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RABI OSCILLATIONS IN THE JAYNES-CUMMINGS MODEL

ABSTRACT

In this thesis, the interaction between a two-level atom and single-mode quantized light sources
is studied quantum mechanically. This is also known as the Jaynes-Cummings Model (JCM).
This model is studied theoretically by first deriving the total atom-field Hamiltonian in
Schrodinger Picture, which is the sum of Hamiltonian of the two-level atom, field Hamiltonian
and atom-field interaction Hamiltonian. The field Hamiltonian is obtained through the field
quantization while the atom-field interaction Hamiltonian is derived by using the Electric Dipole
Approximation. The Schrodinger Picture total atom-field Hamiltonian is then changed into the
Interaction Picture by performing the necessary unitary transformation. The non-energy
conserving terms in the Interaction Picture JCM Hamiltonian are omitted by applying Rotating
Wave Approximation (RWA). This Hamiltonian is then used to derive the corresponding unitary
operator. The quantum state of the combined system of atom and field at any time is derived by
performing unitary transformation on the initial quantum state. From the quantum state of the
system, the relationship between the probability that the atom is in the ground state P(t) and
time t can be established. We consider two major field states, namely coherent state and thermal
state, which serve as different initial field statistics for the computation of P(t). From P(t), we
see the striking collapse and revival feature of the Rabi Oscillations and emphasis will be given
on discussing this interesting feature. We then discuss the effects of interaction strength A, initial
field states and detuning A on the collapse and revival behavior of the Rabi Oscillations. In this
thesis, the derivations are initiated with the single- photon JCM case, then the whole process is
extended to two-photon JCM, three-photon JCM and it is finally generalized to k-photon JCM.
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CHAPTER 1

INTRODUCTION

1.1 Background

In physics, the interaction between light and atom can be studied classically, semiclassically and
quantum mechanically. In Classical Optics, the light is treated as electromagnetic waves while
atom is modelled as a Hertzian dipole. When the interaction between light and atom is analyzed
semiclassically, only the energy of the atom is quantized but the light is still treated as waves.
Lastly, when the interaction is studied quantum mechanically, the energy of the atom is
quantized and at the same time, the light is considered as photons (quantized energy packets).
Quantum Optics is the branch of physics which studies the optical phenomena by using Quantum
Mechanics. Jaynes Cummings Model is proposed by E.T.Jaynes and F.W.Cummings in 1963
and it is one of the fundamental problems in Quantum Optics. This model is important because
there are optical phenomena which could not be explained classically or semiclassically, for
example the spontaneous emission of light by an excited atom.

In Jaynes Cummings Model, a two-level atom is allowed to interact with single mode
(frequency) quantized light sources. The combined system of the atom and field is in an ideal
case in which there is no energy dissipation. The quantized light sources will serve as the initial
field states in the light-atom interaction. Coherent states and thermal states are some examples of
the initial field states. When the two-level atom interacts with the coherent field state, beautiful
collapse and revival of the Rabi Oscillations could be observed. Conversely, chaotic results are

observed if thermal state is prepared as an initial field state interacting with the atom.



1.2 Aims and Objectives

The Jaynes-Cummings Model (JCM) will be studied theoretically by using quantum mechanics.
The quantization of electromagnetic field, quantization of the energy of two-level atom and
modelling of atom-field interaction by using Electric Dipole Approximation will be studied.
Then, Interaction Picture representation of the JCM Hamiltonian and Rotating Wave
Approximation (RWA) will be used to simplify the JCM Hamiltonian. After that, the unitary
operator method is used to derive the probability of the atom in ground state as a function of time.
The probability function will then be plotted by using coherent and thermal initial field states.
The field statistics of the coherent and thermal states are going to be studied as well in this final
year project. Finally, the collapses and revivals of the Rabi Oscillations are investigated. At the
same time, the effect of detuning, interaction strength and mean photon number on the Rabi
Oscillations will also be discussed. The probability functions will be derived first for single-
photon JCM. Then, the derivations of the probability function are extended to two-photon JCM,
three-photon JCM and they are finally generalized to k-photon JCM.



CHAPTER 2
LITERATURE REVIEW

2.1 Coherent State

The coherent state of the radiation field, |a) is defined mathematically as follows:

@) = exp(~Ial*/2) ) —=Im) @D
n=0 !

where |n) is the number state. A number state represents the monochromatic quantized field of
angular frequency w containing n number of photons. a is a complex eigenvalue which satisfies
ala) = ala), e

and a is the annihilation operator.

Equation (2.1) shows that the coherent state can be expressed as the linear superposition
of the number state |n). According to Fox (2006), the photon stream of the coherent state is

random as shown in Figure 2.1 below.

w L N L] E & * F & L
Coherent {random)

Figure 2.1: Photon stream of the coherent state

The mean number of photons in the coherent state |n) can be calculated as

= (ala’a|a). (2.3)



Derivation of Coherent State’s Photon-number Probability Distribution Function

The following derivation is completed mainly following the approach in Fox (2006). Consider a
monochromatic light of angular frequency ® and constant intensity I. In quantum mechanical
picture of light, a light beam is considered to consist of a stream of discrete energy packets
known as photons. The photon flux @ is defined as the average number of photons passing
through the cross section of a light beam in a unit time. The photon flux & can be calculated by

using the following method:

_IA_ P hot
_hw_hwp otons/s,

where A is the cross sectional area of the light beam, and P is the power of the beam .

Then, the average number of photons n within a beam segment of length L is

where c is the speed of light in vacuum.

Assuming that L is large enough that 7 is a well defined integer value. Then, the light
beam is subdivided into N subsegments of length L/N each. The value of N is so large that only a
very small probability of p = #/N of finding a photon within any particular subsegment, and a
negligibly small probability of finding two or more photons. Then, let P(n) to be the probability

of finding n photons within a beam of length L containing N subsegments.

P(n) could be found by using Binomial distribution. Since it was explained earlier that
the probability of finding two or more photons within a beam of length L containing N
subsegments is negligible, it is equivalent to say that P(n) is the probability of finding n
subsegments containing 1 photon and (N—n) subsegments containing no photons within a beam

of length L containing N subsegments. By using Binomial distribution,

P =Trw - !

p"(1—p)"

Since p = — as explained earlier,

=| 3



P = i) (1 5)
- (ﬁ) o (1- %)N 24)
|

in (2.4), the Stirling’s Formula Al]im (InN!') =NInN — N is used.
Since N is a very large number as explained earlier,

N!
i _— |l =1 I — — l —
Al’l_r)rgo [ln ((N ) N")] 1\1/1_r)r010 [InN!—In(N — n)! — nlnN]

= lim InN! — hm In(N —n)! — 11m ninN.

N—-ooo

By using the Stirling’s Formula above,

lim

N_,m[ ((NNW)] NInN—-N—[(N-n)In(N—n) — (N — n)]—hmnlnN

=NlnN—N—[(N—n)lnN—N]—AllimnlnN

= nlnN — Al]im ninN

=0,
sinceN>» n,(N—n) = N
Then,
N!
n () =
v =mive) =0
N! .
B @

~ N—-n
n
Next, to simplify (1 - N) in (2.4), by using binomial expansion,

(5) =) R )

(N—n)(N—-n—-1(N—-n-2)/7\°
- N (ﬁ) T

(2.6)

Since N is a very large numberand N > n, then(N—n) = NN(N—n—1) = N



(N—n—2) = N....... Then, (2.6) can be approximated as

N

( ﬁ)”‘" .1 N(ﬁ) N (N)(N) (E)z _ (M)W <§>3 N

-3 1 21 \N 3! N

= exp(—n). (2.7)

By substituting (2.5) and (2.7) into (2.4), (2.4) becomes

1
P(n) = — (D (@) exp(-7)

ﬁn

= —exp(—n), wheren =0,1,2,3 ... .... (2.8)
nl

Equation (2.8) is the probability distribution function of the coherent state, which is also a
Poisson distribution. The photon probability distribution for the laser approaches the Poisson

distribution. Hence, laser is an example for coherent state.

For coherent state, the variance of the photon number will be equal to the mean photon number

.

2.2 Thermal State

According to Fox (2006), the electromagnetic field emitted by a hot body is called thermal
light(state) or blackbody radiation. For a thermal photons stream, the thermal photons are

bunched as shown in Figure 2.2 below:

[TT Y - "
Bunched

Figure 2.2: Photon stream of thermal state



The quantized energy E,, of a single-mode electromagnetic field is given by
E, = ( + 1) h
n=—1n E w,
wheren =0,1,2 ... ... ,and w is the angular frequency. (2.9)

The expression in (2.9) can be proven as follows:

Let |[n) be the number state. A number state represents the monochromatic quantized field of
angular frequency w containing n number of photons. Then, the Electromagnetic Field

Hamiltonian Hy eigenvalue function is

Hgln) = Ep|n), (2.10)

where Hy, is given by
Ay = ho (a*a +2). (2.11)
The expression (2.11) will be proven later in later section.

By substituting (2.11) into (2.10), the left-hand side (L.H.S) of (2.10) becomes
— 1
Hp|n) = how (d*d + E) |n).
Since ata = 7 and 7i|n) = n|n),
— 1
Hp|n) = hw (n + E) [n).
By comparing with the right-hand side (R.H.S) of (2.10),
1
E, =hw (n + E) . (Proven)

If a single mode electromagnetic field of angular frequency w is considered, from
Statistical Mechanics, the probability P(n) that n photons are thermally excited at angular

frequency w is given by the Boltzmann’s Law,

exp (— ki_nT)

ne0 €XD (_ ki_nT) |

P(n) = (2.12)



By substituting (2.9) into (2.12), (2.12) becomes

1
exp| (n 4};37)1 hw

1
Ym=oexp| — (714];3#

P(n) =

_ exp (— %)
Yin—o €XP (_ T]Z%)

_hoy"
[exp( kBl)a]) . (2.13)
o e (- 57|

The denominator in (2.13) can be expanded using geometrical series as

0 exp ot T exp T exp o) T
n=

1

=1_ (_h_w) (2.14)
exp T
= 1
where we have made use of the identityz x" = T—x’ x| < 1.
n=0 X
By substituting (2.14) into (2.13), (2.13) becomes
hw\T"
[ (- ,7)]
P(n) = —
-
P\T kT
=[1-emn (- g e (-]
= exp kT exp kT
~[t-ew (gl (-1o7) 215
= exp T exp T (2.15)



To simplify (2.15) further, if nn is the mean thermal photon number,

n= i n[P(n)].

n=0

Leta = exp (— :—“’T) and by substituting (2.15) into it,
B

n=Yn=on[(1—a)a"]

hw n
So,a = exp (— kB_T) =Tr1 (2.16)

By substituting (2.16) into (2.15), (2.15) becomes

P(n):[l_ﬁleﬁzl)

:ﬁil(ﬁ:-_ll) ' (217)

Equation (2.7) is the probability distribution function for the thermal state and it is also a Bose-

n

Einstein distribution. For the thermal photon number probability distribution, the variance is

greater than the mean photon number 7.
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2.3 Quantization of the Electromagnetic Field

Most of the following derivation is completed by referring to Schleich (2001). The free radiation
field will be quantized under the absence of charges and currents in vacuum. Starting from the

Maxwell’s Equations, we have

V-D=p, (2.18)

VXE = L (2.19)
-~ at’ '

V-B=0, (2.20)

. . dD .

VxH=—+], (2.21)

D = &k, (2.22)

B = u,H, (2.23)
1

o= (2.24)

v #050’

where E and D are the electric field and displacement current respectively, H and B are the
magnetic field and flux density respectively, t is time, c is the speed of light in vacuum, &, and

U are the electric permittivity and magnetic permeability in vacuum, respectively. Then,

E=-Vb—-— and (2.25)

B=VxA4 (2.26)
where @ is the scalar potential and A is the vector potential.

It can be shown that both definitions (2.25) & (2.26) satisfy Maxwell’s Equations (2.19) & (2.20).

By making use of (2.25) and (2.26),

VXE=VX|-Vd——
Jat



S o 0(Vx4

N (Vx A)
ot

_ 0B

ot

where we have made use of V x VF = 0 and F is any scalar field.
Similarly,
VE=V (Tx4)
=0
where we have made use of V- V x F = 0 and F is any vector field.

Now, we would like to solve the Maxwell’s Equations.

From (2.21), we have

X — =
Ho at J
VxEB aE+ J
X B = —
Hoég ot Mo/
. - 10E ,
XB=—— } 2.2

By substituting (2.25) & (2.26) into (2.27), (2.27) becomes

) a(—%-%-f)
Vx(V><A)=C—2 Py + toJ

+ ). (2.28)
By substituting V x (V x 4) = V(V - 4) — V24 into (2.28),

e o - 1 a(Ve) 9%4
V(V-4)-V2A = [ (ve)

2 _T_Fl““)]

11
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Y S 0?4 _ W’[(V A) + ! (aq))] / (2.29)
c2 9t? c2\ ot Hol - '

V-D=p
SV F=2
€o
L[ - 94
=V <—Vc1>——>=ﬁ
Jt o
L -  o(V-4
S 550 204 _p (2.30)
at &

So far, the Maxwell’s Equation have been reduced to the following two equations,

L. 108%4
2 2z [( )+ ( )] o] and (2.29)
550 20A) _p (2.30)

at g
In Quantum Optics, the Lorentz Gauge and the Coulomb Gauge are used very frequently. So, in

order to solve (2.29) and (2.30), the Coulomb Gauge has been chosen. The Coulomb Gauge is
defined by the constraint

-

V-A=0. (2.31)

By substituting (2.31) into (2.29) and (2.30), the two equations can be further reduced to

<

Zﬁ—lzaa—j V[ ( )] to] and (2.32)

<ll

v-vo=L2 (2.33)
€o

Equation (2.33) is also known as the Poisson Equation.
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By taking into consideration that the charges and currents are absent, i.e., p = 0 and f =0, (2.33)
becomes

V-V =0. (2.34)

In fact, there are many possible solutions to this Laplace’s Equation. Since we have the freedom

to choose the scalar potential ® to simplify our calculation, we can choose @ = 0 to be our
solution. The following is the explanation of why we are free to choose the vector potential A

and scalar potential &.

- -

It is defined earlier that B = V x 4 . Now, if there is a transformed vector potential A=A+,
in which the difference is given by VA. Then,

— —

BI

~

v x

Il
<l

x (4 +VA)

—

+V xVA

Il
<l
o )

X

x A

I
<

I
=)

where we have made use of V x VF = 0 and F is any scalar field.

>

It is also defined earlier that E = —Vd — Z—f . Now, if there is a transformed vector potential

D' =P — Z—?, in which the difference is given by (— 2—1:). Then,

R 9A"
ot

=Vt T T Ta
= Vo 04
N ot
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These show that we are free to choose the vector potential A and scalar potential & and they will

all give the same electric field E and magnetic flux density B. This explains why we can choose

® = 0 as the solution of (2.34). A great advantage of choosing ® = 0 is that it can simplify

further the differential equation (2.32). So, by substituting ® = 0 and ] = 0 into (2.32), the latter
becomes

. 1024 _y1 (00 R
VA‘?55=Vtﬁﬁfﬂ‘“d

= V2A————=0. 2.35
c? 0t?2 ( )

Equation (2.35) could be solved by using the method of separable variables.
Let A(% t) = aq(t)B(P). (2.36)

By substituting (2.36) into (2.35),

1 9%[aq(O)V(P)]

Vlaq(Oi(P)] - 5 —5

= QOT[H)] ~ @b @) = 0,

By decomposing it into x, y and z components, we have
(4(OF[1(P)] = — v (P (D

{ GOF [, ()] = v, (P (0

OP[0.D)] = 5 v, i 0

(V2o 160

vx(F) = C—zm. (2.37)
V[v,(®] 14
V[v,M] 14 (2.39)

U v,( c2q@)
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Since the left-hand side and right-hand side of (2.37) - (2.39) depend only on position 7 and time
t respectively, both sides are constant. This constant will be equal to —k?2, where k is the wave

number. Then, equations (2.37) - (2.39) become

(Vo] _ 140,
v @ cZql®)
|Ply®]_1am o,
n(®  2q@® '
V@] _ 140 _ o,
U@ g

Then, we have

{VZ [B(A)] + k28 = 0. (2.40)
G(t) + c?k?q(t) = 0. (2.41)

Since Q = ck, where Q is the frequency of the electromagnetic field, (2.41) becomes
G(t) + Q%q(t) = 0. (2.42)

Now, equation (2.40) will be solved for the case of a box-shaped resonator as shown in Figure
2.3 below:

Figure 2.3: Box-shaped resonator.
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Boundary Conditions on the Electric and Magnetic Field

The boundary conditions for equation (2.40) could be determined as follows:

Since & = 0,
F_ o 04
B ot
__94 (2.43)
ot '

Additionally, the tangential component (parallel to box surfaces) of E and the normal component
(perpendicular to box surfaces) of B should vanish. If we let é,(7) to be a unit vector parallel to

the boundary surface at position 7 on the boundary, then we have

ép (P)-E#t) |boundary =0

Substitution of (2.36) and (2.43) into it yields

.. [ 04
€p ) - _E |boundary =0
L, . 0(aqg®T(®)
=€y @) (T boundary = 0

= é)p(F) ) a‘?(t){}(F)lboundary =0
(2.44)

= ép QR 6(F)|boundary =0.
Let &, (7) be a unit vector perpendicular to the boundary surface at position # on the boundary.

Then,
8.() * B, )l boundary = 0.
By substituting (2.26) and (2.36) into it,
En() (VX Dl poundary = 0
= &+ (V x aq(©)B)poundary = 0

= gn(F) ) (V X 73(77)) Iboundary =0. (2-45)



17

From (2.44), the boundary conditions for side | of Figure 1 are

v(x=0,y,z) =v,(x =0,y,2z) = 0. (2.46)
For side I, the boundary conditions are v, (x,y = 0,z) = v,(x,y = 0,z) = 0. (2.47)
For side 111, the boundary conditions are v, (x,y,z = 0) = v,(x,y,z = 0) = 0. (2.48)

So, the solutions of Helmholtz equation (2.40) after applying the boundary conditions are

v (x,y,2) = Nnxcos(kxx)sin(kyy)sin(kzz), (2.49)
v, (x,y,2) = Nnysin(kxx)cos(kyy)sin(kzz), (2.50)
v,(x,y,2) = Nngsin(k,x)sin(k,y)cos(k,z), (2.51)

where N is the normalization factor and é = (nx, ny, nz) is a unit vector.

Under Coulomb Gauge condition, € is the polarization vector which is orthogonal to the wave
propagation direction. The orthogonality property is shown as follows:

Under Coulomb Gauge condition,

A=0

<

—

= V- [ag()B@)] = 0

= V-3(#) =0 (2.52)
ov, 0v, Jv,
=0
~ ox oy "oz
= —(nxkx +n,ky, + nzkz)sin(kxx)sin(kyy)sin(kzz) = 0. (2.53)

Case 1. If k, # 0 and k,, # 0 and k, # 0, then

nyky + nyky, +nk, =0
=>8-k=0 (2.54)
at any position T.

This shows that the polarization vector € is orthogonal to the wave vector k (propagation
direction). This also depicts that Coulomb Gauge condition reflects the transversality of the wave.
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For a certain propagation direction, there are two linearly independent orthogonal directions.

Therefore, each wave vector k will correspond to two linearly independent polarization vectors
e, and é,.

Case 2: If k, = 0 or k,, = 0 or k, = 0 (any one component of K is zero), then (2.53) is satisfied
and this means Coulomb Gauge condition is satisfied automatically. In this case, there will be
only one polarization vector €.

In conclusion, there are two polarization directions generally. There will be only one polarization
direction when one of the wave numbers becomes zero.

Next, the discrete values of the mode numbers k,, k,, and k, could be determined from another

set of boundary conditions in Figure 1. Let I’, II’ and III” be the surfaces directly opposite of L, II
and 111, respectively, and the following conditions are fulfilled for these surfaces:

Surface I': vy, (x = Ly, y,2) = v,(x = Ly, y,2) = 0. (2.55)
Surface II”: v, (x,y = L, z) = v,(x,y = L,,z) = 0. (2.56)
Surface III’: v (x,y,z = L,) = v,(x,y,z = L,) = 0. (2.57)

By substituting (2.55) into (2.50), (2.50) becomes
0 = Nnysin(k,Ly)cos(kyy)sin(k,z)
sin(k,L,) =0

k.L,=1lm

o~

k, = xz (2.58)

T
L,

By substituting (2.56) into (2.51), (2.51) becomes

0= ansin(kxx)sin(kyLy)cos(kzz)

sin(kyLy) = 0

k, = >—. (2.59)
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By substituting (2.57) into (2.49), (2.49) becomes
0 = Nnycos(k.x)sin(k,y)sin(k,L,)

sin(k,L,) =0

k,L,=1,m
L

k, =2, (2.60)
L,

where 1, 1,, and [, are integers.

Boundary Conditions on the Magnetic Field

Since the components of the magnetic flux density B normal to the surfaces of the rectangular

box vanish, from (2.45) derived earlier, we have

én® - (VX () lboundary = 0, (2.45)
A
o o 0

;»(Vxﬁ(?)):a s

(@) vy (7)) v (7)

R EAG) E)vy(r)
_[ ady 0z

avz(r) avx(r)l lavy(r) avx(r) ;

So, at surfaces I and I’ in which vy(x =0,v,2z) =v,(x =0,y,2) = vy(x =L, V,2z) =

v,(x =Ly, y,2z) =0

av,(F)  0v, ()

dy 0z =0

(V X 17(7))3( |x=0 or x=Ly = l

x=0o0r x=Ly
At surfaces IT and IT” in which v, (x,y = 0,2) = v,(x,y = 0,2) = v, (x,y = Ly,z) =
vz(x,y = Ly,z) =0

- s v, (7) avx(?)
V % v(r)) [ Z = 0
( |y 0ory= Ly ox 0z y=0or y=Ly

At surfaces IIl and III” in which v, (x,y,z = 0) = v,(x,y,z2 = 0) = v, (x,y,z = L) =
v,(x,y,z=L,) =0
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vy, (%) _ 0, (1)

ox ay =0.

(v) X 73(77))2 |z=0 or z=L, — [

L:O or z=L,

Therefore, equation (2.45) is satisfied automatically.

Determination of Normalization Constant N by Using Orthonormality of Mode Functions

From (2.54), it was explained earlier that under the Coulomb Gauge condition, each wave vector

k corresponds to two polarization vectors €, and &,. There will be only one polarization vector
when one of the wave vector components becomes zero. From (2.58) until (2.60), it is also

proven that the mode components k,, k,, and k, are integers multiples L, [, and [, of Ll ~ and

x’ Ly
Li respectively. Therefore, the polarization vector €,; and €;, is denoted as é,, where ¢
represents a set of four numbers, that is the polarization index (1 or 2) and a set of [, [,, and [,.

Similarly, the mode functions are also denoted as v,(#). Now, two different mode functions are
orthonormal, that is,

1, ife=¢

[ - sa@dr =00 ={;  Folw -

(2.61)

Next, consider two different mode functions of the same polarization index but with at least 1
different L, [,, and ,. Then, by evaluating the integral I over the entire volume of the rectangular

box:
1= [ 5 - 5u] dor
= j (B[P0 D] + [T.D]y [0 (D], + [0, )] [0, (D]} d3r
= f {[Nn cos(kex)sin(kyy)sin(k,z)|[N'n, cos(k,'x)sin(k,y)sin(k,'z)]

+ [Nnysin(kxx)cos(kyy)sin(kzz)] [N’ny’sin(kx'x)cos(ky'y)sin(kz'z)]
+ [ansin(kxx)sin(kyy)cos(kzz)] [N’nz’sin(kx’x)sin(ky’y)cos(kz’z)]} d3r
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Ly Ly Ly
= NN’ {nxnx’f cos(kyx) cos(kx’x)dxf sin(kyy)sin(ky’y)dyj sin(k,z) sin(k,'z)dz
0 0 0

!
+ nyn, f
0

Ly Ly L,
+ nznz'f sin(kyx) sin(kx'x)dxf sin(kyy)sin(ky’y)dyf cos(k,z) cos(kz'z)dz}
0 0 0

Ly

Ly Ly
sin(k,x) sin(kx'x)dxf cos(kyy)cos(ky'y)dyf sin(k,z) sin(k,'z)dz
0 0

CaseL:If L=
Ly Ly Ly
| = N2 {nxzf cos?(k,x) dxf sinz(kyy)dyf sin®(k,z) dz
0 0 0
Ly Ly L,
+ nyzf sin? (k,x) dxf cosz(kyy)dyj sin?(k,z) dz
0 0 0

Ly

Ly Ly
+ nzzj sin®(k,x) dxf sin? (kyy)dyj cos?(k,z) dz}. (2.62)
0 0 0

Now, fOLx cos?(k,x) dx

fo 1+ cos(2k,x)
= dx
0 2

1 sin(2k Lx
2k, 0

2 l,m
2(%) .
)
and
Lx lx1 — 2k
j sin?(k,x) dx =J COSZ( <*) dx
0 0

1 sm(kax)
g5,
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Ly
:1 x_sin(Z(lf—f)x)
()|,
L
=

Similar results applied for integration with respect to y and z. Then, (2.62) is simplified to:
L L L L L L L L L
= N2in.2 (22 (22) (22 2 (XY (22 (=22 2(Zx) (22 (22
I=N {nx (2)(2)(2)+"y (2)(2)(2>+"2 (2)(2)(2)}
L,L,L,
= N? (%) (ny? +ny2 +n,2).

Since unit vector é = (n,,ny,,n,), n,* + n,? + n,? = 1. Therefore,

LeLyL
1=N2(—" g Z)
8

%4
()
8
where V is the volume of the rectangular box.

Case2: If L+

Lx cos(kyx + ky'x) + cos(kyx — ky'x)
> dx

Ly
] cos(kyx) cos(k,'x)dx = j
0 0

1 Isin(kxx +ke'x)  sin(kex — ky'x)]™

. 7 + 7
2 (kx+kx) (kx_kx) 0

=0

and

Ly Ly k _ k ’ _ k + k '
j sin(le,x) sin(le,'x)dx = J cos(kyx £ X) . cos(k,x x X) dx
0 0

1 Isin(kxx — k%) sin(kex + k')

B 2 (kx - kx’) (kx + kx’) 0

=0.
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Similar results applied for integration with respect to y and z. Then, (2.62) is simplified to

[1=0.

Therefore, by combining case 1 and case 2,

I = N? (K) 5
8 Lir -

By comparing (2.63) with (2.61), we have

)

N—8
= |y

By defining effective mode volume V, = g :
N = 1
= Iy

The Enerqy of the Electromagnetic Field

The energy of the electromagnetic field can be calculated by using

1 o 1 o
Hp = ] [EsoEz(r,t) +E,u0H2(r,t)] d3r.

(2.63)

(2.64)

(2.65)

(2.66)

To solve (2.66), the electric field E and the magnetic field H must first be determined. In order to

separate the effective mode volume V, from the mode function, it is defined that

1
Up(7) = \/;{@(F) :

Then, the orthonormality condition (2.61) becomes

j [Be(P) - B0 D] 37 = 54,

(2.67)
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1 — o 1 — - 3
- f @) [ dr = 6

1 f
= [t (7) - e, (D] A7 = 840
V{Vg, £ £ 2,8
= f[ﬁg(?) . ﬁg,(?)] d3T' =4/ V[V[,(Sg,[, . (268)

By using the definition in (2.67), (2.36) becomes

AR B = aqOB(F)

qe ()1, (1), (2.69)
Vgé’o

where constant « is determined by the mode volume and the electric permittivity.

Equation (2.69) gives the form of vector potential A(#,t) of single mode. For the multimode
case,

% 1
AED =) —=a,Ou@) . (2.70)
7 V[SO
Now, from (2.43),
E= 04 (2.43)
- at 0 "

By substituting (2.70) into (2.43), (2.43) becomes

- o) 1
E=-— E ——q,(OU,(7)
at y /V€€0

1
——Z T e 2.71)

From (2.26),
B=VxA4 (2.26)
— 1 — -
>H=—VxA. (2.72)
Ho
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By substituting (2.70) into (2.72), (2.72) becomes

17=—V><

Z\/—CM

(), (7) ]

= - \/1V_gqg(t) (7 x 2 ®). (2.73)
7 Hov/ Vo

By substituting (2.71) and (2.73) into (2.66), (2.66) becomes
Hp = f EsOEZ(F,t) +%u0172(ﬁt)] d3r
- | {éso Z%qmmm] [Z \/1—514(15)179(7)]
i1 ko [ZMO 4e®) (Vx () HZHO\/_ 7,00 (Vxﬁf(F))Bd%
=%Z qe(t)qe,(t)j 1, ()i, (F) dr
=%

Vt’ Ve

qe(t)qe,(t)
* ?Z VeV, f T ()- (7 @(@) dr (2.74)

where ¢? = —.
Ho&o

By using V - (fx §)=g- (V X f) —f- (VX g)andletg = V X U,(#) and f = Uy (), then,
V- [t () x (Fx 8| = (Vx @) - (Fx T (7)) = i (P) - [V x (V x 2 ()|
(Vx@e®) - (Vxiip®) =V [ty @ x (Vx @)] + 10 @) - [ x (¥ x %) |
(2.75)

Now, by substituting (2.75) into the second part of the integral in (2.74), we have
[(Vx @) (Vx i, (@) d*r = [{T- [dp ) x (V< @,®)|} d¥r + [ {7 -
[V X (V X @(F))]} d3r.

(2.76)
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According to Gauss Theorem,

fﬁ-ﬁd%‘ = f F-dS ,Wherel_fis any vector field. (2.77)

surface

So, by applying Gauss Theorem on (2.76), (2.76) becomes
[(Vxt@®)- (Vxtip @) d’r = |, [y () x (Vx 2 (®))| - dS + [ {7 -
[V’ X (V X ﬁg(F))]} d3r.

(2.78)

urface

For the integral [ [ﬁgf(F)x(V’xﬁf(?))]-d§,d§ is a vector perpendicular to the

urface
rectangular box surface. Now, from (2.71), electric field Eis proportional to i, () and from
(2.73), magnetic field H is proportional to V x #,(#). Therefore, [ﬁ’f: (1) x (ﬁ X ﬁg(?))] has the
same direction as vector product of E and H. As discussed earlier, at boundary surfaces, the
electric field E is perpendicular to the surfaces while magnetic field His parallel to the surfaces.

Therefore, the vector product E x H has a direction parallel to the surfaces. This implies that the

direction of [ﬁ’{,f (7) x (V X ﬁ[(f’))] is parallel to the boundary surfaces. Hence, [ﬂ{,, () x
(V X ﬁ’[(?))] will be perpendicular to dS and their dot product [ﬁ{,/ () x (V X ﬁ}(?))] - dS will

be equal to zero. The integral fs [ﬁ}:(?)x(ﬁx@(?))]-df vanishes. Then, (2.78)

urface

becomes

f (V X (7)) - (V X Uy (F)) d3r = f i, (7)- [V x (V ﬁ[(f’))]} d3r. (2.79)

To solve (2.79), the identity V x (V X 13) = V(V . ﬁ) —V2F , where F is any vector field, is used.
So, (2.79) becomes

f (V X a[(f)) : (V X Uy (F)) d3r = f {ag, #) - [V’ (V : ﬁ’g(f’)) - Vzﬁg(F)]}d%. (2.80)
From (2.52), due to Coulomb Gauge condition,

V-3,(#)=0. (2.52)
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Since it was defined earlier that ¥,(7) = \/Vzﬁ[(F) and by substituting it into (2.52), then
£

V-U4,(7) = 0. (2.81)

From (2.40) as well,

V2[B,(D)] + k,25,(#) = 0. (2.40)
Then,
V2[d,(M)] = —ko%ii,(7) . (2.82)

.By substituting (2.81) and (2.82) into (2.80), (2.80) becomes
j (Fx @) - (¥ x i () dr = j iy @ - [P dr .
By substituting (2.68) into it,
f (V x ﬁ[(F)) : (V X Uy (F)) A = k2 \[VVpp 4 . (2.83)

So, by substituting (2.68) and (2.83) into (2.74), (2.74) becomes

1 c?
Hg = Ez Z Ge(t)qe,(t) e + 72 Z qe()qe (k"8
T v o

1 - c? 5 5
=EZ e (t)+7z qe”(O)k,”.
7 7

Since k, = —f, where (), is the mode frequency,
c

1
Hy =3 )[40 + a7 (09,7 (2.84)
£

From (2.84), it can be seen that the energy of the electromagnetic field (classically) is the sum of
the energy of unit mass harmonic oscillators of different modes with displacement= g, and
momentum= q,. Hence, the concept of energy quantization of harmonic oscillators could be

used to quantize the energy of field oscillators.

Now, consider an £th mode unit mass harmonic oscillator. The Hamiltonian H, is



1 1

H, = Eqﬁ +=q,%0,%. (2.85)

2

Let p, be the momentum of the unit mass harmonic oscillator. Then,

Pe = Qe .
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From (2.71) and (2.73), it can be seen that the electric field is proportional to the ¢, while

magnetic field is proportional to q,. Hence, the electric field and magnetic field are analogous to

the displacement g, and momentum g, of a unit mass oscillator. Therefore, these field oscillators

could be quantized in the same way as the unit mass harmonic oscillator conveniently by

introducing the complex-valued amplitudes a, and a,. Then, the classical a, and a;, will be

converted into the quantum mechanical annihilation and creation operators @, and a} of mode #.

Now, the amplitudes a, and a; are defined as

1
a, = (Qpq, + ipy) (2.86)
£ 2h0, 'y ¢

1
ap = (Qeqe — ipe) - (2.87)

J2rQ,

By adding (2.86) and (2.87), we have

, h
qp = Z—Q{)(a{; + ap) . (2.88)

By subtracting (2.87) from (2.86),

—(a,—ap). (2.89)

By substituting (2.88) and (2.89) into (2.85), (2.85) becomes

2 2
1]1 |na, N ’ h )
He=317 |7 (@—a)| +5 Z—Q{](ae"‘ae) 0,

170
Y (af% —apa; — aza, + af’z) + ET{} (af + aya; + aza, + a}z)
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hQ
= Tg(a{;a} + aza,) . (2.90)

In (2.90), the order of the complex amplitudes is remained in order to facilitate the process of

conversion into the operators form.

Quantization of the Oscillator

The electromagnetic field is quantized by quantizing each mode of the unit mass harmonic

oscillator. To achieve this, the following commutation relation is postulated:

[(,h JPA{’I] = iha{’,{’r . (2.91)

Then, by using the correspondence principle to convert the classical forms into quantum
mechanical operators, from (2.86), (2.87), (2.88) and (2.89),

1
G, = (Q,4, + iD,), (2.92)
¢ m ¢qe T LDy

1
aj = Q.4 — iDy), (2.93)

J2hQ,

R ho
4= |7q, (a,+a}), (2.94)
1 |,
Pe 71 (af—aD (2.95)

By substituting (2.94) and (2.95) into (2.91), (2.91) becomes

[, Do) = iRy, (2.91)
GeDpr — Dpr Qe = th&, pr

1 mf,
i

. oo
S -ah)| - [ [ - ab)|| o (@ ad

—[(@,a, — a{}a{,, + a{,afr - a# o ) (apa, + afra;f - ag,af {,,a{,)] 1hé, .
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Since [a,,d,] = [a},a ] = 0or (Q,a, — Apa,) = (at, - t,,a:.f) =0,
R [(—a.al, + aja,) — (apa) — alia,)] = ins,
in[a,,al] = ins,,

[ag ,d;;] = 6£‘£’ . (296)
By converting (2.90) into quantum mechanical operator form, (2.90) becomes

o _ho
d —-(a.a} +aja,). (2.97)

So, to consider all the modes of electromagnetic field, the Hamiltonian Hy is

_ hQ
Hy = z t(a,a} +ala,). (2.98)

4

From (2.96),

a,al = ala, +1. (2.99)

By substituting (2.99) into (2.98), (2.98) becomes

. . 1

Hy = z AQ, (aga[ + E) : (2.100)

£

For the case of single mode electromagnetic field, the Hamiltonian Ay reduces to

—~ 1

He = how (a*a+§), (2.101)
where Q = w is the single mode frequency and H is the single-mode field Hamiltonian.

From (2.71), the electric field operator E of multimode electromagnetic field can be evaluated as

F=—) ——— a0, 271)
7 ,/V[SO



In operator form,

b

A/ VgSO

By substituting (2.95) into it,

1
= - ) =D .
£

(3
|
§l
—~
it
—/
>
®)
o
Q
e
[
Q
oS
—

Ty
Il
Nl
N\
=
\—/
N
>
S B
C‘J"‘) ~
QD
~
|
<l
)
=
=
—/
[\S]
>
g) ~
Q
& —

E=F® 4 FO),

5 , HA/thA 5_ . H%,flﬂfA
whereE(+)=lZug(r) ZVgsoaf and E( )=—lZW(7‘) ZV[EOa}-.

For single mode case, (2.102) reduces to

= T o hw A A
E = iu(7) Ve (@a-abh,

where V is the effective mode volume .
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(2.102)

(2.103)

From (2.73), the magnetic field operator H of multimode electromagnetic field can be evaluated

as
=y ———a0 (Vx @)
7 MO\/%
In operator form,
A=y ——a0 (Tx @)
7 .UO\/m

By substituting (2.94) into (2.104), (2.104) becomes

1
7 Hov/ Veeo (

(2.73)

(2.104)
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T

=

1 / NS
_“_OZ‘ zagvfgo(vxuf’(r))(“ﬁ“f)- (2.105)

For single mode case, (2.105) reduces to

1 h
U |20V,

T

(V x ﬁ(f’)) @+ ah, (2.106)

where V is the effective mode volume.

24 Quantization of the Energy (Hamiltonian) of the Two-Level Atom
Let H, be the Hamiltonian of the two-level atom. Then, according to Scully and Zubairy (1997),
the Hamiltonian eigenvalue equation is

Hali) = Eqli) , (2.107)
where |i) represents the energy eigenstates of the atom, E; is the energy eigenvalues of the atom.
From (2.107), by multiplying both sides with (i|, (2.107) becomes

HyliXil = Egli)il.
Then, by taking summations on both sides,

Yi Hali)i] = X Egli)il. (2.108)
Since the two-level atom has only two energy levels, there are two energy eigenvalues
(E; and E,) and eigenstates (]1) and |2)). Then, (2.108) becomes

Ha(IIXL] + 12020 = Eq |11 + Ez[2)2] - (2.109)
Since |1) and |2) form a complete set of energy eigenstates, [1){1| + |2){2| = I. Then, (2.109)

becomes

H, = E|1X(1] + E,|2)(2] . (2.110)
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Here E; = hw, and E, = hw,, where w; is the angular frequency associated with the ground
energy level and w,is the angular frequency associated with the excited energy level. Then,
(2.110) becomes

Hy = hoq[1(1] + hw,|2)(2]

_(hw, 0
_( ’ hwl). (2.111)
By making A, = al + bé;, (2.112)

("7 ha)=elo D*o(p &) ana

therefore, a + b = hw,, a — b = hw;.

After solving the simultaneous equations,
h h
a = E((l)l + (1)2) and b - E((Uz - (1)1) . (2113)
Therefore, by substituting (2.113) into (2.112),
~ h . h R
HA = E((l)l + (1)2)1 + E ((1)2 - (1)1)0-3 . (2114)

Therefore, the Hamiltonian for two-level atom, A, has been determined.

2.5 Jaynes-Cummings Model (JCM) and the micromaser

In Jaynes-Cummings Model, the interaction between a two-level atom and a single-mode
quantized electromagnetic field is studied. The system of the two-level atom and photons are
located inside an ideal cavity in which there is no energy dissipation. For single mode quantized
electromagnetic field, examples are abundant. Some of the common ones for example, are
coherent state, thermal state, number state etc. The coherent and thermal states have been

explained in part 2.1 and 2.2 while a number state |n) represents a single mode quantized
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electromagnetic field containing n photons. One of the field states actually serves as the initial
field state to interact with the two-level atom. When they interact, the electron will absorb the
photon energy and make a transition to the higher energy level. Then, the atom is in the excited
state. In other way, the electron may also make a transition from high to ground energy levels.

Under this situation, the atom is in the ground state.

In single-photon Jaynes-Cummings Model, one photon will be absorbed or released by
the two-level atom during its interaction with the single mode photons. Then, for two-photon
Jaynes-Cummings Model, two photons will be absorbed or released by the atom. Then, the
Jaynes-Cummings Model can then be generalized to k-photon transition case. For the single-
photon JCM Hamiltonian A, it involves the summation of Hamiltonian of the two-level atom H,,
Hamiltonian of the quantized electromagnetic field H and the Hamiltonian due to the interaction

between atom and photons H,,, , i.e., H = Hy+Hr + Hp,.

The single-photon JCM Hamiltonian is used to derive the probability that the atom is in
the ground state as a function of parameter At, where A is the interaction strength and t is the time.
Interesting results can be seen with different initial field states. For instance, in single-photon
JCM, when the atom is allowed to interact with a quantized field in coherent state, the energy of
the atom will actually oscillate between the high and low energy values with time. This
oscillation will collapse after a certain period of time. After the collapse of the oscillation, there
is a stage in which there is no information about the atom’s energy state. Then, the oscillation
revives again and the same process is repeated. The oscillation mentioned is also known as the

Rabi Oscillations.

The Jaynes-Cummings Model can be demonstrated experimentally through the
interaction between a Rydberg atom (two-level atom) and the fundamental mode of a microwave

cavity as shown in next page.
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Figure 2.4: The micromaser

The configuration shown in Figure 2.4 above is called a micromaser. In a micromaser, the

situation in which at most one atom is present in the cavity at any time can be created.

As shown in the figure above, Rydberg atoms (e.g. Rubidium atoms) produced from the
atomic beam oven pass through the velocity selector. Then, the velocity-selected beam of atoms
is sent into the laser excitation region. In the laser excitation region, the atoms are promoted to
excited states. Due to the fact that the Rydberg atom has very long lifetime in the upper energy
level, the spontaneous emission effect can be neglected. Afterwards, only a single Rydberg atom
will enter and leave the superconducting microwave cavity through the small holes on the
opposite sides of the cavity. During the time in which the atom is inside the cavity, the Rydberg
atom can emit a single photon or reabsorbs a photon during its interaction with the photons
which are already present into the cavity. This is actually a JCM-type interaction. In order to
reduce the noise caused by the thermal photons emitted by the cavity itself, the temperature of
the cavity is reduced to as low as 2.5K. This is to make the interaction environment as ideal as

possible, as required in the JCM-type interaction.

When the Rydberg atom leaves the cavity, its energy state can be determined through the
ease of its ionization by the DC electric field. In Figure 2.6, the electric field in the first
ionization region is strong enough to ionize the Rydberg atom in its excited state, but it is still

too weak to ionize the ground state Rydberg atom. Hence, the atom in excited state will be



36

detected by the channeltron detector in the first ionization region. Conversely, if the leaving
Rydberg atom is in its ground state, it will be ionized by the stronger electric field and detected

in the second region.

2.6 Electric Dipole Approximation

In Jaynes-Cummings Model, the atom studied is a two-level atom with only one proton
and one electron. When the latter interacts with a single mode electromagnetic field, the electric
field component of the light wave does not change considerably over the size of the atom. This is
due to the fact that the diameter d of the atom (d = 0.1nm) is very much smaller than the range of
wavelength A of interest (A>100nm) (Garrison and Chiao, 2008). So, on the scale of optical
wavelength, the electron only occupies a small region surrounding the proton. According to the
derivations by Schleich (2001) using Taylor’s expansions of vector potential, when d<< 2, it
implies that the electric field at the position of the electron is approximately equal to the electric
field at the position of the proton. Therefore, the two-level atom with a proton and an electron
can be modeled as a dipole while the electric field of the light wave across the atom can be well
approximated as a uniform electric field. This is known as the Electric Dipole Approximation
and it helps to simplify the problem of calculating the interaction Hamiltonian. With Electric
Dipole Approximation, the interaction energy (Hamiltonian) between the atom (dipole) and the

light (uniform electric field) can be derived as shown in next page.
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Derivation of the Electric Dipole Energy in a Uniform Electric Field

1
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1
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Figure 2.5: Electric dipole in a uniform electric field

Consider the torque acting on the dipole charges g caused by the uniform electric field E as

shown in Figure 2.5 above. Then, the torque 7 is

13
13

L X F, +7 X E_

+ (— %) x (—qE),

where d is the vector pointing from negative to the positve charge. Then,

7

N\
I
i

xXq

N Qy

2=qd XE.

Let 5 = qd, where 3 is the electric dipole moment. Then,

T=pxE
7= |5 x E|
= pE|sin6é|,

where p = |p|,E = |E|, and é = unit vector perpendicular to p and E.
Then, |7| = pE|sind|.

Now, by choosing dipole energy U;,;,=0at 8 = g the energy Uj;,,; of the dipole configuration in

Figure 2.5 is



38

Uit = | 17]1d6, where || = pE|sind)|

N|:l\:b

EIES

=/

pE|sin6|d6é

N

pEsin0do .

:‘\Cb

2z
|sinf| = sin6 because sin@ is positive for 0 < 0 < g When 6 changes from g to 0, the dipole

will be in the low energy configuration, in which it becomes stable as illustrated below.

Low enerqy
configuration —

i
o
B

+

Stable

Figure 2.6: Low dipole energy configuration

Then,

Uine = [—pEcos6]
2

= —pEcosH

=—p-E. (2.115)
Equation (2.115) gives the classical form of the Interaction Energy (Hamiltonian) U;,, between
the dipole and the uniform electric field E. As explained in the part of Electric Dipole

Approximation before, the Interaction Hamiltonian H;,, between light (electromagnetic field)

and two-level atom can be approximated as the Interaction Hamiltonian U;,,; between a dipole

and the uniform electric field E. Then, by using the Correspondence Principle, the quantum
mechanical operator form of (2.115) is

Aine =Ope =1 E , (2.116)
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where ﬁ is the electric dipole operator.
According to Barnett and Radmore (1997),
p=p'6, +P6_ .
Since p is a real vector, p* = p.
p=pG,+6.). (2.117)
From equation (2.103) of the part of Quantization of Electromagnetic Field, the electric field

operator E fora single-mode electromagnetic field is

hw

E =iu® T
0

(a—ah, (2.103)

where V is the effective mode volume .

By substituting (2.117) and (2.103) into (2.116), (2.116) becomes

hw

Hine = —p(64 +6-) - it(¥) (@a—ah

2V e,

hw
— _—>.—> >N\ A A ~ /\'I‘
p-u(¥)i Ve (6, +a6-)@—a"
= —ip W) |57 (64 +6_)(@—a") (2.118)
= —ihp - u(r 2hV€00+ g_)@a-av. )
LetA = 7 %(7) |——— ,then (2.118) b
e =p-ulr ZflVSO , then . ecomes
Hipe = —ihA(6, + 6.)(@a—a'). (2.119)

where A is also known as the interaction strength.
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2.7 Schrodinger, Heisenberg and Interaction Pictures

Schrodinger Picture

In Quantum Mechanics, observables are defined as any physical quantities which can be
measured. The observables in Quantum Optics can be expressed in Schrodinger, Heisenberg or
Interaction Pictures. For Schrodinger Picture, the observables are represented by time
independent Hermitian Operators X (Garrison and Chiao, 2008). The quantum state is then

described by a time dependent ket vector |‘P(S) (t)), which satisfies the Schrodinger equation

0 _
iha|1p($)(t)) = H(S)|qJ(S)(t)>_ (2.120)

Heisenberq Picture

In Heisenberg original formulation of Quantum Mechanics, which is 1 year before
Schrodinger’s, there is no wave function or wave equation. The observables are represented by
matrices that evolve in time according to a quantum version of Hamilton’s equations of classical
mechanics. This type of quantum theory is known as the Heisenberg Picture (Garrison and Chiao,
2008).

In contrast with Schrodinger Picture, the quantum states in Heisenberg Picture,
|1IJ(H)) are time independent while the observables are represented by time dependent Hermitian

Operators, X™)(t). The mathematical relationship between Schrodinger and Heisenberg Picture

quantum state is given by

(WS (D) = U(t - to)|wH), (2.121)
where U(t — t,) is a Unitary Operator.

The two pictures quantum states coincide at time t = t,. At t = to, [¥© (1)) = [¢M).

Therefore, U(0) = I. To solve U(t — t,), (2.121) is substituted into (2.120),

i [0 ~ )| ¥ )] = B[ — t) | 90)]
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Sl e Ll
= ihln[0(t — )] = A9t + C
= U(t —to) = Aexp(—i HSt/h). (2.122)
By applying the condition U (0) = 1,

[ = Aexp(—i Hty/h)
= A =exp(iHSty/h).
By substituting A = exp(i H®)t,/h) into (2.122),

U(t —ty) = exp[—i HO(t — to)/R] .

The choice of the value of t, depends on the convenience for the problems in Quantum Optics.

Most of the time, t, is setto t, = 0.

Besides that, the mathematical relationship between the Operators in Schrodinger and
Heisenberg Pictures could also be established. This is achieved by enforcing the condition that

expectation values given by observables in both pictures must be equivalent, which means

(Y| XE ()|eW) = (O ()| XSO |wS (1)) (2.123)
By substituting (2.121) into (2.123), (2.123) becomes

(P2 ()| W) = (W|JT(t — £)XOT (¢t — to)| WD),
where (¥ | = ($W|Tt(t —¢t,) .
Then, by comparing left and right-hand sides,

X @) = Ut - to) XU - t,). (2.124)
By setting t, = 0,

X @) = 1) XSOU(b).
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Interaction Picture

In the study of interaction between electromagnetic field and atom (Jaynes-Cummings
Model), the interaction energy between the atom and field is much smaller than the energies of

individual photons. It is therefore useful to rewrite the Schrodinger Picture Hamiltonian,

A® =9 + B9 + BS) as A9 =7 + BY),  where A = A + A,

Int Int’

s

A is the Field Hamiltonian, A s the atom Hamiltonian and A%)is the Interaction

Hamiltonian. Then, Hés) is the unperturbed Hamiltonian while ﬁ,(,fg is considered as the

perturbation (small disturbance).

Interaction Picture is useful in the theoretical study of Jaynes-Cummings Model (JCM)
because by performing unitary transformation on the JCM Hamiltonian from Schrodinger to
Interaction Picture JCM Hamiltonian H®), the form of Hamiltonian will become simpler. The

significance of transforming from Schrodinger Picture into Interaction Picture is that the
unperturbed Hamiltonian ﬁés)is removed from the transformed JCM Hamiltonian since it does

not affect the JCM system under studied. The Interaction Picture state vector |lP(D (t)) is defined

by the following unitary transformation:
PO ®) = T{®[PO©), (2.125)
where U] (t) = exp[i ﬁés)(t — to)/h] . (2.126)

The expression in (2.126) could be proven as follows:

From Schrodinger’s Equation,

~ d

A®wO () = iR WS (b)) . (2.127)
Since by definition, [¥#®(t)) = Uy (£)|¥™) (setting t, = 0), then (2.127) becomes

ﬁéS) [To(0)[wH)] = ih% AGIEER]

. L9
HO Uo(t) = lhaUO(t)
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=i fd[l:‘z(? fH(S)dt

= inIn[0y(t)] = At + C
= Uo(t) = Aexp(—i A t/n). (2.128)
By applying the condition U,(0) = I,

A=1. (2.129)

By substituting (2.129) into (2.128),

0,(t) = exp[—i ﬁ35>t/h] . (2.130)
Then,
03 (¢) = exp|i At /). (2.131)

Derivation of Transformation Formula from Schrodinger Picture Hamiltonian into
Interaction Picture Hamiltonian

The following derivation is completed by referring to Barnett and Radmore (1997). The Time

Dependent Schrodinger Equation in Interaction Picture is given by
0 ~
ih— |[¥D () = HO|wD (D). (2.132)
From (2.132),

L.H.S = Lh |‘P(D(t)) (2.133)

By substituting (2.125) into (2.133), (2.133) becomes
0 17t s
L.H.S = ih— [T O|¥S ©)].
Let U(t) = U7 (¢) = expi AVt /), then,

L.H.S = ih% [0S )]



aU _a|w®)
— in( = |p® b I
Lh(at|‘P )+ U— >

a|w®)
ot

= ihU|W®) + ihT
The Time Dependent Schrodinger Equation in Schrodinger Picture is given by
i 2 [WO ) = A9 O )
By substituting (2.135) into (2.134), (2.134) becomes
L.H.S = ikl |W®) + THO |9,
From (2.132),
R.H.S = AHD|wD(p))
= AO7|w®),
Since L.H.S = R.H.S, by comparing (2.136) and (2.137),
(in0 + DA [9©) = AOT|wO)

—

ADF = inl + OAS)

-

4+ OAOT.

S

A® = il
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(2.134)

(2.135)

(2.136)

(2.137)

(2.138)
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CHAPTER 3

METHODOLOGY

3.1 Derivation process

In this thesis, the interaction between a two-level atom with coherent and thermal initial field
states (Jaynes-Cummings Model) is studied. The main objective is to derive the relationship
between the probability that the atom is in the ground state, P; and the parameter At, where A is
the interaction strength, t is the time. The derivation is initiated with single-photon Jaynes-
Cummings Model, then it is extended to two-photon and three-photon Jaynes-Cummings Model,
and finally generalized to k-photon Jaynes-Cummings Model. In each case, the coherent and
thermal states will serve as initial field states for interaction with the two-level atom and they

give different results.

The derivation is started with the quantization of the single-mode electromagnetic field.
During the quantization of the electromagnetic field, the Maxwell’s Equations are modified by
defining scalar and vector potentials. Then, the modified Maxwell’s Equations are simplified by
using Coulomb Gauge and applying the condition that the charges and currents are absent. The
simplified wave equations are solved by using method of separable variables with an appropriate
set of boundary conditions. After the solutions of electric and magnetic fields are obtained, they
are used to derive the classical Hamiltonian for generalized multimode electromagnetic field.
Since the classical Hamiltonian for electromagnetic field has the same form as the Hamiltonian
for unit mass harmonic oscillator, the electromagnetic field is treated as field oscillators and they
are quantized in exactly the same way as the unit mass harmonic oscillators. This is done by
rewriting the Hamiltonian in terms of the complex-valued amplitudes and finally converting it
into the field Hamiltonian operator, H by using the correspondence principle. The detailed

derivation is presented in part 2.3, Literature Review.
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Next, the energy of the two-level atom is quantized by defining the ground state energy
equals to hw; and excited state energy equals to Aw,. The Hamiltonian of the two-level atom,
H, is found and its full derivation is given in part 2.4 in Literature Review. After the quantization
of the single mode electromagnetic field and energy of two-level atom, the Hamiltonian due to
the interaction between the two-level atom and photons, H,,, is determined by using the Electric
Dipole Approximation. Under the Electric Dipole Approximation, the two-level atom is modeled
as a dipole while the electromagnetic field interacting with the atom is treated as uniform electric
field across the dipole. This approximated model is valid because the size of the atom is very
small compared with the electromagnetic field wavelength. This has been discussed further in

part 2.6 in Literature Review.

So far, the Hamiltonian of the single mode electromagnetic field Ay, two-level atom
Hamiltonian H, and the interaction Hamiltonian between atom and field H;,,, are found. Then,
the Jaynes-Cummings Model (JCM) Hamiltonian, A is obtained as H = H,+Hy + H;,,. This
expression of JCM Hamiltonian is in the Schrodinger Picture and it will then be converted into

Interaction Picture in order to simplify the form of the JCM Hamiltonian. This is achieved by
applying the transformation equation A® = x0T + DA T, where H® is the Interaction
Picture JCM Hamiltonian, H® is the Schrodinger Picture JCM Hamiltonian and U is the Unitary
operator. The proof of the transformation equation and details of the transformation are presented

in Literature Review part 2.7 and Methodology part 3.2.

After that, the Interaction Picture JCM Hamiltonian is used to derive the expression for
single-photon JCM unitary operator. This unitary operator is different from the U mentioned
above because this new unitary operator will perform a unitary transformation on the composite
quantum state of JCM and describes the evolution of the quantum state. The expression of this

710
— th t). Before deriving the single-

single-photon JCM unitary operator is given by U = exp(
photon JCM unitary operator, the Rotating Wave Approximation (RWA) is made. Under the
RWA, the expression of H® (it is H, in 3.2) is simplified by discarding the non-energy
conserving terms in H®. This is explained in more detailed in Methodology 3.2. Then, the
simplified H® is used to derive the expression for single-photon JCM unitary operator, as shown

in Results 4.1.1. Besides that, the original form of H® is also used to derive the single-photon
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JCM unitary operator and this will only serve for future study (in Results 4.1.2). This is because
there are effects shown by the results obtained from single-photon JCM unitary operator without

RWA, which are worth to study and this is out of the scope of this Final Year Project.

The single-photon JCM unitary operator derived with RWA is then used to compute the
probability that the two-level atom is in the ground state as a function of time t. The detailed
calculations are shown in Results 4.2. Next, the photon number probability distribution for
coherent state (equation (2.8) in Literature Review 2.1) is substituted into the probability
function derived and the graph of probability that the two-level atom is in the ground state
against time t is plotted by using Matlab. Similar process applied for the thermal initial state
which has the photon number probability distribution given by equation (2.17) in Literature

Review 2.2. The graphical results are then studied and discussed.

For the case of two-photon JCM, it has a slightly different form of Interaction Picture
JCM Hamiltonian compared with the single-photon case, which is given by equation (3.22) in
Methodology 3.3. Then, similar process is repeated in which the two-photon JCM unitary
operator is first derived and then followed by the calculation of probability function mentioned
above (shown in Results 4.3.1). By introducing different initial field states into the probability
function, more interesting graphical results are obtained. These results are then studied and
compared with single-photon JCM case. The same process as above is repeated again for three-
photon JCM case (shown in Results 4.3.2). Finally, general expressions for k-photon JCM

unitary operator and probability function are derived as well in Results 4.3.3.

3.2 Derivation of Jaynes-Cummings Model (JCM) Hamiltonian in Interaction Picture

Let A,be the Hamiltonian of the two-level atom, Hr be the Hamiltonian of the single mode
electromagnetic field, H;,, be the Hamiltonian of the atom-field interaction, H be the total

Hamiltonian in Schrodinger picture and H, be the total Hamiltonian in Interaction picture.
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Then, let w be the frequency of the incoming photons, w, be the frequency corresponds to the
ground level of the atom, w, be the frequency corresponds to the excited level of the atom and

A = w, — w; — w be the detuning.

Lastly,  and H, are given by

S—A d
—Ean

HO = HA + HF .
From Literature Review part, the Hamiltonian derivations for atom, field and atom-field
interaction in Schrodinger picture are

. h . h

HA = E((l)l + (1)2)1 + E ((1)2 - (1)1)63 (2114‘)
. L1

He = how (a*a + E) : (2.101)
Hi, = —ihA(6, +6.)(a — a'). (2.119)

Then, as discussed in Literature Review, the JCM Hamiltonian H is the sum of (2.114), (2.101)
and (2.119).

ﬁ = HA‘l‘HF + Hint

h Ch 1
= 2@+ ) 45 (0, — 013 + ho (afa + E) —ihA(6, +6.)(@ - &M

= H, — ihA(8, + 6.)(a—ah 3.1)
Now,
o Ch X 1
Hy = E(wl + w,)I + > (wy; — w1)03 + hw (aTa + E)
h R X 1
= E(wl +wy, +A—28)I + E(a)z — w,)03 + how (a*a + E) : (3.2)

Since
A=w; —w—w

S w=w, —w —A
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Considering the detuning A is very small compared with (w, — w,), then,
W= Wy — Wy - (3.3)

By substituting (3.3) into (3.2), (3.2) becomes

o n R 1
HO=§(a)1+w2+A—26)I+Ewa3+ha)(a*a+§)

h Lo a1

=E(2w2—w—28)1+5wa3+ha)(a a+§>

_h 2w, —w—28 0 hw 0 a1

=307 2w2—w—28>+§(o S)rho(atars)

_ (w28 0 ) ata 4+ 1

—h( 0 Wy —w—5 +hw(a a+2). (3.4)

Now, to change the JCM Hamiltonian H from Schrodinger to Interaction Picture, the
equation A, = ih00t + OAT? (3.5)
IS used, as derived in Literature Review, where

U = exp(if,t/h)

=enfi[n(%5g g o (aar g)]on)
—exp\l[h( 0 0y —w—§ +ho (@' + - t/h
[, (wy — &8 0 , At A
= exp _lt< 20 wz_w_8>+lwt(a+a+%)]
=emie(™g " o, )] emfior(atar )]
—exp_tt( 0 Wy —w—5 exp |iwt aa+2 . (3.6)
5_do
S dt
= [iHy/h]exp|ibyt/h] (3.7)

Ut = exp|[— ifyt/R] (3.8)
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In order to solve (3.5), we have

ihgot = ih[iH,/h)exp|iHot/hexp[— iHot/R]

= —H,
(0 Y a(atae)
h( 0 Wy —w—8 hw aa+2 , (3.9
and
OAT" = 0(Hy + Ane)0
= UH,0" + UA,, U (3.10)
Then, to solve (3.10), we have
UH U = exp(iHot/h)Hyexp|— iHot/ 1]
=i,
A R A 1
= E(wl + wy)I + E(a)z — )83 + hw (a*a + E)
_(hw, 0O aps L
= ( 0 hw1> + hw (a a+ E) , (3.11)
and
UH;n Ut = exp(ilyt/h)[—ihA(6, + 6_)(a — a")]exp[— iH,t/ 1]
=ewfie( ", )| ewfior(ar g)]-ina, + o
—exp[tt( 0 W, —w—8 exp |iwt | a a+2 [—ihA(6, + 6-)(a
(5, 2 el
a)]exp[ Lt( 0 w,—w-s)| e |Tlet(@ats
_. explit(w, — 8)] 0 ) R
= ~tha [( 0 explit(w, — w — 8)] <
. - (exp[—it(w, — 6)] 0 )] (ﬂ) i .
+4.) < 0 expl—it(w, — w — 8)] exp expliot(m + 1)] |m
m=0
. (3.12)

+ 1) (m + 1|> (@—ahexp (— wz)—t) Z exp[—iwt(k + 1] |k + 1){k + 1|
k=0
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To simplify (3.12),

explit(w, — 6)] 0 ~
~iha [( 0 explit(w, — w — 8)]) @,
.« (exp[—it(w, — 6)] 0
+6-) ( 0 exp[—it(w, — w — 8)])]
. explit(w, — 6)] 0 0 1\/[exp[—it(w,; —6)] 0
= ~ind [( 0 explit(wy, — w — 8)]) (1 0) ( 0 exp[—it(w, — w — 8)])]
_ 0 exp(iwt)
B (exp(—ia)t) 0 ) (3.13)
and
[(exp (%) ;0 expliot(m + )] |m + 1)(m + 1|> dexp (— %t) kZO exp[—iwt(k + 1)] |k
+ 1Xk + 1|
= {(exp (%) z expliot(m + 1)] |m + 1)(m + 1|> E(n + 1)Y2 |In)n
m=0 n=0
lwt =
+ 1||exp|—— exp[—iwt(k + D] |k + 1)k + 1|}
-7)2,

Z{exp[iwt(m + D]Im + 1){m + 1|(n + DY2|n)n + 1|exp[—iwt(k + 1)]|k
0 k=0
+ 1Mk + 13

I
NgE
NgE

0

3
I
3
I

- Z Z{exp[iwt(m +1—k — D](m+2)Y2m + 1)m + 2k + 1)k + 1]}

m=0 k=0

_ Z{exp iwt(k — k — D]k + DY2[k)(k + 1]k + 1)k + 1))
k=0

= expl—iwt] ) {Uc+ DV lkpk + 1]}
k=0

= dexp[—iwt] , (3.14)
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and
[(exp (%) mZ:O expliot(m + 1)] |m + 1)(m + 1|> atexp (— wz)—t) kZO exp[—iwt(k +1)] |k
+ 1k + 1|

o)

= [(exp (l(;)_t) i expliot(r + D] |r + 1)(r + 1|> dexp (— l(;)—t) Z exp[—iwt(s + 1)] |s

r=0 s=0

.l.
+ 1){s + 1]

= {Gexp[—iwt]}'
= atexpliwt] . (3.15)

By substituting (3.13), (3.14) and (3.15) into (3.12), (3.12) becomes

e ] 0 exp(iwt)) R ] . .
. T — — _ _ At
UH;,, ;.U ihA (exp(—iwt) 0 {dexp[—iwt] — aTexpliwt]}
_ i 0 {Gexp[—iwt] — aTexp[iwt]}exp(iwt)
B {Gexp[—iwt] — aTexpliwt]}exp(—iwt) 0
= —ihA[6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — aTexp(iwt)] . (3.16)

By substituting (3.16) and (3.11) into (3.10), (3.10) becomes

N hw 0 1

+ — (w2 ata 4 =
UHU < 0 hw1)+ha)(a a+2>
— ihA[6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt)

—atexp(iwt)] . (3.17)

Then, by substituting (3.9) and (3.17) into (3.5), (3.5) becomes

—~ —~

H, = in0Ut + UAU?
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_ ,(w2—0 0 )_ (Ah 1) (hwz 0) <A+A 1>
= h( 0 Wy — w—5 hw aa+2 + 0 hw, + hw aa+2

— ihA[6exp(iwt) + 6_exp(—iwt)][Gexp(—iwt) — atexp(iwt)]

ho 0 iy AT A . ~ , ~ ,

= ( 0 —hw, + hw + ho + ha)1> — ihA[6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) —
atexp(iwt)]

_ (18 0 L . . . L
= ( 0 —hA+ h8) — ihd[6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — aTexp(iwt)]

hA

> 0
= AA | ihA[6exp(iwt) + _exp(—iwt)][Gexp(—iwt) — aTexp(iwt)]

0 —-——
2
hA

= 763 — ihA[6,exp(iwt) + 6_exp(—iwt)][aexp(—iwt) — aTexp(iwt)] (3.18)

hA
= 763 — ihA[6,.a — 6,aTexp(Riwt) + _dexp(—2iwt) — 6_a']. (3.19)

By applying the Rotating Wave Approximation,

.  hA _ A
= — 03— ihA[6,.a — 6_at]. (3.20)

Rotating Wave Approximation

From (3.19), the total Hamiltonian of single photon Jaynes Cummings Model in Interaction

Picture is

. hA
o, = 763 — ihA[6,a — 6,aTexp(Riwt) + 6_dexp(—2iwt) — 6_aT]

In the interaction expression —ihA[6,d — 6,aTexp(2iwt) + 6_dexp(—2iwt) — 6_aT)],

according to Garrison and Chiao (2008), 6.a represents the energy excitation of the atom
accompanied with absorption of a photon, 6_a* means the de-excitation of the atom with the
release of a photon, &,a" denotes the energy excitation of the atom and release of a photon (field
excitation) at the same time, and &_a represents the de-excitation of the atom accompanied with

absorption of a photon.
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Therefore, it can be seen that the two terms 6,a" and &_a violate the principle of
conservation of energy. Hence, the two terms 6,.atexp(2iwt) and 6_dexp(—2iwt) can be

omitted and the total Hamiltonian becomes

~ hA
H = — 03~ ihA[6,a —é_at].

The approximation made by omitting the two terms mentioned is known as Rotating Wave

Approximation.

3.3 General Expression for k-photon JCM Hamiltonian in Interaction Picture

From Methodology 3.2, the single-photon JCM Hamiltonian is given by

A, =26, - inAl6,a - 6-a']. (3.20)

The term 6,.a is physically interpreted as the transition of the two-level atom from ground to
excited state with the absorption of one photon. Conversely, the term 6_aT denotes the transition

of the atom from excited to ground state followed by the release of a photon.

Then, according to Sukumar and Buck (1981), for k-photon JCM Hamiltonian, it can be

expressed generally as

= hA

H ==6;— ihA[6,.ak — 6_atk]. (3.21)
When k = 2,
H ==65— ihA[6,.a — 6_a™]. (3.22)

In this case, the term &,a2 will mean the transition of the two-level atom from ground to
excited state with the absorption of two photons. Then, the physical meaning of the term 6_a*?
is the de-excitation of the atom from excited to ground state accompanied by the release of two

photons.
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Then, for three-photon JCM Hamiltonian in Interaction Picture, it is given by

A, =6, - ina[6,a - 6_a"]. (3.23)

The expressions in (3.22), (3.23) and (3.21) will then be used to derive the two-photon, three-
photon and k-photon JCM unitary operator in Results part.



CHAPTER 4
RESULTS AND DISCUSSIONS

4.1.1 Derivation of Jaynes Cummings Model-type Unitary Operator

From previous derivation, we have the Hamiltonian in interaction picture as follows:

~  hA _ A
= — 03— ihA(6,a —até.) (4.1)

Now, the Unitary Operator U is

. ( iﬁ,t)
U= exp —T

= exp {—i [’;—A 65 — ihA(6,a — a*a_)] t /i)
= exp {~i 56, — irt(6,a - at6 )|}
=cosf —isinf, where 6 = 5, — iAt(6,.a — a'6.) (4.2)

Let ¢ = cosB and § =sin@

Therefore, U = ¢ — i§. Now,

i ((2 D™ [At —iAt(6,a—a's )] (4.3)

m=0

(D™ At ; )]2"”1

G i|7 %~ e ate (4.4)

56
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Now,
%&3 —irt(6,a—ate ) = %((1, _01) it [(8 (1)) a-dal ((1) g)]
) % —iAta .
\iaat —% -

Consider the even power expansion, we have

PP O G 1 I [ 1 NN
[703 —iAt(6,a—a a_)] = [703 —iAt(6,a—a cr_)] [703 —iAt(6,a—a 0_)]

At o At o
> —iAtda > —iAtda
- At At
iAt&T — ? ilt&* — ?
A?t?
T + AZtZ&&T 0 \
= A2¢2 (4.6)
0 + 2%t%ata

At 2

4 2
N aaira A AtA At A At A
- 03— iAt(6,a — a*a_)] = [? 63 — iAt(6,4 — ana_)] [? 63 — iAt(6,a — aTa_)]

AZ 2 N AZ 2 N
Tt + 2%t%aat 0 Tt + 2%t%aat 0

A%t? At A A%t? At A
0 > + 1%t%ata 0 > + 1%t2ata

A2t2 2
<— + lztzdd'r> 0
4
A

4.7)

At e, A, T
- 03— iAt(6,.a — aTa_)] = [? 63 — iAt(6,4 — a*a_)] [7 63 — iAt(6,4 — a*a_)]
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A%t? 2 242
/<T + Aztzaaﬁ) 0 \ /—A4t + A*t*aat 0
= | 2.2 2 2¢2
\ 0 <_ + ﬂﬁa’ra) 0 + A%t%ata
A%t2 3
/<T + AztzddT> 0 \
= | g2 3 (4.8)
\ 0 (T + AZtZ&Ta>

From here, we can actually deduce that for general even power 2m,

A2t2 m
/( + Aztzaa*> 0

4 \l
A?t? "
0 < + Azt2a+a> /
4
However, this could be proven by using mathematical induction as follows:

A2t2 m
<— + m%a*) 0 \
4
A?t? m
0 <T + /1%%*&) /

At 2m
50— it(3,a - a*&_)] - k

Let P(m) be the statement that

At ~ . L e 2m
> 03— iAt(6,a — a*a_)] =

where m are positive integers.
Basis case: Form =1,
A*t?
t 2 Y A%t%aat 0
— 65 —iAt(6,a—at6)| = 9.2

2 t
0 — + 2%t?
T

.I.

fe)
Q

This basis case has been proven in (4.6).
Therefore, P(1) is true.

Inductive step: Consider when m = k, we suppose that P(k) is true, which means we suppose
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A*t2
At 2k ( YR A2t2aatk 0
[— 65 — iAt(6,.a — dTﬁ_)] = 2.2 is true.

2 0 At
(4

+ 22t2ata)k

Then, for m = k+1,

2(k+1) 2k+2

At
[— & — iAL(5, 4 — a*a_)]

At
5 = [? 65 —iAt(6,4—a a_)]

At e, T
= [?03 —iAt(6,a — a*o_)] [? 63 — iAt(6,a — a*a_)]

A2t2 §
/( + Aztzaa’f> 0
~ 4
B A2t2 k
k 0 ( Z + AZt2a+a>
/<T + /12'[2&&1) 0
[.

Aztz k+1
\ 0 <T + Aztszd) /

Therefore, if we suppose that P(k) is true, then P(k+1) is true.

2t2

+ A%t%aat 0

\(5 \
/ T eweda)

0 — + A’t%a%a

By mathematical induction, we can conclude that P(m) is true for all m belongs to positive
integers.

As a result, it is proven that

A?t? "
A*t%aat 0
At /( 1 + aa

. \
S0 - it@,a-a'6)| = . w .
0 (4 +/12t2a’fa>

. (4.9)

where m are positive integers.

By substituting (4.9) into (4.3), we have



Now,
2m+1

At
[? G5 — iAt(6,a — aT&_)]

By substituting (4.5) and (4.9) into (4.11), we have

[A?t G5 — iAt(6,a — afa_)rmﬂ
<$ ' AthaaT>m 0 \ % —iAta
_ 0 <¥+Aztza+a>m/ et _%t
%t<$ ' AZtZ&aT>m —iAt <¥ + AztzaaT>m a\
| § <$ ) AZtZ&T&)m w - A?t <¥ + Aztzaﬂi>m / |

By substituting (4.12) into (4.4), we have

60

(4.10)

At 2m At
E [7 G5 — iAt (6,0 — a*a_)] [7 6, — iAt(6,4 — até))|.

(4.11)

(4.12)



>
Il

11 =

o)

=nm
L m+ 1!

At (A%t? "
/ ?<T+/12t2d&T) —iAt

2

/—_

(0]

Lm=

0 (2m+1)! 4
o ™ . ﬁ 2,24t A m ~t o) (-)m
2m=0 G+ 1) [Mt( - +avata) 2m=°(2m+1)!
m [_; 242 m Oo m
(-1) AL (A2E oot (-1
@2m+ 1! 4 (2m+1)'
—1)ym A%t2 = -1Hm
) At | —+ 2%2t2ata) at 1)
(2m + 1)| 4 (2m + 1)!
~0 m=0
A1q 12)
, Where
A21 AZZ

A?t? " At
it <T + A%t aTa> a-l- -

4

(_1)m E AZtZ 2 2/\/\-[- m
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A?t? "
(— + Aztzdd’f> a
A2t2 "

<T + m%*a)

A%t? "
I_m (T + Aztzad’f> dl\

o (—D™ [At /A2 L\ (G Ok
/ m=0(2m+1)!l_< 4 +’12t2aa+) l _ 2m+ D!
I (—1)™ A2¢2 - - (™ At
=0—(2m+1)|[/1t<7+/12t2a* ) l 0(2m+1)'[ 7(
Then
—i$

m
_ilt £+/12tzddT) ])
4

m
[— 8254 22vata)
2 4

A%t? .
7 +/12t2aTa> l/

2m+1

242
e (\/A4t +,12tzaa+)

2

2m+ 1)! 2¢2
m=0 \/A4t + A%2t2qqt

. |A%t2 A n
_iAtsm\/—+12t2aaT

)

2
\/A t +AZt2’\A'|'

A2t2 "
I t( +/12t2€z€ﬁ> al\l
4
/l

iAt [ A2t2 "
[—( +/12t26'i+@> l



> 2m+1
o —pm < A—t + Aztzaa*)
= _Jt Z a
2m + 1) JAZt ¢
m=0 - _|_ AZ 2 ’\"'I'
2
s JA 4t +A2t2aat
T e
AZ > 2m+1
o . (JTt + AZtZ&T&)
=26y D at
21 2m+ 1)! A2¢2
=0 + A%t2ata
242
sin \/A4t + A%2t2gta
at,
\/— + A2t2qtq
2m+1
0 —— + A%t2at
P S Gt <J a>
272 2m+ 1)! N2
m=0 — A2t2gta
lAtsm J— + A2t2ata
242
J—A Y4 2eata
Therefore,
. [A2t2 ~n ~n
_iAtsin [——+ A2t2qat sm 7 + A2t2qat
- J_Azt
—is =

a

J_ + 22ezata

sm \/— + A2t2qta
.I.

2
iAt sin \/— + A2t2ata

2
\/A_t + /‘thZ ’\'l'a

a

(4.13)
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By substituting (4.10) and (4.13) into (4.2), we have

/ AZt2
~ | COS 4

0

. |A%t2 ~An
_jAtsin \/T + A2t2qqt

+ A%2t2aat

A2t2
CoS

2 212
JA 1+ A2t2aa?

At

. |A%t2 At A
sm\/Tt+ A2t2qtq
AT

242
JA4t + 22t2ata

+ A2t2ata

—At

2

|
)

) A2t2 A
sin \/Tt + A2t2qqt

242
\/A 1+ A2tzaat

) A2t2 At A
iAtSin \/Tt+ A2t2gtq

242
\/A 1+ Azzata

A2t2
cos |[— + A%t2aat — —
4 2 A2t2
7t A2t2aat

. |A%t2 At A
sin \/Tt + A2t2ata

AZt2 A
iAtSin \/Tt + A%2t2qqat

Blz = _At

HPRA D)~
J +2262(A + 1)

iAt sin

63

sm \/— + A%2t2q AAT

A2t2
CosS 4

242
JA—t +222(A + 1)

242
sin\/A—t+12t2(1’i+ 1)

JA4t + 226271 + 1)

)

)

\/— + A%t%aat
242
iAt Sin \/A—t + A2t2gta
+ 2t2gta + —
\/— + A2t2gta
(4.14)
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sin f— + A%t2n
/_ + AZtZ

A2¢2 At sin
B,, = cos |— + A%t?n +
4 A2t2
+ 2%t%1A

4.1.2 Derivation of Jaynes Cummings Model-type Unitary Operator Without Rotating
Wave Approximation (RWA)

From previous derivation, we have the Hamiltonian in interaction picture (without Rotating
Wave Approximation) as follows:

. hA
H, = 763 — ihA[6,exp(iwt) + 6_exp(—iwt)][Gexp(—iwt) — @Texp(iwt)]. (3.18)

Now, the Unitary Operator U is

~ < iﬁ,t)
U =exp 5

=cos@ —isinf, (4.15)
where
. Ot
6=—L
h
At
= 03— iAt[6 exp(iwt) + 6_exp(—iwt)][@exp(—iwt) — aTexp(iwt)]. (4.16)

Let ¢ = cos@ and § = sind,

then, U = é — is. (4.17)
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Now,

At
¢ = cos{ G5 — iAt[Gexp(iwt) + d_exp(—iwt)][dexp(—iwt) — &Texp(iwt)]} (4.18)

— 03
= Z ((Zm)' { — iAt[6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — d*exp(ia)t)]}
(4.19)
At
§ = sin {? G5 — iAt[6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — d*exp(iwt)]} (4.20)
(-D)™ (At
(Zm + 1)'{ O
— iAt[6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — d*exp(iwt)]} "
(4.21)

To simplify (4.19) and (4.21), consider

At 2
{? 65 — iAt[6 exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — dTexp(iwt)]}

636, exp(iot) + 6_exp(—iwt)][aexp(—iwt) — aTexp(iwt)]

_ (At)2 ., IAA?
~\2) 73 2

IAAL?
[6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — aTexp(iwt)]6;

— 12t2[6,exp(iwt) + 6_exp(—iwt)]*[dexp(—iwt) — aTexp(iwt)]?

At . iAAEE , R e , o
= (?) I — [6,exp(iwt) — 6_exp(—iwt)][Gexp(—iwt) — aTexp(iwt)]
[AAt?

[—6,exp(iwt) + 6_exp(—iwt)][Gexp(—iwt) — aTexp(iwt)]
— 12t2[6,exp(iwt) + 6_exp(—iwt)]*[dexp(—iwt) — atexp(iwt)]?
2

At - 2 2 A . A . 2 A . ,\-‘- . 2
= (7) [ — A°t*[6,exp(iwt) + 6_exp(—iwt)]*[dexp(—iwt) — aTexp(iwt)] (4.22)
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2
(E) — 2*t?[aexp(—iwt) — dTexp(iwt)]? 0 \

2
Aty® R o '
0 (—) — 22t?[@exp(—iwt) — aTexp(la)t)]Z/

2

Next, consider

At 3
{? G5 — iAt[6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — c’i*exp(ia)t)]}

At 2 (At
= {? G5 — iAt[G,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — d*exp(ia)t)]} {? G5

— iAt[6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — d*exp(iwt)]}

By substituting (4.22) into it, it becomes

7 At
{(?) I — 2%t%[6exp(iwt) + 6_exp(—iwt)]*[dexp(—iwt) — &Jrexp(iwt)]z} {? &s

— iAt[6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — d*exp(iwt)]}

A A . . . .
= (—) 63 — iAt (?) [6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — dTexp(iwt)]

2
At
2
+ i23t3[6, exp(iwt) + 6_exp(—iwt)]3[dexp(—iwt) — aTexp(iwt)]?

A2t2[6exp(iwt) + 6_exp(—iwt)]?63[Gexp(—iwt) — aTexp(iwt)]?

At\® Aty\?
= <?) G5 — iAt (;) [6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — dTexp(iwt)]
At
— 7/12t2 [6,exp(iwt)
+ 6_exp(—iwt)][—6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — aTexp(iwt)]?
+ i23t3[6, exp(iwt) + 6_exp(—iwt)]3[dexp(—iwt) — aTexp(iwt)]?
At\® At\?
= (?) G5 — iAt (?) [6,exp(iwt) + 6_exp(—iwt)][@exp(—iwt) — aTexp(iwt)]

At
— ?Azt263 [Gexp(—iwt) — aTexp(iwt)]?

+ iA3t3[6, exp(iwt) + 6_exp(—iwt)]|?}[Gexp(—iwt) — atexp(iwt)]®  (4.23)

ajq alz)
= ,where
(a21 a;



At At
a;; = (?) — (7) A2t%[aexp(—iwt) — aTexp(iwt)]?

= (%) {(A?t)z — A2t%[dexp(—iwt) — &Texp(iwt)]z},

Aty
a,, = —idtexp(iwt) {(;) [dexp(—iwt) — dTexp(iwt)]

— A?t?[aexp(—iwt) — d*exp(ia)t)]3}
. NN ) . o R .
= —iAtexp(iwt) {(?) — A%t [aexp(—iwt) — aTexp(lwt)]z} [Gexp(—iwt)
— atexp(iwt)],
. . Aty? . o
a,, = —iltexp(—iwt) {(?) [Gexp(—iwt) — atexp(iwt)]
— 2t?[@exp(—iwt) — d*exp(iwt)]3}
. Aty? . . .
= —iltexp(—iwt) {(?) — 2t?[@exp(—iwt) — d*exp(wut)]z} [Gexp(—iwt)

— atexp(iwt)],

At (At
gz = _?{<7) — Pt [@exp(—iwt) — &*exp(i“’t)]z}'

Next, consider

At *
{? G5 — iAt[6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — dTexp(iwt)]}

At 3 At
= {? 65 — iAt[o,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — d*exp(iwt)]} {7 6,

— iAt[G,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — &Texp(iwt)]}

By substituting (4.23) into it, it becomes



68

3 2
{(%) 03 — it (%t) [6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — aTexp(iwt)]

At
— ?Aztz@ [Gexp(—iwt) — aTexp(iwt)]?
R . . At
+ iA3t3[6, exp(iwt) + 6_exp(—iwt)]3[dexp(—iwt) — a*exp(lwt)]e’} {7 63

— iAt[6exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — &Texp(iwt)]}

AnE At\?
= (?) [-2 (?) At?[aexp(—iwt) — atexp(iwt)]?
+ 2446, exp(iot) + 6_exp(—iwt)|*[aexp(—iwt) — @Texp(iwt)]* (4.24)

2

= {(—) I — 22t?[6,exp(iwt) + 6_exp(—iwt)]?[dexp(—iwt) — d*exp(iwt)]z} (4.25)

2 2
{(%) — A2t [aexp(—iwt) — dfexp(iwt)]z} °

k 0 {(%) — A2t?[dexp(—iwt) — dTexp(iwt)]z}

Next, consider

At >
{? G5 — iAt[6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — dTexp(iwt)]}

At * (At
- {? 65 — iAt[6, exp(iot) + 6_exp(—iwt)|[dexp(—iwt) — dTexp(iwt)]} {7 &

— iAt[6,exp(iot) + 6_exp(—iwt)][dexp(—iwt) — dTexp(iwt)]}

By substituting (4.24) into it, it becomes

At At\?
{(7) -2 <?) A2 t?[aexp(—iwt) — dTexp(iwt)]?

A

441 A ; ~ o 414 . _ At : 4 E
+ A1*t*[6 exp(iwt) + 6_exp(—iwt)]*[adexp(—iwt) — aTexp(iwt)] > 03

— iAt[6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — dTexp(iwt)]}
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At\® At
= (?) 63 — iAt (?) [6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — atexp(iwt)]

3

AN o s - ~t - 2
-2 (?) A“t“Gs[dexp(—iwt) — dTexp(iwt)]
2

At
+ 2iA3t3 (?) [6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — aTexp(iwt)]?

At , o , R  aa A . Ao N4
+ ?/1 t*[6,exp(iwt) + 6_exp(—iwt)]*d3[dexp(—iwt) — dTexp(iwt)]

— iA5t5[6,exp(iwt) + 6_exp(—iwt)]®[Gexp(—iwt) — atexp(iwt)]® (4.26)

bi14 b12)
= ,where
(bz1 by,
At\® At\3
by, = (?) -2 (?) A2 t?[aexp(—iwt) — aTexp(iwt)]?

At
+ ?A“t“ [Gexp(—iwt) — a@Texp(iwt)]*

= (%) {(%)4 -2 (%t)z A2 t?[aexp(—iwt) — aTexp(iwt)]?

+ A*t*aexp(—iwt) — d*exp(iwt)]“}

= (%) {(%)2 — A?t%[dexp(—iwt) — d*exp(iwt)]z}z,

Aty*
by, = —iAt (;) exp(iwt)[@exp(—iwt) — aTexp(iwt)]
R P . o
+ 2i23t3 (;) exp(iwt)[dexp(—iwt) — dTexp(iwt)]?
— iA>tPexp(iwt)[Gexp(—iwt) — atexp(iwt)]®

4 2

At At
= —iltexp(iwt) {(?) — 2222 (;) [Gexp(—iwt) — aTexp(iwt)]?
+ A*t*aexp(—iwt) — d*exp(iwt)]‘*} [Gexp(—iwt) — aTexp(iwt)]

2 2

= —iAtexp(iwt) {(%t) — A?t?[dexp(—iwt) — dTexp(iwt)]z} [Gexp(—iwt)

— atexp(iwt)],
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Aty*
b,y = —ilAt (?) exp(—iwt)[Gexp(—iwt) — atexp(iwt)]
as (AR s . L
+ 2iA3t3 (;) exp(—iwt)[Gexp(—iwt) — atexp(iwt)]?
— iAtSexp(—iwt)[Gexp(—iwt) — atexp(iwt)]®

_ _ At\* At _ R _
= —iltexp(—iwt) (;) — 2A%¢? (?) [Gexp(—iwt) — atexp(iwt)]?

+ A*t*aexp(—iwt) — d*exp(iwt)]“} [Gexp(—iwt) — aTexp(iwt)]

2 2

= —iltexp(—iwt) {(%) — A%t [adexp(—iwt) — d*exp(iwt)]z} [Gexp(—iwt)

— atexp(iwt)],

Aty\® At\?
by, = — (?) +2 (7) A?t?[dexp(—iwt) — aTexp(iwt)]?

At
— ?A“t“ [Gexp(—iwt) — @Texp(iwt)]*

S (%) {(%)4 -2 (%t)z A?t?[dexp(—iwt) — aTexp(iwt)]?

+ At aexp(—iwt) — d*exp(iwt)]“}

2

= — <A?t) {(%)2 — A?t?[aexp(—iwt) — d*exp(iwt)]z} .

From the calculations above, it can be deduced that for any even power expansion 2m,

2m

At
{? G5 — iAt[6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — d*exp(iwt)]}

/ {(%) — 22t?[@exp(—iwt) — d*exp(iwt)]z} 0

k 0 {(f) —Aztz[aexp(—iwt)—a*exp(iwt)]z} )

2

where m is a positive integer. (4.27)
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For any odd power expansion (2m+1),

At 2m+1

{? G5 — iAt[G6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — c’i*exp(ia)t)]}

dqq d12)
= , Where 4.28
(@ (4.28)

m

dy = (%) {(%)2 — 2%t%[Gexp(—iwt) — &Texp(iwt)]z} )

2 m

At
d,, = —iltexp(iwt) {(;) — A2t [adexp(—iwt) — &Texp(iwt)]z} [Gexp(—iwt)

— atexp(iwt)],

2 m

At
dy; = —iltexp(—iwt) {(?) — 2t?[@exp(—iwt) — dTexp(iwt)]Z} [Gexp(—iwt)

— atexp(iwt)],
m

dy, = — (%) {(%)2 — A2t [aexp(—iwt) — d*exp(iwt)]z} .

By substituting (4.27) into (4.19), (4.19) becomes

m

= S DY taempcton - atemionr] (3 9

€= L, @m)!

2
= {cos \/{(%) — A2t?[dexp(—iwt) — d’fexp(iwt)]z}} ((1) (1)) (4.29)

Then, by substituting (4.28) into (4.21), (4.21) becomes

. (D7 {At X
- L m+ iz %
m=0
2m+1
— iAt[6,exp(iwt) + 6_exp(—iwt)][dexp(—iwt) — aTexp(iwt)]}

_ (S11 S12
= (531 53, where (4.30)



co 2 m

T R

sin \/{(%t)z — 2%t2[dexp(—iwt) — &Texp(iwt)]z}

J

512 = —idtexp(iwt) z (2( 13"‘1)' {(At)Z

m
— 2t?[@exp(—iwt) — d*exp(iwt)]z} [Gexp(—iwt) — atexp(iwt)]

-(7)

(%)2 — A2t?[dexp(—iwt) — &Texp(iwt)]z}

S~

sin \/{(%)2 — 2%t2[dexp(—iwt) — &Texp(iwt)]z}

= —iltexp(iwt) [@exp(—iwt)

\/{(%)2 — A2t?[dexp(—iwt) — dTexp(iwt)]Z}

— atexp(iwt)],

Sy = —iltexp(—iwt) Z (Z(mljrz)' {(At>2

m
— 2t?[@exp(—iwt) — d*exp(iwt)]z} [Gexp(—iwt) — atexp(iwt)]

sin \/{(%t)z — 2%t2[dexp(—iwt) — d’fexp(iwt)]z}

= —iltexp(—iwt) [@Gexp(—iwt)

\/{(%)2 — A2t?2[dexp(—iwt) — c”l”fexp(iwt)]z}

— atexp(iwt)],

Ay (—D™ (/AR
Spp = — (g) mzo%{(?) — A%t?[adexp(—iwt) — aTexp(iwt)]Z}

m
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sinj{(%t) — A2t2[dexp(—iwt) — c’iTexp(iwt)]Z}

-

\/{(%t)z — 2t?[aexp(—iwt) — &Texp(iwt)]Z}

Finally, by substituting (4.29) and (4.30) into (4.17), (4.17) becomes
U=¢-1is

Ui1 U12)
, Where
(U21 Us,

Il
(9

U,y = cos \/{(g) — 2%t2[dexp(—iwt) — dTexp(iwt)]? }

sin \/{( — 2%t2[dexp(—iwt) — dTexp(iwt)]? }

lAt
si

\/{(% i — 2t?[dexp(—iwt) — dTexp(iwt)]? }

n\/ —Aztz [dexp(—iwt) — @Texp(iwt)]? }

Uy, = —Atexp(iwt) [@exp(—iwt)

=) — A%t%[dexp(—iwt) — dtexp(iwt)]?
2

— atexp(iwt)]

2
sin \/{(%t) — 2%t2[dexp(—iwt) — d’fexp(ia)t)]z}
U,;, = —Atexp(—iwt)

[dexp(—iwt)

\/{(%)2 — A2t?2[dexp(—iwt) — d’fexp(iwt)]z}

— atexp(iwt)]
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2
U,, = cos \/{(%) — A2t2[dexp(—iwt) — c’i”fexp(iwt)]z}

sin \/{(%t)z — 22t2[dexp(—iwt) — dTexp(iwt)]Z}

+(7)

j {(%)2 — At?[aexp(—iwt) — afexp(iwt)]z}

4.2 Probability Function for Single-photon Jaynes-Cummings Model
Let |¢(t)) be the quantum state of the system containing 1 two-level atom and photons at time t.

Suppose initially the atom is in the ground state. Then, the initial state is

(o]

9(0) = ) cia@I1) In)

n=0
= Yn=0@n|1) [n), where a, = ¢;,(0). (4.31)

From the Second Postulate of Quantum Mechanics, the evolution of the quantum state is

described by the unitary operation of the initial state. Then,

lp(6)) = T(®)|0(0)). (4.32)
From (4.14), U(t) in its outer product form is
U(t) = B1112)(2| 4 B1212)(1| 4 By1|1)(2| + By, | 1)(1]. (4.33)

By substituting (4.31) and (4.33) into (4.32),

9() = ) axll2) ® [Brolm)] + 1) ® [Boo ]} (434)

n=0

where
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242
sin \/A—t +A262(A + 1)
BlZ = _At ar
\/A4t + 2220+ 1)

¢sin ’— + A2t2n
A reeas .
2 2

To simplify B;,|n),

242
Sin\/A4t + 22t2(+ 1)

Bizn) = — aln)

\/— + A2t2(A + 1)

Az
sin — + 2%t2(n+ 1)

Vnin—1). (4.35)
\/— +A2t2(A + 1)
From (4.35), consider
sin \/ﬁ +222(R + 1) G (Aztz 4222 + 1))
In—1) = Z -1 Gm T D |n—1). (4.36)
J— +A2t2(A + 1) m=0

To simplify (4.36), when m=1,

T+/‘12t2(ﬁ +1)|In—1)= Tln— 1) + 22t2(A+ 1)|n — 1)

242
= |n — 1) + A%t%n|n — 1)

A?t?
=\t A2t?n | |In —1). (4.37)
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When m=2,

A?t? . : A?t? . A*t? =
e +22t2(A+1) | In—1) = - + A2t2(A+ 1) e + 22t2(A+ 1) | In—1).

(4.38)

By substituting (4.37) into (4.38), RHS of (4.38) becomes

A%t? A?t?
( 2 + 2%t (A + 1)) < 2 + /’thzn> |n — 1)

= <T + /12t2n> <T + %t% (A + 1)) |n — 1). (4.39)

Again, by substituting (4.37) into (4.39), RHS of (4.39) becomes

A%t? A?t?
( 2 + /12t2n>< 2 + /12t2n> |n — 1).

A2t? : A2t 2
— + 222(A+ 1) | In—1) = <— + /12t2n> |n — 1). (4.40)

So,

4 4

Now, consider when m=3,

A%t? :
2 +222(A+1) | In—1)

A%t? ~ A%t? ~ ’
ol + 22t2(A+ 1) 2 +222(A+ 1) | |n—1). (4.41)

By substituting (4.40) into (4.41), RHS of (4.41) becomes

2

A%t? A%t?
(T + Aztz(ﬁ + 1)) <T + 12t2n> |n — 1)

A?t? N
= <T + Azt2n> (T + 22t2(A + 1)) In —1). (442)
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By substituting (4.37) into (4.42), RHS of (4.42) becomes

A2t2 2 (N2 A%t2 3
( 2 + /12t2n> <T + /’thzn> In—1) = < 2 + /12t2n> |n —1).

So,

3 3
(T + AZtZ(ﬁ + 1)) |n - 1) = <T + /12t271> ITL - 1) .

By using the similar method as before, it can be deduced that for any integer m,

A2t2 " A2t2 m
( 2 + 2%t%2(A + 1)) In—1) = ( 2 + /12t2n> |n — 1). (4.43)

By substituting (4.43) into (4.36), (4.36) becomes

212 A2t2 m
sin JATt +222(A + 1) 0 (T + Azt2n>
—1) = z —1)m —1
N =1 T S TR
7z + 2t?2(M+ 1) m=0
2t2
sin + A%t?n
- In — 1). (4.44)
¢ + A%t2n
By substituting (4.44) into (4.35), (4.35) becomes
242
sin /A4t + A%t2n
Bi,|n) = —At e Vnin—1). (4.45)
242
y e
Next, to simplify B,,|n),
[AZ¢2
A2t2 iAt sin ATt + /12'(27’7\,\
B,,|n) = | cos + A2t?0 + — [n)
4 2 A2t2 pron /
- + A%t
2t
A2t2 iAt sin - + A%t2 A\
= | cos + 22827 | In) + | — [n). (4.46)
4 2 A2t2 yron
- + A%t



From (4.46), consider

242 m
AZtZ oo (—A4t + AZtZﬁ)
cos T+ A2t27 | |n) = ZO(—l)m am)! [n) .
m=

To simplify (4.47), when m=1,

A%t? ~ A*t?
2 + A2t%A | |n) = 2 |n) + A%t%n|n)

= <T + /12'[271> [n).

When m=2,

A2t2 2 A%t2 A2t2
(4 +/12t2ﬁ> |n)=< 2 +/12t2ﬁ>< 2 +/12t2ﬁ> |n).

By substituting (4.48) into (4.49), RHS of (4.49) becomes

A%t? A?t? A%t? A%t?
< 2 + Azt2ﬁ> < 2 + /12t2n> |n) = ( 2 + /12t2n> <T + Azt2ﬁ> [n).

Again, by substituting (4.48) into (4.50), RHS of (4.50) becomes

A*t? A*t?
(T + Azt2n> (T + 12t2n> [n).

So,
A2t2 2 A%t2 g
(—4 + Azt2ﬁ> |n) = (—4 + 12t2n> |n).

Now, consider when m=3,
A%t2 3 A2t2 A2t2 2
(4 +,12t2ﬁ> In)=< 2 +/12t2ﬁ)< 2 +/12t2ﬁ> [n).

By substituting (4.51) into (4.52), RHS of (4.52) becomes

A2¢? A2t 2 A2t 2 (A%?
(—4 +Azt2ﬁ> (—4 +Azt2n> |n) =<—4 +12t2n> <—4 +/12t2ﬁ> |n).

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)
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By substituting (4.48) into (4.53), RHS of (4.53) becomes

A2t2 2 (N2 A%t2 3
(4 +/12t2n> <T+/’th2n> |n)=< 2 +/12t2n> [n).

A2t2 e 3 A2¢2 . 3
2 + At | |n) = 2 + A°t*n | |n). (4.54)

So,

By using the similar method as before, it can be deduced that for any integer m,

A2t2 m A?t? m
(4 +/12t2ﬁ> |n)=< 2 +/12t2n> |n). (4.55)

By substituting (4.55) into (4.47), (4.47) becomes

242 m
AT +/12t2n)

SR B i( 1)m< )
cos 2 n||n)= 0 2m)!
m=

A?t2
= | cos T+ A?t?n | |n). (4.56)
From (4.46) also, consider
2¢2 242 m
sin /ATt + 22t d (ATt + Azt2ﬁ>
=) (="
m=0

m + 1)!

)

n).

By substituting (4.55) into it, it becomes

242 m 242
i (ATt + Aztzn) sin /ATt + A2t2n
=nm In) = |n). (4.57)
m=0 (2m +1)! Azt + A%t2n

4

By substituting (4.56) and (4.57) into (4.46), (4.46) becomes

A2t2
2¢2 : tSil’l 7 + /12'(27’7\,\
B,,|n) = | cos + %t%0 + — |n)
4 2 A2t2
- + 22t27



tsm /— + A%t2n

A2t2

tZn +

[n).

COS
/12t2

Finally, by substituting (4.45) and (4.58) into (4.34), (4.34) becomes

9() = ) {aur(2)n = 1) +aus| DI}
n=0

= (Cons @120 = 1) + C @D},
n=0

where
sm /— + A%t2n
Vn,
’_ + AZtZ
A2¢2 l tsm ’—+ A%t2n
S = coS + A%t2n +

4 ,
_ _|_ AZtZ

Let P1(t) be the probability in which the atom is in the ground state. Then,

PO) = Z|cln(t>| = Z{Ianl 15173

n=

n=0

)

0
2 2
© A2¢2 sin® +/12t2n]
—z la |2 —+/12t2 4
= " . _
4 A t —— +A%t?n

(4.58)

(4.59)
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4.3.1 Derivation of Two-photon Jaynes-Cummings Model Unitary Operator

From Methodology 3.3, we have the Hamiltonian in interaction picture as follows:

. hA
f = 7&3 — ihA[6,a% — 6_at?] (3.22)

hA
= - 63 +ihA(a"6_ - 6,a%) (4.60)

Now, the Unitary Operator U is

. < iﬁ,t)
U =exp T

=exp {—i [ 85 + inA(at?6- 6+dz)] t /h}
_ . At A . A'I'ZA A A2
=exp {—i [703 + iAt(a™6_ —a.a )]}
=cos@ —isinf, where § = g(?3 + iAt(at?6_ — 6,a%).
2
Let ¢ = cos@ and § = sind,

then, U = ¢ — i$. Now,

© 1)m 2m
Z o [ 6, + iAt(at26. — 6+a2)] ,

m=0

(_1)m 2m+1
§= GmiDil2 [—03 +iAt(at?6_ - 6.4 AZ)]
=0

%63 +i2t(at?6. — 6,a%) = A—t((l) _01) + it [at? ((1’ 8) - (8 é) @]
= _iaa?

2
irrat2 -2
2

(4.61)

(4.62)

(4.63)

(4.64)
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Consider the even power expansion, we have

Ao aratza oa Al At A aa a2 a a Al [At A aiiAt2 A A A
[;t 65 +irt(at?6_ — a+a2)] = E 65 +iAt(at?6_ — a+a2)] [?t 6; + iAt(at?6_ — 0+a2)]

At o At o
> —ilta? > —iAta?
- At At
iaeatz — = iatatz - >
/T + A2t2q2qte 0 \
= A2¢2 , (4.65)
0 2 + 2%t2g1242
At 4
[7 &, + iAt(at6_ — a+a2)]
At 2 At 2
= [7 6, + ilt(at?6_ — 6+&2)] [7 6, + it (@26 — 6,8%)
242 242
ATt + 12t23%aT? 0 ATt + 22t2a%a1? 0
= 242 2,2
0 ATt + 22t2q1242 0 ATt + 22t2at2a2
A2t2 2
(T + /12'(2&2@1-2> 0
= e , (4.66)
0 <T + AZtZ&TZ(?F) /

At 6
[7 G, + iAt(at?6_ — &+a2)]
At 4 At 2
= [7 G5 + iAt(at?6_ — &+a2)] [7 6, + iAt(at?6. — 6,a?)

A?t? 2 2:2
( 2 +/12t2ﬁ2ﬁ+2) 0 A4t + 22t242412 0
242

= 2¢2 2 A“t
k 0 (A ‘ +/12t2a+2a2> ) 0 - + A2t2q12q2
4
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A2t2 3
(—4 + Aztzazaﬂ) 0

= |/ \ (4.67)
\ )

A2t2 3
0 (—4 + /12t2&“62>

From here, we can actually deduce that for general even power 2m,

A?t2 m
At om < t Aztzazaﬂ) 0
26, +iat(at?e — &+a2)] _

2 A%t? m
0 <4 +/12t2€ﬁ2a2> /

This could be proven by using mathematical induction as follows:

Let P(m) be the statement that

A%t2 "
2m /(— + AZtZaZaT2> 0

—t(? +iAt(at?6. — 6,4 |
2 3 - + Aztz m
\ 0 (—4 + Aztszzdz)

where m are positive integers.

\_‘__/

Basis case: Form =1,

A*t?

2.242 %2
At B e 2 2 + A°t°a-a 0
~ 03 + iAt(a™“6_ —6.a )] = 2,2

0 = + 2%t2q12g2

This basis case has been proven in (4.65).

Therefore, P(1) is true.

Inductive step: Consider when m = k, we suppose that P(k) is true, which means we suppose
242

. Az)rkz 2

At
?63 + iAt(at?6_ — 6,4

+ 22t2a2at?)k 0
is true.
A%t? 2¢2 512 22Nk
0 (T+/1 t2at2a?)
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Then, for m = k+1,

At 20k+1) A 2k+2
[? 6, + iAt(at?6. — &+a2)] - [7 65 + iAt(at?6. — &+a2)]

At 2k rAt 2
- [7 6, + iAt(at?6. — 6+a2)] [7 6 + iAt(at?6. — 6+a2)]

A?t? § 242
( 7 +,12t2a2a*2> 0 \‘ A4t + A%t2a2at? 0 \
0 <A4t + /’thza“fﬂ) / 0 - + 2%t2at2a2
Aztz k+1
/ (—4 +/12t2512€ﬁ2> 0
= | Aztz k+1 |
\ 0 <T + Aztzd”&Z) /

Therefore, if we suppose that P(k) is true, then P(k+1) is true.

By mathematical induction, we can conclude that P(m) is true for all m belongs to positive
integers.

As a result, it is proven that

A2t2 m
/( Z +/12t2a2a’f2> 0

At 2m
763 + lﬂt((’l\-rzé'\_ - é\-+d2):| = AZ 2 m (468)
t 2:42-1242
0 2 + A“t°a’ea

where m are positive integers.

By substituting (4.68) into (4.62), we have

A?t2 m
(—1)’”/( Z +/12t2a2a’f2) 0

| 242
m=0 (2m).k 0 <A 4t +/12t2a+2a2) )
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2m

d m 22
Z “DT (A serzgeqre 0
(2m)!
m=0
= o 2m
(_1)7}’1 AZtZ
0 z AZtZ AT2A42
\ Cmi\ & TATerad
m=0
/cos \/% + A2t2g2qt2 0
- (4.69)
\ 0 cos \/ﬁ + A2t2qt2g2
4
Now,
At 2m+1
[7 &, + iAt(a6 — a+a2)]
At 2m At
- [7 6, + iAt(at?6. — a+a2)] [7 6, + iAt(at?6. — &+a2)]. (4.70)
By substituting (4.64) and (4.68) into (4.70), (4.70) becomes
At 2m+1
[7 &, + iAt(a6 — a+a2)]
A2t2 "
/ + Aztzazaﬂ) 0 \ At e
_ ( 4 ) wmta
A2t2 m o At
k 0 ( =t ,12t2a’r2a2> ) iAtat? )
At [ A2t2 m A2t2 m
—(——+22t2a%at —it(— + 2%t%a2at? | @2
2 4 4
B A%t? m At [ A2 m o[- (7D
it <T + /12'[2&1-2@2> at? — ? <T + 1%t2gt? Az)

By substituting (4.71) into (4.63), we have
At [ A?t2 " A?t2 "
—1ym { ?< Z +/12t2a2a’f2> —i/1t< 2 +/12t262a”f2> az\

§= —_— :
| 242 m 242 m
Az (Zmt L \m <A 4t + Aztzd“dz) at? —%t <A 4t + Azt2a+2a2> )




[ —1)m At A2t2 m 00 _1ym A2t2 .
/ 2(m+) iz (o eaa) | ém—flyl‘”t< i) @)

= | ) m 242 m 242 m
\Z (( D [lAt<A4t +;12t2a+zaz> l Z(z(mlil)'l %(A: +/12t2a+2A2> l

2m + 1)!
Then, —i§
{ = O(Z(mljrz)ul§<¥+12t2”2a*2>m] y (Z(mljri) i/1t<¥+,12tzazmz>mazl\
KZ()@( 13?)|[L/1t<A1t2+/12t25”r2@2> ot l io(z(mlj’;'[_% <¥ +lzt2a1'2’\2>m
] ZO(( 1_:)'[—iAt<A1t2+Azt2aza’rz> l N (z(mlgrz)'[ lt<¥+lztzazafz> zl\i
s b=t 1o
= (2; ﬁli) where

2m+1

—idto (D™ (\/_"'/ptpza’fz)

‘111
2 21’n + 1)! 2:2
m=0 ( ) \/A t

+ A%t2a2at?

A%t2 o
_lAt Sln T + /12t2a2a1-2

2 212
\/A -+ 2228207

)

2m+1

2
A_t + /’[2t2a2a1-2>
~2

——mi(“)m < )

!
~ (2m + ! JAZtZ \ Prarat

4

sin J— + A2t242412
= —At az’

2
x/Az;t +A*t2a*at




2m+1

(—1)m (J—+/12t2 +2a2)

1= At z at2
(2m + 1)! \/Azt
m=0 - + AZtZ ’\'I'2a2
212
sin \/ATt + 22124122
ate,
\/& + A2t241242
AZ > 2m+1
e o (P rreene)
Ay, == Z
227 2 2m + 1)! \/Aztz
m=0 + A2t2qgt2q2
A2 2¢251242
_ Atsm Z + A%t a
2 2+2
JA L+ A22atea?
Therefore,
2 2 242
_jAtSin \/A4 + 12t2q2q12 sin \/A4t + 12t2q2qt2
~2
2 A2t2 a
7~ +AtPazar — + A%t2q2qt?
—i§ = . 4,72
© A2t2 A2t2 (472)
sin ) + 12t2gt2q2 iAtSin ) + 12t2gt2q2
atz =
a

2¢241242 2 Azt? 24241242
—+/1ta”ra 4+/1t0ffa
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By substituting (4.69) and (4.72) into (4.61), we have

[cos |22 )
cos 2 + 12t2Q2q12 0
o-=| |
AZ%t2
0 cos 2 + AZtZ&TZ&Z/
242 242
—iAtSin \/A—t + A2t2a2qt? sin JA—t + A2t2a2qt?
! 4 -t 4 a?
2 JAZtZ o JAZtZ o n
+ A2t2g2q4t2 + A2t2g2q4t2
N 7} )
242 242
sin \/ATt + A2t2qt2q2 iAt Sin \/ATt + A2t2qt2q2
At At2 —
\/Aitz + A2t2q12qg2 ’ \/AZtZ + A2t2q1242
Bi1 Biy )
= where 4.73
(5 & (4.73)

A2¢2 LAt sin \/— + A2t2g2qt2
By, = cos |— + A%2t2@%at? — :
4 A2t2
0+ 12t252412

. |A%t2 o A
sin \/T + 12t2q2qt2

BlZ = _At dz,
A%t2
\/ + 12282412
4
212
sin JA_t + A2t2gt242
J— + A2t2at2q2
AZ¢2 iAtSin \/— + A2t2g1242
B,, = cos + 22t2at242 + 7 :



aA+DA+D+ A+
AaA+DHA+1+1)

A+ 1A+ 2),

=7+ 1, now,

Therefore, by substituting (4.74) and (4.75) into (4.73), (4.73) becomes

- C C
U= ( 11 12),where
C21 CZZ

A?t?
C;, = cos 2 +/12t2(n+1)(n+2)——

Cip = —At

621 = At

51n\/—+ A2t2(i+ 1D+ 2)

J— +22t2( + 1) (R + 2)

242
sin JA—t + 2620 — 1)

Jaye—

at?

)

sm\/—+ At2(A+ 1)(A+ 2)

a2

)

\/— +22t2(A+ 1)(A + 2)

)

89

(4.74)

(4.75)

(4.76)
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A%t?
A2¢2 iAtsin |——+ A2t2a(n — 1)
C,, = cos + A2t?’n(n—1) + —
\/— + A%t27a(A— 1)

Probability Function for Two-photon Jaynes-Cummings Model

Let [ (t)) be the quantum state of the system containing 1 two-level atom and photons at time t.

Suppose initially the atom is in the ground state. Then, the initial state is

(o]

9(0) = ) cia@I1) In)

n=0
= Z a,|1) |n), where a, = c;,(0). 4.77)
n=0
Then,
lp(1)) = T(D]e(0)). (4.78)

From (4.76), U(t) in its outer product form is
() = C1112)2| + Cy212)(1| + Coq [1)(2] + Cop|1)(1]. (4.79)

By substituting (4.77) and (4.79) into (4.78),

9(®) = ) @12 @ [Coolm] + 1) ® [Coolm)]}, (4:80)

n=0

where

sm\/—+ At2(a+ 1)(A+ 2)
C]_z = — a )

\/— +22t2(A+ 1)(A + 2)

A?t?
A2¢2 iAtsin |——+ A2t?Aa(n—1)
C,, = cos 2 + A%t?Aa(n—-1) + — > :
O Cpe—



To simplify Cy,|n),

A2t2
sin —+ A2t2(A+ 1A+ 2)

Cizn) = — dz|n)

\/—+ A2+ 1)+ 2)

sm \/— + A2t2(A+ 1)(A+ 2)

Vnvn—1|n - 2). (4.81)
J— +22t2(A + 1)(A + 2)
From (4.81), consider
\/Aztz
sin |— + A2t2(A + 1)(A + 2)
In —2)
\/— +22t2(A + 1)(A + 2)
(A 2, )m
+ At + DA+ 2)
Z (=)™ e In—2). (4.82)

To simplify (4.82), when m=1,

A2t2 242
( 2 +22t2(A+ 1D)(A + 2)) In—2) = In—2)+22t2(A+ DA+ 2)|n — 2)
AZ 2
In —2) + 22t2(A + Dn|n — 2)
2t2

= In—2) + 22t*n(n — 1)|n — 2)

A%t?
= ( 2 + 2%t?n(n — 1)) |n — 2). (4.83)

When m=2,

A%t? ’
2 +2222(A+1D)A+2) | In—2)
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By substituting (4.83) into (4.84), RHS of (4.84) becomes

A%t? A%t?
( 2 +22t2(A+ DA+ 2)) ( 2 + 2%t*n(n — 1)) |n — 2)

A%t? A*t?
= <T + Aztzn(n — 1)) (T + Aztz(ﬁ + DA+ 2)) n —2).

Again, by substituting (4.83) into (4.85), RHS of (4.85) becomes
A?t? A%t?
(T + 2%t?n(n — 1)) <T + 2%t?n(n — 1)) |n — 2).

So,

2t2

242 2
<A4t +/12t2(ﬁ+1)(ﬁ+2)> |n—2)=<A4

Now, consider when m=3,

A%t? ’
T+Azt2(ﬁ+1)(ﬁ+2) ITL—Z)

A%t? A%t? ’
ol +222(A+ DA+ 2) 2 +2222(A+ 1A+ 2) | In—2).

By substituting (4.86) into (4.87), RHS of (4.87) becomes
A?t? A*t? :
(T +222(A+ 1A+ 2)) (T + 2%t?n(n — 1)) |n — 2)

2
= <T + 22t?n(n — 1)) <T +22¢2(A+ 1)(A+ 2)) |n — 2).

242 242
= <A—t + 22t2(A+ 1A+ 2)) (A—t +22t2(A+ (A + 2)) |n — 2).

2
+ 2%t?n(n — 1)> |n — 2).

92

(4.84)

(4.85)

(4.86)

(4.87)

(4.88)



By substituting (4.83) into (4.88), RHS of (4.88) becomes

p2¢2 N
T+/12t2n(n— 1) T+/12t2n(n— 1) |n—2).

So,

242

3
A*t? A%t
(4 +/’12t2(ﬁ+1)(ﬁ+2)> |n—2)=< 2

3
+ 2%t*n(n — 1)) |n — 2).
By using the similar method as before, it can be deduced that for any integer m,

242 m 242 m
(ATt + 22(f+ 1)(A + z)) n—2) = <ATt + A2t?n(n - 1)) [n—2). (489

By substituting (4.89) into (4.82), (4.82) becomes

A m
sin \/ﬂ + 2282(A+ 1D (A + 2) 0 < v + 22t*n(n — 1))
== ) (D In = 2)
\/— + 222(A + 1)(7 + 2) m=0 '

242
sin \/A4t + A%t2n(n—1)

In—2).  (4.90)

\/— + A%2t?2n(n—1)

By substituting (4.90) into (4.81), (4.81) becomes

242
sin \/A4t + A2t?n(n— 1)
Vnvn—1|n-2). (4.91)

\/— + A2t?n(n—1)

Ciz2n) = —

Next, to simplify C,,|n),

A?t2
A2t2 At sin 4 + AZtZﬁ(ﬁ - 1)
Cyz|n) = | cos T + 22— 1) + —

2 2+2
\/A4t + 262437 — 1)

[n)

93



212
A2¢2 /iAt sin \/ATt + A2t?2a(n—1)
=|cos [~ + 22— 1) ||n) + 3 e [n). (4.92)
\ \/T + A%t2A(A— 1)

From (4.92), consider

22 %0 <¥ + A2t2A(A — 1))
A t 2427 (+Hh — — _ m
cos\/ A 1)) |n)_mZ( 1 o] ). (4.93)

=0
To simplify (4.93), when m=1,
2t2

4

A%t?
2 + 22t2A(A - 1) ||n) = |n) + A2t2A(n — 1)|n)

242

4

|n) + 22t2(n — Dn|n)

242
- (ATt +2e2(n — 1)n) In). (4.94)

When m=2,

A?t? o ’ A*t? R A*t? R
2 + 222 —-1) | |n) = 2 + 2%2t2a(A - 1) 2 + A2t2A(A — 1) | |n). (4.95)

By substituting (4.94) into (4.95), RHS of (4.95) becomes

A%t? A%t?
(T + 22t27(A — 1)> (T + 22t2(n — 1)n> |n)

A%t? A%t?
- < 2 + A%t%(n — 1)n> < 2 + A%2t2A(A — 1)) |n). (4.96)

Again, by substituting (4.94) into (4.96), RHS of (4.96) becomes

A%t? A%t?
(T + 22t?(n — 1)n> <T + 2%2t2(n — 1)n> |n).

So,

94
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2.2 2 2,2 2
(ATt + 22t%A(A — 1)) In) = (ATt + 2%t%(n — 1)n> n). (4.97)

Now, consider when m=3,

A%t? : A%t? A%t? ’
( 2 + 2%t?2A(A — 1)) |n) = ( + 2%t?A(A — 1))( 2 + 2%t?2A(A — 1)) |n).

4
(4.98)
By substituting (4.97) into (4.98), RHS of (4.98) becomes
(T + 2%2t%7(A — 1)) (T + 2%2t%(n — 1)n> |n)
A2t 2 [ p2¢2
- < 2 + A%t%(n — 1)n> ( 2 + A%t2A(A — 1)) [n). (4.99)
By substituting (4.94) into (4.99), RHS of (4.99) becomes
A%t2 2 (A2 A?t2 :
(T + 22t?(n — 1)n> (T + 2%2t%(n — 1)n> |n) = <T + 2%t2(n — 1)n) |n).
So,
A2t ’ A2t 3
( 2 + A%2t2A(A — 1)) |n) = ( 2 + A%t%(n — 1)n> |n). (4.100)
By using the similar method as before, it can be deduced that for any integer m,
A%t2 " A%t2 ™
(T + 22t27(A — 1)> |n) = <T + 2%2t2(n — 1)n> |n)
A2t2 m
=\t t2n(n—1) | |n). (4.101)

By substituting (4.101) into (4.93), (4.93) becomes

A 22 1 "
M > \Tz A1)
cos |— + 22t2a(n—1) ||n) = ZO(—l) 2m)! [n)




A?t?
= cos \/T + A%t2n(n — 1)) [n).

From (4.92) also, consider

212 A%t? ™
sin JA—t + 2220(A — 1) G ( g T AR - 1)>
_ _1\m
22 In) = Z( 1) 2m + 1! ).
=+ 2eAf - 1) m=0

By substituting (4.101) into it, it becomes

o <A t* + 22t?n(n — 1))
nZO(_l)m Zm+ D! In) =

22
sin JA—t + A2t?n(n—1)

[n).

J— + A%t?n(n—1)

By substituting (4.102) and (4.103) into (4.92), (4.92) becomes

A2¢2 iAt Sin \/— + A2t2a(n — 1)\
Cyz|n) = | cos T + 22— 1) + — >
JA4t + 2R — 1)

[n).

A2t2
A2¢2 iAtsSin [—— + 2%t n(n — 1)
Cyz|n) = | cos T + 22t?2n(n— 1) + —

2
\/A4t + A2t?2n(n—1)
Finally, by substituting (4.91) and (4.104) into (4.80), (4.80) becomes

lp(®)) = Xnzolanr|2)In — 2) + ays|1)In)}

= ) {Cona @120 = 2) + Cu I DINY),

n=0

where

sm \/— + A?t’n(n— 1)

Vnvn-1,

2
JA—t + A%t2n(n—1)

[n).

96

(4.102)

(4.103)

(4.104)
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A2t?
A2t2 iAt sin 7 + A2t?n(n — 1)
S = cos + A%t2n(n—1) + —
4 2 JAZtZ

7 + A%t2n(n—1)

Let P1(t) be the probability in which the atom is in the ground state. Then,

Pi(t) = Z |C1,n(t)|2

242
A2¢2 sin? \/ATt + 22t2n(n—1)

= E la,|? cosz\/g+ﬂzt2n(n— 1) +
n 4 4 A2t2
l 7 + A%t2n(n—1)

I
| .(4.105)
J

Derivation of Three-photon Jaynes-Cummings Model Unitary Operator

4.3.2
From Methodology (3.3), we have the Hamiltonian in interaction picture as follows:
~ hA
o, = 763 — ihA[6,a% — 6_at?] (3.23)
(4.106)

A
= =65 + ihA(a"6. - 6,a”).

Now, the Unitary Operator U is

_ < iﬁ,t)
U= exp —T

AA
exp {—i [7 G, + ihA(aT3 6. — 6+€13)] t /h}

At
= exp {—i [7 65 + iAt(at36_ — 6+€13)]}
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= cos@ —isind, where § = 6, + iAt(at36_ — 6,a). (4.107)
Let ¢ = cosf and § = sin @,

then, U = ¢ — i$. Now,

foe) ( 2m
= z am [ 65 + iAt(at36_ —6,a )] (4-108)
m=0
( 1)m 2m+1
_ — 136 — .43 4.109)
' [ 63 +iAt(@a™ - —6.a )] (
£ 2m + 1)
NOW,
2t at36_ —6.a%) = — ats - a’
5 03 + iat(aro_ o;a )= 2 (O _1) + it [a (1 O) (O 0)(1 ]
At —iAtda
= (4.110)
iataty  —&

Consider the even power expansion, we have

A n | cgratza o~ Az ]? A A L caiiat3a A aaN][At A L cairat3a A A
[;t 85 +iAt(at3e_ — a+a3)] = 503 +iAt(at36_ — a+a3)] [;t 63 +iAt(at3e_ — U+a3)]

At o At o
> —iAtad > —iAtad
- At At
iacat - > iaats - >
A*t?
+ 12t2@3a13 0
= , 4111
Aztz 242421343 ( )
0 T + A4t CLT a

At Y IAt 2 At
763 +irt(at3é_ — 6+a3)] = [7 &5 + irt(at36_ — 5+a3)] [7 8; + iAt(at36. —6.a%)

A3 A A%¢? A2 A
+ 1%t2@3at3 0 Tt + 2%t2@3at3 0

A%t? A AZ¢2 i
0 Tt + 22t2q13a3 0 Tt + 2%t2g13a3

A%t?

2
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A2t2 2
(—4 + Azt2a3a+3> 0

| g2 , | (4112)
\ 0 (—4 +,12t2a+3a3>

At At * At 2
[— 6, + iAt(a36. — &+a3)] _ [7 6, + iAt(a36. — 6+a3)] [7 6, + At (@6 — a+a3)]

2
A2¢2 2 242
((T+/12t2&3a1'3> 0 \i —A4t + A%t243a713 0 \
= 2,2

2.2 2
\ 0 <A4t +/12t2a-l-3a3> / \ 0
A2t2 3
( + /12t2613€ﬁ3> 0

4

B A2t2 3
k 0 (4 +/12t2€ﬁ3&3>

+ 221241343 /

(4.113)

N~

From here, we can actually deduce that for general even power 2m,

A2t2 m
om <— + 12t2a3aT3> 0

At
~ 03 + iAt(@™6_ —46.a AZ¢2 m
0 <T + /12'[2@1-3@3>

However, this could be proven by using mathematical induction as follows:
Let P(m) be the statement that

A2t2 m
om <— + Azt2d3dT3> 0
. As)] _ 4 ’

At
- 03 + iAt(@a™o_ —é6.a A2 m
0 <—4 + Aztzd“fﬁ)

where m are positive integers.

Basis case: Form =1,



A*t?
At 2 =t A2t2g3ats 0 \
— 03 + i@t - &+a3)] = A22 .

0 — T rrata

This basis case has been proven in (4.111).

Therefore, P(1) is true.

Inductive step: Consider when m = k, we suppose that P(k) is true, which means we suppose

242

A“t
At (—+ A2e2adatd)k 0 \
[— 65 +iAt(at3e. — 6+d3)] - is true.
2 A%t A
0 (— + A2t2at3a3)k
Then, for m = k+1,
2(k+1) 2k+2

At
[7 G, + iAt(at3s_ — &+a3)] = [7 G, + iAt(at3s. — a+a3)]

At At
= [7 G, + iAt(at3e_ — 6+&3)] [7 G, + iAt(at3e. — 6+d3)]

Azt2 § 242
( + 1%t? “3aT3> 0 A4 4 224253413 0

100

2

\

242 k A2t2
(ATt + A%t2qt3 A3> / 0 Y Aztzd*3a3/

(A ‘ +/12t2“3a7‘3> 0

(5 \
2.2 k+1 |°

k (A K +,12t2a+3a3> )
4

Therefore, if we suppose that P(k) is true, then P(k+1) is true.

By mathematical induction, we can conclude that P(m) is true for all m belongs to positive
integers.

As a result, it is proven that
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A%t? m
<T + /12'(2@3&1-3) 0

At
26, +iatats. — &+a3)] -
0 T + AZtZdT3d3

- = |/ \ (4.114)
\ )

where m are positive integers.
By substituting (4.114) into (4.108), we have

A?t? m
/ <—4 + Azt2d3dT3) 0

242 m
m=0 = \ 0 (—A 4t +/12t2aT3a3)

N~

2m
o (D)™ [ Az
I/Z( ) J + A%t2@3ats 0
| !

(2m)! 4 I
m=0 |
| |
(_1)m \/AZtZ
0 z + 12t2a13a3 /
|
\ £ (2m)! 4
cos \/% + 2%2t2@3a"13 0
= (4.115)
0 cos \/ﬂ + A2t2qt3g3
4
Now,
At 2m+1
[? 65 + iAt(at3e_ — 6+d3)]
At 2M AL
= [? 65 + iAt(at3e_ — 6+d3)] [7 65 + iAt(@te. — a+a3)]. (4.116)
By substituting (4.110) and (4.114) into (4.116), (4.116) becomes
At 2m+1
[7 65 +iAt(at3e_ — &+a3)]
A%t? ™

/( T+ Azt2a3af3) 0 \ A?t —iAta®

- 2,2 m At
k 0 <A ‘ +/12t2a+3a3) ) iAtats -
4
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At (A%t2 m A%t2 m
/ > (—4 + /12t2d36ﬁ3> —iAt <—4 + Azt2a3af3> a®
= | g2 /. At/ a2 . (4.117)
\i/u' <T + Aztzdﬂfﬁ) a-l-3 — ? <T + /12t2a+3 A3>

By substituting (4.117) into (4.109), we have

At [ A%t? m A?t2 m
® — + A%t%a3at3 —iAt + A%t%2a%a™3 ) a3
(-)™ 2\ 4 4
§= ) — 2
| 242 m 242 m
m=0(2m+1)' iAt<A4t +/12t2€ﬁ3a3> ats —%(A: +,12t25ﬁ3@3> /
S L [ A L I SR G b p2e2 " \
— a3a ————— |-t + A%t?a%at?) a®
|/ 20(2m+1)' y TAvaa ~ @m+ D) Y\ s “E)
_l " m |
(=)™ A2t2 202 At3 A3 (=)™ At [ A?t?
~13 ~ 2t 12e251353
\Z(z T | At T tATaTa Z(2m+1)' 7\ g TATaTa /
Then, —i§
D™ [Arfar A" o (D™ A2t2 m
a - |- At _ thZ ~3~13 ~3
/ L Gm+ D2\ 4 5 tAvaa L (2m+ 1) W\ tAv@car) a
S com D iaaa (D™ [ At/A%t? "
~+3 A~ _ AZtZ '|'3'\3
kzo(z T | A\ Ty tATaTa Z(2m+1)' 2\ 4 4
m=
(=)™ [—iAt [A%t? = (=)™ A2t2
AZtZ ~3~13 lt + AZtZ ~3 ’\1'3 3
/;0( +1)! g TAvaa L @m+ D! 4 “a
I RS G L N7 2R e I S B G DLl [N ™
~t3 A ~ + 22¢2 +3A3
20(2m+1)' At\ - +Avatat ) a Lem+Dl2 4 a4
m=
_ (A1 A12)
= (A21 A,,)" where

2m+1

\/Aztz 126233413
00 + A%t2a3a
_iAt (=)™ 4 @a
1 = |

2 £ 2m + 1)! \/Aztz

+ A2t2a3a13
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. |A2t2 A2 A
—iAtSin \/— + A2t2g34t3

2 2 '
JA v + A2t2g3ats

4
A 2m+1
(—)m <\/ 4t + )12t2a3aT3>
A12 = _/1t Z ﬁ3
(2m + 1)! A2t2
m=0 7 + 2t243413

. [A2t2 A2 A
sm\/—4 + A2t23qt3
~3
a

AZ 2 FUSR ’
\/ 4t + 12t2@3q13

242
“ iy (\/ATt+/12t2&T3d3)

= —At

2m+1

Ay = At at3
21 2m+ 1)! A2¢2
=0 + AZtZaT3a3
2¢2
s JA — + 2t2ata’

~13
a'-,

v

2m+1

2
)m < A_t + AZtZaT3a3>

by = i
272 m+ 1)! \/Mt

—+ A2t2 "'|'3a3

A+ Sin \/Az te + 12t2gt13qg3
At p)

- 7 242
JA 1+ 2201303
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Therefore,
242 242
—iAtSin JA—t + 12t2q3@q13 sin \/A—t + 12t2q3q13
> : -t - as
JA4t + A%t2q3q73 \/A4t + A2t2a@3q73
—is = . (4.118)
AZtZ AZtZ
sin -t A2t2qt3qg3 ) iAt Sin -t A2t2gqt3qg3
At at? —
2 2
JA4t + A2t2q13qg3 \/A4t + A2t2q13¢g3

By substituting (4.115) and (4.118) into (4.107), we have

(o \

cos |— + A2t2g3qt3 0

| I
|

A2t2 e
0 cos , + /12t2a’f3a3/
212 212
—iAtSin\/A_t+ 2121243413 sin\/A—t+Azt2d3aA+3
2 2 —At 2 @
(EE eeasar JBL L eeasar
n 4 4
212 212
sin JA—t + 122123 (ASin JA—t + 22t2a133
At A13 i
2 2
Bi1 312)
= ,where 4.119
(5 52 (4.119)
B jAZtZ 1 22t243413 iAtSIn \/— avaan
11 = COS |[—— ars — — :

AZ 2
\/ 4t + 12t2q3q13

. |A%t2 a2 A
51n\/—+12t2a3aT3

a3

2 )

Blz = _At




A2t?
B,, = cos = + A2t2at3a3 + —

. [A2t2 At A
sin \/T + A2t2q13qg3
ats

212 ’
\/—A — + 2tata’

. |A%t2 At A
iAt Sin T+/12t2aT3a3

T B v

A+DA+DA+ 1D +30+ DA+ + 2@ + 1)

A+ D[A+1D?>+3(A+1)+2]

=@A+ 1A+ 2)(A+3),

a'l'3a$ —

Therefore, by substituting (4.120) and (4.121) into (4.119), (4.119) becomes

atat?a’a

105

(4.120)

(4.121)
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— C C
0= ( 11 12), 4122
Cor Coo (4.122)
where
A2t?
A2¢2 iAt Sin — t A2t2(A+ DA+ 2)(A+ 3)
Ci; = cos T+/12t2(ﬁ+1)(ﬁ+2)(ﬁ+3)—— \

2 A2t2
7t A2t2(A+ DA+ 2)(A+ 3)

A%t2
sin -t A2t2(a+ DA+ 2)(A+3)
~3

ClZ = _/1t )
A%t? o o ~
\/T +22t2(A+ 1D)(A+ 2)(A + 3)
A?t?
sin 7 + A%t (A—1)(A—2)
621 = At a1—3l
A%t? N N
\/T + 222 (A — 1A —2)
A?t?
A2¢2 iAt sin 7 +A2t?2Aa (A —1)(A — 2)
C,, = cos +22t2Aa(h—-1DMA-2)+ > — :
JATt 422620 (A — DA - 2)

Probability Function for Three-photon Jaynes-Cummings Model

Let [ (t)) be the quantum state of the system containing 1 two-level atom and photons time t.

Suppose initially the atom is in the ground state. Then, the initial state is

oo

9(0) = ) cia@I) )

n=0

o)

= Z a,|1)|n), where a, = c;,(0). (4.123)

n=0

Then,

lp(2)) = T(©)]9p(0)). (4.124)
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From (4.122), U(t) in its outer product form is
U(t) = Ca12)2] + C1212)X(1| + Coa|IN2] + oz 1X1]. (4.125)

By substituting (4.123) and (4.125) into (4.124),

o)

9(®) = ) anll2) ® [Craln)] + 11 @ [Coalm]}, (4.126)

n=0

where

sm\/— +A22t2(A+ DA+ 2)(A+ 3)
C1p = — as,

\/— +22t2(A+ 1)(A + 2)(A + 3)

A2¢2 iAt Sin \/— +22t2a (A —1)(7n—2)
C,, = cos T +2t2a (-1 -2)+ :

2 [pe
7t A2t2a(A—1)(A - 2)

To simplify C,,|n),

A%t2
sin |——+ A2t2(A+ DA+ 2)(A+ 3)

Cizn) = — as;|n)

J— +22t2(A+ DA+ 2)(A + 3)

_+,12t2( +1)(A+2)(A + 3)
st l l l Vnvn—1vn—2|n—3). (4.127)

J—+ A2+ 1)\ +2)(A + 3)

From (4.127), consider

A%t2
sin |[——+ A2t2(A+ DA+ 2)(A+ 3)

In—3)
\/—+ 22+ DA+ 2)(R+ 3)

(A Y 220+ DA+ 2)(A + 3))
Z (=)™ e In—3). (4.128)
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To simplify (4.128), when m=1,
A%t?
e +2222(A+ 1A+ 2)(A +3) ||n — 3)

A?t?
= Tln -3+ 222A+ 1A+ 2)(A + 3)|n—3)

A%t?
= In —3) + 22t2(A + 1)(A + 2)n|n — 3)
A%t?
= In—3) + 2%t’n(n — 1A+ 1)|n — 3)
A%t?
= < 2 +22t2n(n—1)(n—-2) |In—3). (4.129)
When m=2,

A%t? :
(T +222(+ DA+ 2)(A + 3)) |n — 3)

4 4
- 3). (4.130)

A%t? A?t?
= (— +22t?(A+ DA+ 2)(A + 3)> <— + 222+ DA+ 2)(A + 3)) In

By substituting (4.129) into (4.130), RHS of (4.130) becomes

242

i ~ ~ A%t
2 +At°(M+ DA+ 2)(A+ 3) 2

+ 22t?’n(n—1)(n — 2)) |n — 3)

Aztz AZtZ
= (T +22t2n(n—-1)(n — 2)> (T + 222+ DA+ 2)(A+ 3)) |n — 3). (4.131)

Again, by substituting (4.129) into (4.131), RHS of (4.131) becomes

A?t? A*t?
( 2 +22t’n(n—1)(n — 2)) ( 2 + 22t’n(n - 1)(n — 2)) |n — 3).
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So,

A2¢2 ’ A%t ’
<T +22t2(A+ DA+ 2)(A + 3)) In—3) = (T + 22t’n(n - 1)(n — 2)) |n — 3).

(4.132)

Now, consider when m=3,

A%t? :
( 2 +222(A+ DA+ 2)(A+ 3)) |n — 3)

2t2

A2t2 g ~ ~ A
== +1t*(M+ DA+ 2)(A+3) 2

- 3). (4.133)

2
+ 222+ DA+ 2)(A+ 3)) [n

By substituting (4.132) into (4.133), RHS of (4.133) becomes

242

A?t? A%t
( +/’12t2(ﬁ+1)(ﬁ+2)(ﬁ+3)>< 2

2
2 + 22t?’n(n—1)(n — 2)) |n — 3)

A?t? 2 A2
= <T + 22t’n(n— 1) (n — 2)) (T +222(A+ DA+ 2)(A + 3)) |n —3). (4.134)

By substituting (4.129) into (4.134), RHS of (4.134) becomes

A?t? ? (22
( 2 + 22t’n(n— 1)(n — 2)) < 2 + 22t?2n(n— 1) (n — 2)) |n — 3).

So,

242

242 3
(A4t +/12t2(ﬁ+1)(ﬁ+2)(ﬁ+3)> |n—3)=<A4t

3
+ 22t?2n(n— 1)(n — 2)) |n — 3).

By using the similar method as before, it can be deduced that for any integer m,

A%t? " A%t? "
(T +222(A+ DA+ 2)(A + 3)) In—3)= <T + 22t’n(n— 1 (n — 2)) |n — 3).

(4.135)

By substituting (4.135) into (4.128), (4.128) becomes



A%t2
sin_|—7—+ A2t2(a+ 1)(A+ 2)(A+ 3)

In —3)

\/A & 22+ 1)+ 2)(A 4+ 3)

—+22t’n(n—-1)(n-2)

2 )
- Z( 1m In—3)

(2m + 1)!

A?t?
sin -t A2t2n(n—1)(n-2)
= n — 3).

242
\/A4t + 22t2n(n—1)(n - 2)

By substituting (4.136) into (4.127), (4.127) becomes

A%t?
sin [——+ A2t’n(n —1)(n—2)
Ciz|n) = —

242
\/A4t + 22t2n(n — 1)(n - 2)

Next, to simplify C,,|n),

A?t2
C,,|n) = | cos T + 22t2a (A —1)(7—2)

242
lAtsin\/A4t + 22624 (A — 1)(A - 2)

[n)

\/—+ A2e2a(n—1)(n - 2)

AZtZ
=|cos [~ +22t2n (- 1)(A—2) ||n)

LAtsm J— + 222 (A — 1)(A — 2)\ )
JAZt / '
—+ 222 (n—1)(A - 2)

Vnvn—1+vVn—2|n - 3).

110

(4.136)

(4.137)

(4.138)
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From (4.138), consider

o 0 ($ + 222 (A — 1A - 2))
cos\/ - TATR (A= D@ - 2)) In) = mZO(_l)m (2m)! )
(4.139)
To simplify (4.139), when m=1,
AZt2 A%t?
(T + 2227 (A — 1)(A — 2)) n) =——In) + 2R (A = D(n = 2)|n)
242
== In) + 22t*(n — 2)A (A — 1)|n)
2t2
=—— I+ 222 (= )it (n — Din)
AZ 2
= M+ 2 -2~ Dt [n)
242
=— )+ 2Pt*(n—2)(n— Dn|n)
A*t?
= ( 7t 2t (n—2)(n— 1)71) [n). (4.140)
When m=2,
A*t? :
( Tt 227 (R — 1) - 2)) In)
242 2¢2
= (ATt + 22220 (A — 1) (A - 2)) <ATt + 2% (A — 1) (A - 2)) n). (4.141)

By substituting (4.140) into (4.141), RHS of (4.141) becomes

A?t? A%t?
( 2 + 222 (A — 1) (A — 2)) < 2 +22t2(n—-2)(n — 1)n> |n)

242 2:2
- <ATt + 226 (n— 2)(n — 1)n) (ATt + 2264 (A — D(A - 2)) In). (4.142)



Again, by substituting (4.140) into (4.142), RHS of (4.142) becomes

242 242
<A4t +22t2(n-2)(n — 1)n> <A4t +22t2(n—-2)(n — 1)n> |n).

So,

4

Now, consider when m=3,

242 ’
(ATt + 222 (A - 1A - 2)) [n)

2.2 242 2
_ (ATt T 226 (R — 1) (A — 2)) <ATt + 2267 (7 - 1) (R — 2)) [n).

By substituting (4.143) into (4.144), RHS of (4.144) becomes

2

A?t? A%t?
( 2 +22t2a (A — 1) (A — 2)) < 2 + 22t2(n—2)(n — 1)n> |n)

At 2,2 : (e 2425 (o ~
=< 2 +/1t(n—2)(n—1)n> 2 +At*An (A —1)(A—2) | |n).

By substituting (4.140) into (4.145), RHS of (4.145) becomes

A2t2 . 2 A2¢2 -
(4 +/1t(n—2)(n—1)n> < 2 +/1t(n—2)(n—1)n>|n)

A%t? ’
= < T+ 222 (n—2)(n — 1)n> [n)

So,

4

2.2 2 242 2
(A4t +22t?a(A— 1A - 2)) |n) = <A ‘ +22t2(n-2)(n— 1)n> |n).

2.2 3 242 3
(A—t + 22’ (A — 1A — 2)) |n) = <ATt + 22t?(n—-2)(n — 1)n> |n).

112

(4.143)

(4.144)

(4.145)

(4.146)
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By using the similar method as before, it can be deduced that for any integer m,

. m 2,2 "
(ATt+ 12624 (A — 1)(A — 2)) |n) = <ATt+ 22t%(n—2)(n — 1)n> |n)

A2 "
= ( T A2t’n(n—1)(n - 2)) |n). (4.147)

By substituting (4.147) into (4.139), (4.139) becomes

AZZ

A2t2 (T + 22t’n(n — )(n — 2)>
<cos \/— +2%2t2a (A —1)(A — 2)) n) = z (=)™ |n)

(2m)!

=|cos [—— + 2%t’n(n—1)(n —2) ||n). (4.148)

From (4.138) also, consider

AZ 2 A R m
sin \/ﬁ + 2627 (R — 1) (A — 2) 0 (Tt + 22 (R - DA - 2))
In) = Z 0™ 2m + 1)! )
\/—+)lzt2A (A —1D(R - 2) m=0 '

By substituting (4.147) into it, it becomes

(Aztz + 22t2n(n — D(n — 2)> sin \/ﬁ +22tn(n - 1D(n - 2)

™ In) = In)
Z (2m + 1)t J— + 22t2n(n—1)(n - 2)
(4.149)
By substituting (4.148) and (4.149) into (4.138), (4.138) becomes
\/Aztz ¢sin \/— +22t2a(A—1)(A—2)
Cyz|n) = | cos T + 2227 (A — 1)(A — 2) + — [n)

: JA4t + 22624 (A — 1) (A — 2)
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/ A2¢2 iAt Sin \/— + A%t2n(n—1)(n — 2)
=| cos +22t2n(n—1)(n—-2) + > > [n) (4.150)
\ \/A € 22— 1)(n-2)

4
Finally, by substituting (4.137) and (4.150) into (4.126), (4.126) becomes

o)

9() = ) {aur(2)ln = 3) + aps| i)}

n=0

Y (Cona @120 = 3) + € © 1))}
=0

where

—+/12t2 n-1n-2)
sm\/ n(n n-— o e =l

J— + A2t°n(n—1)(n— 2)

A2¢2 tsm J— + A2t?n(n—1)(n — 2)
s = cos T + A2t2n(n—1)(n— 2) + — :

J— + 22t2n(n — 1)(n — 2)

Let P1(t) be the probability in which the atom is in the ground state. Then,

P = ) |G
n=0

= D llanl?lsl?)
n=0
- Z LanZ[ j— + 22e2n(n - 1D(n - 2)

n=0

A2t2 sin? J— + 22t2n(n—1)(n — 2)
+ . (4.151)

4 ATt + 22t2n(n — 1)(n — 2)
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4.3.3 Derivation of k-photon Jaynes-Cummings Model Unitary Operator
From Methodology 3.3, we have the Hamiltonian in interaction picture as follows:

. hA
o, = 763 — inA[6,.a* — 6_atk] (3.21)

hA
= 763 + ihA(at*6_ — 6,ak). (4.152)

Now, the Unitary Operator U is

. < iﬁ,t)
U =exp T

hA TR A
= exp {—i [7 65 + ihA(atké_ — a+ak)] t /h}

=exp {— l[ 65 + iAt(at*6_—6.a )]}
= cosf —isinf, where § = %63 + iAt(atke_ — 6,.a"). (4.153)
Let ¢ = cosf and § = sin @,

then, U = ¢ — i$. Now,

o (D)™ -
= Z am [ 65 + irt(atke_ -6 ak)] (4.154)
m=0
1ym ¢ 2m+1
- Z Z(m -2 1)! [2 05 + iae(@™e. — 6+ak)] ' (159
Now,
At aiiatks _ 5 oaky — o At |atk - a*
>0 + iAt(@™ 6 — 6.a%) = > (O _1)"'”“ [a (1 ()) (0 O)a ]
% —iAtak
_ _ (4.156)
iaeate -2

Consider the even power expansion, we have

A~

[At 65 + irt(atké_ — 6, "k)] [At 65 + irt(atk6_ -6, A")] [ 65 +irt(atk6_—é6.a "k)]
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At At
> —iAta* > —iAta*

- At At

iatate  — = iatatk — >

242

ATt + A2t2akgtk 0 -

= , 4157
0 A 4 A2e2atkak (157

4

At At 2 At 2
[? 6, + iAt(at 6. — &+ak)] - [7 6, + iAt(at e — &+ak)] [7 6, + iAt(at e — &+a’<)]

/T + Aztzakd“‘ 0 \ T + Aztzdk&ﬂ‘ 0
= 242 o A2t2 o
0 + 2%t2qtkgk 0 + A2t2qtkgk
A%t2 2
( 2 + Aztzaka’rk> 0
= , |, (4.158)

A*t?
0 (4 +/12t2€ﬁ"ak>/

At 6 At 4 At 2
[? G, + idt(atks_ — a+ak)] = |56 +irt(ate ~ &+ak)] [7 G, + iAt(atks_ — 6+ak)]

A%t? 2 2.2
/( 4 +Azt2€1kd*k> 0 \ A%t _l_/’{ZtZaka'l'k 0
_ 4
k 0 <A4t +/12t2a+kak) ) 0 - + A2t2qtkagk
A2t2 3
/( Z +/12t2aka’fk> 0

= e .| @159
0 <4 +/12t2a”f"a">
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Therefore, we can actually deduce that for general even power 2m,

A2t2 m
o (B peaa)

A2t2 "
\ 0 <T + Aztszkd">

However, this could be proven by using mathematical induction as follows:

Let P(m) be the statement that

A A

At
- 03+ irt(atké_ —6,a

A2t2 m
2m /(T + ﬂztzdka“’) 0
o] =]

|
A2t2 m
\ 0 (— + Aztza“‘a") /
4
where m are positive integers.

Basis case: Form =1,

A*t?

At 2 ;- HAeatat 0 \

— 03 +irt(@te. — &+ak)] = A2 .
T + A%t2atkak

This basis case has been proven in (4.157).

Therefore, P(1) is true.

Inductive step: Consider when m = g, we suppose that P(q) is true, which means we suppose
At
(T + AZtZakaTk)q 0

2,2
At ] \ :
[? 65 +irt(atk6_ —6.a )] = is true.

A*t?
0 (— +Azt2aTkak)q/

Then, for m = g+1,

2(q+1) 2q+2

At At
[7 G, + idt(atks_ — &+ak)] = [7 G, + iAt(atks_ — 5+ak)]

At e At kA Ak 2
=[703+Mt(a 0_—a6.a )] [?a3+1/1t(a 6_—a6,a%)
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242 q
((T + Aztzd"a“‘> 0 \ + A2t2 Aka'l'k 0
- 2,2 2.2
\ 0 <ATt + A%t2atkak ) A4t + A%t2atkak
242 q+1
/(—4 + Aztzdka“‘> 0
|

A2t2 oy
\ 0 (—4 +/12t2a+kak>

Therefore, if we suppose that P(q) is true, then P(g+1) is true.

By mathematical induction, we can conclude that P(m) is true for all m belongs to positive
integers.

As a result, it is proven that

m
Cam— o

. (
= 6; + iat(a™a_ - a+ak)] = | - N
t
\ 0 (—4 + Aztszkdk)

(4.160)

By substituting (4.160) into (4.154), we have

A*t? "
(—1)"’/( Z +/12t2a"a’f"> 0 \

I/
|
I (o]
(_1)m A2t2 ez A ~
k 0 Z am) \/ 2 + A2t2qtkgk

m=0

N
3
\______/
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/cos \/¥ + A2t2gkqtk 0
_ (4.161)

A2t2 At A
0 cos T+/12t2a’f"a"

Now,

At 2m+1

[7 &, + iAt(at 6. — &+ak)]
At ZM At

- [7 6, + iAt(at*6. — &+ak)] [7 6, + iAt(at*6. — a+a'<)]. (4.162)

By substituting (4.156) and (4.160) into (4.162), (4.162) becomes

At 2m+1
[7 G + iAt(at e — &+ak)]

A2t2 m
/(T + Aztzd"&“‘> 0 \l —iit&"
= |
2:+2 m At
\ 0 (A_t + AZtZaT"ak> iacatk ——
4 2
At [ A?t2 m 2¢2 m
/ ?< 2 + Aztza"a*k> —i/1t< 2 +/12t2dka“‘> axr
= | A2¢2 " m ) At /022 " m . (4.163)
ilt 2 + 22t2qtkgk | gtk i + 12t2qtkgk
By substituting (4.163) into (4.155), we have
At (A%t? R " o [(A2%t? N
A (_1)m ? <T + A%t ka*") —iAt <T + Aztzaka“‘> a"
S = —_—
| 2¢2 m 242 m
) 2m+1)! i1t <AT + 222tk Ak) atk _%t<ATt + 222tk Ak> /

o ()™ [At/A%e? m X (=)™ A2¢2 m
B L= STy

— m=0

m=0 =0

a

)

~ 1)m A2t2 m - D™ [ At /A2 m
Z(z( :1)|[' t< z Hztzfﬁkdk> dil Z(z(mjw[ 7( z ”thaTkak> l
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Then, —i§
(=)™ At (8?2 m = (=)™ A2t? m
Aztz"k"'rk _At /12t2'\k~|'k ~k
|/ , @m+ D12\ 4 tAatatd ~ @m+ 1) W\ tAvaaT ) d
—i|
(-)m™ A2t2 (D™ [ At/A% m
At /—lztzAJrkAk Z 1225tk gk
\Zo(z |\ T T Cm+DI| 2\ g tAtaTa
m=
o (D™ [-ine A o (=)™ A2t2 m
~k Atk 2025katk | Ak
/ 0(2m+1)! > 2 + A°t“a*a (2m+1)' At 2 + A“t°a*a a
— m=
o (=)™ A2t2 m S (=)™ [iAt [A%t? m
(z(mjnl[’“( z ”th‘ﬁkak) aTkl (z(mi 1)|[7< 4 HZ%TR&R) l /
m=0 ) m=0 '
_ All A12
- <A21 A22>, Where
> 2m+1
LS ( A_t+,12t2aka+k)
11 = )
2 m= (2m+1) \/&+12t2’\ka1’k
242
_iaesin JATt + A2t2kat
) 212 ’
JA 1+ A2tzakatk
2m+1

242
=y <\/A —+ Aztzd"d’f")
A12 = _/1t dk

2Zm+1)!
=0( m ) \/AZtZ _|_/12t2ak(’i'|'k

sm J— + A2t2gkqtk
4k

2 )
JA_t + 22t2gk gtk

2
—)m <JA4t +/12t2a“‘ak>

Ay =
21 = A Z 2m+1)! JAZt
m=0

2m+1

-— 4 A2t2 ’\'I'kak



. |A%t2 JUTIN
sin \/T + A2t2qtkgk

22
JA4t 1 22e2gtk gk

= At atk

)
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2m+1

(J— + AZtZaTk&k>

1)' A2t2
\/ ;
212
iAt Sin \/A—t + A2t2qtkgk

Therefore,

A2t2 AL A
_jAtSin -t A2t2gkgtk

+ A2e2akatk

2 \/Aztz
4
212
sin \/ATt + A2t2qtkgk

JAZtZ
4

At

+ A2t2atkak

atk

A2t2qtkgk

. |A2t2 AL A
sin \/T + A2t2gkqtk

\/Aztz
)

A2t2 Atk A
iAt Sin T+/12t2aTkak

2 \/Aztz
4

—At axr

+ A2e2gkatk

(4.164)

+ A2t2atkqk

By substituting (4.161) and (4.164) into (4.153), we have

+ A2t2@katk

AZ t2
Cos 4

U

0

COS\/4

A2%t2

+ A2e2atkak

. |A%t2 AL A
_L-Atsm\/—+12t2aka’fk

. |A2t2 Ak A
sin J— + A2t2gkqtk
—At

2
\/Ait + A2t2gkqtk

+ A2t2gkqtk

JAZt
)

At

. |A%t2 Atk A
sm\/—+12t2a“‘ak

. |A%t2 Atk A
" iAtSin —+/12t2a“‘ak

JA4t + A2t2qtkgk

2
JA4t + A2t2qtkgk
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B B
= (5 52) where (4.165)
A2¢2 iAt Sin \/— + A%t2akatk
By; = cos — A?t2akatk — — — )
\/A_t + A2e2gkgtk

. |A2t2 Al A
sm\/ s A2t2gkqtk
~k
Blz = — a )

2
\/A_t + 22t2gkgtk

. |A%t2 At A
sin \/Tt + A2t2qtkgk

BZl = At a\-l_k)
A2t2
\/ + A2t2qtkgk
4
A2t2
A2t2 iAt Sin —t A2t2qtkgk
B,, = cos 7 + A2t2atkak + — :

N E—

Now, from the previous derivations for one, two and three photons cases, we have @ at =7 + 1,
aat? = A+ DA +2)and aa™ = (A + 1)(A + 2)(A + 3).

Hence, it can be deduced that a*a™ = (A + DA +2)(A +3)......... (A + k). (4.166)

From previous derivations, we also have aTa = A, at2a2 = A(A — 1) and a™3a3 =
A (A — 1)(fi — 2). So, it can be deduced that

tkgk =a (A — 1A - 2)......... [A— (k—1)]. (4.167)

Q

Therefore, by substituting (4.166) and (4.167) into (4.165), (4.165) becomes

0= (Cll Clz) , where (4.168)
CZl CZZ
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\/A%Z
C;, = cos T+/’12t2(ﬁ+ D@A+2)(A+3) e M+ k)
iAtsin\/&+/12t2(ﬁ+1)(ﬁ+2)(ﬁ+3) ......... (n+k)
2 222 t A '
+ 222+ DA+ 2)(A+3) ... (n+k)
sm\/—+/12t2(n+ D@A+2)A+3) e (n+k)
Cip = ak,
\/—+/’12t2(n+1)(n+2)(n+3) ......... n+k)
sm\/—+/12t2A(n—1)(n—2) ......... [A— (k—1)]
(1 = atk,

\/_+/12t2A(n—1)(n—2) ......... (A — (k- 1)

jAZtZ
C,, = cos T + 222 (M —-1)MA—2) e [A— (k—1)]
lAtsm\/—+/12t2A(n—1)(n 2) e [A—(k—1)]
A2t A A '
\/—+12t2 A-—1DMA=2) e [A— (k—1)]

Probability Function for k-Photon Jaynes-Cummings Model

Let [ (t)) be the quantum state of the system containing 1 two-level atom and photons at time t.

Suppose initially the atom is in the ground state. Then, the initial state is

(o]

9(0) = > e1n(@)[1) )

n=0

o)

= Z a,|1)|n), where a, = c;,(0). (4.169)

n=0

Then,
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lp(t)) = T®)]p(0)). (4.170)
From (4.168), U(t) in its outer product form is
U(t) = Cal2)2] + Cr2|2)(1| + Co1| 102 + G211 (4.171)

By substituting (4.169) and (4.171) into (4.170),

o)

9 = ) axl12) @ [Cozlm)] + 1D ® [Cool)]}, (4.172)
n=0
where
sm\/—+/12t2(n+ D@A+2)A+3) .. n+k)
€12 = — ak'
\/—+/12t2(n+1)(n+2)(n+3) ......... n+k)
\/Aztz
C,, = cos 2 +2tn (A —-1DMA—2) ... .. [A—(k—1)]
lAtsm\/—+/12t2A(n—1)(n—2) ......... [A— (k—1)]

\/_ + 2224 (A — 1)(A — 2) ee v . [A—(k—1)]

To simplify Cy,|n),

JAZtZ
sin ——+222(A+ DA+ 2)(A+3) v n+k)
Ciz|n) = — &k|n)
\/—+12t2(n+1)(n+2)(n+3) ......... M+ k)
—+Azt2( +1DA+2)A+3) ... ... n+k)
st " " " : Vnvn—-1.... Jyn—(k—-1)|n
J—+Azt2(n+1)(n+2)(n+3) ......... (M+k)

(4.173)



From (4.173), consider
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sin\/¥+,12t2(ﬁ+ DA+ 2)(A+3) e (7 + k)
In — k)
\/¥+Azt2(ﬁ+1)(ﬁ+2)(ﬁ+3) ......... (A + k)
e (¥ + 2R+ DA+ 2)A+3) (7 + k))m
— ;0(_1) o In — k). (4.174)
To simplify (4.174), when m=1,
AZtZ
<T+/12t2(ﬁ+1)(ﬁ+2)(ﬁ+3) ......... (ﬁ+k)> In — k)
A%t?
=T|n—k)+/12t2(ﬁ+1)(ﬁ+2)(ﬁ+3) ......... A+ k)|n— k)
= A4t In—k)+222(A+ DA+ 2)A + 3) ... .. ... [A+ (k—1)]n|n — k)
= A4t In—k)+22t2n(A+ DA+ 2)A + 3) ... ... ... [A+ (k—2)](n—1)|n—k)
=2~ k) + 22En(n — D(n—2) ... [n— (k — D]in - k)
A%t?
= <T + 220 =DM =2) e .. [n— (k — 1)]) In — k). (4.175)
When m=2,
A2t2 A A A A 2
( 2 +2222(A+ DA+ 2)(A+3) o (n+k)> In — k)
A%t? ~ ~ . ~ A%t2
=< 2 +2222(A+ DA+ 2)(A+3) . (n-l—k))( 2
+2222(A+ DA+ 2)(A+3) ... (7 + k)) In — k). (4.176)



By substituting (4.175) into (4.176), RHS of (4.176) becomes

242 242
<A4t + 222+ DA+ 2)(A 4+ 3) ... .. .. (ﬁ+k)> <A4t
+222n(n— 1M —2) ...... ... [n— (k- 1)]) |n — 3)
242 242
_ <A4t + 22000 — 1)(n = 2) o - (k - 1)]) <A 4t
+ 2222+ DA+ 2)(A 4+ 3) ... .. .. (ﬁ+k)) In — k)

Again, by substituting (4.175) into (4.177), RHS of (4.177) becomes

A?t? At
( +222n(n—1D(M —2) ... ... [n— (k- 1)]) <

4 4
+22t2n(n—-1DMm—2) ... [n— (k- 1)]) |n — k).
So,
A2t 2
<T+/12t2(ﬁ+1)(ﬁ+2)(ﬁ+3) ......... (ﬁ+k)> In— k)
A2t 2
= <T +22?n(n—1D(M —2) ......... [n— (k- 1)]) |n — k).

Now, consider when m=3,

2.2 3
<A4t +222(A+ DA+ 2)(A+3) ... (ﬁ+k)> In — k)

4

+2222(A+ DA+ 2)(A+3) ... (ﬁ+k)> |n — k).

A2t2
=<—+/12t2(ﬁ+1)(ﬁ+2)(ﬁ+3) ......... (ﬁ+k)><

126

(4.177)

(4.178)

(4.179)
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By substituting (4.178) into (4.179), RHS of (4.179) becomes

<A4t + 222+ DA+ 2)(A 4+ 3) ... .. .. (ﬁ+k)> <A4t
+22¢2n(n—1DMm—2) ......... [n— (k- 1)]) |n — k)
= A A%t2 1 2 k—1 2 A
—<4 + 2t n(n— 1) — 2) ... ... [n—(—)])(4
+2222(A+ DA+ 2)A+3) ... .. . (A + k)) |n — k). (4.180)
By substituting (4.175) into (4.180), RHS of (4.180) becomes
A A%t 1 2 k-1 2 A
(4 +2t‘n(n—1)(n—2) .......... [n— (k- )])(4
+ 222 n(n—-1DMm—2) ... [n— (k- 1)]) |n — k).
So,
A A A A 3
(4 +A2t*(A+ DA+ 2)A+3) e (n+k)> In — k)
A2¢2 ’
= < 2 +22t2n(n—1DMm—=2) ......... [n— (k- 1)]) |n — k).

By using the similar method as before, it can be deduced that for any integer m,

<A4t +2222(A+ DA+ 2)(A+3) o (ﬁ+k)> In — k)
A%t? "
= < 2 +222n(n—=1DMm—=2) ......... [n— (k- 1)]) In — k). (4.181)

By substituting (4.181) into (4.174), (4.174) becomes

242
sin\/ATt +F22A 4+ DA+ 2)A+3) R+ k)

In — k)

\/¥+12t2(ﬁ+1)(ﬁ+2)(ﬁ+3) ......... (A + k)



(Aztz + 2 =10 —2) oo In— (k — 1)])m
:Z( D 2m+ 1)! In = k)
sin \/ﬁ +22t2n(n—1D(n—2) ... [n—(k—1)]
= In — k).
\/— +22t2n(n—1)(n—2) ......... [n—(k—1)]
By substituting (4.182) into (4.173), (4.173) becomes
C12|n)=—/'lt[\/ﬁ\/n—1 ...... n—(k—l)] :
sin \/& +22t2n(n—1D(n—2) ... [n—(k—1)]
|n — k).
\/— +22t2n(n—1)(n—2) ......... [n—(k—1)]
Next, to simplify C,,|n),
A?%t?
Cyz|n) = \cos\/ 2 + 222 (M- 1A = 2) e [A— (k—1)]

lAtsm\/A12+/12t2ﬁ A= D)(A=2) e [ﬁ(kl)]>| )
n).

\/_ + 22220 (A — 1A —2) e ver e [A—(k—1)]

=\ cos [—— + 222 (A —-1)(MA—2) ... [A—(k—1)] |In)
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(4.182)

(4.183)

(lAtsm\/ +22t2a(M—-1)A—2) ... [A— (k— 1)])
In). (4.184)

\/_+/12t2A(n—1)(n—2) ......... [ — (k- 1)]

From (4.184), consider

<cos \/AZtZ +222A (M — 1A — 2) oo v (A — (k- 1)]) |n)
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m

e (¥ 2R A= 1) (A =2) oo - (k - 1)])
_ ;0(_1) i In). (4.185)
To simplify (4.185), when m=1,
A%t?
(T FA22A (A= 1)(A = 2) o (A — (k — 1)]) In)
= In)y + 22A(A—1D(n—2) ......... [n— (k—1]|n)
= 4t Iny + 22t*!n—(k—DJA(A—-1D(n—2) ......... [A— (k—2)]|n)
= Iny + 22t!n—(k—D]n—(k=2)JA(RA—1Dn—2)......... [A— (k—3)]|n)
2t2
= In) + 22t2[n— (k — D][n— (k= 2)] ... ... ... (n — Dn|n)
A%t?
- (T 22— 1) [n— (k 1)]) In). (4.186)
When m=2,
A2t 2
( 2R (R DA =2 (A — (k- 1)]) In)
(Y end- -2 NI G
—<4 +Atn(A—1D)A—2) ... ... [ — (k- )])(4
+ 22 -1DA=2) ... .. [A— (k— 1)]) |n). (4.187)

By substituting (4.186) into (4.187), RHS of (4.187) becomes

e 2e2a(hm—-1)MA -2 n k—1 e
(4 +A2tA(A—1)(A—2) ......... [A— (k- )])( 2

+22’n(n—-1) ......... [n— (k- 1)]) |n)



242 2.2
= <A4t + /12t2n(n — 1) ......... [n - (k — 1)]) <A4t + /’thZﬁ (ﬁ _ 1)(ﬁ _ 2) ......... [ﬁ

— (k- 1)]) In). (4.188)

Again, by substituting (4.186) into (4.188), RHS of (4.188) becomes
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(A 4t + 22000 = 1) o[ — (ke — 1)]> <A 4t + 220 = 1) oo [ — (k — 1)]> In).
So,
A2t2 2
( PR (A= (A = 2) [ 1)]) in)
A2t2 2
= < 2 +22t2n(n—1) ......... [n— (k- 1)]) |n). (4.189)

Now, consider when m=3,

242 ’
(A4t + 2220 (A — DA = 2) e [A— (k — 1)]) )

A*t? A?t?
< 2 + 2222 (A — 1)(A — 2) ... .. [ﬁ—(k—l)])( 2
2
+ 22 -1DA=-2) ... .. [A— (k— 1)]) |n). (4.190)
By substituting (4.189) into (4.190), RHS of (4.190) becomes

242 2+2
(A—t + 2222 -1DA=-2) ... ... [A— (k— 1)]) (A—t

4 4
+22’n(n—-1) ......... [n— (k- 1)]) [n).
242 2 /p2.2
= <ATt +222n(n—1) ......... [n— (k- 1)]) <ATt +222A (A —1DA = 2) e . [
— (k- 1)]) [n). (4.191)

By substituting (4.186) into (4.191), RHS of (4.191) becomes
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2.2 2 sp2.2
(A4t + 22000 = 1) o[ — (ke — 1)]> <A 4t + 22000 = 1) o[ — (ke — 1)]) in)
A?t? ’
= < 2 +222n(n—1) ......... [n— (k- 1)]) |n).
So,
A?t? ’
( A= DA =2 (A — (k- 1)]) In)
A?t? ’
= < 2 + 22t2n(n—1) ......... [n— (k- 1)]) |n). (4.192)

By using the similar method as before, it can be deduced that for any integer m,

<A4t + 2R (A= 1) (A = 2) e o [A— (k- 1)]) n)

= <A1t2 +22t2n(n—-1) ......... [n— (k- 1)]) |n). (4.193)

By substituting (4.193) into (4.185), (4.185) becomes

<cos \/Aj}tz + 222 (A - DA = 2) e e (A — (k- 1)]) |n)

E +222n(n—-1) ......... [n— (k- 1)])

- i(_l)m( : (2m)! I
m=0

_ <cos JAT 2R = 1) oo [ — (k= 1)]) n). (4.194)
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From (4.184) also, consider

sin \/E + 2020 (A— DA —2) .. .. ... [A— (k- 1)]
In)
\/—+/12t2n A-1DA—-2) ... [ — (k—1)]
(Aztz 2R A= 1D)A=2) (A — (k — 1)])m
Z( ™ 2m+ D! ).
By substituting (4.193) into it, it becomes
(— + 2220 = 1) . [n— (k- 1)]>m

Z< D Zm+ 1) I

sin \/& + A2t?n(n—1) ... ... ... [n— (k—1)]

[n). (4.195)

J_ + 22201 = 1) e [ — (k= 1)]

By substituting (4.194) and (4.195) into (4.184), (4.184) becomes

Corln) = <cos JAT 2220 (A= 1) (A = 2) oo [ (k= 1)]

lAtsm\/Aiz B @ DE-D) B G DI
\/—+/12t2 (A= DA = 2) oo [ = (k — D]

A%t2
) <C05 j 7 TATRM = 1) [n— (k- 1)]

s iA_tSin \/ATt + 22t2n(n—1) ......... [n— (k- 1)])

n). (4.196)

2 \/Aitz + AZth(n — 1) ......... [Tl - (k - 1)]



Finally, by substituting (4.183) and (4.196) into (4.172), (4.172) becomes

9(O) = D {anr(2)in = k) + ans DI}
n=0

= (Cons @120 = ) + Ca®I DI},

where

rz—lt[\/ﬁx/m ...... \/n—(k—l)]'

sin \/¥ +22t2n(n—1)(n—2) .......... [n—(k—1)]
\/Aitz + 222 = 1) =2) o [n— (k- 1)]
s = cos \/¥ + 22t2n(n—1) ......... [n—(k—1)]
\/Aztz
iatsin |——+ A2t?n(n—1) ......... [n—(k—1)]
+ 2 JAZtZ '
—t At2n(n—1)...... [n— (k—1)]

Let P4(t) be the probability in which the atom is in the ground state. Then,

PO = ) [Cia(®)]’
n=0

[00]

= lanllsl?)

= > {la P Losz jAZtZ £ 2200 =1) o= (k= D]
n=0 l
o A%t
A2¢2 Sin \/T+/1 t?nn—1) ......... [n—(k—1)]
212 (4.197)
4 A%t
— + 22t2n(n—1) .......... [n— (k—1)]

4
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4.4 Discussions of single-photon and two-photon JCM results

Single-photon JCM probability functions

From (4.59), the probability that the atom is in the ground state is given by

2 2
°° A2t2 sin? + Aztz
zt (4.59)

P(t) = Ianl2 cos? + A2t2n + NG
n= 0 + A%t2n

= i a2 [S 24, 2 2 [EE ) e 4.198
~ 4 a2y axzn T Az + 4an % 4 "N (4.198)
n=

Case 1: Non-resonant case

For coherent state, the photon number probability distribution P(n) is given by

an

P(n) = ’:l—l exp(—). (2.8)

Now, |a,,|?> = P(n). By substituting (1.5) into (4.198), we have

> | Am a2 +222n 22%n a2
P (t) = Z Hexp(—n) X2 4/12n+A2 n 4/12ncos 2 T+/1 t?n . (4.199)
n=0

For thermal state, the photon number probability distribution P(n) is given by

n

SRENE )

Again, |a,|?> = P(n). By substituting (2.17) into (4.198), we have
P(t) = i : ( k )n i 2/12n+ 2n 2 22 e 4.200
ST L a1\ 1) (a4 A% + 4220 0 4 n (- (4200)
n=

Case 2: Resonant case

For resonant case, A=0. So, for coherent state, (4.199) becomes
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P,(t) = %Z {i—? exp(—)[1 + cosZAt\/H]}. (4.201)
n=0

Similarly, for thermal state, by substituting A=0 into (4.200), we have

1 ® n
P(t) = E,Z {n 1 (n = 1) [1+ cosZAt\/ﬁ]}. (4.202)

Two-photon JCM probability functions

From (4.105), the probability that the atom is in the ground state is given by

n=0

2 A2¢2
P(t) = Z la,|? Ilcos \/T + 22t2n(n — 1)

242
A2¢2 sin? \/A—t + 2A2t2n(n—1)

+ (4.105)
4 A—t + 2%t2n(n—1)

~ i a2 A2 +22%n(n—1)
- a2 4z — 1)

n=0

+ 24%n(n — 1) 2 |2 | 2 (n—1) 4.203
A2+ 4x2n(n—1) 4 mn ' (4:203)

Case 1: Non-resonant case

For coherent state, the photon number probability distribution P(n) is given by

-Nn

P(n) = %exp(—ﬁ). (2.8)

Now, |a,|? = P(n). By substituting (2.8) into (4.203), we have
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iy 2 29 (n —
P.(O) 22 n—|exp(—ﬁ) A*+22°n(n—1)

n! A2 +42°2n(n—1)
n=0
2%2n(n—1) A2t2
2 2t2 -1 . 4.204
+A2+4/12n(n_1)cos \/ 2 + 22t?2n(n — 1) (4.204)

For thermal state, the photon number probability distribution P(n) is given by

n

P(n)zﬁj-l(ﬁ:_l—l) ' (217)

Again, |a,|> = P(n). By substituting (2.17) into (4.203), we have

oo

PL(t) = z 1 ( nl )” A2 +22%n(n—1)

4 n+1\n+1/) A2 +4242n(n—1)
n=
2%2n(n—1) A2t2
2 22 -1 . 4.2
+A2+4/12n(n_1)cos j 2 + 22t?2n(n — 1) (4.205)

Case 2: Resonant case

For resonant case, A=0. So, for coherent state, (4.204) becomes

n!

P, (t) = %i {ﬁ—n exp(—n) [1 + cos2Aty/n(n — 1)]}. (4.206)
n=0

Similarly, for thermal state, by substituting A=0 into (4.205), we have

P,(t) = %; {ﬁ Jlr - (ﬁ z 1)n [1 + cos2Atyn(n — 1)]}. (4.207)

In the above calculations, P; (t) denotes the probability that the atom is in the ground
state. Next, the graphs of probability P, (t) (i.e. P(t) in y-axis of the graphs) against time t will be
plotted for single-photon and two-photon JCM with different mean photon number 72, detuning A
and interaction strength 1. The effects of these parameters on the Rabi oscillations will be
discussed. Figure 4.1 to 4.12 in the next part give the graphical results for single-photon JCM
while Figure 4.13 to 4.21 give the graphical results for two-photon JCM.
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Graph of probability that the atom is in the ground state P(t) against time t(s).

Figure 4.1: Coherent state, A = 1s™1, 7 = 15, A= 0.
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Figure 4.2: Coherent state, A = 1s™1, 7 = 15, A= 0.
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According to the initial condition, the atom is in the ground state (lower energy level) at t=0.
Therefore, in Figure 4.1, the probability P is equals to 1 at t=0. Then, the atom oscillates between
the upper and lower energy levels and reaches a period of quiescence (roughly between t=5s and
t=15s). During the period of quiescence, there is no information whether the atom is in the lower
or upper energy level. The atom has equal probability (P(t)=0.5) to be in the upper and lower
energy level. After the period of quiescence, there is a revival of oscillation of the atom between
its upper and lower energy level. This oscillation is also known as the Rabi Oscillation. Then, the
Rabi Oscillations collapse and followed by another revival of the oscillations. It can be seen from

Figure 4.2 that as time increases, the collapses and revivals features become less prominent.

The collapse or damping of the Rabi Oscillations has nothing to do with energy
dissipation. It is due to the destructive interference of the oscillating terms. The probability P(t)

that the atom is in the ground state is given by

P(t) = %Z [r:l—:l exp(—ﬁ)] (1 + cos2av/nt) .
n=0
Therefore, P(t) is the sum of the oscillating cosinusoidal terms, cos2Av/nt. If there are terms
oscillating by 180° out of phase with each other, then there will be an approximate cancellation
of these terms. This will then result in destructive interference which causes the collapse of Rabi
Oscillations. Conversely, if there are terms which are in phase with each other, a constructive

interference which results in the revival of Rabi Oscillations is observed.
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Figure 4.3: Thermal state, A = 1s™!, 1 = 15, A= 0.
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Figure 4.4: Thermal state, A = 1s™!, n = 15, A= 0.
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Figure 4.3 and 4.4 show the results obtained by using thermal field as the initial field
state. There is no pattern and no collapse and revival features observed. The behavior of the
energy states of the atom is completely chaotic as shown in Figure 4.3. This chaotic behavior
persists even though time t increases to a large value t=200s, as illustrated in Figure 4.4. This
could be explained by the fact that thermal state is a statistical mixture which has only minimum
information. Unlike coherent states (which its wave function can be defined as the linear
superposition of number states), we do not have enough information to form the wave function
of a thermal state. Hence, it is physically logical that when a thermal initial field state interacts
with the atom, it gives a chaotic behavior of the probability that the atom is in its ground state
against time. This is in contrast with the case of using coherent initial field state discussed earlier,

which shows a nice collapses and revivals of the Rabi oscillations.

0.9 -

0.7 } .

0.6
0.5 Mﬂf

0.3 -
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0.1 .

r r r [ r r

0 A
0 100 200 300 400 500 600 700
t(s)

Figure 4.5: Coherent state, A = 0.1s™1, m = 15, A= O rad/s (red), A= 0.5 rad/s
(blue), A= 1.5 rad/s (green)
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Figure 4.6: Thermal state, A = 0.1s™1, m = 15, A= 0 rad/s (red), A= 0.5 rad/s
(blue), A= 1.5 rad/s (green)

From Figure 4.5 and 4.6, it could be seen that when detuning A increases from A=0 rad/s
to A=1.5 rad/s, both graphs are shifted upwards. These mean that the atom is more probable to
stay in the ground state as detuning increases. For example, from both graphs in Figure 4.5 and
4.6 with A=1.5 rad/s, the probability that the atom is in the ground state lies roughly in between
0.8 and 1, which shows very high probability that the atom will remain in the ground state. This
is because the increase in detuning means the difference between the monochromatic light
frequency and frequency corresponds to the energy gap between the two-level atom becomes
larger. Therefore, the electron in the atom is less probable to be excited to upper energy level
since the energy E carried by the photon (E=hf), where h is Planck’s constant and f is light
frequency) is either insufficient or too much for the excitation of the electron to the upper energy
level. Hence, it can be deduced that when the monochromatic light frequency is very far different

from the frequency corresponds to energy gap of the atom, the photon will not be absorbed by
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the atom and P(t) will approach 1 very closely. From Figure 4.5, it is interesting to find out that
the collapses and revivals features of the Rabi oscillations are maintained even though the

detuning increases. From Figure 4.6, long quiescent period starts to form as detuning increases.

ol :
0.7 \ M |
0.6+ | M” \ | 4
S 05 H,/wwlm W N MM M ! MMMMMW ’ ’ﬂ
B

Figure 4.7: Coherent state, A = 1s~1, A= Orad/s, n = 20 (blue), n = 50 (green)
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Figure 4.8: Coherent state, A = 0.7s~1(red), 2 = 0.9s~1(blue), A= Orad/s, n = 20.

Let Q be the Rabi frequency of the single-photon JCM of resonant case. The Rabi frequency
occurs at a frequency Q(7) approximately equals to 2A71/2, where A is the interaction strength

and 7 is the mean photon number.

Let the time at which the first peak of the revival occurs to be T,..,,. This peak of revival occurs
because of the sum of a number of oscillating terms in sum (4.201) which are in phase. Therefore,
T,e» Can be estimated by making the terms at the peak of the photon number probability

distribution of coherent state to be in phase as shown below.

QM) Trey — QM — DTyey = 21
2AnY/2T, ,, — 2A(A — 1)Y/?T,,, = 2m. (4.208)

1/2
Since (77 — 1)1/2 = /2 (1 - %) and

n
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( 1)1/2 1/2 (_ 1) s (1/2)(1/2 - 1) ( 1)2 N

1 —% = 1+T — 2' —% .........
1-3()
T 2\a)’
1
(n—1)Y? =~ nl/? (1 —ﬁ) when 77 > 1. (4.209)

By substituting (4.209) into (4.208), we have
_ _ 1
2ARY/2T,,, — 2An1/? (1 — —_) Tyop = 2T
2n
)\(ﬁ)_l/zTrev =2m

21T _
Trev = = 1z, (4.210)

From (4.210), it can be deduced that when mean photon number 7 increases, the time of
the first peak of revival, T,..,, increases. This is evident from Figure 4.7, in which the T,.,,, for n =
20 is about 28s. Then, when # is increased to nn = 50, T;..,, becomes around 45s. From (4.210), it
can be computed that T,,, = 28.1s at n = 20 and T,.., = 44.4s at n = 50. So, this explains

quantitatively the reason why the Rabi Oscillations in Figure 4.7 shifts to the right when 7 rises.

Apart from that, (4.210) also shows that the T,.., is inversely proportional to the
interaction strength, A. This gives the reason why the Rabi Oscillations in Figure 4.8 shifts to the
left when A increases. The shift is caused by the drop of T, from 40.1s to 31.2s as A increases
from 0.7s~1 t0 0.9s571, as calculated from (4.210). The calculated values of T,., also agree well
with the results given in Figure 4.8, which is T,,, ~ 40s atA = 0.7s ! and T,.,, =~ 30s at A =
0.9s71,
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In both Figure 4.9 and 4.10, the graph is shifted upwards when the mean photon
number i decreases from 50 to 1. This indicates that when the mean photon number 7 is very
low (i = 1), it is more probable that the atom will remain in its ground state. This is because
when 7 is very low, it implies that a very low number of photons are present inside the cavity
containing the single two-level atom. Hence, the atom is less probable to interact with the
photons and get excited to the upper energy level. Therefore, the atom is more probable to
remain in the ground state. Besides that, it could also be observed from Figure 4.10 that the Rabi
Oscillatory behavior disappears and chaotic results are exhibited when coherent state at low
mean photon number is used as the initial field state. For the case in Figure 4.9, the results
obtained remains chaotic at low mean photon number. When iz becomes very large, certain
fluctuating regions in Figure 4.10 become quiescent periods. This means for the case of initial
coherent state, the atom has equal probability to be excited or de-excited when mean photon

number is very large.

P®)

0O 10 20 30 40 50 60 70 80 90 100
t(s)

Figure 4.11: Thermal state, 2 = 0.05s 1(red), 2 = 1s~1(blue), A= Orad/s,n = 20
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Figure 4.12: Coherent state, A = 0.05s(red), A = 1s~1(blue), A= Orad/s, n = 20

It is also interesting to find out from Figure 4.11 that when the interaction strength A is
decreased to a very low value, the original chaotic behavior disappears. At this stage, P(t) is
approximately equal to a constant value of 0.5 and hence there is no information whether the

atom is in the excited or ground state.

For the case in Figure 4.12, at low interaction strength A = 0.05s™1, the original
collapses and revivals behavior of the Rabi Oscillations are replaced by a small number of
oscillations and then followed by a long quiescent period as shown in Figure 4.12. During the

quiescent period, the energy state of the atom is also unknown.



Figure 4.13: Two-photon JCM, coherent state, A = 1s~1, A= Orad/s, n = 10.
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Figure 4.14: Coherent state, A = 1s~!, A= Orad/s, n = 10, single-photon JCM(red), two-

photon JCM(blue).
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Figure 4.15: Two-photon JCM, thermal state, A = 1s~1, A= Orad/s, n = 10.
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Figure 4.16: Thermal state, A = 1s1, A= Orad/s, n = 10, single-photon JCM(red), two-
photon JCM(blue).
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Figure 4.13 gives the relationship between probability that the atom is in its ground state
and time in the two-photon JCM. It could be observed from Figure 4.13 that the atom oscillates
between upper and lower energy levels with quiescence periods in between the oscillations. Then,
Figure 4.14 compares the single-photon and two-photon JCM results obtained by using coherent
initial field states. One of the major differences between them is that the Rabi oscillations of the
energy states of the atom in two-photon JCM have sharp peaks or sharp dips compared with the
case of single-photon JCM. Besides that, the number of cycles of the Rabi oscillations exhibited
in two-photon JCM is also less than the single-photon case. Apart from that, the quiescent period
in between the oscillations in two-photon JCM is also shorter than that in single-photon JCM.
This also means that the Rabi Oscillations in two-photon JCM collapse and revive faster than

that in single-photon JCM.

From Figure 4.15, it could be observed that the results generated by using thermal initial
field state in two-photon JCM consist of sharp peaks and dips. By comparing with single-photon
JCM case in Figure 4.16, the results shown in two-photon JCM is less chaotic compared with

single-photon JCM.

r r r r r

0 2 4 6 8 10 12 14 16 18 20
t(s)

o

Figure 4.17: Two-photon JCM, coherent state, A = 1s~1, A= Orad/s(red), A= 15rad/s
(blue), n = 10.
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Figure 4.18: Two-photon JCM, thermal state, A = 1s~!, A= Orad/s(red), A= 15rad/s
(blue), n = 10.

From Figure 4.17, it could be observed that when detuning A increases from 0 rad/s to
15rad/s, the Rabi Oscillations are shifted upwards. Besides that, the sharp peaks and dips
observed in the resonant case also disappear. The P(t) also becomes more oscillatory when the
detuning becomes very large. The shifting of the Rabi Oscillations in Figure 4.17 shows that the

atom is more probable to stay in the ground state when detuning increases.

For the case in Figure 4.18, when the detuning increases, the graph is also shifted
upwards and the sharp peaks and dips are replaced by a small number of oscillations at first and
then followed by chaotic behavior at later time. This result also shows that the atom is more
probable to remain in the ground state as detuning increases. This shares the same conclusion

with the case shown in Figure 4.17.
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Figure 4.19: Two-photon JCM, coherent state, A = 1s™!, A= Orad/s, n = 3(red), n =
50(blue).

From Figure 4.19, it can be seen that when mean photon number of the coherent state
becomes very small, the Rabi oscillations are replaced by fluctuations in the energy state of the
atom. The Rabi Oscillations and quiescent periods are only observed when the mean photon
number is sufficiently large. By comparing the red colour graph in Figure 4.17 (i = 10) and blue
colour graph in Figure 4.19 (i = 50), it could be concluded that the Rabi frequency increases as

mean coherent photon number becomes larger.
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Figure 4.20: Two-photon JCM, thermal state, A = 1s~1, A= Orad/s, n = 150.

From Figure 4.20, it is interesting to find that when the mean thermal photon number is
very large (in = 150), the chaotic behavior of the results shown in Figure 4.15 disappears. The
sharp peaks and dips are separated clearly by short quiescent period in between them. The peak
indicates that the atom is in the ground state while the dip means that the atom is in the excited
state. For the quiescent periods in between the peaks and dips, there is no information whether
the atom is in the ground or excited state.
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Figure 4.21: Two-photon JCM, coherent state, 2 = 0.05s~1(red), 2 = 1s~1(blue),
A= Orad/s,n = 10.

From Figure 4.21, the sharp peaks, dips and oscillations disappear when the interaction
strength A becomes very small. At low interaction strength, there is only a small oscillation of the
atom’s energy state at the beginning. Then, the energy state of the atom enters a quiescent stage
in which the energy state of the atom is not known. This quiescent behavior at small A is also

exhibited by the atom in single-photon JCM case shown in Figure 4.12.
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5.1 Recommendations

In this theoretical study of Jaynes-Cummings Model (JCM), the Rotating Wave Approximation
(RWA) has been made to omit the non-energy conserving terms. However, it is worth to study
the JCM without RWA in order to investigate the effect of these non-energy conserving terms on
the behavior of the combined atom-field system. Therefore, the JCM-type unitary operator
derived without RWA in the methodology could be used as future in-depth study of JCM.
Besides that, the combined atom-field system studied in this project is also modeled as ideal and
closed system. In fact, the combined system could be generalized to open system for future study.
In open system, the energy dissipation and noise will be taken into consideration. Hence, the
JCM Hamiltonian for open system has a different form. Apart from that, the JCM could also be
generalized to multilevel atom or multi-atom case. Other than that, JCM could also be extended
to the case where a two-level atom interacts with multimode electromagnetic field. In this case,

the field Hamiltonian will be modified as the summation of the field Hamiltonian of each mode.
5.2 Conclusion

In conclusion, the Jaynes-Cummings Model (JCM) is solved in this project. During the process
of solving JCM, the method of quantizing the electromagnetic field has been studied. Besides
that, the quantization of the energy of two-level atom and Electric Dipole Approximation are
discussed as well in Literature Review. After the JCM Hamiltonian is found in Schrodinger
Picture, it is transformed unitarily into the Interaction Picture. The unitary operator which
describes the time evolution of the quantum state has been derived from the Interaction Picture
JCM Hamiltonian. Finally, with the unitary operator and known initial quantum state, the
quantum state of the combined atom-field system is solved. Then, the probability that the atom is
in the ground state as function of time has been derived. By using the probability functions, the
graphs of probability against time are plotted with different detunings, interaction strengths and
mean photon number. The collapse and revival feature of the Rabi Oscillations has been
discussed and the effects of detuning, interaction strength and mean photon number on Rabi
Oscillations are also investigated. The discussions of results are focused on the single-photon and
two-photon JCM. Then, for three-photon and generalized k-photon JCM, only the expressions of
their respective probability functions are derived.
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