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ABSTRACT 

 

Unmanned aerial vehicle-mounted base stations (UAV-BS) have the potential 

to revolutionize fifth-generation (5G) networks and beyond. Their ability to 

traverse virtually any terrain allows them to be positioned in the air to provide 

coverage and connectivity to nearby users. However, determining the UAV-

BS’s optimal positions is challenging, as several factors must be considered, 

including quality of service (QoS), collision avoidance, and fair QoS 

provisioning for efficient usage of UAV-BS’s limited transmit power. Thus, we 

propose a fairness-aware three-dimensional multi-UAV-BS placement scheme 

based on the artificial hummingbird algorithm (AHA). First, we formulate a 

joint UAV-BS and user association problem to maximize a proportional 

fairness utility function, subject to collision avoidance and user QoS 

requirements. Next, we develop a joint UAV-BS placement and user 

association scheme using the AHA and greedy algorithm. Results show that our 

proposed scheme significantly outperforms existing baseline schemes in 

blocking probability, Jain’s fairness index and data rate. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Background 

In recent years, unmanned aerial vehicles (UAV) have been gaining traction in 

military, agricultural and geological technology use, thanks to its ease of use, 

maneuverability and increasing accesibility. In the area of communications, 

specifically fifth generation (5G) communications, UAVs can be used to carry 

mobile base stations (BSs) to provide and improve network coverage in a given 

area, such as those with impacted connection due to natural disasters, high user 

density, and locations far from fixed network terminals. Relative to traditional 

terrestrial base station networks, UAV-BS networks possess greater flexibility 

in coverage area, being able to traverse virtually any terrain, cost effectiveness 

in providing temporary coverage, and the potential to provide better quality 

coverage in general, as UAV-BSs are able to fly at high altitudes, providing 

broader coverage with few deadzones. 

To fully realise the potential of UAV-BS 5G networks, the three-

dimensional (3D) positioning of UAV-BSs plays a vital role, as their positions 

determine the optimal coverage area and can be vastly affected by the wireless 

environment. The wireless environment can significantly impact the 

performance of 5G UAV-BS networks, and notable factors such as path loss, 

shadowing, and fading can result in reduced coverage area and network 

performance. Additionally, environmental noise and interference from other 

wireless devices in the same airspace can further deteriorate the signal output.  

In the current literature, a variety of optimization algorithms have been 

applied to UAV positioning for 5G networks such as particle swarm 

optimisation (PSO), dynamic programming (DP), genetic algorithm (GA), and 

other novel ad hoc heuristics to factor in specific needs for the respective 

problem (Cicek et al., 2019). It is worth noting that the complex nature of UAV-

BS positioning for 5G networks has led to the fact that optimal approaches such 

as brute forcing not being considered as their execution times are significantly 

longer than heuristic approaches. Nonetheless, current UAV-BS positioning 

techniques for 5G remain far from optimum. The objective of this project is to 
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investigate and develop a more optimal positioning method for 5G UAV-BS 

networks. 

In this project, a UAV positioning scheme based on a new bio-inspired 

meta-heuristic algorithm called the Artificial Hummingbird Algorithm (AHA) 

will be developed and investigated. The AHA-based UAV-BS positioning 

scheme possesses the potential to overcome challenges faced by existing 

solutions, as well as provide a more efficient way to dynamically determine 

suitable UAV-BS positions while addressing fair QoS provisioning and 

collision avoidance - constraints widely forsaken in the current literature. 

   

1.2 Problem Statement 

1.2.1 Limitations of Single UAV-BS Systems  

The main study goal of the UAV positioning problem is to minimise transmit 

power while maximising network coverage (Shakhatreh et al., 2017). Despite 

multiple studies being carried out to achieve this, they mostly consider only 

single UAV-BS networks (Lim et al., 2021). Due to limited transmit power of a 

single UAV-BS, these networks face notable issues when dealt with vast 

coverage area, or uneven terrain that results in path loss, requiring the UAV-BS 

to expend excess transmit power to achieve its quality of service (QoS) 

requirement. 

Utilizing a multi-UAV-BS system can create coverage that greatly 

outperforms a single UAV-BS network in many metrics including data rate, 

reliability and of course, coverage area. However, position optimization for 

multiple UAV-BSs is a complex problem, with much investigation required to 

develop a multi-UAV-BS positioning scheme.  

 

1.2.2 Challenges of Multi-UAV-BS Systems 

When deploying multiple UAVs into a shared airspace, the risk of collision 

among UAVs is unavoidable. This highlights the importance of collision 

avoidance in a multi-UAV-BS positioning scheme as UAV-BS collision will 

likely result in affected devices being damaged, disrupting the QoS provided by 

the 5G network coverage, potentially resulting in network deadzones or service 

interruptions. Another challenge of multi-UAV-BS systems is fair QoS 
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provisioning among users. This is to ensure that each user achieves QoS 

satisfaction without jeopardising other users’ QoS satisfaction. 

 Though current literature have begun to shift focus towards developing 

multi-UAV-BS positioning schemes over single UAV-BS schemes, collision 

avoidance and fair QoS provisioning are seldom accounted for, leaving a 

research gap that should be addressed to ensure development of a practical 

solution. 

  

1.2.3 High Complexity Solutions 

Reducing complexity is a critical step to develop efficient algorithms for solving 

the UAV base station positioning problem. Highly complex algorithms require 

substantial amounts of processing power and computation time, which are not 

practical for UAV-BSs with limited battery life and processing capability. Due 

to this widely known fact, the existing literature on this problem have 

highlighted the development of efficient low complexity algorithms, including 

simulated annealing (Lim et al., 2021), PSO (Li et al., 2018)and genetic 

algorithm (Chen et al., 2018). These algorithms have proved effective in 

obtaining satisfactory solutions with minimal algorithmic complexity. 

However, the dynamic nature of users and their environment presents 

a never ending need to develop algorithms with further reduced complexities, 

to further optimise computating resources, processing time and UAV-BS battery 

life duration. Furthermore, it is also beneficial to develop an algorithm which 

can be easily implemented in 5G systems, as it will greatly reduce the difficulty 

of future optimisation efforts and increases application flexibility. 

 

1.3 Aim and Objectives 

To address the research gaps mentioned above and ensure fair QoS provisioning 

among users, a fairness-aware multi-UAV-BS placement scheme with downlink 

priority is proposed.  

The project objectives are: 

1. To formulate a joint multi-UAV-BS placement and user association 

problem to maximize a proportional-fairness utility function that 

encourages fair QoS provisioning, subject to collision avoidance and 

limited user capacity of UAV-BSs. 
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2. To propose a modified artificial hummingbird algorithm for UAV-BS 

placement that implements a user association approach to solve the joint 

UAV-BS placement and fair QoS provisioning problem.  

3. To demonstrate that the proposed AHA-based UAV-BS placement 

algorithm outperforms baseline schemes in terms of Jain’s fairness index, 

blocking probability, and data rate.  

 

1.4 Proposed Solution 

As mentioned previously, to solve the problem of UAV BS positioning for 5G 

network coverage, an algorithm based on the AHA will be developed to design 

a dynamic multi-UAV positioning scheme with collision avoidance. Figure 1.1 

illustrates the application of the multi-UAV-BS positioning scheme. 

 

 

Figure 1.4.1: 5G network coverage using multiple UAV-BSs 

The AHA is a bio-inspired swarm intelligence-based optimisation 

algorithm that has been shown to successfully solve various complex 

multidimensional optimization problems. This algorithm is developed based on 

the flight patterns and foraging behaviors of hummingbirds, which dictate the 

movement of the hummingbirds in finding and locating food sources. Tests have 

shown that the AHA has a high convergence rate and precise results across a 

spectrum of benchmark functions, while also outperforming other optimisation 
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algorithms in the Friedman test, showing the best overall performance against 

algorithms such as the PSO, Differential Evolution (DE), Gravitational Search 

Algorithm (GSA) over a large set of benchmark functions including separable, 

nonseparable, unimodal and multimodal functions (Zhao, Wang and Mirjalili, 

2022). The limited power source and processing capabilities of UAVs will also 

be addressed by the AHA’s low algorithmic complexity and fast processing 

speed. Considering the AHA’s flexibility and ease of implementation, it is 

chosen to solve the UAV-BS placement problem.  

However, it is important to note that the original AHA does not address 

constraints. As the project considers collision avoidance and fair QoS 

provisioning, the AHA cannot be directly applied. Therefore, a penalty function 

approach will be leveraged in the design of the proposed scheme to address 

collision avoidance, while a greedy-based user association approach will be 

implemented to ensure fair QoS provisioning. 

To test the effectiveness of the proposed solution, we will conduct 

simulations within a realistic system model to evaluate the algorithm’s 

performance. The simulation will be performed using a simulation tool that can 

model the UAVs' movements and communication links. The solution will be 

evaluated based on the Jain’s fairness index, loss rate, and data rate. 

 

1.5 Scope and Limitations of Study 

1.5.1 Scope 

This project investigates and develops an algorithm for 3D positioning of UAV-

BS to achieve optimal 5G network coverage. To outline the project scope, 

several points have been highlighted. 

Firstly, the project investigates and develops an algorithm that 

dynamically optimises the positions of each UAV-BS in a multi-UAV-BS 

model to meet user QoS requirements without factoring in channel allocation 

for BSs. Secondly, the positions of UAV-BSs have to be coordinated in such a 

way that provides fair QoS provisioning while ensuring that the number of users 

that can be served by the UAV-BSs is maximized(Mozaffari et al., 2018). The 

scheme also only optimises downlink connection from UAV-BSs to ground 

users as the project focuses on using UAV-BSs to provide 5G network coverage 

to users, data transmitted in the uplink direction is typically relatively 
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insignificant. Lastly, the algorithm will be designed and developed assuming 

that all ground users exist on the same altitude, while UAV-BSs are positioned 

three-dimensionally in the above airspace. 

 

1.5.2 Limitation of Study 

The implementation of the fairness-aware multi-UAV-BS placement scheme 

will require multiple simultaneously flying UAV-BSs and a large number of 

user devices. To obtain the UAVs and BSs will incur substantial costs, and 

another challenge is that each UAV is required to have a permit issued by the 

Department of Civil Aviation Malaysia (DCA) before flying can commence. A 

large airspace is also required to thoroughly test the algorithm, and depending 

on the location of the airspace, may require further permits before commencing. 

Furthermore, obtaining several hundred user devices is also unfeasible due to 

its high cost. Therefore, testing and implementation of the scheme will be 

performed in a simulation environment. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

As mentioned in the previous chapter, the application of UAV-BSs for 5G 

network coverage is the most researched topic in its field. Researchers have 

tested and proposed many solutions over the years, with varying development 

methods and effectivesness. Hence, the following literature review provides a 

brief introduction to 5G networks, an overview of some popular UAV-BS 

positioning techniques, and a high level breakdown of the AHA’s mechanism 

and characteristics.  

 

2.2 5G Networks and Beyond 

Fifth-generation (5G) mobile communication networks are a comprehensive 

system that facilitates a fully mobile and interconnected society. The conception 

of 5G networks is a result of technological and architectural enhancements to 

4G networks to meet new requirements, resulting in  a multi-component 

network architecture which consists of a radio access network (RAN), core 

network (CN), and cloud infrastructure. 5G networks provide a comprehensive 

range of improvements over previous generation communication networks, 

such as lower latency, higher throughput and internet speed, higher mobility 

range, increased reliability, and greater connectivity density. There are three 

main usage scenarios that 5G networks serve: Enhanced mobile broadband 

connectivity (eMBB), massive machine-type communications (mMTC), and 

ultra-reliable critical communication services (URLCC), which can be applied 

across many industries, such as healthcare, transportation, information and 

communication technology (ICT) and agriculture (Zhang, Wang and Zhou, 

2019).  

 

Historically, the growing demand for mobile broadband services has 

been the driving force behind the evolution of mobile communication 

technology. To meet the needs of newly emerging applications and performance 

demands of mobile device users, eMBB is one of the most important usage 
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scenarios of 5G technology due to its ubiquitous applications in improving 

performance of mobile networks in both hotspots and wide-area coverage to 

surpass 4G technology (Dahlman, Parkvall and Sköld, 2018). eMBB’s enable 

allocation of higher data rates and network capacity to increase internet speed 

in hotspots, while prioritising service mobility and seamlessness for wide-area 

coverage, with lower speed requirements. To cover use cases with strict latency, 

reliability, and availability requirements, 5G technology introduces URLCC 

(Dahlman, Parkvall and Sköld, 2018). Examples of URLCC use cases include 

vehicle-to-vehicle communication, wireless control of industrial equipment, 

remote medical surgery and tactile internet. These applications share a common 

trait of having important functions that can be detrimentally affected by latency 

and network downtime. Driving Internet of Things (IoT) technology, 5G mMTC 

aims to connect a large number of devices with low power and data rates such 

as remote sensors and actuators to achieve high connection density, with a focus 

on maximising the number of interconnected devices (Bockelmann et al., 2018). 

 

According to the International Mobile Telecommuncations-2020 

(IMT-2020) standards’s foreseen use cases for next-generation radio technology, 

these three usage scenarios – eMBB, URLCC, mMTC provide a key grouping 

of widely applicable use cases that can be used to point out relevant performance 

requirements for 5G technology (Dahlman, Parkvall and Sköld, 2018). However, 

it is important to note that these scenarios do not cover all possibilities, and that 

5G technology must be able to adapt to evolving use cases. 

 

5G technology is poised to bring significant impacts on smart 

technology, enhancing speed, network reliability, latency and power efficiency 

(Ni et al., 2019). The latest standard for 5G networks is the IMT-2020 presented 

by the International Telecommunication Union-Radiocommunication Sector 

(ITU-R), which highlights eight key capabilities that technologies must possess 

to support 5G usage scenarios. 
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Table 2.2.1 presents the details on the relationship between the target 

performance values of the 8 key technological capabilities for 5G support and 

its corresponding usage scenarios.  

 

Table 2.2.1: Key Technological Capabilities and Target Performances for 5G 

applications in IMT-2020 

Parameter Priority Levels for Different 

Usage Scenarios 

Target Performance  

eMBB URLCC mMTC 

Peak data rate High Low Low Downlink: 20Gb/s  

Uplink: 10Gb/s 

User-

experienced data 

rate 

High Low Low Downlink: 100Mb/s 

Uplink: 50Mb/s 

Spectrum 

efficiency 

High Low Low 3 x IMT-Advanced 

Mobility High High Low 500km/h 

Latency Medium High Low URLLC: 1ms 

eMBB: 4ms 

Connection 

density 

Medium Low High 1 million devices per 

km^2 

Network energy 

efficiency 

High Low Medium 100 x IMT-Advanced 

Area traffic 

capacity 

High Low Low 10Mb/s/m^2 

In Table 2.2.1, IMT-Advanced is the performance standard for 4G technology. 

 

 Though the standardisation of 5G has been established, the IMT-2020 

highlights the requirements to further guide the development of 5G network 

technology. However, as more advanced applications begin to demand even 

higher data rates and coverage areas than before, exploration beyond-5G 

networks is inevitable. Among the most researched technologies in this field are 

UAV-BSs, which present a significant challenge in terms of positioning. 
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Therefore, the next section will provide an introduction to the problem and a 

review of current solutions that have been used to address this issue. 

 

 

2.3 UAV-BS Positioning 

Due to the mobility and ease of use of UAV-BSs, they hold large potential for 

providing mobile communication services in areas without infrastructural 

coverage, beyond the capabilities of current renditions of 5G technology. Some 

examples of this are disaster sites and other similar areas with hazardous terrain, 

battlefields, intermittent hotspots and rural areas (Lyu et al., 2017). The 

potential that UAV-BS hold far surpasses any other model of mobile BS, as 

flying UAV-BS are virtually deployable from anywhere, over any terrain and 

along any physically feasible trajectory. The flexibility of UAV-BSs highlights 

the key challenge in this technology, which is the optimal positioning of UAV-

BSs to provide adequate levels of communication services (Cicek et al., 2019). 

 

This section will provide a comprehensive analysis of the similar work 

related to UAV-BS positioning, highlighting the different approaches that have 

been proposed and identifying the similarities, differences and limitations of 

these approaches. A critical review of existing research will provide a clear 

understanding of the state-of-the-art in UAV-BS positioning and facilitate 

identification of research gaps that remain to be addressed in future research.

  

  

   

2.3.1 Single UAV-BS Systems 

In a paper by Li et al., (2018), a UAV-BS positioning strategy that focuses on 

energy efficiency is proposed. The scheme focuses on the UAV-BS’s antenna 

beam angle and flight altitude as parameters to maximise its coverage capability, 

as it is stated that there is a fine balance between the antenna beam angle and 

flight altitudes to ensure maximum area coverage with minimal path loss. 

Energy efficiency is a key consideration in this due to UAV-BS’s limited 

transmit power and power supply, driving this paper’s research objective of 

maximising the UAV-BS’s effective coverage area, within a given transmit 



25 

power. The research methodology involved formulating the problem as a 2D 

optimisation problem, followed by application of PSO to find the optimal flight 

altitude and antenna beam angle combinations. However, this paper only 

considers maximising the coverage of a single UAV-BS, and considers the 

horizontal position of the UAV-BS to be fixed.  

 

 While the research done by Li et al., (2018) focuses on maximising the 

coverage area of a single UAV-BS, Lai, Chen and Wang, (2019) proposed a 

unique approach that addresses the varying demands and density of users in a 

given area. Therefore, a demand-driven density-aware 3D UAV-BS positioning 

algorithm is developed to serve arbitrarily distributed users in a given area. In 

this paper, the UAV-BSs altitude is predefined to facilitate the paper’s focus on 

its horizontal deployment position, while coverage radius is adjusted based on 

user density as larger coverage radius tends to amount cause a decrease in QoS. 

The UAV-BS positioning problem is then formulated as a knapsack-like 

problem, and solved with a novel solution based on the genetic algorithm (GA). 

The algorithm shows strong performance in meeting varying QoS requirements, 

however it does not truly make use of 3D positioning as the UAV-BS is at a 

fixed altitude. Additionally, although the usage of the variable coverage radius 

and horizontal positions help the UAV-BS to provide stronger QoS provisioning 

to areas of higher demand, it causes poor QoS experiences for other areas with 

sparse user distribution. 

  

Another similar research publication worth highlighting is by 

Shakhatreh et al., (2017). Though some time has passed since the paper’s 

publication, its unique problem statement and research objectives remain quite 

relevant. Unlike many other UAV-BS positioning schemes that focus on 

downward coverage for ground users, the paper proposes a solution that uses 

PSO to optimally position a UAV-BS to provide horizontally projected network 

coverage for uniformly distributed users in a multiple-floor high rise building. 

The problem is formulated to find the optimal 3D coordinates for a single UAV-

BS that balances the relationship between UAV-BS’s distance and incident 

angle to the building to meet user QoS and coverage requirements, while 

addressing the constraints of limited UAV-BS transmit power and 3D 
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coordinate restrictions, though it does not explicitly address building collision 

avoidance.  

 

The aforementioned research publications highlight some very 

important aspects of the UAV-BS positioning problem, primarily on the 

relationship between the mobility, limited coverage radius and limited transmit 

power of UAV-BSs. However, these papers address single UAV-BS systems 

which pose significant limitations due to its limited coverage radius and low 

transmit power, making it difficult to provide services that can fulfil QoS and 

area coverage requirements. As coverage areas and user densities increase, there 

is a need for more advanced techniques. A solution to that is to utilize multiple 

UAV-BSs to create network-based coverage over a wider area, which has the 

potential to offer significant improvements over single UAV-BS positioning 

techniques. Therefore, the next section will provide a review on research that 

has been conducted on multi-UAV-BS systems. 

 

2.3.2 Multi-UAV-BS Systems 

In the realm of multi-UAV-BS positioning schemes, one of the most highly cited 

research publications is by Lyu et al., (2017), where the goal is to develop a 

multi-UAV-BS positioning algorithm to minimise the number of UAV-BSs 

required to service a group of ground terminals (GT). Though the paper is old, 

it remains significant as many later publications used the solution developed 

here as a benchmark. The algorithm used by the researchers is called the spiral 

placement algorithm (SPA), which works by searching for the optimal UAV-

BS positions in the pattern of an inward spiral, assigning positions to UAV-BSs 

successively. In this paper, the UAV-BSs altitudes and transmit power are 

assumed to be fixed, and collisions between UAV-BSs are not considered. It is 

also assumed that all GTs have the same QoS requirements. 

 

 Similar to Lyu et al., (2017) , Huang et al., (2020) proprosed a sparsed 

recovery-based algorithm called placement-based sparse recovery (PBSR) to 

solve the multi-UAV-BS placement problem. This algorithm is designed with 

the objective to create a placement scheme that provides consistent performance 

even when the number of UAV-BSs increase, while ensuring the minimum 
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number of UAV-BSs for serving a number of GTs. In this paper, the positions 

of the GTs are known, and UAV-BSs are assumed to have the same transmit 

power and flying altitudes. The problem is formulated in a way that it ensures 

not more than one UAV-BS is appointed to a GT at any given time, to reduce 

the likelihood of signal interference and inefficient use of coverage bandwidth. 

To find the optimal UAV-BS positions, the problem is formulated as a sparse 

optimization problem which is solved with the reweighted 1-norm algorithm. 

From this, the resulting solutions are then adjusted using an iterative redundant 

circle deletion (IRCD) algorithm to ensure fair QoS provisioning, by assigning 

each GT to only one UAV-BS. However, the researchers do not account for true 

3D UAV-BS positioning because UAV-BSs have fixed altitudes. Additionally, 

although collision avoidance is not explicitly mentioned, it could be argued that 

it is a biproduct of the IRCD algorithm. 

 

 A similarity between these papers are that the UAV-BS’s network 

coverage is meant to account for GTs which are assumed to have transmit 

capabilities of their own. This implies that the necessary UAV-BS coverage 

range only needs to cover a small number of GTs. If it is applied to a scenario 

of providing coverage for large numbers of users distributed in the coverage 

area with UAV-BS coverage radii, it is likely to cause network deadzones, and 

if the coverage radii are decreased, more UAV-BSs will be required. 

 

Contrary to the above two papers, a 3D multi-UAV-BS positioning 

algorithm aimed towards providing coverage for ground users is proposed by 

Alzenad, El-Keyi and Yanikomeroglu, (2018). In this paper, the researchers aim 

to solve the problem of meeting various user QoS requirements, a problem not 

addressed in the paper by Lyu et al., (2017). To develop a solution, the problem 

is formulated to maximise coverage area for as many users as possible with the 

UAV-BS’s limited transmit power, while meeting unique QoS requirements, 

evaluated in terms of the signal-to-noise ratio (SNR) threshold. To simplify the 

problem, it is decoupled into two parts with one for vertical placement and the 

other for horizontal placement. A novel algorithm called the Maximum 

Weighted Area (MWA) algorithm is developed and applied to the first part of 

the problem to obtain the optimal altitude, followed by a traditional branch and 
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cut method to obtain the optimal horizontal positions. The developed solution 

is tested in a simulation environment containing uniformly distributed stationary 

users that are partitioned into sets with differing QoS requirements. However, 

the research conducted does not consider the possibility of UAV-BS collisions 

and signal overlap from multiple UAV-BSs serving the same area, thus 

effectively neglecting fair QoS provisioning. 

 

 Du et al., (2020) proposes a unique network-based heterogenous PSO 

algorithm (NHPSO) for a 3D multi-UAV-BS positioning scheme. This 

algorithm is able to overcome the PSO’s most significant caveat: Trapped 

solutions in local optima. This paper has a strong emphasis on the NHPSO, 

benchmarking it against many PSO variations to prove its superiority. Its 

improvements come from implementing structural heterogeneity through 

adaptive learning patterns between particles during the search process, allowing 

it to leave the local optima in search of potentially better solutions, while 

keeping the computational complexity to a minimum. In the system model, 

users are considered to be uniformly distributed in known positions on a 

horizontal plane. Similar to what is researched by Alzenad, El-Keyi and 

Yanikomeroglu, (2018), users in different area portions have different QoS 

requirements. The scheme involves partitioning users based on their QoS 

requirements, followed by application of NHPSO to position UAV-BSs to meet 

their respective requirements. The algorithm is found to be relatively easy to 

implement and shows potential for a wide spectrum of algorithms. However, 

this paper shows insufficient constraint handling, as it doesn’t feature fair QoS 

provisioning, and also does not consider collision avoidance between UAV-BSs.  

 

 Lim et al., (2021) proposes a 3D multi-UAV-BS positioning scheme 

using the simulated annealing (SA) algorithm. The paper addresses the 

challenge for UAV-BSs and users to maintain ubiquitous connection as signal 

strength varies based on a users distance to the UAV-BS. It is also one of the 

few papers in this literature review that explicitly covers collision avoidance 

between UAV-BSs. In the system model, the researchers consider user groups 

with differing QoS requirements, on a horizontal plane, and fixed and equal 

transmission power among all UAV-BSs. In its problem formulation, collision 
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avoidance is added into the formula as a penalty function, to ensure a minimum 

distance between the UAV-BSs. The problem is then modified from a 

minimisation problem into a throughput maximisation problem, before finally 

applying the SA algorithm. The SA algorithm is tested against a random 

placement-based static UAV-BS positioning scheme, where it is found to 

greatly outperform the random placement scheme. It is also found that the 

penalty function has minimum effects on the algorithm performance. However, 

fair QoS provisioning remains unaddressed, and there is a caveat in the testing 

phase of this research, as it was only tested against a single baseline, the random 

UAV-BS placement algorithm. 

  

 From the research discussed above, it can be observed that a large 

number of  UAV-BS positioning schemes are based on heuristic algorithms. 

This is likely due to the application of heuristic algorithms being logical and 

rule based, making them relatively easy to use, even by personnel with minimal 

training. However, these papers are largely conceptual, though constraints such 

as collision avoidance and differing user QoS requirements have been 

considered, it is difficult to take into account environmental factors into the 

algorithm’s development. To overcome this issue, there have been several 

research publications on taking a more modern machine learning approach to 

this issue. 

  

 Gopi and Magarini, (2021) proposes a reinforcement learning (RL) 

based multi-UAV-BS positioning system. In addition to satisfying user QoS 

requirements, the researchers emphasized UAV-BS collision avoidance and 

prevention of UAV-BSs from flying out of the search area. This solution is 

developed based on the Q-learning algorithm, a RL technique which functions 

by allowing RL agents to determine the UAV-BS’s direction of flight and 

objective between exploration or exploitation, based on a reward function value. 

To reduce computation costs, the UAV-BSs are set to move in steps, across 

points in a square grid. The agents perform an episode of a fixed number of 

steps, in which the more episodes an agent performs, the higher its accuracy 

becomes. During the testing phase, the Q-learning based algorithm is trained for 

2000 90 step episodes before being applied to get the optimum UAV-BS 
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positions. The accuracy of the obtained positions are benchmarked against 

positions obtained through brute forcing techniques, where the Q-learning based 

algorithm is able to achieve 60.2% of the brute force technique’s accuracy. The 

algorithm is also especially effective in scenarios where user location data is 

imperfect.  

 

Qiu, Lyu and Fu, (2020) also propose a UAV-BS placement 

optimization scheme that uses deep reinforcement learning (DRL) to assign 

UAV-BSs to their optimum positions. As stated earlier, one of the problem 

statements that this research addresses is the lack of realistically applicable 

UAV-BS placement schemes. Another issue that it aims to solve is that many 

other algorithms face significant performance issues when dealt with large 

numbers of UAV-BSs and large coverage area. This solution follows a two step 

design approach, where a double deep-Q network (DQN) is enhanced with 

Prioritized Replay (PRDDQN) in each step. In this scheme, UAV-BSs have 

fixed flight altitudes and a maximum of one UAV-BS is assigned to each user. 

In the preliminary design step, PRDDQN is applied to find a set of optimum 

UAV-BS locations and their achieved coverage rates. In the advanced design 

phase, a 3D terrain map is used to obtain a coverage bitmap, which the 

PRDDQN can be applied to, to obtain optimal UAV-BS positions that are more 

realistic to the environment. The DRL agent was trained for a total of 2500 

episodes before being used for testing. Similarly to several papers discussed 

earlier, collision avoidance is not explicitly addressed but it indirectly handled 

by the constraint of no more than 1 UAV-BS to a user. 

  

 These machine learning approaches show promising results towards 

realistically applicable UAV-BS positioning schemes, both considering multi-

UAV-BS usage and putting great emphasis on basing the UAV-BS positions not 

just based on maximising data rate, but on the external environment as well. 

Due to the large number of training episodes applied to these machine learning 

techniques, they are more adaptable to changing data and environments, as 

opposed to highly rule-based heuristic algorithms. However, this highlights 

multiple issues with machine learning techniques. Most significantly, machine 

learning algorithms require large amounts of data, time and computational 
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resources for sufficient training before they can be applied to a problem. This 

becomes an issue when in scenarios requiring immediate deployment of UAV-

BSs, such as disaster sites and warzones, where limited training data, time and 

computing resources are available.  

 

2.3.3 Overview of Related Work 

The above sections have provided a high level overview of some notable 

previous works in the UAV-BS positioning field. Each paper has a set of 

constraints, assumptions, solutions and test results, which can be summarised to 

identify the most common research gaps and limitations in this field. Table 2.3.1 

illustrates a summary of characteristics of the research papers discussed above. 

 

Table 2.3.1: Overview of Related Works 
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As seen in Table 2.3.3.1, most of the papers propose novel algorithms to find 

the optimal UAV-BS positions. Half of the discussed papers address true 3D 

positioning of UAV-BS while the other half either assume fixed UAV-BS 

altitudes or horizontal positions. The most commonly used QoS metrics are data 

rate followed by SNR and path loss, the exception being Huang et al., (2020), 

which does not state a specific QoS metric. All except for one paper models the 

system with users on a horizontal plane, with Shakhatreh et al., (2017) 

modelling a scenario of providing coverage to users in a multi-level high-rise 

building. From this overview, it is found that the most commonly encountered 

limitation is collision avoidance and fair QoS provisioning. It is also worth 

noting that while the Artificial Hummingbird Algorithm (AHA) is proposed in 



36 

this project as the solution to the UAV-BS positioning problem, it has yet to be 

researched for this specific application. 

 

2.4 Summary 

The UAV-BS positioning problem is highly researched and has strong potential 

to revolutionise network communications beyond 5G networks. However, the 

implications of utilising this technology are still uncertain, as research is often 

highly conceptual and are mostly conducted in simulation environments. 

Therefore, from the information gathered through this literature review, the 

current standards for 5G networks can be used as a reference for the 

development of a new AHA-based 3D multi-UAV-BS positioning scheme that 

aims to address some of the common limitations highlighted in similar works, 

while displaying comparable or improved performance. 
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CHAPTER 3 

3 RESEARCH PLAN AND METHODOLOGY 

 

3.1 Introduction 

The methodology and work plan for this project will be presented in this chapter. 

As it is not possible to perform physical testing with UAV-BSs, the problem 

will be formulated mathematically for testing in a simulation environment.  

 

 

Figure 3.1.1: Fairness-aware UAV-BS placement scheme research summary 

 

3.2 Analysis and Review of the Problem 

The goal of this project is to develop a multi-UAV-BS positioning scheme based 

on the AHA. This algorithm is expected to be able to support the simultaneous 

use of multiple UAV-BSs, to ensure that they are able to satisfy user QoS 

requirements. The QoS metric evaluated in this project will be the downlink 

data rate received by the end user’s devices, as well as Jain’s fairness index and 

blocking probability. In this project, multiple UAV-BSs will be occupying the 

same air space, therefore collision avoidance among UAV-BSs should be 
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addressed. A limitation of not more than one UAV-BS to each user will be 

implemented to ensure fair QoS provisioning, which can prevent QoS 

oversatisfaction, allowing the UAV-BS’s transmit power to be utilised more 

efficiently.   

  

3.3 System Modelling 

The UAV-BS positioning algorithm is developed by modelling the system, 

followed by mathematical formulation of problems into equations. The 

considers a multi-UAV-BS coverage scenario, and the system is first modelled 

with an air-to-ground (ATG) communication model as shown in figure 1.4.1, 

where the network performance is highly dependent on the line-of-sight (LoS) 

path between the UAV-BSs and the users. This system model is commonly used 

for this problem as seen in research by Li et al., (2018), Lai, Chen and Wang, 

(2019) and Du et al., (2020). The initial modelling will be done in reference to 

the research by Du et al., (2020) due to its similarities to the proposed project. 

 

The set of UAV-BSs is denoted as J and the set of users is denoted as 

K, therefore the total numbers of UAV-BSs and users can also be denoted 

respectively as J and K. For UAV-BS placement, the 3D Cartesian coordinates 

of UAV-BS j ∈ J and user i ∈ K are denoted as (xj, yj, zj) and (xi, yi, zi), 

respectively. As it is assumed that the users will always be positioned on the 

ground, the value of zi is always zero. Therefore, the distance dj,i between each 

UAV-BS j and user i can be calculated as  

 

  𝑑 , = 𝑥 − 𝑥 + 𝑦 − 𝑦 + 𝑧   (3-1) 

 

Meanwhile, the probability of having a LoS path Pj,i between UAV-BS j and 

user i is given by Al-Hourani, Kandeepan and Lardner, (2014) as  

 

 𝑃 , =
,

  (3-2) 
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where a and b are environmental constants, and θj,i is the elevation angle 

between UAV-BS j and user i. Next, the path loss of the LoS link 𝐿 ,  is given 

as 

 

 𝐿 , = 20 log
,

+ 𝜂   (3-3) 

 

While the path loss of the non-LoS (NLoS) link 𝐿 ,  is given as  

 

 𝐿 , = 20 log
,

+  𝜂   (3-4) 

 

In the equations (number, number) the ηLoS and ηNLoS are respectively the 

additional mean LoS and NLoS path losses, while c represents the speed of light, 

and f represents the carrier frequency. Using these values, the final path loss Lj,i 

between UAV-BS j and user i can be computed using the equation 

 

 𝐿 , = 𝑃 , 𝐿 , + 1 − 𝑃 , 𝐿 ,   (3-5) 

 

The downlink SNR γj,i received by user i from UAV-BS j can then be calculated 

using the equation 

 𝛾 , =  
,   (3-6) 

 

where Pt is the downlink transmission power of each UAV-BS, and Pn denotes 

additive Gaussian noise power. From this, the Shannon’s capacity equation is 

implemented to calculate the received data rate Rj,i (in b/s/Hz) of user i from 

UAV-BS j, given as 

 

 𝑅 , = log 1 + 𝛾 ,   (3-7) 
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3.4 Problem Formulation 

As this project involves multiple UAV-BSs providing coverage over a service 

area, the positions of the UAV-BSs are limited within the 3D space boundary 

over the service area as follows: 

 

 𝑥  ≤  𝑥 ≤  𝑥    ∀𝑗 ∈  𝐽,  (3-8) 

 𝑦  ≤  𝑦 ≤  𝑦    ∀𝑗 ∈  𝐽,  (3-9) 

 𝑧 ≤  𝑧 ≤  𝑧  ∀𝑗 ∈  𝐽,  (3-10) 

 

where xmin, ymin and zmin are the minimum boundaries, and xmax, ymax and zmax are 

the maximum boundaries of the 3D Cartesian space. To address collision 

avoidance between UAV-BSs, a minimum horizontal distance dsafe is 

maintained between the x-y dimensions of any two UAV-BSs (i.e.,∀j, j ∈ J, k 

≠ j). It is given as 

 𝑑 , = 𝑥 − 𝑥 + 𝑦 − 𝑦   (3-11) 

 

 𝑑 , > 𝑑   (3-12) 

 

The computation of dsafe
 omits vertical z-axis separation, as ensuring a safe 

horizontal distance between UAV-BSs is sufficient to ensure collision 

avoidance, as UAV-BSs will not collide regardless of their altitude. This allows 

the applied scheme to explore a greater variety of solutions while addressing the 

necessary constraint. The next constraint to be addressed is fair QoS 

provisioning. This is achieved through a user association system to assign each 

user with not more than one UAV-BS. The user association variable is defined 

as cj,i  

 𝑐 , ∈ {0,1}   ∀𝑗 ∈ 𝐽 , ∀𝑖 ∈ 𝐾  (3-13) 

 

where cj,i = 1 if user i associates with UAV-BS j, otherwise cj,i = 0. As each user 

is assigned only one UAV-BS at a time, an additional constraint is given as 

 

 ∑ 𝑐 ,∈ ≤ 1   ∀𝑖 ∈ 𝐾  (3-14) 
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It is considered that each user is required to achieve a target data rate of qi for 

QoS provisioning for user i. Therefore, the user needs to associate with a UAV-

BS that can satisfy the data rate requirement, and if there is no UAV-BS that 

meets the requirement, the user will be blocked from the network. 

 

 ∑ 𝑐 , 𝑅 ,∈ ≥ ∑ 𝑐 , 𝑞∈   ∀𝑖 ∈ 𝐾  (3-15) 

 

To represent fair QoS provisioning among all users, a QoS fulfilment ratio is 

defined as the ratio of achievable data rate of user i to its data rate requirement 

qi. 

 𝑤 =
∑ , ,∈   (3-16) 

 

The above equation represents that wi<1 implies failure to meet user QoS 

requirements, wi = 1 implies that the QoS requirement of user i is met, and wi >1 

indicates that QoS requirements of user i is over-satisfied. 

 This study aims to position the UAV-BSs in such a way that the number 

of users being served with QoS fulfilments is maximised, while ensuring that 

the QoS fulfilment ratios among users are being satisfied in a fair manner. 

Therefore, an α-fairness approach is proposed, where setting the α value controls 

the fairness level of the scheme by reducing the QoS discrepancy among users 

as the α value increases (Lin et al., 2022). As such, the following α-fairness sum 

utility function is to be maximised 

 

𝑓 (𝑤 ) =
ln (𝑤 ), 𝛼 = 1

𝑤
(1 − 𝛼) , 𝛼 ≠ 1, 𝛼 ≥ 0

 

 

 𝑷: max
, , ,

∑ 𝑓 (𝑤 )∈   (3-17) 

 

where it is subject to (3-8) – (3-10) and (3-12) – (3-15). Generally, maximising 

the α-function results in proportional fairness when α=1,  which distributes more 

QoS to users who’s positions allow them to better utilise the resources, while at 
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α=∞, it results in max-min fairness, which aims to equally meet the minimum 

QoS requirements of every user (Lee et al., 2020). By maximising the sum 

logarithmic function of wi, proportional fairness can be achieved in QoS 

provisioning among users, that is, a tradeoff between fairness and maximisation 

of wi of each user can be achieved (Lee et al., 2018). 

 

3.5 Implementation of AHA 

Problem P is a mixed-integer programming (MIP) problem as cj,i is a discrete 

binary-valued variable, while xj, yj and zj are continuous-valued variables. The 

non-convex nature of this problem makes it challenging to solve. Thus, any 

exhaustive approaches are excluded, as they can be computationally prohibitive. 

 

3.5.1 Background 

Recently, a new metaheuristic known as AHA has been proposed by Zhao, 

Wang and Mirjalili, (2022), which is a bio-inspired swarm intelligence-based 

optimisation algorithm that has been shown to successfully solve various 

complex multidimensional optimisation problems. The main reasons for 

choosing the AHA over other metaheuristic optimisation algorithms are 

summarised as follows: 

1. The AHA is able to handle high-dimensional continuous search spaces, 

which is a requirement for this project. 

2. The AHA has relatively few hyperparameters as it is highly probability 

based, and random number coefficient ranges are uniformly distributed 

between zero and one. 

3. The AHA has yet to be applied to the UAV-BS coverage optimisation 

placement problem. 

The AHA’s performance in solving high-dimensional continuous search spaces 

is demonstrated through its performance in solving a Wilcoxon-signed rank test 

with a 5% significance level, significantly outperforming the PSO, Teaching-

Learning-Based Optimisation (TLBO), DE, GSA and many more in terms of 

multimodal and composite functions (Zhao, Wang and Mirjalili, 2022). This 

algorithm is developed based on the flight patterns and foraging behaviors of 

hummingbirds, which dictate the movement of the hummingbirds in finding and 

locating food sources. Considering the AHA’s flexibility and ease of 
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implementation, it is adopted for solving the continuous variables of problem P, 

while a greedy user association approach will be adopted to solve the discrete 

variable. Though the AHA’s source code does not contain constraint handling, 

research by Zhao, Wang and Mirjalili (2022) show that the algorithm is able to 

perform well under penalty functions. Therefore, the AHA will be used as a 

basis for developing a new solution that is able to implement the necessary 

UAV-BS positioning constraints of this project. The multi-UAV-BS positioning 

algorithm will be developed and tested using MATLAB. The main factor that 

makes MATLAB the programming language of choice is the wide range of built 

in tools and functions for mathematical and scientific computations, making it 

ideal for algorithm development and testing.  

 

3.5.2 Developing the Scheme 

In AHA, each hummingbird n represents a search agent finding a solution for a 

given problem. More precisely, the position of each hummingbird represents a 

candidate food source (i.e., a solution for the given problem). To solve problem 

P, the first food source of hummingbird n is designated as  

 

 𝑋 = 𝑥 , 𝑦 , 𝑧 , 𝑥 , 𝑦 , 𝑧 , … , 𝑥| |, 𝑦| |, 𝑧| |   (3-18) 

 

where 𝑥 , 𝑦 , 𝑧  are the 3D coordinates of UAV-BS j found by hummingbird 

n. Then, the hummingbirds will be randomly placed throughout the search space 

(i.e., the solution space) defined by (3-8), (3-9) and (3-10) for the 3D coordinates. 

Next, a visit table of previously visited food sources is initialised as 

 

 𝑉𝑇 , =
0

𝑛𝑢𝑙𝑙

𝑖𝑓 𝑛 ≠ 𝑚
𝑖𝑓 𝑛 = 𝑚

 𝑛, 𝑚 = 1,2, ⋯ , 𝑁  (3-19) 

 

where N is the number of hummingbirds. 𝑉𝑇 , = 𝑛𝑢𝑙𝑙 indicates that a 

hummingbird is taking food at its own specific food source, while 𝑉𝑇 , =

0 indicates that the food source found by hummingbird m has just been visited 

by hummingbird n. 

The AHA functions similarly to other popular swarm-intelligence 

meta-heuristics as it is executed iteratively. In each iteration, the hummingbirds 
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have equal probabilities of being assigned one of the following three flight 

patterns: Axial, diagonal, and omnidirectional flight, which are modelled 

mathematically as (3-20), (3-21) and (3-22), respectively: 

 

 𝐷
( )

=
1
0

  
𝑖𝑓  𝑣 = 𝑟𝑎𝑛𝑑𝑖([1, 𝑑])

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   𝑣 = 1, … , 𝑑  (3-20) 

 

 𝐷
( )

=
1
0

  
𝑖𝑓  𝑣 = 𝑃(𝑗), ∀ 𝑗 ∈ [1, 𝑘]

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    𝑣 = 1, … , 𝑑  (3-21) 

 

 𝐷
( )

= 1   𝑣 = 1, … , 𝑑  (3-22) 

 

where randi([1,d]) is a random number ranging from 1 to d with d being the 

maximum number of dimensions (i.e., the maximum number of variables and 

thus d = 3|J| is the number of elements in vector Xn) and Dn
(v) represents the 

flight pattern chosen by hummingbird n in dimension v. Also, 𝑃 =

𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑘)is a 1-by-k vector consisting of random permutation of integers 

from 1 to k where 𝑘 ∈ [2, ⌈𝑟 ∙ (𝑑 − 2)⌉ + 1], and r1 is a normally distributed 

random value between 0 and 1. 

After performing the selected flight pattern, the hummingbird is 

assigned either guided foraging or territorial foraging with a set probability.  

Guided foraging involves the hummingbirds searching for food sources 

in the area of a previously visited food source. This is characterised by the 

hummingbird's ability to remember the locations of the food sources and 

prioritise those with higher nectar concentration. However, it should be noted 

that the nectar concentration is modelled as nectar refill rate to simplify the 

problem. Guided foraging is simulated by the algorithm's ability to maintain a 

visit table of candidate food sources and use that information to guide the search 

for new food sources with higher objective function values. The mathematical 

model for guided foraging is given as  

 

 𝑉 (𝑡 + 1) = 𝑋 (𝑡) + 𝛼 ∙ 𝐷 ∙ 𝑋 (𝑡) − 𝑋 (𝑡)   (3-23) 
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Figure 3.5.1: Pseudocode of guided foraging 

 

where α denotes a random guided factor between 0 and 1, Dn = [Dn
(1), Dn

(2), …, 

Dn
(d)], Xn

(t) denotes the current food source, and Xn
tar(t) denotes the target food 

source. 

On the other hand, territorial foraging involves each hummingbird 

exploring the search space around its current position. This facilitates thorough 

exploration and evaluation of the hummingbird’s immediate surroundings, 

preventing premature convergence and ensures that multiple promising 

solutions are explored throughout the search space, promoting diversity and 

improving the likelihood of finding a global optimum. The mathematical model 

for territorial foraging is given as 

 

 𝑉 (𝑡 + 1) = 𝑋 (𝑡) + 𝛽 ∙ 𝐷 ∙ 𝑋 (𝑡)   (3-24) 

 

Algorithm 1: Guided foraging 
1.   If  𝑓 𝑉 (𝑡 + 1) < 𝑓(𝑋 𝑡) 
2.      𝑋 (𝑡 + 1) = 𝑉 (𝑡 + 1) 
3.      For jth food source from 1 to N (j≠tar,n) 
4.        VisitTable(𝑛, j) = VisitTable(𝑛, 𝑗) + 1 
5.      End 
6.      For jth food source from 1 to N 
7.        VisitTable(𝑛, 𝑗) = max

∈   
VisitTable(𝑗, 𝑙) + 1 

8.      End 
9.   Else 
10.    For jth food source from 1 to N (j≠tar,n) 
11.       VisitTable(𝑛, j) = VisitTable(𝑛, 𝑗) + 1 
12.    End 
13.    VisitTable(𝑛, 𝑡𝑎𝑟) = 0 
14.  End 
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Figure 3.5.2: Pseudocode of territorial foraging 

 

where β denotes a random territorial factor between 0 and 1, and. To prevent the 

solution from being trapped in local optima, the algorithm introduces migration 

foraging when it reaches a certain number of iterations, where the hummingbird 

at the worst food source is randomly repositioned within the solution space 

defined by (3-8), (3-9) and (3-10). 

Migrational foraging is characterised by hummingbird's ability to 

explore new areas and adapt to environmental changes. It is simulated by 

introducing a condition where after a certain number of iterations, the 

hummingbirds at the current worst food sources will abandon their current 

locations and move to new locations randomly. This random repositioning 

allows the algorithm to discover new areas of the solution space that may 

contain better solutions and prevents the solution from being stuck in local 

optima. The mathematical model for migration foraging is given as 

 

 𝑋 (𝑡 + 1) = 𝐿𝑜𝑤 + 𝑟 ∙ (𝑈𝑝 − 𝐿𝑜𝑤) (3-25)   

   

Algorithm 2: Territorial foraging 
1.   If  𝑓 𝑉 (𝑡 + 1) < 𝑓(𝑋 𝑡) 
2.      𝑋 (𝑡 + 1) = 𝑉 (𝑡 + 1) 
3.      For jth food source from 1 to N (j≠n) 
4.         VisitTable(𝑛, j) = VisitTable(𝑛, 𝑗) + 1 
5.      End 
6.      For jth food source from 1 to N 
7.         VisitTable(𝑛, 𝑗) = max

∈   
VisitTable(𝑗, 𝑙) + 1 

8.      End 
9.   Else 
10.    For jth food source from 1 to N (j≠n) 
11.       VisitTable(𝑛, j) = VisitTable(𝑛, 𝑗) + 1 
12.    End 
13. End 
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Figure 3.5.3: Pseudocode of migration foraging 

where r denotes a random migration factor between 0 and 1, Xwor (t+1) denotes 

the current worst food source, Up and Low denote the upper and lower 

boundaries of the solution space as defined by (3-8), (3-9) and (3-10). After each 

hummingbird n completes its foraging process, the fitness function of the 

hummingbird is evaluated. Therefore, the fitness function is designed as 

 

 𝐹 = ∑ 𝑓 (𝑤 )∈ − 𝑓 , (3-26) 

 

where 𝑓 = 𝜕 ∑ ∑ 𝑑 , − 𝑑∈ \{ }∈  is the penalty function derived from 

constraint (3-12), with ∂ being the penalty coefficient. It is important to note 

that computation of the (fitness function) requires the solution of cj,i, which is 

not present in the hummingbird food source. To obtain the solution of cj,i for 

each hummingbird, the 3D coordinates of each UAV-BS are extracted from the 

food source of the hummingbird to perform Algorithm 4. 

 

Figure 3.5.4: Pseudocode of greedy user association algorithm 

 

Algorithm 4 determines cj,i based on a greedy user association strategy as 

follows:  

Algorithm 3: Migration foraging 
1.   For jth food source from 1 to N (𝑗 ≠ 𝑤𝑜𝑟) 
2.     VisitTable(𝑤𝑜𝑟, j) = VisitTable(𝑤𝑜𝑟, 𝑗) + 1) 
3.   End 
4.   For jth food source from 1 to N 
5.     VisitTable(𝑗, 𝑤𝑜𝑟) = max

∈   
VisitTable(𝑗, 𝑙) + 1    

6.   End 

 

Algorithm 4: User association and fitness function calculation 
1. Initialize 𝑐 , = 0 for all 𝑗 ∈ 𝐽 and 𝑖 ∈ 𝐾 
2. For 𝑖 ∈ 𝐾 
3.   Obtain 𝑐 ,  using (3-14). 
4.   If ∑ 𝑐 , 𝑅 ,∈ < 𝑞  
5.      Set 𝑐 , = 0. 
6.   End if 
7. End for 
8. Evaluate Fn using (3-26). 
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 𝑐 , =
1
0

    
𝑚 = 𝑎𝑟𝑔 𝑚𝑎𝑥 ∈ 𝑅 ,

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  (3-27) 

 

Equation (3-14) selects the UAV-BS m that provides the highest data rate for 

association with user i. After the selection, Algorithm 4 checks whether 

constraint (3-15) is satisfied. If the constraint is not satisfied, user i is blocked, 

as enforced in lines 4-6 of Algorithm 4. After the solution of cj,i is obtained, the 

fitness function of the hummingbird n, Fn is evaluated using (3-26).  

Following the fitness function evaluation, the food source of the 

hummingbird n is updated by 

 

 𝑋 (𝑡 + 1) =
𝑋 (𝑡)

𝑉 (𝑡 + 1)
  

𝑖𝑓  𝐹 𝑋 (𝑡) ≥ 𝐹 𝑉 (𝑡 + 1)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (3-28) 

 

After that, the visit table of the hummingbird n is updated, depending on the 

chosen foraging behavior (Zhao, Wang and Mirjalili, 2022).  
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Figure 3.5.5: Pseudocode of the AHA-based UAV placement scheme  

Algorithm 5: Proposed scheme 
1.  For n = 1:N 

2.     Initialize Xn and VTn,m for all m = 1, …, N. 

3.  End for 

4.  For: t = 1:Tmax 

5.      For n = 1:N 

6.         Create a random value rand between 0 and 1. 

7.         If rand<1/3 

8.            Perform diagonal flight in (3-21). 

9.         Else if rand>2/3 

10.          Perform omnidirectional flight in (3-22). 

11.       Else  

12.          Perform axial flight in (3-20). 

13.       End if 

14.       Create a random value rand between 0 and 1. 

15.       If rand < var 

16.          Perform Guided Foraging in (3-23). 

17.          Perform Algorithm 1.  

18.          Update VTn,m for all m = 1, …, N using Algorithm 1. 

19.       Else 

20.          Perform Territorial Foraging in (3-24). 

21.          Perform Algorithm 1.  

22.          Update VTn,m for all m = 1, …, N using Algorithm 2. 

23.       End if 

24.       If mod(t,2N) == 0 

25.          Perform Migration Foraging in (3-25).  

26.          Update VTn,m for all m = 1, …, N using Algorithm 3. 

27.       End if 

28.   End for 

29.      Set 𝑚 = arg max ,…, 𝐹 (𝑋 ). 

30.      Set Fbest = Fm(Xm) and Xbest = Xm. 

31.      Set t = t + 1. 

32. End for 

 



50 

 

Algorithm 5 summarises the proposed AHA-based joint UAV-BS 

placement and user association scheme, where N is the number of 

hummingbirds and Tmax is the maximum number of iterations. The 

computational complexity of Algorithm 5 can be approximated as of 

𝑂(𝑁𝑇 |𝐾||𝐽|), which indicates that the time complexity will grow no faster 

than a polynomial function of 𝑁𝑇 |𝐾||𝐽|.   

Comparisons between the complexity of similar schemes are as follows: 

1. PBSR (Huang et al., 2020) : 𝑂( 𝐾 ). 

2. MWA (Alzenad, El-Keyi and Yanikomeroglu, 2018): 

𝑂(2 K . log (𝜀 )), where ε is an algorithm parameter. 

3. SPA (Lyu et al., 2017): 𝑂(𝐾 ) 

4. SA (Lim et al., 2021): 𝑂(𝑇 |𝐾|) 

Generally, exponential time complexities are less desirable due to their extreme 

increase in run time as the variable size increases. The most similar time 

complexity is achieved by the SA-based approach proposed by Lim et al., 

(2021), which is less complex than the proposed scheme. However, the AHA is 

a swarm intelligence based algorithm and the proposed scheme contains a user 

association algorithm that is nested within the AHA, causing more variables to 

be involved in the computation. The higher complexity of the proposed scheme 

is acceptable in this case, as it addresses an additional constraint - fair QoS 

provisioning. 

 

3.5.3 Optimisation 

Once the system model, objective function and all relevant algorithms have been 

set up in MATLAB, the scheme is tested against the objective function to obtain 

results for further optimisation. First, the UAV-BS settings and environmental 

parameters used in the scheme will be derived from existing literature by 

obtaining results from running the scheme and selecting the values that 

produced the most feasible results.  

The scheme will then be evaluated on its ability to handle the collision 

avoidance constraint. It will be tested against the objective function as seen in 

equation (3-26), at penalty coefficients of zero and non-zero to evaluate the 
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scheme in the presence and absence of a penalty function. The results will be 

compared to determine if further optimisation is necessary.  

 After verifying the constraint handling capabilities of the AHA have, 

testing will be conducted on adjusting the var parameter in figure 3.5.5 to 

modify probabilities of selecting between flight methods (3-23) and (3-24). The 

probabilities of selecting each flight method will be adjusted and tested between 

0.1 to 0.9. The probabilities producing the best fitness value is selected to be 

used in the final AHA. 

 Further testing will be conducted to determine the best degree of 

fairness for the scheme, by testing the scheme with varying α fairness values. 

This will identify the fairness degree that constitutes the best trade off between 

proportional fairness and max-min fairness. 

 

3.6 Evaluation Metrics 

The developed scheme will be evaluated and compared against baseline 

schemes using the following performance metrics: 

 

1. Blocking probability: The ratio of the number of users blocked 

from the network to the total number of users. In this scheme, users 

who’s QoS requirements are unable to be satisfied are blocked from 

the network. This metric represents the percentage of users for 

whom the scheme did not meet their QoS requirements. It is 

defined as 

 
| | ∑ ,

| |
. (3-29) 

 

2. Jain’s fairness index: An indicator of fairness in QoS provisioning 

among users (Seid et al., 2021). A high Jain’s fairness index 

percentage represents fair QoS provisioning. It is defined as 

 

 
(∑ )

∑ | |
. (3-30) 

 

3. Sum of data rate: Sum of user received data rate, computed in 

bits/seconds/Hertz. It is defined as  
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 ∑ ∑ 𝑐 , 𝑅 ,∈∈ . (3-31) 

 

Fitness value is not used as a main metric in the result analysis, as the ideal result 

of this scheme is a high Jain’s fairness index, high sum of data rate and low 

blocking probability. A high fitness value generally represents a good result, 

however it is possible for a high fitness value to be achieved as a result of a 

heavy skew towards one of the three metrics. 

 

3.7 Gantt Chart 

This project’s duration spans over two trimesters. The general work plan for the 

first and second trimesters are illustrated in Figure 3.7.1 and Figure 3.7.2 

respectively, in work breakdown structures (WBS) and Gantt charts. Note that 

when referring to "predecessors" in the work breakdown structure, it includes 

tasks that need to be started before the current task, not only tasks that have 

already been completed.  

 

Figure 3.7.1: WBS and Gantt chart for FYP 1 

 

In the first trimester, the goal of the project is to develop a clear, relevant and 

detailed proposal of the project goals. This time is allocated to developing a 

preliminary report, studying the relevant literature, structuring the project 

methodology and obtaining preliminary results to confirm the feasibility of the 

project.  

WBS Activity Start (week)End (week)Duration (Week)PredecessorWeek 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13

1 FYP title registration 1 1 1 0

2 Develop work plan for FYP1 1 1 1 1

3 Understanding the problem 2 6 5

3.1 Study AHA 2 3 2 2

3.2 Conduct literature review 3 6 4 2

3.3 Testing AHA code for understanding 4 6 3 3.1

4 Preliminary report 4 8 5

4.1 Identify problem statements and objectives 4 6 3 3.2

4.2 Establish project scope and limitations 6 8 3 3.3; 4.1

4.3 Submission of preliminary report 8 8 1 4.2

5 Proposal 6 12 7

5.1 Compile information from literature review 6 10 5 4.3

5.2 Establish project methodology 9 11 3 5.1

5.3 Preliminary problem formulation 11 11 1 5.2

5.4 Obtain preliminary results from AHA code 12 12 1 5.3

5.5 Submission of project proposal 12 12 1 5.4

6 Presentation 12 13 2

6.1 Prepare presentation slides 12 13 2 5.5

6.2 Conduct presentation 13 13 1 6.1
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Figure 3.7.2: WBS and Gantt chart for FYP 2 

 

In the second trimester, the project’s goal moves fully toward 

developing the project components that were proposed in the first trimester. This 

includes development of the multi-UAV-BS positioning scheme from the 

problem formulation to coding and testing. This time is allocated towards 

coding, completion of necessary deliverables and finalisation of work. During 

the second trimester, the contents of this project will be submitted as a research 

paper to the 2023 IC3INA online conference, organised by Indonesia’s National 

Research and Innovation Agency (BRIN).   

 

3.8 Summary 

Overall, a number of similar works on the UAV-BS positioning problem 

provide a reference point for developing a research methodology, system 

modelling, problem formulation and benchmarking. Though there has been no 

research conducted on utilising the AHA for the UAV-BS positioning problem 

thus far, the existing literature on the AHA documents its strength in solving 

optimisation problems, demonstrating a number of its applications and the 

relative simplicity of its implementation, strongly suggesting that this project is 

feasible with achievable goals. 

WBS Descriptions Start (week) End (week)Duration (week) PredecessorsWeek 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14

1 Develop UAV-BS placement scheme 1 7 7

1.1 Formulate problem 1 5 5 0

1.2 Coding 2 6 5 1.1

1.3 Present code to supervisor 4 6 3 1.2

1.4 Testing and optimisation 4 7 4 1.3

1.5 Result collection and analysis 5 7 3 1.4

1.6 Conference paper writing 5 7 3 1.4

2 Final Report 5 12 8

2.1 Report writing 5 12 8 1.4

2.2 Report submission 12 13 1 2.1

3 FYP Poster 9 12 4

3.1 Make FYP poster 9 11 3 2.1

3.2 Submit FYP poster 12 12 1 2.2; 3.1

4 Presentation 2 13 12

4.1 Preparation of presentation 2 13 12 1.1

4.2 Conduct presentation 14 14 1 4.1
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CHAPTER 4 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

The section covers the results of testing the convergence of the general AHA, 

followed by the proposed fairness-aware AHA-based multi-UAV placement 

scheme. The results obtained provide proof of the proposed scheme’s feasibility 

in solving the UAV placement problem with fair QoS provisioning. The scheme 

is fine-tuned through testing with varying stochastic parameters and alpha 

fairness values, while environmental constants were set based on existing 

literature. The proposed scheme and baseline schemes are evaluated and 

compared at varying numbers of users, in terms of the performance metrics 

stated in Section 3.6: blocking probability (3-29), Jain’s fairness index (3-30), 

and sum of data rate (3-31). 

 

4.2 General Convergence Performance of the AHA 

To demonstrate the general performance of the AHA, it will be tested with a 

multimodal benchmark function: the Rastrigin function. As real-world scenarios 

often involve problems with multiple solutions, multimodal functsions test the 

AHA’s feasibility more effectively than unimodal functions. The global 

minimum is given as 

 

 𝑓(𝑥) = 0; 𝑥(𝑖) = 0, 𝑖 = 1: 𝑛.  (4-1) 

 

The Rastrigin function is a highly multimodal test function that produces a large 

number of uniformly distributed local minima (Pohlheim, 2005). The function 

definition is given as 

 

 𝑓 (𝑥) = 10 ∙ 𝑛 + ∑ (𝑥 − 10 ∙ cos(2 ∙ 𝜋 ∙ 𝑥 )),  (4-2) 

 

subject to solution space 

 

 −5.12 ≤ 𝑥 ≤ 5.12. (4-3) 
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The AHA is used to solve the Rastrigin function with the hummingbird 

population size set to 10. The results are averaged over 50 realisations, and each 

realisation consisted of 500 iterations and a dimensionality of 300 to evaluate 

the algorithm’s performance in dealing with problems of high dimensionality. 

Dimensionality refers to the number of variables that the algorithm must 

optimise to find an optimum solution. The figures below illustrate the results 

obtained from testing the AHA with a population size of 10. 

 

 

Figure 4.2.1: Surface plot of Rastrigin function 

 

 

Figure 4.2.2: Convergence of Rastrigin function 
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Figure 4.2.3: Time chart of Rastrigin function 

 

The results in Figures 4.2.1 – 4.2.3 show that the AHA is able to find the global 

minima before completing 50 iterations in virtually every realisation. This 

proves that the AHA is able to converge to an accurate solution in a high 

dimensionality problem within a low number of iterations. Overall run time is 

fast as well, with the entire test being completed in around seven seconds. 

 

4.3 Initialising Parameters and Coefficients 

The proposed scheme is denoted as U-AHA. To evaluate the performance of the 

U-AHA, a service area of 800 × 800 m2 is considered. The boundaries of the 

search space were set to xmin = 0 m, xmax = 800 m, ymin = 0 m, ymax = 800 m, zmin 

= 100 m, zmax = 500 m, while the UAV-BS parameters were set as follows: 

carrier frequency fc = 2 GHz, transmit power Pt = 20 dBm (Simunek, Pechac 

and Fontan, 2011), noise power Pn = -110 dBm (Wu, Zeng and Zhang, 2018. 

The environmental parameters were set as follows: a = 0.6, b = 0.11, ηLoS = 1, 

ηNLoS = 20 (Niu, Zhao and Li, 2021). The user requirement is set to qi  = 75.8 

b/s/Hz for all i ∈ K, and the penalty coefficient is set to ∂ = 0.3.  In this section, 

the U-AHA will be tested at 200 iterations in an environment where the number 

of users, |K| = 200. Results are averaged over 30 realisations. 

 

4.3.1 Collision Avoidance 

The U-AHA is first evaluated on handling the collision avoidance penalty 

function. The scheme will be tested with the absence and presence of a penalty 

function, through the values of the penalty coefficient. The penalty coefficient 
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∂ is set to 0.3 as it is found to be able to guarantee collision avoidance without 

limiting the scheme’s exploration of the search space. 

 

Table 4.3.1: Performance of U-AHA in the absence and presence of a penalty 

function  

Penalty 

coefficient 

Blocking 

probability (%) 

Jain’s fairness 

index (%) 

Sum of data rate 

(b/s/Hz) 

0 2.5 97.499 14875.6835 

0.3 3.5 96.499 14733.4174 

 

Table 4.3.1.1 demonstrates that there is a small drop in performance of the 

scheme when the penalty function is introduced. However the difference in 

performance is extremely small, and therefore deemed insignificant. This test 

concludes that the U-AHA is able to ensure collision avoidance with little effect 

on its performance. 

 

To determine the best probabilities between guided foraging (3-23) and 

territorial foraging (3-24), they are tested at probabilities between 0.1 to 0.9, in 

increments of 0.1. 

  

Table 4.3.2: Foraging technique probabilities and corresponding fitness values 

Probability of 

guided foraging 

Probability of 

territorial foraging 

Fitness value 

0.1 0.9 1576.2255 

0.2 0.8 1886.2048 

0.3 0.7 2022.5864 

0.4 0.6 2173.0033 

0.5  0.5 2121.6362 

0.6 0.4 2298.0739 

0.7 0.3 2798.8181 

0.8 0.2 2353.3515 

0.9 0.1 2240.5277 
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Table 4.3.1 shows that guided foraging is generally a better at finding solutions 

as seen from the generally low fitness values achieved when a higher probability 

is given to territorial foraging. This is due to guided foraging’s focus on 

exploration of the search space as opposed to territorial foraging’s focus on 

exploitation within a small local area. The fitness value peaks when the 

probabilities of guided and territorial foraging are set to 0.7 and 0.3 respectively. 

When the probability of guided foraging is set to 0.8 and above, the fitness value 

drops significantly from its peak, suggesting that although territorial foraging is 

generally weaker than guided foraging at exploring the search space, it still acts 

as a method to account for the shortcomings of guided foraging. This is the 

essence of the mechanics of metaheuristic algorithms, defined by the fine 

balance between exploration and exploitation of the search space (Abdel-Basset, 

Abdel-Fatah and Sangaiah, 2018). Therefore, for the following tests, the 

probabilities of guided foraging and territorial foraging will be set to 0.7 and 0.3 

respectively. 

4.3.2 Degree of α-Fairness 

To determine the ideal α-fairness measure, the U-AHA is tested at varying α 

values, i.e., α = 1, 2, 3. 

 

Table 4.3.3: Convergence of U-AHA at various α values. 

Convergence at different α 

values 

Fitness 

value 

Jain’s 

fairnes

s index 

(%) 

Sum of 

data rate 

(b/s/Hz) 

Blocking 

probabilit

y (%) 

α = 1 2785.56

6 

97.126 14998.113

1 

2.6 

α = 2 2273.42

6 

97.499 14895.820

9 

1.8 
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α = 3 2157.19

4 

97.999 14695.957

3 

2.2 

 

Table 4.3.2 illustrate the performance of the proposed scheme at different α 

values. In all cases, the proposed scheme starts to converge around 100 

iterations, which is reasonably efficient for a real world-based problem. It is 

observed that the U-AHA at α=1 converges to the highest fitness value, followed 

by α=2 and α=3. The Jain’s fairness index values indicate that the larger α value 

results in increased fairness in QoS provisioning, with α=3 achieving the highest 

Jain’s fairness index, followed by α=2 and α=1. However, there is a tradeoff 

between fairness and QoS provisioning as seen in the high blocking probability 

at α=1 despite the high sum of data rate. The tradeoff is better at α=2, where the 

sum of data rate drops slightly but the blocking probability decreases 

significantly. At α=3, the tradeoff starts to skew towards fairness over 

maximising QoS provisioning as the Jain’s fairness index increases, but the sum 

of data rate is low enough to cause an increase in blocking probability. Therefore, 

despite α=1 achieving the highest fitness value, α=2 will be used for the 

following tests as it provides the best tradeoff between maximisation and 

fairness of QoS provisioning. 

 

4.4 Scheme Evaluation 

The U-AHA’s performance is evaluated against the following two baseline 

schemes for comparison:  
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1. Random UAV-BS placement algorithm with user association, denoted 

as RA (Lim, Yu and Lee, 2022). This scheme operates by randomly 

placing the UAV-BSs throughout the service area over many iterations, 

the random UAV-BS positions that result in the highest fitness value is 

chosen as the best solution. 

2. Service area partitioning-based UAV-BS placement with user 

association, denoted as PP (Huang and Savkin, 2022). This scheme 

operates by first partitioning the service area into the same number of 

partitions as the number of UAV-BSs. Each UAV-BS is then assigned a 

partition and randomly placed within its respective partition. This is 

repeated over many iterations, and the UAV-BS positions that result in 

the highest fitness value is chosen as the best solution. 

For a fair comparison, the user association scheme developed for the U-AHA 

will also be used in the baseline schemes.  

The three schemes will be tested in terms of the performance metrics 

stated in section 4.2, at varying numbers of users, i.e., K = 50, 100, 150, 200, 

250 and 300. For each value of K, the results are obtained and averaged over 30 

realisations. This is then tested over varying numbers of UAV-BSs, i.e., J = 4, 

8, 12. The proposed U-AHA scheme’s population size is set to N = 20, and the 

number of iterations is set to Imax = 100. The low number of iterations is meant 

to simulate a real-world scenario where the system operators may have a limited 

amount of time to deploy the scheme. 
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Figure 4.4.1: Blocking probability when J = 4 

 

Table 4.4.1: Summary of blocking probability at J = 4 

Number of 

Users 

Blocking probability (%) 

U-AHA RA PP 

50 6.0 32.5 79.5 

100 5.0 34.5 74.2 

150 6.5 38.2 82.4 

200 4.0 36.8 76.2 

250 5.5 33.2 77.6 

300 5.0 40.0 76.1 
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Figure 4.4.2: Sum of data rate when J = 4 

 

Table 4.4.2: Summary of sum of data rate at J = 4 

 

Number of Users Sum of data rates (b/s) 

U-AHA RA PP 

50 4332.3246 2872.4847 862.9185 

100 7412.7584 4682.5561 1982.1276 

150 11296.7642 6385.8779 1997.8534 

200 14824.9684 8671.3753 3426.4452 

250 17863.6587 12863.8164 4192.1268 

300 22475.3485 13782.1736 5006.7328 
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Figure 4.4.3: Jain’s fairness index when J = 4 

 

Table 4.4.3: Summary of Jain’s fairness index at J = 4 

Number of Users Jain’s fairness index (%) 

U-AHA RA PP 

50 93.223 64.938 19.981 

100 95.812 63.273 24.922 

150 92.829 60.162 18.172 

200 96.274 62.728 22.562 

250 95.121 65.182 21.849 

300 95.992 60.133 22.119 

 

Figure 4.4.1 – 4.4.3 and Table 4.4.1 – 4.4.3 illustrates the results obtained with 

four UAV-BSs. Figure 4.4.1 and Table 4.4.1 shows the blocking probability 

achieved by the three schemes. The proposed U-AHA scheme consistently 

obtains the lowest user blocking probability across all values. Figure 4.4.2 and 

Table 4.4.2 shows that the sum of user received data rates achieved by all 

schemes generally increased over different numbers of users. It is observed that 

the proposed U-AHA scheme outperforms the baseline schemes. Figure 4.4.3 
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and Table 4.4.3 shows that the proposed U-AHA scheme provides a fairer QoS 

fulfilment among users, with the achieved Jain’s fairness indices of above 0.9 

across the different numbers of users. This is attributed to the fact that the 

proposed U-AHA scheme is able to maximise the proportional fairness function 

for QoS provisioning far better than the baseline schemes. Meanwhile, Jain’s 

fairness index values achieved by the baseline schemes are lower, and even 

show a slight decrease as the number of users increases.  

To further verify that the findings remain consistent across varying 

scheme conditions, the 3 schemes are tested with the same metrics and varying 

user numbers, but with a different number of UAV-BSs J = 8.  

 

 

Figure 4.4.4: Blocking probability when J = 8 
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Figure 4.4.5: Sum of data rate when J = 8 

 

 

Figure 4.4.6: Jain’s fairness index when J = 8 
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Figure 4.4.4 to 4.4.6 illustrates the results obtained when using 8 UAV-BSs. 

The performance trend in all metrics remain unchanged, with the U-AHA 

significantly outperforming RA and PP in every metric. A third test is conducted 

using 12 UAV-BSs. 

 

 

Figure 4.4.7: Blocking probability when J = 12 
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Figure 4.4.8: Sum of data rate when J = 12 

 

 

Figure 4.4.9: Jain’s fairness index when J = 12 
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Table 4.4.4: Performance ranking of schemes in each metric at all numbers of 

UAV-BSs 

Metric Ranking (best to worst) 

1st  2nd  3rd  

Blocking 

probability 

U-AHA RA PP 

Sum of data rate U-AHA RA PP 

Jains fairness 

index 

U-AHA RA PP 

 

Once again, Figures 4.4.7 – 4.4.9 show that the U-AHA continues to outperform 

the RA and PP in all performance metrics even as the number of UAV-BSs 

increases to 12. From these results, it can be inferred that the U-AHA will 

outperform the baseline schemes at any number of users and any number of 

UAV-BSs. The overall performance rankings of each scheme is tabulated in 

Table 4.4.4, clearly reflecting the U-AHA’s superior performance.  

RA expectedly demonstrates poorer performance than U-AHA due to 

its random nature, as the U-AHA is a metaheuristic algorithm that makes 

educated guesses according to a framework based on the natural behavior on 

hummingbirds in the wild. The PP’s poor overall performance is due to the 

limitations set by the search space partitions. On paper, it seems as if the PP 

should outperform the RA as it fairly partitions the search space to place each 

UAV-BS, which should maximise QoS fairness among users. However, testing 

results show that this is not the case, as it greatly limits the potential of each 

UAV-BS by confining it to a small space. The RA’s flexibility in exploring the 

search space allows for it to achieve better solutions if given enough iterations, 

which is ultimately how it consistently outperforms PP. 

 

4.5 Simulated Visualisation of Real-World Results 

To present the physical outcome of the scheme, the results of running the U-

AHA  with varying numbers of UAV-BSs J=4, 8, 12 and number of users K=200 

is recorded.  The resulting coordinates of users i and UAV-BSs j are then plotted 

and labelled on a 3D graph to visualise the simulation environment. 
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Figure 4.5.1: Simulation environment results at J = 4  

 

 

Figure 4.5.2: Simulation environment results at J = 8 
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Figure 4.5.3: Simulation environment results at J = 12 

 

Figures 4.5.1 – 4.5.3 illustrate the results of the test environment, which reflects 

the system model in Figure 1.4.1. The uniformly distributed random positions 

of the 200 ground users are indicated by red dots, while the aerially-positioned 

UAV-BSs are represented by blue dots. It is also observed that there is ample 

space between the UAV-BSs at all three J values, which clearly demonstrates 

the scheme’s collision avoidance feature. 

 

4.6 Summary 

The obtained results show that the U-AHA is able to efficiently solve 

optimisation problems. It solves fairness-aware multi-UAV-BS placement 

problem by maximising the objective function (3-26), which addresses fairness 

aware provisioning of user’s received data rates and collision avoidance. Results 

show that the U-AHA is able to outperform the RA and PP in terms of blocking 

probability, sum of user’s received data rate and Jain’s fairness index, while the 

visualisation of the simulation environment demonstrates the collision 

avoidance feature. At varying numbers of UAV-BSs, the U-AHA is able to 

consistently satisfy the QoS requirements of 90% of users while ensuring 

maximum fairness, achieving a Jain’s fairness index of over 90% in all 

conducted tests. Taking into account the cost of a real-world UAV-BS network 

system, the high Jain’s fairness index rating dratiscally reduces operating costs 

as it minimises the number of UAV-BSs needed to meet user QoS requirements.
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CHAPTER 5 

5 CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

Fairness-aware QoS provisioning is crucial to efficiently utilising UAV-BSs to 

provide good quality network coverage for users, while collision avoidance is a 

crucial safety factor in multi-UAV-BS networks. The proposed AHA-based 

UAV-BS placement scheme successfully maximises the objective function, 

leading to more fair service to users as well as a larger sum of user’s received 

data rates than random UAV-BS placement and partition-based UAV-BS 

placement. Overall, the results demonstrated by the proposed scheme act as a 

proof of concept of the scheme’s feasibility, however further research and 

testing is required before real-world implementation can be tested. 

 

5.2 Limitations and Recommendations 

5.2.1 Limited Channel Bandwidth 

As stated in section 1.5, this project does not address limited channel bandwidth 

of UAV-BSs. In future works, this should be considered as the proposed scheme 

assumes that the UAV-BSs have unlimited channel bandwidth and can serve 

any number of users. Fairness provision is achieved in this project through a 

one-way association  between a user and a specific UAV-BS. To limit the 

number of users that can be serviced by a single UAV-BS, a two-way user-

UAV-BS association problem can be formulated into the objective function, 

while other relevant environmental parameters can be derived from existing 

literature. This should result in a scheme that better reflects the real-world 

capabilities of UAV-BSs. 

 

5.2.2 Mobile Users 

The proposed scheme does not address the movement of users throughout the 

service area, but assumes that users are static. As it is virtually impossible for 

users to be fully static in a real-world scenario, this should be considered in 

future works. A suggestion would be to recalibrate the positions of UAV-BSs 
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at fixed time intervals based on the continuously changing positions of users. 

Machine learning approaches may also be implemented to predict how users 

may move around the service area instead of collecting real-time data on user 

positions. 

 

5.2.3 Machine Learning Approaches 

Furthermore, this scheme uses a metaheuristic approach, which negates the long 

computation time needed for exhaustive approaches, by using an algorithm 

guided by a certain framework to make an educated guess of a “good enough” 

solution for complex optimisation problems (Abdel-Basset, Abdel-Fatah and 

Sangaiah, 2018). However, real-world applications involve further challenges 

including the path-planning, flying speed and limited battery life of UAV-BSs. 

Machine learning schemes may be able to develop solutions that address more 

of these constraints when provided with sufficient training data, however their 

biggest limitations lie in difficulty of implementation and processing time. 

Therefore, it could be beneficial to mix machine learning and meta-heuristic 

approaches to develop a solution that can overcome this challenge. 
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5 APPENDICES 

 

APPENDIX A: MATLAB code - AHA 

function 
[AHA_coordinates,AHA_fitness,HisBestFit,AHA_data_rate,AHA_Jain_
fairness,AHA_loss_rate]=AHA2(MaxIt,nPop,Low,Up,Dim,UAV_num,UE_n
um,PopPos,Pos_U,A_k) 
    %% initial agent positions PopPos 
    PopFit=zeros(1,nPop); 
  
        for i=1:nPop 
            
[fitness,~,~,~]=ObjFunction(UAV_num,UE_num,A_k,Pos_U,PopPos(i,:
)); 
            PopFit(i) = fitness;  
        end 
    
    AHA_fitness= -inf; % maximisation problem 
    AHA_coordinates=[]; 
     
    for i=1:nPop 
        if PopFit(i)>=AHA_fitness 
            AHA_fitness=PopFit(i); 
            AHA_coordinates=PopPos(i,:); 
        end 
    end 
  
    % Initialize visit table 
    HisBestFit=zeros(MaxIt,1); 
    VisitTable=zeros(nPop) ; 
    VisitTable(logical(eye(nPop)))=NaN;     
     
    for It=1:MaxIt 
        DirectVector=zeros(nPop,Dim);% Direction vector/matrix 
  
        for i=1:nPop 
            r=rand; 
            if r<1/3     % Diagonal flight 
                RandDim=randperm(Dim); 
                if Dim>=3 
                    RandNum=ceil(rand*(Dim-2)+1); 
                else 
                    RandNum=ceil(rand*(Dim-1)+1); 
                end 
                DirectVector(i,RandDim(1:RandNum))=1; 
            else 
                if r>2/3  % Omnidirectional flight 
                    DirectVector(i,:)=1; 
                else  % Axial flight 
                    RandNum=ceil(rand*Dim); 
                    DirectVector(i,RandNum)=1; 
                end 
            end 
  
            if rand<0.7   % Guided foraging 
                
[MaxUnvisitedTime,TargetFoodIndex]=max(VisitTable(i,:)); 
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MUT_Index=find(VisitTable(i,:)==MaxUnvisitedTime); 
                if length(MUT_Index)>1 
                    [~,Ind]= min(PopFit(MUT_Index)); 
                    TargetFoodIndex=MUT_Index(Ind); 
                end 
  
                
newPopPos=PopPos(TargetFoodIndex,:)+randn*DirectVector(i,:).*(P
opPos(i,:)-PopPos(TargetFoodIndex,:)); 
                
newPopPos=SpaceBound(newPopPos,Up,Low); %spacebound function 
                
[newPopFit,~,~,~]=ObjFunction(UAV_num,UE_num,A_k,Pos_U,newPopPo
s);  
                 
                if newPopFit>PopFit(i) 
                    PopFit(i)=newPopFit;      
                    PopPos(i,:)=newPopPos; 
                    VisitTable(i,:)=VisitTable(i,:)+1; 
                    VisitTable(i,TargetFoodIndex)=0; 
                    VisitTable(:,i)=max(VisitTable,[],2)+1; 
                    VisitTable(i,i)=NaN; 
                else 
                    VisitTable(i,:)=VisitTable(i,:)+1; 
                    VisitTable(i,TargetFoodIndex)=0; 
                end 
            else    % Territorial foraging 
                newPopPos= 
PopPos(i,:)+randn*DirectVector(i,:).*PopPos(i,:); 
                newPopPos=SpaceBound(newPopPos,Up,Low); 
                
[newPopFit,~,~,~]=ObjFunction(UAV_num,UE_num,A_k,Pos_U,newPopPo
s);  
                if newPopFit>PopFit(i) 
                    PopFit(i)=newPopFit; 
                    PopPos(i,:)=newPopPos; 
                    VisitTable(i,:)=VisitTable(i,:)+1; 
                    VisitTable(:,i)=max(VisitTable,[],2)+1; 
                    VisitTable(i,i)=NaN; 
                else 
                    VisitTable(i,:)=VisitTable(i,:)+1; 
                end 
            end 
        end 
  
        if mod(It,2*nPop)==0 % Migration foraging 
            [~, MigrationIndex]=min(PopFit); 
            PopPos(MigrationIndex,:) =rand(1,Dim).*(Up-
Low)+Low; 
            
[PopFit(MigrationIndex),~,~,~]=ObjFunction(UAV_num,UE_num,A_k,P
os_U,PopPos(MigrationIndex,:));  
            
VisitTable(MigrationIndex,:)=VisitTable(MigrationIndex,:)+1; 
            
VisitTable(:,MigrationIndex)=max(VisitTable,[],2)+1; 
            VisitTable(MigrationIndex,MigrationIndex)=NaN;             
        end 
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        for i=1:nPop 
            if PopFit(i)>AHA_fitness 
                AHA_fitness=PopFit(i);             
                AHA_coordinates=PopPos(i,:); 
            end 
        end 
         
        
[~,AHA_Jain_fairness,AHA_loss_rate,AHA_data_rate]=ObjFunction(U
AV_num,UE_num,A_k,Pos_U,AHA_coordinates);  
        HisBestFit(It)=AHA_fitness; 
    end 
end % end of function 
 

APPENDIX B: MATLAB code – Objective Function 

function 
[fitness,jain_fairness,loss_rate,sum_data_rate]=ObjFunction(UAV
_num,UE_num,A_k,Pos_U,PopPos) 
%% coefficient settings 
a = 0.6; b = 0.11; % urban 
f_c = 2*(10^9); % 2 GHz, Carrier frequency, Cation: Chen, Liao, 
and Chen, ¡®End-to-End Delay Analysis in Aerial-Terrestrial 
Heterogeneous Networks¡¯. 
c = 3 * (10^8); % speed of light 
w_1 = 0.3; % penalty cofficient of A_k 
% eta_LoS = 1; 
% eta_NLoS = 20; 
alpha = 3; 
F = 20*log10((4*pi*f_c)/c)+23; % path loss in 0DB 
P_t = 0.1; %  30 dBm, 1 watt 
P_N = 10^(-14); %  -110 dBm, 10^(-14) watt 
D_sec = 25; % security distance between UAV 
%% PROBLEM start by removing this nPop 
        % ---- UAV get the global information ---- (is this 
necessary? cuz the values of the 2d matrix are all the same 
anyway) 
        for j = 1:UAV_num 
            n = 3*j; 
            % ---- distance of UAV with UE ---- 
            for k = 1:UE_num 
                UAV_UE_distance(j,k) = sqrt( (PopPos(n-2)-
Pos_U(k,1))^2 + (PopPos(n-1)-Pos_U(k,2))^2 + (PopPos(n))^2 ); % 
the distance of UAV/drone and UE 
                UAV_UE_angle(j,k) = 
(180/pi)*acos(PopPos(n)/UAV_UE_distance(j,k)); % angle of 
UAV/drone and UE 
            end % end for k 
             
            for i=1:UAV_num   
                p = 3*i; 
                UAV_UAV_distance(j,i) = sqrt( (PopPos(n-2)-
PopPos(p-2))^2 + (PopPos(n-1)-PopPos(p-1))^2 + (PopPos(n)-
PopPos(p))^2 ); 
            end 
        end 
        link_Pro_LoS = 1./( 1+ a.*exp( -b.*(UAV_UE_angle - 
a) ) ); % LoS probability function, coefficient b=0.11, 
cofficient a=12.08. 
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        link_Path_loss = 10.^((10*log10(UAV_UE_distance.^2)+((-
21.4)*link_Pro_LoS)+F)/10); % mean path loss function, L = 
P_LoS*L_LoS + P_NLoS*L_NLoS. 
        link_SNR = (P_t.*link_Path_loss)/(P_N);   
        link_data_rate = log2(1+link_SNR); 
  
        % ---- Update the connection state ---- 
        % greedy algorithm 
        C = zeros(UAV_num,UE_num); 
         
        for k = 1:UE_num 
            C(:,k) = 0; 
            [ff idx] = max(link_data_rate(:,k)); % select the 
max value to serve user 
            C(idx,k) = 1; 
            % ---- less than the requirment ---- 
            if link_data_rate(idx,k) < A_k(k) 
                C(idx,k) = 0; 
            end 
        end         
         
        link_user_data_rate = sum(C.*link_data_rate, 1); % here 
calaculate the data rate provided by each UAV 
        %% received data/user requiremrent 
        w = link_user_data_rate./A_k;  
         
        for  i=1:UE_num 
            if w(i) == 0 
                link_fair(i) = -100; 
                 % the fairness of j_th UAV,alpha = others   
            else 
                if alpha == 1 
                    link_fair(i) = log(w(i)); 
                 
                else 
                    if alpha~=1 && alpha>=0 
                    link_fair(i)=(w(i)^(1-alpha))/(1-alpha);     
                    end 
                end 
            end 
        end 
         
        loss_rate =  (UE_num - sum(sum(C)))/(UE_num) ;  % loss 
of user connectivity 
       
        jain_fairness = 
( (sum(w)).^2 )/( UE_num*( sum((w).^2) ) ) ;% Jain's fairness 
        sum_data_rate = sum(link_user_data_rate); 
         
        fitness = sum(link_fair) - w_1*sum( sum(D_sec-
UAV_UAV_distance) ); 
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APPENDIX C: MATLAB code - RA 

function 
[Random_pos,Random_fitness,Random_Jain_fairness,Random_loss_rat
e,Random_data_rate]=RA(MaxIt,XMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX,Dim,
UAV_num,UE_num,Pos_U,A_k) 
  
Random_pos_temp = zeros(1,Dim); 
Random_pos = zeros(1,Dim); 
Random_fitness = -inf; %change this to -inf for maximization 
problems 
Random_Jain_fairness = zeros(1,1); 
Random_loss_rate = zeros(1,1); 
Random_data_rate = zeros(1,1); 
  
%% initial values 
%[fitness,jain_fairness,loss_rate,sum_data_rate]=ObjFunction(UA
V_num,UE_num,A_k,Pos_U,PopPos(i,:)); 
    for i=1:MaxIt         
  
                for j = 1:Dim 
                    % X-coordinate 
                    Random_pos_temp(1, (j - 1) * 3 + 1) = XMIN 
+ (XMAX / 3 - XMIN) * rand; 
  
                    % Y-coordinate 
                    Random_pos_temp(1, (j - 1) * 3 + 2) = YMIN 
+ (YMAX / 4 - YMIN) * rand; 
  
                    % Z-coordinate 
                    Random_pos_temp(1, (j - 1) * 3 + 3) = (ZMAX 
- ZMIN) * rand + ZMIN; 
                end 
                
            
[fitness,jain,loss_rate,data_rate]=ObjFunction(UAV_num,UE_num,A
_k,Pos_U,Random_pos_temp(1,:)); 
            if fitness>Random_fitness  
                Random_pos = Random_pos_temp(1,:); 
                Random_fitness = fitness; 
                Random_Jain_fairness = jain; 
                Random_loss_rate = loss_rate; 
                Random_data_rate = data_rate; 
            end 
        %end % nPop 
    end %max iter 
    if all(Random_pos(:) == 0) 
  
                for j = 1:Dim 
                    % X-coordinate 
                    Random_pos((j - 1) * 3 + 1) = XMIN + (XMAX 
/ 3 - XMIN) * rand; 
  
                    % Y-coordinate 
                    Random_pos((j - 1) * 3 + 2) = YMIN + (YMAX 
/ 4 - YMIN) * rand; 
  
                    % Z-coordinate 
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                    Random_pos((j - 1) * 3 + 3) = (ZMAX - ZMIN) 
* rand + ZMIN; 
                end 
    end 
end 
 

APPENDIX D: MATLAB code - PP 

function 
[Static_pos,Static_fitness,Static_Jain_fairness,Static_loss_rat
e,Static_data_rate]=SP(iter,XMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX,Dim,U
AV_num,UE_num,Pos_U,A_k) 
  
    %% ------ UAV BSs Settings ------ 
%Fixed altitude (midpoint between ZMAX and ZMIN) 
altitude = (ZMAX + ZMIN) / 2; 
Static_fitness = -inf; 
pos = zeros(iter,Dim); 
    for i=1:iter 
        if Dim == 12 
            %% 4 UAVs 
            % ---- UAV 1 ---- 
             pos(i,1) = XMIN + (XMAX/2-XMIN)*rand; 
             pos(i,2) = YMIN + (YMAX/2-YMIN)*rand; 
             pos(i,3) = altitude; 
             % ---- UAV 2 ---- 
             pos(i,4) = XMAX/2 + (XMAX-XMAX/2)*rand; 
             pos(i,5) = YMIN + (YMAX/2-YMIN)*rand; 
             pos(i,6) = altitude; 
             % ---- UAV 3 ---- 
             pos(i,7) = XMIN + (XMAX/2-XMIN)*rand; 
             pos(i,8) = YMAX/2 + (YMAX-YMAX/2)*rand; 
             pos(i,9) = altitude; 
             % ---- UAV 4 ---- 
             pos(i,10) = XMAX/2 + (XMAX-XMAX/2)*rand; 
             pos(i,11) = YMAX/2 + (YMAX-YMAX/2)*rand; 
             pos(i,12) = altitude; 
        elseif(Dim == 24) 
             % ---- UAV 1 ---- 
             pos(i,1) = XMIN + (XMAX/2-XMIN)*rand; 
             pos(i,2) = YMIN + (YMAX/2-YMIN)*rand; 
             pos(i,3) = altitude; 
             % ---- UAV 2 ---- 
             pos(i,4) = XMAX/2 + (XMAX-XMAX/2)*rand; 
             pos(i,5) = YMIN + (YMAX/2-YMIN)*rand; 
             pos(i,6) = altitude; 
             % ---- UAV 3 ---- 
             pos(i,7) = XMIN + (XMAX/2-XMIN)*rand; 
             pos(i,8) = YMAX/2 + (YMAX-YMAX/2)*rand; 
             pos(i,9) = altitude; 
             % ---- UAV 4 ---- 
             pos(i,10) = XMAX/2 + (XMAX-XMAX/2)*rand; 
             pos(i,11) = YMAX/2 + (YMAX-YMAX/2)*rand; 
             pos(i,12) = altitude; 
  
            % ---- UAV 5 ---- 
            pos(i,13) = XMIN + (XMAX/4-XMIN)*rand; 
            pos(i,14) = YMIN + (YMAX/2-YMIN)*rand; 
            pos(i,15) = altitude; 
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            % ---- UAV 6 ---- 
            pos(i,16) = XMAX/4 + (XMAX/2-XMAX/4)*rand; 
            pos(i,17) = YMIN + (YMAX/2-YMIN)*rand; 
            pos(i,18) = altitude; 
  
            % ---- UAV 7 ---- 
            pos(i,19) = XMIN + (XMAX/4-XMIN)*rand; 
            pos(i,20) = YMAX/2 + (YMAX-YMAX/2)*rand; 
            pos(i,21) = altitude; 
  
            % ---- UAV 8 ---- 
            pos(i,22) = XMAX/4 + (XMAX/2-XMAX/4)*rand; 
            pos(i,23) = YMAX/2 + (YMAX-YMAX/2)*rand; 
            pos(i,24) = altitude; 
        elseif Dim == 36 
          %% 12 uav 
          % Initialize a matrix to store the random positions 
            % ---- UAV 1 ---- 
            pos(i, 1) = XMIN + (XMAX/3 - XMIN) * rand; 
            pos(i, 2) = YMIN + (YMAX/4 - YMIN) * rand; 
            pos(i, 3) = altitude; 
  
            % ---- UAV 2 ---- 
            pos(i, 4) = XMAX/3 + (2*XMAX/3 - XMAX/3) * rand; 
            pos(i, 5) = YMIN + (YMAX/4 - YMIN) * rand; 
            pos(i, 6) = altitude; 
  
            % ---- UAV 3 ---- 
            pos(i, 7) = 2*XMAX/3 + (XMAX - 2*XMAX/3) * rand; 
            pos(i, 8) = YMIN + (YMAX/4 - YMIN) * rand; 
            pos(i, 9) = altitude; 
  
            % ---- UAV 4 ---- 
            pos(i, 10) = XMIN + (XMAX/3 - XMIN) * rand; 
            pos(i, 11) = YMAX/4 + (YMAX/2 - YMAX/4) * rand; 
            pos(i, 12) = altitude; 
  
            % ---- UAV 5 ---- 
            pos(i, 13) = XMAX/3 + (2*XMAX/3 - XMAX/3) * rand; 
            pos(i, 14) = YMAX/4 + (YMAX/2 - YMAX/4) * rand; 
            pos(i, 15) = altitude; 
  
            % ---- UAV 6 ---- 
            pos(i, 16) = 2*XMAX/3 + (XMAX - 2*XMAX/3) * rand; 
            pos(i, 17) = YMAX/4 + (YMAX/2 - YMAX/4) * rand; 
            pos(i, 18) = altitude; 
  
            % ---- UAV 7 ---- 
            pos(i, 19) = XMIN + (XMAX/3 - XMIN) * rand; 
            pos(i, 20) = YMAX/2 + (3*YMAX/4 - YMAX/2) * rand; 
            pos(i, 21) = altitude; 
  
            % ---- UAV 8 ---- 
            pos(i, 22) = XMAX/3 + (2*XMAX/3 - XMAX/3) * rand; 
            pos(i, 23) = YMAX/2 + (3*YMAX/4 - YMAX/2) * rand; 
            pos(i, 24) = altitude; 
  
            % ---- UAV 9 ---- 
            pos(i, 25) = 2*XMAX/3 + (XMAX - 2*XMAX/3) * rand; 
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            pos(i, 26) = YMAX/2 + (3*YMAX/4 - YMAX/2) * rand; 
            pos(i, 27) = altitude; 
  
            % ---- UAV 10 ---- 
            pos(i, 28) = XMIN + (XMAX/3 - XMIN) * rand; 
            pos(i, 29) = 3*YMAX/4 + (YMAX - 3*YMAX/4) * rand; 
            pos(i, 30) = altitude; 
  
            % ---- UAV 11 ---- 
            pos(i, 31) = XMAX/3 + (2*XMAX/3 - XMAX/3) * rand; 
            pos(i, 32) = 3*YMAX/4 + (YMAX - 3*YMAX/4) * rand; 
            pos(i, 33) = altitude; 
  
            % ---- UAV 12 ---- 
            pos(i, 34) = 2*XMAX/3 + (XMAX - 2*XMAX/3) * rand; 
            pos(i, 35) = 3*YMAX/4 + (YMAX - 3*YMAX/4) * rand; 
            pos(i, 36) = altitude; 
        end 
         
        
[fitness,jain,loss_rate,data_rate]=ObjFunction(UAV_num,UE_num,A
_k,Pos_U,pos); 
            if fitness>Static_fitness  
                Static_pos = pos(i,:); 
                Static_fitness = fitness; 
                Static_Jain_fairness = jain; 
                Static_loss_rate = loss_rate; 
                Static_data_rate = data_rate; 
            end  
    end 
end 
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