

WATER QUALITY MONITORING IN AQUACULTURE TO

INCREASE FISH GROWTH PERFORMANCE BASED ON SENSOR

OUTCOMES.

PHANG JUN SEN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Science

(Honours) Software Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

March 2023

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature :

Name : Phang Jun Sen

ID No. : 010204-02-0767

Date : 5 October 2023

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “WATER QUALITY MONITORING

IN AQUACULTURE TO INCREASE FISH GROWTH PERFORMANCE

BASED ON SENSOR OUTCOMES” was prepared by PHANG JUN SEN

has met the required standard for submission in partial fulfilment of the

requirements for the award of Bachelor of Science (Honours) Software

Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Ts Dr Sugumaran a/l Nallusamy

Date :

Signature :

Co-Supervisor : Dr Kwan Ban Hoe

Date :

05/10/2023

kwan_
Text Box
5 Oct 2023

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2023, PHANG JUN SEN. All right reserved.

iv

ACKNOWLEDGEMENT

I am deeply grateful to my project supervisor, Dr. Ts Sugumaran a/l

Nallusamy, for his valuable insights, guidance and unwavering help throughout

the project. His expertise in architectural design and system functionality was

instrumental in determining the direction of the project. Additionally, I am

grateful that he allowed me access to his aquaculture farm, which enabled me

to deploy data acquisition modules in his tanks to collect key water parameters

for research.

I sincerely thank my co-supervisor Dr. Kwan Ban Hoe for generously

sponsoring the necessary equipment required to set up the sensor module.

I am also grateful to Dr. Ng Oon Ee for his guidance in configuring the

sensor module. His provision of the Arduino board and valuable ideas for

microcontroller programming and sensor calibration were crucial to the success

of the project.

My sincere appreciation goes to Universiti Tunku Abdul Rahman for

their unwavering support by providing the essential resources, infrastructure,

and access to library facilities, all of which greatly facilitated my research and

project development.

I would also like to express my gratitude to my friends and peers who

played an integral role in assisting me with building the sensor module. Their

contributions and participation in the System Usability Testing to evaluate the

performance of the water quality monitoring mobile application were

immensely valuable.

In conclusion, the successful completion of this project was made

possible through the collective efforts and support of these individuals and

institutions. I am truly grateful for their contributions, which have significantly

contributed to my academic journey and personal growth.

v

ABSTRACT

The increasing demand for sustainable aquafarming practices has

prompted the development of advanced water quality monitoring systems. This

project introduces a comprehensive Water Quality Monitoring System that

encompasses four key modules: the Data Acquisition Module, Communication

Module. Data Processing and User Interface Module. The project's objectives

encompass analyzing existing aquafarming tools, conducting water quality

analysis, developing a mobile application for data visualization, and evaluating

water quality to optimize fish growth and maintain ideal conditions. An

evolutionary prototyping approach was used for system development and

successful implementation. In the end, the objectives are achieved when the

water quality monitoring system was successfully developed and deployed in

an aquaculture farm for water quality monitoring. The developed data collection

module can efficiently collect and transmit data to the ThingSpeak cloud server,

which stores and provides REST API for data processing and retrieval. The user

interface module runs efficiently on the Android emulator and cooperates with

the data processing module to provide data processing, user authentication and

authorization, and machine learning data prediction to support real-time water

parameter monitoring. In conclusion, this FYP report discusses the system's

achievements, limitations, and recommendations for future enhancements.

While the system achieved its goals, certain limitations emerged during testing,

leading to suggestions for improvement. This project represents a significant

step toward efficient and sustainable aquafarming practices through advanced

water quality monitoring.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENT iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF SYMBOLS / ABBREVIATIONS xxii

LIST OF APPENDICES xxiii

CHAPTER 1 24

1 INTRODUCTION 24

1.1 General Introduction 24

1.2 Problem Statement 25

1.2.1 Aeration system failure 25

1.2.2 Algae Bloom 26

1.2.3 Unpredictable timing to change water 26

1.3 Aim and Objectives 27

1.4 Proposed Solution 28

1.5 Proposed Approach 29

1.6 Project Scope 30

1.6.1 Sensor Module 30

1.6.2 Data Acquisition Module 30

1.6.3 Communication Module 31

1.6.4 User Interface Module 31

CHAPTER 2 32

2 LITERATURE REVIEW 32

2.1 Aquaculture 32

2.2 Recirculating Aquaculture System 33

2.3 Internet of Things in Aquaculture 33

2.4 Water Quality 36

2.4.1 Importance of Water Quality 36

2.4.2 Water Quality Parameters 36

vii

2.5 Existing Aquaculture Monitoring System 40

2.5.1 Automated water quality monitoring system

development via LabVIEW for aquaculture

industry (Tilapia) in Malaysia 40

2.5.2 IoT-based Smart Aquaculture System with

Automatic Aerating and Water Quality

Monitoring 49

2.5.3 Development of an IoT-based Intensive

Aquaculture Monitoring System with

Automatic Water Correction 58

2.6 Comparison and Analysis 69

2.7 Software Development Methodology 73

2.7.1 Waterfall 73

2.7.2 Agile 75

2.7.3 Lean 76

2.8 Comparison of Software Development

Methodology 77

2.9 Justification of Aquaculture Monitoring System 78

CHAPTER 3 80

3 METHODOLOGY AND WORK PLAN 80

3.1 Introduction 80

3.2 Software Development Methodology 81

3.2.1 Initial Set of User Requirements 82

3.2.2 Quick Design 83

3.2.3 Develop Prototype 83

3.2.4 Evaluation of prototype by the customer 84

3.2.5 Refine Requirements 84

3.2.6 Refine Prototype 84

3.2.7 Test the final product 84

3.2.8 Deliver and maintain 85

3.3 Project Plan 85

3.3.1 Work Breakdown Structure (WBS) 85

3.3.2 Gantt Chart 88

viii

3.3.3 Development Tool 97

CHAPTER 4 100

4 PROJECT SPECIFICATION 100

4.1 Introduction 100

4.2 Proposed System Architecture 100

4.2.1 Sensor 101

4.2.2 Data Acquisition Module 101

4.2.3 Cloud Server 102

4.2.4 Web and Mobile Application 102

4.3 Requirement Specification 105

4.3.1 Functional Requirement 105

4.3.2 Non-Functional Requirement 106

4.3.3 Use Case Diagram 108

4.3.4 Use Case Description 109

CHAPTER 5 121

5 SYSTEM DESIGN 121

5.1 Introduction 121

5.2 System Architecture Design 121

5.2.1 Data Acquisition Module Architecture 122

5.2.2 Communication Module Architecture 127

5.2.3 Data Processing Module 131

5.2.4 User Interface Module 135

5.3 Conclusion 138

CHAPTER 6 139

6 SYSTEM IMPLEMENTATION 139

6.1 Introduction 139

6.2 Project Setup 139

6.2.1 Communication Module Setup 139

6.2.2 Data Acquisition Module Setup 143

6.2.3 Data Processing Module Setup 152

6.2.4 User Interface Module Setup (React Native

Android Application) 158

ix

6.3 Water Quality Monitoring Mobile Application

functions 163

6.3.1 Register 163

6.3.2 Login 170

6.3.3 Channels 176

6.3.4 Dashboard 186

6.3.5 Activity Record 199

6.3.6 Analysis 206

6.3.7 Notification 219

6.4 System Deployment 223

6.4.1 Data Acquisition Module Deployment 223

6.4.2 Communication Module Deployment 225

6.4.3 Data Processing Module Deployment 227

6.4.4 User Interface Module Deployment 228

6.5 Conclusion 230

CHAPTER 7 231

7 SYSTEM TESTING 231

7.1 Introduction 231

7.2 Unit Testing 232

7.2.1 Unit Testing for Register 232

7.2.2 Unit Testing for Login 236

7.2.3 Unit Testing for Channels 240

7.2.4 Unit Testing for Dashboard 246

7.2.5 Unit Testing for Activity Record 252

7.2.6 Unit Testing for Analysis 256

7.3 Performance Testing 258

7.3.1 Register an account 258

7.3.2 Login 259

7.3.3 Dashboard 260

7.3.4 Add Event 261

7.3.5 Analysis 262

7.3.6 Laravel Back-end Server API Endpoint

Response Time Testing 264

x

7.4 System Usability Test 264

7.4.1 Test Scenario for Usability Testing 265

7.4.2 Result of Usability Testing 266

CHAPTER 8 270

8 CONCLUSION & RECOMMENDATION 270

8.1 Conclusion 270

8.2 Limitation and Recommendation for future work 271

REFERENCES 273

APPENDICES 280

xi

LIST OF TABLES

Table 2.2.4.1 Standard range for water quality parameter set by fisheries

research institute (FRI) Malaysia (Azlan Othman et al.,

2020) 39

Table 2.2.4.2 Water quality tolerance by species (FRESHWATER-

AQUACULTURE, 2019) 39

Table 2.5.1 The accuracy fo temperature sensor of the system (Azlan

Othman et al., 2020) 46

Table 2.5.2 Table of temperature and pH level with time (Azlan Othman

et al., 2020) 47

Table 2.5.3 Fish Growth In Each Setup (Tolentino et al., 2021) 69

Table 2.6.1 Comparison table between LabVIEW, ISAS, IAMS. 69

Table 4.3.1 Functional requirements of water quality monitoring mobile

application 105

Table 6.3.1 Register Function Success Case 163

Table 6.3.2 Register Function Failure Case 165

Table 7.4.1 Tables of Test Scenarios 265

Table 7.4.2 Template of User Satisfactory Survey 267

Table 7.4.3 SUS results 267

Table 7.4.4 Summary of Respondents' Most Liked Features of the System

 267

Table 7.4.5 Summary of Respondents' Least Liked Features of the System

 268

Table 7.4.6 Summary of Respondents' Suggestion to improve the system

 268

Table 8.2.1 Limitation and Recommendation 271

xii

LIST OF FIGURES

Figure 1.1.1 World aquaculture production of aquatic animals and aquatic

plants, 1990–2017 (Zhou, 2019) 24

Figure 1.4.1 Proposed system architecture 28

Figure 2.5.1 The block diagram of water quality monitoring system for

the tilapia industry (Azlan Othman et al., 2020) 40

Figure 2.5.2 The block diagram of water quality monitoring system for

the tilapia industry (Azlan Othman et al., 2020) 41

Figure 2.5.3 The layout water quality monitoring system for the tilapia

industry (Azlan Othman et al., 2020) 43

Figure 2.5.4 The front panel of the system via LabVIEW software (Azlan

Othman et al., 2020) 44

Figure 2.5.5 Manual set-up versus automated set-up (Azlan Othman et

al., 2020) 45

Figure 2.5.6 The front panel shows when the temperature exceeds 32 °C

(Azlan Othman et al., 2020) 46

Figure 2.5.7 The architecture of ISAS (Tsai et al., 2022) 49

Figure 2.5.8 The sensors and data collection platforms of the ISAS (Tsai

et al., 2022) 50

Figure 2.5.9 The automatic control flow of the ISAS (Tsai et al., 2022) 52

Figure 2.5.10 The temperature sensed data example (Tsai et al., 2022) 53

Figure 2.5.11 Sensed data dashboard from user’s mobile device (Tsai et

al., 2022) 54

Figure 2.5.12 Sensed data dashboard from user’s mobile device (Tsai et

al., 2022) 54

Figure 2.5.13 Experimental group and control group of the ISAS (Tsai et

al., 2022). 55

Figure 2.5.14 Survival rates of shrimps during the 1.5 months of our

experiment (Tsai et al., 2022) 56

Figure 2.5.15 The architecture of ISAS (Tolentino et al., 2021) 58

xiii

Figure 2.5.16 TeamLapia Web Application Interface (Tolentino et al.,

2021) 61

Figure 2.5.17 TeamLapia Web Application Structure Diagram (Tolentino

et al., 2021) 62

Figure 2.5.18 Experimental group and control group of the ISAS

(Tolentino et al., 2021) 64

Figure 2.5.19 pH sensor Readings with Correction Response (Tolentino

et al., 2021) 65

Figure 2.5.20 Turbidity Sensor Readings with Correction Response

(Tolentino et al., 2021) 65

Figure 2.5.21 Oxidation Reduction Potential Sensor Readings with

Correction Response (Tolentino et al., 2021) 66

Figure 2.5.22 Temperature Sensor Readings with Correction Response

(Tolentino et al., 2021) 66

Figure 2.5.23 Salinity Sensor Readings with Correction Response

(Tolentino et al., 2021) 67

Figure 2.5.24 Dissolved Oxygen Sensor Readings with Correction

Response (Tolentino et al., 2021) 67

Figure 2.5.25 Controlled vs. Conventional Fish Growth measured every

week (Tolentino et al., 2021) 68

Figure 2.6.1 ISAS dashboard in mobile application (Tsai et al., 2022). 72

Figure 2.6.2 The dissolved oxygen sensed data example (Tsai et al., 2022).

 73

Figure 2.7.1 Waterfall approach (Visual Paradigm, n.d.) 74

Figure 2.7.2 Principle of Agile Methodology (OS-system, 2020) 76

Figure 2.7.3 Principle of Lean Methodology (OS-system, 2020) 77

Figure 3.2.1 The difference between the evolutionary prototyping and

rapid throw away prototyping (02DCE @02DCE, 2020). 82

Figure 3.3.1 Gantt Chart for Project Initialization from 30/1/2023 to

27/2/2023 88

Figure 3.3.2 Gantt Chart for Project Initialization from 27/2/2023 to

27/5/2023 89

xiv

Figure 3.3.3 Gantt Chart for Project Initialization from 27/5/2023 to

24/4/2023 90

Figure 3.3.4 Gantt Chart for System Development from 20/4/2023 to

15/5/2023 91

Figure 3.3.5 Gantt Chart for System Development from 15/5/2023 to

12/6/2023 92

Figure 3.3.6 Gantt Chart for System Development from 12/6/2023 to

10/7/2023 93

Figure 3.3.7 Gantt Chart for System Development from 10/7/2023 to

7/8/2023 94

Figure 3.3.8 Gantt Chart for System testing and Deployment from

12/8/2023 to 28/8/2023 95

Figure 4.2.1 Proposed system architecture 100

Figure 4.2.2 Login View 103

Figure 4.2.3 Fish Tanks 103

Figure 4.2.4 Water Tank A Water Parameters Gauge Dashboard 103

Figure 4.2.5 Water Tank A Temperature Details 104

Figure 4.2.6 Warning Message 104

Figure 4.3.1 Use case diagram of Water Quality Monitoring Web and

Mobile Application 108

Figure 5.2.1 Water Quality Monitoring System Architecture 121

Figure 5.2.2 Atlas Scientific Industrial Dissolved Oxygen Probe

connected to EZO™ Dissolved Oxygen Circuit ESP8266

microcontroller ("Industrial Dissolved Oxygen Probe,"

n.d.). 122

Figure 5.2.3 The EZO™ Dissolved Oxygen Circuit 123

Figure 5.2.4 Industrial pH/ORP/Temp Probe + EZO™ RTD Temperature

Circuit + EZO™ pH Circuit ("Industrial pH/ORP/Temp

Probe," n.d.) 124

Figure 5.2.5 EZO™ RTD Temperature Circuit ("EZO™ RTD

Temperature Circuit," n.d.) 125

xv

Figure 5.2.6 EZO™ pH Circuit ("EZO™ pH Circuit," n.d.) 125

Figure 5.2.7 ESP8266 microcontroller 126

Figure 5.2.8 Arduino IDE 126

Figure 5.2.9 ThingSpeak Website 127

Figure 5.2.10 Sample Channel 128

Figure 5.2.11 API Keys of a Channel 129

Figure 5.2.12 Channel Settings 130

Figure 5.2.13 Public View of a Channel 130

Figure 5.2.14 Laravel, a PHP framework (Otwell, n.d.) 131

Figure 5.2.15 Python 133

Figure 5.2.16 WampServer (Bourdon, n.d.) 134

Figure 5.2.17 React Native, a JavaScript framework 136

Figure 5.2.18 Android Studio 137

Figure 6.2.1 Register Mathworks account 139

Figure 6.2.2 My Channels page 140

Figure 6.2.3 Create new channel 140

Figure 6.2.4 new channel page 141

Figure 6.2.5 Field 1 line graph 141

Figure 6.2.6 Add new gauge 142

Figure 6.2.7 RTD and pH Gauge Options 142

Figure 6.2.8 DO, RTD and pH gauges 142

Figure 6.2.9 Data Acquisition Module components connection 144

Figure 6.2.10 ESP8266 pins 144

Figure 6.2.11 EZO circuit pins 145

Figure 6.2.12 DO probe central wires and outer wires 145

xvi

8) Figure 6.2.13 Male SMAs of Industrial pH/ORP/Temp

Probe 146

Figure 6.2.14 ThingSpeak channel's line graphs 152

Figure 6.2.15 Wampserver version and its components 153

Figure 6.2.16 Laravel Back-end project source code 154

Figure 6.2.17 composer.json 155

Figure 6.2.18 Create new database 156

Figure 6.2.19 Database Migration Files 157

Figure 6.2.20 php artisan server 157

Figure 6.2.21 node -v and npm -v 158

Figure 6.2.22 java -version 159

Figure 6.2.23 SDK Manager 159

Figure 6.2.24 build.gradle 160

Figure 6.2.25 react-native -v 160

Figure 6.2.26 React Native Front End Project 161

Figure 6.2.27 dependencies in package.json 161

Figure 6.2.28 run Metro 162

Figure 6.2.29 npm run start 162

Figure 6.2.30 emulator is running 162

Figure 6.3.1 Success Register page 164

Figure 6.3.2 Registration Successful 164

Figure 6.3.3 Redirect to Login Page 165

Figure 6.3.4 Fail Register page 166

Figure 6.3.5 Registration Fail 166

Figure 6.3.6 React Native registration form 167

xvii

Figure 6.3.7 SubmitButtonClick 168

Figure 6.3.8 route::api/register - POST 169

Figure 6.3.9 RegisteredUserController store function 169

Figure 6.3.10 Login Screen 170

Figure 6.3.11 Channel Page 171

Figure 6.3.12 Login Page with wrong credentials 171

Figure 6.3.13 Email not found 172

Figure 6.3.14 Password does not match 172

Figure 6.3.15 Login Form 173

Figure 6.3.16 LoginButtonClick 174

Figure 6.3.17 route::api/login – POST 174

Figure 6.3.18 AuthenticatedSessionController store function 175

Figure 6.3.19 Channel Page 176

Figure 6.3.20 Add New Channel 177

Figure 6.3.21 Add Channel Success 177

Figure 6.3.22 Channel ID not found 178

Figure 6.3.23 Channel Page with a channel 179

Figure 6.3.24 Channel Options 179

Figure 6.3.25 Delete Channel 180

Figure 6.3.26 Channel Deleted 180

Figure 6.3.27 submitForm 181

Figure 6.3.28 route::api/channels - POST 181

Figure 6.3.29 ChannelsController store function 182

Figure 6.3.30 deleteChannelById 184

Figure 6.3.31 route::api/channels/{channelId} – DELETE 185

xviii

Figure 6.3.32 ChannelsController deleteChannelById function 185

Figure 6.3.33 User click on a channel 186

Figure 6.3.34 Dashboard gauges page 187

Figure 6.3.35 Dashboard gauges page scroll down 187

Figure 6.3.36 Line Graphs Dashboard 188

Figure 6.3.37 Line Graphs Dashboard scroll down 188

Figure 6.3.38 Calendar page analysis section 189

Figure 6.3.39 Calendar Tab record actions section 189

Figure 6.3.40 Calendar Tab activity list section 190

Figure 6.3.41 Channel Page toggleChannelDetails function 190

Figure 6.3.42 Dashboard Page ComponentDidMount function 191

Figure 6.3.43 Dashboard Page fetchData function 191

Figure 6.3.44 fetchActionData 193

Figure 6.3.45 API routes for displaying activity analaysis 193

Figure 6.3.46 calculateDurationForCurrentMonth 195

Figure 6.3.47 Change Water Analysis 196

Figure 6.3.48 Dashboard Page Gauges Webview 197

Figure 6.3.49 fetchUserGaugeSettings 197

Figure 6.3.50 route::api/waterparams POST 198

Figure 6.3.51 WaterParamsController byUserId function 198

Figure 6.3.52 Dashboard Page Line Graphs Webview 199

Figure 6.3.53 Record Actions Calendar 199

Figure 6.3.54 Add Event Dialog Box 200

Figure 6.3.55 Select Time 200

Figure 6.3.56 Select Activity 201

xix

Figure 6.3.57 fill in description 201

Figure 6.3.58 Dashboard Page Calendar component 202

Figure 6.3.59 AddEvent dialog box 203

Figure 6.3.60 submitForm in AddEvent components 203

Figure 6.3.61 Dashboard Page handleEventSubmit function 204

Figure 6.3.62 readActions function 205

Figure 6.3.63 route::api/actions/channel/{channel_id} – GET 205

Figure 6.3.64 showByChannel function 206

Figure 6.3.65 Activity List 206

Figure 6.3.66 Dashboard page 207

Figure 6.3.67 Analysis Page 207

Figure 6.3.68 Dashboard page toggleAnalysis function 209

Figure 6.3.69 Analysis Page componentDidMount function 210

Figure 6.3.70 fetchDataAnHour 211

Figure 6.3.71 countRowsWithNullValues 211

Figure 6.3.72 calculateMinMaxMedianMean 212

Figure 6.3.73 countExtremeValues 213

Figure 6.3.74 calculateHealthIndex 214

Figure 6.3.75 arimaPredict funtion 215

Figure 6.3.76 auth::api/predict - POST 215

Figure 6.3.77 PredictionController predict funtion 215

Figure 6.3.78 arima_predict.py 216

Figure 6.3.79 TrendlineChart component 217

Figure 6.3.80 TrendlineChart component 218

Figure 6.3.81 Tab Navigator 219

xx

Figure 6.3.82 Profile page 220

Figure 6.3.83 Notification 220

Figure 6.3.84 profile page 221

Figure 6.3.85 startBackgroundService 221

Figure 6.3.86 BackgroundTaskModule.startBackgroundService 222

Figure 6.3.87 stopBackgroundService 222

Figure 6.3.88 BackgroundTaskModule.stopBackgroundService 222

Figure 6.4.1 Data Acquisition system circuit deployed 223

Figure 6.4.2 Junction Box protects the Data Acquistion Module 224

Figure 6.4.3 DO, RTD and PH sensors deployed 224

Figure 6.4.4 ThingSpeak Channel Public View 226

Figure 6.4.5 Laravel back-end server 227

Figure 6.4.6 Metro running 228

Figure 6.4.7 Build successful 229

Figure 6.4.8 Android Emulator is running 229

Figure 7.2.1 UNIT-101 234

Figure 7.2.2 UNIT-102 235

Figure 7.2.3 UNIT-201 237

Figure 7.2.4 UNIT-202 238

Figure 7.2.5 UNIT-203 239

Figure 7.2.6 UNIT-301 242

Figure 7.2.7 UNIT-302 243

Figure 7.2.8 UNIT-303 244

Figure 7.2.9 UNIT-304 245

Figure 7.2.10 UNIT-401 248

xxi

Figure 7.2.11 UNIT-402 249

Figure 7.2.12 UNIT-403 250

Figure 7.2.13 UNIT-404 251

Figure 7.2.14 UNIT-501 254

Figure 7.2.15 UNIT-502 255

Figure 7.2.16 UNIT-601 257

Figure 7.3.1 PFT-101 Register an account (1967ms) 258

Figure 7.3.2 PFT-102 Register an account (13069KB) 259

Figure 7.3.3 PFT-201 Login Process(1826ms) 259

Figure 7.3.4 PFT-102 Register an account (13249KB) 260

Figure 7.3.5 PFT-301 Load Dashboard Process(4089ms) 260

Figure 7.3.6 PFT-302 Load Dashboard Process (13658KB) 261

Figure 7.3.7 PFT-401 Add Eevent Process(2339ms) 262

Figure 7.3.8 PFT-402 Add Event Process (13505KB) 262

Figure 7.3.9 PFT-501 Analysis Process(6851ms) 263

Figure 7.3.10 PFT-502 Analysis Process (13492KB) 264

xxii

LIST OF SYMBOLS / ABBREVIATIONS

API - Application Programming Interfaces

CLI - Command Line Interface

CSS - Cascading Style Sheet

HTML - Hypertext Markup Language

HTTP - Hypertext Transfer Protocol

JSON - JavaScript Object Notation

URL - Uniform Resource Locator

WAMP - Windows, Apache, MySQL, and PHP server

WBS - Work Breakdown Structure

pH - Potential of Hydrogen

DO - Dissolved Oxygen

RTD - Resistance Tmperatur Detector

RAS - Recirculating Aquaculture System

ppm - Parts Per Million

Degree Celsius - Degrees Celsius

LAN - Local Area Network

ISAS - IoT-based Smart Aquaculture System with

Automatic Aerating and Water Quality Monitoring

IAMS - IoT-based Intensive Aquaculture Monitoring

System with Automatic Water Correction

MQTT - Message Queuing Telemetry Transport

NaHCO3 - Sodium Bicarbonate

QA - Quality Assurance

UAT - User Acceptance Testing

IoT - Internet of Things

IDE - Integrated Development Environment

CLI - Command Line Interface

SMA - SubMiniature version A (commonly used in RF

connectors)

DC - Direct Current (or Data Center, depending on the

context)

xxiii

LIST OF APPENDICES

Appendix A: Template of User Satisfactory Survey 280

Appendix B: Usability Test Responses 281

24

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Figure 1.1.1 World aquaculture production of aquatic animals and aquatic

plants, 1990–2017 (Zhou, 2019)

A large amount of the world's seafood supply is produced by the growingly

significant business known as aquaculture. According to Figure 1.1, world

aquaculture productivity has increased significantly from 1990 until 2017 (Zhou,

2019, p.6). It can be seen that aquaculture is becoming the primary source of

aquatic products for humans. In order to meet the expectations of the

aquaculture business, aquaculture equipment must also improve along with

technical advancements (Zhou, 2019, p.6).

Maintaining ideal water quality conditions for fish growth and health

is a crucial element in the success of aquaculture operations. Temperature,

dissolved oxygen, pH, and ammonia levels are just a few of the water quality

factors that can significantly affect fish growth and overall production.

Aquaculture water quality monitoring has traditionally been done

manually with a variety of tools and methods. These techniques, however, are

frequently labor- and time-intensive, and they might not offer up-to-the-minute

25

data on water quality conditions. The use of sensors to track water quality in

aquaculture operations has gained popularity in recent years.

In order to optimise fish growth performance and monitor water quality

in aquaculture operations, this project will focus on researching and

investigating the application of IoT in this aquaculture operation. The project

will concentrate on developing an aquaculture monitoring system that uses

sensors to gather water quality data and a mobile application that helps users

track these important water quality indicators in a fish farming environment,

including temperature, dissolved oxygen, pH, and ammonia levels.

The outcomes of this project will aid in the creation of water quality

monitoring systems for aquaculture operations that are more effective and

efficient. The project has the potential to significantly impact the aquaculture

industry and help satisfy the rising demand for sustainable seafood production

by optimising water quality conditions to improve fish growth performance.

1.2 Problem Statement

Urban aquaculture faces many difficulties due to the lack of suitable methods

and equipment to monitor the water quality of aquaculture. This will

undoubtedly result in the fact that aquafarmers are always too late to take the

appropriate measures when there is a problem with the water quality, which will

cause the fish in the tank to start dying off one by one and lead to severe damage

and loss, such as fish kill events.

1.2.1 Aeration system failure

The aeration system is supposed to function continuously to provide sufficient

oxygen for the fish to survive in the water tank (Masser et al., 1992). However,

there is a possibility that aeration system failure can occur without notice by

aquafarmers. Given that many tanks and recirculation systems are densely

populated, an aeration system failure can result in fish mortality events within

minutes in the water tank due to a lack of dissolved oxygen (D.O) (Purina

Animal Nutrition, 2023). Consequently, a water monitoring system that notifies

26

the user when the level of dissolved oxygen in the water tank drops below a safe

level is necessary to mitigate this risk.

1.2.2 Algae Bloom

Algae often benefit aquaculture by providing farmed fish with oxygen and a

natural food source (Priyadarshani, Sahu, and Rath, 2012). Previous research by

Fernando et al. (2015) has demonstrated that adding algae to fish feed (aquafeed)

in small amounts (10% of the diet) has a positive impact on growth performance

and feed utilization efficiency. However, excessive algae growth or the

occurrence of algal blooms can result in low dissolved oxygen (DO), as noted

by the Minnesota Pollution Control Agency (2009). Nutrients such as

phosphorus and nitrogen contribute to algae growth, and there are various ways

these elements can enter our water resources (Kenekar, A., 2020).

Dissolved oxygen is consumed during the decomposition and death of

algae, which can deprive aquatic species like fish of sufficient oxygen,

ultimately leading to fish kills. Notably, an algal bloom in the Mumbai coastal

areas in 2018 caused large-scale fish mortality (Minnesota Pollution Control

Agency, 2009). Therefore, equipping aquafarmers with sensors to monitor

dissolved oxygen, nitrogen, and phosphorus levels enables them to predict and

respond to algae bloom events promptly.

1.2.3 Unpredictable timing to change water

Changing water is a common practice for maintaining good water quality in fish

tanks, ensuring the best environment for optimal fish growth performance

(WebMD Editor Contributors, 2023). However, aquafarmers often face the

challenge of determining the ideal timing for water exchanges. The composition

of the water in the tank is constantly changing due to climatic and seasonal

variations, as well as pond usage (The Fish Site, 2015). Aquafarmers may

struggle to determine when water should be changed without conducting water

testing regularly, which can be cumbersome. Consequently, many aquaculture

farmers opt to change the water when it appears dirty, even if it might still be

usable.

27

Even when the water appears clear, contamination can occur due to the

presence of food particles and waste. Waste can convert into chemicals such as

nitrate and phosphate, which can negatively affect factors like dissolved oxygen,

temperature, and other indicators (Environmental Protection Agency, 2012). To

address this issue, water monitoring systems can be installed in water tanks to

continuously monitor water parameters and provide water quality forecasts.

According to Li et al. (2022), historical data collected from these sensors can be

used in Machine-Learning (ML) models to predict water quality.

By implementing water quality prediction systems, aquaculture systems

can maintain stability, reducing the incidence of fish diseases caused by

deteriorating water quality. Armed with accurate forecasts, aquafarmers can

make informed decisions about when to replace the water in the tank.

1.3 Aim and Objectives

The project aims to help aquaculture farmers monitor and optimize the water

quality in their tanks to maintain a good fish farming environment, thereby

improving fish growth performance, increasing the efficiency of the water

monitoring process and producing high-quality fish products.

Objectives:

1. To analyze existing available tools related to aquafarming to develop

ideas for designing usable water monitoring systems.

2. To perform analysis on the of water quality of the water tank to discover

the trends and useful information to assist in decision making on the

water quality monitoring process.

3. To develop a mobile application that provides a dashboard that displays

all the water parameter readings of the aquaculture system anytime

anywhere to allow user to check the current water condition in water

tank.

4. To evaluate the water quality of the fish tank so that user are able to take

immediate initiative to maintain its water quality to optimize fish growth

and prevent undesirable condition.

28

1.4 Proposed Solution

Figure 1.4.1 Proposed system architecture

The proposed solution to address the problem outlined in the problem statement

involves the installation of an Internet of Things (IoT) water monitoring system

in an aquafarming fish tank. This system integrates physical sensors,

microprocessors, cloud servers, and a mobile-based Android application

dashboard. Figure 1.2 illustrates the architecture.

In the Physical Layer, sensors are placed inside the fiberglass tank to

measure water parameters such as Dissolved Oxygen (DO), pH level,

temperature, and ammonia levels. These sensors collect data, which is then

transmitted to the microprocessor in the Monitoring Layer.

At the Monitoring Layer, the microprocessor plays a crucial role. It

converts analog signals from the sensors into digital data if the sensor lacks data

logging functionality. In cases where the sensor itself can log data, the

microprocessor serves as a data storage and management unit, utilizing SD cards

as a backup for collected data.

The primary function of the microprocessor is to manage the

Communication Module, facilitating communication between sensors and other

devices. It collects data from all sensors and transmits this data to a Cloud Server

29

for storage and management. Cloud servers are chosen for their ability to

securely store large quantities of data, allowing aquafarmers to monitor water

quality from anywhere in the world with an internet connection. Long-distance

water quality monitoring is achieved through the development of a Mobile

Application, which connects to the Cloud Server database over the internet. This

application organizes the data into a user-friendly dashboard that is easily

comprehensible for aquafarmers. The framework used for developing this native

Android Mobile Application is React Native.

In addition to data storage, Cloud Servers provide data processing and

analysis capabilities, leveraging powerful algorithms and machine learning

techniques to assist aquafarmers in monitoring their aquaculture operations. The

prediction results are displayed within the Mobile Application, enabling

aquafarmers to make informed decisions. Communication protocols within the

system may include WiFi, cellular communication (such as 5G), and Bluetooth.

1.5 Proposed Approach

In this project, Evolutionary Prototyping has been selected as the development

approach for the Water Monitoring Application. This choice is grounded in the

advantages that make it particularly suitable for this project.

Firstly, Evolutionary Prototyping recommends segmenting the project

into modules, enabling comprehensive testing of each module individually. This

approach significantly reduces errors within each module of the project.

Additionally, this approach places a strong emphasis on meeting user

requirements. It achieves this by incorporating prototypes into iterative cycles

of feedback and refinement based on user demands. This ensures that the

project's design aligns with user needs, as users actively participate in the

system's design after reviewing each prototype. The use of prototypes ensures

that the final dashboard design is user-friendly and easy for fish farmers to use

when monitoring water quality.

30

Furthermore, Evolutionary Prototyping helps identify missing

functionality in the product. As this project aims to deliver a dashboard for

monitoring water quality on fish farms, the omission of any vital information

could lead to critical issues like fish mortality incidents. Therefore, it is crucial

to employ this approach to ensure that all necessary information is included in

the dashboard, enabling users to make informed decisions when monitoring

water quality (Martinez, 2021).

1.6 Project Scope

This project involves researching existing Aquaculture monitoring systems and

developing the concept of integrating hardware components and software

components, including sensors, microprocessors, and Cloud Servers. The

ultimate goal is to create a mobile-based water monitoring application that

offers a comprehensive solution for monitoring water parameters in fish tanks,

assisting aquaculturists in their work.

The project consists of several key modules that need to be completed:

1. Sensor module

2. Data acquisition module

3. Communication module

4. User interface module

Each of these modules plays a crucial role in the overall functionality of

the water monitoring system.

1.6.1 Sensor Module

The Sensor module is responsible for collecting and logging all measurements

of water quality attributes in the fish tank, such as Dissolved Oxygen (DO), pH,

temperature, ammonia, nitrite, and nitrate

1.6.2 Data Acquisition Module

The Data acquisition module includes a microprocessor that is responsible for

data processing. This includes converting raw sensor readings into meaningful

units and performing data smoothing.

31

1.6.3 Communication Module

The Communication module is essential for transmitting data from the data

acquisition module to the user interface module and for sharing data over the

network with the Cloud Server, which performs Machine Learning to provide

valuable insights from the gathered data. This module uses protocols such as

Wi-Fi, Bluetooth, or 5G for data transmission.

1.6.4 User Interface Module

The User interface module is essential for visualizing the current water quality

of the fish tank. This module involves an Android-based mobile application that

converts the received data from the Communication Module into a user-friendly

dashboard. This dashboard displays all the necessary information for the water

monitoring process. Additionally, the module alerts aquaculturists when any

water quality attribute in the tank exceeds or falls below safe limits. It also

provides water quality forecasts to assist users in taking corrective action and

making informed decisions.

32

CHAPTER 2

2 LITERATURE REVIEW

2.1 Aquaculture

Aquaculture is the process of cultivating aquatic organisms in all types of water

environments (Global Seafood Alliance, 2019). It shares a similar concept with

agriculture, where humans grow crops and raise animals on land to produce

resources like food, wool, and other useful products. The primary distinction

lies in aquaculture, which involves breeding, rearing, and harvesting aquatic

organisms such as fish, shellfish, and algae (NOAA, 2023). One of the primary

benefits of aquaculture is its contribution to human consumption, particularly

seafood. As the global population continues to grow, the demand for seafood is

on the rise. According to the 'Fish To 2030: Prospects for Fisheries and

Aquaculture: World Bank Report Number 83177-GLB,' predictive models

indicate that by 2030, aquaculture is expected to produce 62 percent of food fish.

Beyond 2030, aquaculture is likely to dominate the global fish supply (The

World Bank, 2012). This underscores the importance of the mainstream

development of aquaculture technology to remain competitive in the market.

To ensure the success of aquaculture, continuous monitoring of water

quality is imperative (Lang, 2019). Poor water quality can threaten the health

and growth of fish, making it essential for aquaculturists to pay close attention

to water quality parameters such as temperature, suspended solids,

photosynthesis, dissolved oxygen levels, carbon dioxide, nitrogen, ammonia,

and pH values (Towers, 2015). According to Edinburgh Sensor (2022), there

are 4 keys of water quality factors that need to be monitored, if not, it will affect

the aquaculture operations. They are:

1. Physical parameters: pH, temperature, salinity, dissolved oxygen, and

carbon dioxide levels.

2. Organic contaminants

3. Biochemical hazards: e.g. cyanotoxins

4. Biological contaminants: e.g. pathogens

33

Effective management of these parameters within safe limits is critical to

prevent adverse conditions, such as stress or disease, that could impact the

overall health and performance of aquaculture.

2.2 Recirculating Aquaculture System

According to Yue et al. (2022), the Recirculating Aquaculture System (RAS) is

one of the modern aquaculture systems that has emerged due to disruptive

technologies. It is an almost completely closed-circuit, tank-based aquaculture

system designed for the controlled monitoring of farmed fish. RAS offers

several advantages for fish farms, including the reduction of water changes,

prevention of harmful bacterial invasions that may lead to diseases in fish,

improved growth performance, and higher yields.

As Joseph et al. (2019) explain, the RAS operates by raising fish at high

densities within the tank, where environmental conditions are meticulously

controlled. This control is achieved through the system's ability to recycle water

within the tank for filtration and cleaning purposes, reducing the need for

frequent water replacements. Additionally, the RAS includes various

subsystems for removing waste products from the fish farm, such as solid waste,

ammonia, and carbon dioxide, or converting them into non-toxic forms.

Furthermore, the purified water in the system is oxygenated to ensure it is not

deficient in oxygen. This is achieved through aeration systems or the use of

liquid oxygen before the water is returned to the tank.

The recirculation of water in the RAS serves multiple purposes,

including reducing the rate of water replacement, maintaining optimal water

quality conditions, and addressing water supply shortages.

2.3 Internet of Things in Aquaculture

The exponential growth of the Internet of Things (IoT) has significantly

enhanced the operations of the aquaculture industry. While monitoring water

quality is paramount in aquaculture operations, its complexity has always posed

challenges for fish farmers (Dupont et al., 2018). Therefore, by integrating IoT

into aquaculture, this issue can be addressed through the development of a smart,

34

affordable, reliable, and efficient automated water quality monitoring system,

empowering aquaculture farmers to enhance their performance. According to

Yue et al. (2022), implementing IoT technology in the aquaculture sector offers

several advantages:

1. Using cameras and sensors in aquaculture farms allows real-time

monitoring of environmental conditions.

2. Timely and continuous real-time monitoring of the effects of fish farms

on the ecosystem enables improved environmental management,

particularly applicable to offshore aquaculture systems.

3. Combining IoT with machine learning and data collected over time

enables the creation of predictive models, enhancing decision-making

and allowing for timely risk alerts.

In aquaculture, sensors are responsible for collecting data on water physical

parameters, such as dissolved oxygen (DO) levels, temperature, pH values, and

salinity. Fluctuations in these parameters outside their safe ranges can

significantly impact fish health. To achieve IoT in aquaculture, inexpensive

sensors are deployed to simultaneously monitor multiple parameters through

wireless sensor networks (WSN). WSN consists of numerous automated sensors

in aquafarms that measure, gather, transmit, and process water quality data in

real-time. The collected data is then displayed on a computer or sent to farmers

as messages for real-time updates. This real-time water quality monitoring

capability simplifies data collection, reducing human errors and time delays,

thereby improving the quantity and quality of collected data (Su et al., 2020).

Many studies have demonstrated that the primary reason for using WSN in

aquaculture is real-time measurement of crucial physical parameters and

immediate notification of relevant personnel in case of problems, ensuring

prompt resolution. Espinosa-Faller and Rendón-Rodríguez (2012) describe a

WSN-based water monitoring system that collects and sends data to a database

for storage. In case of issues, SMS or email alerts are sent to responsible

individuals. Zhang et al. (2011) propose another implementation using software

for real-time water quality monitoring in fish farms, triggering SMS alerts to

35

users in the event of serious issues. Their software promotes scalability and

reusability through separate logic, display, and data layers. Additionally, Huang

et al. (2013) present a water monitoring system with a real-time interface

displaying data numerically and graphically.

Integrating the Internet of Things into a recirculating aquaculture

system allows sensors to send collected data to a microprocessor. When any

measured parameter falls outside the desired range, the microprocessor triggers

the corresponding controller in the RAS to execute the necessary resolution

(Abinaya et al., 2019). According to Tsai et al. (2022), this research suggests an

IoT-based Smart Aquaculture System that automatically activates aeration

systems and feeders based on fuzzy processing results. If the DO level falls

below the safety range, the fuzzy inference process assesses water parameters

such as water temperature, pH, and hardness. If the fuzzy inference process

concludes that corrective action is required, it signals the Raspberry Pi computer

to activate the aerator and feeder.

In conclusion, IoT-based Smart Aquaculture Systems have

revolutionized traditional aquaculture operations by enabling real-time water

quality monitoring without the need for manual intervention. This allows for

remote monitoring of aquafarms, automatic water quality adjustments,

predictions of potential water quality issues, and informed decision-making.

36

2.4 Water Quality

2.4.1 Importance of Water Quality

For an aquaculture process to be successful, the maintenance of water quality is

the primary task to ensure the growth performance of aquatic products. As stated

in The Fish Site, (2015), water quality directly impacts the health of fish, their

behavior, and growth performance. Poor water quality can result in reduced

growth efficiency, erratic behavior, symptoms of disease or parasitic infestation,

and, in the worst-case scenario, fish kill events. To sustain ideal water quality

management, aquafarmers must have a thorough understanding of the optimal

ranges for water parameters that allow fish to thrive, grow, and reproduce. They

should also comprehend the relationships between different water parameters,

the factors that lead to poor water quality, and the methods for maintaining good

water quality.

2.4.2 Water Quality Parameters

There are several water quality parameters need to monitor, the mojor

parameters include:

1) Temperature:

Temperature is a measure of the heat present in the water. Its

standard measure unit is Celcius (°C) or Fahrenheit (°F).

When temperature increase, the activity level and the

metabolism of aquaculture organisms also increase, and also

boost the fish growth rate. If the temperature too high and exceed

the physical and nutritional tolerance for loo long, the fishes may

get contaminated with bacteria, lose their balance when

swimming, and could die from exhaustion. If the temperature too

low, the feed intake and metabolism decrease and causing poor

growth performance. Especially in aquafarm, temperature

affects more on the aquatics organisms because higher biomass

and less water volume.

37

2) Dissolved oxygen:

Dissolved oxygen is the amount of oxygen dissolved in water.

Its standard measure unit is milligrams per liter (mg/L) or parts

per million (ppm).

Dissolved Oxygen is one of the critical water paramters,

aquatic organism used dissolved oxygen for respiration and

acocommodate metabolism. Oxygen affects the solubility and

availability of many nutrients. Therefore, low level of dissolved

oxygen in water can cause fish death and also increase in the

poisonouis metabolities.

3) pH level:

pH is a measure of the acidity or alkalinity of water. It is

measured by using the scale from 0 to 14. When pH level of the

water exceed pH 9, means the water is too alkaline. This situation

cause the conversion of ammonium to become tociv ammonia

which can kill the fish. While water is too acidic with pH lower

than 5 can filter out metals from rocks and sediments. The metals

affects the fish health and can be fatal. Fish kills usually occurs

when the pH of water is below 4.5 or greater than 10.

4) Salinity

Salinity is the concentration of salt in water. It is measured in

parts per thousand (ppt) or practical salinity units (psu). Salinity

plays an important role in aquafarming. This is because it

directly affects the osmoregulation of aquatic organisms.

Osmoregulation is to balance the water and ions in their body

fluids to maintain internal stability. Excessive salinity level

cause aquatics to lose water, while insufficient salinity level

cause too much water in aquatics body fluid. Any one of this

situation will affects the growth rate, metabolic rate, food intake,

food conversion and hormonal stimulation.

38

5) Turbidity

Turbidity is a measure of water clarity. It is measured in

Nephelometric Turbidity Units (NTU). Turbidity can affects the

light penetration in water and thus limit photosynthesies carried

out for plants in water. High turbididty cause temperature and

DO stratifaication in water.

6) Ammonia, NH3

Is dissolved metabolic organics in water. It is measured in

milligrams per liter (mg/L) or parts per million (ppm). High level

of ammonia can leads to stress and death in aquatic organisms.

The cause of increase in ammonia is overfeeding. The decays of

rich-protein feed will release toxic ammonia gas.

7) Nitrate, NO3

It is measured in milligrams per liter (mg/L) or parts per million

(ppm). High level nitrate leads to algar blooms and then cause

low Dissolved Oxygen in water and hence lead to fish death.

8) Nitrite, NO2

This is a toxic compound produced from oxidation of ammonia

in water. It is measured in milligrams per liter (mg/L) or parts

per million (ppm). Based on Ciji and Akhtar (2020), excessive

nitrite disrupt the oxygen uptake in the blood of aquatic

organisms, cause damage to the fish gills and destroy ionic and

water balance and finally lead to fish death. Besides, high level

of nitrite also reduce the reproductive performance of fish.

39

Table 2.2.4.1 Standard range for water quality parameter set by fisheries

research institute (FRI) Malaysia (Azlan Othman et al., 2020)

This standard shows the tolerance range that ensure the products

produced are safe for human consumption. However, different types of fish have

their own specific favourable ranges for each water parameter to achieve its

optimum growth performance (The Fish Site, 2015). For example, Table 2.2

also shows that different species can tolerate different range of the water quality

to optimize their growth (FRESHWATER-AQUACULTURE, 2019).

Table 2.2.4.2 Water quality tolerance by species (FRESHWATER-

AQUACULTURE, 2019)

40

2.5 Existing Aquaculture Monitoring System

2.5.1 Automated water quality monitoring system development via

LabVIEW for aquaculture industry (Tilapia) in Malaysia

According to Azlan Othman et al. (2020), it propose a automated water quality

monitoring system for the tilapia industry using LabVIEW software. This

system focus efficient data logging and analysis to help aquafarmers to monitor

the water quality of aquaculture real-time continuously. Besides, this system has

the alarm system to alert user when any fluctuation of the water parameters.

This system currently does not include any automated water quality correcting

system. However, it is upgradable due to its flexibility in accepting more types

of sensors to the system and also can integrate with other water quality

correcting system when any monitored parameter falls away from the safety

range.

2.5.1.1 System Design and Architecture

Below figure 2.1 shows the block diagram of water quality monitoring system

for the tilapia industry.

Figure 2.5.1 The block diagram of water quality monitoring system for the

tilapia industry (Azlan Othman et al., 2020)

41

Based on figure 1, the system consist of 3 main hardware components

such as sensors, microcontroller, and workstation/computer that contains

LabVIEW software. There are 2 sensors used in this system, temperature and

pH sensors. They are connected to NI myRIO-1900, a microcontroller that act

as Data Acquisition System(DAQ). The microcontroller also connected to the

workstation, a computer that has the LabVIEW software.

2.5.1.1.1 Water Paramter Sensors

There are 2 types of sensors used in this system: Temperature and pH sensors.

Figure 2.2 shows the sensors connection setup. These 2 sensors should be

connect to the microcontroller to send the sensor data.

Figure 2.5.2 The block diagram of water quality monitoring system for the

tilapia industry (Azlan Othman et al., 2020)

1) Temperature:

The sensor used is a modified temperature sensor, LM35 used to measure the

temperature of the aquafarm. LM35 connect to the analog input pin 9 on

connector B of microcontroller(NI myRIO-1900).

42

2) pH level:

pH sensor used is Atlas scientific pH sensor that measure pH level. The pH

sensor is connected to pH probe BNC connector of the pH circuit. Then the pH

output terminal from the pH circuit is connected to analog input 5 connector A

of microcontroller, NI myRIO-1900. The pH circuit will acts as signal

conditioning, which means pH circuit will modify the signal output from pH

sensor to become accurate and reliable signal for microcontroller to read.

2.5.1.1.2 Microcontroller

The only microcontroller used in this system is NI myRIO-1900. NI myRIO-

1900 is a compact embedded device that has analog input (AI), analog output

(AO), digital input and output (DIO), audio, and energy output. It act as data

acquisition system (DAQ) which is an interface that connected between sensors

and monitoring workstation for them to communicate between each other. The

data collected by the sensors must pass through DAQ, the microcontroller, NI

myRIO-1900, before reaching to workstation. The NI myRIO-1900 can

connected to a host/computer/workstation using USB or 802.11b.g.n wireless

networking standard that allows local area network (LAN) communcation. Due

to its built-in wifi feature, wi-fi connection is the protocol used to send sensor

data from microcontroller to monitoring workstation for LabVIEW software to

perform Data Visualization and Analysis. Figure 2.3 shows the layout water

quality monitoring system for the tilapia industry.

43

Figure 2.5.3 The layout water quality monitoring system for the tilapia

industry (Azlan Othman et al., 2020)

2.5.1.1.3 Workstation (LabVIEW)

Monitoring Workstation, is a computer that contain LabVIEW Software.

LabVIEW is a visual programming language use to create automated test

systems that has variety of analysis features, interactive display elements,

drivers for automating each instrument and data gathering hardware, links to

other languages and industry-standard protocols (Anon, 2023). Therefore,

labVIEW is used to program a LabVIEW software application for this system

to detect the signal from the installed sensors to perform data visalization and

data analysis to monitor the water quality. Figure 2.4 shows the front panel of

the system via LabVIEW software.

44

Figure 2.5.4 The front panel of the system via LabVIEW software (Azlan

Othman et al., 2020)

This LabVIEW front panel consist of the aquafarm current water

quality information retrieved from the sensors installed, temperature and ph

level. Both information have the line graph showing the status level of the water

quality over time, for example: temperature over time and ph level over time.

Next, below of the interface also provide the line graph of output voltage of each

sensor over a period of time. The two circle in each water quality interface,

green circle represent the safety range for each water quality. Oppositely, red

circle represent the dangerous range for the water quality. It tells user if the

water quality is safe, the circle should be green and is out of range will be red.

For temperature page, there also show a thermometer measuring current

temperature of the aquafarm. The LabVIEW software page for water quality

monitoring is easy to understand.

2.5.1.2 Experiment for implementation this system

Experiment Setup

The experiment objective is to find out whether using this system to measure

water parameters is usable. Therefore, this experiment should:

1) test whether this system will alert user if any water parameter is

in dangerous status,

2) determine the accuracy of automated system by calculating the

error percentage in reading the water quality parameters in the

45

aquafarm. Figure 5 shows the formula to calculate the error

percentage is:

Equation 2.1 Formula to calculate error percentage of this system

3) allow aquafarmer perform analysis based on the data collected.

Two different set-ups of the system is place at the same fish tank,

automated system and manual system. Figure 2.5 shows the manual set-up

versus automated set-up.

Figure 2.5.5 Manual set-up versus automated set-up (Azlan Othman et al., 2020)

Right image is the Automated system, which is the proposed system

using sensor and LabVIEW software, while left side is the Manual system that

require aquafarmer to use portable sensor to measure the water quality.

Experiment Result

1) Objective:

Test whether this system will alert user if any water parameter is in

dangerous status.

Results:

Figure 2.6 shows the front panel of temperature when the temperature

exceeds 32°C.

46

Figure 2.5.6 The front panel shows when the temperature exceeds 32 °C

(Azlan Othman et al., 2020)

By using the formula:

Temperature (°C) = Vout x 100

System can get the temperature value, when the temperature retrieved that time is

32°C or above. The circle LED will turn into red colour, and with the word “CN”

indicates “CAUTION” to alert user that the temperature is under unbehaviorable

condition. Therefore, it tells aquafarmers have to take steps to decrease the water

temperature.

2) Objective:

To determine the accuracy of automated system by calculating the error

percentage in reading the water quality parameters in the aquafarm.

Results:

Table 2.3 shows the accuracy of automated system comparing to the data

gathered in manual set-up.

Table 2.5.1 The accuracy fo temperature sensor of the system (Azlan

Othman et al., 2020)

47

This table shows that the average of the percentage error of automated

system compared to the manual measurement is less than 7% for the

temperature parameter. This proved that the developed automated system is

able to measure these water parameters correctly as manual system with very

low error percentage. Therefore, this automated monitoring and dat

collection system is suitable to be developed for aquaculture industries to

monitor aquaculture.

3) Objective:

To allow aquafarmer perform analysis based on the data collected.

Results:

Table 2.4 shows the temperature and pH level collected in 2 days.

Table 2.5.2 Table of temperature and pH level with time (Azlan Othman et al.,

2020)

The relationship between temperature and pH level can be analysed out through

the table. Based on the table, aquafarmers come out with the conclusion that at

the highest temperature, the temperature is lower and vice versa. This is

supported with the evidence that during 28 May 2019, 11.20am, when the

temperature is at 31°C, the pH level become higher until 6.702. While on 28 May

2019, 6pm, when the temperature is increased to 31.738°C, the pH level decrease to

48

6.242. Unfortunately this condition only occur on the first day due to the water sample

properties started become acidic on the next day.

49

2.5.2 IoT-based Smart Aquaculture System with Automatic Aerating

and Water Quality Monitoring

According to Tsai et al. (2022), it shows an IoT-based smart aquaculture system

(ISAS) to help aquafarmer to monitor various water quality parameters. The

proposed ISAS are equipped with sensors and also automated water quality

control devices to monitor water quality to build a suitable aquaculture

environment in aquafarm to increase fish growth performance. This ISAS

system make use of fuzzy inference process for quick automatic operation of

aerators and feeders to ensure the water parameters is within the safety range.

Users can make use of ISAS to monitor water quality in aquafarm easily at

anywhere and anytime using mobile devices and remote computers as long as

the device have the internet connection due to implementation of cloud database

in this system. In addition, users also could receive warning messages when the

water parameters falls below or exceed the safety range.

2.5.2.1 System Design and Architecture

Below figure 2.7 shows the architecture of the ISAS.

Figure 2.5.7 The architecture of ISAS (Tsai et al., 2022)

Based on figure 2.7, the system is made up of 4 main components. They

are sensors, data processing platforms, reactors and cloud database that provides

data to user interface. The sensors that used in ISAS is, Temperature sensor, pH

sensor, Dissolved oxygen sensor and Water Hardness sensor. These sensor will

be connected to data processing platform consist of Arduino microcontroller,

50

and Raspberry Pi computer. Then Raspberry Pi of Data Processing Platforms

will be connected to Cloud database to store the sensors data, and also connected

to reactors to perform automatic water parameters control in water tank. The

communication between Cloud database and Raspberry Pi computer is through

wireless connection. User can view water parameters data and receive alert

message through user interface that display the data from the Cloud database

(Tsai et al., 2022).

2.5.2.1.1 Water Paramter Sensors

There are 4 types of sensors used in this system: Temperature sensor, pH sensor,

dissolved oxygen sensor and water hardness sensor. Figure 2.8 shows the 4

sensors and data collection platforms used in this system.

Figure 2.5.8 The sensors and data collection platforms of the ISAS (Tsai et al.,

2022)

1) Temperature:

DS18B20 digital thermometer (Figure 2.8(a)) is used as the temperature sensor

in ISAS. It can measures temperatures form -55°C to +125°C and provides

programmable resolution of 9-12 bits. Higher bit of resolution means more

accurate measurement, however need to processing power and storage.

51

2) pH level:

DFROBOT SEN0169 analog pH meter (Figure 2.8(b)) is used to measure pH

level in this ISAS. This pH sensor has the ability of fast response and good

thermal stability, which is suitable for long-period monitoring.

3) Dissolved Oxygen (DO) level:

A DFROBOT SEN0237 sensor (Figure 2.8(c)) is used to detect dissolved

oxygen level. It has detection range of 0–20 mg/L.

4) Water hardness:

A DFROBOT SEN0244 analog total dissolved solid sensor (Figure 2.8(d)) is

used to measure water hardness in ISAS. It has the measurement range of 0 –

1000 mg/L.

2.5.2.1.2 Microcontroller

The microcontroller used in this system is Arduino Uno microcontroller (Figure

1.8(e)). The task of microcontroller here is to combine all the data provide by

each sensors together, then sends these water quality parameters data to

Raspberry Pi for processing.

2.5.2.1.3 Computer (Raspberry Pi)

The Raspberry PI, is a single-board computer consist of ARM Cortex A72

processor and 8gb of RAM with multiple communication interfaces such as

WiFi, Bluetooth, USB and Mini HDMI. The Raspberry Pi task in ISAS is to

store the last 7 days’ sensors data into its internal memory, and all sensors data

should send by Raspberry Pi to cloud database using WiFi and the MQTT

protocol. MQTT protocol is known as Message Queing Telemetry Transport

protocol, is a lightweight messaging protocol for IoT. It is Ideal for connecting

remote devices with a small code footprint and minimal network bandwidth

(MQTT, 2022).

Besides, Raspberry Pi computer contain the fuzzy inference process,

which perform assessment on water temperature, pH and hardness then send

52

fuzzy output to Raspberry Pi computer to control the water control system.

Figure 2.9 shows the flow diagram of automatic control flow of the ISAS.

Figure 2.5.9 The automatic control flow of the ISAS (Tsai et al., 2022)

The sensors collect the parameters data and send to Raspberry Pi, then

Fuzzy Inference Process perform assessment. If the assessment result shows that

water quality is poor and not suitable for aquaculture, then it will send fuzzy

output to Raspberry Pi to activates each water quality control devices such as

aerator to maintain the dissolved oxygen level at certain range, and suspend

feeder to feed the fish to avoid further contamination of the water.

This ISAS system use fuzzy-based control instead of machine learning

which may produce better decision making in automatically activate the water

control devices to maintain water quality. The main reason is fuzzy-based

control can provide fast response that ML cannot serve, and also it is easier to

apply than ML because ML cannot be done in Raspberry Pi and Arduino due to

their limitation of computing power. ML based-systems require long training

time and different aquatics require different design. Thus, Fuzzy inference

process is used in this case.

2.5.2.1.4 Cloud platform

53

Cloud platform contain database that are used to store all history of sensors data.

The advantages of using Cloud platform to store data is due to its larger capacity

which is able to store all the history of the water quality parameters. The main

reason is that the data stored in Cloud platform can be access by smartphone,

computer and web application for data visualization and data analysis in user

interface as long as there is internet connection. Besides, these data can also be

used in ML in cloud platform to provide useful information for aquafarmers

(Tsai et al., 2022).

2.5.2.1.5 Application of ISAS system

There are 2 types of application can be used to monitor water quality in

aquafarm based on the ISAS system such as web application, and smartphone

application. Aquafarmers can view the aquafarm’s water quality condition

through these application. Both types of application serves the same

functionality, they retrieve data from cloud database and perform data

visualization to provide user-friendly user interface to display the data in user

readable format. Figure 2.10 shows the line graph of temperature sensed data

through web application (Tsai et al., 2022).

Figure 2.5.10 The temperature sensed data example (Tsai et al., 2022)

The temperature line graph allows user to track the change of temperature over

time. Figure 2.11 shows the line graph of dissolved oxygen sensed data through

web application

54

Figure 2.5.11 Sensed data dashboard from user’s mobile device (Tsai et al.,

2022)

The dissolved oxygen line graph also allows aquafarmers to track the change of

dissolved oxygen level within a period.

Moreover, both of the application also provide dashboard for real-time

numerical data of current water quality condition as shown in figure 2.12.

Figure 2.5.12 Sensed data dashboard from user’s mobile device (Tsai et al.,

2022)

55

The dashboard shows the current temperature is 20.9°C, DO is 3.8mg/L, and pH

is 8.6. Different colours indicates different types of water parameter monitored.

2.5.2.1.6 Water Quality Control Devices

This ISAS system also include 2 devices to control the water parameters to

maintain in healthy state, they are aerators, and feeder. Their responsibility is to

receive signal from Raspberry Pi that perform Fuzzy Inference Process, in order

to decide whether to activate aerators to increase DO level in water, and also

suspend feeder to stop feeding (Tsai et al., 2022).

2.5.2.2 Experiment for implementation of ISAS

Experiment Setup

The experiment objective is to verify the feasibility of ISAS. Therefore, this

experiment should:

1) find out does ISAS system increase the survival rates of the shrimp.

There are 2 different set-ups of aquarium were build, 1 experimental group

which implement ISAS and another 1 control group without ISAS. Figure 2.13

shows the experiment setup.

Figure 2.5.13 Experimental group and control group of the ISAS (Tsai et al.,

2022).

Based on Figure 2.13, two different set-ups of the system is place at different

aquarium, left side is the experimental group with ISAS, and the right side is the

control group. The experiment starts with 60 shrimps and some aquatic plant

56

into both groups. Then, control group is fed once a day daily, while exprimental

group were fed based on the fuzzy result decision. The experiment continues

1.5 months, the survival rates of the shrimp calculate using below formula:

Survival rate = (Number of shrimp remaining / Number of shrimp

 at the beginning) x 100%

Experiment Result

4) Objective:

To find out does ISAS system increase the survival rates of the shrimp.

Results:

Figure 2.14 shows the line graph of survival rates of shrimps of experimental

and control group within 1.5 months.

Figure 2.5.14 Survival rates of shrimps during the 1.5 months of our

experiment (Tsai et al., 2022)

The line graph shows declining of both groups of shrimp during the first

week. The suvival rate of Experimental Group increase on 2021/4/7 and

2021/4/13 is due to new baby shrimp were born, while in Control group new

baby shrimp were born on 2021/4/19. On the last day of the experiment

2021/5/5, the remaining shrimp in control group is 16, therefore its survival

57

rate is only 26.7%. However, the Experimental Group still have 36 number

of shrimp survived, and it reach 60% of survival rate, which is 33.3% greater

than Control Group. In conclusion, ISAS can increase the survival rate of

aquatics. Therefore, ISAS is feasible to be used in aquaculture industry.

58

2.5.3 Development of an IoT-based Intensive Aquaculture Monitoring

System with Automatic Water Correction

According to Tolentino et al. (2021), it propose an IoT-based Intensive

Aquaculture Monitoring that monitor and automatically corrects the water

quality parameters to maintain good water quality environment for aquatics to

grow in aquafarm. Due to the IoT structure in this aquaculture system, an

internet based application is then use to perform data visualization for user to

monitor the aquaculture easily. The application should provide user a dashboard

that shows precise real-time condition of each water parameters and also should

provide the average length and weight of the fish to determine their growth

(Tolentino et al., 2021).

2.5.3.1 System Design and Architecture

Below figure 2.15 shows the architecture of the IoT-based Intensive

Aquaculture Monitoring System with Automatic Water Correction.

Figure 2.5.15 The architecture of ISAS (Tolentino et al., 2021)

Based on figure 2.15, the system is made up of 3 layers. They are input,

process,and output layers. The input contain 6 types of sensors: temperature, pH

level, oxidation-reduction potential, turbidity, salinity and dissolved oxygen.

These sensors from input is then connected to the Arduino Mega

59

microcontroller in Process layer. There are 2 more components in Process Layer:

Raspberry Pi and LoRaWan IoT Protocol. The Raspberry Pi is a computer that

use LoRaWan IoT Protocol to send data Cloud Platform and then Web

Application at output layer will display these data to user. Besides, output layer

also have those water quality correcting device such as Aquarium Heater,

NaHCO3 distribution, Water Pump.

2.5.3.1.1 Water Paramter Sensors

There are 6 types of sensors used in this system: temperature sensor, pH level

sensor, oxidation-reduction potential sensor, turbidity sensor, salinity sensor

and dissolved oxygen sensor.

1) Temperature:

The temperature sensor used is a Waterproof Temperature Sensor DS18B20 to

measure temperature.

2) pH level:

A DFRobot Industrial Analog pH Sensor is used to measure pH level of water.

3) Oxidation-reduction potential:

A DFRobot ORP Analog Meter is used to measure ORP.

4) Turbidity:

To measure the turbidity of water, Gravity: Analog Turbidity Sensor is used.

5) Salinity:

To measure Salinity of water in water tank, Gravity: Analog Electric

Conductivity Sensor is used in this system.

6) Dissolved oxygen:

The DFRobot Gravity: Analog Dissolved Oxygen Sensor is used to measure

Dissolved Oxygen in water tank.

60

2.5.3.1.2 Microcontroller

The microcontroller used in this system is Arduino Mega microcontroller. The

task Arduino Mega is to collect all sensors analog data for each connected water

parametrs sensors, integrate them and send these data to Raspberry Pi computer

for data processing. Moreover, it also link with water quality correctors such as

Aquarium Heater, NaHCO3 Distribution and Water Pump. These correctors

will be activated by Automatic Water Quality Correction program in Arduino

Mega microcontroller to peform their tasks, when their related weter parameters

value does not meet the desired level. With these devices help, the water quality

can be maintain within safety range (Tolentino et al., 2021).

2.5.3.1.3 Computer (Raspberry Pi)

The Raspberry PI, is a single-board computer is used in this system to act as a

gateway to accepts data from Arduino Mega, and then use its processing power

and networking capabilities to communicate with database through Long Range

Wide Area Netwoek (LoRaWan) IoT Protocol. Then Raspberry Pi can transmit

these sensors data to Web Application to perform monitoring process also via

LoRaWan IoT Protocol. A 868MHz LoRaWan is used because it can reduce

production costs and supports long-distance communication. Therefore using

LoRa modules for data transmission is suitable for monitoring aquaculture

setups.

2.5.3.1.4 Web Application

This system use Web Application to let Aquafarmers to monitor the aquafarm.

This Web Application named TeamLapia, is used to exploit all the data gathered

for monitoring water quality of aquafarm. It is developed using PHP and

JavaScript codes and link to database that stores all the latest and keep updating

water parameters data. Therefore, this Web Application can display the recent

status of each water parameters with accurate numerical values and fish growth

such as number of fish, average length, and weight. Besides, this application

also use Html, CSS and JavaScript to produce a user-friendly User Interface

61

using that aquafarmers can easily understand the current condition of the

aquaculture. Then it also provides the graphs that shows the changing of the

water quality parameters over time for user to make analysis. Figure 2.16 shows

the TeamLapia Web Application Interface.

Figure 2.5.16 TeamLapia Web Application Interface (Tolentino et al., 2021)

The first page shows the header showing user that this is a “Fish Growth and

Water Quality Monitoring System”. The second page shows the 3 main function

of this system: Weight Prediction, Water Quality Monitoring, and Data

62

Consolidation. The third page is the Water Prameter Sensors page listed with all

installed sensors in the aquafarm. When user click into specific water parameter

they want to view, the fourth page will be displayed. This page first provide a

brief description of this chosen parameter, then also provide line graph showing

the values of the current water parameter on the past period of time. In addition,

it also provide the current status of the parameter. Figure 2.17 also shows the

TeamLapia Web Application Structure Diagram.

Figure 2.5.17 TeamLapia Web Application Structure Diagram (Tolentino et

al., 2021)

2.5.3.1.5 Water Quality Control Devices

This system include 3 devices to control the water parameters, they are:

Aquarium Heater, NaHCO3 Distribution and Water Pump. They are activated

by the Arduino Mega Micontroller when water quality does not meet the desired

range.

1) Aquarium Heater

Aquarium Heater task is to keep the water temperature maintain at 28°C.

2) NaHCO3 Distribution

63

NaHCO3 is Sodium bicarbonate or baking soda, is a weak base that use to

neutralize the water when the pH is dropping. Therefore, this device will be

activate to release the Sodium Bicarbonate solution when pH level fall below

the threshold value. When the pH level back to desired level, this device will be

switch back off again.

3) Water Pump

Water Pump is activated when oxidation-reduction potential, turbidity, salinity

and dissolved oxygen values are not within the ideal range optimal for fish

growth. When the all the water parameters are back to desired level, this device

will be switch back off again.

2.5.3.2 Experiment for implementation of IAMS

Experiment Setup

The experiment objective is to:

1) find out whether this system able to monitor the water parameters and

automatically activate the correcting devices.

2) to assess the automated aquaculture system's effectiveness and

reliability as well as the difference in fish growth rates between it and

the traditional setup.

There are 2 different set-ups of systems were build: 1) First one is the proposed

system setup that perform regular monitoring and correcting on the temperature,

potential hydrogen (pH) level, oxidation-reduction potential, turbidity, salinity,

and dissolved oxygen to build an environment to optimize the fish growth. 2)

Second one is the conventional setup, the water will be check and change once

a week. The experiment takes 12 days to conduct. The growth rate of the fish is

determine by using the formula below:

Growth rate = (Final weight - Initial weight) / (Initial weight) x 100%

64

Figure 2.5.18 Experimental group and control group of the ISAS (Tolentino et

al., 2021)

Based on Figure 2.18, two different set-ups of the system is place at different

water tank with Nile Tilapia fishes, left side is the conventional setup, and the

right side is the controlled setup. The Stereo-Vision Camera is used to measure

the size of fish.

Experiment Result

1) Objective:

To find out whether this system is able to monitor the water parameters and

automatically activate the correcting devices.

Results:

Figure 2.19 shows the line graph of pH level over days for the controlled

aquaculture setup.

65

Figure 2.5.19 pH sensor Readings with Correction Response (Tolentino et al.,

2021)

The desired pH level range for Nile Tilapia is between 6 to 9. It can be seen

that the pH level of the water will automatically corrected back to desired

range between 6-9 whenever the pH value exceed the upper limit. This is

because the NaHCO3 distrbution is activated.

Figure 2.5.20 Turbidity Sensor Readings with Correction Response (Tolentino

et al., 2021)

Figure 2.20 shows the line graph of turbidity sensor readings over days. The

ideal range of Turbidity for Nile Tilapia is 0.3 to 5. The turbidity level always

remain between the lower limit and upper limit.

66

Figure 2.5.21 Oxidation Reduction Potential Sensor Readings with Correction

Response (Tolentino et al., 2021)

Figure 2.21 shows the line graph of ORP level over days. The ideal range of

ORP level of Nile Tilapia is 150mV to 250mV. It shows that whenever the ORP

nearly fall below lower limit, it always increase back to nearly 200mV.

Figure 2.5.22 Temperature Sensor Readings with Correction Response

(Tolentino et al., 2021)

Figure 2.22 shows the line graph of temperature readings over days. The desired

range for temperature is between 25 to 27°C. The graph shows that the

67

temperature is always exceed the upper limit, however it is able to be corrected

back using corrective device.

Figure 2.5.23 Salinity Sensor Readings with Correction Response (Tolentino et

al., 2021)

Figure 2.23 shows the line graph of Salinity sensor readings over days. The

desired range for Nile Tilapia to growth is below 5ppt. However, Nile Tilapia

can tolerate with wide range of Salinity from 0 to 15ppt. The Salinity of the

water tank in controlled setups shows that the Salinity level is always stay within

desired range for Nile Tilapia to growth.

Figure 2.5.24 Dissolved Oxygen Sensor Readings with Correction Response

(Tolentino et al., 2021)

68

Figure 25 shows the line graph of DO readings over 13 days. The desired range

for Dissolved Oxygen is between 1 and 2.5mg/L. It can be seen that whenever

the DO level nearly reach the lower limit, aerators will be triggered to increase

the DO level. Therefore, the DO level is able to maintain within the desired

range throughout this period.

In conclusion, this system is able to monitor the water parameters and also

automatically activate the correcting devices. Therefore, the Nile Tilapia growth

performance is assured with the help of this system to maintain the desired water

quality.

2) Objective:

To determine the efficiency and reliability of the system and the difference

of the growth rate of the fishes between the automated aquaculture system

and the conventional setup.

Results:

Figure 2.25 shows the comparison bar graph of the the fish weights between

Conventional Setup and Controlled Setup in 2 weeks.

Figure 2.5.25 Controlled vs. Conventional Fish Growth measured every week

(Tolentino et al., 2021)

69

From this bar graph, the controlled setup have higher average fish weight than

conventional setup in week 1 and week 2. This means that fishes in controlled

setup water tank have greater growth performance. Table 2.5 shows the detail

average fish weight of proposed aquaculture setup versus conventional setup in

from day 0 to day 7 then day 12.

Table 2.5.3 Fish Growth In Each Setup (Tolentino et al., 2021)

Based on Table 2.5, the average fish weight of the fishes in proposed

aquaculture setup increased total 17g (from 24g to 41g) while in the

convenrtional setup only increase 11g (from 24g to 35g). The calculated growth

rate per week is 30.70% for proposed Aquaculture setup, and 20.76% for

conventional setup. Therefore, this proves that the proposed aquaculture setup

is efficient and reliable as it increase growth performance of fishes in

conventional setup by 46.88%.

2.6 Comparison and Analysis

Table 2.6.1 Comparison table between LabVIEW, ISAS, IAMS.

Features Systems

LabVIEW ISAS IAMS

Provide real time water quality monitoring

(dashboard)

✓ ✓

Provide data visualization (graph) ✓ ✓ ✓

Provide water quality auto-correction system ✓ ✓

Use computer software as monitoring interface ✓

Use web application as monitoring interface ✓ ✓

70

Use mobile application as monitoring interface ✓

Implement cloud server as database ✓

Implement local server as database ✓

Implement local database ✓

Support long distance water quality monitoring ✓ ✓

Provide fish growth prediction (length &

weight)

 ✓

Upgradeable (Add more sensor and features) ✓ ✓ ✓

Alert user when water parameters fall out from

desired range

✓ ✓

Advantages

By comparing these 3 types of aquaculture monitoring system architecture, IoT-

based Smart Aquaculture System (ISAS) is the best system in terms of

functionality.

First of all, ISAS provide the most important features which is support

long distance water quality monitoring. This is because it used cloud server as

database, therefore its mobile application and web application can use sensed

data stored in cloud, and display them to user. Therefore, user are able to view

the current water quality condition of the aquafarm at anywhere as long as

having internet connection. LabVIEW does not support long distance

monitoring as the data captured is stored in local database of its workstation.

Besides, ISAS also contain fuzzy inference process in its system to

automatically activate water control device to correcting the water parameters

to maintain within safety range. This reduce the workload of aquafarmers need

to keep changing water and also can optimize the fish growth performance as

the water quality is always maintain at aquatics favourable condition.

Oppositely, LabVIEW does not contain water quality auto-correction system.

71

Next, ISAS also surpass the 2 other system with its real-time

monitoring features showing the latest current condition of water prameters in a

dashboard. The sensors keep updating the water quality 3 minutes as time

interval, and keep the database is always the latest all the time. LabVIEW also

provide real-time monitoring but its data are captured 10 minutes which its time

interval is longer than ISAS, reduce time for aquafarm to take early corrective

stepps. But IAMS takes 1 day as the interval for reading sensors data, therefore

it does not provide real-time water quality monitoring.

 The last features that ISAS provide is automatically send warning

message to the user to alert that the current quality of the water is poor. IAMS

does not provide this features, but LabVIEW does. However, due to its sensor

data collection time takes longer than ISAS. Therefore, the alert message also

will be late to received by user compared to to ISAS. Thus, may cause late

corrective action aquafarmers.

 In conclusion, ISAS is the best water monitoring system among them,

it provides many important and useful functionality that other system lack of.

For example, long distance monitoring, automatically water parameters control,

real-time water quality monitoring and warning messages to alert user about the

poor condition of water in aquafarm.

Disadvantages

 Although ISAS is the best among these system. However, it also have

some weaknesses that it should be improved. Firstly, the dashboard of this

system can be improved to include more information for user to have better

monitoring experience in using this application. Figure 2.26 shows the ISAS

dashboard.

72

Figure 2.6.1 ISAS dashboard in mobile application (Tsai et al., 2022).

This dashboard does not show the desired range of the water parmeters. Then

when one of them is nearly exit the safety range, the gauge colour should turn

into orange colour and red colour when exit the desired range. This can help

user to easily focus on the dangerous water parameter. The design is not user-

friendly as the indicator of the gauge is small, difficult to find out which gauge

belongs to which water parameters. Therefore, here should increase the text size

and also put some icon and standard unit suitable to represent their

corresponsing water parameters.

 Besides, figure 2.27 also shows the line graph chart displayed using

web application. However, the journal does not provide how line graph chart is

diplaying in its mobile application. Therefore, mobile application should also

able to view the trends of the water parameters using line graph chart, and it

should be easy to understand and identify the trends. However, this line graph

chart also lack of providing the information of desired range of current water

parameters that the fish is favourable.

73

Figure 2.6.2 The dissolved oxygen sensed data example (Tsai et al., 2022).

 Lastly, this system provides warning messages to alert user about the

poor condition of water. However, the research paper does not show the detailed

implementation of the alert system. Therefore, it is assumed that the alert

message is sent to user only when the app is open. Thus, this type of alert

message is not complete enough, as it needs user to open app only can receive

the warning message. It lacks a pop out notification feature in the smartphones

for that user can receive the alert message anytime at anyplace whenever there

is internet connection as the application is running in the background.

2.7 Software Development Methodology

There are three types of Software Development Methodology can be used to

develop Water Quality Monitoring Web and Mobile Application, such as

Waterfall, Agile and Lean.

2.7.1 Waterfall

2.7.1.1 Overview

In waterfall software development approach, one phase must be completed only

can proceed to the next phase. Based on figure 2.28, there are 5 main phases in

waterfall model:

74

Figure 2.7.1 Waterfall approach (Visual Paradigm, n.d.)

1) Requirements:

In this phase, the system and software requirements should be

documented in order to have the clear image on what the final product

should looks like. Therefore, it is required for all the stakeholders to

involve in this phase in order to let development team to have clear

concept and understanding on the requirements and expectation of the

software product (OS-system, 2020). This project should be analysed in

addition to the requirements to establish the budget, risks, dependencies,

completion dates, and success measures. All the documentation should

be completed before moving to another steps (Andersen, 2023).

2) Design:

In this phase, software developers will need to design the software

archirecture, business logic and concepts.

3) Implementation:

Developing software based on the documentation requirements and

design.

75

4) Verification:

Testing whether the software is able to run properly without any error,

and ensure it meets the user expectations.

5) Maintenance:

Once complete testing and verification, this product is then release to the

stakeholders and regular maintenance is needed to always keep the

product workable.

Pros:

1) Have a thorough and clear understanding on what the stakholders expect

on the products.

2) Easy to schedule and manage the tasks requirements.

3) Precise evaluation and calculation on the project cost.

Cons:

1) Not flexible and the cost of changes is literally high.

2) May cause the stakeholders to lose confident with development team

due to late deliverable of the project product for user to review and give

feedback.

3) Any miscommunication and misunderstanding with initial requirements,

will greatly impact the final products.

2.7.2 Agile

2.7.2.1 Overview

Agile is a flexible software development approach. It starts with breaking down

the proejcts into several small manageable modules. Then the developers focus

on complete each module one by one following the completion target planning.

Therefore, the products is deliver in an incremental ways which encourages the

stakeholders to keep reviewing, and provide feedback, and make improvement

based on the feedback. Figure 2.29 shows that the development stages of Agile

is not a line, but in a circle due to its incremental and .

76

Figure 2.7.2 Principle of Agile Methodology (OS-system, 2020)

Pros:

1) All the bugs can be found and fixed in early stage, which in turns reduce

the cost of fixing bugs.

2) Highly flexible and ensure that the stakehodlers has high probability to

accept the final product as this approach requires them to participate

actively in developing the software.

3) Faster software development lifecycle.

Cons:

1) Due to the nature of keep reviewing and changing, the final products

may have different with the initial expectation of the software by

stakeholders.

2.7.3 Lean

2.7.3.1 Overview

Lean startup is a data-based approach, this methodology is used to boost the

project works, and also to reduce the cost and time. It starts initially by creating

smaller subset of features of an application, then release the product into market.

77

Then the product is then keep improving using the user feedback repeatedly

until the product achieve desired results. This approach make use of the fast

delivery of product to quickly identify the requirements of the market towards

this application and thus helps to determine to correct path to develop the

application.

Figure 2.7.3 Principle of Lean Methodology (OS-system, 2020)

Pros:

1) The product can compete in the market quickly.

2) A smart and strategic way to develop a software product efficiently.

3) Flexible way of development as it can quickly adapt to the changing

market.

Cons:

1) Unable to be used in high uncertainty project.

2) Not ideal for large and complex projects

2.8 Comparison of Software Development Methodology

These three Software Development Methodology are useful in different

conditions. But in the scenario of developing a Water Quality Monitring

Application, Agile is the most suitable method to implement.

78

This is because Water Quality Monitoring Application may always

require changes, because this project is focus on the Dashboard to let user to

monitor the water quality easily. Therefore, stakeholders might always request

changes because the better design of the dashboard is always existed. Agile

methodology can easily adapt to the changes easily when there is adjustment on

the project scope. Waterfall is not suitable to be used here.

Next, this application has high level of complexity and uncertainty.

Therefore Agile methodology nature of breaking project into smaller

manageable modules, allow the project to be developed incrementally to reduce

the complexity. While at the same time continuous testing is needed to test these

small modules, repeated validation and feedback can help this project to identify

and address issue in early stage. Lean is not suitable to be used here because it

focus on reducing waste and increasing efficiency in the development process,

but there are too many unknown and changes might needed which makes this

approach not effective as changes means increase cost.

Moreover, Water Quality monitoring involves multiple technologies,

therefore need to have collaboration between different areas of technical

expertise. Agile approach emphasize teamwork and collaboration, which

frequent meeting is needed, therefore it is more suitable for different expertise

to communicate and collaborate well in delivering this system.

2.9 Justification of Aquaculture Monitoring System

The use of the latest technologies, such as intelligent aquaculture monitoring

systems, is necessary to replace traditional aquaculture practices. This is

because it can overcome the weaknesses of traditional methods and provide a

more convenient and relevant way to monitor aquaculture. For example, the

weaknesses of conventional method for aquaculture are:

79

1) It takes longer time, more cost, and less consistent and accuracy in

measuring water quality.

According to Huang et al. (2013), Labor cost is discovered to have

the highest proportion in aquafarming cost which is 37.2% of total

costs. Das and Jain, (2017) also complains that conventional ways

of measuring water quality is not efficient, it needs to collect water

samples manually and then send to lab to test and analyze. This

ways of testing water is time intensive, cost ineffective and waste

of human resource.

 The implementation of an IoT water quality monitoring

system in turn reduces labor costs and is cost effective in the long

run. Using of sensors to measure water quality can avoid human

error and inconsistency in testing water quality due to the different

levels of experience and skill of personnel. In addition, water

quality can be measured in real time, which is impossible to do with

a human.

2) Aquafarmer cannot be alerted or warned when the water quality

suddenly becomes bad.

Due to extra long time cost to test water quality, the frequency of

water quality testing is very low, usually is done once per day or a

week. Therefore, it is unable for the aquafarmer to immediately to

realise that the water quality suddenly turns bad due to some

unexpected events such as algae bloom, toxic chemical is presence

in the water and finally leads to fish kill events within short period

of time.

 Due to the real time water quality testing provided by the IoT

water quality monitoring system, an alert system to warn user when

the water quality is poor is now available. This helps aquafarmer to

80

immediately notice the worsen of water quality, and are able to take

immediate action to find out the reason and resolve the issue.

3) Uneffective productivity, profitability and sustainability of

aquaculture operation.

With bad water quality monitoring capability of conventional

methods, it is unable to fully optimize the growth performance of

farmed fish. In addition to the lack of an alarm system and

infrequent water quality testing, the potential for fish kills to occur

and cause damage to the revenue is simply high. In addition, the

sustainability of aquaculture operations is very poor due to

ineffective growth performance and expensive labor costs as stated

above.

 IoT-based aquaculture systems optimize water quality,

resulting in increased productivity, improved profitability due to

reduced likelihood of fish kills, and increased sustainability due to

elimination of inefficient labor costs.

The existence of aquaculture monitoring systems developed using IoT

technologies eliminates these vulnerabilities faced by traditional methods.

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

To deliver this project, it is required to discuss the methodology to use and the

work planning to ensure the project can be completed within time. So in this

chapter, we will discuss about the software development methodology, project

plan and development tool. Software development methodology section discuss

about the implementation of evolutionary prototyping methodology into this

project. Next, the project planning section provides a Work Breakdown

Structure (WBS) and Gantt chart as a plan to track the work progress. Finally,

81

the development tool section discuss about the software tools and technology to

develop the system.

3.2 Software Development Methodology

The Evolutionary Prototyping is one of the variant of prototyping methodology,

which is one of the most popular models used in several project development.

Prototyping methodology is a process that repeatedly refine the prototype based

on customer feedback until the prototype satisfy the customer needs. However,

there are different ways to perform prototyping methodology. Evolutionary

Prototyping that we use in this project differs from other variants.

Figure 28 shows the difference between the flow of evolutionary prototyping

and rapid throw away prototyping (02DCE @02DCE, 2020).

82

Figure 3.2.1 The difference between the evolutionary prototyping and rapid

throw away prototyping (02DCE @02DCE, 2020).

3.2.1 Initial Set of User Requirements

The evolutionary prototyping software development methodology model starts

with getting the initial sets of user requirements. The information for the

software requirements is collected from stakeholders, especially end-users.

83

Then the software requirements is documented based on their information

provided.

In this project, the initial requirements are collected by reviewing current

existing water quality monitoring application’s dashboard. In addition, further

discussion and reviewing of requirement specification should be done with the

aquafarm owner to confirm with the software requirements. After the initial

requirement specifications is identified, WBS and Gantt Chart also should be

prepared to determine the deliverables of each stage of the project cycle. The

WBS helps determine what should be done, and the Gantt chart arranges time

schedule to complete each WBS components to allow stakeholders to track on

the project progress in order to ensure the project is able to be complete on time.

3.2.2 Quick Design

In this phase, a high-level design of prototype is produced. It should includes an

overall basic architecture of the software, data structure and interfaces.

This stage used ThingSpeak and ThingsBoard to build the dashboard prototype

for data visualization of this system. This is a low-fidelity prototype that shows

how the interface looks like and what function and features should be included

in this project.

3.2.3 Develop Prototype

Based on the quick design, develop the basic prototype for the software system.

This prototype should be functional and can be tested by users to provide

feedback.

This stage used ThingSpeak and ThingsBoard to build the dashboard prototype

for data visualization of this system. This is a mid-fidelity prototype that does

not really obtain the collected sensor data form cloud. But this prototype is

clickable to allow end-user to testing whether they can easily understand and

use the function and features provided in this system. The aim of this prototype

84

is to encourage end user to determine whether the software requirements is

satisfied.

3.2.4 Evaluation of prototype by the customer

Based on the developed prototype, stakeholders and end users evaluate the

prototype and provide feedback on functionality and features.

During this phase, aquaculturists assess whether previously established

prototypes are usable and acceptable, and if not, provide their valuable feedback

for improvement in the next round of the cycle.

3.2.5 Refine Requirements

If any requirements are not met or are missing, this leads to modification and

redefinition of software requirements. Then the cycles from quick design to

evaluation keep recycling until the stakeholders satisfy and with the prototype.

This phase is only entered when the prototype fails to satisfy user expectation

of software requirements. After having their feedback, this stage need to revise

the software requirement specifications.

3.2.6 Refine Prototype

After the user accept the prototype means that the basic functionality is already

finalize. However, there is still need to refine the prototype by adding new

detailed functionality and features.

In this phase the prototype is further refined after the stakeholders accept the

prototype design.

3.2.7 Test the final product

After the prototype is refined, this prototype need to be tested and evaluated by

stakeholders to ensure it meet the specification requirements. If not yet satisfied,

returning back to the previous stage to refine the prototype.

85

3.2.8 Deliver and maintain

Once the prototype passes all tests and is approved by the stakeholders, this

software system can be delivered to the end-users. However, this system should

always be maintained and updated to meet the changing needs of the end-users

and meets quality standards.

3.3 Project Plan

3.3.1 Work Breakdown Structure (WBS)

0.0 Web and mobile application development for water quality monitoring

1.0 Project Initialization

1.1 Preliminary Planning

1.1.1 Understanding project background

1.1.2 Identify problem of current conventional solution

1.1.3 Determine project objectives

1.1.4 Define project proposed solution

1.1.5 Confirm project approach

1.1.6 Define project scope

1.2 Literature Review

1.2.1 Review the paper that study Smart Aquaculture

System using IoT technology

1.2.2 Review current existing Smart Aquaculture System

1.3 Methodology and work plan

1.3.1 Select software development methodology

1.3.2 Identify software development tool

1.3.3 Develop Work Breakdown structure (WBS)

1.3.4 Develop Gantt Chart

1.4 Requirement identification

1.4.1 Requirement Specification

1.4.1.1 Collect functional requirement

1.4.1.2 Collect system requirement

1.4.1.3 Collect non-functional requirement

1.4.2 UML modelling

86

1.4.2.1 Create use case diagram

1.4.2.2 Create use case description

2.0 System Development

2.1 Design interfaces

2.1.1 Develop low-fidelity web application prototype

2.2 System Design

2.2.1 Set up Thingsboard cloud-based environment

2.2.2 Database’ table design

2.2.3 Create data dictionary

2.2.4 Create data flow diagram

2.2.5 Create activity diagram

2.2.6 Develop mid-fidelity web application prototype

2.3 System Development

2.3.1 Configure the sensor and devices for water quality

data collection to Thinksboard cloud platform.

2.3.1.1 Connect and configure microcontroller to

read sensor data

2.3.1.2 Create Thingsboard account

2.3.1.3 Create API for microncontroller to send

data to Thingsboard Cloud Server

2.3.2 Create dashboard using Thinksboard

2.3.2.1 Create water parameter analog and digital

gauges

2.3.2.2 Create line graphs over time for each water

parameter

2.3.2.3 Provide easy analysis based on the data

2.3.3 Develop alert system

3.0 System Testing

3.1 Develop test plan

3.2 Develop test cases

3.3 Create user acceptance test

87

3.4 Apply system usability scale

4.0 Deployment

4.1 System Deployment

88

3.3.2 Gantt Chart

Figure 3.3.1 Gantt Chart for Project Initialization from 30/1/2023 to 27/2/2023

89

Figure 3.3.2 Gantt Chart for Project Initialization from 27/2/2023 to 27/5/2023

90

Figure 3.3.3 Gantt Chart for Project Initialization from 27/5/2023 to 24/4/2023

91

Figure 3.3.4 Gantt Chart for System Development from 20/4/2023 to 15/5/2023

92

Figure 3.3.5 Gantt Chart for System Development from 15/5/2023 to 12/6/2023

93

Figure 3.3.6 Gantt Chart for System Development from 12/6/2023 to 10/7/2023

94

Figure 3.3.7 Gantt Chart for System Development from 10/7/2023 to 7/8/2023

95

Figure 3.3.8 Gantt Chart for System testing and Deployment from 12/8/2023 to 28/8/2023

96

Figure 3.10 Gantt Chart Overview

97

3.3.3 Development Tool

The development tool used in the project consists of Sensors, Sensors, Adruino

microcontroller, Adruino IDE, Thingsboard, Node.js, React Native, React

Native CLI, Visual Studio Code.

Sensors

There are three types of water quality sensors will be used: Dissolved Oxygen,

pH, and Temperature sensors. These sensors should connect to Adruino

Microcontroller and read the water quality data from the fish tank and then

transmit the data to microcontroller.

Adruino Microcontroller

Adruino microcontroller should be able to receive the water parameters data

from three sensors. The microcontroller should be able to connect to WiFi so

that we can programmed the microcontroller to send the data to the Thingsboard

Cloud Server through Http Protocol and MQTT protocol. This microcontroller

can be programmed using Adruino Integrated Development Environment using

another computer and later transfer the code into the microcontroller board using

USB.

Adruino IDE

Adruino IDE is a code editor, compiler and uploader to program microcontroller.

The programming language used here is variant of C++ called Adruino

programming language. Adruino IDE has a Serial Monitor tool used to displays

the data sent and received by the microcontroller, which is useful for us to show

what is doing inside microcontroller, such as print error message, sensor

readings, other processing data, or data send to other devices. The code to send

sensor data to Thingsboard cloud is done here. The code program that use

Thingsboard REST API to communicate with the Thingsboard cloud server is

programmed using Adruino IDE and then upload to the microcontroller board.

Thingsboard

98

Thingsboard is an open source IoT platform that this project used as a Cloud

Server database to store the data send by the microcontroller using REST API.

Besides, Thingsboard provide many API and tools to support this project to

build the IoT water quality monitoring application that include the dashboard

and also alert system. The dashbaord shows all collected water quality

parameter using meaningful diagram and to perform some simple analysis. Alert

system is used to warn user when there is problem with the water quality.

Node.js

Node.js can be used to write server side application and also client side

application. It is a javascript platform that allow this project to run javascript

code outside browser, which means we are building a native mobile application.

This Node.js provide Node Package Manager for JavaScript programming

language which allow this project to install, manage the package. These

packages include libraries, frameworks, tools and other dependencies. This is

necessary tools to build the React Native Mobile Application.

Android Studio

Android Studio act as emulator, a virtual Android device to run the React Native

project code during development, testing and debugging.

React Native

React Native is a framework of using JavaScript and React to build the Mobile

Application. React is a library that helps to create user interface easily, while

JavaScript is the programming language used together with React to write

React Native Mobile Application. It include a tool called Metro, a JavaScript

bundler used to compile and package the JavaScript code of React Native app.

Then run this compiled program in Emulator for development and provide hot

reloading function for faster development cycles. This can save a ot of time

during development and testing.

Visual Studio Code

99

Visual Studio Code is an Integrated Development Environment (IDE) that

provides code editor and compiler that can be used in developing React Native

mobile application for this project. It provides many other functionality to

improve the coding performance such as syntax highlighting, debugging,

version control, and many extensions.

100

CHAPTER 4

4 PROJECT SPECIFICATION

4.1 Introduction

This chapter discuss the requirements gathering process for developing a water

quality monitoring system. This process is necessary so understand the

stakeholders need and expectation for this system in order to ensure the system

is developed correctly that follows their expectation without any confusion and

misundestanding.

4.2 Proposed System Architecture

The suitable system architecture of the aquaculture system should looks like

figure 29, the proposed system archirecture.

Figure 4.2.1 Proposed system architecture

This system should have at least 1 type of sensors: DO sensor, a Data

Acquisition Module, a Cloud Server to setup a Water Monitoring System that

are able to update the sensors data into the Cloud Server database.

101

4.2.1 Sensor

The suitable DO sensor can be used here should have similar functionalities

with DFROBOT SEN0237 sensor in ISAS. This sensor should able to read the

dissolved oxygen (DO) level and must have the analog output with Analog-to-

Digital Convertor (ADC) function (Anon, n.d.). With this function, the sensor

data in original sensed analog signal data is able to convert its format to digital

values that is readable by microcontroller. Therfore, it must be compatible

with the microcontroller used. Besides, it should have detection range between

0 – 20 mg/L which could covers full range of possible DO level in water.

4.2.2 Data Acquisition Module

There are 2 types of setup in Data Acquisition Module: 1) single Microcontroller

with WiFi connectity or 2) a Microprocessor and a Computer.

1) Using single Microcontroller with WiFi connectivity

The microcontroller used in this system should have the functionality similar

with ESP32 microcontroller. This microcontroller should be compatible

with the sensor chosen above in order to read the digital values of water

parameter data. The most important feature that ESP32 provide is its Wi-Fi

and Bluetooth connectivity function (Anon, n.d.). This is because we need

to store the collected sensor data to Cloud Server, therefore microcontroller

with built-in Wi-Fi are able to be programmed to achieve the task above.

This cost of this setup is more cheaper than second setup as it does not need

to have a computer to communicate with Cloud Server using any suitable

Protocol such as MQTT and LoRaWan IoT Protocol.

2) Using a Microprocessor and a Computer

This setup contains a microprocessor to receive the digital values send by

sensors, and combine these sensors data then store the data into local

database of a computer. Then the computer responsibility is to keep updating

the new received data into the Cloud Database. The microcontroller here

should have similar abilty as Adruino Uno, while the computer chosen here

can refer to Raspberry Pi, a single-board computer consist of ARM Cortex

102

A72 processor and 8gb of RAM with multiple communication interfaces

such as WiFi, Bluetooth, USB and Mini HDMI. Thus, with the WiFi

connection features, this computer should be programmed to store the

sensors data into the Cloud Server database using any suitable Protocol such

as MQTT and LoRaWan IoT Protocol.

4.2.3 Cloud Server

The Cloud Server can be used here are Amazon Web Services (AWS),

Microsoft Azure, Google Cloud Platform and others. The Cloud Server should

be able used to store the water parameters data. Then these data will be access

by the Mobile Application to perform data visualization.

4.2.4 Web and Mobile Application

The web application prototype is developed using Thingsboard. The mobile

application is developed using React Native and Android Studio IDE as the

development platform. Then this web and mobile application should use API or

SDK to establish connection with the Cloud Server database. Then, use the

retrieved water parameter data to perform Data Visualisation. For example,

shows the latest current water parameter status in a Dashboard. The design of

the dashboard should be informative, easy to understand, and also user-friendly.

Same as the line graph of the water parameter over time, that let user to view

the trends of the change of the water parameter in order to perform analysis.

Next, the mobile application should run at the background and keep updating

the water parameter readings. When the condition of water quality of fish farm

is poor, the system should alert user as a pop out notification to notify user that

the water quality need attention.

Figures below shows the sample views of the Web Application.

103

Figure 4.2.2 Login View

Figure 4.2.3 Fish Tanks

Figure 4.2.4 Water Tank A Water Parameters Gauge Dashboard

104

Figure 4.2.5 Water Tank A Temperature Details

Figure 4.2.6 Warning Message

105

4.3 Requirement Specification

Therefore, Software Requirements Specification is include in this chapter, it

contain functional requirement and non-functional requirement to define the

software function and nature. use case diagram and use case description clearly

identified how the end-users interact with the systems. Assumption and

constraint of are defined in requirement specification.

4.3.1 Functional Requirement

Below table 4.3.1 shows the Functional Requirements of Water Quality

Monitoring Mobile Application.

Table 4.3.1 Functional requirements of water quality monitoring mobile

application

Function Functional Requirements

Register This system shall allow user to register a user account.

Login This system shall allow user to login to the system to user the

functionality of this system,

Dashboard The system shall display a gauge dashboard page that allow user

to check on the the latest condition for for the DO, pH, and

temperature level for each water tanks.

The system shall allow user to check the line graphs of each

water parameter over time, in 12 hours, 1 day, 3 days, or 1 week.

The system shall be able to let user to set the water quality

parameter saferty range and their dangerous limit, each tanks can

have different range.

Manage The system shall allow user to add or remove water tank for

monitoring.

The system shall allow user to add or remove sensor reading for

each water tanks.

The system shall be able to allow user to add fish species to each

water tank, then can set their desired water quality parameter

range for the added species to be implement in the dashboard.

106

Alert The system shall be able to pop out notification to alert user

when the water parameter is nearly exceeding or already exceed

the safety range, only when user open the mobile application.

The system shall be able to send SMS message to alert user

clearly which water tanks need attention when its water

parameter is nearly exceeding or already exceed the safety

range.

The system shall be able to change color of the gauge and line

graph to red color to alert user when the water parameter is

nearly exceeding or already exceed the safety range.

Analysis The system shall be able to help user to perform simple analysis

on based on the line graph, such as prediction of when will the

water quality will exceed the safety range.

4.3.2 Non-Functional Requirement

▪ Performance

o The system shall be able to response within 2 seconds when user

are using the functionality of application, such as gauge

dashboard, line graph, simple analysis and prediction.

o The system shall be able to retrieve and handle these large value

of data from cloud server.

o The system shall automatically update the data for dashboard

when the cloud database is updated with latest water parameters

data.

▪ Reliability

o The application shall be able to receive the lastest data from

cloud server without any error.

o The application shall be able to alert user when the the dangerous

limit is reached without any mistake or miss out the notification.

▪ Accuracy

o The application shall be able to draw the line graph correctly

following the specified time frame.

107

o The application shall be able to make prediction reasonable and

correctly using the following the algorithm formula used.

▪ Usability

o The system shall allow user to understand the application easily

and can be expert within 3 minutes.

▪ Scalability

o The system shall allow adding more water parameters in

dashboard when new sensors is adding to this system in the

future.

o The system shall be able to add more or remove water tanks to

perform water quality monitoring, as the number of water tanks

to monitor can be increasing or decreasing.

▪ Maintainability

o The system shall be design for easy to maintain and update

without causing any functionality disorder.

▪ Interoperability

o The system shall be able to sync the changes between mobile and

web application, when one of them made changes, another

platform also should get changes.

108

4.3.3 Use Case Diagram

Figure 4.3.1 Use case diagram of Water Quality Monitoring Web and Mobile

Application

109

4.3.4 Use Case Description

Use Case Name: Register

ID: 1 Importance

Level: High

Primary Actor: User

Use Case Type: Detailed, Essential

Stakeholders and Interests:

User – Users who does not have account but wish to use this web-based or

mobile-based water quality monitoring system.

Brief Description:

This use case describes how the user can create an account to the web-based or

mobile-based water quality monitoring system by filling up the email address,

phone number, password and confirm password input fields to register an

account.

Trigger:

A user wants to access the application but do not have account.

Relationships:

Association: User

Include: N/A

Extend: N/A

Generalisation: N/A
Normal Flow of Events:

1. The user reach the login page.

2. The user click on the below link named Register an account.

3. The user then fill in the registration form.

4. The user click register an account button.

Sub-flows:

2.1 User will be redirect to registration page.

3.1 User fill in the email address, phone number, password and confirm

password input field.

Alternate/Exceptional Flows:

4.1 If the email is registered, phone number format, email format or confirm

password is wrong, the system will show user warning message and

reject the registration, and ask user to provide correct information.

4.2 If the email is not yet registred, phone number format, email format and

confirm password is correct, then system will register an account for

user using these user input.

110

Use Case Name: Login

ID: 2 Importance

Level: High

Primary Actor: User

Use Case Type: Detailed, Essential

Stakeholders and Interests:

User – Users who want to login to the system to use the water quality monitoring

system features.

Brief Description:

This use case describes how the user can login to the system using the registered

account credentials, using as email and password.

Trigger:

A user wants to access the application using his registered account credentials.

Relationships:

Association: User

Include: N/A

Extend: N/A

Generalisation: N/A
Normal Flow of Events:

1. The user reach the login page..

2. The user then fill in the login form.

3. The user click login button.

Sub-flows:

2.1 User fill in the email address, and password input fields.

Alternate/Exceptional Flows:

3.1 If the email address format is incorrect or email and the password does

not match the database, then prompt error and reject the login request.

3.2 If the email address format is correct and email and password are match

with the database, then redirect user to home page.

111

Use Case Name: View Dashboard

ID: 3 Importance Level: High

Primary Actor: User

Use Case Type: Detailed, Essential

Stakeholders and Interests:

User – Users who wants to view the condition and trends of each water

parameters in a fish tank.

Brief Description:

This use case describes how the user can view the dashboard such as gauge

dashboard and line graphs for the water quality parameters of a chosen fish tank.

Trigger:

A user wants to view the water quality dashboard of a water tank.

Relationships:

Association: User

Include: N/A

Extend: N/A

Generalisation: N/A
Normal Flow of Events:

1. The user is now at the default water tank dashboard.

2. Then user click on the change water tank button to change to the

correct water tank that the user want to view.

3. Then the user are redirect to the selected water tank dashboard which

includes all the water parameter gauges with their readings.

4. Then user can click on the specific water parameter’s gauge to redirect

into the line graph dashboard page.

Sub-flows:

2.1 After user clicked the change water tank button, the system list all the

water tanks that can be monitored.

2.2 Then user click on the water tank that user wish to monitor.

Alternate/Exceptional Flows:

112

Use Case Name: Set Sensor Threshold

ID: 4 Importance Level: High

Primary Actor: User

Use Case Type: Detailed, Essential

Stakeholders and Interests:

User – Users who wants to set the upper limit and lower limit of a specific water

parameter gauge.

Brief Description:

This use case describes how the user can set the maximum and minimum

threshold of the selected water parameter as the desired range so that to activate

the alert system when the water parameter exceed the get near or exceed the

threshold.

Trigger:

A user wants to set the maximum and minimum threshold of a specific water

parameter of a water tank to activate alert system.

Relationships:

Association: User

Include: N/A

Extend: N/A

Generalisation: N/A
Normal Flow of Events:

1. The user is now at the chosen water tank dashboard, the one that user

wish to make changes.

2. Then user click on the water parameter’s gauge that he wish to amend.

3. Then the user are redirected to that selected water parameter details

page which contains the line graph.

4. Then user can view the current minimum and maximum threshold of

the desired range to activate alert system.

5. Then the user click on the change desired water parameter range button

to change the threshold to activate the alert system.

6. System shows a view provide the input field for user to key in the new

value for the minimum and maximum threshold.

7. User fill in the new value for upper or lower limit or both.

8. User then click save, if fill in value is valid then successfully edited, if

not then reject edit request.

Sub-flows:

Alternate/Exceptional Flows:

113

Use Case Name: Manage Water Tank ID: 5 Importance

Level: High

Primary Actor: User

Use Case Type: Detailed, Essential

Stakeholders and Interests:

User – Users who wants to manage all the water tank that user wish to monitor.

Brief Description:

This use case describes how the user can manage all the water tanks.

Trigger:

A user wants to view/add/delete/edit water tanks that should already set up the

sensors and devices to connect to this application.

Relationships:

Association: User

Include: N/A

Extend: N/A

Generalisation: N/A
Normal Flow of Events:

View

1. The user now is at the Manage Water Tanks page, which can be access

by clicking the change water tanks button at the default water tank

dashboard page.

2. System show and list all the existing available water tanks in this page.

Add

3. If user want to add new tank, can click the add new tank button.

4. Then user fill in the necessary information to create a new device in

ThinkSpeak cloud server, then get the access token.

5. The new water tank is now added, and the access token is used by

microcontroller to setup REST API to send data to the application.

3. User click on the water tank, then a view with several options shows up.

Edit

4. If user want to edit exising tank, user click on the edit water tank button

in the view options.

5. Then user can edit the water tank information in the edit form.

6. Then click save button to save the edit.

Delete

4. If user want to delete the existing tank, user can click on the delete

tank button from the view options.

5. Then system will ask user to confirm the delete operation.

6. User click confirm, the water tank is now deleted.
Sub-flows:
Alternate/Exceptional Flows:

114

Use Case Name: Manage Sensors ID: 6 Importance

Level: High

Primary Actor: User

Use Case Type: Detailed, Essential

Stakeholders and Interests:

User – Users who wants to manage all the water parameter sensors in a water

tank that user wish to monitor.

Brief Description:

This use case describes how the user can manage all the water parameter sensors

in a water tank.

Trigger:

A user wants to view/add/edit/delete water sensors.

Relationships:

Association: User

Include: N/A

Extend: N/A

Generalisation: N/A
Normal Flow of Events:

View

1. User is now starting from the the water parameters gauge dashboard of

a selected water tanks.

2. This system list shows all the existing water parameters gauge that are

included in this water tank.

Add

3. If user want to add new sensors, click add sensors.

4. Then user fill in the necessary information to create a new sensors of

new water parameter.

5. Them system start to search whether the new water parameters data is

retrieved inside the ThinkSpeak cloud server.

3. User click on the water parameter gauge, then user are redirected to the

water parameter details page.

4. User click on the triple dot icon on right top corner, then a small view

pops out showing the options.

Edit

5. If user want to edit existing sensor, user click the edit button

6. Then the edit form show up, user fill in the edit form.

7. Then click save button to save the edit.

Delete

5. If user want to delete the existing sensor, user can click on the delete

sensor button from the view options.

6. Then system will ask user to confirm the delete operation.

7. User click confirm, the water sensor is now deleted.
Sub-flows:

Alternate/Exceptional Flows:

Add

115

5.1 If yes, then the new water parameter gauge is added to the gauge

dashboard, and this water parameter gauge is clickable to move into the

details page.

5.2 If no, the water parameter gauge is not created and prompt a message

saying that the water parameter sensor is not connected properly.

116

Use Case Name: Manage Fish Species ID: 7 Importance

Level: High

Primary Actor: User

Use Case Type: Detailed, Essential

Stakeholders and Interests:

User – Users who wants to manage profile for fish species which can be used

to set the water quality threshold according to the best optimum water parameter

range of a fish inserted by user.

Brief Description:

This use case describes how the user can manage the fish species profile.

Trigger:

A user wants to view/search/add/edit/delete fish species profile.

Relationships:

Association: User

Include: N/A

Extend: N/A

Generalisation: N/A
Normal Flow of Events:

View

1. User is now starting from the the water tanks dashboard.

2. This system list shows all the existing water tanks.

3. User click on the triple dot button at the top right corner, a small option

list pops out.

4. User click on manage fish species.

5. Users are redirected to Manage Fish species page.

6. System list all the current existing fish species.

Search

7. There is a search bar for user to search for the specific fish using fish

names.

Add

7. If user want to add new Fish Species, click add new fish button.

8. User are redirected to a add new fish species page.

9. Then user fill in all necessary information such as fish name, the

minimum and maximum water parameter limit.

10. Then press save to add the new fish into the fish species list.

7. User click on the fish name, then user will be redirect to the fish species

details page.

8. User can click on the triple dot button to see more options view.

Edit

9. If user want to edit fish species, user click the edit button from the view.

10. Then, all the water pamameters minimum and maximum threshold is

editable now.

11. Then click save button to save the edit.

Delete

117

9. If user want to delete the existing fish species, user can click on the

delete button from the options view.

10. Then system will ask user to confirm the delete operation.

11. User click confirm, the fish species is now deleted.
Sub-flows:

Alternate/Exceptional Flows:

118

Use Case Name: View Analysis ID: 8 Importance Level: High

Primary Actor: User

Use Case Type: Detailed, Essential

Stakeholders and Interests:

User – Users who wants to view some analysis and prediction on a specific

water quality of a water tank.

Brief Description:

This use case describes how the user can view analysis and prediction of the

trend of a water quality of a water tank.

Trigger:

A user wants to view analysis and prediction of the trend of a water quality of a

water tank.

Relationships:

Association: User

Include: N/A

Extend: N/A

Generalisation: N/A
Normal Flow of Events:

View

1. User is now at the gauges dashboard.

2. User click on the water parameter gauges that he wish to view

prediction and analysis.

3. User redirect to that water parameter details page.

4. User are able to see the analysis and prediction below the line graph.

Sub-flows:

Alternate/Exceptional Flows:

119

Use Case Name: Alert on Water Quality ID: 9 Importance Level: High

Primary Actor: User

Use Case Type: Detailed, Essential

Stakeholders and Interests:

User – Users who wants to get alert when the water quality of a water tank

become nearly reach unfavourable condition.

Brief Description:

This use case describes how the user can get alert using web application and

mobile application when the water quality of a water tank become nearly reach

unfavourable condition.

Trigger:

A user wants to get alert when the water quality of a water tank become nearly

reach unfavourable condition so that user can make immediate action

to prevent the water condition become worse to save the fish.

Relationships:

Association: User

Include: N/A

Extend: N/A

Generalisation: N/A
Normal Flow of Events:

Web

1. User is now at any page of the application.

2. When any water parameter of a tank goes beyond the maximum or

minimum limit of a water parameter, application pop out a warming

windows telling user which water parameter is now in dangerous

condition, the corresponding water tank information, and link lead to the

water parameter gauges page of that water tank.

3. An SMS with similar message content is sent to user phone number.

4. The water parameter gauges that is dangerous now should be shown in

red colour.

5. User click on that gauges, system redirect user to details page and show

a list of possible action can be taken.

Mobile

1. User mobile device is in sleep mode or in use condition, this application

is running at the background.

2. When any water parameter of a tank goes beyond the maximum or

minimum limit of a water parameter, a smartphone notification receives

a warning message telling user which water parameter is now in

dangerous condition, the corresponding water tank information.

3. User click the notification.

4. System open the application and redirect user to that water tank’s gauges

dashboard.

5. The water parameter gauges that is dangerous now should be shown in

red colour.

6. User click on that gauges, system redirect user to details page and show

a list of possible action can be taken.

Sub-flows:

120

Alternate/Exceptional Flows:

121

CHAPTER 5

5 SYSTEM DESIGN

5.1 Introduction

This chapter discuss about the Water Quality Monitoring System Architecture.

It is integrated with 4 systems, they are: Data Acquisition System, ThingSpeak

Cloud Service, Laravel Back End, React Native Front End Mobile Application.

Data Acquisition System helps to collects water parameters data from the

aquafarm and sends it to the ThingSpeak Cloud Server. Thing Speak Cloud

Service receives the data sent and store them into database and provide data

visualization which can be accessed through browser. Laravel Framework Back

End Server provides API to communicate with React Native Front End Mobile

Application in order to provide it with data processing, data analysis, machine

learning prediction , user authentication and authorization and other related

operation functions. React Native Front End is the mobile application where

user can interact with it to monitor the water quality, user can view the

dashboard, record activity, open notification, user registration and login. With

the integration of all these systems, a designated Water Quality Monitoring

Systems could be successfully developed.

5.2 System Architecture Design

Figure 5.2.1 Water Quality Monitoring System Architecture

122

Figure 5.1 shows the complete System Architecture Design, this section discuss

the components use to build the overall system architecture, each component’s

usage will be discuss in their corresponding sub-system architecture later. The

Data Acquisition Module consist of ESP8266 microcontroller, Atlas Scientific

Industrial Dissolved Oxygen Probe, EZO Dissolved Oxygen Probe, Industrial

pH/ORP/Temp Probe, EZO RTD Temperature Circuit, EZO pH Circuit and

Arduino IDE. Next, Communication Module consist of ThingSpeak Cloud

Server service and MathWorks MATLAB Visualization. Data Processing

Module consist of Laravel framework, Python, and Wamp Server. Lastly, User

Interface Module consist of React Native Framework and Android Studio.

5.2.1 Data Acquisition Module Architecture

This section discuss the usage of each component in Data Acquisition Module,

and how they works together to perform their task.

5.2.1.1 Atlas Scientific Industrial Dissolved Oxygen Probe + EZO™

Dissolved Oxygen Circuit ESP8266 microcontroller

Figure 5.2.2 Atlas Scientific Industrial Dissolved Oxygen Probe

connected to EZO™ Dissolved Oxygen Circuit ESP8266

microcontroller ("Industrial Dissolved Oxygen Probe," n.d.).

123

Atlas Scientific Industrial Dissolved Oxygen Probe is the sensor used to collect

Dissolved Oxygen in the liquid samples. It is chosen because it allows long term

readings. This features is supported by its massive amount of electrotyle

ensuring it to be working fine for a long period until the next calibration

("Industrial Dissolved Oxygen Probe," n.d.). This sensor collects the data and

sends it to the EZO™ Dissolved Oxygen Circuit for accurate measuring.

Figure 5.2.3 The EZO™ Dissolved Oxygen Circuit

The purpose of this circuit is to preprocess the Dissolved Oxygen data value

collected from the sensor to become highly accurate in Mg/L. Without this

circuit, it is very difficult to calculate Dissolved Oxygen level accurately

because it requires many mathematical calculations and needs around hundred

times of chemical titration tests to validate the readings. This circuit using its

functionality of temperature, salinity and pressure compensation to finalize the

correct DO values ("EZO™ Dissolved Oxygen Circuit," n.d.).

5.2.1.2 Industrial pH/ORP/Temp Probe + EZO™ RTD Temperature

Circuit + EZO™ pH Circuit

124

Figure 5.2.4 Industrial pH/ORP/Temp Probe + EZO™ RTD Temperature

Circuit + EZO™ pH Circuit ("Industrial pH/ORP/Temp Probe,"

n.d.)

Atlas Scientific Industrial pH/ORP/Temp Probe is the sensor used to collect pH

value and Temperature in the liquid samples. It is chosen because it is highly

durable, and can last with a long period until the next calibration. Besides, this

probes offers equivalent quality of sensing capabilities as lab-grade probles for

pH and ORP. This means that it can provide accurate measurement result of pH.

Moreover, this sensor also have built-in Temperature Sensor (PT-1000) which

allows precise temperature measurements as temperature also helps to increase

the accuracy of PH readings. This sensor collects the Temperature and pH data

and sends them to the EZO™ RTD Temperature Circuit and EZO™ pH Circuit

respectively ("Industrial pH/ORP/Temp Probe," n.d.).

125

Figure 5.2.5 EZO™ RTD Temperature Circuit ("EZO™ RTD Temperature

Circuit," n.d.)

The purpose of this circuit is to preprocess the RTD Temperature data value

collected from the sensor and provide the most accurate temperature reading

in °C.

Figure 5.2.6 EZO™ pH Circuit ("EZO™ pH Circuit," n.d.)

The purpose of this circuit is to preprocess the pH value data collected from the

sensor and ensure its accuracy to be on par with expensive bench-top pH meters.

5.2.1.3 ESP8266 microcontroller

126

Figure 5.2.7 ESP8266 microcontroller

ESP8266 microcontroller is chosen to be used here because it contains built-in

Wi-Fi capabilities, which allows internet connection. Then it can be

programmed to send data to ThingSpeak Server using REST API provided by

ThingSpeak. The programming language we used here is Arduino, and the tools

used to program it is Arduino IDE. Besides, this microcontroller also can be

programmed to keep requesting data from three EZO Circuit, DO, RTD, and pH

with an interval of 15 seconds, once all the data from the sensors is collected

successfully, then we will use the ThingSpeak Library function to sends the data

to the Cloud Server for data storing.

5.2.1.4 Arduino IDE

Figure 5.2.8 Arduino IDE

127

Arduino IDE is an Integrated Development Environment that will be used to

program the microcontroller in this project. This choice is driven by its open-

source nature, and it has a lot of libraries including ThingSpeak.h,

ESP8266Wifi.h, SoftwareSerial.h. ThingSpeak.h library provides convenient

function to sends data to ThingSpeak server. ESP8266Wifi.h library allows

microcontroller to establish internet connection via ESP8266 microcontroller's

Wi-Fi capability. SoftwareSerial.h library enables communication between

microcontroller and EZO circuits using baud rate of 9600.

5.2.2 Communication Module Architecture

5.2.2.1 Cloud Integration with ThingSpeak

Figure 5.2.9 ThingSpeak Website

Figure 5.9 shows the website interface for utilizing the ThingSpeak Cloud

service. ThingSpeak has been selected in this project due to its suitability for

IoT projects for data collection in cloud, and it also provides several features

such as Data Visualization and Data Analysis. In order to start the service, we

need to create a new Channel and get the Channel ID, the Channel access must

be set to public and the Channel ID is essential for the microcontroller to sends

data to the correct channel. Besides, in the user interface module and data

processing module, this Channel ID is a necessary component, serving as a key

required for making REST API requests.

128

5.2.2.1.1 Channel

Figure 5.2.10 Sample Channel

Figure 5.10 is a sample view of ThingSpeak Channel, it has Channel ID, and

user can add Visualization, Add Widgets, and integrate it with MATLAB

Visualization and MATLAB Analysis to perform more advanced visualization

and analysis. The line graph shown is the default line graph to show the current

database columns storage condition. Each line graph stands for the data

collected in each column over time.

5.2.2.1.2 API Keys

129

Figure 5.2.11 API Keys of a Channel

Figure 5.11 shows the API Keys and the API Requests to read and write data of

this channel. The Write API Key is essential for microcontroller to send data to

this channel. The API Requests is essential for React Native Front End from

User Interface Module and Laravel Back End from Data Processing Module to

retrieve the collected Water Quality data.

5.2.2.1.3 Channel Settings

130

Figure 5.2.12 Channel Settings

Figure 5.12 is the settings of a ThingSpeak Channel, the fields is the column of

a database. Therefore, we need to define the fields with the water parameters we

have to monitor in this project. The microcontroller should send the data to the

correct fields later.

5.2.2.1.4 Public view

Figure 5.2.13 Public View of a Channel

Figure 5.12 shows the public view of a channel, which is required for setting up

gauges and line graphs of each water parameter. This setup is crucial because

the application will directly use the channel ID and their corresponding chart

links to retrieve the gauges and line graphs in the public view and display them

131

in the dashboard. If no gauges and line graphs are prepared in public view, the

dashboard will not displays these elements.

5.2.2.2 MathWorks MATLAB

5.2.3 Data Processing Module

5.2.3.1 Laravel Framework Back End Architecture

Figure 5.2.14 Laravel, a PHP framework (Otwell, n.d.)

Laravel is a PHP framework use to build web application, it is known for its

expressive and elegant syntax (Otwell, n.d.). In addition, Laravel can be use to

built a reliable backend API for a mobile application. This statement is

supported with the fact that it makes the development tasks easier and more

efficient with the robust set of tools it provides and well-structured architecture.

Laravel use Model-View-Controller (MVC) archirectural pattern that seperates

the application’s logic into 3 distinct components:

1. Model:

132

Represent the application’s data and business logic. It interacts with

the database, defines the data structure and the relationships between

different data entities.

2. View:

Represents the user interface and the presentation layer of the

application. Views are responsible for rendering data and displaying

it to the user.

3. Controller:

Represent an intermediary between the Model and View. Controllers

handle incoming HTTP requests, process the data, and determine

which view to display.

Laravel Framework’s archirecture is complete and encompasses both the

development of front-end and back-end together, as shown by the MVC

architecture explained earlier. However, it does not supports the development

of mobile application, and thus we only ultilize the Model and Controller in

Laravel framework to build our back end application. Then, we use React Native

to build mobile application and act as front end to replace the View.

A Laravel back-end application include these key features:

1) Artisan:

a robust command-line tool called Artisan for automating common

development tasks, such as code generation, database migration and

running tests.

2) Eloquent ORM:

Eloquent is Laravel’s built-in Object-Relational Mapping (ORM)

system, more simplified way to work with databases using simple and

expressive syntax.

3) Routing:

133

Laravel offers a clean and elegant way to define web routes, allows

managing HTTP requests and create RESTful APIs.

4) Authentication and Authorization:

Laravel provides an easy authentication system setup, allows developer

to implement user registration, login, and password reset functionalities

efficiently. It also offers a robust authorization mechanism for

controlling access to specific parts of the application.

5) Database migrations:

Laravel’s migration system allows for version control of database

schemas, simplifying database structure changes and ata management.

6) Testing Support:

Laravel is equipped wth support for testing using PHPUnit, allowing

developers to write unit and integration tests for their applications.

Above are the features that is used to build the Laravel back-end application.

5.2.3.2 Python

Figure 5.2.15 Python

Python is used in this project because it is a powerful tool to perform machine

learning tasks in Laravel back-end server. It provides these key features:

1) Rich Ecosystem of Libraries:

134

Python has a large ecosystem of libraries and frameworks designed for

machine learning.

2) Cross-Plarform Compatibility:

Python is available on various operating systems, making it easy to

develop and deplot machine learning solutions across different platforms.

3) Scalability:

Python can be used for small-scale and large-scale machine learnig

projects.

4) Machine Learning Frameworks:

Python allows developers to work with various machine learning

frameworks and tools, ensuring the flexibility in choosing the correct

tool for the task.

5.2.3.3 WampServer

Figure 5.2.16 WampServer (Bourdon, n.d.)

 WampServer is a Windows web development environment that this project can

ultilize it to create a web applications (Bourdon, n.d.). Its key features are:

135

1) Apache Web Server:

Apache is a popular open-source web server that allows developer to

host and server web application locally.

2) MySQL Database:

MySQL is a widely used open-source relational database management

system, it allows developers to create, manage, and interact with

databases for your web applications.

3) PHP:

PHP is a server-side scripting language commonly used for web

development. It allows developers to writ dynamic web applications and

scripts that run on the server.

4) phpMyAdmin:

phpMyAdmin is a web-based database administration tool for managing

MySQL databases. It provides user-friendly interface for tasks like

database creation, table management, and data manipulation.

5) Development and Testing:

It allows developers to build and test web applications locally before

deploying them to production servers.

5.2.4 User Interface Module

5.2.4.1 React Native Front End Architecture

136

Figure 5.2.17 React Native, a JavaScript framework

React native is a JavaScript framework that use to build mobile applications. It

is open source and is well known of its code reusability, supported with large

ecosystem of libraries and have fast development cycle. React Native front-end

application consist of this these key features and components in its architrecture:

1. Components:

The archirecture of React Native is component-based. Developers can

create their own UI components, such as buttons, text input fields, and

navigation elements. These created components are reusable throughout

the app.

2. JSX

JSX is a syntax extension for JavaScript encourage developers to create

UI components in a descriptive and clear manner.

3. React Navigation

A library that supports navigation of the React Native application. It

contains stack navigation, tab navigation, and drawer navigation. This is

necessary for creating the app’s navigation structure.

4. State Management

137

In order to manage the state and data flow in React Native applications,

Mobx or Redux can be used to manage the app’s state and data flow.

This is required to ensure the UI is in sync with the application’s data.

5. API Integration

As it is front-end application, it is needed to communicate with back-

end services and APIs. Therefore, react native apps can use the built-in

‘fetch’ function or popular libraries such as Axios to make HTTP

requests and handle responses.

6. Styling

React Native applications using CSS to style components for the design

of UI that needed to be display in the application.

7. Third-Party Libraries

React Native has a large ecosystem of third-party libraries and packages

and make the development easier and faster.

8. Native Modules

For tasks that are not supported by native functionality, React native

allows developers to custom native modules in Java and bridge them to

JavaScipt. For example, backgound service functionality.

5.2.4.2 Android Studio

Figure 5.2.18 Android Studio

138

Android Studio is the official integrated development environment (IDE) for

Android App development. Its main usage is to build, test and debug android

applications. The key features of Android Studio that will be used in this project

are:

1. Emulator:

Android studio has built-in android emulator that allows the developer

to test their apps in computer using the virtual android devices. It

provides various Android versions and device configurations, which

allows developers to test their app on different screen sizes and

resolutions.

2. Debugger:

A powerful debugger features that helps developers to identify and fix

bugs in their code, such as real-time debugging and inspection of

variables, breakpoints and logs.

3. App Signing:

Android Studio provides tools for signing and packaging Android apps

for register it on the Google Play Store for other user to download the

application.

5.3 Conclusion

The Water Quality Monitoring System architecture comprises of four essential

modules: the Data Acquisition Module, Communication Module, User Interface

Module, and Data Processing Module. Each of these modules is designed with

robust tools and components to ensure their successful operation. The

integration of these well-designed modules culminates in the creation of a

functional and comprehensive system.

139

CHAPTER 6

6 SYSTEM IMPLEMENTATION

6.1 Introduction

This chapter will discuss the system implementation of Water Quality

Monitoring System. System implementation is an important phase of the

software development lifecycle, it brings the planned designs and concepts into

reality and make it contribute to its own objectives. Therefore, this chapter will

discuss from project setup to system deployment. Besides, this chapter also

discuss how the front-end User Interface module works with back-end Data

Processing Modules to fulfill the use cases and requirements specification

discussed in chapter 4.

6.2 Project Setup

This section discuss how to setup the Data Acquisition Module, Communication

Module Setup, Data Processing Module, and the User Interface Module

6.2.1 Communication Module Setup

In order to setup ThingSpeak Cloud Server to store the sensors data, first we

need to create a MathWorks account.

Figure 6.2.1 Register Mathworks account

After successfully register an account, we need to login to your account, and

ThingSpeak will automatically redirect you to My Channels page.

140

Figure 6.2.2 My Channels page

Then, we need to press the new channel button to create a new channel.

Figure 6.2.3 Create new channel

Fill in the necessary information, such as Name is Aquaculture, Field 1 is DO,

Field 2 is RTD and Field 3 is pH. After fill in all these information, you can hit

the save channel button at the pages below. After that you will get a new channel

looks like this:

141

Figure 6.2.4 new channel page

It will automatically provides the line graphs based how many fields you defined

in the previous steps. In our case, we have 3 fields, DO, RTD and pH, so there

will be 3 default line graphs prepared.

Figure 6.2.5 Field 1 line graph

There is no line graphs shown yet because there is no data received by the

channels. Line graphs is for showing the trends of the water parameters, a gauge

chart is to show the current water parameter value, and its safety range. In order

to add a gauge chart, we need to press the “Add Widgets” button from figure

6.4 > choose Gauge > press “Next” > Fill in the gauge settings > save.

142

Figure 6.2.6 Add new gauge

Figure 6.6 shows the process to add the new gauge, we need to repeat it for RTD

and pH gauge. Their settings are:

Figure 6.2.7 RTD and pH Gauge Options

After successfully added the gauges, the result will looks like this:

Figure 6.2.8 DO, RTD and pH gauges

143

Finally, the Communication Module is all set now, but it still needs to integrate

with Data Acquisition Module in order to get the data to store in the cloud

database.

6.2.2 Data Acquisition Module Setup

In order to setup this module, we first need to prepare all the components as

stated in Chapter 5:

1) Microcontroller:

- ESP8266 microcontroller

2) Dissolved Oxgen Sensors:

- Atlas Scientific Industrial Dissolved Oxygen Probe

- EZO™ Dissolved Oxygen Circuit ESP8266

microcontroller

3) pH & Temperature Sensors:

- Industrial pH/ORP/Temp Probe

- EZO™ RTD Temperature Circuit

- EZO™ pH Circuit

Firstly, we need to connects these components to become a complete electronic

circuit using connector such as:

- Jumper Wires

- SMA Female (30cm) cable

- DC Plug 2.1mm C/W 2 way Green Terminal Block

- DC Jack C/W 2 way Green Terminal Block

144

Figure 6.2.9 Data Acquisition Module components connection

Figure above shows the correct connection of the Data Acquisition Module

using all the components prepared.

Figure 6.2.10 ESP8266 pins

145

Figure 6.2.11 EZO circuit pins

Figure 6.2.12 DO probe central wires and outer wires

Above shows the wires of the sensors and pins of EZO circuit and

microcontroller. First, jumper wires are used to connect between EZO circuits,

microcontroller and sensors:

1) TX from EZO connects to RX from microcontroller

2) RX from EZO connects to TX from microcontroller

3) GND from EZO connects to GND from microcontroller

4) VCC from EZO connects to 3.3V from microcontroller

5) Central wire from sensors to PRB from microcontroller

6) Outer wire from sensors to PGND from microcontroller

146

7)

8) Figure 6.2.13 Male SMAs of Industrial pH/ORP/Temp Probe

Due to Industrial pH/ORP/Temp Probe only provides Male SMA wires, we need

to use a Female SMA cable to convert it to raw wires which contains central and

outer wires.

Next, we need to program the ESP8266 to perform the task of sending the

collected data at intervals of 15s once. Therefore, we need to use data cable to

connects ESP8266 with a computer that already installed Arduino IDE. Then

below is the Arduino code, with comments to explain how the code works to

complete the task:

#include <ThingSpeak.h> //to interact with thingspeak server

#include <ESP8266WiFi.h> //to connects to wifi

#include <SoftwareSerial.h> //to communicate with sensors

#define rx_DO D1 //This is rx pin for DO

#define tx_DO D2 //This is tx pin for DO

#define rx_RTD D3 //This is rx pin for RTD

#define tx_RTD D5 //This is tx pin for RTD

#define rx_pH D6 //This is rx pin for pH

#define tx_pH D7 //This is tx pin for pH

const int ARRAY_SIZE = 5; // Define the size of the array

SoftwareSerial myserial_DO(rx_DO, tx_DO); //define how the soft

serial port is going to work with DO sensors using D1,D2

SoftwareSerial myserial_RTD(rx_RTD, tx_RTD); //define how the soft

serial port is going to work with RTD sensors using D3,D5

147

SoftwareSerial myserial_pH(rx_pH, tx_pH); //define how the soft

serial port is going to work with pH sensors using D6,D7

String inputstring = ""; //a string to hold incoming data from the PC

String sensorstring_DO = ""; //a string to hold the data from the DO

sensors

String sensorstring_RTD = ""; //a string to hold the data from the

RTD sensors

String sensorstring_pH = ""; //a string to hold the data from the pH

sensors

boolean input_string_complete = false; //have we received all the

data from the PC

boolean sensor_string_complete_DO = false; //have we received all the

data from DO sensors

boolean sensor_string_complete_RTD = false; //have we received all

the data from RTD sensors

boolean sensor_string_complete_pH = false //have we received all the

data from the pH sensors

boolean run_DO = true; // controls to read DO data

boolean run_RTD = false; // controls to read RTD data

boolean run_pH = false; // controls to read pH data

float DO; //used to hold a floating point number that is the DO

float RTD; //used to hold a floating point number that is the RTD

float pH; //used to hold a floating point number that is the pH

WiFiClient client; // create a WiFiClient object

// ThingSpeak information

char thingSpeakAddress[] = "api.thingspeak.com"; // ThingSpeak

address

unsigned long myChannelNumber = 2210102; // Channel ID

char* readAPIKey = "TRYX3FPTI2HU1ZG1"; // Channel’s read API key

char* myWriteAPIKey = "UJT4ZI3HV5BCLQQ7"; // Channel’s write API key

// write Water Parameters into ThingSpeak database columns

unsigned int dataField_DO = 1; // write DO data in field1

unsigned int dataField_RTD = 2; // write temperature data in field2

unsigned int dataField_pH = 3; // write pH data in field3

//set up the hardware

void setup() {

 Serial.begin(9600);//set baud rate for the hardware serial port_0

to 9600

 myserial_DO.begin(9600);//set baud rate for the software serial

port to 9600

148

 myserial_RTD.begin(9600);//set baud rate for the software serial

port to 9600

 myserial_pH.begin(9600);//set baud rate for the software serial

port to 9600

 inputstring.reserve(10);//set aside some bytes for receiving data

from the PC

 sensorstring_DO.reserve(30);//set aside some bytes for receiving

data from DO sensor

 sensorstring_RTD.reserve(30);//set aside some bytes for receiving

data from RTD sensor

 sensorstring_pH.reserve(30);//set aside some bytes for receiving

data from pH sensor

 ThingSpeak.begin(client); // Initialize ThingSpeak

 //setup wifi connection

 //+++++++++++++++++++++

 WiFi.begin("WIFI_NAME", "WIFI_PASSWORD");

 Serial.print("Connecting");

 while (WiFi.status() != WL_CONNECTED)

 {

 delay(500);

 Serial.print(".");

 }

 Serial.println();

 Serial.print("Connected, IP address: ");

 Serial.println(WiFi.localIP());

 //---------------------

}

// Receive commands from PC to sensors.

void serialEvent() {//if the hardware serial port_0 receives a char

 inputstring = Serial.readStringUntil(13);//read the string until we

see a <CR>

 input_string_complete = true;//set the flag used to tell if we have

received a completed string from the PC

}

// The task is running here

void loop() {//here we go...

 if (input_string_complete == true) {//if a string from the PC has

been received in its entirety

 myserial_DO.print(inputstring);//send that string to the Atlas

Scientific product

 myserial_DO.print('\r');//add a <CR> to the end of the string

 inputstring = "";//clear the string

149

 input_string_complete = false;//reset the flag used to tell if we

have received a completed string from the PC

 }

 //read sensor data

 //starts to read DO sensor’s value and the run_RTD and run_pH is

set to false at the beginning to prevent the mix of reading

 if (run_DO && myserial_DO.available() > 0) {//if run_DO == true and

myserial_DO.available() > 0 means this connection receives a

character

 Serial.println("DO available: " + sensorstring_DO);

 char inchar_DO = (char)myserial_DO.read();//get the char we just

received

 sensorstring_DO += inchar_DO;//add the char to the var called

sensorstring

 if (inchar_DO == '\r') {//if the incoming character is a <CR>

means the reading is complete

 Serial.println("DO read done: " + sensorstring_DO);

 sensor_string_complete_DO = true;//set to true means the DO

reading is read succesfully

 run_DO = false; // since the DO is read complete, then we

should prevent it from reading anymore until the other water

parameter is reading complete

 run_RTD = true; // set this to true, means that we should

proceed to read RTD value now.

 }

 }

 //read sensor data

 if (run_RTD && myserial_RTD.available() > 0) { //if we see that the

RTD sensors has sent a character and run_RTD is set to true

 Serial.println("RTD available: " + sensorstring_RTD);

 char inchar_RTD = (char)myserial_RTD.read();//get the char we

just received

 sensorstring_RTD += inchar_RTD;//add the char to the var called

sensorstring

 if (inchar_RTD == '\r') {//if the incoming character is a <CR>

 Serial.println("RTD read done: " + sensorstring_RTD);

 sensor_string_complete_RTD = true; //set to true means the RTD

reading is read successfully

 run_RTD = false; //set to false to stop read RTD value until it

is set to true

 run_pH = true; //set to true means we can start to read pH

value now

 }

 }

150

 if (run_pH && myserial_pH.available() > 0) {//if we see that the pH

sensor has sent a character, and run_pH is set to true

 Serial.println("pH available: " + sensorstring_pH);

 char inchar_pH = (char)myserial_pH.read();//get the char we just

received

 sensorstring_pH += inchar_pH;//add the char to the var called

sensorstring

 if (inchar_pH == '\r') {//if the incoming character is a <CR>

 Serial.println("pH read done: " + sensorstring_pH);

 sensor_string_complete_pH = true; //set to true means the pH

reading is read succesfully

 run_pH = false; //set to false stop reading pH value until it

is set to true again

 }

 }

 if (sensor_string_complete_DO == true && sensor_string_complete_RTD

== true && sensor_string_complete_pH == true) { //if

all water parameters reading is collected then returns true

 sensor_string_complete_DO = false; //set this back to start next

round of data collecting

 sensor_string_complete_RTD = false; //set this back to start next

round of data collecting

 sensor_string_complete_pH = false; //set this back to start next

round of data collecting

 DO = 0; //set this float to 0 to reset the reading

 RTD = 0; //set this float to 0 to reset the reading

 pH = 0; //set this float to 0 to reset the reading

 if (isdigit(sensorstring_DO[0])) { //if the first character in

the string is a digit

 DO = sensorstring_DO.toFloat(); //convert the string to a

floating point number so it can be evaluated by the Arduino

 sensorstring_DO = ""; //set this string to “” to reset the

reading

 Serial.println("DO convert done: sensorstring_DO = " +

sensorstring_DO);

 sensor_string_complete_DO = false; //set this back to start

next round of data collecting

 ThingSpeak.setField(1, DO); // use this to set the field1 to

store DO value

 }

 if (isdigit(sensorstring_RTD[0])) { //if the first character in

the string is a digit

 RTD = sensorstring_RTD.toFloat(); //convert the string to a

floating point number so it can be evaluated by the Arduino

 sensorstring_RTD = "";

151

 Serial.println("RTD convert done: sensorstring_RTD = " +

sensorstring_RTD);

 sensor_string_complete_RTD = false; //set this back to start

next round of data collecting

 ThingSpeak.setField(2, RTD); // use this to set the field2 to

store RTD value

 }

 if (isdigit(sensorstring_pH[0])) { //if the first character in

the string is a digit

 pH = sensorstring_pH.toFloat(); //convert the string to a

floating point number so it can be evaluated by the Arduino

 sensorstring_pH = "";

 Serial.println("pH convert done: sensorstring_pH = " +

sensorstring_pH);

 sensor_string_complete_pH = false; //set this back to false and

start the next round of data collecting

 ThingSpeak.setField(3, pH); // use this to set the field3 to

store RTD value

 }

 }

 Serial.println("DO: " + String(DO) + " | RTD: " + String(RTD) + "

| pH: " + String(pH)); //send that string to the PC's serial monitor

 sensorstring_DO = "";

 sensorstring_pH = "";

 sensorstring_RTD = "";

 // sends the fields data we defined before as a row to that

ThingSpeak channel using channel ID, and write API key

 int x = ThingSpeak.writeFields(myChannelNumber, myWriteAPIKey);

 if(x == 200){

 Serial.println("Channel update successful.");

 }

 else{

 Serial.println("Problem updating channel. HTTP error code " +

String(x));

}

// wait 15 seconds and start the next round of data collection

 delay(15000);

 // DO = 0;

 // RTD = 0;

 // pH = 0;

 sensorstring_DO = "";

 sensorstring_pH = "";

152

sensorstring_RTD = "";

 run_DO = true; // set this to true to start the next round of

data collection of DO value as the opening

 }

}

Upload this code to the ESP8266 to starts the data acquisition module, then we

can detach the data cable from the computer. Next, we needs to connect the

microcontroller to power source, and placed the sensors into the water tank.

Finally, we can starts to observe the data collected by this module using the line

graphs provided by the ThingSpeak channel.

Figure 6.2.14 ThingSpeak channel's line graphs

If the line graphs showing the data is collected, means the data acquisition

module is setup correctly. Notes that this steps can only be done when

Communication Module is already done setting up.

6.2.3 Data Processing Module Setup

The Data Processing Module of water quality monitoring system is a Laravel

back-end server. Due to the limitation of time, we may not be able to deploy the

back-end server to a cloud-based environment or configure it as a web service

accessible via a domain. Therefore, the back-end server will be deployed locally.

This section will explain how to setting up, building, and running the existing

Laravel back-end project to complete the Data Processing Module of water

quality monitoring system.

6.2.3.1 Prerequisites

Before launching the Laravel back-end server, ensure the the device to run the

server have the following prerequisites met:

153

1) WAMP Server:

Make sure the WAMP Server is installed and running on your local

machine. This includes Apache, MySQL, and PHP components, their

version are:

a. WAMP Server – 3.3.0 – 64bit

b. Apache – 2.4.54.2

c. PHP – 8.2.0

d. MySQL – 9.0.31

Figure below shows the WAMP Server and its components version that

use to run the back-end server.

Figure 6.2.15 Wampserver version and its components

2) Composer:

Composer, the PHP dependency manager, should be installed on the

local machine.

6.2.3.2 Project Setup

Step 1: Navigate to Project Directory

154

In order to run the project, first we need to use Visual Studio Code to open the

project terminal. Figure below shows the Laravel back-end project source code

open with Visual Studio Code.

Figure 6.2.16 Laravel Back-end project source code

From the figure above, the terminal is opened and is navigated to the

project directory.

Step 2: Install Dependencies:

Run the “composer install” command in the terminal to install project

dependencies specified in the ‘composer.json’ file.

155

Figure 6.2.17 composer.json

6.2.3.3 Environment Configuration

Step 1: Environment File:

Ensure the .env file is placed in the project root. If not please copy and paste

using the .env.example.

Step 2: Generate Application key:

Then, run the “php artisan key:generate” to generate a unique application key

for the project.

6.2.3.4 Database Setup

Step 1: Database Creation

Open phpMyAdmin from the WampServer, and then create a new database

named ‘aquafarm’.

156

Figure 6.2.18 Create new database

Step 2: Database Migration

Then go back to the terminal and run “php artisan migrate” to apply the database

migrations and create the necessary tables. Database migration files are located

at [PROJECT DIRECTORY]\database\migrations.

157

Figure 6.2.19 Database Migration Files

6.2.3.5 Starting the Laravel back-end server

Step 1: Start Laravel Server

Run this command “php artisan serve” to launch the server. This server will be

host locally at ‘http://127.0.0.1:8000’.

Figure 6.2.20 php artisan server

158

After the terminal shows the Laravel Back-end server is hosted locally, it

confirms that the successful setup of the Data Processing Module.

6.2.3.6 Conclusion

In conclusion, the local machine the run the Laravel back-end server should

fulfill the prerequisites by having WAMP Server and Composer installed. Then

need to open the project, and perform configuration of environment and

database. Finally, serve the application to host it locally and the Data

Acquisition Module is now prepared to perform its task.

6.2.4 User Interface Module Setup (React Native Android Application)

This section explain how to setup the User Interface Module of Water quality

monitoring system. User interface Module is a mobile android application

builded using React Native Framework. However, due to the limitation of time,

we could not make it deployable on a real android mobile app. Instead, we will

deploy it on the android emulator on a local machine.

6.2.4.1 Prerequisites

Before proceed to React Native Android Application setup, these are the

prerequisites that the device running this project should be met:

1) Node.js and npm:

Ensure that Node.js and npm are installed on the device, because these

2 are the fundamental for managing JavaScript packages and running

React Native commands. Run “node -v” to check whether Node.js is

installed, and “npm -v” to verify npm.

Figure 6.2.21 node -v and npm -v

Figure above shows the Node.js and npm is installed in this device.

2) Java Development Kit (JDK):

159

Ensure that the Java Development Kit (JDK) version 8 or later is

installed. The JDK is essential for Android app development. Run “java

-version” to verify java.

Figure 6.2.22 java -version

3) Android Studio and Android SDK Components:

Ensure Android Studio and Android SDK Components is installed

including specific API Levels required for the project for Android App

development and the Android Emulator.

Steps:

1) Launch Android Studio.

2) Open SDK Manager and build.gradle in react native project.

Figure 6.2.23 SDK Manager

160

Figure 6.2.24 build.gradle

3) Verify the buildToolsVersion, compileSdkVersion and

targetSdkversion is same.

4) React Native CLI:

Ensure React Native Command Line Interface (CLI) is installed globally

via npm to facilitate project management.

Figure 6.2.25 react-native -v

If all the prerequisites is passed, then we can now proceed to Project

Initialization.

6.2.4.2 Open Existing React Native Project

Open the existing React Native Project.

161

Figure 6.2.26 React Native Front End Project

6.2.4.3 Dependency Installation

Run “npm install” to install the dependencies specified in package.json.

Figure 6.2.27 dependencies in package.json

6.2.4.4 Running on an Android Emulator

162

After that, run 2 terminals, first terminal is for “npm run start” to open the Metro.

Another terminal is for “npm run android”.

Figure 6.2.28 run Metro

Figure 6.2.29 npm run start

Figure 6.2.30 emulator is running

163

After the emulator is running, it means the User Interface Module is now

completely set up.

6.3 Water Quality Monitoring Mobile Application functions

After completing the setup process of the Water Quality Monitoring System, we

are now ready to utilize the Water Quality Monitoring Mobile application for

monitoring water quality. This section comprehensively addresses the

implementation of the features outlined in the use case description, as listed in

Chapter 4. Additionally, each use case will be supported with a detailed

breakdown of the code responsible for the functionality, encompassing both the

front-end and the back-end.

6.3.1 Register

This section explain how user perform register function.

6.3.1.1 Feature demonstration

Below shows the process of using Register function of Water Quality Montoring

mobile application.

Success Case:

Table 6.3.1 Register Function Success Case

No. Mobile Screen Process

164

1

Figure 6.3.1 Success Register page

1) User go to the ‘Register

Page’.

2) User can see the account

registration page with the

registration form and the

submit button.

3) User then fill in the Name,

E-mail, Password and

Confirm Password

correctly.

4) User click the ‘SUBMIT’

Button

2

Figure 6.3.2 Registration Successful

1) Then, user can see a

Registration Successful

Message pops out.

2) User click on the ‘OK’

button

165

3

Figure 6.3.3 Redirect to Login Page

1) Then user will be redirect

to “Login” page.

2) The login credentials will

be fill in automatically.

Failure Case:

Table 6.3.2 Register Function Failure Case

No. Mobile Screen Process

166

1

Figure 6.3.4 Fail Register page

1) User go to the ‘Register

Page’.

2) User can see the account

registration page with the

registration form and the

submit button.

3) User then fill in the

INVALID E-mail and

Password correctly.

4) User click the ‘SUBMIT’

Button

2

Figure 6.3.5 Registration Fail

1) Then, user can see a

Registration Failed

Message pops out.

2) User click on the ‘OK’

button

3) Then user need to fill in

the registration form

again.

6.3.1.2 Code explanation

167

Explanation starts from the view from the front-end mobile application, and then

how it triggers the Laravel back-end function to perform registration.

React Native (Front-End) – Aquaculture\src\pages\account\register\index.js

{!this.state.complete &&
 <View style={{ width: screenWidth, alignItems: 'center', justifyContent:
'center' }}>

 <Input
 label="Name"
 placeholder='Name'
 onChangeText={this.NameChangeText}
 />
 <Input
 label="E-mail"
 placeholder='E-mail'
 onChangeText={this.EmailChangeText}
 />
 <Input
 label="Password"
 placeholder='Password'
 onChangeText={this.PasswordChangeText}
 secureTextEntry={true}
 textContentType="password"
 />
 <Input
 label="Confirm Password"
 placeholder='Confirm Password'
 onChangeText={this.CondirmPasswordChangeText}
 secureTextEntry={true}
 />
 <Button
 title="SUBMIT"
 buttonStyle={{
 backgroundColor: 'black',
 borderWidth: 2,
 borderColor: 'white',
 borderRadius: 30,
 }}
 containerStyle={{
 width: 200,
 marginHorizontal: 50,
 marginVertical: 10,
 }}
 titleStyle={{ fontWeight: 'bold' }}
 onPress={this.SubmitButtonClick}
 />
 </View>

 }

Figure 6.3.6 React Native registration form

Code snippet above shows the registration form, this form shows

everytime when user navigate to this page, when user click the “SUBMIT”

button, it triggers the ‘”this.SubmitButtonClick” function.

 SubmitButtonClick = async () => {
 const userData = {
 name: this.state.name,
 email: this.state.email,
 password: this.state.password,
 password_confirmation: this.state.confirmpassword,
 };

168

 try {
 const response = await axios.post('http://10.0.2.2:8000/api/register',
userData);
 console.log(response.data);

 const complete = response.data.complete;
 const message = response.data.message;
 const user = response.data.user;

 this.setState({ complete, message, user });

 console.log(this.state.complete);
 console.log(this.state.message);
 console.log(this.state.user);
 Alert.alert(
 'Registration Successful!',
 'You have successfully registered an account.',
 [
 {
 text: 'OK', onPress: () => this.props.navigation.navigate('Login',
{ login_credentials: this.state })
 },
],
 { cancelable: false }
);
 } catch (error) {
 let errorMessage = 'An error occurred during registration';

 if (error.response) {
 const responseData = error.response.data;
 if (responseData && responseData.errors) {
 errorMessage = Object.values(responseData.errors).join('\n');
 }
 } else if (error.message) {
 errorMessage = error.message;
 }

 Alert.alert(
 'Registration Failed',
 errorMessage,
 [
 { text: 'OK', onPress: () => console.log('OK Pressed') },
],
 { cancelable: true }
);
 }
 }

Figure 6.3.7 SubmitButtonClick

Then SubmitButtonClick function first store the user registration

information into a object called userData. Then it try to call axios post method

to call the back-end server API with the routes

(‘http://10.0.2.2:8000/api/register’) and sends the userData object as the request

payload. Then this post request will be handle by the data processing module,

the Laravel back-end server as shown below.

Route::middleware('api')->group(function () {
 ...

Route::post('api/register', [RegisteredUserController::class, 'store']);
...

});

169

Figure 6.3.8 route::api/register – POST

This is the route that handles the request, so this route corresponds to

the controller function from RegisteredUserController, named ‘store’ as shown

in figure below.

public function store(Request $request): JsonResponse
 {
 $validator = Validator::make($request->all(), [
 'name' => ['required', 'string', 'max:255'],
 'email' => ['required', 'string', 'email', 'max:255', 'unique:users'],
 'password' => ['required', 'confirmed', Rules\Password::defaults()],
]);

 // Check if validation fails
 if ($validator->fails()) {
 return response()->json([
 'errors' => $validator->errors(),
], 422); // 422 Unprocessable Entity status code
 }

 // Attempt to create the user
 try {
 $user = User::create([
 'name' => $request->name,
 'email' => $request->email,
 'password' => Hash::make($request->password),
]);

 event(new Registered($user));

 // Return a JSON response indicating successful registration
 return response()->json([
 'message' => 'Registration successful',
 'user' => $user,
 'complete' => true,
]);
 } catch (\Exception $e) {
 // Return an error response if an exception occurs during user creation
 return response()->json([
 'message' => 'Registration failed',
 'error' => $e->getMessage(), // You can customize the error message
here
], 500); // 500 Internal Server Error status code
 }
 }

Figure 6.3.9 RegisteredUserController store function

This store function will first starts by validate the incoming HTTP

request data by checking whether the name, email, password and confirm

password is valid and correct. Then if the validation fail, it will immediately

return a JSON resonse showing there is a validation errors with a status code of

422, indicating that the request data is invalid. If the validation is not fail, then

it will try to create a new user record in database using ‘User::create’ method,

and it also hash the ‘password’ for security purpose using “Hash:make” method.

After the user is successfully created in database, it will return a JSON response

170

indicating successful registration. If there is any exception occurs duting the

user creating processs, it will also return a JSON response indicating the

registration has failed with the HTTP status code 500.

Then if the JSON response is returned without any exception, the

SubmitButtonClick function will continue to set the state using the returned

JSON response from the “store” function. Then the Registration successful

message will be shown. Then if user click “OK” button, it will navigate user to

login page, with the “login_credentials” as parameter to fill in the login

credentials at the login page automatically. If the JSON response is an exception,

the exception error will be catch and then a “Registration Failed” alert box will

be shown with the error message returned. When user click OK, then closed the

“Registration Failed” alert box.

6.3.2 Login

6.3.2.1 Feature demonstration

Below shows the process of using Login function of Water Quality Montoring

mobile application.

Success Case:

No. Mobile Screen Process

1

Figure 6.3.10 Login Screen

1) User fill in the correct

login credentials at the

login page.

2) User click on the “LOG

IN” button.

171

2

Figure 6.3.11 Channel Page

1) User will be redirect to

Channel Page.

Failure Case:

No. Mobile Screen Process

1

Figure 6.3.12 Login Page with wrong

credentials

1) Fill in the incorrect login

credentials

2) Click the “LOG IN”

button

172

2

Figure 6.3.13 Email not found

Figure 6.3.14 Password does not

match

1) The “Login Failed” alert

box pops out showing the

error message such as

“email not found”, and

“password does not

match”.

2) User click “OK” button to

retry login again.

6.3.2.2 Code explanation

Explanation starts from the view from the front-end mobile application, and then

how it triggers the Laravel back-end function to perform login. So the login page

is located at Aquaculture\src\pages\account\login\index.js.

 <View style={{ flex: 1, justifyContent: 'center' }}>
 <Input

173

 label="E-mail"
 placeholder='E-mail'
 onChangeText={this.EmailChangeText}
 value={this.state.email}
 />
 <Input
 label="Password"
 placeholder='Password'
 onChangeText={this.PasswordChangeText}
 secureTextEntry={true}
 textContentType="password"
 value={this.state.password}
 />
 <View style={{
 alignItems: 'center'
 }}>
 <Button
 title="LOG IN"
 buttonStyle={{
 backgroundColor: 'black',
 borderWidth: 2,
 borderColor: 'white',
 borderRadius: 30,
 }}
 containerStyle={{
 width: 200,
 marginHorizontal: 50,
 marginVertical: 10,
 }}
 titleStyle={{ fontWeight: 'bold' }}
 onPress={this.LoginButtonClick}
 />
 <Button
 title="SIGN UP"
 buttonStyle={{
 backgroundColor: 'grey',
 borderWidth: 2,
 borderColor: 'white',
 borderRadius: 30,
 }}
 containerStyle={{
 width: 200,
 marginHorizontal: 50,
 marginVertical: 10,
 }}
 titleStyle={{ fontWeight: 'bold' }}
 onPress={this.RegisterButtonPress}
 />
 {/* <TouchableOpacity

 onPress={this.keepLogin()}
 /> */}
 </View>
 </View>

Figure 6.3.15 Login Form

From this form, after user fill in the login credentials, user click the

“LOG IN” button to trigger the “LoginButtonClick”.

 LoginButtonClick = async () => {
 const userData = {
 email: this.state.email,
 password: this.state.password,
 };

 try {

174

 const response = await axios.post('http://10.0.2.2:8000/api/login',
userData);
 console.log(response.data);

 const token = response.data.token;
 const user = response.data.user;

 // Set the message from the server to state
 this.setState({ user }, () => {
 console.log("LoginButtonClick",this.state.email);
 console.log("LoginButtonClick",token);
 console.log("LoginButtonClick",user.id);
 // Set user info in the MobX store
 this.props.rootStore.setUserInfo(user.email, token, user.id);
 console.log("login.rootStore", this.props.rootStore)
 // Update the isLogin state to trigger navigation
 this.setState({ isLogin: true }, () => {
 // Navigate to Dashboard once isLogin is set to true
 this.props.navigation.push('DrawerNavigator', { screen: 'ChannelStack',
params: { screen: 'Channel' } });
 });
 });
 } catch (error) {
 console.log(error.response); // Log the entire error response for debugging

 let errorMessage = 'An error occurred during login';

 if (error.response) {
 const responseData = error.response.data;
 if (responseData && responseData.message) {
 errorMessage = responseData.message; // Use the server-provided error
message
 }
 }

 Alert.alert(
 'Login Failed',
 errorMessage,
 [
 { text: 'OK', onPress: () => console.log('OK Pressed') },
],
 { cancelable: true }
);
 }
 };

Figure 6.3.16 LoginButtonClick

When LoginButtonClick is trigger, this code uses the login credentials

to make a POST request to a login API endpoint using

('http://10.0.2.2:8000/api/login') using Axios Library. Then the Laravel back-

end server receive the POST request. Below shows the route for this API

endpoint.

Route::middleware('api')->group(function () {

 ...

 Route::post('api/login',

[AuthenticatedSessionController::class, 'store']);

 ...

});

Figure 6.3.17 route::api/login – POST

175

When this route is called, it will trigger the “store” function in

AuthenticatedSessionController. Figure below shows the store function.

public function store(Request $request): JsonResponse
 {
 // Attempt to authenticate the user
 if (Auth::attempt($request->only('email', 'password'))) {
 // Get the authenticated user
 $user = Auth::user();

 // Generate a token for the user
 $token = $user->createToken('authToken')->plainTextToken;

 // Return the token as a JSON response
 return response()->json(['token' => $token, 'user' => $user]);
 }

 // Check if the email exists in the database
 $user = User::where('email', $request->input('email'))->first();

 if (!$user) {
 // Email not found
 return response()->json(['message' => 'Email not found'], 401);
 }

 // Password does not match
 return response()->json(['message' => 'Password does not match'], 401);
 }

Figure 6.3.18 AuthenticatedSessionController store function

In the store function, first it try to authenticate the user using the

Laravel “Auth::attempt” method. If the email and the password match the

credentials of a user in the database, then it will generate an authentication token

and returns it along with the user information in a JSON response. If the

authentication fails, then it will starts to check whether the email provided exists

in the database, if it is not, then return a JSON response with a message saying

“Email not found”. Lastly, if the email is found in the database, then it means

that the password is incorrect, and then it will return a message of “Password

does not match” in a JSON response.

Now, the JSON response is sent back to the LoginButtonClick function.

If the API responds with a success status, it extracts the authentication token

and user information from the response data. Then it sets the user information

in the component’s state using “this.setState”.

Next, it use MobX to set the user’s information (email, token and

userID) in a store for later use throughout the application. Then it will navigate

176

user to a specific screen called “ChannelStack” which uses “Channel” page as

the initial page. In case of there is an error caughts from the login request, it will

show an alert box telling the user “Login Failed” attached with the error message.

User click the “OK” button to retry login.

6.3.3 Channels

6.3.3.1 Feature demonstration

Below shows the process of using Channel function of Water Quality Montoring

mobile application.

Add Channel Success Case:

No. Mobile Screen Process

1

Figure 6.3.19 Channel Page

1. User go to “Channel”

page

2. User wants to add a

channel (Water Tank) to

monitor, user click on the

“Add” button.

177

2

Figure 6.3.20 Add New Channel

1. User see a Add New

Channel Dialog box pops

out.

2. User key in the Channel

ID. Channel ID can get

from the ThingSpeak

Channel page.

3. User click “Submit”

button to add a channel.

3

Figure 6.3.21 Add Channel Success

1. User can see a new

channel is added now.

Error Handling

178

3

Figure 6.3.22 Channel ID not found

1) If user key in invalid

Channel ID, an alert

message pops out telling

user the Channel ID is not

found.

Delete Channel Case:

No. Mobile Screen Process

179

1

Figure 6.3.23 Channel Page with a

channel

1. User successfully added a

new channel.

2. Now user want to delete

this channel.

3. User long press the

channel.

2

Figure 6.3.24 Channel Options

1. User can click “Delete”

button to delete this

channel.

180

3

Figure 6.3.25 Delete Channel

Figure 6.3.26 Channel Deleted

1. After the channel is

deleted from database, a

success message pops out

telling user that channel is

deleted successfully.

2. User press “OK” button

and the Channel page will

be refreshed and now the

channel is deleted from

the Channale page.

6.3.3.2 Code explanation

1) Add Channel

From the Channel Page, when user submit the “Add New Channel” form, then

the submitForm function will be triggered. Below shows the code snippet of the

submitForm function.

submitForm = async () => {
 // Perform Axios POST request here
 try {
 const response = await axios.post('http://10.0.2.2:8000/api/channels', {
 user_id: this.props.rootStore.userId, // Replace with your user ID
 channel_id: this.state.channelID,
 }, {
 headers: {
 'Authorization': 'Bearer ' + this.props.rootStore.token, // Replace with
your actual token
 },
 });

 if (response.status === 201) {
 console.log('POST request success:', response.data);
 // You can also close the dialog or perform other actions after success

181

 this.toggleAddDialog();
 this.props.onPostSuccess(); // Call the callback from props
 } else {
 // Show an alert for non-successful response
 const errorMessage = response.data.error || 'Failed to create a channel.
Please try again later.';
 Alert.alert(
 'Error',
 errorMessage,
 [
 { text: 'OK', onPress: () => console.log('OK Pressed') },
],
 { cancelable: true }
);
 }
 } catch (error) {
 // Show an alert for network errors or other issues
 let errorMessage = error.response.data.error;
 Alert.alert(
 'Error',
 errorMessage,
 [
 { text: 'OK', onPress: () => console.log('OK Pressed') },
],
 { cancelable: true }
);
 }
 };

Figure 6.3.27 submitForm

This submitForm function will request make a POST request to the

URL (‘http://10.0.2.2:8000/api/channels’) with user_id and channel_id as

request body data. Then this POST request will later call this route from back-

end server.

Route::middleware('auth:sanctum')->group(function () {
 Route::post('/channels', [ChannelsController::class, 'store']);
});

Figure 6.3.28 route::api/channels – POST

Note that the route above is protected by the Sanctum authentication

middleware, which means that only authenticated users with valid Sanctum

token will be able to access this routes. This route will call the “store” function

in the ChannelsController. Below is the code snippet for the “store” function.

 public function store(Request $request)
 {
 $user = Auth::user();
 // Validate the incoming request
 $request->validate([
 'channel_id' => 'required|numeric',
 // Add other validation rules for your fields
]);
 $channelId = $request->input('channel_id');
 // Call ThingSpeak API to get data for the provided channel_id

182

 $apiUrl =
"https://api.thingspeak.com/channels/{$channelId}/feeds.json?results=1&timezone=Asi
a%2FKuala_Lumpur";
 try {
 // Attempt to fetch data from the API using file_get_contents
 $apiResponse = file_get_contents($apiUrl);

 if ($apiResponse === false) {
 // Handle file_get_contents error
 return response()->json([
 'error' => 'Unable to fetch data from ThingSpeak API',
], 400);
 }
 // Parse the JSON response
 $apiData = json_decode($apiResponse, true);
 // Check if the channel name matches "Aquaculture"
 if (isset($apiData['channel']) && $apiData['channel']['name'] ===
'Aquaculture') {
 // Create a new channel record in the database
 $channel = $user->channels()->create([
 'channel_id' => $apiData['channel']['id'],
 // Assign other fields
]);
 // Additional logic to create waterparams entries using the API
result
 foreach ($apiData['channel'] as $key => $value) {
 if (strpos($key, 'field') === 0 && $value) {
 $fieldNumber = substr($key, 5); // Extract field number
 $chartTitle = ucfirst($value); // Convert to title case

 $channel->waterparams()->create([
 'water_parameter' => $chartTitle,
 'chart_id' => $key,
 'chart_title' => $chartTitle,
 'field_id' => $key,
 'min_level' => 0,
 'max_level' => 10,
 'min_safe' => 4,
 'max_safe' => 8,
 'normal_color' => '#339933',
 'warning_color' => 'red',
 'unit' => 'unit',
 'line_graph_webview_link' => '',
 'gauge_webview_link' => '',
]);
 }
 }
 $user->load('channels.waterparams');
 return response()->json([
 'message' => 'Channel created successfully',
 'user' => $user,
], 201);
 } else {
 // Channel name doesn't match
 return response()->json([
 'error' => 'Channel ID not found',
], 400);
 }
 } catch (\Exception $e) {
 // Handle exceptions here (e.g., network errors)
 return response()->json([
 'error' => 'Channel ID not found',
], 400);
 }
 }

Figure 6.3.29 ChannelsController store function

This store function first get the authenticated user from the Laravel

authentication system. Next, it validates the channel_id by checking whether it

183

has value and is numeric. Then it will starts to fetch data from the ThingSpeak

API using “file_get_contents” function with a url

(‘https://api.thingspeak.com/channels/{$channelId}/feeds.json?results=1&time

zone=Asia%2FKuala_Lumpur’). If there is an issue with the fetching data such

as network error or bad request, then it will trigger the catch block and return

the “Channel ID not found” as error message. If the data successfully fetched

from the API, it proceeds to parse the JSON response and store them into the

‘$apiData’ variable. Then it checks if the retrieved channel name within

“$apiData” macthes the expected name “Aquaculture”. If does not match, it

returns a JSON response indicating that the channel ID was not found. If the

channel name matches, it continues to create a new channel record in the

application’s database using the authenticated user’s relationship with

channels.Then it iterates through the channel fields in the API response and

creates a ‘waterparams’ entries in the database based on the field information.

After the database record is successfully created, it then returns a JSON response

indicating that the channel was creating successfully, along with the user’s

updated information.

Then the JSON response will then finally returns back to the submitForm

function. If the status code response is ‘201’, it means that the creation of

channel is successful. If the status code is not ‘201’, it means there is an issue

with request, and the error will be displayed on the alert box. In the catch block

also use to handle any network errors that may occurs during the request. So if

any issues happens and being catch in the catch block, an alert box will be shown

along with the error message. The alert box have an “OK” button to retry the

add channel function.

2) Delete Channel

In the Channel page, when user long press a channel, and click on the delete

options. This action will trigger the deleteChannelById function, the details of

the function is provided in the figure below.

deleteChannelById = async (channelId) => {
 console.log("deleteChannelById.channelId",channelId)

184

 try {
 const response = await axios.delete(
 `http://10.0.2.2:8000/api/channels/${channelId}`,
 {
 headers: {
 Authorization: 'Bearer ' + this.props.rootStore.token,
 },
 }
);

 if (response.status === 200) {
 // Channel deletion was successful
 Alert.alert(
 'Success',
 'Channel deleted successfully',
 [
 {
 text: 'OK',
 onPress: () => this.props.navigation.replace('Channel'),
 },
]
);
 } else {
 // Handle non-successful response (e.g., display an error message)
 Alert.alert(
 'Error',
 response.data.error || 'Error deleting channel',
 [
 {
 text: 'OK',
 },
]
);
 }
 } catch (error) {
 console.error(error);
 // Handle network errors or other issues
 Alert.alert(
 'Error',
 'An error occurred while deleting the channel. Please try again later.',
 [
 {
 text: 'OK',
 },
]
);
 }
 };

Figure 6.3.30 deleteChannelById

This function first makes an asynchronous Axios DELETE request to

an API endpoint using this url

(‘http://10.0.2.2:8000/api/channels/${channelId}’). The request includes an

Authorization header with a bearer token, which is for user authentication and

authorization. If the response status code is 200, means that the channel deletion

is successful. Then it will displays an alert box indicating that the channel is

deleted successfully. An “OK” button is provided, when it is pressed it will

refresh the Channel page to re-render the page. Moreover, if the response status

code is not 200, it means that there is issue with the API request. Then an alert

185

box will be shown indicating the error and provided with the error details.

Besides, there is also a catch block also helps to catch and shown error in alert

box if there is error exception thrown in the try block.

Then lets move to the route for this API endpoint call

(‘http://10.0.2.2:8000/api/channels/${channelId}’). It will calls this route as

shown in the figure below.

Route::middleware('auth:sanctum')->group(function () {
 Route::delete('/channels/{channelId}', [ChannelsController::class,
'deleteChannelById']);
});

Figure 6.3.31 route::api/channels/{channelId} – DELETE

This route will then triggers the deleteChannelById function in the

ChannelsController class, the function details is provided below.

public function deleteChannelById($channelId)
 {
 // Retrieve the authenticated user
 $user = Auth::user();
 // Find the channel by its ID
 $channel = $user->channels->find($channelId);
 if (!$channel) {
 // Channel not found, return an error response
 return response()->json([
 'error' => 'Channel not found',
], 404); // You can use a different HTTP status code if needed
 }
 // Delete the channel and its related waterparams
 $channel->delete();
 // Return a success message
 return response()->json([
 'message' => 'Channel deleted successfully',
]);
 }

Figure 6.3.32 ChannelsController deleteChannelById function

It first retrieves the authenticated user and loads the user’s information

into the ‘$user’ variable. Then it attempts to find the channel to be deleted using

the ‘$channelId’. If that channel is not found, then it returns a JSON response

with a 404 status code and an error message indicating that the channel is not

found, and thus channel deletion fails. If the channel is found, it proceeds to

delete it. After successful deletion, it returns a JSON response with a status code

of 200 and a success message indicates the channel is deleted successfully.

186

6.3.4 Dashboard

6.3.4.1 Feature demonstration

Below shows the process of using Register function of Water Quality Montoring

mobile application.

Display Dashboard Case:

No. Mobile Screen Process

1

Figure 6.3.33 User click on a channel

1. User click on a channel,

and it will redirect to the

dashboard page of user

clicked channel.

187

2

Figure 6.3.34 Dashboard gauges page

Figure 6.3.35 Dashboard gauges page

scroll down

1. User can see the

dashboard gauges page.

2. User can scroll up and

down to view other

gauge.

3. User click the “Line

Graphs” tab or slide the

screen from right to left to

show the line graph

dashboard.

188

3

Figure 6.3.36 Line Graphs Dashboard

Figure 6.3.37 Line Graphs Dashboard

scroll down

1. User can view the line

graphs dashboard and it is

also scrollable.

2. Then user can click on the

Calendar tab to switch the

the calendar dashboard.

189

4

Figure 6.3.38 Calendar page analysis

section

Figure 6.3.39 Calendar Tab record

actions section

1. User can see the Change

Water Analysis Page.

2. User can scroll down to

visit “Record Activity”

section, and scroll further

to reach “Activity List”

section.

3. User can also click on the

“Activity Analysis” tab to

switch between “Change

Water”

190

Figure 6.3.40 Calendar Tab activity

list section

6.3.4.2 Code explanation

In the Channel page, when user click on a channel it will trigger this function

called toggleChannelDetails with index and channelId as parameters. The

‘index’ stands for the index for this channel in the channel list. The ‘channelId’

is the ID of this channel is the database record.

toggleChannelDetails = (index, channelId) => {
 console.log("toggleChannelDetails", this.state, index, channelId);
 this.props.navigation.push("Dashboard", { state: this.state, index,
channelId });
 };

Figure 6.3.41 Channel Page toggleChannelDetails function

So when toggleChannelDetails is triggered, it will navigate to a screen

named “Dashboard” and also passes data to that screen via the route’s

parameters. The data includes the current state of the component, index of

current channel and current channel’s ID. After navigated to the dashboard page,

figure below shows the componentDidMount function triggered when user

navigated to dashboard page.

componentDidMount() {

191

 console.log("haha", this.props?.route?.params?.state);
 // doneSetState
 const receivedState = this.props.route.params?.state;
 const channelDataIndex = this.props.route.params?.index;
 const channelId = this.props.route.params?.channelId;

 this.setState({ receivedState, channelDataIndex, channelId }, () => {
 console.log("receivedState", this.state.receivedState);
 console.log("receivedState.channelDataIndex", this.state.channelDataIndex);
 console.log("receivedState.channelId", this.state.channelId);
 this.setState({doneSetState: !this.state.doneSetState});
 this.readActions(); // Call the function after setting state
 });

 this.fetchData();

 // Set up an interval to fetch data every hour (3600000 milliseconds)
 this.dataInterval = setInterval(this.fetchData, 3600000);
 }

Figure 6.3.42 Dashboard Page ComponentDidMount function

So this function will first sets the component’s state using the parameter

from the route’s parameters. Then it starts to run the fetchData function and will

be keep calling this function every hour. The fetchData function will get all the

necessary data for the activity analysis dashboard.

1) Activity Analysis Dashboard

fetchData = () => {
 const channelId = this.props.route.params?.state.channelData[0].channel.id;

 // Fetch data for different actions
 this.fetchActionData(channelId, 'Feed Fish', 'lastFeedFish');
 this.fetchActionData(channelId, 'Change Water', 'lastChangeWater');
 this.fetchActionData(channelId, 'Clean Tank', 'lastCleanTank');
 this.fetchActionData(channelId, 'Clean Sensor', 'lastCleanSensor');

 this.fetchActionAverageData(channelId, 'Feed Fish', 'averageFeedFish');
 this.fetchActionAverageData(channelId, 'Change Water', 'averageChangeWater');
 this.fetchActionAverageData(channelId, 'Clean Tank', 'averageCleanTank');
 this.fetchActionAverageData(channelId, 'Clean Sensor', 'averageCleanSensor');

 this.fetchMonthFrequencyData(channelId, 'Feed Fish', 'frequencyFeedFish');
 this.fetchMonthFrequencyData(channelId, 'Change Water',
'frequencyChangeWater');
 this.fetchMonthFrequencyData(channelId, 'Clean Tank', 'frequencyCleanTank');
 this.fetchMonthFrequencyData(channelId, 'Clean Sensor',
'frequencyCleanSensor');

 this.fetchDurationData(channelId, 'Feed Fish', 'durationFeedFish');
 this.fetchDurationData(channelId, 'Change Water', 'durationChangeWater');
 this.fetchDurationData(channelId, 'Clean Tank', 'durationCleanTank');
 this.fetchDurationData(channelId, 'Clean Sensor', 'durationCleanSensor');
 };

Figure 6.3.43 Dashboard Page fetchData function

The fetchData function first get the ThingSpeak Channel ID from the route

parameter. Then, use this channelId to make multiple calls to ‘fetchActionData’,

192

‘fetchActionAverageData’, ‘fetchMonthFrequencyData’, ‘fetchDurationData’.

Each of these functions will be called 4 times, each with 4 sets of parameter:

1) 'Feed Fish', 'lastFeedFish'

2) 'Change Water', 'lastChangeWater'

3) 'Clean Tank', 'lastCleanTank'

4) 'Clean Sensor', 'lastCleanSensor'

fetchActionData = (channelId, title, stateKey) => {
 axios
 .post('http://10.0.2.2:8000/api/actions/lastinterval/' + channelId, {
 title: title,
 }, {
 headers: {
 'Authorization': 'Bearer ' + this.props.rootStore.token,
 'Content-Type': 'application/json',
 },
 })
 .then(response => {
 this.setState({ [stateKey]: response.data }, () => {
 console.log('fetchActionData', response.data);
 });
 })
 .catch(error => {
 console.error('Error fetching data:', error);
 });
 };
 fetchDurationData = (channelId, title, stateKey) => {
 axios
 .post('http://10.0.2.2:8000/api/actions/duration/' + channelId, {
 title: title,
 }, {
 headers: {
 'Authorization': 'Bearer ' + this.props.rootStore.token,
 'Content-Type': 'application/json',
 },
 })
 .then(response => {
 this.setState({ [stateKey]: response.data }, () => {
 console.log('fetchDurationData', response.data);
 });
 })
 .catch(error => {
 console.error('Error fetching data:', error);
 });
 };
 fetchMonthFrequencyData = (channelId, title, stateKey) => {
 axios
 .post('http://10.0.2.2:8000/api/actions/frequency/' + channelId, {
 title: title,
 }, {
 headers: {
 'Authorization': 'Bearer ' + this.props.rootStore.token,
 'Content-Type': 'application/json',
 },
 })
 .then(response => {
 this.setState({ [stateKey]: response.data }, () => {
 console.log('fetchMonthFrequencyData', response.data);
 });
 })
 .catch(error => {
 console.error('Error fetching data:', error);
 });
 };
 fetchActionAverageData = (channelId, title, stateKey) => {

193

 axios
 .post('http://10.0.2.2:8000/api/actions/averageinterval/' + channelId, {
 title: title,
 }, {
 headers: {
 'Authorization': 'Bearer ' + this.props.rootStore.token,
 'Content-Type': 'application/json',
 },
 })
 .then(response => {
 this.setState({ [stateKey]: response.data }, () => {
 console.log('fetchActionAverageData', response.data);
 });
 })
 .catch(error => {
 console.error('Error fetching data:', error);
 });
 };

Figure 6.3.44 fetchActionData

Inside this function, it makes an HTTP POST request to

(‘http://10.0.2.2:8000/api/actions/lastinterval/+ channelId’) with a JSON

payload in the request body, which includes a ‘title’ property with the value of

‘title’ parameter. The authentication token is also included for authentication

purpose. Then it handles the response from the HTTP request, and set the

component’s state where ‘stateKey’ as the key and response data is set as the

value. Error Handling in this function.

For ‘fetchActionAverageData’, ‘fetchMonthFrequencyData’, and

‘fetchDurationData’. These function are similar, their difference is only the

HTTP POST request url that they are calling. For ‘fetchActionAverageData’,

the url is (‘http://10.0.2.2:8000/api/actions/averageinterval/ + channelId’). Next,

‘fetchMonthFrequencyData’ is using url of

(‘http://10.0.2.2:8000/api/actions/frequency/ + channelId’). Lastly, for

‘fetchDurationData’, its url is (‘http://10.0.2.2:8000/api/actions/duration/ +

channelId’). Figure below shown the samples of the route that these function

are calling.

Route::post('actions/lastinterval/{channel_id}', [ActionController::class,
'getLastActivityIntervals']);
 Route::post('actions/duration/{channel_id}', [ActionController::class,
'calculateDurationForCurrentMonth']);
 Route::post('actions/frequency/{channel_id}', [ActionController::class,
'getCurrentAndLastMonthFrequency']);
 Route::post('actions/averageinterval/{channel_id}', [ActionController::class,
'getAverageIntervals']);

Figure 6.3.45 API routes for displaying activity analaysis

194

The function ‘calculateDurationForCurrentMonth’ from the

ActionController responsible for calculating the average duration to carry out

this activity, total duration used for this activity within this month and last month,

and average total duration per month. The details of the code will be shown at

figure below.

public function calculateDurationForCurrentMonth(Request $request, $channel_id)
 {
 $title = $request->input('title');
 // Retrieve authenticated user's channel IDs
 $userChannelIds = Auth::user()->channels->pluck('channel_id');

 // Check if the provided channel_id is within the user's channels
 if ($userChannelIds->contains($channel_id)) {
 $now = Carbon::now();
 $startOfMonth = $now->copy()->startOfMonth();
 $endOfMonth = $now->copy()->endOfMonth();

 // Calculate total duration of an action in the current month
 $currentMonthActions = Action::where('channel_id', $channel_id)
 ->where('title', $title)
 ->whereBetween('start_time', [$startOfMonth, $endOfMonth])
 ->get();

 $totalDurationCurrentMonth = 0;

 foreach ($currentMonthActions as $action) {
 $startTime = Carbon::parse($action->start_time);
 $endTime = Carbon::parse($action->end_time);

 $duration = $endTime->diffInSeconds($startTime);
 $totalDurationCurrentMonth += $duration;
 }

 // Calculate total duration of an action in months excluding the
current month
 $totalDurationOtherMonths = 0;
 $months = collect([]);
 $currentMonth = Carbon::now()->month;

 // Get actions for each month (except the current month)
 for ($i = 1; $i <= 12; $i++) {
 if ($i !== $currentMonth) {
 $startOfMonth = Carbon::create(null, $i, 1)->startOfMonth();
 $endOfMonth = Carbon::create(null, $i, 1)->endOfMonth();

 $actions = Action::where('channel_id', $channel_id)
 ->where('title', $title)
 ->whereBetween('start_time', [$startOfMonth, $endOfMonth])
 ->get();

 $totalDuration = 0;

 foreach ($actions as $action) {
 $startTime = Carbon::parse($action->start_time);
 $endTime = Carbon::parse($action->end_time);

 $duration = $endTime->diffInSeconds($startTime);
 $totalDuration += $duration;
 }

 $totalDurationOtherMonths += $totalDuration;
 }
 }

195

 // Calculate average total duration of an action in months excluding
the current month
 $averageTotalDurationOtherMonths = $totalDurationOtherMonths /
($months->count() ?: 1);

 // Calculate average duration to carry out the action
 $averageDurationToCarryOut = $totalDurationCurrentMonth /
($currentMonthActions->count() ?: 1);

 // Calculate total duration of an action in the last month
 $lastMonth = Carbon::now()->subMonth();
 $lastMonthStart = $lastMonth->copy()->startOfMonth();
 $lastMonthEnd = $lastMonth->copy()->endOfMonth();

 $lastMonthActions = Action::where('channel_id', $channel_id)
 ->where('title', $title)
 ->whereBetween('start_time', [$lastMonthStart, $lastMonthEnd])
 ->get();

 $totalDurationLastMonth = 0;

 foreach ($lastMonthActions as $action) {
 $startTime = Carbon::parse($action->start_time);
 $endTime = Carbon::parse($action->end_time);

 $duration = $endTime->diffInSeconds($startTime);
 $totalDurationLastMonth += $duration;
 }

 $result = [
 'total_duration_current_month' => round($totalDurationCurrentMonth
/ 3600, 1),
 'average_total_duration_other_months' =>
round($averageTotalDurationOtherMonths / 3600, 1),
 'average_duration_to_carry_out' => round($averageDurationToCarryOut
/ 3600, 1),
 'total_duration_last_month' => round($totalDurationLastMonth /
3600, 1),
];

 return response()->json($result);
 } else {
 return response()->json(['error' => 'Unauthorized'], 401);
 }
 }

Figure 6.3.46 calculateDurationForCurrentMonth

For the other routes, their codes are similar with some difference in

their computation for their output. For example, ‘getAverageIntervals’ will

calculate the average interval of all records of single activity within a month that

it records in database. The activity could be “Change Water”, “Feed Fish”,

“Clean Tank”and “Clean Sensor”. The JSON response output will be in days

and hour. Next, ‘getLastActivityIntervals’ helps to calculate the time of how

long does the last activity is being taken until now. Moreover,

‘calculateDurationForCurrentMonth’ calculate the total duration of this activity

has been taken within this month. Lastly, ‘getCurrentAndLastMonthFrequency’

helps to calculate the total frequency of this activity taken in this month, last

month and also the average frequency between every month.

196

As a prove that these function can helps to provides these data for

activity analysis, the figure below will shows the activity analysis dashboard

page which display the returned data of the ‘getLastActivityIntervals’,

‘calculateDurationForCurrentMonth’, ‘getCurrentAndLastMonthFrequency’,

‘getAverageIntervals’.

Figure 6.3.47 Change Water Analysis

From the figure above, the output from ‘getLastActivityIntervals’ is shown

in the “Last Activity” cardbox, which indicates that the last change water

activity is taken 5 days and 11 hours ago. Next, the output from

‘calculateDurationForCurrentMonth’ is shown in the Average Interval

“cardbox”, which indicates that the average interval of all records of this activity

is 11 days and 17 hours. In addition, the output from

‘getCurrentAndLastMonthFrequency’ will be shown in “Frequency” cardbox,

with the value of current month is 2, last month is 2, average month is 2. Lastly,

the output from ‘calculateDurationForCurrentMonth’ is the “Duration” cardbox,

with the value of average duration to carry out is 0.5 hrs, total duration this

month is 1 hrs, total duration last month is 1 hrs, and average ttal duration per

month is 1 hrs.

197

2) Gauges Dashboard and Line Graphs Dashboard

Code snippet below is the WebView component which use the url of gauges

provided by ThingSpeak to display the gauges.

<WebView
 scalesPageToFit={false}
 bounces={false}
 key={gaugeSettings.field_id} // Use a unique key
 showsHorizontalScrollIndicator={false}
 showsVerticalScrollIndicator={false}
 overScrollMode="never"
 scrollEnabled={false}
 style={{
 margin: 0,
 padding: 0,
 top: -23,
 left: -20,
 opacity: 0.99,
 height: 250,
 flex: 1,

 }} // Adjust the height as needed
 nestedScrollEnabled={false}
 source={{
 uri: gaugeSettings.gauge_webview_link, // Use
gaugeSetting here
 }}
 />

Figure 6.3.48 Dashboard Page Gauges Webview

From the figure above, the ThingSpeak gauge link is stored in the

‘gaugeSettings.gauge_webview_link’. The url of gauges can get from the

function below which has been triggered in the Channel page, and is being pass

to the Dashboard page through the route parameters, and then being set to the

‘gaugeSettings’. That function is ‘fetchUserGaugeSettings’ placed in

Aquaculture\src\pages\account\channel\index.js.

fetchUserGaugeSettings = async callback => {
 try {
 const response = await axios.post(
 'http://10.0.2.2:8000/api/waterparams',
 {},
 {
 headers: {
 Authorization: 'Bearer ' + this.props.rootStore.token,
 },
 },
);
 console.log("gaugeSettings.only", response.data);
 this.setState({ gaugeSettings: response.data }, callback);
 } catch (error) {
 console.error('Error fetching user gauge settings:', error);
 }
 };

Figure 6.3.49 fetchUserGaugeSettings

198

The POST request will the trigger this route:

Route::middleware('auth:sanctum')->group(function () {
 Route::post('/waterparams', [WaterParamsController::class, 'byUserId']);
});

Figure 6.3.50 route::api/waterparams POST

Then, this route will trigger the “byUserId” function in

WaterParamsController class.

public function byUserId(Request $request){
 $channelIds = Auth::user()->channels->pluck('channel_id');
 $params = WaterParam::whereIn('channel_id', $channelIds)->get();

 return json_encode($params);
 }

Figure 6.3.51 WaterParamsController byUserId function

This function will return the water parameters as a JSON-encoded

response. The water parameters data is the gauge settings data that will need to

store in the component’s state, and then pass as route parameters to the

Dashboard page, then the WebView component uses the gaugeSettings in the

route parameters to display the gauges.

Now, we have the ‘gaugeSettings’ data, therefore, we also can retrieve

the ThingSpeak line graphs url to display the line graphs using the WebView

component. The Webview components of the line graphs is shown below:

<WebView
 scalesPageToFit={false}
 bounces={false}
 key={gaugeSettings.field_id} // Use a unique key
 showsHorizontalScrollIndicator={false}
 showsVerticalScrollIndicator={false}
 overScrollMode="never"
 scrollEnabled={false}
 style={{
 margin: 0,
 padding: 0,
 top: -10,
 left: 0,
 opacity: 0.99,
 height: 250,
 flex: 1,
 }} // Adjust the height as needed
 nestedScrollEnabled={false}
 source={{
 uri:
 gaugeSettings.line_graph_webview_link +
 '&height=auto&width=auto', // Use gaugeSetting here
 }}
 />

199

Figure 6.3.52 Dashboard Page Line Graphs Webview

The ‘gaugeSettings.line_graph_webview_link’ stored the link of

ThingSpeak line graph.

6.3.5 Activity Record

6.3.5.1 Feature demonstration

Below shows the process of using Activity Record function of Water Quality

Montoring mobile application.

Record Activity:

No. Mobile Screen Process

1

Figure 6.3.53 Record Actions

Calendar

1) User navigate to the

‘Record Actions’ section

of the Acticity Analysis

Dashboard.

2) User can see an

interactive calendar.

3) User click on a date (eg. 1

September 2023) he

wants to register an

activity.

200

2

Figure 6.3.54 Add Event Dialog Box

1) Then user can see a Add

Event Dialog box pops

out.

3

Figure 6.3.55 Select Time

1) User can select start time

and end time.

201

4

Figure 6.3.56 Select Activity

1) User can select the

activity they want to

register.

5

Figure 6.3.57 fill in description

1) User fill in the

description.

2) User hit the “Submit”

button.

202

6

1) Red dots added to the date

(1 September 2023)

indicates that the activity

is recorded successfully.

7

1) User scroll down to see

the activity list.

6.3.5.2 Code explanation

The record actions function can be build starts from the Calendar components

in the dashboard page as shown in the figure below.

<Calendar
 markingType={'multi-dot'}
 onDayPress={this.handleDayPress}
 markedDates={this.state.markedDates}
 onMonthChange={this.handleMonthChange} // Add this line
 />

Figure 6.3.58 Dashboard Page Calendar component

203

When user click a date, it will triggers “handleDayPress” function. This

handleDayPress finally will make the “AddEvent” component visible.

<AddEvent
 isAddEventVisible={this.state.isAddEventVisible}
 onToggleDialog={() =>
this.setState({ isAddEventVisible: !this.state.isAddEventVisible })}
 channel_id={this.state?.receivedState?.channelData[this.state.channelDa
taIndex]?.channel.id}
 onSubmit={this.handleEventSubmit} // Pass the function to the AddEvent
component
 />

Figure 6.3.59 AddEvent dialog box

Then after user finish filling up the form, and then click th “Submit”

button in the AddEvent component, it will triggers “submitForm” function in

the AddEvent component. The submitForm function looks like:

submitForm = () => {
 console.log(this.state);
 const requestData = {
 channel_id: this.props.channel_id,
 title: this.state.action.label,
 start_time: this.state.startTime,
 end_time: this.state.endTime,
 description: this.state.description,
 color: this.state.action.color,
 };

 if (this.state.description) {
 requestData.description = this.state.description;
 }

 // Pass the requestData to the onSubmit prop function
 this.props.onSubmit(requestData);
 };

Figure 6.3.60 submitForm in AddEvent components

This code will then trigger the “onSubmit” function in the props and

finally call the “handleEventSubmit” in the dashboard page, the code snippet of

this function is shown at below.

handleEventSubmit = async (requestData) => {
 this.state.selectedDate.setHours(requestData.start_time.getHours());
 this.state.selectedDate.setMinutes(requestData.start_time.getMinutes());
 const start_time = this.state.selectedDate.toISOString();
 console.log("start_time", this.state.selectedDate);

 this.state.selectedDate.setHours(requestData.end_time.getHours());
 this.state.selectedDate.setMinutes(requestData.end_time.getMinutes());
 const end_time = this.state.selectedDate.toISOString();
 console.log("end_time", this.state.selectedDate);
 console.log("requestData", requestData);

 const requestData1 = {

204

 channel_id: requestData.channel_id,
 title: requestData.title,
 start_time: start_time,
 end_time: end_time,
 color: requestData.color,
 description: requestData.description,
 };
 console.log("requestData1", requestData1);

 try {
 const response = await axios.post(
 'http://10.0.2.2:8000/api/actions',
 requestData1,
 {
 headers: {
 'Authorization': 'Bearer ' + this.props.rootStore.token,
 },
 }
);

 console.log('POST request success:', response.data);
 this.toggleEventDialogVisibility();
 this.readActions(); // Call the function after setting state
 console.log()
 // this.props.navigation.navigate('DrawerNavigator', { screen:
'ChannelStack', params: { screen: 'Dashboard' } }, { state:
this.props.route.params?.state });

 // this.props.navigation.push("Dashboard", { state:
this.props.route.params.state });

 // You can also perform actions after success
 } catch (error) {
 console.error('Error in POST request:', error);
 Alert.alert(
 'Oops! Something Wrong, Please try again!',
 error,
 [
 { text: 'OK', onPress: () => console.log('OK Pressed') },
],
 { cancelable: false }
);
 }
 };

Figure 6.3.61 Dashboard Page handleEventSubmit function

The handleEventSubmit function responsible for make a POST request

to the API Endpoint using this url (‘http://10.0.2.2:8000/api/actions’) using

‘requestData1’ object as the request body, including an authorization header. If

the POST request is successful, it then run the “readActions()” function to re-

read the activities from the back-end server and close the event dialog. Below

is the code snippet for “readActions” function.

readActions = async () => {
 try {
 const response = await axios.get(
 `http://10.0.2.2:8000/api/actions/channel/` +
this.state.receivedState.channelData[0].channel.id,
 {
 headers: {
 'Authorization': 'Bearer ' + this.props.rootStore.token,

205

 },
 }
);

 // console.log('GET request success:', response.data);
 this.setState({ actions: response.data.sort((a, b) => new Date(b.start_time)
- new Date(a.start_time)) }, () => {
 this.setState({ markedDates:
this.generateMarkedDates(this.state.actions) }, () => {
 console.log("actions", this.state.actions);
 console.log("markedDates", this.state.markedDates);
 this.filterActionsByMonthAndYear();
 });

 });

 // You can also perform actions after success
 } catch (error) {
 console.error('Error in GET request:', error);
 }
 }

Figure 6.3.62 readActions function

This function is responsible for making a GET request to

(‘http://10.0.2.2:8000/api/actions/channel/’) by appending ‘channel.id’ into this

base URL. If the GET request is successful, it then updates the component’s

state with the retrieved actions and marked dates. It also calls function

generateMarkedDates to create an object representing marked dates on a

calendar. It also calls filterActionsByMonthAndYear to filter the actions by

month and year. All these function will contribute to the correct marking and

display of the Calendar components.

The GET request to (‘http://10.0.2.2:8000/api/actions/channel/’) will

trigger this route in the back-end server as shown in the figure below.

Route::middleware('auth:sanctum')->group(function () {
 Route::get('/actions/channel/{channel_id}', [ActionController::class,
'showByChannel']);
});

Figure 6.3.63 route::api/actions/channel/{channel_id} – GET

The route above will trigger the “showByChanel” function in the

ActionController class. This function codes looks like:

public function showByChannel($channel_id)
 {
 // Retrieve all actions with the specified channel_id
 $actions = Action::where('channel_id', $channel_id)->get();

 return response()->json($actions);

206

 }

Figure 6.3.64 showByChannel function

This function is responsible for fetching and returning a list of actiosn

associated with a specific channel based on the provided ‘$channel_id’.

Then due to the component’s state is updated, the marks in the calendar

will be updated as well as the activity list. Below is the code to render the

activity list:

<ListItem key={action.id} bottomDivider>
 <ListItem.Content>
 <ListItem.Subtitle style={styles.actiontext}>
 <Text>Activity Period: {startTimeString} -
{endTimeString}</Text>
 </ListItem.Subtitle>
 <ListItem.Subtitle style={styles.actiontext}>
 <Text>Description: {action.description}</Text>
 </ListItem.Subtitle>
 </ListItem.Content>
 </ListItem>

Figure 6.3.65 Activity List

In conclusion, these are the explanation of how the activity record

function works.

6.3.6 Analysis

6.3.6.1 Feature demonstration

Below shows the process of using Analysis function of Water Quality

Montoring mobile application.

Show Analysis:

No. Mobile Screen Process

207

1

Figure 6.3.66 Dashboard page

1) At the dashboard page,

click the DO gauge or DO

line graphs to go to

Analaysis page.

2

Figure 6.3.67 Analysis Page

1) At the Analysis page, user

can see the gauge and the

line graphs.

2) Go to line graphs section,

user can click or slide to

switch the tab between

“Day-Hour”, “Week-

Day”, “Month-Day”, and

“An Hour”.

208

3

1) User can scroll down to

view the trendline graph

to understand the trend.

2) User can see an water

parameter analysis

dashboard that shows the

prediction, the trend,

statistics, health analysis

and noise data count.

6.3.6.2 Code explanation

209

When user click on the DO gauge at the dashboard page, it triggers a function

named “toggleAnalysis”.

toggleAnalysis = (gauge, setting, channels, index) => {
 console.log('toggleAnalysis', gauge, setting, channels.user.channels[index]);
 this.props.navigation.push("Analysis", { gauge: gauge, gaugeSettings: setting,
channel: channels.user.channels[index] });
 }

Figure 6.3.68 Dashboard page toggleAnalysis function

This toggle analysis function will navigate the screen to Analysis page,

along with route parameters such as gauge, gaugeSettings and channel. In the

analysis page, the gauges and the line graphs use the same Webview component

introduce in the dashboard page. Therefore, this section will not shown the

webview component again because the code snippet is similar, the only

difference is the component’s state that store the gauge and line graphs url.

1) Water Parameter Analysis

Below shows the code for the componentDidMount of Analysis page.

componentDidMount() {
 const { route } = this.props;
 console.log("Analysis.componentDidMount", this.props);
 const receivedState = route.params?.gauge;
 const gaugeSettings = route.params?.gaugeSettings;
 const channelId = route.params?.channel.channel_id;
 if (receivedState) {
 this.setState({ receivedState, gaugeSettings, channelId }, () => {
 // this.fetchDataFromThingSpeak(channelId); // Fetch data immediately on
mount
 let index = this.findIndex(this.state.gaugeSettings,
this.state.receivedState);
 this.fetchDataAnHour(channelId);
 this.fetchDataDayHour(channelId);
 this.fetchDataMonthDay(channelId);
 this.fetchDataWeekDay(channelId);

 this.fetchAnHourInterval = setInterval(() => {
 this.fetchDataAnHour(channelId);
 }, 15 * 60 * 1000); // 1 hour in milliseconds
 this.fetchDayHourInterval = setInterval(() => {
 this.fetchDataDayHour(channelId);
 }, 60 * 60 * 1000); // 1 hour in milliseconds
 this.fetchMonthDayInterval = setInterval(() => {
 this.fetchDataMonthDay(channelId);
 }, 24 * 60 * 60 * 1000); // 1 hour in milliseconds
 this.fetchWeekDayInterval = setInterval(() => {
 this.fetchDataWeekDay(channelId);
 }, 24 * 60 * 60 * 1000); // 1 hour in milliseconds
 this.setState({ index }, () => {
 console.log('analysis state', this.state);
 });
 });
 }
 }

210

Figure 6.3.69 Analysis Page componentDidMount function

This componentDidMount function first set the component’s state with

the route parameters. Then, it runs fetchDataAnHour, fetchDataDayHour,

fetchDataDayMonth, fetchDataWeekDay function using channel ID as

parameter.

fetchDataAnHour = async (channelId) => {
 try {
 const response = await axios.get(
 'https://api.thingspeak.com/channels/' +
 channelId +
 '/feeds.json?round=2&results=240&median=10&timezone=Asia%2FKuala_Lumpur'
);
 const fetchDataAnHour = response.data.feeds.map((feed) => {
 // Create a copy of the feed object and omit the 'entry_id' property
 const { entry_id, ...feedWithoutEntryId } = feed;
 return feedWithoutEntryId;
 });

 this.setState({ fetchDataAnHour }, () => {
 console.log("fetchDataMonthDay",
JSON.stringify(this.state.fetchDataAnHour));
 this.setState({ arimaPredictAnHour: null }, async () => {
 try {
 console.log("this.state.fetchDataAnHour",);
 const data = this.state.fetchDataAnHour;
 const arimaPredictData = await this.arimaPredict(data);
 this.setState({ arimaPredictAnHour: arimaPredictData }, () => {
 const arimaPredictAnHour = this.state.arimaPredictAnHour;
 console.log("haha.arimaPredict", arimaPredictAnHour);
 console.log("this.state.fetchDataAnHour.data",data);
 const nullDataCount = this.countRowsWithNullValues(data);
 console.log("haha.noiseDataCount", nullDataCount)
 const result = this.calculateMinMaxMedianMean(data);
 console.log('haha.calculateMinMaxMedianMean', result);
 const fieldRanges = {
 field1: { min: 4, max: 12 },
 field2: { min: 20, max: 35 },
 field3: { min: 4, max: 9 }
 };
 const count = this.countExtremeValues(fieldRanges, data);
 console.log('haha.countExtremeValues', count);
 console.log('haha.fetchDataDayHour', data);

 const weights = {
 field1: 0.4,
 field2: 0.3,
 field3: 0.3,
 };

 const thresholds = {
 field1: { min: 6.0, max: 9.0 },
 field2: { min: 20.0, max: 30.0 },
 field3: { min: 6.0, max: 8.0 },
 };

 const egfpThresholds = {
 excellent: 0.8,
 good: 0.6,
 fair: 0.4,
 };

 const healthIndexResult = this.calculateHealthIndex(data, weights,
thresholds, egfpThresholds);

211

 console.log("haha.healthIndexResult", healthIndexResult);

 const analysisAnHour = {
 arimaPredictData: [arimaPredictData.prediction.field1,
arimaPredictData.prediction.field2, arimaPredictData.prediction.field3],
 nullDataCount,
 minMaxMedianMean: result,
 countExtremeValues: count,
 healthIndexResult,
 };
 this.setState({ analysisAnHour }, () => {
 console.log("analysis.analysisAnHour", this.state.analysisAnHour)
 });
 console.log("haha.analysisDayHour", JSON.stringify(analysisAnHour))
 });
 } catch (error) {
 console.error('Error in arimaPredict:', error);
 }
 });
 });
 } catch (error) {
 console.error('Error fetching data from ThingSpeak:', error);
 }
 };

Figure 6.3.70 fetchDataAnHour

In fetchDataAnHour, it first makes HTTP GET request to the ThingSpeak

API with this base url (‘https://api.thingspeak.com/channels/’), and then append

this url with channelId, stands for ThingSpeak Channel ID, and then a

‘/feeds.json?round=2&results=240&median=10&timezone=Asia%2FKuala_L

umpur’ is all the URL parameters that makes it returns the data collected from

the last hour. Once the data is successfully fetched, it stored the processed data

in the component’s state. Then it will calls the ‘arimaPredict’ function to

perform prediction based on the fetched data. The result of this analysis is stored

in the component’s state later. Next, it will performs several calculation and

operation such as:

1) countRowsWithNullValues:

countRowsWithNullValues = (data) => {
 console.log("countRowsWithNullValues", data);
 let count = 0;
 for (let i = 0; i < data.length; i++) {
 const row = data[i];
 for (const key in row) {
 if (row[key] == null) {
 count++;
 break; // Move to the next row once a null value is found in the
current row
 }

 }
 }
 return count;
 }

Figure 6.3.71 countRowsWithNullValues

212

This function counts rows in the data which contains null values.

2) calculateMinMaxMedianMean:

calculateMinMaxMedianMean = (data) => {
 // Function to find the maximum value in an array of numbers
 function findMax(numbers) {
 return Math.max(...numbers);
 }

 // Function to find the minimum value in an array of numbers
 function findMin(numbers) {
 return Math.min(...numbers);
 }

 // Function to find the median value in an array of numbers
 function findMedian(numbers) {
 const sorted = numbers.filter(value => value !== null).sort((a, b) =>
a - b);
 const length = sorted.length;
 const middle = Math.floor(length / 2);
 if (length % 2 === 0) {
 return (sorted[middle - 1] + sorted[middle]) / 2;
 } else {
 return sorted[middle];
 }
 }

 // Function to find the mean value in an array of numbers
 function findMean(numbers) {
 const filtered = numbers.filter(value => value !== null);
 const sum = filtered.reduce((acc, val) => acc + val, 0);
 return sum / filtered.length;
 }

 // Detect the field names dynamically from the first data row
 const fieldNames = Object.keys(data[0]).filter(key => key !==
"created_at");

 // Initialize an object to hold field values
 const fieldValues = {};
 fieldNames.forEach(key => {
 fieldValues[key] = [];
 });

 // Loop through the data and collect values for each field
 data.forEach(row => {
 fieldNames.forEach(key => {
 if (row[key] !== null) {
 fieldValues[key].push(parseFloat(row[key])); // Convert to number
 }
 });
 });

 // Calculate and construct the output object
 const output = {};
 fieldNames.forEach(key => {
 const max = parseFloat(findMax(fieldValues[key]).toFixed(2));
 const min = parseFloat(findMin(fieldValues[key]).toFixed(2));
 const median = parseFloat(findMedian(fieldValues[key]).toFixed(2));
 const mean = parseFloat(findMean(fieldValues[key]).toFixed(2));
 output[key] = { max, min, median, mean };
 });

 return output;
 }

Figure 6.3.72 calculateMinMaxMedianMean

213

This function calculates the minimum, maximum, median, and mean

values of the fetched data.

3) countExtremeValues:

countExtremeValues = (fieldRanges, data) => {
 const fieldCounts = {};

 for (const item of data) {
 for (const field in item) {
 if (field !== "created_at" && item[field] !== null) {
 const fieldValue = parseFloat(item[field]);
 const fieldRange = fieldRanges[field];

 if (fieldRange && (fieldValue < fieldRange.min || fieldValue >
fieldRange.max)) {
 if (!fieldCounts[field]) {
 fieldCounts[field] = 1;
 } else {
 fieldCounts[field]++;
 }
 }
 }
 }
 }

 // Add fields with count 0
 for (const field in fieldRanges) {
 if (!fieldCounts[field]) {
 fieldCounts[field] = 0;
 }
 }

 return fieldCounts;
 };

Figure 6.3.73 countExtremeValues

This function counts rows of extreme values in the fetched data.

4) calculateHealthIndex:

calculateHealthIndex(data, weights, thresholds, egfpThresholds) {
 console.log('calculateHealthIndex.data', data);
 console.log('calculateHealthIndex.weights', weights);
 console.log('calculateHealthIndex.thresholds', thresholds);
 console.log('calculateHealthIndex.daegfpThresholdsta', egfpThresholds);

 function normalizeScore(values, threshold) {
 const normalizedValues = values.map(value => {
 if (value < threshold.min) {
 return 0;
 } else if (value > threshold.max) {
 return 1;
 } else {
 return (value - threshold.min) / (threshold.max - threshold.min);
 }
 });
 return normalizedValues;
 }

 function calculateComponentScore(normalizedScore, egfpThresholds) {
 if (normalizedScore >= egfpThresholds.excellent) {
 return 1;
 } else if (normalizedScore >= egfpThresholds.good) {
 return 0.75;
 } else if (normalizedScore >= egfpThresholds.fair) {

214

 return 0.5;
 } else {
 return 0.25;
 }
 }

 function determineHealthLevel(overallHealthIndex) {
 if (overallHealthIndex >= 0.75) {
 return "Excellent";
 } else if (overallHealthIndex >= 0.5) {
 return "Good";
 } else if (overallHealthIndex >= 0.25) {
 return "Fair";
 } else {
 return "Poor";
 }
 }

 const componentScores = {};
 let overallHealthIndex = 0;

 for (const field of ['field1', 'field2', 'field3']) {
 if (data.some(entry => entry[field] === null)) {
 // Skip if any entry has null value for the field
 componentScores[field] = null;
 continue;
 }

 const fieldValues = data.map(entry => entry[field]);
 const normalizedScore = normalizeScore(fieldValues,
thresholds[field]);
 const componentScore = calculateComponentScore(normalizedScore,
egfpThresholds);
 componentScores[field] = componentScore;

 overallHealthIndex += componentScore * weights[field];
 }

 const healthLevel = determineHealthLevel(overallHealthIndex);
 console.log("calculateHealthIndex.overallHealthIndex",
overallHealthIndex);
 console.log("calculateHealthIndex.healthLevel", healthLevel);
 console.log("calculateHealthIndex.componentScores", componentScores);

 return {
 overallHealthIndex,
 healthLevel,
 componentScores,
 };
 }

Figure 6.3.74 calculateHealthIndex

This function calculates the health index and returns overallHealthIndex,

healthLevel, and componnentScores.

The code snippet of ‘arimaPredict’ function is shown below.

arimaPredict = async (data) => {
 try {
 const response = await axios.post(
 'http://10.0.2.2:8000/api/predict',
 {
 data: data,
 },
 {
 headers: {
 Authorization: 'Bearer ' + this.props.rootStore.token,
 },
 },

215

);
 console.log('arimaPredict response:', response.data); // Log the response
data
 return response.data;
 } catch (error) {
 console.error('Error fetching user channels:', error);
 throw error; // Rethrow the error to handle it in the calling code
 }
 };

Figure 6.3.75 arimaPredict function

This arimaPredict function first send a POST request to the URL

(‘http://10.0.2.2:8000/api/predict’), includes a property named ‘data’ in the

request body along with Authorization header. This URL is an API endpoint of

back-end server which is defined in the route as shown in the figure below.

Route::middleware('auth:sanctum')->group(function () {
 Route::post('/predict', [PredictionController::class, 'predict']);
});

Figure 6.3.76 auth::api/predict – POST

This route will trigger the predict function in the PredictionController

class. Below is the code snippet of the predict function.

public function predict(Request $request)
 {
 $data = $request->input('data');
 // // Prepare the input data as JSON
 $inputJson = json_encode($data);
 // return response()->json($inputJson);

 // // Escape the double quotes inside the JSON string
 $escapedInputJson = str_replace('"', '\"', $inputJson);
 // return response()->json($escapedInputJson);
 // // Execute Python script and capture output
 $pythonScriptPath = base_path('scripts/arima_predict.py');
 $command = "python $pythonScriptPath \"$escapedInputJson\"";
 $predictedValues = shell_exec($command);
 $predictedValues = json_decode($predictedValues, true);

 return response()->json(['prediction' => $predictedValues]);
 }

Figure 6.3.77 PredictionController predict function

This function is responsible of using the data to run the Python script

called ‘arima_predict.py’ that performs the ARIMA prediction. It uses

‘shell_exec’ to execute the constructed command in the shell. The shell_exec

function runs the specified command in the system's shell and captures the

standard output as a string. The standard output from the Python script is

216

assumed to be a JSON-encoded string containing the predicted values. It

decodes this JSON string into a PHP array using json_decode. Finally, it returns

a JSON response containing the predicted values in the 'prediction' field. The

predicted values are sent back to the client making the API request.

Below shows the code in arima_predict.py.

import sys
import json
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA

def predict_arima(data_str):
 # Parse the JSON input
 data_dict = json.loads(data_str)

 # Convert input data to a DataFrame
 df = pd.DataFrame(data_dict)

 # Iterate over columns (fields) to predict values
 predicted_values = {}
 for column in df.columns:
 if column != "created_at":
 values = df[column].astype(float)

 # Build ARIMA model
 # You need to adjust these parameters according to your data and model
choice
 order = (1, 1, 0) # ARIMA order (p, d, q)
 model = ARIMA(values, order=order)
 model_fit = model.fit()
 # print(model_fit.forecast())

 # Make prediction for the next value
 predicted_value = model_fit.forecast()
 first_forecasted_value = predicted_value.iloc[0]
 # print(first_forecasted_value)
 predicted_values[column] = first_forecasted_value

 return predicted_values

if __name__ == "__main__":
 input_data = sys.argv[1]
 predicted_value = predict_arima(input_data)

 # Convert the predicted_value dictionary to JSON format
 predicted_value_json = json.dumps(predicted_value)

 # Print the JSON result
 print(predicted_value_json)

Figure 6.3.78 arima_predict.py

This python code begins by importing necessary Python modules, and then

calles the ‘predict_arima’ function. This function then performs the ARIMA

time series forecasting. It first pre-process the data and convert them into pandas

DataFrame fore easier manipulation. Due to the data consist of many water

parameters, each water parameter corresponds to 1 column of the dataframe.

Therefore, it will iterates for each water parameters and do these steps:

217

1) Converts the column’s values to floats (‘values).

2) Specifies an ARIMA order (p, d, q) with (1,1,0).

3) Initializes an ARIMA model with the specified order using

ARIMA(values, order=order).

4) Fits the ARIMA model to the data using model.fit().

5) After fitting, it will make a prediction for the next value in the time series

using ‘model_fit.forecast()’.

6) The predicted value is then store into the ‘predicted_values’ dictionary,

with the column anme as the key.

After that, the predicted values for each water parameter will be convert to

a JSON string and then return the prediction result back to the predict function

in PredictionController.

All the results of these operations are then combined into an

‘analysisAnHour’ object, and then it is store into the component’s state. Now

all the required data is being fetched and set to the component’s state. Next, all

of these analysis and prediction data will be used to render become a water

parameter analysis dashboard.

1) Trendline Graphs

 <TrendlineChart data={this.state.fetchDataDayHour} index={index} />

Figure 6.3.79 TrendlineChart component

In the Analysis page, TrendlineChart component is used to draw the

trendline graph. It has 2 props, data that stores this.state.fetchDataDayHour and

an index. The fetchDataDayHour is a component’s state and it is being set at the

componentDidMount function. The TrendlineChart component uses

VictoryChart component from the victory-native library to draw a trendline

graph. The code below shows the code snippet for the VictoryChart component.

import React from 'react';
import { View } from 'react-native';
import { VictoryAxis, VictoryChart, VictoryLine, VictoryScatter } from 'victory-
native';

const TrendlineChart = ({ data, index }) => {

218

 // Extract data for the specified field
 const selectedRow = data[0];

 // Extract the keys "field1", "field2", and "field3" into an array
 const fieldKeys = Object.keys(selectedRow).filter(key =>
key.startsWith("field"));

 console.log("fieldToDraw.Field Keys Array:", fieldKeys);

 console.log("fieldToDraw.data", JSON.stringify(data));
 console.log("fieldToDraw.fieldToDraw", JSON.stringify(index));
 const fieldID = "field" + (index + 1).toString();
 const fieldData = data.map(item => {
 const timestamp = new Date(item.created_at).getTime();
 const fieldValue = item[fieldKeys[index]];

 if (fieldValue !== null && fieldValue !== undefined) {
 return [timestamp, parseFloat(fieldValue)];
 } else {
 return [timestamp, null];
 }
 });
 // Calculate the slope and y-intercept of the trendline
 const n = fieldData.length;
 const sumX = fieldData.reduce((acc, [x]) => acc + x, 0);
 const sumY = fieldData.reduce((acc, [, y]) => acc + y, 0);
 const sumXY = fieldData.reduce((acc, [x, y]) => acc + x * y, 0);
 const sumXX = fieldData.reduce((acc, [x]) => acc + x * x, 0);
 const slope = (n * sumXY - sumX * sumY) / (n * sumXX - sumX * sumX);
 const yIntercept = (sumY - slope * sumX) / n;

 // Calculate the trendline points
 const trendlineData = fieldData.map(([x]) => [x, slope * x + yIntercept]);

 return (
 <View style={{ backgroundColor: "#ffffff" }}>
 <VictoryChart padding={{ top: 20, bottom: 70, left: 50, right: 50 }} >
 <VictoryAxis
 tickFormat={x => new Date(x).toLocaleDateString()}
 style={{
 tickLabels: { angle: -45, dy: 13 } // Rotate tick labels by -45 degrees
 }}
 />
 <VictoryAxis
 dependentAxis
 tickFormat={y => y.toFixed(1)} // Format y-axis labels to two decimal
places
 />
 <VictoryScatter
 data={fieldData}
 x={0}
 y={1}
 style={{ data: { fill: 'blue' } }}
 />
 <VictoryLine
 data={trendlineData}
 x={0}
 y={1}
 style={{ data: { stroke: 'red' } }}
 />
 </VictoryChart>
 </View>
);
};

export default TrendlineChart;

Figure 6.3.80 TrendlineChart component

219

Based on the code above, it first receives two props: ‘data’ and ‘index’.

Remember that at the previous section, TrendlineChart is being called with the

this.state.FetchDataDayHour, and index. It then extracts the selected field data

from the ‘data’ array based on the provided ‘index’, and then calculates the slope

and y-intercpet of the trendline for the selected field using linear regression.

These values are used t create a linear trendline for the data. Then it use

VictoryChart component from the Victory Native Library to create a trendline

graph.

6.3.7 Notification

6.3.7.1 Feature demonstration

Below shows the process of using Notification function of Water Quality

Montoring mobile application.

Open notification:

No. Mobile Screen Process

1

Figure 6.3.81 Tab Navigator

1) User click on stack icon at

the top left to open the

side bar.

2) User then click the Profile

tab.

3) User then navigate to the

Profile page.

220

1

Figure 6.3.82 Profile page

Figure 6.3.83 Notification

1) User click on the “ON”

button, to start the

background notification

service.

2) User then can hear a

sound indicates there is

notification pops out.

3) User can see the

notification of

“WARNING” message.

4) User click the notification

to start the application.

Close notification:

No. Mobile Screen Process

221

1

Figure 6.3.84 profile page

1) User click on the “OFF”

button and then close the

application to apply the

stop background service.

6.3.7.2 Code explanation

1) Open notification:

When user click on the “ON” button, it triggers a function called

“startBackgroundService”.

startBackgroundService = () => {
 const jsonData = this.state.channels.user;

 // Call the extractChannelIds function to get the array of channel_ids
 const thingspeakChannelIds = this.extractChannelIds(jsonData);
 console.log("thingspeakChannelIds", thingspeakChannelIds, jsonData);

 // Start the background service with the extracted channel_ids
 BackgroundTaskModule.startBackgroundService(thingspeakChannelIds);
 };

Figure 6.3.85 startBackgroundService

When this function is triggered it triggers

‘BackgroundTaskModule.startBackgroundService’ with thingspeakChannelIds

as parameters.

@ReactMethod
 public void startBackgroundService(ReadableArray channelIds) {
 Log.d("BackgroundTaskModule", "Received channelId: " + channelIds);
 ReactApplicationContext context = getReactApplicationContext();
 Intent intent = new Intent(context, BackgroundTaskService.class);
 intent.setAction("com.aquaculture.START_BACKGROUND_SERVICE");

 ArrayList<String> channelIdsList = new ArrayList<>();

222

 for (int i = 0; i < channelIds.size(); i++) {
 channelIdsList.add(channelIds.getString(i));
 }
 intent.putStringArrayListExtra("channelIds", channelIdsList);

 context.startService(intent);
 }

Figure 6.3.86 BackgroundTaskModule.startBackgroundService

This function retrieves the ReactApplicationContext, which is needed to

create and start a service. Then, it creates and “Intent” to start the

“BackgroundTaskService” class. Next, it sets the action of the intent to

"com.aquaculture.START_BACKGROUND_SERVICE." and converts the

channelIds passed from JavaScript (a ReadableArray) into a standard Java

ArrayList of strings (channelIdsList). It attaches this list of channelIds as an

extra to the intent with the key "channelIds." This should be able to open

notification service for many channels based on the channelIds.

2) Close notification:

When user click on the “OFF” button in the Profile page, the function named

“stopBackgroundService” is then triggered.

stopBackgroundService = async () => {
 BackgroundTaskModule.stopBackgroundService();
 };

Figure 6.3.87 stopBackgroundService

When this function is triggered it triggers

‘BackgroundTaskModule.stopBackgroundService’.

@ReactMethod
 public void stopBackgroundService() {
 // Retrieve your app's context
 ReactApplicationContext context = getReactApplicationContext();

 // Create an intent for the BackgroundTaskService class
 Intent intent = new Intent(context, BackgroundTaskService.class);
 Log.d("BackgroundTaskModule", "stopBackgroundService");

 // Stop the service using the intent
 context.stopService(intent);
 }

Figure 6.3.88 BackgroundTaskModule.stopBackgroundService

223

This function retrieves the ReactApplicationContext, which is

necessary for interacting with Android components and services within a React

Native module. Then, it creates an Intent object for the BackgroundTaskService

class. This intent will be used to identify the service to be stopped. Next, it calls

context.stopService(intent) to stop the background service specified in the intent.

This will effectively terminate the service, stopping any ongoing background

tasks associated with it.

Therefore, the start and stop notification function is explained and can

be run successfully.

6.4 System Deployment

6.4.1 Data Acquisition Module Deployment

In order to deploy this system, the Data Acquisition System is placed in the

Water Tank of Aquafarm. Below figures shows the Data Acquisition Module

System is successfully deployed in the Water Tank.

Figure 6.4.1 Data Acquisition system circuit deployed

Figure above shows the complete circuit of the Data Acquisition

Module. This circuit is placed in the Junction Box to protect it from raining

water.

224

Figure 6.4.2 Junction Box protects the Data Acquistion Module

Figure above shows the junction box is fully covered the Data

Acquistion Module for protection. Moreover, it is placed at a safety position

which can avoid touching with water. Besides, this position is near to power

source.

Figure 6.4.3 DO, RTD and PH sensors deployed

225

Figure above shows the DO sensors and pH sensors that are placed into

the water tank. The sensors is now become dirty because it has been deployed

for a long period to collect the water parameters data.

6.4.2 Communication Module Deployment

In order to deploy the Communication System, we need to register the

ThingSpeak account, and set up the Channel Page correctly. Figure below

shows the ThingSpeak Channel public view page that has been setup correctly.

226

Figure 6.4.4 ThingSpeak Channel Public View

This public view page consist of 3 gauges, and 3 line graphs for each

water parameters: DO, pH and RTD. With these gauges and line graphs, it

means that the deployment of communication module is completed.

227

6.4.3 Data Processing Module Deployment

To setup and deploy this module, the Laravel back-end server application should

be running in a computer which pass the minimum hardware requirements.

Figure below shows the Laravel back-end server is running.

Figure 6.4.5 Laravel back-end server

The terminal below is showing the back-end server is being hosted on

[http://127.0.0.1:8000]. This means that it is now hosted locally, and is ready to

provide its service. Therefore, the data processing module was also deployed

successfully.

228

6.4.4 User Interface Module Deployment

To deploy the user interface Module, we need to ensure the react-native mobile

application is setup correctly. Figures below shows how the User Interface

Module is deployed.

Figure 6.4.6 Metro running

Figure above shows the metro is running. Next, the application is also

installed successfully to the android emulator.

229

Figure 6.4.7 Build successful

Figure above shows the react-native mobile application is build

successful. Then the emulator is then able to run the react-native mobile

application is meanst that installed and successfully.

Figure 6.4.8 Android Emulator is running

230

6.5 Conclusion

Water Quality Monitoring System is successfully implemented. Data

Acquisition Module is successfully deployed in the aquafarm, and it is able to

perform its task to collect the water parameters ands send the data to the

ThingSpeak cloud server 15 once. Communication Module, the ThingSpeak

cloud server is also successfully deployed and implemented. It can receive the

data send by Data Acquisition Module and then store these data to the cloud

database. Besides, it also provides REST API for the Data Processing Module

and the User Interface Module to retrieve the collected data. Moreover, the Data

Processing module is also deployed properly by hosting a Laravel back-end

server locally. It helps to provide API endpoints to help User Interface module

to perform tasks such as data prediction, analysis and perform data storing and

processing .Lastly, the User Interface module is also able to working normally

after deployment. It is running in an Android emulator and is able to perform its

task by helping the Aquafarmer to monitor the water parameters in the water

tank. Therefore, the system deployment is complete successfully.

231

CHAPTER 7

7 SYSTEM TESTING

7.1 Introduction

This chapter discuss the system testing. System testing is needed to be carried

out to ensure the functional and non-functional requirements of the water quality

monitoring system project is met. System testing covers unit testing,

performance testing and system usability testing.

232

7.2 Unit Testing

Unit Testing here is using Postman as the tools to check whther the API Endpoint provided by the back-end server can responds to the request

correctly.

7.2.1 Unit Testing for Register

Test Module Extraction Module Test Title File Upload from the Web

Appication

Test Case ID Test Case

Description

Execution Steps Test Data Expected Result Status

UNIT-101 Register with Invalid

Information

1. Key in the name.

2. Key in the email where

is existed in database.

3. Key in password with

length less than 8.

4. Key in confirm

password different from

password.

{

"name": "testing",

"email":

"testing321@gmail.com",

"password": "ali1234",

"password_confirmation":

"ali12345"

}

Returns error showing the

email has already been

taken, the password field

confirmation does not

match, and the password

field must be at least 8

characters.

Pass

233

5. Send request to

corresponding url.

UNIT-102 Register with Valid

Information

1. Key in the name

correctly.

2. Key in the email that is

not yet registered.

3. Key in password with

length less than 8.

4. Key in confirm

password different from

password.

5. Send request to

corresponding url.

{

"name": "testing",

"email":

"testing001@gmail.com",

"password": "testing001",

"password_confirmation":

"testing001"

}

Returns message showing

registration is success and

then return the user

object, and a complete

variables with true

values.

Pass

234

Figure 7.2.1 UNIT-101

235

Figure 7.2.2 UNIT-102

236

7.2.2 Unit Testing for Login

Test Module Extraction Module Test Title File Upload from the Web

Appication

Test Case ID Test Case

Description

Execution Steps Test Data Expected Result Status

UNIT-201 Login with not

registered email

1. Key in not registered

email.

2. Key in any password.

3. Send request to

corresponding url.

{

"email":

"testing002@gmail.com",

"password": "testing001",

}

Returns error message

showing the email not

found.

Pass

UNIT-202 Login with registered

email, but incorrect

password

1. Key in registered email.

2. Key in incorrect

password.

3. Send request to

corresponding url.

{

"email":

"testing001@gmail.com",

"password": "testing002",

}

Returns error message

showing the password

does not match

Pass

UNIT-203 Login with correct

credentials.

1. Key in registered email.

2. Key in correct password.

{ Returns a token and a user

object.

Pass

237

3. Send request to

corresponding url.

"email":

"testing001@gmail.com",

"password": "testing001",

}

Figure 7.2.3 UNIT-201

238

Figure 7.2.4 UNIT-202

239

Figure 7.2.5 UNIT-203

240

7.2.3 Unit Testing for Channels

Test Module Extraction Module Test Title File Upload from the Web

Appication

Test Case ID Test Case

Description

Execution Steps Test Data Expected Result Status

UNIT-301 Add new channel with

incorrect ThingSpeak

Channel ID

1. Key in incorrect Channel

ID.

2. Send request to

corresponding url with

Authorization Header

token.

{

"channel_id": "2110102"

}

Returns error message

showing the Channel ID

not found

Pass

UNIT-302 Add new channel with

correct ThingSpeak

Channel ID

3. Key in correct Channel

ID.

4. Send request to

corresponding url with

Authorization Header

token.

{

"channel_id": "2210102"

}

Returns a success

message and a user

objects that contains all

their related channels

object, and waterparams

objects.

Pass

241

UNIT-303 Retrieve the latest

water parameters data

5. Send request to

corresponding url with

Authorization Header

token.

{} Returns a channel object

and feeds object which

contains the latest water

parameters data

Pass

UNIT-304 Delete existing

channel

6. Send request to

corresponding url with

Authorization Header

token.

{}

Returns a message

showing this channel is

deleted successfully

Pass

242

Figure 7.2.6 UNIT-301

243

Figure 7.2.7 UNIT-302

244

Figure 7.2.8 UNIT-303

245

Figure 7.2.9 UNIT-304

246

7.2.4 Unit Testing for Dashboard

Test Module Extraction Module Test Title File Upload from the Web

Appication

Test Case ID Test Case

Description

Execution Steps Test Data Expected Result Status

UNIT-401 Retrieve the time

period from now until

the last activity.

7. Send request to

corresponding url with

Authorization Header

token.

{

"title": "Change Water"

}

Returns the time period

from now until the last

change water activity in

days and hours.

Pass

UNIT-402 Retrieve the duration

data of an activity

within this month.

8. Send request to

corresponding url with

Authorization Header

token.

{

"title": "Change Water"

}

Returns the total duration

of the current month,

average total duration of

each months, average

duration to carry out

change water activity,

and total duration carried

out for this activity last

month.

Pass

247

UNIT-403 Retrieve the frequency

data of an activity.

9. Send request to

corresponding url with

Authorization Header

token.

{

"title": "Change Water"

}

Returns the frequency of

this change water activity

in current month, last

month, and the average

from every months.

Pass

UNIT-404 Retrieve the average

intervals data between

all records of an

activity.

10. Send request to

corresponding url with

Authorization Header

token.

{

"title": "Change Water"

}

Returns the average time

intervals between all

records of the change

water activity.

Pass

248

Figure 7.2.10 UNIT-401

249

Figure 7.2.11 UNIT-402

250

Figure 7.2.12 UNIT-403

251

Figure 7.2.13 UNIT-404

252

7.2.5 Unit Testing for Activity Record

Test Module Extraction Module Test Title File Upload from the Web

Appication

Test Case ID Test Case

Description

Execution Steps Test Data Expected Result Status

UNIT-501 Add new event 11. User fill in the add event

form.

12. User hit the submit

button

13. Send request to the

corresponding URL with

Authorization Header

token.

{

"channel_id": "2210102",

"title": "Change Water",

"description": "",

"start_time": "2023-09-

13T14:23:56.030Z",

"end_time": "2023-09-

13T14:53:56.030Z",

"color": "red"

}

Returns the created

acitivity record objects

Pass

253

UNIT-502 Retrieve all recorded

activities

14. Send request to the

corresponding URL with

Authorization Header

token.

{} Returns all the activities

recorded in the database

in a list

Pass

254

Figure 7.2.14 UNIT-501

255

Figure 7.2.15 UNIT-502

256

7.2.6 Unit Testing for Analysis

Test Module Extraction Module Test Title File Upload from the Web

Appication

Test Case ID Test Case

Description

Execution Steps Test Data Expected Result Status

UNIT-601 Predict the next data

for all the parameters

using ARIMA time

series machine

learning model.

15. Send request to the

corresponding URL with

Authorization Header

token.

{

“data”:[{

"created_at":

"2023-08

29T19:40:00+08:00",

"field1":"9.40",

"field2":"28.66",

"field3":"14.00"},{…

},…]

}

Returns the prediction of

the next water parameters

data.

Pass

257

Figure 7.2.16 UNIT-601

258

7.3 Performance Testing

7.3.1 Register an account

1) Reponse Time Testing

Test Case ID Test Description Steps Expected

Result

Status

PFT-101 Measure the

response time for

account

registration

1. Fill up the

registration form

correctly.

2. Submit the

registration form.

3. Record the total

response time for the

application to

register an account.

The total

execution time

should be

lower than 3

seconds to

complete the

account

registration

process.

Pass

1967ms

Figure 7.3.1 PFT-101 Register an account (1967ms)

2) Memory Usage Testing

Test

Case ID

Test

Description

Steps Expected Result Status

PFT-102 Measure the

memory

usage for

account

registration

4. Fill up the registration

form correctly.

5. Submit the registration

form.

6. Record the total memory

usage during account

registration process.

The total memory

usage should be

lower than 20MB

to complete the

account

registration

process.

Pass

12.76MB

259

Figure 7.3.2 PFT-102 Register an account (13069KB)

7.3.2 Login

3) Reponse Time Testing

Test Case ID Test Description Steps Expected

Result

Status

PFT-201 Measure the

response time for

login process

7. Fill up the login form

correctly.

8. Submit the login

form.

9. Record the total

response time for the

application to login.

The total

execution time

should be

lower than 3

seconds to

complete the

account login

process.

Pass

1826ms

Figure 7.3.3 PFT-201 Login Process(1826ms)

4) Memory Usage Testing

Test

Case ID

Test

Description

Steps Expected Result Status

260

PFT-202 Measure the

memory

usage for

login process.

10. Fill up the login form

correctly.

11. Submit the login form.

12. Record the total memory

usage during account

login process.

The total memory

usage should be

lower than 20MB

to complete the

account login

process.

Pass

12.94MB

Figure 7.3.4 PFT-102 Register an account (13249KB)

7.3.3 Dashboard

5) Reponse Time Testing

Test Case ID Test Description Steps Expected

Result

Status

PFT-301 Measure the

response time for

Dashboard to be

render.

13. User navigate to

dashboard page

14. Record the total

response time to

render the

dashboard.

The total

execution time

should be

lower than 6

seconds to

render the

dashboard.

Pass

4089ms

Figure 7.3.5 PFT-301 Load Dashboard Process(4089ms)

261

6) Memory Usage Testing

Test

Case ID

Test

Description

Steps Expected Result Status

PFT-302 Measure the

memory

usage for the

dashbaord to

render.

15. User navigate to

dashboard page

16. Record the total memory

usage to render the

dashboard.

The total memory

usage should be

lower than 20MB

to complete the

dashboard

rendering.

Pass

13.35MB

Figure 7.3.6 PFT-302 Load Dashboard Process (13658KB)

7.3.4 Add Event

7) Reponse Time Testing

Test Case ID Test Description Steps Expected

Result

Status

PFT-401 Measure the

response time for

the process of

adding a new event

and then render the

dashboard.

17. User fill in the add

event form.

18. User click the submit

button.

19. Record the total

response time to add

the event and render

the dashboard.

The total

execution time

should be

lower than 3

seconds to add

event and then

re-render the

dashboard

page.

Pass

2339ms

262

Figure 7.3.7 PFT-401 Add Eevent Process(2339ms)

8) Memory Usage Testing

Test

Case ID

Test

Description

Steps Expected Result Status

PFT-402 Measure the

memory

allocation for

the process of

adding a new

event and

then render

the

dashboard.

20. User fill in the add event

form.

21. User click the submit

button.

22. Record the total memory

usage used to add the

event and render the

dashboard.

The total memory

usage should be

lower than 20MB

to add event and

then re-render the

dashboard page.

Pass

13.19MB

Figure 7.3.8 PFT-402 Add Event Process (13505KB)

7.3.5 Analysis

9) Reponse Time Testing

Test Case ID Test Description Steps Expected

Result

Status

263

PFT-501 Measure the

response time for

the process of get

the analysis data

and render the

analysis dashboard.

23. User navigate to the

analysis page.

24. Record the total

response time to get

the analysis data and

render the analysis

dashboard.

The total

execution time

should be

lower than 8

seconds to get

the analysis

data and render

the analysis

dashboard.

Pass

6851ms

Figure 7.3.9 PFT-501 Analysis Process(6851ms)

10) Memory Usage Testing

Test

Case ID

Test

Description

Steps Expected Result Status

PFT-502 Measure the

memory

usage for the

process of get

the analysis

data and

render the

analysis

dashboard.

25. User navigate to the

analysis page.

26. Record the total memory

usage to get the analysis

data and render the

analysis dashboard.

The total memory

usage should be

lower than 20MB

to get the analysis

data and render the

analysis

dashboard.

Pass

13.19MB

264

Figure 7.3.10 PFT-502 Analysis Process (13492KB)

7.3.6 Laravel Back-end Server API Endpoint Response Time Testing

API Endpoint Test Case ID Response

time

POST - api/register UNIT-102 493ms

POST - api/login UNIT-203 203ms

POST - api/channels UNIT-302 1181ms

DELETE – api/channels/{id} UNIT-304 349ms

POST - api/actions UNIT-501 105ms

GET - api/actions/channel/{channel_id} UNIT-502 74ms

POST - api/predict UNIT-601 2.69s

POST - api/actions/lastinterval/{channel_id} UNIT-401 96ms

POST - api/actions/duration/{channel_id} UNIT-402 121ms

POST - api/actions/frequency/{channel_id} UNIT-403 87ms

POST -

api/actions/averageinterval/{channel_id}

UNIT-404 78ms

7.4 System Usability Test

The System Usability Scale (SUS) is used to perform system usability test in

this project. After a brief demonstration of the functionality of this Water

Quality Monitoring mobile application, respondents needs to explore and use

all the functionality of the application by completing the test scenario defined at

below. After that, respondents needs to fill in the User Satisfactory Survey. It

has 2 sections. In section A, respondents needs to answer 10 questions of the

questionnaire. Each question have 5 answers, and their marks range from 1 – 5,

the answer categories listed as below:

265

1) Strongly Disagree – 1

2) Disagree – 2

3) Neutral – 3

4) Agree – 4

5) Strongly Agree – 5

Next, Section B requires user to answer 3 open-ended questions. Finally, the

result of the usability testing will be evaluate and calculated based on the survey

results. The sample user satisfactory survey form template used in this SUT can

be found in Appendix A.

7.4.1 Test Scenario for Usability Testing

Table 7.4.1 Tables of Test Scenarios

Test Scenario to act as aquafarmer

Scenario 1 – Register a new account

Imagine you are a aquafarmer that is new to this system to monitor the water

quality in a water tank. You want to make use of this mobile application to

see the water parameters data collected by the sensors. What would you do so

that you can have the access to use this system?

Scenario 2 – Login to his account

Imagine you are a aquafarmer, you already have an account to use this mobile

application. What should you do so that you can use the mobile application

features?

Scenario 3 – Add a new channel for monitoring

Imagine you are a aquafarmer, you want to use this mobile application to

monitor the water quality of a water tank that is already implements the

sensors module to collects data, and have a channel to monitor it in

ThingSpeak cloud service. What should you do so that you can monitor water

parameters of that particular water tank?

Scenario 4 – Update channel settings

Imagine you are a aquafarmer, you want to monitor water parameters of the

channel correctly, so you need to do some settings to the channel. Now you

want to change the maximum and minimum range of the gauge, and add

gauge and line graphs to the dashboard, how can you do that?

Scenario 4 – Delete a channel

266

Imagine you are a aquafarmer, you don’t want to monitor the water quality of

this water tank anymore. What should you do to not monitor this water tank

with your account.

Scenario 5 – View the dashboard of a channel

Imagine you are a aquafarmer, you want to view the water confition of your

aquafarm. What should you do to have an overall view of water quality of all

the water tanks.

Scenario 6 – View activity history and analysis

Imagine you are a aquafarmer, you want to gain more insights to decide the

time you need to change the water in this water tank. What should you do so

that you can exploit this water quality monitoring application to help you on

deciding when to change the water?

Scenario 7 – Record new activity

Imagine you are a aquafarmer, you just successfully change the water in this

water tank, and you want to record this action you have taken. What should

you do to use this application to record your taken action towards this water

tank?

Scenario 8 – View analysis for the water quality

Imagine you are a aquafarmer, you want to analyze the dissolved oxygen level

in this water tank. What should you do with this application to allow you to

immediately see the analysis of the dissolved oxygen in this water tank?

Scenario 9 – Toggle notification on and off

Imagine you are a aquafarmer, you want to get notify when there is problem

with the water tanks. What should you do to use this application to help you?

Scenario 10 – Logout

Imagine you are a aquafarmer, you want to login to other account so you need

to logout the current account. What should you do so that you are able to

logout this application?

7.4.2 Result of Usability Testing

3 respondents were participating in this usability testing. In Section A, they

need to explore the application based on the 10 test scenarios specified in section

7.4.2. Then they need to fill up the satisfactory survery form shown in section

7.4.1. Their recorded responses can be found at Appendix B.

267

 In order to calculate the SUS score, following are the formula to

calculate SUS score:

• X = Sum of the points for all odd-numbered questions – 5

• Y = 25 – Sum of the points for all even-numbered questions

• SUS Score = (X + Y) x 2.5

Average SUS score can be calculated by:

• Average SUS Score = Total SUS Score / Number of participants

After getting the average of SUS score, we can use the tables below to perform

interpretation to understand usability performance of this system (Will T, n.d.).

Table 7.4.2 Template of User Satisfactory Survey

SUS score Grade Adjective Rating

> 80.3 A Excellent

68 – 80.3 B Good

68 C Okay

51-68 D Poor

<51 F Awful

After complete all the survey and calculation of the usability score, the results

is shown at the table below:

Table 7.4.3 SUS results

Participants

Name

Usability Score for each question Total Marks

1 2 3 4 5 6 7 8 9 10 Odd Even

Seow Ding Han 5 2 4 2 4 2 5 2 4 2 22 15 80.0

Tang Chu Lin 4 2 4 4 5 4 5 1 4 1 22 17 75.0

Poey Wei Jun 4 1 3 4 4 2 5 1 4 2 20 15 67.5

Average SUS Score 74.17

In Section B, respondents need to answer these open-ended questions:

1) What do you like best about the system?

2) What do you like least about the system?

3) Do you have any suggestions for improving the current system?

From their response in Appendix B, the summary of answers for each questions

will be arrange in the tables below.

Table 7.4.4 Summary of Respondents' Most Liked Features of the System

Summary of Respondents' Most Liked Features of the System

The features provided by the system can be learn and use easily.

The dashboard design able to provide user a great monitoring experience.

268

The calendar components used to implement the record activity features is

useful.

Table 7.4.5 Summary of Respondents' Least Liked Features of the System

Summary of Respondents' Least Liked Features of the System

The activity history features is missing functionality for edit and delete

activities.

The notification system is not complete, such as user are unable to open

notification selectively among all the channels.

The notification system is not user-friendly, such as there is no toggle on/off

switch to use notification system.

Table 7.4.6 Summary of Respondents' Suggestion to improve the system

Summary of Respondents' Suggestion to improve the system

The acitivity history features should include delete and edit function.

The notification on/off button should be replaced with switch, and can

selectively choose with channel to on/off notification.

In conclusion, the average SUS score achieved by this system is 74.17 which is

placed under the Grade B. This means that the overall user experience of using

this system is Good, but not too impressive. Therefore, there is more

improvements can be done to this system to achieve impressive user experience

in the future. Besides, we also received open-ended feedbacks about the best

function, worst function, and suggestions from respondents throughout this

System Usability Testing. Overall, the best thing about this system is it can learn

to use easily, dashboard is simple and informative and the record activity

process in this system is well-designed. The worst thing about this system is it

missing some required functionality such as delete and edit the activity history,

and notification system is not designed well. Therefore, the suggestion from the

respondents are add more function to the activity history and improve the design

of notification system.

269

270

CHAPTER 8

8 CONCLUSION & RECOMMENDATION

8.1 Conclusion

This chapter discuss the achievement, limitation, and recommendation to

improve the system. This system has successfully achieve all the goals listed in

Chapter 1, they are:

1. To analyze existing available tools related to aquafarming to develop

ideas for designing usable water monitoring systems.

2. To perform analysis on the of water quality of the water tank to discover

the trends and useful information to assist in decision making on the

water quality monitoring process.

3. To develop a mobile application that provides a dashboard that displays

all the water parameter readings of the aquaculture system anytime

anywhere to allow user to check the current water condition in water

tank.

4. To evaluate the water quality of the fish tank so that user are able to take

immediate initiative to maintain its water quality to optimize fish growth

and prevent undesirable condition.

Objectives 1 is completed by successfully design and develop a complete water

monitoring systems using various hardware tools and software tools. Besides,

Objectives 2 is achieved by the water quality monitoring system provides

various analysis features, such as statistical analysis on water quality, generating

trendline graphs to understand the trends of the water quality, use machine

learning model to perform prediction on the next reading. Not only water

parameters, there is also analysis on the activitity history records to help user

find out the pattern of water quality monitoring process. Next, Objectives 3 is

completed by the water quality monitoring mobile application provides simple

and informative dashboard to monitor water quality. The last objectives is also

achieved by having a notification features provided by the mobile application,

it creates a background service which can still notify user about the water quality

if the application is closed.

271

8.2 Limitation and Recommendation for future work

Throughout the system testing phases, there are many limitations were

discovered. Based on the limitation, some recommendation has been made by

me and the testers involves is SUT to improve the system for future development.

Below shows the tables of limitations and recommendations for this system.

Table 8.2.1 Limitation and Recommendation

Limitation Recommendation

The mobile application and the back-

end server is currently deployed and

host locally. So user cannot use the

mobile application in a real android

device and connot access the back-

end server service through internet.

The back-end server should be hosted

in a web server or cloud server, to

make it have a domain to access the

server. The mobile application

project should be export to become a

executable mobile application, so that

user can install this applicatin in their

android smartphone to use this

application.

This system is currently able to

monitor fixed 3 water paramers,

dissolved oxygen, pH values, and

temperatures. It is unable to work

properly if the water tank have lesser

water parameters or more paramters

to monitor. For example, the water

tank only have 2 sensors, however the

mobile application is designed with 3

sensors fixed. Therefore this will

cause some problems in the mobile

application to works properly.

The system should be designed to be

flexible to contain the water

parameters of a water tank for

monitoring in the mobile application.

For example, if the water tank only

have 2 sensors, DO and PH, the

mobile application should works with

only 2 water parameters not including

the temperature.

The notification system is incomplete

such as it cannot selectively choose a

single channel or a groups of channel

The system should be designed to

allow users can selectively choose

which channels should toggle on or

off the notifications service.

272

to open notification from a list of

channels.

When user record the activities with

wrong information, the recorded

activities is unable to be edit or

deleted, which cause logging

incorrect activiy and affect the

accuracy and correctness of analysis.

The mobile application should

include the edit and delete activity

record function.

273

REFERENCES

Azlan Othman, N., Salwa Damanhuri, N., Syafiq Mazalan, M. A., Addayani

Shamsuddin, S., Hussaini Abbas, M., & Chiew Meng, B. C., 2020. Automated

water quality monitoring system development via LabVIEW for aquaculture

industry (Tilapia) in Malaysia. Indonesian Journal of Electrical Engineering

and Computer Science, 20(2), pp.805.

https://doi.org/10.11591/ijeecs.v20.i2.pp805-812

Zhou, X., 2019. Brief overview of world aquaculture production An update

with latest available 2017 global production data. FAO Aquaculture

Newsletter, pp6–8.

Masser, M. P., Rakocy, J., & Losordo, T. M., 1992. Recirculating Aquaculture

Tank Production Systems Management of Recirculating Systems. Southern

Regional Aquaculture Center, 452.

Purina Animal Nutrition, 2023. Sudden Loss of Fish. Management : Pond

Management [Online]. Available at https://www.purinamills.com/fish-and-

aquatics-feed/education/detail/sudden-loss-of-

fish#:~:text=Some%20fish%20culture%20systems%20rely,minutes%20of%2

0a%20systems%20failure [Accessed on 18 March 2023].

Kenekar, A., 2020. Impact Of Algal Blooms On Aquaculture And Effective

Solution. Organica Biotech [Online]. Available at

https://organicabiotech.com/impact-of-algal-blooms-on-aquaculture-and-

effective-

solution/#:~:text=Effects%20of%20Harmful%20Algal%20Bloom&text=The

%20non%2Dtoxic%20producing%20species,eventually%20leads%20to%20fi

sh%20kills [Accessed on 18 March 2023].

Priyadarshani, I., Sahu, D. and Rath, B., 2012. Algae in aquaculture. Int. J.

Health Sci. Res, 2, pp.108-114.

Norambuena, F., Hermon, K., Skrzypczyk, V., Emery, J. A., Sharon, Y.,

Beard, A., & Turchini, G. M., 2015. Algae in Fish Feed: Performances and

Fatty Acid Metabolism in Juvenile Atlantic Salmon. PLOS ONE, 10(4),

e0124042. https://doi.org/10.1371/journal.pone.0124042

Low Dissolved Oxygen in Water Causes, Impact on Aquatic Life – An

Overview. (2009, February). Minnesota Pollution Control Agency, pp.1–2.

WebMD Editorial Contributors., 2023. How to Change Fish Tank Water.

WebMD. https://thefishsite.com/articles/how-to-achieve-good-water-quality-

management-in-aquaculture

274

How to achieve good water quality management in aquaculture., 2015. The

Fish Site. https://pets.webmd.com/how-to-change-fish-tank-

water#:~:text=Changing%20your%20fish’s%20water%20regularly,such%20a

s%20nitrate%20and%20phosphate.

5.7 Nitrates., 2012. Environmental Protection Agency.

https://archive.epa.gov/water/archive/web/html/vms57.html#:~:text=Together

%20with%20phosphorus%2C%20nitrates%20in,%2C%20temperature%2C%2

0and%20other%20indicators.

Li, T., Lu, J., Wu, J., Zhang, Z., & Chen, L., 2022. Predicting Aquaculture

Water Quality Using Machine Learning Approaches. Water, 14(18), 2836.

https://doi.org/10.3390/w14182836

Martinez, P., 2021. What is Evolutionary Prototype? Mockkitt Wondershare.

https://mockitt.wondershare.com/prototyping/evolutionary-prototyping.html

F. J. Espinosa-Faller and G. E. Rendón-Rodríguez, “A ZigBee wireless sensor

network for monitoring an aquaculture recirculating system,” Journal of

Applied Research and Technology, vol. 10, no. 3, pp. 380–387, 2012.

M. Zhang, D. Li, L. Wang, D. Ma, and Q. Ding, “Design and development of

water quality monitoring system based on wireless sensor network in

aquaculture,” in Computer and Computing Technologies in Agriculture IV, D.

Li, Y. Liu, and Y. Chen, Eds., pp. 629–641, Springer, 2011.

02DCE @02DCE, 2020, Software Engineering Prototyping Model [Online].

Abinaya, T., Ishwarya, J. and Maheswari, M., 2019. A Novel Methodology for

Monitoring and Controlling of Water Quality in Aquaculture using Internet of

Things (IoT). 2019 International Conference on Computer Communication and

Informatics, ICCCI 2019. 2019

Anon, EZOTM RTD Temperature Circuit [Online]. Available at: https://atlas-

scientific.com/embedded-solutions/ezo-rtd-temperature-circuit/ [Accessed: 14

September 2023a].

Anon, ESP32 [Online]. Available at:

https://www.espressif.com/en/products/socs/esp32 [Accessed: 20 April 2023b].

275

Anon, EZOTM Dissolved Oxygen Circuit [Online]. Available at: https://atlas-

scientific.com/embedded-solutions/ezo-dissolved-oxygen-circuit/ [Accessed:

14 September 2023c].

Anon, EZOTM pH Circuit [Online]. Available at: https://atlas-

scientific.com/embedded-solutions/ezo-ph-circuit/# [Accessed: 14 September

2023d].

Anon, 2012. FISH TO 2030 Prospects for Fisheries and Aquaculture,

Washington.

Anon, 2015, How to achieve good water quality management in aquaculture

[Online]. Available at: https://thefishsite.com/articles/how-to-achieve-good-

water-quality-management-in-aquaculture [Accessed: 20 April 2023].

Anon, Industrial Dissolved Oxygen Probe [Online]. Available at: https://atlas-

scientific.com/probes/industrial-dissolved-oxygen-probe/ [Accessed: 14

September 2023e].

Anon, Industrial pH/ORP/Temp Probe. Atlas Scientific. Available at:

https://atlas-scientific.com/probes/industrial-ph-orp-temp-probe/ [Accessed: 14

September 2023f].

Anon, 2022a, MQTT: The Standard for IoT Messaging [Online]. Available at:

https://mqtt.org/ [Accessed: 20 April 2023].

Anon, Scrum vs Waterfall vs Agile vs Lean vs Kanban [Online]. Available at:

https://www.visual-paradigm.com/scrum/scrum-vs-waterfall-vs-agile-vs-lean-

vs-kanban/ [Accessed: 21 April 2023g].

Anon, SKU:SEN0237 [Online]. Available at:

https://wiki.dfrobot.com/Gravity__Analog_Dissolved_Oxygen_Sensor_SKU_

SEN0237#target_6 [Accessed: 20 April 2023h].

276

Anon, 2022b, The Importance of Water Quality in Fish Farming [Online].

Available at: https://edinburghsensors.com/news-and-events/water-quality-in-

fish-farming/ [Accessed: 11 April 2023].

Anon, 2019, What Is Aquaculture and Why Do We Need It? [Online]. Available

at: https://www.globalseafood.org/blog/what-is-aquaculture-why-do-we-need-

it/ [Accessed: 11 April 2023].

Anon, 2023, What Is LabVIEW? [Online]. Available at: https://www.ni.com/en-

my/shop/labview.html [Accessed: 20 April 2023].

Azlan Othman, N. et al., 2020. Automated water quality monitoring system

development via LabVIEW for aquaculture industry (Tilapia) in Malaysia.

Indonesian Journal of Electrical Engineering and Computer Science, 20(2),

p.805.

Ciji, A. and Akhtar, M.S., 2020. Nitrite implications and its management

strategies in aquaculture: a review. Reviews in Aquaculture, 12(2).

Das, B. and Jain, P.C., 2017. Real-time water quality monitoring system using

Internet of Things. 2017 International Conference on Computer,

Communications and Electronics, COMPTELIX 2017. 2017

Dupont, C., Cousin, P. and Dupont, S., 2018. IoT for aquaculture 4.0 smart and

easy-to-deploy real-time water monitoring with IoT. 2018 Global Internet of

Things Summit, GIoTS 2018. 2018

Edward Lang, 2019, The Importance of Water Quality Monitoring in

Aquaculture [Online]. Available at: https://www.bellenviro.co.uk/blog/the-

importance-of-water-quality-monitoring-in-aquaculture/ [Accessed: 11 April

2023].

277

Espinosa-Faller, F.J. and Rendón-Rodríguez, G.E., 2012. A zigbee wireless

sensor network for monitoring an aquaculture recirculating system. Journal of

Applied Research and Technology, 10(3).

FRESHWATER-AQUACULTURE, 2019, Water Quality in Aquaculture

[Online]. Available at: https://freshwater-aquaculture.extension.org/water-

quality-in-aquaculture/ [Accessed: 20 April 2023].

Huang, J. et al., 2013. Development and test of aquacultural water quality

monitoring system based on wireless sensor network. Nongye Gongcheng

Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 29(4).

Huang, J.F., Lee, J.M. and Sun, P.C., 2013. Prolonged culture period on

production cost and factor input: A case from the Pacific Oyster, Crassostrea

gigas, farming industry in Yunlin County, Taiwan. Journal of the World

Aquaculture Society, 44(6).

Joseph, I. and Augustine, A., 2019. Marine biotechnology for food. Genomics

and Biotechnological Advances in Veterinary, Poultry, and Fisheries, pp.271–

283.

Lucy Towers, 2015, Water quality: a priority for successful aquaculture

[Online]. Available at: https://thefishsite.com/articles/water-quality-a-priority-

for-successful-aquaculture [Accessed: 11 April 2023].

Nicolai Berg Andersen, 2023, What Is the Waterfall Methodology? [Online].

NOAA, 2023, What is aquaculture? [Online]. Available at:

https://oceanservice.noaa.gov/facts/aquaculture.html [Accessed: 11 April 2023].

OS-system, 2020, Top 4 Software Development Methodologies: Comparison,

Differences, Pros and Cons [Online]. Available at: https://os-

system.com/contact/https://os-system.com/blog/top-software-development-

278

methodologies-comparison-differences-pros-and-cons/ [Accessed: 21 April

2023].

Romain Bourdon, WAMPSERVER, a Windows web development environment.

[Online]. Available at: https://www.wampserver.com/en/ [Accessed: 14

September 2023].

Su, X., Sutarlie, L. and Loh, X.J., 2020. Sensors, Biosensors, and Analytical

Technologies for Aquaculture Water Quality. Research, 2020.

Taylor Otwell, The PHP Framework for Web Artisans [Online]. Available at:

https://laravel.com/ [Accessed: 14 September 2023].

Tolentino, L.K.S. et al., 2021. Development of an IoT-based Intensive

Aquaculture Monitoring System with Automatic Water Correction.

International Journal of Computing and Digital Systems, 10(1).

Tsai, K.L. et al., 2022. IoT based Smart Aquaculture System with Automatic

Aerating and Water Quality Monitoring. Journal of Internet Technology, 23(1).

Will T, Measuring and Interpreting System Usability Scale (SUS) [Online].

Available at: https://uiuxtrend.com/measuring-system-usability-scale-sus/

[Accessed: 14 September 2023].

Xiaowei Zhou, 2019. Brief overview of world aquaculture production An

update with latest available 2017 global production data. FAO Aquaculture

Newsletter, pp.6–8.

Yue, K. and Shen, Y., 2022. An overview of disruptive technologies for

aquaculture. Aquaculture and Fisheries, 7(2), pp.111–120.

Zhang, M. et al., 2011. Design and development of water quality monitoring

system based on wireless sensor network in aquaculture. IFIP Advances in

Information and Communication Technology. 2011

279

280

APPENDICES

Appendix A: Template of User Satisfactory Survey

Participant No: 3

Name: Poey Wei Jun

Question Strongly

Disagree

Disagree Neutral Agree Strongly

Agree

1 2 3 4 5

1. I think that I would

like to use this system

frequently.

2. I found the system

unnecessarily

complex.

3. I thought the system

was easy to use.

4. I think that I would

need the support of a

technical person to be

able to use this

system.

5. I found the various

functions in this

system were well

integrated.

6. I thought there was

too much

inconsistency in this

system.

7. I would imagine that

most people would

learn to use this

system very quickly.

281

8. I found the system

very cumbersome to

use.

9. I felt very confident

using the system.

10. I needed to learn a lot

of things before I

could get going with

this system.

1. What do you like best about the system?

2. What do you like least about the system?

3. Do you have any suggestions for improving the current system?

Appendix B: Usability Test Responses

Participant No: 1

Name: Seow Ding Han

Question Strongly

Disagree

Disagree Neutral Agree Strongly

Agree

1 2 3 4 5

1. I think that I would

like to use this system

frequently.

 ✔

2. I found the system

unnecessarily

complex.

 ✔

3. I thought the system

was easy to use.

 ✔

4. I think that I would

need the support of a

 ✔

282

technical person to be

able to use this

system.

5. I found the various

functions in this

system were well

integrated.

 ✔

6. I thought there was

too much

inconsistency in this

system.

 ✔

7. I would imagine that

most people would

learn to use this

system very quickly.

 ✔

8. I found the system

very cumbersome to

use.

 ✔

9. I felt very confident

using the system.

 ✔

10. I needed to learn a lot

of things before I

could get going with

this system.

 ✔

1. What do you like best about the system?

The system is easy to use after get familiar with the system.

2. What do you like least about the system?

Some function is incomplete, such as the recorded action is unable to be edit

and delete.

3. Do you have any suggestions for improving the current system?

The recorded action should be able to be edit and delete.

283

Participant No: 2

Name: Tang Chu Lin

Question Strongly

Disagree

Disagree Neutral Agree Strongly

Agree

1 2 3 4 5

1. I think that I would

like to use this system

frequently.

 ✔

2. I found the system

unnecessarily

complex.

 ✔

3. I thought the system

was easy to use.

 ✔

4. I think that I would

need the support of a

technical person to be

able to use this

system.

 ✔

5. I found the various

functions in this

system were well

integrated.

 ✔

6. I thought there was

too much

inconsistency in this

system.

 ✔

7. I would imagine that

most people would

learn to use this

system very quickly.

 ✔

8. I found the system

very cumbersome to

use.

✔

284

9. I felt very confident

using the system.

 ✔

10. I needed to learn a lot

of things before I

could get going with

this system.

✔

1. What do you like best about the system?

The dashboard design is nice, it provides varous charts and analysis to

display useful information.

2. What do you like least about the system?

The notification function is not designed very well, user cannot specifically

set which channel notification to be open or closed. Besides, the notification

is triggered using 2 button, yes or no, instead of a switch, so there is no

indicator to let user know whether the notification is currently on or off.

3. Do you have any suggestions for improving the current system?

Make each channel to have option to choose to open or close the notification

for the channel. Besides, can replace the yes or no button with a switch, to

make it looks more user-friendly and informative.

285

Participant No: 3

Name: Poey Wei Jun

Question Strongly

Disagree

Disagree Neutral Agree Strongly

Agree

1 2 3 4 5

1. I think that I would

like to use this system

frequently.

 ✔

2. I found the system

unnecessarily

complex.

✔

3. I thought the system

was easy to use.

 ✔

4. I think that I would

need the support of a

technical person to be

able to use this

system.

 ✔

5. I found the various

functions in this

system were well

integrated.

 ✔

6. I thought there was

too much

inconsistency in this

system.

 ✔

7. I would imagine that

most people would

learn to use this

system very quickly.

 ✔

8. I found the system

very cumbersome to

use.

✔

286

9. I felt very confident

using the system.

 ✔

10. I needed to learn a lot

of things before I

could get going with

this system.

 ✔

1. What do you like best about the system?

The record action function has a calendar for user to choose the date to

record activity. The calendar also have the marking of the dates to indicates

activity carried out on that particular date. This calendar allows the user can

have a overall and summarized view of all activities carried out in each

month.

2. What do you like least about the system?

The activity created cannot be edit or deleted anymore, which means user

cannot undo their operation when they make mistakes when adding new

events.

3. Do you have any suggestions for improving the current system?

Make the calandar also have the ability to delete and edit the recorded

activities.

