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ABSTRACT 

 

Networks often refer to a set of connections between vertices with edges. A 

network is considered complex if it exhibits complex properties, such as a 

community structure. Recently, various community detection methods have 

been proposed by researchers to analyze complex networks. In this research, 

the Ant Colony Optimization (ACO) algorithm is implemented by 

incorporating with the Label Propagation algorithm (LPA) to detect 

communities. The ACO algorithm forms the foundation for initial 

communities, which are then propagated to become the final communities 

using LPA. The ACO algorithm has also been extended to handle weighted 

and directed networks, allowing it to detect communities in such contexts. The 

performance of the proposed method will be evaluated using different 

benchmark networks, and the results will be compared with those obtained 

from existing community detection methods. Furthermore, the proposed 

method will be extended for implementation in real-world networks to detect 

communities. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Background of study 

A network refers to a set of vertices, which are often called nodes, with edges 

that represent the connection between two vertices. A network is said to be 

complex when they include unique features such as community structure, 

scale-free degree distribution, community structure, and small-world property 

(Chin and Kamali, 2019). Thus, network analysis is carried out to study the 

relationship between interconnected components or elements inside a network 

system inside a complex network. By analyzing network systems, it provides 

new insights for us to have a better understanding of real-world networks such 

as social networks and biological networks.  

Among all the properties of complex networks, community structure is 

considered an essential feature in real-world networks. According to Girvan 

and Newman (2002), Community Structure can be defined as the tendency for 

nodes inside a network to be densely connected within a group of nodes other 

than with the rest of the nodes in the network. Through analyzing the structure 

of communities, the relationships between groups of nodes can be identified, 

as well as recognize the common interests that are shared among these groups 

within the network (Girvan and Newman, 2002). For instance, studying the 

community structure in a social network can reveal individuals with common 

interests or similar behaviors who are more likely to form groups. 

Past few decades, researchers have proposed various community 

detection methods for the study of community structure. In the year 2004, 

Newman and Girvan (2004) have proposed the first community detection 

method which is modularity optimization and it has attracted people’s 

attention. The concept of modularity is introduced as the measure of the 

quality of detected community structure in a complex network, while the 

modularity optimization method has been proposed as a method to detect 

communities in a network by maximizing the modularity. In the meantime, the 

performance of the proposed method was evaluated by comparing it with other 

community detection methods and result in good accuracy and efficiency. 
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In the year 1999, Dorigo and Di Caro proposed a new metaheuristic 

approach called Ant Colony Optimization (ACO) which takes inspiration from 

the foraging behaviors of ants. In the ACO algorithm, the pheromones will be 

deposited on the optimal path to label them for the other ants. Apart from that, 

the authors have also utilized the ACO algorithm to tackle the Travelling 

Salesman Problem (TSP) by implementing the ACO algorithm to search for 

the optimal solution (Dorigo and Di Caro, 1999). The algorithm produced a 

remarkable result in solving the TSP and other combinatorial optimization 

problems. In recent years, metaheuristic-based community detection methods 

have become more and more popular. For instance, Wang et al. proposed a 

community detection method that involves adjusting the number of ants 

parameter dynamically in ant colony optimization to enhance the efficiency of 

the approach (Wang et al., 2020). In addition, Hosseini et al. proposed an 

advanced Label propagation algorithm that incorporates ACO with a single 

objective modularity optimization for community detection in complex 

networks (Hosseini et al., 2020). These successes have revealed the potential 

of the ACO algorithm, leading to the continued development of ACO to deal 

with other real-world problems. 

 

1.2 Problem statement 

In network analysis, community detection has played an important role, which 

aims to identify the groups of nodes with similar properties or attributes. In 

this paper, a community detection method incorporated with Ant Colony 

Optimization (ACO) was proposed. In fact, several studies have been 

conducted by other researchers on ACO approaches, but most of them mainly 

focus on heuristic information. Undoubtedly, heuristic information has become 

crucial in the development of the ACO algorithm, and various approaches 

have been proposed based on the network that is being analyzed. Thus, an 

ACO approach will be proposed in this paper by optimizing the parameters of 

the ACO algorithms as well as the allocation of ants in the algorithm. 

 

1.3 Aim and Objectives 

In this research, we aim to develop a community detection method by 

incorporating Ant Colony Optimization algorithms with the Label Propagation 
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algorithm. Additionally, the parameter settings of the ACO algorithm will be 

improved to enhance the algorithm's effectiveness in detecting communities. 

These parameters include ant population size, ant’s initial allocation, 

pheromone value, heuristic information, alpha and beta values, and the number 

of iterations. Finally, the proposed method's performance will be evaluated 

against benchmark networks, and its implementation will be further extended 

to real-world networks. 

 

1.4 Significance of study 

In the development of our ACO-based community detection method, the 

parameters of the ACO algorithm have often received limited attention within 

existing literature. This gap in the literature highlights the possible 

improvement of existing ACO-based community detection. Thus, this study is 

conducted to enhance the existing ACO-based algorithm, extending its 

applicability to weighted and directed networks. 

 Our research will focus on investigating the different parameter 

settings of the ACO algorithm, aims to improve the performance of the ACO 

algorithm in terms of the detection accuracy. The research also contributes to 

an understanding of importance of parameter in ACO algorithm.  

Furthermore, the proposed ACO-based algorithm serves as a 

foundational component for existing community detection methods. In this 

research, the ACO algorithm will incorporate with Label Propagation 

Algorithm to detect the communities in complex networks. Finally, the 

proposed method may offer a valuable point of reference for researchers in 

developing an advanced ACO-based community detection method. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

In the year 1999, Dorigo and Di Caro (1999) have proposed an ant colony 

optimization approach to solve the famous Traveling Salesman Problem (TSP) 

which is a combinatorial optimization problem. The proposed method has 

opened up a new meta-heuristic approach and it can be also applied to other 

combinatorial optimization problems, including community detection in a 

complex network. Therefore, we are going to review various papers on ACO-

based approaches as well as their parameters.  

 

2.2 Literature Review 

In this section, we seek into various aspects of community detection method 

that incorporated with ACO algorithm. This subsection below highlighted both 

traditional and innovative approaches in detecting communities by offering a 

comprehensive exploration of these methodologies. 

 

2.2.1 Pearson Correlation as heuristic value of ACO algorithm 

In the year 2013, Chang et al. proposed a community detection method using 

ACO. The paper has emphasized the modularity optimization approach, which 

takes the maximization of modularity, a measure of the quality of the detected 

communities in a network, as an objective of the study. In addition, the author 

has specified the benefits of the approach, which does not require any prior 

knowledge about the total number of communities within the network (Chang 

et al., 2013). The ACO-based community detection was proposed based on the 

max-min ant system (MMAS) framework. MMAS is a variant of the ACO 

algorithm which function as balancing the exploration and exploitation of ants 

during the search process by limiting the maximum and minimum value of 

pheromone trails in order to avoid stagnation. The algorithm records every 

community partitioning solution using local-based adjacency representation. A 

new heuristic approach is employed in the algorithm and they are adapted to 

fit the requirement of the community detection method.  
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               In the solution construction section, a probability function based on 

pheromone trails and heuristic information was formulated. In other words, the 

probability makes use of pheromone trails and heuristic information to indicate 

which edges will be chosen as the solution component. In the meantime, 

parameters alpha and beta will be used to determine the weight of the 

pheromone trail and heuristic information in the probability function.  

               Besides, the proposed method takes the similarity between two 

vertices as heuristic information and they are measured using Pearson 

correlation. The higher similarity will be resulting in a value closer to 1 while 

the lower similarity will result in a value closer to -1. Since the range of the 

Pearson correlation was between -1 and 1, a logistic function was applied to 

avoid the negative value outputs.  

               Furthermore, the author has also mentioned the importance of 

pheromone trail management. The proposed method followed the MMAS 

mechanism, in which all pheromone trails are set to a high value to have a 

better exploration of the solution at the initial phase of the search process. At 

the same time, the pheromone value will also be adjusted in each of the 

iterations. The pheromone will only be updated when solutions are constructed 

by all ants in each iteration. At first, the pheromone trails will be decreased by 

a fixed value which is commonly known as pheromone evaporation, in order 

to guide the ants in solution exploration. The process is followed up by a 

reinforcement of the solution, which deposits pheromone on the edges of the 

network during the iteration that contains an improvement in the modularity 

value. The range of pheromone value will be limited in order to avoid 

stagnation. 

               On top of that, the author has also highlighted that optimizing the 

parameters for ACO has exceeded the scope of the study. Therefore, the 

parameters of the ACO algorithm were set to be a fixed value of alpha, beta, 

and pheromone evaporation value, and the maximum number of iterations to 

be 1, 2, 0.8, and 100 respectively. Last but not least, the performance of the 

proposed method was evaluated by adopting modularity and normalized 

mutual information (NMI) evaluation methods. The proposed method was 

tested on the real-life network by comparing it with other community detection 
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algorithms and showed good performance in terms of modularity while having 

a satisfactory result in terms of NMI. 

               The author has demonstrated the potential of the ACO approach in 

detecting communities. However, it should be noted that the paper primarily 

focuses on static networks. In future work, the author suggests applying the 

ACO approach to real-world social networks, which are dynamic networks, to 

explore their potential in detecting communities in different types of networks. 

 

2.2.2 ACO approach in detecting initial distinct communities 

In the year 2019, Chin and Kamali proposed a new community detection 

method with an ant colony approach to detect initial partial communities in a 

complex network. The proposed method aims to identify the initial partial 

communities in both unweighted and undirected networks by utilizing the 

ACO algorithm (Chin and Kamali, 2019). In the algorithm, the ants that follow 

the routes will highest fitness score, and the nodes along the routes will form a 

community. Once the detection of initial communities is completed, the nodes 

will be combined and form meta-nodes hence turning the original network into 

a new network. The new network will then be applied with other community 

detection methods thus completing the community detection. 

 At first, the author introduced the concept and idea of the ACO 

algorithm used in the proposed method. The ACO algorithm is initiated by 

determining the number of ants used based on the total number of nodes in a 

network. The ants’ allocation is then determined by comparing the degree of a 

node to the average degree of other nodes. The ants will be allocated to the 

nodes with a higher ratio of the degree of the node. Apart from that, the author 

has defined a probability function based on the pheromone value and heuristic 

value for the movement of ants in the network. The weight of the pheromone 

value and heuristic value in the ACO algorithm is controlled by the parameters 

alpha and beta, respectively. The proposed method utilized the Sorencen-Dice 

Index (SDI), which is the measurement of similarity between nodes, as the 

heuristic values of the probability function. It is important to note that if either 

one of the pheromone values and heuristic value is equal to zero will result in 

0 probability indicating that the ants will never travel through the path. 

Therefore, a constant value was added to the heuristic value and the 
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pheromone value is set to be 0.2 at the start of the algorithm to avoid 0 

probability. The decision of ant movements will be decided by a Roulette 

function based on the calculated probability. The ants will move a number of 

steps to be considered as finished its tour. After the ants have finished their 

tour, the visited nodes will be used to calculate their fitness score. If the fitness 

score is found to be improved compared to previous tours, the pheromone 

value will be modified by a constant value rho. The movement of ants, fitness 

score calculation, and pheromone update will be repeated until they reached 

convergence. At the end of the process, the best routes and fitness score of the 

tour for each of the iterations will be stored in two separate lists for future 

labeling uses. The entire process is repeated several times and the result is 

stored inside the lists to obtain multiple solutions. 

 Once the lists are completed, the routes with fitness scores that are 

above average will only be considered in the node labeling process. In the first 

phase of the process, the nodes in the route with the lowest fitness score are 

labeled with the starting node's label. This is repeated for routes with higher 

fitness scores, and nodes that appeared multiple times will consider the label 

of highest fitness score routes. In the second phase, the process borrows the 

idea of label propagation algorithm (LPA) which takes the label that occurred 

most frequently as the label of all the nodes in the routes. The process starts 

from the highest to lowest fitness score to prioritize the higher fitness score 

solutions. In the final phase, the nodes with identical labels will be classified 

as a community and the community with fewer than 3 nodes will not be 

considered. The nodes in the detected community will be combined into one 

node and the weighted edges can be determined by aggregating the intra-

community edges, hence, forming a new weighted network. Lastly, the 

existing community detection method will be used to detect the distinct 

communities of the new weighted network.  

 Last but not least, the performance of the proposed method was 

evaluated with normalized mutual information (NMI) and modularity (Q). The 

capability of the proposed method was tested with Lancichinetti-Fortunato-

Radicchi (LFR) synthetic network and real-world networks. The author has 

shown that the proposed method is capable of detecting a good quality of 

initial communities. The proposed method will then be compared with the 
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existing community detection method without forming meta-nodes. Although 

the proposed method's results show slightly lower performance compared to 

existing community detection methods, it is capable of preventing trivial 

detections. The author has also emphasized the improvement that can be made 

to the proposed method such as refining the solution before the formation of 

meta-nodes to improve the quality of the initial detection of the community.  

 

2.2.3 Ant’s population adjustment for ACO-based community 

detection 

In the year 2020, Wang et al. proposed a community detection method 

incorporate with ACO. In the proposed method, the number of ant parameters 

in ACO is focused. According to Wang et al., the number of ants used in the 

ACO algorithm has a significant impact on the time complexity and the 

searching efficiency of the algorithm (Wang et al., 2020). Thus, the number of 

ants will be investigated in order to improve the ACO algorithm in terms of 

both computational cost and the time complexity of the algorithm. 

           In this research, the proposed method begins by initializing a 

probability matrix for the pheromone trails. The transfer probability formula is 

utilized to compute the probability matrix of each node. The matrix will be 

updated based on the local solutions and global solutions constructed by the 

ants. Finally, the completed matrix is then used for community detection, 

where the community of the node is identified by the columns with the highest 

probability in the probability matrix. 

           Besides that, the author has also dynamically adjusted the number of 

ants at the end of each iteration based on certain conditions. The author 

highlighted that the ants might be inactive during the process of community 

detection. In other words, the ants may get trapped in local optima, providing 

no improvement in the solutions but still consuming the computation resources 

of the algorithm. Therefore, the number of ants is modified dynamically based 

on a certain condition during the process. When the quality of solutions 

remains stable, the number of ants will be increased to help the ants from 

escaping the local optima, whereas when the quality of solutions shows a 

slight improvement, the number of ants will be reduced to decrease 

computational costs. Finally, when the quality of solutions improves 
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significantly, the number of ants will be increased significantly to enhance the 

search for better solutions. 

Last but not least, the author has carried out several experiments to 

investigate the impact of the number of ants on community detection. The 

proposed method is compared with the existing ACO-based community 

detection method and the performance of the algorithm will be evaluated as 

well. The result clearly showed that the proposed method has a significant 

improvement in terms of the computational time of the algorithms. However, 

the quality of the solutions obtained from the results only has slight 

improvement, indicating a need to overcome this issue. Overall, the proposed 

method is a promising approach for community detection as they reduce the 

computational cost of the algorithm effectively while maintaining the quality 

of solutions constructed. 

 

2.2.4 Other state of the art community detection method 

In the year 2007, Raghavan et al. utilized the label propagation method to 

propose a localized community detection algorithm. Initially, the process starts 

with labeling the nodes with unique labels. At each iteration of the process, 

each node will replace its label with the label that occurred most frequently 

among its neighboring nodes. After a few iterations, the labels will start to 

converge hence forming the communities.  

Furthermore, the author has explained in detail how the label 

propagation algorithm can be applied to detect community structure 

(Raghavan et al., 2007). In LPA, the nodes will tend to join the community 

that is formed by most of its neighbor nodes. If the same maximum number of 

times among its neighbors occurred, the node will randomly select one of 

those nodes to join their community. Initially, each node will be given a 

unique label. The label will spread through the network and the nodes that are 

densely connected to each other will be more likely to convert their label into a 

common label hence forming groups. The groups will continue to grow as the 

process go until no changes were made which are said to be converged. In the 

end, the nodes that share the same label are grouped thus forming a 

community. 
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           In addition, Raghavan et al. also highlighted the advantage of the 

proposed method which the algorithm does not require any prior knowledge 

about the network structure, thus making it easy to be implemented onto a 

variety of networks. Besides, the performance of the proposed method was 

evaluated using a real-world network with predefined communities. According 

to the results obtained, the proposed method is capable of finding the 

community structure effectively. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

This chapter provides an in-depth exploration of the application of the ACO 

algorithm incorporating with Label Propagation Algorithm (LPA) to detect 

communities. The chapter covers various aspects of this approach, including 

parameter setting, solution construction, ACO labeling, incorporation with the 

LPA, evaluation criteria, datasets used, and the tools and software used in the 

research. Also, this chapter aims to present a comprehensive overview of how 

ACO can be leveraged to enhance the performance of community detection by 

incorporating with LPA. 

 

3.1 Introduction of ACO 

Ant Colony Optimization (ACO), is a metaheuristic algorithm that takes 

inspiration from the foraging behavior of ants. The pheromone will be 

deposited on the optimal path to the food to create a label for other ants. In 

ACO, a number of artificial ants are generated to search for the optimal 

solution to a given problem. Each of the ants will build an independent 

solution by iteratively searching for a solution based on the pheromone trails 

left by previous ants. The pheromone trails will be updated at the end of each 

iteration based on the quality of the solutions found. In the end, the algorithm 

is able to converge on the best solution due to the feedback of pheromone 

trails and the reinforcement of ants. 

In this project, the algorithm is implemented to detect initial 

communities, perform labeling, and complete the detection by incorporating 

with existing community detection method. The performance of the algorithm 

will be evaluated to benchmark its capabilities in detecting communities. The 

process is structured with a sequence that includes parameter settings, solution 

construction, node labeling, complete detection, and performance evaluation. 

The proposed algorithm’s framework is derived from the work of Chin and 

Kamali (Chin and Kamali, 2019). Their paper served as the foundation for the 

development of the algorithm. 
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3.2 Parameter settings 

In the ACO algorithm, our first step involves initializing all the essential 

parameter settings for the ACO algorithm. This section outlines the key 

parameters that play a crucial role in the proposed method for initial 

community detection. Effective tuning of these parameters is essential for 

achieving optimal results. The subsections below discuss the specifics of each 

parameter and their significance and impact on the overall algorithm 

performance. 

 

3.2.1 Ant population size 

Regarding the ant population size, the performance of the ACO 

algorithm can be affected by the number of ants used in the algorithms. The 

number of ants should be sufficient to effectively cover the exploration of the 

solution space. Theoretically, a bigger ant population size will provide a more 

efficient search and increase the convergence speed. However, it will result in 

increased computational time and violate the principle of efficiency, which 

states that metaheuristic algorithms should be superior in terms of both 

accuracy and efficiency. On the other hand, if the ant population size is found 

to be small, there is a chance of missing potentially good solutions, as the ants 

cover insufficient paths leading to premature convergence to local optima. 

Thus, it is important to balance the size of ant populations in order to achieve 

desirable results. 

 

3.2.2 Ants allocation and steps 

In the community detection method, the initial allocation of ants can 

significantly affect the algorithm's speed and performance. The allocation of 

ants will be carried out based on the ratio of a node's degree to the average 

degree of its neighboring nodes. A higher degree of nodes will have relatively 

more connections between nodes within the network, indicating that these 

nodes play a more crucial role as they potentially carry key solutions. In 

addition to that, allocating ants to well-connected nodes can help the ants to 

escape local optima by utilizing the alternative paths especially when dealing 

with complex networks. Regarding the degree of nodes, only the outgoing 

degree will be considered as it reflects their ability to influence other nodes 
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within the network. Identifying effective influencer nodes can significantly 

affect the detection of initial communities as they have a high potential to 

impact other nodes. 

           Besides that, the artificial ants will move through the network within a 

fixed number of steps to construct a solution, with the ants that complete their 

steps considered to have completed a tour. The purpose of limiting the number 

of steps is to prevent taking too long to find a solution. Therefore, the number 

of steps should be small to ensure the initial communities formed remain small. 

This approach prevents the dominance of individual communities and leads to 

the formation of trivial solutions. 

 

3.2.3 Pheromone value 

Pheromone values play a crucial role in the movement of ants and are 

considered an essential component in the ACO algorithm as they guide the 

ants toward optimal solutions. However, if the ants over-rely on pheromones, 

this may limit the ants’ ability to explore alternative paths and find potentially 

better solutions. The bias in exploiting the current known path may hinder the 

algorithm’s ability to discover other possible optimal solutions. To address the 

issue, we may initiate the pheromone value at a low level at the early stage of 

the algorithm and increase the value at the later stages. This approach allows 

the ants to explore various paths, promoting a wider search for optimal 

solutions, and enabling them to shift the focus towards exploitation in order to 

reach convergence at the later stages. 

 

3.2.4 Heuristic information 

 Aside from the pheromone value, the heuristic information played 

another important role in the movement of ants within the ACO algorithm. 

The heuristic value provides additional information about the problem at hand 

and helps ants in making more informed decisions by considering factors other 

than just pheromones. In this research, the Sorencen-Dice-Index (SDI) served 

as the heuristic information and was utilized to measure the similarity between 

two nodes. The SDI between the nodes and can be expressed in the following 

equation: 
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𝑆𝑆𝑆𝑆𝑆𝑆 = 2�𝑏𝑏𝑖𝑖⋂𝑏𝑏𝑗𝑗�
|𝑏𝑏𝑖𝑖|+�𝑏𝑏𝑗𝑗�

     (3.1) 

 
where 𝑏𝑏𝑖𝑖 and 𝑏𝑏𝑖𝑖 are the total number of connected nodes for node 𝑖𝑖 and node 𝑗𝑗 

respectively. The �𝑏𝑏𝑖𝑖⋂𝑏𝑏𝑖𝑖� represents the number of mutual connected nodes of 

𝑖𝑖  and  𝑗𝑗 . The connected number of nodes for 𝑏𝑏𝑖𝑖  will not consider 𝑏𝑏𝑖𝑖  as the 

connected node when calculating the SDI and vice versa. 

On top of that, the SDI can also be incorporated with the weights of the 

edges in weighted networks to enhance the heuristic information’s ability to 

navigate ants in exploiting the network effectively. The weights help ants in 

determining the significance of connections between nodes, providing a more 

comprehensive meaning to differentiate the importance of various paths. This 

approach can be accomplished by multiplying the Sorensen-Dice Index (SDI) 

with the normalized weights. As the normalization method ranges from 0 to 1, 

a Laplace smoothing technique is implemented to avoid the 0 probability. The 

normalized weight of edges from node 𝑖𝑖  to node 𝑗𝑗 can be expressed in the 

following equation: 

 

𝑁𝑁𝑊𝑊𝑖𝑖𝑖𝑖 =  
𝑊𝑊𝑖𝑖𝑗𝑗 − min

𝑗𝑗
�𝑊𝑊𝑖𝑖𝑗𝑗� + 𝑠𝑠

max
𝑗𝑗

{𝑊𝑊𝑖𝑖𝑗𝑗 } − min
𝑗𝑗
�𝑊𝑊𝑖𝑖𝑗𝑗� + 𝑠𝑠

            (3.2) 

 
where 𝑊𝑊𝑖𝑖𝑖𝑖 represents the weights of edges from node 𝑖𝑖 to node 𝑗𝑗. The min

𝑖𝑖
{} 

and max
𝑖𝑖

{} functions select the minimum and maximum values among a set of 

values indexed by 𝑗𝑗 , respectively. The parameter 𝑠𝑠  represents the Laplace 

smoothing value used to prevent 0 probability in normalized weights. Thus, 

the heuristic information of edge from node 𝑖𝑖 to node 𝑗𝑗 can be expressed in:  

 

         𝜂𝜂𝑖𝑖𝑖𝑖 =  𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ∗  𝑁𝑁𝑊𝑊𝑖𝑖𝑖𝑖                (3.3) 
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where 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖  are the SDI between the node 𝑖𝑖  and 𝑗𝑗  and 𝑁𝑁𝑊𝑊𝑖𝑖𝑖𝑖  are the 

normalized weight of edges for node 𝑖𝑖 to node 𝑗𝑗. For unweighted network, the 

𝑁𝑁𝑊𝑊𝑖𝑖𝑖𝑖 will be equal to one as they have no weights between the edges. 

 

3.2.5 Alpha and Beta value 

In the ACO algorithm, alpha and beta are two key parameters that 

influence the algorithm's behavior and strike a balance between exploration 

and exploitation in the computation of ant movements. Alpha, often referred to 

as the pheromone influence factor, determines the weight assigned to 

pheromone information. A higher alpha value places greater emphasis on 

exploiting known optimal solutions, which speeds up convergence but may 

also lead to premature convergence to suboptimal solutions. On the other hand, 

beta, known as the heuristic influence factor, regulates the importance of 

heuristic information. A higher beta value encourages greater exploration of 

the search space, promoting the discovery of new, and potentially better 

solutions. Therefore, finding the proper balance between alpha and beta values 

is crucial for optimizing algorithm performance. 

 

3.2.6 Number of iterations 

In this project, the number of iterations used for ant’s enhancement 

(inner loop) and reiterating the process (outer loop) is set to be a small value. 

Despite the number of iterations being limited, the number is sufficient to 

yield satisfactory detections of initial communities for most of the networks. 

However, increasing the number of iterations may increase the computational 

times without increasing the quality of the initial community’s detections. 

Thus, the values are intentionally set to sufficiently small while still 

maintaining their functionality. In the future, the number of iterations will be 

taken into consideration to improve the algorithm's efficiency. 

 

3.3 Solution construction 

Once the parameters have been set up, the ants start to travel around the nodes 

within the network to construct solutions. This section provides an overview of 

the iterative process underlying the proposed community detection algorithm. 
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3.3.1 Ant’s movement 

As detailed in section 3.2, the ACO algorithm initiates ants in nodes 

with a high ratio degree of nodes. Once initiated, the ants begin to travel to 

construct solutions by seeking optimal routes. The movement of ants is guided 

by a probability function, but rather than solely relying on the highest 

probability, the selection of nodes to travel is determined using a roulette 

function. A roulette function generates random outcomes based on specified 

probabilities assigned to each possible outcome, covering a variety of different 

outcomes for a particular solution. This mechanism encourages ants to explore 

different paths rather than always choosing the path with the highest 

probability, which leads to getting trapped inside a local optima. Therefore, by 

fitting the probabilities for the possible traversable nodes into the roulette 

function, it will determine the next node for the ants to travel to. The 

probability function can be expressed using the following equation: 

 

𝑃𝑃𝑖𝑖𝑖𝑖 = (𝜏𝜏ij)𝛼𝛼((𝜂𝜂𝑖𝑖𝑗𝑗+𝜃𝜃))𝛽𝛽

∑ (𝜏𝜏𝑖𝑖𝑖𝑖)𝛼𝛼(𝜂𝜂𝑖𝑖𝑖𝑖)𝛽𝛽𝑖𝑖∈𝑁𝑁𝑖𝑖
      (3.4) 

 

where 𝜏𝜏ij is the pheromone trail value between component 𝑖𝑖 and 𝑗𝑗, while 𝜂𝜂𝑖𝑖𝑖𝑖 is 

the heuristic information between 𝑖𝑖 and 𝑗𝑗. The parameter 𝛼𝛼 controls the weight 

given to the pheromone information, while the parameter 𝛽𝛽  controls the 

weight given to the heuristic information. 𝑁𝑁𝑖𝑖   represents the group of 

connected components while 𝜃𝜃 is a constant value. 

 

3.3.2 Ants performance evaluation 

Once the ants have completed their tour, the algorithm uses the nodes 

that the ants visited to calculate the fitness score for their respective solutions. 

The fitness score for tour 𝑟𝑟 can be expressed in the following equation: 
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                               𝑓𝑓(𝑟𝑟) = ∑ 𝑘𝑘𝑆𝑆𝐶𝐶(𝑧𝑧)𝑍𝑍∈𝑁𝑁𝑟𝑟      (3.5) 

 

where 𝑁𝑁𝑟𝑟 represents the nodes that ants visited during tour 𝑟𝑟, while the intra-

community degree of a node is denoted by 𝑘𝑘𝐼𝐼𝐼𝐼. The fitness score of routes will 

be used in the later section of pheromone updates and the ants’ population 

adjustment. 

 

3.3.3 Pheromone value update & Adjustment of ant’s population 

Upon the completion of the fitness score calculation, the pheromone 

value will be updated based on the performance of ants. Specifically, ants with 

fitness score improvement compared to the previous iteration will receive an 

increment of a small constant value to all of their corresponding edges within 

that particular route. This approach aims to reinforce the paths taken by ants 

that have contributed positive feedback to the algorithm, hence increasing the 

probability of being selected in the following iterations.  

           At the same time, those ants with unsatisfactory fitness scores will be 

selected for the next iterations, giving them an opportunity to improve their 

performance. This approach not only improves the overall performance of ants 

but also decreases the unnecessary computational times at the same time. This 

is because the movement of ants are decided randomly with a roulette function, 

and there are chances were the ants performed well in current iterations may 

yield bad result in the next iterations. Thus, we decided to retain well-

performing ants and exclusively reinforce those ants that do not achieve the 

target in the upcoming iterations. 

 

3.3.4 Generating multiple routes 

When the ants have reached the maximum time of reinforcement, the 

best fitness score and its corresponding route among that iteration's results are 

stored in a final list. The updated pheromone value will be reset to the initial 

pheromone value and the entire process will be repeated to generate different 

routes and fitness scores, they will be stored in the final list for labeling 

purposes. 
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3.4 ACO Label 

Once the final list has been fully updated, the routes with fitness scores greater 

than the average fitness score will only be considered in the labeling process. 

The process starts by labeling the nodes in the routes with the lowest fitness 

score by the first nodes’ label. The process is repeated from the lowest fitness 

score to the highest fitness score. The label will be replaced by a higher fitness 

score label if a node carries multiple routes. After labeling all the nodes, nodes 

with the same label are treated as the initial community. The figure below 

illustrates the labeling process of nodes. 

 

 
Figure 3.1: The example of the process of the first phase of the labeling 

process.  

 

The yellow color routes have a lower fitness score as compared to the red 

color routes. Thus, the yellow label is replaced by the red label. 

 

3.5 Complete detection using Label Propagation Algorithm 

Label propagation algorithm (LPA) is a community detection algorithm that 

aims to identify communities in a complex network. The concept of LPA is to 

propagate the labels among the nodes in a network based on the similarity of 

their connections. LPA is also known as a fast algorithm due to its simple and 

efficient label propagation process. The process is said to be simple because 

the process only involves determining the similarity between nodes, and 

updating the node labels accordingly and iteratively until convergence has 

been reached. The computational efficiency of LPA allows it to be easily 

implemented on a large-scale network.  

In the proposed method, LPA is implemented in the initial 

communities formed by the ACO algorithm. The labels are propagated for a 

number of iterations or until no changes during the propagation process. 



19 

Finally, the nodes with the same propagated labels are treated as final 

communities. 

3.6 Evaluation Criteria 

In this section, we will discuss the evaluation criteria used to assess the 

performance and effectiveness of the proposed algorithm. Specifically, we will 

focus on two key metrics: Normalized Mutual Information (NMI) and 

Modularity. These metrics provide insights into the quality of the detected 

community and the overall robustness of our method. The performance can be 

benchmarked by comparing these evaluations with the existing community 

detection methods. 

 

3.6.1 Normalize mutual information 

NMI is a measure used to evaluate the similarity between two 

communities in a complex network. NMI is typically used in clustering 

evaluation to evaluate the quality of the clustering. In this paper, NMI can be 

applied to evaluate the similarity between two detected communities obtained 

by the proposed method. The NMI between network X and network Y can be 

expressed in the following equation: 

   

𝑁𝑁𝑁𝑁𝑆𝑆(𝑋𝑋|𝑌𝑌) =
−2∑ ∑ 𝑁𝑁𝑖𝑖𝑗𝑗�𝑙𝑙𝑙𝑙𝑎𝑎

𝑁𝑁𝑖𝑖𝑗𝑗𝑁𝑁

𝑁𝑁𝑖𝑖.𝑁𝑁.𝑗𝑗
�𝐶𝐶𝑌𝑌

𝑗𝑗=1
𝐶𝐶𝑋𝑋
𝑖𝑖=1

∑ 𝑁𝑁𝑖𝑖.
𝐶𝐶𝑋𝑋
𝑖𝑖=1 �𝑙𝑙𝑙𝑙𝑎𝑎

𝑁𝑁𝑖𝑖.
𝑁𝑁 �+ ∑ 𝑁𝑁.𝑗𝑗

𝐶𝐶𝑌𝑌
𝑗𝑗=1 �𝑙𝑙𝑙𝑙𝑎𝑎

𝑁𝑁.𝑗𝑗
𝑁𝑁 �

      (3.3) 

 
where the total number of community in network 𝑋𝑋 and 𝑌𝑌 are denoted as 𝐶𝐶𝑋𝑋 

and 𝐶𝐶𝑌𝑌 , while the sum of the rows 𝑖𝑖 and sum of the columns 𝑗𝑗 are denoted as 

𝑁𝑁𝑖𝑖. and 𝑁𝑁.𝑖𝑖 respectively. NMI ranges between 0 and 1, where the value close to 

one indicates the communities are identical and close to zero indicates the 

communities are different from each other. 

 

3.6.2 Modularity 

Modularity is a measure of the quality of a community structure within 

a network. Generally, modularity is used in community detection to evaluate 

the performance of the algorithm. In other words, it measures the degree of 
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detected communities within a network. The modularity, Q can be expressed 

in the following equation: 

 

             𝑄𝑄 =  1
2𝑚𝑚

∑ (𝐴𝐴𝑖𝑖𝑖𝑖 −
𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗
2𝑚𝑚

)𝑖𝑖,𝑖𝑖∈𝑉𝑉 𝛿𝛿(𝐶𝐶𝑖𝑖 ,𝐶𝐶𝑖𝑖)      (3.4) 

 

where the set of nodes represented by 𝑉𝑉 and the total number of edges are 

represented by 𝑚𝑚. The adjacency matrix is denoted by 𝐴𝐴𝑖𝑖𝑖𝑖, where the value 

will equal to 1 if node 𝑖𝑖 and node 𝑗𝑗 are connected, and otherwise 0. The degree 

of node 𝑖𝑖  and node 𝑗𝑗  are denoted by 𝑘𝑘𝑖𝑖  and 𝑘𝑘𝑖𝑖  respectively. The 𝛿𝛿(𝐶𝐶𝑖𝑖 ,𝐶𝐶𝑖𝑖) 

function will be equal to 1 if node 𝑖𝑖 and node 𝑗𝑗 falls in the same community, 

otherwise 0. In general, the modularity equation ranges between 0 to 1, where 

the value closer to one indicates the nodes inside a community are densely 

connected to each other while the value close to 0 indicates the nodes inside a 

community are not densely connected to each other. 

 

3.7 Dataset 

The proposed method will be tested using both artificial benchmarking 

networks and several real-world networks. The real-world network datasets are 

available from the KONECT open-source website. For the artificial 

benchmarking network, the Lancichinetti–Fortunato–Radicchi (LFR) network 

model is used to create artificial benchmarking networks for evaluating the 

performance of community detection algorithms. The LFR model will 

generate networks with pre-defined community structures, enabling us to 

easily compare and evaluate performance.  

Besides, the real-world networks can be classified into two categories, 

those with pre-defined community structure and those without. The networks 

with pre-defined community structures are used to test the accuracy of 

community detection for a given method while those without pre-defined 

community structures will require additional exploratory analysis to detect the 

communities. 
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3.8 Tools and software 

In this project, the R programming language is utilized as the primary 

programming language in the development of the ACO algorithm. One of the 

reasons that R programming languages are selected is because R has a 

significant amount of library packages that can be capable of statistical 

computing, data analysis, as well as data visualization. Meanwhile, Microsoft 

Excel is utilized to prepare the raw data and convert it into CSV files as the R 

programming can easily understand the data in CSV format. Then, the CSV 

files will be imported into R programming to insert the network data.  
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CHAPTER 4 

 

4 COMPUTATIONAL DETAILS 

In this chapter, we delve into the core components that form the foundation of 

our project. Each subsection addresses a critical aspect, providing essential 

insights and details to help readers understand the structure of our work. 

 

4.1 Datasets 

In this project, the utilized datasets include both benchmark and real-world 

networks. Regarding the types of networks, four types of networks will be 

included such as unweighted undirected, unweighted directed, weighted 

undirected, and weighted directed networks. The algorithm is tested with 

benchmark networks to evaluate its performance in detecting communities. 

This is because the presence of ground truth within the benchmark networks 

allows for a better comparison between the outputs and the actual community 

structures. The evaluation framework is then extended to real-world networks, 

which may lack of established ground truths. 

 

4.1.1 LFR benchmark network 

For benchmark networks, the Lancichinetti–Fortunato–Radicchi (LFR) 

benchmark network is utilized to evaluate the capabilities of various 

algorithms. The network model offers the advantage of known ground-truth 

community structure, allowing more precise evaluation for community 

detection algorithms. In addition to that, the model is also capable of 

replicating real-world network complexities such as power-law degree 

distributions and overlapping communities, thus enhancing its relevance in 

algorithm testing. 

           In order to generate LFR benchmark network, there are some of the 

necessary parameters required to be set up: 

• Number of nodes, 𝑁𝑁 

• Average degree of nodes , 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 

• Maximum degree of nodes, 𝑘𝑘𝑚𝑚𝑎𝑎𝑥𝑥 
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• Minimum communities size, 𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚 

• Maximum communities size, 𝑠𝑠𝑚𝑚𝑎𝑎𝑥𝑥 

• Mixing parameter of topology, 𝜇𝜇 

• Mixing parameter of weights, 𝜇𝜇𝑤𝑤 

The size of the network generated by the LFR benchmark will be 

decided by the parameter 𝑁𝑁  which sets the total number of nodes in the 

networks. The degree of nodes refers to the number of connections (or edges) 

for a particular node, thus, setting up the average degree of nodes determine 

the average number of connection for a node while the maximum degree of 

nodes indicates the maximum number of connection for a node to have. 

Moreover, the range of community size can be established by setting 

up the minimum and maximum community size. If both of the values are set 

relatively low, the LFR benchmark will generate a network consisting of small 

communities, leading to a high number of distinct communities. On the other 

hand, if the value is set higher, a network consisting of large communities will 

be generated, resulting in fewer number of distinct communities.  

Apart from that, the mixing parameter of topology stands as a key 

factor in shaping the complexity of network structure when generating LFR 

benchmark networks. This parameter influences the degree to which nodes 

from different communities are connected to each other. In simple words, the 

parameter adjusts the degree of nodes, which the connection comes from the 

node within the same communities or different communities. When the mixing 

parameter of topology is set to be low, it indicates that nodes tend to connect 

more nodes that came from the same communities, resulting in a more distinct 

community structure. In other words, the communities are well-defined and 

relatively isolated from each other. Conversely, if the parameter is set to be 

high, nodes are more likely to have connections that bridge between 

communities, resulting in more interconnection, where nodes from different 

communities are more entangled. 

In order to generate a weighted network, the mixing parameter of 

weights has to be set to a value higher than 0. This parameter determines the 

distribution of weights assigned to the connection between nodes. When the 

parameter is set to a lower value, the weights are more evenly distributed 
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among the networks, while on the other hand, the weights will be unevenly 

distributed when the parameter is set to a higher value. Last but not least, the 

unweighted network can be generated by setting the parameter to 0. 

 

4.1.2 Real world networks 

In community detection, methods are often tested with real-world 

networks as they reflect the complexities and actual systems, making them 

more relevant to real-life applications. Evaluating an algorithm with real-world 

networks helps to determine the algorithm's ability to generalize across 

different scenarios and datasets. In order to have a better evaluation, the 

algorithms are tested with famous real-world benchmark networks, including 

the karate, dolphin, football, and political book networks. Finally, the 

evaluation process is extended to real-world networks to demonstrate the 

algorithm's effectiveness in addressing real-world scenarios. The datasets for 

real-world networks were downloaded from an open-source website known as 

‘Konect’.  

 

4.2 Parameters 

In this section, the parameters of ACO algorithm will be details and discuss. 

The following is a list of the parameters utilized in ACO algorithm: 

• Initial ant population size 

• Alpha and Beta value 

• Initial pheromone value 

• Pheromone update value 

• Number of steps 

• Number of iterations for inner loop and outer loop 

Firstly, we begin the algorithm by setting the initial ant population size 

as half of the total nodes in the network. The values are quite decent as they 

have balanced between exploration and exploitation. After the first iterations, 

the ant population will be adjusted based on their performance.  

Besides that, the alpha and beta values in the probability function are 

set to 0.5 for both parameters considered a common practice in various 

algorithms. An equal weight assigned to these parameters strikes a balance 
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between exploration and exploitation, ensuring the algorithm doesn’t favor one 

aspect over the other. In addition, an equal weights assignment makes the 

algorithm more user-friendly and less sensitive to variations in data inputs. 

Furthermore, the initial pheromone value is set to 0.2 which is 

considered a lower value. This helps ants avoid biases and encourages ants to 

explore the paths during the early stages of the algorithm. At the end of each 

iteration, if the ants find that they have improved their fitness scores compared 

to previous iterations, the pheromone value for all the edges along the path 

will be updated. The pheromone update value is set to be increased by 0.05. 

This low update value helps the algorithm maintain a balance between 

exploration and exploitation by preventing rapid and excessive pheromone 

accumulation on certain paths. By slowly increasing the pheromone levels, the 

algorithm gives sufficient time for ants to explore and evaluate different paths, 

reducing the chances of getting stuck in suboptimal solutions.  

At every iteration, the ants will move 4 steps and they are considered 

completed their routes. The decision to have ants move only 4 steps is aimed 

at intentionally keeping the size of the communities small. These communities 

are not final solutions but rather starting points. This design encourages 

focused exploration within specified limits, enabling efficient search for 

solutions. 

Finally, the number of iterations for both the inner loop (ant's 

enhancement) and the outer loop (reiterating the process) is limited to a 

maximum of 10 iterations. The values achieve a balance between seeking a 

satisfactory result in the initial community detection phase and maintaining the 

algorithm's speed at an optimal level. This approach prioritizes efficiency 

without compromising the quality of the outcomes. 

 

4.3 Code and Implementations 

In this project, the ACO algorithm is implemented using the R programming 

language, utilizing its powerful data analysis capabilities. The algorithm is 

divided into four subsections for detecting initial communities. 
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4.3.1 Libraries and data 

Firstly, the initial section begins by importing necessary libraries, such 

as the "igraph" and "doparallel" packages. The "igraph" package in R is a 

robust tool for analyzing graphs and networks, offering features like graph 

creation, analysis, visualization, and data import/export. Additionally, the 

"doparallel" package allows the utilization of multiple CPU cores, which can 

enhance computational speed. However, it's worth noting that parallelization 

may not always result in improved performance, as it can increase the time and 

resources required for setting up parallel components, potentially leading to 

worse performance. After importing the libraries, the network can be loaded 

from edge list format files. Also, variables need to be adjusted based on the 

type of network imported. If ground truth networks are available, they can also 

be imported as well. 

 

4.3.2 Parameter setup 

The next section involves setting up the necessary parameters for the 

entire process. Initially, each node is assigned a unique label for differentiation. 

Then, node degrees are calculated using the "degree" function from the 

"igraph" library. For directed networks, only the out-degree is considered, as it 

reflects a node's ability to influence other nodes. Additionally, the SDI for 

each edge in the edge list is calculated using the formula in Section 3.2. For 

weighted networks, SDI calculations differ, as edge weights affect heuristic 

information. The edge weights will be normalized using min-max scaling, and 

a small Laplace smoothing constant is added. The normalized weights are then 

incorporated into the heuristic information. Furthermore, the ratio of a node's 

degree to the average degree of its neighbors will be calculated. The ants will 

then be assigned to the nodes based on the calculated ratio of the degree of 

nodes. Lastly, parameters such as the number of steps, alpha and beta values in 

the probabilistic function, ant population size, and the number of iterations for 

ant generations and ant enhancement are set according to the value suggested 

in Section 4.2. 
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4.3.3 ACO algorithm 

 Moving on, the following section delves into the ants, which are the 

core components of the ACO algorithm. To provide a clearer explanation, 

parts covering multiple iterations are illustrated using curly brackets. 

[Outer loop]{ 

The ACO algorithm begins after initializing the ants at nodes with a high 

degree ratio. Pheromone values are assigned to every edge and reset to the 

initial pheromone value at the start of each outer loop iteration. Then, the ants 

start constructing solutions, which undergo multiple iterations of enhancement 

within the inner loop. 

[Inner loop]{ 

If this is the first iteration of the inner loop, the number of ants is set to 

half the size of the network to create routes. Starting from the second 

iteration, the ant population size is adjusted based on the performance of 

ants in the previous iteration. Ants with fitness scores below a threshold 

are selected to undergo reinforcement in the next iteration. Each ant 

constructs independent routes within a specified number of steps. 

[Ants' movement]{ 

Each ant is designed to create routes within a maximum number of 

steps. During solution construction, ants choose their next steps using 

a probabilistic function to determine their destination. The 

probabilistic function is calculated before ant movement and updated 

with each iteration. The roulette function is then implemented in the 

probabilistic function to select a node to travel to from its 

neighboring nodes.} [End of ants' movement] 

Ants continue moving until they reach the maximum number of steps 

to create a route.  

Once ants have completed their steps, the fitness score of the routes they 

created is computed and stored in a list.} [End of inner loop] 

The ant enhancement process iterates several times. If ants find a route with a 

better fitness score, the current fitness score replaces the list storing the best 

fitness score for that particular route. Additionally, the pheromone values for 

all edges in the route are updated by a constant value. When ants have reached 
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the maximum number of enhancement iterations, the routes, and their fitness 

scores are stored in a final list.} [End of outer loop] 

The entire process runs multiple times to populate the list with different results. 

 

4.3.4 Node labelling 

Finally, the last section is the node labeling process. In this step, routes 

with fitness scores lower than the average are removed from the list, and the 

remaining routes undergo labeling. All nodes within a route are assigned the 

label of the first node in the route. The label replacement is performed from 

the lowest fitness score to the highest fitness score. Nodes with the same label 

are treated as communities. If a route has fewer than three nodes, its 

community is disbanded, and its labels are replaced with -1. Note that label 

removal does not reset the labels to their initial unique labels. Instead, they are 

set to -1. The ACO algorithm is now complete, and the nodes with the same 

labels will be treated as initial communities. The labels will then propagate by 

implementing LPA to complete the community detection. 

 

4.4 Evaluation process 

As elaborated in section 3.6, the algorithm's performance can be assessed 

through the use of two key metrics: Normalized Mutual Information (NMI) 

and modularity. NMI determines the accuracy of the algorithm when 

predefined networks are available, while modularity evaluates the structure of 

the detected communities. The finalized detection labels will be compared 

with the predefined labels using the "igraph" library's comparison function by 

assigning the parameter “method” equal to “nmi”. Meanwhile, the modularity 

of detected communities will be evaluated using the modularity function from 

the 'igraph' library. 
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4.5 Process flowchart  

 

 
 

Figure 4.1: Flowchart of community detection process of ACO algorithm with 

LPA.
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CHAPTER 5 

 

5 RESULTS AND DISCUSSION 

In this chapter, we utilized the LFR benchmark and real-world benchmark 

network to evaluate the performance of the proposed method. The NMI will be 

computed and compared to the ground truth network to determine the 

algorithm's effectiveness. Meanwhile, a comparative analysis is conducted by 

comparing our results with the results obtained using the existing community 

detection method. Subsequently, the algorithm will be applied to real-world 

networks for the purpose of community detection. 

 

5.1 LFR benchmark 

In this subsection, the algorithm is assessed across all types of LFR 

networks, encompassing unweighted/undirected (UW/UD), 

unweighted/directed (UW/D), weighted/undirected (W/UD), and 

weighted/directed (W/D) scenarios. The primary focus of the evaluation 

process is on the Normalized Mutual Information (NMI) metric, and the 

results are systematically compared with existing community detection 

methods, including standalone Label Propagation Algorithm (LPA) and 

Infomap. 

For all the LFR networks, a constant network size of 1000 nodes is 

maintained, while the mixing parameter for topology is systematically varied. 

This approach allows us to assess the algorithm's performance across different 

levels of complexity of network structures. Additionally, in the case of 

weighted networks, the mixing parameter for topology will be fixed at 0.5, 

while the mixing parameter for edge weights is dynamically adjusted. This 

variation in edge weights assesses the algorithm’s adaptability and 

effectiveness in handling weighted networks. On top of that, the methods were 

executed five times for each of the algorithms as they might produce variable 

outcomes due to the randomness produced by LPA. Thus, the average of the 

results will be considered for a more robust assessment. 
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Figure 5.1: NMI scores of community detection methods in Undirected 

Unweighted LFR network with different levels of mixing parameters for 

topology 

 
Figure 5.2: NMI scores of community detection methods in Directed 

Unweighted LFR network with different levels of mixing parameters for 

topology 
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Figure 5.3: NMI scores of community detection methods in Undirected 

Weighted LFR network with different levels of mixing parameters for edge 

weights 

 
Figure 5.4: NMI scores of community detection methods in Directed Weighted 

LFR network with different levels of mixing parameters for edge weights 

 

The results of community detection are visually presented in Figure 5.1 

to Figure 5.4. The NMI scores assess the similarity between the detected 
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communities and the predefined communities, with a higher value indicating a 

greater similarity between the identified communities and their predefined 

counterparts. Notably, Infomap demonstrates a remarkable ability to detect 

communities effectively when the mixing parameter for network topology 

remains below 0.7, surpassing other methods that failed to detect community 

at 0.6. This underscores Infomap's competence in managing the complexity of 

network structures. However, in the context of weighted networks, ACO-LPA 

exhibits a dominant performance across the entire spectrum of mixing 

parameters for edge weights. In contrast, both LPA and Infomap encounter 

difficulties in identifying communities when the mixing parameter for edge 

weights reaches 0.5 or higher in unweighted/undirected (UD/W) networks and 

0.6 in directed/weighted (D/W) networks. This observation highlights the 

proficiency of ACO-LPA in effectively handling weighted networks, where it 

consistently yields good results across various levels of mixing parameters for 

edge weights. 

 

5.2 Real-world network with predefined communities 

In the following subsection, the evaluation are extended to real-world 

benchmark networks, applying these methods able to assess their effectiveness 

in community detection with the presence of community structure. 

 

Table 5.1: NMI scores of community detection methods in real-world 

benchmark networks.  

Network ACO-LPA LPA Infomap 
Politic book 0.291 0.2884 0.2864 

Football 0.9527 0.9102 0.9721 

Dolphin 0.5611 0.5882 0.5932 

Karate 0.9241 0.5915 0.6995 
 

The provided table presents the NMI scores for real-world benchmark 

networks obtained using ACO-LPA, LPA, and the Infomap community 

detection method. The analysis involves a set of famous real-world networks 

such as the karate network, football network, dolphin network, and political 

book network. These networks are classic real-world benchmark networks, 
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utilizing the presence of predefined communities, making them ideal for 

evaluating the algorithm's performance. As shown in Table 5.1, the 

Normalized Mutual Information (NMI) values across the methods have 

relatively small variations, highlighting their overall comparability in the 

effectiveness of the algorithm across most of the datasets. Additionally, the 

relatively consistent NMI results across the other existing community 

detection methods highlight the algorithm's robustness and applicability in 

different real-world scenarios, offering valuable insights into its capability. 

 

Table 5.2: Modularity scores of community detection methods in real-world 

benchmark networks. 

Network ACO-LPA LPA Infomap 
Politic book 0.5178 0.4902 0.5228 

Football 0.5299 0.6046 0.6005 

Dolphin 0.5201 0.4867 0.5277 

Karate 0.3715 0.3749 0.402 
 

The provided table presents the modularity scores for real-world 

benchmark networks obtained using ACO-LPA, LPA, and Infomap 

community detection methods. The modularity scores determine the 

effectiveness of the methods in identifying well-structured communities within 

networks, with a higher value indicating a better structure of detected 

communities. As shown in Table 5.2, the Infomap method consistently shows 

a superior performance when compared to the other methods. This highlights 

its capabilities of detecting well-structured communities within the networks. 

Notably, while the ACO-LPA method may not consistently yield the highest 

modularity scores, it still maintains a competitive edge, displaying its potential 

as a promising method for community detection. 

 

5.3 Real-world networks 

Finally, the last subsection will implement the algorithms into the real-world 

networks to evaluate their performance by comparing them to existing 

community detection methods.  
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Table 5.3: Modularity scores of community detection methods in real-world 

networks  

Network Type ACO-LPA LPA Infomap 
Taro  D/UW 0.3823 0.3633 0.4533 

Residence D/W 0.4278 0.3851 0.4595 

Les miserable UD/W 0.4944 0.5641 0.5571 

Physician D/UW 0.5527 0.575 0.6466 

Jazz UD/UW 0.3819 0.3591 0.28 

Train UD/W 0.3904 0.3258 0.4105 
 

The provided table presents the modularity scores for real-world 

networks obtained using ACO-LPA, LPA, and Infomap community detection 

methods. Due to the absence of predefined communities in these real-world 

networks, the NMI score of the algorithm cannot be evaluated. Consequently, 

modularity serves as the primary metric for assessing the quality of 

community detection. Overall, the results show a notable degree of similarity, 

with Infomap demonstrating a slightly superior performance compared to the 

other methods. However, it is essential to underscore that the remaining 

methods consistently yield promising results when compared to other methods 

within the same networks. Although ACO-LPA may not shine as brightly in 

identifying well-structured communities, it is still capable of producing 

commendable results, rendering it a viable choice for community detection 

methods. 

 

5.4 Summary 

In short, we conducted a comprehensive evaluation of the proposed algorithms 

across various network scenarios, including the LFR benchmark network, real-

world benchmark networks, and real-world networks. Our methods showcased 

their effectiveness in community detection within weighted networks, often 

outperforming existing community detection methods. Moreover, our 

algorithms consistently delivered promising results in identifying well-

structured communities, although when the existing methods only slightly 

outperformed them. As a final point, we extended the applicability of our 
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proposed methods to real-world networks, where they serve as valuable 

community detection methods.  
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CHAPTER 6 

 

6 RECOMMENDATIONS AND CONCLUSIONS 

In this chapter, the limitations of the proposed method and suggestions for 

future work will be discussed. The project will then be summarized into 

paragraphs to conclude the necessary key points. 

 

6.1 Limitation and Challenges 

In this project, the ACO algorithm is combined with LPA for community 

detection. In this subsection, the limitations and challenges of the proposed 

method will be discussed in detail.  

           Ant Colony Optimization (ACO) is a widely recognized method for 

community detection. Nevertheless, it required parameter fine-tuning, 

including pheromone values, and population size, and the balance between 

exploration and exploitation. Incorrect parameter settings can lead to issues 

such as premature convergence, excessive computational demands, or 

convergence to suboptimal solutions. The pursuit of optimal parameter values 

can be a challenging task as the given problem might be different. 

           Another challenge in the proposed method lies in its scalability 

concerning network size. The computational cost for constructing a solution 

are greatly depend on the network’s scales. As the network size increases, it 

will result in exponentially growing computational costs, leading to a 

significant scalability concern. 

           Regarding convergence iterations, the current proposed method is not 

concerned about this aspects. However, it should be noted that while the 

algorithm remains capable of efficiently detecting communities within a 

limited number of iterations, the number might be insufficient as the size of 

networks grows. By simply increasing the number of iterations to enhance 

results, it may result in increasing the computational cost exponentially which 

is impractical. 

           Despite these limitations, it's important to emphasize that these 

limitations do not necessarily make ACO-LPA unsuitable for community 
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detection. The choice of method should depend on the problem at hand and the 

goal of the analysis. 

 

6.2 Recommendations for future work 

In future research, it is advisable to develop more precise and robust 

methods to set up the algorithm's parameter settings. The approach can be 

done by utilizing machine-learning-based optimization to fine-tune the optimal 

value for each of the parameters in the algorithms. The parameters should be a 

primary focus when seeking to enhance algorithm performance, as they 

directly influence on the overall algorithm's effectiveness. 

           In addition, an alternative strategy for ant movement within the 

network should also be considered. Experimentation with different movement 

rules can offer fresh insights into optimizing the exploration and exploitation 

balance, as the current strategies are solely based on the probabilistic function. 

The approach has limited the potential for ants to discover different solutions 

within the other side of networks. 

By considering these recommendations, future research can contribute 

to the advancement and refinement of the ACO-LPA community detection 

method, thus, leading to more effective and versatile solutions for community 

detection in complex networks. 

 

6.3 Conclusion 

In summary, a community detection method has been developed by 

incorporating the ACO algorithm with LPA. The parameters of the ACO 

algorithm are optimized to maximize the performance in detecting 

communities. The proposed method has been assessed using various 

benchmark networks, comparing its performance to existing community 

detection methods. The proposed method shows its capability to handle 

various types of networks and yields promising results when compared to 

other methods. Nonetheless, certain limitations and challenges encountered by 

this method can be overcome to improve the algorithm's effectiveness. 

Therefore, in the future, we hope that the proposed method provides valuable 
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insights and serves as a foundational point for the development of more 

effective community detection methods. 
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