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ABSTRACT 

 

Due to advances in semiconductor technology, the complexity of integrated 

circuit design continues to increase, resulting in ever-smaller defects appearing 

on these circuits. While some companies still rely on manual inspection for 

defect detection, these small and hard-to-see defects often lead to high false 

detection rates due to the human eye's limitations. This study aims to replace 

manual inspection with an approach that uses object detection to identify subtle 

defects, which are die rotation and die cracks. The YOLOv5n model is trained 

to capture ROI and strengthened by incorporating the SAM model to enhance 

segmentation performance. To address the issue of limited defect images, the 

StyleGANv2 model is trained to generate extra defect images. The YOLOv7-

tiny model has been trained for object detection, with several enhancements 

made to the network architecture and loss function, pruning is also applied to 

decrease computational demands. The final model boosts a 3% increase in 

mAP@0.5 and 2.5% increase in mAP@0.5:0.95, while reducing parameters by 

65.34% and GFLOPS by 33.84% compared to the original YOLOv7-tiny model. 

This study demonstrates that object detection can be an effective method for 

detecting defects in integrated circuits. The proposed method is able to achieve 

high accuracy and efficiency. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Thousands to millions of transistors, resistors, and capacitors are 

interconnected and layered on a thin semiconductor substrate to form an 

integrated circuit (IC) (Arena Solutions, 2023).  

The primary manufacturing processes for integrated circuits can be 

categorized into three main parts, which are the formation of the silicon wafer, 

wafer fabrication, and assembly or testing. During the formation stage, silicon 

crystals are generated and then sliced into thin sections, creating silicon wafers. 

These wafers serve as the foundational material for constructing integrated 

circuits (ICs). During the fabrication stage, semiconductor materials undergo a 

series of complex steps to produce the individual parts of the IC. During the 

assembly stage, Individual parts of the IC are removed from the wafer and 

assembled into a package. This typically involves attaching the IC to a substrate 

or lead frame, enclosing it in ceramic or plastic, and incorporating wire bonds 

to connect the IC to the leads. Lastly, testing will be performed to ensure each 

IC performs as planned (Alam and Kehtarnavaz, 2022).  

Currently, there are two commonly used inspection procedures for ICs, 

which can be broadly categorized into DT and NDT. DT involves inspecting the 

IC without damaging it, while NDT involves inspecting the IC by disassembling 

the assembled IC. The majority of the industry uses one of the NDT methods, 

specifically AOI, for inspection. AOI consists of both hardware and software 

components. The hardware includes a set of image sensors and illumination 

devices used to capture images of the IC. The software utilizes an inspection 

algorithm to detect defects from captured images. These inspection algorithms 

can be classified into two main categories, which are traditional image 

processing techniques and deep learning techniques (Batool et al., 2021). 

Defect detection is extremely important in two critical steps of IC 

packaging, which are the die attachment stage and the wire bonding stage. 

Numerous defects such as misplaced or misaligned die, too much or too little 

epoxy, and missing solder bumps, are found in the wire bonding stage, resulting 
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in compromised mechanical reliability and affecting the thermal or electrical 

efficiency of IC. Defect detection is also utilised during the wire bonding phase 

to identify defects such as broken, missing, or sagging wires, which could 

disrupt the intended electrical signal transmission from the IC (Alam & 

Kehtarnavaz, 2022). 

 

1.2 Importance of the Study 

One of the standards in the semiconductor manufacturing industry is to ensure 

the long-term reliability of semiconductors. This not only translates into an 

enhanced user experience but also extends the lifespan of the products they 

power. Particularly, semiconductors find applications in critical domains such 

as medical and military equipment, where sudden failure or breakdown can 

cause serious safety and reliability issues. Defect detection then becomes an 

important safeguard to thoroughly screen out defective semiconductors before 

they enter the market. Premature failure of equipment can also damage a 

company's reputation and incur warranty costs. Defect detection also plays a 

crucial role in process improvement and optimization. In the case of a significant 

number of IC chips exhibiting die rotation problems, it serves as a valuable 

indicator of potential issues during the die soldering process or with the die 

soldering machine itself. Defect detection helps to identify the root cause of 

defects and thus provides an indicator for process improvement. Maintaining a 

high yield enhances the company's reputation and provides it with a significant 

competitive advantage. AOI machine is costly, but if object detection can 

replace the AOI machine's algorithms, the only required equipment is a 

microscope for capturing IC images and a computer running the object detection 

software. This could result in significant cost savings. By automating the defect 

detection process, the company can redirect human resources from defect 

detection to other critical tasks, ultimately enhancing operational efficiency 

within the industry. 

 

1.3 Problem Statement 

Although there are existing methods for semiconductor defect detection, such 

as human inspection, AOI machines, and traditional image processing, but these 

methods still have their own disadvantages and limitations. 
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1.3.1 Low Accuracy in Human Defect Detection 

Companies often use manual methods for defect detection, but training an 

employee to perform defect detection takes a significant amount of time, or 

roughly 6 to 9 months of training, to achieve 90% accuracy. However, within 

15 months of training, for a variety of reasons, such as increased difficulty due 

to product evolution, decreased motivation due to stress, or process advances, 

the accuracy of the manual inspection drops dramatically to about 70% to 85% 

(Mat Jizat et al., 2021).  

 

1.3.2 Limitations of human eyes in detecting small defects 

The human eye cannot detect small defects, and manual inspection is 

inappropriate when some inspection settings are detrimental to human health 

(Jin and Chen, 2022). Creating more difficult manufacturing procedures is taken 

medicine in order to create smaller devices, and the demand for smaller and 

more complex integrated circuits is also increasing, which leads to an increase 

in the rate of defects. These defects are usually so miniscule that they are 

difficult for the human eye to discern (Aryan, Sampath and Sohn, 2018). For 

example, misalignment of the die by as little as ten micrometres or rotation of 

the die by less than one degree. 

 

1.3.3 Limitations of traditional image processing 

As mentioned, inspection algorithms in AOI can be classified into traditional 

image processing and deep learning techniques. However, the traditional image 

processing technique struggles to handle backgrounds with complex textures, 

noise, or varying lighting conditions (Bhatt et al., 2021). Traditional image 

processing techniques are highly dependent on feature engineering and require 

experienced engineers to pre-process the dataset, such as feature selection, noise 

reduction, feature extraction and selection algorithms. However, this procedure 

may lead to information distortion or loss, which reduces the accuracy of pattern 

recognition. (Batool et al., 2021). 

 

1.3.4 Challenges of over-rejection by AOI 

Over-reject is a very common problem in AOI if the AOI system is set to be too 

sensitive or has incorrect programming. The AOI system could classify a lot of 
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false positives or perfectly functional items as faulty, leading to needless rework 

or waste, which results in higher expenses, lower efficiency, and lower yield in 

the IC manufacturing industry.  

 

1.4 Aim and Objectives 

This study aims to develop a comprehensive deep learning visual-based 

inspection approach that based on object detection techniques for detecting die 

rotation and die crack defects in IC, with the goal of minimising false positive 

and false negative rates. 

 

Objective: 

• Apply data augmentation and StyleGANv2-generated images to 

enhance segmentation dataset robustness and object detection data 

diversity. Compare the performance between StyleGANv2, 

StyleGANv3, and Stable Diffusion. 

• Develop a YOLOv5n segmentation model for precise ROI 

localization and explore an ensemble approach with the YOLOv5n 

object detection model and Segment Anything Model (SAM) to 

enhance segmentation accuracy. Compare the performance of 

capturing ROI between YOLOv5, ensemble model of YOLOv5n 

and SAM, and OpenCV. 

• Train a YOLOv7-tiny model for die crack and rotation detection, 

incorporating loss function improvements, network architecture 

improvements, and pruning. 

 

1.5 Research Questions 

• What technique can be used to solve the problem of insufficient defect 

images, and how to increase the robustness of datasets? 

• What is the suitable technique to capture the ROI, and how to increase 

the segmentation accuracy? 

• How to improve the accuracy of the object detection model? How to 

further decrease the computational cost of the model? 
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1.6 Research Hypothesis 

• With datasets containing fewer than 500 images, StyleGANv2 

demonstrates superior performance compared to StyleGANv3 and 

Stable Diffusion. 

• SAM outperforms YOLOv5, followed by OpenCV, in effectively 

capturing and segmenting the ROI of the IC chip. 

• Modifying the original YOLOv7-tiny model can lead to an increase in 

mAP, while pruning can significantly reduce computational costs. 

 

1.7 Scope and Limitation of the Study 

The project’s scope is to develop a comprehensive deep learning visual-based 

inspection approach using deep learning techniques to detect die defects in 

wireless earphone IC from a well-known manufacturer, which include die crack 

and die rotation. To capture the ROI of the IC chip, the YOLOv5n segmentation 

model was trained, and an ensemble model based on YOLOv5n object detection 

and SAM was developed. The object detection model based on YOLOv7-tiny 

was trained, and several improvements were performed to increase the accuracy. 

To further decrease the computation cost of YOLOv7-tiny, pruning was 

performed. 

This study only focuses on detecting the two defects in the die during 

the IC packaging phase, which are die defect and die rotation. It does not 

consider other defects in other components, such as defects in PCB, LED, and 

wires and bonds. It does not consider other die defects such as misaligned and 

missing die. It also does not consider the epoxy defect and foreign molecules on 

the die. Moreover, this study does not implement image processing techniques 

such as super-resolution and image reconstruction. Thus, the proposed system 

might not be able to work as expected when the input image is corrupted, or the 

image is very blurred. Most importantly, this study examines potential methods 

for defect detection, but it does not specifically discuss how such methods may 

be put into practice in real-world production settings. This study’s primary 

objectives are exploring and evaluating these techniques rather than their 

implementation in the industry. 

In terms of development, the limitation of this study is the 

computational resources available The dataset are provided by the industry 
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partner, ASPL Malaysia Sdn Bhd. This dataset are confidential and all the deep 

learning model were trained on local machine to prevent information leakage. 

The local machine is equipped with RTX3060 mobile and AMD Ryzen 7 5800H 

CPU. Due to the limited 6GB VRAM available, some complicated networks 

cannot be trained, such as fine-tuning the stable diffusion model with textual 

inversion or detail-preserving visual conditions. Some complicated blocks such 

as attention or transformer modules, can also not be implemented into the 

original YOLOv7-tiny model. Nevertheless, the pruning repository used in this 

study does not supply those modules with complicated operations, such as 

modules that involve shuffle or slicing operations and modules that involve 

weight sharing. 

 

1.8 Proposed Solution 

The proposed solution in this study is to use object detection to detect die 

rotation and die crack defects. Lim et al. (2023) proposed a PCB defect detection 

model based on YOLOv5. They proposed a multi-scale FPN based on the 

original YOLOv5 and modified the original CIOU loss function to increase the 

performance of YOLOv5 in detecting small defects. As a result, the modified 

YOLOv5 attained a mAP@0.5:0.95 of 81.20%, marking a 3.65% increase over 

the original YOLOv5 model. Additionally, Lu et al. (2022) proposed a neural 

network for IC defect detection that incorporates a SELayer into the original 

backbone of the YOLO5x model. This modification resulted in a significant 

increase in accuracy, with a mAP@0.5 of 95.4. 

  The two studies mentioned above have shown that changing the 

YOLO model's components could significantly enhance the model's 

performance, leading to a high accuracy rate in defect detection systems. The 

additional aspect that needs to be addressed in this study is to find a suitable 

way to capture the ROI of IC, explore new data augmentation methodologies, 

find a solution to solve the problem of insufficient images and reduce the 

computation cost of YOLO by pruning. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Traditional machine learning 

For a task like image classification, one of the huge differences between 

machine learning and deep learning is that the feature that can represent the 

picture informative in a discrete area needs to be extracted manually through 

feature extraction to represent the definitions of each class, which are also 

known as “bag of words”. An image is classified as containing a specific item 

if the image contains a sufficient number of features in another image. This 

process is done by looking up the “bag of words” in another image during the 

inference process (Mahony et al., 2019). 

 In the traditional machine learning process, filtering the unimportant 

features and extracting those features that best describe the characteristic of an 

object in the image is necessary. This process often requires an experienced 

computer vision engineer, and it takes a very long time as engineers are needed 

to fine-tune the parameters in order to extract those important features. This is 

one of the main challenges of traditional machine learning (Mahony et al., 2019).  

 In a neural network, no feature extraction process is required as the 

neural network can identify the underlying patterns of each class and 

automatically extract those important features. In short, the challenge of 

traditional machine learning has been solved by deep learning as the neural 

network now carries out the feature extraction process, and no experienced 

computer vision engineer is needed anymore. Figure 2.1 shows how deep 

learning has eliminated the process of feature extraction. 
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Figure 2.1: Difference between traditional Computer Vision workflow and deep 

learning workflow (adopted from Mahony et al. (2019)) 

 

2.2 Overview of deep learning 

Perception, which is the origin model of the neural network, was introduced by 

Frank Rosenblatt (1957). The idea of perception is based on the biological 

neuron. Figure 2.2 illustrates the concept of the perceptron, which takes inputs 

from other neurons, processes them, and then emits an output signal. The retina 

unit sends its data to the projection unit, which then transmits it to the 

association unit. The signal will be fired if the total signal is equal to or greater 

than the association unit threshold (Wang & Raj, 2017). 

 

 

Figure 2.2: Illustration of the concept of perceptron  (adopted from Wang & Raj 

(2017)) 
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In most of the modern neural network, the association unit is often to be ignored, 

as shown in Figure 2.3 (Wang & Raj, 2017).  

 

 

Figure 2.3: Illustration of perceptron in modern machine learning (adopted from 

Wang & Raj (2017)) 

 

Perceptron nowadays also refers to a single-layer neural network, which can be 

illustrated by linear regression and is widely used for solving regression 

problems. Based on the assumption of linear regression, a linear relationship is 

assumed to be happening between the dependent variable y and the dependent 

variable x. Thus, y can be represented by the weighted sum of feature x with 

some noise, which is assumed to be normally distributed. The linear regression 

can be expressed in mathematical form: 𝑦̂ = 𝑤1𝑥1 + ⋯ + 𝑤𝑑𝑥𝑑 + 𝑏. Where 𝑤𝑑 

is weight and 𝑏 is bias. Weights define the importance of each feature and affect 

the output value. The bias will be the output value when all the features have a 

value of 0. The concept behind linear regression and perceptron is almost the 

same. The only difference is linear regression does not consider the threshold 

function. 
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Figure 2.4: Single-layer linear regression neural network (adopted from Zhang 

et al. (2021)) 

 

Ignoring the weights and biases, Figure 2.4 illustrates the structure of the linear 

regression. 𝑥1, … , 𝑥𝑑 represent the number of features. Without considering the 

input layer, there is only one layer in the linear regression model. This led to 

linear regression also being referred to as a single-layer fully connected neural 

network (Zhang et al., 2021). 

Due to the characteristic of a linear function, the perceptron can only 

solve the linear problem in the real world as the decision boundary of the 

perceptron is linear, which can only represent logical operations such as AND 

or OR. Minski and Papert (1969) pointed out that the non-linear function, such 

as XOR function, was unable to be represented by perceptron. At the time, this 

became an obstacle to the development of neural networks (Shrestha and 

Mahmood, 2019).  

 

 

Figure 2.5: An MLP with one hidden layer of 5 hidden units (adopted from 

Zhang et al. (2021)) 
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The concept of universal approximation property has been introduced. 

It stated the multilayer perceptron (MLP) can be formed by stacking a one-layer 

neural network as a hidden layer into the original single one-layer neural 

network, as shown in Figure 2.5. MLP can deal with the non-linear function 

now as Boolean function and continuous function can be represented by MLP. 

However, there was no proper way to guide the training process of MLP. The 

neuron weight must be updated during the training process to generate the 

desired output. A mechanism for quantifying the difference between the 

generated and expected outputs is needed. When the number of layers increases, 

it is getting harder to quantify the contribution of the output of each neuron to 

the error (Shrestha and Mahmood, 2019). 

 The challenge faced by MLP had been solved with the introduction of 

backpropagation, “Backpropagation first propagates the error term at output 

layer back to the layer at which parameters need to be updated, then uses 

standard gradient descent to update parameters with respect to the propagated 

error.” (Wang and Raj, 2017). With the help of backpropagation, MLP can now 

adjust the neuron’s weight to reduce the error. In order to fully use the multilayer 

perceptron, a non-linear activation function needs to be implemented in each 

hidden neuron to introduce the non-linearity in MLP (Zhang et al., 2021). 

 However, there are two limitations of MLP when dealing with 

computer vision tasks. The huge number of weights or dimensions made the 

MLP extremely computationally expensive to train. Let’s assume an image with 

a size of 256 ∗ 256, resulting in 256 ∗ 256 ∗ 3 = 196,608 input dimension for 

an image as the image normally contains three channels, which are red, green 

and blue (RGB). Since the number of hidden layers is often bigger than the input 

layer, the number of weights will surpass 196,6082  dimension even for a 

shallow network. Secondly, according to research, nearby image pixels are 

statistically related. However, MLP cannot capture the relationship between 

nearby image pixels and thus cannot capture the spatial information as it does 

not consider the image’s local structure (Prince, 2023). 
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Figure 2.6: Illustration of the visual cortex in the human vision system (adopted 

from Wang & Raj (2017)) 

 

In order to solve the limitation of MP in computer vision tasks, Convolutional 

Neural Network (CNN) has been introduced. The idea of CNN comes from the 

visual cortex in the human brain. Figure 2.6 illustrates the information 

processing process when the brain receives image signals. The primary visual 

cortex (V1) receives the image pixel from the retina as a signal and extracts low-

level detail such as edge. The secondary visual cortex (V2) will then receive the 

signal from V1 and extract the mid-level features such as orientation, spatial 

frequency and colour. The signal will then be sent to V4, and high-level features 

such as geometric shapes will be extracted. Lastly, the Inferior temporal gyrus 

(IT) identifies the object based on the feature extracted before (Wang & Raj, 

2017). 

 

Figure 2.7: A simple CNN architecture (adopted from O’Shea & Nash (2015)) 
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Figure 2.8: A simple illustration of convolution operation (adopted from Wang 

& Raj (2017)) 

 

As shown in Figure 2.7, CNN typically consists of three components, 

which are the convolutional layer, pooling layer and fully connected layer. The 

convolutional layer will compute the dot product between the weight of local 

regions in the input feature map and kernel, to extract the feature in the input 

feature map and produce the output feature map. Non-linearity will be 

introduced by applying the activation function, such as rectified linear unit, and 

it only allows the active feature to pass through to the following layer (O’Shea 

and Nash, 2015). 

For example, as illustrated in Figure 2.8, the input feature map is the 

leftmost matrix, the kernel is located in the middle, and the output feature map 

is the rightmost matrix. The target matrix of the input feature map is the top-left 

3x3 submatrix, as the size of the kernel is 3 ∗ 3 . The dot product will be 

performed between the target matrix and the kernel and produce a result of 29. 

When the stride is equal to one, the target matrix will slide one column to the 

right to continue to perform the dot product. As a result, every 3 ∗ 3 target 

matrix in the input feature map will be convoluted into one digit (Wang and Raj, 

2017).  

The objective of the pooling layer is to reduce the complexity of the 

model via pooling operation. A fixed shape window will slide through the input 

regions based on the stride, and each pooling window will output a digit to 

summarise the features present in a region to decrease the dimensionality and 

number of parameters. There are two types of pooling operation, which are 

maximum pooling that computes the maximum value in the pooling window 

and average pooling that computes the average value in the pooling window 

(Zhang et al., 2021). 
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Figure 2.9: Max-pooling operation with window shape of  2 ∗ 2 (adopted from 

Zhang et al. (2021)) 

 

For example, as illustrated in Figure 2.9, the top-left 2x2 submatrix in 

the input feature map will be treated as a pooling window, a maximum value 

between 0,1,3,4  will be computed, and the output will be 4 . The pooling 

window will continue to slide through the input feature map from top to bottom 

and left to right (Zhang et al., 2021). 

 

 

Figure 2.10: Convolution operation with padding (adopted from Zhang et 

al. (2021)) 

 

The fully connected layer in CNN, which is an MLP network, will treat 

the feature map extracted by the convolutional layer and downsampling by the 

pooling layer as input and perform the classification task. When the number of 

convolutional layers increases, the receptive field of the output feature map will 

become larger, thus increasing severe loss of edge pixels. This had become one 

of the problems of CNN, which caused some of the useful information in the 

image to be lost. To solve the problem, padding has been implemented. Padding 

will add extra zero filler pixels around the edge of the image to increase the 

input image’s effective size, enlarge the output size, and achieve the goal of 

preserving the boundary information. For example, as illustrated in Figure 2.10,  
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3 ∗ 3 input is padded to 5 ∗ 5, producing a 4 ∗ 4 output matrix (Zhang et al., 

2021). 

In short, CNN is able to extract the spatial information vis 

convolutional layer, and computing resources are also decreased via pooling 

operation, which solves the problem of spatial information and computing 

resources faced by MLP. 

 

2.3 Overview of the method used in defect detection 

The following section will provide a comprehensive review of various defect 

detection methods, including those based on traditional image processing 

techniques, as well as deep learning methods such as classification and object 

detection. 

 

2.3.1 Defect detection using image processing technique 

The following section will review defect detection methods that utilise image 

processing techniques. 

 

2.3.1.1 Template-based systems for wafer die surface inspection. 

In 2005, a template-based vision system for the inspection of wafer die surfaces 

had been developed by Shankar and Zhong. The system is able to detect the 

defect as small as two-thousandths of an inch in a wafer that up to 8 inches. 

 

 

Figure 2.11: Mask image (adopted from Shankar & Zhong (2005)) 
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Figure 2.12: Reference template (adopted from Shankar & Zhong (2005)) 

 

 

Figure 2.13: (a) Reference image (b) Test image (c) Difference image 

(adopted from Shankar & Zhong (2005)) 

 

The following is a description of the system’s step-by-step defect 

identification procedure. Edge detection is performed on the reference image to 

produce the mask image, as shown in Figure 2.11. Figure 2.12 illustrates the 

reference template. For each die in the wafer, a subtraction operation is 

performed between the test die image and reference image to produce an 

absolute difference image, as shown in Figure 2.13. The pixel differences 

between the two images are depicted in this absolute difference image. The 

mask image is then multiplied with the difference image to reduce the potential 

pixel inconsistencies arising from various factors. A rule-based defect 

specification system will applied to the pixel difference discovered in the 

difference image to determine whether the observed defect is tolerable or not 

based on the rule set by the manufacturer. 
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As the system is based on a reference approach, a high-quality 

reference image is a prerequisite to generate a perfect difference image that 

avoids false detection and a high-quality reference image is needed to act as a 

“golden” sample. However, high-quality reference is not always possible, which 

has become one of the disadvantages of the system. Furthermore, unknown 

defects or new defects might not be able to be detected using the reference 

approach. Some of the defects that are hard to express in a rule-based system 

might also produce false detection. Rule-based defect specification system is the 

advantage of the system, as it can further classify the detected defect into 

tolerable and critical defects. 

 

2.3.1.2 Two-dimension wavelet transform (2-D WT) approach for 

semiconductor wafer die surface inspection 

 

 

Figure 2.14: Wavelet energy in the image (adopted from Yeh et al. (2010)) 

 

 

Figure 2.15: 20 sub-images of a wafer die (adopted from Yeh et al. (2010)) 
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Figure 2.16: (a) Original scratch image on die. (b) Images after applying 

median and Sobel filters (adopted from Yeh et al. (2010)) 

 

Yeh et al (2010) implemented a two-dimension wavelet transform (2-D WT) 

approach for detecting the visual defects on semiconductor wafer die. The 

wavelet transform is a mathematical technique for breaking down signals and 

data into their component frequencies. A total of 4 types of 2-D wavelets will 

be produced. Each set of 2-D wavelets can capture different aspects of the input 

signal, including the smooth part, vertical detail part, horizontal detail part, and 

diagonal detail part. This means that the 2-D WT is able to decompose an input 

2-D signal, such as an image, into 2-D wavelet coefficient matrices that 

represent smooth and detailed parts of the signal. “Wavelet energy” is used to 

represent the squares of a pixel’s coefficient. An image’s objects retain more 

wavelet energy than its backgrounds. Compared to pixels in smooth sections of 

the object, pixels at corners, noisy clusters, or jagged edges retain substantially 

more wavelet energy. WTMS describes the “clustering wavelet energy”, which 

considers the local clustering of wavelet coefficients at a particular location in 

the image by considering the wavelet energy of the neighbourhood around an 

image pixel. Figure 2.10 illustrates the wavelet energy in an image, where the 

whiteness of pixels indicates greater wavelet energy. 

The following is a description of the system’s step-by-step defect 

detection procedure, In step 1, to achieve the goal of high-resolution inspection, 

an image is taken for each wafer die and then split into 20 smaller sub-images 

as shown in Figure 2.11. In step 2, the median filter and Sobel filter is applied 

to preprocess the sub-image, as shown in Figure 2.12. To reduce the 

computational complexity, pixels within each sub-image will be preselected, 
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and WTMS will be calculated for these preselected pixels only. Step 3, wavelet 

energy in each pixel can be expressed by WTM for each pixel in each sub-image 

with a different scale, which is calculated by taking the absolute value of the 

wavelet coefficients. A pixel will advance to the subsequent stage and be 

selected for the computation of WTMS if the WTM of a pixel surpasses the 

population mean and standard deviation derived from the golden image. In step 

4, the calculation of WTMS will be executed for the chosen pixel at varying 

scales.In step 5, the interscale ratio of the selected pixel will be calculated. A 

pixel’s clustered wavelet energy at one scale is significantly greater than its 

energy at another scale if the interscale ratio is less than zero. This indicates that 

the pixel is more likely to be a defect at this scale than at other scales. Such 

defects might manifest as irregular edges, sharp corners, or clustered noisy areas 

in an image of a wafer die. The pixel with an interscale ratio of more than 0 is 

classified as a non-defect pixel. The pixel with interscale ratio less than 0 will 

enter the next step. The non-defective pixels such as the corner and edges of 

water in golden image might also have a value of interscale that is less than 0. 

To avoid false detection, the selected pixel with an interscale ratio of less than 

zero is compared to those pixels with an interscale ratio of less than zero in the 

golden image. The selected pixel is considered as non-defective if the detected 

defect pixel belongs to the non-defective pixel in the golden image, else the 

pixel is consider as defective pixel. Steps 2 to 6 will be repeated for the 

remaining sub-images. 

The advantage of the approach is it is suitable for a diverse array of 

product categories as the comparison is made indirectly between the WTM in 

the test image and the population mean and standard deviation in the golden 

image. Instead of performing precise pixel-by-pixel matching between the 

golden and test images, the approach is considered a non-reference method 

based on the statistical comparison methodology. Most importantly, this method 

eliminates the need for training and can directly execute inference. 

The disadvantage of the approach is that the golden template is still 

needed for comparison, and proper parameters such as wavelet basis or number 

of decomposition levels must be chosen wisely to avoid false detection. It may 

be necessary to experiment with different parameters to determine the optimal 
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parameters that vary on different datasets. Moreover, the approach cannot 

categorise defect pixels into particular types of defects. 

 

2.3.2 Defect detection with deep learning:  classification approach 

The following section will review defect detection methods that utilise the 

classification approach. 

 

2.3.2.1 Automatic defect classification for wafer surface damage using 

CNN and k-NN 

 

 

Figure 2.17: CNN architecture (adopted from Cheon et al. (2019)) 

 

Table 2.1: CNN configuration (adopted from Cheon et al. (2019)) 

CNN parameter Value 

Number of convolution layers 4 

Filter size 3 × 3 

Number of pooling layers 2 max-pooling 

Pooling filter size 2 × 2 

Number of feature maps 32/32/64/64 

Number of fully connected layers 1 

Number of nodes in fully connected layer 512 

Activation function ReLU 

Regularization method Dropout 

Classification function of the output layer Softmax 

Loss function Categorical cross entropy 

 

A deep learning-based automatic defect classification method was proposed by 

Cheon et al (2019). The main objective is to classify different wafer surface 

damage. The method is developed based on the CNN and k-nearest neighbours 

algorithm (k-NN). The valid feature is extracted by CNN, while those defect 

types that were not encountered during the training phase will be recognised by 
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k-NN. Figure 2.17 shows the CNN architecture, and the configuration of CNN 

is shown in Table 2.1. ReLU activation function is applied to all the layers 

except for the output layer. Dropout is utilised in CNN as a regularisation 

technique to mitigate overfitting.  

 

 

Figure 2.18: Illustration of defect image cluster analysis results by 

identified class (adopted from Cheon et al. (2019)) 

 

The algorithm for detecting surface defects on semiconductor wafers 

can be conceptually divided into two main phases. Clustering and threshold 

configuration are carried out in the initial phase, while membership testing is 

carried out in the subsequent phase. If the image exceeds the threshold, which 

means the image is too far from other clusters, then no label will be assigned to 

the image. This causes the k-NN to be slightly different from the regular k-NN. 

The algorithm’s initial phase filters away the CNN training image that 

was incorrectly labelled. The structure of CNN is then modified by applying the 

sigmoid function as an activation function to the fully connected layer. This 

process aims to normalise the feature vector within the range of zero to one. The 

training image that was properly labelled is fed into the modified CNN, and the 

feature vector will be output by the output layer and act as input for k-NN. The 

k-NN classifier is then constructed for each cluster. The k number is set to one, 

and Euclidean distance is used in calculating the distance. For each image in a 

particular cluster, the total squared distance is computed between the image and 
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its single neighbouring image within the same class. The confidence limit which 

can express as 100(1 − α) % will be involved in the threshold calculation. In 

order to solve the problem of overlapping distance distributions due to the 

presence of similar defect classes, α or the classification error rate is permitted. 

The final threshold will be 90% percentile of the empirical distribution of the 

total squared distance within each cluster as α is set to 0.1. The output of the 

clustering is visualised in Figure 2.18. 

In the second part of the algorithm, the inference image is passed to the 

modified CNN and generates the feature vector. The feature vector generated is 

then passed to k-NN for calculating the total squared distance between the 

inference image and each cluster. The inference image will be classified as an 

“unknown” defect if it exceeds the threshold for all clusters. Otherwise, the 

inference image will be sent to the unmodified CNN to perform classification. 

 

 

Figure 2.19: Five defects in Dataset-TT (adopted from Cheon et al. (2019)) 

 

 

Figure 2.20: Misclassified “unknown” defect vs ring-shaped particle image 

(adopted from Cheon et al. (2019)) 
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Table 2.2: Accuracy and time comparison of CNN and other models on the 

testing dataset (adopted from Cheon et al. (2019)) 

Classifier 
Train 

accuracy 

Valid 

accuracy 

Test 

accuracy 

CPU times 

in training 

CPU times 

in testing 

CNN 99.4% 98.7% 96.2% 42856 1.813 

SAE 99.1% 94.0% 91.8% 49471 0.781 

MP 99.9% 93.4% 92.8% 22757 1.313 

SVM-rbf 100% 94.3% 92.5% 26485 125.516 

MP  

(extracted feature) 
53.1% 56.3% 55.2% 3970 0.016 

SVM-rbf  

(extracted feature) 
66.8% 62.9% 62.4% 145 0.203 

 

 

Table 2.3: k-NN test result for DATASET-NN (adopted from Cheon et al. 

(2019)) 

Defect class Threshold value 
Number of images that 

exceeds threshold 

Spot 6.133 30 

Rock-shaped particle 34.083 30 

Ring-shaped particle 23.812 28 

Misalignment 1.167 30 

Scratch 43.700 30 

 

Two datasets, dataset-TT and dataset-UN were used, dataset-TT was 

used to train and test the unmodified CNN. This dataset contains 2,133 images 

with five defective categories, as shown in Figure 2.19. Dataset-UN was used 

to evaluate the ability of k-NN to detect instances of unknown defect categories. 

This dataset contains 30 “unknown” defect images. As shown in Table 2.2, CNN 

achieved the highest accuracy of 96.2% in the testing dataset while comparing 

with other networks such as MP, SAE, SVM-rbf, MP and SVM-rbf with edge 

detection algorithm. Table 2.3 shows the threshold for each cluster and the result 

of using k-NN to detect unknown defects in Dataset-UN. Out of the thirty 

unknown defects, k-NN failed to identify two images with “unknown defects”. 
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k-NN identified these two unknown defects as ring particle defects as these 

defects look very similar, as shown in Figure 2.20. 

The advantage of the method is it can identify the unknown defect. 

Over time, equipment ageing and environmental changes can occur, and the 

production process can change slightly. This leads to the emergence of new and 

unknown defects. The existing trained CNN may make incorrect assessments of 

these defects. The CNN needs to be retrained to detect these defects, but this 

will face the problem that there might not be a sufficient number of images 

available to train the CNN during the initial stages of the appearance of new 

defects. The long training time and inference time had become disadvantages of 

this method. As shown in Table 2.2, the training time required to train the CNN 

is approximately 11.9 hours, and the inference time needed is 1.813 seconds for 

an image, making it unsuitable for real-time inference. 

 

2.3.2.2 Semiconductor defect pattern classification using SP&A Net 

 

 

Figure 2.21: Self-proliferation process (adopted from Yuanfu Yang & Sun 

(2022)) 

 

In 2022, YuanFu Yang and Sun proposed an architecture for semiconductor 

defect pattern classification named SP&A-Net. A series of linear 

transformations are applied in the process of self-proliferation to generate extra 

feature maps. Channel-wise and spatial-wise attention mechanisms are applied 

in the self-attention process to capture the feature map’s long-range relationship. 

The primary objective of SP&A-Net is to reduce computational complexity 

while upholding high accuracy in defect inspection tasks. There are two main 
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components in SP&A-Net, which are the self-proliferation block and the self-

attention block. 

Self-proliferation block Is inspired by the DNA replication process, 

which generates an extra feature map akin to the replication process in DNA to 

increase the accuracy. This block performs a standard convolutional operation 

and outputs a series of feature maps in the initial step. The subsequent step 

involves applying a linear transformation through a depth-wise operation to 

each channel of the feature map acquired from the previous convolutional stage, 

resulting in a set of extra maps that are equivalent in quantity to the channels 

present in the original feature map. The original feature map is then merged with 

the extra feature map generated. The process of self-proliferation is illustrated 

in Figure 2.21. 

 

 

Figure 2.22: Self-attention block (adopted from Yuanfu Yang & Sun (2022)) 

 

The self-attention block aims to incorporate the information from other 

positions in the sequence to enhance the attributes of specific query positions. 

The self-attention block can be divided into sub-components, which are global 

attention pooling, bottleneck transform, and fusion, as shown in Figure 2.22. By 

considering the pairwise relationship between each location and the query 

location, an attention map that illustrates the significance of each spatial location 

within the input feature map is created by global attention pooling. Elementwise 

multiplication is applied between the attention map and the input feature map to 

generate the output feature map. The bottleneck transform captures the channel-

wise dependencies by emphasising the most significant channels in the feature 

map and suppressing the unnecessary ones. In the fusion function, the global 

context feature is aggregated into the input feature map by applying 
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broadcasting element-wise addition. The structure of the self-attention block is 

illustrated in Figure 2.22. 

 

 

Figure 2.23: SP&A Block (adopted from Yuanfu Yang & Sun (2022)) 

 

Table 2.4: SP&A-Net architecture (adopted from Yuanfu Yang & Sun (2022)) 
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Table 2.5: Dataset Description with Feature Description, Defect Types, and 

Example Images (adopted from Yuanfu Yang & Sun (2022)) 

 

 

Table 2.6: Comparison of SP&A-Net and Resnet-50 with ablation study in 

different blocks (adopted from Yuanfu Yang & Sun (2022)) 

 

 

Table 2.7: Analysis of the effect of composition ratio on the performance of 

SP&A-NET (adopted from Yuanfu Yang & Sun (2022)) 

r Accuracy precision Recall F1- Score #Params (M) 

0.06 98.45% 97.45% 99.16% 98.30% 5.10 

0.13 98.44% 97.43% 99.15% 98.28% 3.40 

0.25 98.40% 97.37% 99.05% 98.20% 2.98 

0.50 98.38% 97.32% 99.03% 98.17% 2.60 

0.63 97.81% 96.75% 98.44% 97.58% 2.47 

0.83 97.21% 96.38% 97.48% 96.93% 2.35 

1.00 95.83% 94.24% 96.62% 95.42% 2.29 
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Figure 2.24: Performance evaluation of AEI defect pattern (adopted from 

Yuanfu Yang & Sun (2022)) 

  

 

Figure 2.25: Performance evaluation of ADI defect pattern (adopted from 

Yuanfu Yang & Sun (2022)) 

 

 

Figure 2.26: Performance evaluation of API defect pattern (adopted from 

Yuanfu Yang & Sun (2022)) 

 

The self-proliferation-and-attention block is built by combining the 

self-attention block and self-proliferation block. Self-proliferation-and-
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attention block is built by applying the concept of inverted residual block, in 

which a shortcut is implemented to mitigate the issue of gradient vanishing. In 

this block, the dimension of the input channel is expanded, and the feature is 

extracted, then the output will be projected back to the original smaller input 

channel dimension. This block can be divided into four parts, as illustrated in 

Figure 2.23, which are the expansion layer, convolution and self-attention layer, 

compression layer, and inverted residuals. Additional feature maps are 

generated in the expansion layer to enlarge the input dimension. In the 

convolutional and self-attention layer, depth-wise convolution is applied to 

extract the feature from the expanded feature map, and the long-range 

dependencies are captured by the self-attention block. The output dimension is 

then reduced by the compression layer to the same dimension as the input 

dimension. The network architecture of SP&A-Net is shown in Table 2.4. 

Three datasets, the AEI dataset, ADI dataset and the API dataset, were 

used to evaluate the performance of SP&A-Net. Table 2.5 shows the 11 defect 

categories of the dataset. An optimal strategy for SP&A-Net was found through 

an ablation study, as shown in Table 2.6. In this ablation study, the SP&A-Net 

was also compared to Resnet-50 with different blocks, such as SE blocks, NL 

blocks, SNL blocks, and GC blocks. In addition, by taking into account the 

trade-off between the f1-score and the number of parameters, an optimal 

composition ratio (r) of 0.5 is selected for the self-proliferation within the 

network through the ablation study, as shown in Table 2.7. As shown in Figures 

2.24, 2.25, and 2.26, SP&A-Net outperforms the compared networks in terms 

of accuracy with lower parameters across three different datasets.  

The key advantage of the network is that the large kernel is no longer 

necessary to capture the large receptive fields of the features since the network 

can capture the spatial relationships in the feature maps, which leads to a 

decrease in the computational cost of the network. Moreover, due to the extra 

feature maps generated by the self-proliferation block, the accuracy of the 

network has been further enhanced. The SP&A-Net attains impressive accuracy 

levels while demanding fewer parameters and FLOPs than other baseline 

networks. 
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2.3.2.3 Multi-scale inspection framework for surface defect detection 

using MST-GAN 

 

 

Figure 2.27: Inspection framework's pipeline (adopted from Chen et al., 2023) 

 

 

Figure 2.28: Architecture of the MST-GAN (adopted from Chen et al. (2023)) 

 

A multi-scale inspection framework for surface defect inspection of IC metal 

packages was proposed by Chen et al. (2023). The framework can be divided 

into main parts, as shown in Figure 2.27. 

MST-GAN consists of three components, which are a generator, 

discriminator, and multi-scale encoder. MST-GAN learns the quality pattern 

present in the image through training with 768 defect-free samples. MST-GAN 

is able to simulate the input photo under defect-free conditions by “describing” 

the intrinsic quality pattern of the input image and output a multi-scale defect-

free templates. The concept of generator and discriminator corresponds to the 

min-max two player game, in which the generator will learn the data distribution 

of real images through the training process and try to generate images that 

closely resemble real ones while the discriminator will try to differentiate those 

generated images and realistic image to assisting the generator in refining its 

output. The multi-scale template is generated by the generator in MST-GAN 

and the discriminator in MST-GAN differentiates between the real and 

generated templates by leveraging fused high-level feature maps. To improve 
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the performance of the generator to generate more realistic images, the multi-

scale encoder extracts pyramid feature maps from the generated templates and 

applies the information from these feature maps in the computation of the loss 

function. MSCE and CSFF form the discriminator and multi-scale encoder. On 

the other hand, the generator consists of MSCE, CSFF, STD and MSTG. 

 

 

Figure 2.29: Structure of MSCE (adopted from Chen et al. (2023)) 

 

Table 2.8: Dimensions of the multi-level feature maps extracted at each scale 

(adopted from Chen et al. (2023)) 

 high-level mid-level low-level 

large-scale feature maps 8 × 8 × 256 16 × 16 × 128 32 × 32 × 64 

mid-scale feature maps 8 × 8 × 128 16 × 16 × 64 32 × 32 × 32 

small-scale feature maps 8 × 8 × 64 16 × 16 × 32 32 × 32 × 16 

 

 

 

Figure 2.30: Structure of CSFF (adopted from Chen et al. (2023)) 

 

Figure 2.29 illustrates the structure of MSCE, which extracts multi-

scale features from multi-scale input images through multiple ResNet blocks in 
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MSCE. A series of feature maps of different sizes are obtained, which include 

feature maps of small, medium, and large scales that capture low-level, mid-

level and high-level features of each input scale. Table 2.8 shows the dimension 

of the extracted feature map for each input scale. Figure 2.30 illustrates the 

structure of CSFF. Multi-scale feature map generated by MSCE is reconstructed 

by CSFF via the bottom-up approach, and a feature pyramid will be produced. 

Feature maps with different scales at the same level will be rearranged via 

concatenation by MSCE. This rearranged feature map subsequently undergoes 

a 1x1 convolutional layer. Subsampling and element-wise summation are 

applied to the lower-level feature map. The lower-level feature map is now 

added to the higher-level feature map. This suggests that some of the valuable 

features present in high-level representations may also be represented in low-

level representations. Integration of MSCE and CSFF allows intrinsic features 

in the input image to be efficiently captured in the pyramid feature map. 

 

 

Figure 2.31: Structure of swin transformer decoder (adopted from Chen et 

al. (2023)) 

 

 

Figure 2.32: Structure of patch expanding (adopted from Chen et al. (2023)) 
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Figure 2.33: Structure of MSTG (adopted from Chen et al. (2023)) 

 

The structure of STD is shown in Figure 2.31. STD is built by three 

submodules that contain two STBs and one PE, followed by another submodule 

that contains only two STBs. The main objective of STD is reconstructing the 

template feature by leveraging the fused high-level feature map to augment 

MST-GAN’s modelling capability in capturing the intrinsic patterns of qualified 

samples. The structure of PE is shown in Figure 2.32. Instead of transposed 

convolution, pixel shuffling was chosen as an upsampling technique in PE, as 

the zero padding in transposed convolution causes interference pixels to appear 

in the rebuilt image, which hinders the accuracy of the subsequent inspection 

process. Pixel shuffling effectively suppresses interfering pixels in the 

reconstructed image. Template feature produced by STD is reconstructed via 

three pathways in MSTG, as shown in Figure 2.33, resulting in a multi-scale 

defect-free template. 

 



54 

 

Figure 2.34: Flowchart of the inspection process (adopted from Chen et al. 

(2023)) 

 

Figure 2.34 illustrates the inspection process. The multi-scale input is 

subtracted from the multi-scale defect template produced by well-trained MST-

GAN, resulting in a multi-scale difference image. The multi-scale average 

feature map for the three distinct scales is derived by averaging the multi-scale 

difference images with a collection of qualified training dataset images. 

Subsequently, the multi-scale averaged feature map is inverted and normalised. 

The process involves upsampling the averaged feature maps from the lower 

scale and subsampling those from the higher scale. This is to fuse the averaged 

feature maps of each scale with the average feature maps of the other scales, 

resulting in the creation of the multi-scale weight mask. In particular, a mid-

scale weight mask is generated by combining the average feature map at the 

mid-scale level with the subsampled large-scale average feature map and the 

upsampled small-scale average feature map. Similarly, a large-scale weight 

mask is generated by combining the large-scale average feature map with the 

upsampled small-scale average feature map and the upsampled mid-scale 

average feature map. The average feature map at the low-scale level is merged 

with the subsampled large-scale feature map and the subsampled mid-scale 

average feature map to yield a small-scale weight mask. In order to generate a 

weighted difference image with small reconstruction errors and interfering 

pixels, element-wise multiplication is applied between multi-scale weighted 

mask and multi-scale difference image. The multi-scale adaptive thresholding 

process involves the application of varying threshold values to the weighted 
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difference image across different scales and produces a thresholded multi-scale 

difference image. This image highlights potential defects that might be present 

in the weighted difference image. The thresholding value is computed using the 

weighted difference image’s local means and standard deviations across 

different scales. The multi-scale image patch-based defect evaluation process 

involves the calculation of the defect probability of individual image patches by 

applying the sliding windows strategy to the thresholded multi-scale difference 

image. A threshold value is applied to calculate defect probability, and a binary 

defect probability map for each image patch is generated. The applied threshold 

is determined by taking into account the dimensions of the image, the size of 

the sliding window, and a sensitivity factor of 0.0001. By computing scores for 

all patches within the defect probability map at the three distinct scales, the 

defect evaluation score is obtained. To determine whether the inspected sample 

is defective, the defect evaluation score obtained is compared with the highest 

defect assessment score derived from the training dataset. 

 

 

Figure 2.35: The visual output obtained from various GAN models (Chen 

et al. (2023)) 
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Figure 2.36: Pixel value distribution after applying transposed convolution 

(adopted from Chen et al. (2023)) 

 

 

Figure 2.37: Pixel value distribution after applying pixel shuffle (adopted 

from Chen et al. (2023)) 
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Figure 2.38: Performance of the multi-scale weight mask Inspection 

Framework (adopted from Chen et al. (2023)) 

 

Table 2.9: Results of performance comparison among various inspection 

methods (adopted from Chen et al. (2023)) 

Methods Error rate 

(%) 

Omission rate 

(%) 

Accuracy 

(%) 

P (%) R (%) F FPS 

CycleGAN 6.25 25.5 82.7 85.2 93.8 0.893 20.4 

DiscoGAN 1.14 98.0 75.9 76.5 98.9 0.863 19.6 

GANomaly 57.4 69.6 39.6 66.3 42.5 0.518 186 

Skip-

GANomaly 
9.68 92.6 70.6 75.9 90.3 0.825 124 

DifferNet 5.98 6.53 93.8 97.9 94.0 0.959 48.0 

GAN-

based 

template 

28.9 2.84 77.2 98.8 71.0 0.826 22.2 

MST-GAN 0.70 0.57 99.3 99.8 99.3 0.996 70.9 

 

Figure 2.35 shows the defect-free templates generated by different 

GAN models. The first column shows the original sample, followed from left to 

right by the output of CycleGAN, DiscoGAN, the GAN-based template, and the 

MST-GAN. Compared to the other models, MST-GAN shows the strongest 

ability to extract the desired intrinsic patterns as the other models have their own 

drawbacks. CycleGAN’s outputs come with different contrast levels, 

DiscoGAN fails to extract the desired intrinsic patterns, and the GAN-based 

templates also fail at some point. Figure 2.36 and Figure 2.37 show the 

performance of transposed convolution and pixel shuffle. As shown by the 

rectangular boxes in Figure 2.36, transposed convolution introduces some 
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interfering pixels in the corners of the differential image, while pixel shuffle 

does not. The impact of the multi-scale weight mask on inspection performance 

is illustrated in Figure 2.38. With weighted masks, there is a lower error rate and 

omission rate compared to the framework without weighted masks. Compared 

to other SOTA inspection methods, the framework achieved the best 

performance of 0.996 f1 score, as shown in Table 2.9. 

The advantage of this framework is that defect-free templates can be 

automatically generated by capturing the intrinsic quality patterns of the input 

image in order to achieve extremely high accuracy. However, the drawback of 

requiring a relatively high amount of computation and memory to run the model 

is also apparent, which leads to the need for a more powerful machine to run the 

model. 

 

2.3.3 Defect detection with deep learning: object detection approach 

The following section will review defect detection methods that utilise defect 

detection approaches. 

 

2.3.3.1 Die-level defect detection or classification system using R-CNN 

 

Table 2.10: Distribution of datasets (adopted from You et al. (2022)) 

Defect Type Training Set Validation Set Testing Set 

Defect-less 0 0 4 

Blob 5 5 12 

Die crack 5 3 4 

Pin hole 5 5 5 

Underfill 5 5 10 

 

 

Figure 2.39: Workflow of the system (adopted from You et al. (2022)) 
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Figure 2.40: Example image of defective semiconductor unit (adopted 

from You et al. (2022)) 
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Figure 2.41: The R-CNN’s classification output reveals the position of the 

defect(s), defect type, and the level of confidence in the 

classification. The images (a-d) depict examples of die crack, 

pinhole, blob, and underfill (adopted from You et al. (2022)) 
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Table 2.11: Detection and Classification Accuracy of R-CNN (adopted from 

You et al. (2022)) 

Detection R-CNN 

Average accuracy 88.5% 

Classification  

No defect 75.0% 

Blob defect 66.7% 

Die crack defect 25.0% 

Pin hole defect 50.0% 

Underfill defect 100.00% 

Average accuracy 71.4% 

 

You et al. (2022) proposed a die-level defect detection or classification system 

using the R-CNN. Table 2.10 presents the dataset’s available images per defect 

type. Figure 2.39 shows the workflow of the system. The input images are gone 

through the image pre-processing step to localise the region of interest (ROI). 

Although the input image may contain multiple semiconductors, the region of 

interest (ROI) being analysed is a single semiconductor unit, as shown in Figure 

2.40. Some of the ROI is localised manually due to high exposure in the image. 

The pre-processed image is passed to the R-CNN to perform defect detection 

and classification. The pre-trained AlexNet model is used as the RCNN’s basis 

network for transfer learning. To suit the dataset, AlexNet’s SoftMax layer was 

modified. The semiconductor is detected as “defect-less” or “defect”, and the 

defect in the semiconductor is further classified, as shown in Figure 2.41. Table 

2.11 shows the result of detection and classification, where 31 out of 35 were 

successfully detected as “defect” or “defect-less”, achieving 88.5% of average 

detection accuracy.  

As a two-stage classifier, which is often slower and has lower frame 

rates, the RCNN approach is less suited for real-time inspection applications. 

Furthermore, the RCNN in the system has low accuracy (71.4 %), further 

limiting its effectiveness in defect detection. Another disadvantage of this 

system is that it requires manual capture of ROI. 
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2.3.3.2 Deep convolutional network based on the YOLOv5 for IC defect 

detection. 

 

 

Figure 2.42: Modified YOLOv5x architecture (adopted from Lu et al. (2022)) 

 

 

Figure 2.43: SELayer architecture (adopted from Lu et al. (2022)) 
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Table 2.12: Defect types in the dataset and number of images per defect type 

(adopted from Lu et al. (2022)) 

Defect Type number 

Chipping 953 

Gold layer scratches 762 

Excess glue 786 

Gold layer defect 1008 

Graphic defect 994 

Gold layer particles 965 

Heterochromatic 826 

Crack 983 

Bridge deformation 990 

Side slot offset 1020 

Side groove different 987 

Edge groove gold layer 966 

Graphic scratches 1000 

Different colours of gold 989 

 

Table 2.13: Comparison of performance in the test set (adopted from Lu et al. 

(2022)) 

Methods mAP@0.5 mAP@0.1 

SSD 4.02% 27.40% 

Faster rcnn 49.38% 67.75% 

Efficientdet 52.58% 54.89% 

Yolov5 94.90% 97.77% 

Yolov5 + SE 95.40% 97.79% 
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Table 2.14: Performance comparison between models with and without 

SELayer (adopted from Lu et al. (2022)) 

Defect type P R mAP@0.5 

1 2 1 2 1 2 

Chipping 0.973 0.97 0.959 0.958 0.974 0.965 

Gold layer scratches 0.99 1 0.996 1 0.995 0.995 

Excess glue 0.681 0.681 0.598 0.618 0.608 0.622 

Gold layer defect 0.997 0.996 1 1 0.995 0.995 

Graphic defect 0.986 0.964 0.949 0.967 0.983 0.982 

Gold layer particles 0.993 0.987 0.991 0.987 0.995 0.995 

Heterochromatic 0.81 0.818 0.854 0.884 0.855 0.876 

Crack 0.916 0.909 0.961 0.965 0.965 0.977 

Bridge deformation 0.995 0.995 1 1 0.995 0.995 

Side slot offset 1 1 0.956 0.995 0.967 0.994 

Side groove different 0.998 0.998 1 1 0.995 0.995 

Edge groove gold layer 0.997 0.998 0.969 0.972 0.977 0.977 

Graphic scratches 0.982 0.978 0.991 0.992 0.995 0.995 

Different colours of 

gold 

0.998 0.996 0.992 0.992 0.995 0.995 

Average     0.949 0.954 

 

 

Figure 2.44: Visualisations of test results for the model with SELayer in 

the test set (adopted from Lu et al. (2022)) 
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In 2023, Lu et al. proposed a deep convolutional network based on the YOLOv5 

for IC defect detection. The network is built upon the YOLOv5x architecture 

incorporating SELayers following the feature layer of the last scale in the 

backbone and expanding PANet from the original three scales to four scales. 

The addition of the fourth scale in the PANet results in the creation of four 

detection heads instead of the three detection heads present in the original 

YOLOv5x. Figure 2.42 shows the network architecture of the modified 

YOLOv5x. The main purpose of the SELayer module is to explicitly model 

channel interdependencies or to capture the channel relationship, as shown in 

Figure 2.43. Global average pooling is performed on the input feature map to 

squeeze the feature map to the size of 1 × 1 × C , then fed into two fully 

connected layers and sigmoid function, learning weight to explicitly model 

channel association and to produce the channel-wise weight factor, excitation 

the feature map. The channel weight is applied to the original feature layer by 

element-wise multiplication, reweighting the feature map. The dataset contains 

13329 images. Table 2.12 show the defect type and the number of images. The 

dataset was split into three sets for training, validation, and testing. Table 2.13 

shows the modified model performance in the test dataset’s result compared to 

other models. YOLOv5x with SELayer had the highest accuracy, 95.40 of 

mAP@0.5, 0.5% better than the YOLOv5x without SELayer. Table 2.14 

presents the detailed accuracy results for each defect type, comparing the 

YOLOv5x with and without the SELayer, the label “1” indicates the model 

without the SELayer. Figure 2.44 depicts some of the output images from the 

inference process on the testing dataset. 

 The advantage of the modified model is that it is substantially more 

accurate. Being based on YOLOv5x, the biggest model in the YOLOv5 family 

and the one with the highest computational cost, which leads to longer training 

and inference periods, is one of its drawbacks. 
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2.3.3.3 Optimising YOLOv7 for Semiconductor Line Space Pattern 

Defect Detection 

 

Table 2.15: Distribution of datasets (adopted from Dehaerne et al. (2023b)) 

Sample counts Train Validation Test 

Line collapse 550 66 76 

Bridge 238 19 17 

Microbridge 380 47 78 

Gap 1046 156 174 

Probable Gap 315 49 54 

Total 

instances 
2529 337 399 

Total images 1053 117 154 

 

Table 2.16: Selected hyperparameter for experiment with default and modified 

value (adopted from Dehaerne et al. (2023b)) 

Type Hyperparameter Default Modified (1) Modified (2) 

Weight & 

learning 

Anchor threshold 4 9 13 

Number of anchors 3 9 13 

IOU threshold 0.2 0.5 0.75 

Object loss gain 0.7 0.25 0.5 

Class loss gain 0.3 0.1 0.5 

Box loss gain 0.05 0.1 0.25 

Focal-loss gamma 0.0 0.1 1.5 

Freeze backbone 

layers 

First layer 

only 
First 25 layers All 50 layers 

Model size Base Tiny Base-X 

Data 

augmentation 

Vertical Flipping 

(probability) 
0.0 0.5 - 

Horizontal Flipping 

(probability) 
0.5 0.0 - 

Mosaic 1.0 0.0 0.5 

Scale (+/- gain) 0.5 0.25 0.75 

Translation (+/-

fraction) 
0.2 0.0 0.5 

Angle (+/- degrees) 0 45 90 

Shear (+/- degrees) 0 15 30 

HSV (fraction) 
0.015/0.7/0.4 

(h/s/v) 
0.0 (all) 1.0 (all) 
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Table 2.17: Results of model performance with different model 

hyperparameters on test images (adopted from Dehaerne et al. 

(2023b)) 

Hyperparameter Value 

AP@0.5 

microbridge gap bridge 
Line 

collapse 
p-gap mAP 

Default 0.873 0.967 0.602 1.000 0.508 0.790 

Anchor threshold 
9 0.806 0.950 0.639 1.000 0.529 0.785 

13 0.792 0.958 0.537 1.000 0.238 0.705 

Anchors 
9 0.726 0.948 0.587 1.000 0.167 0.686 

13 0.766 0.948 0.477 0.000 0.103 0.574 

IOU threshold 
0.1 0.737 0.950 0.590 1.000 0.150 0.685 

0.75 0.807 0.959 0.609 1.000 0.163 0.708 

Object loss gain 
0.25 0.754 0.949 0.581 1.000 0.274 0.712 

0.5 0.800 0.959 0.750 1.000 0.275 0.757 

Class loss gain 
0.1 0.737 0.950 0.590 1.000 0.150 0.685 

0.5 0.803 0.958 0.583 1.000 0.457 0.760 

Box lose gain 
0.1 0.762 0.959 0.562 1.000 0.106 0.678 

0.5 0.800 0.959 0.750 1.000 0.275 0.757 

Focal-loss gamma 
1.0 0.635 0.890   0.652 0.980 0.000 0.631 

1.5 0.581 0.851 0.505 1.000 0.000 0.587 

Freeze layers 
25 0.712 0.919 0.584 1.000 0.247 0.693 

50 0.745 0.949 0.579 1.000 0.139 0.682 

Model size 
Tiny 0.746 0.960 0.819 1.000 0.281 0.761 

Base-X 0.821 0.960 0.515 1.000 0.191 0.697 

 

Table 2.18: Results of model performance with different data augmentation 

parameters on test images (adopted from Dehaerne et al. (2023b)) 

Hyperparameter Value 

AP@0.5 

microbridge gap bridge 
Line 

collapse 
p-gap mAP 

Default 0.873 0.967 0.602 1.000 0.508 0.790 

Vertical Flipping 0.5 0.709 0.960 0.790 1.000 0.604 0.812 

Horizontal Flipping 0.0 0.722 0.959 0.718 1.000 0.507 0.781 

Mosaic 
0.0 0.647 0.952 0.581 1.000 0.030 0.642 

0.5 0.780 0.949 0.589 1.000 0.277 0.719 

Scale 
0.25 0.822 0.949 0.437 1.000 0.288 0.699 

0.75 0.758 0.939 0.634 1.000 0.133 0.693 

Translation 
0.0 0.784 0.968 0.540 1.000 0.107 0.680 

0.5 0.808 0.940 0.457 1.000 0.195 0.680 

Angle 
45 0.633 0.959 0.912 1.000 0.268 0.754 

90 0.597 0.899 0.745 1.000 0.055 0.659 

Shear 
15 0.779 0.967 0.548 1.000 0.277 0.714 

30 0.785 0.968 0.575 1.000 0.346 0.735 

HSV 
0.0 0.781 0.949 0.586 1.000 0.326 0.729 

1.0 0.677 0.949 0.584 1.000 0.197 0.681 
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Figure 2.45: Illustration of ensemble model (adopted from Dehaerne et al. 

(2023)) 

 

 

Figure 2.46: Example of NMS and WBF (adopted from Dehaerne et al. (2023)) 

 

Table 2.19: Results of ensemble model (adopted from Dehaerne et al. (2023b)) 

Models Prediction 

Combination 

AP@0.5 

microbridge gap bridge Line 

collapse 

p-gap mAP 

Default NMS 0.873 0.967 0.602 1.000 0.508 0.790 

WBF 0.709 0.960 0.790 1.000 0.604 0.812 

Default, Tiny, Base-X NMS 0.849 0.968 0.760 1.000 0.546 0.825 

WBF 0.852 0.968 0.823 1.000 0.565 0.842 

Default, Vertical 

Flipping, Angle 

NMS 0.877 0.969 0.809 1.000 0.634 0.858 

WBF 0.878 0.969 0.850 1.000 0.642 0.868 

 

Dehaerne et al. (2023) optimised the YOLOv7 by training and evaluating 

various models with different hyperparameters to enhance the detection 

precision of semiconductor line space pattern defects. Table 2.15 shows the 

detail and distribution of the dataset, which contains 3265 images obtained from 
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scanning electron microscopy. The model’s hyperparameters that were chosen 

for testing and experimentation were believed to have a substantial influence on 

detection performance. Table 2.16 shows the hyperparameter that was chosen 

for the experiment in terms of the model hyperparameter and data augmentation 

parameter. 

Table 2.17 presents the Average Precision (AP) outcomes on test 

images for models with distinct model hyperparameters. Some models perform 

better than others for certain defect classes, such as bridge and p-gap. The Tiny 

model, in particular, achieves an AP of 0.819 for the bridge class. However, the 

overall mean AP of the model is lower than that of the default model. According 

to the results presented in Table 2.18, which displays the Average Precision (AP) 

outcomes on test images for models with distinct data augmentation 

hyperparameters, it was found that using vertical flipping with a value of 0.5 

can increase the Average Precision (AP) for bridge classes to 0.790 and the 

mean Average Precision (mAP) to 0.812, which is an improvement compared 

to the default model. 

An ensemble technique was utilised to enhance mean Average 

Precision (mAP) performance by combining multiple models that produced the 

highest Average Precision (AP) for distinct defect classes. Figure 2.45 provides 

a conceptual illustration of the ensemble model. Moreover, a more advanced 

prediction combination method, weighted box fusion (WBF), which takes a 

weighted average of each box in a group to create the final prediction box, is 

being tested by replacing the original Non-Maximum Suppression (NMS) 

method. Figure 2.46 shows example prediction results of NMS and WBF. A 

collection of models with varying hyperparameter values that exhibited optimal 

per-class performance were assembled, comprising the default model in 

addition to models with vertical flipping and a 45-degree angle data 

augmentation technique. The ensemble model utilised the weighted box fusion 

(WBF) method and resulted in the highest AP for all defect classes and achieved 

the best mAP, as presented in Table 2.20.  

The ensemble model’s benefit is the great accuracy it achieves by 

integrating the predictions of other models. Nevertheless, training numerous 

models and refining hyperparameters take a lot of time. To explore and 
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determine which hyperparameter values are suited for the best results, 

repeatedly training models with various hyperparameters is necessary. 
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2.4 Comparison 

No Author Title Technique used Hyperparameter Strength/Limitations Result Future Work 

1 Shankar and 

Zhong, 2005 

Defect detection on 

semiconductor wafer 

surfaces 

- Image processing 

• Reference 

Method/Templa

te-based 

Method 

- -Defect tolerance: able to 

distinguish between critical and 

non-critical defects via defect 

specification rule. 

-High-quality reference image is a 

prerequisite 

- - 

2 Yeh et al., 2010 A Wavelet-Based 

Approach in Detecting 

Visual Defects on 

Semiconductor Wafer 

Dies 

- Image processing 

• Two-

dimensional 

wavelet 

transform (2-D 

WT) 

- -Non-reference method: does not 

rely on pixel-by-pixel matching. 

-Does not require the training 

process 

-Need to determine the proper 

parameter. 

-Cannot classify the defect into 

defect categories. 

 

- -Develop Simple classification to further 

differentiate the discovered defective pixels 

based on their geometrical coordinates or 

characteristics. 

3 Cheon et al., 

2019 

Convolutional Neural 

Network for Wafer 

Surface Defect 

Classification and the 

Detection of Unknown 

Defect Class 

- Deep learning: 

classification 

• CNN 

- Clustering model 

• k-NN 

- Data augmentation 

- SDG with LR: 0.001 

- Batch size: 32 

- High accuracy 

- Able to identify the unknown 

defect 

- Long training time and reference 

time 

- Train accuracy: 

99.4% 

- Valid accuracy: 

98.7% 

- Test accuracy: 96.2% 

 

- Implement an unsupervised cluster model to 

create a cluster when a new image is collected 
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4 Yuanfu Yang 

and Sun, 2022 

Semiconductor Defect 

Pattern Classification 

by Self-Proliferation-

and-Attention Neural 

Network 

- Deep learning:  

Classification 

• SP&A-Net: 

Self-

Proliferation-

and-Attention 

Block 

- NAG descent - High accuracy 

- Able to capture spatial-wise 

relationships in the feature map. 

- Generate extra feature maps at a 

low cost. 

- Requiring fewer parameters and 

floating-point operations 

- AEI dataset 

accuracy: ≈97.5% 

- ADI dataset 

accuracy: ≈97.9% 

- API dataset 

accuracy: ≈96.9% 

- CIFAR-10 accuracy: 

92.93% 

- IMAGENET Top-1 

error: 23.06%  

- 

5 Chen et al., 

2023 

Multi-scale GAN with 

transformer for surface 

defect inspection of IC 

metal packages 

- Deep learning: 

Classification 

• MST-GAN 

 

- AdamW with LR: 

0.0002 

- Momentums β1 = 0.9 

and β2 = 0.999 

- Weight decay: 0.01 

-Batch size: 8 

- High accuracy 

- Able to generate the defect-free 

template 

- Suppress the reconstruction errors 

via pixel shuffle 

- Computationally and memory 

intensive 

- F1: 99.6% 

- Accuracy: 99.3% 

- Precision: 99.8% 

- Recall: 99.3% 

- FPS: 70.9 

- Integrate the framework into an analysis of the 

correlation between neighbouring image 

patches. 

-  Develop a GAN that will be capable of 

generate defect-highlighting templates while 

preserving the original texture details. 

- Explore effective methods for network 

pruning and quantization while minimizing the 

degradation in network performance 

6 You et al., 2022 Die-Level Defects 

Classification using 

Region-based 

Convolutional Neural 

Network 

- Deep learning: Object 

detection 

• R-CNN 

- Data augmentation 

- Mini Batch Size: 15 

- LR: 0.000001 

- Max epochs: 80 

- Low accuracy 

- Manual capture of the region of 

interest (ROI) is required for high-

exposure image is needed 

- Accuracy for 

detection: 88.5% 

- Accuracy for 

classification: 71.4% 

- Train the network with more datasets 

- Find the most appropriate CNN model for 

classifying die images 

- Consider detecting more defect type  

7 (Lu et al., 2022) Defect Detection of 

Integrated Circuit 

Based on YOLOv5 

- Deep learning: Object 

detection 

- Batch Size: 16 

- Epoch: 600 

- LR: 0.001 

- High accuracy 

- Require high computational cost 

and large memory 

- mAP@0.5: 95.40% 

- mAP@0.1: 97.79% 

- Develop a lightweight model that is suitable 

for deployment in an industrial scenario 
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• Modified 

YOLOv5x with 

SELayer 

- Cosine annealing 

strategy 

8 Dehaerne et al., 

2023b 

Optimizing YOLOv7 

for Semiconductor 

Defect Detection 

- Deep learning: Object 

detection 

•  Ensemble 

model of 

optimized 

YOLOv7 using 

WBF 

- Data augmentation 

- Batch Size: 2 

- Epoch: 200 

- Weights: refer to 

Table 2.16 

- Relatively high accuracy 

- Requires a significant amount of 

time and resources to train the 

model with different 

hyperparameters 

- mAP@0.5: 86.8% 

 

- Enhance the outcomes by implementing 

advanced hyperparameter optimization 

techniques 
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2.5 Overview of the object detection model 

2.5.1 R-CNN 

 

 

Figure 2.47: Overview of R-CNN (adopted from Girshick et al. (2013)) 

 

RCNN can be said to be the pioneer of target detection using deep learning. 

Prior to R-CNN, object detection relied heavily on manually designed feature 

extractors, such as the Viola-Jones detector and Histogram of Oriented 

Gradients (HOG). These models were slow, inaccurate, and performed poorly 

(Zaidi et al., 2021). The accuracy of traditional object detection models was only 

able to achieve around 33.7 in the VOC 2007 dataset. However, R-CNN showed 

very good performance, achieving an accuracy of 58.5% (Zou et al., 2019). R-

CNN convert detection into classification and localisation problem. The R-CNN 

model can be divided into four modules, which are region proposal, feature 

extraction, classification, and bounding box regression. Below is the algorithm 

flow of R-CNN, as illustrated in Figure 2.47. Step 1 (corresponds to region 

proposal), almost 2,000 candidate regions will be generated using the selective 

search algorithm. In step 2 (corresponding to feature extraction), the candidate 

region is cropped to 227*227 pixels, and a deep neural network, acting as the 

backbone network, is used to extract features from these candidate regions and 

generate a feature vector of 4096 dimensions for each candidate region. In step 

3 (corresponding to classification), the feature vector is passed to the Support 

Vector Machine (SVM) classifier to obtain scores, specifying the class to which 

the candidate region belongs. NMS is applied based on the interception over 

union (IOU) and threshold to remove some overlapping candidate boxes. In step 

4 (corresponding to bounding box regression), the class-specific bounding box 

regressor is applied to perform regression operations on the remaining candidate 

region. (Girshick et al., 2013). 
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2.5.2 Fast R-CNN 

 

 

Figure 2.48: Overview of Fast R-CNN (adopted from Girshick (2015)) 

 

Unlike R-CNN, Fast R-CNN combines feature extraction, classification, and 

bounding box regression in a single neural network, as illustrated in Figure 2.48, 

instead of using separate neural networks, SVM, and regressor for each task 

(Girshick, 2015). Similar to R-CNN, Fast R-CNN also uses selective search to 

generate candidate regions from the input image. The input image is fed into the 

deep convolutional network to obtain the corresponding feature map. Then, the 

candidate regions generated are projected onto the feature map. The feature map 

will then pass through the ROI pooling layer, which scales the candidate region 

to a uniform size and extracts a fixed-length feature vector from it (Ahmed 

Fawzy Gad, 2021). The ROI pooling layer in Fast R-CNN is inspired by the 

SPPnet, which enables Fast R-CNN to accept arbitrary-sized inputs. In the ROI 

pooling layer, each candidate region in the feature map is divided into a fixed 

grid of cells, such as 7 × 7, and max pooling is performed on each grid to obtain 

the fixed-length feature vector. The fixed-length feature vector is then passed 

through two fully connected layers to obtain the ROI feature vector. ROI feature 

vector will pass through two fully connected layers that are connected in parallel. 

One includes the SoftMax layer used for the class score prediction and another 

for bounding box regression parameter prediction, which generates four real-

valued numerical values corresponding to each of the 𝐾  classes of objects 

(Girshick, 2015). The SoftMax layer outputs the probability of 𝐾 + 1 categories, 

where 𝐾  is the number of classes and “1” indicates the probability of the 

candidate region as the background. Fast R-CNN addresses the issue of training 

many systems independently in R-CNN, allowing calculations to be shared in 
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the feedforward process (Zaidi et al., 2021). Compared to the prior R-CNN 

model, Fast R-CNN is a faster and more accurate object detection model. Using 

the VOC 2007 dataset, it was almost 200 times faster than R-CNN while 

increasing accuracy from 58.5% (R-CNN) to 70% (Zou et al., 2019). 

 

2.5.3 Faster R-CNN 

 

 

Figure 2.49: Overview of Faster R-CNN (adopted from Ren et al. (2015)) 

 

 

Figure 2.50: Overview of RPN (adopted from Ren et al. (2015))  

 

Faster R-CNN is a two-part architecture consisting of an RPN and Fast R-CNN, 

as shown in Figure 2.49 (Ren et al., 2015). While Fast R-CNN uses selective 

search to generate candidate regions, it limits its speed as each image takes 
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around two seconds to produce the candidate regions (Zaidi et al., 2021). RPN 

replaces selective search and allows for end-to-end training. A backbone 

network, often composed of convolutional layers, will receive the input picture 

and generate the feature map. This backbone network is shared between the 

RPN and Fast R-CNN components in Faster R-CNN. The RPN takes the feature 

map generated by the backbone as input and applies a sliding window approach. 

A small network is applied to each sliding window on the feature map. For each 

sliding window, the centre point in the sliding window corresponding to the 

centre point on the original image is calculated, and 𝑘 anchor boxes are applied 

to the centre point. Using anchor boxes with various scales and aspect ratios 

allows for the detection of objects of various sizes and shapes. Typically, three 

scales and three aspect ratios are used, resulting in a total of nine anchor boxes 

per sliding window position. The sliding window is then mapped to a lower-

dimensional feature vector (e.g., 256-dimension for ZF backbone) and fed into 

two fully connected layers, as shown in Figure 2.50. The first fully connected 

layer produces 2𝑘 scores. The first score corresponds to the probability of the 

anchor box being a background, while the second score corresponds to the 

probability of it being an object. In order to more precisely position and enlarge 

each anchor box to match the object, the second fully connected layer generates 

the 4𝑘 regression scores. Cross-boundary anchors are ignored, NMS is applied 

to the candidate regions based on their classification scores and top-scoring 

proposals boxes are selected to form the final set of candidate regions. The 

candidate regions produced by the RPN are projected onto the shared feature 

map and processed using the same Fast R-CNN architecture as the original Fast 

R-CNN (Ren et al., 2015). To Summarise, Faster R-CNN achieved nearly real-

time object identification by introducing RPN to address the slow region 

proposal generation in Fast R-CNN. With the use of ZF-net, Faster R-CNN was 

able to achieve 17 FPS on a K40 GPU. Faster R-CNN Achieved a mean average 

precision of 42.7% in COCO datasets and 73.2% in the VOC 2007 dataset, 

outperforming Fast R-CNN in terms of accuracy (Zou et al., 2019). 
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2.5.4 SSD 

 

 

Figure 2.51: Network architecture of SSD (adopted from Liu et al. (2015)) 

 

The SSD uses a 300*300 input picture as the input and a modified or truncated 

VGG-16 as the backbone to extract feature maps. These feature maps then pass 

through an auxiliary structure consisting of different-sized convolutional layers, 

which progressively decrease in size and output feature maps of varying scales 

(Zaidi et al., 2021). A total of six feature maps are generated and responsible for 

identifying a different size of object, as shown in Figure 2.51. For instance, the 

larger feature map with a lower receptive field in the first layer retains more 

detailed information and is used to detect relatively smaller targets. As the level 

of abstraction increases, smaller feature maps with higher receptive fields are 

used to detect relatively larger targets. The SSD generates a total of 8,732 

default boxes, with each different-sized feature map having different default box 

scales and aspects, which are determined through calculations and specific 

conditions. For prediction, a small kernel is applied to each location in the 

feature map, and acts as a predictor to predict both the offsets of the default 

boxes and the scores for all object categories. Each location in the feature map 

uses (𝑐 + 4)𝑘 filters, requiring a total of (𝑐 + 4)𝑘𝑚𝑛 filters in the feature map, 

where 𝑘  is the number of default boxes, 𝑚  and 𝑛  represent the size of the 

feature map, and 𝑐 is the number of classes. Thus, each location in the feature 

map produces 𝑐𝑘 class scores and 4𝑘 regression offsets. The process of non-

maximum suppression is applied to obtain the final predictions. (Liu et al., 2015). 

The feature map utilized as input to the RPN and Fast R-CNN architecture in 

Faster R-CNN is obtained by extracting it through a backbone, in which the 

receptive in the feature map is quite large, causing the feature map to have lower 

resolution and lose some of its detailed information (Eggert et al., 2017). 
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Consequently, Faster R-CNN is not proficient in detecting objects from low 

resolution, making it unsuitable for identifying small objects (Cao et al., 2019). 

SSD solve this problem by utilizing detection techniques that involve multiple 

references and multiple resolutions. The two-stage models, such as Faster R-

CNN, are often slower since generating candidate regions takes more time. As 

opposed to the R-CNN family of models, SSD is a one-stage model that does 

not propose candidate regions, leading to faster inference times. SSD achieved 

real-time object detection as it achieved 59 frames on an Nvidia Titan X GPU 

and achieved a mAP of 76.9% in VOC 2007 datasets (Liu et al., 2015). 

 

2.5.5 YOLO 

YOLO was the first one-stage object detector. It converted the object detection 

problem into a regression problem, where estimating the coordinates of the 

bounding box, confidence score and class probability. The concept of YOLO is 

to split the image into a 𝑆 × 𝑆 grid cell, where each cell was responsible for 

detecting an object if the object's centre fell within it. In other words, each cell 

estimates the object's centre or whether the object's centre was in that cell. Each 

cell also predicted 𝐵  bounding boxes and 𝐶  class probability scores. Each 

bounding box predicted five values, which were 𝑥, 𝑦, 𝑤, ℎ  representing the 

location of the centre and the dimensions of the bounding box relative to the 

grid cell, and a confidence score, which indicated the degree of overlap with the 

ground truth box, using IOU (Redmon et al., 2015). 

 YOLOv1 directly predicts the location of the bounding box rather than 

using anchor boxes. As a result, it could be difficult to detect objects with 

different aspect ratios. Each grid cell in YOLOv1 produces two bounding boxes, 

and each cell can only have one class assigned to it. Due to these restrictions, 

YOLOv1 may have trouble detecting tiny objects that are grouped together. 

YOLOv2 or YOLO9000 have addressed these limitations. YOLOv2 implement 

anchor boxes to improve the detection of objects with different aspect ratios and 

scales, increasing the recall of the model. Moreover, it introduces a passthrough 

layer that concatenates higher-resolution feature maps with lower-resolution 

feature maps, helping the model to detect smaller objects more accurately 

(Redmon and Farhadi, 2016). 
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 To improve accuracy, YOLOv3 adopted a new backbone architecture 

called Darknet53, which is deeper and more powerful than the Darknet19 used 

in YOLOv2. In addition, YOLOv3 uses a similar concept to the feature pyramid 

network (FPN), enabling it to predict across multiple scales. This helps 

YOLOv3 detect objects of various sizes with higher accuracy (Redmon and 

Farhadi, 2018). 

 YOLOv4 uses the CSP-Darknet53 backbone, which increases the 

model's accuracy while reducing memory costs. Moreover, YOLOv4 introduces 

advanced data augmentation techniques such as mosaic, which combines four 

images into one, to expand sample diversity and improve the model's 

generalisation ability (Bochkovskiy, Wang and Liao, 2020). 

 The YOLOv5 architecture features the New CSP-Darknet53 backbone, 

which addresses the issue of duplicate gradients in large convolutional networks, 

ultimately leading to reduced computational cost. The neck of YOLOv5 is 

composed of SPPF and New CSP-PAN (Jacob Solawetz, 2020). SPPF is an 

adaptation of the SPP module used in YOLOv4, achieving the same results but 

with faster speeds (Ultralytics, 2023). 

 YOLOv6 builds its backbone and neck based on the Rep-VGG style. 

The backbone is built using RepBlock and CSPStackRep block, which 

efficiently uses hardware computing power while maintaining strong feature 

representation. The neck is Rep-PAN, which adopts a PAN topology with 

RepBlocks and CSPStackRep to achieve efficient inference while maintaining 

good multi-scale feature fusion capability. The backbone and Neck in YOLOv6 

solve the problem of increased latency and reduced memory bandwidth 

utilization in previous YOLO versions that used a CSP-based backbone. The 

head is an efficient decoupled head that maintains accuracy while reducing 

additional latency overhead (Li et al., 2022a). 

 The backbone of YOLOv7 is E-ELAN. ELAN controls the shortest and 

longest gradient paths, allowing the network to learn and converge more 

effectively. E-ELAN expands, shuffles, and merges cardinality to further 

increase the learning ability of ELAN. The authors found that the identity 

connection in RepConv destroys the residual in ResNet, resulting in low 

accuracy when RepConv is added to ResNet. To address this issue, they 
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introduced RepConvN, which is RepConv without an identity connection 

(Wang, Bochkovskiy and Liao, 2022). 

 

2.6 Conclusion 

Based on the approaches reviewed, it can be concluded that several methods 

have been developed for defect detection. However, reference-based methods 

always require a template, which is a fatal drawback. Even though the 2D 

wavelet transforms using non-reference methods which do not need to perform 

pixel-by-pixel matching, the golden image is still needed to perform statistical 

properties comparison, and proper parameters need to be set, which might 

require some experience or experimentation to figure out which one is suitable. 

Most importantly, it cannot further classify the defect pixels into specific 

categories. 

The MST-GAN has solved the problem of these two approaches. It can 

generate a defect-free template based on the learned intrinsic quality pattern and 

use a multi-scale strategy to calculate the multi-scale adaptive threshold and 

some defective measurements. Only a few parameters, such as the threshold and 

sensitivity factor, need to be determined, and other parameters will be learned 

through the training process or obtained directly from the image, such as 

standard deviation and means of the image. However, the golden image is still 

needed for training purposes, and the MST-GAN is computationally expensive. 

The above methods do not mention how the model can detect unknown 

defects. Cheon et al. proposed a defect classification system that combined CNN 

and k-NN, which can detect unknown defect classes using a clustering method, 

but its training and reference time are long. SP&A Net has been proposed by 

Yuanfu Yang and Sun, requiring fewer parameters and GLOPS while 

maintaining high accuracy. However, all the approaches above are about 

classification methods. To perform real-time inference in classification, 

combining the classification model with an object detection or segmentation 

algorithm is necessary. The algorithm helps to locate the semiconductor or 

capture the ROI of semiconductor, while the classification model can then 

classify the semiconductor based on their identified features. This can result in 

increased inference time. 
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In terms of object detection methods, You et al. (2022) proposed an 

RCNN for die-level detection, but it suffers from low accuracy, and manual 

capture of ROI is sometimes needed. The speed for RCNN is slow as it is a two-

stage algorithm, which is not applicable for real-time inference. Lu et al. 

proposed a modified YOLOv5x, which achieves high accuracy but requires high 

computational cost and large memory. An optimized YOLOv7 has been 

proposed by Dehaerne et al., which uses an ensemble model and reaches 

relatively high accuracy, but there is still room for improvement in accuracy. 

In summary, traditional image processing techniques usually require a 

reference template and manual parameter tuning. Some deep learning 

classification methods have high computational costs and long inference times. 

Object detection methods have varying levels of accuracy, with some suffering 

from low accuracy (RCNN) and others having room for improvement (ensemble 

YOLOv7) or requiring high memory costs (modified YOLOv5x). This study 

aims to develop a deep learning based inspection approach for die defect 

detection with a high accuracy of 90% , further improve accuracy modifying the 

model's components. Additionally, the model was optimized for less 

computational cost by pruning to reduce the number of parameters and make 

the model as lightweight as possible. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Development Tool 

 

3.1.1 PyTorch 

PyTorch is a Python-based deep learning framework that Meta developed based 

on the Torch library. Because of its simplicity of use and broad support for 

GPUs, PyTorch has gained popularity. In the deep learning community, 

PyTorch has also served as the foundation for a large number of open-source 

models. The deep learning model used in this study is also based on PyTorch. 

PyTorch is required to modify components inside the YOLO model and to train 

and evaluate the model. PyTorch is also necessary to integrate the SAM model 

into YOLOv5 for ensemble processing. 

 

3.1.2 MMAGIC 

MMagic is an advanced and versatile AIGC toolkit based on PyTorch developed 

by OpenMMLab. It offers various generative models, super-resolution models, 

and multimodal models. It facilitates model training and fine-tuning. Since the 

configuration files for models in MMagic are similar, transitioning between 

different models is seamless. In this study, MMagic was utilized to train 

StyleGANv2, StyleGANv3, and perform fine-tuning for stable diffusion. 

 

3.1.3 OpenCV 

OpenCV is a popular open-source toolkit for computer vision and machine 

learning, mainly used for a variety of image and video processing tasks. In this 

study, OpenCV was utilized for image processing purposes. For example, to 

capture the ROI of the IC.  
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3.1.4 Visual Studio Code 

Visual Studio Code was used as the IDE for making modifications to the source 

code of YOLO, adding supplementary code and editing the configuration file 

for deep learning models. 

 

3.1.5 Anaconda 

Anaconda is an open-source platform that supports Python and R programming 

languages. Anaconda was used to create virtual environments on the local 

machine, and all necessary packages and dependencies required for deep 

learning model were installed. Anaconda enables the creation of multiple 

independent environments, each tailored for different GitHub repositories (deep 

learning models). As different repositories may require varying versions of 

packages, this approach prevents any conflicts with the global environment. 

 

3.1.6 Label Studio 

Label Studio is a versatile open-source data labelling tool that supports multiple 

types of data. In this study, Label Studio was utilized for annotating images as 

it supports the YOLO output format. It is important to note that Label Studio 

will only be installed on the local machine and will not be deployed to an 

external network or cloud due to the confidentiality of the datasets used in this 

study. 

 

3.1.7 Albumentations 

Albumentations is an efficient and adaptable library for image augmentation. 

For this study, the Albumentations was used to perform data augmentation to 

the segmentation dataset and object detection datasets. The Albumentations 

package will also return the augmented bounding boxes, eliminating the need 

for reannotation of the augmented images. 

 

3.2 Evaluation metric in object detection 

The following section will describe the common evaluation metric used in 

object detection to evaluate the model's performance. 
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Table 3.1:  Description of evaluation metrics in object detection 

True Positive (TP) Ground truth that is correctly detected by bounding 

box, based on IoU, IoU threshold, confidence score 

and confidence score threshold 

False Positive (FP) A bounding box detects the non-existence ground 

truth (such as detecting the background as an 

object), or a bounding box detects the wrong object 

based and IoU and IoU threshold 

False Negative (FN) Ground truth that is not detected by the bounding 

box 

True Negative (TN) A number of bounding boxes should not be 

detected. The concept of "TN" is not relevant in 

object detection, as the model can correctly ignore 

an infinite number of background regions that do 

not contain objects. 

 

3.2.1 IoU 

IoU, or Intersection over Union, is a common evaluation metric in object 

detection that measures the degree of overlap between predicted bounding and 

ground truth bounding boxes. It is calculated as the area of overlap between two 

boxes divided by the area of their union, as illustrated in Figure 3.1. IoU is used 

as a criterion to distinguish between TP and FP in object detection. For instance, 

an IoU threshold of 0.5 is set. If the IoU between a predicted bounding box and 

its corresponding ground truth bounding box is greater than 0.5, it is considered 

a TP, indicating a correct detection. Otherwise, it is classified as FP, indicating 

a false detection (Koech, 2020). 
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Figure 3.1: Illustration of IoU (adopted from Padilla et al. (2020)) 

 

3.2.2 Precision and recall 

Precision is a performance metric that measures the accuracy of a model in 

predicting only the relevant objects by calculating the percentage of correct 

predictions out of all the bounding boxes predicted by the model. In other words, 

precision refers to how precisely the model can detect relevant items (Padilla, 

Netto and da Silva, 2020).  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

𝑇𝑃

All observations (bounding box)
 (3.1) 

 

Recall is the ratio of correctly detected positive samples to the total number of 

positive samples present in the ground truth data. It measures the model's ability 

to detect all relevant cases, meaning how many of the ground truth boxes are 

successfully detected by the model (Padilla, Netto and da Silva, 2020). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑇𝑃

All Ground Truth
  (3.2) 

 

3.2.3 Precision-Recall curve 

In order to illustrate the trade-off between precision and recall, Precision and 

recall for each bounding box are calculated based on the corresponding 

confidence score (confidence threshold), and a precision-recall curve is plotted. 

A model is considered to have good performance when the precision stays high 
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while recall remains high. The model is said to perform well, even if the 

confidence threshold varies. The x-axis of the graph is recall, and the y-axis is 

precision, as shown in Figure 3.2. The Precision-Recall curve can be plotted 

using one of two approaches. The 11-point interpolation method uses 11 evenly 

spaced standard recall levels. The all-point interpolation approach utilises every 

recall point available (Koech, 2020). 

 

 

Figure 3.2: Precision x Recall curve (adopted from Koech (2020)) 

 

3.2.4 mAP 

When evaluating the performance of an object detection model, it's important to 

consider both precision and recall. This is because precision only considers FP, 

not FN, and recall only considers FN, but not FP. For example, let's consider a 

scenario where there are five ground truth boxes in an image. Model number 

one predicts only one bounding box with a high confidence score and IoU, and 

the prediction is correct. In this case, the TP is one, FN is four, and FP is zero, 

resulting in a high recall. On the other hand, Model number two predicts ten 

bounding boxes, five of which predict the object correctly (with high IoU and 

confidence score), and the other five detect the background as an object. In this 

case, the TP will be five, FN will be zero, and FP will be five, resulting in a high 

recall. From these cases, it is evident that the performance of both models is not 

good, but they get high precision and recall, respectively. Therefore, it's crucial 
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to evaluate precision and recall together to better understand the model's overall 

performance. 

To evaluate both precision and recall and represent it numerically, AP 

is calculated for each class by computing the area under the Precision-Recall 

curve. Then, mAP is calculated by averaging the AP values for all classes. This 

comprehensively assesses the model's performance or accuracy (Padilla, Netto 

and da Silva, 2020). 

The mAP in PASCAL VOC and COCO datasets are not the same due 

to differences in their calculation methods. In PASCAL VOC, the mAP is 

calculated with an IoU threshold of 0.5, and the mAP is the average of APs 

across classes. In contrast, in COCO, the AP is calculated by considering IoU 

thresholds starting from 0.50 and incrementing by 0.05 until 0.95. The AP is 

then averaged over all IoU thresholds and categories, which is equivalent to the 

mAP in PASCAL VOC (Jonathan Hui, 2018). 
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3.3 Workflow of model training 

 

 

Figure 3.3: Workflow for training YOLOv7-tiny object detection model 



90 

 

 

The workflow for training the YOLOv7-tiny object detection model is shown in 

Figure 3.3. It encompasses various stages, including data preparation, data pre-

processing, data augmentation, data annotation, model training, model 

improvements, model pruning and performance evaluation. The reason for 

choosing the YOLOv7 repository for training the object detection model is that 

YOLOv7 performs better than YOLOv5 in COCO dataset. While YOLOv8 has 

been introduced, it is still considered to be under development and lacking 

proper releases on GitHub. As a result, YOLOv7 stands out as the most stable 

and up-to-date YOLO model. 

 

3.3.1 Data preparation 

 

Table 3.2: Table of IC defect types and details 

Defect type Defect details 

PCB defect • Foreign molecules on PCB 

Die defect • Foreign molecules on Die 

• Epoxy Overflow 

• Die crack 

• Die chip 

• Die scratch 

• Die rotate 

• Misaligned Die (Die offset) 

• Missing Die 

Wire and bonds defect • Wire broken 

• Wire bond offset 

• Smash bond 

• Lifted on Pad 

• Lifted on Lead 

• Wire sweep 

• Missing wire 

• Bond tail defect 

• Double bond 

• Unbounded wire 

LED defect • Missing LED 

• Epoxy Overflow 
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Figure 3.4: Die defects 

    

The dataset used in this study has been kindly provided by ASPL Malaysia Sdn 

Bhd, which contains images of integrated circuits used in wireless earphones 

from a renowned manufacturer with various types of defects, including one type 

of PCB defect, eight types of die defects, ten types of wire and bond defects, 

and two types of LED defects, as outlined in Table 3.2. However, this study will 

only focus on two types of die defects, namely die crack and die rotate. Since 

the defect codes for die crack, die scratch and die chipping are the same, these 

three defects were categorized as die crack. Figure 3.4 shows the die defects 

involved in this study. 

Each image in the datasets is available in three forms, which are images 

captured with a normal brightfield microscope, dark field with white light, and 

dark field with blue light. As a result, the images will appear similar to the 

images with green, red, and blue channels, respectively. The image used in this 

study is images captured by a normal brightfield microscope. Hence, OpenCV 

is used to filter the images based on the mean colour values of the images. 

Images are passed into the OpenCV with “cv2.imread()” function, and then 

“np.mean()” function is applied to the image to get the mean colour value. If the 

mean colour value for blue, green, and red channels exceeds 15, the image is 

considered captured by a normal brightfield microscope, else if the mean colour 

of the red channel is higher than blue channel, the image is considered captured 

by dark field with white light, else, the images is considered as captured by dark 

field with blue light. 
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Figure 3.5: Flowchart for Capturing ROI of IC Chip Using OpenCV 

 

 

Figure 3.6: Effects of Smoothed Polygon 

 

3.3.2 Data preprocessing 

The provided image includes the IC and the background. To detect die rotation 

defects, the images passed into the YOLOv7-tiny must be upright, or else even 

though the die is not rotated but the whole IC chip itself is rotated, YOLOv7-

tiny will detect the defect-less die as die rotation. Thus, capturing the ROI of the 

IC chip and making the image upright is needed.  

  



93 

 

3.3.2.1 Capture ROI with OpenCV 

Figure 3.5 illustrates the step-by-step process for capturing the ROI of an IC 

chip using OpenCV. The workflow begins with the image being loaded into 

OpenCV via the “cv2.imread()” function. Subsequently, the image is converted 

into grayscale using “cv2.cvtColor()”. The subsequent step is focused on 

enhancing relevant features within the images and addressing issues related to 

inconsistent illumination. To tackle this, an adaptive thresholding technique is 

employed using the “cv2.adaptiveThreshold()” function. The chosen strategy 

involves calculating the threshold based on the arithmetic mean of the local 

pixel neighbourhood, with a neighbourhood pixel size of 151 and a constant “c” 

value of 3. The contours of this thresholded image are extracted with 

“cv2.findContours()”. If the area enclosed by a contour exceeds 35,000 units, it 

is considered a candidate. To ensure accuracy, contours are approximated into 

smooth polygons using “cv2.approxPolyDP()”, with an epsilon value set at 1% 

of the contour path length. It's important to note that some scratches may extend 

beyond the IC's borders, as depicted in Figure 3.6. These anomalies are included 

in the contour, and the smoothing process is critical to eliminate such artifacts. 

Without this step, the ROI cannot be captured successfully. 

Following the smoothing process, the resulting polygon is added to the 

polygon_list. For each polygon within this list, a rectangle is generated using 

“cv2.minAreaRect()”. The four corner points of this rectangle are extracted 

using “cv2.cv.BoxPoints()”, and the rectangle's area is calculated based on these 

corners points. If the area of the rectangle exceeds 100,000 units, the corner 

point will be rearranged into a specific order of top-left, top-right, bottom-right, 

and bottom-left. The coordinates of the ordered four corner points will be 

assigned to a variable named “points”. Subsequently, the width and height 

between the four corner points saved in the “points” variable are computed. 

These dimensions are pivotal in determining the destination points for the 

perspective transform matrix. The perspective transform matrix is then 

calculated using both the four corner points and the destination points, 

facilitated by the “cv2.getPerspectiveTransform()” function. With this matrix in 

place, a perspective transformation is applied to the original image through 

“cv2.warpPerspective()”. Few assumption was made within this process. Firstly, 
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there are always polygons exceeding 35,000 units, and there are always a 

rectangle with an area exceeding 100,000 units, else the script will be terminated 

or an error will be thrown when calculating the width and height of corner points, 

as no valid corner points would exist. Lastly, it is assumed that there is only one 

rectangle with an area exceeding 100,000 units. If multiple such rectangles exist, 

only the last one encountered will be considered for perspective transformation, 

as the four ordered corner points saved in the variable “points” will be 

overwritten. 

 

3.3.2.2 Capture ROI with YOLOv5 

 

 

Figure 3.7: Workflow for training YOLOv5 segmentation model 
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Figure 3.8: Flowchart for Inference Process of YOLOv5 Segmentation Model 

in Capturing the ROI of IC Chip 
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The workflow for training YOLOv5 segmentation model is shown in Figure 3.7. 

It encompasses data preparation, data annotation, data augmentation, model 

training and performance evaluation. The reason for selecting YOLOv5 as the 

segmentation model stems from the fact that while YOLOv7 also supports 

segmentation, the associated repositories, namely “u7” and “mask”, have not 

been properly maintained. These repositories lack essential maintenance and 

many convenience functions that could aid in the development of custom code. 

One such example is “masks2segments”, a function provided in YOLOv5, 

which allows for the conversion of masks to polygons. The absence of such 

functionalities in YOLOv7 necessitates the creation of custom code, making 

YOLOv5 a more practical choice for segmentation tasks as extra custom code 

was implemented for segmentation in this study. Figure 3.8 shows the inference 

process of YOLOv5 segmentation in capturing the ROI of the IC chip. 

3.3.2.2.1  Data preparation 

The dataset consists of 802 images, including 200 images from die crack, die 

rotation, and defect-less IC categories, respectively, as well as an additional 202 

images from the category of missing die. 
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Figure 3.9: Masks and Bounding Box of IC Chip Obtained from SAM 

 

 

Figure 3.10: Exported Dataset in JSON Format 
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Figure 3.11: Exported Dataset in COCO Format 

 

 

Figure 3.12: Exported Datasets in YOLO Text File Format 

3.3.2.2.2  Data annotation 

These 802 images were annotated using Label Studio. To ensure high-quality 

annotations, instead of manual labelling, a SAM model was integrated into 

Label Studio to assist in the labelling process. An initial annotation box 

encompassing the entire IC chip was manually drawn. Subsequently, SAM 

accurately predicted and returned both the bounding box and mask for the 

annotated regions, streamlining the annotation process and ensuring precise 

results. The Label Studio integrated with SAM was obtained from the Open-

MMLab Playground. Figure 3.9 shows the masks and bounding box returned by 

SAM. 

 



99 

 

Since the masks returned by SAM are in uncompressed RLE format, Label 

Studio supports this format only when the dataset is exported to a JSON file, as 

illustrated in Figure 3.10. Subsequently, the JSON file is converted into COCO 

format using a script provided by Open-MMLab Playground, as shown in Figure 

3.11. Afterwards, a custom script is employed to convert the COCO format into 

YOLO format. This script essentially retrieves the uncompressed RLE masks 

from the COCO file and converts them into polygon format, which is then 

written into a “.txt” file, as shown in Figure 3.12. The dataset was initially 

divided into a training set and a test set, with a 9:1 ratio, respectively. 

Subsequently, a validation set was created by splitting 10% of the training set. 

This partitioning resulted in 648 images in the training set, 81 images in the test 

set, and 73 images in the validation set. 

3.3.2.2.3  Data Augmentation 

To enhance the robustness of the dataset, data augmentation was applied using 

the Albumentations library. The employed data augmentation techniques 

included “VerticalFlip”, “HorizontalFlip”, “Rotate”, “CLAHE”, 

“AdvancedBlur”, “MultiplicativeNoise”, “ElasticTransform”, “GridDistortion” 

and “OpticalDistortion”. 

For the training set, each image was augmented to generate an 

additional three augmented images, effectively expanding the dataset. To 

maintain a balanced distribution and assess the model's robustness, 

augmentation was also performed on both the testing and validation sets, 

resulting in an extra augmented image generated for each image in these sets. 

The augmented dataset comprises a total of 2,592 images in the training set, 162 

images in the testing set, and 146 images in the validation set. 
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Figure 3.13: Hyperparameters Configuration for YOLOv5 Segmentation 

Model 

 

 

Figure 3.14: Inference Result with Mosaic Enabled 
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3.3.2.2.4  Model training 

YOLOv5n-seg and YOLOv5s-seg were trained with the hyperparameters 

shown in Figure 3.10. Notably, mosaic augmentation was disabled during 

training. This decision was made to prevent the mosaic augmentation from 

splitting the IC chip into multiple parts, which could lead to confusion for the 

model. When the mosaic is enabled, the model might consider part of the IC 

chip as a complete IC chip, resulting in two predicted masks for a single IC chip. 

One mask would represent the entire IC chip, while another would only cover 

half of it, as illustrated in Figure 3.11. The training process consisted of 50 

epochs, with a batch size of 16. The input image size was set to 640x640 pixels 

and pre-trained weight was used to speed up the convergence of the model. 

3.3.2.2.5  Performance Evaluation 

The evaluation metrics used for assessment included mAP@0.5:0.95(BOX) and 

mAP@0.5:0.95(Mask). These metrics were employed to evaluate how well the 

mask generated by the model aligned with the ground truth mask. In addition to 

these metrics, the FPS was also evaluated to assess the model's inference speed. 

Parameters and GLOPS were also evaluated to assess the computational cost of 

the model. 

For FPS evaluation, inference time outputted by the official script 

exhibited some fluctuations. These fluctuations were attributed to the GPU's 

behaviour, particularly during the initial phase of inference when the GPU was 

not warmed up and was running at low power. To obtain more accurate FPS 

measurements, a custom script was developed. 

In this custom script, based on a defined number, a batch of images was 

generated with random pixel values using “torch.randn()”, each sized at 

640x640 pixels. The model underwent a warm-up process of 1000 iterations 

using these randomized images. After the warm-up phase, the model performed 

1000 inferences with these randomized images, and the FPS was calculated 

based on the start time and end time of model inference. To ensure precise FPS 

measurements, “torch.cuda.synchronize()” was employed. The FPS were 

evaluated for both single batch and 16 batches of randomized images. It's 

important to note this script does not include NMS in the calculation of FPS. All 
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the trained YOLO model's FPS in this study were assessed using this script, with 

the exception of the ensemble model consisting of YOLOv5n and SAM. 

 

 

Figure 3.15: Flowchart for Inference Process of Ensemble Model in 

Capturing the ROI of IC Chip 
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3.3.2.3 Ensemble model of YOLOv5n object detection model and SAM 

To further enhance the accuracy of segmentation, complex networks such as 

transformers are often considered due to their potential for superior performance 

compared to YOLO models. However, it's important to note that these networks 

typically come with slower inference times, and training them can be time-

consuming and computationally expensive. Therefore, the choice of adopting a 

zero-shot segmentation model becomes a prudent one. 

The performance of the SAM in returning accurate masks during data 

annotation has been observed, as detailed in Section 3.3.2.2.2. SAM has been 

pre-trained on a substantial dataset comprising 1.1 billion high-quality 

segmentation masks and SAM was built based on the vision transformer, 

making it an excellent candidate for the segmentation model. To achieve even 

more accurate segmentation results, bounding boxes need to be passed into the 

SAM model to act as a prompt. 

To facilitate this, a YOLOv5n object detection model was trained. The 

dataset used for training YOLOv5n is the same as described in Section 3.3.2.2.3, 

with the only difference being that bounding boxes are retrieved from the COCO 

format instead of the uncompressed RLE mask format. The hyperparameters 

and model configuration remain consistent with Section 3.3.2.2.4. FastSAM-s, 

FastSAM-x, MobileSAM, SAM_VIT_b, and SAM_VIT_l were evaluated. 

Figure 3.15 shows the ensemble model's inference process in capturing the IC 

chip's ROI. The “detect.py” script was customized to fit the inference process. 

Instead of evaluating the model's performance using mAP, a manual 

inspection of the predicted mask output by SAM was conducted. This approach 

was taken because the official script did not support measuring mAP for SAM, 

and no self-written code had been implemented to measure the mAP of SAM. 

FPS was also evaluated.  

As the operational principles of YOLO and SAM differ, the FPS 

measurements were directly obtained using the “detect.py” script with self-

written code, as the original “detect.py” does not support measuring the FPS of 

SAM. FPS was evaluated by measuring the time taken for YOLO inference and 

SAM inference separately, based on each model's inference process's start time 

and end time. It's important to note that this FPS measurement specifically 
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accounts for the inference time of YOLOv5n and SAM, without considering 

other post-processing or pre-processing steps such as NMS. The FPS 

measurement was conducted for a single batch consisting of one IC image, to 

align with the default behaviour of “detect.py”, which accepts one image at a 

time. A total of 1000 IC images were used to test the FPS, resulting in a total of 

1000 iterations. 

 

3.3.3 Data augmentation 

After preprocessing the images using the ensemble model as mentioned in 

Section 3.3.2.3, a total of 170 images with die rotation defects and 386 images 

with die crack defects were obtained. However, this quantity was insufficient to 

train a YOLOv7-tiny model with a high mAP, and the class distribution was 

imbalanced. 

To address the issue of limited defect images, StyleGANv2 and 

StyleGANv3 were trained to generate additional images. Additionally, Stable 

Diffusion was fine-tuned with LoRA (Low-Rank Adaptation) as a technique to 

fine-tune the stable diffusion by adjusting the attention mechanisms (q, k, and 

v). The images sent to the model depict the die itself, and they were manually 

cropped from the full IC chip. Since the input image dataset was limited, 

Adaptive Discriminator Augmentation (ADA) was enabled in StyleGANv2 and 

StyleGANv3 for better performance and to prevent overfitting. 

To assess the performance of the StyleGAN models, an Inceptionv3 

network was automatically trained to evaluate the Fréchet Inception Distance 

(FID). FID measures the dissimilarity between the distribution of generated 

images and a set of real images based on real covariance, real mean, fake 

covariance and fake mean statistics. These statistics are derived from feature 

vectors extracted by Inceptionv3 from the real image and generated image. 

These three models were trained for 50,000 iterations. The performance of 

StyleGAN models was evaluated using the FID metric, where 1000 fake images 

were generated to measure FID. As the stable diffusion provided by MMagic 

does not support the FID metric, manual inspection was performed on the output 

images of stable diffusion. 
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After manually filtering the images output by StyleGANv2, 330 die 

rotation images and 114 die crack images were selected. Random IC images 

were selected for each of these images, and the original die region in the IC chip 

was replaced with generated images manually. 500 defect-free IC images were 

added as negative samples, bringing the total to 1500 images. Horizontal flip 

augmentation was applied to these images, resulting in a dataset of 3,000 images. 

 

 

Figure 3.16: Masks and Bounding Boxes of Die Rotation Obtained from SAM 

 

3.3.4 Data annotation 

These 3000 images were then annotated using Label Studio. The die rotation 

defects were labelled with the assistance of SAM, as shown in Figure 3.16, 

while die crack defects were labelled manually as SAM did not perform well on 

small objects. Defect-free IC images are not annotated. The dataset was 

subsequently divided into training, testing, and validation sets in approximately 

an 8:1:1 ratio, as same as previously mentioned in Section 3.3.2.2.2. This 

resulted in a training set with 2430 images, a test set with 300 images, and a 

validation set with 270 images. 

Annotated objects in the dataset were categorized into three size groups 

based on the COCO definitions. Small objects were defined as those with 

bounding boxes smaller than 32x32 pixels, medium objects had bounding boxes 

ranging from 32x32 to 96x96 pixels, and large objects had bounding boxes 

larger than 96x96 pixels. A script was employed to calculate the sizes of these 

objects, resulting in a distribution of 1028 small objects, 142 medium-sized 

objects, and 1058 large objects within the dataset. 
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Figure 3.17: Hyperparameters Configuration for YOLOv7-tiny Object 

Detection Model 

 

3.3.5 Model Training 

The original YOLOv7 source code only contained three constant seed settings, 

namely “random.seed()”, “np.random.seed()” and “torch.manual_seed()” This 

resulted in training outcomes that varied each time. To ensure the reliability, 

accuracy, and reproducibility of the results, custom code was developed. This 

custom code sets all the seeds in the “numpy”, “torch”, and “random” libraries 

to a consistent value of one using “random.seed()”, “np.random.seed()”, 

“torch.manual_seed()”, “torch.cuda.manual_seed()”, and 

“torch.cuda.manual_seed_all()”. Additionally, to maintain consistent output for 

CUDA operations, “torch.backends.cudnn.deterministic” was set to True. From 

previous experience, if the seed is not completely constant, the mAP@0.5 may 

fluctuate around -2% to +2%, even in the same hyperparameter and model 

configuration. 

YOLOv7-tiny were trained with the hyperparameters shown in Figure 

3.17. Notably, mosaic augmentation was also disabled during training. This 

decision was made because some crack defects also appeared in the LED part 
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of the IC, which was not the focus of this study. To ensure that the model ignores 

these types of defects, full IC images must passed to the model. The training 

process consisted of 300 epochs, with a batch size of 16, the input image size 

was set to 640x640 pixels and no pre-trained weights were used. This decision 

was made to ensure the fairness of the network. As improvements were made to 

the model, some components in the network were changed and became different 

from the original network. For these changed or extra components, pre-trained 

weights were not loaded. Pre-trained weights were only loaded for layers that 

matched the original network, resulting in an unfair comparison. Instead of 

using predefined anchor boxes intended for the COCO dataset, which are big 

and not suitable for the datasets used in this study, the “AutoAnchor” option is 

enabled. This option generates anchor boxes through k-means clustering based 

on the ground truth boxes present in the dataset. A YOLOv7-tiny model was 

trained. 

 

3.3.6 Model Improvements 

3.3.6.1 Normalized Wasserstein Distance Loss Function 

The authors claim that metric based on IoU is very sensitive to positional 

deviations of small targets, especially for pixelated targets, and that slight 

positional deviations can lead to significant IoU degradation. This sensitivity 

arises due to the discrete nature of bounding box positions, making it 

challenging for the network to converge effectively during training. To solve 

this problem, the authors proposed an approach to measure the similarity of the 

bounding box via wasserstein distance instead of the standard IoU. Generally, 

both the predicted and ground truth bounding boxes are modelled as 2D 

gaussian distributions and then the similarity of the derived 2D gaussian 

distributions is measured using NWD (Wang et al., 2021). The NWD between 

the 2D gaussian distributions of the ground truth box and the predicted box can 

be expressed by the following formula: 

 

𝑁𝑊𝐷(𝒩𝑎, 𝒩𝑏) = ex p (−
√𝑊2

2(𝒩𝑎,𝒩𝑏)

𝐶
) (3.3) 
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Where 𝑊2
2(𝒩𝑎, 𝒩𝑏) is squared Euclidean distance between the predicted box 

and bounding box that is represented in 2D gaussian distribution, can be 

expressed as: 

 

𝑊2
2(𝒩𝑎, 𝒩𝑏) =

∥
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𝑐𝑥, 𝑐𝑦,
𝑤

2
,

ℎ

2
 is defined as the coordinates and dimensions of the box. 

 

3.3.6.2 CoordConv 

 

 

Figure 3.18: Convolutional Layer vs. CoordConv Layer: A Comparison 

(adopted from Liu et al. (2018)) 

 

The authors conducted experiments in which they applied traditional 

convolution to convert cartesian coordinates (i, j) into one-hot pixel space and 

vice versa. Through this experiment, they found out that traditional convolution 

lacked awareness of the positional information associated with each filter, 

which means traditional convolution captures local information but does not 

inherently consider the positional information of features within the image. To 

solve this problem, the authors propose CoordConv, which adds two additional 

coordinate channels that represent the original input's i and j coordinates to the 

original input feature map, as shown in Figure 3.18, so that CoordConv can 

capture spatial information of the feature map. In simple terms, these coordinate 

channels represent coordinates of feature map pixels, allowing the convolutional 
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learning process to have a certain level of spatial awareness regarding the 

coordinates and thus improving accuracy. Since object detection looks at pixel 

space and output bounding boxes in cartesian space, the author claims that 

CoordConv can help in the field of object detection (Liu et al., 2018). 

 

3.3.6.3 Slim-neck by GSConv 

 

 

Figure 3.19: Structure of GSConv (adopted from H. Li et al. (2022)) 

 

 

Figure 3.20: Structure of GS Bottleneck Module and VoV-GSCSP Module 

(adopted from H. Li et al. (2022)) 

 

Most of the lightweight modules are built by depthwise separable convolution 

(DSC). However, during the convolution process of DSC, the channel 

information of input images is segregated, resulting in lower feature extraction 

ability compared to standard convolution (SC) and thus leading to lower 

accuracy. To address this problem, the authors proposed a GSConv module that 

combines SC, DSC, and shuffle operations, as shown in Figure 3.19. The input 
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first undergoes a standard convolution, followed by depthwise convolution 

(DWConv). The results of these two convolutions are concatenated, and a 

shuffle operation is performed to exchange local feature information between 

these two output feature maps. Based on GSConv, the authors introduced the 

GS bottleneck module. Based on GS bottleneck module, the authors implement 

a one-shot aggregation method and design a VoV-GSCSP module, as shown in 

Figure 3.20. The authors replaced the original neck in scaled-yolov4 with a neck 

based on VoV-GSCSP and GSConv. The authors observed that this replacement 

successfully detected more small objects in the DOTA1.0 dataset while 

reducing the parameter count. The Slim-neck is formed by combining VoV-

GSCSP and GSConv (Li et al., 2022b). 

 

3.3.6.4 Model Configuration for Improved Network 

 

 

Figure 3.21: Combined Loss Function Code Incorporating CIOU and NWD 

 

As mentioned in Section 3.3.4, the dataset consists of approximately an equal 

proportion of small and large targets. Instead of directly replacing the original 

CIOU loss function in YOLOv7-tiny with the NWD loss function, a 

combination of both loss functions is employed, where each contributes 50% to 

the total loss, resulting in a balanced approach, as shown in Figure 3.21. 

Below outlines the modifications applied to the YOLOv7-tiny neck, 

including CoordConv, as well as the changes made to the neck through VoV-

GSCSP and GSConvs. Specifically, only the neck architecture is modified, 

while the backbone remains unchanged. In the neck with CoordConv, layers 38, 

40, 48, 50, 74, 75, and 76 are replaced by CoordConv layers. In the neck with 

VoV-GSCSP and GSConvs, the original e-elan module is substituted with VoV-

GSCSP, and layers 38, 40, 43, 45, 48, and 51 are replaced with GSConvs. 

GSConvs are used instead of GSConv because pruning will be performed later, 

and the shuffle operation in GSConv does not support pruning. GSConvs simply 
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replaces the shuffle operation with a normal convolutional layer. The layers in 

VoV-GSCSP still remain as GSConv. The activation function used in 

CoordConv and Slim-neck is the same as the original convolutional layer in 

YOLOv7-tiny, which is LeakyReLU with a value of 0.1. All the hyperparameter 

settings and training configurations remain the same, as mentioned in Section 

3.3.5. 

 

3.3.7 Model Pruning 

 

 

Figure 3.22: Workflow for Network Slimming 
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Figure 3.23: Workflow for LAMP Pruning 

 

One of the most frequently used techniques in industry to lightweight or speed 

up models is model quantization. However, these kinds of techniques often rely 

on specific hardware. For example, OpenVINO requires running on Intel 

devices, and TensorRT requires running on Nvidia devices. In comparison, 

model pruning does not have hardware limitations, as the output of pruning is 

still a ".pt" weight file that can be easily converted to the ONNX format and 

deployed on any device. These pruned models can also be further accelerated 

through model quantization at a later stage. 

 

3.3.7.1 Torch-Pruning 

The pruning package used in this study is "Torch-Pruning". In the past, custom 

pruning algorithms were required for different networks because the parameters 

connecting to neurons varied in each network. To prune neurons, the parameters 

connected to that neuron also needed to be pruned. Torch-pruning uses a 

DepGraph algorithm to model the parameter dependencies in any network. The 

relationships between nodes in the network are determined recursively to 

identify their dependencies, which allows them to be grouped together, creating 
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a dependency graph. This graph helps determine which nodes and parameters 

need to be pruned together. In summary, torch-pruning is a network-agnostic 

pruning library that can be used for pruning in various neural network 

architectures (Fang et al., 2023). 

 

3.3.7.2 Layer-Adaptive Magnitude-based Pruning (LAMP) 

Each weight tensor is flattened into a one-dimensional vector, and these vectors 

are assumed to be arranged in ascending order, where |W[u]| ≤ |W[v]|. Here, u 

and v represent the indices in the weight vector, and the LAMP score for the u-

th index in the vector can be calculated using the following formula: 

 

score (𝑢; 𝑊): =
(𝑊[𝑢])2

∑  𝑣≥𝑢 (𝑊[𝑣])2
 (3.5) 

 

The LAMP score measures the importance of all parameters or 

connections that are connected to a specific neuron or layer. Connections with 

the lowest LAMP scores will be globally pruned (Lee et al., 2020). 

 

3.3.7.3 Network Slimming 

In network slimming, the scaling factor γ from batch normalization is reused 

and introduced to the channel's output. L1 sparse regularization is applied to the 

factor γ during sparsity learning. The factor γ in batch normalization represent 

scaling factor that controlling the feature map's data and determining channel 

importance. L1 sparse regularization gradually drives γ in the channels towards 

zero during sparsity learning, identifying which channels are unimportant and 

subsequently pruning the unimportant channels (Liu et al., 2017). 

 

3.3.7.4 Configuration for Pruning 

Figures 3.22 and 3.23 depict the workflow for network slimming and LAMP 

pruning, with the main difference being that network slimming requires sparsity 

learning to determine unimportant channels, whereas LAMP pruning can 

directly calculate the LAMP score and prune the network. Notably, both 
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network slimming and LAMP pruning are implemented in the torch-pruning 

package as channel pruning techniques. 

The pruning is applied to the modified YOLOv7-tiny with CoordConv 

neck and modified YOLOv7-tiny with slim-neck. The hyperparameter 

configuration and training settings for fine-tuning and sparsity learning remain 

the same as mentioned in section 3.3.5. For pruning, the speed_up rate is set to 

1.5, which is calculated based on GLOPS. "max_ch_sparsity" is set to 1.0, 

indicating that unimportant channels will be completely removed. The 

"iterative_steps" parameter is set to 200. This ensures that the model iteratively 

prunes step by step, preventing excessive pruning that might exceed the 

specified "speed_up" thresholds. Regarding sparsity learning, "reg" is set to 5e-

4, representing the coefficient of L1 sparse regularization. The GSConv layers 

in VoV-GSCSP module are excluded from pruning process The pruning script 

was developed based on the examples provided in the torch-pruning 

documentation. 

 

3.3.8 Performance Evaluation 

The metrics evaluated primarily focus on precision, recall, mAP@0.5, and 

mAP@0.5:0.95. Precision is used to assess false positives, while recall 

evaluates false negatives. mAP@0.5 represents the model's classification ability, 

determining whether it can identify die rotations or die cracks. mAP@0.5:0.95 

indicates how accurately the predicted bounding boxes can locate defects. To 

evaluate the extent of model lightweight after pruning, parameters, GLOPS, and 

FPS for 16 batch sizes was assessed. 

 

3.4 Work Breakdown Structure (WBS) 

 

0.0 Deep Learning-Based Machine Vision for Defect Detection 

 

1.0 Preliminary Planning 

1.1 Understanding project background 

1.2 Define problem statement 

1.3 Define project objective 
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1.4 Define research question 

1.5 Define project scope and limitations of study 

1.6 Define proposed solution 

 

2.0 Project Planning 

2.1 Literature Review 

2.1.1 Review deep learning 

2.1.2 Review semiconductor defect detection systems that 

use image processing techniques 

2.1.3 Review semiconductor defect detection systems that 

use classification techniques 

2.1.4 Review semiconductor defect detection systems that 

use object detection techniques 

2.1.5 Study on Object detection model 

 

2.2 Define Methodology and Workplan 

2.2.1 Proposed methodology 

2.2.2 Develop WBS 

2.2.3 Develop Gantt Chart 

2.2.4 Define development tools 

 

3.0 Model Developing 

3.1 Preparation phase 

3.1.1 Data pre-processing 

3.1.2 Data augmentation 

3.1.3 Data annotation 

 

3.2 Modelling 

3.2.1 Train YOLOv7-tiny object detection model 

 

3.3  Model Improvements 

3.3.1 Changing the model’s components 

3.3.2 Retrain model 
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3.4 Performance Evaluation 

3.4.1 Evaluate the model’s mAP 

3.4.2 Evaluate the loss graph and mAP graph 

3.4.3 Evaluate the model’s FPS 

 

3.5 Model pruning 

3.5.1 Prune model with network slimming 

3.5.2 Prune model with LAMP pruning 

 

3.5 Gantt Chart 

 

 

Figure 3.24: Gantt chart for Preliminary Planning and Project Planning from 

30/1/2023 to 26/3/2023 

 

 

Figure 3.25: Gantt chart for Project Planning from 27/3/2023 to 18/4/2023 
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Figure 3.26: Gantt chart for Model Developing from 19/4/2023 to 28/5/2023 

 

 

Figure 3.27: Gantt chart for Model Developing from 29/5/2023 to 9/7/2023 

 

 

Figure 3.28: Gantt chart for Model Developing from 10/7/2023 to 20/8/2023 

 

 

Figure 3.29: Gantt chart for Model Deployment from 21/8/2023 to 2/9/2023 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Comparison of OpenCV, YOLOv5, and SAM in Capturing ROI 

4.1.1 OpenCV 

 

 

Figure 4.1: Results of OpenCV in Capturing ROI 

 

In Figure 4.1, the output image generated by OpenCV demonstrates the 

challenges in accurately capturing ROI for the IC chip. OpenCV's performance 

in this task is imperfect, as it inadvertently includes a portion of the background 

(depicted in green), as illustrated by the red rectangular box in Figure 4.1. This 

issue arises from the fact that the IC's border lacks a distinct separation between 

the IC itself (appearing as a black colour) and the surrounding background 

(appearing as a green colour). Instead, there exists a gradual transition from 

black to green, making it difficult for OpenCV to precisely delineate this feature. 
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4.1.2 YOLOv5 Segmentation Model 

 

Table 4.1: Metrics of YOLOv5 Segmentation Model 

Model mAP@0.5(

BOX) 

mAP@0.5:0.95

(BOX) 

mAP@0.5(M

ASK) 

mAP@0.5:0.95(

MASK) 

YOLO

v5n-seg 

99.5 99.5 99.5 99.5 

YOLO

v5s-seg 

99.5 99.5 99.5 99.5 

 

Table 4.2: Computational Costs of YOLOv5 Segmentation Model 

Model FPS(b1) FPS(b16) Params GFLOPS 

YOLOv5n-

seg 

114.5 17.7 1879750 6.7 

YOLOv5s-

seg 

89.5 8.2 7398422 25.7 

 

 

Figure 4.2: Results of YOLOv5n-seg in Capturing ROI 
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Figure 4.3:  Results of YOLOv5s-seg in Capturing ROI 

 

 

Figure 4.4: Predicted Masks by YOLOv5n-seg and YOLOv5s-seg for Rotated 

IC Chip 

 

While both YOLOv5n-seg and YOLOv5s-seg demonstrate impressive 

mAP@0.5:0.95 scores of 99.5 for both bounding boxes and masks, as shown in 

Table 4.1, there are notable differences in computational efficiency. YOLOv5s-

seg incurs significantly higher computational costs and operates at a lower FPS 

rate compared to YOLOv5n-seg, as shown in Table 4.2. 
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However, it's important to acknowledge that both models have their 

limitations. They excel in accurately capturing and cropping ROI when the IC 

is in its default orientation, as exemplified in Figures 4.2 and 4.3. Yet, when the 

IC is rotated, both models exhibit a distinctive zig-zag pattern at the mask border, 

as illustrated in Figure 4.4. 

 

4.1.3 SAM 

 

Table 4.3: Metrics and Computational cost of YOLOv5n Object Detection 

Model 

Model mAP@0.5 mAP@0.5:0.95 FPS(b1) FPS(b16) Params GFLOPS 

YOLOv5n 99.5 99.1 120.26 35.8 1760518 4.1 

 

Table 4.4: FPS Performance of Various SAM Models 

Model FPS(b1) 

YOLOv5n + FastSAM-s 34 

YOLOv5n + FastSAM-x 17.1 

YOLOv5n + MobileSAM 29.2 

YOLOv5n + SAM_VIT_b 3.3 

YOLOv5n + SAM_VIT_l 2.2 
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Figure 4.5: Predicted Masks by Various SAM Models 

 

 

Figure 4.6: Predicted Masks by SAM_VIT_b and SAM_VIT_l for Rotated IC 

Chip 

 

To tackle this problem, the SAM model was utilized for segmentation. Prior to 

that, a YOLOv5n object detection model was trained to roughly locate the IC's 

position and send the bounding box coordinates to SAM as a prompt, aiming to 
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improve segmentation success rates. Table 4.3 displays the metrics and 

computational costs of the YOLOv5n object detection model. 

In Figure 4.5, various outputs from different SAM models are shown. 

Masks generated by FastSAM-s, FastSAM-x, and MobileSAM exhibited 

overflow, including parts of the background, whereas SAM_VIT_b and 

SAM_VIT_l did not face this issue. Figure 4.6 illustrates the mask outputs of 

SAM_VIT_b and SAM_VIT_l when the IC was rotated. Notably, there was no 

zig-zag pattern observed at the border of the predicted mask, in contrast to 

results obtained from the YOLOv5 segmentation model. Table 4.4 provides the 

FPS performance for different SAM models. 

 

4.1.4 Discussion 

Since real-time inference was not a requirement for this study, an ensemble 

model of YOLOv5n and SAM_VIT_b was chosen as the final model for image 

pre-processing. However, if real-time inference were necessary, YOLOv5n-seg 

would be the preferred choice, while YOLOv5s-seg would not be considered 

due to its similar results to YOLOv5n-seg but with slower FPS and higher 

computational cost. Additionally, FastSAM-s, FastSAM-x, and MobileSAM 

were excluded from consideration due to the overflow issues observed in the 

predicted masks. Furthermore, SAM_VIT_l would also not be considered as it 

exhibited similar performance to SAM_VIT_b but with lower FPS. The trade-

off between the SAM_VIT_b and YOLOv5n-seg is evident, as SAM_VIT_b 

operates at 3.3 FPS, whereas YOLOv5n-seg runs at a significantly higher speed 

of 120.26 FPS. 

 

4.2 Comparison of StyleGANv2, StyleGANv2, and Stable Diffusion 

 

Table 4.5： FID Scores Comparison: StyleGANv2 vs. StyleGANv3 

FID score Die Rotate Die Crack 

StyleGANv2 22.32 14.86 

StyleGANv3 81.43 76.62 
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Figure 4.7: Generated Die Rotation Images 

 

In table 4.5, the FID scores for StyleGANv2 and StyleGANv3 in generating die 

crack and die rotation defect images are presented. Notably, StyleGANv2 

outperformed StyleGANv3, achieving significantly lower FID scores of 22.32 

for die rotation and 14.86 for die crack. In Figure 4.7, images generated by 

StyleGANv2, StyleGANv3, and stable diffusion are showcased. In terms of 

image fidelity, it is evident that the images generated by StyleGANv2 closely 

resemble or are more similar to the real images. Conversely, the dies generated 

by StyleGANv3 do not maintain straight edges, exhibiting distortions. Although 

the dies generated by stable diffusion preserve straight edges, the surrounding 

areas of the die suffer from lower fidelity. Considering these observations, the 

final model selected for generating additional images is StyleGANv2. 

StyleGANv3's poor performance may be due to a few reasons, which might not 

have had enough training data, and some hyperparameters, like "r1_gamma", 

may not have been tuned correctly.
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4.3 Comparison of YOLOv7-tiny, Modified YOLOv7-tiny, and Pruned YOLOv7-tiny 

 

Table 4.6: Metrics and Computational Cost of Various YOLOv7-tiny Models 

Settings  NWD CoordConv Slim-neck 

by GSConv 

Pruning Precision Recall mAP@0.5 mAP@0.5:0.95 Params GFLOPS FPS(b16) 

 
 

Baseline 
    

97.4 87.0 92.1 69.8 6010302 13.0 19.5 

Setting-1 ✔ 
   

98.0 88.3 92.1 69.6 6010302 13.0 19.2 

Setting-2 ✔ 
 

✔ 
 

98.0 92.2 94.2 69.7 5746078 12.1 18.2 

Setting-3 ✔ 
 

✔ Slimming 96.7 89.9 93.2 69.5 3012905 8.0 19.8 

Setting-4 ✔ 
 

✔ LAMP 97.0 92.2 94.2 70.6 2078651 8.0 21.1 

Setting-5 ✔ ✔ 
  

95.8 92.2 94.2 70.9 6027198 13.1 17.8 

Setting-6 ✔ ✔ 
 

Slimming 94.8 89.4 93.6 71.9 2855550 8.7 19.4 

Setting-7 ✔ ✔ 
 

LAMP 95.7 93.8 95.1 72.3 2082812 8.6 20.6 
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4.3.1 Baseline 

 

 

Figure 4.8: Loss and mAP Graphs for Baseline Model 

 

In Figure 4.8, the graphical representations of box loss, objectness loss, 

classification loss, mAP@0.5, and mAP@0.5:0.95 are presented. Analysis of 

the mAP graph reveals that the model reaches convergence approximately at the 

200th epoch, leading to the decision to train the model for 300 epochs. 

 

4.3.2 Setting-1 Model 

 

 

Figure 4.9: mAP Graph for Setting-1 Model 

 

Table 4.6 provides insights into the impact of the NWD loss function (setting-1 

model) on model performance. Notably, this setting resulted in a 0.6% increase 

in precision and a 1.3% improvement in recall. However, it is noteworthy that 

there was no change in mAP@0.5, and mAP@0.5:0.95 experienced a 0.2% drop. 

Figure 4.9 illustrates the mAP graph for the setting-1 model, which 

demonstrates that this configuration achieved faster convergence compared to 

the baseline model. 
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4.3.3 Setting-2 Model 

For the setting-2 model, which incorporates NWD loss and a slim neck 

architecture, similar to the setting-1 model, there is a noteworthy improvement 

in precision, increasing by 0.6% compared to the baseline. The recall also 

exhibits substantial growth, with a remarkable 5.2% improvement. Furthermore, 

the mAP@0.5 metric experiences a 2.1% increase. However, there is a 0.1% 

decrease in mAP@0.5:0.95. Interestingly, despite these performance 

enhancements, the computational cost of Setting-2 is lower than the baseline 

model. Parameters have decreased by 4.4%, and GFLOPS have reduced by 

6.92%. However, the FPS is 1.3 lower, possibly due to the slower speed in 

depth-wise operations. 

 

4.3.4 Setting-3 Model 

 

 

Figure 4.10: Graph of Ordering of Batch Normalization Parameters for 

Setting-3 Model 

 

The setting-3 model is essentially the pruned version of the setting-2 model, 

achieved through network slimming. In Figure 4.9, the graph displays the 

ordering of batch normalization parameters after the end of sparsity learning. 

The x-axis represents the number of batch normalization parameters, and the y-

axis represents the corresponding values of these parameters. From the graph, it 

is evident that 67.0% of the batch normalization values are close to zero, 

representing a sparsity ratio in the model. Compared to the setting-2 model, 

there is a drop in precision by 1.3%, recall by 2.3%, mAP@0.5 by 1%, and 

mAP@0.5:0.95 by 0.2%. However, these trade-offs are accompanied by 
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significantly lower computational costs, with 47.5% fewer parameters and 33.8% 

less GLOPS. Additionally, the FPS has increased by 1.6. 

 

4.3.5 Setting-4 Model 

The setting-4 model is a pruned version of the setting-2 model, utilizing LAMP 

pruning. Notably, the pruning results in setting-4 model are significantly better 

compared to setting-3 model. In comparison to the setting-2 model, there is a 1% 

drop in precision, while recall and mAP@0.5 remain unchanged. Moreover, 

mAP@0.5:0.95 increases by 0.9%. Furthermore, the model demonstrates 

substantial computational improvements, with GFLOPS reduced by 33.8%, 

which follows a similar trend as observed in the setting-3 model. Additionally, 

it boasts a significantly lower parameter count, with 63.82% fewer parameters 

compared to the setting-2 model, and the FPS has increased by 2.9. 

 

4.3.6 Setting-5 Model 

The setting-5 model, incorporating the NWD loss function and CoordConv neck, 

exhibits notable differences when compared to the baseline model. Specifically, 

there is a significant drop in precision, decreasing by 1.6%. Conversely, recall, 

mAP@0.5, and mAP@0.5:0.95 experience improvements, increasing by 5.2%, 

2.1%, and 0.2%, respectively. However, it's worth noting that these 

enhancements come at slightly higher parameters and GLOPS, which are 0.28% 

and 0.77% higher, respectively. 

 

4.3.7 Setting-6 Model 

 

 

Figure 4.11: Graph of Ordering of Batch Normalization Parameters for 

Setting-6 Model 
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Setting-6 is the result of implementing network slimming on Setting-5. 

Comparatively, when measured against the Setting-5 model, Setting-6 

demonstrates notable trade-offs. Specifically, there's a marked decline in 

precision by 1%, recall by 2.8%, and mAP@0.5 by 0.6%. Conversely, 

mAP@0.5:0.95 exhibits an encouraging 1% increase. Efficiency-wise, Setting-

6 model delivers significant benefits, despite these performance shifts. The 

model parameters see a substantial reduction of 52.62%, accompanied by a 

GLOPS reduction of 36.49%. Furthermore, Setting-6 experiences a notable 

boost in FPS, increasing by 1.6. From Figure 4.11, it's evident that the sparsity 

ratio of setting-6 model is 79.0%, which represents a significant increase of 12% 

compared to setting-3. Notably, this high sparsity ratio means that setting-6 

model can focus on pruning the majority of the batch normalization parameters, 

with 21% of these parameters remaining in focus. This indicates that setting-6 

model has substantial potential for reducing computational costs. 

 

4.3.8 Setting-7 Model 

With the implementation of LAMP pruning applied to the settings-5 model, 

resulting in the creation of the setting-7 model, several notable performance and 

efficiency changes are observed when compared to setting-5. There is a slight 

drop in precision by 0.1%, which is accompanied by significant improvements 

in recall, mAP@0.5, and mAP@0.5:0.95, increasing by 1.6%, 0.9%, and 1.4%, 

respectively. However, the most substantial gains come in terms of 

computational efficiency. Setting-6 boasts a remarkable reduction of 65.44% in 

model parameters and a considerable decrease of 34.35% in GLOPs. 

Additionally, the model experiences enhanced speed, with an impressive 2.8 

FPS increase. 

 

4.3.9 Discussion 

From Table 4.6, it can be deduced that LAMP pruning outperforms network 

slimming both in terms of computational cost and metrics. Some models, such 

as the setting-7 model, exhibit improved performance in term of metrics after 

pruning. While LAMP pruning achieves a greater reduction in parameters and 

an increased FPS compared to network slimming, based on the observed 
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sparsity ratio, it's noteworthy that network slimming still holds significant 

potential for further decreasing computational costs. This potential, however, 

was not fully demonstrated in this study due to the "speed_up" rate being set to 

1.5 for the sake of fair comparison, as explained in Section 3.3.7.4. Additionally, 

enhancing network performance by modifying its components presents a 

challenge in this study. Many modules that focus on improving the detection of 

small objects may trade off performance for larger objects. The datasets used in 

this study contain both small and large objects, and making such modifications 

typically results in inferior performance compared to the baseline. 

Considering the computational cost, mAP@0.5, and mAP@0.5:0.95, 

Setting-7 emerges as the top-performing model. Compared to the baseline, 

Setting-7 showcases notable improvements in Recall, mAP@0.5, and 

mAP@0.5:0.95, with enhancements of 6.8%, 3%, and 2.5%, respectively. 

However, there is a slight reduction in precision by 1.7%. Setting-1 and Setting-

2 exhibit the highest precision, with an increase of 0.6%. Setting-4 stands out 

for having the fewest parameters, the lowest GFLOPS, and the highest FPS. It 

achieves a substantial reduction in GFLOPS by 65.42% and a 38.46% decrease 

in parameters while slightly increasing FPS by 1.6. 
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CHAPTER 5 

 

5 CONCLUSION AND RECOMMENDATIONS 

In conclusion, this study introduced a comprehensive deep learning visual-based 

inspection approach based on object detection techniques. The preprocessing 

stage employs an ensemble model of YOLOv5n and SAM_VIT_b, followed by 

object detection using a modified YOLOv7-tiny model (Setting-7). This 

approach effectively detects die rotation and die crack defects, achieving 

impressive results with a 95.1% of mAP@0.5 and 72.3% of mAP@0.5:0.95, 

representing a 3% and 2.5% improvement over the original YOLOv7-tiny 

model. Furthermore, Setting-7 significantly reduces parameters by 65.34% and 

GLOPS by 33.84% compared to the original YOLOv7-tiny network. 

By automating defect detection in integrated circuits, this approach 

minimizes the need for human intervention, allowing human resources to be 

allocated to more critical tasks. This enhancement ultimately enhances 

operational efficiency within the industry. In this study, all objectives were 

successfully achieved, and research questions were addressed. StyleGANv2 was 

chosen as the optimal solution for addressing the issue of insufficient dataset, 

achieving an FID score of 22.32 for die rotation and 14.86 for die crack. 

SAM_VIT_b emerged as the preferred technique for capturing ROI, while 

NWD loss function and Coordconv neck contributed to the enhancement of the 

YOLOv7-tiny model. Additionally, LAMP pruning effectively reduced the 

computational cost of YOLOv7-tiny, completing the toolbox for this innovative 

visual inspection system. 

 

Several future enhancements are recommended: 

• Incorporating Fine-Tuning with Multimodal Techniques:  

Consider integrating fine-tuning methods that combine stable diffusion 

with textual inversion. This can enable the generation of die rotations 

and die cracks based on user-specified degrees and locations, adding 

flexibility and customization to the generated image. 

 

• Exploring Pruning Techniques for the Segmentation Model: 
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Investigate pruning techniques for segmentation model, particularly for 

the SAM model used in segmentation.  

 

• Incorporating a Module for Die Rotation Angle Determination: 

Develop and implement a module that can determine and display the die 

rotation angles detected by the YOLOv7-tiny model. This would provide 

valuable information for inspection and analysis. 

 

• Application of Knowledge Distillation: 

Explore the application of knowledge distillation techniques. This 

approach has the potential to enhance the mAP of the pruned model, 

contributing to improved defect detection performance. 
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Appendix D: Comparison of Channel Graphs between Setting-5 and 

Setting-7 Models 
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Appendix E: Configuration File for StyleGANv2 
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Appendix F: Configuration File for StyleGANv3 
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Appendix G: Configuration File for Stable Diffusion Fine-Tune with LoRA 
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Appendix H: Model Configuration File for Original YOLOv7-tiny Neck 
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Appendix I: Model Configuration File for Modified Neck with CoordConv 
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Appendix J:  Model Configuration File for Modified Neck with 

VoVGSCSP and GSConvs 
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Appendix K: CoordConv Implementation in YOLOv7-tiny Neck: Code 

Snippet 
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Appendix L: GSConv, GSConvs, and VoV-GSCSP Implementation in 

YOLOv7-tiny Neck: Code Snippet 
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Appendix M: Normalized Wasserstein Loss Function Implementation in 

YOLOv7-tiny: Code Snippet 

 


