

UNCOVERING COMMUNITIES IN COMPLEX NETWORKS USING

ANT COLONY OPTIMIZATION

CHIN YI HENG

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Science

(Honours) Applied Mathematics with Computing

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2023

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Signature :

Name : Chin Yi Heng

ID No. : 1903338

Date : 8 September 2023

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “UNCOVERING COMMUNITIES

IN COMPLEX NETWORKS USING ANT COLONY OPTIMIZATION”

was prepared by CHIN YI HENG has met the required standard for

submission in partial fulfilment of the requirements for the award of Bachelor

of Science (Honours) Applied Mathematics with Computing at Universiti

Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Chin Jia Hou

Date : 8 September 2023

Signature :

Co-Supervisor :

Date :

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made

of the use of any material contained in, or derived from, this report.

© 2023, Chin Yi Heng. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to specially thank Dr. Chin Jia Hou who contributed to the

successful completion of this project. I would like to express my gratitude to

my research supervisor, Dr. Chin Jia Hou for his invaluable advice, guidance,

and his enormous patience throughout the development of the research.

v

ABSTRACT

Networks often refer to a set of connections between vertices with edges. A

network is considered complex if it exhibits complex properties, such as a

community structure. Recently, various community detection methods have

been proposed by researchers to analyze complex networks. In this research,

the Ant Colony Optimization (ACO) algorithm is implemented by

incorporating with the Label Propagation algorithm (LPA) to detect

communities. The ACO algorithm forms the foundation for initial

communities, which are then propagated to become the final communities

using LPA. The ACO algorithm has also been extended to handle weighted

and directed networks, allowing it to detect communities in such contexts. The

performance of the proposed method will be evaluated using different

benchmark networks, and the results will be compared with those obtained

from existing community detection methods. Furthermore, the proposed

method will be extended for implementation in real-world networks to detect

communities.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xi

CHAPTER

1 INTRODUCTION 1

1.1 Background of study 1

1.2 Problem statement 2

1.3 Aim and Objectives 2

1.4 Significance of study 3

2 LITERATURE REVIEW 4

2.1 Introduction 4

2.2 Literature Review 4

2.2.1 Pearson Correlation as heuristic value of ACO

algorithm 4

2.2.2 ACO approach in detecting initial distinct

communities 6

2.2.3 Ant’s population adjustment for ACO-based

community detection 8

2.2.4 Other state of the art community detection

method 9

3 METHODOLOGY AND WORK PLAN 11

3.1 Introduction of ACO 11

3.2 Parameter settings 12

vii

3.2.1 Ant population size 12

3.2.2 Ants allocation and steps 12

3.2.3 Pheromone value 13

3.2.4 Heuristic information 13

3.2.5 Alpha and Beta value 15

3.2.6 Number of iterations 15

3.3 Solution construction 15

3.3.1 Ant’s movement 16

3.3.2 Ants performance evaluation 16

3.3.3 Pheromone value update & Adjustment of

ant’s population 17

3.3.4 Generating multiple routes 17

3.4 ACO Label 18

3.5 Complete detection using Label Propagation

Algorithm 18

3.6 Evaluation Criteria 19

3.6.1 Normalize mutual information 19

3.6.2 Modularity 19

3.7 Dataset 20

3.8 Tools and software 21

4 COMPUTATIONAL DETAILS 22

4.1 Datasets 22

4.1.1 LFR benchmark network 22

4.1.2 Real world networks 24

4.2 Parameters 24

4.3 Code and Implementations 25

4.3.1 Libraries and data 26

4.3.2 Parameter setup 26

4.3.3 ACO algorithm 27

4.3.4 Node labelling 28

4.4 Evaluation process 28

4.5 Process flowchart 29

5 RESULTS AND DISCUSSION 30

5.1 LFR benchmark 30

viii

5.2 Real-world network with predefined communities 33

5.3 Real-world networks 34

5.4 Summary 35

6 RECOMMENDATIONS AND CONCLUSIONS 37

6.1 Limitation and Challenges 37

6.2 Recommendations for future work 38

6.3 Conclusion 38

REFERENCES 40

ix

LIST OF TABLES

Table 5.1: NMI scores of community detection methods in real-world
benchmark networks. 32

Table 5.2: Modularity scores of community detection methods in real-world
benchmark networks. 33

Table 5.3: Modularity scores of community detection methods in real-world
networks. 34

x

LIST OF FIGURES

Figure 3.1: The example of the process of the first phase of the labeling

process. 18

Figure 4.1: Flowchart of community detection process of ACO algorithm with

LPA. 29

Figure 5.1 NMI scores of community detection methods in Undirected

Unweighted LFR network with different levels of mixing parameters for

topology. 31

Figure 5.2: NMI scores of community detection methods in Directed

Unweighted LFR network with different levels of mixing parameters for

topology. 31

Figure 5.3: NMI scores of community detection methods in Undirected

Weighted LFR network with different levels of mixing parameters for edge

weights. 32

Figure 5.4: NMI scores of community detection methods in Directed Weighted

LFR network with different levels of mixing parameters for edge weights. 32

xi

LIST OF SYMBOLS / ABBREVIATIONS

Sorencen-Dice Index (SDI)

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 SDI between node 𝑖𝑖 to node 𝑗𝑗

𝑏𝑏𝑖𝑖 Number of connected nodes for node 𝑖𝑖

Normalize-weight

𝑊𝑊𝑖𝑖𝑖𝑖 Weight of edges from node 𝑖𝑖 to node 𝑗𝑗

𝑠𝑠 Laplace smoothing constant

Probabilistic function

𝛼𝛼 Weight of pheromone value

𝛽𝛽 Weight of heuristic information

𝜂𝜂𝑖𝑖𝑖𝑖 Heuristic information between node 𝑖𝑖 to node 𝑗𝑗

𝜏𝜏ij Pheromone value between node 𝑖𝑖 to node 𝑗𝑗

𝜃𝜃 Constant value for heuristic information

Fitness score

𝑘𝑘𝐼𝐼𝐼𝐼 Intra-community degree of node

𝑁𝑁𝑟𝑟 Set of nodes travelled by ants during tour 𝑟𝑟

Normalize mutual information

𝐶𝐶𝑥𝑥 Number of communities in network 𝑥𝑥

𝑁𝑁𝑖𝑖𝑖𝑖 Number of nodes determined in exact clustering solutions

𝑁𝑁𝑖𝑖 Number of nodes in cluster 𝑖𝑖

Modularity

𝑚𝑚 Number of edges

𝐴𝐴𝑖𝑖𝑖𝑖 Adjacency matrix

𝛿𝛿(𝐶𝐶𝑖𝑖 ,𝐶𝐶𝑗𝑗) Function that return 1 if node 𝑖𝑖 and node 𝑗𝑗 are in the same

community

LFR networks

𝑁𝑁 Number of nodes

𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 Average degree of nodes

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 Maximum degree of nodes

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 Minimum community size

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 Maximum community size

𝜇𝜇 Mixing parameter for topology

𝜇𝜇𝑤𝑤 Mixing parameter for edge weights

1

CHAPTER 1

1 INTRODUCTION

1.1 Background of study

A network refers to a set of vertices, which are often called nodes, with edges

that represent the connection between two vertices. A network is said to be

complex when they include unique features such as community structure,

scale-free degree distribution, community structure, and small-world property

(Chin and Kamali, 2019). Thus, network analysis is carried out to study the

relationship between interconnected components or elements inside a network

system inside a complex network. By analyzing network systems, it provides

new insights for us to have a better understanding of real-world networks such

as social networks and biological networks.

Among all the properties of complex networks, community structure is

considered an essential feature in real-world networks. According to Girvan

and Newman (2002), Community Structure can be defined as the tendency for

nodes inside a network to be densely connected within a group of nodes other

than with the rest of the nodes in the network. Through analyzing the structure

of communities, the relationships between groups of nodes can be identified,

as well as recognize the common interests that are shared among these groups

within the network (Girvan and Newman, 2002). For instance, studying the

community structure in a social network can reveal individuals with common

interests or similar behaviors who are more likely to form groups.

Past few decades, researchers have proposed various community

detection methods for the study of community structure. In the year 2004,

Newman and Girvan (2004) have proposed the first community detection

method which is modularity optimization and it has attracted people’s

attention. The concept of modularity is introduced as the measure of the

quality of detected community structure in a complex network, while the

modularity optimization method has been proposed as a method to detect

communities in a network by maximizing the modularity. In the meantime, the

performance of the proposed method was evaluated by comparing it with other

community detection methods and result in good accuracy and efficiency.

2

In the year 1999, Dorigo and Di Caro proposed a new metaheuristic

approach called Ant Colony Optimization (ACO) which takes inspiration from

the foraging behaviors of ants. In the ACO algorithm, the pheromones will be

deposited on the optimal path to label them for the other ants. Apart from that,

the authors have also utilized the ACO algorithm to tackle the Travelling

Salesman Problem (TSP) by implementing the ACO algorithm to search for

the optimal solution (Dorigo and Di Caro, 1999). The algorithm produced a

remarkable result in solving the TSP and other combinatorial optimization

problems. In recent years, metaheuristic-based community detection methods

have become more and more popular. For instance, Wang et al. proposed a

community detection method that involves adjusting the number of ants

parameter dynamically in ant colony optimization to enhance the efficiency of

the approach (Wang et al., 2020). In addition, Hosseini et al. proposed an

advanced Label propagation algorithm that incorporates ACO with a single

objective modularity optimization for community detection in complex

networks (Hosseini et al., 2020). These successes have revealed the potential

of the ACO algorithm, leading to the continued development of ACO to deal

with other real-world problems.

1.2 Problem statement

In network analysis, community detection has played an important role, which

aims to identify the groups of nodes with similar properties or attributes. In

this paper, a community detection method incorporated with Ant Colony

Optimization (ACO) was proposed. In fact, several studies have been

conducted by other researchers on ACO approaches, but most of them mainly

focus on heuristic information. Undoubtedly, heuristic information has become

crucial in the development of the ACO algorithm, and various approaches

have been proposed based on the network that is being analyzed. Thus, an

ACO approach will be proposed in this paper by optimizing the parameters of

the ACO algorithms as well as the allocation of ants in the algorithm.

1.3 Aim and Objectives

In this research, we aim to develop a community detection method by

incorporating Ant Colony Optimization algorithms with the Label Propagation

3

algorithm. Additionally, the parameter settings of the ACO algorithm will be

improved to enhance the algorithm's effectiveness in detecting communities.

These parameters include ant population size, ant’s initial allocation,

pheromone value, heuristic information, alpha and beta values, and the number

of iterations. Finally, the proposed method's performance will be evaluated

against benchmark networks, and its implementation will be further extended

to real-world networks.

1.4 Significance of study

In the development of our ACO-based community detection method, the

parameters of the ACO algorithm have often received limited attention within

existing literature. This gap in the literature highlights the possible

improvement of existing ACO-based community detection. Thus, this study is

conducted to enhance the existing ACO-based algorithm, extending its

applicability to weighted and directed networks.

 Our research will focus on investigating the different parameter

settings of the ACO algorithm, aims to improve the performance of the ACO

algorithm in terms of the detection accuracy. The research also contributes to

an understanding of importance of parameter in ACO algorithm.

Furthermore, the proposed ACO-based algorithm serves as a

foundational component for existing community detection methods. In this

research, the ACO algorithm will incorporate with Label Propagation

Algorithm to detect the communities in complex networks. Finally, the

proposed method may offer a valuable point of reference for researchers in

developing an advanced ACO-based community detection method.

4

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

In the year 1999, Dorigo and Di Caro (1999) have proposed an ant colony

optimization approach to solve the famous Traveling Salesman Problem (TSP)

which is a combinatorial optimization problem. The proposed method has

opened up a new meta-heuristic approach and it can be also applied to other

combinatorial optimization problems, including community detection in a

complex network. Therefore, we are going to review various papers on ACO-

based approaches as well as their parameters.

2.2 Literature Review

In this section, we seek into various aspects of community detection method

that incorporated with ACO algorithm. This subsection below highlighted both

traditional and innovative approaches in detecting communities by offering a

comprehensive exploration of these methodologies.

2.2.1 Pearson Correlation as heuristic value of ACO algorithm

In the year 2013, Chang et al. proposed a community detection method using

ACO. The paper has emphasized the modularity optimization approach, which

takes the maximization of modularity, a measure of the quality of the detected

communities in a network, as an objective of the study. In addition, the author

has specified the benefits of the approach, which does not require any prior

knowledge about the total number of communities within the network (Chang

et al., 2013). The ACO-based community detection was proposed based on the

max-min ant system (MMAS) framework. MMAS is a variant of the ACO

algorithm which function as balancing the exploration and exploitation of ants

during the search process by limiting the maximum and minimum value of

pheromone trails in order to avoid stagnation. The algorithm records every

community partitioning solution using local-based adjacency representation. A

new heuristic approach is employed in the algorithm and they are adapted to

fit the requirement of the community detection method.

5

 In the solution construction section, a probability function based on

pheromone trails and heuristic information was formulated. In other words, the

probability makes use of pheromone trails and heuristic information to indicate

which edges will be chosen as the solution component. In the meantime,

parameters alpha and beta will be used to determine the weight of the

pheromone trail and heuristic information in the probability function.

 Besides, the proposed method takes the similarity between two

vertices as heuristic information and they are measured using Pearson

correlation. The higher similarity will be resulting in a value closer to 1 while

the lower similarity will result in a value closer to -1. Since the range of the

Pearson correlation was between -1 and 1, a logistic function was applied to

avoid the negative value outputs.

 Furthermore, the author has also mentioned the importance of

pheromone trail management. The proposed method followed the MMAS

mechanism, in which all pheromone trails are set to a high value to have a

better exploration of the solution at the initial phase of the search process. At

the same time, the pheromone value will also be adjusted in each of the

iterations. The pheromone will only be updated when solutions are constructed

by all ants in each iteration. At first, the pheromone trails will be decreased by

a fixed value which is commonly known as pheromone evaporation, in order

to guide the ants in solution exploration. The process is followed up by a

reinforcement of the solution, which deposits pheromone on the edges of the

network during the iteration that contains an improvement in the modularity

value. The range of pheromone value will be limited in order to avoid

stagnation.

 On top of that, the author has also highlighted that optimizing the

parameters for ACO has exceeded the scope of the study. Therefore, the

parameters of the ACO algorithm were set to be a fixed value of alpha, beta,

and pheromone evaporation value, and the maximum number of iterations to

be 1, 2, 0.8, and 100 respectively. Last but not least, the performance of the

proposed method was evaluated by adopting modularity and normalized

mutual information (NMI) evaluation methods. The proposed method was

tested on the real-life network by comparing it with other community detection

6

algorithms and showed good performance in terms of modularity while having

a satisfactory result in terms of NMI.

 The author has demonstrated the potential of the ACO approach in

detecting communities. However, it should be noted that the paper primarily

focuses on static networks. In future work, the author suggests applying the

ACO approach to real-world social networks, which are dynamic networks, to

explore their potential in detecting communities in different types of networks.

2.2.2 ACO approach in detecting initial distinct communities

In the year 2019, Chin and Kamali proposed a new community detection

method with an ant colony approach to detect initial partial communities in a

complex network. The proposed method aims to identify the initial partial

communities in both unweighted and undirected networks by utilizing the

ACO algorithm (Chin and Kamali, 2019). In the algorithm, the ants that follow

the routes will highest fitness score, and the nodes along the routes will form a

community. Once the detection of initial communities is completed, the nodes

will be combined and form meta-nodes hence turning the original network into

a new network. The new network will then be applied with other community

detection methods thus completing the community detection.

 At first, the author introduced the concept and idea of the ACO

algorithm used in the proposed method. The ACO algorithm is initiated by

determining the number of ants used based on the total number of nodes in a

network. The ants’ allocation is then determined by comparing the degree of a

node to the average degree of other nodes. The ants will be allocated to the

nodes with a higher ratio of the degree of the node. Apart from that, the author

has defined a probability function based on the pheromone value and heuristic

value for the movement of ants in the network. The weight of the pheromone

value and heuristic value in the ACO algorithm is controlled by the parameters

alpha and beta, respectively. The proposed method utilized the Sorencen-Dice

Index (SDI), which is the measurement of similarity between nodes, as the

heuristic values of the probability function. It is important to note that if either

one of the pheromone values and heuristic value is equal to zero will result in

0 probability indicating that the ants will never travel through the path.

Therefore, a constant value was added to the heuristic value and the

7

pheromone value is set to be 0.2 at the start of the algorithm to avoid 0

probability. The decision of ant movements will be decided by a Roulette

function based on the calculated probability. The ants will move a number of

steps to be considered as finished its tour. After the ants have finished their

tour, the visited nodes will be used to calculate their fitness score. If the fitness

score is found to be improved compared to previous tours, the pheromone

value will be modified by a constant value rho. The movement of ants, fitness

score calculation, and pheromone update will be repeated until they reached

convergence. At the end of the process, the best routes and fitness score of the

tour for each of the iterations will be stored in two separate lists for future

labeling uses. The entire process is repeated several times and the result is

stored inside the lists to obtain multiple solutions.

 Once the lists are completed, the routes with fitness scores that are

above average will only be considered in the node labeling process. In the first

phase of the process, the nodes in the route with the lowest fitness score are

labeled with the starting node's label. This is repeated for routes with higher

fitness scores, and nodes that appeared multiple times will consider the label

of highest fitness score routes. In the second phase, the process borrows the

idea of label propagation algorithm (LPA) which takes the label that occurred

most frequently as the label of all the nodes in the routes. The process starts

from the highest to lowest fitness score to prioritize the higher fitness score

solutions. In the final phase, the nodes with identical labels will be classified

as a community and the community with fewer than 3 nodes will not be

considered. The nodes in the detected community will be combined into one

node and the weighted edges can be determined by aggregating the intra-

community edges, hence, forming a new weighted network. Lastly, the

existing community detection method will be used to detect the distinct

communities of the new weighted network.

 Last but not least, the performance of the proposed method was

evaluated with normalized mutual information (NMI) and modularity (Q). The

capability of the proposed method was tested with Lancichinetti-Fortunato-

Radicchi (LFR) synthetic network and real-world networks. The author has

shown that the proposed method is capable of detecting a good quality of

initial communities. The proposed method will then be compared with the

8

existing community detection method without forming meta-nodes. Although

the proposed method's results show slightly lower performance compared to

existing community detection methods, it is capable of preventing trivial

detections. The author has also emphasized the improvement that can be made

to the proposed method such as refining the solution before the formation of

meta-nodes to improve the quality of the initial detection of the community.

2.2.3 Ant’s population adjustment for ACO-based community

detection

In the year 2020, Wang et al. proposed a community detection method

incorporate with ACO. In the proposed method, the number of ant parameters

in ACO is focused. According to Wang et al., the number of ants used in the

ACO algorithm has a significant impact on the time complexity and the

searching efficiency of the algorithm (Wang et al., 2020). Thus, the number of

ants will be investigated in order to improve the ACO algorithm in terms of

both computational cost and the time complexity of the algorithm.

 In this research, the proposed method begins by initializing a

probability matrix for the pheromone trails. The transfer probability formula is

utilized to compute the probability matrix of each node. The matrix will be

updated based on the local solutions and global solutions constructed by the

ants. Finally, the completed matrix is then used for community detection,

where the community of the node is identified by the columns with the highest

probability in the probability matrix.

 Besides that, the author has also dynamically adjusted the number of

ants at the end of each iteration based on certain conditions. The author

highlighted that the ants might be inactive during the process of community

detection. In other words, the ants may get trapped in local optima, providing

no improvement in the solutions but still consuming the computation resources

of the algorithm. Therefore, the number of ants is modified dynamically based

on a certain condition during the process. When the quality of solutions

remains stable, the number of ants will be increased to help the ants from

escaping the local optima, whereas when the quality of solutions shows a

slight improvement, the number of ants will be reduced to decrease

computational costs. Finally, when the quality of solutions improves

9

significantly, the number of ants will be increased significantly to enhance the

search for better solutions.

Last but not least, the author has carried out several experiments to

investigate the impact of the number of ants on community detection. The

proposed method is compared with the existing ACO-based community

detection method and the performance of the algorithm will be evaluated as

well. The result clearly showed that the proposed method has a significant

improvement in terms of the computational time of the algorithms. However,

the quality of the solutions obtained from the results only has slight

improvement, indicating a need to overcome this issue. Overall, the proposed

method is a promising approach for community detection as they reduce the

computational cost of the algorithm effectively while maintaining the quality

of solutions constructed.

2.2.4 Other state of the art community detection method

In the year 2007, Raghavan et al. utilized the label propagation method to

propose a localized community detection algorithm. Initially, the process starts

with labeling the nodes with unique labels. At each iteration of the process,

each node will replace its label with the label that occurred most frequently

among its neighboring nodes. After a few iterations, the labels will start to

converge hence forming the communities.

Furthermore, the author has explained in detail how the label

propagation algorithm can be applied to detect community structure

(Raghavan et al., 2007). In LPA, the nodes will tend to join the community

that is formed by most of its neighbor nodes. If the same maximum number of

times among its neighbors occurred, the node will randomly select one of

those nodes to join their community. Initially, each node will be given a

unique label. The label will spread through the network and the nodes that are

densely connected to each other will be more likely to convert their label into a

common label hence forming groups. The groups will continue to grow as the

process go until no changes were made which are said to be converged. In the

end, the nodes that share the same label are grouped thus forming a

community.

10

 In addition, Raghavan et al. also highlighted the advantage of the

proposed method which the algorithm does not require any prior knowledge

about the network structure, thus making it easy to be implemented onto a

variety of networks. Besides, the performance of the proposed method was

evaluated using a real-world network with predefined communities. According

to the results obtained, the proposed method is capable of finding the

community structure effectively.

11

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

This chapter provides an in-depth exploration of the application of the ACO

algorithm incorporating with Label Propagation Algorithm (LPA) to detect

communities. The chapter covers various aspects of this approach, including

parameter setting, solution construction, ACO labeling, incorporation with the

LPA, evaluation criteria, datasets used, and the tools and software used in the

research. Also, this chapter aims to present a comprehensive overview of how

ACO can be leveraged to enhance the performance of community detection by

incorporating with LPA.

3.1 Introduction of ACO

Ant Colony Optimization (ACO), is a metaheuristic algorithm that takes

inspiration from the foraging behavior of ants. The pheromone will be

deposited on the optimal path to the food to create a label for other ants. In

ACO, a number of artificial ants are generated to search for the optimal

solution to a given problem. Each of the ants will build an independent

solution by iteratively searching for a solution based on the pheromone trails

left by previous ants. The pheromone trails will be updated at the end of each

iteration based on the quality of the solutions found. In the end, the algorithm

is able to converge on the best solution due to the feedback of pheromone

trails and the reinforcement of ants.

In this project, the algorithm is implemented to detect initial

communities, perform labeling, and complete the detection by incorporating

with existing community detection method. The performance of the algorithm

will be evaluated to benchmark its capabilities in detecting communities. The

process is structured with a sequence that includes parameter settings, solution

construction, node labeling, complete detection, and performance evaluation.

The proposed algorithm’s framework is derived from the work of Chin and

Kamali (Chin and Kamali, 2019). Their paper served as the foundation for the

development of the algorithm.

12

3.2 Parameter settings

In the ACO algorithm, our first step involves initializing all the essential

parameter settings for the ACO algorithm. This section outlines the key

parameters that play a crucial role in the proposed method for initial

community detection. Effective tuning of these parameters is essential for

achieving optimal results. The subsections below discuss the specifics of each

parameter and their significance and impact on the overall algorithm

performance.

3.2.1 Ant population size

Regarding the ant population size, the performance of the ACO

algorithm can be affected by the number of ants used in the algorithms. The

number of ants should be sufficient to effectively cover the exploration of the

solution space. Theoretically, a bigger ant population size will provide a more

efficient search and increase the convergence speed. However, it will result in

increased computational time and violate the principle of efficiency, which

states that metaheuristic algorithms should be superior in terms of both

accuracy and efficiency. On the other hand, if the ant population size is found

to be small, there is a chance of missing potentially good solutions, as the ants

cover insufficient paths leading to premature convergence to local optima.

Thus, it is important to balance the size of ant populations in order to achieve

desirable results.

3.2.2 Ants allocation and steps

In the community detection method, the initial allocation of ants can

significantly affect the algorithm's speed and performance. The allocation of

ants will be carried out based on the ratio of a node's degree to the average

degree of its neighboring nodes. A higher degree of nodes will have relatively

more connections between nodes within the network, indicating that these

nodes play a more crucial role as they potentially carry key solutions. In

addition to that, allocating ants to well-connected nodes can help the ants to

escape local optima by utilizing the alternative paths especially when dealing

with complex networks. Regarding the degree of nodes, only the outgoing

degree will be considered as it reflects their ability to influence other nodes

13

within the network. Identifying effective influencer nodes can significantly

affect the detection of initial communities as they have a high potential to

impact other nodes.

 Besides that, the artificial ants will move through the network within a

fixed number of steps to construct a solution, with the ants that complete their

steps considered to have completed a tour. The purpose of limiting the number

of steps is to prevent taking too long to find a solution. Therefore, the number

of steps should be small to ensure the initial communities formed remain small.

This approach prevents the dominance of individual communities and leads to

the formation of trivial solutions.

3.2.3 Pheromone value

Pheromone values play a crucial role in the movement of ants and are

considered an essential component in the ACO algorithm as they guide the

ants toward optimal solutions. However, if the ants over-rely on pheromones,

this may limit the ants’ ability to explore alternative paths and find potentially

better solutions. The bias in exploiting the current known path may hinder the

algorithm’s ability to discover other possible optimal solutions. To address the

issue, we may initiate the pheromone value at a low level at the early stage of

the algorithm and increase the value at the later stages. This approach allows

the ants to explore various paths, promoting a wider search for optimal

solutions, and enabling them to shift the focus towards exploitation in order to

reach convergence at the later stages.

3.2.4 Heuristic information

 Aside from the pheromone value, the heuristic information played

another important role in the movement of ants within the ACO algorithm.

The heuristic value provides additional information about the problem at hand

and helps ants in making more informed decisions by considering factors other

than just pheromones. In this research, the Sorencen-Dice-Index (SDI) served

as the heuristic information and was utilized to measure the similarity between

two nodes. The SDI between the nodes and can be expressed in the following

equation:

14

𝑆𝑆𝑆𝑆𝑆𝑆 = 2�𝑏𝑏𝑖𝑖⋂𝑏𝑏𝑗𝑗�
|𝑏𝑏𝑖𝑖|+�𝑏𝑏𝑗𝑗�

 (3.1)

where 𝑏𝑏𝑖𝑖 and 𝑏𝑏𝑗𝑗 are the total number of connected nodes for node 𝑖𝑖 and node 𝑗𝑗

respectively. The �𝑏𝑏𝑖𝑖⋂𝑏𝑏𝑗𝑗� represents the number of mutual connected nodes of

𝑖𝑖 and 𝑗𝑗 . The connected number of nodes for 𝑏𝑏𝑖𝑖 will not consider 𝑏𝑏𝑗𝑗 as the

connected node when calculating the SDI and vice versa.

On top of that, the SDI can also be incorporated with the weights of the

edges in weighted networks to enhance the heuristic information’s ability to

navigate ants in exploiting the network effectively. The weights help ants in

determining the significance of connections between nodes, providing a more

comprehensive meaning to differentiate the importance of various paths. This

approach can be accomplished by multiplying the Sorensen-Dice Index (SDI)

with the normalized weights. As the normalization method ranges from 0 to 1,

a Laplace smoothing technique is implemented to avoid the 0 probability. The

normalized weight of edges from node 𝑖𝑖 to node 𝑗𝑗 can be expressed in the

following equation:

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 =
𝑊𝑊𝑖𝑖𝑖𝑖 − min

𝑗𝑗
�𝑊𝑊𝑖𝑖𝑖𝑖� + 𝑠𝑠

max
𝑗𝑗

{𝑊𝑊𝑖𝑖𝑖𝑖 } − min
𝑗𝑗
�𝑊𝑊𝑖𝑖𝑖𝑖� + 𝑠𝑠

 (3.2)

where 𝑊𝑊𝑖𝑖𝑖𝑖 represents the weights of edges from node 𝑖𝑖 to node 𝑗𝑗. The min

𝑗𝑗
{}

and max
𝑗𝑗

{} functions select the minimum and maximum values among a set of

values indexed by 𝑗𝑗 , respectively. The parameter 𝑠𝑠 represents the Laplace

smoothing value used to prevent 0 probability in normalized weights. Thus,

the heuristic information of edge from node 𝑖𝑖 to node 𝑗𝑗 can be expressed in:

 𝜂𝜂𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∗ 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 (3.3)

15

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 are the SDI between the node 𝑖𝑖 and 𝑗𝑗 and 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 are the

normalized weight of edges for node 𝑖𝑖 to node 𝑗𝑗. For unweighted network, the

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 will be equal to one as they have no weights between the edges.

3.2.5 Alpha and Beta value

In the ACO algorithm, alpha and beta are two key parameters that

influence the algorithm's behavior and strike a balance between exploration

and exploitation in the computation of ant movements. Alpha, often referred to

as the pheromone influence factor, determines the weight assigned to

pheromone information. A higher alpha value places greater emphasis on

exploiting known optimal solutions, which speeds up convergence but may

also lead to premature convergence to suboptimal solutions. On the other hand,

beta, known as the heuristic influence factor, regulates the importance of

heuristic information. A higher beta value encourages greater exploration of

the search space, promoting the discovery of new, and potentially better

solutions. Therefore, finding the proper balance between alpha and beta values

is crucial for optimizing algorithm performance.

3.2.6 Number of iterations

In this project, the number of iterations used for ant’s enhancement

(inner loop) and reiterating the process (outer loop) is set to be a small value.

Despite the number of iterations being limited, the number is sufficient to

yield satisfactory detections of initial communities for most of the networks.

However, increasing the number of iterations may increase the computational

times without increasing the quality of the initial community’s detections.

Thus, the values are intentionally set to sufficiently small while still

maintaining their functionality. In the future, the number of iterations will be

taken into consideration to improve the algorithm's efficiency.

3.3 Solution construction

Once the parameters have been set up, the ants start to travel around the nodes

within the network to construct solutions. This section provides an overview of

the iterative process underlying the proposed community detection algorithm.

16

3.3.1 Ant’s movement

As detailed in section 3.2, the ACO algorithm initiates ants in nodes

with a high ratio degree of nodes. Once initiated, the ants begin to travel to

construct solutions by seeking optimal routes. The movement of ants is guided

by a probability function, but rather than solely relying on the highest

probability, the selection of nodes to travel is determined using a roulette

function. A roulette function generates random outcomes based on specified

probabilities assigned to each possible outcome, covering a variety of different

outcomes for a particular solution. This mechanism encourages ants to explore

different paths rather than always choosing the path with the highest

probability, which leads to getting trapped inside a local optima. Therefore, by

fitting the probabilities for the possible traversable nodes into the roulette

function, it will determine the next node for the ants to travel to. The

probability function can be expressed using the following equation:

𝑃𝑃𝑖𝑖𝑖𝑖 = (𝜏𝜏ij)𝛼𝛼((𝜂𝜂𝑖𝑖𝑖𝑖+𝜃𝜃))𝛽𝛽

∑ (𝜏𝜏𝑖𝑖𝑖𝑖)𝛼𝛼(𝜂𝜂𝑖𝑖𝑖𝑖)𝛽𝛽𝑙𝑙∈𝑁𝑁𝑖𝑖
 (3.4)

where 𝜏𝜏ij is the pheromone trail value between component 𝑖𝑖 and 𝑗𝑗, while 𝜂𝜂𝑖𝑖𝑖𝑖 is

the heuristic information between 𝑖𝑖 and 𝑗𝑗. The parameter 𝛼𝛼 controls the weight

given to the pheromone information, while the parameter 𝛽𝛽 controls the

weight given to the heuristic information. 𝑁𝑁𝑖𝑖 represents the group of

connected components while 𝜃𝜃 is a constant value.

3.3.2 Ants performance evaluation

Once the ants have completed their tour, the algorithm uses the nodes

that the ants visited to calculate the fitness score for their respective solutions.

The fitness score for tour 𝑟𝑟 can be expressed in the following equation:

17

 𝑓𝑓(𝑟𝑟) = ∑ 𝑘𝑘𝐼𝐼𝐼𝐼(𝑧𝑧)𝑍𝑍∈𝑁𝑁𝑟𝑟 (3.5)

where 𝑁𝑁𝑟𝑟 represents the nodes that ants visited during tour 𝑟𝑟, while the intra-

community degree of a node is denoted by 𝑘𝑘𝐼𝐼𝐼𝐼. The fitness score of routes will

be used in the later section of pheromone updates and the ants’ population

adjustment.

3.3.3 Pheromone value update & Adjustment of ant’s population

Upon the completion of the fitness score calculation, the pheromone

value will be updated based on the performance of ants. Specifically, ants with

fitness score improvement compared to the previous iteration will receive an

increment of a small constant value to all of their corresponding edges within

that particular route. This approach aims to reinforce the paths taken by ants

that have contributed positive feedback to the algorithm, hence increasing the

probability of being selected in the following iterations.

 At the same time, those ants with unsatisfactory fitness scores will be

selected for the next iterations, giving them an opportunity to improve their

performance. This approach not only improves the overall performance of ants

but also decreases the unnecessary computational times at the same time. This

is because the movement of ants are decided randomly with a roulette function,

and there are chances were the ants performed well in current iterations may

yield bad result in the next iterations. Thus, we decided to retain well-

performing ants and exclusively reinforce those ants that do not achieve the

target in the upcoming iterations.

3.3.4 Generating multiple routes

When the ants have reached the maximum time of reinforcement, the

best fitness score and its corresponding route among that iteration's results are

stored in a final list. The updated pheromone value will be reset to the initial

pheromone value and the entire process will be repeated to generate different

routes and fitness scores, they will be stored in the final list for labeling

purposes.

18

3.4 ACO Label

Once the final list has been fully updated, the routes with fitness scores greater

than the average fitness score will only be considered in the labeling process.

The process starts by labeling the nodes in the routes with the lowest fitness

score by the first nodes’ label. The process is repeated from the lowest fitness

score to the highest fitness score. The label will be replaced by a higher fitness

score label if a node carries multiple routes. After labeling all the nodes, nodes

with the same label are treated as the initial community. The figure below

illustrates the labeling process of nodes.

Figure 3.1: The example of the process of the first phase of the labeling

process.

The yellow color routes have a lower fitness score as compared to the red

color routes. Thus, the yellow label is replaced by the red label.

3.5 Complete detection using Label Propagation Algorithm

Label propagation algorithm (LPA) is a community detection algorithm that

aims to identify communities in a complex network. The concept of LPA is to

propagate the labels among the nodes in a network based on the similarity of

their connections. LPA is also known as a fast algorithm due to its simple and

efficient label propagation process. The process is said to be simple because

the process only involves determining the similarity between nodes, and

updating the node labels accordingly and iteratively until convergence has

been reached. The computational efficiency of LPA allows it to be easily

implemented on a large-scale network.

In the proposed method, LPA is implemented in the initial

communities formed by the ACO algorithm. The labels are propagated for a

number of iterations or until no changes during the propagation process.

19

Finally, the nodes with the same propagated labels are treated as final

communities.

3.6 Evaluation Criteria

In this section, we will discuss the evaluation criteria used to assess the

performance and effectiveness of the proposed algorithm. Specifically, we will

focus on two key metrics: Normalized Mutual Information (NMI) and

Modularity. These metrics provide insights into the quality of the detected

community and the overall robustness of our method. The performance can be

benchmarked by comparing these evaluations with the existing community

detection methods.

3.6.1 Normalize mutual information

NMI is a measure used to evaluate the similarity between two

communities in a complex network. NMI is typically used in clustering

evaluation to evaluate the quality of the clustering. In this paper, NMI can be

applied to evaluate the similarity between two detected communities obtained

by the proposed method. The NMI between network X and network Y can be

expressed in the following equation:

𝑁𝑁𝑁𝑁𝑁𝑁(𝑋𝑋|𝑌𝑌) =
−2∑ ∑ 𝑁𝑁𝑖𝑖𝑖𝑖�𝑙𝑙𝑙𝑙𝑙𝑙

𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁

𝑁𝑁𝑖𝑖.𝑁𝑁.𝑗𝑗
�𝐶𝐶𝑌𝑌

𝑗𝑗=1
𝐶𝐶𝑋𝑋
𝑖𝑖=1

∑ 𝑁𝑁𝑖𝑖.
𝐶𝐶𝑋𝑋
𝑖𝑖=1 �𝑙𝑙𝑙𝑙𝑙𝑙

𝑁𝑁𝑖𝑖.
𝑁𝑁 �+ ∑ 𝑁𝑁.𝑗𝑗

𝐶𝐶𝑌𝑌
𝑗𝑗=1 �𝑙𝑙𝑙𝑙𝑙𝑙

𝑁𝑁.𝑗𝑗
𝑁𝑁 �

 (3.3)

where the total number of community in network 𝑋𝑋 and 𝑌𝑌 are denoted as 𝐶𝐶𝑋𝑋

and 𝐶𝐶𝑌𝑌 , while the sum of the rows 𝑖𝑖 and sum of the columns 𝑗𝑗 are denoted as

𝑁𝑁𝑖𝑖. and 𝑁𝑁.𝑗𝑗 respectively. NMI ranges between 0 and 1, where the value close to

one indicates the communities are identical and close to zero indicates the

communities are different from each other.

3.6.2 Modularity

Modularity is a measure of the quality of a community structure within

a network. Generally, modularity is used in community detection to evaluate

the performance of the algorithm. In other words, it measures the degree of

20

detected communities within a network. The modularity, Q can be expressed

in the following equation:

 𝑄𝑄 = 1
2𝑚𝑚

∑ (𝐴𝐴𝑖𝑖𝑖𝑖 −
𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗
2𝑚𝑚

)𝑖𝑖,𝑗𝑗∈𝑉𝑉 𝛿𝛿(𝐶𝐶𝑖𝑖 ,𝐶𝐶𝑗𝑗) (3.4)

where the set of nodes represented by 𝑉𝑉 and the total number of edges are

represented by 𝑚𝑚. The adjacency matrix is denoted by 𝐴𝐴𝑖𝑖𝑖𝑖, where the value

will equal to 1 if node 𝑖𝑖 and node 𝑗𝑗 are connected, and otherwise 0. The degree

of node 𝑖𝑖 and node 𝑗𝑗 are denoted by 𝑘𝑘𝑖𝑖 and 𝑘𝑘𝑗𝑗 respectively. The 𝛿𝛿(𝐶𝐶𝑖𝑖 ,𝐶𝐶𝑗𝑗)

function will be equal to 1 if node 𝑖𝑖 and node 𝑗𝑗 falls in the same community,

otherwise 0. In general, the modularity equation ranges between 0 to 1, where

the value closer to one indicates the nodes inside a community are densely

connected to each other while the value close to 0 indicates the nodes inside a

community are not densely connected to each other.

3.7 Dataset

The proposed method will be tested using both artificial benchmarking

networks and several real-world networks. The real-world network datasets are

available from the KONECT open-source website. For the artificial

benchmarking network, the Lancichinetti–Fortunato–Radicchi (LFR) network

model is used to create artificial benchmarking networks for evaluating the

performance of community detection algorithms. The LFR model will

generate networks with pre-defined community structures, enabling us to

easily compare and evaluate performance.

Besides, the real-world networks can be classified into two categories,

those with pre-defined community structure and those without. The networks

with pre-defined community structures are used to test the accuracy of

community detection for a given method while those without pre-defined

community structures will require additional exploratory analysis to detect the

communities.

21

3.8 Tools and software

In this project, the R programming language is utilized as the primary

programming language in the development of the ACO algorithm. One of the

reasons that R programming languages are selected is because R has a

significant amount of library packages that can be capable of statistical

computing, data analysis, as well as data visualization. Meanwhile, Microsoft

Excel is utilized to prepare the raw data and convert it into CSV files as the R

programming can easily understand the data in CSV format. Then, the CSV

files will be imported into R programming to insert the network data.

22

CHAPTER 4

4 COMPUTATIONAL DETAILS

In this chapter, we delve into the core components that form the foundation of

our project. Each subsection addresses a critical aspect, providing essential

insights and details to help readers understand the structure of our work.

4.1 Datasets

In this project, the utilized datasets include both benchmark and real-world

networks. Regarding the types of networks, four types of networks will be

included such as unweighted undirected, unweighted directed, weighted

undirected, and weighted directed networks. The algorithm is tested with

benchmark networks to evaluate its performance in detecting communities.

This is because the presence of ground truth within the benchmark networks

allows for a better comparison between the outputs and the actual community

structures. The evaluation framework is then extended to real-world networks,

which may lack of established ground truths.

4.1.1 LFR benchmark network

For benchmark networks, the Lancichinetti–Fortunato–Radicchi (LFR)

benchmark network is utilized to evaluate the capabilities of various

algorithms. The network model offers the advantage of known ground-truth

community structure, allowing more precise evaluation for community

detection algorithms. In addition to that, the model is also capable of

replicating real-world network complexities such as power-law degree

distributions and overlapping communities, thus enhancing its relevance in

algorithm testing.

 In order to generate LFR benchmark network, there are some of the

necessary parameters required to be set up:

• Number of nodes, 𝑁𝑁

• Average degree of nodes , 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎

• Maximum degree of nodes, 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

23

• Minimum communities size, 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

• Maximum communities size, 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

• Mixing parameter of topology, 𝜇𝜇

• Mixing parameter of weights, 𝜇𝜇𝑤𝑤

The size of the network generated by the LFR benchmark will be

decided by the parameter 𝑁𝑁 which sets the total number of nodes in the

networks. The degree of nodes refers to the number of connections (or edges)

for a particular node, thus, setting up the average degree of nodes determine

the average number of connection for a node while the maximum degree of

nodes indicates the maximum number of connection for a node to have.

Moreover, the range of community size can be established by setting

up the minimum and maximum community size. If both of the values are set

relatively low, the LFR benchmark will generate a network consisting of small

communities, leading to a high number of distinct communities. On the other

hand, if the value is set higher, a network consisting of large communities will

be generated, resulting in fewer number of distinct communities.

Apart from that, the mixing parameter of topology stands as a key

factor in shaping the complexity of network structure when generating LFR

benchmark networks. This parameter influences the degree to which nodes

from different communities are connected to each other. In simple words, the

parameter adjusts the degree of nodes, which the connection comes from the

node within the same communities or different communities. When the mixing

parameter of topology is set to be low, it indicates that nodes tend to connect

more nodes that came from the same communities, resulting in a more distinct

community structure. In other words, the communities are well-defined and

relatively isolated from each other. Conversely, if the parameter is set to be

high, nodes are more likely to have connections that bridge between

communities, resulting in more interconnection, where nodes from different

communities are more entangled.

In order to generate a weighted network, the mixing parameter of

weights has to be set to a value higher than 0. This parameter determines the

distribution of weights assigned to the connection between nodes. When the

parameter is set to a lower value, the weights are more evenly distributed

24

among the networks, while on the other hand, the weights will be unevenly

distributed when the parameter is set to a higher value. Last but not least, the

unweighted network can be generated by setting the parameter to 0.

4.1.2 Real world networks

In community detection, methods are often tested with real-world

networks as they reflect the complexities and actual systems, making them

more relevant to real-life applications. Evaluating an algorithm with real-world

networks helps to determine the algorithm's ability to generalize across

different scenarios and datasets. In order to have a better evaluation, the

algorithms are tested with famous real-world benchmark networks, including

the karate, dolphin, football, and political book networks. Finally, the

evaluation process is extended to real-world networks to demonstrate the

algorithm's effectiveness in addressing real-world scenarios. The datasets for

real-world networks were downloaded from an open-source website known as

‘Konect’.

4.2 Parameters

In this section, the parameters of ACO algorithm will be details and discuss.

The following is a list of the parameters utilized in ACO algorithm:

• Initial ant population size

• Alpha and Beta value

• Initial pheromone value

• Pheromone update value

• Number of steps

• Number of iterations for inner loop and outer loop

Firstly, we begin the algorithm by setting the initial ant population size

as half of the total nodes in the network. The values are quite decent as they

have balanced between exploration and exploitation. After the first iterations,

the ant population will be adjusted based on their performance.

Besides that, the alpha and beta values in the probability function are

set to 0.5 for both parameters considered a common practice in various

algorithms. An equal weight assigned to these parameters strikes a balance

25

between exploration and exploitation, ensuring the algorithm doesn’t favor one

aspect over the other. In addition, an equal weights assignment makes the

algorithm more user-friendly and less sensitive to variations in data inputs.

Furthermore, the initial pheromone value is set to 0.2 which is

considered a lower value. This helps ants avoid biases and encourages ants to

explore the paths during the early stages of the algorithm. At the end of each

iteration, if the ants find that they have improved their fitness scores compared

to previous iterations, the pheromone value for all the edges along the path

will be updated. The pheromone update value is set to be increased by 0.05.

This low update value helps the algorithm maintain a balance between

exploration and exploitation by preventing rapid and excessive pheromone

accumulation on certain paths. By slowly increasing the pheromone levels, the

algorithm gives sufficient time for ants to explore and evaluate different paths,

reducing the chances of getting stuck in suboptimal solutions.

At every iteration, the ants will move 4 steps and they are considered

completed their routes. The decision to have ants move only 4 steps is aimed

at intentionally keeping the size of the communities small. These communities

are not final solutions but rather starting points. This design encourages

focused exploration within specified limits, enabling efficient search for

solutions.

Finally, the number of iterations for both the inner loop (ant's

enhancement) and the outer loop (reiterating the process) is limited to a

maximum of 10 iterations. The values achieve a balance between seeking a

satisfactory result in the initial community detection phase and maintaining the

algorithm's speed at an optimal level. This approach prioritizes efficiency

without compromising the quality of the outcomes.

4.3 Code and Implementations

In this project, the ACO algorithm is implemented using the R programming

language, utilizing its powerful data analysis capabilities. The algorithm is

divided into four subsections for detecting initial communities.

26

4.3.1 Libraries and data

Firstly, the initial section begins by importing necessary libraries, such

as the "igraph" and "doparallel" packages. The "igraph" package in R is a

robust tool for analyzing graphs and networks, offering features like graph

creation, analysis, visualization, and data import/export. Additionally, the

"doparallel" package allows the utilization of multiple CPU cores, which can

enhance computational speed. However, it's worth noting that parallelization

may not always result in improved performance, as it can increase the time and

resources required for setting up parallel components, potentially leading to

worse performance. After importing the libraries, the network can be loaded

from edge list format files. Also, variables need to be adjusted based on the

type of network imported. If ground truth networks are available, they can also

be imported as well.

4.3.2 Parameter setup

The next section involves setting up the necessary parameters for the

entire process. Initially, each node is assigned a unique label for differentiation.

Then, node degrees are calculated using the "degree" function from the

"igraph" library. For directed networks, only the out-degree is considered, as it

reflects a node's ability to influence other nodes. Additionally, the SDI for

each edge in the edge list is calculated using the formula in Section 3.2. For

weighted networks, SDI calculations differ, as edge weights affect heuristic

information. The edge weights will be normalized using min-max scaling, and

a small Laplace smoothing constant is added. The normalized weights are then

incorporated into the heuristic information. Furthermore, the ratio of a node's

degree to the average degree of its neighbors will be calculated. The ants will

then be assigned to the nodes based on the calculated ratio of the degree of

nodes. Lastly, parameters such as the number of steps, alpha and beta values in

the probabilistic function, ant population size, and the number of iterations for

ant generations and ant enhancement are set according to the value suggested

in Section 4.2.

27

4.3.3 ACO algorithm

 Moving on, the following section delves into the ants, which are the

core components of the ACO algorithm. To provide a clearer explanation,

parts covering multiple iterations are illustrated using curly brackets.

[Outer loop]{

The ACO algorithm begins after initializing the ants at nodes with a high

degree ratio. Pheromone values are assigned to every edge and reset to the

initial pheromone value at the start of each outer loop iteration. Then, the ants

start constructing solutions, which undergo multiple iterations of enhancement

within the inner loop.

[Inner loop]{

If this is the first iteration of the inner loop, the number of ants is set to

half the size of the network to create routes. Starting from the second

iteration, the ant population size is adjusted based on the performance of

ants in the previous iteration. Ants with fitness scores below a threshold

are selected to undergo reinforcement in the next iteration. Each ant

constructs independent routes within a specified number of steps.

[Ants' movement]{

Each ant is designed to create routes within a maximum number of

steps. During solution construction, ants choose their next steps using

a probabilistic function to determine their destination. The

probabilistic function is calculated before ant movement and updated

with each iteration. The roulette function is then implemented in the

probabilistic function to select a node to travel to from its

neighboring nodes.} [End of ants' movement]

Ants continue moving until they reach the maximum number of steps

to create a route.

Once ants have completed their steps, the fitness score of the routes they

created is computed and stored in a list.} [End of inner loop]

The ant enhancement process iterates several times. If ants find a route with a

better fitness score, the current fitness score replaces the list storing the best

fitness score for that particular route. Additionally, the pheromone values for

all edges in the route are updated by a constant value. When ants have reached

28

the maximum number of enhancement iterations, the routes, and their fitness

scores are stored in a final list.} [End of outer loop]

The entire process runs multiple times to populate the list with different results.

4.3.4 Node labelling

Finally, the last section is the node labeling process. In this step, routes

with fitness scores lower than the average are removed from the list, and the

remaining routes undergo labeling. All nodes within a route are assigned the

label of the first node in the route. The label replacement is performed from

the lowest fitness score to the highest fitness score. Nodes with the same label

are treated as communities. If a route has fewer than three nodes, its

community is disbanded, and its labels are replaced with -1. Note that label

removal does not reset the labels to their initial unique labels. Instead, they are

set to -1. The ACO algorithm is now complete, and the nodes with the same

labels will be treated as initial communities. The labels will then propagate by

implementing LPA to complete the community detection.

4.4 Evaluation process

As elaborated in section 3.6, the algorithm's performance can be assessed

through the use of two key metrics: Normalized Mutual Information (NMI)

and modularity. NMI determines the accuracy of the algorithm when

predefined networks are available, while modularity evaluates the structure of

the detected communities. The finalized detection labels will be compared

with the predefined labels using the "igraph" library's comparison function by

assigning the parameter “method” equal to “nmi”. Meanwhile, the modularity

of detected communities will be evaluated using the modularity function from

the 'igraph' library.

29

4.5 Process flowchart

Figure 4.1: Flowchart of community detection process of ACO algorithm with

LPA.

30

CHAPTER 5

5 RESULTS AND DISCUSSION

In this chapter, we utilized the LFR benchmark and real-world benchmark

network to evaluate the performance of the proposed method. The NMI will be

computed and compared to the ground truth network to determine the

algorithm's effectiveness. Meanwhile, a comparative analysis is conducted by

comparing our results with the results obtained using the existing community

detection method. Subsequently, the algorithm will be applied to real-world

networks for the purpose of community detection.

5.1 LFR benchmark

In this subsection, the algorithm is assessed across all types of LFR

networks, encompassing unweighted/undirected (UW/UD),

unweighted/directed (UW/D), weighted/undirected (W/UD), and

weighted/directed (W/D) scenarios. The primary focus of the evaluation

process is on the Normalized Mutual Information (NMI) metric, and the

results are systematically compared with existing community detection

methods, including standalone Label Propagation Algorithm (LPA) and

Infomap.

For all the LFR networks, a constant network size of 1000 nodes is

maintained, while the mixing parameter for topology is systematically varied.

This approach allows us to assess the algorithm's performance across different

levels of complexity of network structures. Additionally, in the case of

weighted networks, the mixing parameter for topology will be fixed at 0.5,

while the mixing parameter for edge weights is dynamically adjusted. This

variation in edge weights assesses the algorithm’s adaptability and

effectiveness in handling weighted networks. On top of that, the methods were

executed five times for each of the algorithms as they might produce variable

outcomes due to the randomness produced by LPA. Thus, the average of the

results will be considered for a more robust assessment.

31

Figure 5.1: NMI scores of community detection methods in Undirected

Unweighted LFR network with different levels of mixing parameters for

topology

Figure 5.2: NMI scores of community detection methods in Directed

Unweighted LFR network with different levels of mixing parameters for

topology

32

Figure 5.3: NMI scores of community detection methods in Undirected

Weighted LFR network with different levels of mixing parameters for edge

weights

Figure 5.4: NMI scores of community detection methods in Directed Weighted

LFR network with different levels of mixing parameters for edge weights

The results of community detection are visually presented in Figure 5.1

to Figure 5.4. The NMI scores assess the similarity between the detected

33

communities and the predefined communities, with a higher value indicating a

greater similarity between the identified communities and their predefined

counterparts. Notably, Infomap demonstrates a remarkable ability to detect

communities effectively when the mixing parameter for network topology

remains below 0.7, surpassing other methods that failed to detect community

at 0.6. This underscores Infomap's competence in managing the complexity of

network structures. However, in the context of weighted networks, ACO-LPA

exhibits a dominant performance across the entire spectrum of mixing

parameters for edge weights. In contrast, both LPA and Infomap encounter

difficulties in identifying communities when the mixing parameter for edge

weights reaches 0.5 or higher in unweighted/undirected (UD/W) networks and

0.6 in directed/weighted (D/W) networks. This observation highlights the

proficiency of ACO-LPA in effectively handling weighted networks, where it

consistently yields good results across various levels of mixing parameters for

edge weights.

5.2 Real-world network with predefined communities

In the following subsection, the evaluation are extended to real-world

benchmark networks, applying these methods able to assess their effectiveness

in community detection with the presence of community structure.

Table 5.1: NMI scores of community detection methods in real-world

benchmark networks.

Network ACO-LPA LPA Infomap
Politic book 0.291 0.2884 0.2864

Football 0.9527 0.9102 0.9721

Dolphin 0.5611 0.5882 0.5932

Karate 0.9241 0.5915 0.6995

The provided table presents the NMI scores for real-world benchmark

networks obtained using ACO-LPA, LPA, and the Infomap community

detection method. The analysis involves a set of famous real-world networks

such as the karate network, football network, dolphin network, and political

book network. These networks are classic real-world benchmark networks,

34

utilizing the presence of predefined communities, making them ideal for

evaluating the algorithm's performance. As shown in Table 5.1, the

Normalized Mutual Information (NMI) values across the methods have

relatively small variations, highlighting their overall comparability in the

effectiveness of the algorithm across most of the datasets. Additionally, the

relatively consistent NMI results across the other existing community

detection methods highlight the algorithm's robustness and applicability in

different real-world scenarios, offering valuable insights into its capability.

Table 5.2: Modularity scores of community detection methods in real-world

benchmark networks.

Network ACO-LPA LPA Infomap
Politic book 0.5178 0.4902 0.5228

Football 0.5299 0.6046 0.6005

Dolphin 0.5201 0.4867 0.5277

Karate 0.3715 0.3749 0.402

The provided table presents the modularity scores for real-world

benchmark networks obtained using ACO-LPA, LPA, and Infomap

community detection methods. The modularity scores determine the

effectiveness of the methods in identifying well-structured communities within

networks, with a higher value indicating a better structure of detected

communities. As shown in Table 5.2, the Infomap method consistently shows

a superior performance when compared to the other methods. This highlights

its capabilities of detecting well-structured communities within the networks.

Notably, while the ACO-LPA method may not consistently yield the highest

modularity scores, it still maintains a competitive edge, displaying its potential

as a promising method for community detection.

5.3 Real-world networks

Finally, the last subsection will implement the algorithms into the real-world

networks to evaluate their performance by comparing them to existing

community detection methods.

35

Table 5.3: Modularity scores of community detection methods in real-world

networks

Network Type ACO-LPA LPA Infomap
Taro D/UW 0.3823 0.3633 0.4533

Residence D/W 0.4278 0.3851 0.4595

Les miserable UD/W 0.4944 0.5641 0.5571

Physician D/UW 0.5527 0.575 0.6466

Jazz UD/UW 0.3819 0.3591 0.28

Train UD/W 0.3904 0.3258 0.4105

The provided table presents the modularity scores for real-world

networks obtained using ACO-LPA, LPA, and Infomap community detection

methods. Due to the absence of predefined communities in these real-world

networks, the NMI score of the algorithm cannot be evaluated. Consequently,

modularity serves as the primary metric for assessing the quality of

community detection. Overall, the results show a notable degree of similarity,

with Infomap demonstrating a slightly superior performance compared to the

other methods. However, it is essential to underscore that the remaining

methods consistently yield promising results when compared to other methods

within the same networks. Although ACO-LPA may not shine as brightly in

identifying well-structured communities, it is still capable of producing

commendable results, rendering it a viable choice for community detection

methods.

5.4 Summary

In short, we conducted a comprehensive evaluation of the proposed algorithms

across various network scenarios, including the LFR benchmark network, real-

world benchmark networks, and real-world networks. Our methods showcased

their effectiveness in community detection within weighted networks, often

outperforming existing community detection methods. Moreover, our

algorithms consistently delivered promising results in identifying well-

structured communities, although when the existing methods only slightly

outperformed them. As a final point, we extended the applicability of our

36

proposed methods to real-world networks, where they serve as valuable

community detection methods.

37

CHAPTER 6

6 RECOMMENDATIONS AND CONCLUSIONS

In this chapter, the limitations of the proposed method and suggestions for

future work will be discussed. The project will then be summarized into

paragraphs to conclude the necessary key points.

6.1 Limitation and Challenges

In this project, the ACO algorithm is combined with LPA for community

detection. In this subsection, the limitations and challenges of the proposed

method will be discussed in detail.

 Ant Colony Optimization (ACO) is a widely recognized method for

community detection. Nevertheless, it required parameter fine-tuning,

including pheromone values, and population size, and the balance between

exploration and exploitation. Incorrect parameter settings can lead to issues

such as premature convergence, excessive computational demands, or

convergence to suboptimal solutions. The pursuit of optimal parameter values

can be a challenging task as the given problem might be different.

 Another challenge in the proposed method lies in its scalability

concerning network size. The computational cost for constructing a solution

are greatly depend on the network’s scales. As the network size increases, it

will result in exponentially growing computational costs, leading to a

significant scalability concern.

 Regarding convergence iterations, the current proposed method is not

concerned about this aspects. However, it should be noted that while the

algorithm remains capable of efficiently detecting communities within a

limited number of iterations, the number might be insufficient as the size of

networks grows. By simply increasing the number of iterations to enhance

results, it may result in increasing the computational cost exponentially which

is impractical.

 Despite these limitations, it's important to emphasize that these

limitations do not necessarily make ACO-LPA unsuitable for community

38

detection. The choice of method should depend on the problem at hand and the

goal of the analysis.

6.2 Recommendations for future work

In future research, it is advisable to develop more precise and robust

methods to set up the algorithm's parameter settings. The approach can be

done by utilizing machine-learning-based optimization to fine-tune the optimal

value for each of the parameters in the algorithms. The parameters should be a

primary focus when seeking to enhance algorithm performance, as they

directly influence on the overall algorithm's effectiveness.

 In addition, an alternative strategy for ant movement within the

network should also be considered. Experimentation with different movement

rules can offer fresh insights into optimizing the exploration and exploitation

balance, as the current strategies are solely based on the probabilistic function.

The approach has limited the potential for ants to discover different solutions

within the other side of networks.

By considering these recommendations, future research can contribute

to the advancement and refinement of the ACO-LPA community detection

method, thus, leading to more effective and versatile solutions for community

detection in complex networks.

6.3 Conclusion

In summary, a community detection method has been developed by

incorporating the ACO algorithm with LPA. The parameters of the ACO

algorithm are optimized to maximize the performance in detecting

communities. The proposed method has been assessed using various

benchmark networks, comparing its performance to existing community

detection methods. The proposed method shows its capability to handle

various types of networks and yields promising results when compared to

other methods. Nonetheless, certain limitations and challenges encountered by

this method can be overcome to improve the algorithm's effectiveness.

Therefore, in the future, we hope that the proposed method provides valuable

39

insights and serves as a foundational point for the development of more

effective community detection methods.

40

REFERENCES

Chang, H., Feng, Z. and Ren, Z. (2013) Community detection using Ant

Colony Optimization, Congress on Evolutionary Computation.

Available at: https://doi.org/10.1109/cec.2013.6557944.

Chin, J. H. and Kamali, M.Z.M. (2019) An ant colony approach in the

detection of communities in complex networks, Proceedings of The

International Conference On Mathematical Sciences And Technology

2018 (MATHTECH2018): Innovative Technologies for Mathematics

& Mathematics for Technological Innovation. Available at:

https://doi.org/10.1063/1.5136488.

Dorigo, M. and Di Caro, G. (1999) Ant colony optimization: a new meta-

heuristic, Congress on Evolutionary Computation. Available at:

https://doi.org/10.1109/cec.1999.782657.

Girvan, M. and Newman, M. (2002) “Community structure in social and

biological networks,” Proceedings of the National Academy of

Sciences of the United States of America, 99(12), pp. 7821–7826.

Available at: https://doi.org/10.1073/pnas.122653799.

Hosseini, R. and Rezvanian, A. (2020) “AntLP: ant‐based label propagation

algorithm for community detection in social networks, ” CAAI

Transactions on Intelligence Technology, 5(1), pp. 34–41. Available

at: https://doi.org/10.1049/trit.2019.0040.

Newman, M. and Girvan, M. (2004) “Finding and evaluating community

structure in networks,” Physical Review E, 69(2). Available at:

https://doi.org/10.1103/physreve.69.026113.

Raghavan, U.N., Albert, R. and Kumara, S.R.T. (2007) “Near linear time

algorithm to detect community structures in large-scale networks,”

41

Physical Review E, 76(3). Available at:

https://doi.org/10.1103/physreve.76.036106.

Wang, C., Zhang F., Deng Y., Gao C., Li X., Wang Z. (2020) “An adaptive

population control framework for ACO-based community detection,”

Chaos Solitons & Fractals, 138, p. 109886. Available at:

https://doi.org/10.1016/j.chaos.2020.109886.

	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	CHAPTER 1
	1 INTRODUCTION
	1.1 Background of study
	1.2 Problem statement
	1.3 Aim and Objectives
	1.4 Significance of study

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Literature Review
	2.2.1 Pearson Correlation as heuristic value of ACO algorithm
	2.2.2 ACO approach in detecting initial distinct communities
	2.2.3 Ant’s population adjustment for ACO-based community detection
	2.2.4 Other state of the art community detection method

	CHAPTER 3
	3 METHODOLOGY AND WORK PLAN
	3.1 Introduction of ACO
	3.2 Parameter settings
	3.2.1 Ant population size
	3.2.2 Ants allocation and steps
	3.2.3 Pheromone value
	3.2.4 Heuristic information
	3.2.5 Alpha and Beta value
	3.2.6 Number of iterations

	3.3 Solution construction
	3.3.1 Ant’s movement
	3.3.2 Ants performance evaluation
	3.3.3 Pheromone value update & Adjustment of ant’s population
	3.3.4 Generating multiple routes

	3.4 ACO Label
	3.5 Complete detection using Label Propagation Algorithm
	3.6 Evaluation Criteria
	3.6.1 Normalize mutual information
	3.6.2 Modularity

	3.7 Dataset
	3.8 Tools and software

	CHAPTER 4
	4 COMPUTATIONAL DETAILS
	4.1 Datasets
	4.1.1 LFR benchmark network
	4.1.2 Real world networks

	4.2 Parameters
	4.3 Code and Implementations
	4.3.1 Libraries and data
	4.3.2 Parameter setup
	4.3.3 ACO algorithm
	4.3.4 Node labelling

	4.4 Evaluation process
	4.5 Process flowchart

	CHAPTER 5
	5 RESULTS AND DISCUSSION
	5.1 LFR benchmark
	5.2 Real-world network with predefined communities
	5.3 Real-world networks
	5.4 Summary

	CHAPTER 6
	6 RECOMMENDATIONS AND CONCLUSIONS
	6.1 Limitation and Challenges
	6.2 Recommendations for future work
	6.3 Conclusion

	REFERENCES

