference for the

relationship of the class and

method as object property

4. Creating triples with the

relationship URI reference

with corresponding domain

(class URI ref) and range

(method URI ref)

corresponding Methods with

relationship (Object

Property)

UNIT-015 Using the Dependencies

Dataframe, construct an

ontology graph and add

the data of the variable

dataframe into ontology

graph as triple.

1. Iterate Through the

Dependencies Dataframe,

creating unique URI

reference with the value of

the dataframe columns.

2. Creating triple with the

No Test Data The Ontology graph should

have classes nodes and

corresponding dependencies

with relationship (Object

Property)

Pass

151

unique URI reference and

add into the ontology graph.

3. Creating unique URI

reference for the

relationship of the class and

dependency as object

property

4. Creating triples with the

relationship URI reference

with corresponding domain

(class URI ref) and range

(dependency URI ref)

UNIT-016 Using the Metrics

Dataframe, construct an

ontology graph and add

the data of the variable

dataframe into ontology

graph as triple.

1. Iterate Through the Metrics

Dataframe, creating unique

URI reference with the

value of the dataframe

columns.

2. Creating triple with the

unique URI reference and

add into the ontology graph.

3. Creating unique URI

No Test Data The Ontology graph should

have attribute nodes and

corresponding quantity with

relationship (Object

Property)

Pass

152

reference for the

relationship of the attribute

and quantity as object

property

4. Creating triples with the

relationship URI reference

with corresponding domain

(attribute URI ref) and range

(quantity URI ref)

Test Module Ontology Transformation Module Test Title Retrieve all data from Ontology

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UNIT-017 Using the constructed

Ontology graph, return all

the Variable data by using

SPARQL and Flask.

1. Sending Request to

corresponding URL

No Test Data The classes and

corresponding variable data

will be return as JSON

format data.

Pass

UNIT-018 Using the constructed

Ontology graph, return all

the Method data by using

SPARQL and Flask.

1. Sending Request to

corresponding URL

No Test Data The classes and

corresponding method data

will be return as JSON

format data.

Pass

UNIT-019 Using the constructed

Ontology graph, return all

1. Sending Request to

corresponding URL

No Test Data The classes and

corresponding dependencies

Pass

153

the Dependencies data by

using SPARQL and Flask.

data will be return as JSON

format data.

UNIT-020 Using the constructed

Ontology graph, return all

the Metric data by using

SPARQL and Flask.

1. Sending Request to

corresponding URL

No Test Data The attributes and

corresponding quantity data

will be return as JSON

format data.

Pass

Test Module Ontology Transformation Module Test Title Retrieve data from Ontology by user input

class name

Test Case ID Test Case Description Execution Steps Test Data Expected Result Status

UNIT-021 Using the constructed

Ontology graph, return the

Variable data by using

SPARQL and Flask with

the class name input by

the user.

1. User Input the class name.

2. Sending Request to

corresponding URL with the

class name

Class name:

usercontroller

The class with the user input

class name and

corresponding variable data

will be return as JSON

format data.

Pass

UNIT-022 Using the constructed

Ontology graph, return the

Method data by using

SPARQL and Flask with

the class name input by

the user.

1. User Input the class name.

2. Sending Request to

corresponding URL with the

class name

Class name:

usercontroller

The class with the user input

class name and

corresponding method data

will be return as JSON

format data.

Pass

154

UNIT-023 Using the constructed

Ontology graph, return the

Dependencies data by

using SPARQL and Flask

with the class name input

by the user.

1. User Input the class name.

2. Sending Request to

corresponding URL with the

class name

Class name:

usercontroller

The class with the user input

class name and

corresponding dependencies

data will be return as JSON

format data.

Pass

155

7.3 Integration Testing

Verifying how distinct software program modules or components interact with one another is

the goal of software testing, sometimes known as "integration testing". Integrity testing is

used to make sure that these components, which may have been developed and tested

independently, work properly together. Using PHPUnit, this technique is used for both

manual and automated testing. A well-liked unit testing framework for the PHP programming

language is PHPUnit. It is made to make it easier to create and run unit tests, a sort of testing

that focuses on ensuring the accuracy of distinct software units or components in isolation. In

this integration test, the entire system flow is tested, including the file upload process, the

Databricks notebook execution, the performance of the analysis process, and the return of the

data to the S3 bucket with several CSV files. The data will then be fetched and extracted from

the CSV files using the Flask application, which was used to build ontologies in a Python

environment. The Laravel web application is able to retrieve the data from the ontology graph

created by making requests to the Flask application using the routes provided in the Flask

application and display it in the web application.

In the table below, the Integration Test Cases and Results are displayed next.

156

Table 7.5: Integration Test Cases

Test

Module

Extraction Module + Transformation Module Test Title Integration Testing of Laravel

Web-Application, S3 Bucket,

Lambda Function and Azure

Databricks

Test

Case ID

Test Case Description Execution Steps Test Data Expected Result Status

INT-001 Uploading Source Code File from

Laravel Web-Application into S3

Bucket, which trigger the

execution of the Databricks

Notebook and generate Dataframe

output in the Transformation

Module.

1. Upload the Java Source Code Files

through Laravel Web-Application

2. Saving the source code files into

S3 Bucket

3. Trigger AWS Lambda function to

call Databricks API

4. Execution of Databricks Notebook

5. Display Dataframe Result

Java Source

Code Files

The Dataframes should

include the Variables,

Methods, Dependencies and

Metrics data.

Pass

INT-002 Uploading Invalid Source Code

File from Laravel Web-

Application into S3 Bucket,

which trigger the execution of the

Databricks Notebook and

generate CSV outputs and saving

1. Upload the Java Source Code Files

through Laravel Web-Application

2. Error Message Return

PHP Source

Code Files

Error Prompt in the Web-

Application Page with

invalid file extension.

Pass

157

into S3 Bucket.

Test

Module

Store Data Module + Ontology Transformation Module Test Title Integration Testing of S3 Bucket

with CSV Files Data, Flask

Application, Laravel Web

Application

Test

Case ID

Test Case Description Execution Steps Test Data Expected Result Status

INT-003 After the Transformation process,

the data in the dataframes are save

into S3 bucket as CSV Files and

retrieve by the Flask Application

and perform ontology

transformation process.

1. Writing the Dataframe data as

CSV files.

2. Saving the CSV files into S3

bucket.

3. Retrieve the key in the S3 Bucket.

4. Retrieve the content of the files

with the key retrieved.

5. Perform Ontology Transformation

process.

No Test Data The data in the CSV files

are retrieve completely and

accurately. Moreover, the

Ontology graph has been

constructed successfully

with the data retrieved.

Pass

INT-004 Testing the integration between

the Flask Application and Laravel

Wen-Application to retrieve all

Variable Data

1. Clicking the display data button

and select display variable.

2. Sending Request to Flask

Application

No Test Data All the Class and

corresponding variable are

shown in the page.

Pass

158

3. Received Data and Render the

Class Variable Page.

INT-005 Testing the integration between

the Flask Application and Laravel

Wen-Application to retrieve

Variable Data with user input

class name.

1. Clicking the display data button

and select display variable.

2. Input the class name.

3. Sending Request to Flask

Application

4. Received Data and Render the

Class Variable Page.

Class name:

usercontroller

The class with user input

class name and

corresponding variables is

shown in the page

Pass

INT-006 Testing the integration between

the Flask Application and Laravel

Wen-Application to retrieve all

Method Data

1. Clicking the display data button

and select display method.

2. Sending Request to Flask

Application

3. Received Data and Render the

Class Variable Page.

No Test Data All the Class and

corresponding methods are

shown in the page.

Pass

INT-006 Testing the integration between

the Flask Application and Laravel

Wen-Application to retrieve

Method Data with user input class

name

1. Clicking the display data button

and select display method.

2. Input the class name.

3. Sending Request to Flask

Application

4. Received Data and Render the

Class name:

usercontroller

The class with user input

class name and

corresponding methods is

shown in the page

Pass

159

Class Variable Page.

INT-007 Testing the integration between

the Flask Application and Laravel

Wen-Application to retrieve all

Dependencies Data

1. Clicking the display data button

and select display dependency.

2. Sending Request to Flask

Application

3. Received Data and Render the

Class Dependencies Page.

No Test Data All the Class and

corresponding dependencies

are shown in the page.

Pass

INT-008 Testing the integration between

the Flask Application and Laravel

Wen-Application to retrieve

Dependencies Data with user

input class name

1. Clicking the display data button

and select display dependency.

2. Input the class name.

3. Sending Request to Flask

Application

4. Received Data and Render the

Class Variable Page.

Class name:

usercontroller

The class with user input

class name and

corresponding dependencies

is shown in the page

Pass

INT-009 Testing the integration between

the Flask Application and Laravel

Wen-Application to retrieve all

Metrics Data

1. Clicking the display data button

and select display metric.

2. Sending Request to Flask

Application

3. Received Data and Render the

Class Dependencies Page.

No Test Data All the Attributes and

corresponding quantity are

shown in the page.

Pass

160

Test

Module

Store Data Module + Ontology Transformation Module Test Title Integration Testing of Flask

Application, Laravel Web

Application and WebVOWL

Test

Case ID

Test Case Description Execution Steps Test Data Expected Result Status

INT-010 Testing the integration between

the Flask Application and Laravel

Wen-Application to retrieve

Complete Ontology File and

upload to WebVOWL to visualize

the Ontology Graph.

1. Clicking the transformation

ontology & graph button and

select generate graph.

2. Follow the procedure by

downloading the ontology file.

3. Clicking the transformation

ontology & graph button and

select complete ontology.

4. Sending Request to Flask

Application and return the

CompleteOntology.ttl file as a

downloadable attachment.

5. Clicking on the WebVOWL Link

and upload the file follow the

procedure.

No Test Data The Complete Ontology

graph is generated

Pass

161

6. The ontology graph is generated.

INT-011 Testing the integration between

the Flask Application and Laravel

Wen-Application to retrieve

Variable Ontology File and

upload to WebVOWL to visualize

the Ontology Graph.

1. Clicking the transformation

ontology & graph button and

select generate graph.

2. Follow the procedure by

downloading the ontology file.

3. Clicking the transformation

ontology & graph button and

select variable ontology.

4. Sending Request to Flask

Application and return the

Variable.ttl file as a downloadable

attachment.

5. Clicking on the WebVOWL Link

and upload the file follow the

procedure.

6. The ontology graph is generated.

No Test Data The Variable Ontology

Graph is generated

Pass

INT-012 Testing the integration between

the Flask Application and Laravel

Wen-Application to retrieve

Method Ontology File and upload

1. Clicking the transformation

ontology & graph button and

select generate graph.

2. Follow the procedure by

No Test Data The Method Ontology

Graph is generated

Pass

162

to WebVOWL to visualize the

Ontology Graph.

downloading the ontology file.

3. Clicking the transformation

ontology & graph button and

select method ontology.

4. Sending Request to Flask

Application and return the

Method.ttl file as a downloadable

attachment.

5. Clicking on the WebVOWL Link

and upload the file follow the

procedure.

6. The ontology graph is generated.

INT-013 Testing the integration between

the Flask Application and Laravel

Wen-Application to retrieve

Dependencies Ontology File and

upload to WebVOWL to visualize

the Ontology Graph.

1. Clicking the transformation

ontology & graph button and

select generate graph.

2. Follow the procedure by

downloading the ontology file.

3. Clicking the transformation

ontology & graph button and

select depepndecy ontology.

4. Sending Request to Flask

No Test Data The Dependencies Ontology

Graph is generated

Pass

163

Application and return the

Dependency.ttl file as a

downloadable attachment.

5. Clicking on the WebVOWL Link

and upload the file follow the

procedure.

6. The ontology graph is generated.

164

Figure 7.1: The Test Result

The results of testing the Flask API and the integration between the web

application's route and the Flask API are shown in Figure 7.8, which uses the previously

described Guzzle to handle the HTTP request between the Flask API and Laravel web

application. With the aid of PHP Unit, some test cases are run, and as a result, all tests are

passed. The Figures below demonstrate the construction of the test cases. Additionally, run

the "php artisan test" command in the Laravel Web-Application directory and ensure that the

Flask Application is running in order to execute the defined test cases.

165

Figure 7.2: Test Cases for Method API

Guzzle allows us to send HTTP requests to Flask applications in order to retrieve

JSON data. To verify that the URL is accurate, we first test the status of the response return

after submitting the request to the Flask application. After that, retrieve data from the Flask

application using the tested URL and compare each data value return with the anticipated

outcome. The get data by class method is equivalent. The test cases that follow all relate to

the same idea that is described and depicted in the drawings below.

166

Figure 7.3: Test Cases for Variable API

167

Figure 7.4: Test Cases for Dependencies API

168

Figure 7.5: Test Cases for Metrics API

Figure 7.6: Test Cases for Different Ontology File Download

169

Additionally, some integration testing scenarios are also carried out using PHP Unit

by utilizing the Get method with a route that would call the controller's function and make a

request to a Flask application. The web page will be rendered together with the data return.

Applying the assertViewIs and assertSee functions to the content and the views file that were

responsible for rendering the page will ensure that the rendered data is accurate. The code

segments for the Integration Testing cases are shown in the images below. Figure 7.8 displays

the outcomes of the integration testing instances declared below.

Figure 7.7: Integration Test in Retrieving Method Data

170

Figure 7.8: Integration Test in Retrieving Variable Data

Figure 7.9: Integration Test in Retrieving Dependency Data

171

Figure 7.10: Integration Test in Retrieving Ontology File

7.4 Performance Testing

Performance testing is a subset of software testing that focuses on assessing a software

application's speed, responsiveness, scalability, stability, and overall performance under

various circumstances. Performance testing's main objective is to confirm that the application

meets performance standards and provides a positive user experience.

In our application, one of the main elements that affects how quickly an analysis is

completed in Databricks is the responsiveness of the Web application. Performing

performance testing for the total processing time of execution in Databricks notebook

involves assessing how efficiently the notebook executes its code and generates results. The

analytical process should be completed in less than three minutes. And the Databricks

Notebook's execution result is displayed below. The analytic process and data storage process,

which satisfy the requirements needed for the web application, take 1 minutes and 5 seconds

to finish. The Flask Application is able to retrieve the data as quickly as possible and connect

back to the web application when the analysis speed increases.

Figure 7.11: Total Used Time for Databricks Analysis & Produce Output

172

Table 7.6: Execution Databricks Notebook Under Normal Load Test Case

Test Case ID Test Description Steps Expected Result Status

PFT-001 Measure the total

execution time of a

Databricks

Notebook under

normal load

Condition

1. Upload File

Through Web

Application

2. Trigger Execution

of the Workflow

declare in

Databricks.

3. Record the total

execution time of

the workflow

which took

responsibility for

the execution of

Databricks

notebook.

The total

execution time

should be lower

than 3 minutes to

complete the

analysis process

and generate

output

Pass

Additionally, the flask will be in charge of retrieving the data from the S3 Bucket

and transforming it into an ontology after the analysis phase and data storage procedure are

complete. The Flask application needs 0.5 seconds to process thousands of rows of data from

CSV files calculated by the Time module imported. It could construct the ontology graph

and provide the data by submitting a request to the Flask Application because it satisfied the

non-functional requirements.

Figure 7.12: Total Used Time for Construct Ontology Graph

173

Table 7.7: Ontology Construction Under Normal Load Test Case

Test Case ID Test Description Steps Expected Result Status

PFT-002 Measure the total

construction time

for the ontology

graph construction

which include data

retrieving phase

and generate

ontology phase.

1. Retrieve Data

from the S3

Bucket after

the Databricks

Analysis is

done.

2. Extracting

data from the

files retrieved

from S3

bucket.

3. Construct the

ontology

graph using

the data

extracted.

4. Record the

total execution

time of the

function

which took

responsibility

for the

ontology

construction.

The total execution

time should be lower

than 1 minutes to

complete the data

retrieving process and

ontology generating

phase.

Pass

174

Table 7.8: Used Time for Sending Different Flask API Request

API Request Average Used Time (ms)

getAllMethod 45

getAllDependencies 45

getAllVariable 38

getVariableByClass 15

getMethodByClass 15

getDependentByClass 18

getAllMetric 34

The average used time for sending requests to the Flask application to retrieve data

is displayed in the table above. All API queries are completed in less than 50 milliseconds,

ensuring a smooth data return process and better user experiences.

Table 7.9: Sending Request to Flask API Under Normal Load Test Case

Test Case ID Test Description Steps Expected Result Status

PFT-003 Measure the

average response

time to for the

Flask Application

to handle each of

the request

1. Sending Request

to Flask

Application

2. Measure the

response time for

the corresponding

request.

3. Iterate 5 time the

step above and

calculate the

average response

time.

4. Iterate the step

above with all the

requests.

Each of the

request should

return the result

within 100

millisecond

which provide

near-

instantaneous

response.

Pass

175

7.5 System Usability Test

The System Usability Scale (SUS) is being utilized in this project to assess the application's

usability. The "quick and dirty" methodology of the SUS was chosen because it produces

accurate findings for usability testing. This method is especially helpful for this job because it

only requires one person to finish the system in a short amount of time. The SUS

questionnaire consists of 10 questions, each with five possible answers ranging strongly agree

to neutral to strongly disagree. A score of 1 to 5, with 5 being a strong agreement and 1 a

strong disagreement, is assigned to each response option. The System Usability Scale (SUS),

which has been cited in more than 1,300 articles and publications, has developed into an

industry standard. The SUS has the advantage of being a powerful testing instrument because

it can generate trustworthy results with tiny sample quantities. Additionally, it is a reliable

indicator of whether a system is useable or not (Klug, 2017).

The User Satisfaction Survey Template (Brooke, 1996), which consists of two

sections, is shown in the table below and was used to conduct the usability testing. As was

already indicated, Section A comprises of the ten rating questions, while Section B has three

open-ended questions that let respondents offer brief observations on the current system The

template and open-ended questions is shown in the Appendix A.

7.5.1 Test Scenario of Usability Testing

Test Scenario to act as a software developer / maintainer

Scenario 1 – Upload the Java Source code file to perform analysis purpose

Imagine you are a software developer / maintainer that are new to the team and would request

to use this system to get basic understanding about the source code system by uploading them

to a web application with a URL provided. What would you do to access this system and

upload the source code?

Scenario 2 – Retrieve the basic variable data for each of the class

Imagine you are a software developer / maintainer. You need to get the basic understanding

of the source code by knowing the variable for each of the classes. Your task is to navigate to

specific pages that return the variable data for different classes. How would you access this

information in the web application?

Scenario 3 – Retrieve the variable data for specific class by searching with class name

Imagine you are a software developer / maintainer. You need to get specific variable data for

176

specific class which helps you to solve the bug of the system. Your task is to navigate to

specific pages, searching the data by input the class name and it return the variable data for

different classes. How would you access this information in the web application?

Scenario 4 – Retrieve the basic method data for each of the class

Imagine you are a software developer / maintainer. You need to get the basic understanding

of the source code by knowing the method for each of the classes. Your task is to navigate to

specific pages that return the method data for different classes. How would you access this

information in the web application?

Scenario 5 – Retrieve the method data for specific class by searching with class name

Imagine you are a software developer / maintainer. You need to get specific method data for

specific class which helps you to solve the bug of the system. Your task is to navigate to

specific pages, searching the data by input the class name and it return the method data for

different classes. How would you access this information in the web application?

Scenario 6 – Retrieve the basic dependency data for each of the class

Imagine you are a software developer / maintainer. You need to get the basic understanding

of the source code by knowing the dependency for each of the classes. Your task is to

navigate to specific pages that return the dependency data for different classes. How would

you access this information in the web application?

Scenario 7 – Retrieve the dependency data for specific class by searching with class name

Imagine you are a software developer / maintainer. You need to get specific dependency data

for specific class which helps you to solve the bug of the system. Your task is to navigate to

specific pages, searching the data by input the class name and it return the dependency data

for different classes. How would you access this information in the web application?

Scenario 8 – Retrieve the metric data for whole source code system

Imagine you are a software developer / maintainer. You need to get the basic understanding

of the source code by knowing the metrics of the whole source code system. Your task is to

navigate to specific pages that return the metrics data. How would you access this

information in the web application?

Scenario 9 – Download the complete ontology file to generate ontology graph which support

ontology meaning

Imagine you are a software developer / maintainer. You need to get the understanding of

different component include in the classes, obviously the web application only support

showing one component of the class on a page. Hence the web application provides a

177

complete ontology file download options which support graph generation function. How

would you access this download method and proceed to generate the graph?

Scenario 11 – Download the variable ontology file to generate ontology graph which support

ontology meaning

Imagine you are a software developer / maintainer. You need to get the understanding of

certain component include in the classes that sharing the same variable name, obviously the

web application only support showing one component of the class on a page. Hence the web

application provides a variable ontology file download options which support graph

generation function to show the full visualization of the class and variable nodes and its

relationship. How would you access this download method and proceed to generate the

graph?

Scenario 12 – Download the method ontology file to generate ontology graph which support

ontology meaning

Imagine you are a software developer / maintainer. You need to get the understanding of

certain component include in the classes that sharing the same method name, obviously the

web application only support showing one component of the class on a page. Hence the web

application provides a method ontology file download options which support graph

generation function to show the full visualization of the class and method nodes and its

relationship. How would you access this download method and proceed to generate the

graph?

Scenario 13 – Download the dependencies ontology file to generate ontology graph which

support ontology meaning

Imagine you are a software developer / maintainer. You need to get the understanding of

certain component include in the classes that dependent on the same dependencies function,

obviously the web application only support showing one component of the class on a page.

Hence the web application provides a dependencies ontology file download options which

support graph generation function to show the full visualization of the class and dependency

nodes and its relationship. How would you access this download method and proceed to

generate the graph?

178

7.5.2 Result of Usability Testing

During the course of the usability testing procedure, as described in section 7.5.1, three

respondents were chosen to offer input on 13 test scenarios. In Appendix B, you'll find a list

of each tester's recorded responses.

By allocating a matching numerical score to each response, the respondent's responses are

analysed to determine the SUS score. The following framework can then be used to tabulate

the overall SUS score:

I. For every question with an odd number, one is deducted from the score to determine

the final result.

II. For all questions with an even number, five is deducted from the score to determine

the final result.

III. To get the percentage score, the total score from all the questions that a participant

responded is summed up and multiplied by 2.5.

IV. Each participant's percentage scores are added and divided by the total number of

participants. The entire percentage is divided by 3 in this instance.

The aforementioned procedure can be used to calculate each participant's SUS score. The

SUS score is a total number out of 100, not a percentage, which is crucial to comprehend. A

SUS score of 68 will only place you in the 50th percentile because the average SUS score for

projects is 68. However, an SUS score above or below the average may provide a fast

indicator of how usable the design solution is overall.

SUS Score Grade Adjective Rating

> 80.3 A Excellent

68 – 80.3 B Good

68 C Okay

51 – 68 D Poor

< 51 F Awful

The system received an average usability score of 80.83% during testing, equivalent

to a Grade A rating. The results are displayed in the table below. This demonstrates how

extremely useful and user-friendly web applications are.

179

Participants

Name

Usability Score for Each Question Total Percentage

(%) 1 2 3 4 5 6 7 8 9 10

Chang Hao Jie 3 4 4 3 2 4 3 3 3 3 32 80

Ong Zhi Ying 4 3 3 3 2 4 4 4 3 2 32 80

Lim Jun How 2 4 4 4 2 4 3 4 3 3 33 82.5

Average SUS Score 80.83

Grade A

A few open-ended questions were also produced in addition to the System Usability

Scale (SUS) used in the System Usability Testing to allow respondents to offer succinct

remarks on the present system. This strategy enhanced the quantitative data collected through

the SUS by obtaining insightful feedback on how users felt and perceived the implemented

system. Here is a list of the open-ended questions that were used:

1. What do you like best about the system?

2. What do you like least about the system?

3. Do you have any suggestions for improving the current system?

Based on participant feedback, the following table lists the system's most popular

features and functionalities. However, the investigation did not uncover any least-liked

features or functionalities.

Table 7.10: Summary of Participants’ Top Liked Features of the System

Summary of Participants’ Top Liked Features of the System

The graph generate function using the Ontology File downloaded and WebVOWL is one

of the system features that I most liked.

The time consumed to complete the analysis and return response is better than my

expectation which comparing to the other documentation tools in used.

The splitting of the ontology graph provides better graph visualization of the source

code. Since the Complete Ontology graph generated quite messy leads to difficulties in

searching the nodes in the graph and corresponding relationship.

180

Participants offered suggestions for enhancing the current system, as indicated in the

table below, despite the fact that no issues or least-liked features and capabilities were found

during the testing. These suggestions are helpful for improving the system's overall efficacy

and usefulness.

Table 7.11: Summary of suggestions for improving the system by participants

Summary of suggestions for improving the system by participants

The WebVOWL can be integrated directly in the Web Application since the WebVOWL

is an open-source tool.

There is too limited source code analysis can be done, hope the further work of this

project can handle more type of source code in this web application.

The lack of authentication and authorization which handle different purposes, for

example the project manager is able to upload the source code file and the project

member is able to view the documentation generate by creating some account and assign

to different team member. Hope the further work can include the security features

mentioned above.

7.6 Manual Evaluate the Proposed OBSR with distributed processing techniques

Figure 7.13: Variable in Stakeholder Class

181

Figure 7.14: Search Result with stakeholder’s class variable

From the 2 figure above, the proposed OBSR with distributed processing techniques has

successfully extract the variable result from the source code.

The test cases below showing the result and its test description:

Table 7.12: Test Cases for evaluate the propose OBSR method

Test Case ID Test Description Steps Expected Result Status

EVL-001 Testing the

proposed OBSR

with distributed

technique

approach using

manual validating

the variable of

different classes in

the source code.

1. Input the class

name in the

search text field

and get the result.

2. Manual

comparing the

result with the

actual source

code for

validating the

correctness of the

OBSR approach.

Each of the

variable with

corresponding

class inside the

source code are

listed in the

OBSR approach

which show in the

web page.

Pass

EVL-002 Testing the

proposed OBSR

with distributed

technique

approach using

1. Input the class

name in the

search text field

and get the result.

2. Manual

Each of the

method with

corresponding

class inside the

source code are

Pass

182

manual validating

the method of

different classes in

the source code.

comparing the

result with the

actual source

code for

validating the

correctness of the

OBSR approach.

listed in the

OBSR approach

which show in the

web page.

EVL-003 Testing the

proposed OBSR

with distributed

technique

approach using

manual validating

the dependency of

different classes in

the source code.

1. Input the class

name in the

search text field

and get the result.

2. Manual

comparing the

result with the

actual source

code for

validating the

correctness of the

OBSR approach.

Each of the

dependency with

corresponding

class inside the

source code are

listed in the

OBSR approach

which show in the

web page.

Pass

183

The sample output of the method and dependencies are shown in the figures below:

Figure 7.15: part of Openstockcontroller source code

184

Figure 7.16: Part of the dependencies output of openstockcontroller

185

Figure 7.17: Source code of stakeholder class

186

Figure 7.18: Result of the stakeholder class’s method

187

CHAPTER 8

8 CONCLUSION & RECOMMENDATION

8.1 Conclusion

This chapter's objective is to bring this work to a close which to include the achievement of

the project and the limitation of current developed system and provide recommendation for

further enhancement. All of the goals listed in Chapter 1 were accomplished, including:

1. To develop a web application to handle the redocumentation process by the source

code uploaded by the user and generate documentation and dependency diagram of

the source code.

2. To create a data transformation method in the cloud platform which uses distributed

processing technique and generate output return to the web application.

3. To evaluate the proposed OBSR with distributed processing technique approach using

validating the correctness of the information and diagram generated.

To accomplish the first objective by working together to build a web application, the

Laravel framework and Flask Application were used. In order to create dependency diagrams

that give software maintainers a greater understanding of the source code's structures and

components, the built-in web application may fetch the source code's documentation and

ontology file.

In addition, the second objectives is accomplish by using Azure Databricks cloud

platform, which offers cloud analysis functionalities with distributed processing approaches

to boost the analysis efficiency. The source code uploaded by the Software Project Manager

is saved in the AWS S3 bucket and mounted in Azure Databricks HDFS which enable the

analysis process to retrieve the data from the source code directly. The analysis's output will

be saved in an AWS S3 bucket after it has been completed. The Flask Application can

execute ontology transformation and extract the content of the result using the result. The

ontology data can be extracted with the aid of SPARQL and returned to the web application

by sending a request to the Flask Application.

188

Additionally, the third goal is accomplished through manual testing, which verifies the

accuracy of the analysis by contrasting it with the real source code structure. To ensure

consistency between the analytic result and the graph result, the created graph is then

manually checked.

Not to mention, the project's goal of creating a semantically based redocumentation

technique using distributed processing technology and an ontology to produce documentation

for legacy systems in order to enhance the efficiency of the development and debugging

phases within a project team has been accomplished.

8.2 Limitation and Recommendation for future work

Multiple constraints were found throughout the system's development and testing phases,

both by me and the usability test participants. The following section will list these drawbacks

in brief and offer suggestions for future research. This will make it possible to take care of

any existing restrictions and guarantee that the system's performance may be improved in

subsequent versions.

The first limitation of the system would be the low customization of the WebVOWL

tool. It provides a complete ontology graph and does not handle too much of nodes on the

ontology graph. If the ontology constructed is too complex with too many nodes and

relationship, the graph will not be able perform smoothly and decrease the user experience.

The WebVowl tool is not integrated in the Web Application due to its an open-source tool. If

the customization on the WebVOWL can be done through, the visualization of the ontology

dependency graph can be separate into several pages and provide navigation function to the

element in the ontology graph with an anchor element.

The second limitation of the system would be the limited source code analysis can

be done. The system only can handle Java source code analysis with corresponding ETL

method in the cloud platform. Hence the future work of this project would focus on the

enhancing of the web application which develop different ETL method in cloud platform to

handle different source code uploaded by the Software Project Manager in order to provide

more information and portability of the web application for different type of source code.

189

The third limitation of the system would be lack of authentication and authorization

which handle different purposes. Hence, the future work can be done through adding a

authorization module with authentication function. For example, adding a login, register

account function and assign roles for the account created with the help of Laravel Framework,

such as a manager has an account with project leader role which have the permission of

uploading the source code to perform analysis, and the team member is only allowed to view

the documentation generated.

The fourth limitation of the system it only handles one user, which representing if

the other user uses this application, the previous data will be replace. To address this in the

future work, with the authentication and authorization function, creating different folder with

the account id for different user to store their data and retrieve the data from the

corresponding file with their account id.

The fifth limitation of the system is the performance of the analysis will be affected

by the developers coding style. Because the analysis is done through reading the source code

line by line and extract the necessary information with some string handle methods. The

possible solution is to encourage the developers to follow the coding guideline define in the

team or using formatter before performing the analysis process.

With the limitations and suggestions gathered from the responses, we are confident

that we can address each of the shortcomings with the suggestion and solution offered to

improve the current approach and provide a better approach to documentation analysis that

benefits the software developer or even the entire software industry.

190

8 REFERENCES

Brooke, J., 1996. Sus: a “quick and dirty’usability. Usability evaluation in industry, [e-journal]

189(3), 189–194. Available at: <

http://www.tbistafftraining.info/smartphones/documents/b5_during_the_trial_usability_scale

_v1_09aug11.pdf > [Accessed 30 August 2023].

CANFORA, G. & CIMITILE, A., 2001. SOFTWARE MAINTENANCE. In Handbook of

Software Engineering and Knowledge Engineering, [e-journal] vol. 1, pp. 91–120. Available

at: <https://www.worldscientific.com/doi/abs/10.1142/9789812389718_0005> [Accessed 1

March 2023].

Castillo, R., Rothe, C. & Leser, U., 2010, RDFMatView: Idexing RDF Data for SPARQL Queries.

[e-journal] Available at: <https://www.informatik.hu-

berlin.de/de/forschung/gebiete/ki/wbi/research/publications/2010/rdfmatview.pdf> [Accessed

7 April 2023].

Databricks. (n,.d.). What is Hadoop Distributed File System(HDFS)? [online] Available at:

<https://www.databricks.com/glossary/hadoop-distributed-file-system-hdfs> [Accessed 9

April 2023].

Freeman, R.M. & Munro, M., 1992. Redocumentation for the maintenance of software.

Proceedings of the 30th annual Southeast regional conference on - ACM-SE 30, 413, ACM

Press, New York, New York, USA.

Ganapathy, G. & Sagayaraj, S., 2010. Automatic Ontology Creation by Extracting Metadata from

the Source code. Global Journal of Computer Science and Technology, [e-journal] 10(14).

Available at:

<https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a8a13eccb374c7a5fb361

bcec97ced0d69b38ee2> [Accessed 8 April 2023].

Gannod, G.C. & Cheng, B.H.C., 1999. A Framework for Classifying and Comparing Software

Reverse Engineering and Design Recovery Techniques. Sixth Working Conference, [e-journal]

77–88. Available at:

191

<https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=321c2f66ffefcfdbb2d0d5

9a631d26870652bfb4> [Accessed 2 March 2023].

Garg, A., 2023. Apache Spark Architecture. [online] Intellipaat Blog. Available at:

<https://intellipaat.com/blog/tutorial/spark-tutorial/spark-architecture/> [Accessed 5 April

2023].

Hartmann, J., Palma, R. & Gómez-Pérez, A., 2009. Ontology Repositories. Handbook on

Ontologies, [e-journal] pp. 551–571. Available at:

<https://oa.upm.es/6430/2/OntologyRepositories.pdf> [Accessed 8 April 2023].

Heesch, D. van, 2004. Doxygen. [online] Available at: <http://www.doxygen.org/> [Accessed 5

April 2023].

Kaur, U. & Singh, G., 2015. A Review on Software Maintenance Issues and How to Reduce

Maintenance Efforts. International Journal of Computer Applications, [e-journal] 118(1), 6–

11. Available at:

<https://d1wqtxts1xzle7.cloudfront.net/49247409/A_Review_on_Software_Maintenance_Iss

ues_and_How_to_Reduce_Maintenance_Efforts-libre.pdf?1475263537=&response-content-

disposition=inline%3B+filename%3DA_Review_on_Software_Maintenance_Issues.pdf&Ex

pires=1693686419&Signature=gvG4gY2S9-v6Jm94JGm1Vep2zeV4MSEHjYbgGcOVn-

Hd0-jg8mRXhy0JAfWxuGBPelxHpbXhDum0n-qbTCnJetkFo6U4Vr~r-nD0Y5dFKeJ-T9-E-

hSkpje7mOWPw110ZGb8lslwF~c5MT7aIL40w4TOcwN2LwSgXpJPak6sOuInkgvdJ1VL0f

qbID6rwEkdc1gJ1pk6feoAv7fSTuyee51tW58VaLpK67CJJlJWCpEE5gO6eQ1raGY73CQ-

y0KfREO2DRgjKFdYu5lmtoUn41~8kxQjevfEXuP3~oTA2VEGdZ3PH7eoFOu6YV-

yllxYXPqUDYkpp9f2jD7iM07HYw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA>

[Accessed 3 March 2023].

Klug, B., 2017. An Overview of the System Usability Scale in Library Website and System

Usability Testing. Weave: Journal of Library User Experience, [e-journal] 1(6). Available at:

<http://quod.lib.umich.edu/cgi/t/text/idx/w/weave/12535642.0001.602/--overview-of-the-

system-usability-scale-in-library-website?rgn=main;view=fulltext> [Accessed 30 August

2023].

192

Leslie, D.M., 2002. Using Javadoc and XML to produce API reference documentation.

Proceedings of the 20th annual international conference on Computer documentation, [e-

journal] 104–109, ACM, New York, NY, USA. Available at:

<https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=164ad1f9b38f496e1773a

5929e87c6782edde3c0> [Accessed 5 April 2023].

Martinez, P., 2021. What is Evolutionary Prototype?, [online] Mockitt. Available at: <

https://mockitt.wondershare.com/prototyping/evolutionary-prototyping.html> [Accessed 3

April 2023]

Müller, H.A., Wong, K. & Tilley, S.R., 1993. Understanding Software Systems Using Reverse

Engineering Technology Perspectives from the Rigi Project. CASCON’93, [e-journal] 217–

226. Available at:

<https://d1wqtxts1xzle7.cloudfront.net/49286960/Understanding_software_systems_using_re

v20161002-6470-tlftpc-libre.pdf?1475404458=&response-content-

disposition=inline%3B+filename%3DUnderstanding_Software_Systems_Using_Rev.pdf&E

xpires=1693686708&Signature=CZq6u3tdp3mt7DxAaJ2BP-opfY-pR69efM4qw-

xwJWwAtv5~61sn3q3FjhOBKQYdl8LO7MQJ98iwld0X5HNIAjGOuw3mUuJbkvL~tcJcG

Y11oi~qX13ABEvlSzS8m9VXDLs7mofVm5laUlxMri20HAd-gesLoq-

XZueMQMJZ5pbr9~RL5BRA3BZhEYb3PxKa6R35nQL0A4HP5D8~~nbm0zvTklyflmfbP5

~2~izMFMjqSaMp1UaxX0-

Fbk~Bz5qgYdc95kDOcZs7TL0uY1w7QbrU5HdGJR2d1Cx8ZVhonhIsUCJiAfD4NTACLW

kSzNC-7ueZw~pFtM4gwnlgHAEnPw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA>

[Accessed 5 April 2023].

Nallusamy, S., 2015. An Ontology Based Software Reodumentation Approach TO Support

Program Understanding For Event-Driven Programming – PhD thesis, Universiti Teknologi

Malaysia .

Nallusamy, S., Hao, H.M. & Zulkifle, F.A., 2021. Software Redocumentation Using Distributed

Data Processing Technique to Support Program Understanding for Legacy System: A

Proposed Approach. In Advances in Visual Informatics: 7th International Visual Informatics

Conference, vol. 13051, pp. 239–252.

193

Pérez, J., Arenas, M. & Gutierrez, C., 2009. Semantics and complexity of SPARQL. ACM

Transactions on Database Systems, [e-journal] 34(3), 1–45. Available at:

<https://dl.acm.org/doi/abs/10.1145/1567274.1567278> [Accessed 31 August 2023].

Pointer, I., 2020. What is Apache Spark? The big data platform that crushed Hadoop. InfoWorld.

[online] InforWorld. Available at: <https://www.infoworld.com/article/3236869/what-is-

apache-spark-the-big-data-platform-that-crushed-hadoop.html> [Accessed 5 April 2023].

Ryan, A., 2022. Why documentation is important in software development. [online] Available at:

<https://www.linkedin.com/pulse/why-documentation-important-software-development-

alexander-ryan> [Accessed 1 March 2023].

Shearer, R., Motik, B. & Horrocks, I., 2008. HermiT: A Highly-Efficient OWL Reasoner. [online]

Available at: <http://www.cs.ox.ac.uk/boris.motik/pubs/smh08HermiT.pdf> [Accessed 7

April 2023].

Sirin, E. & Parsia, B., 2007. SPARQL-DL: SPARQL Query for OWL-DL. [e-journal] 258.

Available at: <https://d1wqtxts1xzle7.cloudfront.net/6221666/10.1.1.142.9826-

libre.pdf?1390845057=&response-content-

disposition=inline%3B+filename%3DSparql_dl_Sparql_query_for_owl_dl.pdf&Expires=169

3687149&Signature=gnwA~QWmmyuQ~z86SP79AFxgnFLBPAv7nPG1lRHYv15G5vRK-

Y9QPSNySjYITyXs7Oq3Pxfhn7yY6bSr4-8W6UrHPiqhTo6-

qDMcPquwfXgmaTflxMKscgeCAp0MkyercKTHOibdCoS9gJlikgGAiM93bpo8FPJHbypaB

VB-NkXRY1gyHlNlh-~ZWbyNArvhrgQ9CEg-RIXIlcKYdH4P17ajrb7L-

FMSWmS031CZQRNWaG4a4BwgmY5ldG6lGe4Hs8Q2Qy8pqFcDgQ1A3OxiKkRm5NcG

UZcdhJEsVIpy8wKyz1oPDtDNPcCjNNx-7gmSUm8bXBzcKjLPpVhutzeD4w__&Key-

Pair-Id=APKAJLOHF5GGSLRBV4ZA> [Accessed 30 August 2023].

Sivakumar, R. & Arivoli, P. V, 2011. Ontology Visualization Protégé Tools – a Review.

International Journal of Advanced Information Technology (IJAIT), [e-journal] 1(4).

Available at: <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3429010> [Accessed 6

April 2023].

194

phpDocumentor, (n.d.). Application Flow. [online] Available at:

<https://docs.phpdoc.org/guide/internals/flow.html> [Accessed 11 April 2023].

Natural Docs, (n.d.). The Natural Docs Reference. [online] Available at:

<https://www.naturaldocs.org/reference/> [Accessed 12 April 2023].

195

APPENDICES

Appendix A: Template of User Satisfaction Survey

Participant No.:

Name:

Question Strongly

Disagree

(1)

(2) Neutral

(3)

(4) Strongly

Agree

(5)

1. I think I would like to use

this system frequently.

2. I found the system

unnecessarily complex.

3. I thought the system was

easy to use.

4. I think I would need the

support of a technical

person to be able to use

this system.

5. I found the various

function in this system

were well integrated.

6. I thought there was too

much inconsistency in

this system.

7. I would imagine that most

people would learn to use

this system very quickly

8. I found the tool system

cumbersome to use.

9. I felt very confident using

the system.

10. I needed to learn a lot of

things before I could get

going with this system.

196

1. What do you like best about the system?

2. What do you like least about the system?

3. Do you have any suggestions for improving the current system?

Appendix B: Usability Test Responses

Participant No.: 1

Name: Chang Hao Jie

Question Strongly

Disagree

(1)

(2) Neutral

(3)

(4) Strongly

Agree

(5)

1. I think I would like to use

this system frequently.

 

2. I found the system

unnecessarily complex.



3. I thought the system was

easy to use.

 

4. I think I would need the

support of a technical

person to be able to use

this system.

 

5. I found the various

function in this system

were well integrated.

 

6. I thought there was too

much inconsistency in

this system.



7. I would imagine that most

people would learn to use

this system very quickly

 

8. I found the tool system

cumbersome to use.

 

197

9. I felt very confident using

the system.

 

10. I needed to learn a lot of

things before I could get

going with this system.



1. What do you like best about the system?

The graph generate function using the Ontology File downloaded and WebVOWL

is one of the system features that I most liked.

2. What do you like least about the system?

None

3. Do you have any suggestions for improving the current system?

The WebVOWL can be integrated directly in the Web Application since the

WebVOWL is an open-source tool.

Participant No.: 2

Name: Ong Zhi Ying

Question Strongly

Disagree

(1)

(2) Neutral

(3)

(4) Strongly

Agree

(5)

1. I think I would like to use

this system frequently.

 

2. I found the system

unnecessarily complex.

 

3. I thought the system was

easy to use.

 

4. I think I would need the

support of a technical

person to be able to use

this system.

 

5. I found the various

function in this system

were well integrated.

 

198

6. I thought there was too

much inconsistency in

this system.



7. I would imagine that most

people would learn to use

this system very quickly

 

8. I found the tool system

cumbersome to use.



9. I felt very confident using

the system.

 

10. I needed to learn a lot of

things before I could get

going with this system.

 

1. What do you like best about the system?

The time consumed to complete the analysis and return response is better than my

expectation which comparing to the other documentation tools in used.

2. What do you like least about the system?

None

3. Do you have any suggestions for improving the current system?

There is too limited source code analysis can be done, hope the further work of this

project can handle more type of source code in this web application.

Participant No.: 3

Name: Lim Jun How

Question Strongly

Disagree

(1)

(2) Neutral

(3)

(4) Strongly

Agree

(5)

1. I think I would like to use

this system frequently.

 

2. I found the system

unnecessarily complex.



199

3. I thought the system was

easy to use.

 

4. I think I would need the

support of a technical

person to be able to use

this system.



5. I found the various

function in this system

were well integrated.

 

6. I thought there was too

much inconsistency in

this system.



7. I would imagine that most

people would learn to use

this system very quickly

 

8. I found the tool system

cumbersome to use.



9. I felt very confident using

the system.

 

10. I needed to learn a lot of

things before I could get

going with this system.



1. What do you like best about the system?

The splitting of the ontology graph provides better graph visualization of the source

code. Since the Complete Ontology graph generated quite messy leads to

difficulties in searching the nodes in the graph and corresponding relationship.

2. What do you like least about the system?

None

3. Do you have any suggestions for improving the current system?

The lack of authentication and authorization which handle different purposes, for

example the project manager is able to upload the source code file and the project

member is able to view the documentation generate by creating some account and

200

assign to different team member. Hope the further work can include the security

features mentioned above.

Appendix C: Keys Retrieving Process in S3 Bucket by Boto3

201

Appendix D: Information Extraction and Concatenate Dataframe

202

Appendix E: Iteration of different dataframe and transform into ontology

203

Appendix F: Different Routes to retrieve different Data

204

205

Appendix G: File-upload Blade view component

Appendix H: display-method blade view component

206

Appendix I: display-variable blade view component

207

Appendix J: API Testing Result

208

209

210

	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 Background of the Problem
	1.2 Problem Statement
	1.2.1 Time and budget consuming increased in maintaining the source code with inappropriate software documentation
	1.2.2 Performance of current redocumentation tools reduce due to large source code
	1.2.3 Inefficient in finding relevant information in different file in the source code with current redocumentation tools

	1.3 Aim and Objectives
	1.4 Proposed Solution
	1.5 Proposed Approach
	1.6 Project Scope
	1.6.1 Extraction Module
	1.6.2 Transformation Module
	1.6.3 Store Data Module
	1.6.4 Ontology Transformation Module

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Reverse Engineering
	2.3 Software Redocumentation Process
	2.4 Redocumentation Tools
	2.4.1 Doxygen
	2.4.2 Javadoc
	2.4.3 PHPDocumentor
	2.4.4 Natural Docs

	2.5 Comparison and Analysis of Existing Redocumentation Tools
	2.5.1 Javadoc
	2.5.2 PHPDocumentor
	2.5.3 Doxygen
	2.5.4 Natural Docs

	2.6 Ontology
	2.6.1 Transformation from Data Repositories to Ontology Repositories
	2.6.2 Protégé – Ontology Editor
	2.6.3 HermiT Reasoner
	2.6.4 Querying Ontologies Using SPARQL

	2.7 Apache Spark
	2.7.1 Apache Spark Architecture
	2.7.2 Hadoop Distributed File System

	CHAPTER 3
	3 METHODOLOGY AND WORK PLAN
	3.1 Introduction
	3.2 Software Development Methodology
	3.3 Project Plan
	3.3.1 Work Breakdown Structure (WBS)
	3.3.2 Gantt Chart

	3.4 Development Tools
	3.4.1 Databricks
	3.4.2 Protégé
	3.4.3 HermiT Reasoner
	3.4.4 RDFLib
	3.4.5 Amazon Simple Storage Service
	3.4.6 Amazon Lambda
	3.4.7 Flask API
	3.4.8 Laravel Framework

	CHAPTER 4
	4 PROJECT SPECIFICATION
	4.1 Introduction
	4.2 Requirement Specification
	4.2.1 Functional Requirements
	4.2.2 Non-Functional Requirements
	4.2.3 Use Case Diagram
	4.2.4 Use Case Description

	4.3 Prototype Design

	CHAPTER 5
	5 SYSTEM DESIGN
	5.1 Introduction
	5.2 System Architecture Design
	5.2.1 Laravel Framework Architecture
	5.2.2 Ontology Design

	5.3 Conclusion

	CHAPTER 6
	6 SYSTEM IMPLEMENTATION
	6.1 Introduction
	6.2 Project Setup
	6.2.1 AWS S3 Setup
	6.2.2 Azure Databricks Workspace & Workflows Setup
	6.2.3 AWS Lambda Function

	6.3 System Modules
	6.3.1 Extraction Module
	6.3.2 Transformation Module
	6.3.2.1 Finding Variable for Each Class
	6.3.2.2 Finding Methods for Each Class
	6.3.2.3 Finding Dependencies for Each Class
	6.3.2.4 Code Metrics for Whole Application

	6.3.3 Store Data Module
	6.3.4 Ontology Transformation Module

	6.4 System Deployment
	6.5 Conclusion

	CHAPTER 7
	7 SYSTEM TESTING
	7.1 Introduction
	7.2 Unit Testing
	7.2.1 Unit Testing for Extraction Module
	7.2.2 Unit Testing for Transformation Module
	7.2.3 Unit Testing for Store Data Module
	7.2.4 Unit Testing for Ontology Transformation Module

	7.3 Integration Testing
	7.4 Performance Testing
	7.5 System Usability Test
	7.5.1 Test Scenario of Usability Testing
	7.5.2 Result of Usability Testing

	7.6 Manual Evaluate the Proposed OBSR with distributed processing techniques

	CHAPTER 8
	8 CONCLUSION & RECOMMENDATION
	8.1 Conclusion
	8.2 Limitation and Recommendation for future work

	8 REFERENCES
	APPENDICES

