WATER QUALITY MONITORING IN AQUACULTURE TO
INCREASE FISH GROWTH PERFORMANCE BASED ON SENSOR
OUTCOMES.

PHANG JUN SEN

A project report submitted in partial fulfilment of the
requirements for the award of Bachelor of Science

(Honours) Software Engineering

Lee Kong Chian Faculty of Engineering and Science
Universiti Tunku Abdul Rahman

March 2023

DECLARATION

| hereby declare that this project report is based on my original work except for
citations and quotations which have been duly acknowledged. I also declare that
it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature
Name . Phang Jun Sen
ID No. : 010204-02-0767

Date . 5 October 2023

APPROVAL FOR SUBMISSION

| certify that this project report entitled “WATER QUALITY MONITORING
INAQUACULTURE TO INCREASE FISH GROWTH PERFORMANCE
BASED ON SENSOR OUTCOMES” was prepared by PHANG JUN SEN
has met the required standard for submission in partial fulfilment of the
requirements for the award of Bachelor of Science (Honours) Software

Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature : /

Supervisor : Ts Dr Sugumaran a/l Nallusamy

Date : 05/10/2023

Signature : ’ﬁ%

\

Co-Supervisor : Dr Kwan Ban Hoe

Date : 5 Oct 2023

kwan_
Text Box
5 Oct 2023

The copyright of this report belongs to the author under the terms of
the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti
Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2023, PHANG JUN SEN. All right reserved.

ACKNOWLEDGEMENT

I am deeply grateful to my project supervisor, Dr. Ts Sugumaran a/l
Nallusamy, for his valuable insights, guidance and unwavering help throughout
the project. His expertise in architectural design and system functionality was
instrumental in determining the direction of the project. Additionally, 1 am
grateful that he allowed me access to his aquaculture farm, which enabled me
to deploy data acquisition modules in his tanks to collect key water parameters
for research.

I sincerely thank my co-supervisor Dr. Kwan Ban Hoe for generously

sponsoring the necessary equipment required to set up the sensor module.

I am also grateful to Dr. Ng Oon Ee for his guidance in configuring the
sensor module. His provision of the Arduino board and valuable ideas for
microcontroller programming and sensor calibration were crucial to the success

of the project.

My sincere appreciation goes to Universiti Tunku Abdul Rahman for
their unwavering support by providing the essential resources, infrastructure,
and access to library facilities, all of which greatly facilitated my research and
project development.

I would also like to express my gratitude to my friends and peers who
played an integral role in assisting me with building the sensor module. Their
contributions and participation in the System Usability Testing to evaluate the
performance of the water quality monitoring mobile application were

immensely valuable.

In conclusion, the successful completion of this project was made
possible through the collective efforts and support of these individuals and
institutions. 1 am truly grateful for their contributions, which have significantly

contributed to my academic journey and personal growth.

ABSTRACT

The increasing demand for sustainable aquafarming practices has
prompted the development of advanced water quality monitoring systems. This
project introduces a comprehensive Water Quality Monitoring System that
encompasses four key modules: the Data Acquisition Module, Communication
Module. Data Processing and User Interface Module. The project's objectives
encompass analyzing existing aquafarming tools, conducting water quality
analysis, developing a mobile application for data visualization, and evaluating
water quality to optimize fish growth and maintain ideal conditions. An
evolutionary prototyping approach was used for system development and
successful implementation. In the end, the objectives are achieved when the
water quality monitoring system was successfully developed and deployed in
an aquaculture farm for water quality monitoring. The developed data collection
module can efficiently collect and transmit data to the ThingSpeak cloud server,
which stores and provides REST API for data processing and retrieval. The user
interface module runs efficiently on the Android emulator and cooperates with
the data processing module to provide data processing, user authentication and
authorization, and machine learning data prediction to support real-time water
parameter monitoring. In conclusion, this FYP report discusses the system's
achievements, limitations, and recommendations for future enhancements.
While the system achieved its goals, certain limitations emerged during testing,
leading to suggestions for improvement. This project represents a significant
step toward efficient and sustainable aquafarming practices through advanced

water quality monitoring.

TABLE OF CONTENTS

DECLARATION
APPROVAL FOR SUBMISSION
ACKNOWLEDGEMENT

ABSTRACT

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS / ABBREVIATIONS
LIST OF APPENDICES

CHAPTER 1

24

INTRODUCTION

1.1
1.2

1.3
1.4
1.5
1.6

CHAPTER 2

General Introduction

Problem Statement

1.2.1 Aeration system failure

1.2.2 Algae Bloom

1.2.3 Unpredictable timing to change water

Aim and Objectives

Proposed Solution

Proposed Approach

Project Scope

1.6.1 Sensor Module

1.6.2 Data Acquisition Module

1.6.3 Communication Module

1.6.4 User Interface Module
32

LITERATURE REVIEW

2.1
2.2
2.3
24

Aquaculture

Recirculating Aquaculture System
Internet of Things in Aquaculture
Water Quality

2.4.1 Importance of Water Quality
2.4.2 Water Quality Parameters

Vi

vi
Xi
Xii
XXii

xxiii

24
24
25
25
26
26
27
28
29
30
30
30
31
31

32
32
33
33
36
36
36

2.5

2.6
2.7

2.8

2.9
CHAPTER 3

Existing Aquaculture Monitoring System

2.5.1 Automated water quality monitoring system
development via LabVIEW for aquaculture
industry (Tilapia) in Malaysia

2.5.2 loT-based Smart Aquaculture System with
Automatic Aerating and Water Quality
Monitoring

2.5.3 Development of an loT-based Intensive
Aquaculture Monitoring System with
Automatic Water Correction

Comparison and Analysis

Software Development Methodology

2.7.1 Waterfall

2.7.2 Agile

2.7.3 Lean

Comparison ~ of Software Development

Methodology

Justification of Aquaculture Monitoring System

80

METHODOLOGY AND WORK PLAN

3.1
3.2

3.3

Introduction

Software Development Methodology
3.2.1 Initial Set of User Requirements
3.2.2 Quick Design

3.2.3 Develop Prototype

3.2.4 Evaluation of prototype by the customer
3.2.5 Refine Requirements

3.2.6 Refine Prototype

3.2.7 Test the final product

3.2.8 Deliver and maintain

Project Plan

3.3.1 Work Breakdown Structure (WBS)
3.3.2 Gantt Chart

vii

40

40

49

58
69
73
73
75
76

77

80
80
81
82
83
83
84
84
84
84
85
85
85
88

CHAPTER 4

3.3.3 Development Tool
100

PROJECT SPECIFICATION

4.1
4.2

4.3

CHAPTER 5

Introduction
Proposed System Architecture
4.2.1 Sensor
4.2.2 Data Acquisition Module
4.2.3 Cloud Server
4.2.4 Web and Mobile Application
Requirement Specification
4.3.1 Functional Requirement
4.3.2 Non-Functional Requirement
4.3.3 Use Case Diagram
4.3.4 Use Case Description

121

SYSTEM DESIGN

5.1
5.2

5.3
CHAPTER 6

Introduction
System Architecture Design
5.2.1 Data Acquisition Module Architecture
5.2.2 Communication Module Architecture
5.2.3 Data Processing Module
5.2.4 User Interface Module
Conclusion
139

SYSTEM IMPLEMENTATION

6.1
6.2

Introduction

Project Setup

6.2.1 Communication Module Setup

6.2.2 Data Acquisition Module Setup
6.2.3 Data Processing Module Setup

6.2.4 User Interface Module Setup (React Native

Android Application)

viii

97

100
100
100
101
101
102
102
105
105
106
108
109

121
121
121
122
127
131
135
138

139
139
139
139
143
152

158

6.3

6.4

6.5
CHAPTER 7

Water Quality Monitoring Mobile Application
functions
6.3.1 Register
6.3.2 Login
6.3.3 Channels
6.3.4 Dashboard
6.3.5 Activity Record
6.3.6 Analysis
6.3.7 Notification
System Deployment
6.4.1 Data Acquisition Module Deployment
6.4.2 Communication Module Deployment
6.4.3 Data Processing Module Deployment
6.4.4 User Interface Module Deployment
Conclusion

231

SYSTEM TESTING

7.1
7.2

7.3

Introduction

Unit Testing

7.2.1 Unit Testing for Register

7.2.2 Unit Testing for Login

7.2.3 Unit Testing for Channels

7.2.4 Unit Testing for Dashboard
7.2.5 Unit Testing for Activity Record
7.2.6 Unit Testing for Analysis
Performance Testing

7.3.1 Register an account

7.3.2 Login

7.3.3 Dashboard

7.3.4 Add Event

7.3.5 Analysis

7.3.6 Laravel Back-end Server API Endpoint

Response Time Testing

163
163
170
176
186
199
206
219
223
223
225
227
228
230

231
231
232
232
236
240
246
252
256
258
258
259
260
261
262

264

7.4

CHAPTER 8

System Usability Test
7.4.1 Test Scenario for Usability Testing
7.4.2 Result of Usability Testing

270

CONCLUSION & RECOMMENDATION

8.1

8.2
REFERENCES
APPENDICES

Conclusion

Limitation and Recommendation for future work

264
265
266

270
270
271
273
280

LIST OF TABLES

Table 2.2.4.1 Standard range for water quality parameter set by fisheries
research institute (FRI) Malaysia (Azlan Othman et al.,
2020)

Table 2.2.4.2 Water quality tolerance by species (FRESHWATER-
AQUACULTURE, 2019)

Table 2.5.1 The accuracy fo temperature sensor of the system (Azlan
Othman et al., 2020)

Table 2.5.2 Table of temperature and pH level with time (Azlan Othman
et al., 2020)

Table 2.5.3 Fish Growth In Each Setup (Tolentino et al., 2021)
Table 2.6.1 Comparison table between LabVIEW, ISAS, IAMS.

Table 4.3.1 Functional requirements of water quality monitoring mobile
application

Table 6.3.1 Register Function Success Case
Table 6.3.2 Register Function Failure Case

Table 7.4.1 Tables of Test Scenarios

Table 7.4.2 Template of User Satisfactory Survey
Table 7.4.3 SUS results

Table 7.4.4 Summary of Respondents’ Most Liked Features of the System
267

Table 7.4.5 Summary of Respondents' Least Liked Features of the System
268

Table 7.4.6 Summary of Respondents' Suggestion to improve the system
268

Table 8.2.1 Limitation and Recommendation

Xi

39

39

46

47

69

69

105

163

165

265

267

267

271

LIST OF FIGURES

Figure 1.1.1 World aquaculture production of aquatic animals and aquatic
plants, 1990-2017 (Zhou, 2019)

Figure 1.4.1 Proposed system architecture

Figure 2.5.1 The block diagram of water quality monitoring system for
the tilapia industry (Azlan Othman et al., 2020)

Figure 2.5.2 The block diagram of water quality monitoring system for
the tilapia industry (Azlan Othman et al., 2020)

Figure 2.5.3 The layout water quality monitoring system for the tilapia
industry (Azlan Othman et al., 2020)

Figure 2.5.4 The front panel of the system via LabVIEW software (Azlan
Othman et al., 2020)

Figure 2.5.5 Manual set-up versus automated set-up (Azlan Othman et
al., 2020)

Figure 2.5.6 The front panel shows when the temperature exceeds 32 °C
(Azlan Othman et al., 2020)

Figure 2.5.7 The architecture of ISAS (Tsai et al., 2022)

Figure 2.5.8 The sensors and data collection platforms of the ISAS (Tsai
etal., 2022)

Figure 2.5.9 The automatic control flow of the ISAS (Tsai et al., 2022)
Figure 2.5.10 The temperature sensed data example (Tsai et al., 2022)

Figure 2.5.11 Sensed data dashboard from user’s mobile device (Tsai et
al., 2022)

Figure 2.5.12 Sensed data dashboard from user’s mobile device (Tsai et
al., 2022)

Figure 2.5.13 Experimental group and control group of the ISAS (Tsai et
al., 2022).

Figure 2.5.14 Survival rates of shrimps during the 1.5 months of our
experiment (Tsai et al., 2022)

Figure 2.5.15 The architecture of ISAS (Tolentino et al., 2021)

Xii

24

28

40

41

43

44

45

46

49

50

52

53

54

54

55

56

58

Figure 2.5.16 TeamLapia Web Application Interface (Tolentino et al.,
2021)

Figure 2.5.17 TeamLapia Web Application Structure Diagram (Tolentino
etal., 2021)

Figure 2.5.18 Experimental group and control group of the ISAS
(Tolentino et al., 2021)

Figure 2.5.19 pH sensor Readings with Correction Response (Tolentino
etal., 2021)

Figure 2.5.20 Turbidity Sensor Readings with Correction Response
(Tolentino et al., 2021)

Figure 2.5.21 Oxidation Reduction Potential Sensor Readings with
Correction Response (Tolentino et al., 2021)

Figure 2.5.22 Temperature Sensor Readings with Correction Response
(Tolentino et al., 2021)

Figure 2.5.23 Salinity Sensor Readings with Correction Response
(Tolentino et al., 2021)

Figure 2.5.24 Dissolved Oxygen Sensor Readings with Correction
Response (Tolentino et al., 2021)

Figure 2.5.25 Controlled vs. Conventional Fish Growth measured every
week (Tolentino et al., 2021)

Figure 2.6.1 ISAS dashboard in mobile application (Tsai et al., 2022).

Figure 2.6.2 The dissolved oxygen sensed data example (Tsai et al., 2022).

73
Figure 2.7.1 Waterfall approach (Visual Paradigm, n.d.)
Figure 2.7.2 Principle of Agile Methodology (OS-system, 2020)
Figure 2.7.3 Principle of Lean Methodology (OS-system, 2020)

Figure 3.2.1 The difference between the evolutionary prototyping and
rapid throw away prototyping (02DCE @02DCE, 2020).

Figure 3.3.1 Gantt Chart for Project Initialization from 30/1/2023 to
27/2/2023

Figure 3.3.2 Gantt Chart for Project Initialization from 27/2/2023 to
27/5/2023

Xiii

61

62

64

65

65

66

66

67

67

68

72

74

76

77

82

88

89

Figure 3.3.3 Gantt Chart for Project Initialization from 27/5/2023 to
24/412023

Figure 3.3.4 Gantt Chart for System Development from 20/4/2023 to
15/5/2023

Figure 3.3.5 Gantt Chart for System Development from 15/5/2023 to
12/6/2023

Figure 3.3.6 Gantt Chart for System Development from 12/6/2023 to
10/7/2023

Figure 3.3.7 Gantt Chart for System Development from 10/7/2023 to
7/8/2023

Figure 3.3.8 Gantt Chart for System testing and Deployment from
12/8/2023 to 28/8/2023

Figure 4.2.1 Proposed system architecture

Figure 4.2.2 Login View

Figure 4.2.3 Fish Tanks

Figure 4.2.4 Water Tank A Water Parameters Gauge Dashboard
Figure 4.2.5 Water Tank A Temperature Details

Figure 4.2.6 Warning Message

Figure 4.3.1 Use case diagram of Water Quality Monitoring Web and
Mobile Application

Figure 5.2.1 Water Quality Monitoring System Architecture

Figure 5.2.2 Atlas Scientific Industrial Dissolved Oxygen Probe
connected to EZO™ Dissolved Oxygen Circuit ESP8266
microcontroller ("Industrial Dissolved Oxygen Probe,"
n.d.).

Figure 5.2.3 The EZO™ Dissolved Oxygen Circuit

Figure 5.2.4 Industrial pH/ORP/Temp Probe + EZO™ RTD Temperature
Circuit + EZO™ pH Circuit ("Industrial pH/ORP/Temp
Probe," n.d.)

Figure 5.2.5 EZO™ RTD Temperature Circuit ("EZO™ RTD
Temperature Circuit,” n.d.)

Xiv

90

91

92

93

94

95

100

103

103

103

104

104

108

121

122

123

124

125

Figure 5.2.6 EZO™ pH Circuit ("EZO™ pH Circuit," n.d.)
Figure 5.2.7 ESP8266 microcontroller

Figure 5.2.8 Arduino IDE

Figure 5.2.9 ThingSpeak Website

Figure 5.2.10 Sample Channel

Figure 5.2.11 API Keys of a Channel

Figure 5.2.12 Channel Settings

Figure 5.2.13 Public View of a Channel

Figure 5.2.14 Laravel, a PHP framework (Otwell, n.d.)
Figure 5.2.15 Python

Figure 5.2.16 WampServer (Bourdon, n.d.)

Figure 5.2.17 React Native, a JavaScript framework
Figure 5.2.18 Android Studio

Figure 6.2.1 Register Mathworks account

Figure 6.2.2 My Channels page

Figure 6.2.3 Create new channel

Figure 6.2.4 new channel page

Figure 6.2.5 Field 1 line graph

Figure 6.2.6 Add new gauge

Figure 6.2.7 RTD and pH Gauge Options

Figure 6.2.8 DO, RTD and pH gauges

Figure 6.2.9 Data Acquisition Module components connection
Figure 6.2.10 ESP8266 pins

Figure 6.2.11 EZO circuit pins

Figure 6.2.12 DO probe central wires and outer wires

XV

125

126

126

127

128

129

130

130

131

133

134

136

137

139

140

140

141

141

142

142

142

144

144

145

145

8) Figure 6.2.13 Male SMAs of Industrial pH/ORP/Temp

Probe
Figure 6.2.14 ThingSpeak channel's line graphs
Figure 6.2.15 Wampserver version and its components
Figure 6.2.16 Laravel Back-end project source code
Figure 6.2.17 composer.json
Figure 6.2.18 Create new database
Figure 6.2.19 Database Migration Files
Figure 6.2.20 php artisan server
Figure 6.2.21 node -v and npm -v
Figure 6.2.22 java -version
Figure 6.2.23 SDK Manager
Figure 6.2.24 build.gradle
Figure 6.2.25 react-native -v
Figure 6.2.26 React Native Front End Project
Figure 6.2.27 dependencies in package.json
Figure 6.2.28 run Metro
Figure 6.2.29 npm run start
Figure 6.2.30 emulator is running
Figure 6.3.1 Success Register page
Figure 6.3.2 Registration Successful
Figure 6.3.3 Redirect to Login Page
Figure 6.3.4 Fail Register page
Figure 6.3.5 Registration Fail

Figure 6.3.6 React Native registration form

XVi

146

152

153

154

155

156

157

157

158

159

159

160

160

161

161

162

162

162

164

164

165

166

166

167

Figure 6.3.7 SubmitButtonClick

Figure 6.3.8 route::api/register - POST

Figure 6.3.9 RegisteredUserController store function
Figure 6.3.10 Login Screen

Figure 6.3.11 Channel Page

Figure 6.3.12 Login Page with wrong credentials
Figure 6.3.13 Email not found

Figure 6.3.14 Password does not match

Figure 6.3.15 Login Form

Figure 6.3.16 LoginButtonClick

Figure 6.3.17 route::api/login — POST

Figure 6.3.18 AuthenticatedSessionController store function

Figure 6.3.19 Channel Page

Figure 6.3.20 Add New Channel

Figure 6.3.21 Add Channel Success

Figure 6.3.22 Channel ID not found
Figure 6.3.23 Channel Page with a channel
Figure 6.3.24 Channel Options

Figure 6.3.25 Delete Channel

Figure 6.3.26 Channel Deleted

Figure 6.3.27 submitForm

Figure 6.3.28 route::api/channels - POST
Figure 6.3.29 ChannelsController store function
Figure 6.3.30 deleteChannelByld

Figure 6.3.31 route::api/channels/{channelld} - DELETE

Xvii

168

169

169

170

171

171

172

172

173

174

174

175

176

177

177

178

179

179

180

180

181

181

182

184

185

Figure 6.3.32 ChannelsController deleteChannelByld function
Figure 6.3.33 User click on a channel

Figure 6.3.34 Dashboard gauges page

Figure 6.3.35 Dashboard gauges page scroll down

Figure 6.3.36 Line Graphs Dashboard

Figure 6.3.37 Line Graphs Dashboard scroll down

Figure 6.3.38 Calendar page analysis section

Figure 6.3.39 Calendar Tab record actions section

Figure 6.3.40 Calendar Tab activity list section

Figure 6.3.41 Channel Page toggleChannelDetails function
Figure 6.3.42 Dashboard Page ComponentDidMount function
Figure 6.3.43 Dashboard Page fetchData function

Figure 6.3.44 fetchActionData

Figure 6.3.45 API routes for displaying activity analaysis
Figure 6.3.46 calculateDurationForCurrentMonth

Figure 6.3.47 Change Water Analysis

Figure 6.3.48 Dashboard Page Gauges Webview

Figure 6.3.49 fetchUserGaugeSettings

Figure 6.3.50 route::api/waterparams POST

Figure 6.3.51 WaterParamsController byUserld function
Figure 6.3.52 Dashboard Page Line Graphs Webview
Figure 6.3.53 Record Actions Calendar

Figure 6.3.54 Add Event Dialog Box

Figure 6.3.55 Select Time

Figure 6.3.56 Select Activity

Xviii

185

186

187

187

188

188

189

189

190

190

191

191

193

193

195

196

197

197

198

198

199

199

200

200

201

Figure 6.3.57 fill in description

Figure 6.3.58 Dashboard Page Calendar component

Figure 6.3.59 AddEvent dialog box

Figure 6.3.60 submitForm in AddEvent components
Figure 6.3.61 Dashboard Page handleEventSubmit function
Figure 6.3.62 readActions function

Figure 6.3.63 route::api/actions/channel/{channel_id} — GET
Figure 6.3.64 showByChannel function

Figure 6.3.65 Activity List

Figure 6.3.66 Dashboard page

Figure 6.3.67 Analysis Page

Figure 6.3.68 Dashboard page toggleAnalysis function
Figure 6.3.69 Analysis Page componentDidMount function
Figure 6.3.70 fetchDataAnHour

Figure 6.3.71 countRowsWithNullVValues

Figure 6.3.72 calculateMinMaxMedianMean

Figure 6.3.73 countExtremeValues

Figure 6.3.74 calculateHealthIndex

Figure 6.3.75 arimaPredict funtion

Figure 6.3.76 auth::api/predict - POST

Figure 6.3.77 PredictionController predict funtion

Figure 6.3.78 arima_predict.py

Figure 6.3.79 TrendlineChart component

Figure 6.3.80 TrendlineChart component

Figure 6.3.81 Tab Navigator

XiX

201

202

203

203

204

205

205

206

206

207

207

209

210

211

211

212

213

214

215

215

215

216

217

218

219

Figure 6.3.82 Profile page

Figure 6.3.83 Notification

Figure 6.3.84 profile page

Figure 6.3.85 startBackgroundService

Figure 6.3.86 BackgroundTaskModule.startBackgroundService
Figure 6.3.87 stopBackgroundService

Figure 6.3.88 BackgroundTaskModule.stopBackgroundService
Figure 6.4.1 Data Acquisition system circuit deployed

Figure 6.4.2 Junction Box protects the Data Acquistion Module
Figure 6.4.3 DO, RTD and PH sensors deployed

Figure 6.4.4 ThingSpeak Channel Public View

Figure 6.4.5 Laravel back-end server

Figure 6.4.6 Metro running

Figure 6.4.7 Build successful

Figure 6.4.8 Android Emulator is running

Figure 7.2.1 UNIT-101

Figure 7.2.2 UNIT-102

Figure 7.2.3 UNIT-201

Figure 7.2.4 UNIT-202

Figure 7.2.5 UNIT-203

Figure 7.2.6 UNIT-301

Figure 7.2.7 UNIT-302

Figure 7.2.8 UNIT-303

Figure 7.2.9 UNIT-304

Figure 7.2.10 UNIT-401

XX

220

220

221

221

222

222

222

223

224

224

226

227

228

229

229

234

235

237

238

239

242

243

244

245

248

Figure 7.2.11 UNIT-402

Figure 7.2.12 UNIT-403

Figure 7.2.13 UNIT-404

Figure 7.2.14 UNIT-501

Figure 7.2.15 UNIT-502

Figure 7.2.16 UNIT-601

Figure 7.3.1 PFT-101 Register an account (1967ms)
Figure 7.3.2 PFT-102 Register an account (13069KB)
Figure 7.3.3 PFT-201 Login Process(1826ms)

Figure 7.3.4 PFT-102 Register an account (13249KB)
Figure 7.3.5 PFT-301 Load Dashboard Process(4089ms)
Figure 7.3.6 PFT-302 Load Dashboard Process (13658KB)
Figure 7.3.7 PFT-401 Add Eevent Process(2339ms)
Figure 7.3.8 PFT-402 Add Event Process (13505KB)
Figure 7.3.9 PFT-501 Analysis Process(6851ms)

Figure 7.3.10 PFT-502 Analysis Process (13492KB)

XXi

249

250

251

254

255

257

258

259

259

260

260

261

262

262

263

264

XXii

LIST OF SYMBOLS / ABBREVIATIONS

API - Application Programming Interfaces

CLI - Command Line Interface

CSS - Cascading Style Sheet

HTML - Hypertext Markup Language

HTTP - Hypertext Transfer Protocol

JSON - JavaScript Object Notation

URL - Uniform Resource Locator

WAMP - Windows, Apache, MySQL, and PHP server
WBS - Work Breakdown Structure

pH - Potential of Hydrogen

DO - Dissolved Oxygen

RTD - Resistance Tmperatur Detector

RAS - Recirculating Aquaculture System

ppm - Parts Per Million

Degree Celsius - Degrees Celsius

LAN - Local Area Network

ISAS - loT-based Smart Aquaculture System with

Automatic Aerating and Water Quality Monitoring
IAMS - loT-based Intensive Aquaculture Monitoring

System with Automatic Water Correction

MQTT - Message Queuing Telemetry Transport

NaHCO3 - Sodium Bicarbonate

QA - Quality Assurance

UAT - User Acceptance Testing

loT - Internet of Things

IDE - Integrated Development Environment

CLI - Command Line Interface

SMA - SubMiniature version A (commonly used in RF
connectors)

DC - Direct Current (or Data Center, depending on the

context)

xXXiii

LIST OF APPENDICES

Appendix A: Template of User Satisfactory Survey 280

Appendix B: Usability Test Responses 281

24

CHAPTER 1

INTRODUCTION

1.1 General Introduction

FIGURE 1 - World aquaculture production of aquatic animals and aquatic plants, 1990-2017 ‘

120
W Aquatic plants {all agusculture)

W Other animal species (al aquaculture)

1001 w Crustaceans (inland aquacuiture) z
B Crustaceans (marine & coastal aguaculture} .
80 WFinfish [marine & coastal aquaculture) y
W Melluses [all aguaculture)
W Finfish (inland sguaculture)
60 | - -
?
40 B

i .!"_E.m!.u_n.n.mlllliﬂ“

1990 1995 2010 2017

Million tonnes

Figure 1.1.1 World aquaculture production of aquatic animals and aquatic
plants, 1990-2017 (Zhou, 2019)

A large amount of the world's seafood supply is produced by the growingly
significant business known as aquaculture. According to Figure 1.1, world
aquaculture productivity has increased significantly from 1990 until 2017 (Zhou,
2019, p.6). It can be seen that aquaculture is becoming the primary source of
aquatic products for humans. In order to meet the expectations of the
aquaculture business, aquaculture equipment must also improve along with

technical advancements (Zhou, 2019, p.6).

Maintaining ideal water quality conditions for fish growth and health
is a crucial element in the success of aquaculture operations. Temperature,
dissolved oxygen, pH, and ammonia levels are just a few of the water quality

factors that can significantly affect fish growth and overall production.

Aquaculture water quality monitoring has traditionally been done
manually with a variety of tools and methods. These techniques, however, are

frequently labor- and time-intensive, and they might not offer up-to-the-minute

25

data on water quality conditions. The use of sensors to track water quality in
aquaculture operations has gained popularity in recent years.

In order to optimise fish growth performance and monitor water quality
in aquaculture operations, this project will focus on researching and
investigating the application of 10T in this aquaculture operation. The project
will concentrate on developing an aquaculture monitoring system that uses
sensors to gather water quality data and a mobile application that helps users
track these important water quality indicators in a fish farming environment,

including temperature, dissolved oxygen, pH, and ammonia levels.

The outcomes of this project will aid in the creation of water quality
monitoring systems for aquaculture operations that are more effective and
efficient. The project has the potential to significantly impact the aquaculture
industry and help satisfy the rising demand for sustainable seafood production

by optimising water quality conditions to improve fish growth performance.

1.2 Problem Statement

Urban aquaculture faces many difficulties due to the lack of suitable methods
and equipment to monitor the water quality of aquaculture. This will
undoubtedly result in the fact that aquafarmers are always too late to take the
appropriate measures when there is a problem with the water quality, which will
cause the fish in the tank to start dying off one by one and lead to severe damage

and loss, such as fish kill events.

1.2.1 Aeration system failure

The aeration system is supposed to function continuously to provide sufficient
oxygen for the fish to survive in the water tank (Masser et al., 1992). However,
there is a possibility that aeration system failure can occur without notice by
aquafarmers. Given that many tanks and recirculation systems are densely
populated, an aeration system failure can result in fish mortality events within
minutes in the water tank due to a lack of dissolved oxygen (D.O) (Purina
Animal Nutrition, 2023). Consequently, a water monitoring system that notifies

26

the user when the level of dissolved oxygen in the water tank drops below a safe

level is necessary to mitigate this risk.

1.2.2 Algae Bloom

Algae often benefit aquaculture by providing farmed fish with oxygen and a
natural food source (Priyadarshani, Sahu, and Rath, 2012). Previous research by
Fernando et al. (2015) has demonstrated that adding algae to fish feed (aquafeed)
in small amounts (10% of the diet) has a positive impact on growth performance
and feed utilization efficiency. However, excessive algae growth or the
occurrence of algal blooms can result in low dissolved oxygen (DO), as noted
by the Minnesota Pollution Control Agency (2009). Nutrients such as
phosphorus and nitrogen contribute to algae growth, and there are various ways

these elements can enter our water resources (Kenekar, A., 2020).

Dissolved oxygen is consumed during the decomposition and death of
algae, which can deprive aquatic species like fish of sufficient oxygen,
ultimately leading to fish kills. Notably, an algal bloom in the Mumbai coastal
areas in 2018 caused large-scale fish mortality (Minnesota Pollution Control
Agency, 2009). Therefore, equipping aquafarmers with sensors to monitor
dissolved oxygen, nitrogen, and phosphorus levels enables them to predict and

respond to algae bloom events promptly.

1.2.3 Unpredictable timing to change water

Changing water is a common practice for maintaining good water quality in fish
tanks, ensuring the best environment for optimal fish growth performance
(WebMD Editor Contributors, 2023). However, aquafarmers often face the
challenge of determining the ideal timing for water exchanges. The composition
of the water in the tank is constantly changing due to climatic and seasonal
variations, as well as pond usage (The Fish Site, 2015). Aquafarmers may
struggle to determine when water should be changed without conducting water
testing regularly, which can be cumbersome. Consequently, many aquaculture
farmers opt to change the water when it appears dirty, even if it might still be

usable.

27

Even when the water appears clear, contamination can occur due to the
presence of food particles and waste. Waste can convert into chemicals such as
nitrate and phosphate, which can negatively affect factors like dissolved oxygen,
temperature, and other indicators (Environmental Protection Agency, 2012). To
address this issue, water monitoring systems can be installed in water tanks to
continuously monitor water parameters and provide water quality forecasts.
According to Li et al. (2022), historical data collected from these sensors can be

used in Machine-Learning (ML) models to predict water quality.

By implementing water quality prediction systems, aquaculture systems
can maintain stability, reducing the incidence of fish diseases caused by
deteriorating water quality. Armed with accurate forecasts, aquafarmers can

make informed decisions about when to replace the water in the tank.

1.3 Aim and Objectives

The project aims to help aquaculture farmers monitor and optimize the water
quality in their tanks to maintain a good fish farming environment, thereby
improving fish growth performance, increasing the efficiency of the water

monitoring process and producing high-quality fish products.

Objectives:

1. To analyze existing available tools related to aquafarming to develop
ideas for designing usable water monitoring systems.

2. To perform analysis on the of water quality of the water tank to discover
the trends and useful information to assist in decision making on the
water quality monitoring process.

3. To develop a mobile application that provides a dashboard that displays
all the water parameter readings of the aquaculture system anytime
anywhere to allow user to check the current water condition in water
tank.

4. To evaluate the water quality of the fish tank so that user are able to take
immediate initiative to maintain its water quality to optimize fish growth

and prevent undesirable condition.

28

1.4 Proposed Solution

gEEEEEEEEEEEEEEEEEEEEEEEEEEEE NI NN NN NN NN EEEEEEEEEEEEEEE .,

Communication module a a 2
I — Ci
) / — 5¢ O

EEEEEEEEEEE, N NENENEEEENNENEEEN,

Virtual Layer o

*

Monitoring Layer

Mobile Application

Dashboard *
®sssssssssEEEEEEEEEns ®ssssssssssEEEEmEE®

*

®2su /s NN NN NN NN NN NN EENEEEEEEEENSEEEEEEEEEEEEEEEssEmmns®

‘--. -.--..-..--..-.-..
*

Sensor

Module 5 I -

w
Wdsw || Ammonia Sensor

Temperature Sensor

Microprocessor

LE RN NN NENENENENERNNSHNS. |
L v,
..IIIIIIIIIIIIIIIIII.

4

>

MEITTIIIIIT
"By

(>¢)
=5
#H

55

o
¢ AuEEEEEEES

*

P

Physical Layer

0

Fiber Glass Tank

gEEEEEEEEEEEEm,
®sususnsnssnnun®

*
*

®ssssssssssssssnnnnnnn®

Figure 1.4.1 Proposed system architecture

The proposed solution to address the problem outlined in the problem statement
involves the installation of an Internet of Things (IoT) water monitoring system
in an aquafarming fish tank. This system integrates physical sensors,
microprocessors, cloud servers, and a mobile-based Android application
dashboard. Figure 1.2 illustrates the architecture.

In the Physical Layer, sensors are placed inside the fiberglass tank to
measure water parameters such as Dissolved Oxygen (DO), pH level,
temperature, and ammonia levels. These sensors collect data, which is then

transmitted to the microprocessor in the Monitoring Layer.

At the Monitoring Layer, the microprocessor plays a crucial role. It
converts analog signals from the sensors into digital data if the sensor lacks data
logging functionality. In cases where the sensor itself can log data, the
microprocessor serves as a data storage and management unit, utilizing SD cards

as a backup for collected data.

The primary function of the microprocessor is to manage the
Communication Module, facilitating communication between sensors and other

devices. It collects data from all sensors and transmits this data to a Cloud Server

29

for storage and management. Cloud servers are chosen for their ability to
securely store large quantities of data, allowing aquafarmers to monitor water
quality from anywhere in the world with an internet connection. Long-distance
water quality monitoring is achieved through the development of a Mobile
Application, which connects to the Cloud Server database over the internet. This
application organizes the data into a user-friendly dashboard that is easily
comprehensible for aquafarmers. The framework used for developing this native

Android Mobile Application is React Native.

In addition to data storage, Cloud Servers provide data processing and
analysis capabilities, leveraging powerful algorithms and machine learning
techniques to assist aquafarmers in monitoring their aquaculture operations. The
prediction results are displayed within the Mobile Application, enabling
aquafarmers to make informed decisions. Communication protocols within the

system may include WiFi, cellular communication (such as 5G), and Bluetooth.

1.5 Proposed Approach
In this project, Evolutionary Prototyping has been selected as the development
approach for the Water Monitoring Application. This choice is grounded in the

advantages that make it particularly suitable for this project.

Firstly, Evolutionary Prototyping recommends segmenting the project
into modules, enabling comprehensive testing of each module individually. This

approach significantly reduces errors within each module of the project.

Additionally, this approach places a strong emphasis on meeting user
requirements. It achieves this by incorporating prototypes into iterative cycles
of feedback and refinement based on user demands. This ensures that the
project's design aligns with user needs, as users actively participate in the
system's design after reviewing each prototype. The use of prototypes ensures
that the final dashboard design is user-friendly and easy for fish farmers to use

when monitoring water quality.

30

Furthermore, Evolutionary Prototyping helps identify missing
functionality in the product. As this project aims to deliver a dashboard for
monitoring water quality on fish farms, the omission of any vital information
could lead to critical issues like fish mortality incidents. Therefore, it is crucial
to employ this approach to ensure that all necessary information is included in
the dashboard, enabling users to make informed decisions when monitoring

water quality (Martinez, 2021).

1.6 Project Scope

This project involves researching existing Aquaculture monitoring systems and
developing the concept of integrating hardware components and software
components, including sensors, microprocessors, and Cloud Servers. The
ultimate goal is to create a mobile-based water monitoring application that
offers a comprehensive solution for monitoring water parameters in fish tanks,

assisting aquaculturists in their work.

The project consists of several key modules that need to be completed:
1. Sensor module
2. Data acquisition module
3. Communication module
4

User interface module

Each of these modules plays a crucial role in the overall functionality of

the water monitoring system.

1.6.1 Sensor Module
The Sensor module is responsible for collecting and logging all measurements
of water quality attributes in the fish tank, such as Dissolved Oxygen (DO), pH,

temperature, ammonia, nitrite, and nitrate

1.6.2 Data Acquisition Module
The Data acquisition module includes a microprocessor that is responsible for
data processing. This includes converting raw sensor readings into meaningful

units and performing data smoothing.

31

1.6.3 Communication Module

The Communication module is essential for transmitting data from the data
acquisition module to the user interface module and for sharing data over the
network with the Cloud Server, which performs Machine Learning to provide
valuable insights from the gathered data. This module uses protocols such as

Wi-Fi, Bluetooth, or 5G for data transmission.

1.6.4 User Interface Module

The User interface module is essential for visualizing the current water quality
of the fish tank. This module involves an Android-based mobile application that
converts the received data from the Communication Module into a user-friendly
dashboard. This dashboard displays all the necessary information for the water
monitoring process. Additionally, the module alerts aquaculturists when any
water quality attribute in the tank exceeds or falls below safe limits. It also
provides water quality forecasts to assist users in taking corrective action and

making informed decisions.

32

CHAPTER 2
LITERATURE REVIEW

2.1 Aquaculture

Aquaculture is the process of cultivating aquatic organisms in all types of water
environments (Global Seafood Alliance, 2019). It shares a similar concept with
agriculture, where humans grow crops and raise animals on land to produce
resources like food, wool, and other useful products. The primary distinction
lies in aquaculture, which involves breeding, rearing, and harvesting aquatic
organisms such as fish, shellfish, and algae (NOAA, 2023). One of the primary
benefits of aquaculture is its contribution to human consumption, particularly
seafood. As the global population continues to grow, the demand for seafood is
on the rise. According to the 'Fish To 2030: Prospects for Fisheries and
Aquaculture: World Bank Report Number 83177-GLB," predictive models
indicate that by 2030, aquaculture is expected to produce 62 percent of food fish.
Beyond 2030, aquaculture is likely to dominate the global fish supply (The
World Bank, 2012). This underscores the importance of the mainstream
development of aquaculture technology to remain competitive in the market.

To ensure the success of aquaculture, continuous monitoring of water
quality is imperative (Lang, 2019). Poor water quality can threaten the health
and growth of fish, making it essential for aquaculturists to pay close attention
to water quality parameters such as temperature, suspended solids,
photosynthesis, dissolved oxygen levels, carbon dioxide, nitrogen, ammonia,
and pH values (Towers, 2015). According to Edinburgh Sensor (2022), there
are 4 keys of water quality factors that need to be monitored, if not, it will affect

the aquaculture operations. They are:

1. Physical parameters: pH, temperature, salinity, dissolved oxygen, and
carbon dioxide levels.

2. Organic contaminants

3. Biochemical hazards: e.g. cyanotoxins

4. Biological contaminants: e.g. pathogens

33

Effective management of these parameters within safe limits is critical to
prevent adverse conditions, such as stress or disease, that could impact the

overall health and performance of aquaculture.

2.2 Recirculating Aquaculture System

According to Yue et al. (2022), the Recirculating Aquaculture System (RAS) is
one of the modern aquaculture systems that has emerged due to disruptive
technologies. It is an almost completely closed-circuit, tank-based aquaculture
system designed for the controlled monitoring of farmed fish. RAS offers
several advantages for fish farms, including the reduction of water changes,
prevention of harmful bacterial invasions that may lead to diseases in fish,

improved growth performance, and higher yields.

As Joseph et al. (2019) explain, the RAS operates by raising fish at high
densities within the tank, where environmental conditions are meticulously
controlled. This control is achieved through the system's ability to recycle water
within the tank for filtration and cleaning purposes, reducing the need for
frequent water replacements. Additionally, the RAS includes various
subsystems for removing waste products from the fish farm, such as solid waste,
ammonia, and carbon dioxide, or converting them into non-toxic forms.
Furthermore, the purified water in the system is oxygenated to ensure it is not
deficient in oxygen. This is achieved through aeration systems or the use of

liquid oxygen before the water is returned to the tank.

The recirculation of water in the RAS serves multiple purposes,
including reducing the rate of water replacement, maintaining optimal water

quality conditions, and addressing water supply shortages.

2.3 Internet of Things in Aquaculture

The exponential growth of the Internet of Things (IoT) has significantly
enhanced the operations of the aquaculture industry. While monitoring water
quality is paramount in aguaculture operations, its complexity has always posed
challenges for fish farmers (Dupont et al., 2018). Therefore, by integrating 10T

into aquaculture, this issue can be addressed through the development of a smart,

34

affordable, reliable, and efficient automated water quality monitoring system,
empowering aquaculture farmers to enhance their performance. According to
Yue et al. (2022), implementing 10T technology in the aquaculture sector offers

several advantages:

1. Using cameras and sensors in aquaculture farms allows real-time
monitoring of environmental conditions.

2. Timely and continuous real-time monitoring of the effects of fish farms
on the ecosystem enables improved environmental management,
particularly applicable to offshore aquaculture systems.

3. Combining IoT with machine learning and data collected over time
enables the creation of predictive models, enhancing decision-making

and allowing for timely risk alerts.

In aquaculture, sensors are responsible for collecting data on water physical
parameters, such as dissolved oxygen (DO) levels, temperature, pH values, and
salinity. Fluctuations in these parameters outside their safe ranges can
significantly impact fish health. To achieve 10T in aquaculture, inexpensive
sensors are deployed to simultaneously monitor multiple parameters through
wireless sensor networks (WSN). WSN consists of numerous automated sensors
in aquafarms that measure, gather, transmit, and process water quality data in
real-time. The collected data is then displayed on a computer or sent to farmers
as messages for real-time updates. This real-time water quality monitoring
capability simplifies data collection, reducing human errors and time delays,

thereby improving the quantity and quality of collected data (Su et al., 2020).

Many studies have demonstrated that the primary reason for using WSN in
aquaculture is real-time measurement of crucial physical parameters and
immediate notification of relevant personnel in case of problems, ensuring
prompt resolution. Espinosa-Faller and Renddn-Rodriguez (2012) describe a
WSN-based water monitoring system that collects and sends data to a database
for storage. In case of issues, SMS or email alerts are sent to responsible
individuals. Zhang et al. (2011) propose another implementation using software

for real-time water quality monitoring in fish farms, triggering SMS alerts to

35

users in the event of serious issues. Their software promotes scalability and
reusability through separate logic, display, and data layers. Additionally, Huang
et al. (2013) present a water monitoring system with a real-time interface

displaying data numerically and graphically.

Integrating the Internet of Things into a recirculating aquaculture
system allows sensors to send collected data to a microprocessor. When any
measured parameter falls outside the desired range, the microprocessor triggers
the corresponding controller in the RAS to execute the necessary resolution
(Abinaya et al., 2019). According to Tsai et al. (2022), this research suggests an
loT-based Smart Aquaculture System that automatically activates aeration
systems and feeders based on fuzzy processing results. If the DO level falls
below the safety range, the fuzzy inference process assesses water parameters
such as water temperature, pH, and hardness. If the fuzzy inference process
concludes that corrective action is required, it signals the Raspberry Pi computer

to activate the aerator and feeder.

In conclusion, loT-based Smart Aquaculture Systems have
revolutionized traditional aquaculture operations by enabling real-time water
quality monitoring without the need for manual intervention. This allows for
remote monitoring of aquafarms, automatic water quality adjustments,

predictions of potential water quality issues, and informed decision-making.

36

2.4 Water Quality

2.4.1 Importance of Water Quality

For an aquaculture process to be successful, the maintenance of water quality is
the primary task to ensure the growth performance of aquatic products. As stated
in The Fish Site, (2015), water quality directly impacts the health of fish, their
behavior, and growth performance. Poor water quality can result in reduced
growth efficiency, erratic behavior, symptoms of disease or parasitic infestation,
and, in the worst-case scenario, fish kill events. To sustain ideal water quality
management, aquafarmers must have a thorough understanding of the optimal
ranges for water parameters that allow fish to thrive, grow, and reproduce. They
should also comprehend the relationships between different water parameters,
the factors that lead to poor water quality, and the methods for maintaining good

water quality.

2.4.2 Water Quality Parameters
There are several water quality parameters need to monitor, the mojor

parameters include:

1) Temperature:
Temperature is a measure of the heat present in the water. Its
standard measure unit is Celcius (°C) or Fahrenheit (°F).

When temperature increase, the activity level and the
metabolism of aquaculture organisms also increase, and also
boost the fish growth rate. If the temperature too high and exceed
the physical and nutritional tolerance for loo long, the fishes may
get contaminated with bacteria, lose their balance when
swimming, and could die from exhaustion. If the temperature too
low, the feed intake and metabolism decrease and causing poor
growth performance. Especially in aquafarm, temperature
affects more on the aquatics organisms because higher biomass

and less water volume.

2)

3)

4)

37

Dissolved oxygen:
Dissolved oxygen is the amount of oxygen dissolved in water.
Its standard measure unit is milligrams per liter (mg/L) or parts

per million (ppm).

Dissolved Oxygen is one of the critical water paramters,
aquatic organism used dissolved oxygen for respiration and
acocommodate metabolism. Oxygen affects the solubility and
availability of many nutrients. Therefore, low level of dissolved
oxygen in water can cause fish death and also increase in the

poisonouis metabolities.

pH level:

pH is a measure of the acidity or alkalinity of water. It is
measured by using the scale from 0 to 14. When pH level of the
water exceed pH 9, means the water is too alkaline. This situation
cause the conversion of ammonium to become tociv ammonia
which can kill the fish. While water is too acidic with pH lower
than 5 can filter out metals from rocks and sediments. The metals
affects the fish health and can be fatal. Fish Kills usually occurs

when the pH of water is below 4.5 or greater than 10.

Salinity

Salinity is the concentration of salt in water. It is measured in
parts per thousand (ppt) or practical salinity units (psu). Salinity
plays an important role in aquafarming. This is because it
directly affects the osmoregulation of aquatic organisms.
Osmoregulation is to balance the water and ions in their body
fluids to maintain internal stability. Excessive salinity level
cause aquatics to lose water, while insufficient salinity level
cause too much water in aquatics body fluid. Any one of this
situation will affects the growth rate, metabolic rate, food intake,

food conversion and hormonal stimulation.

5)

6)

7)

8)

38

Turbidity

Turbidity is a measure of water clarity. It is measured in
Nephelometric Turbidity Units (NTU). Turbidity can affects the
light penetration in water and thus limit photosynthesies carried
out for plants in water. High turbididty cause temperature and
DO stratifaication in water.

Ammonia, NH3

Is dissolved metabolic organics in water. It is measured in
milligrams per liter (mg/L) or parts per million (ppm). High level
of ammonia can leads to stress and death in aquatic organisms.
The cause of increase in ammonia is overfeeding. The decays of

rich-protein feed will release toxic ammonia gas.

Nitrate, NO3

It is measured in milligrams per liter (mg/L) or parts per million
(ppm). High level nitrate leads to algar blooms and then cause
low Dissolved Oxygen in water and hence lead to fish death.

Nitrite, NO2

This is a toxic compound produced from oxidation of ammonia
in water. It is measured in milligrams per liter (mg/L) or parts
per million (ppm). Based on Ciji and Akhtar (2020), excessive
nitrite disrupt the oxygen uptake in the blood of aquatic
organisms, cause damage to the fish gills and destroy ionic and
water balance and finally lead to fish death. Besides, high level
of nitrite also reduce the reproductive performance of fish.

39

Table 2.2.4.1 Standard range for water quality parameter set by fisheries
research institute (FRI) Malaysia (Azlan Othman et al., 2020)

Parameter Standard Ranges Unit

Temperature 28 -32 °C
DO >4 ppm

pH 6.5-8.5

Salinity 24 -32 ppt
Ammonia (NH3-N) 0.1-0.5 ppm
Nitrate (NO3) 0-10 ppm
Nitrite (NO2) <0.3 ppm

This standard shows the tolerance range that ensure the products
produced are safe for human consumption. However, different types of fish have
their own specific favourable ranges for each water parameter to achieve its
optimum growth performance (The Fish Site, 2015). For example, Table 2.2
also shows that different species can tolerate different range of the water quality
to optimize their growth (FRESHWATER-AQUACULTURE, 2019).

Table 2.2.4.2 Water quality tolerance by species (FRESHWATER-
AQUACULTURE, 2019)

oot Temp g's“"'ed \y Allcalinity | o NitritJ
pecies oF Xygen |p mg/L mmonia % me/L
mg/L
Baitfish 60- 410 6 50-250 0-0.03 |0-0.6
75 8
) 65- 6-
ICatfish/Carp 30 3-10 g 50-250 0-0.03 0-0.6
Hybrid 701 410 % 150250 | 0003 |0-06
Striped Bass 85 8
50- 6-
Perch/Walleye 65 5-10 g 50-250 0-0.03 0-0.6
45. 6-
Salmon/Trout 68 5-12 g 50-250 0-0.03 0-0.6
Tilapia I 3-10 6 50-250 0-0.03 |0-06
P 94 8 ' '
Tropical 68- 6-
Ornamentals | 84 4-10 g 50-250 0-003 |0-05

40

2.5 Existing Aquaculture Monitoring System

2.5.1 Automated water quality monitoring system development via

LabVIEW for aquaculture industry (Tilapia) in Malaysia

According to Azlan Othman et al. (2020), it propose a automated water quality
monitoring system for the tilapia industry using LabVIEW software. This
system focus efficient data logging and analysis to help aquafarmers to monitor
the water quality of aquaculture real-time continuously. Besides, this system has
the alarm system to alert user when any fluctuation of the water parameters.
This system currently does not include any automated water quality correcting
system. However, it is upgradable due to its flexibility in accepting more types
of sensors to the system and also can integrate with other water quality
correcting system when any monitored parameter falls away from the safety

range.

2.5.1.1 System Design and Architecture
Below figure 2.1 shows the block diagram of water quality monitoring system

for the tilapia industry.

Data will be
transferred

through wi-fi
connection
Sensors é DAQ é
Measured parameters: nterface between «l—
1. Temperature hardware [sensors) All nformation will
il ot and softwara be displayed by

using LabVIEW
software.

i/ @

Figure 2.5.1 The block diagram of water quality monitoring system for the
tilapia industry (Azlan Othman et al., 2020)

41

Based on figure 1, the system consist of 3 main hardware components
such as sensors, microcontroller, and workstation/computer that contains
LabVIEW software. There are 2 sensors used in this system, temperature and
pH sensors. They are connected to NI myRIO-1900, a microcontroller that act
as Data Acquisition System(DAQ). The microcontroller also connected to the
workstation, a computer that has the LabVIEW software.

2.5.1.1.1 Water Paramter Sensors
There are 2 types of sensors used in this system: Temperature and pH sensors.
Figure 2.2 shows the sensors connection setup. These 2 sensors should be

connect to the microcontroller to send the sensor data.

NI myRIO- 1900 MXP Connector

LM35

Conpegtor A
10 /2050 [§ 18 A*\/ - .

elee

oou/ecsct [1S tofo A
o040 | ¥ |4 | oofipwer
000 5 1% ool e
————
0013 410 oolsrcn
P——
L PR IR
LR
MOL2PENGE | 18 % DIogSPaK
PR
DOIL/ENCA | 3 12 | 0Ol
0003 2 oo
't B Y < o
o0 |7 = oo
Wt (3o A E &
000 (@ |~ e [

D [« [o | A . ; W

s v a0 : ! |
KPin = o e {

‘ Connector B

zle=

S
2
pH sensor

Figure 2.5.2 The block diagram of water quality monitoring system for the
tilapia industry (Azlan Othman et al., 2020)

1) Temperature:
The sensor used is a modified temperature sensor, LM35 used to measure the
temperature of the aquafarm. LM35 connect to the analog input pin 9 on

connector B of microcontroller(NI myR10-1900).

42

2) pH level:

pH sensor used is Atlas scientific pH sensor that measure pH level. The pH
sensor is connected to pH probe BNC connector of the pH circuit. Then the pH
output terminal from the pH circuit is connected to analog input 5 connector A
of microcontroller, NI myRIO-1900. The pH circuit will acts as signal
conditioning, which means pH circuit will modify the signal output from pH

sensor to become accurate and reliable signal for microcontroller to read.

2.5.1.1.2 Microcontroller

The only microcontroller used in this system is NI myRIO-1900. NI myRIO-
1900 is a compact embedded device that has analog input (Al), analog output
(AO), digital input and output (DIO), audio, and energy output. It act as data
acquisition system (DAQ) which is an interface that connected between sensors
and monitoring workstation for them to communicate between each other. The
data collected by the sensors must pass through DAQ, the microcontroller, NI
myRI10-1900, before reaching to workstation. The NI myRIO-1900 can
connected to a host/computer/workstation using USB or 802.11b.g.n wireless
networking standard that allows local area network (LAN) communcation. Due
to its built-in wifi feature, wi-fi connection is the protocol used to send sensor
data from microcontroller to monitoring workstation for LabVIEW software to
perform Data Visualization and Analysis. Figure 2.3 shows the layout water

quality monitoring system for the tilapia industry.

43

Working area RL pc ater
I
Sensors JA(9| ,
i = : : 7 = LabVIEW
.,! %) "o
' ! ' &,
© Office
(Monitoring
2 T = area)
- ;,! L
| | I
Fish tank

Figure 2.5.3 The layout water quality monitoring system for the tilapia
industry (Azlan Othman et al., 2020)

2.5.1.1.3 Workstation (LabVIEW)

Monitoring Workstation, is a computer that contain LabVIEW Software.
LabVIEW is a visual programming language use to create automated test
systems that has variety of analysis features, interactive display elements,
drivers for automating each instrument and data gathering hardware, links to
other languages and industry-standard protocols (Anon, 2023). Therefore,
labVIEW is used to program a LabVIEW software application for this system
to detect the signal from the installed sensors to perform data visalization and
data analysis to monitor the water quality. Figure 2.4 shows the front panel of

the system via LabVIEW software.

44

TEMPERATURE PH LEVEL
o 0l -

J :
‘ t)l L A0 N By Itll AN W7 N L ‘

n.n-]

Figure 2.5.4 The front panel of the system via LabVIEW software (Azlan
Othman et al., 2020)

This LabVIEW front panel consist of the aquafarm current water
quality information retrieved from the sensors installed, temperature and ph
level. Both information have the line graph showing the status level of the water
quality over time, for example: temperature over time and ph level over time.
Next, below of the interface also provide the line graph of output voltage of each
sensor over a period of time. The two circle in each water quality interface,
green circle represent the safety range for each water quality. Oppositely, red
circle represent the dangerous range for the water quality. It tells user if the
water quality is safe, the circle should be green and is out of range will be red.
For temperature page, there also show a thermometer measuring current
temperature of the aquafarm. The LabVIEW software page for water quality

monitoring is easy to understand.

2.5.1.2 Experiment for implementation this system

Experiment Setup

The experiment objective is to find out whether using this system to measure
water parameters is usable. Therefore, this experiment should:
1) test whether this system will alert user if any water parameter is
in dangerous status,
2) determine the accuracy of automated system by calculating the

error percentage in reading the water quality parameters in the

45

aquafarm. Figure 5 shows the formula to calculate the error
percentage is:

Value ~Value
% error = i automated manual % 100
Valuemanuatl

Equation 2.1 Formula to calculate error percentage of this system
3) allow aquafarmer perform analysis based on the data collected.
Two different set-ups of the system is place at the same fish tank,

automated system and manual system. Figure 2.5 shows the manual set-up

versus automated set-up.

Figure 2.5.5 Manual set-up versus automated set-up (Azlan Othman et al., 2020)

Right image is the Automated system, which is the proposed system
using sensor and LabVIEW software, while left side is the Manual system that

require aquafarmer to use portable sensor to measure the water quality.

Experiment Result
1) Objective:

Test whether this system will alert user if any water parameter is in

dangerous status.

Results:
Figure 2.6 shows the front panel of temperature when the temperature
exceeds 32°C.

2)

46

B Waw Pt Opwele Tack Window Help
42 @
T pueratie | oo | pH

a B = @
M crulm s TR
1

Figure 2.5.6 The front panel shows when the temperature exceeds 32 °C
(Azlan Othman et al., 2020)
By using the formula:
Temperature (°C) = Vout x 100

System can get the temperature value, when the temperature retrieved that time is
32°C or above. The circle LED will turn into red colour, and with the word “CN”
indicates “CAUTION” to alert user that the temperature is under unbehaviorable
condition. Therefore, it tells aquafarmers have to take steps to decrease the water

temperature.

Objective:
To determine the accuracy of automated system by calculating the error

percentage in reading the water quality parameters in the aquafarm.

Results:
Table 2.3 shows the accuracy of automated system comparing to the data

gathered in manual set-up.

Table 2.5.1 The accuracy fo temperature sensor of the system (Azlan
Othman et al., 2020)

No ofdatataken Automated set-up (°C) Manual set-up (°C) Percentage of error (%)
1st 49.56 49.50 0.12
2nd 47.36 45.30 455
3rd 41.26 3980 3.67
4th 36.50 3420 6.73
5th 3223 30.60 533

Gth 29.17 27.70 5.31

47

This table shows that the average of the percentage error of automated
system compared to the manual measurement is less than 7% for the
temperature parameter. This proved that the developed automated system is
able to measure these water parameters correctly as manual system with very
low error percentage. Therefore, this automated monitoring and dat
collection system is suitable to be developed for aquaculture industries to

monitor aquaculture.

3) Objective:

To allow aquafarmer perform analysis based on the data collected.

Results:

Table 2.4 shows the temperature and pH level collected in 2 days.

Table 2.5.2 Table of temperature and pH level with time (Azlan Othman et al.,

2020)
Date/Time Temperature{ °C) pH level
28/5/2019 8:00 31.86 6. 47
28/5/2019 11:20 31.01 6. 70
28/5/2019 14:40 31.74 6.29
28/5/2019 18:00 31.74 6.24
28/5/2019 21:20 31.74 6. 34
29/5/2019 0:40 31.74 6.31
29/5/2019 4:00 31.62 6. 63
29/5/2019 7:20 31.37 6.49
29/5/2019 10:40 30.52 6.39
29/5/2019 14:00 3027 6. 38
29/5/2019 17:20 2991 6.29
29/5/2019 20:40 30.52 6.37

The relationship between temperature and pH level can be analysed out through
the table. Based on the table, aquafarmers come out with the conclusion that at
the highest temperature, the temperature is lower and vice versa. This is
supported with the evidence that during 28 May 2019, 11.20am, when the
temperature is at 31°C, the pH level become higher until 6.702. While on 28 May

2019, 6pm, when the temperature is increased to 31.738°C, the pH level decrease to

48

6.242. Unfortunately this condition only occur on the first day due to the water sample

properties started become acidic on the next day.

49

2.5.2 loT-based Smart Aquaculture System with Automatic Aerating
and Water Quality Monitoring
According to Tsai et al. (2022), it shows an loT-based smart aquaculture system
(ISAS) to help aquafarmer to monitor various water quality parameters. The
proposed ISAS are equipped with sensors and also automated water quality
control devices to monitor water quality to build a suitable aquaculture
environment in aquafarm to increase fish growth performance. This ISAS
system make use of fuzzy inference process for quick automatic operation of
aerators and feeders to ensure the water parameters is within the safety range.
Users can make use of ISAS to monitor water quality in aquafarm easily at
anywhere and anytime using mobile devices and remote computers as long as
the device have the internet connection due to implementation of cloud database
in this system. In addition, users also could receive warning messages when the

water parameters falls below or exceed the safety range.

2.5.2.1 System Design and Architecture
Below figure 2.7 shows the architecture of the ISAS.

il
Arduine :
s
Wireless Chaud

Dissolved Oxygen z. Cofmunicabion Dalabase
Sensor gl B
} Raspberry Pi I
]
‘Water Hardnass L
Sensor) I

==l V]

Usar Inlarface

Figure 2.5.7 The architecture of ISAS (Tsai et al., 2022)

Based on figure 2.7, the system is made up of 4 main components. They
are sensors, data processing platforms, reactors and cloud database that provides
data to user interface. The sensors that used in ISAS is, Temperature sensor, pH
sensor, Dissolved oxygen sensor and Water Hardness sensor. These sensor will
be connected to data processing platform consist of Arduino microcontroller,

50

and Raspberry Pi computer. Then Raspberry Pi of Data Processing Platforms
will be connected to Cloud database to store the sensors data, and also connected
to reactors to perform automatic water parameters control in water tank. The
communication between Cloud database and Raspberry Pi computer is through
wireless connection. User can view water parameters data and receive alert
message through user interface that display the data from the Cloud database
(Tsai et al., 2022).

2.5.2.1.1 Water Paramter Sensors
There are 4 types of sensors used in this system: Temperature sensor, pH sensor,
dissolved oxygen sensor and water hardness sensor. Figure 2.8 shows the 4

sensors and data collection platforms used in this system.

(c)
Dissolved

oxygen

(d) Water (e) Arduino ®
hardness microcontro Raspberry
Sensor ller Pi single-
board

Figure 2.5.8 The sensors and data collection platforms of the ISAS (Tsai et al.,
2022)

1) Temperature:

DS18B20 digital thermometer (Figure 2.8(a)) is used as the temperature sensor
in ISAS. It can measures temperatures form -55°C to +125°C and provides
programmable resolution of 9-12 bits. Higher bit of resolution means more

accurate measurement, however need to processing power and storage.

51

2) pH level:
DFROBOT SENO0169 analog pH meter (Figure 2.8(b)) is used to measure pH
level in this ISAS. This pH sensor has the ability of fast response and good

thermal stability, which is suitable for long-period monitoring.

3) Dissolved Oxygen (DO) level:

A DFROBOT SENO0237 sensor (Figure 2.8(c)) is used to detect dissolved
oxygen level. It has detection range of 0—20 mg/L.

4) Water hardness:

A DFROBOT SENO0244 analog total dissolved solid sensor (Figure 2.8(d)) is
used to measure water hardness in ISAS. It has the measurement range of 0 —
1000 mg/L.

2.5.2.1.2 Microcontroller

The microcontroller used in this system is Arduino Uno microcontroller (Figure
1.8(e)). The task of microcontroller here is to combine all the data provide by
each sensors together, then sends these water quality parameters data to

Raspberry Pi for processing.

2.5.2.1.3 Computer (Raspberry Pi)

The Raspberry PI, is a single-board computer consist of ARM Cortex A72
processor and 8gb of RAM with multiple communication interfaces such as
WiFi, Bluetooth, USB and Mini HDMI. The Raspberry Pi task in ISAS is to
store the last 7 days’ sensors data into its internal memory, and all sensors data
should send by Raspberry Pi to cloud database using WiFi and the MQTT
protocol. MQTT protocol is known as Message Queing Telemetry Transport
protocol, is a lightweight messaging protocol for I0T. It is Ideal for connecting
remote devices with a small code footprint and minimal network bandwidth
(MQTT, 2022).

Besides, Raspberry Pi computer contain the fuzzy inference process,

which perform assessment on water temperature, pH and hardness then send

52

fuzzy output to Raspberry Pi computer to control the water control system.
Figure 2.9 shows the flow diagram of automatic control flow of the ISAS.

p)
Start

>
e
) 4

> 3l |
__—Dissolved oxygenr—.__ \°

W

Yes

r .\ 4
'Fuzzy Inference Input
Process / Parameters
A .
Send Fuzzy Output
to Raspberry Pi
.

No

Yes

>
Activate Aerator/

Suspend Feeder
Figure 2.5.9 The automatic control flow of the ISAS (Tsai et al., 2022)

The sensors collect the parameters data and send to Raspberry Pi, then
Fuzzy Inference Process perform assessment. If the assessment result shows that
water quality is poor and not suitable for aquaculture, then it will send fuzzy
output to Raspberry Pi to activates each water quality control devices such as
aerator to maintain the dissolved oxygen level at certain range, and suspend

feeder to feed the fish to avoid further contamination of the water.

This ISAS system use fuzzy-based control instead of machine learning
which may produce better decision making in automatically activate the water
control devices to maintain water quality. The main reason is fuzzy-based
control can provide fast response that ML cannot serve, and also it is easier to
apply than ML because ML cannot be done in Raspberry Pi and Arduino due to
their limitation of computing power. ML based-systems require long training
time and different aquatics require different design. Thus, Fuzzy inference
process is used in this case.

2.5.2.1.4 Cloud platform

53

Cloud platform contain database that are used to store all history of sensors data.
The advantages of using Cloud platform to store data is due to its larger capacity
which is able to store all the history of the water quality parameters. The main
reason is that the data stored in Cloud platform can be access by smartphone,
computer and web application for data visualization and data analysis in user
interface as long as there is internet connection. Besides, these data can also be
used in ML in cloud platform to provide useful information for aquafarmers
(Tsai et al., 2022).

2.5.2.1.5 Application of ISAS system

There are 2 types of application can be used to monitor water quality in
aquafarm based on the ISAS system such as web application, and smartphone
application. Aquafarmers can view the aquafarm’s water quality condition
through these application. Both types of application serves the same
functionality, they retrieve data from cloud database and perform data
visualization to provide user-friendly user interface to display the data in user
readable format. Figure 2.10 shows the line graph of temperature sensed data

through web application (Tsai et al., 2022).

Figure 2.5.10 The temperature sensed data example (Tsai et al., 2022)

The temperature line graph allows user to track the change of temperature over
time. Figure 2.11 shows the line graph of dissolved oxygen sensed data through

web application

54

Figure 2.5.11 Sensed data dashboard from user’s mobile device (Tsai et al.,
2022)
The dissolved oxygen line graph also allows aquafarmers to track the change of

dissolved oxygen level within a period.

Moreover, both of the application also provide dashboard for real-time

numerical data of current water quality condition as shown in figure 2.12.

Figure 2.5.12 Sensed data dashboard from user’s mobile device (Tsai et al.,
2022)

55

The dashboard shows the current temperature is 20.9°C, DO is 3.8mg/L, and pH

is 8.6. Different colours indicates different types of water parameter monitored.

2.5.2.1.6 Water Quality Control Devices

This ISAS system also include 2 devices to control the water parameters to
maintain in healthy state, they are aerators, and feeder. Their responsibility is to
receive signal from Raspberry Pi that perform Fuzzy Inference Process, in order
to decide whether to activate aerators to increase DO level in water, and also

suspend feeder to stop feeding (Tsai et al., 2022).

2.5.2.2 Experiment for implementation of ISAS
Experiment Setup

The experiment objective is to verify the feasibility of ISAS. Therefore, this
experiment should:

1) find out does ISAS system increase the survival rates of the shrimp.

There are 2 different set-ups of aquarium were build, 1 experimental group
which implement ISAS and another 1 control group without ISAS. Figure 2.13
shows the experiment setup.

Figure 2.5.13 Experimental group and control group of the ISAS (Tsai et al.,
2022).
Based on Figure 2.13, two different set-ups of the system is place at different

aquarium, left side is the experimental group with ISAS, and the right side is the
control group. The experiment starts with 60 shrimps and some aquatic plant

56

into both groups. Then, control group is fed once a day daily, while exprimental
group were fed based on the fuzzy result decision. The experiment continues

1.5 months, the survival rates of the shrimp calculate using below formula:

Survival rate = (Number of shrimp remaining / Number of shrimp
at the beginning) x 100%

Experiment Result
4) Obijective:

To find out does ISAS system increase the survival rates of the shrimp.

Results:

Figure 2.14 shows the line graph of survival rates of shrimps of experimental
and control group within 1.5 months.

Survival Rates of Shrimp
120.0%

100.0% < /f\

/u \'\
80.0% % N N
‘p.\ / \u*
0_. \H\ ',r’ ‘\
) J Te—-a_
60.0% e —e—20
oy 2
Pl F%
40.0% ~_ / e
S PN | R
B ~o—ao
20.0%
0.0%
O N W ©O «© 8 - M U MO -~ M B~ - NSO MW
8N NN g 9 9 9 o9 L T I D = N NONONONGF G S
000 0 00 & v v = T T T YT T T T T o
wwwwww N N N N N T v e - e v v v v v 8N NN
N N NN N NN ©O ©O O O N N N N &N N N N NN O O o
S O O 0O 0O O NN NNNWOOO OO O O 0 60 N N N
N NN N N ™ ™ N N ™ N &N N N NN
—a—Survival Rate of Experimental Group o Survival Rate of Contral Groucp

Figure 2.5.14 Survival rates of shrimps during the 1.5 months of our
experiment (Tsai et al., 2022)
The line graph shows declining of both groups of shrimp during the first
week. The suvival rate of Experimental Group increase on 2021/4/7 and
2021/4/13 is due to new baby shrimp were born, while in Control group new
baby shrimp were born on 2021/4/19. On the last day of the experiment

2021/5/5, the remaining shrimp in control group is 16, therefore its survival

57

rate is only 26.7%. However, the Experimental Group still have 36 number
of shrimp survived, and it reach 60% of survival rate, which is 33.3% greater
than Control Group. In conclusion, ISAS can increase the survival rate of

aquatics. Therefore, ISAS is feasible to be used in aquaculture industry.

58

2.5.3 Development of an loT-based Intensive Aquaculture Monitoring

System with Automatic Water Correction
According to Tolentino et al. (2021), it propose an loT-based Intensive
Aquaculture Monitoring that monitor and automatically corrects the water
quality parameters to maintain good water quality environment for aquatics to
grow in aquafarm. Due to the loT structure in this aquaculture system, an
internet based application is then use to perform data visualization for user to
monitor the aquaculture easily. The application should provide user a dashboard
that shows precise real-time condition of each water parameters and also should
provide the average length and weight of the fish to determine their growth
(Tolentino et al., 2021).

2.5.3.1 System Design and Architecture
Below figure 2.15 shows the architecture of the loT-based Intensive

Aquaculture Monitoring System with Automatic Water Correction.

INPUT PROCESS ouTPUT
Temperature
pH Level
Agquanurm
CORF ﬁ l ¥ Heater
: ' MaHCO.
Turbidity F——— *@d"m Meﬂf’ = *| pistribution
Salinity Q Water Pump
Dissolved
Daygen
(R,aspnerr:.l PD
\._\x____'_‘____,f
.-'"’;-.__-H\'-. Web
LoRaWAN J *| application

Figure 2.5.15 The architecture of ISAS (Tolentino et al., 2021)

Based on figure 2.15, the system is made up of 3 layers. They are input,
process,and output layers. The input contain 6 types of sensors: temperature, pH
level, oxidation-reduction potential, turbidity, salinity and dissolved oxygen.

These sensors from input is then connected to the Arduino Mega

59

microcontroller in Process layer. There are 2 more components in Process Layer:
Raspberry Pi and LoRaWan loT Protocol. The Raspberry Pi is a computer that
use LoRaWan IoT Protocol to send data Cloud Platform and then Web
Application at output layer will display these data to user. Besides, output layer
also have those water quality correcting device such as Aquarium Heater,
NaHCO3 distribution, Water Pump.

2.5.3.1.1 Water Paramter Sensors
There are 6 types of sensors used in this system: temperature sensor, pH level
sensor, oxidation-reduction potential sensor, turbidity sensor, salinity sensor

and dissolved oxygen sensor.

1) Temperature:

The temperature sensor used is a Waterproof Temperature Sensor DS18B20 to
measure temperature.

2) pH level:

A DFRobot Industrial Analog pH Sensor is used to measure pH level of water.

3) Oxidation-reduction potential:
A DFRobot ORP Analog Meter is used to measure ORP.

4) Turbidity:

To measure the turbidity of water, Gravity: Analog Turbidity Sensor is used.

5) Salinity:

To measure Salinity of water in water tank, Gravity: Analog Electric
Conductivity Sensor is used in this system.

6) Dissolved oxygen:

The DFRobot Gravity: Analog Dissolved Oxygen Sensor is used to measure
Dissolved Oxygen in water tank.

60

2.5.3.1.2 Microcontroller

The microcontroller used in this system is Arduino Mega microcontroller. The
task Arduino Mega is to collect all sensors analog data for each connected water
parametrs sensors, integrate them and send these data to Raspberry Pi computer
for data processing. Moreover, it also link with water quality correctors such as
Aquarium Heater, NaHCO3 Distribution and Water Pump. These correctors
will be activated by Automatic Water Quality Correction program in Arduino
Mega microcontroller to peform their tasks, when their related weter parameters
value does not meet the desired level. With these devices help, the water quality

can be maintain within safety range (Tolentino et al., 2021).

2.5.3.1.3 Computer (Raspberry Pi)

The Raspberry PI, is a single-board computer is used in this system to act as a
gateway to accepts data from Arduino Mega, and then use its processing power
and networking capabilities to communicate with database through Long Range
Wide Area Netwoek (LoRaWan) IoT Protocol. Then Raspberry Pi can transmit
these sensors data to Web Application to perform monitoring process also via
LoRaWan loT Protocol. A 868MHz LoRaWan is used because it can reduce
production costs and supports long-distance communication. Therefore using
LoRa modules for data transmission is suitable for monitoring aquaculture

setups.

2.5.3.1.4 Web Application

This system use Web Application to let Aquafarmers to monitor the aquafarm.
This Web Application named TeamLapia, is used to exploit all the data gathered
for monitoring water quality of aquafarm. It is developed using PHP and
JavaScript codes and link to database that stores all the latest and keep updating
water parameters data. Therefore, this Web Application can display the recent
status of each water parameters with accurate numerical values and fish growth
such as number of fish, average length, and weight. Besides, this application

also use Html, CSS and JavaScript to produce a user-friendly User Interface

61

using that aquafarmers can easily understand the current condition of the
aquaculture. Then it also provides the graphs that shows the changing of the
water quality parameters over time for user to make analysis. Figure 2.16 shows

the TeamLapia Web Application Interface.

WATER PARAMETER SENSORS

DISSOL
OXVYG

Figure 2.5.16 TeamLapia Web Application Interface (Tolentino et al., 2021)
The first page shows the header showing user that this is a “Fish Growth and
Water Quality Monitoring System”. The second page shows the 3 main function

of this system: Weight Prediction, Water Quality Monitoring, and Data

62

Consolidation. The third page is the Water Prameter Sensors page listed with all
installed sensors in the aquafarm. When user click into specific water parameter
they want to view, the fourth page will be displayed. This page first provide a
brief description of this chosen parameter, then also provide line graph showing
the values of the current water parameter on the past period of time. In addition,
it also provide the current status of the parameter. Figure 2.17 also shows the

TeamLapia Web Application Structure Diagram.

Index Home
] v ¥ ¥ Y
About Resaarch Contact
H r S .
eade (Description) sensors Team Information
Water Duality ”E’_?QP Team Photos
pH
Turbidity +
Salimity
Data Temperature Individual
Consolidation Photos
Description f-u +
Profiles

Graph e |

Current Status |-

Figure 2.5.17 TeamLapia Web Application Structure Diagram (Tolentino et
al., 2021)

2.5.3.1.5 Water Quality Control Devices

This system include 3 devices to control the water parameters, they are:
Aquarium Heater, NaHCO3 Distribution and Water Pump. They are activated
by the Arduino Mega Micontroller when water quality does not meet the desired
range.

1) Aquarium Heater

Aquarium Heater task is to keep the water temperature maintain at 28°C.

2) NaHCO3 Distribution

63

NaHCO3 is Sodium bicarbonate or baking soda, is a weak base that use to
neutralize the water when the pH is dropping. Therefore, this device will be
activate to release the Sodium Bicarbonate solution when pH level fall below
the threshold value. When the pH level back to desired level, this device will be

switch back off again.

3) Water Pump

Water Pump is activated when oxidation-reduction potential, turbidity, salinity
and dissolved oxygen values are not within the ideal range optimal for fish
growth. When the all the water parameters are back to desired level, this device

will be switch back off again.

2.5.3.2 Experiment for implementation of IAMS
Experiment Setup

The experiment objective is to:
1) find out whether this system able to monitor the water parameters and
automatically activate the correcting devices.
2) to assess the automated aquaculture system's effectiveness and
reliability as well as the difference in fish growth rates between it and

the traditional setup.

There are 2 different set-ups of systems were build: 1) First one is the proposed
system setup that perform regular monitoring and correcting on the temperature,
potential hydrogen (pH) level, oxidation-reduction potential, turbidity, salinity,
and dissolved oxygen to build an environment to optimize the fish growth. 2)
Second one is the conventional setup, the water will be check and change once
a week. The experiment takes 12 days to conduct. The growth rate of the fish is
determine by using the formula below:
Growth rate = (Final weight - Initial weight) / (Initial weight) x 100%

64

Conventional
Setup

Figure 2.5.18 Experimental group and control group of the ISAS (Tolentino et
al., 2021)

Based on Figure 2.18, two different set-ups of the system is place at different

water tank with Nile Tilapia fishes, left side is the conventional setup, and the

right side is the controlled setup. The Stereo-Vision Camera is used to measure

the size of fish.

Experiment Result
1) Objective:

To find out whether this system is able to monitor the water parameters and

automatically activate the correcting devices.

Results:
Figure 2.19 shows the line graph of pH level over days for the controlled

aquaculture setup.

65

PH
—#— Sensor Reading —a—Upper Limit Lower Limit
16
14
= /\
s —a—= = w = uﬁiﬁﬂ
I s N
v
-
1 2 3 < 5 6 7 2 9 i0 11 12 1
DAYS

Figure 2.5.19 pH sensor Readings with Correction Response (Tolentino et al.,
2021)
The desired pH level range for Nile Tilapia is between 6 to 9. It can be seen
that the pH level of the water will automatically corrected back to desired
range between 6-9 whenever the pH value exceed the upper limit. This is
because the NaHCO3 distrbution is activated.

TURBIDITY

—t— Sensor Reading @ Upper Limz Lower Limit

EL (NTU)

TURBIDITY LEV

DAYS

Figure 2.5.20 Turbidity Sensor Readings with Correction Response (Tolentino
etal., 2021)

Figure 2.20 shows the line graph of turbidity sensor readings over days. The
ideal range of Turbidity for Nile Tilapia is 0.3 to 5. The turbidity level always
remain between the lower limit and upper limit.

66

ORP

—p—Sensor Reading —a— Upper Limit Lowwer Limit

EL (MILLI VOLTS
n a8
[=] [=]

ORP LEVEL (1

DAYS

Figure 2.5.21 Oxidation Reduction Potential Sensor Readings with Correction

Response (Tolentino et al., 2021)

Figure 2.21 shows the line graph of ORP level over days. The ideal range of
ORP level of Nile Tilapia is 150mV to 250mV. It shows that whenever the ORP

nearly fall below lower limit, it always increase back to nearly 200mV.

TEMPERATURE

—g— Sensor Reading —m— Upper Limit Lower Limit

LEVEL ("C
R

[]

->

[]

[]

->

[

[]

[]

[]

[]

]

TEMPERATURE

Figure 2.5.22 Temperature Sensor Readings with Correction Response
(Tolentino et al., 2021)

Figure 2.22 shows the line graph of temperature readings over days. The desired

range for temperature is between 25 to 27°C. The graph shows that the

67

temperature is always exceed the upper limit, however it is able to be corrected

back using corrective device.

SALINITY
—a#— Sensor Reading —8—Upper Limit Lower Limit

16

14 [- - . - - = - -] - - -] u
E_“ 12
o 10
i 8
-
E B
=
3 4
w

DAYS

Figure 2.5.23 Salinity Sensor Readings with Correction Response (Tolentino et
al., 2021)

Figure 2.23 shows the line graph of Salinity sensor readings over days. The
desired range for Nile Tilapia to growth is below 5ppt. However, Nile Tilapia
can tolerate with wide range of Salinity from 0 to 15ppt. The Salinity of the
water tank in controlled setups shows that the Salinity level is always stay within

desired range for Nile Tilapia to growth.

DO

—tp—5Sensor Reading == LUpper Limit Lower Limit

MILLI GRAMS/L)

vEL |

DO LEVE

Figure 2.5.24 Dissolved Oxygen Sensor Readings with Correction Response
(Tolentino et al., 2021)

68

Figure 25 shows the line graph of DO readings over 13 days. The desired range
for Dissolved Oxygen is between 1 and 2.5mg/L. It can be seen that whenever
the DO level nearly reach the lower limit, aerators will be triggered to increase
the DO level. Therefore, the DO level is able to maintain within the desired

range throughout this period.

In conclusion, this system is able to monitor the water parameters and also
automatically activate the correcting devices. Therefore, the Nile Tilapia growth
performance is assured with the help of this system to maintain the desired water
quality.

2) Objective:
To determine the efficiency and reliability of the system and the difference
of the growth rate of the fishes between the automated aquaculture system

and the conventional setup.

Results:
Figure 2.25 shows the comparison bar graph of the the fish weights between

Conventional Setup and Controlled Setup in 2 weeks.

Average Fish Weight per Week
a5
an
5
E 50
E
= 25
-
% 20
2
£ 15
10
5
1]
Initial Week 1 Week 2
B Conventiongl mConuolied

Figure 2.5.25 Controlled vs. Conventional Fish Growth measured every week
(Tolentino et al., 2021)

69

From this bar graph, the controlled setup have higher average fish weight than
conventional setup in week 1 and week 2. This means that fishes in controlled
setup water tank have greater growth performance. Table 2.5 shows the detail
average fish weight of proposed aquaculture setup versus conventional setup in

from day 0 to day 7 then day 12.

Table 2.5.3 Fish Growth In Each Setup (Tolentino et al., 2021)

Davs Elapsed Average Fish Weight (g)
Proposed Conventional
Agquaculture Setup Serup
0 (mmutial) 4 4
T (week 1) 33 28
12 (week) 41 35

Based on Table 2.5, the average fish weight of the fishes in proposed
aquaculture setup increased total 17g (from 24g to 41g) while in the
convenrtional setup only increase 11g (from 24g to 35g). The calculated growth
rate per week is 30.70% for proposed Aquaculture setup, and 20.76% for
conventional setup. Therefore, this proves that the proposed aquaculture setup
is efficient and reliable as it increase growth performance of fishes in

conventional setup by 46.88%.

2.6 Comparison and Analysis
Table 2.6.1 Comparison table between LabVIEW, ISAS, IAMS.

Features Systems
LabVIEW | ISAS | IAMS

Provide real time water quality monitoring | / V4

(dashboard)

Provide data visualization (graph) V4 V4 V4

Provide water quality auto-correction system V4 V4

Use computer software as monitoring interface | /

Use web application as monitoring interface V4 V4

70

Use mobile application as monitoring interface V4
Implement cloud server as database V4
Implement local server as database V4
Implement local database V4

Support long distance water quality monitoring V4 V4
Provide fish growth prediction (length & v/
weight)

Upgradeable (Add more sensor and features) V4 V4 V4
Alert user when water parameters fall out from | ./ V4
desired range

Advantages
By comparing these 3 types of aquaculture monitoring system architecture, 10T-

based Smart Aquaculture System (ISAS) is the best system in terms of

functionality.

First of all, ISAS provide the most important features which is support
long distance water quality monitoring. This is because it used cloud server as
database, therefore its mobile application and web application can use sensed
data stored in cloud, and display them to user. Therefore, user are able to view
the current water quality condition of the aquafarm at anywhere as long as
having internet connection. LabVIEW does not support long distance
monitoring as the data captured is stored in local database of its workstation.

Besides, ISAS also contain fuzzy inference process in its system to
automatically activate water control device to correcting the water parameters
to maintain within safety range. This reduce the workload of aquafarmers need
to keep changing water and also can optimize the fish growth performance as
the water quality is always maintain at aquatics favourable condition.
Oppositely, LabVIEW does not contain water quality auto-correction system.

71

Next, ISAS also surpass the 2 other system with its real-time
monitoring features showing the latest current condition of water prameters in a
dashboard. The sensors keep updating the water quality 3 minutes as time
interval, and keep the database is always the latest all the time. LabVIEW also
provide real-time monitoring but its data are captured 10 minutes which its time
interval is longer than ISAS, reduce time for aquafarm to take early corrective
stepps. But IAMS takes 1 day as the interval for reading sensors data, therefore

it does not provide real-time water quality monitoring.

The last features that ISAS provide is automatically send warning
message to the user to alert that the current quality of the water is poor. IAMS
does not provide this features, but LabVIEW does. However, due to its sensor
data collection time takes longer than ISAS. Therefore, the alert message also
will be late to received by user compared to to ISAS. Thus, may cause late

corrective action aquafarmers.

In conclusion, ISAS is the best water monitoring system among them,
it provides many important and useful functionality that other system lack of.
For example, long distance monitoring, automatically water parameters control,
real-time water quality monitoring and warning messages to alert user about the

poor condition of water in aquafarm.

Disadvantages
Although ISAS is the best among these system. However, it also have

some weaknesses that it should be improved. Firstly, the dashboard of this
system can be improved to include more information for user to have better
monitoring experience in using this application. Figure 2.26 shows the ISAS
dashboard.

72

Figure 2.6.1 ISAS dashboard in mobile application (Tsai et al., 2022).

This dashboard does not show the desired range of the water parmeters. Then
when one of them is nearly exit the safety range, the gauge colour should turn
into orange colour and red colour when exit the desired range. This can help
user to easily focus on the dangerous water parameter. The design is not user-
friendly as the indicator of the gauge is small, difficult to find out which gauge
belongs to which water parameters. Therefore, here should increase the text size
and also put some icon and standard unit suitable to represent their

corresponsing water parameters.

Besides, figure 2.27 also shows the line graph chart displayed using
web application. However, the journal does not provide how line graph chart is
diplaying in its mobile application. Therefore, mobile application should also
able to view the trends of the water parameters using line graph chart, and it
should be easy to understand and identify the trends. However, this line graph
chart also lack of providing the information of desired range of current water
parameters that the fish is favourable.

73

Figure 2.6.2 The dissolved oxygen sensed data example (Tsai et al., 2022).

Lastly, this system provides warning messages to alert user about the
poor condition of water. However, the research paper does not show the detailed
implementation of the alert system. Therefore, it is assumed that the alert
message is sent to user only when the app is open. Thus, this type of alert
message is not complete enough, as it needs user to open app only can receive
the warning message. It lacks a pop out notification feature in the smartphones
for that user can receive the alert message anytime at anyplace whenever there

IS internet connection as the application is running in the background.

2.7 Software Development Methodology

There are three types of Software Development Methodology can be used to
develop Water Quality Monitoring Web and Mobile Application, such as
Waterfall, Agile and Lean.

2.7.1 Waterfall
2.7.1.1 Overview
In waterfall software development approach, one phase must be completed only
can proceed to the next phase. Based on figure 2.28, there are 5 main phases in

waterfall model:

1)

2)

3)

74

Requirements Product requirements document

—

Design Software architecture

—

Implementation Software

—

Verification

—

Maintenance

Figure 2.7.1 Waterfall approach (Visual Paradigm, n.d.)

Requirements:

In this phase, the system and software requirements should be
documented in order to have the clear image on what the final product
should looks like. Therefore, it is required for all the stakeholders to
involve in this phase in order to let development team to have clear
concept and understanding on the requirements and expectation of the
software product (OS-system, 2020). This project should be analysed in
addition to the requirements to establish the budget, risks, dependencies,
completion dates, and success measures. All the documentation should

be completed before moving to another steps (Andersen, 2023).

Design:
In this phase, software developers will need to design the software

archirecture, business logic and concepts.

Implementation:
Developing software based on the documentation requirements and

design.

4)

5)

Pros:
1)

2)
3)

Cons:
1)
2)

3)

2.7.2

75

Verification:
Testing whether the software is able to run properly without any error,

and ensure it meets the user expectations.

Maintenance:
Once complete testing and verification, this product is then release to the
stakeholders and regular maintenance is needed to always keep the

product workable.

Have a thorough and clear understanding on what the stakholders expect
on the products.
Easy to schedule and manage the tasks requirements.

Precise evaluation and calculation on the project cost.

Not flexible and the cost of changes is literally high.

May cause the stakeholders to lose confident with development team
due to late deliverable of the project product for user to review and give
feedback.

Any miscommunication and misunderstanding with initial requirements,

will greatly impact the final products.

Agile

2.7.2.1 Overview

Agile is a flexible software development approach. It starts with breaking down

the proejcts into several small manageable modules. Then the developers focus

on complete each module one by one following the completion target planning.

Therefore, the products is deliver in an incremental ways which encourages the

stakeholders to keep reviewing, and provide feedback, and make improvement

based on the feedback. Figure 2.29 shows that the development stages of Agile

is not a line, but in a circle due to its incremental and .

76

UAT

Release

QA

Back to Define
Requirements

Development Define

Requirements

IU Design

Figure 2.7.2 Principle of Agile Methodology (OS-system, 2020)

Pros:

1) All the bugs can be found and fixed in early stage, which in turns reduce
the cost of fixing bugs.

2) Highly flexible and ensure that the stakehodlers has high probability to
accept the final product as this approach requires them to participate
actively in developing the software.

3) Faster software development lifecycle.

Cons:

1) Due to the nature of keep reviewing and changing, the final products
may have different with the initial expectation of the software by
stakeholders.

2.7.3 Lean

2.7.3.1 Overview

Lean startup is a data-based approach, this methodology is used to boost the
project works, and also to reduce the cost and time. It starts initially by creating
smaller subset of features of an application, then release the product into market.

77

Then the product is then keep improving using the user feedback repeatedly
until the product achieve desired results. This approach make use of the fast
delivery of product to quickly identify the requirements of the market towards
this application and thus helps to determine to correct path to develop the

application.

Accelerate this feedback loop!)

vJ
N\ Experiment to move numbers
closer to plan (p114

Minimum viable
product (ze9)

N\

\

Concierge: start . /
; Build

: Go and see for
with one

i ourself (z69)
customer (piogy | Turnideas HE LEAN Y
into products i CAIN
sy Measure
Simulate with See how customers
people (1035) respond
Split-test to
[= find cause and
\/\/ -
The Five Whys: Learn Zoom in
£ 7 inOt or Zoom out
Find and fix root causes (p234) Customer scgment
persevere Customer need
= 2. pae Platiorm
Which activities create value? Pivots (p172) Business architecture
Which are waste? (01s2) Value capture
Engine of grovan
{c) 2012 Sacha Chua, LivingAnAwesomelife.com Channe!

Figure 2.7.3 Principle of Lean Methodology (OS-system, 2020)
Pros:
1) The product can compete in the market quickly.
2) A smart and strategic way to develop a software product efficiently.
3) Flexible way of development as it can quickly adapt to the changing

market.

Cons:
1) Unable to be used in high uncertainty project.

2) Not ideal for large and complex projects

2.8 Comparison of Software Development Methodology
These three Software Development Methodology are useful in different
conditions. But in the scenario of developing a Water Quality Monitring

Application, Agile is the most suitable method to implement.

78

This is because Water Quality Monitoring Application may always
require changes, because this project is focus on the Dashboard to let user to
monitor the water quality easily. Therefore, stakeholders might always request
changes because the better design of the dashboard is always existed. Agile
methodology can easily adapt to the changes easily when there is adjustment on

the project scope. Waterfall is not suitable to be used here.

Next, this application has high level of complexity and uncertainty.
Therefore Agile methodology nature of breaking project into smaller
manageable modules, allow the project to be developed incrementally to reduce
the complexity. While at the same time continuous testing is needed to test these
small modules, repeated validation and feedback can help this project to identify
and address issue in early stage. Lean is not suitable to be used here because it
focus on reducing waste and increasing efficiency in the development process,
but there are too many unknown and changes might needed which makes this

approach not effective as changes means increase cost.

Moreover, Water Quality monitoring involves multiple technologies,
therefore need to have collaboration between different areas of technical
expertise. Agile approach emphasize teamwork and collaboration, which
frequent meeting is needed, therefore it is more suitable for different expertise

to communicate and collaborate well in delivering this system.

2.9 Justification of Aquaculture Monitoring System

The use of the latest technologies, such as intelligent aquaculture monitoring
systems, is necessary to replace traditional aquaculture practices. This is
because it can overcome the weaknesses of traditional methods and provide a
more convenient and relevant way to monitor aquaculture. For example, the

weaknesses of conventional method for aquaculture are:

1)

2)

79

It takes longer time, more cost, and less consistent and accuracy in

measuring water quality.

According to Huang et al. (2013), Labor cost is discovered to have
the highest proportion in aquafarming cost which is 37.2% of total
costs. Das and Jain, (2017) also complains that conventional ways
of measuring water quality is not efficient, it needs to collect water
samples manually and then send to lab to test and analyze. This
ways of testing water is time intensive, cost ineffective and waste

of human resource.

The implementation of an IoT water quality monitoring
system in turn reduces labor costs and is cost effective in the long
run. Using of sensors to measure water quality can avoid human
error and inconsistency in testing water quality due to the different
levels of experience and skill of personnel. In addition, water
quality can be measured in real time, which is impossible to do with

a human.

Aquafarmer cannot be alerted or warned when the water quality

suddenly becomes bad.

Due to extra long time cost to test water quality, the frequency of
water quality testing is very low, usually is done once per day or a
week. Therefore, it is unable for the aquafarmer to immediately to
realise that the water quality suddenly turns bad due to some
unexpected events such as algae bloom, toxic chemical is presence
in the water and finally leads to fish kill events within short period

of time.

Due to the real time water quality testing provided by the 10T
water quality monitoring system, an alert system to warn user when

the water quality is poor is now available. This helps aquafarmer to

80

immediately notice the worsen of water quality, and are able to take
immediate action to find out the reason and resolve the issue.

3) Uneffective productivity, profitability and sustainability of

aquaculture operation.

With bad water quality monitoring capability of conventional
methods, it is unable to fully optimize the growth performance of
farmed fish. In addition to the lack of an alarm system and
infrequent water quality testing, the potential for fish kills to occur
and cause damage to the revenue is simply high. In addition, the
sustainability of aquaculture operations is very poor due to
ineffective growth performance and expensive labor costs as stated
above.

loT-based aquaculture systems optimize water quality,
resulting in increased productivity, improved profitability due to
reduced likelihood of fish kills, and increased sustainability due to

elimination of inefficient labor costs.

The existence of aquaculture monitoring systems developed using loT

technologies eliminates these vulnerabilities faced by traditional methods.

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

To deliver this project, it is required to discuss the methodology to use and the
work planning to ensure the project can be completed within time. So in this
chapter, we will discuss about the software development methodology, project
plan and development tool. Software development methodology section discuss
about the implementation of evolutionary prototyping methodology into this
project. Next, the project planning section provides a Work Breakdown

Structure (WBS) and Gantt chart as a plan to track the work progress. Finally,

81

the development tool section discuss about the software tools and technology to

develop the system.

3.2 Software Development Methodology

The Evolutionary Prototyping is one of the variant of prototyping methodology,
which is one of the most popular models used in several project development.
Prototyping methodology is a process that repeatedly refine the prototype based
on customer feedback until the prototype satisfy the customer needs. However,
there are different ways to perform prototyping methodology. Evolutionary
Prototyping that we use in this project differs from other variants.

Figure 28 shows the difference between the flow of evolutionary prototyping
and rapid throw away prototyping (02DCE @02DCE, 2020).

82

Initial Set of User
Requirements

YES

r 3

RAPID THROWAWAY EVOLUTIONARY
PROTOTYPING PROTOTYPING

Figure 3.2.1 The difference between the evolutionary prototyping and rapid
throw away prototyping (02DCE @02DCE, 2020).

3.2.1 Initial Set of User Requirements
The evolutionary prototyping software development methodology model starts
with getting the initial sets of user requirements. The information for the

software requirements is collected from stakeholders, especially end-users.

83

Then the software requirements is documented based on their information
provided.

In this project, the initial requirements are collected by reviewing current
existing water quality monitoring application’s dashboard. In addition, further
discussion and reviewing of requirement specification should be done with the
aquafarm owner to confirm with the software requirements. After the initial
requirement specifications is identified, WBS and Gantt Chart also should be
prepared to determine the deliverables of each stage of the project cycle. The
WABS helps determine what should be done, and the Gantt chart arranges time
schedule to complete each WBS components to allow stakeholders to track on

the project progress in order to ensure the project is able to be complete on time.

3.2.2 Quick Design
In this phase, a high-level design of prototype is produced. It should includes an

overall basic architecture of the software, data structure and interfaces.

This stage used ThingSpeak and ThingsBoard to build the dashboard prototype
for data visualization of this system. This is a low-fidelity prototype that shows
how the interface looks like and what function and features should be included

in this project.

3.2.3 Develop Prototype

Based on the quick design, develop the basic prototype for the software system.
This prototype should be functional and can be tested by users to provide
feedback.

This stage used ThingSpeak and ThingsBoard to build the dashboard prototype
for data visualization of this system. This is a mid-fidelity prototype that does
not really obtain the collected sensor data form cloud. But this prototype is
clickable to allow end-user to testing whether they can easily understand and
use the function and features provided in this system. The aim of this prototype

84

IS to encourage end user to determine whether the software requirements is

satisfied.

3.24 Evaluation of prototype by the customer
Based on the developed prototype, stakeholders and end users evaluate the

prototype and provide feedback on functionality and features.

During this phase, aquaculturists assess whether previously established
prototypes are usable and acceptable, and if not, provide their valuable feedback

for improvement in the next round of the cycle.

3.25 Refine Requirements
If any requirements are not met or are missing, this leads to modification and
redefinition of software requirements. Then the cycles from quick design to

evaluation keep recycling until the stakeholders satisfy and with the prototype.

This phase is only entered when the prototype fails to satisfy user expectation
of software requirements. After having their feedback, this stage need to revise

the software requirement specifications.

3.2.6 Refine Prototype
After the user accept the prototype means that the basic functionality is already
finalize. However, there is still need to refine the prototype by adding new

detailed functionality and features.

In this phase the prototype is further refined after the stakeholders accept the

prototype design.

3.2.7 Test the final product

After the prototype is refined, this prototype need to be tested and evaluated by
stakeholders to ensure it meet the specification requirements. If not yet satisfied,
returning back to the previous stage to refine the prototype.

85

3.2.8 Deliver and maintain

Once the prototype passes all tests and is approved by the stakeholders, this
software system can be delivered to the end-users. However, this system should
always be maintained and updated to meet the changing needs of the end-users

and meets quality standards.

3.3 Project Plan
3.3.1 Work Breakdown Structure (WBS)

0.0 Web and mobile application development for water quality monitoring
1.0 Project Initialization
1.1 Preliminary Planning

1.1.1 Understanding project background
1.1.2 Identify problem of current conventional solution
1.1.3 Determine project objectives
1.1.4 Define project proposed solution
1.1.5 Confirm project approach
1.1.6 Define project scope
1.2 Literature Review
1.2.1 Review the paper that study Smart Aquaculture
System using 10T technology
1.2.2 Review current existing Smart Aquaculture System
1.3 Methodology and work plan
1.3.1 Select software development methodology
1.3.2 Identify software development tool
1.3.3 Develop Work Breakdown structure (WBS)
1.3.4 Develop Gantt Chart
1.4 Requirement identification
1.4.1 Requirement Specification
1.4.1.1 Collect functional requirement
1.4.1.2 Collect system requirement
1.4.1.3 Collect non-functional requirement
1.4.2 UML modelling

2.0

3.0

86

1.4.2.1 Create use case diagram
1.4.2.2 Create use case description

System Development

2.1

2.2

2.3

System Testing

3.1
3.2
3.3

Design interfaces

2.11

Develop low-fidelity web application prototype

System Design

2.2.1
2.2.2
2.2.3
2.24
2.2.5
2.2.6

Set up Thingsboard cloud-based environment
Database’ table design

Create data dictionary

Create data flow diagram

Create activity diagram

Develop mid-fidelity web application prototype

System Development

2.3.1

2.3.2

2.3.3

Configure the sensor and devices for water quality

data collection to Thinksboard cloud platform.

2.3.1.1 Connect and configure microcontroller to
read sensor data

2.3.1.2 Create Thingsboard account

2.3.1.3 Create API for microncontroller to send
data to Thingsboard Cloud Server

Create dashboard using Thinksboard

2.3.2.1 Create water parameter analog and digital
gauges

2.3.2.2 Create line graphs over time for each water
parameter

2.3.2.3 Provide easy analysis based on the data

Develop alert system

Develop test plan

Develop test cases

Create user acceptance test

4.0

34 Apply system usability scale
Deployment
4.1 System Deployment

87

3.3.2 Gantt Chart
Water Quality Monitoring Web and Mobile App SIMPLE GANTT CHART by Verterd2 com
hetpeiwww varkex 42, com/Excs Tamplates ! simpla-gantt-chart himl
Project Start: Mon, 1/30/2023 |
Display Week: 1 Jan 30, 2023 Feb 6, 2023 Feb 13, 2023 Feb 20, 2023 Feb 27, 2023
3031 1 2 3 4 5|6 7 8 9 10 11 12|13 14 15 16 17 18 19|20 21 22 23 24 25 26|27 28 1 2 3 4 5
TASK L0 sTART enp
1.0 Project Initialization BO
1.1 Preliminary Planning 15 1/30/23 2/13/23
111 Understanding project backgroun| 7 1/30/23 2/5/23]
112 Identify problem of current conw: 7 1/30/23 2/5/23 _
113 Determine project objectives 2 2/6/23 277723 I
114 Define project proposed solution] 2 2/8f23 2/9/23
113 Confirm project approach 3 2/10/23 2/12/23
116 Define project scope 1 2/13/23 2713723
1.2 Literature Review 32 2/14f23 3/17/23
121 Rewiew the paper that study Smq 25 271423 3/10/23
122 Review current exizting Smart Aq 7 371123 3017723
1.3 Methodology and work plan 11 3/18/23 3/28/23
131 Select software development met] 4 '33’13!23 3/21723
132 Identify software development td 3 3/22/23 3424423
133 Develop Gantt Chart 3 342523 3427423
154 Develop Work Breakdown struet] 1 3f/28/23 3/28/23
1.4 Requirement identification 22 3/29/23 4719423
141 Requirement Specification 15 3/29/23 a12/23
1411 Collect functional requirement 5 3/29/23 472723
1412 Collect system requirement 5 a43f23 477723
1413 Collect non-functional requireme] 5 a448f23 4712733
142 TUML modelling 7 4713/23 4/19/23
1421 Create use case diagram 3 41323 415423
1422 Create use case description 4 4/16/23 4/19/23
20 System Development 113

Figure 3.3.1 Gantt Chart for Project Initialization from 30/1/2023 to 27/2/2023

89

Water Quality Monitoring Web and Mobile App

TASK

Project Start:

Display Week:

1.0 Project Initialization |

11 Preliminary Planning
111 Understanding project backgroun
112 Identify problem of current conwv
113 Datermine project objectives
114 Define project proposed solution|
115 Confirm project approach
116 Define project scope
12 Literature Review
121 Rewview the paper that study Sma
122 Rewvisw current existing Smart Aqg
L3 Methodology and work plan
131 Select software development met]
132 Identify softwars development tg
133 Develop Gantt Chart
134 Develop Work Brealkdown stmcl:|
14 Requirement identification
141 Requirement Specification
1411 Collect functional requirement
1412 Collect system requirement
1413 Collect non-functional requireme|
142 UML modelling
1421 Create use case diagram
1.422 Create use case description

Mo of
O

BO
15

-~

oW oMM

w

2

Mon, 1/30/2023 |

1 Feb 27, 2023 Mar &, 2023 Mar 13, 2023 Mar 20, 2023 Mar 27, 2023
272801 2 3 4 5|6 7 8 9 1011 12|13 14 15 16 17 18 19|20 21 22 23 24 25 26|27 28 29 30 31 1 2

sTaRT____eno

1/30/23 2/13/23
1/30/23 2/5/23
1/30/23 2/5/23

2/8f23 2/7f23
2/8/23 2/g9/23
2/10/23 2/12/23
2f13/23 2f13/23
2/14/23 3/17/23

sss s .
“spsaz 322 I

322/23 3/24/23 [

3/25/23 3/27/23 _

3f28/23 3/28/23 .

3203 419723]
32923 4/12/23]
/2002 4 I
4323 47723 |
a/8/23 af12/23

af13/23 af19/23

“af13/23 4f15/23

4f16/23 4f19/23

Figure 3.3.2 Gantt Chart for Project Initialization from 27/2/2023 to 27/5/2023

Water Quality Monitoring Web and Mobile App

Project Start: Mon, 1/30/2023 |

Display Week: 1 Mar 27, 2023 Apr 3, 2023 Apr 10, 2023 Apr 17, 2023 Apr 24, 2023
27282930311 2|3 4 5 6 7 & 910 11 12 13 14 15 16|17 18(19|20 21 22 23|24 25 26 27 28 29 30

1.0 Project Initialization

11 Preliminary Planning 15 1/30/23 2f13/23
111 Understanding project back 7 1/30/23 2/5/23
112 Identify problem of current conv{ 7 1/30/23 2/5/23
113 Determine project objectives 2 2/6/23 2/7/23
114 Define project proposed solution] 2 2/8f23 2f9f23
1135 Confirm project approach 3 223 2/12/23
116 Define project scope 1 2f13/23 2f13/23

12 Literature Review 32 2/14/23 3/17/23

121 Review the paper that study Smd 25 2/14/23 3/10/23

1411 Collect functional requirement 3/29/23 402023

1412 Collect system requirement 4/3/23 af7f23

1413 Collect non-functional requireme| 4/8/23 4f12/23

122 Review current existing Smart Aqd 7 3/11/23 3f17/23
13 Methodology and workplan | 11 3/18/23 372823 [
131 Select software development met| 4 .3,(13!23 3/21/23
132 ldentify software developmenttd 3 3/22/23 3/24/23
133 Develop Gantt Chart s s v I
134 Develop Work Breskdown struct{ 1 3/28/23 3/28/13 .
I Teemenioionm | 2w s ———————————————]
141 Requirement Specification 15 372903 41223 I
I
|
I
|

1421 Create use case diagram .4,(13!23 4f15/23

5
5
5
142 UML modelling 7 41323 4f18/23
3
4

1422 Create use case description 411623 4f19/23

20 System Development 13 | Y A

Figure 3.3.3 Gantt Chart for Project Initialization from 27/5/2023 to 241412023

91

Water Quality Monitoring Web and Mobile App

Mon, 1/30/2023 |

Project Start:
Display Wesk: | 1 Apr 17,2023 Apr 24, 2023 May 1, 2023 May 8, 2023 May 15, 2023
17 18(19(20 212223 24 252627282930 1 2 3 4 5 6 7 8 9 10111213 1415 16 17 18 19 20 21
TASK 00T STaRT END M TWT|F|S S MTWT/F/S/SMTWT[F|S5/5SMTWT|F/s/sMT/WTF|[S|S
20 oD | 13 EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
21 Design interfaces | & a2y e
211 Developlow-fidelity webapplic] & 4/28/23 5/5/23]
5 Semveim o s g e
221 SetupThingsbomdcloud-based| 5 5/6/23 5/10/23
222 Database’ table design | & sz sjsies
223 Create data dictionary | & spams s e
224 Crestedataflowdisgram | 4 5/18/23 52123]
225 Create activity disgram | & s spss |

13 System Development | 2 ey sy

231 Configure the sensor and devices | B/1/23 6/7/23

2311 Connect and configure m:ic:mbnﬂt|

6/1/23 6/7/23

2312 Create Thingsboardaccount | 1 6/8/23 6/8/23

7
7
1
2313 Create API for microncontroller | 7 h/8/23 Bf14/23
45

232 Create dashboard using Thinksb 46 6/15/23 7/30/23

2321 Create water parameter analog at{ 21 ®f15/23 7/5/23

2322 Create line graphs over time for 4 12 7/6/23 7/17/23

|
|
|
|
|
|
|
|
|
226 Develop mid-fidelity webapplic] 19 5/26/23 6/13/23 |
|
|
|
|
|
|
|
|
|
|

2323 Provide sasy analysis based on t| 13 7/18/23 /30023

233 Develop alert system 12 73123 Bf11/23

Figure 3.3.4 Gantt Chart for System Development from 20/4/2023 to 15/5/2023

92

Water Quality Monitoring Web and Mabile App

Project Start: Mon, 1/30/2023 |
Display Week: 1 May 15, 2023 May 22, 2023 May 29, 2023 Jun 5, 2023 Jun 12, 2023
1516 17 18 19 20 2122 23 24 2526 2728(293031 1 2 3 4|5 6 7 8 9 10 1112 13 14 15 16 17 18
TASK Noof ~ srapy END M| T |w|T[F|s|s|m|T|w/T|F|s|s|m[t|w|r|F|s|s|m[t|w|T|F|s|s|m|T|w|/t|F|s]s

20 System Development |
21 Design interfaces |

4/20/23 427/23

211 Develop low fidelity wb applic] 42823 5/5/23
122 System Design | 5/6/23 6/14/23
221 Setup Thingsboard clood-based /623 5/10/23

5/10/23 5/13/23

213 Create data dictionary 5/14/23 5/17/23

224 Create data flow diagram 5/18/23 5f21f23

1
222 Database’ table design |
|
|
|

215 Create activity diagram 5f22/23 5/25/23

226 Develop mid-fidelity web applic] 5/26/23 6/13/23

ngnﬁgupuuﬁahhhhmgmmﬁ

23 System Development | 6/1/23 8/11/23
231 Configure the sensor and devices | 68/1/23 68f7/23
2311 Connect and configure microcen] s 6723
2312 Create Thingsboardaccount | 1 6/8/23 6/8/23
2313 Create API for microncontroller | 6/8/23 6/14f23
232 Create dashboard using Thinksbo| 46 6/15/23 7/30/23
2321 Create water parameter analog ai 6/15/3 7/5/23
2322 Create line graphs over time for 4 7f6f23 7/17/23
7/18/23 7/30/23
233 Develop alert system 7f31/23 8/11/23

[y
=y

2323 Provide casy analysis based on f|
|
30 System Testing |

Figure 3.3.5 Gantt Chart for System Development from 15/5/2023 to 12/6/2023

93

Water Quality Monitoring Web and Mobile App

Project Start: Mon, 1/30/2023 |
DisplayWesk: | 1 Jun 12, 2023 Jun 19, 2023 Jun 26, 2023 Jul 3, 2023 Jul 10, 2023
12 13 14 15 16 17 18(19 20 21 22 23 24 25(26 27 282930 1 2|3 4 5 6 7 8 9 10 11 12 13 14 15 16
TASK Noof ™ gragy END mi T w|T|F|s|s mT|w|t|e|s|s|m|T|w/t|F|s|s|mz|w/t|e|s|s|m T|w|t|F|s]|s
20 System Development | 13 AR e e e e
11 Design interfaces | & a0z ap2is
211 Develop low-fidelity webapplic] 8 4/28/23 5/5/23
12 System Design | 20 sz enas [
221 Setup Thingsboard cloud-based{ 5 5/6/23 5/10/23
222 Database’ table design | & spops spsps
213 Create data dictionary | 2 snaps spas
224 Create data flow diagram | 2 snepes sz
125 Create activity diagrsm | 2 spem0s 5/25/23
216 Develop mid-fidelity webapplie] 19 5/26/23 sz2z [
TR N
231 Configure the sensor and devices| 7 61723 &f7/23
2311 Connect and configure microceny 7 &f1/23 &f7/23
2312 Create Thingsboardaccount | 1 6/8/23 /823
2313 Create APIformicroncontroller| 7 /8723 /14123 [
757 e var i s ‘oz -
11 Crse v 2 o 7 -
2322 Createlinegraphs overtime for{ 12 7/6/23 7/17/23]
2323 Provide easy analysis based ont] 13 7/18/23 7/30/23
133 Develop alert system | 22 sy2s 8/11/23

-
=

30 System Testing |

Figure 3.3.6 Gantt Chart for System Development from 12/6/2023 to 10/7/2023

94

Water Quality Monitoring Web and Mobile App

Project Start: Mon, 1/30/2023 |
DisplayWesk: | 1 Jul 10, 2023 Jul 17, 2023 Jul 24, 2023 Jul 31,2023 Aug 7, 2023
1011 12 13 14 15 16(17 18 192021 22 2324 2526 2728293031 1 2 3 4 5 6|7 8 9 10 11 12 13
TASK Noof syagr END M| T|w|T[F|s|s|m|[T|w|t|r|s|s|m[T|w|t|r|s|s|m|r|w|t|F|s|s|m|t|w|T|F|s|s
3 SpmDvpam | 11 EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RN

21 Design interfaces | & 22023 ap7s
111 Developlow-fidelity webapptic] 8 4/28/23 5/5/23
22 System Design | 20 s snas
221 Setup Thingsboardcloud-basedd 5 5/6/23 5/10/23
222 Database’ table design | & spozs spss
223 Create data dictionary | & speps s
224 Createdataflow disgam | & 5/18/23 52123
225 Create activity diagram | & s spsys
126 Developmid-fidelity webapplie] 19 5/26/23 6/13/23

233 Develop alert system 12 7/31/23 B/11/23

23 SwtemDeclopment | 2 oo sy [
231 Configure the sensor and devices | 7 68/1/23 B/7/23
2311 Connectandconfiguremicrocon] 7 §/1/23 §/7/23
2312 Create Thingsbosrdaccont | 1 6/8/23 /)23
2313 Create API for microncontroller | 7 6/8/23 6/14/23
T PRy
2321 Create water parameter analog ati 21 6f15/23 7/5/23
2322 Craelmegmphsovertimetor] 12 7623 71723 [
-]
O]

2323 Provide sasy analysis based on t| 13 7/18/23 7/30/23

30 System Testing

Figure 3.3.7 Gantt Chart for System Development from 10/7/2023 to 7/8/2023

95

Water Quality Monitoring Web and Mobile App

Project Start: Mon, 1/30/2023 |

Display Week: 1 Aug 7, 2023 Aug 14, 2023 Aug 21, 2023 Aug 28, 2023 Sepd, 2023
7 8 9 10111213/14151617 1819 20|21 22 2324 2526 27|28293031 1 2 3|4 5 6 7 8 9 10

TasK oo st ew JwlTiwrlElsIsImlTIwiTIElsIsImITIwITIFIsIsImITIwlTlelsIsImMTIw/T[Fls

30 System Testing | 14
31 Develop test plan | & sm223 ez s
32 Develop test cases | & 8/18/23 8/23/23 _
33 Create user acceptance test | 1 B8/24/23 8/24/23 -
34 Apply system usability scale | 1 Bf15/13 8f25/23 -
40 Deployment | s [[[[
41 System Deployment | 3 spsps sy I

Insert new rows ABOVE this one

Figure 3.3.8 Gantt Chart for System testing and Deployment from 12/8/2023 to 28/8/2023

96

i

v 98P Pt it e s PP o O PP Pt P O P

1mom |
|

o [|
1 [

EEEEEN NN NN NN NN NN NN NN NN NN NN NN NE NN NN NN NN NN NN NEENNEENNENENNENNNNENENNNENEER

|

| —

Il I

Il C |

Il |

Il |

Il |

Il |

Il |

Il I

Il I

Il I

Il |

Il |

Il I

Il e

Il L

Il]

Il]

Il I

Il

Il |

Il |

Il u
mm | | [|

Il EEEN
() () [|

Il

Il

i o OO e

Figure 3.10 Gantt Chart Overview

97

3.3.3 Development Tool

The development tool used in the project consists of Sensors, Sensors, Adruino
microcontroller, Adruino IDE, Thingsboard, Node.js, React Native, React
Native CLI, Visual Studio Code.

Sensors

There are three types of water quality sensors will be used: Dissolved Oxygen,
pH, and Temperature sensors. These sensors should connect to Adruino
Microcontroller and read the water quality data from the fish tank and then

transmit the data to microcontroller.

Adruino Microcontroller

Adruino microcontroller should be able to receive the water parameters data
from three sensors. The microcontroller should be able to connect to WiFi so
that we can programmed the microcontroller to send the data to the Thingsboard
Cloud Server through Http Protocol and MQTT protocol. This microcontroller
can be programmed using Adruino Integrated Development Environment using
another computer and later transfer the code into the microcontroller board using
USB.

Adruino IDE

Adruino IDE is a code editor, compiler and uploader to program microcontroller.
The programming language used here is variant of C++ called Adruino
programming language. Adruino IDE has a Serial Monitor tool used to displays
the data sent and received by the microcontroller, which is useful for us to show
what is doing inside microcontroller, such as print error message, sensor
readings, other processing data, or data send to other devices. The code to send
sensor data to Thingsboard cloud is done here. The code program that use
Thingsboard REST API to communicate with the Thingsboard cloud server is

programmed using Adruino IDE and then upload to the microcontroller board.

Thingsboard

98

Thingsboard is an open source 10T platform that this project used as a Cloud
Server database to store the data send by the microcontroller using REST API.
Besides, Thingsboard provide many API and tools to support this project to
build the 10T water quality monitoring application that include the dashboard
and also alert system. The dashbaord shows all collected water quality
parameter using meaningful diagram and to perform some simple analysis. Alert

system is used to warn user when there is problem with the water quality.

Node.js
Node.js can be used to write server side application and also client side

application. It is a javascript platform that allow this project to run javascript
code outside browser, which means we are building a native mobile application.
This Node.js provide Node Package Manager for JavaScript programming
language which allow this project to install, manage the package. These
packages include libraries, frameworks, tools and other dependencies. This is

necessary tools to build the React Native Mobile Application.

Android Studio

Android Studio act as emulator, a virtual Android device to run the React Native

project code during development, testing and debugging.

React Native

React Native is a framework of using JavaScript and React to build the Mobile
Application. React is a library that helps to create user interface easily, while
JavaScript is the programming language used together with React to write
React Native Mobile Application. It include a tool called Metro, a JavaScript
bundler used to compile and package the JavaScript code of React Native app.
Then run this compiled program in Emulator for development and provide hot
reloading function for faster development cycles. This can save a ot of time

during development and testing.

Visual Studio Code

99

Visual Studio Code is an Integrated Development Environment (IDE) that
provides code editor and compiler that can be used in developing React Native
mobile application for this project. It provides many other functionality to

improve the coding performance such as syntax highlighting, debugging,

version control, and many extensions.

100

CHAPTER 4
PROJECT SPECIFICATION

4.1 Introduction

This chapter discuss the requirements gathering process for developing a water
quality monitoring system. This process is necessary so understand the
stakeholders need and expectation for this system in order to ensure the system
is developed correctly that follows their expectation without any confusion and

misundestanding.

4.2 Proposed System Architecture
The suitable system architecture of the aquaculture system should looks like

figure 29, the proposed system archirecture.

Virtual Layer *

"lllllllllllllllll.

I User [—
i Interface O
= Module "

Mobile Application
Dashboard

0

. Tl i A A i i e YyuusnsEEEEEnEEEEEt @
200 E NN NN NN NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEs®
‘lll llllllllllllllll..
* LS

Sensor . “
Module l 5 -

DO Sensor PH Sensor

Monitoring Layer

Microprocessor

LA R R N NN NENENENENRENNSHRHS. |
" v,
..IIIIIIIIIIIIIIIIII‘

assssssmns®

*
a
[]
[]
L]
]
[]
[]
[]
[]
¥

*
*

Physical Layer

|
O

B
fie

Ammonia Sensor Fiber Glass Tank

Temperature Sensor

Ysusssssnssnnun’®

*
*

®ssssssssssssssssmnnnn®

Figure 4.2.1 Proposed system architecture

This system should have at least 1 type of sensors: DO sensor, a Data
Acquisition Module, a Cloud Server to setup a Water Monitoring System that

are able to update the sensors data into the Cloud Server database.

101

421 Sensor

The suitable DO sensor can be used here should have similar functionalities
with DFROBOT SENO0237 sensor in ISAS. This sensor should able to read the
dissolved oxygen (DO) level and must have the analog output with Analog-to-
Digital Convertor (ADC) function (Anon, n.d.). With this function, the sensor
data in original sensed analog signal data is able to convert its format to digital
values that is readable by microcontroller. Therfore, it must be compatible
with the microcontroller used. Besides, it should have detection range between

0 — 20 mg/L which could covers full range of possible DO level in water.

4.2.2 Data Acquisition Module
There are 2 types of setup in Data Acquisition Module: 1) single Microcontroller

with WiFi connectity or 2) a Microprocessor and a Computer.

1) Using single Microcontroller with WiFi connectivity

The microcontroller used in this system should have the functionality similar
with ESP32 microcontroller. This microcontroller should be compatible
with the sensor chosen above in order to read the digital values of water
parameter data. The most important feature that ESP32 provide is its Wi-Fi
and Bluetooth connectivity function (Anon, n.d.). This is because we need
to store the collected sensor data to Cloud Server, therefore microcontroller
with built-in Wi-Fi are able to be programmed to achieve the task above.
This cost of this setup is more cheaper than second setup as it does not need
to have a computer to communicate with Cloud Server using any suitable
Protocol such as MQTT and LoRaWan loT Protocol.

2) Using a Microprocessor and a Computer

This setup contains a microprocessor to receive the digital values send by
sensors, and combine these sensors data then store the data into local
database of a computer. Then the computer responsibility is to keep updating
the new received data into the Cloud Database. The microcontroller here
should have similar abilty as Adruino Uno, while the computer chosen here

can refer to Raspberry Pi, a single-board computer consist of ARM Cortex

102

AT72 processor and 8gb of RAM with multiple communication interfaces
such as WiFi, Bluetooth, USB and Mini HDMI. Thus, with the WiFi
connection features, this computer should be programmed to store the
sensors data into the Cloud Server database using any suitable Protocol such
as MQTT and LoRaWan loT Protocol.

4.2.3 Cloud Server

The Cloud Server can be used here are Amazon Web Services (AWS),
Microsoft Azure, Google Cloud Platform and others. The Cloud Server should
be able used to store the water parameters data. Then these data will be access

by the Mobile Application to perform data visualization.

424 Web and Mobile Application

The web application prototype is developed using Thingsboard. The mobile
application is developed using React Native and Android Studio IDE as the
development platform. Then this web and mobile application should use API or
SDK to establish connection with the Cloud Server database. Then, use the
retrieved water parameter data to perform Data Visualisation. For example,
shows the latest current water parameter status in a Dashboard. The design of
the dashboard should be informative, easy to understand, and also user-friendly.
Same as the line graph of the water parameter over time, that let user to view
the trends of the change of the water parameter in order to perform analysis.
Next, the mobile application should run at the background and keep updating
the water parameter readings. When the condition of water quality of fish farm
is poor, the system should alert user as a pop out notification to notify user that

the water quality need attention.

Figures below shows the sample views of the Web Application.

O | b Water Quaiity Monitormg [8ubt: X | b tnput Forms - Butble Docs

<0

s//water-quality-monitoring bubbleapps.io/vers

%] Jo eubbie| No-cose apps

bug_mode=true

I

({
§

8

|

8
B

Water Quality Monitoring System

O | b Water Cuaiity Monttoring | Bubb: X | b Input Forms - Bubble Docs

L

Password

Figure 4.2.2 Login View

x| Jo Water Quatty Moritoring

& hitpsy/water-quality-monitoring bubbleapps io/version-test/tanks?debug_mode=tru

= Manage Fish Tanks

Tanks A

Tanks C :

O | b water Guaiity Monitorng [Bubt: X | b Input Forms - Butble Docs

< C

@ https//water-quality-monitoring bubbleapps io/ver

E Water Tank A

x

i

Tanks B :

Tanks D :

Figure 4.2.3 Fish Tanks

%] Jo viser Quany Montoring

Temperature: 30°C

LB: 28

LB: 6.5

Figure 4.2.4 Water Tank A Water Parameters Gauge Dashboard

UB: 32

PH: 75

UB: 8.0

x

e

Ammonia: 0.01mg/L

LB: 0

(

UB: 0.02

e o o o)x

103

2 0 olox

e o oox

104

yut Forms - Bubble Docs X .b Water Quality Monitoring X ‘ +

1g.bubbleapps.io/version-test/details?debug_mode=true A €

— Water Tank A

(Temperafure: 30°C Analysis: 4 Add Sensor

Trend: Increasing with +0.2°C/hrs
Predict Exceed Boundary Time (hrs): (32 - 30)/0.2/hrs = 10hrs
Dpanger level: high
LB: 28 UB: 32 Possible Steps:
1) Water exchange
2) Cooling System
3) Aeration and circulation

Temperature (°C)

1day -

11

32

VO TN TN W TN N N O | O |

28

L

11

N

Time (1 day)

8/28/2023 -12.00pm
4/25/2023 - 12.00pm | -
4/26/2023 -12.00pm |
4/27/2023 - 12.00pm |

4/28/2023 - 220pm -

4/22/2023 - 12.00pm
4/20/2023 -12.00pm ~{
8/23/2023 - 12.00pm |

The page is higher than your real design as the deb: ble and dispiays a white area

Figure 4.2.5 Water Tank A Temperature Details

—

A WARNING
Water A Dissolved Oxygen (DO) level too high!
Desired Range: 5 - 7 mg/L / ppm
Current Value: 6.8 mg/L
Dangerous Level: High!

Go to details

Figure 4.2.6 Warning Message

105

4.3 Requirement Specification

Therefore, Software Requirements Specification is include in this chapter, it
contain functional requirement and non-functional requirement to define the
software function and nature. use case diagram and use case description clearly
identified how the end-users interact with the systems. Assumption and

constraint of are defined in requirement specification.

4.3.1 Functional Requirement
Below table 4.3.1 shows the Functional Requirements of Water Quality
Monitoring Mobile Application.

Table 4.3.1 Functional requirements of water quality monitoring mobile

application

Function | Functional Requirements

Register This system shall allow user to register a user account.

Login This system shall allow user to login to the system to user the
functionality of this system,

Dashboard | The system shall display a gauge dashboard page that allow user
to check on the the latest condition for for the DO, pH, and

temperature level for each water tanks.

The system shall allow user to check the line graphs of each

water parameter over time, in 12 hours, 1 day, 3 days, or 1 week.

The system shall be able to let user to set the water quality
parameter saferty range and their dangerous limit, each tanks can
have different range.

Manage The system shall allow user to add or remove water tank for

monitoring.

The system shall allow user to add or remove sensor reading for

each water tanks.

The system shall be able to allow user to add fish species to each
water tank, then can set their desired water quality parameter

range for the added species to be implement in the dashboard.

106

Alert

The system shall be able to pop out notification to alert user
when the water parameter is nearly exceeding or already exceed

the safety range, only when user open the mobile application.

The system shall be able to send SMS message to alert user
clearly which water tanks need attention when its water
parameter is nearly exceeding or already exceed the safety

range.

The system shall be able to change color of the gauge and line
graph to red color to alert user when the water parameter is

nearly exceeding or already exceed the safety range.

Analysis

The system shall be able to help user to perform simple analysis
on based on the line graph, such as prediction of when will the

water quality will exceed the safety range.

4.3.2 Non-Functional Requirement

= Performance

o

The system shall be able to response within 2 seconds when user
are using the functionality of application, such as gauge
dashboard, line graph, simple analysis and prediction.

The system shall be able to retrieve and handle these large value
of data from cloud server.

The system shall automatically update the data for dashboard
when the cloud database is updated with latest water parameters
data.

= Reliability

o

The application shall be able to receive the lastest data from
cloud server without any error.
The application shall be able to alert user when the the dangerous

limit is reached without any mistake or miss out the notification.

= Accuracy

o

The application shall be able to draw the line graph correctly

following the specified time frame.

107

o The application shall be able to make prediction reasonable and
correctly using the following the algorithm formula used.

= Usability

o The system shall allow user to understand the application easily
and can be expert within 3 minutes.

= Scalability

o The system shall allow adding more water parameters in
dashboard when new sensors is adding to this system in the
future.

o The system shall be able to add more or remove water tanks to
perform water quality monitoring, as the number of water tanks
to monitor can be increasing or decreasing.

= Maintainability

o The system shall be design for easy to maintain and update
without causing any functionality disorder.

= |nteroperability

o The system shall be able to sync the changes between mobile and
web application, when one of them made changes, another

platform also should get changes.

108

4.3.3 Use Case Diagram

Water Quality Monitoring Web and Mobile Application

Verify password
=

-~ " tinclude»

i = o Y
Register aextend» -
User
View dashboard
Set sensor threshold
Manage water AN
1)Assume the
tank A 3
microcontrolleris able to

connect to the
ThinkSpeak Cloud Server,
and the data can be
retreived succesfully.
2)Fish species profile

g€ sensors main function is to set
the desired water
parmater range for a type
of fish.

3) Both mobile and web
application have the
Manage fish same functionality.

species

View analysis

Alert on water

quality

(0

Figure 4.3.1 Use case diagram of Water Quality Monitoring Web and Mobile
Application

109

4.3.4 Use Case Description

Use Case Name: Register ID: 1 Importance
Level: High
Primary Actor: User Use Case Type: Detailed, Essential

Stakeholders and Interests:

User — Users who does not have account but wish to use this web-based or|

mobile-based water quality monitoring system.

Brief Description:

This use case describes how the user can create an account to the web-based or]

mobile-based water quality monitoring system by filling up the email address,

phone number, password and confirm password input fields to register an
account.

Trigger:

/A user wants to access the application but do not have account.

Relationships:

Association: User
Include: N/A
Extend: N/A
Generalisation: N/A
Normal Flow of Events:
1. The user reach the login page.
2. The user click on the below link named Register an account.
3. The user then fill in the registration form.
4. The user click register an account button.
Sub-flows:
2.1 User will be redirect to registration page.
3.1 User fill in the email address, phone number, password and confirm
password input field.

Alternate/Exceptional Flows:

4.1 If the email is registered, phone number format, email format or confirm
password is wrong, the system will show user warning message and
reject the registration, and ask user to provide correct information.

4.2 If the email is not yet registred, phone number format, email format and
confirm password is correct, then system will register an account for|
user using these user input.

110

Use Case Name: Login ID: 2 Importance
Level: High
Primary Actor: User Use Case Type: Detailed, Essential

Stakeholders and Interests:
User — Users who want to login to the system to use the water quality monitoring
system features.
Brief Description:
This use case describes how the user can login to the system using the registered
account credentials, using as email and password.
Trigger:
A user wants to access the application using his registered account credentials.
Relationships:
Association: User
Include: N/A
Extend: N/A
Generalisation: N/A
Normal Flow of Events:
1. The user reach the login page..
2. The user then fill in the login form.
3. The user click login button.
Sub-flows:
2.1 User fill in the email address, and password input fields.
Alternate/Exceptional Flows:
3.1 If the email address format is incorrect or email and the password does
not match the database, then prompt error and reject the login request.
3.2 If the email address format is correct and email and password are match
with the database, then redirect user to home page.

111

Use Case Name: View Dashboard ID: 3 Importance Level: High

Primary Actor: User Use Case Type: Detailed, Essential

Stakeholders and Interests:
User — Users who wants to view the condition and trends of each water
parameters in a fish tank.
Brief Description:
This use case describes how the user can view the dashboard such as gauge
dashboard and line graphs for the water quality parameters of a chosen fish tank.
Trigger:
/A user wants to view the water quality dashboard of a water tank.
Relationships:
Association: User
Include: N/A
Extend: N/A
Generalisation: N/A
Normal Flow of Events:
1. The user is now at the default water tank dashboard.
2. Then user click on the change water tank button to change to the
correct water tank that the user want to view.
3. Then the user are redirect to the selected water tank dashboard which
includes all the water parameter gauges with their readings.
4. Then user can click on the specific water parameter’s gauge to redirect
into the line graph dashboard page.
Sub-flows:
2.1 After user clicked the change water tank button, the system list all the
water tanks that can be monitored.
2.2 Then user click on the water tank that user wish to monitor.
Alternate/Exceptional Flows:

112

Use Case Name: Set Sensor Threshold ID: 4 Importance Level: High

Primary Actor: User Use Case Type: Detailed, Essential

Stakeholders and Interests:
User — Users who wants to set the upper limit and lower limit of a specific water
parameter gauge.
Brief Description:
This use case describes how the user can set the maximum and minimum
threshold of the selected water parameter as the desired range so that to activate
the alert system when the water parameter exceed the get near or exceed the
threshold.
Trigger:
A user wants to set the maximum and minimum threshold of a specific water|
parameter of a water tank to activate alert system.
Relationships:
Association: User
Include: N/A
Extend: N/A
Generalisation: N/A
Normal Flow of Events:
1. The user is now at the chosen water tank dashboard, the one that user
wish to make changes.
2. Then user click on the water parameter’s gauge that he wish to amend.
3. Then the user are redirected to that selected water parameter details
page which contains the line graph.
4. Then user can view the current minimum and maximum threshold of
the desired range to activate alert system.
5. Then the user click on the change desired water parameter range button
to change the threshold to activate the alert system.
6. System shows a view provide the input field for user to key in the new
value for the minimum and maximum threshold.
7. User fill in the new value for upper or lower limit or both.
8. User then click save, if fill in value is valid then successfully edited, if
not then reject edit request.
Sub-flows:
Alternate/Exceptional Flows:

113

Use Case Name: Manage Water Tank ID: 5 Importance
Level: High
Primary Actor: User Use Case Type: Detailed, Essential

Stakeholders and Interests:
User — Users who wants to manage all the water tank that user wish to monitor.
Brief Description:
This use case describes how the user can manage all the water tanks.
Trigger:
A user wants to view/add/delete/edit water tanks that should already set up the
sensors and devices to connect to this application.
Relationships:
Association: User
Include: N/A
Extend: N/A
Generalisation: N/A
Normal Flow of Events:

\View
1. The user now is at the Manage Water Tanks page, which can be access
by clicking the change water tanks button at the default water tank
dashboard page.
2. System show and list all the existing available water tanks in this page.
Add
3. If user want to add new tank, can click the add new tank button.
4. Then user fill in the necessary information to create a new device in
ThinkSpeak cloud server, then get the access token.
5. The new water tank is now added, and the access token is used by
microcontroller to setup REST API to send data to the application.

3. User click on the water tank, then a view with several options shows up.
Edit
4. If user want to edit exising tank, user click on the edit water tank button
in the view options.
5. Then user can edit the water tank information in the edit form.
6. Then click save button to save the edit.

Delete
4. If user want to delete the existing tank, user can click on the delete
tank button from the view options.
5. Then system will ask user to confirm the delete operation.
6. User click confirm, the water tank is now deleted.
Sub-flows:
Alternate/Exceptional Flows:

114

Use Case Name: Manage Sensors ID: 6 Importance
Level: High
Primary Actor: User Use Case Type: Detailed, Essential

Stakeholders and Interests:

User — Users who wants to manage all the water parameter sensors in a water

tank that user wish to monitor.

Brief Description:

This use case describes how the user can manage all the water parameter sensors

in a water tank.

Trigger:

A user wants to view/add/edit/delete water sensors.

Relationships:

Association: User

Include: N/A

Extend: N/A

Generalisation: N/A

Normal Flow of Events:

View

1. User is now starting from the the water parameters gauge dashboard of
a selected water tanks.

2. This system list shows all the existing water parameters gauge that are
included in this water tank.

Add

w

If user want to add new sensors, click add sensors.

4. Then user fill in the necessary information to create a new sensors of
new water parameter.

5. Them system start to search whether the new water parameters data is

retrieved inside the ThinkSpeak cloud server.

3. User click on the water parameter gauge, then user are redirected to the
water parameter details page.

4. User click on the triple dot icon on right top corner, then a small view
pops out showing the options.

Edit

5. If user want to edit existing sensor, user click the edit button

6. Then the edit form show up, user fill in the edit form.

7. Then click save button to save the edit.

Delete
5. If user want to delete the existing sensor, user can click on the delete
sensor button from the view options.
6. Then system will ask user to confirm the delete operation.
7. User click confirm, the water sensor is now deleted.
Sub-flows:

Alternate/Exceptional Flows:
Add

115

5.11f yes, then the new water parameter gauge is added to the gauge
dashboard, and this water parameter gauge is clickable to move into the
details page.

5.2 If no, the water parameter gauge is not created and prompt a message
saying that the water parameter sensor is not connected properly.

116

Use Case Name: Manage Fish Species ID: 7 Importance
Level: High
Primary Actor: User Use Case Type: Detailed, Essential

Stakeholders and Interests:

User — Users who wants to manage profile for fish species which can be used

to set the water quality threshold according to the best optimum water parameter|

range of a fish inserted by user.

Brief Description:

This use case describes how the user can manage the fish species profile.

Trigger:

A user wants to view/search/add/edit/delete fish species profile.

Relationships:

Association: User

Include: N/A

Extend: N/A

Generalisation: N/A

Normal Flow of Events:

\View

1. User is now starting from the the water tanks dashboard.

2. This system list shows all the existing water tanks.

3. User click on the triple dot button at the top right corner, a small option
list pops out.

4. User click on manage fish species.

5. Users are redirected to Manage Fish species page.

6. System list all the current existing fish species.

Search
7. There is a search bar for user to search for the specific fish using fish
names.
Add

7. If user want to add new Fish Species, click add new fish button.

8. User are redirected to a add new fish species page.

9. Then user fill in all necessary information such as fish name, the
minimum and maximum water parameter limit.

10. Then press save to add the new fish into the fish species list.

7. User click on the fish name, then user will be redirect to the fish species
details page.
8. User can click on the triple dot button to see more options view.

9. If user want to edit fish species, user click the edit button from the view.

10. Then, all the water pamameters minimum and maximum threshold is
editable now.

11. Then click save button to save the edit.

Delete

117

9. If user want to delete the existing fish species, user can click on the
delete button from the options view.
10. Then system will ask user to confirm the delete operation.
11. User click confirm, the fish species is how deleted.
Sub-flows:

Alternate/Exceptional Flows:

118

Use Case Name: View Analysis ID: 8 Importance Level: High
Primary Actor: User Use Case Type: Detailed, Essential

Stakeholders and Interests:
User — Users who wants to view some analysis and prediction on a specific
water quality of a water tank.
Brief Description:
This use case describes how the user can view analysis and prediction of the
trend of a water quality of a water tank.
Trigger:
A user wants to view analysis and prediction of the trend of a water quality of a
water tank.
Relationships:
Association: User
Include: N/A
Extend: N/A
Generalisation: N/A
Normal Flow of Events:
\View
1. User is now at the gauges dashboard.
2. User click on the water parameter gauges that he wish to view
prediction and analysis.
3. User redirect to that water parameter details page.
4. User are able to see the analysis and prediction below the line graph.
Sub-flows:

Alternate/Exceptional Flows:

119

Use Case Name: Alert on Water Quality [ID: 9 Importance Level: High
Primary Actor: User Use Case Type: Detailed, Essential

Stakeholders and Interests:

User — Users who wants to get alert when the water quality of a water tank

become nearly reach unfavourable condition.

Brief Description:

This use case describes how the user can get alert using web application and

mobile application when the water quality of a water tank become nearly reach

unfavourable condition.

Trigger:

A user wants to get alert when the water quality of a water tank become nearly
reach unfavourable condition so that user can make immediate action
to prevent the water condition become worse to save the fish.

Relationships:

Association: User
Include: N/A
Extend: N/A
Generalisation: N/A

Normal Flow of Events:

\Web

1. User is now at any page of the application.

2. When any water parameter of a tank goes beyond the maximum or

minimum limit of a water parameter, application pop out a warming

windows telling user which water parameter is now in dangerous
condition, the corresponding water tank information, and link lead to the
water parameter gauges page of that water tank.

An SMS with similar message content is sent to user phone number.

4. The water parameter gauges that is dangerous now should be shown in

red colour.

5. User click on that gauges, system redirect user to details page and show

a list of possible action can be taken.

.

Mobile
1. User mobile device is in sleep mode or in use condition, this application
IS running at the background.
2. When any water parameter of a tank goes beyond the maximum or
minimum limit of a water parameter, a smartphone notification receives
a warning message telling user which water parameter is now in
dangerous condition, the corresponding water tank information.
User click the notification.
4. System open the application and redirect user to that water tank’s gauges
dashboard.
5. The water parameter gauges that is dangerous now should be shown in
red colour.
6. User click on that gauges, system redirect user to details page and show
a list of possible action can be taken.

w

Sub-flows:

120

Alternate/Exceptional Flows:

121

CHAPTER 5

SYSTEM DESIGN

51 Introduction

This chapter discuss about the Water Quality Monitoring System Architecture.
It is integrated with 4 systems, they are: Data Acquisition System, ThingSpeak
Cloud Service, Laravel Back End, React Native Front End Mobile Application.
Data Acquisition System helps to collects water parameters data from the
aquafarm and sends it to the ThingSpeak Cloud Server. Thing Speak Cloud
Service receives the data sent and store them into database and provide data
visualization which can be accessed through browser. Laravel Framework Back
End Server provides APl to communicate with React Native Front End Mobile
Application in order to provide it with data processing, data analysis, machine
learning prediction , user authentication and authorization and other related
operation functions. React Native Front End is the mobile application where
user can interact with it to monitor the water quality, user can view the
dashboard, record activity, open notification, user registration and login. With
the integration of all these systems, a designated Water Quality Monitoring
Systems could be successfully developed.

5.2 System Architecture Design

DATA ACQUISITION MODULE COMMURNICATION MODULE
@ [ESPB266 mi trolles Sends Data — I I
microcontroller Thingspeak
ThingSpeak Cloud Server
-1 Atlas Scientific Industrial
i [Dissolved Oxygen Probe RECIUES'CS Data ‘\ Mathworks_ Sends Data
ELO™ Dissalved Oxygen Circt MethWarks MATLAB Visualization
"? 4 Industrial pH/ORP/Temp Probe
e +E20™ RTD Temperature
Circuit E10° g Ercu Sends Data Requests Data
% Arduine IDE
ARDUINO
USER INTERFACE MODULE DATA PROCESSING MODULE

Requests Data
a @ Laravel

Laravel Framework

React Native Framework

android
studio sends Data @ python’

Android Studio Python

F
W)y Wampserver

WampServer

Figure 5.2.1 Water Quality Monitoring System Architecture

122

Figure 5.1 shows the complete System Architecture Design, this section discuss
the components use to build the overall system architecture, each component’s
usage will be discuss in their corresponding sub-system architecture later. The
Data Acquisition Module consist of ESP8266 microcontroller, Atlas Scientific
Industrial Dissolved Oxygen Probe, EZO Dissolved Oxygen Probe, Industrial
pH/ORP/Temp Probe, EZO RTD Temperature Circuit, EZO pH Circuit and
Arduino IDE. Next, Communication Module consist of ThingSpeak Cloud
Server service and MathWorks MATLAB Visualization. Data Processing
Module consist of Laravel framework, Python, and Wamp Server. Lastly, User
Interface Module consist of React Native Framework and Android Studio.
5.2.1 Data Acquisition Module Architecture

This section discuss the usage of each component in Data Acquisition Module,
and how they works together to perform their task.

5.2.1.1 Atlas Scientific Industrial Dissolved Oxygen Probe + EZO™

Dissolved Oxygen Circuit ESP8266 microcontroller

Figure 5.2.2 Atlas Scientific Industrial Dissolved Oxygen Probe
connected to EZO™ Dissolved Oxygen Circuit ESP8266

microcontroller (**Industrial Dissolved Oxygen Probe,” n.d.).

123

Atlas Scientific Industrial Dissolved Oxygen Probe is the sensor used to collect
Dissolved Oxygen in the liquid samples. It is chosen because it allows long term
readings. This features is supported by its massive amount of electrotyle
ensuring it to be working fine for a long period until the next calibration
("Industrial Dissolved Oxygen Probe," n.d.). This sensor collects the data and

sends it to the EZO™ Dissolved Oxygen Circuit for accurate measuring.

Figure 5.2.3 The EZO™ Dissolved Oxygen Circuit

The purpose of this circuit is to preprocess the Dissolved Oxygen data value
collected from the sensor to become highly accurate in Mg/L. Without this
circuit, it is very difficult to calculate Dissolved Oxygen level accurately
because it requires many mathematical calculations and needs around hundred
times of chemical titration tests to validate the readings. This circuit using its
functionality of temperature, salinity and pressure compensation to finalize the
correct DO values ("EZO™ Dissolved Oxygen Circuit," n.d.).

5.2.1.2 Industrial pH/ORP/Temp Probe + EZO™ RTD Temperature
Circuit + EZO™ pH Circuit

124

Figure 5.2.4 Industrial pH/ORP/Temp Probe + EZO™ RTD Temperature
Circuit + EZO™ pH Circuit ("Industrial pH/ORP/Temp Probe,"
n.d.)

Atlas Scientific Industrial pH/ORP/Temp Probe is the sensor used to collect pH
value and Temperature in the liquid samples. It is chosen because it is highly
durable, and can last with a long period until the next calibration. Besides, this
probes offers equivalent quality of sensing capabilities as lab-grade probles for
pH and ORP. This means that it can provide accurate measurement result of pH.
Moreover, this sensor also have built-in Temperature Sensor (PT-1000) which
allows precise temperature measurements as temperature also helps to increase
the accuracy of PH readings. This sensor collects the Temperature and pH data
and sends them to the EZO™ RTD Temperature Circuit and EZO™ pH Circuit
respectively ("Industrial pH/ORP/Temp Probe," n.d.).

125

Figure 5.2.5 EZO™ RTD Temperature Circuit ("EZO™ RTD Temperature
Circuit," n.d.)
The purpose of this circuit is to preprocess the RTD Temperature data value
collected from the sensor and provide the most accurate temperature reading
in °C.

Figure 5.2.6 EZO™ pH Circuit ("EZO™ pH Circuit," n.d.)
The purpose of this circuit is to preprocess the pH value data collected from the
sensor and ensure its accuracy to be on par with expensive bench-top pH meters.
5.2.1.3 ESP8266 microcontroller

126

Figure 5.2.7 ESP8266 microcontroller

ESP8266 microcontroller is chosen to be used here because it contains built-in
Wi-Fi capabilities, which allows internet connection. Then it can be
programmed to send data to ThingSpeak Server using REST API provided by
ThingSpeak. The programming language we used here is Arduino, and the tools
used to program it is Arduino IDE. Besides, this microcontroller also can be
programmed to keep requesting data from three EZO Circuit, DO, RTD, and pH
with an interval of 15 seconds, once all the data from the sensors is collected
successfully, then we will use the ThingSpeak Library function to sends the data
to the Cloud Server for data storing.

5.2.1.4 Arduino IDE

espv2 | Arduino IDE 2.1.1 = o X
File Edit Sketch Tools Help

flodeey 1o ESP e T

espv2.ino
- |

81 |

84 void serialEvent() {

85 inputstring = Serial.readStringUntil(13);

86 input_string_complete = true;

87 }

88

89

90 void loop() { here we go...

o1

92 if (input_string_complete == true) { if a om the PC ha J

93 myserial DO.print(inputstring); //send t string to the Atlas Sc t:

94 myserial DO.print('\r'); //add a <CR> to the end of the string
QOutput Serial Monitor x Yy 0 =

Figure 5.2.8 Arduino IDE

127

Arduino IDE is an Integrated Development Environment that will be used to
program the microcontroller in this project. This choice is driven by its open-
source nature, and it has a lot of libraries including ThingSpeak.h,
ESP8266Wifi.h, SoftwareSerial.h. ThingSpeak.h library provides convenient
function to sends data to ThingSpeak server. ESP8266Wifi.h library allows
microcontroller to establish internet connection via ESP8266 microcontroller's
Wi-Fi capability. SoftwareSerial.h library enables communication between

microcontroller and EZO circuits using baud rate of 9600.

5.2.2 Communication Module Architecture
5.2.2.1 Cloud Integration with ThingSpeak

[ThingSpeak™ chamnels~ Apps- Devices= Support~

ThingSpeak for lol
Projects

s
Data collection in the cloud with advanced dal
analysis using MATLAB

Channels Learn More

b
Figure 5.2.9 ThingSpeak Website

Figure 5.9 shows the website interface for utilizing the ThingSpeak Cloud
service. ThingSpeak has been selected in this project due to its suitability for
IoT projects for data collection in cloud, and it also provides several features
such as Data Visualization and Data Analysis. In order to start the service, we
need to create a new Channel and get the Channel 1D, the Channel access must
be set to public and the Channel ID is essential for the microcontroller to sends
data to the correct channel. Besides, in the user interface module and data
processing module, this Channel ID is a necessary component, serving as a key

required for making REST API requests.

128

5.2.2.1.1 Channel

[JThingSpeak™ channeis- Apps- Devices- Support~ Commercial Use How'to Buy

Aquaculture
Channel ID: 2210102

Author: PhangJunSen
Access: Public

Add Visualizations 0 Add Widgets Export recent data MATLAB Analysis MATLAB Visualization

Channel Stats

Created: 2 moaths.age
Lastentry: Jessthan.aminvicoee
Entries: 255430

Field 3 Chart o s x Field 1 Chart o s
pH Do
0
3 Wm g 7% MVWWW
g
o
2110 21’z
Da Date
- e

Field 2 Chart [N =T Compare temperature data from three... o #f

3-Day Temperature Comparison
Temperature 28

Figure 5.2.10 Sample Channel

Figure 5.10 is a sample view of ThingSpeak Channel, it has Channel ID, and
user can add Visualization, Add Widgets, and integrate it with MATLAB
Visualization and MATLAB Analysis to perform more advanced visualization
and analysis. The line graph shown is the default line graph to show the current
database columns storage condition. Each line graph stands for the data

collected in each column over time.

5.2.2.1.2 API Keys

129

CJThingSpeak™ channels - Apps~ ices~ - Commercial Use How to Buy

Aquaculture

Channel |D: 2210102
Author: PhangJunSer
Access: Public

Channel Setting: Sharirn AP| Keys Data In rt /| Export
Write API Key

Key UJT4ZI3HV5BCLQQ7

Read API Keys

Key TRYX3FPTI2HU1ZG1

h el Fee:
Note
p
L] »
- .
daCha Fiel
L] »

Figure 5.2.11 API Keys of a Channel

Figure 5.11 shows the APl Keys and the API Requests to read and write data of
this channel. The Write API Key is essential for microcontroller to send data to
this channel. The API Requests is essential for React Native Front End from
User Interface Module and Laravel Back End from Data Processing Module to

retrieve the collected Water Quality data.

5.2.2.1.3 Channel Settings

Private View Public View

Channel Settings

Percentage 30%

complete

Channel ID 2210102
Name Aquaculture

Description
Field 1 DO
Field 2 RTD
Field 3 pH
Field 4 O
Field 5 O

Channel Settings

130

Sharing API Keys Data Import / Export

Help

Channels store all the data that a ThingSpeak application
collects. Each channel includes eight fields that can hold
any type of data, plus three fields for location data and
one for status data. Once you collect data in a channel,
you can use ThingSpeak apps to analyze and visualize it

Channel Settings

Percentage complete: Calculated based on data
entered into the various fields of a channel. Enter
the name, description, location, URL, video, and
tags to complete your channel.

Channel Name: Enter a unique name for the
ThingSpeak channel

Description: Enter a description of the ThingSpeak
channel.

Field#: Check the box to enable the field, and enter
a field name. Each ThingSpeak channel can have
up to 8 fields

Metadata: Enter information about channel data
including JSON, XML, or CSV data,

Figure 5.2.12 Channel Settings

Figure 5.12 is the settings of a ThingSpeak Channel, the fields is the column of

a database. Therefore, we need to define the fields with the water parameters we

have to monitor in this project. The microcontroller should send the data to the

correct fields later.

5.2.2.1.4 Public view

Aquaculture

Channel 1D; 2210102

Access: Public

Channel Stats

Create 1hs.A8R

athanaminuiedee

649
ppm

MATLAB Analysis MATLAB Visualization

Field 1 Chart [cAE -T2 |

Dissolved Oxygen

Figure 5.2.13 Public View of a Channel

Figure 5.12 shows the public view of a channel, which is required for setting up

gauges and line graphs of each water parameter. This setup is crucial because

the application will directly use the channel ID and their corresponding chart

links to retrieve the gauges and line graphs in the public view and display them

131

in the dashboard. If no gauges and line graphs are prepared in public view, the

dashboard will not displays these elements.

5.2.2.2 MathWorks MATLAB

5.2.3 Data Processing Module
5.2.3.1 Laravel Framework Back End Architecture

@ Laravel a = |

he PHP Framework for Web
Artisans

Laravel is a web application framework with expressive, elegant syntax.

We've already laid the foundation — freeing you to create without

sweating the small things.

m WATCH LARACASTS

Figure 5.2.14 Laravel, a PHP framework (Otwell, n.d.)

Laravel is a PHP framework use to build web application, it is known for its
expressive and elegant syntax (Otwell, n.d.). In addition, Laravel can be use to
built a reliable backend API for a mobile application. This statement is
supported with the fact that it makes the development tasks easier and more
efficient with the robust set of tools it provides and well-structured architecture.
Laravel use Model-View-Controller (MVC) archirectural pattern that seperates
the application’s logic into 3 distinct components:

1. Model:

132

Represent the application’s data and business logic. It interacts with
the database, defines the data structure and the relationships between

different data entities.

. View:

Represents the user interface and the presentation layer of the
application. Views are responsible for rendering data and displaying
it to the user.

Controller:

Represent an intermediary between the Model and View. Controllers
handle incoming HTTP requests, process the data, and determine

which view to display.

Laravel Framework’s archirecture is complete and encompasses both the

development of front-end and back-end together, as shown by the MVC

architecture explained earlier. However, it does not supports the development

of mobile application, and thus we only ultilize the Model and Controller in

Laravel framework to build our back end application. Then, we use React Native

to build mobile application and act as front end to replace the View.

A Laravel back-end application include these key features:

1) Artisan:

2)

a robust command-line tool called Artisan for automating common
development tasks, such as code generation, database migration and

running tests.

Eloguent ORM:
Eloquent is Laravel’s built-in Object-Relational Mapping (ORM)
system, more simplified way to work with databases using simple and

expressive syntax.

3) Routing:

133

Laravel offers a clean and elegant way to define web routes, allows
managing HTTP requests and create RESTful APIs.

4) Authentication and Authorization:
Laravel provides an easy authentication system setup, allows developer
to implement user registration, login, and password reset functionalities
efficiently. It also offers a robust authorization mechanism for

controlling access to specific parts of the application.

5) Database migrations:
Laravel’s migration system allows for version control of database

schemas, simplifying database structure changes and ata management.

6) Testing Support:
Laravel is equipped wth support for testing using PHPUnit, allowing

developers to write unit and integration tests for their applications.
Above are the features that is used to build the Laravel back-end application.

5.2.3.2 Python

& python’ . I

About Downloads Documentation Community Success Stories News Events

Compound Data Types

Lists (known as arrays in other languages) are one of the
compound data types that Python understands. Lists can be
indexed, sl lated with other built-in

E functions.
['BANANA', 'APPLE', 'LIME']

[(8, 'Banana’), (1, ‘Apple'), (2, 'Lime')]

Python is a programming language that lets you work quickly

and integrate systems more effectively. »> Learn More

Figure 5.2.15 Python
Python is used in this project because it is a powerful tool to perform machine
learning tasks in Laravel back-end server. It provides these key features:

1) Rich Ecosystem of Libraries:

134

Python has a large ecosystem of libraries and frameworks designed for

machine learning.

2) Cross-Plarform Compatibility:
Python is available on various operating systems, making it easy to
develop and deplot machine learning solutions across different platforms.

3) Scalability:
Python can be used for small-scale and large-scale machine learnig

projects.

4) Machine Learning Frameworks:
Python allows developers to work with various machine learning
frameworks and tools, ensuring the flexibility in choosing the correct
tool for the task.

5.2.3.3 WampServer

FRANCAIS PYCCKU/

WampServer

Apache, PHP, MySQL sous Windows £37:U4%F DOWNLOAD TRAINING FORUM CLOUD HOSTING

WAMPSERVER"

WampServer is a Windows web development environment. It allows you to
create web applications with Apache2, PHP and a MySQL database.

Alongside, PhpMyAdmin allows you to manage easily your databases.

START USING WAMPSERVER

WampServer installs automatically all you need to start developing web applications and is very intuitive to use. You
will be able to tune your server without even touching the setting files.

Figure 5.2.16 WampServer (Bourdon, n.d.)
WampServer is a Windows web development environment that this project can

ultilize it to create a web applications (Bourdon, n.d.). Its key features are:

1)

2)

3)

4)

5)

5.24

135

Apache Web Server:
Apache is a popular open-source web server that allows developer to

host and server web application locally.

MySQL Database:
MySQL is a widely used open-source relational database management
system, it allows developers to create, manage, and interact with

databases for your web applications.

PHP:
PHP is a server-side scripting language commonly used for web
development. It allows developers to writ dynamic web applications and

scripts that run on the server.

phpMyAdmin:
phpMyAdmin is a web-based database administration tool for managing
MySQL databases. It provides user-friendly interface for tasks like

database creation, table management, and data manipulation.
Development and Testing:
It allows developers to build and test web applications locally before

deploying them to production servers.

User Interface Module

5.2.4.1 React Native Front End Architecture

136

Support Ukraine ua Help Provide Humanitarian Aid to Ukraine.

T5b React Native Development ~ Contributing ~ Community ~ Showcase Blog () - _

p—

React Native C@D

Learn once, write anywhere.

Get started Learn the basics »

(e—

Figure 5.2.17 React Native, a JavaScript framework

Create native apps for Android,
i0S, and more using React

React native is a JavaScript framework that use to build mobile applications. It
is open source and is well known of its code reusability, supported with large
ecosystem of libraries and have fast development cycle. React Native front-end

application consist of this these key features and components in its architrecture:

1. Components:
The archirecture of React Native is component-based. Developers can
create their own Ul components, such as buttons, text input fields, and
navigation elements. These created components are reusable throughout

the app.

2. JSX
JSX is a syntax extension for JavaScript encourage developers to create

Ul components in a descriptive and clear manner.

3. React Navigation
A library that supports navigation of the React Native application. It
contains stack navigation, tab navigation, and drawer navigation. This is

necessary for creating the app’s navigation structure.

4. State Management

137

In order to manage the state and data flow in React Native applications,
Mobx or Redux can be used to manage the app’s state and data flow.

This is required to ensure the Ul is in sync with the application’s data.

5. API Integration
As it is front-end application, it is needed to communicate with back-
end services and APIs. Therefore, react native apps can use the built-in
‘fetch’ function or popular libraries such as Axios to make HTTP

requests and handle responses.

6. Styling
React Native applications using CSS to style components for the design

of Ul that needed to be display in the application.

7. Third-Party Libraries
React Native has a large ecosystem of third-party libraries and packages

and make the development easier and faster.

8. Native Modules
For tasks that are not supported by native functionality, React native
allows developers to custom native modules in Java and bridge them to
JavaScipt. For example, backgound service functionality.

5.2.4.2 Android Studio

Android Studio

Get the official Integrated Development Environment (IDE) for Android app
development.

Download Android Studio Giraffe &,

Read release notes |E)

Figure 5.2.18 Android Studio

138

Android Studio is the official integrated development environment (IDE) for
Android App development. Its main usage is to build, test and debug android

applications. The key features of Android Studio that will be used in this project

are:
1. Emulator:
Android studio has built-in android emulator that allows the developer
to test their apps in computer using the virtual android devices. It
provides various Android versions and device configurations, which
allows developers to test their app on different screen sizes and
resolutions.
2. Debugger:
A powerful debugger features that helps developers to identify and fix
bugs in their code, such as real-time debugging and inspection of
variables, breakpoints and logs.
3. App Signing:
Android Studio provides tools for signing and packaging Android apps
for register it on the Google Play Store for other user to download the
application.
53 Conclusion

The Water Quality Monitoring System architecture comprises of four essential
modules: the Data Acquisition Module, Communication Module, User Interface
Module, and Data Processing Module. Each of these modules is designed with
robust tools and components to ensure their successful operation. The
integration of these well-designed modules culminates in the creation of a
functional and comprehensive system.

139

CHAPTER 6
SYSTEM IMPLEMENTATION

6.1 Introduction

This chapter will discuss the system implementation of Water Quality
Monitoring System. System implementation is an important phase of the
software development lifecycle, it brings the planned designs and concepts into
reality and make it contribute to its own objectives. Therefore, this chapter will
discuss from project setup to system deployment. Besides, this chapter also
discuss how the front-end User Interface module works with back-end Data
Processing Modules to fulfill the use cases and requirements specification

discussed in chapter 4.

6.2 Project Setup
This section discuss how to setup the Data Acquisition Module, Communication

Module Setup, Data Processing Module, and the User Interface Module

6.2.1 Communication Module Setup
In order to setup ThingSpeak Cloud Server to store the sensors data, first we
need to create a MathWorks account.

Create MathWorks Account

Email Address

H To access your organization's MATLAB license, use your
school or work emai

Location

| United States V|

First Name

Last Name

| Cancel |

Figure 6.2.1 Register Mathworks account
After successfully register an account, we need to login to your account, and

ThingSpeak will automatically redirect you to My Channels page.

140

LJThingSpeak™ =

My Channels Help

New Channel Search by tag Q Collectdataina Th[ngSpeak
channel from a device, from

another channel, or from the
web.

Name % Updated 5

Click New Channel to create a
ry Aquaculture 2023-08-27 23:50 new ThingSpeak channel.
Click on the column headers of
the table to sort by the entries
in that column orclick on a tag
to show channels with that tag.

Learn to create channels,

avnlare and trancfarm data

Figure 6.2.2 My Channels page

Then, we need to press the new channel button to create a new channel.

New Channel Help

Channels store all the data that a ThingSpeak application
collects. Each channel includes eight fields that can hold
any type of data, plus three fields for location data and
Description one for status data. Once you collect data in a channel,
you can use ThingSpeak apps to analyze and visualize it.

Name

Field 1 Field Labe Channel Settings

* Percentage complete: Calculated based on data
Field 2 a entered into the various fields of a channel. Enter
the name, description, location, URL, video, and

Field 3 m] tags to complete your channel.

+ Channel Name: Enter a unique name for the
Field 4 0 ThingSpeak channel.

+ Description: Enter a description of the ThingSpeak
Field 5 @] channel.

¢ Field#: Check the box to enable the field, and enter
Field 6 @] afield name. Each ThingSpeak channel can have

up to & fields.

Field 7 @] * Metadata: Enter information about channel data,

including JSON, XML, or CSV data.

Field 8 O * Tags: Enter keywords that identify the channel.
Separate tags with commas.

Metadata * Link to External Site: If you have a website that
contains information about your ThingSpeak
channel, specify the URL.

Figure 6.2.3 Create new channel

Fill in the necessary information, such as Name is Aquaculture, Field 1 is DO,
Field 2 is RTD and Field 3 is pH. After fill in all these information, you can hit
the save channel button at the pages below. After that you will get a new channel
looks like this:

141

Aquaculture 2

Channel ID: 2265581
Author: PhanglunSen

O Add Visualizations B Add Widgsts Export recent data MATLAB Visualization

Channel 20f2 < »

Entries: 0

Field 1 Chart £ =T A Field 2 Chart [£ =T A

Aquaculture 2 Aquaculture 2

Figure 6.2.4 new channel page
It will automatically provides the line graphs based how many fields you defined
in the previous steps. In our case, we have 3 fields, DO, RTD and pH, so there

will be 3 default line graphs prepared.

Field 1 Chart F © & =

Aquaculture 2

DO

Date

ThingSpeak.com

Figure 6.2.5 Field 1 line graph
There is no line graphs shown yet because there is no data received by the
channels. Line graphs is for showing the trends of the water parameters, a gauge
chart is to show the current water parameter value, and its safety range. In order
to add a gauge chart, we need to press the “Add Widgets” button from figure
6.4 > choose Gauge > press “Next” > Fill in the gauge settings > save.

142

S':j'a"“"” — Click on a widget to add it to the Channel DO Gauge Opticns
Access. p”\h\(‘l‘“ —
Name
Feld e
Min
o
Channel26f2 ¢ > Dispay Ve
Channel Stats s oo
Craated: §minuiesage Tickinterval 1
Entios:0
Update Interval 1 second(s)
2 Then,cick “Next Range =
J -

Figure 6.2.6 Add new gauge
Figure 6.6 shows the process to add the new gauge, we need to repeat it for RTD

and pH gauge. Their settings are:

RTD Gauge Options pH Gauge Options
Name RTDGauge MName pH Gauge
Field Field2 ~ Field ~Field3 -
Min 20 Min
Max 35 Max 12
Display Value Display Value
Units °C Units
TickInterval 1 Tick Interval *
Update Interval 15 second(s) Update Interval = 15 second(s)
Range 20 2 | Range © 9 |
3] 1 |
H - 9 12 |
+ +

Figure 6.2.7 RTD and pH Gauge Options

After successfully added the gauges, the result will looks like this:

DO Gauge 2ol x RTD Gauge 2 o ¢ x

6.757

Figure 6.2.8 DO, RTD and pH gauges

143

Finally, the Communication Module is all set now, but it still needs to integrate
with Data Acquisition Module in order to get the data to store in the cloud

database.

6.2.2 Data Acquisition Module Setup
In order to setup this module, we first need to prepare all the components as
stated in Chapter 5:
1) Microcontroller:
- ESP8266 microcontroller
2) Dissolved Oxgen Sensors:
- Atlas Scientific Industrial Dissolved Oxygen Probe
- EZO™ Dissolved Oxygen Circuit ESP8266
microcontroller
3) pH & Temperature Sensors:
- Industrial pH/ORP/Temp Probe
- EZO™ RTD Temperature Circuit
- EZO™ pH Circuit

Firstly, we need to connects these components to become a complete electronic
circuit using connector such as:

- Jumper Wires

- SMA Female (30cm) cable

- DC Plug 2.1mm C/W 2 way Green Terminal Block

- DC Jack C/W 2 way Green Terminal Block

144

Figure 6.2.9 Data Acquisition Module components connection
Figure above shows the correct connection of the Data Acquisition Module

using all the components prepared.

GPIO16 = USER WAKE

HHHHHHHH
ARAARAAR*®

EE
Blelelglel e

GP1013}-{ RXD2
GP1015-{ TXD2
| GPIO3 | RXDO |
| GPIO1 |~ TXDO |

GND = = 2 GND

> RST FLASH S
LED connected td [] D
® ®

Figure 6.2.10 ESP8266 pins

3.3v

145

Figure 6.2.12 DO probe central wires and outer wires

Above shows the wires of the sensors and pins of EZO circuit and

microcontroller. First, jumper wires are used to connect between EZO circuits,

microcontroller and sensors:

1)
2)
3)
4)
5)
6)

TX from EZO connects to RX from microcontroller
RX from EZO connects to TX from microcontroller
GND from EZO connects to GND from microcontroller
VCC from EZO connects to 3.3V from microcontroller
Central wire from sensors to PRB from microcontroller

Outer wire from sensors to PGND from microcontroller

146

@ Industrial
pH/ORP/Temp Probe

#ENV-50-TPO

ORP

7) 10

8) Figure 6.2.13 Male SMAs of Industrial pH/ORP/Temp Probe

Due to Industrial pH/ORP/Temp Probe only provides Male SMA wires, we need
to use a Female SMA cable to convert it to raw wires which contains central and

outer wires.

Next, we need to program the ESP8266 to perform the task of sending the
collected data at intervals of 15s once. Therefore, we need to use data cable to
connects ESP8266 with a computer that already installed Arduino IDE. Then
below is the Arduino code, with comments to explain how the code works to

complete the task:

#include <ThingSpeak.h> //to interact with thingspeak server
#include <ESP8266WiFi.h> //to connects to wifi

#include <SoftwareSerial.h> //to communicate with sensors
#define rx_ DO D1 //This is rx pin for DO

#define tx DO D2 //This is tx pin for DO

#define rx_RTD D3 //This is rx pin for RTD

#define tx RTD D5 //This is tx pin for RTD

#define rx_pH D6 //This is rx pin for pH

#define tx_pH D7 //This is tx pin for pH

const int ARRAY_SIZE = 5; // Define the size of the array
SoftwareSerial myserial DO(rx_DO, tx _DO); //define how the soft
serial port is going to work with DO sensors using D1,D2
SoftwareSerial myserial RTD(rx_RTD, tx_RTD); //define how the soft
serial port is going to work with RTD sensors using D3,D5

147

SoftwareSerial myserial pH(rx_pH, tx_pH); //define how the soft
serial port is going to work with pH sensors using D6,D7

String inputstring = ; //a string to hold incoming data from the PC

String sensorstring DO = ""; //a string to hold the data from the DO
sensors

String sensorstring RTD = ""; //a string to hold the data from the
RTD sensors

String sensorstring pH = ""; //a string to hold the data from the pH
sensors

boolean input_string_complete = false; //have we received all the
data from the PC

boolean sensor_string_complete DO = false; //have we received all the
data from DO sensors

boolean sensor_string complete RTD = false; //have we received all
the data from RTD sensors

boolean sensor_string complete pH = false //have we received all the
data from the pH sensors

boolean run_DO = true; // controls to read DO data
boolean run_RTD = false; // controls to read RTD data
boolean run_pH = false; // controls to read pH data

float DO; //used to hold a floating point number that is the DO
float RTD; //used to hold a floating point number that is the RTD
float pH; //used to hold a floating point number that is the pH

WiFiClient client; // create a WiFiClient object

// ThingSpeak information

char thingSpeakAddress[] = "api.thingspeak.com"; // ThingSpeak
address

unsigned long myChannelNumber = 2210102; // Channel ID

char* readAPIKey = "TRYX3FPTI2HU1ZG1"; // Channel’s read API key
char* myWriteAPIKey = "UJT4ZI3HV5BCLQQ7"; // Channel’s write API key

// write Water Parameters into ThingSpeak database columns
unsigned int dataField DO = 1; // write DO data in fieldl
unsigned int dataField RTD = 2; // write temperature data in field2
unsigned int dataField pH = 3; // write pH data in field3

//set up the hardware
void setup() {

Serial.begin(9600);//set baud rate for the hardware serial port 0
to 9600

myserial DO.begin(9600);//set baud rate for the software serial
port to 9600

148

myserial RTD.begin(9600);//set baud rate for the software serial
port to 9600

myserial pH.begin(9600);//set baud rate for the software serial
port to 9600

inputstring.reserve(10);//set aside some bytes for receiving data
from the PC

sensorstring DO.reserve(30);//set aside some bytes for receiving
data from DO sensor

sensorstring RTD.reserve(30);//set aside some bytes for receiving
data from RTD sensor

sensorstring pH.reserve(30);//set aside some bytes for receiving
data from pH sensor

ThingSpeak.begin(client); // Initialize ThingSpeak

//setup wifi connection
/[++++++++
WiFi.begin("WIFI_NAME", "WIFI_PASSWORD");
Serial.print("Connecting");
while (WiFi.status() != WL_CONNECTED)
{
delay(500);
Serial.print(".");
}
Serial.println();

Serial.print("Connected, IP address: ");
Serial.println(WiFi.localIP());

// Receive commands from PC to sensors.
void serialEvent() {//if the hardware serial port @ receives a char
inputstring = Serial.readStringUntil(13);//read the string until we
see a <CR>
input_string_complete = true;//set the flag used to tell if we have
received a completed string from the PC

}

// The task is running here
void loop() {//here we go...

if (input_string_complete == true) {//if a string from the PC has
been received in its entirety
myserial DO.print(inputstring);//send that string to the Atlas
Scientific product
myserial DO.print('\r');//add a <CR> to the end of the string
inputstring = "";//clear the string

149

input_string complete = false;//reset the flag used to tell if we
have received a completed string from the PC

}

//read sensor data
//starts to read DO sensor’s value and the run_RTD and run_pH is
set to false at the beginning to prevent the mix of reading
if (run_DO && myserial DO.available() > @) {//if run_DO == true and
myserial DO.available() > @ means this connection receives a
character
Serial.println("DO available: + sensorstring DO);
char inchar_DO = (char)myserial DO.read();//get the char we just
received
sensorstring DO += inchar_DO;//add the char to the var called
sensorstring
if (inchar_DO == '\r') {//if the incoming character is a <CR>
means the reading is complete
Serial.println("DO read done: + sensorstring DO);
sensor_string_complete DO = true;//set to true means the DO
reading is read succesfully
run_DO = false; // since the DO is read complete, then we
should prevent it from reading anymore until the other water
parameter is reading complete
run_RTD = true; // set this to true, means that we should
proceed to read RTD value now.

}
}

//read sensor data
if (run_RTD && myserial RTD.available() > @) { //if we see that the
RTD sensors has sent a character and run_RTD is set to true
Serial.println("RTD available: + sensorstring RTD);
char inchar RTD = (char)myserial RTD.read();//get the char we
just received
sensorstring RTD += inchar_RTD;//add the char to the var called
sensorstring
if (inchar_RTD == '\r') {//if the incoming character is a <CR>
Serial.println("RTD read done: " + sensorstring RTD);
sensor_string_complete RTD = true; //set to true means the RTD
reading is read successfully
run_RTD = false; //set to false to stop read RTD value until it
is set to true
run_pH = true; //set to true means we can start to read pH
value now

}
}

150

if (run_pH && myserial pH.available() > @) {//if we see that the pH
sensor has sent a character, and run_pH is set to true
Serial.println("pH available: " + sensorstring_pH);
char inchar_pH = (char)myserial pH.read();//get the char we just
received
sensorstring_pH += inchar_pH;//add the char to the var called
sensorstring
if (inchar_pH == "\r') {//if the incoming character is a <CR>
Serial.println("pH read done: " + sensorstring pH);
sensor_string complete pH = true; //set to true means the pH
reading is read succesfully
run_pH = false; //set to false stop reading pH value until it
is set to true again

}
}

if (sensor_string complete DO == true && sensor_string complete RTD

== true && sensor_string complete pH == true) { //if
all water parameters reading is collected then returns true

sensor_string complete DO = false; //set this back to start next
round of data collecting

sensor_string_complete RTD = false; //set this back to start next
round of data collecting

sensor_string_complete pH = false; //set this back to start next
round of data collecting

DO = 9; //set this float to @ to reset the reading

RTD = @; //set this float to @ to reset the reading

pH = @; //set this float to © to reset the reading

if (isdigit(sensorstring DO[@])) { //if the first character in
the string is a digit
DO = sensorstring DO.toFloat(); //convert the string to a
floating point number so it can be evaluated by the Arduino

sensorstring DO = ""; //set this string to “” to reset the
reading
Serial.println("DO convert done: sensorstring DO = " +

sensorstring DO);
sensor_string_complete DO = false; //set this back to start
next round of data collecting
ThingSpeak.setField(1, DO); // use this to set the fieldl to
store DO value
}
if (isdigit(sensorstring RTD[@])) { //if the first character in
the string is a digit
RTD = sensorstring RTD.toFloat(); //convert the string to a
floating point number so it can be evaluated by the Arduino

sensorstring RTD = 5

151

Serial.println("RTD convert done: sensorstring RTD = " +
sensorstring RTD);
sensor_string_complete RTD = false; //set this back to start
next round of data collecting
ThingSpeak.setField(2, RTD); // use this to set the field2 to
store RTD value
}
if (isdigit(sensorstring pH[@])) { //if the first character in
the string is a digit
pH = sensorstring pH.toFloat(); //convert the string to a
floating point number so it can be evaluated by the Arduino
sensorstring pH = "";
Serial.println("pH convert done: sensorstring pH = " +
sensorstring pH);
sensor_string complete pH = false; //set this back to false and
start the next round of data collecting
ThingSpeak.setField(3, pH); // use this to set the field3 to
store RTD value

¥

¥

Serial.println("DO: " + String(DO) + " | RTD: " + String(RTD) + "
| pH: " + String(pH)); //send that string to the PC's serial monitor

sensorstring DO = "";

sensorstring_pH = "";

sensorstring RTD = "";

// sends the fields data we defined before as a row to that
ThingSpeak channel using channel ID, and write API key
int x = ThingSpeak.writeFields(myChannelNumber, myWriteAPIKey);

if(x == 200){
Serial.println("Channel update successful.");

}
else{
Serial.println("Problem updating channel. HTTP error code " +

String(x));

¥

// wait 15 seconds and start the next round of data collection
delay(15000);

// DO = 0;

// RTD = ©;

// pH = 0;

sensorstring DO = "";

sensorstring pH = ;

152

sensorstring RTD = "";

run_DO = true;

Upload this code to the ESP8266 to starts the data acquisition module, then we
can detach the data cable from the computer. Next, we needs to connect the
microcontroller to power source, and placed the sensors into the water tank.
Finally, we can starts to observe the data collected by this module using the line

graphs provided by the ThingSpeak channel.

Field 1 Chart 2 o & x Z © # % | Field3Chart

Dissolved Oxygen Temperature

- _ 68
g S
Date

Figure 6.2.14 ThingSpeak channel's line graphs

Dissolved Oxygen, ppm

pH
Date

If the line graphs showing the data is collected, means the data acquisition
module is setup correctly. Notes that this steps can only be done when

Communication Module is already done setting up.

6.2.3 Data Processing Module Setup

The Data Processing Module of water quality monitoring system is a Laravel
back-end server. Due to the limitation of time, we may not be able to deploy the
back-end server to a cloud-based environment or configure it as a web service
accessible via a domain. Therefore, the back-end server will be deployed locally.
This section will explain how to setting up, building, and running the existing
Laravel back-end project to complete the Data Processing Module of water

quality monitoring system.

6.2.3.1 Prerequisites
Before launching the Laravel back-end server, ensure the the device to run the

server have the following prerequisites met:

153

1) WAMP Server:
Make sure the WAMP Server is installed and running on your local

machine. This includes Apache, MySQL, and PHP components, their
version are:

a. WAMP Server — 3.3.0 — 64bit
b. Apache —2.4.54.2

c. PHP-8.2.0

d. MySQL -9.0.31

Figure below shows the WAMP Server and its components version that
use to run the back-end server.

Wampserver - 3.3.0 - 64bit
Made in France by Dominique Ottello

7} Localhost

Ak PhpMyAdmin »
g Adminer 4.8.1

& Your VirtualHosts ’
/ Apache 24542 ’
B PHP 8.2.0 »
EZ MysaL 8.0.31 >
E5 MariaDB 10.10.2 »

{3 Help -> MariaDB - MySQL
Start All Services
Stop All Services

I Restart All Services
=>>> WARNING !Apache error log <<<s
i A\ Warning c/wamp6&4 or PHP in PATH

Figure 6.2.15 Wampserver version and its components

2) Composer:

Composer, the PHP dependency manager, should be installed on the
local machine.

6.2.3.2 Project Setup
Step 1: Navigate to Project Directory

154

In order to run the project, first we need to use Visual Studio Code to open the
project terminal. Figure below shows the Laravel back-end project source code
open with Visual Studio Code.

O BackEndAqua DS MDD - O X

@ EXPLORER arima_predictpy X [> v~ [0 -

~ BACKENDAQUA scripts ? arima_predi

edit.blade.php 2y

ue = predicted value.i
show.blade.php
welcome.blade.php predicted values[column] = first forecaste
~ routes
api.php
auth.php

return predicted values
if _name_ == "_main_ ":
channels.php = = = =
console.php PROBLEMS ~ TERMINAL DEBUG CONSOLE =] pe el +~ [0 W -
web.php
¥ suiE PS C:\Users\SeNzzZz\Desktop\BackendLaravel \BackEndAqua>]
arima_predict.py
> storage
> OUTPUT
> OUTLINE
> TIMELINE
X ®@oAo Ln25 Col 1 Spaces:4 UTF-8 CRLF {§ Python 3.11.264-bit £ & 0

Figure 6.2.16 Laravel Back-end project source code

From the figure above, the terminal is opened and is navigated to the

project directory.

Step 2: Install Dependencies:
Run the “composer install” command in the terminal to install project

dependencies specified in the ‘composer.json’ file.

155

OUTUINE

TIMELINE

Figure 6.2.17 composer.json

6.2.3.3 Environment Configuration
Step 1: Environment File:
Ensure the .env file is placed in the project root. If not please copy and paste

using the .env.example.

Step 2: Generate Application key:
Then, run the “php artisan key:generate” to generate a unique application key

for the project.

6.2.3.4 Database Setup
Step 1: Database Creation
Open phpMyAdmin from the WampServer, and then create a new database

named ‘aquafarm’.

156

o 1 Server: MySQL:3306

Databases

{ °Create database @ I

‘ Database name

utfémb4_0900_ai_ci

Iﬁ_:. Create .:_ﬁl
Check all 4 Drop | 4 |Search
Database « Collation Action
[aquafarm utf8mb4_general_ci =: Check privileges

Figure 6.2.18 Create new database

Step 2: Database Migration
Then go back to the terminal and run “php artisan migrate” to apply the database
migrations and create the necessary tables. Database migration files are located

at [PROJECT DIRECTORY]\database\migrations.

157

EXPLORER 2014_10_12_000000 create_users_tablephp X m -

vBacke. [3 B7 U & database
WaterParam.php
~ Providers
AppServiceProvide...
AuthServiceProvid...
BroadcastServicePr...
EventServiceProvid... return new class e Migration
RouteServiceProvi...
> View
> bootstrap
> config
v database ___
> factories Schema: :create("
 migrations $table->id()
2014_10_12_00000... i $table->string
2014_10_12_10000... $table->string
2019.08_19_00000... $table->timestamp(‘ema 1] at')->nullal
$table->string(’
$table->rememberToke
$table->timestamps();

2019_12_14_00000...

R

MO N NN

Figure 6.2.19 Database Migration Files

6.2.3.5 Starting the Laravel back-end server
Step 1: Start Laravel Server

Run this command “php artisan serve” to launch the server. This server will be

host locally at ‘http://127.0.0.1:8000°.

TERMINAL DEBUG) 4+~ - oA X

owershell
PS C:\Users\SeNzZ7\Desktop\BackEndLaravel\BackEndAqua> powers
php artisan serve node

INFO | Server running on [http://127.0.0.1:8000].

Press Ctrl+C to stop the server

Ln 16, Col 25 Spaces:4 UTF-8 LF PHP 8.1 PO

Figure 6.2.20 php artisan server

158

After the terminal shows the Laravel Back-end server is hosted locally, it
confirms that the successful setup of the Data Processing Module.

6.2.3.6 Conclusion

In conclusion, the local machine the run the Laravel back-end server should
fulfill the prerequisites by having WAMP Server and Composer installed. Then
need to open the project, and perform configuration of environment and
database. Finally, serve the application to host it locally and the Data

Acquisition Module is now prepared to perform its task.

6.2.4 User Interface Module Setup (React Native Android Application)
This section explain how to setup the User Interface Module of Water quality
monitoring system. User interface Module is a mobile android application
builded using React Native Framework. However, due to the limitation of time,
we could not make it deployable on a real android mobile app. Instead, we will

deploy it on the android emulator on a local machine.

6.2.4.1 Prerequisites

Before proceed to React Native Android Application setup, these are the

prerequisites that the device running this project should be met:

1) Node.js and npm:

Ensure that Node.js and npm are installed on the device, because these
2 are the fundamental for managing JavaScript packages and running
React Native commands. Run “node -v” to check whether Node.js is
installed, and “npm -v” to verify npm.

PS C:\Users\SeNzZ7\Desktop\Aquaculture2\Aquaculture>node
vl8.17.0

PS C:\Users\SeNzZ7\Desktop\Aquacul ture2\Aquaculture>npm
9.8.1

Figure 6.2.21 node -v and npm -v
Figure above shows the Node.js and npm is installed in this device.

2) Java Development Kit (JDK):

159

Ensure that the Java Development Kit (JDK) version 8 or later is
installed. The JDK is essential for Android app development. Run “java

-version” to verify java.

PS C:\Users\SeNzZ7\Desktop\Aquaculture2\Aquaculture>java
java version "20.0.1" 2023-04-18

Java(TM) SE Runtime Environment (build 20.0.1+9-29
Java HotSpot(TM) 64-Bit Server wM (build 20.0.1+9-

29, mixed mode, sharing)

Figure 6.2.22 java -version

3) Android Studio and Android SDK Components:
Ensure Android Studio and Android SDK Components is installed
including specific APl Levels required for the project for Android App
development and the Android Emulator.
Steps:
1) Launch Android Studio.
2) Open SDK Manager and build.gradle in react native project.

Settings X
Appearance & Behavior » System Settings > Android SDK

Appearance & Behavior Manager for the Android SDK and Tools used by the IDE

Appearance Android SDK Location: ~ C:\Users\SeNzZZ\AppData\Local\Android\Sdk

Menus and Toolbars

SDK Platforms SDK Toals SDK Update Sites
System Settings

HTTP Proxy Below are the available SDK developer tools. Once installed, the IDE will autematically check for updates. Check
X “show package details™ to display available versions of an SDK Tool

Data Sharing

Date Formats Name Version Status

=) Android SDK Build-Tools 34
Updates

3400 3400 Installed
ERcs e 3400-rc3 34003 Not installed
Passwords 340.0-rc2 3400 1c2 Not installed
3400-rc1 34001t Not installed
Memory Settings 3302 3302 Not installed
——— 3301 3301 Not installed

4 3300 3300 Installed
ks 210-c1 3210t Not installed
Path Variables 3200 3200 Not installed
Keymap 31.00 31.00 Not installed

Editor 4 3003 3003 Installed
e S 3002 3002 Not installed
3001 3001 Not installed

Lo [3000 3000 Installed
Tools 2903 2903 Not installed
Advanced Settings 2902 2002 Not installed
R IR 2901 2901 Not installed
2900 2900 Not installed

Figure 6.2.23 SDK Manager

android > & build.gr,
> targetSdkVersion Aa ab, ¥ 70f1
> bu

W src
buildscript {
ext {
buildToolsVersion = "33
minSdkVersion = 21

> debug

~ main

BackgroundTa...

compileSdkversion = 33
BackgroundTa... targetsdkversion = 33
Back
MainAc
MainApplicati... ndkversion = "23.1
5
repositories {
google

> release mavenCentral

build.gradle }
£ debug keystore dependencies {
classpath
classpath(”

> res

A AndroidManifes...

? proguard-rules.pro
> build
> gradle

build.gradle

Figure 6.2.24 build.gradle

3) Verify the DbuildToolsVersion, compileSdkVersion and

targetSdkversion is same.

4) React Native CLI:
Ensure React Native Command Line Interface (CLI) is installed globally
via npm to facilitate project management.

PS C:\Users\SeNzZ77\Desktop\Aquaculture2\Aquaculture> react-native

react-native-cli: 2.8.1
react-native: 0.72.4

Figure 6.2.25 react-native -v

If all the prerequisites is passed, then we can now proceed to Project

Initialization.

6.2.4.2 Open Existing React Native Project

Open the existing React Native Project.

161

Aquaculture D Q[08 O X

buildgradle X [0 -+

android build.gradle

> targetSdkVersion

buildscript {
ext
buildToolsVersion
mincdlviarcinn — 71
BackgroundTa... 1S TERMINAL T - v oae A 3
BackgroundTa...
40 packages are looking for funding B powershell
) D run “npm fund” for details [=] powershell
MainActivity.ja... PS C:\Users\SeNzZZ\Desktop\Aguaculture2\Aquaculture>
OuTPUT react-native
> OUTLINE react-native-cli: 2.0.1
react-native: 0.72.4
AL PS C:\Users\SeNzZZ\Desktop\Aquaculture2\Aquaculture>
JAVA PROJECTS

Ln11,Col 23 Spacess4 UTF-8 LF {§ Gradle

Figure 6.2.26 React Native Front End Project

6.2.4.3 Dependency Installation

Run “npm install” to install the dependencies specified in package.json.

£ Aquaculture

dT:
on > {} scripts > B start
IS setAction g > targetSdkVersion Aa ab, ¥
v login “tast
S >
heck-dependen
fix-dependencies

1
52

"dependencies™: {
ant-design/icon
sbabel/plugin-proposal-class-properties™:
bel/plugin- osal-decorators”:
 utils @notifee/react-native":
“@react-native-async-storage/async-storage
react-native-community/datetimepicker™:
react-native -
react-navigation/drawel
react-navigation/natiwv
react-navigation/native-stac
watchmanconfig rneui/base
app.json rneui/themed” :
ApE

babel.con

> actions

prettierrcjs

v4.2.1",

Gemfile

metro.config

package.json >

README.md 0 S TERMINAL [ONS +v o0 A X%

tsconfig,json

49 packages are looking for funding [=] powershell

-) run “npm fund” for details [=] powershell
yarn.lock : \Users\seNzZzZ\Desktop\Aquacul ture2\Aquacul ture>

> OUTPUT react-native

> OUTLINE react-native-cli: 2.8.1

react-native: 0.72.4

PS C:\Users\SeNzZz\Desktop\Aquaculture2\Aquaculture>

£ yan orlog

> TIMELINE
> JAVA PROJECTS
X ®@1A2 In9,Col33 Spacess2 UTF-8 LF {}ISON & Q

Figure 6.2.27 dependencies in package.json

6.2.4.4 Running on an Android Emulator

162

After that, run 2 terminals, first terminal is for “npm run start” to open the Metro.

Another terminal is for “npm run android”.

PS C:\Users\SeNzzz\Desktop\Aquaculture2\Aquaculture>n
pm run start

> Aquaculture@e.e.1 start
> react-native start

reload the app
open developer menu
run on ios

run on Android

Figure 6.2.28 run Metro

See https://docs.gradle.org/8.0.1/userguide/command 1
ine interface.html#sec:command line warnings

BUILD SUCCESSFUL in 35s

263 actionable tasks: 13 executed, 250 up-to-date
info Connecting to the development server...

8081

info Starting the app on "emulator-5554"...

starting: Intent { act=android.intent.action.MAIN cat
=[android. intent.category. LAUNCHER] cmp=com.aquacultu
re/.MainActivity }

Figure 6.2.29 npm run start

= Channel

Figure 6.2.30 emulator is running

163

After the emulator is running, it means the User Interface Module is now
completely set up.

6.3 Water Quality Monitoring Mobile Application functions

After completing the setup process of the Water Quality Monitoring System, we
are now ready to utilize the Water Quality Monitoring Mobile application for
monitoring water quality. This section comprehensively addresses the
implementation of the features outlined in the use case description, as listed in
Chapter 4. Additionally, each use case will be supported with a detailed
breakdown of the code responsible for the functionality, encompassing both the

front-end and the back-end.

6.3.1 Register

This section explain how user perform register function.

6.3.1.1 Feature demonstration

Below shows the process of using Register function of Water Quality Montoring
mobile application.

Success Case:

Table 6.3.1 Register Function Success Case

No. | Mobile Screen Process

164

AL L 1) User go to the ‘Register
= Channel
Page’.
2) User can see the account
registration page with the
e registration form and the
submit button.
testing123@gmail.com
3) User then fill in the Name,
E-mail, Password and
Confirm Password
correctly.
4) User click the ‘SUBMIT’
Button
L — |
Figure 6.3.1 Success Register page
— A 1) Then, user can see a
- o Registration Successful
Message pops out.
2) User click on the ‘OK’

Registration Successful!

You have successfully registered an
account.

OK

LOGIN

L —
Figure 6.3.2 Registration Successful

button

165

3 R L 1) Then user will be redirect
= Channel
to “Login” page.
2) The login credentials will
be fill in automatically.
tgs;ingT 23@gmail.com
|
Figure 6.3.3 Redirect to Login Page
Failure Case:

Table 6.3.2 Register Function Failure Case

No.

Mobile Screen

Process

166

85 9 ¢ @ © \ 7|

= Channel

123

E-mail
123

Confirm Password

SUBMIT

L —
Figure 6.3.4 Fail Register page

1)

2)

3)

4)

User go to the ‘Register
Page’.

User can see the account
registration page with the
registration form and the
submit button.
User then fill
INVALID E-mail and
Password correctly.

User click the ‘SUBMIT’
Button

in the

859 9 & @O vd

= Channel

Name

123

1 Registration Failed

The email field must be a valid email
address.
Pz The password field must be at least 8
characters.
OK

Confirm Password

SUBMIT

. —
Figure 6.3.5 Registration Fail

1)

2)

3)

Then,

Registration

user can see a
Failed
Message pops out.

User click on the ‘OK’
button

Then user need to fill in
the registration form

again.

6.3.1.2 Code explanation

167

Explanation starts from the view from the front-end mobile application, and then
how it triggers the Laravel back-end function to perform registration.

React Native (Front-End) — Aquaculture\src\pages\account\register\index.js

! .state.complete &&
View style={{ width: screenWidth, alignItems: 'center', justifyContent:
‘center' }

Input

label="Name"

placeholder="Name'

onChangeText= .NameChangeText

Input

label="E-mail"
placeholder="E-mail’

onChangeText= .EmailChangeText

Input

label="Password"
placeholder="'Password’

onChangeText= .PasswordChangeText
secureTextEntry=
textContentType="password"

Input

label="Confirm Password"
placeholder="'Confirm Password’

onChangeText= .CondirmPasswordChangeText
secureTextEntry=

Button
title="SUBMIT"
buttonStyle={{
backgroundColor: 'black',
borderWidth: 2,
borderColor: ‘'white',
borderRadius: 30,
}
containerStyle={{
width: 200,
marginHorizontal: 50,
marginVertical: 10,
¥
titleStyle={{ fontWeight: 'bold"' }
onPress= .SubmitButtonClick

View

Figure 6.3.6 React Native registration form

Code snippet above shows the registration form, this form shows
everytime when user navigate to this page, when user click the “SUBMIT”

button, it triggers the ‘’this.SubmitButtonClick” function.

SubmitButtonClick = ()
userData = {
name: .state.name,

email: .state.email,
password: .state.password,
password_confirmation: .state.confirmpassword,

168

try {
response = await axios.post('http://10.0.2.2:8000/api/register’,
userData);
console.log(response.data);

complete = response.data.complete;
message = response.data.message;
user = response.data.user;

.setState({ complete, message, user });

console.log(.state.complete);
console.log(.state.message);
console.log(.state.user);
Alert.alert(

'Registration Successful!’,

'You have successfully registered an account.',

[

{
text: 'OK', onPress: () .props.navigation.navigate('Login’,
{ login_credentials: .state })

{ cancelable:
)s
} catch (error) {
errorMessage = 'An error occurred during registration’;

if (error.response) {
responseData = error.response.data;
if (responseData && responseData.errors) {
errorMessage = Object.values(responseData.errors).join('\n");

} else if (error.message) {
errorMessage = error.message;

¥
Alert.alert(
'Registration Failed',

errorMessage,

'OK", onPress: () console.log('OK Pressed') },

}

Figure 6.3.7 SubmitButtonClick

Then SubmitButtonClick function first store the user registration
information into a object called userData. Then it try to call axios post method
to call the back-end server API with the routes
(‘http://10.0.2.2:8000/api/register’) and sends the userData object as the request
payload. Then this post request will be handle by the data processing module,

the Laravel back-end server as shown below.

Route: :middleware("api')->group(O {

Route: :post('api/register', [RegisteredUserController:: , 'store']);

1)

169

Figure 6.3.8 route::api/register — POST

This is the route that handles the request, so this route corresponds to
the controller function from RegisteredUserController, named ‘store’ as shown
in figure below.

store(Request $request): JsonResponse
$validator = Validator::make($request->all(), [
‘name' => ['required', 'string', 'max:255'],

‘email’ => ['required', 'string', 'email', 'max:255', 'unique:users'],
'password' => ['required', 'confirmed', Rules\Password::defaults()],

1);

if ($validator->fails()) {
return response()->json([
‘errors' => $validator->errors(),
1, 422);

try {
$user = User::create([
‘name' => $request->name,
‘email' => $request->email,
'password’ => Hash::make($request->password),

s

event(Registered($user));

return response()->json([
'message' => 'Registration successful’,
'user' => $user,
'complete’ => B
1
} catch (\Exception $e) {

return response()->json([
'message' => 'Registration failed’,

‘error' => $e->getMessage(),

1, 500);

Figure 6.3.9 RegisteredUserController store function

This store function will first starts by validate the incoming HTTP
request data by checking whether the name, email, password and confirm
password is valid and correct. Then if the validation fail, it will immediately
return a JSON resonse showing there is a validation errors with a status code of
422, indicating that the request data is invalid. If the validation is not fail, then
it will try to create a new user record in database using ‘User::create’ method,
and it also hash the ‘password’ for security purpose using “Hash:make” method.

After the user is successfully created in database, it will return a JSON response

170

indicating successful registration. If there is any exception occurs duting the
user creating processs, it will also return a JSON response indicating the
registration has failed with the HTTP status code 500.

Then if the JSON response is returned without any exception, the
SubmitButtonClick function will continue to set the state using the returned
JSON response from the “store” function. Then the Registration successful
message will be shown. Then if user click “OK” button, it will navigate user to
login page, with the “login credentials” as parameter to fill in the login
credentials at the login page automatically. If the JSON response is an exception,
the exception error will be catch and then a “Registration Failed” alert box will
be shown with the error message returned. When user click OK, then closed the

“Registration Failed” alert box.

6.3.2 Login

6.3.2.1 Feature demonstration

Below shows the process of using Login function of Water Quality Montoring
mobile application.

Success Case:

No. | Mobile Screen Process

1 511 0 ¢ @O vd

o 1) User fill in the correct
login credentials at the
login page.

2) User click on the “LOG

testing123@gmail.com IN” button

LOG IN

L ——
Figure 6.3.10 Login Screen

171

2 M AL 1) User will be redirect to
R Channel Page.
[+]Add
Figure 6.3.11 Channel Page
Failure Case:
No. | Mobile Screen Process
1 i — = 1) Fill in the incorrect login
credentials
2) Click the “LOG IN”
button
L sove
L ——
Figure 6.3.12 Login Page with wrong
credentials

172

2 530 ©® ¢ @O v4

Login

E-mail

testina321mamail com

~ Login Failed

P& Email not found

0K

[sonve
[—]
Figure 6.3.13 Email not found

5309 & 40 vd

Login

E-mail

testina123mamail com

~ Login Failed

PZ password does not match

0K

LOG IN

Figure 6.3.14 Password does not

match

1) The “Login Failed” alert
box pops out showing the
error message such as
“email not found”, and
“password does not
match”.

2) User click “OK” button to

retry login again.

6.3.2.2 Code explanation

Explanation starts from the view from the front-end mobile application, and then

how it triggers the Laravel back-end function to perform login. So the login page

is located at Aquaculture\src\pages\account\login\index.js.

View style={{ flex: 1, justifyContent: 'center’

Input

}

173

label="E-mail"
placeholder="E-mail’

onChangeText= .EmailChangeText
value= .state.email

Input

label="Password"
placeholder="'Password’

onChangeText= .PasswordChangeText
secureTextEntry=
textContentType="password"

value= .state.password

View style={{
alignItems: 'center’
}
Button
title="LOG IN"
buttonStyle={{
backgroundColor: 'black',
borderWidth: 2,
borderColor: ‘'white’,
borderRadius: 30,
¥
containerStyle={{
width: 200,
marginHorizontal: 50,
marginVertical: 10,
¥
titleStyle={{ fontWeight: 'bold" }
onPress= .LoginButtonClick

Button
title="SIGN UP"
buttonStyle={{
backgroundColor: 'grey’,
borderwidth: 2,
borderColor: ‘'white’,
borderRadius: 30,
¥
containerStyle={{
width: 200,
marginHorizontal: 50,
marginVertical: 10,
b
titleStyle={{ fontWeight: 'bold' }
onPress= .RegisterButtonPress

Figure 6.3.15 Login Form

From this form, after user fill in the login credentials, user click the

“LOG IN” button to trigger the “LoginButtonClick”.

LoginButtonClick = O
userData = {
email: .state.email,

password: .state.password,

¥

try {

174

response = await axios.post('http://10.0.2.2:8000/api/login’,
userData);
console.log(response.data);

token = response.data.token;
user = response.data.user;

.setState({ user }, () {
console.log("LoginButtonClick", .state.email);
console.log("LoginButtonClick",token);
console.log("LoginButtonClick",user.id);

.props.rootStore.setUserInfo(user.email, token, user.id);
console.log("login.rootStore", .props.rootStore)

.setState({ islogin: Y, O {

.props.navigation.push('DrawerNavigator', { screen: 'ChannelStack',
params: { screen: 'Channel' } });

} catch (error) {
console.log(error.response);

errorMessage = 'An error occurred during login';

if (error.response) {
responseData = error.response.data;
if (responseData && responseData.message) {
errorMessage = responseData.message;

X
¥

Alert.alert(
'Login Failed',
errorMessage,

'OK", onPress: () console.log('OK Pressed') },

{ cancelable: }

Figure 6.3.16 LoginButtonClick

When LoginButtonClick is trigger, this code uses the login credentials
to make a POST request to a login APl endpoint using
(‘http://10.0.2.2:8000/api/login") using Axios Library. Then the Laravel back-
end server receive the POST request. Below shows the route for this API

endpoint.

Route: :middleware('api')->group(

Route: :post('api/login’,
[AuthenticatedSessionController::

});

Figure 6.3.17 route::api/login — POST

175

When this route is called, it will trigger the “store” function in

AuthenticatedSessionController. Figure below shows the store function.

store(Request $request): JsonResponse

if (Auth::attempt($request->only(‘email’, ‘password'))) {

$user = Auth::user();
$token = $user->createToken('authToken"')->plainTextToken;

return response()->json(['token' => $token, ‘user' => $user]);

$user = User::where('email’', $request->input(‘email’))->first();

if (!$user) {

return response()->json(['message' => 'Email not found'], 401);

return response()->json(['message' => 'Password does not match'], 401);

Figure 6.3.18 AuthenticatedSessionController store function

In the store function, first it try to authenticate the user using the
Laravel “Auth::attempt” method. If the email and the password match the
credentials of a user in the database, then it will generate an authentication token
and returns it along with the user information in a JSON response. If the
authentication fails, then it will starts to check whether the email provided exists
in the database, if it is not, then return a JSON response with a message saying
“Email not found”. Lastly, if the email is found in the database, then it means
that the password is incorrect, and then it will return a message of “Password

does not match” in a JSON response.

Now, the JSON response is sent back to the LoginButtonClick function.
If the API responds with a success status, it extracts the authentication token
and user information from the response data. Then it sets the user information

in the component’s state using “this.setState”.

Next, it use MobX to set the user’s information (email, token and

userID) in a store for later use throughout the application. Then it will navigate

176

user to a specific screen called “ChannelStack” which uses “Channel” page as
the initial page. In case of there is an error caughts from the login request, it will
show an alert box telling the user “Login Failed” attached with the error message.

User click the “OK” button to retry login.

6.3.3 Channels

6.3.3.1 Feature demonstration

Below shows the process of using Channel function of Water Quality Montoring
mobile application.

Add Channel Success Case:

No. | Mobile Screen Process

1 529 ¢ 8O v 1. User go to “Channel”

page
2. User wants to add a
channel (Water Tank) to

= Channel

monitor, user click on the
“Add” button.

Figure 6.3.19 Channel Page

177

807 O ¢ @O

Add New Channel

2110102

Return Submit

Figure 6.3.20 Add New Channel

. User click “Submit”

User see a Add New
Channel Dialog box pops
out.

User key in the Channel
ID. Channel ID can get
from the ThingSpeak
Channel page.

button to add a channel.

947 M9 & @ - vd

= Channel

Channel ID
DO

(+]Add

Figure 6.3.21 Add Channel Success

User can see a new

channel is added now.

Error Handling

178

3 ol RN 1) If user key in invalid
Channel 1D, an alert
message pops out telling
user the Channel ID is not

found.

Error

Channel 1D not found

Figure 6.3.22 Channel ID not found

Delete Channel Case:

No. | Mobile Screen Process

179

944 MG & & - vd

= Channel

Channel ID 2210102
DO PH

[+]Add

Figure 6.3.23 Channel Page with a

channel

3. User

1. User successfully added a

new channel.

2. Now user want to delete

this channel.
long press the

channel.

040 MO & @ *4

= Channel

Channel ID 2210102
DO PH

Options

Choose an action:

DELETE CANCEL

Figure 6.3.24 Channel Options

1. User can click “Delete”
button to delete this

channel.

180

3 !F[Ill]llllllllle

= Channel

Channel ID
Do

Success

Channel deleted successfully

Figure 6.3.25 Delete Channel

= Channel

FHAdd

Figure 6.3.26 Channel Deleted

After the channel is
deleted from database, a
success message pops out
telling user that channel is
deleted successfully.
User press “OK” button
and the Channel page will
be refreshed and now the
channel is deleted from
the Channale page.

6.3.3.2 Code explanation
1) Add Channel

From the Channel Page, when user submit the “Add New Channel” form, then

the submitForm function will be triggered. Below shows the code snippet of the

submitForm function.

submitForm = ()
try {

channel_id: .state.channellD,

b A

headers: {

o
1)

if (response.status === 201) {
console.log('POST request success:', response.data);

response = await axios.post('http://10.0.2.2:8000/api/channels’, {
user_id: .props.rootStore.userld,

'Authorization': 'Bearer ' + .props.rootStore.token,

181

.toggleAddDialog();
.props.onPostSuccess();
} else {

errorMessage = response.data.error || 'Failed to create a channel.
Please try again later.’;
Alert.alert(
"Error',
errorMessage,

{ text: 'OK', onPress: () console.log('OK Pressed') 1},
1,

{ cancelable: }

)
} catch (error) {

errorMessage = error.response.data.error;
Alert.alert(
"EFrer”
errorMessage,

'OK", onPress: () console.log('OK Pressed') },

{ cancelable: }
)
¥
)5

Figure 6.3.27 submitForm

This submitForm function will request make a POST request to the
URL (‘http://10.0.2.2:8000/api/channels’) with user id and channel id as
request body data. Then this POST request will later call this route from back-

end server.

Route: :middleware('auth:sanctum')->group(O {
Route: :post('/channels', [ChannelsController:: , 'store']);

});
Figure 6.3.28 route::api/channels — POST

Note that the route above is protected by the Sanctum authentication
middleware, which means that only authenticated users with valid Sanctum
token will be able to access this routes. This route will call the “store” function

in the ChannelsController. Below is the code snippet for the “store” function.

store(Request $request)
$user = Auth::user();

$request->validate([

'channel_id' => 'required|numeric',

1);

$channelld = $request->input('channel_id"');

$apiurl =

a%2FKuala_Lumpur";
try {

$apiResponse = file_get_contents($apilrl);
if ($apiResponse ===) {
return response()->json([
‘error' => 'Unable to fetch data from ThingSpeak API',

1, 400);
3

$apiData = json_decode($apiResponse, B

if (isset($apiData[‘channel']) && $apiData['channel’']['name’]
'Aquaculture’) {

$channel = $user->channels()->create([
‘channel_id' => $apiData['channel']['id'],

1);

foreach ($apiData['channel’] as $key => $value) {

if (strpos($key, 'field') === 0 && $value) {
$fieldNumber = substr($key, 5);
$chartTitle = ucfirst($value);

$channel->waterparams()->create([
'water_parameter' => $chartTitle,
‘chart_id' => $key,
‘chart_title' => $chartTitle,
'field_id' => $key,
'min_level' => 0,
'max_level' => 10,
'min_safe' => 4,
'max_safe' => 8,
"normal_color' => '#339933',
'warning_color' => 'red’,
'unit' => 'unit',
'line_graph_webview_link' => "',
'gauge_webview_link' => "',
1)
¥
b
$user->load('channels.waterparams');
return response()->json([
'message' => 'Channel created successfully',
‘user' => $user,
1, 201);
} else {

return response()->json([
‘error' => 'Channel ID not found',
1, 400);

} catch (\Exception $e) {
return response()->json([

'error' => 'Channel ID not found',
1, 4e0);

Figure 6.3.29 ChannelsController store function

"https://api.thingspeak.com/channels/{$channelld}/feeds.json?results=1&timezone=Asi

182

This store function first get the authenticated user from the Laravel

authentication system. Next, it validates the channel_id by checking whether it

183

has value and is numeric. Then it will starts to fetch data from the ThingSpeak
API using “file_get contents” function with a url
(“https://api.thingspeak.com/channels/{$channelld}/feeds.json?results=1&time
zone=Asia%2FKuala_Lumpur’). If there is an issue with the fetching data such
as network error or bad request, then it will trigger the catch block and return
the “Channel ID not found” as error message. If the data successfully fetched
from the API, it proceeds to parse the JSON response and store them into the
‘$apiData’ variable. Then it checks if the retrieved channel name within
“$apiData” macthes the expected name “Aquaculture”. If does not match, it
returns a JSON response indicating that the channel 1D was not found. If the
channel name matches, it continues to create a new channel record in the
application’s database using the authenticated user’s relationship with
channels.Then it iterates through the channel fields in the API response and
creates a ‘waterparams’ entries in the database based on the field information.
After the database record is successfully created, it then returns a JSON response
indicating that the channel was creating successfully, along with the user’s

updated information.

Then the JSON response will then finally returns back to the submitForm
function. If the status code response is ‘201°, it means that the creation of
channel is successful. If the status code is not ‘201°, it means there is an issue
with request, and the error will be displayed on the alert box. In the catch block
also use to handle any network errors that may occurs during the request. So if
any issues happens and being catch in the catch block, an alert box will be shown
along with the error message. The alert box have an “OK” button to retry the

add channel function.

2) Delete Channel
In the Channel page, when user long press a channel, and click on the delete
options. This action will trigger the deleteChannelByld function, the details of

the function is provided in the figure below.

IdeleteChannelById = async (channelld) => {

console.log("deleteChannelById.channelld",channelld)

an

184

try {
response = await axios.delete(
“http://10.0.2.2:8000/api/channels/${channelld}",

{
headers: {
Authorization: 'Bearer ' + .props.rootStore.token,

Bs
)8

if (response.status === 200) {

Alert.alert(
'Success’,
'Channel deleted successfully’,
[
{
text: 'OK',
onPress: () .props.navigation.replace('Channel"),

Alert.alert(
"EFrer”
response.data.error || 'Error deleting channel’,

[
{

Vs
)5

} catch (error) {
console.error(error);

Alert.alert(
"Error',
'An error occurred while deleting the channel. Please try again later.',
[
{

Figure 6.3.30 deleteChannelByld

This function first makes an asynchronous Axios DELETE request to
API endpoint using this url

(‘http://10.0.2.2:8000/api/channels/${channelld}’). The request includes an

Authorization header with a bearer token, which is for user authentication and

authorization. If the response status code is 200, means that the channel deletion

is successful. Then it will displays an alert box indicating that the channel is

deleted successfully. An “OK” button is provided, when it is pressed it will

refresh the Channel page to re-render the page. Moreover, if the response status

code is not 200, it means that there is issue with the API request. Then an alert

185

box will be shown indicating the error and provided with the error details.
Besides, there is also a catch block also helps to catch and shown error in alert

box if there is error exception thrown in the try block.

Then lets move to the route for this APl endpoint call
(‘http://10.0.2.2:8000/api/channels/${channelld}’). It will calls this route as

shown in the figure below.

Route: :middleware('auth:sanctum’)->group(
Route::delete('/channels/{channelId}', [ChannelsController::

‘deleteChannelById']);

});
Figure 6.3.31 route::api/channels/{channelld} — DELETE

This route will then triggers the deleteChannelByld function in the

ChannelsController class, the function details is provided below.

deleteChannelById($channelId)

$user = Auth::user();

$channel = $user->channels->find($channelld);
if (!$channel) {

return response()->json([
'error' => 'Channel not found',
1, 4e4);
}

$channel->delete();

return response()->json([
'message' => 'Channel deleted successfully',

1;

Figure 6.3.32 ChannelsController deleteChannelByld function

It first retrieves the authenticated user and loads the user’s information
into the ‘$user’ variable. Then it attempts to find the channel to be deleted using
the ‘$Schannelld’. If that channel is not found, then it returns a JSON response
with a 404 status code and an error message indicating that the channel is not
found, and thus channel deletion fails. If the channel is found, it proceeds to
delete it. After successful deletion, it returns a JSON response with a status code

of 200 and a success message indicates the channel is deleted successfully.

186

6.3.4 Dashboard

6.3.4.1 Feature demonstration

Below shows the process of using Register function of Water Quality Montoring
mobile application.

Display Dashboard Case:

No. | Mobile Screen Process

1 e oL 1. User click on a channel,

= Channel
and it will redirect to the
dashboard page of user
clicked channel.

Channel ID
DO

Channel ID
DO

Channel ID

Figure 6.3.33 User click on a channel

187

855 MO @ & - *an
= Channel

ID: 2210102

Aquaculture

Gauges Line Graphs Calendar

Figure 6.3.34 Dashboard gauges page

= Channel

Aquaculture ID: 2210102

Gauges Line Graphs Calendar

7.381

Figure 6.3.35 Dashboard gauges page

scroll down

User can see the
dashboard gauges page.
User can scroll up and
down to view other
gauge.

User click the “Line
Graphs” tab or slide the
screen from right to left to
show the line graph
dashboard.

188

g5 MO @ 3 - *an
= Channel

Aquaculture ID: 2210102

Gauges Line Graphs Calendar

Dissolved Oxygen

2
=]
3
3

Temperature

Figure 6.3.36 Line Graphs Dashboard

901 MO @ 5 - vdl
= Channel

Aquaculture ID: 2210102

Gauges Line Graphs Calendar
Temperature
RTD:31.781
T Sen 1220

ue Sep 12 202
08:59,16 GMT+0000

Figure 6.3.37 Line Graphs Dashboard

scroll down

1. User can view the line
graphs dashboard and it is
also scrollable.

2. Then user can click on the
Calendar tab to switch the
the calendar dashboard.

189

913 MO @ & - 4l
= Channel

Aquaculture ID: 2210102

Gauges Line Graphs Calendar

o & Z
Feed Clean Clean
Fish Tank Sensor

Change Water Analysis

Last Activity Average Interval

days hours days hours

Frequency

current month:
last month:
average per month:

Duration

average duration to carry out:

Figure 6.3.38 Calendar page analysis

section

904 MG @ & - *4N
= Channel

Aquaculture ID: 2210102

Gauges Line Graphs Calendar

Duration

average duration to carry out:
total duration this month:

total duration last month:
average total duration per month:

Record Actions

September 2023

Figure 6.3.39 Calendar Tab record

actions section

User can see the Change
Water Analysis Page.
User can scroll down to
visit “Record Activity”
section, and scroll further
to reach “Activity List”
section.

User can also click on the
“Activity Analysis” tab to
switch between “Change

Water”

190

0:06 @O @ & « vdl

= Channel

Aquaculture ID: 2210102

[cENT Y Line Graphs Calendar

9/7/2023: Clean Tank

Activity Period: 3:32 AM - 4:02 AM

9/7/2023: Feed Fish

Activity Period: 3:32 AM - 4:02 AM

9/7/2023: Change Water

Activity Period: 3:29 AM - 3:59 AM

9/1/2023: Change Water

Activity Period: 3:31 AM - 4:01 AM

Figure 6.3.40 Calendar Tab activity

list section

6.3.4.2 Code explanation

In the Channel page, when user click on a channel it will trigger this function
called toggleChannelDetails with index and channelld as parameters. The
‘index’ stands for the index for this channel in the channel list. The ‘channelld’

is the ID of this channel is the database record.

toggleChannelDetails = (index, channelld) {
console.log("toggleChannelDetails", .state, index, channelld);

.props.navigation.push("Dashboard", { state: .state, index,
channelld });

s

Figure 6.3.41 Channel Page toggleChannelDetails function

So when toggleChannelDetails is triggered, it will navigate to a screen
named “Dashboard” and also passes data to that screen via the route’s
parameters. The data includes the current state of the component, index of
current channel and current channel’s ID. After navigated to the dashboard page,
figure below shows the componentDidMount function triggered when user

navigated to dashboard page.

] componentDidMount () { |

191

console.log("haha", .props?.route?.params?.state);

receivedState = .props.route.params?.state;
channelDatalndex = .props.route.params?.index;
channelld = .props.route.params?.channelld;

.setState({ receivedState, channelDataIndex, channelld }, () {
console.log("receivedState", .state.receivedState);
console.log("receivedState.channelDataIndex", .state.channelDataIndex);

console.log("receivedState.channelld", .state.channelld);
.setState({doneSetState: ! .state.doneSetState});
.readActions();

3)s

.fetchData();

.dataInterval = setInterval(.fetchData, 3600000);

Figure 6.3.42 Dashboard Page ComponentDidMount function

So this function will first sets the component’s state using the parameter
from the route’s parameters. Then it starts to run the fetchData function and will
be keep calling this function every hour. The fetchData function will get all the

necessary data for the activity analysis dashboard.

1) Activity Analysis Dashboard

fetchData = () {
channelld = .props.route.params?.state.channelData[@].channel.id;

.fetchActionData(channelld, 'Feed Fish', 'lastFeedFish');
.fetchActionData(channelld, 'Change Water', 'lastChangeWater');
.fetchActionData(channelld, 'Clean Tank', 'lastCleanTank');
.fetchActionData(channelld, 'Clean Sensor', 'lastCleanSensor');

.fetchActionAverageData(channelld, 'Feed Fish', 'averageFeedFish');
.fetchActionAverageData(channelld, 'Change Water', 'averageChangeWater');
.fetchActionAverageData(channelld, 'Clean Tank', 'averageCleanTank');
.fetchActionAverageData(channelId, 'Clean Sensor', 'averageCleanSensor');

.fetchMonthFrequencyData(channelld, ‘Feed Fish', 'frequencyFeedFish');

.fetchMonthFrequencyData(channelld, ‘'Change Water',
'frequencyChangelWater');

.fetchMonthFrequencyData(channelld, 'Clean Tank', 'frequencyCleanTank');

.fetchMonthFrequencyData(channelId, 'Clean Sensor',
'frequencyCleanSensor');

.fetchDurationData(channelld, 'Feed Fish', 'durationFeedFish');
.fetchDurationData(channelld, 'Change Water', 'durationChangeWater');
.fetchDurationData(channelld, 'Clean Tank', 'durationCleanTank');
.fetchDurationData(channelld, 'Clean Sensor', 'durationCleanSensor');

Figure 6.3.43 Dashboard Page fetchData function

The fetchData function first get the ThingSpeak Channel ID from the route

parameter. Then, use this channelld to make multiple calls to ‘fetchActionData’,

192

‘fetchActionAverageData’, ‘fetchMonthFrequencyData’, ‘fetchDurationData’.
Each of these functions will be called 4 times, each with 4 sets of parameter:
1) 'Feed Fish', 'lastFeedFish’
2) 'Change Water', 'lastChangeWater'
3) 'Clean Tank’, 'lastCleanTank'’
4) 'Clean Sensor', 'lastCleanSensor’

fetchActionData = (channelld, title, stateKey) {
axios
.post('http://10.0.2.2:8000/api/actions/lastinterval/"' + channelld, {
title: title,
b o
headers: {
'Authorization': 'Bearer ' + .props.rootStore.token,
"Content-Type': 'application/json',
s
9
.then(response {
.setState({ [stateKey]: response.data }, ()
console.log('fetchActionData', response.data);

b
h))

.catch(error {
console.error('Error fetching data:', error);

1)
1

fetchDurationData = (channelld, title, stateKey) {
axios
.post('http://10.0.2.2:8000/api/actions/duration/' + channelld, {
title: title,
o
headers: {
'Authorization': 'Bearer ' + .props.rootStore.token,
'Content-Type': 'application/json',
}J
D)
.then(response {
.setState({ [stateKey]: response.data }, () {
console.log('fetchDurationData', response.data);

s
D)
.catch(error {
console.error('Error fetching data:', error);

1)
1

fetchMonthFrequencyData = (channelld, title, stateKey) {
axios
.post('http://10.0.2.2:8000/api/actions/frequency/' + channelld, {
title: title,
o
headers: {
'Authorization': 'Bearer ' + .props.rootStore.token,
'Content-Type': 'application/json',
1
})
.then(response {
.setState({ [stateKey]: response.data }, () {
console.log('fetchMonthFrequencyData', response.data);
1)
3
.catch(error {
console.error('Error fetching data:', error);

1)
1

fetchActionAverageData = (channelld, title, stateKey)

193

axios
.post('http://10.0.2.2:8000/api/actions/averageinterval/' + channelld, {
title: title,
b o
headers: {
'Authorization': 'Bearer ' + .props.rootStore.token,
"Content-Type': 'application/json',
})
D)
.then(response {
.setState({ [stateKey]: response.data }, () {
console.log('fetchActionAverageData', response.data);

1)
i)

.catch(error {
console.error('Error fetching data:', error);
3
35

Figure 6.3.44 fetchActionData

Inside this function, it makes an HTTP POST request to
(‘http://10.0.2.2:8000/api/actions/lastinterval/+ channelld’) with a JSON
payload in the request body, which includes a ‘title’ property with the value of
‘title” parameter. The authentication token is also included for authentication
purpose. Then it handles the response from the HTTP request, and set the
component’s state where ‘stateKey’ as the key and response data is set as the

value. Error Handling in this function.

For ‘fetchActionAverageData’, ‘fetchMonthFrequencyData’, and
‘fetchDurationData’. These function are similar, their difference is only the
HTTP POST request url that they are calling. For ‘fetchActionAverageData’,
the url is (*http://10.0.2.2:8000/api/actions/averageinterval/ + channelld’). Next,
‘fetchMonthFrequencyData’ is using url of
(“http://10.0.2.2:8000/api/actions/frequency/ + channelld’). Lastly, for
‘fetchDurationData’, its url is (‘http://10.0.2.2:8000/api/actions/duration/ +
channelld’). Figure below shown the samples of the route that these function

are calling.

Route: :post('actions/lastinterval/{channel_id}', [ActionController:

'getlLastActivityIntervals']);
Route::post('actions/duration/{channel_id}', [ActionController::

‘calculateDurationForCurrentMonth']);

Route: :post('actions/frequency/{channel_id}', [ActionController:: 9
'getCurrentAndLastMonthFrequency']);

Route::post('actions/averageinterval/{channel_id}', [ActionController:
'getAveragelntervals']);

Figure 6.3.45 API routes for displaying activity analaysis

194

The function ‘calculateDurationForCurrentMonth’ from the
ActionController responsible for calculating the average duration to carry out
this activity, total duration used for this activity within this month and last month,
and average total duration per month. The details of the code will be shown at

figure below.

calculateDurationForCurrentMonth(Request $request, $channel_id)

$title = $request->input('title’);

$userChannellds = Auth::user()->channels->pluck('channel _id');

if ($userChannelIds->contains($channel_id)) {
$now = Carbon::now();
$startOfMonth = $now->copy()->startOfMonth();
$endOfMonth = $now->copy()->endOfMonth();

$currentMonthActions = Action::where('channel_id', $channel_id)
->where('title', $title)
->whereBetween('start_time', [$startOfMonth, $endOfMonth])
->get();

$totalDurationCurrentMonth = 9;

foreach ($currentMonthActions as $action) {
$startTime = Carbon::parse($action->start_time);
$endTime = Carbon::parse($action->end_time);

$duration = $endTime->diffInSeconds($startTime);
$totalDurationCurrentMonth += $duration;

$totalDurationOtherMonths = 0;
$months = collect([]);
$currentMonth = Carbon::now()->month;

for ($1i = 1; $i <= 12; $i++) {
if ($1i !== $currentMonth) {
$startOfMonth = Carbon::create(, $i, 1)->startOfMonth();
$endOfMonth = Carbon::create(, $i, 1)->endOfMonth();

$actions = Action::where('channel_id', $channel_id)
->where('title', $title)
->whereBetween('start_time', [$startOfMonth, $endOfMonth])
->get();

$totalDuration = 0;
foreach ($actions as $action) {
$startTime = Carbon::parse($action->start_time);

$endTime = Carbon::parse($action->end_time);

$duration = $endTime->diffInSeconds($startTime);
$totalDuration += $duration;

}

$totalDurationOtherMonths += $totalDuration;

195

$averageTotalDurationOtherMonths = $totalDurationOtherMonths /
($months->count() ?: 1);

$averageDurationToCarryOut = $totalDurationCurrentMonth /
($currentMonthActions->count() ?: 1);

$lastMonth = Carbon::now()->subMonth();
$lastMonthStart = $lastMonth->copy()->startOfMonth();
$lastMonthEnd = $lastMonth->copy()->end0OfMonth();

$lastMonthActions = Action::where('channel _id', $channel_id)
->where('title', $title)
->whereBetween('start_time', [$lastMonthStart, $lastMonthEnd])
->get();

$totalDurationLastMonth = ©;
foreach ($lastMonthActions as $action) {

$startTime = Carbon::parse($action->start_time);
$endTime = Carbon::parse($action->end_time);

$duration = $endTime->diffInSeconds($startTime);
$totalDurationLastMonth += $duration;

}

$result = [
"total_duration_current_month' => round($totalDurationCurrentMonth
/ 3600, 1),
'average_total_duration_other_months' =>
round($averageTotalDurationOtherMonths / 3600, 1),
'average_duration_to_carry out' => round($averageDurationToCarryOut
/ 3600, 1),
'total_duration_last_month' => round($totalDurationLastMonth /
3600, 1),
15

return response()->json($result);
} else {
return response()->json(['error' => 'Unauthorized'], 401);

}

Figure 6.3.46 calculateDurationForCurrentMonth

For the other routes, their codes are similar with some difference in
their computation for their output. For example, ‘getAveragelntervals’ will
calculate the average interval of all records of single activity within a month that
it records in database. The activity could be “Change Water”, “Feed Fish”,
“Clean Tank”and “Clean Sensor”. The JSON response output will be in days
and hour. Next, ‘getLastActivitylntervals’ helps to calculate the time of how
long does the last activity is being taken until now. Moreover,
‘calculateDurationForCurrentMonth’ calculate the total duration of this activity
has been taken within this month. Lastly, ‘getCurrentAndLastMonthFrequency’
helps to calculate the total frequency of this activity taken in this month, last

month and also the average frequency between every month.

196

As a prove that these function can helps to provides these data for
activity analysis, the figure below will shows the activity analysis dashboard
page which display the returned data of the ‘getLastActivitylntervals’,
‘calculateDurationForCurrentMonth’, ‘getCurrentAndLastMonthFrequency’,

‘getAveragelntervals’.

25 MO @O *an 340 M O 6 O v4dn

= Channel = Channel

Aquaculture ID: 2210102 Aquaculture ID: 2210102

Gauges Line Graphs Calendar Gauges Line Graphs Calendar

z
» i & Change Water Analysis
Feed Clean Clean
Fish Tank Sensor

Last Activity Average Interval

Change Water Analysis
Last Activity Average Interval 1 1 1 7
days hours days hours
L

days hours days hours Frequency

current month:
last month:
Frequency average per month:

current month:

last month: .
average per month: Duration

average duration to carry out:

- total duration this month:

Duration total duration last month:

average total duration per month:

L — |
Figure 6.3.47 Change Water Analysis

average duration to carry out: 0.5

From the figure above, the output from ‘getLastActivitylIntervals’ is shown
in the “Last Activity” cardbox, which indicates that the last change water
activity is taken 5 days and 11 hours ago. Next, the output from
‘calculateDurationForCurrentMonth’ is shown in the Average Interval
“cardbox”, which indicates that the average interval of all records of this activity
is 11 days and 17 hours. In addition, the output from
‘getCurrentAndLastMonthFrequency’ will be shown in “Frequency” cardbox,
with the value of current month is 2, last month is 2, average month is 2. Lastly,
the output from ‘calculateDurationForCurrentMonth’ is the “Duration” cardbox,
with the value of average duration to carry out is 0.5 hrs, total duration this
month is 1 hrs, total duration last month is 1 hrs, and average ttal duration per

month is 1 hrs.

197

2) Gauges Dashboard and Line Graphs Dashboard
Code snippet below is the WebView component which use the url of gauges

provided by ThingSpeak to display the gauges.

WebView

scalesPageToFit=
bounces=
key={gaugeSettings.field_id
showsHorizontalScrollIndicator=
showsVerticalScrollIndicator=
overScrollMode="never"
scrollEnabled=
style={{

margin: 0,

padding: 0,

top: -23,

left: -20,

opacity: 0.99,

height: 250,

flex: 1,

¥
nestedScrollEnabled=
source={{
uri: gaugeSettings.gauge_webview_link,

Figure 6.3.48 Dashboard Page Gauges Webview

From the figure above, the ThingSpeak gauge link is stored in the
‘gaugeSettings.gauge webview_link’. The url of gauges can get from the
function below which has been triggered in the Channel page, and is being pass
to the Dashboard page through the route parameters, and then being set to the
‘gaugeSettings’. That function is ‘fetchUserGaugeSettings’ placed in

Aquaculture\src\pages\account\channel\index.js.

fetchUserGaugeSettings = callback
try {
response = await axios.post(
'http://10.0.2.2:8000/api/waterparams’,
{}
{

headers: {
Authorization: 'Bearer ' + .props.rootStore.token,

)s
console.log("gaugeSettings.only", response.data);
.setState({ gaugeSettings: response.data }, callback);
} catch (error) {
console.error('Error fetching user gauge settings:', error);
¥
)5

Figure 6.3.49 fetchUserGaugeSettings

198

The POST request will the trigger this route:

Route::post('/waterparams', [WaterParamsController:: , 'byUserId']);

IRoute::middleware(‘auth:sanctum')—>group(O {

});
Figure 6.3.50 route::api/waterparams POST

Then, this route will trigger the “byUserld” function in
WaterParamsController class.

byUserId(Request $request){
$channellds = Auth::user()->channels->pluck('channel _id");
$params = WaterParam::whereIn('channel_id', $channellds)->get();

return json_encode($params);

Figure 6.3.51 WaterParamsController byUserld function

This function will return the water parameters as a JSON-encoded
response. The water parameters data is the gauge settings data that will need to
store in the component’s state, and then pass as route parameters to the
Dashboard page, then the WebView component uses the gaugeSettings in the

route parameters to display the gauges.

Now, we have the ‘gaugeSettings’ data, therefore, we also can retrieve
the ThingSpeak line graphs url to display the line graphs using the WebView

component. The Webview components of the line graphs is shown below:

WebView
scalesPageToFit=
bounces=
key={gaugeSettings.field_id
showsHorizontalScrollIndicator=
showsVerticalScrollIndicator=
overScrollMode="never"
scrollEnabled=
style={{
margin: @,
padding: O,
top: -10,
left: o,
opacity: 0.99,
height: 250,
flex: 1,
¥
nestedScrollEnabled=
source={{
uri:
gaugeSettings.line_graph_webview_link +
'&height=auto&width=auto",

199

Figure 6.3.52 Dashboard Page Line Graphs Webview

The ‘gaugeSettings.line graph webview link’ stored the link of
ThingSpeak line graph.

6.3.5 Activity Record

6.3.5.1 Feature demonstration

Below shows the process of using Activity Record function of Water Quality
Montoring mobile application.

Record Activity:
No. | Mobile Screen Process
1 S — 1) User navigate to the

= Channel

Aquaculture ID: 2210102 ‘Record Actions’ section
cugee Lneomts Coentar of the Acticity Analysis
Record Actions Dashboard.
September 2023 » 2) User can see an
interactive calendar.
3) User click on a date (eg. 1
September 2023) he

wants to register an

9/7/2023: Clean Tank activity.

Activity Period: 3:32 AM - 4:02 AM

9/7/2023: Feed Fish

Activity Period: 3:32 AM - 4:02 AM

L —
Figure 6.3.53 Record Actions

Calendar

200

Add Event:
Start Time

2:52:36 PM

End Time

3:22:36 PM

Action

Change Water

Description

Description

Return Submit

Figure 6.3.54 Add Event Dialog Box

1) Then user can see a Add
Event Dialog box pops

out.

443 M0 6O

Add Event:

CANCEL OK

Return

Figure 6.3.55 Select Time

1) User can select start time

and end time.

201

445 MO 6 O

Add Event:
Start Time

2:52:36 PM

Change Water

Clean Tank

Clean Sensar

Feed Fish

Description

Return Submit

Figure 6.3.56 Select Activity

1) User can select the
activity they want to

register.

Add Event:
Start Time

4:54:11 PM

End Time

5:24:11 PM

Action

Change Water -

Description

15L

Return Submit

Figure 6.3.57 fill in description

1) User fill in the
description.
2) User hit the “Submit”

button.

202

6 R — 1) Red dots added to the date

= Channel

Aquaculture 1D 2210102 (1 September 2023)
indicates that the activity

Gauges Line Graphs Calendar
total duration last month:

average total duration per month: 1 |S recorded SUCCGSSfU”y

Record Actions

September 2023

Activity Period: 3:32 AM - 4:02 AM

7 e — 1) User scroll down to see

= Channel

Aquaculture ID: 2210102 the activity list.

Gauges Line Graphs Calendar

9/7/2023: Clean Tank

Activity Period: 3:32 AM - 4:02 AM

9/7/2023: Feed Fish

Activity Period: 3:32 AM - 4:02 AM

9/7/2023: Change Water

Activity Period: 3:29 AM - 3:59 AM

9/2/2023: Clean Sensor

Activity Period: 4:51 PM - 5:21 PM

9/2/2023: Feed Fish

Activity Period: 4:49 PM - 5:19 PM

9/1/2023: Change Water

Activity Period: 2:52 PM - 3:22 PM

6.3.5.2 Code explanation
The record actions function can be build starts from the Calendar components

in the dashboard page as shown in the figure below.

Calendar
markingType={ 'multi-dot"’
onDayPress= .handleDayPress

markedDates= .state.markedDates
onMonthChange= .handleMonthChange

Figure 6.3.58 Dashboard Page Calendar component

203

When user click a date, it will triggers “handleDayPress” function. This

handleDayPress finally will make the “AddEvent” component visible.

AddEvent

isAddEventVisible= .state.isAddEventVisible
onToggleDialog={()
.setState({ isAddEventVisible: ! .state.isAddEventVisible })

channel_id= .state?.receivedState?.channelData[.state.channelDa
taIndex]?.channel.id
onSubmit= .handleEventSubmit

Figure 6.3.59 AddEvent dialog box

Then after user finish filling up the form, and then click th “Submit”
button in the AddEvent component, it will triggers “submitForm” function in

the AddEvent component. The submitForm function looks like:

submitForm = ()
console.log(.state);
requestData = {
channel_id: .props.channel_id,
title: .state.action.label,
start_time: .state.startTime,
end_time: .state.endTime,
description: .state.description,
color: .state.action.color,

s

if (.state.description) {
requestData.description = .state.description;

}

.props.onSubmit(requestData);

s

Figure 6.3.60 submitForm in AddEvent components

This code will then trigger the “onSubmit” function in the props and
finally call the “handleEventSubmit” in the dashboard page, the code snippet of

this function is shown at below.

handleEventSubmit = (requestData) {
.state.selectedDate.setHours(requestData.start_time.getHours());
.state.selectedDate.setMinutes(requestData.start_time.getMinutes());
start_time = .state.selectedDate.toISOString();
console.log("start_time", .state.selectedDate);

.state.selectedDate.setHours(requestData.end_time.getHours());
.state.selectedDate.setMinutes(requestData.end_time.getMinutes());
end_time = .state.selectedDate.toISOString();
console.log("end_time", .state.selectedDate);
console.log("requestData"™, requestData);

requestDatal

204

channel_id: requestData.channel_id,

title: requestData.title,

start_time: start_time,

end_time: end_time,

color: requestData.color,

description: requestData.description,
¥

console.log("requestDatal”, requestDatal);

try {
response = await axios.post(
'http://10.0.2.2:8000/api/actions’,
requestDatal,

headers: {
'Authorization': 'Bearer ' + .props.rootStore.token,

console.log('POST request success:', response.data);
.toggleEventDialogVisibility();
.readActions();

console.log()

catch (error) {
console.error('Error in POST request:', error);
Alert.alert(
'Oops! Something Wrong, Please try again!',
error,

'OK", onPress: () console.log('OK Pressed') },

{ cancelable: }
)s
¥
¥

Figure 6.3.61 Dashboard Page handleEventSubmit function

The handleEventSubmit function responsible for make a POST request
to the API Endpoint using this url (‘http://10.0.2.2:8000/api/actions’) using
‘requestDatal’ object as the request body, including an authorization header. If
the POST request is successful, it then run the “readActions()” function to re-
read the activities from the back-end server and close the event dialog. Below

is the code snippet for “readActions” function.

readActions = O {
try {
response = await axios.get(
“http://10.0.2.2:8000/api/actions/channel/” +

.state.receivedState.channelData[@].channel.id,

{

headers: {
'Authorization': 'Bearer ' + .props.rootStore.token,

205

.setState({ actions: response.data.sort((a, b) Date(b.start_time)
Date(a.start_time)) }, () {
.setState({ markedDates:
.generateMarkedDates(.state.actions) }, () {
console.log("actions", .state.actions);

console.log("markedDates", .state.markedDates);
.filterActionsByMonthAndYear();

s
s

} catch (error) {
console.error('Error in GET request:', error);
¥
}

Figure 6.3.62 readActions function

This function is responsible for making a GET request to
(‘http://10.0.2.2:8000/api/actions/channel/”) by appending ‘channel.id’ into this
base URL. If the GET request is successful, it then updates the component’s
state with the retrieved actions and marked dates. It also calls function
generateMarkedDates to create an object representing marked dates on a
calendar. It also calls filterActionsByMonthAndYear to filter the actions by
month and year. All these function will contribute to the correct marking and

display of the Calendar components.

The GET request to (‘http://10.0.2.2:8000/api/actions/channel/”) will

trigger this route in the back-end server as shown in the figure below.

Route: :middleware('auth:sanctum’)->group(O {
Route::get('/actions/channel/{channel_id}', [ActionController::
'showByChannel']);

1)s

Figure 6.3.63 route::api/actions/channel/{channel_id} - GET

The route above will trigger the “showByChanel” function in the

ActionController class. This function codes looks like:

showByChannel ($channel_id)

$actions = Action::where('channel_id', $channel_id)->get();

return response()->json($actions);

206

Figure 6.3.64 showByChannel function

This function is responsible for fetching and returning a list of actiosn

associated with a specific channel based on the provided ‘$channel id’.

Then due to the component’s state is updated, the marks in the calendar
will be updated as well as the activity list. Below is the code to render the

activity list:

ListItem key={action.id} bottomDivider
ListItem.Content
ListItem.Subtitle style={styles.actiontext
Text>Activity Period: {startTimeString} -
endTimeString}</Text
ListItem.Subtitle

ListItem.Subtitle style={styles.actiontext
Text>Description: {action.description Text
ListItem.Subtitle
ListItem.Content
ListItem

Figure 6.3.65 Activity List

In conclusion, these are the explanation of how the activity record

function works.

6.3.6 Analysis
6.3.6.1 Feature demonstration
Below shows the process of using Analysis function of Water Quality

Montoring mobile application.

Show Analysis:

No. | Mobile Screen Process

207

658 MO 6 O w4

= Channel

Aquaculture ID: 2210102

Gauges Line Graphs Calendar

Figure 6.3.66 Dashboard page

1) At the dashboard page,
click the DO gauge or DO
line graphs to go to

Analaysis page.

700 MO & O van

= Channel

DO Gauge

DO - Day/Hour Line Graph

Figure 6.3.67 Analysis Page

1) Atthe Analysis page, user
can see the gauge and the
line graphs.

2) Go to line graphs section,
user can click or slide to
switch the tab between
“Day-Hour”, “Week-
Day”, “Month-Day”, and

“An Hour”.

208

703 MO & O hZ1)
= Channel

DO RTD PH
DO - Day/Hour Line Graph

Dissolved Oxygen

<] /
00 1 500
Time
-
.
. .
.

DO - Trendline Graph

——

703 9 6O *a0
= Channel

Prediction

unit

Statistics

3.8
5.62

Health Analysis

Overall Health Index:

Statistics

38
5.62

4.56
4.6

Health Analysis

Overall Health Index: 0.00
Health Level: Poor

DO scores null

RTD scores: null

PH scores: null

Noise Data Count

Null 10
Extreme :
DO
RTD
PH

1)

2)

User can scroll down to
view the trendline graph
to understand the trend.

User can see an water
parameter analysis
dashboard that shows the
prediction, the trend,
statistics, health analysis

and noise data count.

6.3.6.2

Code explanation

209

When user click on the DO gauge at the dashboard page, it triggers a function
named “toggleAnalysis”.

toggleAnalysis = (gauge, setting, channels, index) {
console.log('toggleAnalysis', gauge, setting, channels.user.channels[index]);

.props.navigation.push("Analysis", { gauge: gauge, gaugeSettings: setting,
channel: channels.user.channels[index] });

}

Figure 6.3.68 Dashboard page toggleAnalysis function

This toggle analysis function will navigate the screen to Analysis page,
along with route parameters such as gauge, gaugeSettings and channel. In the
analysis page, the gauges and the line graphs use the same Webview component
introduce in the dashboard page. Therefore, this section will not shown the
webview component again because the code snippet is similar, the only

difference is the component’s state that store the gauge and line graphs url.

1) Water Parameter Analysis

Below shows the code for the componentDidMount of Analysis page.

componentDidMount () {
{ route } = .props;
console.log("Analysis.componentDidMount", .props);
receivedState = route.params?.gauge;
gaugeSettings = route.params?.gaugeSettings;
channelld = route.params?.channel.channel_id;
if (receivedState) {
.setState({ receivedState, gaugeSettings, channelld }, ()

index = .findIndex(.state.gaugeSettings,
receivedState);

.fetchDataAnHour (channelld);

.fetchDataDayHour (channelId);

.fetchDataMonthDay (channelld);
.fetchDataWeekDay(channelId);

.fetchAnHourInterval = setInterval(()
.fetchDataAnHour (channelId);
}, 15 * 60 * 1000);
.fetchDayHourInterval = setInterval(()
. fetchDataDayHour(channelId);
}, 60 * 60 * 1000);
.fetchMonthDayInterval = setInterval(()
.fetchDataMonthDay (channelld);
}, 24 * 60 * 60 * 1000);
.fetchWeekDayInterval = setInterval(()
.fetchDatalWeekDay(channelId);
}, 24 * 60 * 60 * 1000);
.setState({ index }, () {
console.log('analysis state’, .state);
1)
1)
)
}

210

Figure 6.3.69 Analysis Page componentDidMount function

This componentDidMount function first set the component’s state with
the route parameters. Then, it runs fetchDataAnHour, fetchDataDayHour,
fetchDataDayMonth, fetchDataWeekDay function using channel ID as

parameter.

fetchDataAnHour = (channelld)
try {
response = await axios.get(
"https://api.thingspeak.com/channels/" +
channelIld +
'/feeds.json?round=2&results=240&median=10&timezone=Asia%2FKuala_Lumpur"'

DE

fetchDataAnHour = response.data.feeds.map((feed) {

{ entry_id, ...feedWithoutEntryId } = feed;
return feedWithoutEntryId;

3)s

.setState({ fetchDataAnHour }, ()
console.log("fetchDataMonthDay",
JSON.stringify(.state.fetchDataAnHour));
.setState({ arimaPredictAnHour: 1,
try {
console.log("this.state.fetchDataAnHour",);
data = .state.fetchDataAnHour;
arimaPredictData = await .arimaPredict(data);
.setState({ arimaPredictAnHour: arimaPredictData }, ()
arimaPredictAnHour = .state.arimaPredictAnHour;
console.log("haha.arimaPredict", arimaPredictAnHour);
console.log("this.state.fetchDataAnHour.data",data);
nullDataCount = .countRowsWithNullValues(data);
console.log("haha.noiseDataCount”, nullDataCount)
result = .calculateMinMaxMedianMean(data);
console.log('haha.calculateMinMaxMedianMean', result);
fieldRanges = {
fieldl: { min: 4, max: 12 },
field2: { min: 20, max: 35 },
field3: { min: 4, max: 9 }
s
count = .countExtremeValues(fieldRanges, data);
console.log('haha.countExtremeValues', count);
console.log('haha.fetchDataDayHour', data);

weights = {
fieldl: 0.4,
field2: 0.3,
ifilelldSERORNS)
¥

thresholds = {
fieldl: { min: 6.0, max: 9.0 },
field2: { min: 20.0, max: 30.0 },
field3: { min: 6.0, max: 8.0 },
s

egfpThresholds =
excellent: 0.8,
good: 0.6,
fair: 0.4,
s

healthIndexResult = .calculateHealthIndex(data, weights,
thresholds, egfpThresholds);

211

console.log("haha.healthIndexResult", healthIndexResult);

analysisAnHour = {
arimaPredictData: [arimaPredictData.prediction.field1l,
arimaPredictData.prediction.field2, arimaPredictData.prediction.field3],
nullDataCount,
minMaxMedianMean: result,
countExtremeValues: count,
healthIndexResult,
}s
.setState({ analysisAnHour }, () {
console.log("analysis.analysisAnHour", .state.analysisAnHour)
3
console.log("haha.analysisDayHour", JSON.stringify(analysisAnHour))
3
} catch (error) {
console.error('Error in arimaPredict:', error);

} catch (error) {
console.error('Error fetching data from ThingSpeak:', error);
¥
}5

Figure 6.3.70 fetchDataAnHour

In fetchDataAnHour, it first makes HTTP GET request to the ThingSpeak
API with this base url (‘https://api.thingspeak.com/channels/’), and then append
this url with channelld, stands for ThingSpeak Channel ID, and then a
‘/feeds.json?round=2&results=240&median=10&timezone=Asia%2FKuala_L
umpur’ is all the URL parameters that makes it returns the data collected from
the last hour. Once the data is successfully fetched, it stored the processed data
in the component’s state. Then it will calls the ‘arimaPredict’ function to
perform prediction based on the fetched data. The result of this analysis is stored
in the component’s state later. Next, it will performs several calculation and

operation such as:

1) countRowsWithNullValues:

countRowsWithNullValues = (data) {
console.log("countRowsWithNullValues", data);
count = 0;
for (i = 0; i < data.length; i++) {
row = data[i];
for (key row) {
if (row[key] ==) {
count++;
break;

¥
¥

return count;

}

Figure 6.3.71 countRowsWithNullValues

2)

This function counts rows in the data which contains null values.

calculateMinMaxMedianMean:

calculateMinMaxMedianMean = (data)

findMax(numbers) {
return Math.max(...numbers);

}

findMin(numbers) {
return Math.min(...numbers);

}

findMedian(numbers) {
sorted = numbers.filter(value value !==).sort((a, b)

a - b);
length = sorted.length;
middle = Math.floor(length / 2);
if (length % 2 === 0) {
return (sorted[middle - 1] + sorted[middle]) / 2;
} else {
return sorted[middle];

}

findMean(numbers) {

filtered = numbers.filter(value value !== B

sum = filtered.reduce((acc, val) acc + val, 9);
return sum / filtered.length;

}

fieldNames = Object.keys(data[@]).filter (key key ==
"created_at");

fieldvalues = {};
fieldNames.forEach(key
fieldValues[key] = [];

3

data.forEach(row {
fieldNames.forEach(key {
if (row[key] !==
fieldValues[key].push(parseFloat(row[key]));

output = {};
fieldNames.forEach(key {
max = parseFloat(findMax(fieldValues[key]).toFixed(2));
min = parseFloat(findMin(fieldValues[key]).toFixed(2));
median = parseFloat(findMedian(fieldValues[key]).toFixed(2));
mean = parseFloat(findMean(fieldValues[key]).toFixed(2));
output[key] = { max, min, median, mean };

1

return output;

Figure 6.3.72 calculateMinMaxMedianMean

212

213

This function calculates the minimum, maximum, median, and mean

values of the fetched data.

3) countExtremeValues:

countExtremeValues = (fieldRanges, data)
fieldCounts = {};

for (item data) {
for (field item) {
if (field !== "created_at" && item[field] !==) {
fieldvValue = parseFloat(item[field]);
fieldRange = fieldRanges[field];

if (fieldRange && (fieldValue < fieldRange.min || fieldvalue >
fieldRange.max)) {
if (!fieldCounts[field]) {
fieldCounts[field] = 1;
} else {
fieldCounts[field]++;

for (field fieldRanges) {
if (!fieldCounts[field]) {
fieldCounts[field] = 0;
)
b

return fieldCounts;

s

Figure 6.3.73 countExtremeValues
This function counts rows of extreme values in the fetched data.

4) calculateHealthindex:

calculateHealthIndex(data, weights, thresholds, egfpThresholds) {
console.log('calculateHealthIndex.data', data);
console.log('calculateHealthIndex.weights', weights);
console.log('calculateHealthIndex.thresholds', thresholds);
console.log('calculateHealthIndex.daegfpThresholdsta', egfpThresholds);

normalizeScore(values, threshold) {
normalizedValues = values.map(value
if (value < threshold.min) {
return 0;
else if (value > threshold.max) {
return 1;
else {
return (value - threshold.min) / (threshold.max - threshold.min);

1)

return normalizedValues;

}

calculateComponentScore(normalizedScore, egfpThresholds) {
if (normalizedScore >= egfpThresholds.excellent) {
return 1;
} else if (normalizedScore >= egfpThresholds.good) {
return 0.75;
} else if (normalizedScore >= egfpThresholds.fair) {

214

return 0.5;
} else {
return 0.25;
¥
¥

determineHealthLevel (overallHealthIndex) {

if (overallHealthIndex >= 0.75) {

return "Excellent";

else if (overallHealthIndex >= 0.5) {

return "Good";

else if (overallHealthIndex >= 0.25) {

return "Fair";

else {

return "Poor";

componentScores = {};
overallHealthIndex = 9;

for (field ['fieldl', 'field2', 'field3']) {
if (data.some(entry entry[field] ===)) {

componentScores[field] =
continue;

}

fieldvalues = data.map(entry entry[field]);
normalizedScore = normalizeScore(fieldVvalues,
thresholds[field]);
componentScore = calculateComponentScore(normalizedScore,
egfpThresholds);
componentScores[field] = componentScore;

overallHealthIndex += componentScore * weights[field];

}

healthLevel = determineHealthLevel(overallHealthIndex);
console.log("calculateHealthIndex.overallHealthIndex",
overallHealthIndex);
console.log("calculateHealthIndex.healthLevel”, healthLevel);
console.log("calculateHealthIndex.componentScores", componentScores);

return {
overallHealthIndex,
healthlLevel,
componentScores,
s
}

Figure 6.3.74 calculateHealthIndex
This function calculates the health index and returns overallHealthIndex,

healthLevel, and componnentScores.

The code snippet of ‘arimaPredict’ function is shown below.

arimaPredict = (data) {
try {
response = await axios.post(
'http://10.0.2.2:8000/api/predict’,
{
data: data,

1
{
headers: {
Authorization: 'Bearer ' + .props.rootStore.token,
s
3,

215

)8

console.log('arimaPredict response:', response.data);

return response.data;

catch (error) {

console.error('Error fetching user channels:', error);
throw error;

Figure 6.3.75 arimaPredict function

This arimaPredict function first send a POST request to the URL
(“http://10.0.2.2:8000/api/predict’), includes a property named ‘data’ in the
request body along with Authorization header. This URL is an APl endpoint of

back-end server which is defined in the route as shown in the figure below.

Figure 6.3.76 auth::api/predict — POST

This route will trigger the predict function in the PredictionController
class. Below is the code snippet of the predict function.

predict(Request $request)
$data = $request->input('data’);

$inputJson = json_encode($data);

$escapedInputdson = str_replace('"', "\"', $inputdson);

$pythonScriptPath = base_path('scripts/arima_predict.py');
$command = "python $pythonScriptPath \"$escapedInputJson\"";
$predictedValues = shell_exec($command);

$predictedvalues = json_decode($predictedValues,)

return response()->json(['prediction' => $predictedValues]);

}

Figure 6.3.77 PredictionController predict function

This function is responsible of using the data to run the Python script
called ‘arima predict.py’ that performs the ARIMA prediction. It uses
‘shell_exec’ to execute the constructed command in the shell. The shell_exec
function runs the specified command in the system's shell and captures the
standard output as a string. The standard output from the Python script is

216

assumed to be a JSON-encoded string containing the predicted values. It
decodes this JSON string into a PHP array using json_decode. Finally, it returns
a JSON response containing the predicted values in the 'prediction’ field. The

predicted values are sent back to the client making the API request.

Below shows the code in arima_predict.py.
import sys
import json
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA

predict_arima(data_str):

data_dict = json.loads(data_str)
df = pd.DataFrame(data_dict)

predicted_values = {}
for column in df.columns:
if column != "created_at":
values = df[column].astype(float)

(1, 1, 0)
ARIMA(values, order=order)
it = model.fit()

predicted value = model fit.forecast()
first_forecasted value = predicted_value.iloc[0]

predicted_values[column] = first_forecasted_value
return predicted_values
if __name__ == "__main__"

input_data = sys.argv[1]
predicted_value = predict_arima(input_data)

predicted_value_json = json.dumps(predicted_value)

print(predicted_value_json)

Figure 6.3.78 arima_predict.py

This python code begins by importing necessary Python modules, and then
calles the ‘predict arima’ function. This function then performs the ARIMA
time series forecasting. It first pre-process the data and convert them into pandas
DataFrame fore easier manipulation. Due to the data consist of many water
parameters, each water parameter corresponds to 1 column of the dataframe.
Therefore, it will iterates for each water parameters and do these steps:

217

1) Converts the column’s values to floats (‘values).

2) Specifies an ARIMA order (p, d, g) with (1,1,0).

3) Initializes an ARIMA model with the specified order using
ARIMA(values, order=order).

4) Fits the ARIMA model to the data using model.fit().

5) After fitting, it will make a prediction for the next value in the time series
using ‘model_fit.forecast()’.

6) The predicted value is then store into the ‘predicted values’ dictionary,

with the column anme as the key.

After that, the predicted values for each water parameter will be convert to
a JSON string and then return the prediction result back to the predict function

in PredictionController.

All the results of these operations are then combined into an
‘analysisAnHour’ object, and then it is store into the component’s state. Now
all the required data is being fetched and set to the component’s state. Next, all
of these analysis and prediction data will be used to render become a water

parameter analysis dashboard.

1) Trendline Graphs

TrendlineChart data={this.state.fetchDataDayHour} index={index}

Figure 6.3.79 TrendlineChart component

In the Analysis page, TrendlineChart component is used to draw the
trendline graph. It has 2 props, data that stores this.state.fetchDataDayHour and
an index. The fetchDataDayHour is a component’s state and it is being set at the
componentDidMount function. The TrendlineChart component uses
VictoryChart component from the victory-native library to draw a trendline

graph. The code below shows the code snippet for the VictoryChart component.

import React from 'react’;

import { View } from 'react-native’;

import { VictoryAxis, VictoryChart, VictorylLine, VictoryScatter } from 'victory-
native';

const TrendlineChart = ({ data, index }) => {

selectedRow = data[@];

fieldKeys = Object.keys(selectedRow).filter(key
key.startsWith("field"));

console.log("fieldToDraw.Field Keys Array:", fieldKeys);

console.log("fieldToDraw.data", JSON.stringify(data));
console.log("fieldToDraw.fieldToDraw", JSON.stringify(index));
fieldID = "field" + (index + 1).toString();
fieldData = data.map(item {
timestamp = Date(item.created_at).getTime();
fieldValue = item[fieldKeys[index]];

if (fieldValue !== && fieldValue !==) {
return [timestamp, parseFloat(fieldvalue)];
} else {
return [timestamp, 5
b
1)

n = fieldData.length;

sumX = fieldData.reduce((acc, [x]) acc + x, 0);

sumY = fieldData.reduce((acc, [, y]) acc +y, 9);

sumXY = fieldData.reduce((acc, [x, y]) acc + x *y, 0);
sumXX = fieldData.reduce((acc, [x]) acc + x * x, 0);

slope = (n * sumXY - sumX * sumY) / (n * sumXX - sumX * sumX);
yIntercept = (sumY - slope * sumX) / n;

trendlineData = fieldData.map(([x]) [x, slope * x + yIntercept]);

return (
View style={{ backgroundColor: "#ffffff" }
VictoryChart paddi { top: 20, bottom: 70, left: 50, right: 50 }

VictoryAxis

tickFormat={x Date(x).toLocaleDateString()

style={{

tickLabels: { angle: -45, dy: 13 }
¥

VictoryAxis
dependentAxis
tickFormat={y y.toFixed(1)

VictoryScatter

data={fieldData

x={0

y={1

style={{ data: { fill: 'blue' } }

VictorylLine
data={trendlineData
x={0
y={1
style={{ data: { stroke:

VictoryChart
View
)
¥

export default TrendlineChart;

Figure 6.3.80 TrendlineChart component

218

219

Based on the code above, it first receives two props: ‘data’ and ‘index’.
Remember that at the previous section, TrendlineChart is being called with the
this.state.FetchDataDayHour, and index. It then extracts the selected field data
from the ‘data’ array based on the provided ‘index’, and then calculates the slope
and y-intercpet of the trendline for the selected field using linear regression.
These values are used t create a linear trendline for the data. Then it use
VictoryChart component from the Victory Native Library to create a trendline

graph.

6.3.7 Notification

6.3.7.1 Feature demonstration

Below shows the process of using Notification function of Water Quality
Montoring mobile application.

Open notification:

No. | Mobile Screen Process

1 1000 MO @O

1) User click on stack icon at
the top left to open the
side bar.

2) User then click the Profile
tab.

3) User then navigate to the
Profile page.

Figure 6.3.81 Tab Navigator

220

1004 MO @O v4n

= Profile

Figure 6.3.82 Profile page

P.40100%

005 2
¥ intemet > % Bluetooth

§ Flashlight

@) Armtiroons & ~

WARNING:- Channel ID: 2210102
VALUES OUT OF RANGE

One of the Water Parameter is not in the
desired range. Please take immediate action

@ Set a screen lock - 8h
For added security, set a PIN, pattern, ..

Silent x

Virtual 8D card

~
o For storing photes, videos, music and ..

9 Android System 2w

Serial console enabled Performance is impa.

Configure physical keyboards Tap to select |

.)

Figure 6.3.83 Notification

1) User click on the “ON”
button, to start the
background notification
service.

2) User then can hear a
sound indicates there is
notification pops out.

3) User can see the
notification of
“WARNING” message.

4) User click the notification

to start the application.

Close

notification:

No.

Mobile Screen

Process

221

— — 1) User click on the “OFF”

= Profile

button and then close the

Notification

[1) Taggle ON to receive WARNING m

2) Toggle OFF to receive WARNING mm;;ﬂ:«‘(:'; application to apply the

toggle off, you need to close thy

stop background service.

Figure 6.3.84 profile page

6.3.7.2 Code explanation
1) Open naotification:

When user click on the “ON” button, it triggers a function called

“startBackgroundService”.

startBackgroundService = () {
jsonData = .state.channels.user;

thingspeakChannellds = .extractChannellIds(jsonData);
console.log("thingspeakChannelIds", thingspeakChannellds, jsonData);

BackgroundTaskModule.startBackgroundService(thingspeakChannelIds);

s

Figure 6.3.85 startBackgroundService

When this function IS triggered it triggers
‘BackgroundTaskModule.startBackgroundService’ with thingspeakChannellds

as parameters.

@ReactMethod
void startBackgroundService(ReadableArray channellIds) {

Log.d("BackgroundTaskModule", "Received channelld: " + channellds);
ReactApplicationContext context = getReactApplicationContext();
Intent intent = new Intent(context, BackgroundTaskService.class);
intent.setAction("com.aquaculture.START_BACKGROUND_SERVICE");

ArraylList<String> channelldsList = new ArraylList<>();

222

for (int 1 = @; i < channelIds.size(); i++) {
channelldsList.add(channelIds.getString(i));

intent.putStringArrayListExtra("channelIds", channelldslList);

context.startService(intent);

Figure 6.3.86 BackgroundTaskModule.startBackgroundService

This function retrieves the ReactApplicationContext, which is needed to
create and start a service. Then, it creates and “Intent” to start the
“BackgroundTaskService” class. Next, it sets the action of the intent to
"com.aquaculture. START_BACKGROUND_SERVICE." and converts the
channellds passed from JavaScript (a ReadableArray) into a standard Java
ArrayList of strings (channelldsList). It attaches this list of channellds as an
extra to the intent with the key "channellds."” This should be able to open

notification service for many channels based on the channellds.

2) Close notification:
When user click on the “OFF” button in the Profile page, the function named

“stopBackgroundService” is then triggered.

BackgroundTaskModule.stopBackgroundService();

s

IstopBackgroundService = O {

Figure 6.3.87 stopBackgroundService

When this function is triggered it triggers
‘BackgroundTaskModule.stopBackgroundService’.

@ReactMethod
void stopBackgroundService() {

ReactApplicationContext context = getReactApplicationContext();

Intent intent = new Intent(context, BackgroundTaskService.class);
Log.d("BackgroundTaskModule", "stopBackgroundService");

context.stopService(intent);

Figure 6.3.88 BackgroundTaskModule.stopBackgroundService

223

This function retrieves the ReactApplicationContext, which is
necessary for interacting with Android components and services within a React
Native module. Then, it creates an Intent object for the BackgroundTaskService
class. This intent will be used to identify the service to be stopped. Next, it calls
context.stopService(intent) to stop the background service specified in the intent.
This will effectively terminate the service, stopping any ongoing background

tasks associated with it.

Therefore, the start and stop notification function is explained and can

be run successfully.

6.4 System Deployment

6.4.1 Data Acquisition Module Deployment
In order to deploy this system, the Data Acquisition System is placed in the
Water Tank of Aquafarm. Below figures shows the Data Acquisition Module

System is successfully deployed in the Water Tank.

Figure 6.4.1 Data Acquisition system circuit deployed

Figure above shows the complete circuit of the Data Acquisition
Module. This circuit is placed in the Junction Box to protect it from raining

water.

224

o APy uy. | SRR A

Figure 6.4.2 Junction Box protects the Data Acquistion Module

Figure above shows the junction box is fully covered the Data
Acquistion Module for protection. Moreover, it is placed at a safety position
which can avoid touching with water. Besides, this position is near to power

Ssource.

Figure 6.4.3 DO, RTD and PH sensors deployed

225

Figure above shows the DO sensors and pH sensors that are placed into
the water tank. The sensors is now become dirty because it has been deployed

for a long period to collect the water parameters data.

6.4.2 Communication Module Deployment
In order to deploy the Communication System, we need to register the
ThingSpeak account, and set up the Channel Page correctly. Figure below

shows the ThingSpeak Channel public view page that has been setup correctly.

226

CIThingSpeak™ cChasss . fpps. Do — Commaeial Lse Hiww 15 Buy

Aguaculture

Chanrsl 1 23030
Authe LS

[+ [il il || [+ AT || B toqeal sl 1 HAATLAR Aradyss AT AE Vi il vt

Channel Staks

Craaliad: 2wt AR
AR

ant aelr ens L o irmnuds aan
L

B g [= Fiad 1 Chart L

Disschead Cheygen

1 wichetdd (iapgen, A
=
i \

BT - eulnsm—
T

Fiald 1 Chart ' - I
Tamparatura
A
_umkj:u::il;d IFI'IFH
E W Ges 13 02 Lﬂ] I"l
| o122 Cum=0 \ I|I|
= T
oy Dear s
Filid 1 Chart = T R
pH

Figure 6.4.4 ThingSpeak Channel Public View

This public view page consist of 3 gauges, and 3 line graphs for each
water parameters: DO, pH and RTD. With these gauges and line graphs, it
means that the deployment of communication module is completed.

227

6.4.3 Data Processing Module Deployment
To setup and deploy this module, the Laravel back-end server application should
be running in a computer which pass the minimum hardware requirements.

Figure below shows the Laravel back-end server is running.

£ BackEndAqua
EXPLORER

“ BACKENDAQUA routes > api.php
edit.blade.php

> arima

show.blade.php
welcome.blade.php
~ routes toute: :middleware(”
api.php
auth.php
channels.php
console.php
web.php
~ scripts
arima_predict.py
v storage

> app

PE tionContro
> framework PR
ctionCon

> logs

artisan
composer.json
composer.lock

package-lockjson

©6:13:21
PS C:\Users\SeNzzZ\Desktop\BackeEndLaravel\BackEndAqua> php artisan ser
ve

INFO Server running on [http://127.8.8.1:8000].

Press Ctrl+C to stop the server

> OUTPUT
> OUTLINE
> TIMELINE
X ®3A9 Ln 42, Col 50 (20 selected) Spaces:4 UTF-8 LF

Figure 6.4.5 Laravel back-end server

The terminal below is showing the back-end server is being hosted on
[http://127.0.0.1:8000]. This means that it is now hosted locally, and is ready to
provide its service. Therefore, the data processing module was also deployed

successfully.

228

6.4.4 User Interface Module Deployment
To deploy the user interface Module, we need to ensure the react-native mobile
application is setup correctly. Figures below shows how the User Interface

Module is deployed.

> OUTPUT

OUTLINE
> TIMELINE
JAVA PROJECTS

Figure 6.4.6 Metro running

Figure above shows the metro is running. Next, the application is also

installed successfully to the android emulator.

229

DQDos

S indexjs _.\profi

.extractChannellds

.startBackgroundservice(t

> Configure project :react-native-reanimated
N react-native-reanimated found. Attempting to

rguide/command_1ine

rguide/command Line

0 w

ouTPUT
OUTLINE
TIMELINE
JAVA PROJECTS

Figure 6.4.7 Build successful

Figure above shows the react-native mobile application is build
successful. Then the emulator is then able to run the react-native mobile
application is meanst that installed and successfully.

N2 B0 60 vdn

= Channel

Channel ID
DO

Channel ID
DO

Channel ID
Do

Channel ID

Figure 6.4.8 Android Emulator is running

230

6.5 Conclusion

Water Quality Monitoring System is successfully implemented. Data
Acquisition Module is successfully deployed in the aquafarm, and it is able to
perform its task to collect the water parameters ands send the data to the
ThingSpeak cloud server 15 once. Communication Module, the ThingSpeak
cloud server is also successfully deployed and implemented. It can receive the
data send by Data Acquisition Module and then store these data to the cloud
database. Besides, it also provides REST API for the Data Processing Module
and the User Interface Module to retrieve the collected data. Moreover, the Data
Processing module is also deployed properly by hosting a Laravel back-end
server locally. It helps to provide API endpoints to help User Interface module
to perform tasks such as data prediction, analysis and perform data storing and
processing .Lastly, the User Interface module is also able to working normally
after deployment. It is running in an Android emulator and is able to perform its
task by helping the Aquafarmer to monitor the water parameters in the water

tank. Therefore, the system deployment is complete successfully.

231

CHAPTER 7
SYSTEM TESTING
7.1 Introduction
This chapter discuss the system testing. System testing is needed to be carried
out to ensure the functional and non-functional requirements of the water quality
monitoring system project is met. System testing covers unit testing,

performance testing and system usability testing.

7.2 Unit Testing
Unit Testing here is using Postman as the tools to check whther the API Endpoint provided by the back-end server can responds to the request

correctly.

721

Unit Testing for Register

232

Information

2. Key in the email where
is existed in database.

3. Key in password with
length less than 8.

4. Key in confirm

password different from

password.

"name": "testing",
"email":
"testing321@gmail.com”,
"password": "alil234",
"password_confirmation™:
"alil2345"

¥

Test Module Extraction Module Test Title File Upload from the Web
Appication
Test Case ID Test Case | Execution Steps Test Data Expected Result Status
Description
UNIT-101 Register with Invalid | 1. Key in the name. { Returns error showing the | Pass

email has already been
taken, the password field
confirmation does not
match, and the password
field must be at least 8

characters.

233

Send

corresponding url.

request to

UNIT-102

Register with Valid

Information

Key in the name
correctly.

Key in the email that is
not yet registered.

Key in password with
length less than 8.

Key in confirm
password different from
password.
Send

corresponding url.

request to

{

"name": "testing",
"email":
"testing001@gmail.com",
"password": "testing001",
"password_confirmation™:
"testing001"

¥

Returns message showing
registration is success and
then return the user
object, and a complete
variables with true

values.

Pass

234

POST ~ http://127.0.0.1:8000/api/register ‘

Params Auth Headers (9) Bodye Pre-req. Tests Settings Cookies
raw v JSON v Beautify
1
2 "name": "Ali", '
3 "email": "alilz3@gmail.com",
4 "password": "alil234",
5 "password_confirmation": "alilz345"
6 K
Body @ 422 Unprocessable Content 107 ms 956 B E Save as Example eee
Pretty Raw Preview Visualize JSON w = [—D Q
1 1
2 "errors": {
3 "email”: [
4 "The email has already been taken."
5 1.
["password": [| T
7 "The password field confirmation does not match.",
8 "The password field must be at least & characters.”
9 i i
19 3
11 3

Figure 7.2.1 UNIT-101

POST v http://127.0.0.1:8000/api/register ‘
Params Auth Headers (8) Body® Pre-req. Tests Settings Cookies
raw v JSON ~ Beautify

o U AW R

lody v

Pretty

R IR I T A ST

B
P @

"name": "testing",

"email": "testing®ol@gmail.com”,
"password": "testingeel”,
"password_confirmation": "testing@el"

@ 2000k 493ms 967B

Raw Preview Visualize JSON v =

"message": "Registration successful",

"user": i
"name": "testing",
"email": "testing@ei@gmail.ceom",
"updated_at": "2023-09-13T14:27:43.0000002",
"created_at": "2023-09-13T14:27:43.0000002",
"id": 6

i,

"complete": true

Figure 7.2.2 UNIT-102

[®) Save as Example

©

soa

Q

235

236

7.2.2 Unit Testing for Login
Test Module Extraction Module Test Title File Upload from the Web
Appication

Test Case ID Test Case | Execution Steps Test Data Expected Result Status
Description

UNIT-201 Login with not | 1. Key in not registered | { Returns error message | Pass
registered email email. "email™: showing the email not

2. Key in any password. "testing002@gmail.com”, found.
3. Send request to | "password": "testing001",
corresponding url. }

UNIT-202 Login with registered | 1. Key in registered email. | { Returns error message | Pass
email, but incorrect | 2. Key in incorrect | "email": showing the password
password password. "testing001@gmail.com™, does not match

3. Send request to | "password": "testing002",
corresponding url. }
UNIT-203 Login with correct | 1. Key in registered email. | { Returns a token and a user | Pass

credentials.

2. Key in correct password.

object.

237

3. Send request
corresponding url.

to

"email":
"testing001@gmail.com",
"password": "testing001",

¥

POST

Params

raw

[R s B B« T B VR

ey

Body

Pretty

w N e

v http://127.0.0.1:8000/api/login

Auth Headers (9) Body ® Pre-req. Tests

JSON v

"email”: "testing@e2@gmail.com”,

"password"”: - "testng@el”

"name":-"Ali",
"email":-"alil23@gmail.com",
"password”: "alil12345",

"password_confirmation”:

Send ~
Settings Cookies
Beautify
@ 401 Unauthorized 313ms 803B [&) Save as Example eee
> o Q

Raw Preview Visualize

"message": "Email not found"

"alil2345

JSON v

Figure 7.2.3 UNIT-201

238

POST w http://127.0.0.1:8000/api/login ‘

Params Auth Headers (9) Body® Pre-req. Tests Settings Cookies
raw v JSON W Beautify
1
2 "email": "testing®@l@gmail.com", L
3 "password": "testing@@2"
4
5 J/-1
& [/ “name”:-"Ali",
7 ["email":-"alil23@gmail.com",
3 ["password”:-"alil2345",
9 [“password_confirmation": "alil2345"
Body W @ 401 Unauthorized 319ms 81B [3) Save as Example oo
Pretty Raw Preview Visualize JSON v) D Q
"message": "Password does not match"
3 B I

Figure 7.2.4 UNIT-202

239

POST v http://127.0.0.1:8000/api/login ‘

Params Auth Headers (9) Bodye Pre-req. Tests Settings Cookies
raw v JSON Beautify
1 f ||
2 "email": "testing@el@gmail.com”, .
3 "password": "testingeel” :l
4
5 //4
[I/ "name":-"Ali",
7 I/ "email":-"alil23@gmail.com”,
5] I/ "password":-"alil234s",
9 I/ "password_confirmation":-"alil2345"
Body @@ 2000k 203ms 994B [3) Save as Example ooe
Pretty Raw Preview Visualize JSON ~ =) b Q
1 |
2 "token": "70|9Wo27ZzuQMnzbPt4ARAMID219816kT7PkvhYQ1Z01",
3 "user": {
4 “id": 6,
5 "name": "testing",
["email": "testing®el@gmail.com”,
7 "email_verified_at": null,
8 "created_at": "2023-09-13T14:27:43.0000002",
9 "updated_at": "2823-089-13T14:27:43.0000060Z2"
10 1

[
[
ol

—

Figure 7.2.5 UNIT-203

240

7.2.3 Unit Testing for Channels
Test Module Extraction Module Test Title File Upload from the Web
Appication
Test Case ID Test Case | Execution Steps Test Data Expected Result Status
Description
UNIT-301 Add new channel with | 1. Key inincorrect Channel | { Returns error message | Pass
incorrect ThingSpeak ID. "channel_id": "2110102" showing the Channel ID
Channel ID 2. Send request to | } not found
corresponding url with
Authorization ~ Header
token.
UNIT-302 Add new channel with | 3. Key in correct Channel | { Returns a success | Pass
correct ThingSpeak ID. "channel_id": "2210102" message and a user
Channel ID 4. Send request to |} objects that contains all

corresponding url with
Authorization Header

token.

their related channels
object, and waterparams

objects.

241

UNIT-303 Retrieve the latest Send request to | {} Returns a channel object | Pass
water parameters data corresponding url with and feeds object which
Authorization ~ Header contains the latest water
token. parameters data
UNIT-304 Delete existing Send request to | {} Returns a message | Pass
channel corresponding url with showing this channel is

Authorization Header

token.

deleted successfully

POST “ http://127.0.0.1:8000/api/channels

[

Params Auth Headers (11) Body® Pre-req. Tests Settings

raw v JSON ~

1 %
2 "channel_id": "2110162"
3 %
4
Body W @ 400 Bad Request 1225ms 348B
Pretty Raw Preview Visualize JSON W -2
1
2 "erroxr": "Channel ID not found"
3 B

Figure 7.2.6 UNIT-301

Cookies

Beautify

[2) Save as Example

©

bog

Q

242

[

POST v http://127.0.0.1:8000/api/channels
Params Auth Headers (11) Bodye Pre-req. Tests Settings Cookies
raw v JSON v Beautify
1 i
2 | "channel_id": "2210182"
3
4
Body @@ 201 Created M81ms 1.79KB [J) Save as Example oo
Pretty Raw Preview Visualize JSON v = O Q
1 i
2 "message": "Channel created successfully"”,
3 "user": §
a4 "id": 6,
5 "name": "testing",
[} "email": "testingeel@gmail.com",
7 "email_verified_at": null,
8 "created_at": "2023-09-13T14:27:43.000000Z",
9 "updated_at": "2023-09-13T14:27:43.000000Z2",
10 "channels": [
11 i
12 "id": 12,
13 "user_id": "&",
14 "channel_id": "221@102",

Figure 7.2.7 UNIT-302

243

244

GET ~ https://api.thingspeak.com/channels/2210102/feeds.json?results=1&timezone=Asia%2FKuala_Lumpur ‘

Params @ Authorization Headers (6) Body Pre-request Script Tests Settings Cookies
Key Value Description «» Bulk Edit Presets v
Key Value Description I
Body Cookies Headers (13) Test Results @é 200 OK 991ms B881B B Save as Example oo
Pretty Raw Preview Visualize JSON ~ = b Q
1 4
2 “channel": {
3 "id": 2210162,
4 "name": "Aquaculture”,
5 "latitude": "8.0",
6 "longitude": "©.0",
7 "field1": "DO",
8 "field2": "RTD",
9 "field3": "pH",
10 "created_at": "2023-07-03T10:30:58+08:00", B
11 "updated_at": "2023-08-27T23:50:43+08:00",
12 "last_entry_id": 292585
13 k.
14 "feeds": [
15 i
16 "created_at": "2023-09-13T23:11:03+08:00",
17 "entry_id": 292585,
18 "field1": "6.48000",
19 "field2": null,
20 "field3": null
21 i
22 1
23 1

Figure 7.2.8 UNIT-303

DELETE ~ http://127.0.0.1:8000/api/channels/12

Params Auth Headers (10) Bodye Pre-req. Tests Settings
Headers <« 9 hidden
Key Value === Bulk Edit
Authorization Bearer 70|9W027ZzuQ...
Key Value Description
Body @ 200 0K MZ2ms 349B
Pretty Raw Preview Visualize JSON w)
1
2 "message”: "Channel deleted successfully"
3

Figure 7.2.9 UNIT-304

©

[-

aog

Presets ~

[2) Save as Example

Q

245

7.2.4 Unit Testing for Dashboard

246

data of an activity

within this month.

corresponding url with
Authorization Header

token.

"title™: "Change Water"
}

Test Module Extraction Module Test Title File Upload from the Web
Appication

Test Case ID Test Case | Execution Steps Test Data Expected Result Status
Description

UNIT-401 Retrieve the time |7. Send request to | { Returns the time period | Pass
period from now until corresponding url with | "title": "Change Water" from now until the last
the last activity. Authorization Header | } change water activity in

token. days and hours.
UNIT-402 Retrieve the duration Send request to | { Returns the total duration | Pass

of the current month,
average total duration of
each months, average
duration to carry out
change water activity,
and total duration carried
out for this activity last

month.

247

UNIT-403 Retrieve the frequency | 9. Send request to | { Returns the frequency of | Pass
data of an activity. corresponding url with | "title": "Change Water" this change water activity
Authorization ~ Header | } in current month, last
token. month, and the average
from every months.
UNIT-404 Retrieve the average | 10. Send request to | { Returns the average time | Pass

intervals data between
all records of an

activity.

corresponding url with
Authorization Header

token.

"title": "Change Water"
¥

intervals between all
records of the change

water activity.

POST v http://127.0.0.1:8000/api/actions/lastinterval /2210102 ‘
Params Auth Headers (10) Body e Pre-req. Tests Settings Cookies
Headers <« 9 hidden

Key Value D... == BulkEdit Presets ~
Authorization Bearer 71/aSXIMoDrrSIMjLXLu...
Key Value Description
Body @ 2000k 96ms 327B [3) Save as Example eoo
Pretty Raw Preview Visualize JSON v = O Q
11 I
2 "days": @,
3 "hours": 1
4+ 5 I

Figure 7.2.10 UNIT-401

248

249

POST v http://127.0.0.1:8000/api/actions/duration/2210102 ‘

Params Auth Headers (10) Body ® Pre-req. Tests Settings Cookies
raw v JSON Beautify
1 i
2
3 "title": "Change Water"
4
5
Body @@ 2000K 121ms 449B [J) Save as Example eeo
Pretty Raw Preview Visualize JSON) O Q
1
2 "total duration_current _month": 2.5,
3 "average_total_duration_other_months": 1, I
4 "average_duration_to_carry_out": 0.5,
5 "total duration_last month": 1| T
6

Figure 7.2.11 UNIT-402

POST v http://127.0.0.1:8000/api/actions/frequency/2210102 ‘

Params Auth Headers (10) Body® Pre-req. Tests Settings Cookies

Query Params

Key Value Description == Bulk Edit
Key Value Description
Body @ 2000k 87ms 391B [3) Save as Example oo
Pretty Raw Preview Visualize JSON v) D Q

1 l

"current_month_frequency": 5,
"last_month_frequency": 2,
"average_total_freguency": 3.5

g T

Figure 7.2.12 UNIT-403

[I SN S N I

250

251

POST W http://127.0.0.1:8000/api/actions/averageinterval /2210102 ‘

Params Auth Headers (10} Bodye® Pre-regq. Tests Settings Cookies
raw v JSON ~ Beautify
1 I
2
3 "title": "Change Water"
4
5 0§ [

Body @ 2000k 78ms 362B [Save as Example oo
Pretty Raw Preview Visualize JSON v 5 l_I:I Q
101 |
2 "average_duration_days": &,
3 "average_duration_hours": 22
2 B T

Figure 7.2.13 UNIT-404

252

7.2.5 Unit Testing for Activity Record
Test Module Extraction Module Test Title File Upload from the Web
Appication
Test Case ID Test Case | Execution Steps Test Data Expected Result Status
Description
UNIT-501 Add new event 11. User fill in the add event | { Returns the created | Pass

form.
12. User

button
13. Send

corresponding URL with

hit the submit

request to the

Authorization Header

token.

"channel_id": "2210102",
"title™: "Change Water",
"description™: "™,
"start_time": "2023-09-
13T14:23:56.030Z",
"end_time":
13T14:53:56.030Z",

"color": "red"

}

"2023-09-

acitivity record objects

253

UNIT-502

Retrieve all recorded

activities

14. Send request to the
corresponding URL with
Authorization ~ Header

token.

i

Returns all the activities
recorded in the database

in a list

Pass

[

Beautify

©

Q

POST e http://127.0.0.1:8000/api/actions
Params Auth Headers (10) Body e Pre-regq. Tests Settings
raw v JSON v
1
2 "channel_id": "22101B82",
3 "title": "Change Watez",
4 "description”: - ""
5 "start_time": "20823-09-13T14:23:56.030Z",
6 "end_time": "2023-09-13T14:53:56.030Z",
7 "coloxr": "red"
8
Body @ 201Created 105ms 564B [3) Save as Example eoe
Pretty Raw Preview Visualize JSON v =
1
2 "channel_id": "2210182",
3 "title": "Change Watez",
4 "description”: null,
5 "start_time": "2023-09-13T14:23:56.030Z",
6 "end_time": "2023-09-13T14:53:56.030Z",
7 "coloxr": "xzed",
3 "updated_at": "2023-09-13T15:23:58.000000Z",
9 "created_at": "20823-09-13T15:23:55.0008002",
10 "id": 13
11

Figure 7.2.14 UNIT-501

254

v http://127.0.0.1:8000/api/actions/channel/22101. ‘

aoo

GET
Params Auth Headers (10) Bodye Pre-req. Tests Settings
Headers @ 9 hidden
Key Value «e» Bulk Edit Presets v

Authorization

Body

Pretty

O 00 1 RW N

I I E
B o® oMo R WD

Raw

Bearer 71|a5XIMoDrrs...

@ 2000k 74ms 351KB [3) Save as Example

Preview Visualize JSON ~ =]

"id': 1,

"channel_

"title":

id": "2210102",
“Change Water",

"description”: null,
"start_time": "2023-08-02T23:05:00.000Z",
"end_time": "2023-05-02T23:35:00.000Z",

"coloxr":

"red",

"created_at": "2023-88-30T23:08:24.000008Z2",
"updated_at": "2023-08-30T23:08:24.000000Z"

"idve 2,

"channel_

"title":

id": "2210102",
“Change Water",

"description”: null,
"start_time": "2023-08-08T23:08:00.000Z2",
"end_time": "2023-08-08T23:358:00.000Z",

"coloxr":

"red",

"created_at": "2023-08-30T23:08:47.000000Z",

Figure 7.2.15 UNIT-502

Q

soo

255

256

7.2.6 Unit Testing for Analysis
Test Module Extraction Module Test Title File Upload from the Web
Appication
Test Case ID Test Case | Execution Steps Test Data Expected Result Status
Description
UNIT-601 Predict the next data | 15. Send request to the | { Returns the prediction of | Pass
for all the parameters corresponding URL with | “data”:[{ the next water parameters
using ARIMA time Authorization Header | "created_at™: data.
series machine token. "2023-08
learning model. 29T19:40:00+08:00",
"field1":"9.40",
"field2":"28.66",
"field3":"14.00"},{...
b

¥

POST ~ http://127.0.0.1:8000/api/predict ‘

Params Auth Headers (10) Bodye® Pre-req. Tests Settings Cookies

raw v JSON v Beautify
1 4 L
2 "data": [{"created_at":"2023-08-29T19:40:00+88:00", "fieldl1":"9.40",

"field2":"28.66","field3":"14.00"%, {"created_at":"2023-08-29T19:50:00
+08:00", "field1":"10.17", "field2":"28.60", "field3":"8.44" 1,

i'"created at":"2023-08-29T20:00:00+08::00", "fieldl":"10.52", "field2":"25.
48", "field3":"7.62"}, 1" "created_at" :"2023-058-29T20:10:00+08:00",

Body @ 2000k 269s 406B [3) Save as Example eoo
Pretty Raw Preview Visualize JSON ~ = O Q
11
2 "“prediction”: H
3 "field1l": 10.3808078520991455,
a4 "field2": 27.623185668327704,
5 "field3": 7.223580203231185
6 b
7 F

Figure 7.2.16 UNIT-601

257

258

7.3 Performance Testing
7.3.1 Register an account

1) Reponse Time Testing

Test Case ID | Test Description Steps Expected Status
Result
PFT-101 Measure the | 1. Fill up the | The total | Pass
response time for registration form | execution time | 1967ms
account correctly. should be
registration 2. Submit the | lower than 3
registration form. seconds to

3. Record the total | complete the
response time for the | account
application to | registration

register an account. process.

Range: 0 - 1.97 s

86 ms Scripting
1 ms Rendering
1ms Painting
1967 ms
13 ms System
1866 ms Idle

1967 ms Total

Figure 7.3.1 PFT-101 Register an account (1967ms)

2) Memory Usage Testing

Test Test Steps Expected Result Status

Case ID | Description

PFT-102 | Measure the | 4. Fill up the registration | The total memory | Pass
memory form correctly. usage should be | 12.76MB
usage for | 5. Submit the registration | lower than 20MB
account form. to complete the
registration 6. Record the total memory | account

usage during account | registration

registration process. process.

Console Sources
-
® O ¥
Profiles

ALLOCATION TIMELINES

+| Snapshot 1
%| 134 MB

Network

L
e

259

Performance Memory Application Q
Statistics ¥ Selected size: 0 MB

965 KB Code

5167 KB Strings

= 371 KB JS arrays
13 069 KB
37 KB Typed arrays
345k M System ohjects

13 069 KB Total

Figure 7.3.2 PFT-102 Register an account (13069KB)

7.3.2 Login
3) Reponse Time Testing
Test Case ID | Test Description Steps Expected Status
Result
PFT-201 Measure the | 7. Fill up the login form | The total | Pass
response time for correctly. execution time | 1826ms
login process 8. Submit the login | should be
form. lower than 3
9. Record the total | seconds to
response time for the | complete the
application to login. | account login
process.
Range: 0 - 1.83 s
60 ms Scripting
3 ms Rendering
2 ms Painting
1826 ms
49 ms System
1712 ms Idle
1826 ms Total
Figure 7.3.3 PFT-201 Login Process(1826ms)
4) Memory Usage Testing
Test Test Steps Expected Result Status
Case ID | Description

260

PFT-202 | Measure the | 10. Fill up the login form | The total memory | Pass
memory correctly. usage should be | 12.94MB
usage for | 11. Submit the login form. lower than 20MB
login process. | 12. Record the total memory | to complete the

usage during account | account login
login process. process.
900 KB Code
5191 KB Strings
13 249 KB 515 KB IS arrays
44 KE Typed arrays
351 KB System objects
13 249 KB Total
Figure 7.3.4 PFT-102 Register an account (13249KB)
7.3.3 Dashboard
5) Reponse Time Testing
Test Case ID | Test Description Steps Expected Status
Result
PFT-301 Measure the | 13. User navigate to | The total | Pass
response time for dashboard page execution time | 4089ms
Dashboard to be | 14. Record the total | should be
render. response time to | lower than 6
render the | seconds to
dashboard. render the
dashboard.
Range: 0 -4.0% s
86 ms Scripting
12 ms Rendering
5ms Painting
4089 ms
19 ms System
3869 ms Idle
4089 ms Total

Figure 7.3.5 PFT-301 Load Dashboard Process(4089ms)

6) Memory Usage Testing

261

Test Test Steps Expected Result Status
Case ID | Description
PFT-302 | Measure the | 15. User navigate to | The total memory | Pass
memory dashboard page usage should be | 13.35MB
usage for the | 16. Record the total memory | lower than 20MB
dashbaord to usage to render the | to complete the
render. dashboard. dashboard
rendering.
900 KB Code
5203 KB Strings
13 658 KB 664 KB IS arrays
44 KB Typed arrays
352 KB System objects
13 658 KB Total
Figure 7.3.6 PFT-302 Load Dashboard Process (13658KB)
7.3.4 Add Event
7) Reponse Time Testing
Test Case ID | Test Description Steps Expected Status
Result
PFT-401 Measure the | 17. User fill in the add | The total | Pass
response time for event form. execution time | 2339ms
the process of | 18. User click the submit | should be
adding a new event button. lower than 3
and then render the | 19. Record the total | seconds to add

dashboard.

response time to add
the event and render
the dashboard.

event and then
re-render the

dashboard
page.

Range: 0—-2.34 s

50 ms
5 ms

4 'ms

2339 ms

44 ms
2236 ms
2339 ms

262

Scripting
Rendering

Painting

Figure 7.3.7 PFT-401 Add Eevent Process(2339ms)

8) Memory Usage Testing

Test Test Steps Expected Result Status
Case ID | Description
PFT-402 | Measure the | 20. User fill in the add event | The total memory | Pass
memory form. usage should be | 13.19MB
allocation for | 21. User click the submit | lower than 20MB
the process of button. to add event and
adding a new | 22. Record the total memory | then re-render the
event and usage used to add the | dashboard page.
then render event and render the
the dashboard.
dashboard.
897 KB Code
5203 KB Strings
13 505 KB 693 KB IS arrays
36 KE Typed arrays
350 KB System objects
13 505 KB Total
Figure 7.3.8 PFT-402 Add Event Process (13505KB)
7.3.5 Analysis
9) Reponse Time Testing
Test Case ID | Test Description Steps Expected Status

Result

263

PFT-501 Measure the | 23. User navigate to the | The total | Pass
response time for analysis page. execution time | 6851ms
the process of get | 24. Record the total | should be
the analysis data response time to get | lower than 8
and render the the analysis data and | seconds to get
analysis dashboard. render the analysis | the analysis

dashboard. data and render
the analysis
dashboard.
Range:0-6.855
111 ms Scripting
4 ms Rendering
1 ms Painting
6851 ms
219 ms System
6516 ms Idle
6851 ms Total
Figure 7.3.9 PFT-501 Analysis Process(6851ms)
10) Memory Usage Testing

Test Test Steps Expected Result Status

Case ID | Description

PFT-502 | Measure the | 25. User navigate to the | The total memory | Pass

memory analysis page. usage should be | 13.19MB

usage for the
process of get
the

data

analysis
and

render the

analysis

dashboard.

26. Record the total memory
usage to get the analysis
data the

and render

analysis dashboard.

lower than 20MB
to get the analysis
data and render the
analysis
dashboard.

264

897 KB Code
5205 KB Strings
693 KB IS arrays
13 492 KB
36 KE Typed arrays
318 KB System objects
13 492 KB Total

Figure 7.3.10 PFT-502 Analysis Process (13492KB)

7.3.6 Laravel Back-end Server APl Endpoint Response Time Testing

API Endpoint Test Case ID | Response
time

POST - api/register UNIT-102 493ms
POST - api/login UNIT-203 203ms
POST - api/channels UNIT-302 1181ms
DELETE — api/channels/{id} UNIT-304 349ms
POST - api/actions UNIT-501 105ms
GET - api/actions/channel/{channel_id} UNIT-502 74ms
POST - api/predict UNIT-601 2.69s
POST - api/actions/lastinterval/{channel_id} | UNIT-401 96ms
POST - api/actions/duration/{channel_id} UNIT-402 121ms
POST - api/actions/frequency/{channel_id} | UNIT-403 87ms
POST - | UNIT-404 78ms
api/actions/averageinterval/{channel_id}

7.4 System Usability Test

The System Usability Scale (SUS) is used to perform system usability test in
this project. After a brief demonstration of the functionality of this Water
Quality Monitoring mobile application, respondents needs to explore and use
all the functionality of the application by completing the test scenario defined at
below. After that, respondents needs to fill in the User Satisfactory Survey. It
has 2 sections. In section A, respondents needs to answer 10 questions of the
questionnaire. Each question have 5 answers, and their marks range from 1 — 5,
the answer categories listed as below:

265

1) Strongly Disagree — 1
2) Disagree —2

3) Neutral -3

4) Agree -4

5) Strongly Agree —5

Next, Section B requires user to answer 3 open-ended questions. Finally, the
result of the usability testing will be evaluate and calculated based on the survey
results. The sample user satisfactory survey form template used in this SUT can
be found in Appendix A.

7.4.1 Test Scenario for Usability Testing
Table 7.4.1 Tables of Test Scenarios

Test Scenario to act as aquafarmer

Scenario 1 — Register a new account

Imagine you are a aquafarmer that is new to this system to monitor the water
quality in a water tank. You want to make use of this mobile application to
see the water parameters data collected by the sensors. What would you do so

that you can have the access to use this system?

Scenario 2 — Login to his account

Imagine you are a aquafarmer, you already have an account to use this mobile
application. What should you do so that you can use the mobile application

features?

Scenario 3 — Add a new channel for monitoring

Imagine you are a aquafarmer, you want to use this mobile application to
monitor the water quality of a water tank that is already implements the
sensors module to collects data, and have a channel to monitor it in
ThingSpeak cloud service. What should you do so that you can monitor water

parameters of that particular water tank?

Scenario 4 — Update channel settings

Imagine you are a aquafarmer, you want to monitor water parameters of the
channel correctly, so you need to do some settings to the channel. Now you
want to change the maximum and minimum range of the gauge, and add

gauge and line graphs to the dashboard, how can you do that?

Scenario 4 — Delete a channel

266

Imagine you are a aquafarmer, you don’t want to monitor the water quality of
this water tank anymore. What should you do to not monitor this water tank

with your account.

Scenario 5 — View the dashboard of a channel

Imagine you are a aquafarmer, you want to view the water confition of your
aquafarm. What should you do to have an overall view of water quality of all

the water tanks.

Scenario 6 — View activity history and analysis

Imagine you are a aquafarmer, you want to gain more insights to decide the
time you need to change the water in this water tank. What should you do so
that you can exploit this water quality monitoring application to help you on

deciding when to change the water?

Scenario 7 — Record new activity

Imagine you are a aquafarmer, you just successfully change the water in this
water tank, and you want to record this action you have taken. What should
you do to use this application to record your taken action towards this water

tank?

Scenario 8 — View analysis for the water quality

Imagine you are a aquafarmer, you want to analyze the dissolved oxygen level
in this water tank. What should you do with this application to allow you to

immediately see the analysis of the dissolved oxygen in this water tank?

Scenario 9 — Toggle notification on and off

Imagine you are a aquafarmer, you want to get notify when there is problem

with the water tanks. What should you do to use this application to help you?

Scenario 10 — Logout

Imagine you are a aquafarmer, you want to login to other account so you need
to logout the current account. What should you do so that you are able to

logout this application?

7.4.2 Result of Usability Testing

3 respondents were participating in this usability testing. In Section A, they
need to explore the application based on the 10 test scenarios specified in section
7.4.2. Then they need to fill up the satisfactory survery form shown in section
7.4.1. Their recorded responses can be found at Appendix B.

267
In order to calculate the SUS score, following are the formula to
calculate SUS score:

e X =Sum of the points for all odd-numbered questions — 5
e Y =25-Sum of the points for all even-numbered questions
e SUSScore=(X+Y)x25

Average SUS score can be calculated by:
e Average SUS Score = Total SUS Score / Number of participants

After getting the average of SUS score, we can use the tables below to perform
interpretation to understand usability performance of this system (Will T, n.d.).

Table 7.4.2 Template of User Satisfactory Survey

SUS score Grade Adjective Rating
>80.3 A Excellent
68 —80.3 B Good
68 C Okay
51-68 D Poor
<51 F Awful

After complete all the survey and calculation of the usability score, the results
is shown at the table below:

Table 7.4.3 SUS results

Participants Usability Score for each question | Total Marks
Name 112[3|4(5|/6|7]8|9]10]|0dd | Even

SeowDingHan |52 |4|2|4]|2|5|2]|4]|2 |22 |15 80.0
Tang Chu Lin 412[4]4]|5|4|5|1[4]|1 |22 |17 75.0
Poey Wei Jun 4113|442 |5|1[4]2 |20 |15 67.5
Average SUS Score 74.17

In Section B, respondents need to answer these open-ended questions:
1) What do you like best about the system?
2) What do you like least about the system?
3) Do you have any suggestions for improving the current system?

From their response in Appendix B, the summary of answers for each questions
will be arrange in the tables below.

Table 7.4.4 Summary of Respondents' Most Liked Features of the System

Summary of Respondents' Most Liked Features of the System

The features provided by the system can be learn and use easily.

The dashboard design able to provide user a great monitoring experience.

268

The calendar components used to implement the record activity features is

useful.

Table 7.4.5 Summary of Respondents' Least Liked Features of the System

Summary of Respondents' Least Liked Features of the System

The activity history features is missing functionality for edit and delete

activities.

The notification system is not complete, such as user are unable to open

notification selectively among all the channels.

The notification system is not user-friendly, such as there is no toggle on/off

switch to use notification system.

Table 7.4.6 Summary of Respondents' Suggestion to improve the system

Summary of Respondents' Suggestion to improve the system

The acitivity history features should include delete and edit function.

The notification on/off button should be replaced with switch, and can

selectively choose with channel to on/off notification.

In conclusion, the average SUS score achieved by this system is 74.17 which is
placed under the Grade B. This means that the overall user experience of using
this system is Good, but not too impressive. Therefore, there is more
improvements can be done to this system to achieve impressive user experience
in the future. Besides, we also received open-ended feedbacks about the best
function, worst function, and suggestions from respondents throughout this
System Usability Testing. Overall, the best thing about this system is it can learn
to use easily, dashboard is simple and informative and the record activity
process in this system is well-designed. The worst thing about this system is it
missing some required functionality such as delete and edit the activity history,
and notification system is not designed well. Therefore, the suggestion from the
respondents are add more function to the activity history and improve the design

of notification system.

269

270

CHAPTER 8
CONCLUSION & RECOMMENDATION
8.1 Conclusion
This chapter discuss the achievement, limitation, and recommendation to
improve the system. This system has successfully achieve all the goals listed in
Chapter 1, they are:

1. To analyze existing available tools related to aquafarming to develop
ideas for designing usable water monitoring systems.

2. To perform analysis on the of water quality of the water tank to discover
the trends and useful information to assist in decision making on the
water quality monitoring process.

3. To develop a mobile application that provides a dashboard that displays
all the water parameter readings of the aquaculture system anytime
anywhere to allow user to check the current water condition in water
tank.

4. To evaluate the water quality of the fish tank so that user are able to take
immediate initiative to maintain its water quality to optimize fish growth

and prevent undesirable condition.

Obijectives 1 is completed by successfully design and develop a complete water
monitoring systems using various hardware tools and software tools. Besides,
Objectives 2 is achieved by the water quality monitoring system provides
various analysis features, such as statistical analysis on water quality, generating
trendline graphs to understand the trends of the water quality, use machine
learning model to perform prediction on the next reading. Not only water
parameters, there is also analysis on the activitity history records to help user
find out the pattern of water quality monitoring process. Next, Objectives 3 is
completed by the water quality monitoring mobile application provides simple
and informative dashboard to monitor water quality. The last objectives is also
achieved by having a notification features provided by the mobile application,
it creates a background service which can still notify user about the water quality

if the application is closed.

271

8.2
Throughout the system testing phases, there are many limitations were

Limitation and Recommendation for future work
discovered. Based on the limitation, some recommendation has been made by
me and the testers involves is SUT to improve the system for future development.

Below shows the tables of limitations and recommendations for this system.

Table 8.2.1 Limitation and Recommendation

Limitation

Recommendation

The mobile application and the back-
end server is currently deployed and
host locally. So user cannot use the
mobile application in a real android
device and connot access the back-

end server service through internet.

The back-end server should be hosted
in a web server or cloud server, to
make it have a domain to access the
The

project should be export to become a

server. mobile application
executable mobile application, so that
user can install this applicatin in their
android smartphone to use this

application.

This system is currently able to
monitor fixed 3 water paramers,
dissolved oxygen, pH values, and
temperatures. It is unable to work
properly if the water tank have lesser
water parameters or more paramters
to monitor. For example, the water
tank only have 2 sensors, however the
mobile application is designed with 3
sensors fixed. Therefore this will
cause some problems in the mobile

application to works properly.

The system should be designed to be

flexible to contain the water
parameters of a water tank for
monitoring in the mobile application.
For example, if the water tank only
have 2 sensors, DO and PH, the
mobile application should works with
only 2 water parameters not including

the temperature.

The notification system is incomplete
such as it cannot selectively choose a

single channel or a groups of channel

The system should be designed to
allow users can selectively choose
which channels should toggle on or

off the notifications service.

272

to open notification from a list of

channels.
When user record the activities with
wrong information, the recorded

activities is unable to be edit or
deleted, logging

incorrect activiy and affect the

which cause

accuracy and correctness of analysis.

The should

include the edit and delete activity

mobile application

record function.

273

REFERENCES

Azlan Othman, N., Salwa Damanhuri, N., Syafig Mazalan, M. A., Addayani
Shamsuddin, S., Hussaini Abbas, M., & Chiew Meng, B. C., 2020. Automated
water quality monitoring system development via LabVIEW for aquaculture
industry (Tilapia) in Malaysia. Indonesian Journal of Electrical Engineering
and Computer Science, 20(2), pp.805.
https://doi.org/10.11591/ijeecs.v20.i2.pp805-812

Zhou, X., 2019. Brief overview of world aquaculture production An update
with latest available 2017 global production data. FAO Aquaculture
Newsletter, pp6-8.

Masser, M. P., Rakocy, J., & Losordo, T. M., 1992. Recirculating Aquaculture
Tank Production Systems Management of Recirculating Systems. Southern
Regional Aquaculture Center, 452.

Purina Animal Nutrition, 2023. Sudden Loss of Fish. Management : Pond
Management [Online]. Available at https://www.purinamills.com/fish-and-
aquatics-feed/education/detail/sudden-loss-of-
fish#:~:text=Some%20fish%20culture%20systems%?20rely,minutes%200f%2
0a%20systems%20failure [Accessed on 18 March 2023].

Kenekar, A., 2020. Impact Of Algal Blooms On Aquaculture And Effective
Solution. Organica Biotech [Online]. Available at
https://organicabiotech.com/impact-of-algal-blooms-on-aquaculture-and-
effective-
solution/#:~:text=Effects%200f%20Harmful%20Algal%20Bloom&text=The
%20non%2Dtoxic%20producing%20species,eventually%20leads%20t0%?20fi
sh%20Kkills [Accessed on 18 March 2023].

Priyadarshani, 1., Sahu, D. and Rath, B., 2012. Algae in aquaculture. Int. J.
Health Sci. Res, 2, pp.108-114.

Norambuena, F., Hermon, K., Skrzypczyk, V., Emery, J. A., Sharon, Y.,
Beard, A., & Turchini, G. M., 2015. Algae in Fish Feed: Performances and
Fatty Acid Metabolism in Juvenile Atlantic Salmon. PLOS ONE, 10(4),
e0124042. https://doi.org/10.1371/journal.pone.0124042

Low Dissolved Oxygen in Water Causes, Impact on Aquatic Life — An
Overview. (2009, February). Minnesota Pollution Control Agency, pp.1-2.

WebMD Editorial Contributors., 2023. How to Change Fish Tank Water.
WebMD. https://thefishsite.com/articles/how-to-achieve-good-water-quality-
management-in-aquaculture

274

How to achieve good water quality management in aquaculture., 2015. The
Fish Site. https://pets.webmd.com/how-to-change-fish-tank-
water#:~:text=Changing%?20your%?20fish’s%20water%?20regularly,such%20a
s%?20nitrate%20and%20phosphate.

5.7 Nitrates., 2012. Environmental Protection Agency.
https://archive.epa.gov/water/archive/web/html/vms57.html#:~:text=Together
%20with%20phosphorus%2C%20nitrates%20in,%2C%20temperature%2C%?2
0and%?20other%?20indicators.

Li, T., Lu, J., Wu, J., Zhang, Z., & Chen, L., 2022. Predicting Aquaculture
Water Quality Using Machine Learning Approaches. Water, 14(18), 2836.
https://doi.org/10.3390/w14182836

Martinez, P., 2021. What is Evolutionary Prototype? Mockkitt Wondershare.
https://mockitt.wondershare.com/prototyping/evolutionary-prototyping.html

F. J. Espinosa-Faller and G. E. Renddn-Rodriguez, “A ZigBee wireless sensor

network for monitoring an aquaculture recirculating system,” Journal of
Applied Research and Technology, vol. 10, no. 3, pp. 380-387, 2012.

M. Zhang, D. L1, L. Wang, D. Ma, and Q. Ding, “Design and development of
water quality monitoring system based on wireless sensor network in

aquaculture,” in Computer and Computing Technologies in Agriculture IV, D.
Li, Y. Liu, and Y. Chen, Eds., pp. 629-641, Springer, 2011.

02DCE @02DCE, 2020, Software Engineering Prototyping Model [Online].

Abinaya, T., Ishwarya, J. and Maheswari, M., 2019. A Novel Methodology for
Monitoring and Controlling of Water Quality in Aquaculture using Internet of
Things (1oT). 2019 International Conference on Computer Communication and
Informatics, ICCCI 2019. 2019

Anon, EZO™ RTD Temperature Circuit [Online]. Available at: https:/atlas-
scientific.com/embedded-solutions/ezo-rtd-temperature-circuit/ [Accessed: 14
September 2023a].

Anon, ESP32 [Online]. Available at:
https://www.espressif.com/en/products/socs/esp32 [Accessed: 20 April 2023b].

275

Anon, EZO™ Dissolved Oxygen Circuit [Online]. Available at: https:/atlas-
scientific.com/embedded-solutions/ezo-dissolved-oxygen-circuit/ [Accessed:
14 September 2023c].

Anon, EZO™ pH Circuit [Online]. Available at: https:/atlas-
scientific.com/embedded-solutions/ezo-ph-circuit/# [Accessed: 14 September
2023d].

Anon, 2012. FISH TO 2030 Prospects for Fisheries and Aquaculture,
Washington.

Anon, 2015, How to achieve good water quality management in aquaculture
[Online]. Awvailable at: https://thefishsite.com/articles/how-to-achieve-good-
water-quality-management-in-aquaculture [Accessed: 20 April 2023].

Anon, Industrial Dissolved Oxygen Probe [Online]. Available at: https://atlas-
scientific.com/probes/industrial-dissolved-oxygen-probe/ [Accessed: 14
September 2023e].

Anon, Industrial pH/ORP/Temp Probe. Atlas Scientific. Available at:
https://atlas-scientific.com/probes/industrial-ph-orp-temp-probe/ [Accessed: 14
September 2023f].

Anon, 2022a, MQTT: The Standard for 10T Messaging [Online]. Available at:
https://mqtt.org/ [Accessed: 20 April 2023].

Anon, Scrum vs Waterfall vs Agile vs Lean vs Kanban [Online]. Available at:
https://www.visual-paradigm.com/scrum/scrum-vs-waterfall-vs-agile-vs-lean-
vs-kanban/ [Accessed: 21 April 2023g].

Anon, SKU:SEN0237 [Online]. Available at:
https://wiki.dfrobot.com/Gravity _Analog_Dissolved Oxygen_Sensor SKU _
SENO02374#target_6 [Accessed: 20 April 2023h].

276

Anon, 2022b, The Importance of Water Quality in Fish Farming [Online].
Available at: https://edinburghsensors.com/news-and-events/water-quality-in-
fish-farming/ [Accessed: 11 April 2023].

Anon, 2019, What Is Aquaculture and Why Do We Need I1t? [Online]. Available
at: https://www.globalseafood.org/blog/what-is-aquaculture-why-do-we-need-
it/ [Accessed: 11 April 2023].

Anon, 2023, What Is LabVIEW? [Online]. Available at: https://www.ni.com/en-
my/shop/labview.html [Accessed: 20 April 2023].

Azlan Othman, N. et al., 2020. Automated water quality monitoring system
development via LabVIEW for aquaculture industry (Tilapia) in Malaysia.
Indonesian Journal of Electrical Engineering and Computer Science, 20(2),
p.805.

Ciji, A. and Akhtar, M.S., 2020. Nitrite implications and its management

strategies in aquaculture: a review. Reviews in Aquaculture, 12(2).

Das, B. and Jain, P.C., 2017. Real-time water quality monitoring system using
Internet of Things. 2017 International Conference on Computer,
Communications and Electronics, COMPTELIX 2017. 2017

Dupont, C., Cousin, P. and Dupont, S., 2018. 10T for aquaculture 4.0 smart and
easy-to-deploy real-time water monitoring with 1oT. 2018 Global Internet of
Things Summit, GIoTS 2018. 2018

Edward Lang, 2019, The Importance of Water Quality Monitoring in
Agquaculture [Online]. Awvailable at: https://www.bellenviro.co.uk/blog/the-
importance-of-water-quality-monitoring-in-aquaculture/ [Accessed: 11 April
2023].

277

Espinosa-Faller, F.J. and Renddn-Rodriguez, G.E., 2012. A zigbee wireless
sensor network for monitoring an aquaculture recirculating system. Journal of

Applied Research and Technology, 10(3).

FRESHWATER-AQUACULTURE, 2019, Water Quality in Aquaculture
[Online]. Awvailable at: https://freshwater-aquaculture.extension.org/water-

quality-in-aquaculture/ [Accessed: 20 April 2023].

Huang, J. et al., 2013. Development and test of aquacultural water quality
monitoring system based on wireless sensor network. Nongye Gongcheng

Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 29(4).

Huang, J.F., Lee, J.M. and Sun, P.C., 2013. Prolonged culture period on
production cost and factor input: A case from the Pacific Oyster, Crassostrea
gigas, farming industry in Yunlin County, Taiwan. Journal of the World

Aguaculture Society, 44(6).

Joseph, I. and Augustine, A., 2019. Marine biotechnology for food. Genomics
and Biotechnological Advances in Veterinary, Poultry, and Fisheries, pp.271—
283.

Lucy Towers, 2015, Water quality: a priority for successful aquaculture
[Online]. Available at: https://thefishsite.com/articles/water-quality-a-priority-

for-successful-aquaculture [Accessed: 11 April 2023].

Nicolai Berg Andersen, 2023, What Is the Waterfall Methodology? [Online].
NOAA, 2023, What is aquaculture? [Online]. Available at:

https://oceanservice.noaa.gov/facts/aquaculture.ntml [Accessed: 11 April 2023].

OS-system, 2020, Top 4 Software Development Methodologies: Comparison,
Differences, Pros and Cons [Online]. Available at: https://os-

system.com/contact/https://os-system.com/blog/top-software-development-

278

methodologies-comparison-differences-pros-and-cons/ [Accessed: 21 April
2023].

Romain Bourdon, WAMPSERVER, a Windows web development environment.
[Online]. Awvailable at: https://www.wampserver.com/en/ [Accessed: 14
September 2023].

Su, X., Sutarlie, L. and Loh, X.J., 2020. Sensors, Biosensors, and Analytical
Technologies for Aquaculture Water Quality. Research, 2020.

Taylor Otwell, The PHP Framework for Web Artisans [Online]. Available at:
https://laravel.com/ [Accessed: 14 September 2023].

Tolentino, L.K.S. et al., 2021. Development of an loT-based Intensive
Aguaculture Monitoring System with Automatic Water Correction.

International Journal of Computing and Digital Systems, 10(1).

Tsai, K.L. et al., 2022. 10T based Smart Aquaculture System with Automatic
Aerating and Water Quality Monitoring. Journal of Internet Technology, 23(1).
Will T, Measuring and Interpreting System Usability Scale (SUS) [Online].
Available at: https://uiuxtrend.com/measuring-system-usability-scale-sus/
[Accessed: 14 September 2023].

Xiaowei Zhou, 2019. Brief overview of world aquaculture production An
update with latest available 2017 global production data. FAO Aquaculture
Newsletter, pp.6-8.

Yue, K. and Shen, Y., 2022. An overview of disruptive technologies for

aquaculture. Aquaculture and Fisheries, 7(2), pp.111-120.

Zhang, M. et al., 2011. Design and development of water quality monitoring
system based on wireless sensor network in aquaculture. IFIP Advances in
Information and Communication Technology. 2011

279

APPENDICES

Appendix A: Template of User Satisfactory Survey

280

Participant No: 3
Name: Poey Wei Jun

Question

Strongly | Disagree | Neutral | Agree | Strongly
Disagree Agree
1 2 3 4 5

1. | think that 1 would
like to use this system

frequently.

2. | found the system
unnecessarily

complex.

3. | thought the system

was easy to use.

4. | think that 1 would
need the support of a
technical person to be
able to wuse this

system.

5. | found the various
functions in this
system were well

integrated.

6. | thought there was
too much
inconsistency in this

system.

7. 1 would imagine that
most people would
learn to use this

system very quickly.

281

8. | found the system
very cumbersome to

use.

9. | felt very confident

using the system.

10. I needed to learn a lot
of things before |
could get going with

this system.

1. What do you like best about the system?

2. What do you like least about the system?

3. Do you have any suggestions for improving the current system?

Appendix B: Usability Test Responses

Participant No: 1

Name: Seow Ding Han

need the support of a

Question Strongly | Disagree | Neutral | Agree | Strongly
Disagree Agree
1 2 3 4 5
1. | think that 1 would v
like to use this system
frequently.
2. | found the system v
unnecessarily
complex.
3. | thought the system v
was easy to use.
4. | think that I would v

282

technical person to be
able to wuse this

system.

5. | found the various v
functions in this

system were well

integrated.
6. | thought there was v
too much

inconsistency in this

system.

7. 1 would imagine that v
most people would
learn to use this

system very quickly.

8. | found the system v
very cumbersome to

use.

9. | felt very confident v

using the system.

10. I needed to learn a lot v
of things before |
could get going with

this system.

1. What do you like best about the system?
| The system is easy to use after get familiar with the system. \

2. What do you like least about the system?
Some function is incomplete, such as the recorded action is unable to be edit
and delete.

3. Do you have any suggestions for improving the current system?
| The recorded action should be able to be edit and delete.

283

Participant No: 2
Name: Tang Chu Lin

Question

Strongly

Disagree

Disagree

Neutral

Agree

Strongly
Agree

1

5

1. | think that I would
like to use this system

frequently.

2. | found the system
unnecessarily

complex.

3. | thought the system

was easy to use.

4. | think that | would
need the support of a
technical person to be

this

able to use

system.

5. | found the various
functions in this
system were well

integrated.

6. | thought there was
too much
inconsistency in this

system.

7. 1 would imagine that
most people would
this

learn to use

system very quickly.

8. | found the system
very cumbersome to

use.

284

9. | felt very confident v

using the system.

10. I needed to learn a lot v
of things before |
could get going with

this system.

1. What do you like best about the system?
The dashboard design is nice, it provides varous charts and analysis to
display useful information.

2. What do you like least about the system?

The notification function is not designed very well, user cannot specifically
set which channel notification to be open or closed. Besides, the notification
Is triggered using 2 button, yes or no, instead of a switch, so there is no
indicator to let user know whether the notification is currently on or off.

3. Do you have any suggestions for improving the current system?

Make each channel to have option to choose to open or close the notification
for the channel. Besides, can replace the yes or no button with a switch, to
make it looks more user-friendly and informative.

285

Participant No: 3
Name: Poey Wei Jun

Question

Strongly

Disagree

Disagree

Neutral

Agree

Strongly
Agree

1

5

1. | think that I would
like to use this system

frequently.

2. | found the system
unnecessarily

complex.

3. | thought the system

was easy to use.

4. | think that | would
need the support of a
technical person to be

this

able to use

system.

5. | found the various
functions in this
system were well

integrated.

6. | thought there was
too much
inconsistency in this

system.

7. 1 would imagine that
most people would
this

learn to use

system very quickly.

8. | found the system
very cumbersome to

use.

286

9. | felt very confident v

using the system.

10. I needed to learn a lot v
of things before |
could get going with

this system.

1. What do you like best about the system?

The record action function has a calendar for user to choose the date to
record activity. The calendar also have the marking of the dates to indicates
activity carried out on that particular date. This calendar allows the user can
have a overall and summarized view of all activities carried out in each
month.

2. What do you like least about the system?

The activity created cannot be edit or deleted anymore, which means user
cannot undo their operation when they make mistakes when adding new
events.

3. Do you have any suggestions for improving the current system?
Make the calandar also have the ability to delete and edit the recorded
activities.

