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ABSTRACT 

 

 

A CORRELATION-EMBEDDED ATTENTION APPROACH TO 

MITIGATE MULTICOLLINEARITY IN FOREIGN EXCHANGE 

DATA USING LSTM 

 

 

Leow Mun Hong Steven 

 

 

 

 

 

 

Technologies currently drive the collection of big data in various fields, 

including algorithmic trading. This leads to a notable increase in the collection 

and storage of variables and data points (observations). While this offers 

opportunities to enhance the modeling of relationships between predictors and 

response variables, it also presents challenges in data analysis, such as the 

multicollinearity problem. Multicollinearity refers to the situation where two or 

more independent variables exhibit an approximately linear relationship. 

Existing feature selection methods might undermine efforts to gather more data, 

since it results in the exclusion of new data. This, in turn, can lead to the loss of 

important and relevant information. Recent studies indicate that neural networks 

are more adept at handling data with multicollinearity compared to statistical 

estimators. Consequently, this study proposes two improvements for the Long 

Short-Term Memory neural network (LSTM). These improvements involve the 

integration of the attention mechanism and vector embeddings of correlation to 

address multicollinearity without eliminating features. This innovative approach 

enables the handling of multicollinearity without discarding variables. The study 

compares the performance of regression and classification in predicting the 



ii 

 

direction of the foreign exchange market, using the EUR/GBP, EUR/USD, 

GBP/USD, and NZD/USD data sets over a 6-year period from 1 January 2015 

to 31 December 2020. Specifically, it evaluates the accuracy of predictions and 

their impact on trading returns under high multicollinearity settings. 

Furthermore, the study assesses the difference between LSTM models with and 

without the proposed module. The results indicate that classification enhances 

regression accuracy by 23.33% and trading return by 132.62% over the test set. 

Additionally, the proposed module offers a further improvement of 59.53% in 

trading returns. These findings demonstrate the superiority of classification as a 

problem formulation in high multicollinearity scenarios. The experimental 

results also reveal that neural networks can learn the relevance and redundancy 

of financial data to enhance classification performance. 
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GLOSSARY OF TERMS 

 

 

Terms Definition 

Algorithmic trading The process of using predefined rules and 

instructions executed by computer algorithms to 

automatically trade financial instruments in the 

market. 

Artificial intelligence The field of computer science that focuses on 

creating intelligent machines capable of 

mimicking human intelligence, such as learning, 

reasoning, and problem-solving. 

Attention mechanisms Techniques used in artificial neural networks to 

assign different weights or levels of importance 

to different parts of input data, enabling the 

network to focus on relevant information. 

Big data Large and complex datasets that cannot be 

easily managed or processed using traditional 

data processing methods. 

Correlation A statistical measure that quantifies the 

relationship between two variables, indicating 

how they move or change together. 

Earnings reports Financial documents released by companies to 

provide information about their financial 

performance and profitability over a specific 

period. 

Financial market A marketplace where buyers and sellers trade 

financial assets such as stocks, bonds, 

commodities, currencies, and derivatives. 

Forecasting The process of predicting or estimating future 

outcomes or events based on historical data and 

statistical models. 

Fundamental analysis An approach to evaluating investments by 

analyzing the intrinsic value of assets, 

examining financial statements, industry trends, 

and other relevant factors. 



xi 

 

Generalization The ability of a machine learning model to 

apply learned knowledge from training data to 

make accurate predictions on new, unseen data. 

Internet of Things (IoT) The network of interconnected physical devices, 

sensors, and other objects embedded with 

software, allowing them to collect and exchange 

data. 

Macroeconomic data Data that describes the overall economic 

conditions of a country or region, such as GDP, 

inflation rate, unemployment rate, and interest 

rates. 

Microeconomic data Data that relates to specific economic units or 

individual entities, such as individual company 

financials, consumer spending, and market 

demand. 

Multicollinearity A phenomenon in statistics where two or more 

predictor variables in a regression model are 

highly correlated, making it difficult to separate 

their individual effects. 

Ordinary least square 

(OLS) 

A method used to estimate the parameters of a 

linear regression model by minimizing the sum 

of squared differences between the observed 

and predicted values. 

R-Squared A statistical measure that represents the 

proportion of the variance in the dependent 

variable explained by the independent variables 

in a regression model. 

Ridge regression A technique used to address multicollinearity in 

regression models by adding a penalty term to 

the ordinary least square estimation. 

Root mean square error A measure of the average difference between 

predicted values and actual values, calculated 

by taking the square root of the average of 

squared differences. 

Stepwise regression A method of selecting and removing predictor 

variables in a regression model based on their 

statistical significance and contribution to the 

model's overall performance. 

Technical analysis An approach to forecasting financial markets 

that relies on historical price and volume data, 
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patterns, and indicators to make investment 

decisions. 

Technical indicators Mathematical calculations or statistical tools 

applied to historical price and volume data to 

provide insights into market trends, momentum, 

and potential future price movements. 

Time series data Data collected and recorded over a series of 

consecutive and equally spaced time intervals, 

such as stock prices over daily, weekly, or 

monthly periods. 

Vector embeddings Representations of objects or entities in a vector 

space, often used in natural language processing 

(NLP) to capture semantic relationships 

between words or documents. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1. Background of the Study 

 

1.1.1. Algorithmic Trading 

 

Forecasting in finance currently involves a wide range of variables, 

including macroeconomic data, microeconomic data, earnings reports, and 

technical indicators. Multicollinearity remains a prevalent issue in finance due 

to the variable dependencies that can fluctuate over time and change due to 

economic events. Handling financial market data differs from time series data 

in other fields, and there are several key reasons for this (Iba & Sasaki, 1999). 

The primary objective when compiling stock market data is to maximize profit 

rather than minimizing prediction errors. Stock market data are highly time-

dependent, meaning that the output relies on the timing of the input. 

Additionally, they are influenced by indeterminate events, indicating that the 

event triggering the response is not fixed. Algorithmic trading serves as a prime 

example of the challenges posed by multicollinearity in finance. 

 

With the advancement of technologies and the availability of big data, 

algorithmic trading has gained significant popularity. It refers to the use of 

programmed software that automates one or more stages of the trading process 
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(Treleaven, Galas, & Lalchand, 2013). Algorithms are commonly employed in 

pre-trade analysis, where they utilize financial data or news to generate asset 

price forecasts (Nuti et al., 2011). The analysis can be categorized into 

fundamental analysis, which involves financial data, economic data, or news 

data, and technical analysis, which focuses on trend analysis and chart patterns. 

Algorithmic trading deals with a vast amount of data and continuously 

incorporates new information. It may encompass hundreds of variables, and 

even minor changes can have a significant impact on forecast performance. 

Since these forecasts are typically used for trading purposes, multicollinearity 

has substantial implications for the profitability of the system. 

 

To illustrate this issue, the present study focuses on the use of technical 

indicators in stock analysis. A problem of multicollinearity arises when these 

indicators measure the same type of information, such as momentum (Bollinger, 

1992). In such cases, different indicators are derived from the same series of 

closing prices. The aim of this study is to address this problem by minimizing 

multicollinearity. Previous literature attempted to eliminate collinear data to 

mitigate the effects of multicollinearity. This was achieved through stepwise 

regression, which eventually yielded a model with a low root mean square error 

(RMSE). The computational complexity of this approach led to the 

development of various selection criteria for model choice. Ridge regression 

emerged as a breakthrough method for tackling multicollinearity. Instead of 

selecting variables, ridge regression employs all variables. 
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Ridge regression adjusts the estimator by introducing a penalty term to 

the ordinary least square (OLS) estimators. The objective is to reduce variance 

by introducing bias. Subsequent papers have expanded upon these ideas, 

exploring different functional forms and enhancing performance. For instance, 

Algamal (2018) conducted a review on Poisson regression. Furthermore, 

advancements in computing power have brought mathematical optimization 

into variable selection. The progress made in machine learning and artificial 

intelligence has opened up new possibilities for mitigating multicollinearity. 

Obite et al. (2020) utilized a feed-forward artificial neural network to model 

data with multicollinearity and found that it outperformed traditional OLS in 

terms of RMSE. 

 

This demonstrates that machine learning approaches with intricate 

architectures possess the capability to generate significantly improved 

parameter estimates compared to statistical methods. In the realm of financial 

prediction, machine learning methods, including Artificial Neural Network 

(ANN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), 

and Convolutional Neural Network (CNN), are recognized for their superior 

performance in contrast to regression models (Wang et al., 2021) 

 

1.1.2. Multicollinearity 

 

Multicollinearity emerges as a potential issue when utilizing a multiple 

regression model. People outside the field of statistics often lack understanding 

regarding the various methods available to mitigate the impact of 
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multicollinearity (Schroeder, Lander, & Levine-Silverman, 1990). 

Multicollinearity occurs when there is an approximate linear relationship 

between two or more independent variables. The equation below represents a 

multiple linear regression model: 

𝑦 = ꞵ
0

+ 𝑥1ꞵ
1

+. . . +𝑥𝑝ꞵ
𝑝

+ 𝑒 , (1) 

here, y denotes the dependent variable, while x1, . . ., xp represent the 

explanatory variables.  ꞵ0 represents the constant term, and ꞵ1, . . ., ꞵp represents 

the coefficients of the explanatory variables. The error term, e, accounts for the 

discrepancy between the observed value and the estimated value. It follows a 

normal distribution with a mean of 0 and variance σ. In the presence of 

multicollinearity, one explanatory variable, such as x1, may exhibit a linear 

dependency on another explanatory variable, like x2. This situation leads to an 

unreliable model. 

 

 Lafi and Kaneene (1992) outline four primary indications of 

multicollinearity. Firstly, there is a notable increase in the standard error of the 

coefficients. Additionally, the sign of a variable coefficient may deviate from 

what is expected in theory. Furthermore, a high correlation exists between the 

predictor variable and the outcome, yet the corresponding parameter lacks 

statistical significance. Lastly, some correlation coefficients among predictor 

variables are significantly large compared to the explanatory power or R-

Squared of the overall equation. These symptoms are merely indicators and do 

not guarantee the presence of multicollinearity. Although multicollinearity does 

not violate the assumptions of ordinary least squares (OLS) regression, it poses 

two significant challenges. Firstly, the interdependence of variables leads to 
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unstable estimates. Secondly, the standard errors of regression coefficients 

become inflated, rendering the estimates unreliable and reducing precision 

(Alin, 2010). As a result, the model's generalization ability diminishes, and it 

tends to overfit the available data, performing poorly on unseen data. 

 

Previous studies have identified four approaches for measuring 

multicollinearity. The first method involves calculating pairwise correlations 

using a correlation matrix. Mason and Perreault Jr (1991) suggest that a 

bivariate correlation of 0.8 or 0.9 is often used as a threshold to indicate high 

correlation between two regressors. However, it is important to note that 

correlations alone do not necessarily imply multicollinearity as they represent a 

different concept. The most utilized indicator of multicollinearity is the 

Variation Inflation Factor (VIF) or Tolerance (TOL) (Neter, Kutner, 

Nachtsheim, & Wasserman, 1996). VIF is defined as: 

𝑉𝐼𝐹𝑗 =
1

(1 − 𝑅𝑗
2)

 , 
(2) 

where 𝑅𝑗
2 is the coefficient of determination for the regression of xj on the 

remaining variables. VIF is the reciprocal of TOL. While there is no definitive 

threshold value for VIF indicating the presence of multicollinearity, a value of 

10 or higher is often considered indicative of multicollinearity (Weisberg, 

2005). 

 

Eigenvalues, derived from the Principal Component Approach (PCA), 

offer another method for assessing multicollinearity. A smaller eigenvalue 

suggests a higher likelihood of multicollinearity. The fourth measurement 

approach is the Condition Index (CI), which relies on eigenvalues. CI is the 
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square root of the ratio between the maximum eigenvalue and each individual 

eigenvalue. Belsley, Kuh, and Welsch (2005) propose that a CI between 10 and 

30 indicates moderate multicollinearity, while a CI above 30 suggests severe 

multicollinearity. VIF and CI are commonly employed to assess the severity of 

multicollinearity in a dataset before implementing methods to address it. It is 

worth noting that the effectiveness of these two approaches in reducing 

multicollinearity is typically evaluated by comparing the root mean square error 

or out-sample forecast before and after applying the treatments (Tamura et al., 

2017). 

 

1.1.3. Problem Formulation 

 

It is widely recognized in the field that financial analysts often rely on 

accurate price level predictions to guide their trading practices. However, recent 

studies have suggested that forecasting strategies based on predicting the 

direction of price changes may be more effective and profitable. Leung, Daouk, 

and Chen (2000) discovered that forecasting models focused on the direction of 

stock returns outperform models based on the level of stock returns in terms of 

predicting stock market return direction and maximizing investment profits. 

 

Over the past three decades, twenty highly cited studies in the fields of 

econometrics and financial forecasting have consistently framed financial 

forecasting as a point estimation problem (Alexander, 2008; Barndorff-Nielsen 

& Shephard, 2005; Barndorff-Nielsen & Shephard, 2002; Beck, 2008; Brooks, 

2019; Brownlees & Gallo, 2006; Campbell, Lo, & MacKinlay, 1997; Chen et 
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al., 2012; Chiriac & Voev, 2011; Christoffersen & Diebold, 2000; Engle, 2001, 

2004; Giacomini & Rossi, 2010; Hördahl et al., 2006; Jasiak, 2001; Koop & 

Korobilis, 2012; Mills & Markellos, 2008; Paolella & Taschini, 2008; Patton, 

2011). In essence, forecasting problems are commonly formulated as "What will 

X be after N periods?" where X represents a specific metric and N denotes the 

number of periods. This approach is particularly useful in various decision-

making scenarios, such as forecasting earnings to calculate the Price-to-

Earnings Ratio (PER) for determining stock valuation or predicting exchange 

rates for inventory management purposes. 

 

Discretizing the sample space involves splitting the continuous sample 

space into intervals. In the context of financial forecasting, when the estimation 

problem is framed as interval-based, the prediction sample space becomes 

discrete. Rather than asking "What would X be after N periods?" where X 

represents the stock price and N denotes the number of time-steps, interval-

based estimation poses the question "What is the probability that X will fall 

between Y and Z after N periods?" This shift in approach introduces the 

possibility of treating continuous forecasting as a classification problem, 

opening up opportunities for innovation in financial forecasting problem 

formulation. 

 

The novelty of neural networks lies in their ability to model non-linear 

sequences and predict both continuous and discrete variables, unlike many 

statistical models that are limited to one or the other. This research aims to 

address the question of which approach—classification-based or point 
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estimation—achieves better accuracy in forecasting the trend direction of 

stocks. Specifically, a Long Short-Term Memory network was developed to 

forecast foreign exchange using various technical indicators as input features. 

By comparing the trading returns of classification-based approaches to their 

point estimation counterparts, this study provides valuable insights and a 

developed model that can serve as a foundation for future research. 

 

1.2. Problem Statement 

 

Forecasting exact numerical values of a target variable in algorithmic 

trading using regression poses a challenge due to the presence of market 

volatility and nonlinearity. The presence of multicollinearity further 

complicates matters. However, classification can offer an alternative approach 

by categorizing data into discrete classes. This simplifies the prediction task and 

enhances resistance to noise. Classification models focus on identifying the 

general direction or category of market movements rather than precise values, 

and they can leverage additional data sources such as sentiment analysis. In this 

research, the focus is on exploring how problem formulation can improve the 

impact of multicollinearity. 

 

The existing body of literature has largely overlooked the potential of 

neural network approaches in mitigating multicollinearity. Traditional feature 

selection methods prove inadequate when applied to neural networks because 

they fail to capture nonlinear relationships. Recent studies have shown that 

neural networks outperform statistical ordinary least squares (OLS) regression 
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models when handling multicollinear data. Furthermore, researchers have 

emphasized the advantages of machine learning algorithms, including their 

ability to operate without strict assumptions about the underlying function, 

uncover complex patterns, and dynamically adapt to changing relationships 

(Rasekhschaffe & Jones, 2019; Obite et al., 2020; Wu & Feng, 2018). 

 

Additionally, neural network approaches offer the opportunity to 

leverage attention mechanisms and vector embeddings to explore their 

effectiveness in handling multicollinearity in foreign exchange datasets. It has 

potential in retaining variables. In financial data, it is suboptimal to remove 

features due to their interrelated nature (Lucey & Muckley, 2011). When the 

objective is forecasting rather than hypothesis testing, utilizing a larger number 

of variables can yield better results even in the presence of multicollinearity (A.-

S. Chen, Leung, & Daouk, 2003). This holds true in algorithmic trading, where 

the accuracy of forecast predictions directly impacts the algorithm's 

profitability. With the advancements in Internet of Things (IoT), Big Data, and 

digitization, a significant amount of data is becoming available, making the 

removal of variables a missed opportunity.  

 

 The above problems suggest that conventional methods of addressing 

multicollinearity have little application for algorithmic trading. This study 

proposed a machine learning approach that uses all available variables on a 

neural network. A neural network has the advantage of exhibiting significant 

non-linear characteristics, accounting for relationships with response variable. 

It should improve generalization ability compared to existing methods. 
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1.3. Research Questions 

 

1. To what extent can Classification Neural Network mitigate 

multicollinearity when compared to Regression Neural Network? 

2. To what extent can the proposed method mitigate multicollinearity when 

compared to Neural Network? 

a. How does the proposed attention mechanism and embeddings 

compare to neural network in improving prediction accuracy?  

b. How does the proposed attention mechanism and embeddings 

compare to neural network in improving trading returns? 

3. To what extent can the proposed method applied to regression mitigate 

multicollinearity? 

 

1.4. Research Objectives 

 

1. To compare the performance of mitigating multicollinearity between 

Classification Neural Network and Regression Neural Network. 

2. To investigate the potential improvement in performance of proposed 

method over Neural Network.  

a. To investigate the potential improvement in prediction accuracy 

of proposed attention mechanism and embeddings over neural 

network in the presence of multicollinearity. 

b. To investigate the potential improvement in trading returns of 

proposed attention mechanism and embeddings over neural 

network in the presence of multicollinearity.  
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3. To investigate the potential improvement in performance of proposed 

method on regression. 

 

1.5. Contributions 

 

This study aims to make significant contributions to both participants in 

financial markets and researchers in the field of data analysis. Specifically, a 

novel machine learning approach is developed to effectively mitigate the 

adverse effects of multicollinearity. The proposed method has the potential to 

enhance financial forecasting and algorithmic trading practices. Unlike 

traditional approaches, this method does not involve variable removal and 

instead utilizes all available variables within neural networks. The study 

investigates the impact of treating prediction as a classification problem versus 

a regression problem. Additionally, attention mechanisms are employed to 

assess the relevance of different variables, while vector embeddings of 

correlation are developed to identify redundant features. These two methods are 

integrated to improve the prediction model, employing an embedded approach 

to feature selection. 

 

The purpose of the attention mechanism is to determine the variables 

that hold the most significance for predicting the target variable. It achieves this 

by assigning varying weights to each input variable. Initially introduced for 

sequence-to-sequence machine translation by Bahdanau et al. (2014), attention 

mechanisms have since evolved and found applications in other domains such 

as image data (Yuan et al., 2022). By incorporating attention, the predictive 
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model can effectively capture the relationships between the variables and the 

desired output. Notably, attention mechanisms have demonstrated their utility 

in forecasting stock market price fluctuations using technical indicators (Lee, 

2022). The proposed method offers promising advancements in financial 

forecasting and algorithmic trading, specifically in the context of handling 

multicollinearity. The model also employs correlations between variables as 

embeddings, providing the model with insights into feature redundancy. 

 

The findings of this dissertation hold valuable insights for future 

researchers aiming to address multicollinearity in various fields beyond finance 

and algorithmic trading. The research makes two main contributions: firstly, it 

enables neural networks to effectively handle multicollinearity without the need 

for variable removal; and secondly, it enhances investment returns when 

applying the proposed mechanisms to a Long Short-Term Memory (LSTM) 

network. Furthermore, the study may inspire further research on utilizing neural 

networks to solve multicollinearity-related challenges. 

 

1.6. Conclusion 

 

The background of this study encompasses two key components: 

multicollinearity and algorithmic trading. Multicollinearity refers to a 

phenomenon that can occur when utilizing a multiple regression model, 

resulting in poor generalization ability and overfitting of the data. On the other 

hand, algorithmic trading pertains to the use of programmed software to 

automate various stages of the trading process. These algorithms often involve 
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numerous variables, and even minor changes can significantly impact forecast 

performance. The presence of multicollinearity can have significant 

implications for the profitability of such systems. Therefore, accurate prediction 

of price levels is crucial in many trading practices employed by financial 

analysts. 

 

This research addresses three primary issues. Firstly, recent studies have 

suggested that trading strategies based on forecasting the direction of price level 

changes may yield superior results. Secondly, advancements in mitigating 

multicollinearity have given limited attention to neural network approaches. 

Finally, this study proposes a novel approach that avoids variable removal when 

dealing with multicollinearity in financial data, recognizing the high 

interrelatedness of the variables. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1. Multicollinearity in Algorithmic Trading 

 

Algorithmic trading is a process of trading financial instruments using 

preprogrammed systems that gained popularity as technology advanced. It 

offered benefits to the market such as narrowing spreads and increasing trading 

activity. Yılmaz et al. (2015) found that algorithmic trading contributed to the 

efficiency of emerging markets like the Bursa Malaysia. In financial markets, 

technical analysis has been utilized for making investment decisions. It involved 

analyzing chart patterns, prices, and trading volume to predict future asset 

prices. This information was used to generate technical indicators related to 

trends, momentum, volume, and volatility. Traders used these indicators to 

receive signals for entering or exiting trades. 

 

Forecasting time series data played a crucial role in finance and 

economics. Traditional approaches relied on statistical models that used past 

time lags to predict future values. One of the most well-known techniques was 

Autoregressive Integrated Moving Average (ARIMA). Neural networks, 

particularly Recurrent Neural Networks (RNNs), were capable of capturing 

dependencies between input sequences. Long Short-Term Memory (LSTM) 

networks, a type of RNN, could retain long-term information from data. Unlike 
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traditional RNNs, LSTMs had memory cells and gates that allowed the model 

to discard irrelevant information from the previous time step while retaining 

important information from the current time step. LSTMs demonstrated 

promising performance in various sequence-based problems like translation, 

speech analysis, and voice recognition. This study chose the LSTM model due 

to its ability to model the temporal nature of time series data. Additionally, it 

served as a suitable benchmark for experimenting and addressing the issue of 

multicollinearity in algorithmic trading. Siami-Namini and Namin (2018) 

compared the performance of ARIMA and LSTM models, revealing an 85% 

improvement in prediction accuracy for stock market indexes using the LSTM. 

 

Trading models were often comprised of numerous variables, including 

economic variables such as interest rates, exchange rates, monetary growth 

rates, and overall economic conditions. Industry-specific variables such as 

growth rates of industrial production and consumer prices, as well as company-

specific variables like income statements and dividend yields, were also taken 

into account. Technical analysis, which involved analyzing chart patterns, price 

movements, and trading volume, along with news data related to important 

political events, played a significant role as well (Enke & Thawornwong, 2005). 

These factors interacted with each other, and even minor changes could have a 

significant impact on forecast performance. 

 

Treleaven et al. (2013) provided an overview of the algorithmic trading 

process. Sophisticated neural networks were utilized to incorporate technical 

indicators and enhance the profitability of algorithmic trading. This was evident 
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in the case of Bursa Malaysia, where it was observed that algorithmic trading 

outperformed the standard buy-and-hold strategy with the Kuala Lumpur 

Composite Index (KLCI) as a proxy for the stock market (M’ng & Aziz, 2016). 

Recent research by Rundo (2019) demonstrated that deep LSTM models could 

effectively predict short-term trends in foreign exchange rates, resulting in 

increased profits and reduced drawdowns. This process is illustrated in Figure 

2.1. 

 

 
Figure 2.1 The algorithmic trading process.  

 

The extensive volume of data encountered in stock analysis is 

susceptible to the influence of multicollinearity. This issue often arose when 

utilizing technical indicators, particularly those that measured similar 

information such as momentum (Bollinger, 1992). For instance, if multiple 

indicators were derived from the same series of closing prices, it would lead to 

multicollinearity concerns. 

 

 



 

17 

 

2.2. Solving the Multicollinearity Problem 

 

In order to mitigate the impact of multicollinearity, one straightforward 

solution is to increase the amount of collected data, as multicollinearity is 

primarily a data issue rather than a problem with model specification. However, 

this approach is not always feasible, particularly when research relies on 

convenience sampling, as it may entail additional costs and compromise the data 

quality (Schroeder et al., 1990). Methods for addressing multicollinearity can 

be broadly categorized into two approaches: variable selection and modified 

estimators. Variable selection offers simplicity and the potential for creating a 

sparse model that is easy to interpret and less prone to overfitting. However, it 

has the drawback of being highly discretionary, assuming the existence of a 

single best model while multiple models with different variables can be equally 

valid. 

 

Recent studies have utilized advances in computing power to tackle 

multicollinearity by framing the subset selection problem as an optimization 

task. By searching for the least redundant variables and optimizing for the most 

relevant ones, these approaches utilize criteria developed from previous 

literature to represent relevance and redundancy. This enables handling high-

dimensional problems where the number of variables exceeds the number of 

observations. On the other hand, modifying estimators is a more complex and 

diverse approach. It involves adapting estimators to the specific functional form 

of the data, resulting in improved robustness and performance in the presence 

of multicollinearity. However, interpretability becomes a challenge when 
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coefficients are close to but not exactly zero. Nevertheless, certain modified 

estimators are capable of performing variable selection along with their 

enhanced robustness. 

 

In general, both feature selection methods and modified estimators have 

their advantages and disadvantages. Feature selection methods aim to reduce 

the number of variables to the most relevant ones, which can potentially lead to 

a loss of information from the available data. Moreover, modern optimization 

techniques rely on subjectively determined indicators of relevance and 

similarity, as highlighted by Tamura et al. (2017), indicating the need for 

exploring alternative measures of multicollinearity in future research. Thus, 

without directly comparing their performance on the same dataset, it is 

challenging to determine which method is superior. Additionally, finding a 

globally optimal subset without conducting an exhaustive search is difficult and 

computationally expensive. 

 

Katrutsa and Strijov (2015) conducted a stress test experiment to 

compare the performance of various variable selection methods, including 

Stepwise, Ridge, Lasso, Elastic Net, LARs, and Genetic algorithms. They 

evaluated these methods using several quality measures on synthetic datasets. 

Similarly, Garg and Tai (2013) compared different statistical and machine 

learning methods. However, it is important to note that comparisons between 

methods have limitations. For instance, variations in tuning parameters can 

influence the performance of the methods. Hamaker (1962) emphasized the 

significance of domain knowledge in the field of study for selecting variables, 
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as relying solely on statistics may not be sufficient in practical applications. 

Each method exhibited different degrees of performance when applied to 

different types of data. 

 

Both variable selection and modified estimators can be employed in 

conjunction with each other. One approach is to first rapidly reduce the number 

of features to a level below the number of samples using variable selection 

methods, and then apply modified estimators. This methodology can be 

observed in various machine learning studies. The subsequent sub-topics 

provide detailed explanations of the variable selection and modified estimator 

methods. Additionally, the literature review also covers the introduction of 

machine learning approaches. 

 

2.2.1. Variable Selection Methods 

 

In general, researchers in the past attempted to address the impact of 

multicollinearity by utilizing variable selection techniques to obtain more 

reliable parameter estimates (Askin, 1982). These techniques typically involved 

heuristic algorithms and relied on indicators to combine or eliminate variables. 

However, caution was necessary to prevent compromising the underlying 

theoretical model while reducing multicollinearity. One of the earliest methods 

used was stepwise regression, which encompassed two primary approaches: 

forward selection and backward elimination (Ralston & Wilf, 1960). The 

forward selection method started with an empty model and gradually added 

variables one by one, while the backward elimination method began with a full 
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model containing all variables and progressively removed them. In forward 

selection, the variable with the greatest decrease in residual sum of squares was 

chosen at each stage, while in backward elimination, the variable with the 

lowest increase in residual sum of squares was eliminated. 

 

However, stepwise regression had certain limitations. According to 

Hamaker (1962), it did not always yield the best model in terms of residual sum 

of squares, especially in the presence of multicollinearity, due to the order in 

which variables were added. It remained unclear which of the two stepwise 

regression methods was superior. Moreover, stepwise regression assumed the 

existence of a single optimal equation, overlooking the possibility of multiple 

equations with equally favorable variables. Another concern was the 

computational effort required by the selection criterion (Hocking & Leslie, 

1967). With k independent variables, there were 2k potential combinations, and 

the computational workload increased exponentially with the total number of 

independent variables. 

 

 To expedite computation time, Gorman and Toman (1966) devised a 

more comprehensive approach for fitting equations to the data. They utilized a 

fractional factorial design along with the statistical criteria Cp to avoid the need 

for evaluating all possible equations. This method proved to be more effective 

when dealing with data affected by multicollinearity, as it assessed the efficacy 

of a variable based on its inclusion or exclusion from an equation. The Cp 

criterion, developed by Mallows (1964), facilitated graphical comparisons 

between different equations. The Cp selection criterion can be expressed as: 
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𝐶𝑝 =  
𝑅𝑆𝑆𝑝

�̂�2
− (𝑛 − 2𝑝) ,  (3) 

where, p represents the number of variables, RSS denotes the residual sum of 

squares for the regression being considered, and �̂�
2
 is an estimation of 𝜎2, often 

obtained from the residual mean square of the complete regression. A lower 

value of Cp indicates a better model. 

 

Subsequently, Kashid and Kulkarni (2002) proposed a more generalized 

selection criterion, Sp, which exhibited superior performance compared to the 

Cp criterion. Unlike the Cp criterion, which relies on the least square estimator 

and is susceptible to outliers and deviations from normality in the error variable, 

the Sp criterion addresses these issues and can be employed with any estimator 

of 𝛽 without requiring modifications. The Sp criterion is defined as:  

𝑆𝑝 = ∑(�̂�𝑖𝑘 − �̂�𝑖𝑝)
2

/𝜎2 − (𝑘 − 2𝑝)

𝑛

𝑖=1

 , 
(4) 

where k and p represent the parameters of the full and subset models, 

respectively.  

 

Information criteria offer an appealing approach for model selection. 

Other commonly utilized criteria include the Akaike Information Criterion 

(AIC), Bayesian Information Criterion (BIC), and so on (Montgomery et al., 

2021). According to Vrieze (2012), the difference between AIC and BIC lies in 

the fact that BIC consistently selects the model when the true model is under 

consideration, whereas AIC aims to minimize risk functions when the true 

model is not among the candidate models. The choice of criterion depends on 

the researcher, and it is recommended to use both AIC and BIC in conjunction. 
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Table 2.1 provides a summary of each stepwise feature selection and quality 

criterion. 

 

Table 2.1 Stepwise feature selection and quality criterions. 

Author Objective Method Pros Cons 

Ralston 

and Wilf 

(1960) 

Develop a 

method for 

model selection 

Forward 

selection and 

backward 

elimination 

Simple to 

understand and 

use 

Final model 

affected by order 

Mallows 

(1964) 

A criterion for 

subset selection 
Cp criterion 

Graphically 

compare quality 

between models 

Suffers with 

outlier and non-

normality 

Gorman 

and 

Toman 

(1966) 

Fractional 

factorial design 

to model 

selection 

Fractional 

factorial design 

with the 

statistical 

criteria, Cp 

Avoid 

computing all 

possible model 

Heuristic 

technique 

Kashid 

and 

Kulkarni 

(2002)  

A more general 

selection 

criterion than Cp 

when least 

square is not 

best 

Sp criterion 
Applicable on 

any estimator 

Computationally 

difficult and not 

consistent result 

Misra and 

Yadav 

(2020) 

Improve 

classification 

accuracy in 

small sample 

size 

Recursive 

Feature 

Elimination with 

Cross-Validation 

Does not delete 

the records 

Evaluated on 

small sample 

size 

 

 Lafi and Kaneene (1992) proposed the utilization of principal 

component analysis (PCA) as a means to address multicollinearity among 

predictor variables in a regression model. PCA is a statistical method that 

transforms variables into new uncorrelated variables known as principal 

components, effectively reducing the number of predictive variables. 

Regression analysis is then performed using these principal components. The 

principal components are independent, thereby satisfying the ordinary least 
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squares (OLS) assumption. They are ranked based on the magnitude of their 

variances, with principal component 1 accounting for more variation than 

principal component 2, thus making PCA useful for dimensionality reduction. 

Principal components with eigenvalues close to zero can be eliminated, 

resulting in a sparse model while retaining potentially valuable information 

contained in the variables. 

 

The Partial Least Squares (PLS) method was developed by Wold (1982) 

and represents a superior alternative to multiple linear regression and PCA due 

to its robustness. The model parameters do not undergo significant changes 

when new samples are introduced. PLS, like PCA, is a dimension reduction 

technique, but it captures the characteristics of both X and Y variables instead 

of solely focusing on X. The PLS method iteratively extracts factors from X and 

Y while maximizing the covariance between the extracted factors. PLS proves 

useful for analyzing noisy data affected by multicollinearity, as its underlying 

assumptions are more realistic compared to traditional multiple linear 

regression (Wold et al., 2001). Chong and Jun (2005) conducted a comparison 

between the PLS method, the lasso method, and the stepwise method, finding 

that PLS performed better. 

 

Several journals have conducted comparisons between these techniques. 

Maitra and Yan (2008) discussed and compared PCA and PLS, as both methods 

serve as dimension reduction methodologies. They are employed to convert 

highly correlated variables into independent variables and reduce the number of 

variables. PCA does not consider the relationship between predictor variables 
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and response variables, whereas PLS does. Therefore, PCA is an unsupervised 

dimension reduction technique, while PLS is a supervised technique. The study 

also revealed that the predictive power of principal components does not 

necessarily align with their order. For instance, principal component 1 may 

explain less variance in the response variable compared to principal component 

2. In this regard, PLS is more efficient since it is a supervised technique that 

extracts components based on their significance and predictive power. 

 

Maitra and Yan (2008) conducted a simulation study to compare three 

regression methods: partial least square regression (PLSR), ridge regression 

(RR), and principal component regression (PCR). The mean squared error 

(MSE) was used as a metric for comparison. The results indicated that as the 

number of independent variables increased, PLSR performed the best. 

However, when the number of observations and the level of multicollinearity 

were sufficiently large while the number of independent variables remained 

small, RR exhibited the smallest MSE. An example of a recent application of 

PLS can be seen in chaos phase modulation techniques for underwater acoustic 

communication. Li et al. (2018) integrated PLS regression into chaos phase 

modulation communication to mitigate the effects of multicollinearity. They 

described PLS as a machine learning method that simultaneously incorporates 

training and testing processes. The study demonstrated that this method 

effectively enhanced communication signals. The authors compared PLS 

regression with two other algorithms, namely the time reversal demodulator and 

the 3-layer back propagation neural network, which lacked feature analysis and 
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relationship analysis. The results showed that PLS regression yielded the best 

performance. 

 

Willis et al. (1997) initially developed a multigene genetic programming 

approach. Castillo and Villa (2005) utilized this method to automate predictor 

selection and alleviate multicollinearity issues. Bies et al. (2006) described a 

machine learning approach based on genetic algorithms for variable selection. 

Genetic algorithms are general optimization algorithms inspired by concepts 

such as evolution and survival of the fittest. The model was initialized by 

creating a population consisting of several individuals, each representing a 

different model. The genes of the model represented the model's features. An 

objective function was used to evaluate the fitness of the models. In each 

subsequent generation or iteration, the best-performing model was selected, and 

its genes underwent crossover, combining certain features from the parent 

models. Mutation could also occur with a determined probability, resulting in 

the reversal of certain features.  

 

According to Bies et al. (2006), a hybrid model combining a derivative-

based search algorithm with the machine learning concept is recommended. 

Genetic algorithms are effective in finding generally good solutions but may 

struggle with locating local minima, which is where derivative-based search 

algorithms excel. The derivative-based search algorithms can be applied after a 

certain number of iterations of the genetic algorithm. The iterations continue 

until no further improvement in the model's fitness is observed. 
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Katrutsa and Strijov (2017) proposed a quadratic programming 

approach to feature selection, addressing the limitation of previous methods that 

did not consider the dataset's configuration and were not problem-dependent. 

The objective of using quadratic programming was to maximize the inclusion 

of relevant variables while reducing redundancy. The quality criterion, denoted 

as Q, represented the quality of a subset of features a, and it was presented in 

quadratic form as 𝑄(𝑎) = 𝑎𝑇𝑄𝑎 − 𝑏𝑇𝑎. Here, Q∈ Rnxn represented a matrix of 

pairwise predictor similarities, and b∈Rn represented a vector indicating the 

relevance of the predictor to the target variable. The authors suggested that the 

similarity between features xi and xj, as well as between xi and y, could be 

measured using the Pearson correlation coefficient (Hall, 1999) or the concept 

of mutual information (Peng, Long, & Ding, 2005). However, these methods 

did not directly capture feature relevance. To address this, the authors employed 

a standard t-test to estimate the normalized significance of the features. This 

proposed method outperformed other feature selection methods such as 

Stepwise, Ridge, Lasso, Elastic Net, LARS, and the genetic algorithm. 

 

Senawi, Wei, and Billings (2017) introduced the maximum relevance-

minimum multicollinearity (MRmMC) method for variable selection and 

ranking. This approach considers both relevance and redundancy. Relevancy 

represents the relationship between features and the target variable, while 

redundancy indicates multicollinearity among features. One advantage of this 

method is that it doesn't require parameter tuning and is relatively 

straightforward to implement. Relevant features are assessed using the 

correlation coefficient, while redundancy is measured using the squared 
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multiple correlation coefficient. They developed a measure J that combines both 

relevancy and multicollinearity: 

𝐽(𝑓𝑗) =  [𝑟𝑞𝑛
2 (𝑓𝑗 , 𝑐) −  ∑ 𝑠𝑐(𝑓𝑗 , 𝑞𝑖)

𝑘

𝑖=1

]  , 
(5) 

where r2 is the correlation coefficient between feature f and target variable c, 

and sc is the squared multiple correlation coefficient between feature f and its 

orthogonal transformed variable q. The first feature is selected using the 

optimization criterion V, and subsequent features are selected based on the J 

criterion using a forward stepwise approach. Although not exhaustive, this 

method proves to be highly effective for feature selection and dimensionality 

reduction. 

 

Tamura et al. (2019) suggested that mixed integer optimization (MIO) 

approaches for variable selection have gained attention due to advancements in 

algorithms and hardware. They developed a mixed integer quadratic 

optimization (MIQO) method to address multicollinearity in linear regression 

models. The MIQO method utilizes the variance inflation factor (VIF) as an 

indicator for detecting multicollinearity. Subset selection is performed while 

imposing an upper bound constraint on the VIF of each variable. This approach 

achieved higher R-Squared values compared to heuristic-based methods like 

stepwise selection. Furthermore, the solution is computationally tractable and 

simpler to implement than the cutting plane algorithm. 

 

Zhao et al. (2020) introduced the profiled independence screening (PIS) 

method for variable screening in datasets with high dimensionality and highly 

correlated predictors. This method builds upon the sure independence screening 



 

28 

 

(SIS) approach proposed by Fan and Lv (2008). However, SIS faced challenges 

when dealing with highly correlated predictors, leading to the development of 

PIS. To eliminate predictor correlation, a factor profiling operator 𝑄(𝑍𝐼) =

𝐼𝑛 − 𝑍𝐼(𝑍𝐼
𝑇𝑍𝐼)−1𝑍𝐼

𝑇 was introduced. The profiled data is then used in SIS. 

ZI∈Rnxd is the latent factor matrix of X and d is the number of latent factors. 

Factor profiling is as follows 

Q(ZI)y = Q(ZI)Xβ + Q(ZI)ε , (6) 

In the factor profiling step, Q(ZI)y represents the profiled response variable, and 

the columns of Q(ZI)X represent the profiled predictors. However, PIS can be 

misleading in a spiked population model. To address this, preconditioned 

profiled independence screening (PPIS) combines preconditioning with factor 

profiling. Two real data analyses demonstrated the good performance of PPIS. 

 

In addition, outlier detection can be a viable approach for variable 

selection. Larabi-Marie-Sainte (2021) recently used projection pursuit for 

outlier detection-based feature selection. Projection pursuit aims to identify the 

most interesting linear projections, and the author optimized it specifically for 

outlier detection. This method was found to be effective in improving 

classification tasks. However, its performance tends to be poor when most 

features are highly correlated or when the features are binary. Table 2.2 provides 

a summary of the findings for various variable selection approaches. 
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Table 2.2 A summary of previous studies on variable selection. 

Author Objective Method Pros Cons 

Wold 

(1982) 

Creates new 

components 

using the 

relationship of 

predictor and 

response 

Partial Least 

Square (PLS) 

Supervised 

component 

extraction 

Cannot exhibit 

significant non-

linear 

characteristics 

Lafi and 

Kaneene 

(1992) 

Using PCA to 

perform 

regression 

Principal 

component 

analysis (PCA) 

Reduce 

dimensions 

Does not 

account for 

relationship with 

response 

variable 

Bies et al. 

(2006) 

Genetic 

algorithm-

based approach 

to model 

selection 

Genetic 

algorithm 

Less 

subjectivity on 

model 

Not good in 

finding local 

minima 

Fan and Lv 

(2008) 

Screening with 

correlation 

learning 

Sure 

Independence 

screening 

Reduce 

dimensionality 

Assume true 

model is linear 

Genuer et 

al. (2010) 

Find important 

variables for 

interpretation 

Random Forest 

Variable 

importance 

ranking 

Not diagnose for 

variable 

correlation 

Andrews 

and 

McNicholas 

(2014) 

Variable 

selection for 

clustering and 

classification 

(VSCC) 

Stepwise 

Algorithm 

Minimize 

within-group 

variance 

Require effective 

subset selection 

criterion 

Zeng and 

Xie (2014) 

Group variable 

selection 

Smoothly 

Clipped 

Absolute 

Deviation  

Preserve 

variable 

selection 

accuracy 

Not 

computationally 

efficient as the 

forward 

procedure 

Katrutsa 

and Strijov 

(2017) 

Quadratic 

programming 

approach 

Quadratic 

programming 

Investigates the 

relevance and 

redundancy of 

features 

Cannot evaluate 

multicollinearity 

between 

quantitative and 

nominal random 

variable. 

Senawi et 

al. (2017) 

Feature 

selection and 

ranking 

Maximum 

relevance-

minimum 

Works well 

with classifying 

problems 

Non-exhaustive 
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multicollinearity 

(MRmMC) 

Tamura et 

al. (2017) 

Mixed integer 

optimization 

Mixed integer 

semidefinite 

optimization 

(MISDO) 

Uses backward 

elimination to 

reduce 

computation 

Only applies to 

low number of 

variables 

Tamura et 

al. (2019) 

Mixed integer 

optimization 

Mixed integer 

quadratic 

optimization 

(MIQO) 

Uses VIF as 

indicator 

Only applies to 

low number of 

variables 

Chen et al.  

(2020) 

Combines the 

result of filter, 

wrapper, and 

embedded 

feature 

selection 

Ensemble 

feature selection 

Overcome local 

optima problem 

Higher 

computation cost 

than single 

solution 

Zhao et al. 

(2020) 

Variable 

screening based 

on sure 

independence 

screening (SIS) 

Preconditioned 

profiled 

independence 

screening (PPIS) 

Variable 

screening in 

high 

dimensional 

setting 

Require 

decorrelation of 

the predictors 

Larabi-

Marie-

Sainte 

(2021) 

Feature 

selection based 

on outlier 

detection 

Projection 

Pursuit 

Found outliers 

correlated with 

irrelevant 

features 

Does not work 

well when 

features are 

noisy 

Singh and 

Kumar 

(2021) 

Creates new 

variables 

Linear 

combination and 

ratio of 

independent 

variables 

Does not 

remove any    

variables 

Based on trial-

and-   error 

 

The objective of variable selection methods is to decrease the number of 

variables to a select few that hold the highest relevance. However, this reduction 

in variables may result in a decrease in the amount of information gained from 

the available data. Additionally, contemporary optimization methods rely on 

indicators of relevance and similarity that are determined subjectively. Tamura 

et al. (2017) highlighted the need for exploring alternative measures of 

multicollinearity in future research, illustrating the subjective nature of these 
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indicators. Consequently, it becomes challenging to determine which method is 

superior without directly comparing their performance on the same dataset. It is 

worth noting that improved performance could also be attributed to the specific 

problem being examined. 

 

2.2.2. Modified Estimator Methods 

 

Modified Estimators were introduced as an alternative approach that 

employed biased and shrunken estimators to mitigate overfitting by reducing 

variance (Askin, 1982). Although dropping variables did not compromise the 

integrity of the theoretical model, the estimators became biased. The most well-

known technique within this approach is ridge regression, which was developed 

by Horel (1962). Ridge regression incorporates a penalty term, the squared 

magnitude of the coefficient β, into the loss function. The cost function for ridge 

regression can be expressed as follows: 

∑(𝑌𝑖 −

𝑛

𝑖=1

∑ 𝑋𝑖𝑗

𝑝

𝑗=1

𝛽𝑗)2 + ƛ ∑ 𝛽𝑗
2

𝑝

𝑗=1

 , 
(7) 

One challenge with ridge regression is determining the appropriate ridge 

parameter, ƛ. If ƛ equals zero, the estimate will be equivalent to the ordinary 

least square estimate. However, if ƛ is excessively large, it can result in 

underfitting the model. The selection of ƛ involves searching for the minimal 

increase in root mean square error (RMSE) while effectively decreasing the 

ridge variable inflation factors for each variable. 
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To address this issue, a ridge trace is employed. This trace represents a 

plot of the coefficients, ꞵ̂, against ƛ. It helps identify the smallest ƛ value at 

which the coefficients start to level off. Alternatively, a validation dataset can 

be utilized to minimize the sum of squared errors (SSE) and determine the 

optimal ƛ. This involves identifying ƛ such that the reduction in the variance 

term of the slope parameter surpasses the increment in its squared bias. Duzan 

and Shariff (2015) reviewed estimation methods for Λ and proposed new 

approaches. Additionally, Assaf, Tsionas, and Tasiopoulos (2019) introduced a 

Bayesian approach to tackle the problem of finding the ridge parameter, 

demonstrating its robustness and flexibility in handling multicollinearity 

through simulation results. Another method for determining the ridge parameter 

was proposed by Roozbeh et al. (2020), who developed a generalized cross-

validation approach capable of finding the global minimum. 

 

Furthermore, several estimators have been derived based on the ridge 

estimator. Singh et al. (1986) employed a jack-knife procedure to reduce the 

considerable bias in estimators resulting from ridge regression. Kejian (1993) 

introduced the Liu estimator, a new class of estimator based on the ridge 

estimator, which offered the advantage of a simple procedure for finding the 

parameter ƛ due to its linear relationship with the estimate. Liu (2003) proposed 

the Liu-Type estimator, observing that ridge regression's shrinkage effect was 

inadequate when confronted with severe multicollinearity. The Liu-Type 

estimator exhibited lower mean squared error (MSE) compared to ridge 

regression and effectively addressed severe multicollinearity. Consequently, 

variations of ridge and Liu-Type estimators have been developed for different 
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regression models. Inan and Erdogan (2013) proposed a Liu-Type estimator for 

binary logistic regression, extending the application of the Liu-Type estimator 

to linear models. 

 

According to Huang and Yang (2014), limited attention had been given 

to shrinkage estimators for generalized linear regression models, including 

Poisson regression, logistic regression, and negative binomial regression. As a 

result, they introduced a two-parameter shrinkage estimator specifically for 

negative binomial models. This estimator combined the ridge estimator and Liu 

estimator. Türkan and Özel (2016) made modifications to the Jackknifed ridge 

regression estimator, creating a Modified Jackknifed Poisson ridge regression 

estimator. Algamal (2018) conducted a review of biased estimators in the 

Poisson regression model in the presence of multicollinearity. They found that 

the regular maximum likelihood method for estimating regression coefficients 

was unreliable under multicollinearity. Comparing the performance of four 

estimators, including the widely used ridge estimator, they discovered that Liu-

type estimators demonstrated superior performance in the Poisson regression 

model.  

 

In an effort to address the limitations of regular ridge regression, 

Chandrasekhar et al. (2016) proposed partial ridge regression. The regular ridge 

regression introduced bias to all variables regardless of the degree of 

multicollinearity, achieved stability at the expense of mean squared error 

(MSE), and had an arbitrary method for selecting the ridge parameter (ƛ). The 

proposed method applied the ridge parameter only to variables with a high 
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degree of collinearity. This approach improved the precision of parameter 

estimation while maintaining MSE close to that of ordinary least squares (OLS). 

The estimates were closer to the true OLS estimate, β, and the overall variance 

significantly decreased. The partial ridge regression outperformed existing 

methods in terms of bias, MSE, and relative efficiency. 

 

The Lasso regression was developed by Tibshirani (1996) as a solution 

to the issues encountered with both stepwise regression and ridge regression. 

One such problem is interpretability. While stepwise regression is interpretable, 

the inclusion or exclusion of variables from the model occurs discreetly, without 

a clear understanding of the underlying reasons. On the other hand, ridge 

regression effectively handles multicollinearity by stabilizing the shrunken 

coefficients. However, it does not reduce coefficients to zero, resulting in 

models that are difficult to interpret. The Lasso, also known as L1 

regularization, and ridge regression, known as L2 regularization, differ mainly 

in the fact that Lasso reduces certain parameter estimates to zero, effectively 

selecting variables. The cost function for Lasso is expressed as follows: 

∑(𝑌𝑖

𝑛

𝑖=1

− ∑ 𝑋𝑖𝑗

𝑝

𝑗=1

𝛽𝑗)2 + ƛ ∑ |𝛽𝑗|  

𝑝

𝑗=1

, 
(8) 

Here, Y represents a vector of responses (nx1), X is a matrix of predictor 

variables (nxp), and β is a vector of unknown constants (px1). Similar to ridge 

regression, as the value of ƛ approaches zero, the equation becomes closer to 

the least square estimate. However, when the ƛ value is significantly large, the 

coefficients approach zero. While ridge regression shrinks the estimators 

without performing variable selection, Lasso achieves both objectives. 
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Consequently, Lasso is more desirable, as it provides a more parsimonious 

model and enhances the explanation of the relationship between independent 

and dependent variables. 

 

In the presence of multicollinearity, ridge regression and lasso 

regression exhibit distinct behaviors. Ridge regression tends to distribute the 

effect evenly and shrink the estimators of all variables, whereas lasso regression 

is more unstable and tends to retain one variable while eliminating others. Lasso 

regression performs poorly when the number of variables (p) exceeds the 

number of observations (n), as it can select a maximum of n variables. In cases 

where n > p, lasso regression's performance is not as effective as ridge 

regression. To address the limitations of ridge and lasso regression, Zou and 

Hastie (2005) proposed the elastic net, which combines both regularization 

methods. The elastic net not only offers the advantages of the regularization 

techniques but also exhibits a grouping effect by grouping highly correlated 

variables together. It either retains or eliminates all variables within a group 

simultaneously. Typically, the tuning parameter in the elastic net is chosen 

using cross-validation, a technique originally introduced by Mosier (1951). 

Cross-validation involves reserving a subset of the sample for validation in 

order to assess the model's performance. 

 

Efron et al. (2004) developed the least angle regression (LARs) 

algorithm as a computationally simpler alternative inspired by lasso regression 

and stagewise regression. LARs initially sets all coefficients to zero and then 

adds the predictor with the highest correlation to the response. The next variable 
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is chosen based on its correlation with the current residuals. LARs proceeds 

equiangularly between predictors along the "least angle direction" until the next 

most correlated variable. Roozbeh et al. (2021) also made improvements to 

lasso regression by utilizing a mixed-integer programming approach, which 

eliminates structured noise and improves performance in high-dimensional 

environments where p > n. Furthermore, Roozbeh et al. (2022) expanded on this 

concept by developing several penalized mixed-integer nonlinear programming 

models. These models can be solved using a metaheuristic algorithm. 

 

Nguyen and Ng (2020) introduced a modified log penalty function, 

which was strictly concave in contrast to the strictly convex penalty function 

used in Elastic net. This modification aimed to achieve a parsimonious model 

even in the presence of multicollinearity. Unlike methods such as Elastic net, 

which emphasize the grouping effect by including collinear variables together, 

the modified log penalty function had a different objective. Table 2.3 

summarizes the findings regarding the approaches using modified estimators. 

 

Table 2.3 A Summary of previous studies on Modified Estimators. 

Author Objective Method Pros Cons 

Horel (1962) 

Adds bias in 

exchange for 

lower variance 

Ridge 

regression 

Reduces 

overfitting 

Introduces 

significant 

amount of bias 

Singh et al. 

(1986) 

Address 

significant 

amount of bias 

in ridge 

regression 

Jack-knife 

procedure 

Simple method 

to obtain 

confidence 

intervals for the 

regression 

parameters. 

Larger variance 

than ridge 

regression 

Kejian (1993) 
Simple 

procedure to 
Liu estimator 

Ridge estimate 

is a linear 

Does not work 

in severe 

multicollinearity 



 

37 

 

find ridge 

parameter 

function of ridge 

parameter 

Tibshirani 

(1996) 

Address 

interpretability 

of stepwise and 

ridge regression 

Lasso 

regression 

Reduces 

coefficient to 

zero 

Worse 

performance 

than Ridge and 

does not work 

when p>n 

Liu (2003) 

Existing method 

does not work 

in severe 

multicollinearity 

Liu-type 

estimator 

Allows large 

shrinkage 

parameter  

Two parameter 

estimation 

Efron et al. 

(2004) 

Computational 

simplicity 

Least angle 

regression 

(LARs) 

Computationally 

simpler Lasso 

Very sensitive 

to the presence 

of outliers 

Zou and 

Hastie (2005) 

Combines 

Ridge and Lasso 

regression 

Elastic net 
Achieves 

grouping effect 
No parsimony 

Chandrasekhar 

et al. (2016) 

Applies Ridge 

parameters only 

on variable with 

high collinearity 

Partial ridge 

regression 

More precise 

parameter 

estimates 

Subjective 

measure of high 

collinearity 

Assaf et al. 

(2019) 

A conditionally 

conjugate prior 

for the biasing 

constant 

Bayesian 

approach to 

finding ridge 

parameter 

Produce a 

marginal 

posterior of 

parameter given 

the data 

Only focus on 

getting a single 

parameter 

Nguyen and 

Ng (2020) 

Strictly concave 

penalty function 

Modified log 

penalty 

Parsimony 

variable 

selection under 

multicollinearity 

No grouping 

effect 

Kibria and 

Lukman 

(2020) 

Alternative to 

the ordinary 

least 

squares 

estimator 

Kibria–

Lukman 

estimator 

Outperforms 

Ridge and Liu-

type regression 

Results depends 

on certain 

conditions 

Arashi et al. 

(2021) 

High-

dimensional 

alternative to 

Ridge and Liu 

Two-

parameter        

estimator 

Has asymptotic   

properties 

Lower 

efficiency in 

sparse model 

Qaraad et al. 

(2021) 

Tune parameter 

alpha of Elastic 

Net 

Optimized 

Elastic Net 

Effective with 

imbalanced and 

multiclass data 

Accuracy metric 

not discussed 
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Modified estimators aimed to enhance the efficiency of parameter 

estimation when dealing with multicollinearity. However, achieving this 

improvement involved a trade-off between bias and variance. Researchers had 

the flexibility to choose among different methods based on their specific 

objectives, such as emphasizing the grouping effect or prioritizing parsimony in 

the model. Nevertheless, determining the most suitable method for a particular 

problem often required extensive knowledge. Factors such as the dimensionality 

(high or low), the degree of multicollinearity, and the functional form of 

predictions or classification problems also influenced the effectiveness of 

different methods. It was necessary to modify certain methods originally 

designed for linear regression to adapt them to other types of predictions or 

classification tasks. 

 

2.2.3. Neural Network Approaches 

 

This section aimed to provide an overview of the multicollinearity 

problem in machine learning and introduce notable algorithms that implicitly 

addressed it. It has been demonstrated that neural networks outperform 

traditional statistical models. Obite et al. (2020) employed a feed-forward 

artificial neural network to model data with multicollinearity and found that it 

achieved significantly better performance in terms of RMSE compared to the 

traditional ordinary least squares (OLS) method. This highlights the potential of 

machine learning methods with more complex architectures to generate more 

accurate parameter estimates than statistical approaches. Chandrasekhar et al. 

(2016) provided explanations as to why machine learning algorithms may be 
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more effective, as they do not require assumptions about the underlying 

function, can uncover intricate patterns, and dynamically learn changing 

relationships. 

 

Furthermore, variable selection methods have been employed within 

neural networks. Garg and Tai (2012) proposed a hybrid approach that 

combined factor analysis and artificial neural networks to address 

multicollinearity. Since neural networks cannot perform variable selection 

directly, factor analysis (FA) was employed to extract components, which were 

then used as input for the neural network. This method, called FA-ANN (factor 

analysis - artificial neural network), was compared to regression analysis and 

genetic programming, and it demonstrated the highest accuracy. The advantage 

of FA-ANN and genetic programming was their lack of reliance on statistical 

assumptions, making them more reliable and trustworthy. Moreover, they were 

capable of generalizing over new sample data, unlike regression analysis. 

However, a drawback of these approaches was their "black-box" nature, making 

them difficult to interpret. 

 

In recent research, this approach has been applied in the field of quality 

control. Kim et al. (2020) proposed a residual control chart for data with 

multicollinearity, where they suggested using a neural network instead of a 

generalized linear model (GLM) due to the asymmetric distribution of the data. 

They concluded that neural network models and functional PCA (FPCA) were 

suitable for handling high-dimensional and correlated data. Additionally, 

regularization and penalty mechanisms have been employed to address 
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multicollinearity in machine learning models. Examples of such algorithms 

include the Regularized OS-ELM algorithm (Huynh & Won, 2011), OS-ELM 

Time-varying (OS-ELM-TV) (Ye et al., 2013), Timeliness Online Sequential 

ELM algorithm (Gu et al., 2014), Least Squares Incremental ELM algorithm 

(Guo et al., 2014), and Regularized Recursive least-squares (Mahadi et al., 

2022). 

 

However, these mechanisms increase the computational complexity. For 

this reason, Nobrega and Oliveira (2019) proposed a method called Kalman 

Learning Machine (KLM). It is an Extreme Learning Machine (ELM) that uses 

a Kalman filter to update the output weights of a Single Layer Feedforward 

Network (SLFN). Kalman filter is an equation that can efficiently estimate the 

state of a process that minimizes mean squared error. The state does not get 

updated in the learning stage like the concept of ELM. The resulting model has 

shown to outperform basic machine learning models in prediction error (RMSE) 

and computing time. However, it requires manual optimization by humans. A 

constructive approach to building the model is suggested. Although deep 

learning (DL) has emerged as an efficient method to automatically learn the data 

representation without the feature engineering, its discussion in terms of 

multicollinearity is very limited.  

 

Based on this motivation, this study discussed the properties of neural 

networks such as convolutional neural network (CNN), recurrent neural 

network (RNN), attention mechanism and graph neural network before 

illustrating the example in mitigating the multicollinearity issue. This can be 
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seen on our work in (Chan et al., 2022). CNN is a neural network which was 

first introduced by LeCun et al. (1998) in the field of computer vision. It 

developed the concept of local receptive fields and shared weights to reduce the 

number of network parameter. It is very interesting in its way of addressing 

relationship between features. Traditional deep neural network suffers from 

booming parameter issue. CNN adopted multiple convolutional and pooling 

(subsampling) layers to detect the most representative features before 

connecting to a fully connected network for prediction.  

 

Specifically, in the past, the convolutional layer was utilized to apply 

multiple feature extractors (filters) to detect local features and generate 

corresponding feature maps to represent each local feature. The combination of 

multiple feature maps could represent the entire series. The pooling layer was 

used as a dimensionality reduction method to extract the most representative 

features and reduce noise. The resulting feature maps were likely to be 

independent of each other, potentially mitigating the issue of multicollinearity. 

For instance, Hoseinzade and Haratizadeh (2019) proposed the CNNpred 

framework to model the correlations among different variables in predicting 

stock market movement. Their paper introduced two variants of CNNpred, 

namely 2D-CNNpred and 3D-CNNpred, to extract combined features from a 

diverse set of input data, including major US stock market indices, currency 

exchange rates, future contracts, commodities prices, treasury bill rates, and 

more. Their results demonstrated a significant improvement in predictive 

accuracy compared to state-of-the-art baselines. 
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Another noteworthy study by Kim and Kim (2019) proposed integrating 

features learned from different representations of the same data to predict stock 

market movement. They incorporated chart images (e.g., Candle bar, Line bar, 

and F-line bar) derived from stock prices as additional inputs for predicting the 

movement of the SPDR S&P 500 ETF. The proposed model combined Long 

Short-Term Memory (LSTM) and CNN models to leverage their respective 

strengths in extracting temporal and image features. The results showed that 

integrating temporal and image features from the same data efficiently reduced 

prediction errors. In addition to feature maps, another significant development 

in Recurrent Neural Network (RNN) is the attention mechanism. 

 

RNN, initially introduced by Elman (1990), was designed to process 

sequential information. According to Young et al. (2018), the term "recurrent" 

describes the general architecture idea where a similar function is applied to 

each element of the sequence, and the computed output of the previous element 

is aggregated and retained in the internal memory of the RNN until the end of 

the sequence. This enables RNN to compress information and generate a fixed-

size vector to represent a sequence. The recurrent operation of RNN is 

advantageous in handling series data as it effectively captures the inherent 

information in sequential data. Unlike CNN, RNN is more flexible in modeling 

sequences of variable length, allowing it to capture unbounded contextual 

information. However, Bahdanau et al. (2014) raised concerns about the ability 

of recurrent-based models to handle long-range dependencies in data due to the 

memory compression issue, where the neural network struggles to compress all 

the necessary information from a long sequence input into a fixed-length vector. 
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In other words, in the past, it was challenging to represent the entire 

input sequence without any information loss using a fixed-length vector. 

Despite the use of gated activation functions, the issue of forgetting in RNN-

based models became more significant as the length of the input sequence 

increased. To address this, the attention mechanism was proposed to handle 

long-range dependencies by allowing the model to focus on the relevant parts 

of the input sequence when predicting specific parts of the output sequence. The 

attention mechanism has been adapted to various fields of study, including 

finance. For instance, Zhang et al. (2021) introduced a CNN based on deep 

factorization machine and the attention mechanism (FA-CNN) to enhance 

feature learning. In addition to capturing temporal influences, the attention 

mechanism enabled the modeling of intraday interactions among input features. 

This research aimed to apply the attention mechanism as the weighting process 

simulates the feature selection process in traditional statistical methods. 

 

Recently, another promising approach has emerged, involving the 

application of Graph Convolutional Networks (GCN) or graph embeddings in 

series data. Graph neural networks convert series data into graph-structured 

data, allowing the model to capture the interconnectivity between nodes. This 

interconnectivity or correlation modeling proves useful in reducing the effects 

of multicollinearity. For instance, Kim et al. (2019) proposed the hierarchical 

graph attention network (HATS) to process relational data for stock market 

prediction. Their study defined the stock market graph as a spatial-temporal 

graph, where each individual stock (company) was considered a node. The node 

features represented the current state of each company in response to its price 
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movement, and this state varied over time. Using HATS, important information 

from various relational data was selectively aggregated to represent the 

company as a node. The model was then trained to learn the interrelation 

between nodes before being fed into a task-specific layer for prediction. Table 

2.4 provides a comprehensive summary of the reviewed machine learning 

approaches. 

 

Table 2.4 A summary of neural network approaches on solving 

multicollinearities. 

Author Objective Method 

Huynh and Won 

(2011) 

Multi-objective optimization 

function to minimize error 

Regularized OS-ELM 

algorithm 

Garg and Tai 

(2012) 

Hybrid method of PCA and 

ANN 

Factor analysis-artificial 

neural network (FA-ANN) 

Ye et al. (2013) 
Input weight that changes with 

time 

OS-ELM Time-varying (OS-

ELM-TV) 

Gu et al. (2014) 
Penalty factor in the weight 

adjustment matrix 

Timeliness Online Sequential 

ELM algorithm 

Guo et al. 

(2014) 

Smoothing parameter to adjust 

output weight 

Least Squares Incremental 

ELM algorithm 

Hoseinzade and 

Haratizadeh 

(2019) 

Model the correlation among 

different features from a 

diverse set of inputs 

CNN-pred 

Kim and Kim 

(2019) 

Using features from different 

representation of same data to 

predicting the stock movement 

LSTM-CNN 

Nobrega and 

Oliveira (2019) 

Kalman filter to adjust output 

weight 

Kalman Learning Machine 

(KLM) 

Hua (2020)  Decision tree to select features XGBoost 

Obite et al. 

(2020) 

Compare ANN and OLSR in 

presence of multicollinearity 
Artificial neural network 

Zhang et al. 

(2021) 

Applied attention to capture 

the intraday interaction 

between input features 

CNN-deep factorization 

machine and attention 

mechanism (FA-CNN) 

Mahadi et al. 

(2022) 

Regularization parameter that 

varies with time 

Regularized Recursive least-

squares 
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The findings from the literature indicate that feature selection leads to 

the removal of variables and a reduction in information gain. The optimization 

of multicollinearity measures is subjective, and there is no guarantee of finding 

the global minimum. Moreover, each method exhibits inconsistent performance 

depending on the data and may not be applicable to every problem. On the other 

hand, hybrid or ensemble methods show promising performance and have the 

potential to improve financial forecasting by combining the strengths of filter, 

wrapper, and embedded methods. This research suggests that the concepts of 

relevancy and redundancy from feature selection can be adopted. The attention 

layer and the predictive model can be constructed in a way that learns both 

relevance and redundancies. The literature review also demonstrates that deep 

learning algorithms outperform simple OLS estimators in fitting data with 

multicollinearity. These algorithms do not require prior knowledge of the data 

relationship or distribution. This served as motivation to use LSTM as the 

predictive model in our research.  

 

2.3. Proposed Attention and correlation embedding 

 

 This research draws inspiration from the concept of relevance and 

redundancy. Senawi et al. (2017) and Katrutsa and Strijov (2017) utilized this 

concept in their attempts to perform feature selection. Relevancy refers to the 

dependency between variables and the target feature, while redundancy refers 

to the dependence between variables. The objective of the algorithm was to 

select features that maximize relevancy and minimize redundancy. In this study, 

a different measure of relevance was proposed based on the attention 
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mechanism introduced by Bahdanau et al. (2014). According to Zhang et al. 

(2018), the attention mechanism simulates visual attention, where humans 

adjust their focal point over time to perceive a "high resolution" when focusing 

on a particular region of an image but perceive a "low resolution" for the 

surrounding image. Similarly, the attention mechanism enables the model to 

learn how to assign different weights to features based on their relevance to the 

target feature, potentially capturing asymmetric influences and mitigating the 

multicollinearity problem. 

 

 However, the attention mechanism alone is not sufficient for the 

research objective. It reduces the amount of information available to the 

prediction model and overlooks feature interactions. Feature interactions are 

crucial because even if two variables have an 85% correlation, removing one 

variable would eliminate the potential 15% marginal predictive value. 

Therefore, this study used correlation as a measure of redundancy, as done in 

the literature, with the motivation that correlation can capture feature 

interactions. Additionally, deep learning was employed to transform the 

correlations into representations that contain essential information. These two 

components are referred to as the Multicollinearity Reduction Model (MRM), 

which is expected to enhance the prediction reliability of LSTM. 

 

2.4. Regression or Classification 

 

In algorithmic trading, a forecast is required to generate a trade signal, 

which can take the form of a price level or a trend direction. There have been 
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numerous studies exploring both methods, each with its own benefits. However, 

the models, input data, and justifications proposed in these studies vary. Point 

estimation involves approximating the value of certain parameters, such as the 

future price of an asset. While financial forecasting is often formulated as a 

point estimation problem, there are instances where an alternative approach, 

known as interval-based estimation, is more suitable. Interval-based estimation 

focuses on estimating the range of values for the parameters, such as the range 

of future prices of an asset. This subtle change in framing a financial forecasting 

problem as an interval-based estimation problem can transform an unreliable 

forecast into a useful one and, in some cases, overcome the inherent limitations 

of point estimation, such as multicollinearity. 

  

Several papers have approached financial forecasting as a regression 

problem. For instance, Jasic and Wood (2004) attempted a univariate approach 

to predicting stock market indices. They utilized a neural network to predict the 

short-term returns of four major indices: S&P 500, DAX, TOPIX, and the 

FTSE. Positive predicted returns generated a buy signal, while negative 

predicted returns indicated a sell signal. Their strategy yielded significantly 

higher profits compared to a buy-and-hold strategy. Similarly, Yong et al. 

(2017) employed regression in their stock trading system for the Singapore 

stock market. They utilized a deep neural network and the historical price of the 

FTSE Straits Time Index (STI) as independent variables. Their trading rules 

were based on the predicted closing price for the next two days, resulting in a 

profitable rate of 70.83% for their trades. 
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Wang and Mishra (2018) also designed a stock trading system using 

regression. They forecasted a value and established buy and sell rules based on 

the predicted value. Their experiment focused on the Taiwan Capitalization 

Weighted Stock Index (TAIEX). Chen et al. (2021) employed a LSTM network 

to forecast the stock price of a company listed on the NASDAQ stock exchange 

(Intel Corporation). They used three different types of input variables: daily 

open, high, low, and close prices; technical indicators of the stock; and various 

broad market indices. Their trading strategy relied on predicting the next day's 

price, buying a share if it was higher than the current closing price and selling a 

share if it was lower. The results demonstrated that the return of the LSTM 

model outperformed both Locally Weighted Regression and a buy-and-hold 

strategy. 

 

Some researchers chose a classification approach. Mingyue et al. (2016) 

argued that predicting the daily return of a stock market index is challenging, 

and it is more practical for traders to predict the direction of movement for 

making buy or sell decisions. They utilized an ANN model to predict the next 

day's direction of the Nikkei 225 index, using various technical indicators 

computed from the index data. Their model accurately predicted the daily 

direction of the index in 86.39% of the trials. Zhong and Enke (2017) employed 

a classification model to investigate whether high predictability leads to high 

trading returns. They used an ANN to forecast the daily direction of the S&P 

500 index, incorporating 60 financial and economic indicators as features and 

performing dimensionality reduction. Their approach achieved significantly 
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higher risk-adjusted profits compared to the benchmark buy-and-hold strategy 

and the Treasury bill strategy. 

 

Chen and Hao (2020) employed a support vector machine to develop a 

stock trading signals framework. They randomly selected 30 stocks from the 

Shanghai and Shenzhen stock exchanges and used the daily opening price, 

lowest price, highest price, closing price, and trading volume as input variables. 

The framework categorized the signals into four classes: strong buy, ordinary 

buy, ordinary sell, and strong sell. Vo and Yost-Bremm (2020) focused on 

cryptocurrencies, specifically Bitcoin, and developed a trading strategy. They 

utilized Bitcoin trading data from six different exchanges and created five 

technical indicators using price and volume data. Their approach involved using 

a Random Forest machine learning algorithm with a trading horizon of 15 

minutes, generating categorical buy and sell signals. 

 

Several studies have compared the performance of point estimation with 

classification-based prediction and have suggested that classification-based 

prediction outperforms point estimation in the aforementioned financial 

forecasting problems. Leung et al. (2000) conducted empirical experiments 

indicating that classification models outperformed point estimation models in 

terms of predicting the direction of stock market movements and maximizing 

investment trading returns. The classification models employed included 

discriminant analysis, logit, probit, and probabilistic neural network, while the 

regression models included adaptive exponential smoothing, vector 

autoregression with Kalman filter, multivariate transfer function, and multi-
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layered feedforward neural network. The study focused on forecasting three 

major global broad market indices: S&P 500, FTSE 100, and Nikkei 225. 

 

Olson and Mossman (2003) also found that classification-based models 

outperformed point estimation models in predicting whether 2352 firms in 

Canada would have high or low returns based on 61 accounting ratios. Enke and 

Thawornwong (2005) discovered that classification performed better than 

regression in terms of profitability while maintaining the same level of risk 

exposure. Their study focused on the S&P 500 index and utilized fundamental 

economic data such as interest rates, treasury rates, industrial production, and 

inflation rates. Trading based on neural network classification forecasts yielded 

higher profits compared to the buy-and-hold strategy, neural network regression 

forecasts, and linear regression. The authors suggested that classification-

guided trading could enhance profitability by generating trade signals only 

when significant price changes occurred. 

 

According to Leung et al. (2000) and Olson and Mossman (2003), 

another important factor contributing to the superior performance of 

classification models over point-based models in terms of translating financial 

forecasts into profitability is the ability to enhance profitability through 

thresholding the outputs of the classification neural network. Thresholding 

allows researchers to filter out weak forecasts, which is crucial for profitability 

since a trader's investment capital is at risk only when a trade is made. Traders 

can avoid risk and losses by disregarding poor forecasts. Currently, researchers 

are adopting this paradigm shift in financial forecasting and experimenting with 
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new approaches to classification-based financial forecasting, including 

formulating innovative forecasting problems, working with high-dimensional 

data and output, and optimizing classification-based models. 

 

2.5. Conclusion 

 

Each of these factors in financial forecasting is interconnected, and even 

minor changes can have a significant impact on forecast performance. The 

elimination of multicollinearity can be approached through two methods: 

variable selection and modified estimates. Variable selection methods aim to 

reduce the number of variables to a select few that are deemed most relevant, 

although this reduction may result in a decrease in information gain due to the 

reduced dataset. On the other hand, modified estimators focus on enhancing 

parameter estimation efficiency in the presence of multicollinearity, but this 

improvement comes with a trade-off between bias and variance. Furthermore, 

the literature review demonstrates that deep learning algorithms outperform the 

simple OLS estimator when fitting data with multicollinearity. 

 

In this study, the concept of relevance and redundancy serves as 

inspiration. The attention mechanism is employed to represent relevance, while 

correlation is used to capture redundancy. Additionally, there has been a shift 

from point estimation to classification-based models in financial forecasting. 

The present research investigates the impact of this shift on mitigating 

multicollinearity.  
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CHAPTER 3 

 

METHODOLOGY 

 

 

3.1. Data Collection 

 

The data used in this research was the daily foreign exchange rate. Four 

different pairs of exchange rates were selected for this study: EUR/GBP, 

EUR/USD, GBP/USD, and NZD/USD. The first three pairs were chosen 

because they had the highest trading volume and trading data (Cook, 2021). A 

higher trading volume was considered more desirable for algorithmic trading. 

The last pair of exchange rates was included to introduce diversity in the data. 

The data was sourced from TradingView. The timeframe for the data collection 

was from 1 January 2015 to 31 December 2020, covering a period of 6 years. A 

model testing period of 20% of the data was used. The exchange rate was 

collected at an hourly interval. Figure 3.1 displayed the plot of the hourly 

closing price for each foreign exchange pair.  
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Figure 3.1 Price chart for each foreign exchange rate from 1 January 2015 to 

31 December 2020 
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In analyzing the plot of EUR/GBP exchange rate over the past years, we 

observed two price ranges. Initially it ranged from 0.7 to 0.8 in the year 2015. 

After a bullish trend in 2017, the rate exhibited a consolidation phase. Notable 

support and resistance levels can be identified, with the price consistently 

finding support around the 0.85 level and encountering resistance near 0.93.  

 

The plot of EUR/USD exchange rate over the past six years reveals a neutral 

trend. During the first two years, the price exhibited a relatively stable sideways 

movement, indicating a neutral trend with minor fluctuations within a narrow 

range. However, in the year 2017, there was a bullish trend, reaching its highest 

rate of 1.25. Following the peak, the rate experienced a drop in the subsequent 

years until 2020. Since then, it has slowly begun an upward trajectory once 

again to levels near its peak.  

 

The plot of GBP/USD exchange rate over the past year depicts a clear 

downtrend followed by a period of consolidation. In the initial 2 years, the price 

exhibited a consistent downward movement, with lower highs and lower lows. 

However, starting around 2017, the price entered a phase of consolidation. This 

consolidation phase can be observed by the price oscillating between a defined 

1.2 and 1.4. The exchange rate remained range-bound, with the upper and lower 

boundaries acting as barriers to further price movement. The highest rate during 

this period is in early 2018. 

The plot of NZD/USD exchange rate over the past years reveals a 

predominantly range-bound pattern, with one notable exception in the year 

2020. For the majority of the period, the price exhibited a relatively stable 
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sideways movement within a defined range. This range-bound behavior 

indicates a lack of significant upward or downward trends. However, in the year 

2020, the rate experienced a sharp decline to 0.55, deviating significantly from 

its typical range-bound pattern.  

 

Table 3.1 Descriptive Statistics for each dataset. 

Currency 

Pair Mean Median 

Standard 

Deviation Minimum Maximum 

EUR/GBP 0.8456 0.8715 0.0634 0.6937 0.9488 

EUR/USD 1.1314 1.1246 0.0435 1.0356 1.2549 

GBP/USD 1.3445 1.3102 0.0999 1.1434 1.5918 

NZD/USD 0.6849 0.6825 0.0369 0.5498 0.7881 

 

The descriptive statistics of each dataset were presented in Table 3.1. The 

currency pairs provided exhibited different characteristics for trading. 

EUR/GBP displayed moderate volatility with a distribution that was slightly 

left-skewed. EUR/USD presented a more stable trading environment, 

characterized by lower volatility and a narrower range of 1.0356 to 1.2549. 

GBP/USD demonstrated higher volatility and slightly right-skewed 

distribution, with a wider range of 1.1434 to 1.5918, making it suitable for 

traders who were comfortable with increased risk. NZD/USD offered moderate 

volatility similar to EUR/USD. It is important to note that these statistics did 

not represent the testing set used in the result presentation of this research. The 

test set consisted only of the last 20% of the dataset. 
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3.2. Predictor Analysis 

 

The predictor variables consisted of highly correlated technical analysis 

indicators. Previous studies (Sezer et al., 2017) had demonstrated that neural 

networks utilizing these technical indicators exhibited predictive capabilities 

comparable to a buy-and-hold strategy. The underlying principle of technical 

analysis was that prices incorporated all pertinent information and that price 

movements could be predicted based on historical asset prices and volume 

trends (Nuti et al., 2011). The proposed LSTM model employed the following 

nine technical indicators as features.  

 

The RSI (Relative Strength Index) is a momentum indicator used to 

measure the velocity and magnitude of price movements. It ranges from 0 to 

100. When the RSI is above 70, it suggests that the price is overbought, meaning 

it may be due for a downward correction. Conversely, when the RSI is below 

30, it suggests that the price is oversold, indicating a potential upward 

correction. The RSI is calculated by comparing the average gains and losses 

over a specific period. The indicator is computed as follows 

𝑅𝑆𝐼 = 100 − 
100

1 +  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐺𝑎𝑖𝑛
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑠𝑠

 , 
(9) 

The average gain represents the average price increase during that period, while 

the average loss represents the average price decrease. The relative strength is 

then calculated by dividing the average gain by the average loss.  
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The MACD (Moving Average Convergence Divergence) indicator 

consists of two lines: the MACD line and the signal line. The MACD line is 

calculated by subtracting the value of a longer-term exponential moving average 

(EMA) from a shorter-term EMA. The signal line, on the other hand, is an EMA 

of the MACD line itself. Interpreting the MACD involves observing the 

crossovers between the MACD line and the signal line.  

𝑀𝐴𝐶𝐷 𝐿𝑖𝑛𝑒: (12 𝐷𝑎𝑦𝑠 𝐸𝑀𝐴 − 26 𝑑𝑎𝑦𝑠 𝐸𝑀𝐴) (10) 

𝑆𝑖𝑔𝑛𝑎𝑙 𝐿𝑖𝑛𝑒: 9 𝑑𝑎𝑦𝑠 𝐸𝑀𝐴 𝑜𝑓 𝑀𝐴𝐶𝐷 𝑙𝑖𝑛𝑒 (11) 

When the MACD line crosses above the signal line, it is considered a bullish 

signal, indicating a potential uptrend. Conversely, when the MACD line crosses 

below the signal line, it is seen as a bearish signal, suggesting a potential 

downtrend. 

 

The Parabolic Stop and Reverse (SAR) is a popular technical analysis 

indicator used by traders to determine potential stop-loss levels and signal 

reversals in the price trend of an asset. It aims to provide trailing stop-loss levels 

that adjust dynamically as the price moves in a trend. Generally, the SAR below 

price is bullish and the SAR above is bearish. The formula is as below: 

𝑆𝐴𝑅𝑛+1 =  𝑆𝐴𝑅𝑛 +  𝛼(𝐸𝑃 −  𝑆𝐴𝑅𝑛) , (12) 

where EP, the extreme point, is the highest or lowest value achieved by an 

uptrend or downtrend in a period n.  α represents the acceleration factor and 

determines the rate at which the stop-loss level moves closer to the price. It is 

initiated with 0.02. Each time a new EP is recorded, the factor increases by 0.02, 

and thus the SAR will converge to the price faster. This 0.02 value is not based 
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on any fixed mathematical or fundamental principle, but rather it has been 

chosen empirically as a starting point that tends to work well for various market 

conditions. (Treleaven et al., 2013) 

 

The SMA is an unweighted moving average of the closing price of the 

previous n days. By taking the sum of the closing prices of the previous n days 

and dividing it by n, the SMA offers a single data point that represents the 

average price over the selected time frame. The number n can be selected 

depending on the period of trend desired, for example, short term, medium-

term, and long-term trends. It is calculated with the formula: 

𝑆𝑀𝐴𝑛 =
𝑥1 + 𝑥2 + 𝑥3+. . . +𝑥𝑛

𝑛
 , 

(13) 

where xn is the price at period n and n is the total number of periods. The SMA 

line can be used as the support or resistance level of the stock or used in 

conjunction with the SMA line of different periods to determine if it is on an 

uptrend or downtrend. For example, the stock price above the SMA indicated 

an uptrend and, therefore, a buy signal.  

 

The CMA (Cumulative Moving Average), also known as the running 

average, is a calculation method that considers all the data points accumulated 

up to a specific point in time. It provides a continuous average by incorporating 

the historical data into the calculation. The advantage of using the CMA is its 

ability to smoothen short-term fluctuations and reveal long-term trends in a 

dataset. Unlike other moving average methods that use a fixed window of data, 

the CMA is updated incrementally with each new data point, ensuring that the 

average reflects the entire dataset. It is calculated with the formula: 
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𝐶𝑀𝐴𝑛 =
𝑥𝑛 + 𝑥𝑛−1 ∗ (𝐶𝑀𝐴𝑛−1)

4
 , 

(14) 

where xn is the price at period n. Traders and analysts often employ the CMA 

to gain insights into the overall direction of the data and make informed 

decisions based on the trend revealed by the continuous average. By considering 

the entire dataset, the CMA can provide a more comprehensive understanding 

of the data's behavior and help identify significant changes or turning points.  

 

The EMA (Exponential Moving Average) is a variation of the moving 

average calculation that incorporates a weighting scheme, giving more 

significance to recent data points while gradually reducing the influence of older 

data. Unlike the simple moving average, which assigns equal weights to all data 

points, the EMA places the highest weight on the most recent observation. This 

weighting is determined by the parameter α, which controls the rate at which 

the weights decrease exponentially. It is calculated with the formula below: 

𝑆𝑡 =  𝛼 ×  𝑌𝑡 + (1 + 𝛼)  × 𝑆𝑡−1 , (15) 

where α is the parameter for the degree of decrease in weight and Yt is the 

observation at time t. By adjusting the value of α, traders and analysts can tailor 

the EMA to different timeframes or sensitivity requirements. (Nuti et al., 2011).  

 

The stochastic oscillator is a momentum indicator that measures the 

current price's position within a recent price range. It compares the closing price 

to the highest and lowest prices observed over a specific period. The oscillator 

is calculated using two main components: %K and %D.  

%𝐾 = 100
𝑐𝑙𝑜𝑠𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 − 𝐿

𝐻 − 𝐿
 , 

(16) 
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%𝐷 = 3 𝑝𝑒𝑟𝑖𝑜𝑑 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 %𝐾 , (17) 

%K represents the current price's percentage in relation to the range between 

the lowest (L) and highest (H) prices. %D, on the other hand, is a three-period 

moving average of %K. Traders often look for trading signals when the %K 

and %D lines cross. If %K crosses above %D, it generates a bullish signal, 

indicating a potential buying opportunity, while a crossover below %D 

generates a bearish signal for a potential selling opportunity. The intuition is 

that prices tend to approach the extremes of the range before turning. The 

stochastic oscillator is commonly used to identify overbought and oversold 

market conditions, with readings above 80 suggesting overbought and readings 

below 20 indicating oversold conditions. (Treleaven et al., 2013) 

 

The Williams %R, also referred to as the Williams Percent Range, is a 

widely used oscillator in technical analysis that provides insights into the 

proximity of the asset price to recent highs or lows. It is expressed as a value 

ranging from -100 to 0. When the %R value reaches -100, it signifies that the 

closing price is at or near the lowest point observed over the past n days, 

indicating potential oversold conditions. This suggests that the price may have 

reached a level where selling pressure has pushed it to an extreme, and a price 

reversal or upward correction might be anticipated. The formula is shown 

below: 

%𝑅 =  
(ℎ𝑖𝑔ℎ)  − 𝑐𝑙𝑜𝑠𝑒

−𝑚𝑖𝑛 (𝑙𝑜𝑤)
∗  −100 , 

(18) 

By monitoring the %R indicator, traders and analysts can gain valuable 

information about the current strength or weakness of a stock's price and 

identify potential trading opportunities. 
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The Bollinger Bands is a popular technical analysis tool used to identify 

potential price levels of support and resistance based on volatility. It consists of 

an upper band, a lower band, and a middle band, which is typically a simple 

moving average. The upper band is calculated by adding a specified number of 

standard deviations to the middle band, while the lower band is calculated by 

subtracting the same number of standard deviations. The Bollinger Bands help 

traders assess whether the price is approaching extreme levels, indicating a 

potential reversal in trend. The formula is as follows: 

𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝐻𝑖𝑔ℎ = 𝑀𝐴𝑛 + 2 ∗ 𝜎𝑛 ,  (19) 

𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝐿𝑜𝑤 = 𝑀𝐴𝑛 + 2 ∗ 𝜎𝑛 , (20) 

where MA is the simple moving average, σ is the standard deviation, and n is 

the number of days in the smoothing period. When the price nears the upper 

band, it suggests that the market may be overbought, potentially signaling a 

trend reversal or a pullback. On the other hand, when the price approaches the 

lower band, it indicates that the market may be oversold, suggesting a possible 

buying opportunity or an upward reversal.  

 

3.3. Data Generation 

 

The samples were constructed using a rolling window mechanism. 

Figure 3.2 illustrated an example of this mechanism with a time series consisting 

of 10-time steps. With a window size of 3-time steps, the first row of data 

represented the period from t = 1 to t = 3, the second row represented t = 2 to t 

= 4, and the third row represented t = 3 to t = 5. By applying this mechanism, a 
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total of eight rows of data were computed. For this research, a lag of 10 trading 

days (window size) was utilized.  

 

The target label denoted a classification of either profit or loss. This label 

was determined based on the subsequent five trading days using the following 

criteria: If the price reached a predetermined take profit price level within five 

trading days, the label was assigned as 1 (significant profit). Conversely, if the 

price reached the stop loss level, the label was assigned as 0 (significant loss). 

If, after five trading days, the price fell between the two price levels, it was 

labeled as 3 (profit) if the trade was still profitable, and 2 (loss) if it resulted in 

a loss. The labeling methodology was depicted in Figure 3.3.  

 

 
Figure 3.2 Illustration of the rolling window mechanism. 
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Figure 3.3 Illustration of dataset labeling methodology. 

 

3.4. Model Framework 

 

The historical prices of foreign exchanges utilized in this research were also 

sequential. The LSTM network had the ability to learn potential temporal 

information from this sequential data. The LSTM network had demonstrated 

outstanding performance in numerous real-world applications involving 

sequential data. Hence, an LSTM model served as an appropriate baseline 

model for this study. The LSTM, being a type of RNN, was designed to address 

the issue of exploding and vanishing gradients that hindered the performance of 

RNNs in long-sequence data (Althelaya et al., 2018). Unlike an RNN, the 

LSTM model incorporated memory gates that captured and retained 

information from long time lags while selectively discarding stored information. 

 

Figure 3.4 depicted the cell of an LSTM network. The top horizontal 

line represented the cell state. The four neural net layers served as gates that 

controlled the addition or removal of information. At time lag t, the first sigmoid 
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(σ) layer determined what information to forget. It took into account the 

previous hidden state ht−1 and the current input xt to generate an output value 

between 0 and 1. The hidden state ht−1 represented the encoded input from the 

previous time step, while xt represented the input at time step t, encompassing 

all features. A sigmoid output value of zero indicated complete forgetting, while 

a value of one indicated complete retention. The subsequent sigmoid layer, 

known as the input gate, determined which value to update. A subsequent tanh 

layer generated new values to be added to the cell state. These two values were 

combined through pointwise multiplication to update the cell state. Finally, a 

sigmoid layer determined which part of the cell state to output.  

 

 
Figure 3.4 LSTM module diagram. 

 

The proposed model employed the attention mechanism, which had 

been originally developed for neural machine translation by Bahdanau et al. 

(2014). This mechanism enabled the model to search for segments of a source 

sentence that were most relevant to the target word. Additionally, attention 

weighting aligned with the author's intuition. In this study, the attention 

mechanism was utilized to determine the relevance of each feature to the target 

variable. For instance, one Moving Average indicator might hold more 

relevance to the target compared to another indicator due to the different time 
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frames used. The attention module consisted of a linear layer, dropout layer, 

sigmoid activation, another linear layer, and a SoftMax layer. The resulting 

weight from the module represented a learned measure of importance for each 

feature. Finally, the SoftMax function was applied to ensure that the weightings 

summed up to one. 

 

Moving on, the subsequent part of the model involved correlation 

embedding. This section elaborated on how the correlation embeddings were 

derived. In this study, correlation embeddings were employed as a proxy for 

redundant information between features. A correlation quantified the strength 

of the relationship between the relative movements of two variables. The 

calculation of correlation was performed using the formula below: 

𝑅𝑖𝑗 =
𝐶𝑖𝑗

√𝐶𝑖𝑖 ∗ 𝐶𝑗𝑗

 , 
(21) 

The correlation coefficient Rij between xi and xj, as well as the covariance matrix 

Cij of xi and xj, the variance Cii of xi, and the variance Cij of xj were calculated. 

These computations yielded a correlation matrix, where the values ranged from 

-1.0 to 1.0. A correlation of -1.0 indicated a perfect negative correlation, while 

a correlation of 1.0 indicated a perfect positive correlation. For instance, the 

Bollinger High and Bollinger Low exhibited high collinearity due to their 

association as the upper and lower price bands. Subsequently, the correlation 

matrix was passed through a neural network layer with an output size matching 

the input data. The resulting output was referred to as the correlation 

embedding.  
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The overall structure of the proposed model, known as the 

Multicollinearity Reduction Model (MRM), was depicted in Figure 3.5. This 

model received an input in the form of a batch, sequence length, and input size 

denoted as Xt. The input data was then fed into the input attention module, 

which generated weights for each feature. These weights were multiplied by the 

input data to obtain the weighted input data. Next, the weighted input data was 

multiplied by the correlation matrix before being passed into the LSTM layer. 

This correlation embedding, represented as cr in the diagram, provided the 

LSTM layer with information regarding the relevance of each feature and the 

redundancy between features. The underlying idea was that the model could 

make predictions using the learned attention and correlation information of the 

features, eliminating the need to discard features for achieving satisfactory 

results.  

 
Figure 3.5 Proposed Multicollinearity Reduction Model Framework. 

 

The final output of the LSTM was fed into the classification network, 

which consisted of two additional linear layers. The resulting output provided 

predictions for the classes. Both the LSTM layer and the classification layer 

served as the baseline model for this study. Previous work by Chan et al. (2022) 
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demonstrated the effectiveness of the proposed methodology in classification. 

In this research, we aimed to investigate its effectiveness in regression tasks.  

 

3.5. Performance Measure 

 

In the context of financial forecasting, this section presented the 

appropriate performance measure for the research. A conventional measure of 

performance involves assessing forecast error and accuracy. Forecast error 

represents the disparity between the actual and predicted outcomes. However, 

when comparing regression and classification in financial forecasting, the 

different forecast errors used (such as root mean squared error and cross entropy 

loss) do not allow for a proper comparison.  

 

RMSE is a widely used metric for assessing the accuracy of predictive 

models. It measures the average difference between the predicted values and the 

actual values in a dataset. By taking the square root of the mean of the squared 

differences, RMSE provides a single value that represents the overall 

performance of a model. Researchers often employ RMSE to evaluate 

regression models and quantify the extent of error between predicted and 

observed values. 

 

On the other hand, Cross Entropy Loss serves as a crucial measure for 

evaluating classification models. It quantifies the dissimilarity between the 

predicted probability distribution and the true probability distribution of classes 

in a classification task. By calculating the negative logarithm of the predicted 
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probabilities of the correct classes, Cross Entropy Loss enables the assessment 

of how well a model distinguishes between different classes. 

 

Accuracy, commonly used as a performance metric, is easy to calculate 

and understand. To calculate the accuracy, the model's predictions are compared 

to the true class labels of the dataset. For each instance, if the predicted class 

matches the true class, it is considered a correct prediction. Conversely, if the 

predicted class differs from the true class, it is deemed an incorrect prediction. 

Nevertheless, its reliability diminishes when dealing with imbalanced datasets. 

A predictive model with lower accuracy may possess better prediction power 

than a model with higher accuracy (Valverde-Albacete & Peláez-Moreno, 

2014), which is known as the accuracy paradox. In financial forecasting, 

datasets often exhibit skewed class distributions, with the minority class 

(significant profit) being of particular interest. Therefore, accuracy becomes 

problematic in these settings. 

 

Moreover, higher accuracy does not necessarily correspond to higher 

profits. This inconsistency is referred to as profit bias by Liu and Wang (2019). 

It arises from trades not having the same magnitude of return. The profit factor, 

which considers both accuracy and the ratio between average win and average 

loss (Harris, 2008), becomes a crucial factor. Accuracy alone does not suffice 

to generate positive returns. Thus, in this study, the focus is on the profits 

generated from trading to provide a clearer reflection of predictive performance. 

This is often measured in pips, which stands for "percentage in point" and 

represents the smallest unit of price movement in the forex market. 
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3.6. Conclusion 

 

The data used in this research consisted of daily foreign exchange rates. 

The VIF diagnosis test indicated a high level of multicollinearity within the 

datasets. To predict the price changes for the next five trading days, a lag of 10 

trading days (window size) was employed. The LSTM model was selected as 

the baseline model for the experiment. Attention mechanism was utilized in this 

study to determine the relevance of each feature to the target variable. 

Additionally, correlation was used as a measure of redundancy between 

features, providing valuable information about the strength of the relationship 

between the relative movements of two variables. Given the unique nature of 

financial forecasting, the evaluation metric utilized in this study is the profit 

generated from trading activities. 

 

Figure 3.6 depicted the overall methodology employed in the research. 

The first step involved gathering raw data, which included retrieving historical 

foreign exchange prices. The subsequent step entailed preprocessing the data 

for analysis, encompassing tasks such as generating samples and target labels, 

feature engineering, and normalization. Lastly, the data was fed into the 

predictive model for forecasting and comparison with the baseline results.  
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Figure 3.6 Overview of methodology for foreign exchange prediction based on 

technical indicators. 
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CHAPTER 4 

 

PRESENTATION OF RESULT 

 

4.1 Multicollinearity Analysis 

 

In this study, a multicollinearity diagnosis was conducted on each 

variable to determine the level of dependencies between them. The Variation 

Inflation Factor (VIF) was utilized for this purpose. The VIF of the k-th variable 

was computed using the formula:  

𝑉𝐼𝐹𝑘 =
1

1 − 𝑅𝑘
2 

(22) 

To calculate the VIF of the k-th variable, the k-th variable was taken as the 

explained variable with all the remaining variables as predictors, and the 

regression coefficient was estimated. The coefficient of determination (R2) of 

the regression was then obtained and used in the VIF formula. There is no 

specific threshold value for determining the presence of multicollinearity, but a 

value of 10 is often considered indicative of multicollinearity (Lavery et al., 

2019). Therefore, a VIF value exceeding 10 suggests a significant presence of 

multicollinearity. The results for each variable in each dataset are presented in 

Table 4.1. The diagnosis revealed that the datasets exhibited a high degree of 

multicollinearity.  
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Table 4.1 Variation Inflation Factor Analysis for each dataset. 

Variables EUR/GBP EUR/USD GBP/USD NZD/USD 

Open 20,637 7,216 15,198 6,157 

High 17,431 6,396 16,101 6,775 

Low 20,848 7,283 11,619 5,430 

Close 24,950 8,248 17,376 7,677 

RSI 7 7 5 7 

MACD 21 21 21 20 

SAR 877 275 484 262 

SMA 5 13,692 4,056 9,220 4,588 

SMA 10 3,599 1,089 2,391 1,319 

SMA 20 243,345 51,086 233,443 60,390 

CMA 4 1 3 2 

EMA 67,907 20,013 44,480 22,461 

%K 32 28 30 36 

%D 13 14 13 16 

%R 19 15 18 21 

Bollinger 

High 

61,274 13,145 62,736 16,354 

Bollinger 

Low 

62,111 13,772 57,264 14,816 

 

In addition, Table 4.2, Table 4.3, Table 4.4 and Table 4.5 shows the 

correlation coefficient of each foreign exchange pairs. Correlation ranges from 

-1 to 1, where -1 indicates a perfect negative correlation, 0 indicates no 

correlation, and 1 indicates a perfect positive correlation. If the absolute value 

of the correlation coefficient is greater than 0.7, it indicates a strong relationship 

between the variables.  It's important to note that correlation does not imply 

causation. Even if two variables are strongly correlated, it does not necessarily 

mean that one variable causes the other to change. 
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Table 4.2 Correlation coefficient for the EUR/GBP foreign exchange. 
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Table 4.3 Correlation coefficient for the EUR/USD foreign exchange. 
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Table 4.4 Correlation coefficient for the GBP/USD foreign exchange. 
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Table 4.5 Correlation coefficient for the NZD/USD foreign exchange. 
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4.2 Comparison between Neural Network and Statistical Methods 

 

In this section, the LSTM model was compared to two non-neural 

network methods in order to establish the baseline model. The selected methods 

were stepwise regression and ridge regression, which are commonly used 

statistical approaches. The LSTM model, on the other hand, is a neural network 

specifically designed for sequential data, capable of capturing long-term 

information. Stepwise variable selection was employed as a procedure to 

sequentially add new variables to the model while allowing for the removal of 

variables at each stage. In this research, a p-value of 0.01 was used as the 

selection criteria for both adding and removing variables. A linear regression 

model was then constructed using the subset obtained from stepwise selection 

to make predictions on the foreign exchange data. Ridge regression, on the other 

hand, is a linear regression model that incorporates a penalty term in the loss 

function. The magnitude of the penalty term is controlled by the ridge 

parameter. For this experiment, a ridge parameter of 0.2 was chosen. The results 

of all three models are presented in Table 4.1.  

 

Table 4.6 Comparison of RMSE between stepwise regression, ridge regression 

and LSTM model. 

RMSE EUR/GBP EUR/USD GBP/USD NZD/USD 

Stepwise 

 

1.3346 0.9398 0.5940 1.5967 

Ridge 0.6408 0.5991 0.6113 0.6101 

     

LSTM 0.0126 0.0148 0.0148 0.0120 

 

The table displays the root mean square error (RMSE) loss for each prediction, 

which represents the square root of the variance of the residuals. The residuals 
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are the differences between the predicted values and the true values. A lower 

RMSE value indicates a better fit of the model to the data. Upon analyzing the 

results, it can be observed that stepwise regression exhibited the worst 

performance among the three models. Ridge regression achieved a lower RMSE 

than stepwise regression in all datasets except for GBP/USD, where stepwise 

regression had a slight advantage. LSTM outperformed the other models and 

yielded the best results across all four datasets. These findings align with the 

literature review, indicating that deep learning methods, such as LSTM, are 

more effective in addressing the issue of multicollinearity compared to 

statistical methods (Garg & Tai, 2013; Obite et al., 2020).  

 

It is important to note that statistical approaches, such as linear 

regression, are based on certain assumptions, including a linear relationship 

between predictor and response variables, independence of residuals, 

homoscedasticity, and normally distributed residuals (Schmidt & Finan, 2018). 

These assumptions can limit the ability of statistical methods to fit each dataset 

adequately. In contrast, neural networks do not have such assumptions and can 

achieve better fitting and forecasting performance. With these insights, this 

research introduces the multicollinearity reduction extension to the LSTM 

model.  

 

4.3. Model Configuration 

 

The architecture of the baseline algorithmic trading network was based 

on an LSTM model, as depicted in Figure 4.1. The LSTM model is a specialized 
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variant of recurrent neural networks (RNNs) designed to address the vanishing 

gradient problem and capture long-term dependencies in sequential data. It 

introduces memory cells and three gating mechanisms: input, forget, and output 

gates. These gates allow the model to selectively retain or discard information 

at each time step, facilitating the capture of important context over longer 

distances. LSTMs excel in tasks such as natural language processing, speech 

recognition, and time series analysis. Our experiment harnessed the power of 

LSTMs to leverage temporal patterns in the data, aiming to improve model 

accuracy and predictive performance.  

 

All the algorithms in this study were implemented using the Python 

programming language. In order to optimize the performance of our LSTM-

based model, careful parameter tuning, and thoughtful model configuration 

were essential. The LSTM architecture relies on several hyperparameters, 

including the number of LSTM layers, the number of hidden units within each 

layer, the dropout rate, and the learning rate. We conducted an extensive 

parameter search to find the optimal values for these parameters, employing 

techniques such as grid search. Additionally, we experimented with various 

activation functions and optimization algorithms to determine the most suitable 

configuration for our model. Through comparison of different settings, we were 

able to identify the parameter values and model configuration that yielded the 

best results in terms of accuracy and generalization capability.  

 

The final model consisted of three fully connected layers. The first layer 

was the LSTM recurrent layer, with an input size of 17 for the 17 input variables 
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and 100 neurons in the hidden state. The second layer was a linear layer with 

50 neurons, and the final layer contained four neurons representing the model's 

output categories: significant loss, loss, profit, and significant profit. This 

resulted in a total trainable parameter count of 52,701. The backpropagation 

algorithm used in this study was the Adam optimizer (Kingma & Ba, 2014).  

 

Figure 4.1 Model configuration of the baseline LSTM model. 

 

The weights and biases of the LSTM layer were initialized using a 

uniform distribution ranging from −√𝑘 to √𝑘, where k = 1/hidden size. The 

initial hidden state and cell state of the LSTM layer were set to zero. Similarly, 

the weights and biases for the subsequent linear layers were initialized with k = 

the number of input features. 

 

For each model, the learning rates were independently configured to 

minimize the error. The same learning rate was applied to all layers. The 

learning rate was determined based on a simple heuristic in this study. It was 
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initially set to 0.1 and then divided by 10 until no further improvements in the 

loss function were observed. The cross-entropy loss was used for classification 

tasks, while the root-mean-square error was used for regression tasks.  

 

4.4. Comparison between Classification and Regression  

 

This section aimed to demonstrate the trading performance of both the 

LSTM classification and regression forecasting models. The models were 

trained using the first 80% of the data, while the remaining 20% served as the 

test set. Each model underwent training for 100 epochs. The training and 

evaluation process was repeated 10 times for each of the 4 currency pairs. In 

essence, this involved training 10 models using the training set data for each 

currency pair, followed by measuring the profitability of each model using the 

test set data. By repeating this process, it ensured a more comprehensive range 

of performance outcomes, as the resulting neural network exhibited 

probabilistic behavior due to factors such as initialization methods and 

parameter optimization algorithms. Subsequently, this study examined how 

these factors affected the trading performance. The performance metrics 

considered for this purpose were accuracy and return.  

 

Accuracy was defined as the sum of correct predictions for each label 

divided by the total number of predictions. Return referred to the profit or loss 

generated by the trading model on the test set. The dataset consisted of 

approximately 7000 hours of data. The model executed a trade if the prediction 

corresponded to label 1 (significant profit). Table 4.2 presented the mean and 



 

83 

 

standard deviation of both accuracy and return for the regression and 

classification models.  

 

Table 4.7 Comparison of trading result between classification model and 

regression model. 

Evaluation Metric Regression Classification 

Mean of Accuracy 22.47% 45.80% 

Std of Accuracy 2.61% 2.67% 

Mean of Returns (pips) 751 1747 

Std of Returns (pips) 451 468 

 

The regression model exhibited a mean accuracy of only 22.47% across 

the four datasets. In contrast, the classification model showed a significant 

improvement in this metric, achieving an accuracy of 45.80%, marking a 

23.33% increase. Generally, classification has the potential to enhance the 

profitability of algorithmic trading models. The regression model yielded a 

trading return of 751 pips, whereas the classification model generated a return 

of 1747 pips. This translated to an additional 132.62% profit during the testing 

period. The standard deviation of accuracy was comparable for both models, 

with classification showing a slightly higher value, but it was the trading return 

that demonstrated a substantially higher mean for the classification model. The 

examined metrics indicate that classification is a superior problem formulation 

for datasets characterized by high multicollinearity. Figure 4.1 presents the box 

plot of accuracy for each foreign exchange pair, clearly illustrating the 

distinction between the results obtained through classification and regression.  
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Figure 4.2 Comparison of accuracy between classification model and 

regression model for each foreign exchange pairs. 

 

4.5. Performance of Proposed Method 

 

The effectiveness of the proposed Multicollinearity Reduction Model 

(MRM) was evaluated by comparing it to the LSTM model. The MRM 

architecture incorporated the baseline LSTM, the proposed correlation 

embeddings, and the attention mechanism. Each model underwent training for 

100 epochs. The experiment was repeated ten times, and the average results 

were calculated. These steps were replicated for each of the four datasets. The 

findings are presented in Table 4.3. Initially, this study examined the cross-

entropy loss of each model, which is a relevant metric for classification 

problems. The cross-entropy loss quantifies the disparity between the predicted 

and true probability distributions. The loss function is defined as follows:  

𝑙𝑜𝑠𝑠(𝑥, 𝑐𝑙𝑎𝑠𝑠) = −𝑥[𝑐𝑙𝑎𝑠𝑠] + 𝑙𝑜𝑔 (∑ 𝑒𝑥𝑝 (𝑥[𝑗])

𝑗

 ) , 
(23) 

where x represents the input and class refers to the category index. The LSTM 

model yielded a training loss of 0.8435, whereas the MRM model achieved a 
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training loss of 0.5088. These results demonstrated the effectiveness of the 

proposed method in enhancing performance under high multicollinearity 

conditions.  

 

Table 4.8 Comparison of performance results for classification LSTM and 

Classification MRM. 

Evaluation Metric LSTM MRM  

Mean of Loss Function 0.8435 0.5088 

Std of Loss Function 0.0241 0.0750 

Mean of Accuracy 45.80% 45.10% 

Std of Accuracy 2.67% 2.67% 

Mean of Returns (pips) 1747 2787 

Std of Returns (pips) 468 607 

 

Subsequently, the impact of the MRM model on trading performance was 

evaluated. The LSTM model exhibited an average trading return of 1747 pips, 

whereas the MRM model achieved a higher mean trading return of 2787 pips. 

This corresponded to an additional profit of 59.53% during the testing period. 

To provide a visual representation of the improvement in trading return across 

different foreign exchange pairs, Figure 4.3 presents a bar chart. 

 

Figure 4.3 Comparison of Trading Returns between classification LSTM and 

classification MRM. 
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While there was a significant improvement in returns, the same cannot 

be said for accuracy. The baseline model demonstrated an average accuracy of 

45.8%, while the proposed MRM model achieved an accuracy of 45.1%. This 

finding aligns with the literature review, which suggests that accuracy alone 

does not guarantee higher returns. The accuracy paradox and inconsistency 

profit bias contribute to this discrepancy. Accuracy fails to differentiate between 

classes and tends to favor the majority class, often overlooking the less 

important class. Therefore, in addition to accuracy, trading returns are 

evaluated.  

 

The results indicate that the MRM model outperforms the LSTM model 

in identifying profitable trades. In other words, the MRM model exhibits higher 

precision and recall for each predicted class, highlighting its precision in high 

multicollinearity scenarios. The model only engages in trades when the 

predicted label is 1, indicating a buy signal. Consequently, this approach leads 

to higher returns per trade.  

 

Moving forward, the proposed method was tested on a regression model 

to explore potential improvements. Table 4.4 presents the performance results 

using the same metrics. Although there was a minor improvement of 2.12% in 

accuracy, a significant enhancement is observed in trading return. The mean 

trading return for the LSTM model is 751 pips, while the MRM model achieved 

a mean trading return of 1216 pips. This corresponds to an additional profit of 

61.92% during the testing period. Figure 4.4 presents a bar chart to visually 
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depict the improvement in trading return for each foreign exchange pair. In all 

cases, classification resulted in higher returns, with the most substantial 

improvement observed in the EUR/GBP pair, where the baseline LSTM model 

barely achieved profitability.  

Table 4.9 Comparison of performance result between regression LSTM and 

regression MRM. 

Evaluation Metric LSTM MRM 

Mean of Accuracy 22.47% 24.59% 

Std of Accuracy 2.61% 2.41% 

Mean of Returns (pips) 751 1216 

Std of Returns (pips) 451 512 

 

 

Figure 4.4 Comparison of Trading Returns between regression LSTM and 

regression MRM. 

 

4.6. Discussion 

 

The experiments conducted in this study confirmed that classification 

outperforms regression in high multicollinearity scenarios, exhibiting higher 

prediction accuracy. One possible explanation for this finding is that multiclass 

labels can contain more information. Instead of estimating a single point, 
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classification models estimate both the upper and lower bounds of possible 

prices. From a mathematical perspective, framing financial forecasting as a 

classification problem may be easier in terms of model fitting compared to point 

estimation problems. This is because a classification task aggregates an interval 

of continuous points into a single point in the sample space. The proposed model 

only enters a trade when it has a high level of confidence in achieving significant 

profits.  

 

Moreover, the MRM model demonstrated its effectiveness in enhancing 

the baseline LSTM model. By incorporating the proposed extensions, the model 

was able to improve precision and, consequently, the profitability of algorithmic 

trading models. While the LSTM model is proficient in capturing temporal 

effects, it fails to consider the interaction between data. The results indicate that 

neural networks with the proposed extensions can effectively learn the 

relevance and redundancy present in financial variables as intended. 

Furthermore, all potential information is retained as no variables are removed 

during the model building process. Although initially developed for 

classification, the proposed model also exhibited similar improvements in 

regression tasks.  

 

Table 4.5 provides a comprehensive overview of the results obtained for 

each foreign exchange pair and model. One inference drawn from these findings 

is the significance of problem formulation in algorithmic trading. On average, 

changing the problem formulation yields better returns compared to changing 
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the model itself. Consequently, there is still ample room for innovation in 

financial forecasting, particularly regarding the prediction target aspect. 

 

Table 4.10 Compilation of performance results for every foreign exchange 

pairs. 

  Metric EUR/GBP EUR/USD GBP/USD NZD/USD 

Regression LSTM Accuracy 18.9% 23.9% 22.3% 24.7% 

  Return 74 973 1438 519 

 MRM Accuracy 20.0% 24.6% 24.5% 29.3% 

  Return 646 1613 1600 1006 

Classification LSTM Accuracy 45.0% 47.1% 45.8% 45.4% 

  Return 1445 1340 3689 515 

 MRM Accuracy 43.9% 46.1% 47.3% 43.1% 

  Return 2677 2364 4521 1587 
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CHAPTER 5 

 

CONCLUSION 

 

 

5. Conclusions 

 

It is important for financial markets to have efficient price discovery, 

and with advancements in technology, financial forecasting and algorithmic 

trading have played an increasingly significant role in achieving this goal. One 

major challenge faced in financial forecasting is multicollinearity, which arises 

due to the abundance of data and can lead to unreliable predictions from models. 

In this research, an algorithmic trading process for the foreign exchange markets 

was developed, with technical indicators generated as the predictive variables. 

The presence of multicollinearity in financial datasets was confirmed through 

the use of the VIF.  

 

The existing approaches in the literature to mitigate multicollinearity 

can be categorized into variable selection and modified estimators. Variable 

selection aims to reduce the number of predictors to the most relevant ones, 

potentially reducing noise but also removing the potential incremental 

predictive value. Most widely used modified estimators are based on traditional 

statistical models rather than neural networks. Therefore, this research focuses 

on a neural network approach and problem formulation, with the objective of 
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comparing the performance of mitigating multicollinearity between the 

Classification Neural Network and the Regression Neural Network.  

 

1. To compare the performance of mitigating multicollinearity between 

Classification Neural Network and Regression Neural Network. 

The experiment demonstrated that the classification approach achieved a 

23.33% higher accuracy compared to regression. Classification proved to be 

more effective in predicting the future direction of movement than a point 

estimation. 

 

2. To investigate the potential improvement in performance of proposed 

method over Neural Network.  

a. To investigate the potential improvement in prediction accuracy 

of proposed attention mechanism and embeddings over neural 

network in the presence of multicollinearity. 

b. To investigate the potential improvement in trading returns of 

proposed attention mechanism and embeddings over neural 

network in the presence of multicollinearity.  

The proposed MRM model did not improve the prediction accuracy of the 

baseline model, as the difference in mean and standard deviation of accuracy 

was comparable across all four datasets. However, the MRM model exhibited a 

59.53% higher trading return. This experiment revealed that accuracy does not 

always translate into higher returns in an algorithmic trading simulation. The 

proposed model demonstrated higher profitability and returns despite having the 

same accuracy, indicating that MRM can enhance precision in financial 
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forecasting and mitigate reliability issues associated with high multicollinearity 

data. 

 

3. To investigate the potential improvement in performance of proposed 

method on regression. 

The results showed that the MRM model achieved a 61.92% higher trading 

return in regression as well. The effects of the proposed method on regression 

were similar to those observed in classification, with higher precision in 

prediction leading to higher returns over the testing period. Moreover, it was 

evident that changing the problem formulation yielded greater marginal 

improvement compared to enhancing the predictive model. 

 

Our model introduces an attention module to identify relevant variables 

and utilizes a correlation-based embedding to model redundancy within the 

variables. Unlike feature selection methods, the proposed method does not 

remove variables, making it more effective in prediction as it avoids the risk of 

discarding relevant features. Furthermore, neural networks have the ability to 

uncover nonlinear relationships that statistical approaches often fail to capture. 

 

In future work, it would be of interest to expand the features beyond 

price-based technical indicators and incorporate fundamental data and news 

data, which are also commonly used in algorithmic trading models and exhibit 

high multicollinearity. Assessing the performance of the proposed MRM in 

higher-dimensional datasets with the addition of these features would be 
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valuable. Additionally, experimental exploration of alternative measures, aside 

from correlation, as proxies for redundancy in features could be conducted.  
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