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ABSTRACT 

 
Due to the increased manufacturing of wireless earbuds, the semiconductor 

industry's requirement for PCBs has increased drastically. As the manufacturing 

of PCBs grows, there is a need to improve the quality control process of the 

PCB, especially in the defect detection phase, by filtering out any defective 

PCBs and stopping them from being used in the manufacturing of wireless 

earbuds. This study evaluated three deep learning models that could perform 

defect detection for epoxy-related defects on the PCB of wireless earbuds with 

at least 90% accuracy. Transfer learning was applied to three pre-trained image 

classification deep learning models: ResNet50, Xception, and InceptionV3. The 

models were trained on a real-world PCB dataset provided by ASPL Malaysia 

after preprocessing the dataset images using OpenCV. ‘Epoxy Overflow on Die’  

and ‘Epoxy Overflow on LED’ defects were detected by ResNet50 with an 

accuracy of 97.3% and 94.0% respectively, while Xception achieved an 

accuracy of 98.0% in detecting ‘Epoxy on Die’ and ‘FM on Die’ on the testing 

dataset.  
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CHAPTER 1 

1 INTRODUCTION 

 

1.1 Project Background 

The increasing demand for PCB (Printed-Circuit Board) is primarily driven by 

the rapid growth of consumer electronics such as smartphones, tablets, and 

wireless earbuds in recent years. PCBs have played a vital role in enhancing the 

functionality and performance of wireless earbuds. With the increasing demand 

for wireless earbuds, manufacturers in the semiconductor industry are 

experiencing mounting pressure to enhance their quality control processes, 

particularly during the defect detection phase on PCBs.  

Among the various types of defects found on PCBs, epoxy-related 

defects are quite common. Since PCB manufacturing processes are automated, 

with machine robots responsible for applying epoxy, issues such as excess 

epoxy or accidental spills on unintended spots can occur during the epoxy 

application on the PCB.  

Currently, there are several methods for detecting epoxy-related 

defects in the semiconductor industry. Some of the most widely used methods 

are: Firstly, visual inspections can be used to detect epoxy-related defects in 

chips. This can involve automated visual inspection (AVI) systems to inspect 

the PCB for any irregularities or anomalies in the epoxy layer (Haddad et al., 

2018a). Secondly, using electron microscopy techniques makes it possible to 

examine semiconductor materials with extremely high precision, enabling the 

detection of defects at a microscopic level (Nakagaki, Honda and Nakamae, 

2009). Thirdly, optical coherence tomography (OCT). OCT is an imaging 

technique that can be used to analyse the internal structure of the PCB and detect 

any epoxy-related defects. It measures the time delay and intensity of reflected 

light, providing high-resolution images of the chip (Serrels, Renner and Reid, 

2010).  

Besides all the methods mentioned above, deep learning is also one of 

the most commonly used techniques for detecting epoxy-related defects on 

PCBs (Devika and George, 2019a). Deep learning has proven highly effective 
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across numerous domains and has achieved significant breakthroughs in various 

fields over the past decade.  

This study aims to propose deep learning models that can achieve high 

accuracy in epoxy-related defect detection on the PCB of wireless earbuds by 

utilising transfer learning on renowned deep learning image classification 

models such as ResNet50, Xception, and InceptionV3. This study involves 

training these deep learning models on three different types of defects, resulting 

in three separate trained models for each defect. By the end of this study, the 

performance of these deep learning models will be evaluated and compared to 

select the best-performing model for each defect. 

 

1.2 Problem Statement 

Many existing methods can detect epoxy-related defects on PCBs in the 

semiconductor industry. However, there are limitations in the existing methods, 

which become a big challenge for big names in the industry to tackle the 

problems. After extensive discussions with Allied Solutions (ASPL) Malaysia 

Sdn Bhd and a thorough review of similar works conducted within the industry, 

this study has identified three specific problem statements:  

 

1. Low Accuracy of Epoxy-Related Defect Recognition using existing AI 

Model  

As mentioned by ASPL, the existing AI models within the semiconductor 

industry lack reliability in detecting epoxy-related defects on PCBs. The 

accuracy of detecting epoxy-related defects is low with the current AI models 

on the market.  

 

2. Epoxy-Related Defects are Too Small in Size for Human Eyes to Spot  

Epoxy-related defects on PCBs are too tiny for human eyes to detect, even with 

a microscope (Bellini et al., 2021a). The size of the defects, such as epoxy 

overflow and epoxy spill on the PCB, is usually in micrometres, making it 

difficult for humans to discern the difference in size accurately.  
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3. Time Cost is High 

Existing methods for detecting epoxy-related defects in PCBs in the 

semiconductor industry can be time-consuming (Huang and Pan, 2015). Some 

methods, such as electrical testing and thermal imaging, require collecting and 

processing large amounts of data. This process can be particularly time-

consuming, especially when the data needs to be analysed in real-time. 

 

1.3 Aim and Objectives 

This study aims to propose deep learning models that can detect epoxy-related 

defects of the PCB of wireless earbuds with the transfer learning approach.  

 

Objective 1  

To collect an image dataset of the PCB of wireless earbuds and pre-process them 

for deep learning model training. 

 

Objective 2 

To utilise transfer learning on pre-trained image classification deep learning 

models, i.e., ResNet50, InceptionV3, and Xception. 

 

Objective 3 

To evaluate the performance of the deep learning models trained on the 

collected image dataset and select the best-performing model for each epoxy-

related defect type on the PCB with a minimum accuracy rate of 90%. 
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1.4 Proposed Solution 

 

 
Figure 1.4.1: Proposed Solution Flowchart 

 

Figure 1.4.1 shows the proposed solution flowchart of this study. The flowchart 

illustrates the phases necessary to fulfil the aim and objectives of this study.  

 

1.5 Scope and Limitation of the Study 

This study proposes three deep learning models using transfer learning that can 

achieve at least 90% accuracy in detecting epoxy-related defects on the PCB of 

wireless earbuds using a transfer learning approach. This study will focus on 

three distinct epoxy-related defect types found on PCBs. 

For defect type 1, "Epoxy Overflow on Die," and defect type 2, "Epoxy 

Overflow on LED," binary classification will be performed to classify PCB 

images as either ‘Good’ or ‘Defect’. 

For defect type 3, multi-class classification will be performed to 

classify the two similar defects: 'Epoxy on Die' and 'Foreign Material (FM) on 

Die,' resulting in three output classes of 'Good,' 'FM,' or 'Epoxy.' This study will 

train ResNet50, Xception, and InceptionV3 on each defect type and select the 

best-performing model. By the end of this study, one deep learning model will 

be proposed for each defect type, resulting in a total of three models. 
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Figure 1.5.1: Classification Task with Defect Types 

 

Table 1.5.1: Rejection Criteria for the Defects 

Defect Type Component Rejection Criteria 

1. Epoxy Overflow on Die Die • The excess epoxy overflows from 

edge of the component for more than 

60 µm.  

2. Epoxy Oveflow on LED  LED 

3. Epoxy on Die + FM on 

Die 

Die • The FM or epoxy on top of the 

component has more than 35 µm in 

length from the edge of the 

component. 

• The FM or epoxy has an 

accumulated area of 960 µm2. 

 

The research tools used in this study are Jupyter Notebook and Spyder 

as the IDE, machine learning libraries such as Keras, TensorFlow, and Scikit-

learn, image preprocessing libraries like OpenCV, and visualisation libraries 

including Seaborn and Matplotlib. 

This study has some limitations. Firstly, it did not consider external 

factors that could have affected the detection of the PCB. Secondly, it did not 

address the practical implementation of the deep learning model in a production 

environment. Acknowledging these limitations, the study emphasises the need 
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for further research to improve the application of transfer learning in real-time 

defect detection on PCBs. 
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CHAPTER 2 

1 LITERATURE REVIEW 

 

2.1 Overview 

Over the last decade, the semiconductor industry has experienced rapid growth 

due to the increased demand for more efficient and powerful electronic devices. 

However, as the manufacturing process of PCBs becomes more complex, 

detecting defects during production has become increasingly challenging. This 

poses a major challenge for the industry, leading to costly recalls and reduced 

product quality. To address this, the industry has employed several methods, 

including deep learning and machine learning techniques, which have become 

increasingly popular. This review of existing literature aims to thoroughly 

examine the latest advancements in machine learning and deep learning 

techniques for identifying defects in PCBs. This review will focus on the various 

techniques used, their effectiveness, and any constraints or limitations they may 

have. Furthermore, the review aims to pinpoint areas lacking the existing 

research and propose potential avenues for future studies. In addition, this paper 

will propose three deep learning models for detecting epoxy-related defects in 

the PCB of wireless earbuds using transfer learning.  

 

2.2 Similar Works 

Bellini et al. (2021) proposed a solution to detect defects in power 

semiconductors using an active deep learning method. The proposed solution 

can easily identify broken parts in the PCBs without requiring extensive manual 

image labelling, significantly reducing annotation effort. The patterns of the 

broken parts found by the computer are then used to create a list of different 

types of defects, facilitating further research into the underlying causes and 

prevention strategies. The key contribution of this work is the reduction of 

labelling costs through minimal image annotation effort. The trained neural 

network also demonstrates generalizability to new types of defects not present 

in the training sets. Additionally, the proposed solution is suitable for small 

datasets, achieving a precision of 0.99 with only 1,737 training examples. 
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 Devika and George (2019b) introduced a deep learning model that 

employs convolutional neural networks (CNNs) to identify wafer defect 

patterns. CNNs use convolutional and pooling layers to extract features and 

fully-connected layers to classify them. CNNs exhibit robustness against 

random noise and efficiently detect single and multiple defects. Thus, the 

proposed CNN model can classify various defect patterns and outperform other 

models in terms of overall performance. The proposed CNN model can detect 

four types of defect patterns: circle, cluster, scratch, spot, and their combinations. 

The results of the proposed model show a 100% accuracy rate in detecting 

patterns of a single defect and an accuracy of 84% in detecting patterns of mixed 

defects. 

 Haddad et al. (2018b) presented a new method for detecting and 

classifying defectusing multiple features and sparse-based techniques. The 

proposed approach used the stacking concept to improve the accuracy of 

classification. Then, the stacking-based classifier was improved with a 

downsampling technique to handle imbalanced data. The approach also 

included a new pruning technique to remove bad base learners. The challenges 

of the approach included a shortage of defective units, similarities among 

different defect classes, wide variations within the same defect class, and a data 

imbalance. According to the experiment's results on actual data from Intel, the 

suggested method performed better than previous approaches and achieved an 

overall classification accuracy of 98.5%, which was very high. 

 Chen et al. (2020) introduced a new approach for detecting structural 

defects in wafers using convolutional neural networks (CNN) that can achieve 

high detection accuracy. They designed a set of imaging acquisition systems to 

capture wafer images, as there were not enough images available in open 

databases. To prepare the images, digital image preprocessing technology was 

used to divide each wafer image into several smaller images. The proposed 

model, WDD-Net, used depthwise separable convolutions to reduce the number 

of computations and parameters. The WDD-Net also incorporated multiple 1x1 

standard convolutions to enhance network depth. Finally, the WDD-Net was 

designed to work well for edge computing, meaning that it could directly 

perform data collection and defect detection on local computing devices. WDD-
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Net is five times faster in detection speed compared to VGG-16 and MobileNet-

v2. Besides, it achieved more than 99% detection accuracy. 

 Huang et al. (2022) proposed a small object detection method called 

SO-YOLO. The research utilised CspDarknet53 as the main architecture of the 

network and improved the entire PANet through a novel feature fusion approach. 

This approach involved selecting suitable layers to fuse, thereby expanding the 

receptive field. The researchers also used the k-means++ method for anchor 

estimation as a priori. Lastly, they employed the mosaic data augmentation 

technique for dataset preprocessing. SO-YOLO achieved a mean average 

precision (mAP) score of 0.86 and an F1 score of 0.84. 

 Schlosser et al. (2019) proposed a novel deep neural network-based 

hybrid approach. The SH-CNN model proposed enables the identification and 

categorisation of very small structures within high-resolution images. The SH-

CNN method combines traditional image processing techniques and artificial 

neural networks to recognise very small structures within images more 

effectively. SH-CNN achieved a mean accuracy of about 0.921 with a 0x 

augmentation level. 

 Tello et al. (2018)  introduced a new method that used deep machine 

learning to detect and categorise different types of defects in semiconductor 

manufacturing. The method involved several steps, including noise reduction, 

differentiation between wafers with single or mixed defect patterns, 

classification of single defect patterns using a shallow-structured randomised 

general regression network, and identification of mixed defect patterns using a 

deep-structured convolutional network. The model was evaluated on real data 

and achieved an accuracy of 86.17% for detecting both single-defect and mixed-

defect patterns. 

  Zhang et al. (2018) proposed a CNN-based model that acted as the 

configuration for the defect detection system on PCBs. The proposed solution 

used convolutional layers and a dense layer to obtain parameters for feature 

extraction and classification through a training process, from original images to 

detection results. The approach overcomes the complexity of traditional vision 

methods with multiple image processing steps. Additionally, it addressed a 
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common challenge in the semiconductor industry: limited dataset availability. 

The proposed model achieved an mAP of 0.9959 in defect detection. 

 Raihan and Ce (2017) proposed a method for detecting defects in PCBs 

using a computer vision library called OpenCV. This method involves analysing 

images of PCBs using techniques called image subtraction and blob detection. 

The method is useful for identifying various visual defects in PCBs, especially 

complex patterns. By analysing images and highlighting differences, defective 

parts of PCBs can be quickly identified. However, the accuracy of detection 

depends on the resolution of the images, meaning low-resolution images have a 

lower accuracy rate of 40% with a faster detection time of 0.856 seconds, 

whereas high-resolution images have a higher accuracy rate of 80% with a 

slower detection time of 2.68 seconds. 

 Kim et al. (2021) proposed a PCB defect inspection system using a 

skip-connected convolutional autoencoder. The dataset of PCB images 

underwent preprocessing to remove unused areas and improve image quality 

through commonly used image enhancement techniques. To address the 

problem of an imbalanced training dataset, the datasets were also augmented. 

By using anaugmented datasets, the autoencoder model was effectively trained 

to differentiate non-defective images from potentially defective ones. However, 

the proposed method did not perform testing on actual PCB datasets, and the 

detection rate is low for untrained defect datasets. The skip-connected 

convolutional autoencoder achieved 0.9808 accuracy with its defect detection 

performance.  

 Xin, Chen and Wang (2021) proposed a new algorithm that improves 

the YOLOV4 method for detecting defects in printed circuit boards (PCBs). 

They used a dataset of PCB defect images provided by the Intelligent Robot 

Laboratory of Peking University, which had various defects, making the 

algorithm more reliable. The authors analysed the feature distribution of the 

CSPDarkNet53 structure layer and the size distribution of the detection target 

defects in the dataset. They improved the data preprocessing and input stage by 

automatically dividing the image based on the average size of the detection 

image's bounding box and increasing the probability of an anchor containing a 
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detection target. The proposed algorithm achieved a high mean average 

precision (mAP) of 96.88% in detecting PCB defects. 

 Zeng et al. (2022) introduced a new method for detecting defects in 

PCBs called the IPDD framework, and within that framework, they proposed a 

new feature fusion method called the ABFPN. The ABFPN method uses a 

combination of atrous convolution operators and skips connections to consider 

context information and merge features from different levels. Additionally, a 

balanced module is used to improve features across different levels. The IPDD 

framework is particularly useful for detecting small defects on the surface of 

PCBs. The authors demonstrated that their framework achieved an average 

precision of 98.8% over intersection over union (IoU) at 0.5, outperforming 

other IPDD algorithms. 

 Ding et al. (2019) proposed a new model called TDD-Net to detect 

small defects in PCBs using deep learning algorithms and feature pyramid 

ConvNets. The model achieved the highest mAP of 98.90% compared to other 

models presented in the paper.  

 Khalilian et al. (2020) proposed a new method for detecting and 

locating defects in printed circuit boards (PCBs) using denoising convolutional 

autoencoders. The model used a neural network that receives a noisy input 

image and attempts to clean it up to produce a clear output image. By training 

the model on clean and noisy images, it learned to identify defects and locate 

them accurately. The results showed that the proposed method achieved a high 

accuracy of 97.5%, which is better than other existing defect detection methods.  

 Lu et al. (2018) proposed a new PCB defect inspection (PCBDD) 

framework to overcome the limitations of the traditional reference comparison 

approach. The proposed framework used LBP and HOG features to train two 

SVM models and combined them using Bayes feature fusion. The accuracy of 

the proposed method was compared to that of a single feature method and found 

to be much better at 89.22% while only slightly reducing the speed, indicating 

that it is a highly effective approach for detecting defects on PCB surfaces. 

 Adibhatla et al. (2020) presented a new method to detect defects in 

PCBs using a deep learning algorithm-based YOLO approach. The model 

consisted of 24 convolutional layers and two fully-connected layers. They tested 
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the model on PCBs and achieved a high defect detection accuracy of 98.79% 

when using a batch size of 32. The study shows that a YOLO model with deep 

convolutional neural networks (CNNs) can achieve excellent results in detecting 

defects in PCBs.  

The research papers mentioned are summarised in Table 2.2.1.   
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Table 2.2.1: Similar Works Summary 
No Author Title Technique used Hyperparameter Strength/Limitations Result Future Work 

1.  Bellini et al. (2021) An Active Deep Learning Method for the 

Detection of Defects in Power 

Semiconductors 

- Image Annotation 

• Active learning  

 

 - Model generalise well to new kinds 

of defects, especially large size 

defects 

- Greatly reduce image annotation 

time 

- Novel morphological features not 

present in training set are 

misclassified as defects 

- 5th Learning cycle (1737 

examples) 

• Precision: 0.99 

• Recall: 0.79 

- Further reduce image 

annotation time 

- Increase training set size 

for rare defects 

2.  Devika and George 

(2019b) 

Convolutional Neural Network for 

Semiconductor Wafer Defect Detection 

- Classification 

• CNN (8 convolutional layers) 

- Adaptive moment estimation 

(Adam) 

• Learning rate: 0.0004 

• Batch size: 32 

• Epoch: 100 

- Image preprocessing not needed 

- Able to detect defects over random 

defects 

 

- 100% efficiency in 

single defect pattern 

detection 

- 84% accuracy in mixed 

defect pattern detection 

 

3.  Haddad et al. (2018b) Multifeature, Sparse-Based Approach for 

Defects Detection and Classification in 

Semiconductor Units 

- Feature Extraction 

• Bag-of-visual-words (BoW) 

model 

- Sparse coding 

- Classification 

• Stacked-based classfier 

- Adaptive data sampling technique 

• Adaptive downsampling 

• Syntethic oversampling 

 - Background feature subtraction 

which enhances the classification 

accuracy when datasets are small 

- Ensemble pruning and metadata 

oversampling effectively solve data 

imbalance and improve metaclassifier 

- Average classification 

accuracy:  

• 30% training 

data: 95.88% 

• 80% training 

data:: 98.5% 

 

4.  Chen et al. (2020) A Light-Weighted CNN Model for Wafer 

Structural Defect Detection 

- Data preparation  

• Machine vision system 

- Data preprocessing 

• OpenCV Findcontours 

- Classification  

• CNN-based WDD-Net  (3*3 

standard convolution and 3 

depthwise seperable 

convolution) 

- Adaptive moment estimation 

(Adam) 

• Learning rate: 0.001 

• Batch size: 32 

• Epochs: 50 

- High detection speed and small 

model size which makes WDD-Net is 

applicable in practical applications 

- Detection accuracy is slightly lower 

than VGG-16 and MobileNet-v2  

- Overall detection 

accuracy and detection 

speed (FPS):  

• WDD-

Net_28*28: 

99.70%, 8719.3 

• WDD-

Net_224*224: 

99.44%, 105.6 

- Establishing wafer defect 

detection dataset  

- Research in unsupervised 

learning  
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5.  Huang et al. (2022) Small object detection method with shallow 

feature fusion network for chip surface 

defect detection 

- Feature extraction 

• Backbone network such as 

VGG Net, ResNet and 

Inception Net 

- Feature fusion 

• Modified fusion network in 

SO-YOLO (PANet) 

- Clustering 

• K-means ++  

- Data preprocessing 

• Mosaic data augmentation 

method 

• Learning rate: 0.001 

• Attenuation 

coefficient: 0.0005 

• Iteration: 10000 times 

- Has less number of parameters and 

higher classification and detection 

accuracy compared to YOLOv4 

- Detection accuracy 

• F1 score: 0.84 

• mAP: 0.86 

• BFLOPS: 

53.624 

- Higher detection accuracy 

and reduced model 

complexity 

6.  Schlosser et al. (2019) A Novel Visual Fault Detection and 

Classification System for Semiconductor 

Manufacturing Using Stacked Hybrid 

Convolutional Neural Networks 

- Localisation of ROI  

• CNN 

- Classification  

• CNN 

 - enables the recognition of small 

structures with higher efficiency and 

accuracy at the pixel level. 

 - Enhance the proposed 

system in terms of audio 

and heat signatures 

- Has to deploy under 

production test conditions 

7.  Tello et al. (2018) Deep-Structured Machine Learning Model 

for the Recognition of Mixed-Defect 

Patterns in Semiconductor Fabrication 

Processes 

- Classification 

• RGRN – single-defect pattern 

• DSCN – mixed-defect pattern 

- Image preprocessing 

• Spatial filter 

- Feature extraction 

• Splitter  

• Fold: 10 

• Learning rate: 0.001 

- Improves the identification of 

spatial relationships in mixed-defect 

patterns 

- Can categorize patterns with a 

single defect as well as those with 

multiple defects 

• Overall 

accuracy: 

86.17% 

- Improve the proposed 

method for real-time 

identification 

- The proposed method 

should be tested with large 

volume real datasets to be 

able to handle the increase 

in computational 

complexity  

8.  Zhang et al. (2018) Improved bare PCB defect detection 

approach based on deep feature learning 

- Feature extraction 

• VGG16 

- Deep feature learning 

• Data augmentation 

• Parameters transfer learning 

- Localisation 

• Sliding window approach 

- Classification 

- Stochastic gradient descent 

(SGD) 

• Momentum: 0.9 

• Learning rate: 0.0001 

Epochs: 100 

- During the training process, the 

values of the feature extractor and 

classifier parameters are obtained. 

- The learned deep feature possesses 

the capability to differentiate between 

defects effectively. 

- The system's high complexity 

enables its applicability in a wider 

range of situations. 

• mAP: 0.9959 - Improve the top layers of 

the model  

- Focus on selecting better 

feature selection algorithms  

- Focus on network 

architecture 
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• Combine SVM with LBP and 

HOG feature 

9.  Raihan and Ce (2017) PCB defect detection USING OPENCV 

with image subtraction method 

- Image processing  

• OpenCV 

 - Short detection time but low 

accuracy for low resolution PCB 

images 

- Long detection time but high 

accuracy for high resolution PCB 

images 

 

- High resolution image 

• Accuracy: 40% 

• Time: 0.856 

seconds 

- Low resolution image 

• Accuracy: 80% 

• Time: 2.68 

seconds 

- Improve blob detection 

and morphology algorithm 

- Apply hough-transform 

process and image 

segmentation 

- Research any method that 

can optimise the system 

10.  Kim et al. (2021) Printed Circuit Board Defect Detection 

Using Deep Learning via A Skip-Connected 

Convolutional Autoencoder 

- Image preprocessing 

• Histogram equalisation 

• Median filtering method 

- Data augmentation 

• Geometric transformation 

• Noise injection 

- Classification 

• Skip-Connected 

Convolutional Autoencoder 

 

• Batch size: 128 

• Optimiser: 

o Weight 

decay: 5 x 

104 

o Momentum: 

0.9 

• Learning rate: 

o 0.1 – 60 

epochs 

o 0.02 – 120 

epochs 

o 0.004 – 160 

epochs 

o 0.0008 – 300 

epochs 

- The proposed method is tested 

using artificial dataset   

- The proposed method does not 

generalise well to new unseen data 

• Accuracy: 

0.9808 

• TPR: 09773 

• TNR: 0.9843 

• Precision: 

0.9830 

• F1: 0.9801 

• BCR: 0.9806 

• SSIM: 0.9749 

- Test the models on real 

dataset 

11.  Xin, Chen and Wang 

(2021) 

PCB Electronic Component Defect 

Detection Method based on Improved 

YOLOv4 Algorithm 

- Improved YOLO V4 structure 

• Backbone (Feature 

extraction) 

o 5 CSP modules 

(CSPDarkNet53) 

• Neck (Feature fusion)  

o SPP module 

o FPN+PAN module 

- Object detection  

• Batch size: 64 

• Learning rate: 0.001 

- Suitable for small object detection 

- Faster detection speed and accuracy 

compared to YOLOv4 method 

 

• Average 

detection 

accuracy: 

96.88% 

- Provide possibilities in 

developing object detection 

application 
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• K-means clustering 

12.  Zeng et al. (2022) A Small-Sized Object Detection Oriented 

Multi-Scale Feature Fusion Approach With 

Application to Defect Detection 

- Feature extraction 

• Backbone 

o ResNeXt structure 

- Feature fusion 

• Neck  

o Skip-ASPP module 

o Balanced module 

- Data augmentation 

• Mixup method 

• AutoAugmetImage method 

- Data visualisation 

• TDD-Net 

- Same for all 3 datasets 

• Batch size: 2 

• Learning rate decay 

factor: 0.1 

• Optimiser: 

SGD+Momentum 

• Regularisation 

method: L2 weight 

decay 

- Different for each datasets 

- MS COCO2017  

• Iterations: 709716 

• Initial learning rate: 

0.0025 

• Learning rate decay 

iterations: [473144, 

650573] 

- VOC07+12 

• Iterations: 270000 

• Initial learning rate: 

0.02 

• Learning rate decay 

iterations: [180000, 

240000] 

- VisDrone2019 

• Iterations: 120000 

• Initial learning rate: 

0.02 

• Learning rate decay 

iterations: [90000, 

110000] 

- The proposed IPDD framework 

performs better than existing methods 

in terms of localisation and 

classification in small object 

detection.  

 

- MS COCO2017 

• Average 

Precision: 

38.6% 

- VOC07+12 

• mAP: 85.59% 

- VisDrone2019 

• Average 

Precision: 

17.1% 

- Utilize the suggested 

IPDD framework in other 

detection tasks involving 

small objects. 

- Improve positioning 

performance of IPDD 

framework with better 

localisation method 

- Tune hyperparameters of 

IPDD framework 

13.  Ding et al. (2019) TDD-net: a tiny defect detection network for 

printed circuit boards 

- Object detection 

• Faster R-CNN 

- Data augmentation 

 - TDD-Net is strong which it can be 

applied to other fields  

• mAP over tIoU 

of 0.5: 98.90% 

- Investigating zero-shot 

learning techniques because 
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• Gaussian noise 

• Change light 

• Rotate image 

• Flipping 

• Random chop 

• Shift 

- Feature extraction 

• ResNet-101 

- Feature fusion 

• Feature pyramid architecture 

- Reasonable anchors 

• K-mean clustering 

- Improve quality of ROI 

• Online hard example mining 

- Combines structurally strong 

features with semantically strong 

features 

- Structurally strong feateres are 

combined with semantically strong 

features 

of the limited size of the 

training dataset. 

- Optimise the network  

- Optimise the post-process 

methods   

- Utilize TDD-Net to 

different kinds of PCB 

defects 

14.  Khalilian et al. (2020) PCB Defect Detection Using Denoising 

Convolutional Autoencoders 

- Proposed network structure 

• Encoder (3 layers) 

o Convolution layer 

o Batch normalisation 

o Activation layer 

o Max pooling 

• Decoder (3 layers) 

o Convulsion layers 

o Batch normalisation 

o Activation layer 

o Up sampling 

• Batch size: 2 

• Epochs: 4 & 17 

- Can detect defects and recover them 

- Can be applied to other products 

- Best result when 

threshold = 100 

• Recall: 0.97 

• Precision: 0.983 

• Selectivity: 

0.983 

• Accuracy: 0.975 

• F-score: 0.976 

- Improve subtracting 

algorithm to locate defects 

more accurately 

15.  Lu et al. (2018) Defect detection of PCB based on Bayes 

feature fusion 

- Image preprocessing 

• Image segmentation 

technology 

• Median filter and mean filter 

- Features extraction 

• LBP 

• HOG 

- Feature fusion 

• Bayes fusion 

- Classification 

 - The proposed method solved 

uneven illumination which occurs in 

traditional reference comparison 

method 

 

• Accuracy: 

89.22% 

• Detection speed: 

20 seconds 

- Transform a binary 

classification problem into a 

multi-class classification 

problem 

- Develop a method to 

detect the spatial location of 

defects 

- Attempt to combine 

multiple types of features 

for evaluation purposes. 
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• SVM 

16.  Adibhatla et al. (2020) Defect Detection in Printed Circuit Boards 

Using You-Only-Look-Once Convolutional 

Neural Networks 

- Object detection 

• Tiny-YOLO-V2 

- Classification 

• CNN 

- Data collection 

• Novel user interface 

• Batch size: 32 

 

- Suitable for large-scale PCB quality 

inspection as it can accurately detect 

defects. 

- CNNs can learn the target task 

automatically with proper tuning of 

model parameters. 

- The proposed model accuracy may 

be low with unbalanced datasets 

• Mean Accuracy: 

98.79% 

- Enhance CNN 

performance by conducting 

experimental evaluation and 

performance analysis 
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Table 2.2.1 shows that deep learning methods are a current trend in 

defect detection problems in the semiconductor industry. CNNs have been 

proven to be effective in detecting defective PCBs. Many papers have proposed 

novel approaches that address the issue of high time costs and automate the 

defect detection process using deep learning methods. These deep learning 

models were trained and tested on fine and defected PCB images, achieving 

high accuracy in detecting a single defect pattern. Pre-trained models such as 

VGG16, ResNet, YOLO, and GoogleNet are frequently utilised in computer 

vision, and they have demonstrated the ability to generalise well to new image 

datasets, making them popular choices for detecting defective PCBs in the 

semiconductor industry. Although many innovative solutions have been 

suggested to address the issue of defect detection, there are still shortcomings in 

the approaches and issues in the semiconductor industry that need to be resolved. 

The shortage of open-source image datasets for fine and defected PCBs 

is a frequently cited issue in many papers, which presents a challenge for 

training deep learning models to perform well on new, unseen data. Moreover, 

imbalanced class distributions can make it difficult for the model to learn about 

the minority class effectively. Although some papers have proposed methods to 

address these issues, they still exist and continue to pose significant challenges 

to the semiconductor industry. 

While some novel models can detect multiple defect patterns in 

combination, most can only detect one defect type at a time. Furthermore, many 

proposed solutions are not yet practical in real-world settings due to high costs, 

a lack of diversity in training data, and insufficient computational resources. As 

a result, real-time detection of defective PCBs remains a challenging problem. 

To address these challenges, future research efforts should focus on 

creating more diverse and comprehensive image datasets, developing more 

effective algorithms to handle imbalanced class distributions, and exploring 

innovative ways to reduce the cost of training and deployment. Furthermore, the 

practical implementation of deep learning models in production environments 

should also be considered to ensure their usefulness in real-world settings. 
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2.3 Image Preprocessing Techniques 

Open Source Computer Vision Library (OpenCV) is popular for preprocessing 

images for training deep learning models. OpenCV is mainly used for real-time 

operations such as object and face recognition or handwriting classification by 

processing images and videos. With more than 2,500 computer vision and 

machine learning algorithms, OpenCV is widely used by major companies like 

Google, Yahoo, and Microsoft. The library has a Python interface and supports 

Windows, making it compatible with the study's environmental setup. 

While OpenCV contains many useful functions for image processing, 

ASPL found the following five OpenCV functions to be useful and vital in 

processing images of PCBs: 

 

cv2.threshold() 

The process of thresholding converts an image from grayscale to binary to 

isolate regions of interest from the background. Each pixel of the input grayscale 

image is assigned a binary value based on a threshold value, which is compared 

to the pixel's intensity value. The function requires four parameters: the input 

grayscale image, the threshold value, the maximum value above the threshold, 

and the threshold type. To achieve a better output image and improve accuracy 

in detecting defects when applied to deep learning models, it is essential to find 

the optimal threshold value for extracting a good region of interest. 

 

cv2.Canny() 

The Canny edge detection algorithm is a useful tool for detecting edges in an 

image. This function first applies Gaussian blurring to the input image to reduce 

noise. It then computes the intensity gradients of the image and looks for 

potential edges by searching for local maxima in the gradient magnitude. Non-

maximum suppression is applied next to thin out the edges and keep only the 

strongest ones. Finally, hysteresis thresholding is applied to link edges that 

belong to the same feature in the image. The function requires three parameters: 

the input grayscale image, the first threshold value, and the second threshold 

value. These threshold values are used as the minimum and maximum intensity 

gradients, respectively, that the function uses to detect edges. 
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cv2.findContours() 

The "findContours" function is used to identify contours in a binary image. This 

function processes a binary image and produces a set of contours represented as 

simplified or full coordinates. It requires three parameters: the input image, the 

retrieval mode of the contour, and the contour approximation method. The 

retrieval mode can be adjusted to retrieve all the contours, only the outer 

contours, or all contours and their hierarchical structure. The contour 

approximation method reduces the number of points in the contour. 

 

cv2.connectedComponentsWithStats() 

The connectedComponentsWithStats function is a useful tool for extracting 

connected components from a binary image. Connected components refer to 

sets of pixels that share the same pixel value and are connected. This function 

is critical for extracting regions from the input image that are connected, which 

is often necessary in image processing tasks.  

To use this function, three parameters are required: the binary image, 

the connectivity value (which can be set to 4 or 8), and a constant representing 

the data type used for storing pixel values. 

 

cv2.matchTemplate() 

The matchTemplate function is used to match an image with a template. It takes 

an input image and a template image and returns a grayscale image where each 

pixel represents the match score of the template at that specific position in the 

input image. The function functions by locating a region in the input image that 

resembles the template. As recommended by ASPL, this function serves as a 

crucial backup option in case other image processing techniques fail to produce 

the desired results. 

 

2.4 Traditional Machine Learning 

The term "machine learning" describes teaching computers to learn from data. 

It involves the convergence of computer science and statistics and the utilisation 

of algorithms that are designed to execute a task without explicit programming. 
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Instead, these algorithms identify patterns in the data and make predictions 

when new data is available (Wolfewicz, 2023). Typically, the process of using 

these algorithms to acquire knowledge can be categorised into supervised and 

unsupervised learning based on the data type used to train the algorithms 

(Wolfewicz, 2023). Statistics is the main underlying concept behind machine 

learning, where the algorithm is trained to make predictions by identifying data 

patterns without explicit programming. To put it briefly, machine learning is an 

interdisciplinary field that merges computer science and statistics to empower 

computers to learn from data without being explicitly programmed (Wolfewicz, 

2023). There are two primary categories of problems in machine learning: 

supervised and unsupervised.  

 

2.5 Supervised Learning 

Supervised learning, also known as supervised machine learning, falls under the 

broader categories of machine learning and artificial intelligence. It 

encompasses a machine learning process that utilises a labelled dataset, wherein 

both the data and corresponding labels are provided to the model for training, 

enabling it to accurately classify data or predict outcomes. Throughout the 

training process, the model continually adjusts its weights until it achieves high 

accuracy in making predictions (Anon., 2023b). 

 

2.6 Classification  

Classification is a type of supervised learning. Classification can be described 

as identifying, comprehending, and categorising objects and concepts into 

predefined groups, often called "sub-populations. Machine learning 

programmes employ various algorithms and utilise pre-categorised training 

datasets to classify upcoming datasets into appropriate and meaningful 

categories (Banoula, 2023). 

 A classification algorithm trains models using input sample data to 

predict the probability or likelihood that incoming data will belong to predefined 

categories. A widely recognized application of classification is the filtering of 

emails into "spam" or "non-spam" categories, a functionality commonly 

employed by leading email service providers today (Banoula, 2023). 
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 In this study, there are two classification tasks: binary classification, 

which classifies the data into two categories, and multi-class classification, 

which classifies the data into three categories. Defect Type 1 and Defect Type 

2 will be predicted with binary classification, while Defect Type 2 will be 

predicted with multi-class classification. 

 

2.7 Deep Learning 

Deep learning algorithms are considered a more advanced and mathematically 

intricate version of machine learning algorithms. In recent times, this field of 

research has gained much attention, and for valid reasons; the recent 

developments have generated results that were once thought to be unachievable 

(Wolfewicz, 2023). Deep learning algorithms are a more sophisticated and 

intricate machine learning form that employs a logical structure similar to 

human reasoning to analyse data. They can use both supervised and 

unsupervised learning techniques. Deep learning algorithms utilise supervised 

and unsupervised learning approaches and are more sophisticated versions of 

machine learning. They incorporate a layered structure of algorithms, an 

artificial neural networks (ANN), which are modelled on the biological neural 

network of the human brain. This results in a learning process that is much more 

powerful than traditional machine learning models (Wolfewicz, 2023).  
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Figure 2.7.1: A simple Artificial Neural Network (ANN) 

 

As shown in Figure 2.7.1, an artificial neural network (ANN) consists 

of an input layer, an output layer, and hidden layers in between. The hidden 

layers are not visible or directly accessible in the training set. A neural network 

with more hidden layers is considered "deeper". Typically, a neural network 

with two or more hidden layers is considered deep (Wolfewicz, 2023). The 

ANN initially performs a feature identification process, which involves 

identifying particular structures in an input. The first hidden layer of the network 

may learn how to detect edges, while the subsequent layers may learn how to 

differentiate colours and so forth until the final layer learns how to detect more 

intricate shapes relevant to the object being recognised. Basically, the earlier 

hidden layers learn simple features like edges while progressively learning task-

specific features such as the shape of the LED while moving to later layers. 

Finally, the output layer processes the high-level features extracted from 

previous layers to perform classification or regression tasks. During training 

with input data, the deep learning algorithm learns from its errors to determine 

whether its prediction is accurate or needs adjustment (Wolfewicz, 2023). 
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 As ANN slowly became more popular, researchers began researching 

building deeper neural networks to solve more complicated tasks. One of the 

most popular deep neural networks invented was the Convolutional Neural 

Network (CNN). A typical CNN consists of multiple layers: a convolutional 

layer, a non-linearity layer, a pooling layer, and a fully-connected layer (Bayat 

et al., n.d.). CNN has gained significant popularity in computer vision and 

natural language processing. CNNs tackle the inefficiency of fully connecting 

input pixels to neurons in traditional neural networks due to the large number of 

weight parameters required. CNNs employ local connections, meaning neurons 

in one layer are connected only to a corresponding local region in the previous 

layer. This drastically reduces the number of weight connections required. 

Additionally, CNNs often employ weight sharing, where the same weights are 

used for local connections across different neurons in the next layer. These two 

simplifications significantly reduce the number of parameters while enabling 

the network to detect and recognise features regardless of their position in the 

image. This process is akin to sliding a filter over the input image and mapping 

the results to the next layer, which is why these networks are termed 

convolutions (Bayat et al., n.d.). To improve the efficiency of the method, 

convolutional layers were stacked with each layer associated with different 

layers in which they can extract different features from the image.  

 

 
Figure 2.7.2: Multiple layers where each of them corresponds to a different filter 

but looking at the same region in the given image (Bayat et al., n.d.) 
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"Stride" can be applied to the convolution layer, where it refers to how 

the convolutional filter moves across the input image. Stride refers to how the 

convolutional filter moves across the input image. In the example provided in 

Figure 2.x, a 7x7 image is used as an illustration. When the filter is moved one 

node at a time, it results in a 5x5 output. Importantly, there is an overlap between 

the output regions. However, the stride can be manipulated. For example, if the 

stride is set to 2, the filter moves every two nodes, resulting in a 3x3 output. 

This not only affects the overlap but also reduces the size of the output (Bayat 

et al., n.d.).  

 

 
Figure 2.7.3: Movement of Filter Window with stride “1” (Bayat et al., n.d.) 

  

Equation (1) is presented to formalise this relationship, where N 

denoting the dimension of input image, F represents the size of the filter, and S 

represents the stride. 

 𝑂𝑂 = 1 +  𝑁𝑁−𝐹𝐹
𝑆𝑆

  (2.7.1) 

 

 The next layer after convolution is the non-linearity layer. This layer 

introduces non-linearity into the network and adjusts or controls the generated 

output. Non-linearity refers to a property where changes in input do not result 

in directly proportional or additive changes in output. Traditionally, sigmoid 

and tanh functions were commonly used as non-linearities in neural networks. 

However, in recent years, the Rectified Linear Unit (ReLU) has gained 

popularity (Bayat et al., n.d.). ReLU can be defined as:  

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = max(0, 𝑥𝑥)  (2.7.2) 

 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑥𝑥) = {1 𝑖𝑖𝑖𝑖 𝑥𝑥 > 0; 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} (2.7.3) 

where  

𝑥𝑥 = input value to ReLu function 
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 The pooling layer served as a down-sampling technique to reduce the 

complexity for further layers. It is important to note that pooling does not alter 

the number of filters but rather focuses on reducing the spatial dimensions of 

the data. Among various pooling methods, max-pooling is one of the most 

commonly used. Pooling, particularly max-pooling, is a technique in image 

processing that reduces spatial dimensions while retaining important features, 

and its parameters, like filter size and stride, can be adjusted to suit specific 

requirements (Bayat et al., n.d.). 

 

 
Figure 2.7.4: Demonstration of Max Pooling with 2x2 filters (Bayat et al., n.d.) 

 

Finally, the fully connected layer in CNN works like traditional neural 

networks. In this layer, each node is directly connected to every node in the 

preceding and subsequent layers. This means that each node in the last pooling 

layer is connected to every node in the first layer of the fully connected layer. 

The fully-connected layer typically contains the highest number of parameters 

within a CNN, and training it can be time-consuming. In essence, the core of a 

CNN lies in its convolutional operations, and the introduction of nonlinearity 

and pooling layers significantly contributes to its effectiveness (Bayat et al., 

n.d.). 
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2.8 Transfer Learning 

This study used transfer learning, a deep learning technique that requires less 

training data but can still achieve high performance. In transfer learning, a pre-

trained model is used as the foundation for a new task. This approach can 

perform significantly better than training a model from scratch. Transfer 

learning is a widely used technique, and it is not common to train a model for 

image processing tasks from scratch nowadays. Conventional machine learning 

models need to be trained from the beginning, which is time-consuming and 

computationally expensive. Moreover, a considerable amount of data is required 

to achieve high performance. In contrast to traditional machine learning, transfer 

learning is a more efficient approach that utilises knowledge gained from pre-

existing models to improve performance and achieve better results using smaller 

datasets (Baheti, 2023). Transfer learning involves leveraging knowledge 

learned from a pre-existing model rather than starting the training process from 

scratch to improve performance and speed up the learning process. In contrast, 

traditional machine learning models are typically trained independently and 

require enormous data and heavy computational resources to achieve 

comparable performance (Baheti, 2023). Transfer learning is faster than training 

neural networks from scratch because models that use features and weights from 

pre-trained models already understand the underlying features, which speeds up 

the training process (Baheti, 2023). 

 In the context of computer vision, transfer learning works by freezing 

the hidden layers of a deep learning model, and we replace the output layer for 

our specific task. It leverages the trained weights on the hidden layers, which 

were already trained to extract features from the image (Donges, 2022). 
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Figure 2.8.1: Visualisation of Tranfer Learning (Donges, 2022) 

  

 As shown in Figure 2.8.1, the CNN layers were trained on their original 

task, and the trained layers will not be modified or trained on the new task; 

instead, only the output layer will be changed according to the task. In this case, 

transfer learning allows us to leverage the trained layers from the base model, 

and we only have to train the new output layer for our task. The frozen layers 

act as the feature extraction layers, and the replaced output layer will be used to 

perform classification tasks in our project. 

 

2.9 Pre-trained Image Classification Deep Learning Models 

This study planned to use pre-trained image classifiers from Keras based on the 

ImageNet dataset. These models can classify input images into 1,000 object 

categories with high accuracy. Additionally, the models generalise well to other 

images other than the ImageNet dataset through transfer learning techniques 

(Rosebrock, 2017). A few available pre-trained image classifiers from Keras 

will be discussed, including VGG16, VGG19, ResNet50, InceptionV3, and 

Xception (Rosebrock, 2017).  
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Figure 2.9.1: VGG architecture visualization (Rosebrock, 2017) 

 

 (Simonyan and Zisserman, 2014) introduced the VGG network 

architecture in their paper. The network architecture includes multiple 33 

convolutional layers arranged in increasing depth. To decrease the size of the 

volume, max pooling is used. The architecture also comprises two fully 

connected layers, each with 4,096 nodes. Finally, a softmax classifier is applied 

(Simonyan and Zisserman, 2014). The naming convention of VGG is based on 

its number of layers. For example, VGG16 has 16 layers, while VGG19 has 19 

layers. Despite their high accuracy in image classification, these models have 

some limitations, such as being slow to train and having heavy network 

architecture weights that require significant bandwidth (Rosebrock, 2017).  

 

 
Figure 2.9.2: ResNet-50 Architecture (Mukherjee, 2022) 
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He et al. (2015) introduced the ResNet network architecture in their 

paper, "Deep Residual Learning for Image Recognition". ResNet is considered 

an unusual type of architecture that employs microarchitecture modules. Micro-

architecture refers to the individual "building blocks" that are used to create the 

network. A combination of these building blocks, along with the standard layers 

like convolution and pooling, make up the overall macro-architecture of the 

network. Compared to VGG16 and VGG19, ResNet50 has a smaller size 

because it uses global average pooling instead of fully connected layers  

(Rosebrock, 2017).   

 

 
Figure 2.9.3: InceptionV3 architecture (T, 2023) 

 

Szegedy et al. (2014) first introduced "Inception" micro-architecture in 

their paper "Going Deeper with Convolutions". Then, they proposed the 

improved InceptionV3 architecture in their next paper, "Rethinking the 

Inception Architecture for Computer Vision," in 2015. The inception module is 

designed to extract features at various levels by using 1x1, 3x3, and 5x5 

convolutions in a single module. The resulting outputs are then combined and 

passed on to the next network layer. Google originally introduced this 

architecture as GoogLeNet, and later versions were named Inception vN, where 

N denotes the version number released by Google (Rosebrock, 2017).  
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Figure 2.9.4: Xception architecture (Rosebrock, 2017) 

 

 Chollet (2016) proposed Xception, which is a type of architecture that 

builds on Inception. Instead of using standard Inception modules, it uses depth-

wise separable convolutions. This process divides the convolution operation 

into two stages: the first is depthwise convolution, which individually applies a 

filter to each input channel, and the second is pointwise convolution, which 

amalgamates the results from the depthwise convolution through a 1x1 

convolution. It has a small model size of 91 MB (Rosebrock, 2017). 
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Table 2.9.1: Comparison of models based on ImageNet dataset (Papers With Code, n.d.) 
Pre-trained 

Model 

Approximate 

Model Size 

(MB) 

Model top-5 

accuracy on 1000 

ImageNet classes 

Number of 

Parameters 

Advantages Disadvantages 

VGG16 528 91.1%  138M - Simple architecture which leads to simple 

fine-tune and implementation 

- Easy to understand and interpret 

- Deep architecture which makes it 

computationally expensive  

- Requires a lot of memory 

- Large number of parameters 

ResNet50 102 92.2% 23M - Deep architecture which allows learning of 

complex features 

- Residual connections help alleviate the 

vanishing gradient problem 

- Good performance on large datasets 

- Deep architecture which makes error detection 

difficult 

InceptionV3 96 96.9% 25M - Designed to be computationally efficient - 

Good performance on large datasets 

- Relatively low number of parameters 

- Complex architecture which makes it difficult to 

understand and interpret 

- Comparatively poor performance on small 

datasets 

Xception 91 96.5% 22.8M - Designed to be even more computationally 

efficient than InceptionV3 

- Good performance on large datasets 

- Relatively low number of parameters 

- Complex architecture which makes it difficult to 

understand and interpret 

- Comparatively poor performance on small 

datasets 
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Table 2.9.1 compares the pre-trained models based on their 

performance on the ImageNet dataset. The performance results are obtained 

from the Papers With Code website based on published journal articles. The top-

5 accuracy measures the number of times the correct label is included among 

the five most probable predictions made by the network (Papers With Code, 

n.d.).  

Through the comparison of the pre-trained models, this study adapted 

three deep learning models: (i) ResNet50, (ii) InceptionV3, and (iii) Xception 

for epoxy-related defect detection on PCBs of wireless earbuds. 

ResNet50 has a deep network architecture that allows the learning of 

complex features in data by organising multiple layers of processing units. As 

the depth of the network increases, it can learn and represent more abstract and 

complex features of the data. This is because each layer in a deep network 

extracts higher-level features from the previous layer's output, enabling the 

network to learn hierarchical representations of the input data. Additionally, 

deep networks can reduce the need for hand-engineered features as they can 

automatically learn relevant features directly from the data, saving time and 

resources in developing deep learning models (Mukherjee, 2022). 

 InceptionV3 and Xception are designed with computational efficiency 

in mind, achieved by reducing the number of computations required without 

compromising on accuracy. InceptionV3 utilises "Inception modules", allowing 

parallel computation of convolutional filters with varying kernel sizes. This 

approach results in a reduction in parameters and computations compared to 

traditional convolutional layers. Additionally, InceptionV3 incorporates batch 

normalisation to enhance generalisation and accelerate training (Szegedy et al., 

2015). 

Xception takes this concept further by using depthwise separable 

convolutions, combining depthwise and pointwise convolutions. Depthwise 

convolutions filter each input channel separately before being combined 

through pointwise convolutions, which perform 1x1 convolutions across all 

channels. This technique effectively reduces the number of computations while 

still capturing important features (Chollet, 2016). 
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In general, the major reason for choosing ResNet50, InceptionV3, and 

Xception for this study is their ability to achieve high accuracy while being 

computationally efficient. This makes them ideal for this study, which has 

limited computational resources and requires a small model size. 

 

2.10 Hyperparameters 

Hyperparameters can be described as special parameters that oversee and 

control the learning process, ultimately dictating the values of the model 

parameters learned by a machine learning algorithm. The term 'hyper_' is 

prefixed to emphasise that these are higher-level parameters responsible for 

governing the learning process and shaping the resulting model parameters 

(Nyuytiymbiy, 2020). 

Hyperparameter values are defined before the model training process, 

and the values cannot be changed during training. Hyperparameters are not 

included in the final output of a model training process. We would not know the 

hyperparameter values used to train the model just by looking at it 

(Nyuytiymbiy, 2020). 

 Table 2.10.1 shows some common hyperparameters and their functions 

in model training.  

Table 2.10.1: Hyperparameters Description 

Hyperparameter Description 

Learning Rate 
How fast the neural network adjusts its weight during 

training 

Batch Size Number of training examples in each iteration 

Epoch 
Number of times the training dataset updates the 

weights of neural network 

Loss Function 
Measures the difference between the predicted output of 

a model and the actual output 

Activation 

Function 

Introduce nonlinearity into the output of a neuron 

Optimiser 

Algorithm 

Find optimal set of weights and biases to minimise loss 

functions 
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CHAPTER 3 

2 METHODOLOGY 

 

3.1 Overview 

 

 

This study workflow is summarised in Figure 3.1.1. First, this study began by 

collecting a PCB image dataset of wireless earbuds provided by ASPL. The 

dataset underwent preprocessing, which included image segmentation to extract 

the region of interest from the images and data augmentation to generate new 

sample data using existing data. Next, the dataset was labelled according to its 

classes. After labelling, the dataset was divided into training, testing, and 

validation sets, ready for use in model training and evaluation. After preparing 

the dataset, hyperparameter tuning was performed to find the best 

hyperparameter combinations for model training. Then, the study trained the 

deep learning models and evaluated their performance in predicting the testing 

set. Following the evaluation, the study compared the models and selected the 

best-performing model as the proposed model. 

The same workflow was applied in training ResNet50, Xception, and 

InceptionV3 for all three defect types. In this section, only a small segment of 

Figure 3.1.1: Project Workflow Summary 
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the original PCB images is allowed to be shown as they are protected by 

copyright and are confidential. 

 

3.2 Project Plan  

This study plan was displayed in the Work Breakdown Structure (WBS) to 

break down the works into smaller components for better understanding and 

management. Then, the project timeline was shown in a Gantt Chart in 

managing the project activities. The Gantt chart displayed the work completion 

date along with the duration taken to complete the activities. The project cost 

included the computational resources required for model development, such as 

hardware and software. 

 

 

 

  



46 
 

46 

 

Work Breakdown Structure (WBS) 

 
Figure 3.2.1: Project Work Breakdown Structure (WBS) 
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Gantt Chart  

 
Figure 3.2.2: Project Gantt Chart
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As shown in Figure 3.2.2, Project 1 primarily focused on the preparatory phase 

of the project. This phase involved defining essential project elements, such as 

the project scope, objectives, problem statement, methodology, and project 

deliverables. In Project 2, the project shifted its focus towards the technical 

aspect. Programming codes were written to prepare the dataset for model 

training and evaluation. Subsequently, the project advanced to the model 

development stage, where models were constructed, trained, evaluated, and 

compared. Hyperparameter tuning was carried out for each model using Grid 

Search CV. 

Once the best-performing models were identified, the project moved 

on to the project closure phase. During this phase, conclusions were drawn, and 

the Project 2 report was completed. 

 
3.3 Data Collection 

This study collected a dataset of PCB images of wireless earbuds provided by 

ASPL. The dataset contains three images for each PCB: (i) the yellow channel, 

which displays the original colour; (ii) the blue channel, which shows dark field 

blue light; and (iii) the red channel, which displays dark field white light. Each 

colour channel provides a distinct view of different defects on the PCB. In this 

study, only the blue channel images were used since they emphasised the epoxy 

on the PCBs. Table 3.3.1 shows the sample images of different colour channel. 
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Table 3.3.1: Sample images of different colour channels 

Colour channel Sample Image 

Yellow 

 
Blue 

 
Red 

 
 

The collected images are real-world images produced during the PCB 

manufacturing process of wireless earbuds. Since the dataset represents a real-

world dataset, it brings benefits to this study as it trains models on actual data, 

which can increase the generalisation and reliability of the models. Table 3.3.2 

shows the number of PCB images in the dataset. 

 

Table 3.3.2: Number of Images Collected 

Type Images Number of images 

Good Good (Non-defective) 2433 

Defect Type 1 Epoxy Overflow on Die 785  

Defect Type 2 Epoxy Overflow on LED 217 

Defect Type 3 Foreign Material (FM) on Die  111 

Epoxy on Die 11 
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3.4 Data Preprocessing 

In the data preprocessing step, the dataset underwent image segmentation to 

extract the regions of interest from the images. Extracting the region of interest 

(ROI) from the image helps the model focus on the important features on the 

images, improving the model's accuracy and generalisation ability.  

 

 
Figure 3.4.1: Image Segmentation Flowchart 
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All images in the dataset were looped using the approach shown in 

Figure 3.4.1 to segment the ROI from the PCB images. The image preprocessing 

techniques used were from OpenCV library.  

First, the PCB image was loaded using the cv2.imread() function. This 

function reads the image to be preprocessed. To begin the preprocessing, this 

study first increased the image's brightness by adding 45 to every pixel value. 

The purpose of increasing brightness was due to the dimmed original images in 

the dataset; increasing brightness helped to improve the quality of the following 

preprocessing steps. Table 3.4.1 shows the sample image before and after 

increasing brightness.  

 

Table 3.4.1: Image Brightness Adjustment Comparison 

Original Brightness After Increasing Brightness 

  
 

 The image was then converted into a grayscale image using cv2.cvt 

(image, cv2.COLOR_BGR2GRAY). Converting an image into grayscale is a 

common practice in preprocessing because it simplifies the process. A coloured 

image has three channels (red, green, and blue),  while a grayscale image has 

only one channel. A grayscale image also helps to intensify the contrast in pixel 

intensity between different regions and objects in the image. Table 3.4.2 

showsthe sample image before and after applying grayscale conversion. 
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Table 3.4.2: Image Grayscale Comparison 

Before Grayscale After Grayscale 

  
 

 The image was further pre-processed by applying Gaussian blurring 

using CV2. GaussianBlur(image, (7,7), 0). Gaussian blurring helps reduce the 

image's noise by helping the functions focus on important features. Besides, it 

enhances the performance of edge detection algorithms. Table 3.4.3 shows the 

sample image before and after applying Gaussian blurring.  

 

Table 3.4.3: Image Gaussian Blurring Comparison 

Before Gaussian Blurring After Gaussian Blurring 

  
 

 Thresholding is a technique for turning every pixel to white or black 

depending on the pixel threshold. Thresholding was applied to the image using 

cv2.threshold(image, 55, 255, cv2.THRESH_BINARY_INV) [1]. For every 

pixel in the image, the pixel value below 55 is turned into 0, while the pixel 

above 55 is turned into 255, resulting in a black-and-white image. Thresholding 
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improves the performance of edge detection algorithms as it helps to intensify 

edges. Table 3.4.4 shows the sample image before and after applying threshold. 

The image showed distinct differences between regions after applying the 

threshold. 

 

Table 3.4.4: Image Thresholding Comparison 

Before Thresholding After Thresholding 

  
 

 After all the above steps, the black-and-white image was ready for 

image segmentation. The epoxy area had already turned black and the 

surrounding area had turned white. This study used cv2.findContours(image, 

cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) to locate all the 

contours found in the image. The function output was a list of contours found 

within the images. A contour is a connected region on the image. The list of 

contours was sorted in descending order and looped to filter out the important 

contours, which in this case were PCB components such as LEDs or dies and 

regions of epoxy-related defects such as areas of epoxy overflow. 

            The list of contours found was looped to filter out the unwanted contours. 

In the loop, the contour area was calculated using cv2.contourArea(contour). 

The function returned the area of the contour provided. Then, the position of the 

centre point of the contour was calculated using cv2.moments(contour). The 

function returned the middle point as the x-coordinate and y-coordinate of the 

whole contour. After successfully obtaining the middle point and area of the 

contour, the contour was filtered by comparing the values obtained to the 

threshold defined. The threshold to filter the contours was obtained by the trial-
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and-error method. Table 3.4.5 shows the threshold values used to filter the 

contours.   

 

Table 3.4.5: Contours Filtering Criteria 

Component Position Area 

Die 160 <= x-coordinate <= 640 

160 <= y-coordinate <= 630 

Contour area <= 110000.  

LED 160 <= x-coordinate <= 630 

600 <= y-coordinate <= 1150 

Contour area <= 150000.  

 

 Once the list of contours found on the image was filtered, the remaining 

list of contours consisted of only the interested objects, such as the PCB 

component and the area of defects. For the list of contours, a conditional 

statement to check on the number of remaining contours in the list was applied. 

If only one contour remained, it indicated that the contour represented 

the main PCB component with the surrounding epoxy that was connected, such 

as a region of die surrounded by epoxy. 

If the remaining number of contours was more than one, it indicated 

that the contours contained some small contours of epoxy that were not 

connected to the main PCB component, such as epoxy spillage.   

If no contour remained, it indicated that no contours fulfilled the 

filtering criteria, and thus, the image was not pre-processed and not used in 

model training. 

The remaining contours formed a rectangle box of regions on the image 

using the four most outer vertices in the contour or the list of contours with 

cv2.minAreaRect(contour). Once the rectangle box was formed, the four most 

outer vertices of the rectangle box were found using cv2.boxPoints(box). For 

the case where the number of contours was more than one, the vertices obtained 

after forming the rectangle box were stored in an array. The list of arrays 

containing vertices of all contours was then used to locate the four most outward 

vertices. 

The four vertices obtained were used to segment the region of interest, 

including the major PCB component and the epoxy and defects region. This step 
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used a custom module provided by ASPL to segment the image region from the 

original image and rotate it back to a bird's-eye view.R 

 Finally, the segmented image was resized to the size of 299x299 pixels 

by using cv2.resize(image, (299, 299)). This step ensured that all the pre-

processed images had the same size, which the model training process required.  

 By the end of the image segmentation phase, all the successfully 

segmented images contained only the region of interest, which was the PCB 

component of either a die or an LED and epoxy connected to or around the 

component. These images were ready to be used in model training and 

validation processes. 

 

Table 3.4.6: Number of PCB Images after Image Segmentation 

Type Images Number of un-processed 

images 

Number of images 

Good Good (Non-defective) 0 2433 

Defect 

Type 1 
Epoxy Overflow on Die 11 774 

Defect 

Type 2 
Epoxy Overflow on LED 2 215 

Defect 

Type 3 

Foreign Material (FM) on Die  0 111 

Epoxy on Die 0 11 

 

Referring to Table 3.4.6, the collected dataset faced one common 

obstacle when dealing with real-world data: class imbalance. Class imbalance 

happens when the number of images used to train the model in each class differs 

greatly. For instance, ‘Defect Type 1’ has only 774 images compared to ‘Good's 

2433 images. The other two defect types faced a more serious class imbalance 

problem where the difference between the number of images in each class was 

even bigger. 

Class imbalance brings several disadvantages to the model training 

process, such as bias towards the majority class, as the majority class has more 

sample data to train the model on, and the model will perform better in the 

majority class. Then, an imbalanced dataset can lead to poor generalisation 



56 
 

56 

 

performance as the model struggles to recognise and correctly identify instances 

from the minority class. Lastly, when the minority class is underrepresented, the 

model may not learn sufficient information about it, potentially missing 

important patterns or characteristics of that class. 

 

3.5 Data Augmentation 

Due to the class imbalance problem in the dataset, data augmentation was 

applied to the dataset to improve the quality of the model training process. Data 

augmentation refers to generating new training samples by randomly applying 

transformations to the dataset's original images. This helped make the dataset 

larger and more diverse and reduce the impact of the class imbalance problem 

in the PCB dataset. Besides, data augmentation helped to improve model 

robustness and reduce overfitting by introducing variability in the dataset. In 

short, data augmentation was used to increase the size of the dataset and improve 

the model's generalisation ability by reducing the impact of the class imbalance 

issue.  

 

Table 3.5.1: Data Augmentation Transformation 

Transformation Value Range 

Rotation -5 (anti-clockwise) to 5 (clockwise) degree 

Increase Brightness 

 

Multiply by 1.2 to 1.3 

 

Increase Contrast Multiply by 0 to 0.5 

 

 The transformations were randomly applied to the images by 

generating a random value within the range stated in Table 3.5.1. This approach 

introduced variability in the dataset without using the same images for training 

purposes. By applying random transformations, the dataset was expanded with 

new samples that were different from the original images, which helped to 

improve the model generalisation while increasing the dataset size. 
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Table 3.5.2: Number of Images throughout Data Augmentation Process 

Defect  

Type 

Defect Number of Original 

Images Used for 

Data Augmentation 

Number of New 

Images 

Generated per 

Original Image 

Number of 

New Image 

Generated 

1 Epoxy 

Overflow 

on Die 

500 1 500 

2 Epoxy 

Overflow 

on LED 

200 2 400 

3 Epoxy on 

Die 
11 5 55 

FM on Die 111 2 222 

 

 Table 3.5.2 shows the number of images throughout the data 

augmentation process. The choice of the number of original images used for 

data augmentation was justified by aiming to increase the number of images in 

the minority class, thereby reducing the impact of the class imbalance issue 

without oversampling the minority class. This decision was based on the fact 

that only basic transformations using OpenCV were applied during the data 

augmentation process, resulting in new sample images that were not 

significantly different from the original ones. By avoiding oversampling the 

minority class, this study prevented the model from overfitting during the 

training process. 

Ultimately, the techniques used in data augmentation were mainly used 

to increase the sample size in minority classes to reduce the impact of class 

imbalance but were unable to completely tackle the issue. Table 3.5.3 shows the 

finalised number of images in the dataset.  
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Table 3.5.3: Total Number of Images after Data Augmentation 

Type Images Number of Images Added 
Total Number of 

Images 

Good Good (Non-defective) 0 2433 

Defect 

Type 1 
Epoxy Overflow on Die 500 1274 

Defect 

Type 2 
Epoxy Overflow on LED 400 615 

Defect 

Type 3 

Foreign Material (FM) on Die 222 333 

Epoxy on Die 55 66 

 

3.6 Data Labelling 

For defect types 1 and 2, the good images were labelled with a value of 0 and 

the defective images were labelled with 1. There are only two classes in which 

the binary classification will classify the images as 0 or 1. The samples were 

labelled with a single integer, either 0 or 1. 

For defect type 3, the good images were labelled with value 0, ‘Epoxy 

on Die’ images were labelled with value 1, and ‘FM on Die’ images were 

labelled with value 2. The samples were labelled using one-hot labelling. For 

example, a good image that has a class value of 0 was labelled as (1, 0, 0), an 

‘epoxy’ image that has a class value of 1 was labelled as (0, 1, 0), and an FM 

image that has a class value of 2 was labelled as (0, 0, 1). Encoding multi-class 

data using integer labels can introduce unintended ordinal relationships that do 

not exist in the original data. One-hot encoding eliminates this issue by 

providing binary columns, helping to reduce bias in the model. 

 

3.7 Data Splitting 

The generated augmented sample images were only used within the training set. 

This distinction arises from the necessity to maintain the validation and testing 

sets as repositories of authentic, real-world data. This strategic decision ensures 

that the evaluation of the model's performance relies solely on genuine data. 

This approach aligns with the ultimate goal of deploying the trained model for 
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predictions on the novel, unseen real-world data, warranting that the validation 

and testing phases accurately simulate these real-world conditions and scenarios. 

The dataset was split into three sets: training, testing, and validation, 

with a ratio of 70:15:15. Then, the images generated by data augmentation were 

all added to the training set.  

 During the process of training a machine learning model, the training 

set was used for training the model, the validation set was used for monitoring 

the performance of the model during the training process, and the testing set was 

used to assess the final performance of the trained model on new, unseen data. 

The validation set helped to avoid a problem called overfitting. This 

happens when the model is too focused on the training data and cannot perform 

well on new data. By using the validation set to check the model's performance, 

the study can monitor the model's performance at every epoch by observing the 

validation loss and validation accuracy.  

The dataset was split using the train_test_split() function in the scikit-

learn library. The function helped split the data and corresponding labels into 

different sets for model training. 

 

Table 3.7.1: Total Number of Images after Splitting 

Defect Type Training  Validation Testing 

1 2744 (2244 + 500) 482 481 

2 2253 (1853 + 400) 398 397 

3 1062 (785 + 277) 169 168 

 

Table 3.7.1 shows the number of images in each split set. By 

successfully splitting the data into different sets, the study can proceed to model 

training and evaluation.  

 

3.8 Hyperparameter Tuning 

Hyperparameter tuning plays a crucial role in efficiently training deep learning 

models. Thus, Grid Search CV with 3-fold cross-validation was employed to 

identify the optimal hyperparameters for ResNet50, Xception, and InceptionV3. 

A 3-fold cross-validation is an approach where the algorithm splits the data used 
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for grid search into three folds.  It trains and evaluates a model three times, each 

time using a different fold as the validation set and the remaining data as the 

training set. The results will be the mean score of the three model evaluation 

process, which provides a more robust evaluation of the model's generalisation 

performance than a single train-test split. 

The best combination of the number of epoch, learning rate value and 

optimiser were determined using Grid Search CV. Then, other hyperparameters 

like batch size were fixed due to resource constraints, and the loss function was 

the commonly used loss function in the respective classification tasks. 

 

Table 3.8.1: Hyperparameters for Grid Search CV 

Hyperparameters Value 

Epoch • 10 

• 20 

• 50 

Optimiser • SGD 

• RMSprop 

• Nadam 

• Adam 

Learning Rate • 0.0001 

• 0.001 

• 0.01 

 

This study defined a specific set of hyperparameters for use in Grid 

Search CV, which are detailed in Table 3.8.1. The choice of optimisers was 

made using a trial-and-error approach. The number of epochs was determined 

through a pilot study, which indicated that a small number of epochs sufficed 

thanks to the benefits of transfer learning. Additionally, a relatively small 

learning rate was selected to prevent excessive adjustments to the model's 

weights and biases during the training process. The learning rate controls the 

step size at which these updates occur. 
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Table 3.8.2: Other hyperparameters 

Hyperparameters Value 

Loss Function Binary-crossentropy (Binary Classification) 

Categorical-crossentropy (Multi-class Classification) 

Batch Size 16 

 

 Tabl 3.8.2 shows the other hyperparameters used in model training. In 

this study, a total of nine grid searches were done, as each model required a 

hyperparameter tuning for each defect type. It is often necessary to perform a 

grid search on each dataset separately for each model. This is because the 

optimal hyperparameters may indeed differ across datasets due to the 

differences in data distribution, complexity, and other factors associated with 

each defect type. Tailoring hyperparameters to each specific dataset helps 

optimise model performance for the unique challenges posed by each dataset. 

Aside from the common hyperparameter used for model training, this 

study tuned the decision threshold that was only required for binary 

classification tasks. The model's output in predicting a sample would result in a 

probability between 0 and 1. Thus, it is required to convert the probability value 

using a threshold value such as 0.5, where all values falling under 0.5 are 

mapped to 0, and all the other values are mapped to 1 (Brownlee, 2021). Using 

a value of 0.5 is a common practice for binary classification, but in cases where 

there is a severe imbalance in the distribution of the classes, the model will 

perform poorly on prediction. Due to the class imbalance issue in the dataset, 

this study incorporated decision threshold adjustments in the model evaluation 

phase for defect types 1 and 2 to evaluate the model’s performance on different 

decision thresholds. It was a straightforward and simple approach to improve 

the performance of classification models while facing an imbalanced 

classification problem (Brownlee, 2021). 
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3.9 Model Architecture 

To fully explore the potential of transfer learning, this study decided to make 

the minimum modifications to the pre-trained models to retain their original 

architecture and trained weights.  

            ResNet50, Xception, and InceptionV3 models were imported from the 

Keras library. These models were loaded without the fully connected dense 

output layer, typically responsible for making predictions using trained weights 

from 'ImageNet.' Then, all of the hidden layers were frozen to prevent weight 

updates during the model training process. These frozen hidden layers worked 

as the feature extractor for our classification task. 

 Next, A GlobalAveragePooling2D layer was added to the model. 

GlobalAveragePooling2D is a technique commonly used in CNN for feature 

extraction and dimensionality reduction. In a CNN, after multiple convolutions 

and pooling layers, a set of feature maps were produced. Each feature map 

represents certain learned features in the input data. Traditional pooling layers 

diminish the spatial dimensions of the feature maps by selecting the highest or 

mean value within a small region., usually 2x2 or 3x3 and moving a filter over 

the feature map. This results in a downsampled representation of the features. 

In GlobalAveragePooling 2D, instead of using small regions and downsampled 

representations, it takes the average of the entire feature map. The average value 

of each feature map is calculated, resulting in a single value for each feature 

map. After applying a GlobalAveragePooling2D layer, the output will be a 1D 

vector of values that was connected to the fully connected layer for classification 

tasks. 

Following that, a custom fully-connected dense layer was appended to 

the model. In the case of binary classification, the dense layer comprised a single 

neuron with a sigmoid activation function. Using a single neuron in the output 

layer with a sigmoid activation function is a common and effective approach for 

binary classification tasks, providing clear probabilistic outputs and maintaining 

model simplicity. The output of a sigmoid function is always between 0 and 1, 

combined with a decision threshold that maps any output values into distinct 

classes. The formula of a sigmoid function is:  
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 𝑓𝑓(𝑥𝑥) = 1
1+𝑒𝑒−(𝑥𝑥)  (3.9.1) 

where 

𝑥𝑥 = input to the sigmoid function 

𝑒𝑒 = the base of the natural logarithm, approximately equal to 2.71828. 

For multi-class classification involving three classes to be predicted, 

the dense layer consisted of three neurons with a softmax activation function, 

with each neuron associated with each class. In multi-class classification, a 

common encoding scheme for the target labels is one-hot encoding. Each class 

is represented by a unique neuron, and the output for each sample should have 

a single high value (1) in the neuron corresponding to the true class and low 

values (0) in the other neurons. This setup ensures that each sample is assigned 

to only one class. A multi-class classification task usually requires a softmax 

activation function. Softmax converts the raw output scores into class 

probabilities, which the total probabilities across all classes equals 1 for each 

sample. The number of neurons in the output layer corresponds to the number 

of classes. The formula of a softmax function is:  

 

 𝜎𝜎(
𝑧𝑧
→)

𝑖𝑖
= 𝑒𝑒𝑧𝑧𝑖𝑖

∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝐾𝐾
𝑗𝑗=1

 (3.9.2) 

where 

𝜎𝜎 = softmax 

(
𝑧𝑧
→) = input vector 

𝑒𝑒𝑧𝑧𝑖𝑖 = standard exponential function for input vector 

K = number of classes in the multi-class classifier 

𝑒𝑒𝑧𝑧𝑗𝑗 = standard exponential function for output vector 

 

In summary, the number of neurons used in the output layer depends 

on the task's requirements. On binary classification, one neuron will output the 

value as a probability value, like 0.6, indicating the sample might belong to the 

positive class. On the other hand, three neurons are required for three-class 

classification, with each neuron representing one class. The output of the layer 

aligns with the one-hot labelling used in this study, where the output of a 
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predicted sample will be (0.55, 0.4, 0.05), where the highest value indicates the 

prediction of the model; in this case, it is the class with value 0. 

By adding the final dense layer to the models, they were ready for 

model training and evaluation. 

 

 
Figure 3.9.1: Model Architecture 

 

 Figure 3.9.1 shows the overall model architecture used in this study. 

Base models are ResNet50, Xception, or InceptionV3, with a pooling layer 

using GlobalAveragePooling2D and an output layer which is a fully connected 

layer that was trained on classification tasks. 

 

3.10 Model Evaluation 

A graph illustrating the training and validation losses was plotted to monitor the 

models' performance throughout the training phase. The study utilised the 

pyplot functions provided in the Matplotlib library to plot a line chart to 

visualise the information required. A line chart provides a simple and 

straightforward method to monitor losses during the training phase. 

This study adopted the strategy of saving the model at every epoch, 

providing better control over the training process. This approach provided the 

flexibility to load the model from a particular epoch if indications of overfitting 

emerged. Overfitting is indicated by the rise in validation loss while training 

loss continues to decrease. The approach ensured that the model's generalisation 

capabilities are effectively managed and maintained. 
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Then, the results of the performance of the deep learning models on the 

testing set were evaluated using a confusion matrix, precision, recall, F1 score, 

and accuracy. 

 

Table 3.10.1: Evaluation Metrics Description 

Metric Description 

Confusion Matrix A table that displays the number of correct and 

incorrect predictions made by the models on the given 

dataset. 

Accuracy (Main) Percentage of correctly predicted samples in the total 

dataset. 

Precision Percentage of correctly predicted positive samples out 

of all positive predictions. 

Recall (Secondary) Percentage of correctly predicted positive samples out 

of all actual positive samples. 

F1 score The harmonic mean of precision and recall, which 

combines both metrics into a single value.  

 

Table 3.10.2: Confusion Matrix for Binary Classification 

Predicted Good Predicted Defected 

Actual Good TN FP 

Actual Defected FN TP 

where 

True Positive (TP) = Correctly predicted a defected PCB 

True Negative (TN)= Correct prediction a good PCB 

False Negative (FN)= Incorrectly predicted a defected PCB as good PCB 

False Positive (FP)= Incorrectly predicted a good PCB as defected PCB 
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Table 3.10.3: Confusion Matrix for Three-Class Classification 

Predicted 

Good 

Predicted 

Epoxy 

Predicted 

FM 

Actual Good TP1 a b FN1 = a + 
b 

Actual 

Epoxy 

c TP2 d FN2 = c + 
d 

Actual FM e f TP3 FN3 = e + 
f 

FP1 = c + e FP2 = a + f FP3 = b + d 

 

where 

TP1 = Correctly predicted good PCBs 

TP2 = Correctly predicted defected PCBs with ‘Epoxy on Die’ defect 

TP3 = Correctly predicted defected PCBs with ‘FM on Die’ defect 

FP1 = Incorrectly predicted samples as good PCB but the samples are from other 

two classes 

FP2 = Incorrectly predicted samples as PCB with ‘Epoxy on Die’ defect but the 

samples are from other two classes 

FP3 = Incorrectly predicted samples as PCB with ‘FM on Die’ defect but the 

samples are from other two classes 

FN1 = Incorrectly predicted samples as other two classes but the samples are 

good PCBs  

FN2 = Incorrectly predicted samples as other two classes but the samples are 

defected PCBs with ‘Epoxy on Die’ defect 

FN3 = Incorrectly predicted samples as other two classes but the samples are 

defected PCBs with ‘FM on Die’ defect 
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The formulas for accuracy, weighted recall, weighted precision, and weighted 

F1-score are: 

 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑇𝑇𝑇𝑇1+𝑇𝑇𝑇𝑇2+𝑇𝑇𝑇𝑇3
𝑇𝑇𝑇𝑇1+𝑇𝑇𝑇𝑇2+𝑇𝑇𝑇𝑇3+𝐹𝐹𝐹𝐹1+𝐹𝐹𝐹𝐹2+𝐹𝐹𝐹𝐹3+𝐹𝐹𝐹𝐹1+𝐹𝐹𝐹𝐹2+𝐹𝐹𝐹𝐹3

  (3.10.1) 

 

 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ∑ 𝑇𝑇𝑇𝑇3
𝑖𝑖=1 𝑖𝑖

∑ (𝑇𝑇𝑇𝑇3
𝑖𝑖=1 𝑖𝑖+𝐹𝐹𝐹𝐹𝐹𝐹)

  (3.10.2) 

 

 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ∑ 𝑇𝑇𝑇𝑇3
𝑖𝑖=1 𝑖𝑖

∑ (𝑇𝑇𝑇𝑇3
𝑖𝑖=1 𝑖𝑖+𝐹𝐹𝐹𝐹𝐹𝐹)

  (3. 10.3) 

 

 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 (3. 10.4) 

where 

TPi = True Positives for class i 

TNi = True Negatives for class i 

FPi = False Positives for class i 

i = 1,2,3  

 

 During model evaluation, the confusion matrix showed the prediction 

on each testing sample, providing a better understanding of the model's 

performance. Confusion matrix is a useful tools to help visualising the outcome 

of the prediction which can assist the study in analysing and understanding the 

model’s behaviour. The study used the heatmap function in Seaborn library to 

create the confusion matrix. 

The results obtained through confusion matrix were used to calculate 

the accuracy, weighted recall, weighted precision, and weighted F1-score. 

Weighted metrics were used due to the class imbalance issues in the dataset, in 

which the calculated metrics for each class were assigned a weight to them to 

emphasise the minority classes without being overwhelmed by the majority 

class. Accuracy served as the primary metric, reflecting the overall correctness 

of predictions, and recall served as the secondary metric. While accuracy 

measured the overall percentage of correct predictions, recall specifically 

assessed the model's capability to accurately identify positive instances within 
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a dataset, which in our context are the defective images, thereby emphasising 

its performance in capturing all relevant information. This dual evaluation 

approach ensured a balanced assessment of our model's effectiveness, 

particularly in tasks where the correct identification of specific instances was 

paramount.  

 

3.11 Model Comparison 

 

 
Figure 3.11.1: Workflow Model Evaluation and Comparison 

 

The approach shown in Figure 3.11.1 was used to select the best-performing 

model of the same base model. The study loaded ten models with the lowest 

validation loss during the training and had them predict the testing data. The 

model that achieved the highest accuracy was selected for final model 

comparison. 

For final model comparison, the study compared the best-performing 

ResNet50, best-performing Xception, and best-performing InceptionV3 and 

determined the model with the highest accuracy as the proposed model for the 

particular defect type. 
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3.12 Software Environment 

The programming language used in this study was Python 3. This study used 

ResNet50, InceptionV3, and Xception, which are pre-trained deep learning 

models available in the Keras deep learning library.   

 This study utilised Compute Unified Device Architecture (CUDA) for 

model training. Using CUDA for this study's model training significantly 

improved performance and efficiency. CUDA, developed by NVIDIA, allowed 

the study to leverage the computational power of GPU (Graphics Processing 

Unit) for our deep learning tasks. This choice accelerated our model training 

process, resulting in faster training times than traditional CPUs. The study 

carefully selected a compatible NVIDIA GPU and ensured seamless integration 

with the deep learning frameworks, such as TensorFlow. This strategic decision 

led to more efficient model training and optimised resource utilisation. 

The integrated development environment (IDE) used was Spyder and 

Jupyter Notebook. Spyder was used to write code for data preprocessing, data 

augmentation, data labelling, and data splitting. Spyder was used due to its 

support of the IPython console, which allowed for interactive computing and 

data exploration. Spyder allowed the study to execute code line by line, view 

results, and inspect variables in real time. This feature was very helpful in 

preparing the data for model training. On the other hand, Jupyter Notebook was 

used for hyperparameter tuning, model evaluation, and model comparison. 

Jupyter Notebook allowed the study to visualise the data easily and document 

the entire process, making it easier to take control of the model training process. 

With its documentation feature, the results could be referred back at anytime.   
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Table 3.12.1: Software Specifications 

Package Version 

Python 3.9.17 

Imutils 0.5.4 

OpenCV 4.7.0 

NumPy 1.24.2 

TensorFlow 2.11.0 

Matplotlib 3.7.0 

Keras 2.10.0 

Scikit-learn 1.3.0 

Seaborn 0.12.2 

Scikeras 0.11.0 

Pandas 1.5.3 

 

The versions of each Python library used are listed in Table 3.12.1. 

Imutils and OpenCV were responsible for image preprocessing in this study. 

These two libraries provide useful and convenient functions to simplify the 

image preprocessing step.   

Meanwhile, NumPy and Pandas were required to manipulate data. 

NumPy provides a high-performance multidimensional array object called 

‘ndarray’. NumPy is valuable for numerical and array-based operations, making 

it essential for computer vision and machine learning tasks. On the other hand, 

Pandas is useful for handling structured data, making it a good choice for data 

labelling and organisation in these projects. These two libraries were used to 

save images and contours in an array for operations while also enabling me to 

label the data and export the labels into an Excel file. 

Seaborn and Matplotlib were used to visualise graphs and the 

confusion matrix. TensorFlow, Scikit-learn, and Scikeras are libraries that 

provide convenient functions such as pre-trained deep learning models and data 

splitting, which were the main libraries that contributed to the success of the 

project. 
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3.13 Hardware Environment 

The hardware used in this study was an Acer Nitro 5 AN515-57 gaming laptop. 

The hardware specifications are shown in Table 3.13.1. 

 

Table 3.13.1: Hardware Specifications 

Hardware Component Description 

CPU 11th Gen Intel(R) Core(TM) i5-11400H @ 2.70GHz   

2.69 GHz 

GPU NVIDIA GeForce RTX 3060 

RAM 24GB DDR4 @ 2933MHz 

Storage 2 x 512 GB NVMe SSD  

Operating System Windows 11 Pro 64-bit, x64 based processor  
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CHAPTER 4 

3 RESULTS & DISCUSSION 

 

4.1 Overview 

The main goal of this study is to propose deep learning models that can detect 

epoxy-related defects on the PCB of wireless earbuds with high accuracy using 

a transfer learning approach. ResNet50, Xception, and InceptionV3 from the 

Keras library were selected for this defect detection task. First, hyperparameter 

tuning was done using Grid Search CV. Then, the hyperparameters obtained 

were used to train the deep learning models. After that, the performance of the 

deep learning models was evaluated by predicting the testing data set. Finally, 

the model that achieved the highest accuracy for each defect was selected. The 

main evaluation metric used is accuracy, followed by recall. 

 

4.2 Grid Search Result 

Hyperparameter tuning was done using Grid Search CV with three cross-

validations. The grid search was mainly used to determine the best combination 

of hyperparameters, which will be used to train the models. In grid search, the 

learning rate (0.0001, 0.001, and 0.01), optimiser (SGD, RMSprop, Nadam, and 

Adam), and the number of epochs (10, 20, 50) were used for defect types 1 and 

2. There were a total of 36 combinations of hyperparameters. 

For Detect Type 3, some hyperparameter values were discarded to 

reduce the time needed for grid search. By filtering out hyperparameter values 

that always achieved a low mean score in the grid search of defect type 1 and 

defect type 2, learning rate (0.0001, 0.001, 0.01), optimiser (RMSprop, Nadam, 

and Adam), and number of epochs (20, 50) were used. There were a total of 18 

combinations of hyperparameters.  
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4.2.1 Defect Type 1 – Epoxy Overflow on Die 

1. ResNet50 

Table 4.2.1: ResNet50 Grid Search Result on Defect Type 1 

# Epochs Optimiser Learning Rate Mean Score 

1 50 RMSprop 0.01 0.969591 

2 50 Nadam 0.01 0.969201 

3 20 Adam 0.01 0.967251 

4 50 Adam 0.001 0.966082 

5 50 Adam 0.01 0.966082 

6 50 Nadam 0.001 0.965302 

7 20 Nadam 0.01 0.964912 

8 50 RMSprop 0.001 0.964522 

9 20 RMSprop 0.01 0.963743 

10 20 Adam 0.001 0.963353 

11 20 RMSprop 0.001 0.962573 

12 20 Nadam 0.001 0.962573 

13 10 Adam 0.01 0.961793 

14 10 Nadam 0.01 0.960234 

15 10 Nadam 0.001 0.959844 

16 10 RMSprop 0.001 0.959064 

17 20 SGD 0.01 0.956335 

18 10 RMSprop 0.01 0.953606 

19 10 Adam 0.001 0.953606 

20 10 SGD 0.01 0.953216 

21 50 SGD 0.01 0.952437 

22 50 Adam 0.0001 0.951267 

23 50 RMSprop 0.0001 0.950487 

24 50 Nadam 0.0001 0.949318 

25 50 SGD 0.001 0.937232 

26 20 RMSprop 0.0001 0.933723 

27 20 Nadam 0.0001 0.930214 

28 20 Adam 0.0001 0.928265 
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29 20 SGD 0.001 0.913450 

30 10 RMSprop 0.0001 0.904094 

31 10 Nadam 0.0001 0.901365 

32 10 Adam 0.0001 0.892788 

33 10 SGD 0.001 0.887329 

34 50 SGD 0.0001 0.831969 

35 10 SGD 0.0001 0.777388 

36 20 SGD 0.0001 0.776218 

 

2. Xception 

Table 4.2.2: Xception Grid Search Result on Defect Type 1 

# Epochs Optimiser Learning Rate Mean Score 

1 50 Adam 0.001 0.958285 

2 50 Nadam 0.001 0.957505 

3 20 Adam 0.001 0.954386 

4 50 Nadam 0.01 0.952827 

5 50 RMSprop 0.001 0.950487 

6 20 Nadam 0.001 0.950097 

7 20 RMSprop 0.001 0.947758 

8 50 Adam 0.01 0.945809 

9 50 RMSprop 0.01 0.944639 

10 10 Nadam 0.001 0.943860 

11 20 Nadam 0.01 0.940741 

12 20 Adam 0.01 0.938402 

13 10 Adam 0.001 0.938402 

14 50 SGD 0.01 0.935283 

15 10 RMSprop 0.001 0.933333 

16 50 SGD 0.001 0.933333 

17 50 RMSprop 0.0001 0.932554 

18 50 Nadam 0.0001 0.931774 

19 20 RMSprop 0.01 0.930604 

20 50 Adam 0.0001 0.928655 
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21 10 RMSprop 0.01 0.925146 

22 20 SGD 0.01 0.924366 

23 20 SGD 0.001 0.920468 

24 10 Adam 0.01 0.914620 

25 20 RMSprop 0.0001 0.911111 

26 10 Nadam 0.01 0.909552 

27 50 SGD 0.0001 0.902924 

28 20 Nadam 0.0001 0.900195 

29 10 SGD 0.001 0.899805 

30 20 Adam 0.0001 0.899025 

31 10 RMSprop 0.0001 0.873294 

32 10 Adam 0.0001 0.867446 

33 10 Nadam 0.0001 0.863158 

34 20 SGD 0.0001 0.862768 

35 10 SGD 0.01 0.848343 

36 10 SGD 0.0001 0.846004 

 

3. InceptionV3 

Table 4.2.3: InceptionV3 Grid Search Result on Defect Type 1 

# Epochs Optimiser Learning Rate Mean Score 

1 20 Nadam 0.001 0.951333 

2 50 Adam 0.001 0.951333 

3 50 Adam 0.01 0.951 

4 20 RMSprop 0.001 0.949 

5 20 Nadam 0.01 0.948333 

6 20 Adam 0.001 0.948333 

7 20 RMSprop 0.01 0.943 

8 10 Nadam 0.01 0.940666 

9 50 Nadam 0.0001 0.940333 

10 50 RMSprop 0.001 0.936 

11 50 Adam 0.0001 0.935333 

12 10 Nadam 0.001 0.935 
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13 10 RMSprop 0.001 0.934 

14 50 RMSprop 0.0001 0.933667 

15 50 Nadam 0.001 0.933 

16 50 SGD 0.0001 0.921667 

17 50 Nadam 0.01 0.920333 

18 10 SGD 0.01 0.919 

19 10 RMSprop 0.01 0.916333 

20 20 RMSprop 0.0001 0.916 

21 20 Adam 0.0001 0.915667 

22 20 SGD 0.001 0.914667 

23 20 SGD 0.01 0.913 

24 20 SGD 0.0001 0.911333 

25 20 Nadam 0.0001 0.910667 

26 50 RMSprop 0.01 0.908333 

27 10 SGD 0.001 0.9 

28 20 Adam 0.01 0.897 

29 50 SGD 0.01 0.895667 

30 10 RMSprop 0.0001 0.890667 

31 10 Nadam 0.0001 0.885333 

32 50 SGD 0.001 0.884333 

33 10 Adam 0.0001 0.883 

34 10 SGD 0.0001 0.880667 

35 10 Adam 0.01 0.803333 

36 10 Adam 0.001 0.802667 

 

4.2.2 Defect Type 2 – Epoxy Overflow on LED 

1. ResNet50 

Table 4.2.4: ResNet50 Grid Search Result on Defect Type 2 

# Epochs Optimiser Learning Rate Mean Score 

1 50 RMSprop 0.01 0.969068 

2 50 Nadam 0.01 0.968313 

3 50 Adam 0.001 0.968310 
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4 20 Nadam 0.01 0.967937 

5 20 Adam 0.01 0.967934 

6 50 Adam 0.01 0.967183 

7 50 RMSprop 0.001 0.965295 

8 20 RMSprop 0.01 0.964917 

9 50 Nadam 0.001 0.964917 

10 20 Nadam 0.001 0.962654 

11 10 Nadam 0.01 0.961526 

12 10 Adam 0.01 0.961523 

13 10 RMSprop 0.01 0.960013 

14 20 Adam 0.001 0.959263 

15 20 RMSprop 0.001 0.956620 

16 10 Nadam 0.001 0.955488 

17 50 Nadam 0.0001 0.953601 

18 10 Adam 0.001 0.953226 

19 50 SGD 0.01 0.952093 

20 50 Adam 0.0001 0.952092 

21 50 RMSprop 0.0001 0.951715 

22 10 RMSprop 0.001 0.950586 

23 20 SGD 0.01 0.944931 

24 10 SGD 0.01 0.935497 

25 50 SGD 0.001 0.932476 

26 20 Nadam 0.0001 0.930592 

27 20 RMSprop 0.0001 0.929841 

28 20 Adam 0.0001 0.926821 

29 20 SGD 0.001 0.910981 

30 10 Adam 0.0001 0.889099 

31 10 RMSprop 0.0001 0.887593 

32 10 Nadam 0.0001 0.880798 

33 10 SGD 0.001 0.861941 

34 50 SGD 0.0001 0.837797 

35 20 SGD 0.0001 0.800824 
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36 10 SGD 0.0001 0.781593 

 

2. Xception 

Table 4.2.5: Xception Grid Search Result on Defect Type 2 

# Epochs Optimiser Learning Rate Mean Score 

1 20 Adam 0.01 0.953602 

2 20 Adam 0.001 0.945304 

3 20 Nadam 0.001 0.944925 

4 50 Nadam 0.001 0.944545 

5 50 Adam 0.01 0.944168 

6 50 Adam 0.001 0.941524 

7 50 RMSprop 0.001 0.940773 

8 50 Nadam 0.01 0.940404 

9 10 Nadam 0.01 0.940020 

10 10 Adam 0.001 0.939270 

11 50 RMSprop 0.0001 0.938893 

12 10 Nadam 0.001 0.937759 

13 10 RMSprop 0.001 0.935497 

14 50 Adam 0.0001 0.934362 

15 50 Nadam 0.0001 0.933609 

16 20 RMSprop 0.001 0.933234 

17 50 RMSprop 0.01 0.930580 

18 50 SGD 0.001 0.923427 

19 20 Nadam 0.01 0.920042 

20 10 RMSprop 0.01 0.913221 

21 20 RMSprop 0.01 0.912482 

22 20 RMSprop 0.0001 0.910225 

23 20 SGD 0.001 0.907584 

24 20 SGD 0.01 0.905307 

25 20 Nadam 0.0001 0.903814 

26 20 Adam 0.0001 0.901175 

27 10 SGD 0.001 0.896648 
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28 50 SGD 0.0001 0.891366 

29 50 SGD 0.01 0.889484 

30 10 RMSprop 0.0001 0.884576 

31 10 Adam 0.0001 0.883819 

32 10 Adam 0.01 0.875167 

33 20 SGD 0.0001 0.866465 

34 10 SGD 0.01 0.858891 

35 10 Nadam 0.0001 0.855910 

36 10 SGD 0.0001 0.847610 

 

3. InceptionV3 

Table 4.2.6: InceptionV3 Grid Search Result on Defect Type 2 

# Epochs Optimiser Learning Rate Mean Score 

1 50 Adam 0.001 0.955489 

2 50 Nadam 0.001 0.950584 

3 50 RMSprop 0.01 0.950208 

4 50 Adam 0.01 0.948700 

5 50 RMSprop 0.001 0.948319 

6 20 Adam 0.001 0.947569 

7 50 Nadam 0.01 0.944927 

8 20 Adam 0.01 0.940781 

9 20 Nadam 0.001 0.939643 

10 50 Nadam 0.0001 0.935493 

11 50 RMSprop 0.0001 0.935122 

12 10 Adam 0.01 0.931351 

13 50 Adam 0.0001 0.929835 

14 50 SGD 0.01 0.929462 

15 10 Nadam 0.001 0.929090 

16 10 RMSprop 0.01 0.924552 

17 10 RMSprop 0.001 0.923428 

18 50 SGD 0.0001 0.918518 

19 20 RMSprop 0.001 0.916252 



80 
 

80 

 

20 50 SGD 0.001 0.914379 

21 20 RMSprop 0.0001 0.913619 

22 20 RMSprop 0.01 0.911713 

23 20 Adam 0.0001 0.911351 

24 20 Nadam 0.0001 0.910221 

25 10 Nadam 0.01 0.901532 

26 20 SGD 0.01 0.898149 

27 10 Adam 0.001 0.895526 

28 20 Nadam 0.01 0.888337 

29 20 SGD 0.0001 0.886841 

30 10 SGD 0.01 0.883823 

31 10 SGD 0.001 0.881934 

32 10 Adam 0.0001 0.878914 

33 20 SGD 0.001 0.872877 

34 10 RMSprop 0.0001 0.869857 

35 10 Nadam 0.0001 0.864583 

36 10 SGD 0.0001 0.844209 

 

4.2.3 Defect Type 3 – Epoxy on Die + FM on Die 

1. ResNet50 

Table 4.2.7: ResNet50 Grid Search Result on Defect Type 3 

# Epochs Optimiser Learning Rate Mean Score 

1 50 Adam 0.01 0.941511 

2 20 Adam 0.01 0.934202 

3 50 Nadam 0.01 0.933391 

4 50 RMSprop 0.01 0.930948 

5 50 Adam 0.001 0.926885 

6 50 Nadam 0.001 0.924456 

7 20 RMSprop 0.01 0.924444 

8 20 Nadam 0.01 0.924442 

9 50 RMSprop 0.001 0.918788 

10 20 Adam 0.001 0.918766 
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11 20 Nadam 0.001 0.915514 

12 20 RMSprop 0.001 0.896000 

13 50 RMSprop 0.0001 0.869207 

14 50 Nadam 0.0001 0.853773 

15 50 Adam 0.0001 0.848897 

16 20 RMSprop 0.0001 0.790398 

17 20 Nadam 0.0001 0.775792 

18 20 Adam 0.0001 0.759547 

 

2. Xception 

Table 4.2.8: Xception Grid Search Result on Defect Type 3 

# Epochs Optimiser Learning Rate Mean Score 

1 20 Adam 0.01 0.906575 

2 50 Adam 0.01 0.900097 

3 50 Adam 0.001 0.896004 

4 20 Adam 0.001 0.873272 

5 50 Nadam 0.001 0.871667 

6 20 Nadam 0.001 0.861088 

7 50 RMSprop 0.001 0.846504 

8 50 RMSprop 0.0001 0.823714 

9 50 Nadam 0.0001 0.822903 

10 50 Adam 0.0001 0.810727 

11 20 RMSprop 0.001 0.809127 

12 50 RMSprop 0.01 0.800269 

13 20 Nadam 0.01 0.793749 

14 50 Nadam 0.01 0.784068 

15 20 Nadam 0.0001 0.770113 

16 20 RMSprop 0.0001 0.769292 

17 20 Adam 0.0001 0.767670 

18 20 RMSprop 0.01 0.741814 
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3. InceptionV3 

Table 4.2.9: InceptionV3 Grid Search Result on Defect Type 3 

# Epochs Optimiser Learning Rate Mean Score 

1 20 Adam 0.001 0.874892 

2 50 Adam 0.001 0.862671 

3 20 Nadam 0.001 0.849728 

4 50 Adam 0.0001 0.834273 

5 20 RMSprop 0.01 0.831872 

6 50 RMSprop 0.0001 0.831836 

7 50 Nadam 0.0001 0.826163 

8 20 Nadam 0.01 0.815552 

9 50 RMSprop 0.01 0.806739 

10 20 Adam 0.01 0.803515 

11 50 RMSprop 0.001 0.787217 

12 50 Adam 0.01 0.785469 

13 20 RMSprop 0.0001 0.779034 

14 50 Nadam 0.001 0.774273 

15 20 Nadam 0.0001 0.770908 

16 20 Adam 0.0001 0.764435 

17 50 Nadam 0.01 0.725648 

18 20 RMSprop 0.001 0.706975 
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4.2.4 Grid Search Summary 

The optimal hyperparameters were summarised in Table 4.2.10. These 

hyperparameters were used in the model training.  

 

Table 4.2.10: Summary of Optimal Hyperparameters 

Defect 

Type 

Model Epoch Learning 

Rate 

Optimiser Loss  

Function 

Batch 

Size 

 

1 

ResNet50 50 0.01 RMSprop 

 

Binary 

Cross-

entropy 16 

Xception 50 0.001 Adam 

InceptionV3 20 0.001 Nadam 

 

2 

ResNet50 50 0.01 RMSprop 

Xception 20 0.01 Adam 

InceptionV3 50 0.001 Nadam 

 

3 

ResNet50 50 0.01 Adam Categorical 

Cross-

entropy 

Xception 20 0.01 Adam 

InceptionV3 20 0.001 Adam 

 

 The results show that Adam optimiser appears more frequently 

selected as the optimal choice across different defect types and models. 

However, the learning rates for these optimisers differ. The number of epochs 

also varies across different configurations, suggesting that the convergence rate 

and training dynamics differ for each model and defect type. We can see that 

RMSprop and Nadam were selected as the optimisers for defect types 1 and 2, 

which are binary classification tasks with a larger dataset size, compared to 

defect type 3, which is a multi-class classification task with a smaller dataset 

size. All three models selected Adam as the optimiser in defect type 3, indicating 

Adam is suitable for small dataset sizes or multi-class classification. 

By looking at the differences in hyperparameters for the same model 

on different defect types, it was shown that it is crucial to consider the specific 

characteristics of the dataset and problem when selecting hyperparameters. 

What works well for one defect type or model may not necessarily be the best 

choice for another. These results highlight the importance of hyperparameter 
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tuning and the need to experiment with various combinations to find the optimal 

setup for each specific problem. 

 

4.3 Model Evaluation  

The deep learning models were evaluated on the same distribution to ensure a 

fair comparison between the models.  

The deep learning models underwent two comparison stages: the first 

stage was after training to select the best-performing model from the same base 

model, and the second stage was after selecting the best-performing model from 

a different base model on the same defect type. Then, the study compared the 

performance of the models from different base models. The number of images 

in testing dataset of each defect type are shown in Table 4.3.1. 

 

Table 4.3.1: Number of Images in each Testing Dataset 

Defect Type Number of Images in Testing Dataset 

1. Epoxy Overflow on Die 481 

2. Epoxy Overflow on LED 397 

3. Epoxy on Die + FM on Die 168 

 

The results in the following sections rank the models at epoch from the 

lowest validation loss to the highest validation loss. In the case where the 

accuracy of the models was tallied, this study selected a model with a higher 

ranking or a lower validation loss as it indicated better generalisation ability. 

For comparison between different base models, the study selected the 

model with the highest accuracy, and if the accuracy of the models was equal, 

the model with a higher recall was selected.  

Even though the study adopted the approach of loading models based 

on low validation losses and this strategy did not directly rely on monitoring the 

convergence rate, it analysed the training and validation losses during training 

to potentially gain insights into the model behaviour and hyperparameter tuning, 

contributing to a deeper understanding of hyperparameter tuning and deep 

learning principles. 
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4.3.1 Defect Type 1 – Epoxy Overflow on Die 

1. ResNet50 

 

 
Figure 4.3.1:  ResNet50 Training and Validation Loss Graph on Defect Type 1 

 

Table 4.3.2: Accuracy of ResNet50 for Defect Type 1 

Ranking Epoch Decision Threshold Accuracy 

1 22 0.80 0.931 

2 7 0.20 0.958 

3 28 0.20 0.971 

4 34 0.20 0.961 

5 21 0.35 0.973 

6 5 0.20 0.969 

7 32 0.20 0.946 

8 19 0.20 0.965 

9 47 0.20 0.963 

10 40 0.20 0.969 
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2. Xception 

 

 
Figure 4.3.2: Xception Training and Validation Loss Graph on Defect Type 1 

 

Table 4.3.3: Accuracy of Xception for Defect Type 1 

Ranking Epoch Decision Threshold Accuracy 

1 39 0.30 0.969 

2 35 0.50 0.965 

3 31 0.45 0.963 

4 47 0.60 0.961 

5 44 0.35 0.973 

6 50 0.40 0.973 

7 38 0.60 0.969   

8 40 0.40 0.973   

9 49 0.35 0.971 

10 30 0.45 0.963 
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3. InceptionV3 

 

 
Figure 4.3.3: InceptionV3 Training and Validation Loss Graph  

on Defect Type 1 

 

Table 4.3.4: Accuracy of InceptionV3 for Defect Type 1 

Ranking Epoch Decision Threshold Accuracy 

1 20 0.75 0.954 

2 19 0.55 0.958 

3 13 0.55 0.963  

4 11 0.55 0.963 

5 17 0.20 0.958 

6 12 0.75 0.958 

7 18 0.75 0.958  

8 6 0.75 0.958 

9 5 0.65 0.950 

10 15 0.80 0.950 
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Table 4.3.5: Comparison of Models for Defect Type 1 

Models Accuracy Recall Precision F1-Score 

ResNet50 0.973 0.967 0.930 0.948 

Xception 0.973 0.937 0.959 0.948 

InceptionV3 0.963 0.941 0.911 0.926 

 

Table 4.3.6: Confusion Matrix for Defect Type 1 

ResNet50 

 

Xception 
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InceptionV3 

 
  

 Figures 4.3.1, 4.3.2, and 4.3.3 show the training loss and validation loss 

of the models during training for defect type 1. For ResNet50, there were spikes 

in the validation loss frequently. The spikes indicated that the model might have 

been overfitted during the training process. Xception had a steady and smooth 

convergence, with inversely proportional training and validation losses, which 

is a positive sign. It suggested that the model is learning well and generalising 

to the validation data effectively. InceptionV3 also had a steady and smooth 

convergence except for a huge spike of validation loss for a few epochs. Despite 

the spikes in validation loss, all three models showed a good convergence rate 

on learning the dataset, which indicated that the models were not overfitting and 

were converging towards an optimal state. 

By referring to Table 4.3.5, all three models achieved high accuracy in 

detecting defect type 1, indicating that they are generally good at making correct 

predictions. InceptionV3 achieved the lowest accuracy among the three models, 

scoring only 96.3%. ResNet50 and Xception achieved the same accuracy of 

97.3%, but ResNet50 scored a recall of 96.7%, and Xception scored a recall of 

93.7%. ResNet50 was the best-performing model for defect type 1. 
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4.3.2 Defect Type 2 – Epoxy Overflow on LED 

1. ResNet50 

 

 
Figure 4.3.4: ResNet50 Training and Validation Loss Graph for Defect Type 2 

 

Table 4.3.7: Accuracy of ResNet50 for Defect Type 2 

Ranking Epoch Decision Threshold Accuracy 

1 13 0.80 0.972 

2 18 0.55 0.977 

3 28 0.80 0.970 

4 23 0.80 0.970 

5 14 0.80 0.967 

6 40 0.80 0.975 

7 41 0.80 0.972 

8 21 0.80 0.972 

9 45 0.80 0.972 

10 7 0.80 0.972 
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2. Xception 

 

 
Figure 4.3.5: Xception Training and Validation Loss Graph for Defect Type 2 

 

Table 4.3.8: Accuracy of Xception for Defect Type 2 

Ranking Epoch Decision Threshold Accuracy 

1 6 0.80 0.9723 

2 5 0.50 0.9748 

3 8 0.80 0.9748 

4 3 0.60 0.9723 

5 10 0.80 0.9748 

6 11 0.80 0.9748 

7 4 0.50 0.9748 

8 16 0.50 0.9748 

9 15 0.75 0.9798 

10 1 0.75 0.9798 
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3. InceptionV3 

 

 
Figure 4.3.6: InceptionV3 Training and Validation Loss Graph  

for Defect Type 2 

 

Table 4.3.9: Accuracy of InceptionV3 for Defect Type 2 

Ranking Epoch Decision Threshold Accuracy 

1 36 0.60 0.965 

2 35 0.65 0.965 

3 49 0.45 0.967 

4 31 0.80 0.962 

5 41 0.80 0.967 

6 33 0.80 0.967 

7 40 0.75 0.965 

8 21 0.80 0.975 

9 42 0.65 0.977 

10 16 0.65 0.970 
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Table 4.3.10: Comparison of Models for Defect Type 2 

Models Accuracy Recall Precision F1-Score 

ResNet50 0.977 0.926 0.781 0.847 

Xception 0.980 0.852 0.852 0.852 

InceptionV3 0.977 0.815 0.846 0.830 

 

Table 4.3.11: Confusion Matrix for Defect Type 2 

ResNet50 

 

Xception 
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InceptionV3 

 
  

 Figures 4.3.4, 4.3.5, and 4.3.6 show the training loss and validation loss 

of the models during training for defect type 2. For ResNet50, the spikes in 

validation loss were more serious than in training for defect type 1. Besides, the 

validation loss slowly increased towards the later epochs in the training, 

showing that ResNet50 was overfitting. The same goes for Xception, where it 

also faced the issue of spiked validation losses, which indicated that the model 

was not converging optimally. InceptionV3 showed the best convergence rate 

in validation loss among the models, suggesting that the model has good 

generalisation ability. 

 All three models accurately detected defect type 2: epoxy overflow on 

the LED. ResNet50 and InceptionV3 achieved the same accuracy of 97.7%. 

Xception outperformed the other two models by achieving an accuracy score of 

98.0%. We can see that Xception only had eight wrong predictions in 397 test 

samples. Xception is the best-performing model for defect type 2. 
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4.3.3 Defect Type 3 – Epoxy on Die + FM on Die 

1. ResNet50 

 

 
Figure 4.3.7: ResNet50 Training and Validation Loss Graph for Defect Type 3 

 

Table 4.3.12: Accuracy of ResNet50 for Defect Type 3 

Ranking Epoch Accuracy 

1 4 0.893 

2 28 0.935 

3 13 0.923 

4 27 0.917 

5 25 0.935 

6 26 0.917 

7 7 0.905 

8 33 0.940 

9 23 0.929 

10 11 0.929 
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2. Xception 

 
Figure 4.3.8: Xception Training and Validation Loss Graph for Defect Type 3 

 

Table 4.3.13: Accuracy of Xception for Defect Type 3 

Ranking Epoch Accuracy 

1 4 0.875 

2 6 0.863 

3 16 0.881 

4 2 0.881 

5 19 0.887 

6 13 0.887 

7 20 0.863 

8 17 0.905 

9 15 0.905 

10 12 0.893 
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3. InceptionV3 

 

 
Figure 4.3.9: InceptionV3 Training and Validation Loss Graph 

for Defect Type 3 

 

Table 4.3.14: Accuracy of InceptionV3 for Defect Type 3 

Ranking Epoch Accuracy 

1 15 0.929 

2 19 0.905 

3 18 0.887 

4 14 0.881 

5 20 0.845 

6 4 0.851 

7 7 0.851 

8 3 0.792 

9 12 0.887 

10 13 0.798 
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Table 4.3.15: Comparison of Models for Defect Type  

Models Accuracy Recall Precision F1-Score 

ResNet50 0.940 0.940 0.947 0.942 

Xception 0.905 0.905 0.896 0.897 

InceptionV3 0.929 0.929 0.931 0.923 

 

Table 4.3.16: Confusion Matrix for Defect Type 3 

ResNet50 

 

Xception 
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InceptionV3 

 
 

  

Figures 4.3.7, 4.3.8, and 4.3.9 show the training loss and validation loss 

of the models during training for defect type 3. The spike in validation loss for 

Xception and InceptionV3 indicated that the model was not converging well and 

might need adjustments on hyperparameters. On the other hand, ResNet50 had 

a stabilised line of validation loss starting around epoch 25, showing that the 

model was learning effectively without overfitting. 

All three models accurately detected defect type 3: epoxy and FM on 

the die. Xception had the lowest accuracy of 90.5%, and InceptionV3 ranked 

second with 92.9%. ResNet50 scored the highest accuracy of 94.0%. From 

Table 4.3.16, we can see that only ResNet50 could correctly predict all ‘Epoxy’ 

class samples, while the other two models incorrectly predicted samples from 

other classes as ‘Epoxy’, further proving ResNet50 as the most robust model 

among the three. 
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4.4 Model Evaluation Summary 

 

Table 4.4.1: Model Evaluation Summary 

Defect Type Models Accuracy Recall Precision F1-Score 

1 

ResNet50 0.973 0.967 0.930 0.948 

Xception 0.973 0.937 0.959 0.948 

InceptionV3 0.963 0.941 0.911 0.926 

2 

ResNet50 0.977 0.926 0.781 0.847 

Xception 0.980 0.852 0.852 0.852 

InceptionV3 0.977 0.815 0.846 0.830 

3 

ResNet50 0.940 0.940 0.947 0.942 

Xception 0.905 0.905 0.896 0.897 

InceptionV3 0.929 0.929 0.931 0.923 

 

The performance of the nine models is recorded in Table 4.4.1.  

For defect type 1, ResNet50 and Xception both performed 

exceptionally well, with an accuracy of 97.3%. This indicated that they were 

highly reliable in correctly classifying defect type 1. The recall for ResNet50 

was slightly higher at 96.7%, while Xception had a recall of 93.7%. This meant 

that ResNet50 was better at identifying most of the instances of defect type 1. 

Precision for Xception was notably higher at 95.9%, suggesting fewer false 

positives. InceptionV3 also performed well with an accuracy of 96.3% but had 

a slightly lower recall of 94.1% compared to the other two models. As the 

project prioritised accuracy and recall, ResNet50 was the best-performing 

model for defect type 1. 

For defect type 2, Xception achieved the highest accuracy among all 

models and defect types at 98.0%, making it a top choice for defect type 2 

classification when accuracy was paramount. However, its recall was 85.2%, 

indicating that it missed some instances of defect type 2. Despite this, Xception 

maintained a high precision of 85.2%. ResNet50 also delivered strong results, 

with an accuracy of 97.7%, a recall of 92.6%, and a precision of 78.1%. 

InceptionV3 offered a competitive option with an accuracy of 97.7%, a recall of 
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81.5%, and a precision of 84.6%. It struck a balance between accuracy and recall. 

Xception was the best-performing model for defect type 2 due to its highest 

accuracy score of 98.0%. 

For defect type 3, ResNet50 excelled in defect type 3 classification 

with an accuracy of 94.0%. It achieved a high recall of 94.0%, indicating its 

effectiveness in identifying instances of defect type 3. The model also had the 

highest precision of 94.7%, meaning it made fewer false-positive predictions. 

Xception had an accuracy of 90.5%, a recall of 90.5%, and a precision of 89.6%. 

It provided consistent results, but with slightly lower accuracy. Inception V3 

achieved an accuracy of 92.9%, a recall of 92.9%, and a precision of 93.1%. It 

performed competitively and balanced accuracy and recall effectively. 

ResNet50 was the best-performing model for defect type 3, with the highest 

accuracy of 94.0%. In short, ResNet50 performed the best for defect types 1 and 

3, while Xception performed the best for defect type 2, and InceptionV3 

performed slightly poorly compared to the other two models.  
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CHAPTER 5 

4 CONCLUSIONS 

 

This study successfully applied transfer learning to three pre-trained deep 

learning models, ResNet50, Xception, and InceptionV3, for epoxy-related 

defect detection on the PCB of wireless earbuds. This study has achieved all 

objectives for which an image dataset was collected and preprocessed to train 

the deep learning models, and the models achieved a minimum of 90% accuracy 

in the defect detection task. After evaluating the models, ResNet50 was the best-

performing model for defect types 1 and 3 with an accuracy of 97.7% and 94.0%, 

respectively, while Xception was the best-performing model for defect type 2 

with an accuracy of 98.0%. This study successfully proposed three deep 

learning models that achieved high accuracy in detecting epoxy-related defects 

on PCBs that were difficult for human eyes to see. The proposed model 

successfully achieved an accuracy of up to 98.0% in detecting epoxy-related 

defects on real-world wireless earbud PCB images. 

This study also addressed the time-cost issue by utilising transfer 

learning in model training to shorten the time taken while achieving high 

accuracy. InceptionV3 was capable of classifying 168 images at a speed of 

0.6913 seconds per image, ResNet50 took 0.6211 seconds, and Xception took 

0.8465 seconds. This means that they can process a batch of 168 images within 

one second demonstrating their efficiency. 

 

5.1 Limitations 

Optimising Hyperparameters 

This study did not fully discover the most optimal hyperparameters for the 

models due to computational resource constraints. In this case, there might be 

better hyperparameter combinations that could further improve the model 

training process and improve the accuracy of defect detection. This limitation 

highlights a future improvement for the study by researching potentially better 

hyperparameter combinations. 
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Class Imbalance Issue 

The class imbalance issue was pervasive throughout the dataset, with the most 

severe imbalance observed in defect type 3. In this category, the 'Good' class 

contained 1,000 images, while the 'Epoxy' class had only 11 images, and the 

'FM' class comprised 111 images. The imbalanced class distribution posed a 

significant challenge to the model's performance, as it struggled to effectively 

learn from the minority classes. For instance, ResNet50 performed the best in 

detecting defect types 1 and 3, achieving an accuracy of 97.3% for defect type 

1 while only having an accuracy of 94.0% for defect type 3. 

 

Decision Threshold 

This study adjusted the decision threshold value for binary classification for 

defect types 1 and 2. While tuning the threshold can enhance model performance 

and accuracy, it also introduces manual intervention and complexity. Ideally, 

models should be capable of self-adaptation without requiring manual threshold 

adjustments, and this limitation highlights an area for potential future 

improvements in automation and model robustness. 

 

5.2 Recommendations for Future Work 

Utilisation of Synthetic Data Generation Technique 

To mitigate the class imbalance issue observed in the dataset, one potential 

avenue for improvement is the application of synthetic data generation 

techniques, particularly using advanced deep learning models such as generative 

adversarial networks (GANs). GANs can generate high-quality synthetic data 

that closely resembles real samples. By introducing synthetic data for minority 

classes, the study can potentially rebalance the dataset and provide the model 

with more examples of underrepresented classes. This can lead to improved 

generalisation and performance, especially for defect type 3, which had a severe 

class imbalance issue. 
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Further Enhancement on Hyperparameters and Model Architecture 

There is potential for further enhancement in model performance through an 

exhaustive hyperparameter tuning process or by exploring modifications to the 

model architecture. A more comprehensive grid search, spanning a wider range 

of hyperparameters and combinations, may help fine-tune the model to discover 

optimal settings. Besides, exploring alternative model architectures or even 

more advanced neural network architectures can open up opportunities to 

capture complex patterns and features within the dataset, potentially leading to 

improved model performance.   

 

Applying the Methodology to Other Types of PCB Defects 

While the current focus of this study has been on epoxy-related defects in PCBs, 

the methodology and techniques developed herein possess a versatile 

applicability that can be extended to other types of defects commonly 

encountered in PCB manufacturing. The robust framework established in this 

study, including data collection, preprocessing, and deep learning model 

development, can be readily adapted to investigate and address a broader 

spectrum of PCB defects. This adaptability highlights the approach's versatility 

and underscores its potential to contribute to comprehensive quality control and 

assurance efforts within the PCB industry. 
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