
i

EPOXY-RELATED DEFECT DETECTION ON PCB OF WIRELESS

EARBUDS WITH TRANSFER LEARNING

YIN KAR KIN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Science

(Honours) Software Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

October 2023

ii

DECLARATION

I hereby declare that this study report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature :

Name : Yin Kar Kin

ID No. : 20UEB05657

Date : 9th September 2023

iii

APPROVAL FOR SUBMISSION

I certify that this study report entitled “EPOXY-RELATED DEFECT

DETECTION ON PCB OF WIRELESS EARBUDS WITH TRANSFER

LEARNING” was prepared by Yin Kar Kin has met the required standard for

submission in partial fulfilment of the requirements for the award of Bachelor

of Science (Honours) Software Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Khor Kok Chin

Date : 14/9/2023

Signature : -

Co-Supervisor : -

Date : -

iv

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2023, Yin Kar Kin. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to my FYP supervisor, Dr. Khor

Kok Chin, for his guidance throughout this project. When I embarked on this

journey, my knowledge of both deep learning and computer vision was limited.

However, Dr. Khor patiently and passionately guided me, providing the

necessary methods to begin my study and delve deep into the world of machine

learning. Without his dedicated efforts, I would not have been able to

successfully complete this project.

In addition, I extend my thanks to ASPL Malaysia for their

collaboration on this project. They generously provided a valuable real-world

PCB dataset and offered technical training that greatly facilitated our research.

Their involvement and resources greatly contributed to the success of my

project, and I am thankful for the opportunity to work alongside such a reputable

organization. I would also like to express my gratitude to my FYP moderator,

Dr. Wong Whee Yen, for her valuable insights, constructive feedback, and

contributions that helped improve the quality of my project.

Lastly, I wish to convey my appreciation to my family and friends who

supported me throughout this project, providing the motivation and strength

needed to overcome challenges and complete this endeavour.

1

1

ABSTRACT

Due to the increased manufacturing of wireless earbuds, the semiconductor

industry's requirement for PCBs has increased drastically. As the manufacturing

of PCBs grows, there is a need to improve the quality control process of the

PCB, especially in the defect detection phase, by filtering out any defective

PCBs and stopping them from being used in the manufacturing of wireless

earbuds. This study evaluated three deep learning models that could perform

defect detection for epoxy-related defects on the PCB of wireless earbuds with

at least 90% accuracy. Transfer learning was applied to three pre-trained image

classification deep learning models: ResNet50, Xception, and InceptionV3. The

models were trained on a real-world PCB dataset provided by ASPL Malaysia

after preprocessing the dataset images using OpenCV. ‘Epoxy Overflow on Die’

and ‘Epoxy Overflow on LED’ defects were detected by ResNet50 with an

accuracy of 97.3% and 94.0% respectively, while Xception achieved an

accuracy of 98.0% in detecting ‘Epoxy on Die’ and ‘FM on Die’ on the testing

dataset.

2

2

TABLE OF CONTENTS

ABSTRACT 1

TABLE OF CONTENTS 2

LIST OF APPENDICES 4

LIST OF FIGURES 5

LIST OF TABLES 6

LIST OF SYMBOLS / ABBREVIATIONS 8

CHAPTER 1 9

INTRODUCTION 9

1.1 Project Background 9

1.2 Problem Statement 10

1.3 Aim and Objectives 11

1.4 Proposed Solution 12

1.5 Scope and Limitation of the Study 12

CHAPTER 2 15

LITERATURE REVIEW 15

2.1 Overview 15

2.2 Similar Works 15

2.3 Image Preprocessing Techniques 28

2.4 Traditional Machine Learning 29

2.5 Supervised Learning 30

2.6 Classification 30

2.7 Deep Learning 31

2.8 Transfer Learning 36

2.9 Pre-trained Image Classification Deep Learning

Models 37

2.10 Hyperparameters 43

CHAPTER 3 44

METHODOLOGY 44

3.1 Overview 44

3.2 Project Plan 45

3

3

3.3 Data Collection 48

3.4 Data Preprocessing 50

3.5 Data Augmentation 56

3.6 Data Labelling 58

3.7 Data Splitting 58

3.8 Hyperparameter Tuning 59

3.9 Model Architecture 62

3.10 Model Evaluation 64

3.11 Model Comparison 68

3.12 Software Environment 69

3.13 Hardware Environment 71

CHAPTER 4 72

RESULTS & DISCUSSION 72

4.1 Overview 72

4.2 Grid Search Result 72

4.3 Model Evaluation 84

4.4 Model Evaluation Summary 100

CHAPTER 5 102

CONCLUSIONS 102

5.1 Limitations 102

5.2 Recommendations for Future Work 103

REFERENCE 105

APPENDICES 109

4

4

LIST OF APPENDICES
Appendix 1: FYP 1 Log Book .. 109
Appendix 2: FYP 2 Gantt Chart ... 109
Appendix 3: FYP 2 Log Book .. 110
Appendix 4: FYP 2 Gantt Chart ... 111

5

5

LIST OF FIGURES
Figure 1.4.1: Proposed Solution Flowchart 12
Figure 1.5.1: Classification Task with Defect Types 13
Figure 2.7.1: A simple Artificial Neural Network (ANN) 32
Figure 2.7.2: Multiple layers where each of them corresponds to a different filter but looking

at the same region in the given image (Bayat et al., n.d.) 33
Figure 2.7.3: Movement of Filter Window with stride “1” (Bayat et al., n.d.) 34
Figure 2.7.4: Demonstration of Max Pooling with 2x2 filters (Bayat et al., n.d.) 35
Figure 2.8.1: Visualisation of Tranfer Learning (Donges, 2022) 37
Figure 2.9.1: VGG architecture visualization (Rosebrock, 2017) 38
Figure 2.9.2: ResNet-50 Architecture (Mukherjee, 2022) 38
Figure 2.9.3: InceptionV3 architecture (T, 2023) 39
Figure 2.9.4: Xception architecture (Rosebrock, 2017) 40
Figure 3.1.1: Project Workflow Summary 44
Figure 3.2.1: Project Work Breakdown Structure (WBS) 46
Figure 3.2.2: Project Gantt Chart 47
Figure 3.4.1: Image Segmentation Flowchart 50
Figure 3.9.1: Model Architecture 64
Figure 3.11.1: Workflow Model Evaluation and Comparison 68
Figure 4.3.1: ResNet50 Training and Validation Loss Graph on Defect Type 1 85
Figure 4.3.2: Xception Training and Validation Loss Graph on Defect Type 1 86
Figure 4.3.3: InceptionV3 Training and Validation Loss Graph 87
Figure 4.3.4: ResNet50 Training and Validation Loss Graph for Defect Type 2 90
Figure 4.3.5: Xception Training and Validation Loss Graph for Defect Type 2 91
Figure 4.3.6: InceptionV3 Training and Validation Loss Graph 92
Figure 4.3.7: ResNet50 Training and Validation Loss Graph for Defect Type 3 95
Figure 4.3.8: Xception Training and Validation Loss Graph for Defect Type 3 96
Figure 4.3.9: InceptionV3 Training and Validation Loss Graph 97

6

6

LIST OF TABLES
Table 1.5.1: Rejection Criteria for the Defects 13
Table 2.2.1: Similar Works Summary 21
Table 2.9.1: Comparison of models based on ImageNet dataset (Papers With Code, n.d.) 41
Table 2.10.1: Hyperparameters Description 43
Table 3.3.1: Sample images of different colour channels 49
Table 3.3.2: Number of Images Collected 49
Table 3.4.1: Image Brightness Adjustment Comparison 51
Table 3.4.2: Image Grayscale Comparison 52
Table 3.4.3: Image Gaussian Blurring Comparison 52
Table 3.4.4: Image Thresholding Comparison 53
Table 3.4.5: Contours Filtering Criteria 54
Table 3.4.6: Number of PCB Images after Image Segmentation 55
Table 3.5.1: Data Augmentation Transformation 56
Table 3.5.2: Number of Images throughout Data Augmentation Process 57
Table 3.5.3: Total Number of Images after Data Augmentation 58
Table 3.7.1: Total Number of Images after Splitting 59
Table 3.8.1: Hyperparameters for Grid Search CV 60
Table 3.8.2: Other hyperparameters 61
Table 3.10.1: Evaluation Metrics Description 65
Table 3.10.2: Confusion Matrix for Binary Classification 65
Table 3.10.3: Confusion Matrix for Three-Class Classification 66
Table 3.12.1: Software Specifications 70
Table 3.13.1: Hardware Specifications 71
Table 4.2.1: ResNet50 Grid Search Result on Defect Type 1 73
Table 4.2.2: Xception Grid Search Result on Defect Type 1 74
Table 4.2.3: InceptionV3 Grid Search Result on Defect Type 1 75
Table 4.2.4: ResNet50 Grid Search Result on Defect Type 2 76
Table 4.2.5: Xception Grid Search Result on Defect Type 2 78
Table 4.2.6: InceptionV3 Grid Search Result on Defect Type 2 79
Table 4.2.7: ResNet50 Grid Search Result on Defect Type 3 80
Table 4.2.8: Xception Grid Search Result on Defect Type 3 81
Table 4.2.9: InceptionV3 Grid Search Result on Defect Type 3 82
Table 4.2.10: Summary of Optimal Hyperparameters 83
Table 4.3.1: Number of Images in each Testing Dataset 84
Table 4.3.2: Accuracy of ResNet50 for Defect Type 1 85
Table 4.3.3: Accuracy of Xception for Defect Type 1 86
Table 4.3.4: Accuracy of InceptionV3 for Defect Type 1 87
Table 4.3.5: Comparison of Models for Defect Type 1 88

7

7

Table 4.3.6: Confusion Matrix for Defect Type 1 88
Table 4.3.7: Accuracy of ResNet50 for Defect Type 2 90
Table 4.3.8: Accuracy of Xception for Defect Type 2 91
Table 4.3.9: Accuracy of InceptionV3 for Defect Type 2 92
Table 4.3.10: Comparison of Models for Defect Type 2 93
Table 4.3.11: Confusion Matrix for Defect Type 2 93
Table 4.3.12: Accuracy of ResNet50 for Defect Type 3 95
Table 4.3.13: Accuracy of Xception for Defect Type 3 96
Table 4.3.14: Accuracy of InceptionV3 for Defect Type 3 97
Table 4.3.15: Comparison of Models for Defect Type 98
Table 4.3.16: Confusion Matrix for Defect Type 3 98
Table 4.4.1: Model Evaluation Summary 100

8

8

LIST OF SYMBOLS / ABBREVIATIONS

AI Artificial Intelligence

ANN Artificial Neural Networks

AVI Automated Visual Inspection

CNN Convolutional Neural Networks

CUDA Compute Unified Device Architecture

IDE Integrated Development Environment

LED Light-emitting Diode

mAP mean Average Precision

ML Machine Learning

OCT Optical Coherence Tomography

PCB Printed Circuit Board

ROI region of interest

9

9

CHAPTER 1

1 INTRODUCTION

1.1 Project Background

The increasing demand for PCB (Printed-Circuit Board) is primarily driven by

the rapid growth of consumer electronics such as smartphones, tablets, and

wireless earbuds in recent years. PCBs have played a vital role in enhancing the

functionality and performance of wireless earbuds. With the increasing demand

for wireless earbuds, manufacturers in the semiconductor industry are

experiencing mounting pressure to enhance their quality control processes,

particularly during the defect detection phase on PCBs.

Among the various types of defects found on PCBs, epoxy-related

defects are quite common. Since PCB manufacturing processes are automated,

with machine robots responsible for applying epoxy, issues such as excess

epoxy or accidental spills on unintended spots can occur during the epoxy

application on the PCB.

Currently, there are several methods for detecting epoxy-related

defects in the semiconductor industry. Some of the most widely used methods

are: Firstly, visual inspections can be used to detect epoxy-related defects in

chips. This can involve automated visual inspection (AVI) systems to inspect

the PCB for any irregularities or anomalies in the epoxy layer (Haddad et al.,

2018a). Secondly, using electron microscopy techniques makes it possible to

examine semiconductor materials with extremely high precision, enabling the

detection of defects at a microscopic level (Nakagaki, Honda and Nakamae,

2009). Thirdly, optical coherence tomography (OCT). OCT is an imaging

technique that can be used to analyse the internal structure of the PCB and detect

any epoxy-related defects. It measures the time delay and intensity of reflected

light, providing high-resolution images of the chip (Serrels, Renner and Reid,

2010).

Besides all the methods mentioned above, deep learning is also one of

the most commonly used techniques for detecting epoxy-related defects on

PCBs (Devika and George, 2019a). Deep learning has proven highly effective

10

10

across numerous domains and has achieved significant breakthroughs in various

fields over the past decade.

This study aims to propose deep learning models that can achieve high

accuracy in epoxy-related defect detection on the PCB of wireless earbuds by

utilising transfer learning on renowned deep learning image classification

models such as ResNet50, Xception, and InceptionV3. This study involves

training these deep learning models on three different types of defects, resulting

in three separate trained models for each defect. By the end of this study, the

performance of these deep learning models will be evaluated and compared to

select the best-performing model for each defect.

1.2 Problem Statement

Many existing methods can detect epoxy-related defects on PCBs in the

semiconductor industry. However, there are limitations in the existing methods,

which become a big challenge for big names in the industry to tackle the

problems. After extensive discussions with Allied Solutions (ASPL) Malaysia

Sdn Bhd and a thorough review of similar works conducted within the industry,

this study has identified three specific problem statements:

1. Low Accuracy of Epoxy-Related Defect Recognition using existing AI

Model

As mentioned by ASPL, the existing AI models within the semiconductor

industry lack reliability in detecting epoxy-related defects on PCBs. The

accuracy of detecting epoxy-related defects is low with the current AI models

on the market.

2. Epoxy-Related Defects are Too Small in Size for Human Eyes to Spot

Epoxy-related defects on PCBs are too tiny for human eyes to detect, even with

a microscope (Bellini et al., 2021a). The size of the defects, such as epoxy

overflow and epoxy spill on the PCB, is usually in micrometres, making it

difficult for humans to discern the difference in size accurately.

11

11

3. Time Cost is High

Existing methods for detecting epoxy-related defects in PCBs in the

semiconductor industry can be time-consuming (Huang and Pan, 2015). Some

methods, such as electrical testing and thermal imaging, require collecting and

processing large amounts of data. This process can be particularly time-

consuming, especially when the data needs to be analysed in real-time.

1.3 Aim and Objectives

This study aims to propose deep learning models that can detect epoxy-related

defects of the PCB of wireless earbuds with the transfer learning approach.

Objective 1

To collect an image dataset of the PCB of wireless earbuds and pre-process them

for deep learning model training.

Objective 2

To utilise transfer learning on pre-trained image classification deep learning

models, i.e., ResNet50, InceptionV3, and Xception.

Objective 3

To evaluate the performance of the deep learning models trained on the

collected image dataset and select the best-performing model for each epoxy-

related defect type on the PCB with a minimum accuracy rate of 90%.

12

12

1.4 Proposed Solution

Figure 1.4.1: Proposed Solution Flowchart

Figure 1.4.1 shows the proposed solution flowchart of this study. The flowchart

illustrates the phases necessary to fulfil the aim and objectives of this study.

1.5 Scope and Limitation of the Study

This study proposes three deep learning models using transfer learning that can

achieve at least 90% accuracy in detecting epoxy-related defects on the PCB of

wireless earbuds using a transfer learning approach. This study will focus on

three distinct epoxy-related defect types found on PCBs.

For defect type 1, "Epoxy Overflow on Die," and defect type 2, "Epoxy

Overflow on LED," binary classification will be performed to classify PCB

images as either ‘Good’ or ‘Defect’.

For defect type 3, multi-class classification will be performed to

classify the two similar defects: 'Epoxy on Die' and 'Foreign Material (FM) on

Die,' resulting in three output classes of 'Good,' 'FM,' or 'Epoxy.' This study will

train ResNet50, Xception, and InceptionV3 on each defect type and select the

best-performing model. By the end of this study, one deep learning model will

be proposed for each defect type, resulting in a total of three models.

13

13

Figure 1.5.1: Classification Task with Defect Types

Table 1.5.1: Rejection Criteria for the Defects

Defect Type Component Rejection Criteria

1. Epoxy Overflow on Die Die • The excess epoxy overflows from

edge of the component for more than

60 µm.

2. Epoxy Oveflow on LED LED

3. Epoxy on Die + FM on

Die

Die • The FM or epoxy on top of the

component has more than 35 µm in

length from the edge of the

component.

• The FM or epoxy has an

accumulated area of 960 µm2.

The research tools used in this study are Jupyter Notebook and Spyder

as the IDE, machine learning libraries such as Keras, TensorFlow, and Scikit-

learn, image preprocessing libraries like OpenCV, and visualisation libraries

including Seaborn and Matplotlib.

This study has some limitations. Firstly, it did not consider external

factors that could have affected the detection of the PCB. Secondly, it did not

address the practical implementation of the deep learning model in a production

environment. Acknowledging these limitations, the study emphasises the need

14

14

for further research to improve the application of transfer learning in real-time

defect detection on PCBs.

15

15

CHAPTER 2

1 LITERATURE REVIEW

2.1 Overview

Over the last decade, the semiconductor industry has experienced rapid growth

due to the increased demand for more efficient and powerful electronic devices.

However, as the manufacturing process of PCBs becomes more complex,

detecting defects during production has become increasingly challenging. This

poses a major challenge for the industry, leading to costly recalls and reduced

product quality. To address this, the industry has employed several methods,

including deep learning and machine learning techniques, which have become

increasingly popular. This review of existing literature aims to thoroughly

examine the latest advancements in machine learning and deep learning

techniques for identifying defects in PCBs. This review will focus on the various

techniques used, their effectiveness, and any constraints or limitations they may

have. Furthermore, the review aims to pinpoint areas lacking the existing

research and propose potential avenues for future studies. In addition, this paper

will propose three deep learning models for detecting epoxy-related defects in

the PCB of wireless earbuds using transfer learning.

2.2 Similar Works

Bellini et al. (2021) proposed a solution to detect defects in power

semiconductors using an active deep learning method. The proposed solution

can easily identify broken parts in the PCBs without requiring extensive manual

image labelling, significantly reducing annotation effort. The patterns of the

broken parts found by the computer are then used to create a list of different

types of defects, facilitating further research into the underlying causes and

prevention strategies. The key contribution of this work is the reduction of

labelling costs through minimal image annotation effort. The trained neural

network also demonstrates generalizability to new types of defects not present

in the training sets. Additionally, the proposed solution is suitable for small

datasets, achieving a precision of 0.99 with only 1,737 training examples.

16

16

 Devika and George (2019b) introduced a deep learning model that

employs convolutional neural networks (CNNs) to identify wafer defect

patterns. CNNs use convolutional and pooling layers to extract features and

fully-connected layers to classify them. CNNs exhibit robustness against

random noise and efficiently detect single and multiple defects. Thus, the

proposed CNN model can classify various defect patterns and outperform other

models in terms of overall performance. The proposed CNN model can detect

four types of defect patterns: circle, cluster, scratch, spot, and their combinations.

The results of the proposed model show a 100% accuracy rate in detecting

patterns of a single defect and an accuracy of 84% in detecting patterns of mixed

defects.

 Haddad et al. (2018b) presented a new method for detecting and

classifying defectusing multiple features and sparse-based techniques. The

proposed approach used the stacking concept to improve the accuracy of

classification. Then, the stacking-based classifier was improved with a

downsampling technique to handle imbalanced data. The approach also

included a new pruning technique to remove bad base learners. The challenges

of the approach included a shortage of defective units, similarities among

different defect classes, wide variations within the same defect class, and a data

imbalance. According to the experiment's results on actual data from Intel, the

suggested method performed better than previous approaches and achieved an

overall classification accuracy of 98.5%, which was very high.

 Chen et al. (2020) introduced a new approach for detecting structural

defects in wafers using convolutional neural networks (CNN) that can achieve

high detection accuracy. They designed a set of imaging acquisition systems to

capture wafer images, as there were not enough images available in open

databases. To prepare the images, digital image preprocessing technology was

used to divide each wafer image into several smaller images. The proposed

model, WDD-Net, used depthwise separable convolutions to reduce the number

of computations and parameters. The WDD-Net also incorporated multiple 1x1

standard convolutions to enhance network depth. Finally, the WDD-Net was

designed to work well for edge computing, meaning that it could directly

perform data collection and defect detection on local computing devices. WDD-

17

17

Net is five times faster in detection speed compared to VGG-16 and MobileNet-

v2. Besides, it achieved more than 99% detection accuracy.

 Huang et al. (2022) proposed a small object detection method called

SO-YOLO. The research utilised CspDarknet53 as the main architecture of the

network and improved the entire PANet through a novel feature fusion approach.

This approach involved selecting suitable layers to fuse, thereby expanding the

receptive field. The researchers also used the k-means++ method for anchor

estimation as a priori. Lastly, they employed the mosaic data augmentation

technique for dataset preprocessing. SO-YOLO achieved a mean average

precision (mAP) score of 0.86 and an F1 score of 0.84.

 Schlosser et al. (2019) proposed a novel deep neural network-based

hybrid approach. The SH-CNN model proposed enables the identification and

categorisation of very small structures within high-resolution images. The SH-

CNN method combines traditional image processing techniques and artificial

neural networks to recognise very small structures within images more

effectively. SH-CNN achieved a mean accuracy of about 0.921 with a 0x

augmentation level.

 Tello et al. (2018) introduced a new method that used deep machine

learning to detect and categorise different types of defects in semiconductor

manufacturing. The method involved several steps, including noise reduction,

differentiation between wafers with single or mixed defect patterns,

classification of single defect patterns using a shallow-structured randomised

general regression network, and identification of mixed defect patterns using a

deep-structured convolutional network. The model was evaluated on real data

and achieved an accuracy of 86.17% for detecting both single-defect and mixed-

defect patterns.

 Zhang et al. (2018) proposed a CNN-based model that acted as the

configuration for the defect detection system on PCBs. The proposed solution

used convolutional layers and a dense layer to obtain parameters for feature

extraction and classification through a training process, from original images to

detection results. The approach overcomes the complexity of traditional vision

methods with multiple image processing steps. Additionally, it addressed a

18

18

common challenge in the semiconductor industry: limited dataset availability.

The proposed model achieved an mAP of 0.9959 in defect detection.

 Raihan and Ce (2017) proposed a method for detecting defects in PCBs

using a computer vision library called OpenCV. This method involves analysing

images of PCBs using techniques called image subtraction and blob detection.

The method is useful for identifying various visual defects in PCBs, especially

complex patterns. By analysing images and highlighting differences, defective

parts of PCBs can be quickly identified. However, the accuracy of detection

depends on the resolution of the images, meaning low-resolution images have a

lower accuracy rate of 40% with a faster detection time of 0.856 seconds,

whereas high-resolution images have a higher accuracy rate of 80% with a

slower detection time of 2.68 seconds.

 Kim et al. (2021) proposed a PCB defect inspection system using a

skip-connected convolutional autoencoder. The dataset of PCB images

underwent preprocessing to remove unused areas and improve image quality

through commonly used image enhancement techniques. To address the

problem of an imbalanced training dataset, the datasets were also augmented.

By using anaugmented datasets, the autoencoder model was effectively trained

to differentiate non-defective images from potentially defective ones. However,

the proposed method did not perform testing on actual PCB datasets, and the

detection rate is low for untrained defect datasets. The skip-connected

convolutional autoencoder achieved 0.9808 accuracy with its defect detection

performance.

 Xin, Chen and Wang (2021) proposed a new algorithm that improves

the YOLOV4 method for detecting defects in printed circuit boards (PCBs).

They used a dataset of PCB defect images provided by the Intelligent Robot

Laboratory of Peking University, which had various defects, making the

algorithm more reliable. The authors analysed the feature distribution of the

CSPDarkNet53 structure layer and the size distribution of the detection target

defects in the dataset. They improved the data preprocessing and input stage by

automatically dividing the image based on the average size of the detection

image's bounding box and increasing the probability of an anchor containing a

19

19

detection target. The proposed algorithm achieved a high mean average

precision (mAP) of 96.88% in detecting PCB defects.

 Zeng et al. (2022) introduced a new method for detecting defects in

PCBs called the IPDD framework, and within that framework, they proposed a

new feature fusion method called the ABFPN. The ABFPN method uses a

combination of atrous convolution operators and skips connections to consider

context information and merge features from different levels. Additionally, a

balanced module is used to improve features across different levels. The IPDD

framework is particularly useful for detecting small defects on the surface of

PCBs. The authors demonstrated that their framework achieved an average

precision of 98.8% over intersection over union (IoU) at 0.5, outperforming

other IPDD algorithms.

 Ding et al. (2019) proposed a new model called TDD-Net to detect

small defects in PCBs using deep learning algorithms and feature pyramid

ConvNets. The model achieved the highest mAP of 98.90% compared to other

models presented in the paper.

 Khalilian et al. (2020) proposed a new method for detecting and

locating defects in printed circuit boards (PCBs) using denoising convolutional

autoencoders. The model used a neural network that receives a noisy input

image and attempts to clean it up to produce a clear output image. By training

the model on clean and noisy images, it learned to identify defects and locate

them accurately. The results showed that the proposed method achieved a high

accuracy of 97.5%, which is better than other existing defect detection methods.

 Lu et al. (2018) proposed a new PCB defect inspection (PCBDD)

framework to overcome the limitations of the traditional reference comparison

approach. The proposed framework used LBP and HOG features to train two

SVM models and combined them using Bayes feature fusion. The accuracy of

the proposed method was compared to that of a single feature method and found

to be much better at 89.22% while only slightly reducing the speed, indicating

that it is a highly effective approach for detecting defects on PCB surfaces.

 Adibhatla et al. (2020) presented a new method to detect defects in

PCBs using a deep learning algorithm-based YOLO approach. The model

consisted of 24 convolutional layers and two fully-connected layers. They tested

20

20

the model on PCBs and achieved a high defect detection accuracy of 98.79%

when using a batch size of 32. The study shows that a YOLO model with deep

convolutional neural networks (CNNs) can achieve excellent results in detecting

defects in PCBs.

The research papers mentioned are summarised in Table 2.2.1.

21

21

Table 2.2.1: Similar Works Summary
No Author Title Technique used Hyperparameter Strength/Limitations Result Future Work

1. Bellini et al. (2021) An Active Deep Learning Method for the

Detection of Defects in Power

Semiconductors

- Image Annotation

• Active learning

 - Model generalise well to new kinds

of defects, especially large size

defects

- Greatly reduce image annotation

time

- Novel morphological features not

present in training set are

misclassified as defects

- 5th Learning cycle (1737

examples)

• Precision: 0.99

• Recall: 0.79

- Further reduce image

annotation time

- Increase training set size

for rare defects

2. Devika and George

(2019b)

Convolutional Neural Network for

Semiconductor Wafer Defect Detection

- Classification

• CNN (8 convolutional layers)

- Adaptive moment estimation

(Adam)

• Learning rate: 0.0004

• Batch size: 32

• Epoch: 100

- Image preprocessing not needed

- Able to detect defects over random

defects

- 100% efficiency in

single defect pattern

detection

- 84% accuracy in mixed

defect pattern detection

3. Haddad et al. (2018b) Multifeature, Sparse-Based Approach for

Defects Detection and Classification in

Semiconductor Units

- Feature Extraction

• Bag-of-visual-words (BoW)

model

- Sparse coding

- Classification

• Stacked-based classfier

- Adaptive data sampling technique

• Adaptive downsampling

• Syntethic oversampling

 - Background feature subtraction

which enhances the classification

accuracy when datasets are small

- Ensemble pruning and metadata

oversampling effectively solve data

imbalance and improve metaclassifier

- Average classification

accuracy:

• 30% training

data: 95.88%

• 80% training

data:: 98.5%

4. Chen et al. (2020) A Light-Weighted CNN Model for Wafer

Structural Defect Detection

- Data preparation

• Machine vision system

- Data preprocessing

• OpenCV Findcontours

- Classification

• CNN-based WDD-Net (3*3

standard convolution and 3

depthwise seperable

convolution)

- Adaptive moment estimation

(Adam)

• Learning rate: 0.001

• Batch size: 32

• Epochs: 50

- High detection speed and small

model size which makes WDD-Net is

applicable in practical applications

- Detection accuracy is slightly lower

than VGG-16 and MobileNet-v2

- Overall detection

accuracy and detection

speed (FPS):

• WDD-

Net_28*28:

99.70%, 8719.3

• WDD-

Net_224*224:

99.44%, 105.6

- Establishing wafer defect

detection dataset

- Research in unsupervised

learning

22

22

5. Huang et al. (2022) Small object detection method with shallow

feature fusion network for chip surface

defect detection

- Feature extraction

• Backbone network such as

VGG Net, ResNet and

Inception Net

- Feature fusion

• Modified fusion network in

SO-YOLO (PANet)

- Clustering

• K-means ++

- Data preprocessing

• Mosaic data augmentation

method

• Learning rate: 0.001

• Attenuation

coefficient: 0.0005

• Iteration: 10000 times

- Has less number of parameters and

higher classification and detection

accuracy compared to YOLOv4

- Detection accuracy

• F1 score: 0.84

• mAP: 0.86

• BFLOPS:

53.624

- Higher detection accuracy

and reduced model

complexity

6. Schlosser et al. (2019) A Novel Visual Fault Detection and

Classification System for Semiconductor

Manufacturing Using Stacked Hybrid

Convolutional Neural Networks

- Localisation of ROI

• CNN

- Classification

• CNN

 - enables the recognition of small

structures with higher efficiency and

accuracy at the pixel level.

 - Enhance the proposed

system in terms of audio

and heat signatures

- Has to deploy under

production test conditions

7. Tello et al. (2018) Deep-Structured Machine Learning Model

for the Recognition of Mixed-Defect

Patterns in Semiconductor Fabrication

Processes

- Classification

• RGRN – single-defect pattern

• DSCN – mixed-defect pattern

- Image preprocessing

• Spatial filter

- Feature extraction

• Splitter

• Fold: 10

• Learning rate: 0.001

- Improves the identification of

spatial relationships in mixed-defect

patterns

- Can categorize patterns with a

single defect as well as those with

multiple defects

• Overall

accuracy:

86.17%

- Improve the proposed

method for real-time

identification

- The proposed method

should be tested with large

volume real datasets to be

able to handle the increase

in computational

complexity

8. Zhang et al. (2018) Improved bare PCB defect detection

approach based on deep feature learning

- Feature extraction

• VGG16

- Deep feature learning

• Data augmentation

• Parameters transfer learning

- Localisation

• Sliding window approach

- Classification

- Stochastic gradient descent

(SGD)

• Momentum: 0.9

• Learning rate: 0.0001

Epochs: 100

- During the training process, the

values of the feature extractor and

classifier parameters are obtained.

- The learned deep feature possesses

the capability to differentiate between

defects effectively.

- The system's high complexity

enables its applicability in a wider

range of situations.

• mAP: 0.9959 - Improve the top layers of

the model

- Focus on selecting better

feature selection algorithms

- Focus on network

architecture

23

23

• Combine SVM with LBP and

HOG feature

9. Raihan and Ce (2017) PCB defect detection USING OPENCV

with image subtraction method

- Image processing

• OpenCV

 - Short detection time but low

accuracy for low resolution PCB

images

- Long detection time but high

accuracy for high resolution PCB

images

- High resolution image

• Accuracy: 40%

• Time: 0.856

seconds

- Low resolution image

• Accuracy: 80%

• Time: 2.68

seconds

- Improve blob detection

and morphology algorithm

- Apply hough-transform

process and image

segmentation

- Research any method that

can optimise the system

10. Kim et al. (2021) Printed Circuit Board Defect Detection

Using Deep Learning via A Skip-Connected

Convolutional Autoencoder

- Image preprocessing

• Histogram equalisation

• Median filtering method

- Data augmentation

• Geometric transformation

• Noise injection

- Classification

• Skip-Connected

Convolutional Autoencoder

• Batch size: 128

• Optimiser:

o Weight

decay: 5 x

104

o Momentum:

0.9

• Learning rate:

o 0.1 – 60

epochs

o 0.02 – 120

epochs

o 0.004 – 160

epochs

o 0.0008 – 300

epochs

- The proposed method is tested

using artificial dataset

- The proposed method does not

generalise well to new unseen data

• Accuracy:

0.9808

• TPR: 09773

• TNR: 0.9843

• Precision:

0.9830

• F1: 0.9801

• BCR: 0.9806

• SSIM: 0.9749

- Test the models on real

dataset

11. Xin, Chen and Wang

(2021)

PCB Electronic Component Defect

Detection Method based on Improved

YOLOv4 Algorithm

- Improved YOLO V4 structure

• Backbone (Feature

extraction)

o 5 CSP modules

(CSPDarkNet53)

• Neck (Feature fusion)

o SPP module

o FPN+PAN module

- Object detection

• Batch size: 64

• Learning rate: 0.001

- Suitable for small object detection

- Faster detection speed and accuracy

compared to YOLOv4 method

• Average

detection

accuracy:

96.88%

- Provide possibilities in

developing object detection

application

24

24

• K-means clustering

12. Zeng et al. (2022) A Small-Sized Object Detection Oriented

Multi-Scale Feature Fusion Approach With

Application to Defect Detection

- Feature extraction

• Backbone

o ResNeXt structure

- Feature fusion

• Neck

o Skip-ASPP module

o Balanced module

- Data augmentation

• Mixup method

• AutoAugmetImage method

- Data visualisation

• TDD-Net

- Same for all 3 datasets

• Batch size: 2

• Learning rate decay

factor: 0.1

• Optimiser:

SGD+Momentum

• Regularisation

method: L2 weight

decay

- Different for each datasets

- MS COCO2017

• Iterations: 709716

• Initial learning rate:

0.0025

• Learning rate decay

iterations: [473144,

650573]

- VOC07+12

• Iterations: 270000

• Initial learning rate:

0.02

• Learning rate decay

iterations: [180000,

240000]

- VisDrone2019

• Iterations: 120000

• Initial learning rate:

0.02

• Learning rate decay

iterations: [90000,

110000]

- The proposed IPDD framework

performs better than existing methods

in terms of localisation and

classification in small object

detection.

- MS COCO2017

• Average

Precision:

38.6%

- VOC07+12

• mAP: 85.59%

- VisDrone2019

• Average

Precision:

17.1%

- Utilize the suggested

IPDD framework in other

detection tasks involving

small objects.

- Improve positioning

performance of IPDD

framework with better

localisation method

- Tune hyperparameters of

IPDD framework

13. Ding et al. (2019) TDD-net: a tiny defect detection network for

printed circuit boards

- Object detection

• Faster R-CNN

- Data augmentation

 - TDD-Net is strong which it can be

applied to other fields

• mAP over tIoU

of 0.5: 98.90%

- Investigating zero-shot

learning techniques because

25

25

• Gaussian noise

• Change light

• Rotate image

• Flipping

• Random chop

• Shift

- Feature extraction

• ResNet-101

- Feature fusion

• Feature pyramid architecture

- Reasonable anchors

• K-mean clustering

- Improve quality of ROI

• Online hard example mining

- Combines structurally strong

features with semantically strong

features

- Structurally strong feateres are

combined with semantically strong

features

of the limited size of the

training dataset.

- Optimise the network

- Optimise the post-process

methods

- Utilize TDD-Net to

different kinds of PCB

defects

14. Khalilian et al. (2020) PCB Defect Detection Using Denoising

Convolutional Autoencoders

- Proposed network structure

• Encoder (3 layers)

o Convolution layer

o Batch normalisation

o Activation layer

o Max pooling

• Decoder (3 layers)

o Convulsion layers

o Batch normalisation

o Activation layer

o Up sampling

• Batch size: 2

• Epochs: 4 & 17

- Can detect defects and recover them

- Can be applied to other products

- Best result when

threshold = 100

• Recall: 0.97

• Precision: 0.983

• Selectivity:

0.983

• Accuracy: 0.975

• F-score: 0.976

- Improve subtracting

algorithm to locate defects

more accurately

15. Lu et al. (2018) Defect detection of PCB based on Bayes

feature fusion

- Image preprocessing

• Image segmentation

technology

• Median filter and mean filter

- Features extraction

• LBP

• HOG

- Feature fusion

• Bayes fusion

- Classification

 - The proposed method solved

uneven illumination which occurs in

traditional reference comparison

method

• Accuracy:

89.22%

• Detection speed:

20 seconds

- Transform a binary

classification problem into a

multi-class classification

problem

- Develop a method to

detect the spatial location of

defects

- Attempt to combine

multiple types of features

for evaluation purposes.

26

26

• SVM

16. Adibhatla et al. (2020) Defect Detection in Printed Circuit Boards

Using You-Only-Look-Once Convolutional

Neural Networks

- Object detection

• Tiny-YOLO-V2

- Classification

• CNN

- Data collection

• Novel user interface

• Batch size: 32

- Suitable for large-scale PCB quality

inspection as it can accurately detect

defects.

- CNNs can learn the target task

automatically with proper tuning of

model parameters.

- The proposed model accuracy may

be low with unbalanced datasets

• Mean Accuracy:

98.79%

- Enhance CNN

performance by conducting

experimental evaluation and

performance analysis

27

27

Table 2.2.1 shows that deep learning methods are a current trend in

defect detection problems in the semiconductor industry. CNNs have been

proven to be effective in detecting defective PCBs. Many papers have proposed

novel approaches that address the issue of high time costs and automate the

defect detection process using deep learning methods. These deep learning

models were trained and tested on fine and defected PCB images, achieving

high accuracy in detecting a single defect pattern. Pre-trained models such as

VGG16, ResNet, YOLO, and GoogleNet are frequently utilised in computer

vision, and they have demonstrated the ability to generalise well to new image

datasets, making them popular choices for detecting defective PCBs in the

semiconductor industry. Although many innovative solutions have been

suggested to address the issue of defect detection, there are still shortcomings in

the approaches and issues in the semiconductor industry that need to be resolved.

The shortage of open-source image datasets for fine and defected PCBs

is a frequently cited issue in many papers, which presents a challenge for

training deep learning models to perform well on new, unseen data. Moreover,

imbalanced class distributions can make it difficult for the model to learn about

the minority class effectively. Although some papers have proposed methods to

address these issues, they still exist and continue to pose significant challenges

to the semiconductor industry.

While some novel models can detect multiple defect patterns in

combination, most can only detect one defect type at a time. Furthermore, many

proposed solutions are not yet practical in real-world settings due to high costs,

a lack of diversity in training data, and insufficient computational resources. As

a result, real-time detection of defective PCBs remains a challenging problem.

To address these challenges, future research efforts should focus on

creating more diverse and comprehensive image datasets, developing more

effective algorithms to handle imbalanced class distributions, and exploring

innovative ways to reduce the cost of training and deployment. Furthermore, the

practical implementation of deep learning models in production environments

should also be considered to ensure their usefulness in real-world settings.

28

28

2.3 Image Preprocessing Techniques

Open Source Computer Vision Library (OpenCV) is popular for preprocessing

images for training deep learning models. OpenCV is mainly used for real-time

operations such as object and face recognition or handwriting classification by

processing images and videos. With more than 2,500 computer vision and

machine learning algorithms, OpenCV is widely used by major companies like

Google, Yahoo, and Microsoft. The library has a Python interface and supports

Windows, making it compatible with the study's environmental setup.

While OpenCV contains many useful functions for image processing,

ASPL found the following five OpenCV functions to be useful and vital in

processing images of PCBs:

cv2.threshold()

The process of thresholding converts an image from grayscale to binary to

isolate regions of interest from the background. Each pixel of the input grayscale

image is assigned a binary value based on a threshold value, which is compared

to the pixel's intensity value. The function requires four parameters: the input

grayscale image, the threshold value, the maximum value above the threshold,

and the threshold type. To achieve a better output image and improve accuracy

in detecting defects when applied to deep learning models, it is essential to find

the optimal threshold value for extracting a good region of interest.

cv2.Canny()

The Canny edge detection algorithm is a useful tool for detecting edges in an

image. This function first applies Gaussian blurring to the input image to reduce

noise. It then computes the intensity gradients of the image and looks for

potential edges by searching for local maxima in the gradient magnitude. Non-

maximum suppression is applied next to thin out the edges and keep only the

strongest ones. Finally, hysteresis thresholding is applied to link edges that

belong to the same feature in the image. The function requires three parameters:

the input grayscale image, the first threshold value, and the second threshold

value. These threshold values are used as the minimum and maximum intensity

gradients, respectively, that the function uses to detect edges.

29

29

cv2.findContours()

The "findContours" function is used to identify contours in a binary image. This

function processes a binary image and produces a set of contours represented as

simplified or full coordinates. It requires three parameters: the input image, the

retrieval mode of the contour, and the contour approximation method. The

retrieval mode can be adjusted to retrieve all the contours, only the outer

contours, or all contours and their hierarchical structure. The contour

approximation method reduces the number of points in the contour.

cv2.connectedComponentsWithStats()

The connectedComponentsWithStats function is a useful tool for extracting

connected components from a binary image. Connected components refer to

sets of pixels that share the same pixel value and are connected. This function

is critical for extracting regions from the input image that are connected, which

is often necessary in image processing tasks.

To use this function, three parameters are required: the binary image,

the connectivity value (which can be set to 4 or 8), and a constant representing

the data type used for storing pixel values.

cv2.matchTemplate()

The matchTemplate function is used to match an image with a template. It takes

an input image and a template image and returns a grayscale image where each

pixel represents the match score of the template at that specific position in the

input image. The function functions by locating a region in the input image that

resembles the template. As recommended by ASPL, this function serves as a

crucial backup option in case other image processing techniques fail to produce

the desired results.

2.4 Traditional Machine Learning

The term "machine learning" describes teaching computers to learn from data.

It involves the convergence of computer science and statistics and the utilisation

of algorithms that are designed to execute a task without explicit programming.

30

30

Instead, these algorithms identify patterns in the data and make predictions

when new data is available (Wolfewicz, 2023). Typically, the process of using

these algorithms to acquire knowledge can be categorised into supervised and

unsupervised learning based on the data type used to train the algorithms

(Wolfewicz, 2023). Statistics is the main underlying concept behind machine

learning, where the algorithm is trained to make predictions by identifying data

patterns without explicit programming. To put it briefly, machine learning is an

interdisciplinary field that merges computer science and statistics to empower

computers to learn from data without being explicitly programmed (Wolfewicz,

2023). There are two primary categories of problems in machine learning:

supervised and unsupervised.

2.5 Supervised Learning

Supervised learning, also known as supervised machine learning, falls under the

broader categories of machine learning and artificial intelligence. It

encompasses a machine learning process that utilises a labelled dataset, wherein

both the data and corresponding labels are provided to the model for training,

enabling it to accurately classify data or predict outcomes. Throughout the

training process, the model continually adjusts its weights until it achieves high

accuracy in making predictions (Anon., 2023b).

2.6 Classification

Classification is a type of supervised learning. Classification can be described

as identifying, comprehending, and categorising objects and concepts into

predefined groups, often called "sub-populations. Machine learning

programmes employ various algorithms and utilise pre-categorised training

datasets to classify upcoming datasets into appropriate and meaningful

categories (Banoula, 2023).

 A classification algorithm trains models using input sample data to

predict the probability or likelihood that incoming data will belong to predefined

categories. A widely recognized application of classification is the filtering of

emails into "spam" or "non-spam" categories, a functionality commonly

employed by leading email service providers today (Banoula, 2023).

31

31

 In this study, there are two classification tasks: binary classification,

which classifies the data into two categories, and multi-class classification,

which classifies the data into three categories. Defect Type 1 and Defect Type

2 will be predicted with binary classification, while Defect Type 2 will be

predicted with multi-class classification.

2.7 Deep Learning

Deep learning algorithms are considered a more advanced and mathematically

intricate version of machine learning algorithms. In recent times, this field of

research has gained much attention, and for valid reasons; the recent

developments have generated results that were once thought to be unachievable

(Wolfewicz, 2023). Deep learning algorithms are a more sophisticated and

intricate machine learning form that employs a logical structure similar to

human reasoning to analyse data. They can use both supervised and

unsupervised learning techniques. Deep learning algorithms utilise supervised

and unsupervised learning approaches and are more sophisticated versions of

machine learning. They incorporate a layered structure of algorithms, an

artificial neural networks (ANN), which are modelled on the biological neural

network of the human brain. This results in a learning process that is much more

powerful than traditional machine learning models (Wolfewicz, 2023).

32

32

Figure 2.7.1: A simple Artificial Neural Network (ANN)

As shown in Figure 2.7.1, an artificial neural network (ANN) consists

of an input layer, an output layer, and hidden layers in between. The hidden

layers are not visible or directly accessible in the training set. A neural network

with more hidden layers is considered "deeper". Typically, a neural network

with two or more hidden layers is considered deep (Wolfewicz, 2023). The

ANN initially performs a feature identification process, which involves

identifying particular structures in an input. The first hidden layer of the network

may learn how to detect edges, while the subsequent layers may learn how to

differentiate colours and so forth until the final layer learns how to detect more

intricate shapes relevant to the object being recognised. Basically, the earlier

hidden layers learn simple features like edges while progressively learning task-

specific features such as the shape of the LED while moving to later layers.

Finally, the output layer processes the high-level features extracted from

previous layers to perform classification or regression tasks. During training

with input data, the deep learning algorithm learns from its errors to determine

whether its prediction is accurate or needs adjustment (Wolfewicz, 2023).

33

33

 As ANN slowly became more popular, researchers began researching

building deeper neural networks to solve more complicated tasks. One of the

most popular deep neural networks invented was the Convolutional Neural

Network (CNN). A typical CNN consists of multiple layers: a convolutional

layer, a non-linearity layer, a pooling layer, and a fully-connected layer (Bayat

et al., n.d.). CNN has gained significant popularity in computer vision and

natural language processing. CNNs tackle the inefficiency of fully connecting

input pixels to neurons in traditional neural networks due to the large number of

weight parameters required. CNNs employ local connections, meaning neurons

in one layer are connected only to a corresponding local region in the previous

layer. This drastically reduces the number of weight connections required.

Additionally, CNNs often employ weight sharing, where the same weights are

used for local connections across different neurons in the next layer. These two

simplifications significantly reduce the number of parameters while enabling

the network to detect and recognise features regardless of their position in the

image. This process is akin to sliding a filter over the input image and mapping

the results to the next layer, which is why these networks are termed

convolutions (Bayat et al., n.d.). To improve the efficiency of the method,

convolutional layers were stacked with each layer associated with different

layers in which they can extract different features from the image.

Figure 2.7.2: Multiple layers where each of them corresponds to a different filter

but looking at the same region in the given image (Bayat et al., n.d.)

34

34

"Stride" can be applied to the convolution layer, where it refers to how

the convolutional filter moves across the input image. Stride refers to how the

convolutional filter moves across the input image. In the example provided in

Figure 2.x, a 7x7 image is used as an illustration. When the filter is moved one

node at a time, it results in a 5x5 output. Importantly, there is an overlap between

the output regions. However, the stride can be manipulated. For example, if the

stride is set to 2, the filter moves every two nodes, resulting in a 3x3 output.

This not only affects the overlap but also reduces the size of the output (Bayat

et al., n.d.).

Figure 2.7.3: Movement of Filter Window with stride “1” (Bayat et al., n.d.)

Equation (1) is presented to formalise this relationship, where N

denoting the dimension of input image, F represents the size of the filter, and S

represents the stride.

 𝑂𝑂 = 1 + 𝑁𝑁−𝐹𝐹
𝑆𝑆

 (2.7.1)

 The next layer after convolution is the non-linearity layer. This layer

introduces non-linearity into the network and adjusts or controls the generated

output. Non-linearity refers to a property where changes in input do not result

in directly proportional or additive changes in output. Traditionally, sigmoid

and tanh functions were commonly used as non-linearities in neural networks.

However, in recent years, the Rectified Linear Unit (ReLU) has gained

popularity (Bayat et al., n.d.). ReLU can be defined as:

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = max(0, 𝑥𝑥) (2.7.2)

 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑥𝑥) = {1 𝑖𝑖𝑖𝑖 𝑥𝑥 > 0; 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} (2.7.3)

where

𝑥𝑥 = input value to ReLu function

35

35

 The pooling layer served as a down-sampling technique to reduce the

complexity for further layers. It is important to note that pooling does not alter

the number of filters but rather focuses on reducing the spatial dimensions of

the data. Among various pooling methods, max-pooling is one of the most

commonly used. Pooling, particularly max-pooling, is a technique in image

processing that reduces spatial dimensions while retaining important features,

and its parameters, like filter size and stride, can be adjusted to suit specific

requirements (Bayat et al., n.d.).

Figure 2.7.4: Demonstration of Max Pooling with 2x2 filters (Bayat et al., n.d.)

Finally, the fully connected layer in CNN works like traditional neural

networks. In this layer, each node is directly connected to every node in the

preceding and subsequent layers. This means that each node in the last pooling

layer is connected to every node in the first layer of the fully connected layer.

The fully-connected layer typically contains the highest number of parameters

within a CNN, and training it can be time-consuming. In essence, the core of a

CNN lies in its convolutional operations, and the introduction of nonlinearity

and pooling layers significantly contributes to its effectiveness (Bayat et al.,

n.d.).

36

36

2.8 Transfer Learning

This study used transfer learning, a deep learning technique that requires less

training data but can still achieve high performance. In transfer learning, a pre-

trained model is used as the foundation for a new task. This approach can

perform significantly better than training a model from scratch. Transfer

learning is a widely used technique, and it is not common to train a model for

image processing tasks from scratch nowadays. Conventional machine learning

models need to be trained from the beginning, which is time-consuming and

computationally expensive. Moreover, a considerable amount of data is required

to achieve high performance. In contrast to traditional machine learning, transfer

learning is a more efficient approach that utilises knowledge gained from pre-

existing models to improve performance and achieve better results using smaller

datasets (Baheti, 2023). Transfer learning involves leveraging knowledge

learned from a pre-existing model rather than starting the training process from

scratch to improve performance and speed up the learning process. In contrast,

traditional machine learning models are typically trained independently and

require enormous data and heavy computational resources to achieve

comparable performance (Baheti, 2023). Transfer learning is faster than training

neural networks from scratch because models that use features and weights from

pre-trained models already understand the underlying features, which speeds up

the training process (Baheti, 2023).

 In the context of computer vision, transfer learning works by freezing

the hidden layers of a deep learning model, and we replace the output layer for

our specific task. It leverages the trained weights on the hidden layers, which

were already trained to extract features from the image (Donges, 2022).

37

37

Figure 2.8.1: Visualisation of Tranfer Learning (Donges, 2022)

 As shown in Figure 2.8.1, the CNN layers were trained on their original

task, and the trained layers will not be modified or trained on the new task;

instead, only the output layer will be changed according to the task. In this case,

transfer learning allows us to leverage the trained layers from the base model,

and we only have to train the new output layer for our task. The frozen layers

act as the feature extraction layers, and the replaced output layer will be used to

perform classification tasks in our project.

2.9 Pre-trained Image Classification Deep Learning Models

This study planned to use pre-trained image classifiers from Keras based on the

ImageNet dataset. These models can classify input images into 1,000 object

categories with high accuracy. Additionally, the models generalise well to other

images other than the ImageNet dataset through transfer learning techniques

(Rosebrock, 2017). A few available pre-trained image classifiers from Keras

will be discussed, including VGG16, VGG19, ResNet50, InceptionV3, and

Xception (Rosebrock, 2017).

38

38

Figure 2.9.1: VGG architecture visualization (Rosebrock, 2017)

 (Simonyan and Zisserman, 2014) introduced the VGG network

architecture in their paper. The network architecture includes multiple 33

convolutional layers arranged in increasing depth. To decrease the size of the

volume, max pooling is used. The architecture also comprises two fully

connected layers, each with 4,096 nodes. Finally, a softmax classifier is applied

(Simonyan and Zisserman, 2014). The naming convention of VGG is based on

its number of layers. For example, VGG16 has 16 layers, while VGG19 has 19

layers. Despite their high accuracy in image classification, these models have

some limitations, such as being slow to train and having heavy network

architecture weights that require significant bandwidth (Rosebrock, 2017).

Figure 2.9.2: ResNet-50 Architecture (Mukherjee, 2022)

39

39

He et al. (2015) introduced the ResNet network architecture in their

paper, "Deep Residual Learning for Image Recognition". ResNet is considered

an unusual type of architecture that employs microarchitecture modules. Micro-

architecture refers to the individual "building blocks" that are used to create the

network. A combination of these building blocks, along with the standard layers

like convolution and pooling, make up the overall macro-architecture of the

network. Compared to VGG16 and VGG19, ResNet50 has a smaller size

because it uses global average pooling instead of fully connected layers

(Rosebrock, 2017).

Figure 2.9.3: InceptionV3 architecture (T, 2023)

Szegedy et al. (2014) first introduced "Inception" micro-architecture in

their paper "Going Deeper with Convolutions". Then, they proposed the

improved InceptionV3 architecture in their next paper, "Rethinking the

Inception Architecture for Computer Vision," in 2015. The inception module is

designed to extract features at various levels by using 1x1, 3x3, and 5x5

convolutions in a single module. The resulting outputs are then combined and

passed on to the next network layer. Google originally introduced this

architecture as GoogLeNet, and later versions were named Inception vN, where

N denotes the version number released by Google (Rosebrock, 2017).

40

40

Figure 2.9.4: Xception architecture (Rosebrock, 2017)

 Chollet (2016) proposed Xception, which is a type of architecture that

builds on Inception. Instead of using standard Inception modules, it uses depth-

wise separable convolutions. This process divides the convolution operation

into two stages: the first is depthwise convolution, which individually applies a

filter to each input channel, and the second is pointwise convolution, which

amalgamates the results from the depthwise convolution through a 1x1

convolution. It has a small model size of 91 MB (Rosebrock, 2017).

41

41

Table 2.9.1: Comparison of models based on ImageNet dataset (Papers With Code, n.d.)
Pre-trained

Model

Approximate

Model Size

(MB)

Model top-5

accuracy on 1000

ImageNet classes

Number of

Parameters

Advantages Disadvantages

VGG16 528 91.1% 138M - Simple architecture which leads to simple

fine-tune and implementation

- Easy to understand and interpret

- Deep architecture which makes it

computationally expensive

- Requires a lot of memory

- Large number of parameters

ResNet50 102 92.2% 23M - Deep architecture which allows learning of

complex features

- Residual connections help alleviate the

vanishing gradient problem

- Good performance on large datasets

- Deep architecture which makes error detection

difficult

InceptionV3 96 96.9% 25M - Designed to be computationally efficient -

Good performance on large datasets

- Relatively low number of parameters

- Complex architecture which makes it difficult to

understand and interpret

- Comparatively poor performance on small

datasets

Xception 91 96.5% 22.8M - Designed to be even more computationally

efficient than InceptionV3

- Good performance on large datasets

- Relatively low number of parameters

- Complex architecture which makes it difficult to

understand and interpret

- Comparatively poor performance on small

datasets

42

42

Table 2.9.1 compares the pre-trained models based on their

performance on the ImageNet dataset. The performance results are obtained

from the Papers With Code website based on published journal articles. The top-

5 accuracy measures the number of times the correct label is included among

the five most probable predictions made by the network (Papers With Code,

n.d.).

Through the comparison of the pre-trained models, this study adapted

three deep learning models: (i) ResNet50, (ii) InceptionV3, and (iii) Xception

for epoxy-related defect detection on PCBs of wireless earbuds.

ResNet50 has a deep network architecture that allows the learning of

complex features in data by organising multiple layers of processing units. As

the depth of the network increases, it can learn and represent more abstract and

complex features of the data. This is because each layer in a deep network

extracts higher-level features from the previous layer's output, enabling the

network to learn hierarchical representations of the input data. Additionally,

deep networks can reduce the need for hand-engineered features as they can

automatically learn relevant features directly from the data, saving time and

resources in developing deep learning models (Mukherjee, 2022).

 InceptionV3 and Xception are designed with computational efficiency

in mind, achieved by reducing the number of computations required without

compromising on accuracy. InceptionV3 utilises "Inception modules", allowing

parallel computation of convolutional filters with varying kernel sizes. This

approach results in a reduction in parameters and computations compared to

traditional convolutional layers. Additionally, InceptionV3 incorporates batch

normalisation to enhance generalisation and accelerate training (Szegedy et al.,

2015).

Xception takes this concept further by using depthwise separable

convolutions, combining depthwise and pointwise convolutions. Depthwise

convolutions filter each input channel separately before being combined

through pointwise convolutions, which perform 1x1 convolutions across all

channels. This technique effectively reduces the number of computations while

still capturing important features (Chollet, 2016).

43

43

In general, the major reason for choosing ResNet50, InceptionV3, and

Xception for this study is their ability to achieve high accuracy while being

computationally efficient. This makes them ideal for this study, which has

limited computational resources and requires a small model size.

2.10 Hyperparameters

Hyperparameters can be described as special parameters that oversee and

control the learning process, ultimately dictating the values of the model

parameters learned by a machine learning algorithm. The term 'hyper_' is

prefixed to emphasise that these are higher-level parameters responsible for

governing the learning process and shaping the resulting model parameters

(Nyuytiymbiy, 2020).

Hyperparameter values are defined before the model training process,

and the values cannot be changed during training. Hyperparameters are not

included in the final output of a model training process. We would not know the

hyperparameter values used to train the model just by looking at it

(Nyuytiymbiy, 2020).

 Table 2.10.1 shows some common hyperparameters and their functions

in model training.

Table 2.10.1: Hyperparameters Description

Hyperparameter Description

Learning Rate
How fast the neural network adjusts its weight during

training

Batch Size Number of training examples in each iteration

Epoch
Number of times the training dataset updates the

weights of neural network

Loss Function
Measures the difference between the predicted output of

a model and the actual output

Activation

Function

Introduce nonlinearity into the output of a neuron

Optimiser

Algorithm

Find optimal set of weights and biases to minimise loss

functions

44

44

CHAPTER 3

2 METHODOLOGY

3.1 Overview

This study workflow is summarised in Figure 3.1.1. First, this study began by

collecting a PCB image dataset of wireless earbuds provided by ASPL. The

dataset underwent preprocessing, which included image segmentation to extract

the region of interest from the images and data augmentation to generate new

sample data using existing data. Next, the dataset was labelled according to its

classes. After labelling, the dataset was divided into training, testing, and

validation sets, ready for use in model training and evaluation. After preparing

the dataset, hyperparameter tuning was performed to find the best

hyperparameter combinations for model training. Then, the study trained the

deep learning models and evaluated their performance in predicting the testing

set. Following the evaluation, the study compared the models and selected the

best-performing model as the proposed model.

The same workflow was applied in training ResNet50, Xception, and

InceptionV3 for all three defect types. In this section, only a small segment of

Figure 3.1.1: Project Workflow Summary

45

45

the original PCB images is allowed to be shown as they are protected by

copyright and are confidential.

3.2 Project Plan

This study plan was displayed in the Work Breakdown Structure (WBS) to

break down the works into smaller components for better understanding and

management. Then, the project timeline was shown in a Gantt Chart in

managing the project activities. The Gantt chart displayed the work completion

date along with the duration taken to complete the activities. The project cost

included the computational resources required for model development, such as

hardware and software.

46

46

Work Breakdown Structure (WBS)

Figure 3.2.1: Project Work Breakdown Structure (WBS)

47

47

Gantt Chart

Figure 3.2.2: Project Gantt Chart

48

48

As shown in Figure 3.2.2, Project 1 primarily focused on the preparatory phase

of the project. This phase involved defining essential project elements, such as

the project scope, objectives, problem statement, methodology, and project

deliverables. In Project 2, the project shifted its focus towards the technical

aspect. Programming codes were written to prepare the dataset for model

training and evaluation. Subsequently, the project advanced to the model

development stage, where models were constructed, trained, evaluated, and

compared. Hyperparameter tuning was carried out for each model using Grid

Search CV.

Once the best-performing models were identified, the project moved

on to the project closure phase. During this phase, conclusions were drawn, and

the Project 2 report was completed.

3.3 Data Collection

This study collected a dataset of PCB images of wireless earbuds provided by

ASPL. The dataset contains three images for each PCB: (i) the yellow channel,

which displays the original colour; (ii) the blue channel, which shows dark field

blue light; and (iii) the red channel, which displays dark field white light. Each

colour channel provides a distinct view of different defects on the PCB. In this

study, only the blue channel images were used since they emphasised the epoxy

on the PCBs. Table 3.3.1 shows the sample images of different colour channel.

49

49

Table 3.3.1: Sample images of different colour channels

Colour channel Sample Image

Yellow

Blue

Red

The collected images are real-world images produced during the PCB

manufacturing process of wireless earbuds. Since the dataset represents a real-

world dataset, it brings benefits to this study as it trains models on actual data,

which can increase the generalisation and reliability of the models. Table 3.3.2

shows the number of PCB images in the dataset.

Table 3.3.2: Number of Images Collected

Type Images Number of images

Good Good (Non-defective) 2433

Defect Type 1 Epoxy Overflow on Die 785

Defect Type 2 Epoxy Overflow on LED 217

Defect Type 3 Foreign Material (FM) on Die 111

Epoxy on Die 11

50

50

3.4 Data Preprocessing

In the data preprocessing step, the dataset underwent image segmentation to

extract the regions of interest from the images. Extracting the region of interest

(ROI) from the image helps the model focus on the important features on the

images, improving the model's accuracy and generalisation ability.

Figure 3.4.1: Image Segmentation Flowchart

51

51

All images in the dataset were looped using the approach shown in

Figure 3.4.1 to segment the ROI from the PCB images. The image preprocessing

techniques used were from OpenCV library.

First, the PCB image was loaded using the cv2.imread() function. This

function reads the image to be preprocessed. To begin the preprocessing, this

study first increased the image's brightness by adding 45 to every pixel value.

The purpose of increasing brightness was due to the dimmed original images in

the dataset; increasing brightness helped to improve the quality of the following

preprocessing steps. Table 3.4.1 shows the sample image before and after

increasing brightness.

Table 3.4.1: Image Brightness Adjustment Comparison

Original Brightness After Increasing Brightness

 The image was then converted into a grayscale image using cv2.cvt

(image, cv2.COLOR_BGR2GRAY). Converting an image into grayscale is a

common practice in preprocessing because it simplifies the process. A coloured

image has three channels (red, green, and blue), while a grayscale image has

only one channel. A grayscale image also helps to intensify the contrast in pixel

intensity between different regions and objects in the image. Table 3.4.2

showsthe sample image before and after applying grayscale conversion.

52

52

Table 3.4.2: Image Grayscale Comparison

Before Grayscale After Grayscale

 The image was further pre-processed by applying Gaussian blurring

using CV2. GaussianBlur(image, (7,7), 0). Gaussian blurring helps reduce the

image's noise by helping the functions focus on important features. Besides, it

enhances the performance of edge detection algorithms. Table 3.4.3 shows the

sample image before and after applying Gaussian blurring.

Table 3.4.3: Image Gaussian Blurring Comparison

Before Gaussian Blurring After Gaussian Blurring

 Thresholding is a technique for turning every pixel to white or black

depending on the pixel threshold. Thresholding was applied to the image using

cv2.threshold(image, 55, 255, cv2.THRESH_BINARY_INV) [1]. For every

pixel in the image, the pixel value below 55 is turned into 0, while the pixel

above 55 is turned into 255, resulting in a black-and-white image. Thresholding

53

53

improves the performance of edge detection algorithms as it helps to intensify

edges. Table 3.4.4 shows the sample image before and after applying threshold.

The image showed distinct differences between regions after applying the

threshold.

Table 3.4.4: Image Thresholding Comparison

Before Thresholding After Thresholding

 After all the above steps, the black-and-white image was ready for

image segmentation. The epoxy area had already turned black and the

surrounding area had turned white. This study used cv2.findContours(image,

cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) to locate all the

contours found in the image. The function output was a list of contours found

within the images. A contour is a connected region on the image. The list of

contours was sorted in descending order and looped to filter out the important

contours, which in this case were PCB components such as LEDs or dies and

regions of epoxy-related defects such as areas of epoxy overflow.

 The list of contours found was looped to filter out the unwanted contours.

In the loop, the contour area was calculated using cv2.contourArea(contour).

The function returned the area of the contour provided. Then, the position of the

centre point of the contour was calculated using cv2.moments(contour). The

function returned the middle point as the x-coordinate and y-coordinate of the

whole contour. After successfully obtaining the middle point and area of the

contour, the contour was filtered by comparing the values obtained to the

threshold defined. The threshold to filter the contours was obtained by the trial-

54

54

and-error method. Table 3.4.5 shows the threshold values used to filter the

contours.

Table 3.4.5: Contours Filtering Criteria

Component Position Area

Die 160 <= x-coordinate <= 640

160 <= y-coordinate <= 630

Contour area <= 110000.

LED 160 <= x-coordinate <= 630

600 <= y-coordinate <= 1150

Contour area <= 150000.

 Once the list of contours found on the image was filtered, the remaining

list of contours consisted of only the interested objects, such as the PCB

component and the area of defects. For the list of contours, a conditional

statement to check on the number of remaining contours in the list was applied.

If only one contour remained, it indicated that the contour represented

the main PCB component with the surrounding epoxy that was connected, such

as a region of die surrounded by epoxy.

If the remaining number of contours was more than one, it indicated

that the contours contained some small contours of epoxy that were not

connected to the main PCB component, such as epoxy spillage.

If no contour remained, it indicated that no contours fulfilled the

filtering criteria, and thus, the image was not pre-processed and not used in

model training.

The remaining contours formed a rectangle box of regions on the image

using the four most outer vertices in the contour or the list of contours with

cv2.minAreaRect(contour). Once the rectangle box was formed, the four most

outer vertices of the rectangle box were found using cv2.boxPoints(box). For

the case where the number of contours was more than one, the vertices obtained

after forming the rectangle box were stored in an array. The list of arrays

containing vertices of all contours was then used to locate the four most outward

vertices.

The four vertices obtained were used to segment the region of interest,

including the major PCB component and the epoxy and defects region. This step

55

55

used a custom module provided by ASPL to segment the image region from the

original image and rotate it back to a bird's-eye view.R

 Finally, the segmented image was resized to the size of 299x299 pixels

by using cv2.resize(image, (299, 299)). This step ensured that all the pre-

processed images had the same size, which the model training process required.

 By the end of the image segmentation phase, all the successfully

segmented images contained only the region of interest, which was the PCB

component of either a die or an LED and epoxy connected to or around the

component. These images were ready to be used in model training and

validation processes.

Table 3.4.6: Number of PCB Images after Image Segmentation

Type Images Number of un-processed

images

Number of images

Good Good (Non-defective) 0 2433

Defect

Type 1
Epoxy Overflow on Die 11 774

Defect

Type 2
Epoxy Overflow on LED 2 215

Defect

Type 3

Foreign Material (FM) on Die 0 111

Epoxy on Die 0 11

Referring to Table 3.4.6, the collected dataset faced one common

obstacle when dealing with real-world data: class imbalance. Class imbalance

happens when the number of images used to train the model in each class differs

greatly. For instance, ‘Defect Type 1’ has only 774 images compared to ‘Good's

2433 images. The other two defect types faced a more serious class imbalance

problem where the difference between the number of images in each class was

even bigger.

Class imbalance brings several disadvantages to the model training

process, such as bias towards the majority class, as the majority class has more

sample data to train the model on, and the model will perform better in the

majority class. Then, an imbalanced dataset can lead to poor generalisation

56

56

performance as the model struggles to recognise and correctly identify instances

from the minority class. Lastly, when the minority class is underrepresented, the

model may not learn sufficient information about it, potentially missing

important patterns or characteristics of that class.

3.5 Data Augmentation

Due to the class imbalance problem in the dataset, data augmentation was

applied to the dataset to improve the quality of the model training process. Data

augmentation refers to generating new training samples by randomly applying

transformations to the dataset's original images. This helped make the dataset

larger and more diverse and reduce the impact of the class imbalance problem

in the PCB dataset. Besides, data augmentation helped to improve model

robustness and reduce overfitting by introducing variability in the dataset. In

short, data augmentation was used to increase the size of the dataset and improve

the model's generalisation ability by reducing the impact of the class imbalance

issue.

Table 3.5.1: Data Augmentation Transformation

Transformation Value Range

Rotation -5 (anti-clockwise) to 5 (clockwise) degree

Increase Brightness

Multiply by 1.2 to 1.3

Increase Contrast Multiply by 0 to 0.5

 The transformations were randomly applied to the images by

generating a random value within the range stated in Table 3.5.1. This approach

introduced variability in the dataset without using the same images for training

purposes. By applying random transformations, the dataset was expanded with

new samples that were different from the original images, which helped to

improve the model generalisation while increasing the dataset size.

57

57

Table 3.5.2: Number of Images throughout Data Augmentation Process

Defect

Type

Defect Number of Original

Images Used for

Data Augmentation

Number of New

Images

Generated per

Original Image

Number of

New Image

Generated

1 Epoxy

Overflow

on Die

500 1 500

2 Epoxy

Overflow

on LED

200 2 400

3 Epoxy on

Die
11 5 55

FM on Die 111 2 222

 Table 3.5.2 shows the number of images throughout the data

augmentation process. The choice of the number of original images used for

data augmentation was justified by aiming to increase the number of images in

the minority class, thereby reducing the impact of the class imbalance issue

without oversampling the minority class. This decision was based on the fact

that only basic transformations using OpenCV were applied during the data

augmentation process, resulting in new sample images that were not

significantly different from the original ones. By avoiding oversampling the

minority class, this study prevented the model from overfitting during the

training process.

Ultimately, the techniques used in data augmentation were mainly used

to increase the sample size in minority classes to reduce the impact of class

imbalance but were unable to completely tackle the issue. Table 3.5.3 shows the

finalised number of images in the dataset.

58

58

Table 3.5.3: Total Number of Images after Data Augmentation

Type Images Number of Images Added
Total Number of

Images

Good Good (Non-defective) 0 2433

Defect

Type 1
Epoxy Overflow on Die 500 1274

Defect

Type 2
Epoxy Overflow on LED 400 615

Defect

Type 3

Foreign Material (FM) on Die 222 333

Epoxy on Die 55 66

3.6 Data Labelling

For defect types 1 and 2, the good images were labelled with a value of 0 and

the defective images were labelled with 1. There are only two classes in which

the binary classification will classify the images as 0 or 1. The samples were

labelled with a single integer, either 0 or 1.

For defect type 3, the good images were labelled with value 0, ‘Epoxy

on Die’ images were labelled with value 1, and ‘FM on Die’ images were

labelled with value 2. The samples were labelled using one-hot labelling. For

example, a good image that has a class value of 0 was labelled as (1, 0, 0), an

‘epoxy’ image that has a class value of 1 was labelled as (0, 1, 0), and an FM

image that has a class value of 2 was labelled as (0, 0, 1). Encoding multi-class

data using integer labels can introduce unintended ordinal relationships that do

not exist in the original data. One-hot encoding eliminates this issue by

providing binary columns, helping to reduce bias in the model.

3.7 Data Splitting

The generated augmented sample images were only used within the training set.

This distinction arises from the necessity to maintain the validation and testing

sets as repositories of authentic, real-world data. This strategic decision ensures

that the evaluation of the model's performance relies solely on genuine data.

This approach aligns with the ultimate goal of deploying the trained model for

59

59

predictions on the novel, unseen real-world data, warranting that the validation

and testing phases accurately simulate these real-world conditions and scenarios.

The dataset was split into three sets: training, testing, and validation,

with a ratio of 70:15:15. Then, the images generated by data augmentation were

all added to the training set.

 During the process of training a machine learning model, the training

set was used for training the model, the validation set was used for monitoring

the performance of the model during the training process, and the testing set was

used to assess the final performance of the trained model on new, unseen data.

The validation set helped to avoid a problem called overfitting. This

happens when the model is too focused on the training data and cannot perform

well on new data. By using the validation set to check the model's performance,

the study can monitor the model's performance at every epoch by observing the

validation loss and validation accuracy.

The dataset was split using the train_test_split() function in the scikit-

learn library. The function helped split the data and corresponding labels into

different sets for model training.

Table 3.7.1: Total Number of Images after Splitting

Defect Type Training Validation Testing

1 2744 (2244 + 500) 482 481

2 2253 (1853 + 400) 398 397

3 1062 (785 + 277) 169 168

Table 3.7.1 shows the number of images in each split set. By

successfully splitting the data into different sets, the study can proceed to model

training and evaluation.

3.8 Hyperparameter Tuning

Hyperparameter tuning plays a crucial role in efficiently training deep learning

models. Thus, Grid Search CV with 3-fold cross-validation was employed to

identify the optimal hyperparameters for ResNet50, Xception, and InceptionV3.

A 3-fold cross-validation is an approach where the algorithm splits the data used

60

60

for grid search into three folds. It trains and evaluates a model three times, each

time using a different fold as the validation set and the remaining data as the

training set. The results will be the mean score of the three model evaluation

process, which provides a more robust evaluation of the model's generalisation

performance than a single train-test split.

The best combination of the number of epoch, learning rate value and

optimiser were determined using Grid Search CV. Then, other hyperparameters

like batch size were fixed due to resource constraints, and the loss function was

the commonly used loss function in the respective classification tasks.

Table 3.8.1: Hyperparameters for Grid Search CV

Hyperparameters Value

Epoch • 10

• 20

• 50

Optimiser • SGD

• RMSprop

• Nadam

• Adam

Learning Rate • 0.0001

• 0.001

• 0.01

This study defined a specific set of hyperparameters for use in Grid

Search CV, which are detailed in Table 3.8.1. The choice of optimisers was

made using a trial-and-error approach. The number of epochs was determined

through a pilot study, which indicated that a small number of epochs sufficed

thanks to the benefits of transfer learning. Additionally, a relatively small

learning rate was selected to prevent excessive adjustments to the model's

weights and biases during the training process. The learning rate controls the

step size at which these updates occur.

61

61

Table 3.8.2: Other hyperparameters

Hyperparameters Value

Loss Function Binary-crossentropy (Binary Classification)

Categorical-crossentropy (Multi-class Classification)

Batch Size 16

 Tabl 3.8.2 shows the other hyperparameters used in model training. In

this study, a total of nine grid searches were done, as each model required a

hyperparameter tuning for each defect type. It is often necessary to perform a

grid search on each dataset separately for each model. This is because the

optimal hyperparameters may indeed differ across datasets due to the

differences in data distribution, complexity, and other factors associated with

each defect type. Tailoring hyperparameters to each specific dataset helps

optimise model performance for the unique challenges posed by each dataset.

Aside from the common hyperparameter used for model training, this

study tuned the decision threshold that was only required for binary

classification tasks. The model's output in predicting a sample would result in a

probability between 0 and 1. Thus, it is required to convert the probability value

using a threshold value such as 0.5, where all values falling under 0.5 are

mapped to 0, and all the other values are mapped to 1 (Brownlee, 2021). Using

a value of 0.5 is a common practice for binary classification, but in cases where

there is a severe imbalance in the distribution of the classes, the model will

perform poorly on prediction. Due to the class imbalance issue in the dataset,

this study incorporated decision threshold adjustments in the model evaluation

phase for defect types 1 and 2 to evaluate the model’s performance on different

decision thresholds. It was a straightforward and simple approach to improve

the performance of classification models while facing an imbalanced

classification problem (Brownlee, 2021).

62

62

3.9 Model Architecture

To fully explore the potential of transfer learning, this study decided to make

the minimum modifications to the pre-trained models to retain their original

architecture and trained weights.

 ResNet50, Xception, and InceptionV3 models were imported from the

Keras library. These models were loaded without the fully connected dense

output layer, typically responsible for making predictions using trained weights

from 'ImageNet.' Then, all of the hidden layers were frozen to prevent weight

updates during the model training process. These frozen hidden layers worked

as the feature extractor for our classification task.

 Next, A GlobalAveragePooling2D layer was added to the model.

GlobalAveragePooling2D is a technique commonly used in CNN for feature

extraction and dimensionality reduction. In a CNN, after multiple convolutions

and pooling layers, a set of feature maps were produced. Each feature map

represents certain learned features in the input data. Traditional pooling layers

diminish the spatial dimensions of the feature maps by selecting the highest or

mean value within a small region., usually 2x2 or 3x3 and moving a filter over

the feature map. This results in a downsampled representation of the features.

In GlobalAveragePooling 2D, instead of using small regions and downsampled

representations, it takes the average of the entire feature map. The average value

of each feature map is calculated, resulting in a single value for each feature

map. After applying a GlobalAveragePooling2D layer, the output will be a 1D

vector of values that was connected to the fully connected layer for classification

tasks.

Following that, a custom fully-connected dense layer was appended to

the model. In the case of binary classification, the dense layer comprised a single

neuron with a sigmoid activation function. Using a single neuron in the output

layer with a sigmoid activation function is a common and effective approach for

binary classification tasks, providing clear probabilistic outputs and maintaining

model simplicity. The output of a sigmoid function is always between 0 and 1,

combined with a decision threshold that maps any output values into distinct

classes. The formula of a sigmoid function is:

63

63

 𝑓𝑓(𝑥𝑥) = 1
1+𝑒𝑒−(𝑥𝑥) (3.9.1)

where

𝑥𝑥 = input to the sigmoid function

𝑒𝑒 = the base of the natural logarithm, approximately equal to 2.71828.

For multi-class classification involving three classes to be predicted,

the dense layer consisted of three neurons with a softmax activation function,

with each neuron associated with each class. In multi-class classification, a

common encoding scheme for the target labels is one-hot encoding. Each class

is represented by a unique neuron, and the output for each sample should have

a single high value (1) in the neuron corresponding to the true class and low

values (0) in the other neurons. This setup ensures that each sample is assigned

to only one class. A multi-class classification task usually requires a softmax

activation function. Softmax converts the raw output scores into class

probabilities, which the total probabilities across all classes equals 1 for each

sample. The number of neurons in the output layer corresponds to the number

of classes. The formula of a softmax function is:

 𝜎𝜎(
𝑧𝑧
→)

𝑖𝑖
= 𝑒𝑒𝑧𝑧𝑖𝑖

∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝐾𝐾
𝑗𝑗=1

 (3.9.2)

where

𝜎𝜎 = softmax

(
𝑧𝑧
→) = input vector

𝑒𝑒𝑧𝑧𝑖𝑖 = standard exponential function for input vector

K = number of classes in the multi-class classifier

𝑒𝑒𝑧𝑧𝑗𝑗 = standard exponential function for output vector

In summary, the number of neurons used in the output layer depends

on the task's requirements. On binary classification, one neuron will output the

value as a probability value, like 0.6, indicating the sample might belong to the

positive class. On the other hand, three neurons are required for three-class

classification, with each neuron representing one class. The output of the layer

aligns with the one-hot labelling used in this study, where the output of a

64

64

predicted sample will be (0.55, 0.4, 0.05), where the highest value indicates the

prediction of the model; in this case, it is the class with value 0.

By adding the final dense layer to the models, they were ready for

model training and evaluation.

Figure 3.9.1: Model Architecture

 Figure 3.9.1 shows the overall model architecture used in this study.

Base models are ResNet50, Xception, or InceptionV3, with a pooling layer

using GlobalAveragePooling2D and an output layer which is a fully connected

layer that was trained on classification tasks.

3.10 Model Evaluation

A graph illustrating the training and validation losses was plotted to monitor the

models' performance throughout the training phase. The study utilised the

pyplot functions provided in the Matplotlib library to plot a line chart to

visualise the information required. A line chart provides a simple and

straightforward method to monitor losses during the training phase.

This study adopted the strategy of saving the model at every epoch,

providing better control over the training process. This approach provided the

flexibility to load the model from a particular epoch if indications of overfitting

emerged. Overfitting is indicated by the rise in validation loss while training

loss continues to decrease. The approach ensured that the model's generalisation

capabilities are effectively managed and maintained.

65

65

Then, the results of the performance of the deep learning models on the

testing set were evaluated using a confusion matrix, precision, recall, F1 score,

and accuracy.

Table 3.10.1: Evaluation Metrics Description

Metric Description

Confusion Matrix A table that displays the number of correct and

incorrect predictions made by the models on the given

dataset.

Accuracy (Main) Percentage of correctly predicted samples in the total

dataset.

Precision Percentage of correctly predicted positive samples out

of all positive predictions.

Recall (Secondary) Percentage of correctly predicted positive samples out

of all actual positive samples.

F1 score The harmonic mean of precision and recall, which

combines both metrics into a single value.

Table 3.10.2: Confusion Matrix for Binary Classification

Predicted Good Predicted Defected

Actual Good TN FP

Actual Defected FN TP

where

True Positive (TP) = Correctly predicted a defected PCB

True Negative (TN)= Correct prediction a good PCB

False Negative (FN)= Incorrectly predicted a defected PCB as good PCB

False Positive (FP)= Incorrectly predicted a good PCB as defected PCB

66

66

Table 3.10.3: Confusion Matrix for Three-Class Classification

Predicted

Good

Predicted

Epoxy

Predicted

FM

Actual Good TP1 a b FN1 = a +
b

Actual

Epoxy

c TP2 d FN2 = c +
d

Actual FM e f TP3 FN3 = e +
f

FP1 = c + e FP2 = a + f FP3 = b + d

where

TP1 = Correctly predicted good PCBs

TP2 = Correctly predicted defected PCBs with ‘Epoxy on Die’ defect

TP3 = Correctly predicted defected PCBs with ‘FM on Die’ defect

FP1 = Incorrectly predicted samples as good PCB but the samples are from other

two classes

FP2 = Incorrectly predicted samples as PCB with ‘Epoxy on Die’ defect but the

samples are from other two classes

FP3 = Incorrectly predicted samples as PCB with ‘FM on Die’ defect but the

samples are from other two classes

FN1 = Incorrectly predicted samples as other two classes but the samples are

good PCBs

FN2 = Incorrectly predicted samples as other two classes but the samples are

defected PCBs with ‘Epoxy on Die’ defect

FN3 = Incorrectly predicted samples as other two classes but the samples are

defected PCBs with ‘FM on Die’ defect

67

67

The formulas for accuracy, weighted recall, weighted precision, and weighted

F1-score are:

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑇𝑇𝑇𝑇1+𝑇𝑇𝑇𝑇2+𝑇𝑇𝑇𝑇3
𝑇𝑇𝑇𝑇1+𝑇𝑇𝑇𝑇2+𝑇𝑇𝑇𝑇3+𝐹𝐹𝐹𝐹1+𝐹𝐹𝐹𝐹2+𝐹𝐹𝐹𝐹3+𝐹𝐹𝐹𝐹1+𝐹𝐹𝐹𝐹2+𝐹𝐹𝐹𝐹3

 (3.10.1)

 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ∑ 𝑇𝑇𝑇𝑇3
𝑖𝑖=1 𝑖𝑖

∑ (𝑇𝑇𝑇𝑇3
𝑖𝑖=1 𝑖𝑖+𝐹𝐹𝐹𝐹𝐹𝐹)

 (3.10.2)

 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ∑ 𝑇𝑇𝑇𝑇3
𝑖𝑖=1 𝑖𝑖

∑ (𝑇𝑇𝑇𝑇3
𝑖𝑖=1 𝑖𝑖+𝐹𝐹𝐹𝐹𝐹𝐹)

 (3. 10.3)

 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 (3. 10.4)

where

TPi = True Positives for class i

TNi = True Negatives for class i

FPi = False Positives for class i

i = 1,2,3

 During model evaluation, the confusion matrix showed the prediction

on each testing sample, providing a better understanding of the model's

performance. Confusion matrix is a useful tools to help visualising the outcome

of the prediction which can assist the study in analysing and understanding the

model’s behaviour. The study used the heatmap function in Seaborn library to

create the confusion matrix.

The results obtained through confusion matrix were used to calculate

the accuracy, weighted recall, weighted precision, and weighted F1-score.

Weighted metrics were used due to the class imbalance issues in the dataset, in

which the calculated metrics for each class were assigned a weight to them to

emphasise the minority classes without being overwhelmed by the majority

class. Accuracy served as the primary metric, reflecting the overall correctness

of predictions, and recall served as the secondary metric. While accuracy

measured the overall percentage of correct predictions, recall specifically

assessed the model's capability to accurately identify positive instances within

68

68

a dataset, which in our context are the defective images, thereby emphasising

its performance in capturing all relevant information. This dual evaluation

approach ensured a balanced assessment of our model's effectiveness,

particularly in tasks where the correct identification of specific instances was

paramount.

3.11 Model Comparison

Figure 3.11.1: Workflow Model Evaluation and Comparison

The approach shown in Figure 3.11.1 was used to select the best-performing

model of the same base model. The study loaded ten models with the lowest

validation loss during the training and had them predict the testing data. The

model that achieved the highest accuracy was selected for final model

comparison.

For final model comparison, the study compared the best-performing

ResNet50, best-performing Xception, and best-performing InceptionV3 and

determined the model with the highest accuracy as the proposed model for the

particular defect type.

69

69

3.12 Software Environment

The programming language used in this study was Python 3. This study used

ResNet50, InceptionV3, and Xception, which are pre-trained deep learning

models available in the Keras deep learning library.

 This study utilised Compute Unified Device Architecture (CUDA) for

model training. Using CUDA for this study's model training significantly

improved performance and efficiency. CUDA, developed by NVIDIA, allowed

the study to leverage the computational power of GPU (Graphics Processing

Unit) for our deep learning tasks. This choice accelerated our model training

process, resulting in faster training times than traditional CPUs. The study

carefully selected a compatible NVIDIA GPU and ensured seamless integration

with the deep learning frameworks, such as TensorFlow. This strategic decision

led to more efficient model training and optimised resource utilisation.

The integrated development environment (IDE) used was Spyder and

Jupyter Notebook. Spyder was used to write code for data preprocessing, data

augmentation, data labelling, and data splitting. Spyder was used due to its

support of the IPython console, which allowed for interactive computing and

data exploration. Spyder allowed the study to execute code line by line, view

results, and inspect variables in real time. This feature was very helpful in

preparing the data for model training. On the other hand, Jupyter Notebook was

used for hyperparameter tuning, model evaluation, and model comparison.

Jupyter Notebook allowed the study to visualise the data easily and document

the entire process, making it easier to take control of the model training process.

With its documentation feature, the results could be referred back at anytime.

70

70

Table 3.12.1: Software Specifications

Package Version

Python 3.9.17

Imutils 0.5.4

OpenCV 4.7.0

NumPy 1.24.2

TensorFlow 2.11.0

Matplotlib 3.7.0

Keras 2.10.0

Scikit-learn 1.3.0

Seaborn 0.12.2

Scikeras 0.11.0

Pandas 1.5.3

The versions of each Python library used are listed in Table 3.12.1.

Imutils and OpenCV were responsible for image preprocessing in this study.

These two libraries provide useful and convenient functions to simplify the

image preprocessing step.

Meanwhile, NumPy and Pandas were required to manipulate data.

NumPy provides a high-performance multidimensional array object called

‘ndarray’. NumPy is valuable for numerical and array-based operations, making

it essential for computer vision and machine learning tasks. On the other hand,

Pandas is useful for handling structured data, making it a good choice for data

labelling and organisation in these projects. These two libraries were used to

save images and contours in an array for operations while also enabling me to

label the data and export the labels into an Excel file.

Seaborn and Matplotlib were used to visualise graphs and the

confusion matrix. TensorFlow, Scikit-learn, and Scikeras are libraries that

provide convenient functions such as pre-trained deep learning models and data

splitting, which were the main libraries that contributed to the success of the

project.

71

71

3.13 Hardware Environment

The hardware used in this study was an Acer Nitro 5 AN515-57 gaming laptop.

The hardware specifications are shown in Table 3.13.1.

Table 3.13.1: Hardware Specifications

Hardware Component Description

CPU 11th Gen Intel(R) Core(TM) i5-11400H @ 2.70GHz

2.69 GHz

GPU NVIDIA GeForce RTX 3060

RAM 24GB DDR4 @ 2933MHz

Storage 2 x 512 GB NVMe SSD

Operating System Windows 11 Pro 64-bit, x64 based processor

72

72

CHAPTER 4

3 RESULTS & DISCUSSION

4.1 Overview

The main goal of this study is to propose deep learning models that can detect

epoxy-related defects on the PCB of wireless earbuds with high accuracy using

a transfer learning approach. ResNet50, Xception, and InceptionV3 from the

Keras library were selected for this defect detection task. First, hyperparameter

tuning was done using Grid Search CV. Then, the hyperparameters obtained

were used to train the deep learning models. After that, the performance of the

deep learning models was evaluated by predicting the testing data set. Finally,

the model that achieved the highest accuracy for each defect was selected. The

main evaluation metric used is accuracy, followed by recall.

4.2 Grid Search Result

Hyperparameter tuning was done using Grid Search CV with three cross-

validations. The grid search was mainly used to determine the best combination

of hyperparameters, which will be used to train the models. In grid search, the

learning rate (0.0001, 0.001, and 0.01), optimiser (SGD, RMSprop, Nadam, and

Adam), and the number of epochs (10, 20, 50) were used for defect types 1 and

2. There were a total of 36 combinations of hyperparameters.

For Detect Type 3, some hyperparameter values were discarded to

reduce the time needed for grid search. By filtering out hyperparameter values

that always achieved a low mean score in the grid search of defect type 1 and

defect type 2, learning rate (0.0001, 0.001, 0.01), optimiser (RMSprop, Nadam,

and Adam), and number of epochs (20, 50) were used. There were a total of 18

combinations of hyperparameters.

73

73

4.2.1 Defect Type 1 – Epoxy Overflow on Die

1. ResNet50

Table 4.2.1: ResNet50 Grid Search Result on Defect Type 1

Epochs Optimiser Learning Rate Mean Score

1 50 RMSprop 0.01 0.969591

2 50 Nadam 0.01 0.969201

3 20 Adam 0.01 0.967251

4 50 Adam 0.001 0.966082

5 50 Adam 0.01 0.966082

6 50 Nadam 0.001 0.965302

7 20 Nadam 0.01 0.964912

8 50 RMSprop 0.001 0.964522

9 20 RMSprop 0.01 0.963743

10 20 Adam 0.001 0.963353

11 20 RMSprop 0.001 0.962573

12 20 Nadam 0.001 0.962573

13 10 Adam 0.01 0.961793

14 10 Nadam 0.01 0.960234

15 10 Nadam 0.001 0.959844

16 10 RMSprop 0.001 0.959064

17 20 SGD 0.01 0.956335

18 10 RMSprop 0.01 0.953606

19 10 Adam 0.001 0.953606

20 10 SGD 0.01 0.953216

21 50 SGD 0.01 0.952437

22 50 Adam 0.0001 0.951267

23 50 RMSprop 0.0001 0.950487

24 50 Nadam 0.0001 0.949318

25 50 SGD 0.001 0.937232

26 20 RMSprop 0.0001 0.933723

27 20 Nadam 0.0001 0.930214

28 20 Adam 0.0001 0.928265

74

74

29 20 SGD 0.001 0.913450

30 10 RMSprop 0.0001 0.904094

31 10 Nadam 0.0001 0.901365

32 10 Adam 0.0001 0.892788

33 10 SGD 0.001 0.887329

34 50 SGD 0.0001 0.831969

35 10 SGD 0.0001 0.777388

36 20 SGD 0.0001 0.776218

2. Xception

Table 4.2.2: Xception Grid Search Result on Defect Type 1

Epochs Optimiser Learning Rate Mean Score

1 50 Adam 0.001 0.958285

2 50 Nadam 0.001 0.957505

3 20 Adam 0.001 0.954386

4 50 Nadam 0.01 0.952827

5 50 RMSprop 0.001 0.950487

6 20 Nadam 0.001 0.950097

7 20 RMSprop 0.001 0.947758

8 50 Adam 0.01 0.945809

9 50 RMSprop 0.01 0.944639

10 10 Nadam 0.001 0.943860

11 20 Nadam 0.01 0.940741

12 20 Adam 0.01 0.938402

13 10 Adam 0.001 0.938402

14 50 SGD 0.01 0.935283

15 10 RMSprop 0.001 0.933333

16 50 SGD 0.001 0.933333

17 50 RMSprop 0.0001 0.932554

18 50 Nadam 0.0001 0.931774

19 20 RMSprop 0.01 0.930604

20 50 Adam 0.0001 0.928655

75

75

21 10 RMSprop 0.01 0.925146

22 20 SGD 0.01 0.924366

23 20 SGD 0.001 0.920468

24 10 Adam 0.01 0.914620

25 20 RMSprop 0.0001 0.911111

26 10 Nadam 0.01 0.909552

27 50 SGD 0.0001 0.902924

28 20 Nadam 0.0001 0.900195

29 10 SGD 0.001 0.899805

30 20 Adam 0.0001 0.899025

31 10 RMSprop 0.0001 0.873294

32 10 Adam 0.0001 0.867446

33 10 Nadam 0.0001 0.863158

34 20 SGD 0.0001 0.862768

35 10 SGD 0.01 0.848343

36 10 SGD 0.0001 0.846004

3. InceptionV3

Table 4.2.3: InceptionV3 Grid Search Result on Defect Type 1

Epochs Optimiser Learning Rate Mean Score

1 20 Nadam 0.001 0.951333

2 50 Adam 0.001 0.951333

3 50 Adam 0.01 0.951

4 20 RMSprop 0.001 0.949

5 20 Nadam 0.01 0.948333

6 20 Adam 0.001 0.948333

7 20 RMSprop 0.01 0.943

8 10 Nadam 0.01 0.940666

9 50 Nadam 0.0001 0.940333

10 50 RMSprop 0.001 0.936

11 50 Adam 0.0001 0.935333

12 10 Nadam 0.001 0.935

76

76

13 10 RMSprop 0.001 0.934

14 50 RMSprop 0.0001 0.933667

15 50 Nadam 0.001 0.933

16 50 SGD 0.0001 0.921667

17 50 Nadam 0.01 0.920333

18 10 SGD 0.01 0.919

19 10 RMSprop 0.01 0.916333

20 20 RMSprop 0.0001 0.916

21 20 Adam 0.0001 0.915667

22 20 SGD 0.001 0.914667

23 20 SGD 0.01 0.913

24 20 SGD 0.0001 0.911333

25 20 Nadam 0.0001 0.910667

26 50 RMSprop 0.01 0.908333

27 10 SGD 0.001 0.9

28 20 Adam 0.01 0.897

29 50 SGD 0.01 0.895667

30 10 RMSprop 0.0001 0.890667

31 10 Nadam 0.0001 0.885333

32 50 SGD 0.001 0.884333

33 10 Adam 0.0001 0.883

34 10 SGD 0.0001 0.880667

35 10 Adam 0.01 0.803333

36 10 Adam 0.001 0.802667

4.2.2 Defect Type 2 – Epoxy Overflow on LED

1. ResNet50

Table 4.2.4: ResNet50 Grid Search Result on Defect Type 2

Epochs Optimiser Learning Rate Mean Score

1 50 RMSprop 0.01 0.969068

2 50 Nadam 0.01 0.968313

3 50 Adam 0.001 0.968310

77

77

4 20 Nadam 0.01 0.967937

5 20 Adam 0.01 0.967934

6 50 Adam 0.01 0.967183

7 50 RMSprop 0.001 0.965295

8 20 RMSprop 0.01 0.964917

9 50 Nadam 0.001 0.964917

10 20 Nadam 0.001 0.962654

11 10 Nadam 0.01 0.961526

12 10 Adam 0.01 0.961523

13 10 RMSprop 0.01 0.960013

14 20 Adam 0.001 0.959263

15 20 RMSprop 0.001 0.956620

16 10 Nadam 0.001 0.955488

17 50 Nadam 0.0001 0.953601

18 10 Adam 0.001 0.953226

19 50 SGD 0.01 0.952093

20 50 Adam 0.0001 0.952092

21 50 RMSprop 0.0001 0.951715

22 10 RMSprop 0.001 0.950586

23 20 SGD 0.01 0.944931

24 10 SGD 0.01 0.935497

25 50 SGD 0.001 0.932476

26 20 Nadam 0.0001 0.930592

27 20 RMSprop 0.0001 0.929841

28 20 Adam 0.0001 0.926821

29 20 SGD 0.001 0.910981

30 10 Adam 0.0001 0.889099

31 10 RMSprop 0.0001 0.887593

32 10 Nadam 0.0001 0.880798

33 10 SGD 0.001 0.861941

34 50 SGD 0.0001 0.837797

35 20 SGD 0.0001 0.800824

78

78

36 10 SGD 0.0001 0.781593

2. Xception

Table 4.2.5: Xception Grid Search Result on Defect Type 2

Epochs Optimiser Learning Rate Mean Score

1 20 Adam 0.01 0.953602

2 20 Adam 0.001 0.945304

3 20 Nadam 0.001 0.944925

4 50 Nadam 0.001 0.944545

5 50 Adam 0.01 0.944168

6 50 Adam 0.001 0.941524

7 50 RMSprop 0.001 0.940773

8 50 Nadam 0.01 0.940404

9 10 Nadam 0.01 0.940020

10 10 Adam 0.001 0.939270

11 50 RMSprop 0.0001 0.938893

12 10 Nadam 0.001 0.937759

13 10 RMSprop 0.001 0.935497

14 50 Adam 0.0001 0.934362

15 50 Nadam 0.0001 0.933609

16 20 RMSprop 0.001 0.933234

17 50 RMSprop 0.01 0.930580

18 50 SGD 0.001 0.923427

19 20 Nadam 0.01 0.920042

20 10 RMSprop 0.01 0.913221

21 20 RMSprop 0.01 0.912482

22 20 RMSprop 0.0001 0.910225

23 20 SGD 0.001 0.907584

24 20 SGD 0.01 0.905307

25 20 Nadam 0.0001 0.903814

26 20 Adam 0.0001 0.901175

27 10 SGD 0.001 0.896648

79

79

28 50 SGD 0.0001 0.891366

29 50 SGD 0.01 0.889484

30 10 RMSprop 0.0001 0.884576

31 10 Adam 0.0001 0.883819

32 10 Adam 0.01 0.875167

33 20 SGD 0.0001 0.866465

34 10 SGD 0.01 0.858891

35 10 Nadam 0.0001 0.855910

36 10 SGD 0.0001 0.847610

3. InceptionV3

Table 4.2.6: InceptionV3 Grid Search Result on Defect Type 2

Epochs Optimiser Learning Rate Mean Score

1 50 Adam 0.001 0.955489

2 50 Nadam 0.001 0.950584

3 50 RMSprop 0.01 0.950208

4 50 Adam 0.01 0.948700

5 50 RMSprop 0.001 0.948319

6 20 Adam 0.001 0.947569

7 50 Nadam 0.01 0.944927

8 20 Adam 0.01 0.940781

9 20 Nadam 0.001 0.939643

10 50 Nadam 0.0001 0.935493

11 50 RMSprop 0.0001 0.935122

12 10 Adam 0.01 0.931351

13 50 Adam 0.0001 0.929835

14 50 SGD 0.01 0.929462

15 10 Nadam 0.001 0.929090

16 10 RMSprop 0.01 0.924552

17 10 RMSprop 0.001 0.923428

18 50 SGD 0.0001 0.918518

19 20 RMSprop 0.001 0.916252

80

80

20 50 SGD 0.001 0.914379

21 20 RMSprop 0.0001 0.913619

22 20 RMSprop 0.01 0.911713

23 20 Adam 0.0001 0.911351

24 20 Nadam 0.0001 0.910221

25 10 Nadam 0.01 0.901532

26 20 SGD 0.01 0.898149

27 10 Adam 0.001 0.895526

28 20 Nadam 0.01 0.888337

29 20 SGD 0.0001 0.886841

30 10 SGD 0.01 0.883823

31 10 SGD 0.001 0.881934

32 10 Adam 0.0001 0.878914

33 20 SGD 0.001 0.872877

34 10 RMSprop 0.0001 0.869857

35 10 Nadam 0.0001 0.864583

36 10 SGD 0.0001 0.844209

4.2.3 Defect Type 3 – Epoxy on Die + FM on Die

1. ResNet50

Table 4.2.7: ResNet50 Grid Search Result on Defect Type 3

Epochs Optimiser Learning Rate Mean Score

1 50 Adam 0.01 0.941511

2 20 Adam 0.01 0.934202

3 50 Nadam 0.01 0.933391

4 50 RMSprop 0.01 0.930948

5 50 Adam 0.001 0.926885

6 50 Nadam 0.001 0.924456

7 20 RMSprop 0.01 0.924444

8 20 Nadam 0.01 0.924442

9 50 RMSprop 0.001 0.918788

10 20 Adam 0.001 0.918766

81

81

11 20 Nadam 0.001 0.915514

12 20 RMSprop 0.001 0.896000

13 50 RMSprop 0.0001 0.869207

14 50 Nadam 0.0001 0.853773

15 50 Adam 0.0001 0.848897

16 20 RMSprop 0.0001 0.790398

17 20 Nadam 0.0001 0.775792

18 20 Adam 0.0001 0.759547

2. Xception

Table 4.2.8: Xception Grid Search Result on Defect Type 3

Epochs Optimiser Learning Rate Mean Score

1 20 Adam 0.01 0.906575

2 50 Adam 0.01 0.900097

3 50 Adam 0.001 0.896004

4 20 Adam 0.001 0.873272

5 50 Nadam 0.001 0.871667

6 20 Nadam 0.001 0.861088

7 50 RMSprop 0.001 0.846504

8 50 RMSprop 0.0001 0.823714

9 50 Nadam 0.0001 0.822903

10 50 Adam 0.0001 0.810727

11 20 RMSprop 0.001 0.809127

12 50 RMSprop 0.01 0.800269

13 20 Nadam 0.01 0.793749

14 50 Nadam 0.01 0.784068

15 20 Nadam 0.0001 0.770113

16 20 RMSprop 0.0001 0.769292

17 20 Adam 0.0001 0.767670

18 20 RMSprop 0.01 0.741814

82

82

3. InceptionV3

Table 4.2.9: InceptionV3 Grid Search Result on Defect Type 3

Epochs Optimiser Learning Rate Mean Score

1 20 Adam 0.001 0.874892

2 50 Adam 0.001 0.862671

3 20 Nadam 0.001 0.849728

4 50 Adam 0.0001 0.834273

5 20 RMSprop 0.01 0.831872

6 50 RMSprop 0.0001 0.831836

7 50 Nadam 0.0001 0.826163

8 20 Nadam 0.01 0.815552

9 50 RMSprop 0.01 0.806739

10 20 Adam 0.01 0.803515

11 50 RMSprop 0.001 0.787217

12 50 Adam 0.01 0.785469

13 20 RMSprop 0.0001 0.779034

14 50 Nadam 0.001 0.774273

15 20 Nadam 0.0001 0.770908

16 20 Adam 0.0001 0.764435

17 50 Nadam 0.01 0.725648

18 20 RMSprop 0.001 0.706975

83

83

4.2.4 Grid Search Summary

The optimal hyperparameters were summarised in Table 4.2.10. These

hyperparameters were used in the model training.

Table 4.2.10: Summary of Optimal Hyperparameters

Defect

Type

Model Epoch Learning

Rate

Optimiser Loss

Function

Batch

Size

1

ResNet50 50 0.01 RMSprop

Binary

Cross-

entropy 16

Xception 50 0.001 Adam

InceptionV3 20 0.001 Nadam

2

ResNet50 50 0.01 RMSprop

Xception 20 0.01 Adam

InceptionV3 50 0.001 Nadam

3

ResNet50 50 0.01 Adam Categorical

Cross-

entropy

Xception 20 0.01 Adam

InceptionV3 20 0.001 Adam

 The results show that Adam optimiser appears more frequently

selected as the optimal choice across different defect types and models.

However, the learning rates for these optimisers differ. The number of epochs

also varies across different configurations, suggesting that the convergence rate

and training dynamics differ for each model and defect type. We can see that

RMSprop and Nadam were selected as the optimisers for defect types 1 and 2,

which are binary classification tasks with a larger dataset size, compared to

defect type 3, which is a multi-class classification task with a smaller dataset

size. All three models selected Adam as the optimiser in defect type 3, indicating

Adam is suitable for small dataset sizes or multi-class classification.

By looking at the differences in hyperparameters for the same model

on different defect types, it was shown that it is crucial to consider the specific

characteristics of the dataset and problem when selecting hyperparameters.

What works well for one defect type or model may not necessarily be the best

choice for another. These results highlight the importance of hyperparameter

84

84

tuning and the need to experiment with various combinations to find the optimal

setup for each specific problem.

4.3 Model Evaluation

The deep learning models were evaluated on the same distribution to ensure a

fair comparison between the models.

The deep learning models underwent two comparison stages: the first

stage was after training to select the best-performing model from the same base

model, and the second stage was after selecting the best-performing model from

a different base model on the same defect type. Then, the study compared the

performance of the models from different base models. The number of images

in testing dataset of each defect type are shown in Table 4.3.1.

Table 4.3.1: Number of Images in each Testing Dataset

Defect Type Number of Images in Testing Dataset

1. Epoxy Overflow on Die 481

2. Epoxy Overflow on LED 397

3. Epoxy on Die + FM on Die 168

The results in the following sections rank the models at epoch from the

lowest validation loss to the highest validation loss. In the case where the

accuracy of the models was tallied, this study selected a model with a higher

ranking or a lower validation loss as it indicated better generalisation ability.

For comparison between different base models, the study selected the

model with the highest accuracy, and if the accuracy of the models was equal,

the model with a higher recall was selected.

Even though the study adopted the approach of loading models based

on low validation losses and this strategy did not directly rely on monitoring the

convergence rate, it analysed the training and validation losses during training

to potentially gain insights into the model behaviour and hyperparameter tuning,

contributing to a deeper understanding of hyperparameter tuning and deep

learning principles.

85

85

4.3.1 Defect Type 1 – Epoxy Overflow on Die

1. ResNet50

Figure 4.3.1: ResNet50 Training and Validation Loss Graph on Defect Type 1

Table 4.3.2: Accuracy of ResNet50 for Defect Type 1

Ranking Epoch Decision Threshold Accuracy

1 22 0.80 0.931

2 7 0.20 0.958

3 28 0.20 0.971

4 34 0.20 0.961

5 21 0.35 0.973

6 5 0.20 0.969

7 32 0.20 0.946

8 19 0.20 0.965

9 47 0.20 0.963

10 40 0.20 0.969

86

86

2. Xception

Figure 4.3.2: Xception Training and Validation Loss Graph on Defect Type 1

Table 4.3.3: Accuracy of Xception for Defect Type 1

Ranking Epoch Decision Threshold Accuracy

1 39 0.30 0.969

2 35 0.50 0.965

3 31 0.45 0.963

4 47 0.60 0.961

5 44 0.35 0.973

6 50 0.40 0.973

7 38 0.60 0.969

8 40 0.40 0.973

9 49 0.35 0.971

10 30 0.45 0.963

87

87

3. InceptionV3

Figure 4.3.3: InceptionV3 Training and Validation Loss Graph

on Defect Type 1

Table 4.3.4: Accuracy of InceptionV3 for Defect Type 1

Ranking Epoch Decision Threshold Accuracy

1 20 0.75 0.954

2 19 0.55 0.958

3 13 0.55 0.963

4 11 0.55 0.963

5 17 0.20 0.958

6 12 0.75 0.958

7 18 0.75 0.958

8 6 0.75 0.958

9 5 0.65 0.950

10 15 0.80 0.950

88

88

Table 4.3.5: Comparison of Models for Defect Type 1

Models Accuracy Recall Precision F1-Score

ResNet50 0.973 0.967 0.930 0.948

Xception 0.973 0.937 0.959 0.948

InceptionV3 0.963 0.941 0.911 0.926

Table 4.3.6: Confusion Matrix for Defect Type 1

ResNet50

Xception

89

89

InceptionV3

 Figures 4.3.1, 4.3.2, and 4.3.3 show the training loss and validation loss

of the models during training for defect type 1. For ResNet50, there were spikes

in the validation loss frequently. The spikes indicated that the model might have

been overfitted during the training process. Xception had a steady and smooth

convergence, with inversely proportional training and validation losses, which

is a positive sign. It suggested that the model is learning well and generalising

to the validation data effectively. InceptionV3 also had a steady and smooth

convergence except for a huge spike of validation loss for a few epochs. Despite

the spikes in validation loss, all three models showed a good convergence rate

on learning the dataset, which indicated that the models were not overfitting and

were converging towards an optimal state.

By referring to Table 4.3.5, all three models achieved high accuracy in

detecting defect type 1, indicating that they are generally good at making correct

predictions. InceptionV3 achieved the lowest accuracy among the three models,

scoring only 96.3%. ResNet50 and Xception achieved the same accuracy of

97.3%, but ResNet50 scored a recall of 96.7%, and Xception scored a recall of

93.7%. ResNet50 was the best-performing model for defect type 1.

90

90

4.3.2 Defect Type 2 – Epoxy Overflow on LED

1. ResNet50

Figure 4.3.4: ResNet50 Training and Validation Loss Graph for Defect Type 2

Table 4.3.7: Accuracy of ResNet50 for Defect Type 2

Ranking Epoch Decision Threshold Accuracy

1 13 0.80 0.972

2 18 0.55 0.977

3 28 0.80 0.970

4 23 0.80 0.970

5 14 0.80 0.967

6 40 0.80 0.975

7 41 0.80 0.972

8 21 0.80 0.972

9 45 0.80 0.972

10 7 0.80 0.972

91

91

2. Xception

Figure 4.3.5: Xception Training and Validation Loss Graph for Defect Type 2

Table 4.3.8: Accuracy of Xception for Defect Type 2

Ranking Epoch Decision Threshold Accuracy

1 6 0.80 0.9723

2 5 0.50 0.9748

3 8 0.80 0.9748

4 3 0.60 0.9723

5 10 0.80 0.9748

6 11 0.80 0.9748

7 4 0.50 0.9748

8 16 0.50 0.9748

9 15 0.75 0.9798

10 1 0.75 0.9798

92

92

3. InceptionV3

Figure 4.3.6: InceptionV3 Training and Validation Loss Graph

for Defect Type 2

Table 4.3.9: Accuracy of InceptionV3 for Defect Type 2

Ranking Epoch Decision Threshold Accuracy

1 36 0.60 0.965

2 35 0.65 0.965

3 49 0.45 0.967

4 31 0.80 0.962

5 41 0.80 0.967

6 33 0.80 0.967

7 40 0.75 0.965

8 21 0.80 0.975

9 42 0.65 0.977

10 16 0.65 0.970

93

93

Table 4.3.10: Comparison of Models for Defect Type 2

Models Accuracy Recall Precision F1-Score

ResNet50 0.977 0.926 0.781 0.847

Xception 0.980 0.852 0.852 0.852

InceptionV3 0.977 0.815 0.846 0.830

Table 4.3.11: Confusion Matrix for Defect Type 2

ResNet50

Xception

94

94

InceptionV3

 Figures 4.3.4, 4.3.5, and 4.3.6 show the training loss and validation loss

of the models during training for defect type 2. For ResNet50, the spikes in

validation loss were more serious than in training for defect type 1. Besides, the

validation loss slowly increased towards the later epochs in the training,

showing that ResNet50 was overfitting. The same goes for Xception, where it

also faced the issue of spiked validation losses, which indicated that the model

was not converging optimally. InceptionV3 showed the best convergence rate

in validation loss among the models, suggesting that the model has good

generalisation ability.

 All three models accurately detected defect type 2: epoxy overflow on

the LED. ResNet50 and InceptionV3 achieved the same accuracy of 97.7%.

Xception outperformed the other two models by achieving an accuracy score of

98.0%. We can see that Xception only had eight wrong predictions in 397 test

samples. Xception is the best-performing model for defect type 2.

95

95

4.3.3 Defect Type 3 – Epoxy on Die + FM on Die

1. ResNet50

Figure 4.3.7: ResNet50 Training and Validation Loss Graph for Defect Type 3

Table 4.3.12: Accuracy of ResNet50 for Defect Type 3

Ranking Epoch Accuracy

1 4 0.893

2 28 0.935

3 13 0.923

4 27 0.917

5 25 0.935

6 26 0.917

7 7 0.905

8 33 0.940

9 23 0.929

10 11 0.929

96

96

2. Xception

Figure 4.3.8: Xception Training and Validation Loss Graph for Defect Type 3

Table 4.3.13: Accuracy of Xception for Defect Type 3

Ranking Epoch Accuracy

1 4 0.875

2 6 0.863

3 16 0.881

4 2 0.881

5 19 0.887

6 13 0.887

7 20 0.863

8 17 0.905

9 15 0.905

10 12 0.893

97

97

3. InceptionV3

Figure 4.3.9: InceptionV3 Training and Validation Loss Graph

for Defect Type 3

Table 4.3.14: Accuracy of InceptionV3 for Defect Type 3

Ranking Epoch Accuracy

1 15 0.929

2 19 0.905

3 18 0.887

4 14 0.881

5 20 0.845

6 4 0.851

7 7 0.851

8 3 0.792

9 12 0.887

10 13 0.798

98

98

Table 4.3.15: Comparison of Models for Defect Type

Models Accuracy Recall Precision F1-Score

ResNet50 0.940 0.940 0.947 0.942

Xception 0.905 0.905 0.896 0.897

InceptionV3 0.929 0.929 0.931 0.923

Table 4.3.16: Confusion Matrix for Defect Type 3

ResNet50

Xception

99

99

InceptionV3

Figures 4.3.7, 4.3.8, and 4.3.9 show the training loss and validation loss

of the models during training for defect type 3. The spike in validation loss for

Xception and InceptionV3 indicated that the model was not converging well and

might need adjustments on hyperparameters. On the other hand, ResNet50 had

a stabilised line of validation loss starting around epoch 25, showing that the

model was learning effectively without overfitting.

All three models accurately detected defect type 3: epoxy and FM on

the die. Xception had the lowest accuracy of 90.5%, and InceptionV3 ranked

second with 92.9%. ResNet50 scored the highest accuracy of 94.0%. From

Table 4.3.16, we can see that only ResNet50 could correctly predict all ‘Epoxy’

class samples, while the other two models incorrectly predicted samples from

other classes as ‘Epoxy’, further proving ResNet50 as the most robust model

among the three.

100

100

4.4 Model Evaluation Summary

Table 4.4.1: Model Evaluation Summary

Defect Type Models Accuracy Recall Precision F1-Score

1

ResNet50 0.973 0.967 0.930 0.948

Xception 0.973 0.937 0.959 0.948

InceptionV3 0.963 0.941 0.911 0.926

2

ResNet50 0.977 0.926 0.781 0.847

Xception 0.980 0.852 0.852 0.852

InceptionV3 0.977 0.815 0.846 0.830

3

ResNet50 0.940 0.940 0.947 0.942

Xception 0.905 0.905 0.896 0.897

InceptionV3 0.929 0.929 0.931 0.923

The performance of the nine models is recorded in Table 4.4.1.

For defect type 1, ResNet50 and Xception both performed

exceptionally well, with an accuracy of 97.3%. This indicated that they were

highly reliable in correctly classifying defect type 1. The recall for ResNet50

was slightly higher at 96.7%, while Xception had a recall of 93.7%. This meant

that ResNet50 was better at identifying most of the instances of defect type 1.

Precision for Xception was notably higher at 95.9%, suggesting fewer false

positives. InceptionV3 also performed well with an accuracy of 96.3% but had

a slightly lower recall of 94.1% compared to the other two models. As the

project prioritised accuracy and recall, ResNet50 was the best-performing

model for defect type 1.

For defect type 2, Xception achieved the highest accuracy among all

models and defect types at 98.0%, making it a top choice for defect type 2

classification when accuracy was paramount. However, its recall was 85.2%,

indicating that it missed some instances of defect type 2. Despite this, Xception

maintained a high precision of 85.2%. ResNet50 also delivered strong results,

with an accuracy of 97.7%, a recall of 92.6%, and a precision of 78.1%.

InceptionV3 offered a competitive option with an accuracy of 97.7%, a recall of

101

101

81.5%, and a precision of 84.6%. It struck a balance between accuracy and recall.

Xception was the best-performing model for defect type 2 due to its highest

accuracy score of 98.0%.

For defect type 3, ResNet50 excelled in defect type 3 classification

with an accuracy of 94.0%. It achieved a high recall of 94.0%, indicating its

effectiveness in identifying instances of defect type 3. The model also had the

highest precision of 94.7%, meaning it made fewer false-positive predictions.

Xception had an accuracy of 90.5%, a recall of 90.5%, and a precision of 89.6%.

It provided consistent results, but with slightly lower accuracy. Inception V3

achieved an accuracy of 92.9%, a recall of 92.9%, and a precision of 93.1%. It

performed competitively and balanced accuracy and recall effectively.

ResNet50 was the best-performing model for defect type 3, with the highest

accuracy of 94.0%. In short, ResNet50 performed the best for defect types 1 and

3, while Xception performed the best for defect type 2, and InceptionV3

performed slightly poorly compared to the other two models.

102

102

CHAPTER 5

4 CONCLUSIONS

This study successfully applied transfer learning to three pre-trained deep

learning models, ResNet50, Xception, and InceptionV3, for epoxy-related

defect detection on the PCB of wireless earbuds. This study has achieved all

objectives for which an image dataset was collected and preprocessed to train

the deep learning models, and the models achieved a minimum of 90% accuracy

in the defect detection task. After evaluating the models, ResNet50 was the best-

performing model for defect types 1 and 3 with an accuracy of 97.7% and 94.0%,

respectively, while Xception was the best-performing model for defect type 2

with an accuracy of 98.0%. This study successfully proposed three deep

learning models that achieved high accuracy in detecting epoxy-related defects

on PCBs that were difficult for human eyes to see. The proposed model

successfully achieved an accuracy of up to 98.0% in detecting epoxy-related

defects on real-world wireless earbud PCB images.

This study also addressed the time-cost issue by utilising transfer

learning in model training to shorten the time taken while achieving high

accuracy. InceptionV3 was capable of classifying 168 images at a speed of

0.6913 seconds per image, ResNet50 took 0.6211 seconds, and Xception took

0.8465 seconds. This means that they can process a batch of 168 images within

one second demonstrating their efficiency.

5.1 Limitations

Optimising Hyperparameters

This study did not fully discover the most optimal hyperparameters for the

models due to computational resource constraints. In this case, there might be

better hyperparameter combinations that could further improve the model

training process and improve the accuracy of defect detection. This limitation

highlights a future improvement for the study by researching potentially better

hyperparameter combinations.

103

103

Class Imbalance Issue

The class imbalance issue was pervasive throughout the dataset, with the most

severe imbalance observed in defect type 3. In this category, the 'Good' class

contained 1,000 images, while the 'Epoxy' class had only 11 images, and the

'FM' class comprised 111 images. The imbalanced class distribution posed a

significant challenge to the model's performance, as it struggled to effectively

learn from the minority classes. For instance, ResNet50 performed the best in

detecting defect types 1 and 3, achieving an accuracy of 97.3% for defect type

1 while only having an accuracy of 94.0% for defect type 3.

Decision Threshold

This study adjusted the decision threshold value for binary classification for

defect types 1 and 2. While tuning the threshold can enhance model performance

and accuracy, it also introduces manual intervention and complexity. Ideally,

models should be capable of self-adaptation without requiring manual threshold

adjustments, and this limitation highlights an area for potential future

improvements in automation and model robustness.

5.2 Recommendations for Future Work

Utilisation of Synthetic Data Generation Technique

To mitigate the class imbalance issue observed in the dataset, one potential

avenue for improvement is the application of synthetic data generation

techniques, particularly using advanced deep learning models such as generative

adversarial networks (GANs). GANs can generate high-quality synthetic data

that closely resembles real samples. By introducing synthetic data for minority

classes, the study can potentially rebalance the dataset and provide the model

with more examples of underrepresented classes. This can lead to improved

generalisation and performance, especially for defect type 3, which had a severe

class imbalance issue.

104

104

Further Enhancement on Hyperparameters and Model Architecture

There is potential for further enhancement in model performance through an

exhaustive hyperparameter tuning process or by exploring modifications to the

model architecture. A more comprehensive grid search, spanning a wider range

of hyperparameters and combinations, may help fine-tune the model to discover

optimal settings. Besides, exploring alternative model architectures or even

more advanced neural network architectures can open up opportunities to

capture complex patterns and features within the dataset, potentially leading to

improved model performance.

Applying the Methodology to Other Types of PCB Defects

While the current focus of this study has been on epoxy-related defects in PCBs,

the methodology and techniques developed herein possess a versatile

applicability that can be extended to other types of defects commonly

encountered in PCB manufacturing. The robust framework established in this

study, including data collection, preprocessing, and deep learning model

development, can be readily adapted to investigate and address a broader

spectrum of PCB defects. This adaptability highlights the approach's versatility

and underscores its potential to contribute to comprehensive quality control and

assurance efforts within the PCB industry.

105

105

REFERENCE

Adibhatla, V.A., Chih, H.-C., Hsu, C.-C., Cheng, J., Abbod, M.F. and Shieh, J.-
S., 2020. Defect Detection in Printed Circuit Boards Using You-Only-
Look-Once Convolutional Neural Networks. Electronics, [online] 9(9),
p.1547. https://doi.org/10.3390/electronics9091547.

Anon. 2023a. Papers With Code. [online] Papers With Code. Available at:
<https://paperswithcode.com/> [Accessed 10 April 2023].

Anon. 2023b. What is supervised learning? [online] IBM. Available at:
<https://www.ibm.com/topics/supervised-learning> [Accessed 11
September 2023].

Baheti, P., 2023. A Newbie-Friendly Guide to Transfer Learning. [online] V7.
Available at: <https://www.v7labs.com/blog/transfer-learning-
guide#:~:text=Traditional%20machine%20learning%20models%20re
quire,using%20a%20small%20data%20set> [Accessed 10 April 2023].

Banoula, M., 2023. Classification in Machine Learning: What it is &
Classification Models. [online] simplilearn. Available at:
<https://www.simplilearn.com/tutorials/machine-learning-
tutorial/classification-in-machine-learning#what_is_classification>
[Accessed 11 September 2023].

Bayat, O., Aljawarneh, S., Carlak, H.F., International Association of
Researchers, Institute of Electrical and Electronics Engineers and
Akdeniz Üniversitesi, n.d. Proceedings of 2017 International
Conference on Engineering & Technology (ICET’2017) : Akdeniz
University, Antalya, Turkey, 21-23 August, 2017.

Bellini, M., Pantalos, G., Kaspar, P., Knoll, L. and De-Michielis, L., 2021. An
Active Deep Learning Method for the Detection of Defects in Power
Semiconductors. In: 2021 32nd Annual SEMI Advanced
Semiconductor Manufacturing Conference (ASMC). [online] IEEE.
pp.1–5. https://doi.org/10.1109/ASMC51741.2021.9435657.

Brownlee, J., 2021. A Gentle Introduction to Threshold-Moving for Imbalanced
Classification. [online] Machine Learning Mastery. Available at:
<https://machinelearningmastery.com/threshold-moving-for-
imbalanced-classification/> [Accessed 13 September 2023].

Chen, X., Chen, J., Han, X., Zhao, C., Zhang, D., Zhu, K. and Su, Y., 2020. A
Light-Weighted CNN Model for Wafer Structural Defect Detection.
IEEE Access, [online] 8, pp.24006–24018.
https://doi.org/10.1109/ACCESS.2020.2970461.

106

106

Chollet, F., 2016. Xception: Deep Learning with Depthwise Separable
Convolutions. [online] Available at:
<http://arxiv.org/abs/1610.02357>.

Devika, B. and George, N., 2019a. Convolutional Neural Network for
Semiconductor Wafer Defect Detection. In: 2019 10th International
Conference on Computing, Communication and Networking
Technologies (ICCCNT). [online] IEEE. pp.1–6.
https://doi.org/10.1109/ICCCNT45670.2019.8944584.

Devika, B. and George, N., 2019b. Convolutional Neural Network for
Semiconductor Wafer Defect Detection. In: 2019 10th International
Conference on Computing, Communication and Networking
Technologies (ICCCNT). [online] IEEE. pp.1–6.
https://doi.org/10.1109/ICCCNT45670.2019.8944584.

Ding, R., Dai, L., Li, G. and Liu, H., 2019. TDD‐net: a tiny defect detection
network for printed circuit boards. CAAI Transactions on Intelligence
Technology, [online] 4(2), pp.110–116.
https://doi.org/10.1049/trit.2019.0019.

Donges, N., 2022. What Is Transfer Learning? Exploring the Popular Deep
Learning Approach. Built In.

Haddad, B.M., Yang, S., Karam, L.J., Ye, J., Patel, N.S. and Braun, M.W.,
2018a. Multifeature, Sparse-Based Approach for Defects Detection
and Classification in Semiconductor Units. IEEE Transactions on
Automation Science and Engineering, [online] 15(1), pp.145–159.
https://doi.org/10.1109/TASE.2016.2594288.

Haddad, B.M., Yang, S., Karam, L.J., Ye, J., Patel, N.S. and Braun, M.W.,
2018b. Multifeature, Sparse-Based Approach for Defects Detection
and Classification in Semiconductor Units. IEEE Transactions on
Automation Science and Engineering, [online] 15(1), pp.145–159.
https://doi.org/10.1109/TASE.2016.2594288.

He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image
Recognition. [online] Available at: <http://arxiv.org/abs/1512.03385>.

Huang, H., Tang, X., Wen, F. and Jin, X., 2022. Small object detection method
with shallow feature fusion network for chip surface defect detection.
Scientific Reports, [online] 12(1), p.3914.
https://doi.org/10.1038/s41598-022-07654-x.

Huang, S.-H. and Pan, Y.-C., 2015. Automated visual inspection in the
semiconductor industry: A survey. Computers in Industry, [online] 66,
pp.1–10.
https://doi.org/https://doi.org/10.1016/j.compind.2014.10.006.

107

107

Khalilian, S., Hallaj, Y., Balouchestani, A., Karshenas, H. and Mohammadi, A.,
2020. PCB Defect Detection Using Denoising Convolutional
Autoencoders. In: 2020 International Conference on Machine Vision
and Image Processing (MVIP). [online] IEEE. pp.1–5.
https://doi.org/10.1109/MVIP49855.2020.9187485.

Kim, J., Ko, J., Choi, H. and Kim, H., 2021. Printed Circuit Board Defect
Detection Using Deep Learning via A Skip-Connected Convolutional
Autoencoder. Sensors, [online] 21(15), p.4968.
https://doi.org/10.3390/s21154968.

Lu, Z., He, Q., Xiang, X. and Liu, H., 2018. Defect detection of PCB based on
Bayes feature fusion. The Journal of Engineering, [online] 2018(16),
pp.1741–1745. https://doi.org/10.1049/joe.2018.8270.

Mukherjee, S., 2022. The Annotated ResNet-50. Towards Data Science. [online]
18 Aug. Available at: <https://towardsdatascience.com/the-annotated-
resnet-50-a6c536034758> [Accessed 10 April 2023].

Nakagaki, R., Honda, T. and Nakamae, K., 2009. Automatic recognition of
defect areas on a semiconductor wafer using multiple scanning electron
microscope images. Measurement Science and Technology, [online]
20(7), p.75503. https://doi.org/10.1088/0957-0233/20/7/075503.

Nyuytiymbiy, K., 2020. Parameters and Hyperparameters in Machine
Learning and Deep Learning. Medium.

Raihan, F. and Ce, W., 2017. PCB defect detection USING OPENCV with
image subtraction method. In: 2017 International Conference on
Information Management and Technology (ICIMTech). [online] IEEE.
pp.204–209. https://doi.org/10.1109/ICIMTech.2017.8273538.

Rosebrock, A., 2017. ImageNet: VGGNet, ResNet, Inception, and Xception with
Keras. [online] pyimagesearch. Available at:
<https://pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-
inception-xception-keras/> [Accessed 10 April 2023].

Schlosser, T., Beuth, F., Friedrich, M. and Kowerko, D., 2019. A Novel Visual
Fault Detection and Classification System for Semiconductor
Manufacturing Using Stacked Hybrid Convolutional Neural Networks.
In: 2019 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). [online] IEEE.
pp.1511–1514. https://doi.org/10.1109/ETFA.2019.8869311.

Serrels, K.A., Renner, M.K. and Reid, D.T., 2010. Optical coherence
tomography for non-destructive investigation of silicon integrated-
circuits. Microelectronic Engineering, [online] 87(9), pp.1785–1791.
https://doi.org/10.1016/j.mee.2009.10.011.

108

108

Simonyan, K. and Zisserman, A., 2014. Very Deep Convolutional Networks for
Large-Scale Image Recognition. [online] Available at:
<http://arxiv.org/abs/1409.1556>.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V. and Rabinovich, A., 2014. Going Deeper with
Convolutions. [online] Available at: <http://arxiv.org/abs/1409.4842>.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z., 2015.
Rethinking the Inception Architecture for Computer Vision. [online]
Available at: <http://arxiv.org/abs/1512.00567>.

T, A.N., 2023. Inception V3 Model Architecture. [online] OpenGenus.
Available at: <https://iq.opengenus.org/inception-v3-model-
architecture/> [Accessed 10 April 2023].

Tello, G., Al-Jarrah, O.Y., Yoo, P.D., Al-Hammadi, Y., Muhaidat, S. and Lee,
U., 2018. Deep-Structured Machine Learning Model for the
Recognition of Mixed-Defect Patterns in Semiconductor Fabrication
Processes. IEEE Transactions on Semiconductor Manufacturing,
[online] 31(2), pp.315–322.
https://doi.org/10.1109/TSM.2018.2825482.

Wolfewicz, A., 2023. Deep Learning vs. Machine Learning – What’s The
Difference? [online] Levity. Available at:
<https://levity.ai/blog/difference-machine-learning-deep-
learning#:~:text=Machine%20Learning%20means%20computers%20
learning,documents%2C%20images%2C%20and%20text> [Accessed
10 April 2023].

Xin, H., Chen, Z. and Wang, B., 2021. PCB Electronic Component Defect
Detection Method based on Improved YOLOv4 Algorithm. Journal of
Physics: Conference Series, [online] 1827(1), p.012167.
https://doi.org/10.1088/1742-6596/1827/1/012167.

Zeng, N., Wu, P., Wang, Z., Li, H., Liu, W. and Liu, X., 2022. A Small-Sized
Object Detection Oriented Multi-Scale Feature Fusion Approach With
Application to Defect Detection. IEEE Transactions on
Instrumentation and Measurement, [online] 71, pp.1–14.
https://doi.org/10.1109/TIM.2022.3153997.

Zhang, C., Shi, W., Li, X., Zhang, H. and Liu, H., 2018. Improved bare PCB
defect detection approach based on deep feature learning. The Journal
of Engineering, [online] 2018(16), pp.1415–1420.
https://doi.org/10.1049/joe.2018.8275.

109

109

APPENDICES

Appendix 1: FYP 1 Log Book

Appendix 2: FYP 2 Gantt Chart

110

110

Appendix 3: FYP 2 Log Book

111

111

Appendix 4: FYP 2 Gantt Chart

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF APPENDICES
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF SYMBOLS / ABBREVIATIONS
	CHAPTER 1
	1 INTRODUCTION
	1.1 Project Background
	1.2 Problem Statement
	1.3 Aim and Objectives
	1.4 Proposed Solution
	1.5 Scope and Limitation of the Study

	CHAPTER 2
	1 LITERATURE REVIEW

	CHAPTER 2
	2
	2
	2.1 Overview
	2.2 Similar Works
	2.3 Image Preprocessing Techniques
	2.4 Traditional Machine Learning
	2.5 Supervised Learning
	2.6 Classification
	2.7 Deep Learning
	2.8 Transfer Learning
	2.9 Pre-trained Image Classification Deep Learning Models
	2.10 Hyperparameters

	CHAPTER 3
	2 METHODOLOGY

	CHAPTER 3
	3
	3
	3
	3.1 Overview
	3.2 Project Plan
	3.3 Data Collection
	3.4 Data Preprocessing
	3.5 Data Augmentation
	3.6 Data Labelling
	3.7 Data Splitting
	3.8 Hyperparameter Tuning
	3.9 Model Architecture
	3.10 Model Evaluation
	3.11 Model Comparison
	3.12 Software Environment
	3.13 Hardware Environment

	CHAPTER 4
	3 RESULTS & DISCUSSION

	CHAPTER 4
	4
	4
	4
	4
	4.1 Overview
	4.2 Grid Search Result
	4.2.1 Defect Type 1 – Epoxy Overflow on Die
	4.2.2 Defect Type 2 – Epoxy Overflow on LED
	4.2.3 Defect Type 3 – Epoxy on Die + FM on Die
	4.2.4 Grid Search Summary

	4.3 Model Evaluation
	4.3.1 Defect Type 1 – Epoxy Overflow on Die
	4.3.2 Defect Type 2 – Epoxy Overflow on LED
	4.3.3 Defect Type 3 – Epoxy on Die + FM on Die

	4.4 Model Evaluation Summary

	CHAPTER 5
	4 CONCLUSIONS

	CHAPTER 5
	5
	5
	5
	5
	5
	5.1 Limitations
	5.2 Recommendations for Future Work

	REFERENCE
	APPENDICES

