
1

Die Defect Detection for Integrated Circuit using Deep

Learning Object Detection Techniques

WONG TACK HWA

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Science (Honours) Software

Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

SEPTEMBER 2023

2

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature :

Name : Wong Tack Hwa

ID No. : 1901610

Date : 05/10/2023

3

APPROVAL FOR SUBMISSION

I certify that this project report entitled “Die Defect Detection for

Integrated Circuit using Deep Learning Object Detection

Techniques” was prepared by WONG TACK HWA has met the required

standard for submission in partial fulfilment of the requirements for the award

of Bachelor of Science (Honours) Software Engineering at Universiti Tunku

Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date : 05/10/2023

Signature :

Co-Supervisor : Khor Kok Chin

Date : 05/10/2023

4

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2023, WONG TACK HWA. All right reserved.

5

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion

of this project. I would like to express my gratitude to my research supervisors,

Dr. Tham Mau Luen and Dr. Khor Kok Chin for their invaluable advice,

guidance and their enormous patience throughout the development of the

research. In addition, I would also like to express my gratitude to my loving

parents and friends who had helped and given me encouragement to complete

my final year project.

6

ABSTRACT

Due to advances in semiconductor technology, the complexity of integrated

circuit design continues to increase, resulting in ever-smaller defects appearing

on these circuits. While some companies still rely on manual inspection for

defect detection, these small and hard-to-see defects often lead to high false

detection rates due to the human eye's limitations. This study aims to replace

manual inspection with an approach that uses object detection to identify subtle

defects, which are die rotation and die cracks. The YOLOv5n model is trained

to capture ROI and strengthened by incorporating the SAM model to enhance

segmentation performance. To address the issue of limited defect images, the

StyleGANv2 model is trained to generate extra defect images. The YOLOv7-

tiny model has been trained for object detection, with several enhancements

made to the network architecture and loss function, pruning is also applied to

decrease computational demands. The final model boosts a 3% increase in

mAP@0.5 and 2.5% increase in mAP@0.5:0.95, while reducing parameters by

65.34% and GFLOPS by 33.84% compared to the original YOLOv7-tiny model.

This study demonstrates that object detection can be an effective method for

detecting defects in integrated circuits. The proposed method is able to achieve

high accuracy and efficiency.

7

TABLE OF CONTENTS

LIST OF TABLES 10

LIST OF FIGURES 12

LIST OF SYMBOLS / ABBREVIATIONS 17

LIST OF APPENDICES 20

CHAPTER

1 INTRODUCTION 21

1.1 General Introduction 21

1.2 Importance of the Study 22

1.3 Problem Statement 22

1.3.1 Low Accuracy in Human Defect Detection 23

1.3.2 Limitations of human eyes in detecting

small defects 23

1.3.3 Limitations of traditional image processing 23

1.3.4 Challenges of over-rejection by AOI 23

1.4 Aim and Objectives 24

1.5 Research Questions 24

1.6 Research Hypothesis 25

1.7 Scope and Limitation of the Study 25

1.8 Proposed Solution 26

2 LITERATURE REVIEW 27

2.1 Traditional machine learning 27

2.2 Overview of deep learning 28

2.3 Overview of the method used in defect detection 35

2.3.1 Defect detection using image processing

technique 35

2.3.2 Defect detection with deep learning:

classification approach 40

8

2.3.3 Defect detection with deep learning: object

detection approach 58

2.4 Comparison 71

2.5 Overview of the object detection model 74

2.5.1 R-CNN 74

2.5.2 Fast R-CNN 75

2.5.3 Faster R-CNN 76

2.5.4 SSD 78

2.5.5 YOLO 79

2.6 Conclusion 81

3 METHODOLOGY AND WORK PLAN 83

3.1 Development Tool 83

3.1.1 PyTorch 83

3.1.2 MMAGIC 83

3.1.3 OpenCV 83

3.1.4 Visual Studio Code 84

3.1.5 Anaconda 84

3.1.6 Label Studio 84

3.1.7 Albumentations 84

3.2 Evaluation metric in object detection 84

3.2.1 IoU 85

3.2.2 Precision and recall 86

3.2.3 Precision-Recall curve 86

3.2.4 mAP 87

3.3 Workflow of model training 89

3.3.1 Data preparation 90

3.3.2 Data preprocessing 92

3.3.3 Data augmentation 104

3.3.4 Data annotation 105

3.3.5 Model Training 106

3.3.6 Model Improvements 107

3.3.7 Model Pruning 111

3.3.8 Performance Evaluation 114

3.4 Work Breakdown Structure (WBS) 114

9

3.5 Gantt Chart 116

4 RESULTS AND DISCUSSION 118

4.1 Comparison of OpenCV, YOLOv5, and SAM in

Capturing ROI 118

4.1.1 OpenCV 118

4.1.2 YOLOv5 Segmentation Model 119

4.1.3 SAM 121

4.1.4 Discussion 123

4.2 Comparison of StyleGANv2, StyleGANv2, and

Stable Diffusion 123

4.3 Comparison of YOLOv7-tiny, Modified

YOLOv7-tiny, and Pruned YOLOv7-tiny 125

4.3.1 Baseline 126

4.3.2 Setting-1 Model 126

4.3.3 Setting-2 Model 127

4.3.4 Setting-3 Model 127

4.3.5 Setting-4 Model 128

4.3.6 Setting-5 Model 128

4.3.7 Setting-6 Model 128

4.3.8 Setting-7 Model 129

4.3.9 Discussion 129

5 CONCLUSION AND RECOMMENDATIONS 131

REFERENCES 133

APPENDICES 139

10

LIST OF TABLES

Table 2.1: CNN configuration 40

Table 2.2: Accuracy and time comparison of CNN and other

models on the testing dataset

43

Table 2.3: k-NN test result for DATASET-NN 43

Table 2.4: SP&A-Net architecture 46

Table 2.5: Dataset Description with Feature Description, Defect

Types, and Example Images

47

Table 2.6: Comparison of SP&A-Net and Resnet-50 with ablation

study in different blocks

47

Table 2.7: Analysis of the effect of composition ratio on the

performance of SP&A-NET

47

Table 2.8: Dimensions of the multi-level feature maps extracted at

each scale

51

Table 2.9: Results of performance comparison among various

inspection methods

57

Table 2.10: Distribution of datasets 58

Table 2.11: Detection and Classification Accuracy of R-CNN 61

Table 2.12: Defect types in the dataset and number of images per

defect type

63

Table 2.13: Comparison of performance in the test set 63

Table 2.14: Performance comparison between models with and

without SELayer

64

Table 2.15: Distribution of datasets 66

Table 2.16: Selected hyperparameter for experiment with default

and modified value

66

Table 2.17: Results of model performance with different model

hyperparameters on test images

67

11

Table 2.18: Results of model performance with different data

augmentation parameters on test images

67

Table 2.19: Results of ensemble model 68

Table 3.1: Description of evaluation metrics in object detection 85

Table 3.2: Table of IC defect types and details 90

Table 4.1: Metrics of YOLOv5 Segmentation Model 119

Table 4.2: Computational Costs of YOLOv5 Segmentation Model 119

Table 4.3: Metrics and Computational cost of YOLOv5n Object

Detection Model

121

Table 4.4: FPS Performance of Various SAM Models 121

Table 4.5: FID Scores Comparison: StyleGANv2 vs. StyleGANv3 123

Table 4.6: Metrics and Computational Cost of Various YOLOv7-

tiny Models

125

12

LIST OF FIGURES

Figure 2.1: Difference between traditional Computer Vision

workflow and deep learning workflow

28

Figure 2.2: Illustration of the concept of perceptron 28

Figure 2.3: Illustration of perceptron in modern machine learning 29

Figure 2.4: Single-layer linear regression neural network 30

Figure 2.5: An MLP with one hidden layer of 5 hidden units 30

Figure 2.6: Illustration of the visual cortex in the human vision

system

32

Figure 2.7: A simple CNN architecture 32

Figure 2.8: A simple illustration of convolution operation 33

Figure 2.9: Max-pooling operation with window shape of 2 ∗ 2 34

Figure 2.10: Convolution operation with padding 34

Figure 2.11: Mask image 35

Figure 2.12: Reference template 36

Figure 2.13: (a) Reference image (b) Test image (c) Difference

image

36

Figure 2.14: Wavelet energy in the image 37

Figure 2.15: 20 sub-images of a wafer die 37

Figure 2.16: (a) Original scratch image on die. (b) Images after

applying median and Sobel filters

38

Figure 2.17: CNN architecture 40

Figure 2.18: Illustration of defect image cluster analysis results by

identified class

41

Figure 2.19: Five defects in Dataset-TT 42

Figure 2.20: Misclassified “unknown” defect vs ring-shaped

particle image

42

13

Figure 2.21: Self-proliferation process 44

Figure 2.22: Self-attention block 45

Figure 2.23: SP&A Block 46

Figure 2.24: Performance evaluation of AEI defect pattern 48

Figure 2.25: Performance evaluation of ADI defect pattern 48

Figure 2.26: Performance evaluation of API defect pattern 48

Figure 2.27: Inspection framework's pipeline 50

Figure 2.28: Architecture of the MST-GAN 50

Figure 2.29: Structure of MSCE 51

Figure 2.30: Structure of CSFF 51

Figure 2.31: Structure of swin transformer decoder 52

Figure 2.32: Structure of patch expanding 52

Figure 2.33: Structure of MSTG 53

Figure 2.34: Flowchart of the inspection process 54

Figure 2.35: The visual output obtained from various GAN models 55

Figure 2.36: Pixel value distribution after applying transposed

convolution

56

Figure 2.37: Pixel value distribution after applying pixel shuffle 56

Figure 2.38: Performance of the multi-scale weight mask Inspection

Framework

57

Figure 2.39: Workflow of the system 58

Figure 2.40: Example image of defective semiconductor unit 59

Figure 2.41: The R-CNN’s classification output reveals the position

of the defect(s), defect type, and the level of confidence

in the classification. The images (a-d) depict examples

of die crack, pinhole, blob, and underfill

60

Figure 2.42: Modified YOLOv5x architecture 62

14

Figure 2.43: SELayer architecture 62

Figure 2.44: Visualisations of test results for the model with

SELayer in the test set

64

Figure 2.45: Illustration of ensemble model 68

Figure 2.46: Example of NMS and WBF 68

Figure 2.47: Overview of R-CNN 74

Figure 2.48: Overview of Fast R-CNN 75

Figure 2.49: Overview of Faster R-CNN 76

Figure 2.50: Overview of RPN 76

Figure 2.51: Network architecture of SSD 78

Figure 3.1: Illustration of IoU 86

Figure 3.2: Precision x Recall curve 87

Figure 3.3: Workflow for training YOLOv7-tiny object detection

model

89

Figure 3.4: Die defects 91

Figure 3.5: Flowchart for Capturing ROI of IC Chip Using

OpenCV

92

Figure 3.6: Effects of Smoothed Polygon 92

Figure 3.7: Workflow for training YOLOv5 segmentation model 94

Figure 3.8: Flowchart for Inference Process of YOLOv5

Segmentation Model in Capturing the ROI of IC Chip

95

Figure 3.9: Masks and Bounding Box of IC Chip Obtained from

SAM

97

Figure 3.10: Exported Dataset in JSON Format 97

Figure 3.11: Exported Dataset in COCO Format 98

Figure 3.12: Exported Datasets in YOLO Text File Format 98

15

Figure 3.13: Hyperparameters Configuration for YOLOv5

Segmentation Model

100

Figure 3.14: Inference Result with Mosaic Enabled 100

Figure 3.15: Flowchart for Inference Process of Ensemble Model in

Capturing the ROI of IC Chip

102

Figure 3.16: Masks and Bounding Boxes of Die Rotation Obtained

from SAM

105

Figure 3.17: Hyperparameters Configuration for YOLOv7-tiny

Object Detection Model

106

Figure 3.18: Convolutional Layer vs. CoordConv Layer: A

Comparison

108

Figure 3.19: Structure of GSConv 109

Figure 3.20: Structure of GS Bottleneck Module and VoV-GSCSP

Module

109

Figure 3.21: Combined Loss Function Code Incorporating CIOU

and NWD

110

Figure 3.22: Workflow for Network Slimming 111

Figure 3.23: Workflow for LAMP Pruning 112

Figure 3.24: Gantt chart for Preliminary Planning and Project

Planning from 30/1/2023 to 26/3/2023

116

Figure 3.25: Gantt chart for Project Planning from 27/3/2023 to

18/4/2023

116

Figure 3.26: Gantt chart for Model Developing from 19/4/2023 to

28/5/2023

117

Figure 3.27: Gantt chart for Model Developing from 29/5/2023 to

9/7/2023

117

Figure 3.28: Gantt chart for Model Developing from 10/7/2023 to

20/8/2023

117

16

Figure 3.29: Gantt chart for Model Deployment from 21/8/2023 to

2/9/2023

117

Figure 4.1: Results of OpenCV in Capturing ROI 118

Figure 4.2: Results of YOLOv5n-seg in Capturing ROI 119

Figure 4.3: Results of YOLOv5s-seg in Capturing ROI 120

Figure 4.4: Predicted Masks by YOLOv5n-seg and YOLOv5s-seg

for Rotated IC Chip

120

Figure 4.5: Predicted Masks by Various SAM Models 122

Figure 4.6: Predicted Masks by SAM_VIT_b and SAM_VIT_l for

Rotated IC Chip

122

Figure 4.7: Generated Die Rotation Images 124

Figure 4.8: Loss and mAP Graphs for Baseline Model 126

Figure 4.9: mAP Graph for Setting-1 Model 126

Figure 4.10: Graph of Ordering of Batch Normalization Parameters

for Setting-3 Model

127

Figure 4.11: Graph of Ordering of Batch Normalization Parameters

for Setting-6 Model

128

17

LIST OF SYMBOLS / ABBREVIATIONS

1-D WT One-dimensional wavelet transform

2-D WT Two-dimension Wavelet Transform

ADA Adaptive Discriminator Augmentation

AdamW Adam with decoupled weight decay

ADI After Development Inspection

AEI After Etch Inspection

AI Artificial Intelligence

AOI Automatic Optical Inspection

AP Average Precision

API After Polish Inspection

CIoU Complete Intersection over Union

CNN Convolutional Neural Network

CSFF Cross-scale feature fusion

CSP Cross Stage Partial

DSC Depth-Wise Separable Convolutions

DT Destructive Method

DWConv Depthwise Convolution

E-ELAN Extended Efficient Layer Aggregation Network

ELAN Efficient Layer Aggregation Network

FID Fréchet inception distance

FPN Feature pyramid network

GC Global-Context

GFLOPS Giga Floating Point Operations Per Second

IC Integrated Circuit

IDE Integrated Development Environment

IOU interception over union

IoU Intersection over union

k-NN K-nearest neighbours

LoRA Low Rank Adaptation

mAP mean Average Precision

MLP Multilayer Perceptron

MSCE Multi-scale CNN encoder

MSTG Multi-scale template generation

18

MST-GAN Multi-scale GAN with transformer

NAG Nesterov Accelerated Gradient

NDT Non-Destructive Method

NL Non-Local

NMS Non-Maximum Suppression

NWD Normalized Wasserstein Distance

PAN Path Aggregation Network

PANet Path Aggregation Network

PE Patch expanding

RCNN Region-based Convolutional Neural Network

ReLU Rectified Linear Unit

RLE Run-length encoding

ROI Region of interest

RPN Region Proposal Network

RPN Region Proposal Network

SAE Stacked autoencoder

SAM Segment Anything Model

SC Standard Convolutions

SE Squeeze-and-Excitation

SNL Simplified-Non-Local

SOTA State-of the art

SP&A-Net Self-proliferation-and-attention neural network

SPP Spatial Pyramid Pooling

SPPF Spatial Pyramid Pooling-Fast

SPPnet Spatial Pyramid Pooling network

SSD Single Shot MultiBox Detector

STB Swin transformer blocks

STD Swin transformer decoder

SVM Support Vector Machine

SVM-rbf Support vector machine with the radial basis kernel

VRAM Video Random Access Memory

WBF weighted box fusion

WME Wafer Map Editor

WTM Modulus of the wavelet transform

19

WTMS Modulus of the wavelet transform sum

YOLO You Only Look Once

ZF Zeiler and Fergus

20

LIST OF APPENDICES

Appendix A: Comparison of Channel Graphs between Setting-2 and

Setting-3 Models

138

Appendix B: Comparison of Channel Graphs between Setting-2 and

Setting-4 Models

138

Appendix C: Comparison of Channel Graphs between Setting-5 and

Setting-6 Models

138

Appendix D: Comparison of Channel Graphs between Setting-5 and

Setting-7 Models

139

Appendix E: Configuration File for StyleGANv2 140

Appendix F: Configuration File for StyleGANv3 141

Appendix G: Configuration File for Stable Diffusion Fine-Tune

with LoRA

142

Appendix H: Model Configuration File for Original YOLOv7-tiny

Neck

143

Appendix I: Model Configuration File for Modified Neck with

CoordConv

144

Appendix J: Model Configuration File for Modified Neck with

VoVGSCSP and GSConvs

145

Appendix K: CoordConv Implementation in YOLOv7-tiny Neck:

Code Snippet

146

Appendix L: GSConv, GSConvs, and VoV-GSCSP Implementation

in YOLOv7-tiny Neck: Code Snippet

147

21

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Thousands to millions of transistors, resistors, and capacitors are

interconnected and layered on a thin semiconductor substrate to form an

integrated circuit (IC) (Arena Solutions, 2023).

The primary manufacturing processes for integrated circuits can be

categorized into three main parts, which are the formation of the silicon wafer,

wafer fabrication, and assembly or testing. During the formation stage, silicon

crystals are generated and then sliced into thin sections, creating silicon wafers.

These wafers serve as the foundational material for constructing integrated

circuits (ICs). During the fabrication stage, semiconductor materials undergo a

series of complex steps to produce the individual parts of the IC. During the

assembly stage, Individual parts of the IC are removed from the wafer and

assembled into a package. This typically involves attaching the IC to a substrate

or lead frame, enclosing it in ceramic or plastic, and incorporating wire bonds

to connect the IC to the leads. Lastly, testing will be performed to ensure each

IC performs as planned (Alam and Kehtarnavaz, 2022).

Currently, there are two commonly used inspection procedures for ICs,

which can be broadly categorized into DT and NDT. DT involves inspecting the

IC without damaging it, while NDT involves inspecting the IC by disassembling

the assembled IC. The majority of the industry uses one of the NDT methods,

specifically AOI, for inspection. AOI consists of both hardware and software

components. The hardware includes a set of image sensors and illumination

devices used to capture images of the IC. The software utilizes an inspection

algorithm to detect defects from captured images. These inspection algorithms

can be classified into two main categories, which are traditional image

processing techniques and deep learning techniques (Batool et al., 2021).

Defect detection is extremely important in two critical steps of IC

packaging, which are the die attachment stage and the wire bonding stage.

Numerous defects such as misplaced or misaligned die, too much or too little

epoxy, and missing solder bumps, are found in the wire bonding stage, resulting

22

in compromised mechanical reliability and affecting the thermal or electrical

efficiency of IC. Defect detection is also utilised during the wire bonding phase

to identify defects such as broken, missing, or sagging wires, which could

disrupt the intended electrical signal transmission from the IC (Alam &

Kehtarnavaz, 2022).

1.2 Importance of the Study

One of the standards in the semiconductor manufacturing industry is to ensure

the long-term reliability of semiconductors. This not only translates into an

enhanced user experience but also extends the lifespan of the products they

power. Particularly, semiconductors find applications in critical domains such

as medical and military equipment, where sudden failure or breakdown can

cause serious safety and reliability issues. Defect detection then becomes an

important safeguard to thoroughly screen out defective semiconductors before

they enter the market. Premature failure of equipment can also damage a

company's reputation and incur warranty costs. Defect detection also plays a

crucial role in process improvement and optimization. In the case of a significant

number of IC chips exhibiting die rotation problems, it serves as a valuable

indicator of potential issues during the die soldering process or with the die

soldering machine itself. Defect detection helps to identify the root cause of

defects and thus provides an indicator for process improvement. Maintaining a

high yield enhances the company's reputation and provides it with a significant

competitive advantage. AOI machine is costly, but if object detection can

replace the AOI machine's algorithms, the only required equipment is a

microscope for capturing IC images and a computer running the object detection

software. This could result in significant cost savings. By automating the defect

detection process, the company can redirect human resources from defect

detection to other critical tasks, ultimately enhancing operational efficiency

within the industry.

1.3 Problem Statement

Although there are existing methods for semiconductor defect detection, such

as human inspection, AOI machines, and traditional image processing, but these

methods still have their own disadvantages and limitations.

23

1.3.1 Low Accuracy in Human Defect Detection

Companies often use manual methods for defect detection, but training an

employee to perform defect detection takes a significant amount of time, or

roughly 6 to 9 months of training, to achieve 90% accuracy. However, within

15 months of training, for a variety of reasons, such as increased difficulty due

to product evolution, decreased motivation due to stress, or process advances,

the accuracy of the manual inspection drops dramatically to about 70% to 85%

(Mat Jizat et al., 2021).

1.3.2 Limitations of human eyes in detecting small defects

The human eye cannot detect small defects, and manual inspection is

inappropriate when some inspection settings are detrimental to human health

(Jin and Chen, 2022). Creating more difficult manufacturing procedures is taken

medicine in order to create smaller devices, and the demand for smaller and

more complex integrated circuits is also increasing, which leads to an increase

in the rate of defects. These defects are usually so miniscule that they are

difficult for the human eye to discern (Aryan, Sampath and Sohn, 2018). For

example, misalignment of the die by as little as ten micrometres or rotation of

the die by less than one degree.

1.3.3 Limitations of traditional image processing

As mentioned, inspection algorithms in AOI can be classified into traditional

image processing and deep learning techniques. However, the traditional image

processing technique struggles to handle backgrounds with complex textures,

noise, or varying lighting conditions (Bhatt et al., 2021). Traditional image

processing techniques are highly dependent on feature engineering and require

experienced engineers to pre-process the dataset, such as feature selection, noise

reduction, feature extraction and selection algorithms. However, this procedure

may lead to information distortion or loss, which reduces the accuracy of pattern

recognition. (Batool et al., 2021).

1.3.4 Challenges of over-rejection by AOI

Over-reject is a very common problem in AOI if the AOI system is set to be too

sensitive or has incorrect programming. The AOI system could classify a lot of

24

false positives or perfectly functional items as faulty, leading to needless rework

or waste, which results in higher expenses, lower efficiency, and lower yield in

the IC manufacturing industry.

1.4 Aim and Objectives

This study aims to develop a comprehensive deep learning visual-based

inspection approach that based on object detection techniques for detecting die

rotation and die crack defects in IC, with the goal of minimising false positive

and false negative rates.

Objective:

• Apply data augmentation and StyleGANv2-generated images to

enhance segmentation dataset robustness and object detection data

diversity. Compare the performance between StyleGANv2,

StyleGANv3, and Stable Diffusion.

• Develop a YOLOv5n segmentation model for precise ROI

localization and explore an ensemble approach with the YOLOv5n

object detection model and Segment Anything Model (SAM) to

enhance segmentation accuracy. Compare the performance of

capturing ROI between YOLOv5, ensemble model of YOLOv5n

and SAM, and OpenCV.

• Train a YOLOv7-tiny model for die crack and rotation detection,

incorporating loss function improvements, network architecture

improvements, and pruning.

1.5 Research Questions

• What technique can be used to solve the problem of insufficient defect

images, and how to increase the robustness of datasets?

• What is the suitable technique to capture the ROI, and how to increase

the segmentation accuracy?

• How to improve the accuracy of the object detection model? How to

further decrease the computational cost of the model?

25

1.6 Research Hypothesis

• With datasets containing fewer than 500 images, StyleGANv2

demonstrates superior performance compared to StyleGANv3 and

Stable Diffusion.

• SAM outperforms YOLOv5, followed by OpenCV, in effectively

capturing and segmenting the ROI of the IC chip.

• Modifying the original YOLOv7-tiny model can lead to an increase in

mAP, while pruning can significantly reduce computational costs.

1.7 Scope and Limitation of the Study

The project’s scope is to develop a comprehensive deep learning visual-based

inspection approach using deep learning techniques to detect die defects in

wireless earphone IC from a well-known manufacturer, which include die crack

and die rotation. To capture the ROI of the IC chip, the YOLOv5n segmentation

model was trained, and an ensemble model based on YOLOv5n object detection

and SAM was developed. The object detection model based on YOLOv7-tiny

was trained, and several improvements were performed to increase the accuracy.

To further decrease the computation cost of YOLOv7-tiny, pruning was

performed.

This study only focuses on detecting the two defects in the die during

the IC packaging phase, which are die defect and die rotation. It does not

consider other defects in other components, such as defects in PCB, LED, and

wires and bonds. It does not consider other die defects such as misaligned and

missing die. It also does not consider the epoxy defect and foreign molecules on

the die. Moreover, this study does not implement image processing techniques

such as super-resolution and image reconstruction. Thus, the proposed system

might not be able to work as expected when the input image is corrupted, or the

image is very blurred. Most importantly, this study examines potential methods

for defect detection, but it does not specifically discuss how such methods may

be put into practice in real-world production settings. This study’s primary

objectives are exploring and evaluating these techniques rather than their

implementation in the industry.

In terms of development, the limitation of this study is the

computational resources available The dataset are provided by the industry

26

partner, ASPL Malaysia Sdn Bhd. This dataset are confidential and all the deep

learning model were trained on local machine to prevent information leakage.

The local machine is equipped with RTX3060 mobile and AMD Ryzen 7 5800H

CPU. Due to the limited 6GB VRAM available, some complicated networks

cannot be trained, such as fine-tuning the stable diffusion model with textual

inversion or detail-preserving visual conditions. Some complicated blocks such

as attention or transformer modules, can also not be implemented into the

original YOLOv7-tiny model. Nevertheless, the pruning repository used in this

study does not supply those modules with complicated operations, such as

modules that involve shuffle or slicing operations and modules that involve

weight sharing.

1.8 Proposed Solution

The proposed solution in this study is to use object detection to detect die

rotation and die crack defects. Lim et al. (2023) proposed a PCB defect detection

model based on YOLOv5. They proposed a multi-scale FPN based on the

original YOLOv5 and modified the original CIOU loss function to increase the

performance of YOLOv5 in detecting small defects. As a result, the modified

YOLOv5 attained a mAP@0.5:0.95 of 81.20%, marking a 3.65% increase over

the original YOLOv5 model. Additionally, Lu et al. (2022) proposed a neural

network for IC defect detection that incorporates a SELayer into the original

backbone of the YOLO5x model. This modification resulted in a significant

increase in accuracy, with a mAP@0.5 of 95.4.

 The two studies mentioned above have shown that changing the

YOLO model's components could significantly enhance the model's

performance, leading to a high accuracy rate in defect detection systems. The

additional aspect that needs to be addressed in this study is to find a suitable

way to capture the ROI of IC, explore new data augmentation methodologies,

find a solution to solve the problem of insufficient images and reduce the

computation cost of YOLO by pruning.

27

CHAPTER 2

2 LITERATURE REVIEW

2.1 Traditional machine learning

For a task like image classification, one of the huge differences between

machine learning and deep learning is that the feature that can represent the

picture informative in a discrete area needs to be extracted manually through

feature extraction to represent the definitions of each class, which are also

known as “bag of words”. An image is classified as containing a specific item

if the image contains a sufficient number of features in another image. This

process is done by looking up the “bag of words” in another image during the

inference process (Mahony et al., 2019).

 In the traditional machine learning process, filtering the unimportant

features and extracting those features that best describe the characteristic of an

object in the image is necessary. This process often requires an experienced

computer vision engineer, and it takes a very long time as engineers are needed

to fine-tune the parameters in order to extract those important features. This is

one of the main challenges of traditional machine learning (Mahony et al., 2019).

 In a neural network, no feature extraction process is required as the

neural network can identify the underlying patterns of each class and

automatically extract those important features. In short, the challenge of

traditional machine learning has been solved by deep learning as the neural

network now carries out the feature extraction process, and no experienced

computer vision engineer is needed anymore. Figure 2.1 shows how deep

learning has eliminated the process of feature extraction.

28

Figure 2.1: Difference between traditional Computer Vision workflow and deep

learning workflow (adopted from Mahony et al. (2019))

2.2 Overview of deep learning

Perception, which is the origin model of the neural network, was introduced by

Frank Rosenblatt (1957). The idea of perception is based on the biological

neuron. Figure 2.2 illustrates the concept of the perceptron, which takes inputs

from other neurons, processes them, and then emits an output signal. The retina

unit sends its data to the projection unit, which then transmits it to the

association unit. The signal will be fired if the total signal is equal to or greater

than the association unit threshold (Wang & Raj, 2017).

Figure 2.2: Illustration of the concept of perceptron (adopted from Wang & Raj

(2017))

29

In most of the modern neural network, the association unit is often to be ignored,

as shown in Figure 2.3 (Wang & Raj, 2017).

Figure 2.3: Illustration of perceptron in modern machine learning (adopted from

Wang & Raj (2017))

Perceptron nowadays also refers to a single-layer neural network, which can be

illustrated by linear regression and is widely used for solving regression

problems. Based on the assumption of linear regression, a linear relationship is

assumed to be happening between the dependent variable y and the dependent

variable x. Thus, y can be represented by the weighted sum of feature x with

some noise, which is assumed to be normally distributed. The linear regression

can be expressed in mathematical form: 𝑦̂ = 𝑤1𝑥1 + ⋯ + 𝑤𝑑𝑥𝑑 + 𝑏. Where 𝑤𝑑

is weight and 𝑏 is bias. Weights define the importance of each feature and affect

the output value. The bias will be the output value when all the features have a

value of 0. The concept behind linear regression and perceptron is almost the

same. The only difference is linear regression does not consider the threshold

function.

30

Figure 2.4: Single-layer linear regression neural network (adopted from Zhang

et al. (2021))

Ignoring the weights and biases, Figure 2.4 illustrates the structure of the linear

regression. 𝑥1, … , 𝑥𝑑 represent the number of features. Without considering the

input layer, there is only one layer in the linear regression model. This led to

linear regression also being referred to as a single-layer fully connected neural

network (Zhang et al., 2021).

Due to the characteristic of a linear function, the perceptron can only

solve the linear problem in the real world as the decision boundary of the

perceptron is linear, which can only represent logical operations such as AND

or OR. Minski and Papert (1969) pointed out that the non-linear function, such

as XOR function, was unable to be represented by perceptron. At the time, this

became an obstacle to the development of neural networks (Shrestha and

Mahmood, 2019).

Figure 2.5: An MLP with one hidden layer of 5 hidden units (adopted from

Zhang et al. (2021))

31

The concept of universal approximation property has been introduced.

It stated the multilayer perceptron (MLP) can be formed by stacking a one-layer

neural network as a hidden layer into the original single one-layer neural

network, as shown in Figure 2.5. MLP can deal with the non-linear function

now as Boolean function and continuous function can be represented by MLP.

However, there was no proper way to guide the training process of MLP. The

neuron weight must be updated during the training process to generate the

desired output. A mechanism for quantifying the difference between the

generated and expected outputs is needed. When the number of layers increases,

it is getting harder to quantify the contribution of the output of each neuron to

the error (Shrestha and Mahmood, 2019).

 The challenge faced by MLP had been solved with the introduction of

backpropagation, “Backpropagation first propagates the error term at output

layer back to the layer at which parameters need to be updated, then uses

standard gradient descent to update parameters with respect to the propagated

error.” (Wang and Raj, 2017). With the help of backpropagation, MLP can now

adjust the neuron’s weight to reduce the error. In order to fully use the multilayer

perceptron, a non-linear activation function needs to be implemented in each

hidden neuron to introduce the non-linearity in MLP (Zhang et al., 2021).

 However, there are two limitations of MLP when dealing with

computer vision tasks. The huge number of weights or dimensions made the

MLP extremely computationally expensive to train. Let’s assume an image with

a size of 256 ∗ 256, resulting in 256 ∗ 256 ∗ 3 = 196,608 input dimension for

an image as the image normally contains three channels, which are red, green

and blue (RGB). Since the number of hidden layers is often bigger than the input

layer, the number of weights will surpass 196,6082 dimension even for a

shallow network. Secondly, according to research, nearby image pixels are

statistically related. However, MLP cannot capture the relationship between

nearby image pixels and thus cannot capture the spatial information as it does

not consider the image’s local structure (Prince, 2023).

32

Figure 2.6: Illustration of the visual cortex in the human vision system (adopted

from Wang & Raj (2017))

In order to solve the limitation of MP in computer vision tasks, Convolutional

Neural Network (CNN) has been introduced. The idea of CNN comes from the

visual cortex in the human brain. Figure 2.6 illustrates the information

processing process when the brain receives image signals. The primary visual

cortex (V1) receives the image pixel from the retina as a signal and extracts low-

level detail such as edge. The secondary visual cortex (V2) will then receive the

signal from V1 and extract the mid-level features such as orientation, spatial

frequency and colour. The signal will then be sent to V4, and high-level features

such as geometric shapes will be extracted. Lastly, the Inferior temporal gyrus

(IT) identifies the object based on the feature extracted before (Wang & Raj,

2017).

Figure 2.7: A simple CNN architecture (adopted from O’Shea & Nash (2015))

33

Figure 2.8: A simple illustration of convolution operation (adopted from Wang

& Raj (2017))

As shown in Figure 2.7, CNN typically consists of three components,

which are the convolutional layer, pooling layer and fully connected layer. The

convolutional layer will compute the dot product between the weight of local

regions in the input feature map and kernel, to extract the feature in the input

feature map and produce the output feature map. Non-linearity will be

introduced by applying the activation function, such as rectified linear unit, and

it only allows the active feature to pass through to the following layer (O’Shea

and Nash, 2015).

For example, as illustrated in Figure 2.8, the input feature map is the

leftmost matrix, the kernel is located in the middle, and the output feature map

is the rightmost matrix. The target matrix of the input feature map is the top-left

3x3 submatrix, as the size of the kernel is 3 ∗ 3 . The dot product will be

performed between the target matrix and the kernel and produce a result of 29.

When the stride is equal to one, the target matrix will slide one column to the

right to continue to perform the dot product. As a result, every 3 ∗ 3 target

matrix in the input feature map will be convoluted into one digit (Wang and Raj,

2017).

The objective of the pooling layer is to reduce the complexity of the

model via pooling operation. A fixed shape window will slide through the input

regions based on the stride, and each pooling window will output a digit to

summarise the features present in a region to decrease the dimensionality and

number of parameters. There are two types of pooling operation, which are

maximum pooling that computes the maximum value in the pooling window

and average pooling that computes the average value in the pooling window

(Zhang et al., 2021).

34

Figure 2.9: Max-pooling operation with window shape of 2 ∗ 2 (adopted from

Zhang et al. (2021))

For example, as illustrated in Figure 2.9, the top-left 2x2 submatrix in

the input feature map will be treated as a pooling window, a maximum value

between 0,1,3,4 will be computed, and the output will be 4 . The pooling

window will continue to slide through the input feature map from top to bottom

and left to right (Zhang et al., 2021).

Figure 2.10: Convolution operation with padding (adopted from Zhang et

al. (2021))

The fully connected layer in CNN, which is an MLP network, will treat

the feature map extracted by the convolutional layer and downsampling by the

pooling layer as input and perform the classification task. When the number of

convolutional layers increases, the receptive field of the output feature map will

become larger, thus increasing severe loss of edge pixels. This had become one

of the problems of CNN, which caused some of the useful information in the

image to be lost. To solve the problem, padding has been implemented. Padding

will add extra zero filler pixels around the edge of the image to increase the

input image’s effective size, enlarge the output size, and achieve the goal of

preserving the boundary information. For example, as illustrated in Figure 2.10,

35

3 ∗ 3 input is padded to 5 ∗ 5, producing a 4 ∗ 4 output matrix (Zhang et al.,

2021).

In short, CNN is able to extract the spatial information vis

convolutional layer, and computing resources are also decreased via pooling

operation, which solves the problem of spatial information and computing

resources faced by MLP.

2.3 Overview of the method used in defect detection

The following section will provide a comprehensive review of various defect

detection methods, including those based on traditional image processing

techniques, as well as deep learning methods such as classification and object

detection.

2.3.1 Defect detection using image processing technique

The following section will review defect detection methods that utilise image

processing techniques.

2.3.1.1 Template-based systems for wafer die surface inspection.

In 2005, a template-based vision system for the inspection of wafer die surfaces

had been developed by Shankar and Zhong. The system is able to detect the

defect as small as two-thousandths of an inch in a wafer that up to 8 inches.

Figure 2.11: Mask image (adopted from Shankar & Zhong (2005))

36

Figure 2.12: Reference template (adopted from Shankar & Zhong (2005))

Figure 2.13: (a) Reference image (b) Test image (c) Difference image

(adopted from Shankar & Zhong (2005))

The following is a description of the system’s step-by-step defect

identification procedure. Edge detection is performed on the reference image to

produce the mask image, as shown in Figure 2.11. Figure 2.12 illustrates the

reference template. For each die in the wafer, a subtraction operation is

performed between the test die image and reference image to produce an

absolute difference image, as shown in Figure 2.13. The pixel differences

between the two images are depicted in this absolute difference image. The

mask image is then multiplied with the difference image to reduce the potential

pixel inconsistencies arising from various factors. A rule-based defect

specification system will applied to the pixel difference discovered in the

difference image to determine whether the observed defect is tolerable or not

based on the rule set by the manufacturer.

37

As the system is based on a reference approach, a high-quality

reference image is a prerequisite to generate a perfect difference image that

avoids false detection and a high-quality reference image is needed to act as a

“golden” sample. However, high-quality reference is not always possible, which

has become one of the disadvantages of the system. Furthermore, unknown

defects or new defects might not be able to be detected using the reference

approach. Some of the defects that are hard to express in a rule-based system

might also produce false detection. Rule-based defect specification system is the

advantage of the system, as it can further classify the detected defect into

tolerable and critical defects.

2.3.1.2 Two-dimension wavelet transform (2-D WT) approach for

semiconductor wafer die surface inspection

Figure 2.14: Wavelet energy in the image (adopted from Yeh et al. (2010))

Figure 2.15: 20 sub-images of a wafer die (adopted from Yeh et al. (2010))

38

Figure 2.16: (a) Original scratch image on die. (b) Images after applying

median and Sobel filters (adopted from Yeh et al. (2010))

Yeh et al (2010) implemented a two-dimension wavelet transform (2-D WT)

approach for detecting the visual defects on semiconductor wafer die. The

wavelet transform is a mathematical technique for breaking down signals and

data into their component frequencies. A total of 4 types of 2-D wavelets will

be produced. Each set of 2-D wavelets can capture different aspects of the input

signal, including the smooth part, vertical detail part, horizontal detail part, and

diagonal detail part. This means that the 2-D WT is able to decompose an input

2-D signal, such as an image, into 2-D wavelet coefficient matrices that

represent smooth and detailed parts of the signal. “Wavelet energy” is used to

represent the squares of a pixel’s coefficient. An image’s objects retain more

wavelet energy than its backgrounds. Compared to pixels in smooth sections of

the object, pixels at corners, noisy clusters, or jagged edges retain substantially

more wavelet energy. WTMS describes the “clustering wavelet energy”, which

considers the local clustering of wavelet coefficients at a particular location in

the image by considering the wavelet energy of the neighbourhood around an

image pixel. Figure 2.10 illustrates the wavelet energy in an image, where the

whiteness of pixels indicates greater wavelet energy.

The following is a description of the system’s step-by-step defect

detection procedure, In step 1, to achieve the goal of high-resolution inspection,

an image is taken for each wafer die and then split into 20 smaller sub-images

as shown in Figure 2.11. In step 2, the median filter and Sobel filter is applied

to preprocess the sub-image, as shown in Figure 2.12. To reduce the

computational complexity, pixels within each sub-image will be preselected,

39

and WTMS will be calculated for these preselected pixels only. Step 3, wavelet

energy in each pixel can be expressed by WTM for each pixel in each sub-image

with a different scale, which is calculated by taking the absolute value of the

wavelet coefficients. A pixel will advance to the subsequent stage and be

selected for the computation of WTMS if the WTM of a pixel surpasses the

population mean and standard deviation derived from the golden image. In step

4, the calculation of WTMS will be executed for the chosen pixel at varying

scales.In step 5, the interscale ratio of the selected pixel will be calculated. A

pixel’s clustered wavelet energy at one scale is significantly greater than its

energy at another scale if the interscale ratio is less than zero. This indicates that

the pixel is more likely to be a defect at this scale than at other scales. Such

defects might manifest as irregular edges, sharp corners, or clustered noisy areas

in an image of a wafer die. The pixel with an interscale ratio of more than 0 is

classified as a non-defect pixel. The pixel with interscale ratio less than 0 will

enter the next step. The non-defective pixels such as the corner and edges of

water in golden image might also have a value of interscale that is less than 0.

To avoid false detection, the selected pixel with an interscale ratio of less than

zero is compared to those pixels with an interscale ratio of less than zero in the

golden image. The selected pixel is considered as non-defective if the detected

defect pixel belongs to the non-defective pixel in the golden image, else the

pixel is consider as defective pixel. Steps 2 to 6 will be repeated for the

remaining sub-images.

The advantage of the approach is it is suitable for a diverse array of

product categories as the comparison is made indirectly between the WTM in

the test image and the population mean and standard deviation in the golden

image. Instead of performing precise pixel-by-pixel matching between the

golden and test images, the approach is considered a non-reference method

based on the statistical comparison methodology. Most importantly, this method

eliminates the need for training and can directly execute inference.

The disadvantage of the approach is that the golden template is still

needed for comparison, and proper parameters such as wavelet basis or number

of decomposition levels must be chosen wisely to avoid false detection. It may

be necessary to experiment with different parameters to determine the optimal

40

parameters that vary on different datasets. Moreover, the approach cannot

categorise defect pixels into particular types of defects.

2.3.2 Defect detection with deep learning: classification approach

The following section will review defect detection methods that utilise the

classification approach.

2.3.2.1 Automatic defect classification for wafer surface damage using

CNN and k-NN

Figure 2.17: CNN architecture (adopted from Cheon et al. (2019))

Table 2.1: CNN configuration (adopted from Cheon et al. (2019))

CNN parameter Value

Number of convolution layers 4

Filter size 3 × 3

Number of pooling layers 2 max-pooling

Pooling filter size 2 × 2

Number of feature maps 32/32/64/64

Number of fully connected layers 1

Number of nodes in fully connected layer 512

Activation function ReLU

Regularization method Dropout

Classification function of the output layer Softmax

Loss function Categorical cross entropy

A deep learning-based automatic defect classification method was proposed by

Cheon et al (2019). The main objective is to classify different wafer surface

damage. The method is developed based on the CNN and k-nearest neighbours

algorithm (k-NN). The valid feature is extracted by CNN, while those defect

types that were not encountered during the training phase will be recognised by

41

k-NN. Figure 2.17 shows the CNN architecture, and the configuration of CNN

is shown in Table 2.1. ReLU activation function is applied to all the layers

except for the output layer. Dropout is utilised in CNN as a regularisation

technique to mitigate overfitting.

Figure 2.18: Illustration of defect image cluster analysis results by

identified class (adopted from Cheon et al. (2019))

The algorithm for detecting surface defects on semiconductor wafers

can be conceptually divided into two main phases. Clustering and threshold

configuration are carried out in the initial phase, while membership testing is

carried out in the subsequent phase. If the image exceeds the threshold, which

means the image is too far from other clusters, then no label will be assigned to

the image. This causes the k-NN to be slightly different from the regular k-NN.

The algorithm’s initial phase filters away the CNN training image that

was incorrectly labelled. The structure of CNN is then modified by applying the

sigmoid function as an activation function to the fully connected layer. This

process aims to normalise the feature vector within the range of zero to one. The

training image that was properly labelled is fed into the modified CNN, and the

feature vector will be output by the output layer and act as input for k-NN. The

k-NN classifier is then constructed for each cluster. The k number is set to one,

and Euclidean distance is used in calculating the distance. For each image in a

particular cluster, the total squared distance is computed between the image and

42

its single neighbouring image within the same class. The confidence limit which

can express as 100(1 − α) % will be involved in the threshold calculation. In

order to solve the problem of overlapping distance distributions due to the

presence of similar defect classes, α or the classification error rate is permitted.

The final threshold will be 90% percentile of the empirical distribution of the

total squared distance within each cluster as α is set to 0.1. The output of the

clustering is visualised in Figure 2.18.

In the second part of the algorithm, the inference image is passed to the

modified CNN and generates the feature vector. The feature vector generated is

then passed to k-NN for calculating the total squared distance between the

inference image and each cluster. The inference image will be classified as an

“unknown” defect if it exceeds the threshold for all clusters. Otherwise, the

inference image will be sent to the unmodified CNN to perform classification.

Figure 2.19: Five defects in Dataset-TT (adopted from Cheon et al. (2019))

Figure 2.20: Misclassified “unknown” defect vs ring-shaped particle image

(adopted from Cheon et al. (2019))

43

Table 2.2: Accuracy and time comparison of CNN and other models on the

testing dataset (adopted from Cheon et al. (2019))

Classifier
Train

accuracy

Valid

accuracy

Test

accuracy

CPU times

in training

CPU times

in testing

CNN 99.4% 98.7% 96.2% 42856 1.813

SAE 99.1% 94.0% 91.8% 49471 0.781

MP 99.9% 93.4% 92.8% 22757 1.313

SVM-rbf 100% 94.3% 92.5% 26485 125.516

MP

(extracted feature)
53.1% 56.3% 55.2% 3970 0.016

SVM-rbf

(extracted feature)
66.8% 62.9% 62.4% 145 0.203

Table 2.3: k-NN test result for DATASET-NN (adopted from Cheon et al.

(2019))

Defect class Threshold value
Number of images that

exceeds threshold

Spot 6.133 30

Rock-shaped particle 34.083 30

Ring-shaped particle 23.812 28

Misalignment 1.167 30

Scratch 43.700 30

Two datasets, dataset-TT and dataset-UN were used, dataset-TT was

used to train and test the unmodified CNN. This dataset contains 2,133 images

with five defective categories, as shown in Figure 2.19. Dataset-UN was used

to evaluate the ability of k-NN to detect instances of unknown defect categories.

This dataset contains 30 “unknown” defect images. As shown in Table 2.2, CNN

achieved the highest accuracy of 96.2% in the testing dataset while comparing

with other networks such as MP, SAE, SVM-rbf, MP and SVM-rbf with edge

detection algorithm. Table 2.3 shows the threshold for each cluster and the result

of using k-NN to detect unknown defects in Dataset-UN. Out of the thirty

unknown defects, k-NN failed to identify two images with “unknown defects”.

44

k-NN identified these two unknown defects as ring particle defects as these

defects look very similar, as shown in Figure 2.20.

The advantage of the method is it can identify the unknown defect.

Over time, equipment ageing and environmental changes can occur, and the

production process can change slightly. This leads to the emergence of new and

unknown defects. The existing trained CNN may make incorrect assessments of

these defects. The CNN needs to be retrained to detect these defects, but this

will face the problem that there might not be a sufficient number of images

available to train the CNN during the initial stages of the appearance of new

defects. The long training time and inference time had become disadvantages of

this method. As shown in Table 2.2, the training time required to train the CNN

is approximately 11.9 hours, and the inference time needed is 1.813 seconds for

an image, making it unsuitable for real-time inference.

2.3.2.2 Semiconductor defect pattern classification using SP&A Net

Figure 2.21: Self-proliferation process (adopted from Yuanfu Yang & Sun

(2022))

In 2022, YuanFu Yang and Sun proposed an architecture for semiconductor

defect pattern classification named SP&A-Net. A series of linear

transformations are applied in the process of self-proliferation to generate extra

feature maps. Channel-wise and spatial-wise attention mechanisms are applied

in the self-attention process to capture the feature map’s long-range relationship.

The primary objective of SP&A-Net is to reduce computational complexity

while upholding high accuracy in defect inspection tasks. There are two main

45

components in SP&A-Net, which are the self-proliferation block and the self-

attention block.

Self-proliferation block Is inspired by the DNA replication process,

which generates an extra feature map akin to the replication process in DNA to

increase the accuracy. This block performs a standard convolutional operation

and outputs a series of feature maps in the initial step. The subsequent step

involves applying a linear transformation through a depth-wise operation to

each channel of the feature map acquired from the previous convolutional stage,

resulting in a set of extra maps that are equivalent in quantity to the channels

present in the original feature map. The original feature map is then merged with

the extra feature map generated. The process of self-proliferation is illustrated

in Figure 2.21.

Figure 2.22: Self-attention block (adopted from Yuanfu Yang & Sun (2022))

The self-attention block aims to incorporate the information from other

positions in the sequence to enhance the attributes of specific query positions.

The self-attention block can be divided into sub-components, which are global

attention pooling, bottleneck transform, and fusion, as shown in Figure 2.22. By

considering the pairwise relationship between each location and the query

location, an attention map that illustrates the significance of each spatial location

within the input feature map is created by global attention pooling. Elementwise

multiplication is applied between the attention map and the input feature map to

generate the output feature map. The bottleneck transform captures the channel-

wise dependencies by emphasising the most significant channels in the feature

map and suppressing the unnecessary ones. In the fusion function, the global

context feature is aggregated into the input feature map by applying

46

broadcasting element-wise addition. The structure of the self-attention block is

illustrated in Figure 2.22.

Figure 2.23: SP&A Block (adopted from Yuanfu Yang & Sun (2022))

Table 2.4: SP&A-Net architecture (adopted from Yuanfu Yang & Sun (2022))

47

Table 2.5: Dataset Description with Feature Description, Defect Types, and

Example Images (adopted from Yuanfu Yang & Sun (2022))

Table 2.6: Comparison of SP&A-Net and Resnet-50 with ablation study in

different blocks (adopted from Yuanfu Yang & Sun (2022))

Table 2.7: Analysis of the effect of composition ratio on the performance of

SP&A-NET (adopted from Yuanfu Yang & Sun (2022))

r Accuracy precision Recall F1- Score #Params (M)

0.06 98.45% 97.45% 99.16% 98.30% 5.10

0.13 98.44% 97.43% 99.15% 98.28% 3.40

0.25 98.40% 97.37% 99.05% 98.20% 2.98

0.50 98.38% 97.32% 99.03% 98.17% 2.60

0.63 97.81% 96.75% 98.44% 97.58% 2.47

0.83 97.21% 96.38% 97.48% 96.93% 2.35

1.00 95.83% 94.24% 96.62% 95.42% 2.29

48

Figure 2.24: Performance evaluation of AEI defect pattern (adopted from

Yuanfu Yang & Sun (2022))

Figure 2.25: Performance evaluation of ADI defect pattern (adopted from

Yuanfu Yang & Sun (2022))

Figure 2.26: Performance evaluation of API defect pattern (adopted from

Yuanfu Yang & Sun (2022))

The self-proliferation-and-attention block is built by combining the

self-attention block and self-proliferation block. Self-proliferation-and-

49

attention block is built by applying the concept of inverted residual block, in

which a shortcut is implemented to mitigate the issue of gradient vanishing. In

this block, the dimension of the input channel is expanded, and the feature is

extracted, then the output will be projected back to the original smaller input

channel dimension. This block can be divided into four parts, as illustrated in

Figure 2.23, which are the expansion layer, convolution and self-attention layer,

compression layer, and inverted residuals. Additional feature maps are

generated in the expansion layer to enlarge the input dimension. In the

convolutional and self-attention layer, depth-wise convolution is applied to

extract the feature from the expanded feature map, and the long-range

dependencies are captured by the self-attention block. The output dimension is

then reduced by the compression layer to the same dimension as the input

dimension. The network architecture of SP&A-Net is shown in Table 2.4.

Three datasets, the AEI dataset, ADI dataset and the API dataset, were

used to evaluate the performance of SP&A-Net. Table 2.5 shows the 11 defect

categories of the dataset. An optimal strategy for SP&A-Net was found through

an ablation study, as shown in Table 2.6. In this ablation study, the SP&A-Net

was also compared to Resnet-50 with different blocks, such as SE blocks, NL

blocks, SNL blocks, and GC blocks. In addition, by taking into account the

trade-off between the f1-score and the number of parameters, an optimal

composition ratio (r) of 0.5 is selected for the self-proliferation within the

network through the ablation study, as shown in Table 2.7. As shown in Figures

2.24, 2.25, and 2.26, SP&A-Net outperforms the compared networks in terms

of accuracy with lower parameters across three different datasets.

The key advantage of the network is that the large kernel is no longer

necessary to capture the large receptive fields of the features since the network

can capture the spatial relationships in the feature maps, which leads to a

decrease in the computational cost of the network. Moreover, due to the extra

feature maps generated by the self-proliferation block, the accuracy of the

network has been further enhanced. The SP&A-Net attains impressive accuracy

levels while demanding fewer parameters and FLOPs than other baseline

networks.

50

2.3.2.3 Multi-scale inspection framework for surface defect detection

using MST-GAN

Figure 2.27: Inspection framework's pipeline (adopted from Chen et al., 2023)

Figure 2.28: Architecture of the MST-GAN (adopted from Chen et al. (2023))

A multi-scale inspection framework for surface defect inspection of IC metal

packages was proposed by Chen et al. (2023). The framework can be divided

into main parts, as shown in Figure 2.27.

MST-GAN consists of three components, which are a generator,

discriminator, and multi-scale encoder. MST-GAN learns the quality pattern

present in the image through training with 768 defect-free samples. MST-GAN

is able to simulate the input photo under defect-free conditions by “describing”

the intrinsic quality pattern of the input image and output a multi-scale defect-

free templates. The concept of generator and discriminator corresponds to the

min-max two player game, in which the generator will learn the data distribution

of real images through the training process and try to generate images that

closely resemble real ones while the discriminator will try to differentiate those

generated images and realistic image to assisting the generator in refining its

output. The multi-scale template is generated by the generator in MST-GAN

and the discriminator in MST-GAN differentiates between the real and

generated templates by leveraging fused high-level feature maps. To improve

51

the performance of the generator to generate more realistic images, the multi-

scale encoder extracts pyramid feature maps from the generated templates and

applies the information from these feature maps in the computation of the loss

function. MSCE and CSFF form the discriminator and multi-scale encoder. On

the other hand, the generator consists of MSCE, CSFF, STD and MSTG.

Figure 2.29: Structure of MSCE (adopted from Chen et al. (2023))

Table 2.8: Dimensions of the multi-level feature maps extracted at each scale

(adopted from Chen et al. (2023))

 high-level mid-level low-level

large-scale feature maps 8 × 8 × 256 16 × 16 × 128 32 × 32 × 64

mid-scale feature maps 8 × 8 × 128 16 × 16 × 64 32 × 32 × 32

small-scale feature maps 8 × 8 × 64 16 × 16 × 32 32 × 32 × 16

Figure 2.30: Structure of CSFF (adopted from Chen et al. (2023))

Figure 2.29 illustrates the structure of MSCE, which extracts multi-

scale features from multi-scale input images through multiple ResNet blocks in

52

MSCE. A series of feature maps of different sizes are obtained, which include

feature maps of small, medium, and large scales that capture low-level, mid-

level and high-level features of each input scale. Table 2.8 shows the dimension

of the extracted feature map for each input scale. Figure 2.30 illustrates the

structure of CSFF. Multi-scale feature map generated by MSCE is reconstructed

by CSFF via the bottom-up approach, and a feature pyramid will be produced.

Feature maps with different scales at the same level will be rearranged via

concatenation by MSCE. This rearranged feature map subsequently undergoes

a 1x1 convolutional layer. Subsampling and element-wise summation are

applied to the lower-level feature map. The lower-level feature map is now

added to the higher-level feature map. This suggests that some of the valuable

features present in high-level representations may also be represented in low-

level representations. Integration of MSCE and CSFF allows intrinsic features

in the input image to be efficiently captured in the pyramid feature map.

Figure 2.31: Structure of swin transformer decoder (adopted from Chen et

al. (2023))

Figure 2.32: Structure of patch expanding (adopted from Chen et al. (2023))

53

Figure 2.33: Structure of MSTG (adopted from Chen et al. (2023))

The structure of STD is shown in Figure 2.31. STD is built by three

submodules that contain two STBs and one PE, followed by another submodule

that contains only two STBs. The main objective of STD is reconstructing the

template feature by leveraging the fused high-level feature map to augment

MST-GAN’s modelling capability in capturing the intrinsic patterns of qualified

samples. The structure of PE is shown in Figure 2.32. Instead of transposed

convolution, pixel shuffling was chosen as an upsampling technique in PE, as

the zero padding in transposed convolution causes interference pixels to appear

in the rebuilt image, which hinders the accuracy of the subsequent inspection

process. Pixel shuffling effectively suppresses interfering pixels in the

reconstructed image. Template feature produced by STD is reconstructed via

three pathways in MSTG, as shown in Figure 2.33, resulting in a multi-scale

defect-free template.

54

Figure 2.34: Flowchart of the inspection process (adopted from Chen et al.

(2023))

Figure 2.34 illustrates the inspection process. The multi-scale input is

subtracted from the multi-scale defect template produced by well-trained MST-

GAN, resulting in a multi-scale difference image. The multi-scale average

feature map for the three distinct scales is derived by averaging the multi-scale

difference images with a collection of qualified training dataset images.

Subsequently, the multi-scale averaged feature map is inverted and normalised.

The process involves upsampling the averaged feature maps from the lower

scale and subsampling those from the higher scale. This is to fuse the averaged

feature maps of each scale with the average feature maps of the other scales,

resulting in the creation of the multi-scale weight mask. In particular, a mid-

scale weight mask is generated by combining the average feature map at the

mid-scale level with the subsampled large-scale average feature map and the

upsampled small-scale average feature map. Similarly, a large-scale weight

mask is generated by combining the large-scale average feature map with the

upsampled small-scale average feature map and the upsampled mid-scale

average feature map. The average feature map at the low-scale level is merged

with the subsampled large-scale feature map and the subsampled mid-scale

average feature map to yield a small-scale weight mask. In order to generate a

weighted difference image with small reconstruction errors and interfering

pixels, element-wise multiplication is applied between multi-scale weighted

mask and multi-scale difference image. The multi-scale adaptive thresholding

process involves the application of varying threshold values to the weighted

55

difference image across different scales and produces a thresholded multi-scale

difference image. This image highlights potential defects that might be present

in the weighted difference image. The thresholding value is computed using the

weighted difference image’s local means and standard deviations across

different scales. The multi-scale image patch-based defect evaluation process

involves the calculation of the defect probability of individual image patches by

applying the sliding windows strategy to the thresholded multi-scale difference

image. A threshold value is applied to calculate defect probability, and a binary

defect probability map for each image patch is generated. The applied threshold

is determined by taking into account the dimensions of the image, the size of

the sliding window, and a sensitivity factor of 0.0001. By computing scores for

all patches within the defect probability map at the three distinct scales, the

defect evaluation score is obtained. To determine whether the inspected sample

is defective, the defect evaluation score obtained is compared with the highest

defect assessment score derived from the training dataset.

Figure 2.35: The visual output obtained from various GAN models (Chen

et al. (2023))

56

Figure 2.36: Pixel value distribution after applying transposed convolution

(adopted from Chen et al. (2023))

Figure 2.37: Pixel value distribution after applying pixel shuffle (adopted

from Chen et al. (2023))

57

Figure 2.38: Performance of the multi-scale weight mask Inspection

Framework (adopted from Chen et al. (2023))

Table 2.9: Results of performance comparison among various inspection

methods (adopted from Chen et al. (2023))

Methods Error rate

(%)

Omission rate

(%)

Accuracy

(%)

P (%) R (%) F FPS

CycleGAN 6.25 25.5 82.7 85.2 93.8 0.893 20.4

DiscoGAN 1.14 98.0 75.9 76.5 98.9 0.863 19.6

GANomaly 57.4 69.6 39.6 66.3 42.5 0.518 186

Skip-

GANomaly
9.68 92.6 70.6 75.9 90.3 0.825 124

DifferNet 5.98 6.53 93.8 97.9 94.0 0.959 48.0

GAN-

based

template

28.9 2.84 77.2 98.8 71.0 0.826 22.2

MST-GAN 0.70 0.57 99.3 99.8 99.3 0.996 70.9

Figure 2.35 shows the defect-free templates generated by different

GAN models. The first column shows the original sample, followed from left to

right by the output of CycleGAN, DiscoGAN, the GAN-based template, and the

MST-GAN. Compared to the other models, MST-GAN shows the strongest

ability to extract the desired intrinsic patterns as the other models have their own

drawbacks. CycleGAN’s outputs come with different contrast levels,

DiscoGAN fails to extract the desired intrinsic patterns, and the GAN-based

templates also fail at some point. Figure 2.36 and Figure 2.37 show the

performance of transposed convolution and pixel shuffle. As shown by the

rectangular boxes in Figure 2.36, transposed convolution introduces some

58

interfering pixels in the corners of the differential image, while pixel shuffle

does not. The impact of the multi-scale weight mask on inspection performance

is illustrated in Figure 2.38. With weighted masks, there is a lower error rate and

omission rate compared to the framework without weighted masks. Compared

to other SOTA inspection methods, the framework achieved the best

performance of 0.996 f1 score, as shown in Table 2.9.

The advantage of this framework is that defect-free templates can be

automatically generated by capturing the intrinsic quality patterns of the input

image in order to achieve extremely high accuracy. However, the drawback of

requiring a relatively high amount of computation and memory to run the model

is also apparent, which leads to the need for a more powerful machine to run the

model.

2.3.3 Defect detection with deep learning: object detection approach

The following section will review defect detection methods that utilise defect

detection approaches.

2.3.3.1 Die-level defect detection or classification system using R-CNN

Table 2.10: Distribution of datasets (adopted from You et al. (2022))

Defect Type Training Set Validation Set Testing Set

Defect-less 0 0 4

Blob 5 5 12

Die crack 5 3 4

Pin hole 5 5 5

Underfill 5 5 10

Figure 2.39: Workflow of the system (adopted from You et al. (2022))

59

Figure 2.40: Example image of defective semiconductor unit (adopted

from You et al. (2022))

60

Figure 2.41: The R-CNN’s classification output reveals the position of the

defect(s), defect type, and the level of confidence in the

classification. The images (a-d) depict examples of die crack,

pinhole, blob, and underfill (adopted from You et al. (2022))

61

Table 2.11: Detection and Classification Accuracy of R-CNN (adopted from

You et al. (2022))

Detection R-CNN

Average accuracy 88.5%

Classification

No defect 75.0%

Blob defect 66.7%

Die crack defect 25.0%

Pin hole defect 50.0%

Underfill defect 100.00%

Average accuracy 71.4%

You et al. (2022) proposed a die-level defect detection or classification system

using the R-CNN. Table 2.10 presents the dataset’s available images per defect

type. Figure 2.39 shows the workflow of the system. The input images are gone

through the image pre-processing step to localise the region of interest (ROI).

Although the input image may contain multiple semiconductors, the region of

interest (ROI) being analysed is a single semiconductor unit, as shown in Figure

2.40. Some of the ROI is localised manually due to high exposure in the image.

The pre-processed image is passed to the R-CNN to perform defect detection

and classification. The pre-trained AlexNet model is used as the RCNN’s basis

network for transfer learning. To suit the dataset, AlexNet’s SoftMax layer was

modified. The semiconductor is detected as “defect-less” or “defect”, and the

defect in the semiconductor is further classified, as shown in Figure 2.41. Table

2.11 shows the result of detection and classification, where 31 out of 35 were

successfully detected as “defect” or “defect-less”, achieving 88.5% of average

detection accuracy.

As a two-stage classifier, which is often slower and has lower frame

rates, the RCNN approach is less suited for real-time inspection applications.

Furthermore, the RCNN in the system has low accuracy (71.4 %), further

limiting its effectiveness in defect detection. Another disadvantage of this

system is that it requires manual capture of ROI.

62

2.3.3.2 Deep convolutional network based on the YOLOv5 for IC defect

detection.

Figure 2.42: Modified YOLOv5x architecture (adopted from Lu et al. (2022))

Figure 2.43: SELayer architecture (adopted from Lu et al. (2022))

63

Table 2.12: Defect types in the dataset and number of images per defect type

(adopted from Lu et al. (2022))

Defect Type number

Chipping 953

Gold layer scratches 762

Excess glue 786

Gold layer defect 1008

Graphic defect 994

Gold layer particles 965

Heterochromatic 826

Crack 983

Bridge deformation 990

Side slot offset 1020

Side groove different 987

Edge groove gold layer 966

Graphic scratches 1000

Different colours of gold 989

Table 2.13: Comparison of performance in the test set (adopted from Lu et al.

(2022))

Methods mAP@0.5 mAP@0.1

SSD 4.02% 27.40%

Faster rcnn 49.38% 67.75%

Efficientdet 52.58% 54.89%

Yolov5 94.90% 97.77%

Yolov5 + SE 95.40% 97.79%

64

Table 2.14: Performance comparison between models with and without

SELayer (adopted from Lu et al. (2022))

Defect type P R mAP@0.5

1 2 1 2 1 2

Chipping 0.973 0.97 0.959 0.958 0.974 0.965

Gold layer scratches 0.99 1 0.996 1 0.995 0.995

Excess glue 0.681 0.681 0.598 0.618 0.608 0.622

Gold layer defect 0.997 0.996 1 1 0.995 0.995

Graphic defect 0.986 0.964 0.949 0.967 0.983 0.982

Gold layer particles 0.993 0.987 0.991 0.987 0.995 0.995

Heterochromatic 0.81 0.818 0.854 0.884 0.855 0.876

Crack 0.916 0.909 0.961 0.965 0.965 0.977

Bridge deformation 0.995 0.995 1 1 0.995 0.995

Side slot offset 1 1 0.956 0.995 0.967 0.994

Side groove different 0.998 0.998 1 1 0.995 0.995

Edge groove gold layer 0.997 0.998 0.969 0.972 0.977 0.977

Graphic scratches 0.982 0.978 0.991 0.992 0.995 0.995

Different colours of

gold

0.998 0.996 0.992 0.992 0.995 0.995

Average 0.949 0.954

Figure 2.44: Visualisations of test results for the model with SELayer in

the test set (adopted from Lu et al. (2022))

65

In 2023, Lu et al. proposed a deep convolutional network based on the YOLOv5

for IC defect detection. The network is built upon the YOLOv5x architecture

incorporating SELayers following the feature layer of the last scale in the

backbone and expanding PANet from the original three scales to four scales.

The addition of the fourth scale in the PANet results in the creation of four

detection heads instead of the three detection heads present in the original

YOLOv5x. Figure 2.42 shows the network architecture of the modified

YOLOv5x. The main purpose of the SELayer module is to explicitly model

channel interdependencies or to capture the channel relationship, as shown in

Figure 2.43. Global average pooling is performed on the input feature map to

squeeze the feature map to the size of 1 × 1 × C , then fed into two fully

connected layers and sigmoid function, learning weight to explicitly model

channel association and to produce the channel-wise weight factor, excitation

the feature map. The channel weight is applied to the original feature layer by

element-wise multiplication, reweighting the feature map. The dataset contains

13329 images. Table 2.12 show the defect type and the number of images. The

dataset was split into three sets for training, validation, and testing. Table 2.13

shows the modified model performance in the test dataset’s result compared to

other models. YOLOv5x with SELayer had the highest accuracy, 95.40 of

mAP@0.5, 0.5% better than the YOLOv5x without SELayer. Table 2.14

presents the detailed accuracy results for each defect type, comparing the

YOLOv5x with and without the SELayer, the label “1” indicates the model

without the SELayer. Figure 2.44 depicts some of the output images from the

inference process on the testing dataset.

 The advantage of the modified model is that it is substantially more

accurate. Being based on YOLOv5x, the biggest model in the YOLOv5 family

and the one with the highest computational cost, which leads to longer training

and inference periods, is one of its drawbacks.

66

2.3.3.3 Optimising YOLOv7 for Semiconductor Line Space Pattern

Defect Detection

Table 2.15: Distribution of datasets (adopted from Dehaerne et al. (2023b))

Sample counts Train Validation Test

Line collapse 550 66 76

Bridge 238 19 17

Microbridge 380 47 78

Gap 1046 156 174

Probable Gap 315 49 54

Total

instances
2529 337 399

Total images 1053 117 154

Table 2.16: Selected hyperparameter for experiment with default and modified

value (adopted from Dehaerne et al. (2023b))

Type Hyperparameter Default Modified (1) Modified (2)

Weight &

learning

Anchor threshold 4 9 13

Number of anchors 3 9 13

IOU threshold 0.2 0.5 0.75

Object loss gain 0.7 0.25 0.5

Class loss gain 0.3 0.1 0.5

Box loss gain 0.05 0.1 0.25

Focal-loss gamma 0.0 0.1 1.5

Freeze backbone

layers

First layer

only
First 25 layers All 50 layers

Model size Base Tiny Base-X

Data

augmentation

Vertical Flipping

(probability)
0.0 0.5 -

Horizontal Flipping

(probability)
0.5 0.0 -

Mosaic 1.0 0.0 0.5

Scale (+/- gain) 0.5 0.25 0.75

Translation (+/-

fraction)
0.2 0.0 0.5

Angle (+/- degrees) 0 45 90

Shear (+/- degrees) 0 15 30

HSV (fraction)
0.015/0.7/0.4

(h/s/v)
0.0 (all) 1.0 (all)

67

Table 2.17: Results of model performance with different model

hyperparameters on test images (adopted from Dehaerne et al.

(2023b))

Hyperparameter Value

AP@0.5

microbridge gap bridge
Line

collapse
p-gap mAP

Default 0.873 0.967 0.602 1.000 0.508 0.790

Anchor threshold
9 0.806 0.950 0.639 1.000 0.529 0.785

13 0.792 0.958 0.537 1.000 0.238 0.705

Anchors
9 0.726 0.948 0.587 1.000 0.167 0.686

13 0.766 0.948 0.477 0.000 0.103 0.574

IOU threshold
0.1 0.737 0.950 0.590 1.000 0.150 0.685

0.75 0.807 0.959 0.609 1.000 0.163 0.708

Object loss gain
0.25 0.754 0.949 0.581 1.000 0.274 0.712

0.5 0.800 0.959 0.750 1.000 0.275 0.757

Class loss gain
0.1 0.737 0.950 0.590 1.000 0.150 0.685

0.5 0.803 0.958 0.583 1.000 0.457 0.760

Box lose gain
0.1 0.762 0.959 0.562 1.000 0.106 0.678

0.5 0.800 0.959 0.750 1.000 0.275 0.757

Focal-loss gamma
1.0 0.635 0.890 0.652 0.980 0.000 0.631

1.5 0.581 0.851 0.505 1.000 0.000 0.587

Freeze layers
25 0.712 0.919 0.584 1.000 0.247 0.693

50 0.745 0.949 0.579 1.000 0.139 0.682

Model size
Tiny 0.746 0.960 0.819 1.000 0.281 0.761

Base-X 0.821 0.960 0.515 1.000 0.191 0.697

Table 2.18: Results of model performance with different data augmentation

parameters on test images (adopted from Dehaerne et al. (2023b))

Hyperparameter Value

AP@0.5

microbridge gap bridge
Line

collapse
p-gap mAP

Default 0.873 0.967 0.602 1.000 0.508 0.790

Vertical Flipping 0.5 0.709 0.960 0.790 1.000 0.604 0.812

Horizontal Flipping 0.0 0.722 0.959 0.718 1.000 0.507 0.781

Mosaic
0.0 0.647 0.952 0.581 1.000 0.030 0.642

0.5 0.780 0.949 0.589 1.000 0.277 0.719

Scale
0.25 0.822 0.949 0.437 1.000 0.288 0.699

0.75 0.758 0.939 0.634 1.000 0.133 0.693

Translation
0.0 0.784 0.968 0.540 1.000 0.107 0.680

0.5 0.808 0.940 0.457 1.000 0.195 0.680

Angle
45 0.633 0.959 0.912 1.000 0.268 0.754

90 0.597 0.899 0.745 1.000 0.055 0.659

Shear
15 0.779 0.967 0.548 1.000 0.277 0.714

30 0.785 0.968 0.575 1.000 0.346 0.735

HSV
0.0 0.781 0.949 0.586 1.000 0.326 0.729

1.0 0.677 0.949 0.584 1.000 0.197 0.681

68

Figure 2.45: Illustration of ensemble model (adopted from Dehaerne et al.

(2023))

Figure 2.46: Example of NMS and WBF (adopted from Dehaerne et al. (2023))

Table 2.19: Results of ensemble model (adopted from Dehaerne et al. (2023b))

Models Prediction

Combination

AP@0.5

microbridge gap bridge Line

collapse

p-gap mAP

Default NMS 0.873 0.967 0.602 1.000 0.508 0.790

WBF 0.709 0.960 0.790 1.000 0.604 0.812

Default, Tiny, Base-X NMS 0.849 0.968 0.760 1.000 0.546 0.825

WBF 0.852 0.968 0.823 1.000 0.565 0.842

Default, Vertical

Flipping, Angle

NMS 0.877 0.969 0.809 1.000 0.634 0.858

WBF 0.878 0.969 0.850 1.000 0.642 0.868

Dehaerne et al. (2023) optimised the YOLOv7 by training and evaluating

various models with different hyperparameters to enhance the detection

precision of semiconductor line space pattern defects. Table 2.15 shows the

detail and distribution of the dataset, which contains 3265 images obtained from

69

scanning electron microscopy. The model’s hyperparameters that were chosen

for testing and experimentation were believed to have a substantial influence on

detection performance. Table 2.16 shows the hyperparameter that was chosen

for the experiment in terms of the model hyperparameter and data augmentation

parameter.

Table 2.17 presents the Average Precision (AP) outcomes on test

images for models with distinct model hyperparameters. Some models perform

better than others for certain defect classes, such as bridge and p-gap. The Tiny

model, in particular, achieves an AP of 0.819 for the bridge class. However, the

overall mean AP of the model is lower than that of the default model. According

to the results presented in Table 2.18, which displays the Average Precision (AP)

outcomes on test images for models with distinct data augmentation

hyperparameters, it was found that using vertical flipping with a value of 0.5

can increase the Average Precision (AP) for bridge classes to 0.790 and the

mean Average Precision (mAP) to 0.812, which is an improvement compared

to the default model.

An ensemble technique was utilised to enhance mean Average

Precision (mAP) performance by combining multiple models that produced the

highest Average Precision (AP) for distinct defect classes. Figure 2.45 provides

a conceptual illustration of the ensemble model. Moreover, a more advanced

prediction combination method, weighted box fusion (WBF), which takes a

weighted average of each box in a group to create the final prediction box, is

being tested by replacing the original Non-Maximum Suppression (NMS)

method. Figure 2.46 shows example prediction results of NMS and WBF. A

collection of models with varying hyperparameter values that exhibited optimal

per-class performance were assembled, comprising the default model in

addition to models with vertical flipping and a 45-degree angle data

augmentation technique. The ensemble model utilised the weighted box fusion

(WBF) method and resulted in the highest AP for all defect classes and achieved

the best mAP, as presented in Table 2.20.

The ensemble model’s benefit is the great accuracy it achieves by

integrating the predictions of other models. Nevertheless, training numerous

models and refining hyperparameters take a lot of time. To explore and

70

determine which hyperparameter values are suited for the best results,

repeatedly training models with various hyperparameters is necessary.

71

2.4 Comparison

No Author Title Technique used Hyperparameter Strength/Limitations Result Future Work

1 Shankar and

Zhong, 2005

Defect detection on

semiconductor wafer

surfaces

- Image processing

• Reference

Method/Templa

te-based

Method

- -Defect tolerance: able to

distinguish between critical and

non-critical defects via defect

specification rule.

-High-quality reference image is a

prerequisite

- -

2 Yeh et al., 2010 A Wavelet-Based

Approach in Detecting

Visual Defects on

Semiconductor Wafer

Dies

- Image processing

• Two-

dimensional

wavelet

transform (2-D

WT)

- -Non-reference method: does not

rely on pixel-by-pixel matching.

-Does not require the training

process

-Need to determine the proper

parameter.

-Cannot classify the defect into

defect categories.

- -Develop Simple classification to further

differentiate the discovered defective pixels

based on their geometrical coordinates or

characteristics.

3 Cheon et al.,

2019

Convolutional Neural

Network for Wafer

Surface Defect

Classification and the

Detection of Unknown

Defect Class

- Deep learning:

classification

• CNN

- Clustering model

• k-NN

- Data augmentation

- SDG with LR: 0.001

- Batch size: 32

- High accuracy

- Able to identify the unknown

defect

- Long training time and reference

time

- Train accuracy:

99.4%

- Valid accuracy:

98.7%

- Test accuracy: 96.2%

- Implement an unsupervised cluster model to

create a cluster when a new image is collected

72

4 Yuanfu Yang

and Sun, 2022

Semiconductor Defect

Pattern Classification

by Self-Proliferation-

and-Attention Neural

Network

- Deep learning:

Classification

• SP&A-Net:

Self-

Proliferation-

and-Attention

Block

- NAG descent - High accuracy

- Able to capture spatial-wise

relationships in the feature map.

- Generate extra feature maps at a

low cost.

- Requiring fewer parameters and

floating-point operations

- AEI dataset

accuracy: ≈97.5%

- ADI dataset

accuracy: ≈97.9%

- API dataset

accuracy: ≈96.9%

- CIFAR-10 accuracy:

92.93%

- IMAGENET Top-1

error: 23.06%

-

5 Chen et al.,

2023

Multi-scale GAN with

transformer for surface

defect inspection of IC

metal packages

- Deep learning:

Classification

• MST-GAN

- AdamW with LR:

0.0002

- Momentums β1 = 0.9

and β2 = 0.999

- Weight decay: 0.01

-Batch size: 8

- High accuracy

- Able to generate the defect-free

template

- Suppress the reconstruction errors

via pixel shuffle

- Computationally and memory

intensive

- F1: 99.6%

- Accuracy: 99.3%

- Precision: 99.8%

- Recall: 99.3%

- FPS: 70.9

- Integrate the framework into an analysis of the

correlation between neighbouring image

patches.

- Develop a GAN that will be capable of

generate defect-highlighting templates while

preserving the original texture details.

- Explore effective methods for network

pruning and quantization while minimizing the

degradation in network performance

6 You et al., 2022 Die-Level Defects

Classification using

Region-based

Convolutional Neural

Network

- Deep learning: Object

detection

• R-CNN

- Data augmentation

- Mini Batch Size: 15

- LR: 0.000001

- Max epochs: 80

- Low accuracy

- Manual capture of the region of

interest (ROI) is required for high-

exposure image is needed

- Accuracy for

detection: 88.5%

- Accuracy for

classification: 71.4%

- Train the network with more datasets

- Find the most appropriate CNN model for

classifying die images

- Consider detecting more defect type

7 (Lu et al., 2022) Defect Detection of

Integrated Circuit

Based on YOLOv5

- Deep learning: Object

detection

- Batch Size: 16

- Epoch: 600

- LR: 0.001

- High accuracy

- Require high computational cost

and large memory

- mAP@0.5: 95.40%

- mAP@0.1: 97.79%

- Develop a lightweight model that is suitable

for deployment in an industrial scenario

73

• Modified

YOLOv5x with

SELayer

- Cosine annealing

strategy

8 Dehaerne et al.,

2023b

Optimizing YOLOv7

for Semiconductor

Defect Detection

- Deep learning: Object

detection

• Ensemble

model of

optimized

YOLOv7 using

WBF

- Data augmentation

- Batch Size: 2

- Epoch: 200

- Weights: refer to

Table 2.16

- Relatively high accuracy

- Requires a significant amount of

time and resources to train the

model with different

hyperparameters

- mAP@0.5: 86.8%

- Enhance the outcomes by implementing

advanced hyperparameter optimization

techniques

74

2.5 Overview of the object detection model

2.5.1 R-CNN

Figure 2.47: Overview of R-CNN (adopted from Girshick et al. (2013))

RCNN can be said to be the pioneer of target detection using deep learning.

Prior to R-CNN, object detection relied heavily on manually designed feature

extractors, such as the Viola-Jones detector and Histogram of Oriented

Gradients (HOG). These models were slow, inaccurate, and performed poorly

(Zaidi et al., 2021). The accuracy of traditional object detection models was only

able to achieve around 33.7 in the VOC 2007 dataset. However, R-CNN showed

very good performance, achieving an accuracy of 58.5% (Zou et al., 2019). R-

CNN convert detection into classification and localisation problem. The R-CNN

model can be divided into four modules, which are region proposal, feature

extraction, classification, and bounding box regression. Below is the algorithm

flow of R-CNN, as illustrated in Figure 2.47. Step 1 (corresponds to region

proposal), almost 2,000 candidate regions will be generated using the selective

search algorithm. In step 2 (corresponding to feature extraction), the candidate

region is cropped to 227*227 pixels, and a deep neural network, acting as the

backbone network, is used to extract features from these candidate regions and

generate a feature vector of 4096 dimensions for each candidate region. In step

3 (corresponding to classification), the feature vector is passed to the Support

Vector Machine (SVM) classifier to obtain scores, specifying the class to which

the candidate region belongs. NMS is applied based on the interception over

union (IOU) and threshold to remove some overlapping candidate boxes. In step

4 (corresponding to bounding box regression), the class-specific bounding box

regressor is applied to perform regression operations on the remaining candidate

region. (Girshick et al., 2013).

75

2.5.2 Fast R-CNN

Figure 2.48: Overview of Fast R-CNN (adopted from Girshick (2015))

Unlike R-CNN, Fast R-CNN combines feature extraction, classification, and

bounding box regression in a single neural network, as illustrated in Figure 2.48,

instead of using separate neural networks, SVM, and regressor for each task

(Girshick, 2015). Similar to R-CNN, Fast R-CNN also uses selective search to

generate candidate regions from the input image. The input image is fed into the

deep convolutional network to obtain the corresponding feature map. Then, the

candidate regions generated are projected onto the feature map. The feature map

will then pass through the ROI pooling layer, which scales the candidate region

to a uniform size and extracts a fixed-length feature vector from it (Ahmed

Fawzy Gad, 2021). The ROI pooling layer in Fast R-CNN is inspired by the

SPPnet, which enables Fast R-CNN to accept arbitrary-sized inputs. In the ROI

pooling layer, each candidate region in the feature map is divided into a fixed

grid of cells, such as 7 × 7, and max pooling is performed on each grid to obtain

the fixed-length feature vector. The fixed-length feature vector is then passed

through two fully connected layers to obtain the ROI feature vector. ROI feature

vector will pass through two fully connected layers that are connected in parallel.

One includes the SoftMax layer used for the class score prediction and another

for bounding box regression parameter prediction, which generates four real-

valued numerical values corresponding to each of the 𝐾 classes of objects

(Girshick, 2015). The SoftMax layer outputs the probability of 𝐾 + 1 categories,

where 𝐾 is the number of classes and “1” indicates the probability of the

candidate region as the background. Fast R-CNN addresses the issue of training

many systems independently in R-CNN, allowing calculations to be shared in

76

the feedforward process (Zaidi et al., 2021). Compared to the prior R-CNN

model, Fast R-CNN is a faster and more accurate object detection model. Using

the VOC 2007 dataset, it was almost 200 times faster than R-CNN while

increasing accuracy from 58.5% (R-CNN) to 70% (Zou et al., 2019).

2.5.3 Faster R-CNN

Figure 2.49: Overview of Faster R-CNN (adopted from Ren et al. (2015))

Figure 2.50: Overview of RPN (adopted from Ren et al. (2015))

Faster R-CNN is a two-part architecture consisting of an RPN and Fast R-CNN,

as shown in Figure 2.49 (Ren et al., 2015). While Fast R-CNN uses selective

search to generate candidate regions, it limits its speed as each image takes

77

around two seconds to produce the candidate regions (Zaidi et al., 2021). RPN

replaces selective search and allows for end-to-end training. A backbone

network, often composed of convolutional layers, will receive the input picture

and generate the feature map. This backbone network is shared between the

RPN and Fast R-CNN components in Faster R-CNN. The RPN takes the feature

map generated by the backbone as input and applies a sliding window approach.

A small network is applied to each sliding window on the feature map. For each

sliding window, the centre point in the sliding window corresponding to the

centre point on the original image is calculated, and 𝑘 anchor boxes are applied

to the centre point. Using anchor boxes with various scales and aspect ratios

allows for the detection of objects of various sizes and shapes. Typically, three

scales and three aspect ratios are used, resulting in a total of nine anchor boxes

per sliding window position. The sliding window is then mapped to a lower-

dimensional feature vector (e.g., 256-dimension for ZF backbone) and fed into

two fully connected layers, as shown in Figure 2.50. The first fully connected

layer produces 2𝑘 scores. The first score corresponds to the probability of the

anchor box being a background, while the second score corresponds to the

probability of it being an object. In order to more precisely position and enlarge

each anchor box to match the object, the second fully connected layer generates

the 4𝑘 regression scores. Cross-boundary anchors are ignored, NMS is applied

to the candidate regions based on their classification scores and top-scoring

proposals boxes are selected to form the final set of candidate regions. The

candidate regions produced by the RPN are projected onto the shared feature

map and processed using the same Fast R-CNN architecture as the original Fast

R-CNN (Ren et al., 2015). To Summarise, Faster R-CNN achieved nearly real-

time object identification by introducing RPN to address the slow region

proposal generation in Fast R-CNN. With the use of ZF-net, Faster R-CNN was

able to achieve 17 FPS on a K40 GPU. Faster R-CNN Achieved a mean average

precision of 42.7% in COCO datasets and 73.2% in the VOC 2007 dataset,

outperforming Fast R-CNN in terms of accuracy (Zou et al., 2019).

78

2.5.4 SSD

Figure 2.51: Network architecture of SSD (adopted from Liu et al. (2015))

The SSD uses a 300*300 input picture as the input and a modified or truncated

VGG-16 as the backbone to extract feature maps. These feature maps then pass

through an auxiliary structure consisting of different-sized convolutional layers,

which progressively decrease in size and output feature maps of varying scales

(Zaidi et al., 2021). A total of six feature maps are generated and responsible for

identifying a different size of object, as shown in Figure 2.51. For instance, the

larger feature map with a lower receptive field in the first layer retains more

detailed information and is used to detect relatively smaller targets. As the level

of abstraction increases, smaller feature maps with higher receptive fields are

used to detect relatively larger targets. The SSD generates a total of 8,732

default boxes, with each different-sized feature map having different default box

scales and aspects, which are determined through calculations and specific

conditions. For prediction, a small kernel is applied to each location in the

feature map, and acts as a predictor to predict both the offsets of the default

boxes and the scores for all object categories. Each location in the feature map

uses (𝑐 + 4)𝑘 filters, requiring a total of (𝑐 + 4)𝑘𝑚𝑛 filters in the feature map,

where 𝑘 is the number of default boxes, 𝑚 and 𝑛 represent the size of the

feature map, and 𝑐 is the number of classes. Thus, each location in the feature

map produces 𝑐𝑘 class scores and 4𝑘 regression offsets. The process of non-

maximum suppression is applied to obtain the final predictions. (Liu et al., 2015).

The feature map utilized as input to the RPN and Fast R-CNN architecture in

Faster R-CNN is obtained by extracting it through a backbone, in which the

receptive in the feature map is quite large, causing the feature map to have lower

resolution and lose some of its detailed information (Eggert et al., 2017).

79

Consequently, Faster R-CNN is not proficient in detecting objects from low

resolution, making it unsuitable for identifying small objects (Cao et al., 2019).

SSD solve this problem by utilizing detection techniques that involve multiple

references and multiple resolutions. The two-stage models, such as Faster R-

CNN, are often slower since generating candidate regions takes more time. As

opposed to the R-CNN family of models, SSD is a one-stage model that does

not propose candidate regions, leading to faster inference times. SSD achieved

real-time object detection as it achieved 59 frames on an Nvidia Titan X GPU

and achieved a mAP of 76.9% in VOC 2007 datasets (Liu et al., 2015).

2.5.5 YOLO

YOLO was the first one-stage object detector. It converted the object detection

problem into a regression problem, where estimating the coordinates of the

bounding box, confidence score and class probability. The concept of YOLO is

to split the image into a 𝑆 × 𝑆 grid cell, where each cell was responsible for

detecting an object if the object's centre fell within it. In other words, each cell

estimates the object's centre or whether the object's centre was in that cell. Each

cell also predicted 𝐵 bounding boxes and 𝐶 class probability scores. Each

bounding box predicted five values, which were 𝑥, 𝑦, 𝑤, ℎ representing the

location of the centre and the dimensions of the bounding box relative to the

grid cell, and a confidence score, which indicated the degree of overlap with the

ground truth box, using IOU (Redmon et al., 2015).

 YOLOv1 directly predicts the location of the bounding box rather than

using anchor boxes. As a result, it could be difficult to detect objects with

different aspect ratios. Each grid cell in YOLOv1 produces two bounding boxes,

and each cell can only have one class assigned to it. Due to these restrictions,

YOLOv1 may have trouble detecting tiny objects that are grouped together.

YOLOv2 or YOLO9000 have addressed these limitations. YOLOv2 implement

anchor boxes to improve the detection of objects with different aspect ratios and

scales, increasing the recall of the model. Moreover, it introduces a passthrough

layer that concatenates higher-resolution feature maps with lower-resolution

feature maps, helping the model to detect smaller objects more accurately

(Redmon and Farhadi, 2016).

80

 To improve accuracy, YOLOv3 adopted a new backbone architecture

called Darknet53, which is deeper and more powerful than the Darknet19 used

in YOLOv2. In addition, YOLOv3 uses a similar concept to the feature pyramid

network (FPN), enabling it to predict across multiple scales. This helps

YOLOv3 detect objects of various sizes with higher accuracy (Redmon and

Farhadi, 2018).

 YOLOv4 uses the CSP-Darknet53 backbone, which increases the

model's accuracy while reducing memory costs. Moreover, YOLOv4 introduces

advanced data augmentation techniques such as mosaic, which combines four

images into one, to expand sample diversity and improve the model's

generalisation ability (Bochkovskiy, Wang and Liao, 2020).

 The YOLOv5 architecture features the New CSP-Darknet53 backbone,

which addresses the issue of duplicate gradients in large convolutional networks,

ultimately leading to reduced computational cost. The neck of YOLOv5 is

composed of SPPF and New CSP-PAN (Jacob Solawetz, 2020). SPPF is an

adaptation of the SPP module used in YOLOv4, achieving the same results but

with faster speeds (Ultralytics, 2023).

 YOLOv6 builds its backbone and neck based on the Rep-VGG style.

The backbone is built using RepBlock and CSPStackRep block, which

efficiently uses hardware computing power while maintaining strong feature

representation. The neck is Rep-PAN, which adopts a PAN topology with

RepBlocks and CSPStackRep to achieve efficient inference while maintaining

good multi-scale feature fusion capability. The backbone and Neck in YOLOv6

solve the problem of increased latency and reduced memory bandwidth

utilization in previous YOLO versions that used a CSP-based backbone. The

head is an efficient decoupled head that maintains accuracy while reducing

additional latency overhead (Li et al., 2022a).

 The backbone of YOLOv7 is E-ELAN. ELAN controls the shortest and

longest gradient paths, allowing the network to learn and converge more

effectively. E-ELAN expands, shuffles, and merges cardinality to further

increase the learning ability of ELAN. The authors found that the identity

connection in RepConv destroys the residual in ResNet, resulting in low

accuracy when RepConv is added to ResNet. To address this issue, they

81

introduced RepConvN, which is RepConv without an identity connection

(Wang, Bochkovskiy and Liao, 2022).

2.6 Conclusion

Based on the approaches reviewed, it can be concluded that several methods

have been developed for defect detection. However, reference-based methods

always require a template, which is a fatal drawback. Even though the 2D

wavelet transforms using non-reference methods which do not need to perform

pixel-by-pixel matching, the golden image is still needed to perform statistical

properties comparison, and proper parameters need to be set, which might

require some experience or experimentation to figure out which one is suitable.

Most importantly, it cannot further classify the defect pixels into specific

categories.

The MST-GAN has solved the problem of these two approaches. It can

generate a defect-free template based on the learned intrinsic quality pattern and

use a multi-scale strategy to calculate the multi-scale adaptive threshold and

some defective measurements. Only a few parameters, such as the threshold and

sensitivity factor, need to be determined, and other parameters will be learned

through the training process or obtained directly from the image, such as

standard deviation and means of the image. However, the golden image is still

needed for training purposes, and the MST-GAN is computationally expensive.

The above methods do not mention how the model can detect unknown

defects. Cheon et al. proposed a defect classification system that combined CNN

and k-NN, which can detect unknown defect classes using a clustering method,

but its training and reference time are long. SP&A Net has been proposed by

Yuanfu Yang and Sun, requiring fewer parameters and GLOPS while

maintaining high accuracy. However, all the approaches above are about

classification methods. To perform real-time inference in classification,

combining the classification model with an object detection or segmentation

algorithm is necessary. The algorithm helps to locate the semiconductor or

capture the ROI of semiconductor, while the classification model can then

classify the semiconductor based on their identified features. This can result in

increased inference time.

82

In terms of object detection methods, You et al. (2022) proposed an

RCNN for die-level detection, but it suffers from low accuracy, and manual

capture of ROI is sometimes needed. The speed for RCNN is slow as it is a two-

stage algorithm, which is not applicable for real-time inference. Lu et al.

proposed a modified YOLOv5x, which achieves high accuracy but requires high

computational cost and large memory. An optimized YOLOv7 has been

proposed by Dehaerne et al., which uses an ensemble model and reaches

relatively high accuracy, but there is still room for improvement in accuracy.

In summary, traditional image processing techniques usually require a

reference template and manual parameter tuning. Some deep learning

classification methods have high computational costs and long inference times.

Object detection methods have varying levels of accuracy, with some suffering

from low accuracy (RCNN) and others having room for improvement (ensemble

YOLOv7) or requiring high memory costs (modified YOLOv5x). This study

aims to develop a deep learning based inspection approach for die defect

detection with a high accuracy of 90% , further improve accuracy modifying the

model's components. Additionally, the model was optimized for less

computational cost by pruning to reduce the number of parameters and make

the model as lightweight as possible.

83

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Development Tool

3.1.1 PyTorch

PyTorch is a Python-based deep learning framework that Meta developed based

on the Torch library. Because of its simplicity of use and broad support for

GPUs, PyTorch has gained popularity. In the deep learning community,

PyTorch has also served as the foundation for a large number of open-source

models. The deep learning model used in this study is also based on PyTorch.

PyTorch is required to modify components inside the YOLO model and to train

and evaluate the model. PyTorch is also necessary to integrate the SAM model

into YOLOv5 for ensemble processing.

3.1.2 MMAGIC

MMagic is an advanced and versatile AIGC toolkit based on PyTorch developed

by OpenMMLab. It offers various generative models, super-resolution models,

and multimodal models. It facilitates model training and fine-tuning. Since the

configuration files for models in MMagic are similar, transitioning between

different models is seamless. In this study, MMagic was utilized to train

StyleGANv2, StyleGANv3, and perform fine-tuning for stable diffusion.

3.1.3 OpenCV

OpenCV is a popular open-source toolkit for computer vision and machine

learning, mainly used for a variety of image and video processing tasks. In this

study, OpenCV was utilized for image processing purposes. For example, to

capture the ROI of the IC.

84

3.1.4 Visual Studio Code

Visual Studio Code was used as the IDE for making modifications to the source

code of YOLO, adding supplementary code and editing the configuration file

for deep learning models.

3.1.5 Anaconda

Anaconda is an open-source platform that supports Python and R programming

languages. Anaconda was used to create virtual environments on the local

machine, and all necessary packages and dependencies required for deep

learning model were installed. Anaconda enables the creation of multiple

independent environments, each tailored for different GitHub repositories (deep

learning models). As different repositories may require varying versions of

packages, this approach prevents any conflicts with the global environment.

3.1.6 Label Studio

Label Studio is a versatile open-source data labelling tool that supports multiple

types of data. In this study, Label Studio was utilized for annotating images as

it supports the YOLO output format. It is important to note that Label Studio

will only be installed on the local machine and will not be deployed to an

external network or cloud due to the confidentiality of the datasets used in this

study.

3.1.7 Albumentations

Albumentations is an efficient and adaptable library for image augmentation.

For this study, the Albumentations was used to perform data augmentation to

the segmentation dataset and object detection datasets. The Albumentations

package will also return the augmented bounding boxes, eliminating the need

for reannotation of the augmented images.

3.2 Evaluation metric in object detection

The following section will describe the common evaluation metric used in

object detection to evaluate the model's performance.

85

Table 3.1: Description of evaluation metrics in object detection

True Positive (TP) Ground truth that is correctly detected by bounding

box, based on IoU, IoU threshold, confidence score

and confidence score threshold

False Positive (FP) A bounding box detects the non-existence ground

truth (such as detecting the background as an

object), or a bounding box detects the wrong object

based and IoU and IoU threshold

False Negative (FN) Ground truth that is not detected by the bounding

box

True Negative (TN) A number of bounding boxes should not be

detected. The concept of "TN" is not relevant in

object detection, as the model can correctly ignore

an infinite number of background regions that do

not contain objects.

3.2.1 IoU

IoU, or Intersection over Union, is a common evaluation metric in object

detection that measures the degree of overlap between predicted bounding and

ground truth bounding boxes. It is calculated as the area of overlap between two

boxes divided by the area of their union, as illustrated in Figure 3.1. IoU is used

as a criterion to distinguish between TP and FP in object detection. For instance,

an IoU threshold of 0.5 is set. If the IoU between a predicted bounding box and

its corresponding ground truth bounding box is greater than 0.5, it is considered

a TP, indicating a correct detection. Otherwise, it is classified as FP, indicating

a false detection (Koech, 2020).

86

Figure 3.1: Illustration of IoU (adopted from Padilla et al. (2020))

3.2.2 Precision and recall

Precision is a performance metric that measures the accuracy of a model in

predicting only the relevant objects by calculating the percentage of correct

predictions out of all the bounding boxes predicted by the model. In other words,

precision refers to how precisely the model can detect relevant items (Padilla,

Netto and da Silva, 2020).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

𝑇𝑃

All observations (bounding box)
 (3.1)

Recall is the ratio of correctly detected positive samples to the total number of

positive samples present in the ground truth data. It measures the model's ability

to detect all relevant cases, meaning how many of the ground truth boxes are

successfully detected by the model (Padilla, Netto and da Silva, 2020).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑇𝑃

All Ground Truth
 (3.2)

3.2.3 Precision-Recall curve

In order to illustrate the trade-off between precision and recall, Precision and

recall for each bounding box are calculated based on the corresponding

confidence score (confidence threshold), and a precision-recall curve is plotted.

A model is considered to have good performance when the precision stays high

87

while recall remains high. The model is said to perform well, even if the

confidence threshold varies. The x-axis of the graph is recall, and the y-axis is

precision, as shown in Figure 3.2. The Precision-Recall curve can be plotted

using one of two approaches. The 11-point interpolation method uses 11 evenly

spaced standard recall levels. The all-point interpolation approach utilises every

recall point available (Koech, 2020).

Figure 3.2: Precision x Recall curve (adopted from Koech (2020))

3.2.4 mAP

When evaluating the performance of an object detection model, it's important to

consider both precision and recall. This is because precision only considers FP,

not FN, and recall only considers FN, but not FP. For example, let's consider a

scenario where there are five ground truth boxes in an image. Model number

one predicts only one bounding box with a high confidence score and IoU, and

the prediction is correct. In this case, the TP is one, FN is four, and FP is zero,

resulting in a high recall. On the other hand, Model number two predicts ten

bounding boxes, five of which predict the object correctly (with high IoU and

confidence score), and the other five detect the background as an object. In this

case, the TP will be five, FN will be zero, and FP will be five, resulting in a high

recall. From these cases, it is evident that the performance of both models is not

good, but they get high precision and recall, respectively. Therefore, it's crucial

88

to evaluate precision and recall together to better understand the model's overall

performance.

To evaluate both precision and recall and represent it numerically, AP

is calculated for each class by computing the area under the Precision-Recall

curve. Then, mAP is calculated by averaging the AP values for all classes. This

comprehensively assesses the model's performance or accuracy (Padilla, Netto

and da Silva, 2020).

The mAP in PASCAL VOC and COCO datasets are not the same due

to differences in their calculation methods. In PASCAL VOC, the mAP is

calculated with an IoU threshold of 0.5, and the mAP is the average of APs

across classes. In contrast, in COCO, the AP is calculated by considering IoU

thresholds starting from 0.50 and incrementing by 0.05 until 0.95. The AP is

then averaged over all IoU thresholds and categories, which is equivalent to the

mAP in PASCAL VOC (Jonathan Hui, 2018).

89

3.3 Workflow of model training

Figure 3.3: Workflow for training YOLOv7-tiny object detection model

90

The workflow for training the YOLOv7-tiny object detection model is shown in

Figure 3.3. It encompasses various stages, including data preparation, data pre-

processing, data augmentation, data annotation, model training, model

improvements, model pruning and performance evaluation. The reason for

choosing the YOLOv7 repository for training the object detection model is that

YOLOv7 performs better than YOLOv5 in COCO dataset. While YOLOv8 has

been introduced, it is still considered to be under development and lacking

proper releases on GitHub. As a result, YOLOv7 stands out as the most stable

and up-to-date YOLO model.

3.3.1 Data preparation

Table 3.2: Table of IC defect types and details

Defect type Defect details

PCB defect • Foreign molecules on PCB

Die defect • Foreign molecules on Die

• Epoxy Overflow

• Die crack

• Die chip

• Die scratch

• Die rotate

• Misaligned Die (Die offset)

• Missing Die

Wire and bonds defect • Wire broken

• Wire bond offset

• Smash bond

• Lifted on Pad

• Lifted on Lead

• Wire sweep

• Missing wire

• Bond tail defect

• Double bond

• Unbounded wire

LED defect • Missing LED

• Epoxy Overflow

91

Figure 3.4: Die defects

The dataset used in this study has been kindly provided by ASPL Malaysia Sdn

Bhd, which contains images of integrated circuits used in wireless earphones

from a renowned manufacturer with various types of defects, including one type

of PCB defect, eight types of die defects, ten types of wire and bond defects,

and two types of LED defects, as outlined in Table 3.2. However, this study will

only focus on two types of die defects, namely die crack and die rotate. Since

the defect codes for die crack, die scratch and die chipping are the same, these

three defects were categorized as die crack. Figure 3.4 shows the die defects

involved in this study.

Each image in the datasets is available in three forms, which are images

captured with a normal brightfield microscope, dark field with white light, and

dark field with blue light. As a result, the images will appear similar to the

images with green, red, and blue channels, respectively. The image used in this

study is images captured by a normal brightfield microscope. Hence, OpenCV

is used to filter the images based on the mean colour values of the images.

Images are passed into the OpenCV with “cv2.imread()” function, and then

“np.mean()” function is applied to the image to get the mean colour value. If the

mean colour value for blue, green, and red channels exceeds 15, the image is

considered captured by a normal brightfield microscope, else if the mean colour

of the red channel is higher than blue channel, the image is considered captured

by dark field with white light, else, the images is considered as captured by dark

field with blue light.

92

Figure 3.5: Flowchart for Capturing ROI of IC Chip Using OpenCV

Figure 3.6: Effects of Smoothed Polygon

3.3.2 Data preprocessing

The provided image includes the IC and the background. To detect die rotation

defects, the images passed into the YOLOv7-tiny must be upright, or else even

though the die is not rotated but the whole IC chip itself is rotated, YOLOv7-

tiny will detect the defect-less die as die rotation. Thus, capturing the ROI of the

IC chip and making the image upright is needed.

93

3.3.2.1 Capture ROI with OpenCV

Figure 3.5 illustrates the step-by-step process for capturing the ROI of an IC

chip using OpenCV. The workflow begins with the image being loaded into

OpenCV via the “cv2.imread()” function. Subsequently, the image is converted

into grayscale using “cv2.cvtColor()”. The subsequent step is focused on

enhancing relevant features within the images and addressing issues related to

inconsistent illumination. To tackle this, an adaptive thresholding technique is

employed using the “cv2.adaptiveThreshold()” function. The chosen strategy

involves calculating the threshold based on the arithmetic mean of the local

pixel neighbourhood, with a neighbourhood pixel size of 151 and a constant “c”

value of 3. The contours of this thresholded image are extracted with

“cv2.findContours()”. If the area enclosed by a contour exceeds 35,000 units, it

is considered a candidate. To ensure accuracy, contours are approximated into

smooth polygons using “cv2.approxPolyDP()”, with an epsilon value set at 1%

of the contour path length. It's important to note that some scratches may extend

beyond the IC's borders, as depicted in Figure 3.6. These anomalies are included

in the contour, and the smoothing process is critical to eliminate such artifacts.

Without this step, the ROI cannot be captured successfully.

Following the smoothing process, the resulting polygon is added to the

polygon_list. For each polygon within this list, a rectangle is generated using

“cv2.minAreaRect()”. The four corner points of this rectangle are extracted

using “cv2.cv.BoxPoints()”, and the rectangle's area is calculated based on these

corners points. If the area of the rectangle exceeds 100,000 units, the corner

point will be rearranged into a specific order of top-left, top-right, bottom-right,

and bottom-left. The coordinates of the ordered four corner points will be

assigned to a variable named “points”. Subsequently, the width and height

between the four corner points saved in the “points” variable are computed.

These dimensions are pivotal in determining the destination points for the

perspective transform matrix. The perspective transform matrix is then

calculated using both the four corner points and the destination points,

facilitated by the “cv2.getPerspectiveTransform()” function. With this matrix in

place, a perspective transformation is applied to the original image through

“cv2.warpPerspective()”. Few assumption was made within this process. Firstly,

94

there are always polygons exceeding 35,000 units, and there are always a

rectangle with an area exceeding 100,000 units, else the script will be terminated

or an error will be thrown when calculating the width and height of corner points,

as no valid corner points would exist. Lastly, it is assumed that there is only one

rectangle with an area exceeding 100,000 units. If multiple such rectangles exist,

only the last one encountered will be considered for perspective transformation,

as the four ordered corner points saved in the variable “points” will be

overwritten.

3.3.2.2 Capture ROI with YOLOv5

Figure 3.7: Workflow for training YOLOv5 segmentation model

95

Figure 3.8: Flowchart for Inference Process of YOLOv5 Segmentation Model

in Capturing the ROI of IC Chip

96

The workflow for training YOLOv5 segmentation model is shown in Figure 3.7.

It encompasses data preparation, data annotation, data augmentation, model

training and performance evaluation. The reason for selecting YOLOv5 as the

segmentation model stems from the fact that while YOLOv7 also supports

segmentation, the associated repositories, namely “u7” and “mask”, have not

been properly maintained. These repositories lack essential maintenance and

many convenience functions that could aid in the development of custom code.

One such example is “masks2segments”, a function provided in YOLOv5,

which allows for the conversion of masks to polygons. The absence of such

functionalities in YOLOv7 necessitates the creation of custom code, making

YOLOv5 a more practical choice for segmentation tasks as extra custom code

was implemented for segmentation in this study. Figure 3.8 shows the inference

process of YOLOv5 segmentation in capturing the ROI of the IC chip.

3.3.2.2.1 Data preparation

The dataset consists of 802 images, including 200 images from die crack, die

rotation, and defect-less IC categories, respectively, as well as an additional 202

images from the category of missing die.

97

Figure 3.9: Masks and Bounding Box of IC Chip Obtained from SAM

Figure 3.10: Exported Dataset in JSON Format

98

Figure 3.11: Exported Dataset in COCO Format

Figure 3.12: Exported Datasets in YOLO Text File Format

3.3.2.2.2 Data annotation

These 802 images were annotated using Label Studio. To ensure high-quality

annotations, instead of manual labelling, a SAM model was integrated into

Label Studio to assist in the labelling process. An initial annotation box

encompassing the entire IC chip was manually drawn. Subsequently, SAM

accurately predicted and returned both the bounding box and mask for the

annotated regions, streamlining the annotation process and ensuring precise

results. The Label Studio integrated with SAM was obtained from the Open-

MMLab Playground. Figure 3.9 shows the masks and bounding box returned by

SAM.

99

Since the masks returned by SAM are in uncompressed RLE format, Label

Studio supports this format only when the dataset is exported to a JSON file, as

illustrated in Figure 3.10. Subsequently, the JSON file is converted into COCO

format using a script provided by Open-MMLab Playground, as shown in Figure

3.11. Afterwards, a custom script is employed to convert the COCO format into

YOLO format. This script essentially retrieves the uncompressed RLE masks

from the COCO file and converts them into polygon format, which is then

written into a “.txt” file, as shown in Figure 3.12. The dataset was initially

divided into a training set and a test set, with a 9:1 ratio, respectively.

Subsequently, a validation set was created by splitting 10% of the training set.

This partitioning resulted in 648 images in the training set, 81 images in the test

set, and 73 images in the validation set.

3.3.2.2.3 Data Augmentation

To enhance the robustness of the dataset, data augmentation was applied using

the Albumentations library. The employed data augmentation techniques

included “VerticalFlip”, “HorizontalFlip”, “Rotate”, “CLAHE”,

“AdvancedBlur”, “MultiplicativeNoise”, “ElasticTransform”, “GridDistortion”

and “OpticalDistortion”.

For the training set, each image was augmented to generate an

additional three augmented images, effectively expanding the dataset. To

maintain a balanced distribution and assess the model's robustness,

augmentation was also performed on both the testing and validation sets,

resulting in an extra augmented image generated for each image in these sets.

The augmented dataset comprises a total of 2,592 images in the training set, 162

images in the testing set, and 146 images in the validation set.

100

Figure 3.13: Hyperparameters Configuration for YOLOv5 Segmentation

Model

Figure 3.14: Inference Result with Mosaic Enabled

101

3.3.2.2.4 Model training

YOLOv5n-seg and YOLOv5s-seg were trained with the hyperparameters

shown in Figure 3.10. Notably, mosaic augmentation was disabled during

training. This decision was made to prevent the mosaic augmentation from

splitting the IC chip into multiple parts, which could lead to confusion for the

model. When the mosaic is enabled, the model might consider part of the IC

chip as a complete IC chip, resulting in two predicted masks for a single IC chip.

One mask would represent the entire IC chip, while another would only cover

half of it, as illustrated in Figure 3.11. The training process consisted of 50

epochs, with a batch size of 16. The input image size was set to 640x640 pixels

and pre-trained weight was used to speed up the convergence of the model.

3.3.2.2.5 Performance Evaluation

The evaluation metrics used for assessment included mAP@0.5:0.95(BOX) and

mAP@0.5:0.95(Mask). These metrics were employed to evaluate how well the

mask generated by the model aligned with the ground truth mask. In addition to

these metrics, the FPS was also evaluated to assess the model's inference speed.

Parameters and GLOPS were also evaluated to assess the computational cost of

the model.

For FPS evaluation, inference time outputted by the official script

exhibited some fluctuations. These fluctuations were attributed to the GPU's

behaviour, particularly during the initial phase of inference when the GPU was

not warmed up and was running at low power. To obtain more accurate FPS

measurements, a custom script was developed.

In this custom script, based on a defined number, a batch of images was

generated with random pixel values using “torch.randn()”, each sized at

640x640 pixels. The model underwent a warm-up process of 1000 iterations

using these randomized images. After the warm-up phase, the model performed

1000 inferences with these randomized images, and the FPS was calculated

based on the start time and end time of model inference. To ensure precise FPS

measurements, “torch.cuda.synchronize()” was employed. The FPS were

evaluated for both single batch and 16 batches of randomized images. It's

important to note this script does not include NMS in the calculation of FPS. All

102

the trained YOLO model's FPS in this study were assessed using this script, with

the exception of the ensemble model consisting of YOLOv5n and SAM.

Figure 3.15: Flowchart for Inference Process of Ensemble Model in

Capturing the ROI of IC Chip

103

3.3.2.3 Ensemble model of YOLOv5n object detection model and SAM

To further enhance the accuracy of segmentation, complex networks such as

transformers are often considered due to their potential for superior performance

compared to YOLO models. However, it's important to note that these networks

typically come with slower inference times, and training them can be time-

consuming and computationally expensive. Therefore, the choice of adopting a

zero-shot segmentation model becomes a prudent one.

The performance of the SAM in returning accurate masks during data

annotation has been observed, as detailed in Section 3.3.2.2.2. SAM has been

pre-trained on a substantial dataset comprising 1.1 billion high-quality

segmentation masks and SAM was built based on the vision transformer,

making it an excellent candidate for the segmentation model. To achieve even

more accurate segmentation results, bounding boxes need to be passed into the

SAM model to act as a prompt.

To facilitate this, a YOLOv5n object detection model was trained. The

dataset used for training YOLOv5n is the same as described in Section 3.3.2.2.3,

with the only difference being that bounding boxes are retrieved from the COCO

format instead of the uncompressed RLE mask format. The hyperparameters

and model configuration remain consistent with Section 3.3.2.2.4. FastSAM-s,

FastSAM-x, MobileSAM, SAM_VIT_b, and SAM_VIT_l were evaluated.

Figure 3.15 shows the ensemble model's inference process in capturing the IC

chip's ROI. The “detect.py” script was customized to fit the inference process.

Instead of evaluating the model's performance using mAP, a manual

inspection of the predicted mask output by SAM was conducted. This approach

was taken because the official script did not support measuring mAP for SAM,

and no self-written code had been implemented to measure the mAP of SAM.

FPS was also evaluated.

As the operational principles of YOLO and SAM differ, the FPS

measurements were directly obtained using the “detect.py” script with self-

written code, as the original “detect.py” does not support measuring the FPS of

SAM. FPS was evaluated by measuring the time taken for YOLO inference and

SAM inference separately, based on each model's inference process's start time

and end time. It's important to note that this FPS measurement specifically

104

accounts for the inference time of YOLOv5n and SAM, without considering

other post-processing or pre-processing steps such as NMS. The FPS

measurement was conducted for a single batch consisting of one IC image, to

align with the default behaviour of “detect.py”, which accepts one image at a

time. A total of 1000 IC images were used to test the FPS, resulting in a total of

1000 iterations.

3.3.3 Data augmentation

After preprocessing the images using the ensemble model as mentioned in

Section 3.3.2.3, a total of 170 images with die rotation defects and 386 images

with die crack defects were obtained. However, this quantity was insufficient to

train a YOLOv7-tiny model with a high mAP, and the class distribution was

imbalanced.

To address the issue of limited defect images, StyleGANv2 and

StyleGANv3 were trained to generate additional images. Additionally, Stable

Diffusion was fine-tuned with LoRA (Low-Rank Adaptation) as a technique to

fine-tune the stable diffusion by adjusting the attention mechanisms (q, k, and

v). The images sent to the model depict the die itself, and they were manually

cropped from the full IC chip. Since the input image dataset was limited,

Adaptive Discriminator Augmentation (ADA) was enabled in StyleGANv2 and

StyleGANv3 for better performance and to prevent overfitting.

To assess the performance of the StyleGAN models, an Inceptionv3

network was automatically trained to evaluate the Fréchet Inception Distance

(FID). FID measures the dissimilarity between the distribution of generated

images and a set of real images based on real covariance, real mean, fake

covariance and fake mean statistics. These statistics are derived from feature

vectors extracted by Inceptionv3 from the real image and generated image.

These three models were trained for 50,000 iterations. The performance of

StyleGAN models was evaluated using the FID metric, where 1000 fake images

were generated to measure FID. As the stable diffusion provided by MMagic

does not support the FID metric, manual inspection was performed on the output

images of stable diffusion.

105

After manually filtering the images output by StyleGANv2, 330 die

rotation images and 114 die crack images were selected. Random IC images

were selected for each of these images, and the original die region in the IC chip

was replaced with generated images manually. 500 defect-free IC images were

added as negative samples, bringing the total to 1500 images. Horizontal flip

augmentation was applied to these images, resulting in a dataset of 3,000 images.

Figure 3.16: Masks and Bounding Boxes of Die Rotation Obtained from SAM

3.3.4 Data annotation

These 3000 images were then annotated using Label Studio. The die rotation

defects were labelled with the assistance of SAM, as shown in Figure 3.16,

while die crack defects were labelled manually as SAM did not perform well on

small objects. Defect-free IC images are not annotated. The dataset was

subsequently divided into training, testing, and validation sets in approximately

an 8:1:1 ratio, as same as previously mentioned in Section 3.3.2.2.2. This

resulted in a training set with 2430 images, a test set with 300 images, and a

validation set with 270 images.

Annotated objects in the dataset were categorized into three size groups

based on the COCO definitions. Small objects were defined as those with

bounding boxes smaller than 32x32 pixels, medium objects had bounding boxes

ranging from 32x32 to 96x96 pixels, and large objects had bounding boxes

larger than 96x96 pixels. A script was employed to calculate the sizes of these

objects, resulting in a distribution of 1028 small objects, 142 medium-sized

objects, and 1058 large objects within the dataset.

106

Figure 3.17: Hyperparameters Configuration for YOLOv7-tiny Object

Detection Model

3.3.5 Model Training

The original YOLOv7 source code only contained three constant seed settings,

namely “random.seed()”, “np.random.seed()” and “torch.manual_seed()” This

resulted in training outcomes that varied each time. To ensure the reliability,

accuracy, and reproducibility of the results, custom code was developed. This

custom code sets all the seeds in the “numpy”, “torch”, and “random” libraries

to a consistent value of one using “random.seed()”, “np.random.seed()”,

“torch.manual_seed()”, “torch.cuda.manual_seed()”, and

“torch.cuda.manual_seed_all()”. Additionally, to maintain consistent output for

CUDA operations, “torch.backends.cudnn.deterministic” was set to True. From

previous experience, if the seed is not completely constant, the mAP@0.5 may

fluctuate around -2% to +2%, even in the same hyperparameter and model

configuration.

YOLOv7-tiny were trained with the hyperparameters shown in Figure

3.17. Notably, mosaic augmentation was also disabled during training. This

decision was made because some crack defects also appeared in the LED part

107

of the IC, which was not the focus of this study. To ensure that the model ignores

these types of defects, full IC images must passed to the model. The training

process consisted of 300 epochs, with a batch size of 16, the input image size

was set to 640x640 pixels and no pre-trained weights were used. This decision

was made to ensure the fairness of the network. As improvements were made to

the model, some components in the network were changed and became different

from the original network. For these changed or extra components, pre-trained

weights were not loaded. Pre-trained weights were only loaded for layers that

matched the original network, resulting in an unfair comparison. Instead of

using predefined anchor boxes intended for the COCO dataset, which are big

and not suitable for the datasets used in this study, the “AutoAnchor” option is

enabled. This option generates anchor boxes through k-means clustering based

on the ground truth boxes present in the dataset. A YOLOv7-tiny model was

trained.

3.3.6 Model Improvements

3.3.6.1 Normalized Wasserstein Distance Loss Function

The authors claim that metric based on IoU is very sensitive to positional

deviations of small targets, especially for pixelated targets, and that slight

positional deviations can lead to significant IoU degradation. This sensitivity

arises due to the discrete nature of bounding box positions, making it

challenging for the network to converge effectively during training. To solve

this problem, the authors proposed an approach to measure the similarity of the

bounding box via wasserstein distance instead of the standard IoU. Generally,

both the predicted and ground truth bounding boxes are modelled as 2D

gaussian distributions and then the similarity of the derived 2D gaussian

distributions is measured using NWD (Wang et al., 2021). The NWD between

the 2D gaussian distributions of the ground truth box and the predicted box can

be expressed by the following formula:

𝑁𝑊𝐷(𝒩𝑎, 𝒩𝑏) = ex p (−
√𝑊2

2(𝒩𝑎,𝒩𝑏)

𝐶
) (3.3)

108

Where 𝑊2
2(𝒩𝑎, 𝒩𝑏) is squared Euclidean distance between the predicted box

and bounding box that is represented in 2D gaussian distribution, can be

expressed as:

𝑊2
2(𝒩𝑎, 𝒩𝑏) =

∥
∥∥([𝑐𝑥𝑎 , 𝑐𝑦𝑎 ,

𝑤𝑎

2
,

ℎ𝑎

2
]

T
, [𝑐𝑥𝑏 , 𝑐𝑦𝑏 ,

𝑤𝑏

2
⋅

ℎ𝑏

2
]

T
)

∥
∥∥

2

2

(3.4)

𝑐𝑥, 𝑐𝑦,
𝑤

2
,

ℎ

2
 is defined as the coordinates and dimensions of the box.

3.3.6.2 CoordConv

Figure 3.18: Convolutional Layer vs. CoordConv Layer: A Comparison

(adopted from Liu et al. (2018))

The authors conducted experiments in which they applied traditional

convolution to convert cartesian coordinates (i, j) into one-hot pixel space and

vice versa. Through this experiment, they found out that traditional convolution

lacked awareness of the positional information associated with each filter,

which means traditional convolution captures local information but does not

inherently consider the positional information of features within the image. To

solve this problem, the authors propose CoordConv, which adds two additional

coordinate channels that represent the original input's i and j coordinates to the

original input feature map, as shown in Figure 3.18, so that CoordConv can

capture spatial information of the feature map. In simple terms, these coordinate

channels represent coordinates of feature map pixels, allowing the convolutional

109

learning process to have a certain level of spatial awareness regarding the

coordinates and thus improving accuracy. Since object detection looks at pixel

space and output bounding boxes in cartesian space, the author claims that

CoordConv can help in the field of object detection (Liu et al., 2018).

3.3.6.3 Slim-neck by GSConv

Figure 3.19: Structure of GSConv (adopted from H. Li et al. (2022))

Figure 3.20: Structure of GS Bottleneck Module and VoV-GSCSP Module

(adopted from H. Li et al. (2022))

Most of the lightweight modules are built by depthwise separable convolution

(DSC). However, during the convolution process of DSC, the channel

information of input images is segregated, resulting in lower feature extraction

ability compared to standard convolution (SC) and thus leading to lower

accuracy. To address this problem, the authors proposed a GSConv module that

combines SC, DSC, and shuffle operations, as shown in Figure 3.19. The input

110

first undergoes a standard convolution, followed by depthwise convolution

(DWConv). The results of these two convolutions are concatenated, and a

shuffle operation is performed to exchange local feature information between

these two output feature maps. Based on GSConv, the authors introduced the

GS bottleneck module. Based on GS bottleneck module, the authors implement

a one-shot aggregation method and design a VoV-GSCSP module, as shown in

Figure 3.20. The authors replaced the original neck in scaled-yolov4 with a neck

based on VoV-GSCSP and GSConv. The authors observed that this replacement

successfully detected more small objects in the DOTA1.0 dataset while

reducing the parameter count. The Slim-neck is formed by combining VoV-

GSCSP and GSConv (Li et al., 2022b).

3.3.6.4 Model Configuration for Improved Network

Figure 3.21: Combined Loss Function Code Incorporating CIOU and NWD

As mentioned in Section 3.3.4, the dataset consists of approximately an equal

proportion of small and large targets. Instead of directly replacing the original

CIOU loss function in YOLOv7-tiny with the NWD loss function, a

combination of both loss functions is employed, where each contributes 50% to

the total loss, resulting in a balanced approach, as shown in Figure 3.21.

Below outlines the modifications applied to the YOLOv7-tiny neck,

including CoordConv, as well as the changes made to the neck through VoV-

GSCSP and GSConvs. Specifically, only the neck architecture is modified,

while the backbone remains unchanged. In the neck with CoordConv, layers 38,

40, 48, 50, 74, 75, and 76 are replaced by CoordConv layers. In the neck with

VoV-GSCSP and GSConvs, the original e-elan module is substituted with VoV-

GSCSP, and layers 38, 40, 43, 45, 48, and 51 are replaced with GSConvs.

GSConvs are used instead of GSConv because pruning will be performed later,

and the shuffle operation in GSConv does not support pruning. GSConvs simply

111

replaces the shuffle operation with a normal convolutional layer. The layers in

VoV-GSCSP still remain as GSConv. The activation function used in

CoordConv and Slim-neck is the same as the original convolutional layer in

YOLOv7-tiny, which is LeakyReLU with a value of 0.1. All the hyperparameter

settings and training configurations remain the same, as mentioned in Section

3.3.5.

3.3.7 Model Pruning

Figure 3.22: Workflow for Network Slimming

112

Figure 3.23: Workflow for LAMP Pruning

One of the most frequently used techniques in industry to lightweight or speed

up models is model quantization. However, these kinds of techniques often rely

on specific hardware. For example, OpenVINO requires running on Intel

devices, and TensorRT requires running on Nvidia devices. In comparison,

model pruning does not have hardware limitations, as the output of pruning is

still a ".pt" weight file that can be easily converted to the ONNX format and

deployed on any device. These pruned models can also be further accelerated

through model quantization at a later stage.

3.3.7.1 Torch-Pruning

The pruning package used in this study is "Torch-Pruning". In the past, custom

pruning algorithms were required for different networks because the parameters

connecting to neurons varied in each network. To prune neurons, the parameters

connected to that neuron also needed to be pruned. Torch-pruning uses a

DepGraph algorithm to model the parameter dependencies in any network. The

relationships between nodes in the network are determined recursively to

identify their dependencies, which allows them to be grouped together, creating

113

a dependency graph. This graph helps determine which nodes and parameters

need to be pruned together. In summary, torch-pruning is a network-agnostic

pruning library that can be used for pruning in various neural network

architectures (Fang et al., 2023).

3.3.7.2 Layer-Adaptive Magnitude-based Pruning (LAMP)

Each weight tensor is flattened into a one-dimensional vector, and these vectors

are assumed to be arranged in ascending order, where |W[u]| ≤ |W[v]|. Here, u

and v represent the indices in the weight vector, and the LAMP score for the u-

th index in the vector can be calculated using the following formula:

score (𝑢; 𝑊): =
(𝑊[𝑢])2

∑  𝑣≥𝑢 (𝑊[𝑣])2
 (3.5)

The LAMP score measures the importance of all parameters or

connections that are connected to a specific neuron or layer. Connections with

the lowest LAMP scores will be globally pruned (Lee et al., 2020).

3.3.7.3 Network Slimming

In network slimming, the scaling factor γ from batch normalization is reused

and introduced to the channel's output. L1 sparse regularization is applied to the

factor γ during sparsity learning. The factor γ in batch normalization represent

scaling factor that controlling the feature map's data and determining channel

importance. L1 sparse regularization gradually drives γ in the channels towards

zero during sparsity learning, identifying which channels are unimportant and

subsequently pruning the unimportant channels (Liu et al., 2017).

3.3.7.4 Configuration for Pruning

Figures 3.22 and 3.23 depict the workflow for network slimming and LAMP

pruning, with the main difference being that network slimming requires sparsity

learning to determine unimportant channels, whereas LAMP pruning can

directly calculate the LAMP score and prune the network. Notably, both

114

network slimming and LAMP pruning are implemented in the torch-pruning

package as channel pruning techniques.

The pruning is applied to the modified YOLOv7-tiny with CoordConv

neck and modified YOLOv7-tiny with slim-neck. The hyperparameter

configuration and training settings for fine-tuning and sparsity learning remain

the same as mentioned in section 3.3.5. For pruning, the speed_up rate is set to

1.5, which is calculated based on GLOPS. "max_ch_sparsity" is set to 1.0,

indicating that unimportant channels will be completely removed. The

"iterative_steps" parameter is set to 200. This ensures that the model iteratively

prunes step by step, preventing excessive pruning that might exceed the

specified "speed_up" thresholds. Regarding sparsity learning, "reg" is set to 5e-

4, representing the coefficient of L1 sparse regularization. The GSConv layers

in VoV-GSCSP module are excluded from pruning process The pruning script

was developed based on the examples provided in the torch-pruning

documentation.

3.3.8 Performance Evaluation

The metrics evaluated primarily focus on precision, recall, mAP@0.5, and

mAP@0.5:0.95. Precision is used to assess false positives, while recall

evaluates false negatives. mAP@0.5 represents the model's classification ability,

determining whether it can identify die rotations or die cracks. mAP@0.5:0.95

indicates how accurately the predicted bounding boxes can locate defects. To

evaluate the extent of model lightweight after pruning, parameters, GLOPS, and

FPS for 16 batch sizes was assessed.

3.4 Work Breakdown Structure (WBS)

0.0 Deep Learning-Based Machine Vision for Defect Detection

1.0 Preliminary Planning

1.1 Understanding project background

1.2 Define problem statement

1.3 Define project objective

115

1.4 Define research question

1.5 Define project scope and limitations of study

1.6 Define proposed solution

2.0 Project Planning

2.1 Literature Review

2.1.1 Review deep learning

2.1.2 Review semiconductor defect detection systems that

use image processing techniques

2.1.3 Review semiconductor defect detection systems that

use classification techniques

2.1.4 Review semiconductor defect detection systems that

use object detection techniques

2.1.5 Study on Object detection model

2.2 Define Methodology and Workplan

2.2.1 Proposed methodology

2.2.2 Develop WBS

2.2.3 Develop Gantt Chart

2.2.4 Define development tools

3.0 Model Developing

3.1 Preparation phase

3.1.1 Data pre-processing

3.1.2 Data augmentation

3.1.3 Data annotation

3.2 Modelling

3.2.1 Train YOLOv7-tiny object detection model

3.3 Model Improvements

3.3.1 Changing the model’s components

3.3.2 Retrain model

116

3.4 Performance Evaluation

3.4.1 Evaluate the model’s mAP

3.4.2 Evaluate the loss graph and mAP graph

3.4.3 Evaluate the model’s FPS

3.5 Model pruning

3.5.1 Prune model with network slimming

3.5.2 Prune model with LAMP pruning

3.5 Gantt Chart

Figure 3.24: Gantt chart for Preliminary Planning and Project Planning from

30/1/2023 to 26/3/2023

Figure 3.25: Gantt chart for Project Planning from 27/3/2023 to 18/4/2023

117

Figure 3.26: Gantt chart for Model Developing from 19/4/2023 to 28/5/2023

Figure 3.27: Gantt chart for Model Developing from 29/5/2023 to 9/7/2023

Figure 3.28: Gantt chart for Model Developing from 10/7/2023 to 20/8/2023

Figure 3.29: Gantt chart for Model Deployment from 21/8/2023 to 2/9/2023

118

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Comparison of OpenCV, YOLOv5, and SAM in Capturing ROI

4.1.1 OpenCV

Figure 4.1: Results of OpenCV in Capturing ROI

In Figure 4.1, the output image generated by OpenCV demonstrates the

challenges in accurately capturing ROI for the IC chip. OpenCV's performance

in this task is imperfect, as it inadvertently includes a portion of the background

(depicted in green), as illustrated by the red rectangular box in Figure 4.1. This

issue arises from the fact that the IC's border lacks a distinct separation between

the IC itself (appearing as a black colour) and the surrounding background

(appearing as a green colour). Instead, there exists a gradual transition from

black to green, making it difficult for OpenCV to precisely delineate this feature.

119

4.1.2 YOLOv5 Segmentation Model

Table 4.1: Metrics of YOLOv5 Segmentation Model

Model mAP@0.5(

BOX)

mAP@0.5:0.95

(BOX)

mAP@0.5(M

ASK)

mAP@0.5:0.95(

MASK)

YOLO

v5n-seg

99.5 99.5 99.5 99.5

YOLO

v5s-seg

99.5 99.5 99.5 99.5

Table 4.2: Computational Costs of YOLOv5 Segmentation Model

Model FPS(b1) FPS(b16) Params GFLOPS

YOLOv5n-

seg

114.5 17.7 1879750 6.7

YOLOv5s-

seg

89.5 8.2 7398422 25.7

Figure 4.2: Results of YOLOv5n-seg in Capturing ROI

120

Figure 4.3: Results of YOLOv5s-seg in Capturing ROI

Figure 4.4: Predicted Masks by YOLOv5n-seg and YOLOv5s-seg for Rotated

IC Chip

While both YOLOv5n-seg and YOLOv5s-seg demonstrate impressive

mAP@0.5:0.95 scores of 99.5 for both bounding boxes and masks, as shown in

Table 4.1, there are notable differences in computational efficiency. YOLOv5s-

seg incurs significantly higher computational costs and operates at a lower FPS

rate compared to YOLOv5n-seg, as shown in Table 4.2.

121

However, it's important to acknowledge that both models have their

limitations. They excel in accurately capturing and cropping ROI when the IC

is in its default orientation, as exemplified in Figures 4.2 and 4.3. Yet, when the

IC is rotated, both models exhibit a distinctive zig-zag pattern at the mask border,

as illustrated in Figure 4.4.

4.1.3 SAM

Table 4.3: Metrics and Computational cost of YOLOv5n Object Detection

Model

Model mAP@0.5 mAP@0.5:0.95 FPS(b1) FPS(b16) Params GFLOPS

YOLOv5n 99.5 99.1 120.26 35.8 1760518 4.1

Table 4.4: FPS Performance of Various SAM Models

Model FPS(b1)

YOLOv5n + FastSAM-s 34

YOLOv5n + FastSAM-x 17.1

YOLOv5n + MobileSAM 29.2

YOLOv5n + SAM_VIT_b 3.3

YOLOv5n + SAM_VIT_l 2.2

122

Figure 4.5: Predicted Masks by Various SAM Models

Figure 4.6: Predicted Masks by SAM_VIT_b and SAM_VIT_l for Rotated IC

Chip

To tackle this problem, the SAM model was utilized for segmentation. Prior to

that, a YOLOv5n object detection model was trained to roughly locate the IC's

position and send the bounding box coordinates to SAM as a prompt, aiming to

123

improve segmentation success rates. Table 4.3 displays the metrics and

computational costs of the YOLOv5n object detection model.

In Figure 4.5, various outputs from different SAM models are shown.

Masks generated by FastSAM-s, FastSAM-x, and MobileSAM exhibited

overflow, including parts of the background, whereas SAM_VIT_b and

SAM_VIT_l did not face this issue. Figure 4.6 illustrates the mask outputs of

SAM_VIT_b and SAM_VIT_l when the IC was rotated. Notably, there was no

zig-zag pattern observed at the border of the predicted mask, in contrast to

results obtained from the YOLOv5 segmentation model. Table 4.4 provides the

FPS performance for different SAM models.

4.1.4 Discussion

Since real-time inference was not a requirement for this study, an ensemble

model of YOLOv5n and SAM_VIT_b was chosen as the final model for image

pre-processing. However, if real-time inference were necessary, YOLOv5n-seg

would be the preferred choice, while YOLOv5s-seg would not be considered

due to its similar results to YOLOv5n-seg but with slower FPS and higher

computational cost. Additionally, FastSAM-s, FastSAM-x, and MobileSAM

were excluded from consideration due to the overflow issues observed in the

predicted masks. Furthermore, SAM_VIT_l would also not be considered as it

exhibited similar performance to SAM_VIT_b but with lower FPS. The trade-

off between the SAM_VIT_b and YOLOv5n-seg is evident, as SAM_VIT_b

operates at 3.3 FPS, whereas YOLOv5n-seg runs at a significantly higher speed

of 120.26 FPS.

4.2 Comparison of StyleGANv2, StyleGANv2, and Stable Diffusion

Table 4.5： FID Scores Comparison: StyleGANv2 vs. StyleGANv3

FID score Die Rotate Die Crack

StyleGANv2 22.32 14.86

StyleGANv3 81.43 76.62

124

Figure 4.7: Generated Die Rotation Images

In table 4.5, the FID scores for StyleGANv2 and StyleGANv3 in generating die

crack and die rotation defect images are presented. Notably, StyleGANv2

outperformed StyleGANv3, achieving significantly lower FID scores of 22.32

for die rotation and 14.86 for die crack. In Figure 4.7, images generated by

StyleGANv2, StyleGANv3, and stable diffusion are showcased. In terms of

image fidelity, it is evident that the images generated by StyleGANv2 closely

resemble or are more similar to the real images. Conversely, the dies generated

by StyleGANv3 do not maintain straight edges, exhibiting distortions. Although

the dies generated by stable diffusion preserve straight edges, the surrounding

areas of the die suffer from lower fidelity. Considering these observations, the

final model selected for generating additional images is StyleGANv2.

StyleGANv3's poor performance may be due to a few reasons, which might not

have had enough training data, and some hyperparameters, like "r1_gamma",

may not have been tuned correctly.

125

4.3 Comparison of YOLOv7-tiny, Modified YOLOv7-tiny, and Pruned YOLOv7-tiny

Table 4.6: Metrics and Computational Cost of Various YOLOv7-tiny Models

Settings NWD CoordConv Slim-neck

by GSConv

Pruning Precision Recall mAP@0.5 mAP@0.5:0.95 Params GFLOPS FPS(b16)

Baseline

97.4 87.0 92.1 69.8 6010302 13.0 19.5

Setting-1 ✔

98.0 88.3 92.1 69.6 6010302 13.0 19.2

Setting-2 ✔

✔

98.0 92.2 94.2 69.7 5746078 12.1 18.2

Setting-3 ✔

✔ Slimming 96.7 89.9 93.2 69.5 3012905 8.0 19.8

Setting-4 ✔

✔ LAMP 97.0 92.2 94.2 70.6 2078651 8.0 21.1

Setting-5 ✔ ✔

95.8 92.2 94.2 70.9 6027198 13.1 17.8

Setting-6 ✔ ✔

Slimming 94.8 89.4 93.6 71.9 2855550 8.7 19.4

Setting-7 ✔ ✔

LAMP 95.7 93.8 95.1 72.3 2082812 8.6 20.6

126

4.3.1 Baseline

Figure 4.8: Loss and mAP Graphs for Baseline Model

In Figure 4.8, the graphical representations of box loss, objectness loss,

classification loss, mAP@0.5, and mAP@0.5:0.95 are presented. Analysis of

the mAP graph reveals that the model reaches convergence approximately at the

200th epoch, leading to the decision to train the model for 300 epochs.

4.3.2 Setting-1 Model

Figure 4.9: mAP Graph for Setting-1 Model

Table 4.6 provides insights into the impact of the NWD loss function (setting-1

model) on model performance. Notably, this setting resulted in a 0.6% increase

in precision and a 1.3% improvement in recall. However, it is noteworthy that

there was no change in mAP@0.5, and mAP@0.5:0.95 experienced a 0.2% drop.

Figure 4.9 illustrates the mAP graph for the setting-1 model, which

demonstrates that this configuration achieved faster convergence compared to

the baseline model.

127

4.3.3 Setting-2 Model

For the setting-2 model, which incorporates NWD loss and a slim neck

architecture, similar to the setting-1 model, there is a noteworthy improvement

in precision, increasing by 0.6% compared to the baseline. The recall also

exhibits substantial growth, with a remarkable 5.2% improvement. Furthermore,

the mAP@0.5 metric experiences a 2.1% increase. However, there is a 0.1%

decrease in mAP@0.5:0.95. Interestingly, despite these performance

enhancements, the computational cost of Setting-2 is lower than the baseline

model. Parameters have decreased by 4.4%, and GFLOPS have reduced by

6.92%. However, the FPS is 1.3 lower, possibly due to the slower speed in

depth-wise operations.

4.3.4 Setting-3 Model

Figure 4.10: Graph of Ordering of Batch Normalization Parameters for

Setting-3 Model

The setting-3 model is essentially the pruned version of the setting-2 model,

achieved through network slimming. In Figure 4.9, the graph displays the

ordering of batch normalization parameters after the end of sparsity learning.

The x-axis represents the number of batch normalization parameters, and the y-

axis represents the corresponding values of these parameters. From the graph, it

is evident that 67.0% of the batch normalization values are close to zero,

representing a sparsity ratio in the model. Compared to the setting-2 model,

there is a drop in precision by 1.3%, recall by 2.3%, mAP@0.5 by 1%, and

mAP@0.5:0.95 by 0.2%. However, these trade-offs are accompanied by

128

significantly lower computational costs, with 47.5% fewer parameters and 33.8%

less GLOPS. Additionally, the FPS has increased by 1.6.

4.3.5 Setting-4 Model

The setting-4 model is a pruned version of the setting-2 model, utilizing LAMP

pruning. Notably, the pruning results in setting-4 model are significantly better

compared to setting-3 model. In comparison to the setting-2 model, there is a 1%

drop in precision, while recall and mAP@0.5 remain unchanged. Moreover,

mAP@0.5:0.95 increases by 0.9%. Furthermore, the model demonstrates

substantial computational improvements, with GFLOPS reduced by 33.8%,

which follows a similar trend as observed in the setting-3 model. Additionally,

it boasts a significantly lower parameter count, with 63.82% fewer parameters

compared to the setting-2 model, and the FPS has increased by 2.9.

4.3.6 Setting-5 Model

The setting-5 model, incorporating the NWD loss function and CoordConv neck,

exhibits notable differences when compared to the baseline model. Specifically,

there is a significant drop in precision, decreasing by 1.6%. Conversely, recall,

mAP@0.5, and mAP@0.5:0.95 experience improvements, increasing by 5.2%,

2.1%, and 0.2%, respectively. However, it's worth noting that these

enhancements come at slightly higher parameters and GLOPS, which are 0.28%

and 0.77% higher, respectively.

4.3.7 Setting-6 Model

Figure 4.11: Graph of Ordering of Batch Normalization Parameters for

Setting-6 Model

129

Setting-6 is the result of implementing network slimming on Setting-5.

Comparatively, when measured against the Setting-5 model, Setting-6

demonstrates notable trade-offs. Specifically, there's a marked decline in

precision by 1%, recall by 2.8%, and mAP@0.5 by 0.6%. Conversely,

mAP@0.5:0.95 exhibits an encouraging 1% increase. Efficiency-wise, Setting-

6 model delivers significant benefits, despite these performance shifts. The

model parameters see a substantial reduction of 52.62%, accompanied by a

GLOPS reduction of 36.49%. Furthermore, Setting-6 experiences a notable

boost in FPS, increasing by 1.6. From Figure 4.11, it's evident that the sparsity

ratio of setting-6 model is 79.0%, which represents a significant increase of 12%

compared to setting-3. Notably, this high sparsity ratio means that setting-6

model can focus on pruning the majority of the batch normalization parameters,

with 21% of these parameters remaining in focus. This indicates that setting-6

model has substantial potential for reducing computational costs.

4.3.8 Setting-7 Model

With the implementation of LAMP pruning applied to the settings-5 model,

resulting in the creation of the setting-7 model, several notable performance and

efficiency changes are observed when compared to setting-5. There is a slight

drop in precision by 0.1%, which is accompanied by significant improvements

in recall, mAP@0.5, and mAP@0.5:0.95, increasing by 1.6%, 0.9%, and 1.4%,

respectively. However, the most substantial gains come in terms of

computational efficiency. Setting-6 boasts a remarkable reduction of 65.44% in

model parameters and a considerable decrease of 34.35% in GLOPs.

Additionally, the model experiences enhanced speed, with an impressive 2.8

FPS increase.

4.3.9 Discussion

From Table 4.6, it can be deduced that LAMP pruning outperforms network

slimming both in terms of computational cost and metrics. Some models, such

as the setting-7 model, exhibit improved performance in term of metrics after

pruning. While LAMP pruning achieves a greater reduction in parameters and

an increased FPS compared to network slimming, based on the observed

130

sparsity ratio, it's noteworthy that network slimming still holds significant

potential for further decreasing computational costs. This potential, however,

was not fully demonstrated in this study due to the "speed_up" rate being set to

1.5 for the sake of fair comparison, as explained in Section 3.3.7.4. Additionally,

enhancing network performance by modifying its components presents a

challenge in this study. Many modules that focus on improving the detection of

small objects may trade off performance for larger objects. The datasets used in

this study contain both small and large objects, and making such modifications

typically results in inferior performance compared to the baseline.

Considering the computational cost, mAP@0.5, and mAP@0.5:0.95,

Setting-7 emerges as the top-performing model. Compared to the baseline,

Setting-7 showcases notable improvements in Recall, mAP@0.5, and

mAP@0.5:0.95, with enhancements of 6.8%, 3%, and 2.5%, respectively.

However, there is a slight reduction in precision by 1.7%. Setting-1 and Setting-

2 exhibit the highest precision, with an increase of 0.6%. Setting-4 stands out

for having the fewest parameters, the lowest GFLOPS, and the highest FPS. It

achieves a substantial reduction in GFLOPS by 65.42% and a 38.46% decrease

in parameters while slightly increasing FPS by 1.6.

131

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

In conclusion, this study introduced a comprehensive deep learning visual-based

inspection approach based on object detection techniques. The preprocessing

stage employs an ensemble model of YOLOv5n and SAM_VIT_b, followed by

object detection using a modified YOLOv7-tiny model (Setting-7). This

approach effectively detects die rotation and die crack defects, achieving

impressive results with a 95.1% of mAP@0.5 and 72.3% of mAP@0.5:0.95,

representing a 3% and 2.5% improvement over the original YOLOv7-tiny

model. Furthermore, Setting-7 significantly reduces parameters by 65.34% and

GLOPS by 33.84% compared to the original YOLOv7-tiny network.

By automating defect detection in integrated circuits, this approach

minimizes the need for human intervention, allowing human resources to be

allocated to more critical tasks. This enhancement ultimately enhances

operational efficiency within the industry. In this study, all objectives were

successfully achieved, and research questions were addressed. StyleGANv2 was

chosen as the optimal solution for addressing the issue of insufficient dataset,

achieving an FID score of 22.32 for die rotation and 14.86 for die crack.

SAM_VIT_b emerged as the preferred technique for capturing ROI, while

NWD loss function and Coordconv neck contributed to the enhancement of the

YOLOv7-tiny model. Additionally, LAMP pruning effectively reduced the

computational cost of YOLOv7-tiny, completing the toolbox for this innovative

visual inspection system.

Several future enhancements are recommended:

• Incorporating Fine-Tuning with Multimodal Techniques:

Consider integrating fine-tuning methods that combine stable diffusion

with textual inversion. This can enable the generation of die rotations

and die cracks based on user-specified degrees and locations, adding

flexibility and customization to the generated image.

• Exploring Pruning Techniques for the Segmentation Model:

132

Investigate pruning techniques for segmentation model, particularly for

the SAM model used in segmentation.

• Incorporating a Module for Die Rotation Angle Determination:

Develop and implement a module that can determine and display the die

rotation angles detected by the YOLOv7-tiny model. This would provide

valuable information for inspection and analysis.

• Application of Knowledge Distillation:

Explore the application of knowledge distillation techniques. This

approach has the potential to enhance the mAP of the pruned model,

contributing to improved defect detection performance.

133

REFERENCES

Ahmed Fawzy Gad, 2021. Faster R-CNN Explained for Object Detection Tasks.

[online] Available at: <https://blog.paperspace.com/faster-r-cnn-

explained-object-detection/> [Accessed 10 April 2023].

Alam, L. and Kehtarnavaz, N., 2022. A Survey of Detection Methods for Die

Attachment and Wire Bonding Defects in Integrated Circuit

Manufacturing. IEEE Access,

https://doi.org/10.1109/ACCESS.2022.3197624.

Arena Solutions, 2023. WHAT IS INTEGRATED CIRCUIT (IC)? [online]

Available at:

<https://www.arenasolutions.com/resources/glossary/integrated-

circuit/> [Accessed 9 March 2023].

Aryan, P., Sampath, S. and Sohn, H., 2018. An overview of non-destructive

testing methods for integrated circuit packaging inspection. Sensors

(Switzerland), https://doi.org/10.3390/s18071981.

Batool, U., Shapiai, M.I., Tahir, M., Ismail, Z.H., Zakaria, N.J. and Elfakharany,

A., 2021. A Systematic Review of Deep Learning for Silicon Wafer

Defect Recognition. IEEE Access.

https://doi.org/10.1109/ACCESS.2021.3106171.

Bhatt, P.M., Malhan, R.K., Rajendran, P., Shah, B.C., Thakar, S., Yoon, Y.J.

and Gupta, S.K., 2021. Image-Based Surface Defect Detection Using

Deep Learning: A Review. Journal of Computing and Information

Science in Engineering, https://doi.org/10.1115/1.4049535.

Bochkovskiy, A., Wang, C.-Y. and Liao, H.-Y.M., 2020. YOLOv4: Optimal

Speed and Accuracy of Object Detection. [online] Available at:

<http://arxiv.org/abs/2004.10934>.

Cao, C., Wang, B., Zhang, W., Zeng, X., Yan, X., Feng, Z., Liu, Y. and Wu, Z.,

2019. An Improved Faster R-CNN for Small Object Detection. IEEE

Access, 7, pp.106838–106846.

https://doi.org/10.1109/ACCESS.2019.2932731.

Chen, K., Cai, N., Wu, Z., Xia, H., Zhou, S. and Wang, H., 2023. Multi-scale

GAN with transformer for surface defect inspection of IC metal

134

packages. Expert Systems with Applications, 212.

https://doi.org/10.1016/j.eswa.2022.118788.

Cheon, S., Lee, H., Kim, C.O. and Lee, S.H., 2019. Convolutional Neural

Network for Wafer Surface Defect Classification and the Detection of

Unknown Defect Class. IEEE Transactions on Semiconductor

Manufacturing, 32(2), pp.163–170.

https://doi.org/10.1109/TSM.2019.2902657.

Dehaerne, E., Dey, B., Halder, S. and De Gendt, S., 2023. Optimizing YOLOv7

for Semiconductor Defect Detection. [online] Available at:

<http://arxiv.org/abs/2302.09565>.

Eggert, C., Brehm, S., Winschel, A., Zecha, D. and Lienhart, R., 2017. A closer

look: Small object detection in faster R-CNN. In: 2017 IEEE

International Conference on Multimedia and Expo (ICME). [online]

IEEE. pp.421–426. https://doi.org/10.1109/ICME.2017.8019550.

Fang, G., Ma, X., Song, M., Mi, M.B. and Wang, X., 2023. DepGraph: Towards

Any Structural Pruning. [online] Available at:

<http://arxiv.org/abs/2301.12900>.

Girshick, R., 2015. Fast R-CNN. [online] Available at:

<http://arxiv.org/abs/1504.08083>.

Girshick, R., Donahue, J., Darrell, T. and Malik, J., 2013. Rich feature

hierarchies for accurate object detection and semantic segmentation.

[online] Available at: <http://arxiv.org/abs/1311.2524>.

Jacob Solawetz, 2020. What is YOLOv5? A Guide for Beginners. [online]

Available at: <https://blog.roboflow.com/yolov5-improvements-and-

evaluation/> [Accessed 14 April 2023].

Jin, Q. and Chen, L., 2022. A Survey of Surface Defect Detection of Industrial

Products Based on A Small Number of Labeled Data. [online]

Available at: <http://arxiv.org/abs/2203.05733>.

Jonathan Hui, 2018. mAP (mean Average Precision) for Object Detection.

[online] Available at: <https://jonathan-hui.medium.com/map-mean-

average-precision-for-object-detection-45c121a31173> [Accessed 17

April 2023].

135

Kiprono Elijah Koech, 2020. Object Detection Metrics With Worked Example.

[online] Available at: <https://towardsdatascience.com/on-object-

detection-metrics-with-worked-example-216f173ed31e> [Accessed

17 April 2023].

Lee, J., Park, S., Mo, S., Ahn, S. and Shin, J., 2020. Layer-adaptive sparsity for

the Magnitude-based Pruning. [online] Available at:

<http://arxiv.org/abs/2010.07611>.

Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M.,

Nie, W., Li, Y., Zhang, B., Liang, Y., Zhou, L., Xu, X., Chu, X., Wei,

X. and Wei, X., 2022a. YOLOv6: A Single-Stage Object Detection

Framework for Industrial Applications. [online] Available at:

<http://arxiv.org/abs/2209.02976>.

Li, H., Li, J., Wei, H., Liu, Z., Zhan, Z. and Ren, Q., 2022b. Slim-neck by

GSConv: A better design paradigm of detector architectures for

autonomous vehicles. [online] Available at:

<http://arxiv.org/abs/2206.02424>.

Lim, J.Y., Lim, J.Y., Baskaran, V.M. and Wang, X., 2023. A deep context

learning based PCB defect detection model with anomalous trend

alarming system. Results in Engineering, 17.

https://doi.org/10.1016/j.rineng.2023.100968.

Liu, R., Lehman, J., Molino, P., Such, F.P., Frank, E., Sergeev, A. and Yosinski,

J., 2018. An Intriguing Failing of Convolutional Neural Networks and

the CoordConv Solution. [online] Available at:

<http://arxiv.org/abs/1807.03247>.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y. and Berg,

A.C., 2015. SSD: Single Shot MultiBox Detector. [online]

https://doi.org/10.1007/978-3-319-46448-0_2.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S. and Zhang, C., 2017. Learning

Efficient Convolutional Networks through Network Slimming. [online]

Available at: <http://arxiv.org/abs/1708.06519>.

Lu, Y., Sun, C., Li, X. and Cheng, L., 2022. Defect Detection of Integrated

Circuit Based on YOLOv5. In: 2022 IEEE 2nd International

Conference on Computer Communication and Artificial Intelligence,

136

CCAI 2022. Institute of Electrical and Electronics Engineers Inc.

pp.165–170. https://doi.org/10.1109/CCAI55564.2022.9807758.

Mahony, N.O., Campbell, S., Carvalho, A., Harapanahalli, S., Velasco-

Hernandez, G., Krpalkova, L., Riordan, D. and Walsh, J., 2019. Deep

Learning vs. Traditional Computer Vision. [online]

https://doi.org/10.1007/978-3-030-17795-9.

Mat Jizat, J.A., P.P. Abdul Majeed, A., Ahmad, A.F., Taha, Z. and Yuen, E.,

2021. Evaluation of the machine learning classifier in wafer defects

classification. ICT Express, 7(4), pp.535–539.

https://doi.org/10.1016/j.icte.2021.04.007.

O’Shea, K. and Nash, R., 2015. An Introduction to Convolutional Neural

Networks. [online] Available at: <http://arxiv.org/abs/1511.08458>.

Padilla, R., Netto, S.L. and da Silva, E.A.B., 2020. A Survey on Performance

Metrics for Object-Detection Algorithms. In: 2020 International

Conference on Systems, Signals and Image Processing (IWSSIP).

[online] IEEE. pp.237–242.

https://doi.org/10.1109/IWSSIP48289.2020.9145130.

Prince, S.J.D., 2023. Understanding Deep Learning. [online] Available at:

<https://udlbook.github.io/udlbook/> [Accessed 19 February 2023].

Redmon, J., Divvala, S., Girshick, R. and Farhadi, A., 2015. You Only Look

Once: Unified, Real-Time Object Detection. [online] Available at:

<http://arxiv.org/abs/1506.02640>.

Redmon, J. and Farhadi, A., 2016. YOLO9000: Better, Faster, Stronger. [online]

Available at: <http://arxiv.org/abs/1612.08242>.

Redmon, J. and Farhadi, A., 2018. YOLOv3: An Incremental Improvement.

[online] Available at: <http://arxiv.org/abs/1804.02767>.

Ren, S., He, K., Girshick, R. and Sun, J., 2015. Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks. [online]

Available at: <http://arxiv.org/abs/1506.01497>.

Shankar, N.G. and Zhong, Z.W., 2005. Defect detection on semiconductor

wafer surfaces. Microelectronic Engineering, 77(3–4), pp.337–346.

https://doi.org/10.1016/j.mee.2004.12.003.

137

Shrestha, A. and Mahmood, A., 2019. Review of deep learning algorithms and

architectures. IEEE Access,

https://doi.org/10.1109/ACCESS.2019.2912200.

Ultralytics, 2023. Architecture Summary. [online] Available at:

<https://docs.ultralytics.com/yolov5/architecture/> [Accessed 14 April

2023].

Wang, C.-Y., Bochkovskiy, A. and Liao, H.-Y.M., 2022. YOLOv7: Trainable

bag-of-freebies sets new state-of-the-art for real-time object detectors.

[online] Available at: <http://arxiv.org/abs/2207.02696>.

Wang, H. and Raj, B., 2017. On the Origin of Deep Learning. [online] Available

at: <http://arxiv.org/abs/1702.07800>.

Wang, J., Xu, C., Yang, W. and Yu, L., 2021. A Normalized Gaussian

Wasserstein Distance for Tiny Object Detection. [online] Available at:

<http://arxiv.org/abs/2110.13389>.

Yang, Y. and Sun, M., 2022a. Semiconductor Defect Detection by Hybrid

Classical-Quantum Deep Learning. [online] Available at:

<http://arxiv.org/abs/2208.03514>.

Yang, Y. and Sun, M., 2022b. Semiconductor Defect Pattern Classification by

Self-Proliferation-and-Attention Neural Network. IEEE Transactions

on Semiconductor Manufacturing, 35(1), pp.16–23.

https://doi.org/10.1109/TSM.2021.3131597.

Yeh, C.H., Wu, F.C., Ji, W.L. and Huang, C.Y., 2010. A wavelet-based

approach in detecting visual defects on semiconductor wafer dies. In:

IEEE Transactions on Semiconductor Manufacturing. pp.284–292.

https://doi.org/10.1109/TSM.2010.2046108.

You, K.M., Sheikh, U.U. and Alias, N.E.B., 2022. Die-Level Defects

Classification using Region-based Convolutional Neural Network. In:

IEEE International Conference on Semiconductor Electronics,

Proceedings, ICSE. Institute of Electrical and Electronics Engineers

Inc. pp.144–147. https://doi.org/10.1109/ICSE56004.2022.9863135.

Zaidi, S.S.A., Ansari, M.S., Aslam, A., Kanwal, N., Asghar, M. and Lee, B.,

2021. A Survey of Modern Deep Learning based Object Detection

Models. [online] Available at: <http://arxiv.org/abs/2104.11892>.

138

Zhang, A., Lipton, Z.C., Li, M. and Smola, A.J., 2021. Dive into Deep Learning.

[online] Available at: <http://arxiv.org/abs/2106.11342>.

Zou, Z., Chen, K., Shi, Z., Guo, Y. and Ye, J., 2019. Object Detection in 20

Years: A Survey. [online] Available at:

<http://arxiv.org/abs/1905.05055>.

139

APPENDICES

Appendix A: Comparison of Channel Graphs between Setting-2 and

Setting-3 Models

Appendix B: Comparison of Channel Graphs between Setting-2 and

Setting-4 Models

Appendix C: Comparison of Channel Graphs between Setting-5 and

Setting-6 Models

140

Appendix D: Comparison of Channel Graphs between Setting-5 and

Setting-7 Models

141

Appendix E: Configuration File for StyleGANv2

142

Appendix F: Configuration File for StyleGANv3

143

Appendix G: Configuration File for Stable Diffusion Fine-Tune with LoRA

144

Appendix H: Model Configuration File for Original YOLOv7-tiny Neck

.

145

Appendix I: Model Configuration File for Modified Neck with CoordConv

146

Appendix J: Model Configuration File for Modified Neck with

VoVGSCSP and GSConvs

147

Appendix K: CoordConv Implementation in YOLOv7-tiny Neck: Code

Snippet

148

Appendix L: GSConv, GSConvs, and VoV-GSCSP Implementation in

YOLOv7-tiny Neck: Code Snippet

149

Appendix M: Normalized Wasserstein Loss Function Implementation in

YOLOv7-tiny: Code Snippet

